

First Edition (March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AIXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AIX 3270 Host Connection Program/6000, IBM AIX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright Adobe Systems, Inc., 1984, 1987

© Copyright X/Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. All rights reserved.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

© Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) qr subparagraph (c)(1)(Ii) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

© Copyright Carnegie Mellon, 1988. All rights reserved.

© Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

© Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

© Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided "as is" without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

© Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.

©Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.l.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.l.T. and Digital makes no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

© Copyright 1989, Open Software Foundation, Inc. All rights reserved.

© Copyright 1987, 1988, 1989, Hewlett-Packard Company. All rights reserved.

© Copyright 1988 Microsoft Corporation. All rights reserved.

© Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.

© Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved.

© Copyright EG Pup User Process, Paul Kirton, and ISi, 1984. All rights reserved.

© Copyright Apollo Computer, Inc., 1987. All rights reserved.

© Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AIX is a trademark of International Business Machines Corporation.

AIX/RT is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

HP is a trademark of Hewlett Packard Inc.

HP-GL is a trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

Operating System/2 and OS/2 are trademarks of International Business Machines
Corporation.

OSF and OSF/Motif are trademarks of Open Software Foundation, Inc.

PAL is a trademark of International Business Machines Corporation.

Personal Computer AT and AT are trademarks of International Business Machines
Corporation.

RISC System/6000 is a trademark of International Business Machines Corporation.

RT is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Xstation Manager is a trademark of International Business Machines Corporation.

X Window System is a trademark of Massachusetts Institute of Technology.

X/OPEN is a trademark of X/OPEN Company Limited.

Preface v

vi User Interface Reference

About This Book
This book provides information on AIXwindows classes, subroutines, and resource sets;
Enhanced X-Windows subroutines, events, extensions, protocols and toolkit subroutines,
and Curses and Extended Curses for use on the Advanced Interactive Executive Operating
System (referred to in this text as AIX) for use on the IBM RISC System/6000.

This book is part of AIX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198. AIX Calls and Subroutines Reference is divided into the following four major
sections:

• Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and device services.

• Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AIXwindows widget classes, subroutines, and resource sets; the
AIXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

• Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

• Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AIXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced programmers who understand the basic functions of
the IBM RISC System/6000. To use this book effectively, you should be familiar with AIX or
UNIX System V commands and subroutines, AIXwindows subroutines, and Enhanced
X-Windows subroutines. If you are not already familiar with AIX or UNIX System V, refer to
AIX General Concepts and Procedures.

How to Use This Book
Overview of Contents

This book contains the following alphabetically arranged sections on AIXwindows, Enhanced
X-Windows, Curses and Extended Curses.

• AIXwindows

- Classes
- Subroutines
- Resource Sets
- Desktop Resource Sets
- Window Management

• Enhanced X-Windows

- Subroutines
- Toolkit Subroutines

Preface vii

Highlighting

- Protocols
- Extensions
- Events

• Curses

• Extended Curses

The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

• AIX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

• AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

• AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

• AIX User Interface Programming Concepts for IBM RISC System/6000, Order Number
SC23-2209.

• IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

• XL C Language Reference for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1260.

• XL C User's Guide for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii User Interface Reference

Contents

AIXwindows Classes . 1-1

AIXwindows Subroutines... 2-1

AIXwindows Resource Sets... 3-1

AIXwindows Desktop Resource Sets . 4-1

AIXwindow Window Management.................................... 5-1

Enhanced X-Windows Toolkit Subroutines . 6-1

Enhanced X-Windows Subroutines . 7-1

Enhanced X-Windows Protocols . 8-1

Enhanced X-Windows Extensions . 9-1

Enhanced X-Windows Events . 10-1

Curses Subroutine Library . 11-1

Extended Curses Subroutine Library . 12-1

Appendix A. Enhanced X-Windows Xlib Data Structures................. A-1

Appendix B. Enhanced X-Windows Toolkit Data Structures B-1

Appendix C. Enhanced X-Windows Extension Data Structures C-1

Index . X-1

Preface ix

x User Interface Reference

Enhanced X-Windows Subroutines

Enhanced X-Windows Subroutines 7-1

7-2 User Interface Reference

AllPlanes Macro

Purpose

Libraries

Returns the depth of the root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
All Planes()

C Syntax
unsigned long XAllPlanes()

FORTRAN Syntax
integer*4 fxallplanes
external fxallplanes
integer*4 ReturnCode
ReturnCode = fxallplanes()

Description

All Planes

Both the macro and the subroutine return a value with all bits set to 1, suitable for use in a
plane argument to a procedure.

Macro information can be found in the /usr/include/X11/Xlib.h file.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-3

BitmapBitOrder Macro

Purpose

Libraries

Returns the ordering of bits in a bitmap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

BitmapBitOrder(DisplayPtr)

int XBitmapBitOrder(Disp/ayPtrJ
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxbitmapbitorder
external fxbitmapbitorder
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxbitmapbitorder(Disp/ayPt(J

Description

Parameter

Within each bitmap unit, the leftmost bit in the bitmap displayed on the screen is either the
least significant bit or the most significant bit in the unit.

Macro information can be found in the /usr/include/X11/Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Return Values
LSBFirst Indicates least significant bit first.

Indicates most significant bit first. MSBFirst

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine rs part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-4 User Interface Reference

XBitmapPad Subroutine

Purpose

Libraries

Returns the scanline pad unit of the server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

BitmapPad(DisplayPtr)

int XBitmapPad(Oisp/ayPtrJ
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxbitmappad
external fxbitmappad
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxbitmappad(DisplayPtr)

Description

Bitmap Pad

Each scanline must be padded to a multiple of the bits returned by this macro or subroutine.

Macro information can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-5

BitmapUnit

BitmapUnit Macro

Purpose

Libraries

Returns the size of a bitmap unit.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

B itmapU nit(DisplayPtr)

int XBitmapUnit(Disp/ayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxbitmapunit
external fxbitmapunit
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxbitmapunit(DisplayPtr)

Description

Parameter

Both the macro and the subroutine return the size of a bitmap unit in bits. The scanline is
calculated in multiples of this value.

Macro information can be found in the /usr/include/X11 /Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-6 User Interface Reference

BlackPixel Macro

Purpose

Libraries

Returns the black pixel value.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

BlackPixel(Disp/ayPtr, ScreenNumbet}

unsigned long XBlackPixel(Disp/ayPtr, ScreenNumber)
Display * DisplayPtr,
int ScreenNumber;

FORTRAN Syntax
integer*4 fxblackpixel
external fxblackpixel
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxblackpixel(Disp/ayPtr, ScreenNumbet}

Description

BlackPixel

Both the macro and the subroutine return the black pixel value for the screen specified.

Macro information can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-7

BlackPixelOfScreen

BlackPixelOfScreen Macro

Purpose

Libraries

Returns the black pixel value.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

BlackPixelOfScreen(ScreenPtt')

unsigned long XBlackPixelOfScreen(ScreenPtr)
Screen * ScreenPtr;

FORTRAN Syntax
integer* 4 fxblackpixelofscreen
external fxblackpixelofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxblackpixelofscreen(ScreenPtt')

Description
Both the macro and the subroutine return the black pixel value of the screen specified.

Macro information can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-8 User Interface Reference

CellsOfScreen

CellsOfScreen Macro

Purpose
Returns the number of colormap cells in the default colormap of the specified screen.

Libraries
Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
Cells01Screen(ScreenPtl)

C Syntax
int XCellsOfScreen(ScreenPtr)
Screen * ScreenPtr;

FORTRAN Syntax
integer*4 fxcellsofscreen
external fxcellsofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxcellsofscreen(ScreenPtl)

Description
Both the macro and the subroutine return the number of colormap cells in the default
colormap for the screen specified.

Macro information can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-9

Connection Number

ConnectionNumber Macro

Purpose

Libraries

Returns the file descriptor of the connection.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
ConnectionNumber(DisplayPtr)

C Syntax
int XConnectionNumber(DisplayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxconnectionnumber
external fxconnectionnumber
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxconnectionnumber(Disp/ayPtf'J

Description

Parameter

Both the macro and the subroutine return a connection number, which is the file descriptor of
the connection, for the specified display device.

Macro information can be found in the /usr/include/X11 /Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-10 User Interface Reference

DefaultColormap Macro

Purpose

Libraries

Returns the default colormap ID.

Enhanced X-Windows Library (libX.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultColormap(Disp/ayPtr, ScreenNumber?

Colormap XDefaultColormap(Disp/ayPtr, ScreenNumber?
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdefaultcolormap
external fxdefaultcolormap
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdefaultcolormap(Disp/ayPtr, ScreenNumber?

Description

DefaultColormap

Both the macro and the subroutine return the default colormap ID for allocation on the
specified screen. This colormap should be used for most routine color allocations.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-11

DefaultColormapOfScreen Macro

Purpose

Libraries

Returns the default colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultColormapOfScreen{ Screen Pt!)

Colormap XDefaultColormapOfScreen{ScreenPtry
Screen * ScreenPtr;

FORTRAN Syntax
integer*4 fxdefaultcolormapofscreen
external fxdefaultcolormapofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdefaultcolormapofscreen{ScreenPtry

Description
Both the macro and the subroutine return the default colormap of the screen specified.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-12 User Interface Reference

DefaultDepth Macro

Purpose

Libraries

Returns the depth (number of planes) of the default root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultDepth(DisplayPtr, ScreenNumbet}

int XDefaultDepth(Disp/ayPt, ScreenNumbet}
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdefaultdepth
external fxdefaultdepth
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdefaultdepth(DisplayPtr, ScreenNumbet}

Description

DefaultDepth

Both the macro and the subroutine return the depth (number of planes) of the default root
window for the specified screen. Other depths may also be supported on this screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-13

DefaultDepthOfScreen

DefaultDepthOfScreen Macro

Purpose

Libraries

Returns the default depth (number of planes).

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DefaultDepthOfScreen(ScreenPtr?

C Syntax
int XDefaultDepthOfScreen(ScreenPtr)
Screen * ScreenPtr;

FORTRAN Syntax
integer*4 fxdefaultdepthofscreen
external fxdefaultdepthofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdefaultdepthofscreen(ScreenPtr?

Description

Parameter

Both the macro and the subroutine return the default depth (number of planes) of the
specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-14 User Interface Reference

DefaultGC Macro

Purpose

Libraries

Returns the default graphics context (GC) of the default root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultGC(DisplayPtr, ScreenNumbet')

GC XDefaultGC(DisplayPtr, ScreenNumbery
Display * DisplayPtr;
int ScreenNumber;

FORTRAN Syntax
integer*4 fxdefaultgc
external fxdefaultgc
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 DefaultGraphicsContext
DefaultGraphicsContext = fxdefaultgc(Disp/ayPtr, ScreenNumbet')

Description

DefaultGC

Both the macro and the subroutine return the default graphics context (GC) of the default
root window for the specified screen. This GC is created for the convenience of simple
applications. It contains the default GC components with the foreground and background
pixel values initialized to the black and white pixels, respectively, for the screen. This GC can
be modified as it is not used in any Xlib function. This GC should never be freed.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-15

DefaultGCOfScreen

DefaultGCOfScreen Macro

Purpose

Libraries

Returns the default graphics context (GC).

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultGCOfScreen(ScreenPtry

GC XDefaultGCOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxdefaultgcofscreen
external fxdefaultgcofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdefaultgcofscreen(ScreenPtry

Description

Parameter

Both the macro and the subroutine return the default graphics context (GC) of the specified
screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-16 User Interface Reference

DefaultRootWindow Macro

Purpose

Libraries

Returns the root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

Def au ltRootWindow(DisplayPtr)

Window XDefau ltRootWindow(DisplayPtr)
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxdefaultrootwindow
external fxdefaultrootwindow
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxdefaultrootwindow(Disp/ayPtry

Description

Def au ltRootWi ndow

Both the macro and the subroutine return the root window for the default screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-17

DefaultScreen

DefaultScreen Macro

Purpose

Libraries

Returns the default screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DefaultScreen{DisplayPtt}

C Syntax
int XDefaultScreen{ DisplayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxdefaultscreen
external fxdefaultscreen
integer*4 DisplayPtr
integer*4 DefaultScreenDisplay
DefaultScreenDisplay = fxdefaultscreen{Disp/ayPttJ

Description

Parameter

Both the macro and the subroutine return the default screen referenced in the
XOpenDisplay subroutine. Use this macro or subroutine to retrieve the screen number in
applications that use a single screen only.

Macros can be found in the /usr/include/X11/Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-18 User Interface Reference

DefaultScreenOfDisplay Macro

Purpose

Libraries

Returns the default screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DefaultScreenOfDisplay(Disp/ayPttJ

C Syntax
Screen *XDefaultScreenOfDisplay(Disp/ayPttJ
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxdefaultscreenofdisplay
external fxdefaultscreenofdisplay
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxdefaultscreenofdisplay(Disp/ayPttJ

Description

DefaultScreenOfDisplay

Both the macro and the subroutine return a pointer to the default screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Subroutines 7-19

DefaultVisual

DefaultVisual Macro

Purpose

Libraries

Returns the default visual type.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DefaultVisual(DisplayPtr, ScreenNumbery

Visual *XDefaultVisual(DisplayPtr, ScreenNumbery
Display * DisplayPtr;
int ScreenNumber;

FORTRAN Syntax
integer*4 fxdefaultvisual
external fxdefaultvisual
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 DefaultVisual
DefaultVisual = fxdefaultvisual(Disp/ayPtr, ScreenNumbery

Description
Both the macro and the subroutine return the default visual type for the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-20 User Interface Reference

DefaultVisualOfScreen Macro

Purpose

Libraries

Returns the default visual.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DefaultVisualOfScreen(ScreenPtr)

C Syntax
Visual *XDefaultVisualOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxdefaultvisualofscreen
external fxdefaultvisualofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdefaultvisualofscreen(ScreenPtr)

Description

DefaultVisualOfScreen

Both the macro and the subroutine return the default visual of the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr

Error Code
Badlmplementation

Implementation Specifics

Specifies the screen of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-21

DisplayCells

DisplayCells Macro

Purpose

Libraries

Returns the number of entries in the default colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DisplayCells{DisplayPtr,ScreenNumber)

C Syntax
int XDisplayCells{DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdisplaycells
external fxdisplaycells
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplaycells{DisplayPtr,ScreenNumber)

Description
Both the macro and the subroutine return the number of entries in the default colormap.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-22 User Interface Reference

DisplayHeight Macro

Purpose

Libraries

Returns an integer that describes the height of the screen in pixels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DisplayHeight(DisplayPtr, Screen Number)

int XDisplayHeight(DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber;

FORTRAN Syntax
integer*4 fxdisplayheight
external fxdisplayheight
integer*4 DisplayPrt
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplayheight(DisplayPtr,ScreenNumber)

Description

DisplayHeight

Both the macro and the subroutine return an integer that describes the height of the screen
in pixels.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-23

DisplayHeightMM

DisplayHeightMM Macro

Purpose

Libraries

Returns an integer that describes the height of the screen in millimeters.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DisplayHeig ht MM(DisplayPtr, ScreenNumbet}

int XDisplayHeightMM(DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdisplayheightmm
external fxdisplayheightmm
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplayheightmm(DisplayPtr,ScreenNumbet}

Description
Both the macro and the subroutine return an integer that describes the height of the screen
in millimeters.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

ScreenNumber

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-24 User Interface Reference

DisplayOfScreen Macro

Purpose

Libraries

Returns the display of the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DisplayOfScreen(Screen Pt/)

Display *XDisplayOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxdisplayofscreen
external fxdisplayofscreen
integer*4 DisplayPtr
integer*4 DisplayScreen
DisplayScreen = fxdisplayofscreen(ScreenPtl)

Description

DisplayOfScreen

Both the macro and the subroutine return the display of the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-25

DisplayPlanes

DisplayPlanes Macro

Purpose

Libraries

Returns the depth (number of planes) of the root window of the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DisplayPlanes(DisplayPtr, ScreenNumber)

int XDisplayPlanes(DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdisplayplanes
external fxdisplayplanes
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplayplanes(DisplayPtr,ScreenNumber)

Description
Both the macro and the subroutine return the depth (number of planes) of the root window of
the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-26 User Interface Reference

DisplayString

DisplayString Macro

Purpose

Libraries

Obtains the string passed to the XOpenDisplay subroutine.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DisplayString(Oisp/ayPt(J

C Syntax
char *XDisplayString(Oisp/ayPt(J
Display * DisplayPtr;

FORTRAN Syntax
character*256 fxdisplaystring
external fxdisplaystring
integer*4 DisplayPtr
character*256 DisplayString
DisplayString = fxdisplaystring(Oisp/ayPt(J

Description

Parameter

Both the macro and the subroutine obtain the string passed to the XOpenDisplay
subroutine when the current display device was opened. If the passed string is the value of
NULL, both return the value of the DISPLAY environment variable when the current display
was opened. This can be useful to applications that run the fork subroutine and have to
open a new connection to the same display from the child process, as well as for printing
error messages.

Macros can be found in the /usr/include/X11 /Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-27

DisplayWidth

DisplayWidth Macro

Purpose

Libraries

Returns an integer that describes the width of the screen in pixels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
DisplayWidth(DisplayPtr,ScreenNumber)

C Syntax
int XDisplayWidth{ DisplayPtr, ScreenNumbery
Display * DisplayPtr;
int ScreenNumber;

FORTRAN Syntax
integer*4 fxdisplaywidth
external fxdisplaywidth
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplaywidth(DisplayPtr,ScreenNumbery

Description
Both the macro and the subroutine return an integer that describes the width of the screen in
pixels.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

ScreenNumber

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-28 User Interface Reference

DisplayWidthMM Macro

Purpose

DisplayWidthMM

Returns an integer that describes the width of the screen in millimeters.

Libraries
Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DisplayWidthMM(Disp/ayPtr, ScreenNumbery

int XDisplayWidthMM(DisplayPtr, Screen Number,
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxdisplaywidthmm
external fxdisplaywidthmm
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxdisplaywidthmm(Disp/ayPtr,ScreenNumbery

Description
Both the macro and the subroutine return an integer that describes the width of the screen in
millimeters.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-29

DoesBackingStore

DoesBackingStore Macro

Purpose

Libraries

Indicates if the screen supports backing store attributes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DoesBackingStore(ScreenPtlj

int XDoesBackingStore(ScreenPtlj
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxdoesbackingstore
external fxdoesbackingstore
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdoesbackingstore(ScreenPtlj

Description
Both the macro and the subroutine return a value indicating if the screen supports backing
stores.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr

Return Values
Always

NotUseful

When Mapped

Error Code
Badlmplementation

Implementation Specifics

Specifies the screen of the display device.

Maintaining contents even when the window is unmapped is
beneficial.

Maintaining contents is unnecessary.

Maintaining contents of obscured regions when the window is
mapped is beneficial.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-30 User lnterfac.e Reference

DoesSaveUnders Macro

Purpose

Libraries

Indicates if the specified screen supports the save under flag.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

DoesSaveU nders(ScreenPtry

Bool XDoesSaveUnders(ScreenPtry
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxdoessaveunders
external fxdoessaveunders
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxdoessaveunders(ScreenPtry

Description

DoesSaveUnders

Both the macro and the subroutine return a Boolean value indicating if the specified screen
supports save unders.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Return Values
False Indicates that the screen does not support save unders.

True Indicates that the screen supports the save_unders member.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetWindowAttributes, XWindowAttributes structures.

Enhanced X-Windows Subroutines 7-31

EventMaskOfScreen

EventMaskOfScreen Macro

Purpose

Libraries

Returns the initial evernt·mask of the root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
EventMaskOfScreen(ScreenPtt)

C Syntax
long XEventMaskOfScreen(Screen Pt/)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxeventmaskofscreen
external fxeventmaskofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxeventmaskofscreen(Screen Pt/)

Description

Parameter

Both the macro and the subroutine return the initial mask of the root window for the specified
screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation .

Implementation Specifics
This Xlib subroutine_. is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenU6000.

7-32 User Interface Reference

HeightMMOfScreen Macro

Purpose

HeightMMOfScreen

Returns an integer that describes the height of the screen in millimeters.

Libraries
Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
HeightMMOfScreen(ScreenPtry

C Syntax
int XHeightMMOfScreen(ScreenPtry
Screen *ScreenPtr;

FORTRAN Syntax
integer*4 fxheightmmofscreen
external fxheightmmofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxheightmmofscreen(Screen Ptf}

Description

Parameter

Both the macro and the subroutine return an integer that describes the height of the
specified screen in millimeters.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-33

HeightOfScreen

HeightOfScreen Macro

Purpose

Libraries

Returns an integer that describes the height of the screen in pixels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

Heig htOfScreen(ScreenPtry

int XHeightOfScreen(ScreenPtry
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxheightofscreen
external fxheightofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxheightofscreen(ScreenPtry

Description

Parameter

Both the macro and the subroutine return an integer that describes the height of the
specified screen in pixels.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-34 User Interface Reference

lmageByteOrder Macro

Purpose

Libraries

Specifies the required byte order.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
lmageByteOrder{Disp/ayPtlJ

C Syntax
int XlmageByteOrder{Disp/ayPtlJ
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fximagebyteorder
external fximagebyteorder
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fximagebyteorder{Disp/ayPtlJ

Description

lmageByteOrder

Both the macro and the subroutine specify the required byte orqer for images for each
scanline unit in XY format (bitmap) or for each pixel value in Z format.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Return Values
LSBFirst Indicates least significant byte first.

MSBFirst Indicates most significant byte first.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-35

lsCursorKey

lsCursorKey Macro

Purpose
Determines if the key symbol is a cursor key.

Libraries
Enhanced X-Windows Library (libX11.a)

Macro Syntax
lsCursorKey{ Keysym)

Description
The lsCursorKey macro returns a value of True if the key symbol is a cursor key.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
Keysym Specifies the encoded symbol on a keycap of the keyboard.

Return Values
False Indicates that the key symbol is not a cursor key.

True Indicates that the key symbol is a cursor key.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-36 User Interface Reference

lsFunctionKey Macro

Purpose
Determines if the key symbol is a function key.

Libraries
Enhanced X-Windows Library (libX11.a)

Macro Syntax
lsFunctionKey(Keysym)

Description

lsFunctionKey

The lsFunctionKey macro returns a value of True if the key symbol is a function key.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameter
Keysym

Return Values
False

True

Error Code
Badlmplementation

Implementation Specifics

Specifies the encoded symbol on a keycap of the keyboard.

Indicates that the key symbol is not a function key.

Indicates that the key symbol is a function key.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Subroutines 7-37

ls Keypad Key

lsKeypadKey Macro

Purpose
Determines if a key symbol is a keypad key.

Libraries
Enhanced X-Windows Library (libX11.a)

Syntax
lsKeypadKey(Keysym)

Description
The lsKeypadKey macro returns a value of True if the key symbol is a keypad key.

Macros can be found in the /usr/includes/X11/Xlib.h file.

Parameter
Keysym Specifies the encoded symbol on a key cap of the keyboard.

Return Values
False Indicates that the key symbol is not a keypad key.

Indicates that the key symbol is a keypad key. True

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-38 User Interface Reference

lsMiscFunctionKey

lsMiscFunctionKey Macro

Purpose
Determines if the key symbol is a miscellaneous function key.

Libraries
Enhanced X-Windows Library (libX11.a)

Syntax
lsMiscFunctionKey(Keysym)

Description

Parameter

The lsMiscFunctionKey macro returns a value of True if the key symbol is a miscellaneous
function key.

Macros can be found in the /usr/include/X11/Xlib.h file.

Keysym Specifies the encoded symbol on a keycap of the keyboard.

Return Values
False Indicates that the key symbol is not a miscellaneous function key.

True Indicates that the key symbol is a miscellaneous function key.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-39

lsModifierKey

lsModifierKey Macro

Purpose
Determines if the key symbol is a modifier key.

Libraries
Enhanced X-Windows Library (libX11.a)

Syntax
lsModifierKey{Keysym)

Description
The lsModifierKey macro returns a value of True if the key symbol is a modifier key.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
Keysym Specifies the encoded symbol on a keycap of the keyboard.

Return Values
False Indicates that the key symbol is not a modifier key.

Indicates that the key symbol is a modifier key. True

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7~0 User Interface Reference

lsPFKey Macro

Purpose
Determines if the key symbol is a PF key.

Libraries
Enhanced X-Windows Library (libX11.a)

Syntax
lsPFKey(Keysym)

Description
The lsPFKey macro returns a value of True if the key symbol is a PF key.

This macro can be found in the /usr/include/X11/Xutil.h file.

Parameter
Keysym Specifies the encoded symbol on a keycap of the keyboard.

Return Values
False Indicates that the key symbol is not a PF key.

Indicates that the key symbol is a PF key. True

Error Code
Badlmplementation

Implementation Specifics
This macro is part of AIXwindows Development Environment in AIXwindows
Environ ment/6000.

lsPFKey

Enhanced X-Windows Subroutines 7-41

Last Known Req uestProcessed

LastKnownRequestProcessed Macro

Purpose

Libraries

Extracts the full serial number of the last request known by Enhanced X-Windows to have
been processed by the X Server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

LastKnown Request Processed(DisplayPtr?

int XLastKnown Req uestProcessed(DisplayPtry
Display * DisplayPtr,

FORTRAN Syntax
integer* 4 fx lastknown req uestprocessed
external fxlastknownrequestprocessed
integer*4 DisplayPrt
integer*4 ReturnCode
ReturnCode = fxlastknownrequestprocessed(Disp/ayPrt)

Description

Parameter

Both the macro and the subroutine extract the full serial number of the last request known by
Enhanced X-Windows to have been processed by the X Server. This number is
automatically set when replies, events, and errors are received.

Macros can be found in the /usr/include/X11/Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-42 User Interface Reference

MaxCmapsOfScreen Macro

Purpose

MaxCmapsOfScreen

Returns the maximum number of colormaps supported by the specified screen.

Libraries
Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

MaxCmapsOfScreen(Screen Pt!)

int XMaxCmapsOfScreen(Screen Pt!)
Screen *ScreenPtr;

FORTRAN Syntax
integer*4 fxmaxcmapsofscreen
external fxmaxcmapsofscreen
integer*4 ScreenPrt
integer*4 ReturnCode
ReturnCode = fxmaxcmapsofscreen(ScreenPrt)

Description
Both the macro and the subroutine return the maximum number of colormaps supported by
the specified screen.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-43

MinCmapsOfScreenMacro

MinCmapsOfScreen Macro

Purpose

Libraries

Returns the minimum number of colormaps supported by the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
MinCmapsOfScreen(ScreenPtt}

C Syntax
int XMinCmapsOfScreen(ScreenPtry
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxmincmapsofscreen
external fxm incmapsofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxmincmapsofscreen(ScreenPtt}

Description

Parameter

Both the macro and the subroutine return the minimum number of colormaps supported by
the specified screen.

Macros can be found in the /usr/include/X11 /Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-44 User Interface Reference

NextRequest Macro

Purpose

Libraries

Extracts the full serial number to be used for the next request.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

NextReq uest{ DisplayPtt)

int XNextRequest(DisplayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxnextrequest
external fxnextrequest
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxnextrequest{Oisp/ayPttJ

Description

NextRequest

Both the macro and the subroutine extract the full serial number to be used for the next
request. Serial numbers are maintained separately for each display connection.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-45

PlanesOfScreen

PlanesOfScreen Macro

Purpose

Libraries

Returns the number of planes (depth) in the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
PlanesOfScreen(ScreenPtt?

C Syntax
int XPlanesOfScreen(ScreenPtt?
Screen * ScreenPtr;

FORTRAN Syntax
integer*4 fxplanesofscreen
external fxplanesofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxplanesofscreen(ScreenPtt?

Description

Parameter

Both the macro and the subroutine return the number of planes (depth) in the specified
screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-46 User Interface Reference

ProtocolRevision Macro

Purpose

Libraries

Returns the minor protocol revision number.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
ProtocolRevision(Disp/ayPtl)

C Syntax
int XProtocolRevision(Disp/ayPtl)
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxprotocolrevision
external fxprotocolrevision
integer*4 DisplayPtr
integer*4 ReturnCode
ReturnCode = fxprotocolrevision(Disp/ayPtl)

Description

Protocol Revision

Both the macro and the subroutine return the minor protocol revision number (0) of the X
Server associated with the display device.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7:...6,7 .

ProtocolVersion

ProtocolVersion Macro

Purpose

Libraries

Returns the major version number.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

ProtocolVersion(DisplayPtt)

int XProtocolVersion(Oisp/ayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxprotocolversion
external fxprotocolversion
integer*4 DisplayPrt
integer*4 ReturnCode
ReturnCode = fxprotocolversion(Oisp/ayPrt)

Description

Parameter

Both the macro and the subroutine return the major version number (11) of the Enhanced
X-Windows protocol associated with the display device.

Macros can be found in the /usr/include/X11/Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-48 User Interface Reference

Qlength Macro

Purpose

Libraries

Returns the length of the event queue for the display.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

Qlength(DisplayPtr?

int XQLength(Oisp/ayPtrJ
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxqlength
external fxqlength
integer*4 Display:-'tr
integer*4 RetumCode
ReturnCode = fxqlength(Oisp/ayPtr?

Description

QLengthMacro

Both the macro and the subroutine return the length of the event queue for the display
device. There may be other events that have not been read into the queue yet.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-49

RootWindowMacro

RootWindow Macro

Purpose

Libraries

Returns the root window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

RootWi ndow(DisplayPtr, ScreenNumber)

Window XRootWindow(DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber;

FORTRAN Syntax
integer*4 fxrootwindow
external fxrootwindow
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxrootwindow(DisplayPtr,ScreenNumbel}

Description
Both the macro and the subroutine return the root window. This is useful with subroutines
that need a drawable of a particular screen, and for creating top level windows.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection· to the X server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-50 User Interface Reference

RootWindowOfScreen Macro

Purpose

Libraries

Returns the root window of the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

RootWindowOfScreen(Screen Pt()

Window XRootWindowOfScreen(ScreenPtr)
Screen * ScreenPtr;

FORTRAN Syntax
integer*4 fxrootwindowofscreen
external fxrootwindowofscreen
integer*4 ScreenPrt
integer*4 ReturnCode
ReturnCode = fxrootwindowofscreen(ScreenPrl)

Description

RootWindowOfScreen

Both the macro and the subroutine return the root window of the specified screen.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-51

ScreenCount

ScreenCount Macro

Purpose

Libraries

Returns the number of available screens.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libfx.a)

Macro Syntax

C Syntax

ScreenCount(DisplayPtr)

int XScreenCount(DisplayPtr)
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxscreencount
external fxscreencount
integer*4 DisplayPrt
integer*4 ReturnCode
ReturnCode = fxscreencount(DisplayPrt)

Description
Both the macro and the subroutine return the number of available screens.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation ·

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-52 User Interface Reference

Screen Of Display Macro

Purpose

Libraries

Returns a pointer to the screen of the specified display.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

ScreenOfDisplay{ DisplayPtr, ScreenNumber)

Screen *XScreenOfDisplay{ DisplayPtr, Screen Number)
Display * DisplayPtr,
int ScreenNumber;

FORTRAN Syntax
integer*4 fxscreenofdisplay
external fxscreenofdisplay
integer*4 DisplayPtr
integer*4 ScreenNumber
integer*4 ScreenDisplay
ScreenDisplay = fxscreenofdisplay(Disp/ayPtr,ScreenNumber)

Description

Screen Of Display

Both the macro and the subroutine return a pointer to the screen of the specified display.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-53

ServerVendor

ServerVendor Macro

Purpose

Libraries

Returns a pointer to a null-terminated string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libfx.a)

Macro Syntax
ServerVendor(DisplayPtry

C Syntax
char *XServerVendor(DisplayPtr)
Display * DisplayPtr,

FORTRAN Syntax
character*256 fxservervendor
external fxservervendor
integer*4 DisplayPtr
character*256 ServerVendor
ServerVendor = fxservervendor(DisplayPtl)

Description

Parameter

Both the macro and the subroutine return a pointer to a null-terminated string that provides
some identification of the owner of the X Server implementation.

Macros can be found in the /usr/include/X11/Xlib.h file.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-54 User Interface Reference

VendorRelease Macro

Purpose

Libraries

Returns a number related to a vendor's release of the X Server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
VendorRelease(DisplayPtry

C Syntax
int XVendorRelease(DisplayPtr)
Display * DisplayPtr;

FORTRAN Syntax
integer*4 fxvendorrelease
external fxvendorrelease
integer*4 DisplayPrt
integer*4 ReturnCode
ReturnCode = fxvendorrelease(Oisp/ayPtry

Description

VendorRelease

Both the macro and the subroutine return a number related to a vendor's release of the
X Server.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwin~ows
Environment/6000.

Enhanced X-Windows Subroutines 7-55

White Pixel

WhitePixel Macro

Purpose

Libraries

Returns the white pixel value for the specified screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

WhitePixel(Disp/ayPtr, ScreenNumber)

unsigned long XWhitePixel(DisplayPtr,ScreenNumber)
Display * DisplayPtr,
int ScreenNumber,

FORTRAN Syntax
integer*4 fxwhitepixel
external fxwhitepixel
integer*4 DisplayPrt
integer*4 ScreenNumber
integer*4 ReturnCode
ReturnCode = fxwhitepixel(DisplayPrt,ScreenNumbef)

Description
Both the macro and the subroutine return the white pixel value for the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameters
DisplayPtr

Screen Number

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the screen number of the display device.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-56 User Interface Reference

WhitePixelOfScreen Macro

Purpose

Libraries

Returns the white pixel value.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax
WhitePixelOfScreen(ScreenPtl}

C Syntax
unsigned long XWhitePixelOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxwhitepixelofscreen
external fxwhitepixelofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxwhitepixelofscreen(ScreenPtry

Description

WhitePixelOfScreen

Both the macro and the subroutine return the white pixel value of the specified screen.

Macros can be found in the /usr/include/X11/Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-57

WidthMMOfScreen

WidthMMOfScreen Macro

Purpose

Libraries

Returns an integer that describes the wiidth of the screen in millimeters.

Enahced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

WidthMMOfScreen(Screen Pt!)

int XWidthMMOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxwidthmmofscreen
external fxwidthmmofscreen
integer*4 ScreenPtr
integer*4 ReturnCode
ReturnCode = fxwidthmmofscreen(ScreenPtl)

Description

Parameter

Both the macro and the subroutine return an integer that describes the width of the specified
screen in millimeters.

Macros can be found in the /usr/include/X11 /Xlib.h file.

ScreenPtr Specifies the screen of the display device.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-58 User Interface Reference

WidthOfScreen Macro

Purpose

Libraries

Returns an integer that describes the width of the screen in pixels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Macro Syntax

C Syntax

WidthOfScreen(ScreenPtr)

int XWidthOfScreen(ScreenPtr)
Screen * ScreenPtr,

FORTRAN Syntax
integer*4 fxwidthofscreen
external fxwidthofscreen
integer*4 ScreenPrt
integer*4 ReturnCode
ReturnCode = fxwidthofscreen(ScreenPrt)

Description

Width Of Screen

Both the macro and the subroutine return an integer that describes the width of the specified
screen in pixels.

Macros can be found in the /usr/include/X11 /Xlib.h file.

Parameter
ScreenPtr Specifies the screen of the display device.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-59

XActivateScreenSaver

XActivateScreenSaver Subroutine

Purpose

Libraries

C Syntax

Activates the screen saver.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XActivateScreenSaver(DisplayPtr)
Display * DisplayPtr;

FORTRAN Syntax
external fxactivatescreensaver
integer*4 DisplayPtr
call fxactivatescreensaver(Disp/ayPtr)

Description
The XActivateScreenSaver subroutine activates the screen saver.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetScreenSaver subroutine.

The ForceScreenSaver protocol request.

7-60 User Interface Reference

XAddHost Subroutine

Purpose

Libraries

C Syntax

Allows access for the specified host to the display device.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAddHost(Disp/ayPtr, HosO
Display * DisplayPtr;
XHostAddress *Host;

FORTRAN Syntax
external fxaddhost
integer*4 DisplayPrt,Host
call fxaddhost(DisplayPtr,HosO

Description

XAddHost

The XAddHost subroutine adds the specified host to the access control list for that display
device. The display device (server) and the program (client) must be on the same host.

Parameters
DisplayPtr Specifies the connection to the X Server.

Host Specifies the network address of the host machine.

Error Codes
Bad Access

Bad Implementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeHosts protocol request.

. Enhanced X-Windows Subroutines 7-61

XAddHosts

XAddHosts Subroutine

Purpose

Libraries

C Syntax

Allows access for multiple hosts to the specified display device.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAddHosts{Oisp/ayPtr, Hosts, NumberHosts)
Display * DisplayPtr;
XHostAddress *Hosts;
int NumberHosts;

FORTRAN Syntax
external fxaddhosts
integer*4 DisplayPrt, Hosts,NumberHosts
call fxadd hosts{ DisplayPrt, Hosts,NumberHosts)

Description
The XAddHosts subroutine adds each specified host to the access control list for that
display device. The display device (server) and the program (client) must be on the same
host.

Parameters
DisplayPtr

Hosts

NumberHosts

Error Codes
Bad Access

Badlmplementation

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies each host to be added.

Specifies the number of hosts to be added.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeHosts protocol request.

The XAddHost subroutine.

7-62 User Interface Reference

XAddPixel Subroutine

Purpose

Libraries

C Syntax

Adds a value to every pixel in an image.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XAddPixel(XimagePtr, Value)
Xlmage * XlmagePtr;
int Value;

FORTRAN Syntax
integer*4 fxaddpixel
external fxaddpixel
integer*4 XimagePtr, Value
integer*4 Status
Status = fxaddpixel(XimagePtr, Value)

Description

XAddPixel

The XAddPixel subroutine adds a value to every pixel in an image. Use this subroutine to
manipulate the base pixel value for allocating color resources to an image.

Parameters
XimagePtr

Value

Specifies a pointer to the image.

Specifies the value to be added.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-63

XAddToSaveSet

XAddToSaveSet Subroutine

Purpose

Libraries

C Syntax

Adds a window to the client's saveset.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAddToSaveSet(DisplayPtr, Window Add)
Display * DisplayPtr,
Window WindowAdd;

FORTRAN Syntax
external fxaddtosaveset
integer*4 DisplayPtr
integer*4 WindowAdd
call fxaddtosaveset(DisplayPtr, Window Add)

Description
The XAddToSaveSet subroutine adds the window and the children of the window specified
to the client saveset. The specified window must be created by another client. The X Server
automatically removes the windows from the saveset when the specified window is
destroyed.

Parameters
DisplayPtr

Window Add

Error Codes
Badlmplementation

Bad Match

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID of the window to be added.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeSaveSet protocol request.

7-64 User Interface Reference

XAllocColor

XAllocColor Subroutine

Purpose

Libraries

C Syntax

Allocates a read-only color cell.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XAllocColor(DisplayPtr, Colormap/D, ColorValues)
Display * DisplayPtr;
Colormap Colormap/D;
XColor *Color Values;

FORTRAN Syntax
integer*4 fxalloccolor
external fxalloccolor
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 ColorValues
integer*4 Status
Status = fxal loccolor(DisplayPtr, Colormap/D, ColorValues)

Description
The XAllocColor subroutine returns the pixel value indicating the closest available color
supported by the hardware. It allocates a read-only colormap entry corresponding to the
closest red, green, and blue values supported by the hardware. Read-only colormap cells
are shared among clients. When the last client deallocates a shared cell, the colormap cell is
deallocated.

Parameters
DisplayPtr

Colormap/D

ColorValues

Return Values
0

Non-zero

Error Codes
BadColor

Badlmplementation

Specifies the connection to tne X Server.

Specifies the colormap ID.

Specifies the RGB values that it wants to use, and returns the
pixel value and RGB values in the colormap.

Indicates that is unsuccessful.

Indicates that is successful.

Enhanced X-Windows Subroutines 7-65

XAllocColor

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The AllocColor protocol request.

7-66 User Interface Reference

XAllocColorCells

XAllocColorCells Subroutine

Pulrpose

Libraries

C Syntax

Allocates read-write color cells.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XAllocColorCells(Disp/ayPtr, Colormap/D, Contiguous,
PlaneMaskReturn, NumberP/anes,
PixelsReturn, NumberPixels)

Display * DisplayPtr,
Colormap Colormap/D;
Bool Contiguous;
unsigned long PlaneMaskReturn[] ;
unsigned int NumberP/anes;
unsigned long Pixels Return[] ;
unsigned int NumberPixels;

FORTRAN Syntax
integer*4 fxalloccolorcells
external fxalloccolorcells
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 Contiguous,PlaneMasksReturn
integer*4 NumberP/anes, PixelsReturn, NumberPixels
integer*4 Status
Status = fxalloccolorcel Is(DisplayPtr, Colormap/D, Contiguous,

PlaneMaskReturn,NumberP/anes,
Pixels Return, NumberPixels)

Description
The XAllocColorCells subroutine allocates color cells. The number of colors must be
positive and the number of planes must be nonnegative.

If the planes must be contiguous, set the Contiguous parameter to a value of 1 . If the planes
do not need to be contiguous, set the Contiguous parameter to a value of 0.

If NumberPlanes and NumberPixels are requested, NumberPlanes plane masks and
NumberPixels pixels are returned. No mask will have any bits in common with any other
mask or with any of the pixels. By combining masks and pixels,
NumberPixels* 2**NumberPlanes distinct pixel values can be produced. These pixel values
are allocated writable by the request.

If the Contiguous parameter has a value of True and all masks are combined, the following
occur:

• A single contiguous set of bits is formed for the Grayscale or PseudoColor visual type.
Each mask has one bit.

Enhanced X-Windows Subroutines 7-67

XAllocColorCells

• Three contiguous sets of bits (one within each pixel subfield) are formed for the
DirectColor visual type. Each mask has 3 bits.

The RGB values of the allocated entries are not defined.

Parameters
Colormap/D

Contiguous

DisplayPtr

NumberPixels

NumberP/anes

Pixels Return

PlaneMaskReturn

Return Values
Nonzero

0

Error Codes
BadAlloc

Bad Implementation

BadValue

Implementation Specifics

Specifies the colormap ID.

Specifies a Boolean value.

Specifies the connection to the X Server.

Specifies the number of pixel values returned in the PixelsReturn
parameter.

Specifies the number of plane masks returned in the
PlaneMaskReturn.

Returns a list of pixel values.

Returns a list of plane masks.

Indicates that the XAllocColorCells subroutine succeeds.

Indicates that the XAllocColorCells subroutine does not succeed.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The AllocColorCells protocol request.

7-68 User Interface Reference

XAllocColorPlanes

XAllocColorPlanes Subroutine

Purpose

Libraries

C Syntax

Allocates color planes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XAllocColorPlanes(Oisp/ayPtr, Colormap!D,
Contiguous, PixelsReturn,

Display * DisplayPtr,
Colormap Colormap/D;
Bool Contiguous;

NumberColors, NumberReds, NumberGreens,
NumberBlues, RedMaskReturn,
GreenMaskReturn, BlueMaskReturn)

unsigned long PixelsReturn[];
int NumberColors;
int NumberReds,NumberGreens,NumberB/ues;
unsigned long *RedMaskReturn, *GreenMaskReturn, *BlueMaskReturn;

FORTRAN Syntax
integer*4 fxalloccolorplanes
external fxalloccolorcells
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 Contiguous,PixelsReturn
integer*4 NumberColors,NumberReds,NumberGreens,NumberB/ues
integer*4 RedMaskReturn,GreenMaskReturn
integer*4 BlueMaskReturn
integer*4 Status
Status = fxalloccolorplanes(DisplayPtr, Colormap!D, Contiguous,

Description

Pixels Return, NumberColors, NumberReds,
NumberGreens, NumberBlues, RedMaskReturn,
BlueMaskReturn, GreenMaskReturn)

The XAllocColorPlanes subroutine allocates color planes. It returns the pixel values in the
PixelsReturn parameter.

If the NumberColors parameter colors, NumberReds parameter reds, NumberGreens
parameter greens, and the NumberB!ues parameter blues are requested, the NumberColors
parameter pixels are returned. The masks returned have the bits for the NumberReds,
NumberGreens, and NumberB/ues parameters set respectively.

For, the DirectColor and PseudoColor visual type, each mask lies within the corresponding
pixel subfield. Distinct pixels values can be produced by combining subsets of masks with
pixels as follows:

NumberColors * 2** NumberReds + NumberGreens + NumberBlues

Enhanced X-Windows Subroutines 7-69

XAllocColorPlanes

The combinations are allocated by the request. However, the colormap only contains the
following:

NumberColors * 2** NumberReds independent red entries

independent green entries

independent blue entries

NumberColors * 2** NumberGreens

Numbercolors * 2** NumberBlues

When the colormap entry for a pixel value is changed with the XStoreColor, the
XStoreColors or the XStoreNamedColor subroutines, the pixel is decomposed according
to the masks, and corresponding independent entries are updated.

Parameters
BlueMaskReturn

Colormap/D

Contiguous

DisplayPtr

Green Mask Return

NumberB/ues

NumberColors

NumberGreens

NumberReds

Pixels Return

RedMaskReturn

Returns the bit masks for the blue planes.

Specifies the colormap ID.

Specifies a Boolean value. If the value of True, each mask has a
contiguous set of bits. No mask has any bits in common with any
other mask or with any of the pixels. If the planes must be
contiguous, set the Contiguous parameter to the value of 1. If the
planes do not need to be contiguous, set the Contiguous parameter
to the value of 0.

Specifies the connection to the X Server.

Returns the bit masks for the green planes.

Specifies the number of blue color planes. This value must be a
nonnegative value.

Specifies the number of pixel values that are to be returned in the
PixelsReturn parameter.

Specifies the number of green color planes. This value must be a
nonnegative value.

Specifies the number of red color planes. This value must be a
nonnegative value.

Returns an array of pixel values.

Returns the bit masks for the red planes.

Return Values
0 Indicates that the XAllocColorPlanes subroutine does not succeed.

Nonzero Indicates that the XAllocColorPlanes subroutine succeeds.

Error Codes
BadAlloc

BadColor

Badlmplementation

BadValue

7-70 User Interface Reference

XAllocColorPlanes

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The AllocColorPlanes protocol request.

Enhanced X-Windows Subroutines 7-71

XAllocNamedColor

XAllocNamedColor Subroutine

Purpose

Libraries

C Syntax

Allocates a read-only color cell by name.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XAllocNamedColor(DisplayPtr, Colormap!D, ColorName,
Screen Definition Return,
ExactDefinitionReturn)

Display * DisplayPtr,
Colormap Colormap!D;
char * ColorName;
XColor *Screen Definition Return,* ExactDefinitionReturn;

FORTRAN Syntax
integer*4 fxallocnamedcolor
external fxallocnamedcolor
integer*4 DisplayPtr
integer*4 Colormap/D
character*256 ColorName
integer*4 ScreenDefinitionReturn
integer*4 ExactDefinitionReturn
integer*4 Status
Status = fxallocnamedcolor(DisplayPtr, ColormaplD, ColorName,

Screen Definition Return,
ExactDefinitionReturn)

Description
The XAllocNamedColor subroutine obtains the color definition structure for a specified
color. It determines the correct color or shade for the screen. It returns the exact database
definition, and the closest available color supported by the hardware. The allocated color cell
is read-only.

Parameters
Colormap!D

ColorName

DisplayPtr

ExactDefinitionReturn

Screen Definition Return

7-72 User Interface Reference

Specifies the colormap ID.

Specifies the color name string for the color definition
structure to be returned. The color name is not
case-sensitive.

Specifies the connection to the X Server.

Returns the actual pixel values and closest RGB values
provided by the hardware for the color name specified.

Returns the values used in the colormap.

Return Values
0

Nonzero

Error Codes
BadAlloc

Bad Color

Badlmplementation

Bad Name

Implementation Specifics

XAllocNamedColor

Indicates that the XAllocNamedColor subroutine is
u nsuccessfu I.

Indicates that the XAllocNamedColor subroutine is
successful.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The AllocNamedColor protocol request.

Enhanced X-Windows Subroutines 7-73

XAllowEvents

XAllowEvents Subroutine

Purpose

Libraries

C Syntax

Releases some queued events if the client has frozen a device.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAllowEvents{ DisplayPtr, EventMode, TimeStamp)
Display * DisplayPtr,
int EventMode;
Time TimeStamp;

FORTRAN Syntax
external fxallowevents
integer*4 DisplayPtr
integer*4 EventMode, TimeStamp
call fxal lowevents(DisplayPtr, EventMode, TimeStamp)

Description
The XAllowEvents subroutine releases some queued events if the client has caused a
device to freeze. This function has no effect if the specified time is earlier than the last-grab
time of the most recent active grab .tor the client, or if the specified time is later than the
current X Server time.

It is possible for both a pointer and a keyboard to be grabbed simultaneously by the same
client or different clients. If a device is frozen on behalf of either grab, no event processing is
performed for the device. It is also possible for a single device to be frozen because of both
grabs. In this case, the device must be released on behalf of both grabs before events can
be processed.

AsyncPointer

SyncPointer

ReplayPoi nter

7-7 4 User Interface Reference

If the pointer is frozen by the client, the pointer event processing
continues as usual. If the pointer is frozen by the client on behalf of
two separate grabs, the AsyncPointer event mode value releases
both.

AsyncPointer has no effect if the pointer is not frozen by the client,
but the pointer does need to be grabbed by the client.

If the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the next ButtonPress or
ButtonRelease event is reported to the client. At this time, the
pointer appears to be frozen again. However, if the reported event
causes the pointer grab to be released, the pointer is not frozen.

The SyncPointer event mode value has no effect if the pointer is ·
not frozen by the client or if the pointer is not grabbed by the client.

If the pointer is actively grabbed by the client and frozen as the
result of an event having been sent to the client, either by the

AsyncKeyboard

SyncKeyboard

ReplayKeyboard

Sync Both

XAllowEvents

XGrabButton subroutine or a previous XAllowEvents subroutine
with mode the SyncPointer subroutine, but not from the
XGrabPointer subroutine, the pointer grab is released and that
event is completely reprocessed. This time, however, the
XAllowEvents subroutine ignores any passive grabs at or above
(toward the root) the Grab Window parameter of the grab just
released.

ReplayPointer event mode value has no effect if the pointer is not
grabbed by the client or if the pointer is not frozen as the result of
an event.

If the keyboard is frozen by the client, the keyboard event
processing continues as usual. If the keyboard is frozen twice by the
client on behalf of two separate grabs, the AsyncKeyboard event
mode value releases for both.

The AsyncKeyboard event mode value has no effect if the
keyboard is not frozen by the client, and the keyboard does not
need to be grabbed by the client.

If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues as usual until the next
KeyPress or KeyRelease event is reported to the client. At this
time, the keyboard again appears to be frozen. However, if the
reported event causes the keyboard grab to be released, the
keyboard does not freeze.

The SyncKeyboard event mode value has no effect if the keyboard
is not frozen by the client or if the keyboard is not grabbed by the
client.

If the keyboard is actively grabbed by the client and is frozen as the
result of an event having been sent to the client, either by the
XGrabKey subroutine or a previous XAllowEvents subroutine with
mode the SyncKeyboard subroutine, but not from an
XGrabKeyboard subroutine, the keyboard grab is released and that
event is completely reprocessed. This time, however, the
XAllowEvents subroutine ignores any passive grabs at or above
(toward the root) the Grab Window parameter of the grab just
released.

The ReplayKeyboard event mode value has no effect if the
keyboard is not grabbed by the client or if the keyboard is not frozen
as the result of an event.

If both pointer and keyboard are frozen by the client, event
processing (for both devices) continues normally until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event is
reported to the client for a grabbed device (button event for the
pointer, key event for the keyboard), at which time the devices again
appear to freeze. However, if the reported event causes the grab to
be released, the devices do not freeze. If the other device is still
grabbed, then a subsequent event still causes both devices to
freeze.

Enhanced X-Windows Subroutines 7-75

XAllowEvents

AsyncBoth

The SyncBoth event mode value has no effect unless both the
pointer and keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two separate
grabs, the SyncBoth event mode value releases for both grabs (but
subsequent holds on the SyncBoth event mode value freezes each
device only once).

If the pointer and the keyboard are frozen by the client, event
processing (for both devices) continues normally. If a device is
frozen twice by the client on behalf of two separate grabs, the
AsyncBoth event mode value releases for both.

The AsyncBoth event mode value has no effect unless both pointer
and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer event mode values have no effect on the
processing of keyboard events. The AsyncKeyboard, SyncKeyboard, and
ReplayKeyboard event mode values have no effect on the processing of pointer events.

Parameters
DisplayPtr

EventMode

TimeStamp

Error Code
BadValue

Specifies the connection to the X Server.

Specifies the event mode, which describes the processing that occurs.

Specifies the timestamp, which is expressed in milliseconds, or the value of
CurrentTime.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The AllowEvents protocol request.

7-76 User Interface Reference

XAutoRepeatOff Subroutine

Purpose

Libraries

C Syntax

Turns off keyboard the auto-repeat setting.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAutoRepeatOff(DisplayPtt}
Display * DisplayPtr,

FORTRAN Syntax
external fxautorepeatoff
integer*4 DisplayPtr
call fxautorepeatoff(DisplayPtt}

Description

XAutoRepeatOff

The XAutoRepeatOff subroutine turns off the auto-repeat setting for the keyboard on the
specified display device.

Parameter
DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeKeyboardControl protocol request.

The XAutoRepeatOn subroutine.

Enhanced X-Windows Subroutines 7-77

XAutoRepeatOn

XAutoRepeatOn Subroutine

Purpose

Libraries

C Syntax

Turns on keyboard the auto-repeat setting.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XAutoRepeatOn(DisplayPtry
Display * DisplayPtr,

FORTRAN Syntax
external fxautorepeaton
integer*4 DisplayPtr
call fxautorepeaton(DisplayPtry

Description

Parameter

The XAutoRepeatOn subroutine turns on the auto-repeat setting for the keyboard on the
specified display device.

DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeKeyboardControl protocol request.

The XAutoRepeatOff subroutine.

7-78 User Interface Reference

XBell

XBell Subroutine

Purpose

Libraries

C Syntax

Sets the volume of the bell.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XBell(DisplayPtr, Percent)
Display * DisplayPtr;
int Percent;

FORTRAN Syntax
external fxbell
integer*4 DisplayPtr,Percent
call fxbell(DisplayPtr, Percent)

Description
The XBell subroutine rings the bell on the keyboard of the specified display device, if
possible. The specified volume is relative to the base volume for the keyboard. If the value
for the Percent parameter is not in the range from -1 00 to 100%, inclusive an error is
generated. The volume at which the bell is rung when the Percent parameter is nonnegative
is the following:

base - [(base* percent) I 100] +percent

The volume at which the bell is rung when the Percent parameter is negative is the
following:

base+ [(base* percent) I 100]

To change the base volume of the bell for this keyboard, use the
XChangeKeyboardControl subroutine.

Parameters
DisplayPtr

Percent

Specifies the connection to the X Server.

Specifies the base volume for the bell. The volume can range from -100 to
100% inclusive.

Error Codes
Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-79

XBell

Related Information
The Bell protocol request.

7-80 User Interface Reference

XChangeActivePointerGrab

XChangeActivePointerGrab Subroutine

Purpose

Libraries

C Syntax

Changes the active pointer grab.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libxfx.a)

XChangeActivePointerGrab(Oisp/ayPtr, EventMask, Cursor!D, TimeStamp)
Display * DisplayPtr,
unsigned int EventMask;
Cursor Cursor!D;
Time TimeStamp;

FORTRAN Syntax
external fxchangeactivepointergrab
integer*4 DisplayPtr
integer*4 EventMask, Cursor/D, TimeStamp
call fxchangeactivepointergrab(Oisp/ayPtr, EventMask, Cursor!D, TimeStamp)

Description
The XChangeActivePointerGrab subroutine changes the specified dynamic parameters if
the pointer is actively grabbed by the client with a specified time no earlier than the
last-pointer-grab time and no later than the current X Server time. The
XChangeActivePointerGrab subroutine has no effect on the passive parameters of the
XGrabButton subroutine.

Parameters
Cursor/D

DisplayPtr

EventMask

Specifies the cursor to be displayed or the value of None.

Specifies the connection to the X Server.

Specifies the pointer events to be reported to the client. The EventMask
parameter can be one of the following values:

Button PressMask Button ReleaseMask

EnterWindowMask LeaveWindowMask

Button1 MotionMask Button2MotionMask

Button3MotionMask Button4MotionMask

ButtonSMotionMask PointerMotionHintMask

PointerMotionMask Button Motion Mask

KeymapStateMask

Enhanced X-Windows Subroutines 7-81

XChangeActivePointerGrab

TimeStamp Specifies the time in a timestamp, which is expressed in milliseconds, or the
CurrentTime value.

Error Code
BadCursor

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XGrabButton subroutine.

The ChangeActivePointerGrab protocol request.

7-82 User Interface Reference

XChangeGC

XChangeGC Subroutine

Purpose

Libraries

C Syntax

Changes the components in the specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeGC(DisplayPtr, GraphicsContext, ValueMaskChange, Values)
Display * DisplayPtr,
GC GraphicsContext;
unsigned long ValueMaskChange;
XGCValues *Values;

FORTRAN Syntax
external fxchangegc
integer*4 DisplayPtr
integer*4 GrahpicsContext
integer*4 ValueMaskChange
integer*4 Values
call fxchangegc(DisplayPtr, GraphicsContext, ValueMaskChange, Values)

Description
The XChangeGC subroutine changes the components specified by the ValueMaskChange
parameter in the graphics context. The order in which components are verified and altered is
server-dependent. If an error is generated, a subset of the components may have been
altered.

Changing the clip-mask overrides any previous XSetClipRectangles request on the context.
Changing the dash-offset or dash-list overrides any previous XSetDashes request on the
context.

Components are verified according to mask values defined in the< X11/X.h> file.

Parameters
DisplayPtr

GraphicsContext

ValueMaskChange

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the components in the graphics context to be changed
using information in the XGCValues structure. This value is the
bitwise inclusive OR of one or more of the following valid GC
component masks:

GCLineWidth

GCCapStyle

GCFillStyle

GCLineStyle

GCJoinStyle

GCFillRule

Enhanced X-Windows Subroutines 7-83

XChangeGC

GCTile GCStipple

GCTileStipXOrigin GCTileStip YOrigin

GCFont GCSubwindowMode

GCClipXOrigin GCGraphicsExposures

GCClip YOrigin GCClipMask

GCDashOffset GCDashlist

GCArcMode GCFunction

GCForeground GCBackground

GCPlanemask

Values Specifies a pointer to the XGCValues structure.

Error Codes
BadAlloc

Bad Font

BadGC

Badlmplementation

Bad Match

Bad Pixmap

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGCValues data structure.

The ChangeGC protocol request.

7-84 User Interface Reference

XChangeKeyboardControl

XChangeKeyboardControl Subroutine

Purpose

Libraries

C Syntax

Changes keyboard settings.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeKeyboardControl(DisplayPtr, ValueMask, Values)
Display * DisplayPtr,
unsigned long ValueMask;
XKeyboardControl *Values;

FORTRAN Syntax
external fxchangekeyboardcontrol
integer*4 DisplayPtr
integer*4 ValueMask, Values
call fxchangekeyboardcontrol(DisplayPtr, ValueMask, Values)

Description
The XChangeKeyboardControl subroutine controls the keyboard characteristics defined by
the XKeyboardControl structure.

Parameters
DisplayPtr

ValueMask

Values

Error Codes

Specifies the connection to the X Server.

Specifies one value, from the least significant bit to the most significant bit,
for each one bit in the mask. These values are associated with the set of
keys for the keyboard specified previously. Each 1 bit in this mask specifies
that the corresponding field in the XKeyboardControl structure is to be
changed. The following values can be OR'd together in the ValueMask
parameter:

KB KeyCI ickPercent KB Bell Percent

KB Bell Pitch KBBellDuration

KB Led KBLedMode

KB Key KBAutoRepeatMode

Specifies a pointer to the XKeyboardControl structure.

Bad Implementation

Bad Match

BadValue

Enhanced X-Windows Subroutines 7-85

XChangeKeyboardControl

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XKeyboardControl data structure.

The ChangeKeyboardControl protocol request.

7-86 User Interface Reference

XChangeKeyboardMapping

XChangeKeyboardMapping Subroutine

Purpose

Libraries

C Syntax

Changes the mapping of key symbols to key codes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeKeyboardMapping(DisplayPtr,FirstKeycode,
KeysymsPerKeycode, Keysyms,
NumberCodes}

Display * DisplayPtr,
int FirstKeycode;
int KeysymsPerKeycode;
KeySym * Keysyms;
int NumberCodes;

FORTRAN Syntax
external fxchangekeyboardcontrol
integer*4 DisplayPtr
integer*4 FirstKeycode
integer*4 KeysymsPerKeycode
integer*4 Keysyms, NumberCodes
call fxchangekeyboardmapping(Oisp/ayPtr, FirstKeycode,

KeysymsPerKeycode, Keysyms,
NumberCodes}

Description
The XChangeKeyboardMapping subroutine defines the key symbols for the specified
number of key codes starting with the first key code indicated in the FirstKeycode parameter.
The symbols for key codes outside this range remain unchanged.

The number of elements in the Keysyms parameter must be a multiple of the
KeysymsPerKeycode parameter. Otherwise, an error is generated.

The specified FirstKeycode parameter must be greater than or equal to MinKeycode
parameter returned by XDisplayKeycodes.

In addition, the following expression must be less than or equal to MaxKeycode parameter
as returned by XDisplayKeycodes:

FirstKeycode + NumberCodes - 1

The value of KeySym number N, counting from 0, for the K key code has the following index
in the Keysyms parameter, counting from 0:

(K - FirstKeycode) * KeysymsPerKeycode + N

The specified KeysymsPerKeycode parameter can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. The KeySym value of the NoSymbol should be
used for undefined elements in individual key codes. The NoSymbol value can be displayed
in nontrailing positions of the effective list for a key code.

Enhanced X-Windows Subroutines 7-87

XChangeKeyboardMapping

The number of elements in the Keysyms parameter list must be a multiple of those in the
KeysymsPerKeycode parameter. Otherwise, an error is generated.

The XChangeKeyboardMapping subroutine generates a MappingNotify event. The
X Server does not need to interpret this mapping, but should merely store it for reading and
writing by clients.

Parameters
DisplayPtr

FirstKeycode

KeysymsPerKeycode

Keysyms

NumberCodes

Error Codes
BadAlloc

Badlmplementation

Bad length

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the first key code to be changed.

Specifies the key symbols to be used.

Specifies a pointer to an array of key symbols.

Specifies the number of key codes that are to be changed.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The ChangeKeyboardMapping protocol request.

7-88 User Interface Reference

XChangePointerControl

XChangePointerControl Subroutine

Purpose

Libraries

C Syntax

Changes the rate of acceleration in the movement of a pointer device.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangePoi nterControl(DisplayPtr, DoAccelerate, Do Threshold,
AccelerationNumerator,
AccelerationDenominator, Threshold)

Display * DisplayPtr;
Boo I DoAccelerate, Do Threshold;
int AccelerationNumerator, AccelerationDenominator;
int Threshold;

FORTRAN Syntax
external fxchangepointercontrol
integer*4 DisplayPtr
integer*4 Doaccelerator, Dothreshold
integer*4 Accelerationnumerator, Accelerationdenominator, Threshold
cal I fxchangepoi nteretu rncontrol(DisplayPtr, Doaccelerator, Do threshold,

Accelerationnumerator, Accelerationdenominator,
Threshold)

Description
The XChangePointerControl subroutine defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3 I 1 means the pointer moves three times as fast as normal. The fraction can be rounded
arbitrarily by the X Server. Acceleration takes effect after the pointer moves more than the
threshold number of pixels, and only takes effect beyond the value in the Threshold
parameter. To restore the default, set the value to -1.

The values of the DoAccelerate and Do Threshold parameters must be nonzero in order to
set the pointer values. Otherwise, the parameters are not changed.

Parameters
Acceleration Denominator

AccelerationNumerator

DisplayPtr

DoAccelerate

Do Threshold

Specifies the denominator for the acceleration multiplier.

Specifies the numerator for the acceleration multiplier.

Specifies the connection to the X Server.

Specifies a Boolean value that controls whether the values
for the Acceleration Numerator or Acceleration Denominator
parameter are used.

Specifies a Boolean value that controls whether the value
for the Threshold parameter is used.

Enhanced X-Windows Subroutines 7-89

XChangePointerControl

Threshold

Error Codes
Badlmplementation

BadValue

Implementation Specifics

Specifies the acceleration threshold.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangePointerControl protocol request.

7-90 User Interface Reference

XChangeProperty

XChangeProperty Subroutine

Purpose

Libraries

C Syntax

Changes the property for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeProperty(DisplayPtr, Window!D, Property, Type, Format, Mode, Data,
NumberE/ements)

Display * DisplayPtr,
Window Window!D;
Atom Property, Type;
int Format;
int Mode;
unsigned char* Data;
int NumberE/ements;

FORTRAN Syntax
external fxchangeproperty
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Property, Type, Format, Mode
integer*4 Data
integer*4 NumberE/ements
call fxchangeproperty(Disp/ayPtr, Window!D, Property, Type, Format, Mode, Data,

NumberE/ements)

Description
The XChangeProperty subroutine changes the property for a specified window. If the
property does not exist, it adds the property. The XChangeProperty subroutine causes the
X Server to generate a PropertyNotify event on a specified window. The lifetime of a
property is not tied to the client. Properties are not deleted like resources; they remain until
explicitly deleted, or the window is eliminated, or the server is reset.

The X Server does not interpret the Type parameter, but simply passes it back to an
application that later calls the XGetWindowProperty subroutine.

The Format parameter allows the X Server to correctly perform value-swap operations for
the 8-bit, 16-bit, and 32-bit values. If the Format parameter value is 16-bit or 32-bit, it must
explicitly cast the data pointer to a (char*) data type when it calls the XChangeProperty
subroutine.

Parameters
Data

DisplayPtr

Format

Specifies the property data.

Specifies the connection to the X Server.

Specifies the data format as a list of 8-bit, 16-bit, or 32-bit
quantities.

Enhanced X-Windows Subroutines 7-91

XChangeProperty

Mode

NumberElements

Property

Type

Window/D

Error Codes
BadAlloc

BadAtom

Badlmplementation

Bad Match

BadValue

BadWindow

7-92 User Interface Reference

Specifies the mode. The Mode parameter can be set to:

PropModeReplace

PropModePrepend

PropModeAppend

The XChangeProperty subroutine
discards the previous Property
parameter value and stores the new
data.

The Type and Format parameters must
match the existing Property parameter. If
the Property parameter is undefined, it is
treated as matching the correct Type and
Format parameters, with zero-length
data. The XChangeProperty subroutine
inserts the data before the beginning of
the existing data.

The Type and Format parameters must
match the existing Property parameter. If
the Property parameter is undefined, it is
treated as matching the correct Type and
Format parameters, with zero-length
data. The XChangeProperty subroutine
inserts the data after the end of the
existing data.

Specifies the number of elements of the specified data format.

Specifies the property atom.

Specifies the property type.

Specifies the window ID for the window whose property is to be
changed.

XChangeProperty

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeProperty protocol request.

The XGetWindowProperty subroutine.

Enhanced X-Windows Subroutines 7-93

XChangeSaveSet

XChangeSaveSet Subroutine

Purpose

Libraries

C Syntax

Adds or removes a window from the save-set of the client.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeSaveSet(DisplayPtr, Window ID, ChangeMode)
Display * DisplayPtr,
Window Window/D;
int ChangeMode;

FORTRAN Syntax
external fxchangesaveset
integer*4 Display
integer*4 Window/D, ChangeMode
call fxchangesaveset(Oisp/ayPtr, Window/D, ChangeMode)

Description
The XChangeSaveSet subroutine adds or removes a subwindow from the save-set of the
client depending on the ChangeMode parameter. The window specified must be one created
by another client.

Parameters
ChangeMode

DisplayPtr

Window/D

Error Codes
Bad Implementation

Bad Match

BadValue

BadWindow

7-94 User Interface Reference

Specifies the mode. The ChangeMode parameter can be set to:

SetModelnsert The XChangeSaveSet subroutine adds the
window to the client save-set.

SetModeDelete The XChangeSaveSet subroutine deletes the
window from the client save-set. The X Server
automatically removes windows from the
save-set when they are destroyed.

Specifies the connection to the X Server.

Specifies the window ID of the window where child windows are to be
added to the client's save-set.

XChangeSaveSet

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeSaveSet protocol request.

The XAddToSaveSet subroutine, XRemoveFromSaveSet subroutine.

Enhanced X-Windows Subroutines 7-95

XChangeWindowAttributes

XChangeWindowAttributes Subroutine

Purpose

Libraries

C Syntax

Changes one or more window attributes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XChangeWindow Attributes(DisplayPtr, Window!D, ValueMask,
Attributes)

Display * DisplayPtr,
Window Window/D;
unsigned long ValueMask;
XSetWindow Attributes *Attributes;

FORTRAN Syntax
external fxchangewindowattributes
integer*4 DisplayPtr
integer*4 Window/D
integer*4 ValueMask
integer*4 Attributes
call fxchangewindowattributes(Disp/ayPtr, Window!D, ValueMask,

Attributes)

Description
The XChangeWindowAttributes subroutine uses the window attributes in the
XSetWindowAttributes data structure to change the specified window parameters
depending on the Valuemask parameter. When using the XChangeWindowAttributes
subroutine, note the following:

• Changing the background does not cause the window contents to be changed. Use the
XClearWindow subroutine to repaint the window and the background.

• Setting the border, or changing the background such that the border tile origin changes,
causes the border to be repainted.

• Changing the background of a root window to the None or ParentRelative value restores
the default background pixmap.

• Changing the border of a root window to the CopyFromParent value restores the default
border pixmap.

• Changing the win_gravity attribute does not affect the current position of the window.

• Changing the backing_store attribute of an obscured window to the WhenMapped or
Always value may have no immediate effect.

• Changing the backing_planes, backing_pixel, or save_under attributes of a mapped
window may have no immediate effect.

• The event masks are maintained separately when multiple clients select input on the
same window. When an event is generated, it will be reported to all interested clients.

7-96 User Interface Reference

XChangeWindowAttributes

However, only one client can select the SubstructureRedirectMask,
ResizeRedirectMask, and ButtonPressMask event masks at a time.

• There is only one do_not_propagate_mask per window, not one per client.

• Changing the colormap of a window (that is, defining a new map while not changing the
contents of the existing map) generates a ColormapNotify event.

• Changing the colormap of a visible window may have no immediate effect on the screen
because the colormap may not be installed.

• Windows should share colormaps whenever possible.

• Changing the cursor of a root window to the None value restores the default cursor.

Parameters
Attributes

DisplayPtr

ValueMask

Window/D

Error Codes
Bad Access

Specifies the parameters of the window that will be set at the time the
specified window is created.

Specifies the connection to the X Server.

Specifies the defined window parameters. This mask is the bitwise inclusive
OR of the valid parameter mask bits. If the ValueMask parameter is a value
of 0, other parameters are ignored, and are not referenced.

Specifies the window ID.

Bad Color

BadCursor

Badlmplementation

Bad Match

Bad Pixmap

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSet WindowAttributes data structure.

The XChangeWindowAttributes protocol request.

The XClearWindow subroutine, XlnstallColormap subroutine, XSetWindowBackground
subroutine, XSetWindowBackgroundPixmap subroutine, XSetWindowBorder subroutine,
XSetWindowBorderPixmap subroutine.

Enhanced X-Windows Subroutines 7-97

XChecklfEvent

XChecklfEvent Subroutine

Purpose

Libraries

C Syntax

Checks the event queue for a specified event without blocking.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XChecklfEvent(DisplayPtr, EventReturn, Predicate, Argument)
Display * DisplayPtr,
XEvent * EventReturn;
Boo I (*Predicate)();
char *Argument;

FORTRAN Syntax
integer*4 fxcheckifevent
external fxcheckifevent
integer*4 DisplayPtr
integer*4 EventReturn
integer*4 Predicate
character*256 Argument
integer*4 ReturnCode
ReturnCode = fxcheckifevent(DisplayPtr, EventReturn, Predicate, Argument)

external FunctionName
integer*4 DisplayPtr
integer*4 Event
integer*4 Arguments
call FunctionName (DisplayPtr, Event, Arguments)

Description
The XChecklfEvent subroutine copies the event into the client-supplied XEvent structure
when the predicate procedure finds a match. The XChecklfEvent subroutine uses the
following predicate procedure:

Bool (*predicate) (DisplayPtr, Event, Argument)
Display * DisplayPtr,
XEvent *Event;
char *Argument;

7-98 User Interface Reference

Parameters
Argument

DisplayPtr

EventReturn

Predicate

Return Values

XChecklfEvent

Specifies the user-supplied parameter to be passed to the predicate
procedure.

Specifies the connection to the X Server.

Copies the matched events associated structure into this
client-supplied structure.

Specifies the procedure to call to determine if the next event in the
queue matches the one specified by the event parameter.

False Indicates that the predicate procedure does not find a match. The output
buffer is flushed, but events stored in the queue earlier are not discarded.

True Indicates that the matched event is found; this event is removed from the
queue.

Error Code
Badlmplementation

Related Information
The XlfEvent subroutine, XPeeklfEvent subroutine.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-99

XCheckMaskEvent

XCheckMaskEvent Subroutine

Purpose

Libraries

C Syntax

Removes the next event that matches a specified mask, without blocking.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XCheckMaskEvent(Oisp/ayPtr, EventMask, EventReturn)
Display * DisplayPtr,
unsigned long EventMask;
XEvent * EventReturn;

FORTRAN Syntax
integer*4 fxcheckmaskevent
external fxcheckmaskevent
integer*4 DisplayPtr
integer*4 EventMask, EventReturn
integer*4 ReturnCode
ReturnCode = fxcheckmaskevent(DisplayPtr, EventMask, EventReturn)

Description
The XCheckMaskEvent subroutine searches first the event queue, and then any events
available on the server connection, for the first event that matches the specified mask. When
it finds a match, it removes that event, copies it into the specified XEvent structure, and
returns the True value. The other events stored in the queue are not discarded.

Parameters
DisplayPtr

EventMask

EventReturn

Return Values
False

True

Specifies the connection to the X Server.

Specifies the event mask which is the bitwise inclusive OR of one or
more of the valid event mask bits.

Copies the associated structure of the matched event into this
client-supplied structure.

Indicates that the event requested is not in the queue. The
XCheckMaskEvent subroutine flushes the output buffer and returns.

Indicates that the XCheckMaskEvent subroutine finds a match. It
removes that event, copies it into the specified XEvent structure, and
returns this value.

Error Code
Badlmplementation

7-100 User Interface Reference

XCheckMaskEvent

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Subroutines 7-101

XCheckTypedEvent

XCheckTypedEvent Subroutine

Purpose

Libraries

C Syntax

Gets the next event that matches the event type.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XCheckTypedEvent(Oisp/ayPTr, EventType, EventReturn)
Display * DisplayPtr,
int EventType;
XEvent * EventReturn;

FORTRAN Syntax
integer*4 fxchecktypedevent
external fxchecktypedevent
integer*4 DisplayPtr
integer*4 EventType, EventReturn
integer*4 ReturnCode
ReturnCode = fxchecktypedevent(Oisp/ayPtr, EventType, EventReturn)

Description
The XCheckTypedEvent subroutine searches the event queue, and then any events
~'.'a!!able on the server connection, for the first event that matches the specified type. When
it finds a match, it returns the associated event structure to the specified XEvent structure
and returns the True value. The other events in the queue are not discarded.

Parameters
DisplayPtr

EventReturn

EventType

Return Values

Specifies the connection to the X Server.

Returns the matched events associated structure into this
client-supplied structure.

Specifies the event type to be compared.

False If the event is not available.

True If the XCheckTypedEvent subroutine finds a match.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-102 User Interface Reference

XCheckTyped Event

Related Information
The XEvent subroutine.

Enhanced X-Windows Subroutines 7-103

XCheckTypedWindowEvent

XCheckTypedWindowEvent Subroutine

Purpose

Libraries

C Syntax

Gets the next event for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XCheckTypedWindowEvent(Disp/ayPtr, Window!D, EventType, EventReturn)
Display * DisplayPtr,
Window Window!D;
int EventType;
XEvent * EventReturn;

FORTRAN Syntax
integer*4 fxchecktypedwindowevent
external fxchecktypedwi ndowevent
integer*4 DisplayPtr
integer*4 Window!D, EventType, EventReturn
integer*4 ReturnCode
ReturnCode = fxchecktypedwindowevent(Disp/ayPtr, Window/D, EventType, EventReturn)

Description
The XCheckTypedWindowEvent subroutine searches the event queue, and then any
events available on the server connection, for the first event that matches the specified type
and window. When it finds a match, the other events in the queue are not discarded.

Parameters
DisplayPtr

EventReturn

EventType

Window!D

Return Values
False

True

Error Code
Badlmplementation

7-1 04 User Interface Reference

Specifies the connection to the X Server.

Copies the associated structure of the matched events into this
client-supplied structure.

Specifies the event type to be compared.

Specifies the window ID.

Indicates that the event is not available. The
XCheckTypedWindowEvent subroutine flushes the output buffer
and returns this value.

Indicates that the XCheckTypedWindowEvent subroutine finds a
match. It removes the event from the queue, copies it into the
specified XEvent structure, and returns this value.

XCheckTypedWindowEvent

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
TheXEvent data structure.

Enhanced X-Windows Subroutines 7-105

XCheckWindowEvent

XCheckWindowEvent Subroutine

Purpose

Libraries

C Syntax

Removes the next event that matches the specified window and mask, without blocking.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XCheckWindowEvent{Disp/ayPtr, WindowlD, EventMask, EventReturn)
Display * DisplayPtr;
Window Window/D;
int EventMask;
XEvent * EventReturn;

FORTRAN Syntax
integer*4 fxcheckwi ndowevent
external fxcheckwindowevent
integer*4 DisplayPtr, Window/D
integer*4 EventMask, EventReturn
integer*4 ReturnCode
ReturnCode = fxcheckwindowevent{Disp/ayPtr, Window!D, EventMask, EventReturn)

Description
The XCheckWindowEvent subroutine searches the event queue, and then the events
available on the server, for the first event that matches the specified window and event
'.llask. When it finds a match, the other events stored in the queue are not discarded.

Parameters
DisplayPtr

EventMask

EventReturn

Window/D

Return Values
False

True

Error Code
Badlmplementation

7-106 User Interface Reference

Specifies the connection to the X Server.

Specifies the event mask. This mask is the bitwise inclusive OR of
one or more of the valid event mask bits.

Copies the associated structure of the matched event into this
client-supplied structure.

Specifies the window ID.

Indicates that the event is not available. The XCheckWindowEvent
subroutine flushes the output buffer.

Indicates that the XCheckWindowEvent subroutine finds a match. It
removes the event and copies it into the specified XEvent structure.

XCheckWindowEvent

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XEvent data structure.

Enhanced X-Windows Subroutines 7-107

XCirculateSubwindows

XCirculateSubwindows Subroutine

Purpose

Libraries

C Syntax

Circulates a subwindow up or down.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCirculateSubwindows(Disp/ayPtr, Window/D, Direction)
Display * DisplayPtr,
Window Window/D;
int Direction;

FORTRAN Syntax
external fxcirculatesu bwindows
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Direction
call fxcirculatesubwindows(Disp/ayPtr, Window!D, Direction)

Description
The XCirculateSubwindows subroutine circulates the specified subwindow. If another
client has selected SubstructureRedirectMask, a CirculateRequest event is generated,
and no further processing is performed. Otherwise, the window is raised or lowered as
specified.

If the window is restacked, the X Server generates a CirculateNotify event.

The Direction parameter can be the Raiselowest or LowerHighest value.

• If the Raiselowest value is specified, the XCirculateSubwindows subroutine raises the
lowest mapped child window (if any) that is occluded by another child window to the top of
the stack.

• If the LowerHighest value is specified, the XCirculateSubwindows subroutine lowers
the highest mapped child window (if any) that occludes another child window to the
bottom of the stack.

Exposure processing is performed on formerly obscured windows.

Parameters
Direction

DisplayPtr

WindowlD

7-1 08 User Interface Reference

Specifies the direction for circulating the window.

Specifies the connection to the X Server.

Specifies the window ID of the window to be circulated.

Error Codes
Badlmplementation

BadValue

BadWindow.

Implementation Specifics

XCirculateSubwindows

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CirculateWindow protocol request.

Enhanced X-Windows Subroutines 7-109

XCirculateSubwindowsDown

XCirculateSubwindowsDown Subroutine

Purpose

Libraries

C Syntax

Lowers the highest mapped child of the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCirculateSubwindowsDown(Disp/ayPtr, Window/D)
Display * DisplayPtr,
Window Window/D;

FORTRAN Syntax
external fxcirculatesubwindowsdown
integer*4 DisplayPtr
integer*4 Window/D
call fxcirculatesubwindowsdown(Disp/ayPtr, Window/D)

Description
The XCirculateSubwindowsDown subroutine lowers the highest mapped child of the
specified window that partially or completely occludes another child window. Unobscured
child windows are not affected.

Parameters
DisplayPtr

Window/D

Specifies the connection to the X Server.

Specifies the window ID for the window to be lowered.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CirculateWindow protocol request.

7-11 O User Interface Reference

X Ci rcu 1.ateSu bwi ndowsU p

XCirculateSubwindowsUp Subroutine

Purpose

Libraries

C Syntax

Raises the lowest mapped child of the specified window.

Enahnced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCirculateSubwindowsUp(Disp/ayPtr, Window/D)
Display * DisplayPtr,
Window Window/D;

FORTRAN Syntax
external fxcirculatesubwindowsup
integer*4 DisplayPtr
integer*4 Window/D
call fxcirculatesubwindowsup(Disp/ayPtr, Window/D)

Description
The XCirculateSubwindowsUp subroutine raises the lowest mapped child of the specified
window that is partially or completely occluded by another child window. Unobscured child
windows are not affected.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies thewindow ID for the window to be raised.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related lnf.ormation
The CirculateWindow protocol request.

Enhanced X-Windows Subroutines 7-111

XClearArea

XClearArea Subroutine

Purpose

Libraries

C Syntax

Clears a rectangular area of the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XClearArea(DisplayPtr, Window/D, X, Y, Width, Height, Exposures)
Display * DisplayPtr,
Window Window/D;
intX, Y;
unsigned int Width, Height;
Boot Exposures;

FORTRAN Syntax
external fxcleararea
integer*4 DisplayPtr
integer*4 Window/D
integer*4 X, Y
integer*4 Width, Height
integer*4 Exposures
call fxcleararea(DisplayPtr, Window!D, X, Y, Width, Height, Exposures)

Description
The XClearArea subroutine paints a rectangular area in the specified window according to
specified dimensions with the background pixel or pixmap of the window.

• If the Width parameter is a value of 0, it is replaced with the current width of the window
minus the X parameter.

• If the Height parameter is a value of 0, it is replaced with the current height of the window
minus the Y parameter.

• If the window has a defined background tile, the rectangle is filled with this tile.

• If the window has the background value of None, the contents of the window are not
changed.

In both cases, if the Exposures parameter is the value of True, one or more Expose events
are generated for regions of the rectangle that are either visible or in a backing store.

The XClearArea subroutine cannot be used with an lnputOnly class window.

7-112 User Interface Reference

Parameters
DisplayPtr

Exposures

Height

Width

Window/D

x

y

Error Codes
Badlmplementation

Bad Match

BadValue

BadWindow

Implementation Specifics

XClearArea

Specifies the connection to the X server.

Specifies a Boolean value of True or False.

Specifies the height dimension of the rectangle.

Specifies the width dimension of the rectangle.

Specifies the window ID.

Specifies the x coordinate at the upper-left corner of the rectangle.

Specifies the x coordinate at the upper-left corner of the rectangle.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ClearArea protocol request

Enhanced X-Windows Subroutines 7-113

XClearWindow

XClearWindow Subroutine

Purpose

Libraries

C Syntax

Clears the entire window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XClearWindow(DisplayPtr, Window/D)
Display * DisplayPtr,
Window Window/D;

FORTRAN Syntax
external fxclearwindow
integer*4 DisplayPtr
integer*4 Window/D
call fxclearwindow(Disp/ayPtr, Window/D)

Description
The XClearWindow subroutine clears the entire area in the window specified.

• If the window has a defined background tile, the rectangle is tiled with a plane mask of all
1 sand the GXCopy display function.

• If the window background has a value of None, the contents of the window are not
changed.

The XClearWindow subroutine cannot be used with an lnputOnly class window.

Parameters
DisplayPtr

Window/D

Specifies the connection to the X Server.

Specifies the window ID of the window to be cleared.

Error Codes
Badlmplementation

Bad Match

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ClearArea protocol request.

7-114 User Interface Reference

XClipBox Subroutine

Purpose

XClipBox

Generates the smallest rectangle enclosing a specified region.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XClipBox{ RegionPtr, Rectangle Return)
Region RegionPtr,
XRectangle *Rectangle Return;

FORTRAN Syntax
external fxclipbox
integer*4 RegionPtr, RectangleReturn
call fxclipbox{RegionPtr, RectangleReturn)

Description
The XClipBox subroutine generates the smallest enclosing rectangle in the
RectangleReturn parameter. The opaque type Region value is defined in the <X11/Xutil.h>
file.

Parameters
Rectangle Return

RegionPtr

Error Code
Badlmplementation

Implementation Specifics

Specifies the rectangle in which the smallest enclosing
rectangle is generated.

Specifies the region where the rectangle is located.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XRectangle data structure.

Enhanced X-Windows Subroutines 7-115

XCloseDisplay

XCloseDisplay Subroutine

Purpose

Libraries

C Syntax

Closes a display.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCloseDisplay(Disp/ayPtry
Display * DisplayPtr,

FORTRAN Syntax
external fxclosedisplay
integer*4 DisplayPtr
call fxclosedisplay(DisplayPtt}

Description

Parameter

The XCloseDisplay subroutine closes or disconnects a display from the X Server. It
destroys all windows, resource IDs (Window, Font, Pixmap, Colormap, Cursor, and
GContext), or other graphic contexts that the client created on the display device, unless the
close-down mode of the resource is changed. These windows, resource IDs, and other
graphic contexts should not be referenced again.

The XCloseDisplay subroutine discards any output requests that are buffered but not sent.

DisplayPtr Specifies the connection to the X Server.

Error Codes
BadGC

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-116 User Interface Reference

XConfigureWindow

XConfigureWindow Subroutine

Purpose

Libraries

C Syntax

Configures a window for size, position, border, and stacking order.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XConfigureWindow(DisplayPtr, WindowlD, ValueMask, Values)
Display * DisplayPtr,
Window WindowlD;
unsigned int ValueMask;
XWindowChanges *Values;

FORTRAN Syntax
external fxconfigurewindow
integer*4 DisplayPtr
integer*4 WindowlD
integer*4 ValueMask
integer*4 Values
call fxconfigureWindow(OisplayPtr, WindowlD, ValueMask, Values)

Description
The XConfigureWindow subroutine configures the size, position, border and stacking order
of a window using the values specified in the XWindowChanges data structure. It takes any
unspecified values from the existing geometry of the window. The stacking order of the
window is controlled by the parameters.

Parameters
DisplayPtr

ValueMask

Values

WindowlD

Error Codes
Badlmplementation

Bad Match

BadValue

BadWindow

Specifies the connection to the X Server.

Specifies the values to be set in the Values parameter. This mask is
the bitwise inclusive OR of the valid configure window values bits.

Specifies a pointer to the XWindowChanges data structure.

Specifies the window ID of the window to be reconfigured.

Enhanced X-Windows Subroutines 7-117

XConfigureWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XWindowChanges data structure.

The ConfigureWindow protocol request.

7--118 User Interface Reference

XConvertSelection

XConvertSelection Subroutine

Purpose

Libraries

C Syntax

Converts a selection.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XConvertSelection(DisplayPtr, Selection, Target, Property, Requestor, TimeStamp}
Display * DisplayPtr,
Atom Selection, Target;
Atom Property;
Window Requestor,
Time TimeStamp;

FORTRAN Syntax
external fxconvertselection
integer*4 DisplayPtr
integer*4 Selection, Target
integer*4 Property, Requestor, TimeStamp
call fxconvertselection(DisplayPtr, Selection, Target, Property, Requestor, TimeStamp)

Description
The XConvertSelection subroutine requests that the specified selection be converted to the
specified target type.

• If the specified selection has an owner, the X Server sends a SelectionRequest event to
that owner.

• If the specified selection does not have an owner, the X Server generates a
SelectionNotify event, with the property set to the None value, to the requestor.

In both events, the parameters are passed unchanged.

Parameters
DisplayPtr

Property

Requestor

Selection

Target

TimeStamp

Error Codes
BadAtom

Specifies the connection to the X Server.

Specifies the property atom.

Specifies the window ID of the window initiating the request.

Specifies the selection atom.

Specifies the target atom.

Specifies the time in either a timestamp, expressed in milliseconds, or in the
CurrentTime value.

Enhanced X-Windows Subroutines 7-119

XConvertSelection

Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SelectionNotify event, SelectionRequestEvent.

The ConvertSelection protocol request.

7-120 User Interface Reference

XCopyArea

XCopyArea Subroutine

Purpose

Libraries

C Syntax

Copies the drawable area between drawables of the same root and depth.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCopy Area(DisplayPtr, Source, Destination, GraphicsContext, SourceX, Source Y, Width,
Height DestinationX, Destination Y)

Display * DisplayPtr,
Drawable Source, Destination;
GC GraphicsContext,
int SourceX, SourceY;
unsigned int Width, Height;
int DestinationX, Destination Y;

FORTRAN Syntax
external fxcopyarea
integer*4 DisplayPtr
integer*4 Source, Source, GraphicsContext
integer*4 SourceX, Source Y, Width, Height
integer*4 DestinationX, Destination Y
call fxcopyarea(DisplayPtr, Source, Destination, GraphicsContext, SourceX, SourceY,

Width, Height, DestinationX, Destination Y)

Description
The XCopyArea subroutine copies an area of the specified drawable to another drawable. It
combines the source rectangle specified by the Source parameter with the destination
rectangle specified by the Destination parameter. The rectangles specified by these two
parameters must have the same root and depth.

The regions of the source rectangle that are obscured and have not been retained in a
BackingStore parameter are not copied. Specificed regions outside the boundaries of the
source drawable are also not copied. Instead, the following occurs on all corresponding
destination regions that are either visible or retained in a BackingStore parameter.

• If the destination rectangle is a window with a background other than the value of None,
the corresponding regions of the destination are tiled with a plane_mask field of all 1 s and
with the GXcopy display function of that background.

• If the graphics_ exposures field in the GC is the value of True, then the GraphicsExpose
events for all corresponding destination regions are required.

• If the graphics_ exposures field in the GC is the value of True, but no regions are
exposed, a NoExpose event is generated. By default, the graphics_exposures field is the
vlaue of True in new GC events.

The XCopyArea subroutine uses the function, plane_mask, subwindow_mode,
graphics_ exposures, clip_x_origin, clip_y_origin, and clip_mask graphics context fields.

Enhanced X-Windows Subroutines 7-121

XCopyArea

Parameters
Destination

DestinationX

Destination Y

DisplayPtr

GraphicsContext

Height

Source

SourceX

SourceY

Width

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies the destination rectangle to be combined with the source
rectangle.

Specifies the x coordinate of the destination rectangle relative to its
origin, at the upper-left corner of the destination rectangle.

Specifies they coordinate of the destination rectangle relative to its
origin, at the upper-left corner of the destination rectangle.

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the height of both the source and destination rectangles.

Specifies the source rectangle to be combined with the destination
rectangle.

Specifies the x coordinate of the source rectangle relative to its
origin (the upper-left corner).

Specifies they coordinate of the source rectangle relative to its
origin (the upper-left corner).

Specifies the width of both the source and destination rectangles.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Copy Area protocol request.

The XSetGraphicsExposures subroutine.

7-122 User Interface Reference

XCopyColormapAndFree

XCopyColormapAndFree Subroutine

Purpose

Libraries

C ~yntax

Creates a new colormap from a previously shared colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Colormap XCopyColormapAndFree(Disp/ayPtr, Colormap/D)
Display * DisplayPtr
Colormap Colormap/D

FORTRAN Syntax
integer*4 fxcopycolormapandfree
external fxcopycolormapandfree
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 Colormap/DReturned
Colormap/DReturned = fxcopycolormapandfree(DisplayPtr, Colormap/D)

Description
The XCopyColormapAndFree subroutine creates a new colormap when the allocation of
colormap entries from a previously-shared colormap was unsuccessful due to resource
exhaustion. The XCopyColormapAndFree subroutine does the following:

• Creates a colormap of the same visual type for the same screen as the specified
colormap and returns the new colormap ID.

• Moves all of the existing client allocation from the specified colormap to the new
colormap. It keeps the color values of this allocation intact and frees these color entries in
the specified colormap. It leaves the color values for other entries in the new colormap
undefined.

• If the specified colormap was created by the client with the AllocAll parameter, the new
colormap is also created with this parameter. The color values for all entries are then
copied from the specified colormap, and all entries in the specified colormap are freed.

• If the specified colormap was not created by the client with the AllocAll parameter, the
pixels and planes that are moved are those allocated by the client using the XAllocColor,
XAllocColorPlanes, XAllocColorCells, or XAllocNamedColor subroutine.

Parameters
Colormap/D

DisplayPtr

Specifies the colormap ID.

Specifies the connection to the X Server.

Enhanced X-Windows Subroutines 7-123

XCopyColormapAndFree

Error Codes
BadAlloc

BadColor

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CopyColormapAndFree protocol request.

The XCreateColormap subroutine, XFreeColormap subroutine, XFreeColors subroutine.

7-124 User Interface Reference

XCopyGC

XCopyGC Subroutine

Purpose

Libraries

C Syntax

Copies components from a source graphics context to a destination graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCopyGC(DisplayPtr, Source, ValueMaskCopy,
Destination)

Display * DisplayPtr;
GC Source;
unsigned long ValueMaskCopy;
GC Destination;

FORTRAN Syntax
external fxcopygc
integer*4 DisplayPtr
integer*4 Source
integer*4 ValueMaskCopy
integer*4 Destination
call fxcopygc(DisplayPtr, Source, ValueMaskCopy, Destination)

Description
The XCopyGC subroutine copies specified components from a source graphics context to a
destination graphics context. Both graphics contexts must have the same root and depth.

Parameters
Destination

DisplayPtr

Source

ValueMaskCopy

Error Codes
BadAlloc

BadGC

Badlmplementation

Bad Match

BadValue

Specifies the destination graphics context.

Specifies the connection to the X Server.

Specifies the components of the source graphics context.

Specifies the components in the source graphics context to be
copied to the destination graphics context. This parameter is the
bitwise inclusive OR of one or more of the valid GC component
masks.

Enhanced X-Windows Subroutines 7-125

XCopyGC

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCopyGC protocol request.

7-126 User Interface Reference

XCopyPlane

XCopyPlane Subroutine

Purpose

Libraries

C Syntax

Copies a single bit plane of a drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XCopyPlane(DisplayPtr, Source, Destination, Graphics Context, Source)(, Source Y,
Width, Height,DestinationX, DestinationY, Plane)

Display * DisplayPtr,
Drawable Source, Destination;
GC GraphicsContext;
int SourceX, Source Y;
unsigned int Width, Height;
int DestinationX, Destination Y;
unsigned long Plane;

FORTRAN Syntax
external fxcopyplane
integer*4 DisplayPtr
integer*4 Source, Destination
integer*4 GraphicsContext
integer*4 SourceX, Source Y, Width, Height
integer*4 DestinationX, Destination Y, Plane
call fxcopyplane(DisplayPtr, Source, Destination, GraphicsContext, SourceX, Source Y,

Width, Height, DestinationX, Destination Y, Plane)

Description
The XCopyPlane subroutine combines a single bit plane of the source rectangle with the
specified destination rectangle. The rectangles must have the same root but not necessarily
the same depth.

The XCopyPlane subroutine forms a pixmap of the same depth as the destination rectangle
with a size specified by the source region. It uses the foreground pixels in the graphics
context when the bit plane in the source rectangle contains a 1 bit and it uses the
background pixels when the bit plane in the source rectangle contains a 0 bit.

The equivalent of a CopyArea protocol request is performed, using the same exposure
semantics. This can be thought of as using the specified region of the source bit plane as a
stipple with a fil/_style field value of FillOpaqueStippled for filling a destination rectangle.

If the graphics_ exposures field in the GC is the value of True, the GraphicsExpose events
for all corresponding destination regions are generated. If the graphics_exposures field is
the value of True, but no regions are exposed, a NoExpose event is generated. By default,
the graphics_ exposures field has the value of True in new GCs.

The XCopyPlane subroutine uses the function, plane_mask, foreground, background,
subwindow_mode, graphics_ exposures, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields.

Enhanced X-Windows Subroutines 7-127

XCopyPlane

Parameters
Destination

DestinationX

Destination Y

Disp/ayPtr

GraphicsContext

Height

Plane

Source

SourceX

SourceY

Width

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

BadValue

Implementation Specifics

Specifies the destination rectangle to be combined with
the source rectangle.

Specifies the x coordinate of the upper-left corner of the
destination rectangle relative to its origin.

Specifies the y coordinate of the upper-left corner of the
destination rectangle relative to its origin.

Specifies the connection to the X server.

Specifies the graphics context.

Specifies the height of both the source and destination
rectangles.

Specifies the bit plane. Set one bit, for example:

OxOl, Ox02, Ox04 (Ox03 is illegal.)

Specifies the source rectangle to be combined with the
destination rectangle.

Specifies the x coordinate of the upper-left corner of the
source rectangle relative to its origin.

Specifies the y coordinate of the upper-left corner of the
source rectangle relative to its origin.

Specifies the width of both the source and destination
rectangles.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CopyPlane protocol request.

The XSetGraphicsExposures subroutine.

7-128 User Interface Reference

I
(
I
''I

XCreateAssocTable

XCreateAssocTable Subroutine

Purpose

Library

Syntax

Returns a pointer to a newly created associate table.

Enhanced X-Windows Library (liboldX.a)

#include <X11/X10.h>
XAssocTable *XCreateAssocTable(Size)
int Size;

Description

Parameter

The XCreateAssocTable subroutine returns a pointer to a newly created associate table.
Use buckets to the power of two to be more efficient, for example, use 32 buckets per 100
objects. (A reasonable maximum number of object per buckets is 8.)

A pointer with the value of NULL is returned if there is an error allocating memory for the
XAssocTable structure.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples samples.c -loldX -lXll

Size Specifies the number of buckets in the hash system of the XAssocTable
structure.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDestroy Assoc Table subroutine

Enhanced X-Windows Subroutines 7-129

XCreateBitmapFromData

XCreateBitmapFromData Subroutine

Purpose

Libraries

C Syntax

Creates a bitmap from data.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Pixmap XCreateBitmapFromData(Disp/ayPtr, Drawable/D, Data, Width, Height)
Display * DisplayPtr,
Drawable Drawable/D;
char *Data;
int Width, Height;

FORTRAN Syntax
integer*4 fxcreatebitmapfromdata
external fxcreatebitmapfromdata
integer*4 DisplayPtr, Drawable/D
integer*4 Data
integer*4 Width, Height
integer*4 Pixmap
Pixmap= fxcreatebitmapfromdata(Oisp/ayPtr, Drawable/D, Data, Width, Height)

Description
The XCreateBitmapFromData subroutine creates a bitmap from data stored in the program
rather than reading a bitmap file that was written out by the XWriteBitmapFile subroutine.
The XCreateBitmapFromData subroutine allows you to include a bitmap file written out by
the XWriteBitmapFile subroutine without reading in the bitmap file.

For example, to include a gray bitmap, enter:
I
I

#include "gray.bitmap" ~

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits,

gray_width, gray_height);

After this subroutine is completed, the XFreePixmap subroutine frees the bitmap.

Note: This subroutine is specific to C language programs using the #include file and
following the AIX X-Windows version 2.1 format.

7-130 User Interface Reference

XCreateBitmapFromData

Parameters
DisplayPtr Specifies the connection to the X Server.

Drawable/D Specifies the drawable.

Data Specifies the location of the bitmap data.

Height Specifies the height of the bitmap to be created.

Width Specifies the width of the bitmap to be created.

Return Value
NULL

Pixmap/D

Error Codes
BadAlloc

If insufficient working storage was allocated.

Resource ID of the created bitmap.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCreatePixmapFromBitmapData subroutine, XWriteBitmapFile subroutine,
XReadBitmapFile subroutine.

Enhanced X-Windows Subroutines 7-131

XCreateColormap

XCreateColormap Subroutine

Purpose

Libraries

C Syntax

Creates a colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Colormap XCreateColormap(Oisp/ayPtr, Window!D, Visua!Ptr, Allocate)
Display * DisplayPtr,
Window Window!D;
Visual * Visua!Ptr,
int Allocate;

FORTRAN Syntax
integer*4 fxcreatecolormap
external fxcreatecolormap
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Visua!Ptr
integer*4 Allocate
integer*4 Colormap
Colormap = fxcreatecolormap(Oisp/ayPtr, Window!D, Visua/Ptr, Allocate)

Description
The XCreateColormap subroutine creates a colormap of the specified visual type for the
screen on which the window resides and associates the colormap ID with it. This subroutine
operates on a Visual structure with members that contain information about the
colormapping possible. The colormap for the specified window is not set; the specified
window is used only to determine the screen.

The initial values of the colormap entries are undefined for the Grayscale, PseudoColor,
and DirectColor visual types. For StaticGray, StaticColor, and TrueColor visual types, the
entries have defined values, but those values are specific to the visual and are not defined
by Enhanced X-Windows. For the StaticGray, StaticColor, and TrueColor visual types, the
Allocate parameter must be the value of AllocNone. For the other visual types, if the
Allocate parameter is the AllocNone value, the colormap has no initially allocated entries,
and clients can allocate them.

If the Allocate parameter is the value of AllocAll, the entire colormap is allocated as
writable. The initial values of all allocated entries are undefined. For the Grayscale and
PseudoColor visual types, the effect is the same as if the XAllocColorCells subroutine
returned all pixel values from Oto N - 1, where N is the value of the map_entries field in the
specified visual. For the DirectColor visual type, the effect is the same as if the
XAllocColorPlanes subroutine returned a pixel value of O and the RedMaskReturn,
GreenMaskReturn, and BlueMaskReturn parameter values containing the same bits as the
corresponding masks in the specified visual. However, in all cases, none of these entries can
be freed by using the XFreeColors subroutine.

7-132 User Interface Reference

Parameters
Allocate

DisplayPtr

Specifies the colormap entries to be allocated.

Specifies the connection to the X Server.

XCreateColormap

Visua/Ptr Specifies a pointer to a visual type supported on the screen.

Window/D Specifies the window ID for the screen where the colormap is to be created.

Error Codes
BadAlloc

Badlmplementation

Bad Match

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateColormap protocol request.

Enhanced X-Windows Subroutines 7-133

XCreateFontCursor

XCreateFontCursor Subroutine

Purpose

Libraries

C Syntax

Creates a cursor from a standard font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

#include <X11/cursorfont.h>

Cursor XCreateFontCursor{Disp/ayPtr, Shape)
Display * DisplayPtr;
unsigned int Shape;

FORTRAN Syntax
integer*4 fxcreatefontcursor
external fxcreatefontcursor
integer*4 DisplayPtr
integer*4 Shape
integer*4 Cursor
Cursor= fxcreatefontcursor{Disp/ayPtr, Shape)

Description
The XCreateFontCursor subroutine creates a cursor from a standard font. A set of standard
cursor shapes is available in a special font named cursor.snf. The cursorfont.h file
contains the definitions of each of the cursor shapes. This font can be customized for
individual display types.

The Shape parameter specifies which glyph (image) of the standard fonts to use. The
hotspot (the point in the cursor corresponding to the coordinates reported for the pointer)
comes from the information stored in the cursor font. The initial colors of a cursor are a black
foreground and a white background.

Parameters
DisplayPtr

Shape

Error Codes
BadAlloc

Specifies the connection to the X Server.

Specifies the shape for the cursor.

Badlmplementation

Bad Match

BadValue

Implementation Specifics
This Xlib subroutine_ is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-134 User Interface Reference

I
I

\

XCreateFontCursor

Related Information
The CreateGlyphCursor protocol request.

Enhanced X-Windows Subroutines 7-135

XCreateGC

XCreateGC Subroutine

Purpose

Libraries

C Syntax

Creates a new graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

GC XCreateGC(DisplayPtr, DrawablelD, ValueMaskCreate, Values)
Display * DisplayPtr,
Drawable DrawablelD;
unsigned long ValueMaskCreate;
XGCValues *Values;

FORTRAN Syntax
integer*4 fxcreategc
external fxcreategc
integer*4 DisplayPtr
integer*4 DrawablelD
integer*4 ValueMaskCreate
integer*4 Values
integer*4 GraphicsContext
GraphicsContext = fxcreategc(DisplayPtr, DrawablelD, ValueMaskCreate, Values)

Description
The XCreateGC subroutine creates a new graphics context that can be used with any
destination drawable with the same root and depth as the specified drawable.

Parameters
DisplayPtr

Drawable ID

ValueMaskCreate

Values

7-136 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the parameters in the graphics context being created to be
set using the information in the XGCValues data structure. This
parameter is the bitwise inclusive OR of one or more of the valid
values graphics context component mask bits.

Specifies any values as specified by the ValueMask parameter.

Error Codes
BadAlloc

Bad Drawable

Bad Font

Badlmplementation

Bad Match

Bad Pixmap

BadValue

Implementation Specifics

XCreateGC

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGCValues data structure and valid components.

The CreateGC protocol request.

The XFreeGC subroutine, XCopyGC subroutine, XChangeGC subroutine.

Enhanced X-Windows Subroutines 7-137

XCreateGlyphCursor

XCreateGlyphCursor Subroutine

Purpose

Libraries

C Syntax

Creates a cursor from font glyphs.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Cursor XCreateGlyphCursor(DisplayPtr, SourceFont, MaskFont, SourceCharacter,
MaskCharacter, ForegroundColor, BackgroundColor)

Display * DisplayPtr;
Font SourceFont, MaskFont;
unsigned int SourceCharacter, MaskCharacter;
XColor * ForegroundColor;
XColor * BackgroundColor;

FORTRAN Syntax
integer*4 fxcreateglyphcursor
external fxcreateglyphcursor
integer*4 DisplayPtr
integer*4 SourceFont, MaskFont
integer*4 SourceCharacter, MaskCharacter
integer*4 ForegroundColor, BackgroundColor
integer*4 Cursor
Cursor= fxcreateglyphcursor(DisplayPtr, SourceFont, Mask Font, SourceCharacter,

MaskCharacter, ForegroundColor, BackgroundColor)

Description .
The XCreateGlyphCursor subroutine creates a cursor from font glyphs (images). The
source and mask bitmaps are obtained from the specified font glyphs. When using the
XCreateGlyphCursor subroutine, note the following:

• The SourceCharacter parameter must be a defined glyph in the SourceFont parameter.

• If the MaskFont parameter is specified, the MaskCharacter parameter must be a defined
glyph in the MaskFont parameter. The MaskFont parameter and MaskCharacter
parameter are optional.

• If defined, the origins of the SourceCharacterparameter and MaskCharacterparameter
glyphs are positioned coincidently and define the hotspot. The SourceCharacter
parameter and the MaskCharacter parameter do not need to have the same bounding
box metrics. Also, there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no MaskCharacter parameter is given, all pixels of the source are
displayed.

• For 2-byte matrix fonts, the 16-bit value should be formed with the Byte1 member in the
most significant byte, and the Byte2 member in the least significant byte.

The user must use the XFreeFont subroutine to free the fonts if no further explicit
references to them are made.

7-138 User Interface Reference

(
I

\

Parameters
Background Color

DisplayPtr

ForegroundColor

MaskCharacter

MaskFont

SourceCharacter

SourceFont

Error Codes
BadAlloc

Bad Font

Badlmplementation

BadValue

Implementation Specifics

XCreateGlyphCursor

Specifies the red, green, and blue (RGB) values for the
background of the source.

Specifies the connection to the X Server.

Specifies the red, green, and blue (RGB) values for the
foreground of the source.

Specifies the character glyph for the mask.

Specifies the font for the mask glyph, or the None value.

Specifies the character glyph for the source.

Specifies the font for the source glyph.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The CreateGlyphCursor protocol request.

Enhanced X-Windows Subroutines 7-139

XCreatelmage

XCreatelmage Subroutine

Purpose

Libraries

C Syntax

Allocates the memory for the Xlmage subroutine.

Enhanced X-Windows Library (libX.a)

FORTRAN 77 Library (libXfx.a)

Xlmage *XCreatelmage(DisplayPrt, VisualPtr, Depth, FormatOffset, Data, Width,
HeightBitmapPad, BytesPerLine)

Display * DisplayPtr;
Visual * VisualPtr;
unsigned int Depth;
int Format;
int Offset;
char *Data;
unsigned int Width;
unsigned int Height;
int BitmapPad;
int BytesPerline;

FORTRAN Syntax
integer*4 fxcreateimage
external fxcreateimage
integer*4 DisplayPtr, VisualPtr, Depth, Format, Offset
integer*4 Data
integer*4 Width, Height, BitmapPad, Bytesperline
integer*4 Image
Image= fxcreateimage(DisplayPtr, VisualPtr, Depth, Format, Offset, Data, Width, Height,

Bitmappad, Bytesperline)

Description
The XCreatelmage subroutine allocates the memory for an Xlmage data structure for a
specified display device, but allocates no memory for the image itself. Rather, it initializes the
byte-order, bit-order, and bitmap-unit values from the display device and returns a pointer to
the Xlmage data structure.

• The red, green, and blue mask values, derived from the visual structure, are defined for Z
format images only.

• The Offset parameter permits rapid displaying of the image without requiring each
scanline to be shifted into position.

• The BitmapPad parameter specifies the quantum of a scanline as 8-, 16-, or 32-bits.
Thus, the start of one scanline in client memory is separated from the start of the next
scanline by an integer multiple of the number of bits indicated in this parameter.

• If the BytesPerline parameter is set to a value of 0, scanlines in memory are displayed
contiguously and the value of the BytesPerLine parameter is calculated by the Xlib library.

7-140 User Interface Reference

(
'\

XCreatelmage

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant
offset to a Z format image are defined in the image object. The macros to use to call these
functions through the image object are defined in the <X11 /Xutil.h> file. To use your own
routines for XGetPixel, XSetPixel, XSublmage, and XAddPixel, change the definitions in
Xutil.h.

When an image is created using the XCreatelmage subroutine, the XDestroylmage
subroutine frees both the image structure and the data pointed to by the image structure.

Parameters
BitmapPad

BytesPerUne

Data

Depth

DisplayPtr

Format

Height

Offset

Visua!Ptr

Width

Error Code
Badlmplementation

Implementation Specifics

Specifies the quantum of a scanline.

Specifies the number of bytes in the client image between the start
of one scanline and the start of the next.

Specifies a pointer to the image data.

Specifies the depth of the image.

Specifies the connection to the X Server.

Specifies a XYBitmap, XYPixmap, or ZPixmap format for the
image.

Specifies the height of the image, in pixels.

Specifies the number of pixels to ignore at the beginning of the
scanline.

Specifies a pointer to the visual.

Specifies the width of the image, in pixels.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xlmage data structure.

The XDestroylmage subroutine, XPutlmage subroutine.

Enhanced X-Windows Subroutines 7-141

XCreatePixmap

XCreatePixmap Subroutine

Purpose

Libraries

C Syntax

Creates a pixmap of the specified size.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Pixmap XCreatePixmap(DisplayPtr, DrawablelD, Width, Height, Depth)
Display * DisplayPtr;
Drawable DrawablelD;
unsigned int Width, Height;
unsigned int Depth;

FORTRAN Syntax
integer*4 fxcreatepixmap
external fxcreatepixmap
integer*4 DisplayPtr
integer*4 DrawablelD
integer*4 Width, Height, Depth
integer*4 Pixmap
Pixmap = fxcreatepixmap(DisplayPtr, Drawable ID, Width, Height, Depth)

Description
The XCreatePixmap subroutine creates a pixmap of a specified size and assigns it a
pixmap ID. This function can be used with an lnputOnly window as the Drawable
parameter. The Width and Height parameters must be nonzero, and the Depth parameter
must be a value supported by the screen of the specified drawable.

Which screen receives the pixmap is determined by the Drawable parameter. The pixmap
can be used only on this screen and only with other drawables of the same depth. (See the
XCopyPlane subroutine for an exception to this rule.)

The initial contents of the pixmap are undefined.

Parameters
Depth

DisplayPtr

Drawable ID

Height

Width

7-142 User Interface Reference

Specifies the depth of the pixmap.

Specifies the connection to the X Server.

Specifies the screen on which to create the pixmap.

Specifies the height of the pixmap.

Specifies the width of the pixmap.

(
I,.

Error Codes
BadAlloc

Bad Drawable

Badlmplementation

BadValue

Implementation Specifics

XCreatePixmap

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreatePixmap protocol request.

The XCopyPlane subroutine.

Enhanced X-Windows Subroutines 7-143

XCreatePixmapCursor

XCreatePixmapCursor Subroutine

Purpose

Libraries

C Syntax

Creates a cursor from a pixmap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Cursor XCreatePixmapCursor(Disp/ayPtr, Source, Mask, ForegroundColor,
BackgroundColor, X, Y)

Display * DisplayPtr,
Pixmap Source;
Pixmap Mask;
XColor * ForegroundColor,
XColor * BackgroundColor,
unsigned int X, Y;

FORTRAN Syntax
integer*4 fxcreatepixmapcursor
external fxcreatepixmapcursor
integer*4 DisplayPtr
integer*4 Source, Mask
integer*4 ForegroundColor, BackgroundColor
integer*4 X, Y
integer*4 Cursor
Cursor= fxcreatepixmapcursor(Disp/ayPtr, Source, Mask, ForegroundCo/or,

BackgroundColor, X, Y)

Description
The XCreatePixmapCursor subroutine creates a cursor and returns the cursor ID
associated with it.

• The red, green, and blue (RGB) values for the ForegroundColor and BackgroundColor
parameters must be specified, even if the X Server only has a StaticGray or Grayscale
screen.

• The foreground color is used for pixels set to a value of 1 in the source, and the
background color is used for the pixels set to a value of 0.

• Both the Source and Mask parameters, if specified, can have any root drawable, but must
have a depth value of 1.

• The Mask parameter defines the shape of the cursor. The pixels set to a value of 1 in the
mask define the source pixels to be displayed, while the pixels set to a value of O define
which pixels are ignored. If no mask is given, all source pixels are displayed. The mask, if
present, must be the same size as the pixmap defined by the Source parameter, and the
hotspot must be a point within the source. Pixmaps are freed using the XFreePixmap
subroutine.

• The components of the cursor can be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately when no further explicit references to them are to

7-144 User Interface Reference

(

'1...i

XCreatePixmapCursor

be made. Subsequent drawing in the source or mask pixmap has an undefined effect on
the cursor (The X Server might or might not make a copy of the pixmap).

Parameters
BackgroundColor

DisplayPtr

ForegroundColor

Mask

Source

x

y

Error Codes
BadAlloc

Badlmplementation

Bad Match

Bad Pixmap

Implementation Specifics

Specifies the red, green, and blue (RGB) values for the
background of the source.

Specifies the connection to the X Server.

Specifies the red, green, and blue (RGB) values for the
foreground of the source.

Specifies the source bits of the cursor that is to be displayed, or
None.

Specifies the shape of the source cursor.

Specifies the x coordinate to indicate the hotspot relative to the
origin of the source.

Specifies the y coordinate to indicate the hotspot relative to the
origin of the source.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateCursor protocol request.

Enhanced X-Windows Subroutines 7-145

XCreatePixmapFromBitmapData

XCreatePixmapFromBitmapData Subroutine

Purpose

Libraries

C Syntax

Creates a pixmap using the bitmap-formated data.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Pixmap XCreatePixmapFromBitmapData(Disp/ayPtr, Drawable!D, Data, Width, Height,
Foreground, Background, Depth)

Display * DisplayPtr,
Drawable Drawable/D;
char *Data;
unsigned int Width, Height,
unsigned long Foreground, Background;
unsigned int Depth;

FORTRAN Syntax
integer*4 fxcreatepixmapfrombitmapdata
external fxcreatepixmapfrombitmapdata
integer*4 DisplayPtr, Drawable/D
integer*4 Data
integer*4 Width, Height
integer*4 Foreground, Background, Depth
integer*4 Pixmap
Pixmap= fxcreatepixmapfrombitmapdata(Disp/ayPtr, Drawable!D, Data, Width, Height,

Foreground, Background, Depth)

Description
The XCreatePixmapFromBitmapData subroutine creates a pixmap of the specified depth.
It then calls the XPutlmage subroutine to store the data in the pixmap. The depth must be
supported by the screen of the specified drawable.

Parameters
Background

Data

Depth

DisplayPtr

Drawable/D

Foreground

Height

Width

7-146 User Interface Reference

Specifies the background pixel values.

Specifies the data in bitmap format.

Specifies the depth of the pixmap.

Specifies the connection to the X Server.

Specifies the drawable that indicates the screen.

Specifies the foreground pixel values.

Specifies the height of the pixmap.

Specifies the width of the pixmap.

Error Codes
BadAlloc

Badlmplementation

Bad Match

Implementation Specifics

XCreatePixmapFromBitmapData

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XPutlmage subroutine.

Enhanced X-Windows Subroutines 7-147

XCreateRegion

XCreateRegion Subroutine

Purpose

Libraries

C Syntax

Creates a new empty region.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Region XCreateRegion()

FORTRAN Syntax
integer*4 fxcreateregion
external fxcreateregion
integer*4 NewRegion
NewRegion = fxcreateregion()

Description
The XCreateRegion subroutine creates a new empty region.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-148 User Interface Reference

/
\

XCreateSimpleWindow

XCreateSimpleWindow Subroutine

Purpose

Libraries

C Syntax

Creates an unmapped lnputOutput subwindow.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Window XCreateSimpleWindow(Disp/ayPtr, Parent, X, Y , Width, Height, BorderWidth,
Border, Background)

Display * DisplayPtr,
Window Parent,
intX, Y;
unsigned int Width, Height, BorderWidth;
unsigned long Border,
unsigned long Background;

FORTRAN Syntax
integer*4 fxcreatesimplewindow
external fxcreatesimplewindow
integer*4 DisplayPtr
integer*4 Parent
integer*4 X, Y
integer*4 Width, Height, BorderWidth
integer*4 Border, Background
integer*4 Window/D
Window/D = fxcreatesimplewindow(Disp/ayPtr, Parent, X, Y, Width, Height, BorderWidth,

Border, Background)

Description
The XCreateSimpleWindow subroutine creates an unmapped lnputOutput subwindow for
a specified parent window. It returns the window ID of the created window, and causes the X
Server to generate a CreateNotify event.

The created window is placed on top in the stacking order with respect to sibling windows.
Any part of the window that extends outside its parent window is clipped.

The created window inherits the depth, class, and visual attributes of the parent window. All
other window attributes use the default values.

For the created window to be visible on the screen, the window and all of its ancestor
windows must be mapped and it cannot be obscured by any of its ancestor windows. Then
the created window can be displayed by calling the XMapWindows subroutine.

Initially, the created window has the same cursor as the parent window. The Cursor
parameter for the created window has a value of None. Use the XDefineCursor subroutine
to define a new cursor for the created window.

Enhanced X-Windows Subroutines 7-149

XCreateSimpleWindow

Parameters
Background Specifies the pixel value to be set for the background of the created window.

Border Specifies the border pixel of the created window.

BorderWidth Specifies the width (in pixels) of the border of the created window. The
BorderWidth parameter for an lnputOnly window must be 0, or a
BadMatch error results.

DisplayPtr Specifies the connection to the X Server.

Height Specifies the height, which is the dimension of the inside of the created
window, excluding the border. This parameter must be nonzero, or a
BadValue error results.

Parent Specifies the parent window ID.

Width Specifies the width, which is the dimension of the inside of the created
window, excluding the border. This parameter must be nonzero, or a
BadValue error results.

X Specifies the x coordinate. This coordinate, which is relative to the inside of
the border of the parent window, defines the top-left outside corner of the
border of the created window.

Y Specifies the y coordinate. This coordinate, which is relative to the inside of
the border of the parent window, defines the top-left outside corner of the
border of the created window.

Error Codes
BadAlloc

Bad Implementation

Bad Match

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateWindow protocol request.

The XCreateWindow subroutine.

7-150 User Interface Reference

(
"

XCreateWindow

XCreateWindow Subroutine

Purpose

Libraries

C Syntax

Creates an unmapped subwindow.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Window XCreateWindow(DisplayPtr, Parent, X, Y, Width, Height, BorderWidth,
Depth, Class, VisualPtr, ValueMask, Attributes)

Display * DisplayPtr;
Window Parent,
intX, Y;
unsigned int Width, Height,
unsigned int BorderWidth;
int Depth;
unsigned int Class;
Visual * VisualPtr;
unsigned long ValueMask;
XSetWindowAttributes *Attributes;

FORTRAN Syntax
integer*4 fxcreatewindow
external fxcreatewindow
integer*4 DisplayPtr
integer*4 Parent
integer*4 X, Y
integer*4 Width, Height, BorderWidth, Depth
integer*4 Class, VisualPtr, ValueMask, Attributes
integer*4 WindowlD
WindowlD = fxcreatewindow{DisplayPtr, Parent, X, Y, Width, Height, BorderWidth,

Depth, Class, VisualPtr, ValueMask, Attributes)

Description
The XCreateWindow subroutine creates an unmapped subwindow for a specified parent
window. It returns the window ID of the created window and causes the X Server to generate
a CreateNotify event. The created window is placed on top in the stacking order with
respect to sibling windows.

For the created window to be visible on the screen, the window and all of its ancestor
windows must be mapped and it cannot be obscured by any of its ancestor windows. The
created window can then be displayed by using the XMapWindow subroutine.

Initially, the created window has the same cursor as the parent window. The cursor for the
created window has a value of None. Use the XDefineCursor subroutine to define a new
cursor for the created window.

For an lnputOutput window, the visual type and depth must be a combination supported by
the screen. The depth does not need to be the same as the parent window, but if the parent
window is an lnputOnly window, a Bad Match error will result.

Enhanced X-Windows Subroutines 7-151

XCreateWindow

For an lnputOnly window, the depth and border width must be O and the visual must be
supported by the screen. The parent window, however, can have any depth and class.

The only window attributes defined for lnputOnly windows are the win_gravity, evenLmask,
do_not_propagate_mask, override_redirect, and cursor attributes. Any other attribute will
result in a BadMatch error.

Parameters
Attributes

Borderwidth

Class

Depth

DisplayPtr

Height

Parent

Valuemask

VisualPtr

Width

x

7-152 User Interface Reference

Specifies the window attributes to be set when the window is created.
The Valuemask parameter should have the appropriate bits set to
indicate which attributes in the structure were set.

Specifies the width of the border of the new window in pixels. The
Borderwidth parameter for an lnputOnly window must be zero, or a
BadMatch error results.

Specifies the class of the created window. The Class parameter can
be:

lnputOutput

lnputOnly

CopyFrom Parent

Indicates a window that cannot be used for
graphics requests.

Indicates a normal type of window, which is
used for both input and output.

Indicates that the class is taken from the
parent window.

Specifies the depth of the new window. If the Depth parameter is
CopyFromParent, the Depth is taken from the parent window.

Specifies the connection to the X Server.

Specifies the height dimension of the inside of the created window.
This dimension does not include the border of the created window,
which is entirely outside of the window. This parameter must be
nonzero.

Specifies the parent window ID.

Specifies the window attributes to be set in the Attributes parameter.
This mask is the bitwise-inclusive OR of the valid attribute mask bits. If
the Valuemask parameter is 0, the attributes are ignored and not
referenced.

Specifies the visual type. If the VisualPtr parameter is
CopyFromParent, the visual type is taken from the parent window.

Specifies the width dimension of the inside of the created window. This
dimension does not include the border of the created window, which is
entirely outside of the window. This parameter must be nonzero.

Specifies the x coordinate, which defines the top-left, outside corner of
the border relative to the inside of .the borders of the parent window.

XCreateWindow

y Specifies they coordinate, which defines the top-left, outside corner of
the border relative to the inside of the borders of the parent window.

Error Codes
BadAlloc

BadColor

BadCursor

Bad Implementation

Bad Match

Bad Pixmap

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateWindow protocol request.

The XDefineCursor subroutine, XMapWindow subroutine.

Enhanced X-Windows Subroutines 7-153

XDefineCursor

XDefineCursor Subroutine

Purpose

Libraries

C Syntax

Defines a cursor for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDefineCursor(DisplayPtr, Window/D, Cursor/DJ
Display * DisplayPtr,
Window Window/D;
Cursor Cursor/D;

FORTRAN Syntax
external fxdefinecursor
integer*4 DisplayPtr
integer*4 Window/D, Cursor/D
call fxdefinecursor(Disp/ayPtr, Window/D, Cursor/D)

Description
The XDefineCursor subroutine defines which cursor will be used in a window.

Setting the Cursor parameter to a value of None is equivalent to using the
XUndefineCursor subroutine.

Parameters
CursorPtr

Display/D

Window/D

Error Codes
BadAlloc

Specifies the cursor to be displayed when the pointer is in the specified
window. If no cursor is to be displayed, it has a value of None.

Specifies the connection to the X Server.

Specifies the window ID.

BadCursor

Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeWindowAttributes protocol request.

7-154 User Interface Reference

XDefineCursor

The XUndefineCursor subroutine.

Enhanced X-Windows Subroutines ·7-155

XDeleteAssoc

XDeleteAssoc Subroutine

Purpose

Library

Syntax

Deletes an entry from a specific associate table.

Enhanced X-Windows Library (liboldX.a)

#include <X11 /X1 O.h>
XDeleteAssoc(DisplayPtr, Table, x_id'J
Display * DisplayPtr,
XAssocTable *Table;
XID x_id;

Description
The XDeleteAssoc subroutine deletes an entry from a specific associate table. It deletes an
association in an XAssocTable structure keyed on its XID. Redundant deletes and deletes
of non-existent XIDs are meaningless and do not cause problems. Deleting associations
does not impair the performance of an XAssocTable structure.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples sarnples.c -loldX -lXll

Parameters
DisplayPtr

Table

x_id

Specifies the connection to the X Server.

Specifies the associate table.

Specifies the XID.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XCreateAssocTable subroutine.

7-156 User Interface Reference

(

~

XDeleteContext Subroutine

Purpose

Libraries

C Syntax

Deletes data associated with a specified window and context type.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XDeleteContext(DisplayPtr, Window/D, Context)
Display * DisplayPtr;
Window Window/D;
XContext Context;

FORTRAN Syntax
integer*4 fxdeletecontext
external fxdeletecontext
integer*4 DisplayPtr, Window/D, Context
integer*4 Status
Status= fxdeletecontext(Disp/ayPtr, Window/D, Context)

Description

XDeleteContext

The XDeleteContext subroutine deletes from the data structure the entry and context type
for a specified window.

The XDeleteContext subroutine does not free the data for the address that was saved.

Parameters
Context

DisplayPtr

Window ID

Return Values
0

Nonzero

Error Codes

Specifies the context type to which the data belongs.

Specifies the connection to the X Server.

Specifies the window ID with which the data is associated.

The XDeleteContext subroutine executes routinely.

The subroutine cannot execute.

Badlmplementation

XCNOENT (context-not-found)

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-157

XDeleteModifiermapEntry

XDeleteModifiermapEntry Subroutine

Purpose

Libraries

C Syntax

Deletes an entry from the XModifierKeymap data structure.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XModifierKeymap *XDeleteModifiermapEntry(ModifierMap, Keycode, Modifie(J
XModifierKeymap * ModifierMap;
KeyCode Keycode;
int Modifier;

FORTRAN Syntax
integer*4 fxdeletemodifiermapentry
external fxdeletemodifiermapentry
integer*4 ModifierMap
integer*4 Keycode
integer*4 Modifier
integer*4 Keymap
Keymap = fxdeletemodifiermapentry(ModifierMap, Keycode, Modifie(J

Description
The XDeleteModifiermapEntry subroutine deletes a specified keycode from the data set
that controls the specified modifier. It returns a pointer to the resulting XModifierKeymap
data structure.

Parameters
Keycode

Modifier

ModifierMap

Error Code
Badlmplementation

Implementation Specifics

Specifies the keycode to be deleted.

Specifies the modifier.

Specifies a pointer to the XModifierKeymap data structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XModifierKeymap data structure.

7-158 User Interface Reference

/
I
\q

XDeleteProperty Subroutine

Purpose

Libraries

C Syntax

Deletes a property for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDeleteProperty(Oisp/ayPtr, Window/D, Property)
Display * DisplayPtr,
Window Window/D;
Atom Property,

FORTRAN Syntax
external fxdeleteproperty
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Property
call fxdeleteproperty(Oisp/ayPtr, Window/D, Property)

Description

XDeleteProperty

The XDeleteProperty subroutine deletes a property for a specified window when that
property was defined for the specified window. In this case the X Server generates a
PropertyNotify event on the window.

Parameters
DisplayPtr Specifies the connection to the X Server.

Property

Window/D

Error Codes
BadAtom

Specifies the property name.

Specifies the window ID.

Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PropertyNotify event.

The DeleteProperty protocol request.

The XChangeProperty subroutine.

Enhanced X-Windows Subroutines 7-159

XDestroyAssocTable

XDestroyAssocTable Subroutine

Purpose

Library

Syntax

Frees the memory associated with a specific associate table.

Enhanced X-Windows Library (liboldX.a)

#include <X11 /X1 O.h>
XDestroy Assoc Table(Table)

XAssocTable *Table;

Description
The XDestroyAssocTable subroutine frees the memory associated with a specific
associate table. Using an XAssocTable structure after it has been destroyed will have
unpredictable and probably disastrous consequences.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples samples.c -loldX -lXll

Parameters
Table Specifies the associate table.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XCreateAssocTable subroutine.

7-160 User Interface Reference

I

\~

XDestroylmage Subroutine

Purpose

XDestroylmage

Deallocates memory associated with the Xlmage data structure.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XDestroylmage(X/magePtr)
Xlmage * XlmagePtr;

FORTRAN Syntax
external fxdestroyimage
integer*4 XlmagePtr
call fxdestroyimage(X/magePtr)

Description
The XDestroylmage subroutine deallocates memory previously allocated using the
XCreatelmage subroutine.

Parameter
XlmagePtr Specifies a pointer to the image.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xlmage data structure.

The XCreatelmage subroutine.

Enhanced X-Windows Subroutines 7-161

XDestroyRegion

XDestroyRegion Subroutine

Purpose

Libraries

C Syntax

Frees the storage associated with a specified region.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDestroyRegion(RegionPtt')
Region RegionPtr;

FORTRAN Syntax
external fxdestroyregion
integer*4 RegionPtr
cal I fxdestroyregion(RegionPtt'J

Description
The XDestroyRegion subroutine deallocates storage associated with a specified region.

Parameter
RegionPtr Specifies the region.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

7-162 User Interface Reference

(

XDestroySubwindows

XDestroySubwindows Subroutine

Purpose

Libraries

C Syntax

Destroys all subwindows of a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDestroySubwindows(Oisp/ayPtr, Window/DJ
Display * DisplayPtr;
Window Window/D;

FORTRAN Syntax
external fxdestroysubwindows
integer*4 DisplayPtr
integer*4 Window/D
call fxdestroysubwindows(Oisp/ayPtr, Window/D)

Description
The XDestroySubwindows subroutine destroys all inferior windows of a specified window
in a bottom-to-top stacking order. The X Server generates a DestroyNotify event for each
window.

If any mapped subwindows are destroyed, the X Server generates the Expose events on
the specified window. The subwindows should not be referenced again.

Parameters
DisplayPtr

Window/D

Error Codes
BadWindow

Specifies the connection to the X Server.

Specifies the window ID of the window to be destroyed.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-163

XDestroyWindow

XDestroyWindow Subroutine

Purpose

Libraries

C Syntax

Unmaps and destroys a specified window and all its subwindows.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDestroyWindow(DisplayPtr, Windowf D)
Display * DisplayPtr,
Window Window!D;

FORTRAN Syntax
external fxdestroywindow
integer*4 DisplayPtr
integer*4 Windowf D
call fxdestroywindow(DisplayPtr, Window!D)

Description
The XDestroyWindow subroutine destroys a specified window and its subwindows. The
X Server generates a DestroyNotify event for each window. The window should not be
referenced again. (If the root window is specified, no windows are destroyed.)

If the window specified is a mapped window, the XDestroyWindow subroutine automatically
unmaps it and destroys all its inferior windows. The X Server generates a DestroyNotify
event for each window.

A DestroyNotify event is generated on the inferior windows before it is generated on the
specified window. The ordering among sibling windows and across subhierarchies is not
otherwise constrained.

Destroying a mapped window generates the Expose events on other windows that were
obscured by the window being destroyed.

Parameters
DisplayPtr

Window/D

Error Codes
BadWindow

Specifies the connection to the X Server.

Specifies the window ID of the window to be destroyed.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-164 User Interface Reference

XDestroyWindow

Related Information
The DestroyNotify event, Expose event.

The DestroyWindow protocol request.

Enhanced X-Windows Subroutines 7-165

XDisableAccessControl

XDisableAccessControl Subroutine

Purpose

Libraries

C Syntax

Disables use of the access control list.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDisableAccessControl(DisplayPtry
Display * DisplayPtr,

FORTRAN Syntax
external fxdisableaccesscontrol
integer*4 DisplayPtr
call fxdisableaccesscontrol(DisplayPtry

Description

Parameter

The XDisableAccessControl subroutine disables use of the access control list at each
connection setup. The client application must reside on the same host as the X Server or
have the required permission in the initial authorization at connection setup.

DisplayPtr Specifies the connection to the X Server.

Error Codes
Bad Access

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetAccessControl protocol request.

The XEnableAccessControl subroutine.

7-166 User Interface Reference

(
\~

XDisplayKeycodes

XDisplayKeycodes Subroutine

Purpose

Libraries

C Syntax

Gets the legal keycodes for a display.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDisplayKeycodes(Disp/ayPtr, MinimumKeycodesReturn, MaximumKeycodesReturn)
Display * DisplayPtr,
int * MinimumKeycodesReturn;
int * MaximumKeycodesReturn;

FORTRAN Syntax
external fxdisplaykeycodes
integer*4 DisplayPtr
integer*4 MinimumKeycodesReturn
integer*4 MaximumKeycodesReturn
call fxdisplaykeycodes(Disp/ayPtr, MinimumKeycodesReturn, MaximumKeycodesReturn)

Description
The XDisplayKeycodes subroutine returns the minimum and maximum number of
keycodes supported by a specified display device. The minimum is never less than 8; the
maximum is never more than 255. Not all key codes in this range require corresponding
keys.

Parameters
DisplayPtr

MinimumKeycodesReturn

MaximumKeycodesReturn

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the minimum number of keycodes.

Returns the maximum number of keycodes.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-167

XDisplayMotionBufferSize

XDisplayMotionBufferSize Subroutine

Purpose

Libraries

C Syntax

Returns the size of the motion buffer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

unsigned long XDisplayMotionBufferSize(Disp/ayPtl)
Display * DisplayPtr;

FORTRAN Syntax
external fxdisplaymotionbuffersize
integer*4 DisplayPtr
integer*4 Size
size= fxdisplaymotionbuffersize(Disp/ayPtl)

Description

Parameter

The XDisplayMotionBufferSize subroutine returns the size of the motion buffer. The server
retains the recent history of the pointer motion, and does so to a finer granularity than is
reported by MotionNotify events. The XGetMotionEvents subroutine makes this history
available.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The MotionNotify event.

The XGetMotionEvents subroutine.

7-168 User Interface Reference

XDisplayName

XDisplayName Subroutine

Purpose

Libraries

C Syntax

Reports an error when the requested display deivce does not exist.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XDisplayName(String)
char *String;

FORTRAN Syntax
character*256 fxdisplayname
external fxdisplayname
character*256 ReturnString
character*256 String
ReturnString = fxdisplayname(String)

Description
The XDisplayName subroutine returns the name of the display device that the
XOpenDisplay subroutine would attempt to use. If a NULL string is specified, it looks in the
environment for the display device name.

Parameter

When the requested display device does not exist, the XDisplayName subroutine reports an
error to the user.

String Specifies the character string.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XOpenDisplay subroutine.

Enhanced X-Windows Subroutines 7-169

XDraw

XDraw Subroutine

Purpose

Library

Syntax

Achieves the effects of the XDraw, XDrawDashed, and XDrawPatterned subroutines from
the RT X-Windows, Version 1.1.

Enhanced X-Windows Library (liboldX.a)

#include <X11 /X1 O.h>

Status XDraw{DisplayPtr, Drawable, GraphicsContext, Verticeslist, VerticesCoun~
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
Vertex * Verticeslist;
int VerticesCount;

Description
The XDraw subroutine draws an arbitrary polygon or curve which is defined by the specified
list of Vertices as specified in the Verticeslist parameter. The points are connected by lines
specified in the flags in the vertex structure.

Each Vertex, as defined in the <)(11 /X1 O.h> header file, is a structure with the following
elements:

typedef struct _Vertex {

short x, y;
unsigned short flags;

} Vertex;

The fields of the Vertex data structure include the following:

x

y

Specifies the x coordinate of the vertex.

Specifies the y coordinate of the vertex. These coordinates can be:

• Relative to the upper-left inside corner of the drawable if the
VertexRelative flag is 0.

• Relative to the previous vertex if the VertexRelative flag is one.

flags Specifies the relationship to the vertex. These flags, as defined in the
<X11/X10.h> header file, can be one of the following values:

VertexRelative Ox0001 else absolute

VertexDontDraw Ox0002 else draw

VertexCurved Ox0004 else straight

7-170 User Interface Reference

I

\

)

XO raw

VertexStartClosed Ox0008 else not

VertexEndClosed Ox001 O else not

• If the VertexRelative value is not set, the coordinates are absolute
(relative to the drawable). The first vertex must be an absolute vertex.

• If the VertexDontDraw value is 1 , no line or curve is drawn from the
previous vertex to this one. This is analogous to picking up the pen and
moving to another place before drawing another line.

• If the VertexCurved value is 1, a spline algorithm is used to draw a
smooth curve from the previous vertex, to the next vertex through this
vertex. Otherwise, a straight line is drawn from the previous vertex to this
one. It is wise to set the VertexCurved value to 1 only if a previous
vertex and the next vertex are both defined either explicitly in the array or
through the definition of a closed curve.

• The VertexDontDraw bits and the VertexCurved bits can be set to 1 .
This is useful in defining the previous point for the smooth curve and if
you do not want an actual curve drawing to start until this point.

• If the VertexStartClosed value is 1, this point marks the beginning of a
closed curve. This vertex must be followed in the array by another vertex
whose absolute coordinates are identical with the VertexEndClosed bit
set to one. The points in between form a cycle to determine predecessor
and successor vertices for the spline algorithm.

The XDraw subroutine uses the following graphics context components: function,
plane_mask, line_width, line_style, cap_style, join_style, fill_style, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. This subroutine also uses the graphics context
mode-dependent components: foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_offset, and dash_list.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples samples.c -loldX -lXll

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Vertices List

VerticesCount

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies a pointer to the list of vertices which indicate what to draw.

Specifies the number of vertices in the Verticeslist parameter.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

~ Related Information
The XDrawFilled subroutine.

Enhanced X-Windows Subroutines 7-171

XDrawArc

XDrawArc Subroutine

Purpose

Libraries

C Syntax

Draws a single arc in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawArc(DisplayPtr, Drawable!D, GraphicsContext, X, Y, Width, Height, Ang/et, Angle2)
Display * DisplayPtr;
Drawable Drawable/D;
GC GraphicsContext,
intX, Y;
unsigned int Width, Height,
int Ang/et, Angle2;

FORTRAN Syntax
external fxdrawarc
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X, Y, Width, Height, Angle t, Angle2
call fxdrawarc(DisplayPtr, Drawable!D, GraphicsContext, X, Y, Width, Height, Ang/et,

Angle2)

Description
The XDrawArc subroutine draws a single circular or elliptical arc in the specified drawable.

Each arc is specified by a rectangle and two angles. The center of the circle or ellipse is the
center of the rectangle; the major and minor axes are specified by the Width and Height
parameters. Positive angles indicate counterclockwise motion, and negative angles
clockwise motion. If the Angle2 parameter is greater than 360 degrees, it is truncated to 360
degrees.

For an arc specified as [x, Y, Width, Height, Anglel, Angle2], the origin of the
major and minor axes is at [x + Width/2, Y + Height/2], and the infinitely thin path
describing the entire circle or ellipse intersects the horizontal axis at [x, Y + Height/ 2]
and [x + Width, Y + Height/ 2] intersects the vertical axis at [x + Width/ 2, Y] and
[x + Width/2, Y + Height]. These coordinates can be fractional and are not truncated
to discrete coordinates.

The path should be defined by the ideal mathematical path. For a wide line with line-width
lw, the bounding outlines for filling the arc specified by the two infinitely thin paths consisting
of all points whose perpendicular distance from the path of the circle or ellipse is equal to
lw/2 (which may be a fractional value). The cap-style and join-style are applied the same as
for a line corresponding to a tangent of the circle or ellipse at the endpoint.

(
\q

For an arc specified as [x, Y, Width, Height, Angle 1, Angle2], the angles must
be specified in the effectively skewed coordinate system of the ellipse (for a circle, the ~
angles and coordinate systems are identical). The relationship between these angles and

7--172 User Interface Reference

XDrawArc

angles expressed in the normal coordinate system of the screen (as measured with a
protractor) is as follows:

skewed-angle = atan [tan(normal angle) * Width/Height] + Adjust

The skewed-angle and normal-angle are expressed in radians in the range [O, 2pi] and
where atan returns a value in the range [-pi/2, pi/2] and Adjust is:

0
pi
2pi

for normal-angle in the range [O, pi/2]
for normal-angle in the range [pi/2, 3pi/2]
for normal-angle in the range [3pi/2, 2pi]

When two arcs intersect, the XDrawArc subroutine does not draw a pixel more than once if
they join correctly and the line-width is greater than 0. Otherwise, intersecting pixels are
drawn multiple times.

Specifying an arc with a given endpoint and a clockwise extent draws the same pixels as
specifying the other endpoint and an equivalent counterclockwise extent, except as it affects
intersecting arcs.

If the last point in an arc coincides with the first point in the next arc, the two arcs will
intersect correctly. If the first point in the first arc coincides with the last point in the last arc,
the two arcs will intersect correctly.

By specifying one axis to be 0, a horizontal or vertical line can be drawn. Angles are
computed based solely on the coordinate system, and ignore aspect ratio.

The XDrawArc subroutine uses the function, plane_mask, line_width, line_style, cap_style,
join_style, fi/Lstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_ list graphics context mode-dependent fields.

Parameters
Angle1

Angle2

DisplayPtr

Drawable ID

GraphicsContext

Height

Width

x
y

Error Codes
Bad Drawable

BadGC

Specifies the start of the arc relative to the three o'clock position
from the center in units of degrees multiplied by 64.

Specifies the path and extent of the arc relative to the start of the
arc in units of degrees multiplied by 64, not to exceed 360 degrees.

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the height of the arc, which is its minor axes.

Specifies the width of the arc, which is its major axes.

Specifies the x coordinate.

Specifies they coordinate.

Enhanced X-Windows Subroutines 7-173

XDrawArc

Badlmplementation

Bad Match

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Poly Arc protocol request.

The XDrawArcs subroutine.

7-17 4 User Interface Reference

(

XDrawArcs

XDrawArcs Subroutine

Purpose

Libraries

C Syntax

Draws multiple arcs in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawArcs(DisplayPtr, DrawablelD, GraphicsContext, Arcs, NumberArcs)
Display * DisplayPtr;
Drawable DrawablelD;
GC GraphicsContext,
XArc *Arcs;
int NumberArcs;

t=ORTRAN Syntax
external fxdrawarcs
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 Arcs, NumberArcs
call fxdrawarcs(DisplayPtr, DrawablelD, GraphicsContext, Arcs, NumberArcs)

Description
The XDrawArcs subroutine draws multiple circular or elliptical arcs in the specified
drawable.

Each arc is specified by a rectangle and two angles. The center of each circle or ellipse is
the center of the rectangle; the major and minor axes are specified by the Width and Height
parameters. Positive angles indicate counterclockwise motion, and negative angles
clockwise motion. If the Angle2 parameter is greater than 360 degrees, it is truncated to 360
degrees.

When two arcs intersect, the XDrawArcs subroutine does not draw a pixel more than once if
they join correctly and the line-width is greater than 0. Otherwise, intersecting pixels are
drawn multiple times.

Specifying an arc with a given endpoint and a clockwise extent draws the same pixels as
specifying the other endpoint and an equivalent counterclockwise extent, except as it affects
intersecting arcs.

If the last point in an arc coincides with the first point in the next arc, the two arcs will
intersect correctly. .

By specifying one axis to be 0, a horizontal or vertical line can be drawn. Angles are
computed based solely on the coordinate system, and ignore aspect ratio.

The XDrawArcs subroutine uses the function, plane_mask, line_width, line_style, cap_style,
join_style, filLstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_list graphics context mode-dependent fields.

Enhanced X-Windows Subroutines 7-175

XDrawArcs

Parameters
Arcs

DisplayPtr

Drawable/D

GraphicsContext

Number Arcs

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies a pointer to an array of arcs.

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of arcs in the array.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Poly Arc protocol request.

The XDrawArc subroutine.

7-176 User Interface Reference

XDrawFilled

XDrawFilled Subroutine

Purpose

Library

Syntax

Draws polygons and curves and fills them.

Enhanced X-Windows Library (liboldX.a)

#include <X11 /X1 O.h>

Status XDrawFilled(DisplayPtr, Drawable, GraphicsContext, Verticeslist
, VerticesCount)

Display * DisplayPtr;
Drawable DrawablelD;
GC GraphicsContext;
Vertex * Verticeslist;
int VerticesCount;

Description
The XDraw subroutine draws arbitrary polygons or curves and fills them. The XDraw
subroutine uses the following graphics context components: function, plane_mask,
line_width, line_style, cap_style, join_style, fil/_style, subwindow_mode, c/ip_x_origin,
clip_y_origin, and clip_mask. This subroutine also uses the graphics context
mode-dependent components: foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_offset, and dash_list.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples sarnples.c -loldX -lXll

Parameters
DisplayPtr Specifies the connection to the X Server.

Drawable ID Specifies the drawable.

GraphicsContext Specifies the graphics context.

Vertices list Specifies a pointer to the list of vertices which indicate what to draw.

VerticesCount Specifies the number of vertices in the Verticeslist parameter.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDraw subroutine.

Enhanced X-Windows Subroutines 7-177

XDrawlmageString

XDrawlmageString Subroutine

Purpose

Libraries

C Syntax

Draws 8-bit image text in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawlmageString(DisplayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
intX, Y;
char *String;
int Length;

FORTRAN Syntax
external fxdrawimagestring
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X, Y
character*256 String
integer*4 Length
call fxdrawimagestring(Disp/ayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)

Description
The XDrawlmageString subroutine draws 8-bit image text characters in the specified
drawable. Some applications, particularly terminal emulators, need to print image text in
which both the foreground and background bits of each character are painted. This
subroutine draws both the foreground and background bits of each character.

Using both the foreground and background pixels of the graphics context, the
XDrawlmageString subroutine first fills a destination rectangle with the background pixel,
then paints the text with the foreground pixel. The upper-left corner of the filled rectangle is
at:

[X, Y - FontAscent]

The width is:

Overall Width

The height is:

FontAscent + FontDescent

The Overal/Width, FontAscent and FontDescent values are equivalent to those returned by
the XQueryTextExtents subroutine with the GraphicsContext and String parameters.

For fonts defined with 2-byte matrix indexing, each byte is used as a Byte2 field with a Byte1
field having a value of 0.

7-178 User Interface Reference

(

\"'

XDrawlmageString

The XDrawlmageString subroutine uses the plane_mask, foreground, background, font,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Length

String

x

y

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of characters in the string argument.

Specifies the character string.

Specifies the x coordinate, relative to the origin of the specified
drawable, and defining the origin of the first character.

Specifies they coordinate, relative to the origin of the specified
drawable, and defining the origin of the first character.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lmageText8 protocol request.

The XQueryTextExtents subroutine.

Enhanced X-Windows Subroutines 7-179

XDrawlmageString16

XDrawlmageString16 Subroutine

Purpose

Library

C Syntax

Draws 2-byte image text in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawlmageString16(DisplayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)
Display * DisplayPtr;
Drawable Drawable/D;
GC GraphicsContext",
int X, Y;
XChar2b *String;
int Length;

FORTRAN Syntax
external fxdrawimagestring16
integer*4 DisplayPtr
integer*4 Drawablef D, GraphicsContext
integer*4 X, Y, String, Length
call fxdrawimagestring16(DisplayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)

Description
The XDrawlmageString16 subroutine draws 2-byte or 16-bit image text characters in the
drawable specified. Some applications, particularly terminal emulators, need to print image
text in which both the foreground and background bits of each character are painted. Fonts
with 2-byte matrix indexing can be used in this subroutine.

Using both the foreground and background pixels of the graphics context, the
XDrawlmageString16 subroutine first fills a destination rectangle with the background pixel,
then paints the text with the foreground pixel The upper-left corner of the filled rectangle is
at:.

[X, Y - FontAscent]

The width is:

Overall Width

The height is:

FontAscent + FontDescent

The values for the Overal/Width, FontAscent and FontDescent parameters are equivalent to
those returned using the XQueryTextExtents subroutine.

The String parameter for the XDrawlmageString16 subroutine is of the XChar28 type. The
X Server interprets each XChar2B type as a 16-bit number that has been transmitted with
the most-significant byte first. The Byte 1 parameter of the XChar2B structure is taken as the
most-significant byte.

7-180 User Interface Reference

I

I~

XDrawlmageString16

The XDrawlmageString16 subroutine uses the plane_mask, foreground, background, font,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_ mask graphics context fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Length

String

x

y

Error Codes
Bad Drawable

Bad Font

BadGC

Bad Implementation

Bad Match

Implementation Specifics

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of characters in the string argument.

Specifies the character string.

Specifies the x coordinates, relative to the origin of the specified
drawable, and defining the origin of the first character.

Specifies they coordinate, relative to the origin of the specified
drawable, and defining the origin of the first character.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lmageText16 protocol request, PolyText16 protocol request.

The XQueryTextExtents subroutine.

Enhanced X-Windows Subroutines 7--181

XDrawline

XDrawline Subroutine

Purpose

Libraries

C Syntax

Draws a single line between two points in a drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawline(DisplayPtr, DrawablelD, GraphicsContext, X1, Y1, X2, Y2)
Display * DisplayPtr,
Drawable DrawablelD;
GC GraphicsContext,
int X1, Y1, X2, Y2;

FORTRAN Syntax
external fxdrawline
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X1, Y1, X2, Y2
call fxdrawline(DisplayPtr, DrawablelD, GraphicsContext, X1, Y1, X2, Y2)

Description
The XDrawline subroutine uses the components of the specified graphics context to draw a
line connecting the point defined by the X1, Y1 perameters to the point defined by the X2,
Y2 parameters. It does not draw any pixel more than once. If lines intersect, the intersecting
pixels are drawn multiple times. No joining is performed at coincident end points.

The XDrawline subroutine uses the function, plane_mask, line_width, line_style, cap_style,
filLstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context
fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_list graphics context mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

X1

X2

Y1

Y2

Error Codes
Bad Drawable

7-182 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate points used to connect the line.

Specifies the x coordinate points used to connect the line.

Specifies they coordinate points used to connect the line.

Specifies the y coordinate points used to connect the line.

/

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XDrawline

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The PolySegment protocol request.

The XDrawlines subroutine, XDrawSegments subroutine.

Enhanced X-Windows Subroutines 7-183

XDrawlines

XDrawlines Subroutine

Purpose

Libraries

C Syntax

Draws multiple lines in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawlines(DisplayPtr, Drawable!D, GraphicsContext, Points, NumberPoints, Mode)
Display * DisplayPtr;
Drawable Drawable!D;
GC GraphicsContext;
XPoint *Points;
int NumberPoints;
int Mode;

FORTRAN Syntax
external fxdrawlines
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 Points, NumberPoints, Mode
call fxdrawlines(Oisp/ayPtr, Drawable/D, GraphicsContext, Points, NumberPoints, Mode)

Description
The XDrawlines subroutine draws multiple lines in the specified drawable with the
components of the specified graphics context. It uses these components to draw the
npoints-1 lines between each pair of points (point [i] , point [i + 1]) in the array of
XPoint data structures.

The XDrawlines subroutine draws the lines in the order listed in the array. The lines join
correctly at all intermediate points. If the first and last points coincide, the first and last lines
also join correctly. For any given line, no pixel is drawn more than once.

If thin (0 line width) lines intersect, the intersecting pixels will be drawn multiple times. If wide
lines intersect, the intersecting pixels are drawn only once, as though the entire Polyline
protocol request were a single filled shape.

CoordModeOrigin value treats all coordinates as relative to the point of origin.
CoordModePrevious vlaue treats all coordinates, after the first, as relative to the previous
point.

The XDrawlines subroutine uses the function, plane_mask, line_width, line_style,
cap_style, fill_style, subwindow_mode, clip_x_origin, clip_y_origin, clip_mask and join_style
graphics context fields. It also uses the foreground, background, tile, stipple, ts_x_origin,
ts_y_origin, dash_offset, and dash_list graphics context mode-dependent fields.

7-184 User Interface Reference

/
I

''I

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Mode

NumberPoints

Points

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

BadValue

Implementation Specifics

XDrawlines

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the coordinate mode as either the CoordModeOrigin or
CoordModePrevious value.

Specifies the number of points in the array.

Specifies a pointer to an array of points.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Polyline protocol request.

The XDrawline subroutine, XDrawSegments subroutine.

Enhanced X-Windows Subroutines 7-185

XDrawPoint

XDrawPoint Subroutine

Purpose

Libraries

C Syntax

Draws a single point in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawPoint(DisplayPtr, Drawable/D, GraphicsContext, X, Y)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext,
intX, Y;

FORTRAN Syntax
external fxdrawpoint
integer*4 DisplayPtr
integer*4 Drawable/D
integer*4 GraphicsContext
integer*4 X, Y
call fxdrawpoint(Disp/ayPtr, DrawablelD, GraphicsContext, X, Y)

Description
The XDrawPoint subroutine uses the foreg1 ')Und pixel and function components of the
graphics context to draw a single point in the specified drawable.

The XDrawPoint subroutine uses the function, plane_mask, foreground, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask graphics context fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

x
y

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

7-186 User Interface Reference

Specifies the connection to the X server.

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate where the point will be drawn.

Specifies they coordinate where the point will be drawn.

(

XDrawPoint

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyPoint protocol request.

The XDrawPoints subroutine.

Enhanced X-Windows Subroutines 7-187

XDrawPoints

XDrawPoints Subroutine

Purpose

Libraries

C Syntax

Draws multiple points in specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawPoints(DisplayPtr, Drawable/D, GraphicsContext, Points, NumberPoints, Mode)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
XPoint *Points;
int NumberPoints;
int Mode;

FORTRAN Syntax
external fxdrawpoints
integer*4 DisplayPtr
integer*4 Drawable/D, Graphics, Points
integer*4 NumberPoints, Mode
call fxdrawpoints(Disp/ayPtr, Drawable!D, GraphicsContext, Points,NumberPoints, Mode)

Description
The XDrawPoints subroutine uses the foreground pixel and graphics context function
components to draw multiple points in a specified drawable. It uses the values from the
XPoint data structure in the order listed in the array.

The CoordModeOrigin value treats all coordinates as relative to the point of origin. The
CoordModePrevious value treats all coordinates, after the first, as relative to the previous
point.

The XDrawPoints subroutine uses the function, plane_mask, foreground,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields.

Parameters
DisplayPtr

Drawable/D

GraphicsContext

Mode

NumberPoints

Points

7-188 User Interface Reference

Specifies the connection to the X server.

Specifies the drawable.

Specifies the graphics context.

Specifies the coordinate mode as either the CoordModeOrigin or
the CoordModePrevious value.

Specifies the number of points in the array.

Specifies a pointer to an array of points.

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

BadValue

Implementation Specifics

XDrawPoints

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyPoint protocol request.

TheXDrawPoint subroutine.

Enhanced X-Windows Subroutines 7-189

XDrawRectangle

XDrawRectangle Subroutine

Purpose

Libraries

C Syntax

Draws the outline of a single rectangle in a drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawRectangle(DisplayPtr, Drawable!D, GraphicsContext, X, Y, Width, Heigh6
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext,
intX, Y;
unsigned int Width, Height,

FORTRAN Syntax
external fxdrawrectangle
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X, Y, Width, Height
call fxdrawrectangle(DisplayPtr, Drawable!D, GraphicsContext, X, Y, Width, Heigh6

Description
The XDrawRectangle subroutine draws the outline of a single rectangle as if a five-point
Polyline protocol request were specified as shown in the following example:

[X,Y] [X+Width,Y] [X+Width,Y+Height] [X,Y+Height] [X,Y]

No pixel is drawn more than once for the specified rectangle.

The XDrawRectangle subroutine uses the function, plane_mask, line_width, line_style,
join_style, fi/Lstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_list graphics context mode-dependent fields.

7-190 User Interface Reference
I

(

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Height

Width

x

y

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

XDrawRectangle

Specifies the height dimensions of the rectangle.

Specifies the width dimensions of the rectangle.

Specifies the x coordinate which defines the upper-left corner of the
rectangle.

Specifies the y coordinate which defines the upper-left corner of the
rectangle.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Polyline protocol request, PolyRectangle protocol request.

The XDrawRectangles subroutine.

Enhanced X-Windows Subroutines 7-191

XDrawRectangles

XDrawRectangles Subroutine

Purpose

Libraries

C Syntax

Draws outline of multiple rectangles in drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawRectangles(DisplayPtr, DrawablelD, GraphicsContext,Rectangles,
NumberRectangles)
Display * DisplayPtr,
Drawable DrawablelD;
GC GraphicsContexf',
XRectangle Rectangles[];
int NumberRectangles;

FORTRAN Syntax
external fxdrawrectangles
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 Rectangles, NumberRectangles
call fxdrawrectangles(DisplayPtr, DrawablelD, GraphicsContext, Rectangles,

NumberRectangles)

Description
The XDrawRectangle subroutine draws the outline of multiple rectangles in the specified
drawable as if a five-point Polyline protocol request were specified for each rectangle as
shown in the following example:

[X,Y] [X+Width,Y] [X+Width,Y+Height] [X,Y+Height] [X,Y]

No pixel is drawn more than once for the specified rectangles. If the rectangles intersect, the
intersecting pixels are drawn multiple times.

The XDrawRectangles subroutine uses the function, plane_mask, line_ width, line_style,
join_ style, fill_style, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_ list graphics context mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

NumberRectangles

Rectangles

7-192 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of rectangles in the array.

Specifies a pointer to an array of rectangles.

/

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XDrawRectangles

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Polyline protocol request, PolyRectangle protocol request.

The XDrawRectangle subroutine.

Enhanced X-Windows Subroutines 7-193

XDrawSegments

XDrawSegments Subroutine

Purpose

Libraries

C Syntax

Draws multiple line segments in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawSegments(DisplayPtr, DrawablelD, GraphicsContext, Segments, NumberSegments)
Display * DisplayPtr,
Drawable DrawablelD;
GC GraphicsContext,
XSegment *Segments;
int NumberSegments;

FORTRAN Syntax
external fxdrawsegments
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 Segments, NumberSegments
call fxdrawsegments(DisplayPtr, DrawablelD, GraphicsContext, Segments,

NumberSegments)

Description
The XDrawSegments subroutine draws multiple, unconnected, lines. For each segment it
draws a line connecting the point defined by the Xt, Yt parameters and the point defined by
the X2, Y2 parameters in the order listed in the array of the XSegment data structure.

The XDrawSegments subroutine does not perform joining at coincident end points. No pixel
is drawn more than once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawSegments subroutine uses the function, plane_mask, line_width, line_style,
cap_style, filLstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics
context fields. It also uses the foreground, background, tile, stipple, ts_x_origin, ts_y_origin,
dash_ offset, and dash_list graphics context mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

G raphicsContext

NumberSegments

Segments

7-194 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of segments in the array.

Specifies a pointer to an array of segments.

(
I
\

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XDrawSegments

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolySegment protocol request.

The XDrawline subroutine, XDrawlines subroutine.

Enhanced X-Windows Subroutines 7-195

XDrawString

XDrawString Subroutine

Purpose

Library

C Syntax

Draws 8-bit characters in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawString(DisplayPtr, DrawablelD, GraphicsContext, X, Y,String, Length)
Display * DisplayPtr;
Drawable DrawablelD;
GC GraphicsContext;
int X, Y;
char *String;
int Length;

FORTRAN Syntax
external fxdrawstring
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 X, Y
character*256 String
integer*4 Length
call fxdrawstring(OisplayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)

Description
The XDrawString subroutine draws 8-bit text characters in a specified drawable. Each
character image, as defined by the font in the graphics context, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1 .

The XDrawString subroutine uses the function, plane_mask, filLstyle, font,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields. It also
uses the foreground, background, tile, stipple, ts_s_origin, and ts_y_origin graphics context
mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Length

String

x

7-196 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of characters in the string parameter.

Specifies the character string.

Specifies the x coordinate relative to the origin of the specified
drawable. This coordinates defines the baseline starting position for
the initial character.

y

Error Codes
Bad Drawable

Bad Font

BadGC

Bad Implementation

Bad Match

Implementation Specifics

XDrawString

Specifies the y coordinate relative to the origin of the specified
drawable. This coordinate defines the baseline starting position for
the initial character.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyText8 protocol request.

The XDrawString16 subroutine.

Enhanced X-Windows Subroutines 7-197

XDrawString16

XDrawString16 Subroutine

Purpose

Libraries

C Syntax

Draws 2-byte characters in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawString16(Disp/ayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
intX, Y;
XChar2b *String;
int Length;

FORTRAN Syntax
external fxdrawstring16
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 X, Y, String, Length
call fxdrawstring16(DisplayPtr, Drawable/D, GraphicsContext, X, Y, String, Length)

Description
The XDrawString subroutine draws 16-bit text characters in a specified destination
drawable. Each character image, as defined by the font in the graphics context, is treated as
an additional mask for a fill operation on the drawable. The destination drawable is modified
only where the font character has a bit set to 1 .

The XDrawString16 subroutine uses the function, plane_mask, fi/Lstyle, font,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields. It also
uses the foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Length

String

x

7-198 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of characters in the string parameter.

Specifies the character string.

Specifies the x coordinate relative to the origin of the specified
drawable. This coordinate defines the baseline starting position for
the initial character.

/
i
~

y

Error Codes
Bad Drawable

Bad Font

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XDrawString16

Specifies the y coordinate relative to the origin of the specified
drawable. This coordinate defines the baseline starting position for
the initial character.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The PolyText16 protocol.

The XDrawString subroutine.

Enhanced X-Windows Subroutines 7-199

XDrawText

XDrawText Subroutine

Purpose

Libraries

C Syntax

Draws complex 8-bit characters in a specified drawable.

Enhanced X-Window.s Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawText(DisplayPtr, Drawable/D, GraphicsContext, X, Y, Items, Number/fems)
Display * DisplayPtr,
Drawable Drawable!D;
GC GraphicsContext,
int X, Y;
XTextltem *Items;
int Number/fems;

FORTRAN Syntax
external fxdrawtext
integer*4 DisplayPtr
integer*4 Drawable!D, GraphicsContext
integer*4 X, Y, Items, Numberltems
call fxdrawtext(DisplayPtr, Drawable!D, GraphicsContext, X, Y, Items, Number/fems)

Description
The XDrawText subroutine draws 8-bit characters in a specified drawable using the
XTextltem data structure. It allows complex spacing and font shifts between counted strings.

Each text item is processed in turn. A Font variable set to a value other than None causes
the font to be stored in the graphics context and used in subsequent text.

/
A text element delta specifies an additional change in the position along the x axis before the '\
string is drawn. The delta is always added to the character origin and is not dependent on
any characteristics of the font.

Each character image, as defined by the font in the graphics context, is treated as an
additional mask for a fill operation on the drawable. The drawable is modified only where the
font character has a bit set to 1. If a text item generates a BadFont error, the previous text
items may have been drawn.

The XDrawText subroutine uses the function, plane_mask, fi!Lstyle, font, subwindow_mode,
clip_x_origin, clip_y_origin and clip_ mask graphics context fields. It also uses the
foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

Parameters
DisplayPtr Specifies the connection to the X Server.

Drawable ID Specifies the drawable.

7-200 User Interface Reference

Graphics Context

Items

Number/fems

x

y

Error Codes
Bad Drawable

Bad Font

BadGC

Bad Implementation

Bad Match

Implementation Specifics

XDrawText

Specifies the graphics context.

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

Specifies the x coordinate relative to the origin of the specified
drawable. This coordinate defines the origin of the initial character.

Specifies they coordinate relative to the origin of the specified
drawable. This coordinate defines the origin of the initial character.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyText8 protocol request.

The XDrawText16 subroutine.

Enhanced X-Windows Subroutines 7-201

XDrawText16

XDrawText16 Subroutine

Purpose

Libraries

C Syntax

Draws complex 2-byte text in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XDrawText16DisplayPtr, Drawable!D,
GraphicsContext, X, Y,
ltemsNumberltems)

Display *Display;
Drawable Drawable;
GC GraphicsContext;
int X, Y;
XTextltem16 *Items;
int Number/fems;

FORTRAN Syntax
external fxdrawtext16
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X, Y, Items, Numberltems
call fxdrawtext(DisplayPtr, Drawable/D,

Description

GraphicsContext, X, Y,
Items, Number/fems)

The XDrawText16 subroutine draws 8-bit characters in a specified drawable using the
XTextltem16 data structure. It allows complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font field set to a value other than None causes the
font to be stored in the graphics context and used in subsequent text.

A text element delta specifies an additional change in the position along the x axis before the
string is drawn. The delta is always added to the character origin and is not dependent on
any characteristics of the font.

Each character image, as defined by the font in the graphics context, is treated as an
additional mask for a fill operation on the drawable. The drawable is modified only where the
font character has a bit set to 1. If a text item generates a BadFont error, the previous text
items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b data
structure is interpreted as a 16-bit number with the Bytet field as the most-significant byte.

The XDrawText16 subroutine uses the function, plane_mask, fi!Lstyle, font,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields. It also

!
(

\

uses the foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context t1

mode-dependent fields. ~

7-202 User Interface Reference

Parameters
DisplayPtr

Drawable/D

GraphicsContext

Items

Number/terns

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

XDrawText16

x Specifies the x coordinates relative to the origin of the specified drawable.
This coordinate defines the origin of the initial character.

y Specifies they coordinate relative to the origin of the specified drawable.
This coordinate defines the origin of the initial character.

Error Codes
Bad Drawable

Bad Font

BadGC

Bad Implementation

Bad Match

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XTextltem data structure.

The PolyText16 protocol request.

The XDrawText subroutine.

Enhanced X-Windows Subroutines 7-203

XEmptyRegion

XEmptyRegion Subroutine

Purpose

Libraries

C Syntax

Determines if a specified region is empty.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XEmptyRegion(RegionPtr)
Region RegionPtr;

FORTRAN Syntax
integer*4 fxemptyregion
external fxemptyregion
integer*4 RegionPtr
integer*4 ReasonCode
ReasonCode = fxemptyregion(RegionPtr)

Description
The XEmptyRegion subroutine determines if a specified region is empty.

Parameter
RegionPtr Specifies the region.

Return Values
False Indicates that the region is not empty.

True Indicates that the region is empty.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-204 User Interface Reference

XEnableAccessControl

XEnableAccessControl Subroutine

Purpose

Libraries

C Syntax

Enables access control.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XEnableAccessControl(Disp/ayPtry
Display * DisplayPtr,

FORTRAN Syntax
external fxenableaccesscontrol
integer*4 DisplayPtr
call fxenableaccesscontrol(Disp/ayPtry

Description

Parameter

The XEnableAccessControl subroutine enables the use of the access control list at
connection setups. For this function to execute successfully, the client application must
reside on the same host as the X Server or have the necessary permission in the initial
authorization at connection setup.

DisplayPtr Specifies the connection to the X Server.

Error Codes
Bad Access

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The SetAccessControl protocol request.

The XDisableAccessControl subroutine.

Enhanced X-Windows Subroutines 7-205

XEqualRegion

XEqualRegion Subroutine

Purpose

Libraries

C Syntax

Determines if two regions are the same.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XEqualRegion{Region1, Region2)
Region Region1, Region2;

FORTRAN Syntax
integer*4 fxequalregion
external fxequalregion
integer*4 Region 1, Region2
integer*4 ReasonCode
ReasonCode = fxequalregion{Region1, Region2)

Description
The XEqualRegion subroutine determines if two regions have the same offset, size, and
shape.

Parameters
Region1

Region2

Return Values
False

Specifies one of the two regions to compare for offset, size, and shape.

Specifies one of the two regions to compare for offset, size, and shape.

The two regions are not identical.

True The two regions are identical.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-206 User Interface Reference

/
(
\\

XEventsQueued

XEventsQueued Subroutine

Purpose

Library

C Syntax

Checks the number of events in the event queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XEventsQueued(DisplayPtr, Mode)
Display * DisplayPtr,
int Mode;

FORTRAN Syntax
integer*4 fxeventsqueued
external fxeventsqueued
integer*4 DisplayPtr
integer*4 Mode
integer*4 ReasonCode
ReasonCode = fxeventsqueued(Oisp/ayPtr, Mode)

Description
The XEventsQueued subroutine checks the number of events in the event queue. It always
returns immediately without 1/0 If there are already events in the queue.

Parameters
DisplayPtr

Mode

Specifies the connection to the X Server.

Specifies the mode, which can be one of the following values:

QueuedAlready

QueuedAfterFlush

QueuedAfterReading

Indicates that the XEventsQueued subroutine
returns the number of events already in the
event queue and does not perform a
subroutine. (Specifying this mode is
equivalent to using the XQLength
subroutine.)

Indicates that the XEventsQueued subroutine
returns the number of events already in the
queue when this number is nonzero. If there
are no events in the queue, it: flushes the
output buffer; attempts to read more events
out of the application's connection; and,
returns the number of events read. (Specifying
this mode is equivalent to using the XPending
subroutine.)

Indicates that the XEventsQueued subroutine
returns the number of events already in the
queue when this number is nonzero. If there

Enhanced' X-Windows Subroutines 7-207

XEventsQueued

Error Code
Bad Implementation

Implementation Specifics

are no events in the queue, it: attempts,
without flushing the output buffer, to read
more events out of the connection to the
application; and, returns the number of events
read.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Qlength subroutine, XPending subroutine.

7-208 User Interface Reference

XFetchBuffer Subroutine

Purpose

Libraries

C Syntax

Gets data from a specified cut buffer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XFetchBuffer(Disp/ayPtr, NumberBytesReturn, Buttery
Display * DisplayPtr,
int * NumberBytesReturn;
int Buffer,

FORTRAN Syntax
integer*4 fxfetchbuffer
external fxfetchbuffer
integer*4 DisplayPtr
integer*4 NumberBytesReturn, ReturnBuffer
integer*4 FetchBuffer

XFetchBuffer

Fetch Buffer= fxfetchbuffer(DisplayPtr, NumberBytesReturn, ReturnBuffery

Description
The XFetchBuffer subroutine returns data from a specified cut buffer. If there is no data in
the buffer, it returns 0 in the NumberBytesReturn parameter.

Parameters
Buffer

DisplayPtr

NumberBytesReturn

Return Value
0

Error Codes
Badlmplementation

BadValue

Implementation Specifics

Specifies the buffer from which the stored data will be
returned.

Specifies the connection to the X Server.

Returns the number of bytes stored as a string in the buffer.

There is no data in the cut buffer.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-209

XFetchBytes

XFetchBytes Subroutine

Purpose

Libraries

C Syntax

Gets data from the first cut buffer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XFetch Bytes(DisplayPtr, NumberBytesReturn)
Display * DisplayPtr,
int * NumberBytesReturn;

FORTRAN Syntax
integer*4 fxfetchbytes
external fxfetchbytes
integer*4 DisplayPtr
integer*4 NumberBytesReturn
integer*4· FetchBytes
FetchBytes = fxfetchbytes(Disp/ayPtr, NumberBytesReturn)

Description
The XFetchBytes subroutine returns data from cut buffer 0. It returns the number of bytes in
the NumberBytesReturn parameter. If there is no data in the buffer, it returns a value of
NULL and sets the NumberBytesReturn parameter to 0. The appropriate amount of storage
is allocated, and the pointer is returned. The client must free this storage by calling the
XFree subroutine.

Since the cut buffer does not necessarily contain text, it may contain embedded NULL bytes
and may not terminate with a NULL byte.

Parameters
DisplayPtr

NumberBytesReturn

Return Values
NULL

pointer

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the number of bytes stored as a string in the buffer.

Indicates that there is no data in the buffer.

Specifies a pointer to the data in the buffer.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

7-21 O User Interface Reference

XFetchBytes

Related Information
The GetProperty protocol request.

The XFree subroutine.

Enhanced X-Windows Subroutines 7-211

XFetchName

XFetchName Subroutine

Purpose

Libraries

C Syntax

Gets the name of a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XFetchName(DisplayPtr, Window!D, WindowNameReturn)
Display * DisplayPtr,
Window Window/D;
char ** WindowNameReturn;

FORTRAN Syntax
integer*4 fxfetchname
external fxfetchname
integer*4 DisplayPtr
integer*4 Window/D
integer*4 WindowNameReturn
integer*4 ReturnCode
ReturnCode = fxfetchname(DisplayPtr, Window!D, WindowNameReturn)

Description
The XFetchName subroutine gets the name of a specified window.

If the WM_NAME property has not been set for this window, the XFetchName subroutine
sets the WindowNameReturn parameter to the value of NULL.

After using this subroutine, the client must free the WindowNameReturn parameter by using
the XFree subroutine.

Parameters
DisplayPtr

Window/D

WindowNameReturn

Return Values
Non-zero

0

Error Codes
BadWindow

7-212 User Interface Reference

Specifies the connection to the X Server.

Specifies the window ID for the window where the pointer will be
returned.

Returns a pointer (a null-terminated string) to the specified
window.

Indicates that the window name is successfully returned.

Indicates that the XFetchName subroutine fails (no name was
set for the window).

I
(
\

XFetchName

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetProperty protocol request.

The XFree subroutine.

Enhanced X-Windows Subroutines 7-213

XFillArc

XFillArc Subroutine

Purpose

Libraries

C Syntax

Fills a single arc in a given drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFillArc(DisplayPtr, Drawable/D, GraphicsContext, X, Y, Width, Height, Ang/et, Angle2)
Display* DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
intX, Y;
unsigned int Width, Height;
int Angle t, Angle2;

FORTRAN Syntax
external fxfillarc
integer*4 DisplayPtr
integer*4 Drawable!D, GraphicsContext
integer*4 X, Y, Width, Height, Angle 1, Angle2
call fxfillarc(DisplayPtr, Drawable ID, GraphicsContext, X, Y, Width, Height, Angle t, Angle2)

Description
The XFillArc subroutine fills a single arc in a given drawable. It fills the region closed by the
infinitely thin path described by the specified arc and, depending on the arc_mode field
specified in the graphics context, one or two line segments. The single line segment joining
the endpoints of the arc is used for the ArcChord value. The two line segments joining the
endpoints of the arc with the center point are used for the ArcPieSlice value.

The XFillArc subroutine uses the function, plane_mask, fi!Lstyle, arc_mode,
subwindow_mode, clip_x_origin, xlip_y_origin, and clip_mask graphics context fields. It also
uses the: foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

Parameters
Ang/et

Angle2

DisplayPtr

Drawable ID

GraphicsContext

7-214 User Interface Reference

Specifies the start of the arc relative to the 3 o'clock position from
the center, in units of degrees multiplied by 64.

Specifies the path and extent of the arc relative to the start of the
arc, in units of degrees multiplied by 64.

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Height

Width

x

y

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XFillArc

Specifies the height, which with the width, defines the major and
minor axes of the arc.

Specifies the width, which with the height, defines the major and
minor axes of the arc.

Specifies the x coordinate, which with they coordinate, defines the
upper-left corner of the rectangle. This coordinate is relative to the
origin of the specified drawable.

Specifies the y coordinate, which with the x coordinate, defines the
upper-left corner of the rectangle. This coordinate is relative to the
origin of the specified drawable.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XArc data structure.

The PolyFillArc protocol request.

The XFillArcs subroutine.

Enhanced X-Windows Subroutines 7-215

XFiHArcs

XFillArcs Subroutine

Purpose

Libraries

C Syntax

Fills multiple arcs in a given drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFillArcs(DisplayPtr, Drawable/D, GraphicsContext, Arcs, NumberArcs)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
XArc *Arcs;
int NumberArcs;

FORTRAN Syntax
external fxfillarcs
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 Arcs, NumberArcs
call fxfillarcs(DisplayPtr, Drawable/D, GraphicsContext, Arcs, NumberArcs)

Description
The XFillArcs subroutine fills multiple arcs in the specified drawable in the order listed in the
array of the XArc data structure. For each arc, it fills the region closed within the path
described by the specified arc and either one or two line segments, depending on the
ArcMode parameter specified in the graphics context. If the ArcMode parameter is specified
as the ArcChord value, the single line segment joining the endpoints of the arc is used. If
the ArcMode parameter is specified as the ArcPieSlice value, the two line segments joining
the endpoints of the arc with the center point are used.

For any given arc, no pixel is drawn more than once. If regions intersect, the intersecting
pixels are drawn multiple times.

The XFillArcs subroutine uses the function, plane_mask, fill_style, arc_mode,
·subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask graphics context fields. It also
uses the foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

7-216 User Interface Reference

/
\~

Parameters
Arcs

DisplayPtr

Drawable ID

GraphicsContext

NumberArcs

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies a pointer to an array of arcs.

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the number of arcs in the array.

XFillArcs

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyFillArc protocol request.

The XFillArc subroutine.

Enhanced X-Windows Subroutines 7-217

XFillPolygon

XFillPolygon Subroutine

Purpose

Libraries

C Syntax

Fills a polygon-shaped area in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFillPolygon(DisplayPtr, Drawable/D, GraphicsContext, Points, NumberPoints, Shape,
Mode)

Display * DisplayPtr;
Drawable Drawable/D;
GC GraphicsContext;
XPoint *Points;
int NumberPoints;
int Shape;
int Mode;

FORTRAN Syntax
external fxfillpolygon
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 Points, NumberPoints, Shape, Mode
call fxfillpolygon(Oisp/ayPtr, Drawable/D, GraphicsContext, Points, NumberPoints, Shape,

Mode)

Description
The XFillPolygon subroutine fills a polygon-shaped area in a specified drawable. It fills a
region closed by a specified path. The path is closed automatically if the last point in the list
does not coincide with the first point. No pixel of the region is drawn more than once.

(

The Shape parameter may be specified as the Complex, Convex, or Nonconvex value. 1

,,

Specifying the value of Complex indicates that the path self-intersects. Specifying the value
of Convex vindicates the path is totally convex. If the value of Convex is specified for a path
that is not convex, the graphics results are undefined. Specifying the value of Nonconvex
indicates the path does not self-intersect, but it is not totally convex. If the value of
Nonconvex is specified for a self-intersecting path, the graphics results are undefined.

The Fil/Rule component of the GC controls the filling behavior of self-intersecting polygons.

The Mode parameter may be specified as the CoordModeOrigin or CoordModePrevious
value. The first point is always relative to the origin of the drawable. If the value of
CoordModeOrigin is specified, all points are relative to the origin of the drawable. If
CoordModePrevious is specified, all points after the first are relative to the previous point.

The XFillPolygon subroutine uses the function, plane_mask, fill_style, fill_rule,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_ mask graphics context fields. It also
uses the foreground, tile, stipple, ts_x_origin, and ts_y_origin graphics context ~
mode-dependent fields.

7-218 User Interface Reference

Parameters
DisplayPtr

Drawable ID

G raphicsContext

Mode

NumberPoints

Points

Shape

Error Codes
Bad Drawable

BadGC

Bad Implementation

Bad Match

BadValue

Implementation Specifics

XFillPolygon

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the coordinate mode.

Specifies the number of points in the array.

Specifies a pointer to an array of points.

Specifies the shape.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The FillPoly protocol request.

Enhanced X-Windows Subroutines 7-219

XFill Rectangle

XFillRectangle Subroutine

Purpose

Libraries

C Syntax

Fills a single rectangular-shaped area in specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFillRectangle(Oisp/ayPtr, Drawable/D, GraphicsContext, X, Y, Width, Height)
Display * DisplayPtr,
Drawable Drawable/D;
GC GraphicsContext;
intX, Y;
unsigned int Width, Height;

FORTRAN Syntax
external fxfillrectangle
integer*4 DisplayPtr
integer*4 Drawable/D, GraphicsContext
integer*4 X, Y, Width, Height
call fxfillrectangle(DisplayPtr, Drawable/D, GraphicsContext, X, Y, Width, Height)

Description
The XFillRectangle subroutine fills a single rectangular-shaped area as 'if a four-point
FillPolygon protocol request was specified. For example:

[X,Y] [X+Width,Y] [X+Width,Y+Height] [X,Y+Height]

The XFillRectangle subroutine does not draw a pixel more than once. If rectangles
intersect, the intersecting pixels are drawn multiple times.

This subroutine uses the function, plane_mask, fi/Lstyle, fi!Lrule, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask graphics context fields. It also uses the
foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

Parameters
DisplayPtr

Drawable ID

GraphicsContext

Height

Width

x

7-220 User Interface Reference

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

Specifies the height, which defines the dimensions of the rectangle.

Specifies the width, which defines the dimensions of the rectangle.

Specifies the x coordinate relative to the origin of the specified
drawable, and defining the upper-left corner of the rectangle.

(
I~

y

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

XFill Rectangle

Specifies the y coordinate relative to the origin of the specified
drawable, and defining the upper-left corner of the rectangle.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The PolyFillRectangle protocol request.

The XFillRectangles subroutine.

Enhanced X-Windows Subroutines 7-221

XFillRectangles

XFillRectangles Subroutine

Purpose

Libraries

C Syntax

Fills multiple rectangular-shaped areas in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFillRectangles(DisplayPtr, DrawablelD, GraphicsContext, Rectangles,
NumberRectangles)

Display * DisplayPtr;
Drawable Drawable/D;
GC GraphicsContext;
XRectangle *Rectangles;
int NumberRectangles; ·

FORTRAN Syntax
external fxfillrectangles
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext
integer*4 Rectangles, NumberRectangles
call fxfillrectangles(DisplayPtr, Drawable/D, GraphicsContext, Rectangles,

NumberRectangles)

Description
The XFillRectangles subroutine fills multiple rectangular-shaped areas in a specified
drawable as if a four-point FillPolygon protocol request was specified for each rectangle.
For example:

[X,Y] [X+Width,Y] [X+Width,Y+Height] [X,Y+Height]

The XFillRectangles subroutine fills rectangles in the order listed in the array of an
XRectangle data structure.

For any given rectangle, no pixel is drawn more than once. If rectangles intersect, the
intersecting pixels are drawn multiple times.

The XFillRectangles subroutine uses the function, plane_mask, fill_style, fill_rule,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_ mask graphics context fields. It also
uses the foreground, background, tile, stipple, ts_x_origin, and ts_y_origin graphics context
mode-dependent fields.

7-222 User Interface Reference

I

:~

Parameters
DisplayPtr

Drawable ID

G raphicsContext

NumberRectangles

Rectangles

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

Implementation Specifics

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the graphics context.

XFillRectangles

Specifies the number of rectangles in the array.

Specifies a pointer to an array of rectangles.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The PolyFillRectangle protocol request.

The XFillRectangle subroutine.

Enhanced X-Windows Subroutines 7-223

XFindContext

XFindContext Subroutine

Purpose

Libraries

C Syntax

Gets the data, including its context type, associated with window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XFindContext(DisplayPtr, Window/D, Context, DataReturn)
Display * DisplayPtr,
Window Window!D;
XContext Context;
caddr_t *DataReturn;

FORTRAN Syntax
integer*4 fxfindcontext
external fxfindcontext
integer*4 DisplayPtr, Window!D, Context
integer*4 DataReturn
integer*4 Status
Status= fxfindcontext(DisplayPtr, Window!D, Context, DataReturn)

Description
The XFindContext subroutine gets the data, including its context type, associated with a
window.

Parameters
Context

Data Return

DisplayPtr

Window ID

Return Values
0

Nonzero

Error Codes

Specifies the context type to which the data belongs.

Returns a pointer to the data.

Specifies the connection to the X Server.

Specifies the window ID for the window with which the data is associated.

The XFindContext subroutine executes successfully.

The subroutine cannot execute.

Badlmplementation

XCNOENT (context-not-found)

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-224 User Interface Reference

/
\,

XFlush Subroutine

Purpose

Libraries

C Syntax

Flushes the output buffer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Xflush(DisplayPt()
Display * DisplayPtr,

FORTRAN Syntax
external fxflush
integer*4 DisplayPtr
call fxflush(Disp/ayPtr)

Description

XFlush

The Xflush subroutine flushes the output buffer. Most client applications do not require this
subroutine because the output buffer is automatically flushed as needed by calls to the
XPending, XNextEvent, or XWindowEvent subroutine. Events generated by the server
may be placed in the library's event queue.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XNextEvent subroutine, XPending subroutine, XWindowEvent subroutine.

Enhanced X-Windows Subroutines 7-225

XForceScreenSaver

XForceScreenSaver Subroutine

Purpose

Libraries

C Syntax

Forces the screen saver on or off.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XForceScreenSaver(DisplayPtr, Mode)
Display * DisplayPtr,
int Mode;

FORTRAN Syntax
external fxforcescreensaver
integer*4 DisplayPtr
integer*4 Mode
call fxforcescreensaver(DisplayPtr, Mode)

Description
The XForceScreenSaver subroutine forces the screen saver on or off by applying a mode
to the screen saver.

The Mode parameter may be specified as the ScreenSaverActive or ScreenSaverReset
value. Specifying the value of ScreenSaverActive activates the screen saver even if the
screen saver is currently disabled. If the screen saver is currently enabled, specifying the
value of ScreenSaverReset deactivates the screen saver, as if device input has been
received. It also resets the activation timer.

Parameters
DisplayPtr Specifies the connection to the X Server.

Mode Specifies the screen saver mode.

Error Codes
BadValue

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ForceScreenSaver protocol request.

The XSetScreenSaver subroutine.

7-226 User Interface Reference

/
I
I

_,

XFree Subroutine

Purpose

Libraries

C Syntax

Frees in-memory data created by an Xlib subroutine.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFree(Data)
char *Data;

FORTRAN Syntax
external fxfree
integer*4 Data
call fxfree(Data)

Description

XFree

The XFree subroutine frees the specified in-memory data allocated by any Xlib subroutine.

Parameter
Data Specifies a pointer to the data that is to be freed.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-227

XFreeColormap

XFreeColormap Subroutine

Purpose

Libraries

C Syntax

Deletes the association between the specified colormap ID and the colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeColormap(DisplayPtr, Colormap/D)
Display * DisplayPtr,
Colormap Colormap!D;

FORTRAN Syntax
external fxfreecolormap
integer*4 DisplayPtr
integer*4 Colormap/D
call fxfreecolormap(Disp/ayPtr, Colormap/D)

Description
The XFreeColormap subroutine deletes the association between a colormap resource ID
and colormap. It also frees the storage for this colormap but has no effect on the default
colormap for the screen.

If the Colormap parameter specifies an installed colormap for a screen, the XFreeColormap
subroutine uninstalls this colormap.

If the Colormap parameter specifies the colormap for a window, the XFreeColormap
subroutine changes the colormap associated with the window to the value of None and
generates a ColormapNotify event. The colors displayed for a window with a colormap of
the value of None are not defined.

Parameters
Colormap/D Specifies the colormap to be deleted.

DisplayPtr Specifies the connection to the X Server.

Error Codes
BadColor

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The FreeColormap protocol request.

7-228 User Interface Reference

(

~

XFreeColormap

The XUninstallColormap subroutine.

Enhanced X-Windows Subroutines 7-229

XFreeColors

XFreeColors Subroutine

Purpose

Libraries

C Syntax

Frees colormap cells.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeColors(DisplayPtr, ColormaplD, Pixels, NumberPixels, Planes)
Display * DisplayPtr,
Colormap Colormap/D;
unsigned long Pixels[];
int NumberPixels;
unsigned long Planes;

FORTRAN Syntax
external fxfreecolors
integer*4 DisplayPtr
integer*4 ColormaplD
integer*4 Pixels, NumberPixels, Planes
call fxfreecolors(DisplayPtr, ColormaplD, Pixels, NumberPixels, Planes)

Description
The XFreeColors subroutine frees colormap cells represented by pixels whose values are in
the pixels array. The XFreeColors subroutine frees the pixels that were allocated by the
client using the XAllocColor, XAllocColorCells, XAllocColorPlanes, and
XAllocNamedColor subroutines.

Freeing a pixel obtained from the XAllocColorPlanes subroutine may not allow the pixel to
be reused until all the related pixels are also freed.

The Planes parameter should not have bits in common with the pixels. The set of all pixels is
produced by combining the subsets of the Planes parameter with the pixels.

All specified pixels that are allocated by the colormap are freed, even if one or more pixels
produce an error. If more than one pixel is in error, the one reported is arbitrary. If a specified
pixel is not in the colormap, a BadValue error results. If a specified pixel is unallocated, or is
only allocated by another client, a BadAccess error results.

7-230 User Interface Reference

/

\

Parameters
ColormaplD

DisplayPtr

NumberPixels

Pixels

Planes

Error Codes
Bad Access

BadColor

Badlmplementation

BadValue

Implementation Specifics

XFreeColors

Specifies the colormap ID.

Specifies the connection to the X Server.

Specifies the number of pixels.

Specifies an array of pixel values that map to the cells in the
specified colormap.

Specifies the planes to be freed.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The FreeColors protocol request.

The XAllocColor subroutine, XAllocColorCells subroutine, XAllocColorPlanes
subroutine, XAllocNamedColor subroutine.

Enhanced X-Windows Subroutines 7-231

XFreeCursor

XFreeCursor Subroutine

Purpose

Libraries

C Syntax

Deletes the association between the specified cursor ID and the cursor.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeCursor(DisplayPtr, Cursor/D)
Display * DisplayPtr;
Cursor Cursor/D;

FORTRAN Syntax
external fxfreecursor
integer*4 DisplayPtr
integer*4 Cursor/D
call fxfreecursor(Oisp/ayPtr, Cursor/D)

Description
The XFreeCursor subroutine deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it. The
specified cursor should not be referenced again.

Parameters
Cursor/D

DisplayPtr

Error Codes
BadCursor

Specifies the cursor.

Specifies the connection to the X Server.

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The FreeCursor protocol request.

7-232 User Interface Reference

\

XFreeFont Subroutine

Purpose

Libraries

C Syntax

Deletes the association between the font ID and the font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeFont(DisplayPtr, FontStructure)
Display * DisplayPtr,
XFontStruct *Font Structure;

FORTRAN Syntax
external fxfreefont
integer*4 DisplayPtr
integer*4 FontStructure
call fxfreefont(DisplayPtr, FontStructure)

Description

XFreeFont

The XFreeFont subroutine deletes the association between the font resource ID and the
specified font. The specified font is freed when no other resources reference it. The data and
the font should not be referenced again.

Parameters
DisplayPtr

FontStructure

Error Codes
Bad Font

Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the storage associated with the font.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The CloseFont protocol request.

Enhanced X-Windows Subroutines 7-233

XFreeFontlnfo

XFreeFontlnfo Subroutine

Purpose

Libraries

C Syntax

Frees the font information array.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeFontlnfo(Names, Fontinfo, ActualCount)
char **Names;
XFontStruct *Fontinfo;
int ActualCounf',

FORTRAN Syntax
external fxfreefontinfo
integer*4 Names
integer*4 Fontinfo, ActualCount
call fxfreefontinfo(Names, Fontinfo, ActualCount)

Description
The XFreeFontlnfo subroutine frees the font information array returned by the
XlistFontsWithlnfo subroutine.

Parameters
ActualCount

Fontinfo

Names

Error Code
Badlmplementation

Implementation Specifics

Specifies the actual number of matched font names.

Specifies a pointer to the specified font information.

Specifies a pointer to the specified list of font names.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XFontStruct data structure.

The XlistFontsWithlnfo subroutine.

7-234 User Interface Reference

\

XFreeFontNames Subroutine

Purpose

Libraries

C Syntax

Frees a font name list.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeFontNames(List)
char *List[];

FORTRAN Syntax
external fxfreefontnames
integer*4 List
call fxfreefontnames(List)

Description

XFreeFontNames

The XFreeFontNames subroutine frees the array and strings returned by the XListFonts or
XlistFontsWithlnfo subroutine.

Parameter
List Specifies the array of strings to be freed.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The XlistFonts subroutine, XlistFontsWithlnfo subroutine.

Enhanced X-Windows Subroutines 7-235

XFreeFontPath

XFreeFontPath Subroutine

Purpose

Libraries

C Syntax

Frees data allocated by the XGetFontPath subroutine.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeFontPath(List)
char **List;

FORTRAN Syntax
external fxfreefontpath
integer*4 List
cal I fxfreefontpath(List)

Description
The XFreeFontPath subroutine frees data allocated by the XGetFontPath subroutine.

Parameter
List Specifies the array of strings to be freed.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The XGetFontPath subroutine.

7-236 User Interface Reference

XFreeGC

XFreeGC Subroutine

Purpose
Deletes the association between the specified graphics context ID and the graphics context.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeGC(DisplayPtr, GraphicsContextlD)
Display * DisplayPtr,
GC GraphicsContextlD;

FORTRAN Syntax
external fxfreegc
integer*4 DisplayPtr
integer*4 GraphicsContext/D
call fxfreegc(DisplayPtr, GraphicsContextlD)

Description
The XFreeGC subroutine deletes the specified graphics context and frees all associated
storage.

Parameters
DisplayPtr

GraphicsContext/D

Error Codes
BadGC

Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The FreeGC protocol request.

Enhanced X-Windows Subroutines 7-237

XFreeModifiermap

XFreeModifiermap Subroutine

Purpose

Libraries

C Syntax

Deletes an XModifierKeymap data structure.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreeModifiermap{ Modifiermap)
XModifierKeymap * Modifiermap;

FORTRAN Syntax
external fxfreemodifiermap
integer*4 ModifierMap
call fxfreemodifiermap(ModifierMap)

Description
The XFreeModifiermap subroutine frees the specified XModifierKeymap data structure.

Parameter
Modifiermap · Specifies a pointer to the XModifierKeymap data structure.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XModifierKeymap data structure.

7-238 User Interface Reference

XFreePixmap Subroutine

Purpose

XFreePixmap

Deletes the association between the specified pixmap ID and the pixmap.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFreePixmap(Disp/ayPtr, Pixmap/D)
Display * DisplayPtr;
Pixmap Pixmap/D;

FORTRAN Syntax
external fxfreepixmap
integer*4 DisplayPtr
integer*4 Pixmap/D
call fxfreepixmap(DisplayPtr, Pixmap ID)

Description
The XFreePixmap subroutine deletes the association between a pixmap ID and a pixmap.
When there are no other associations to the pixmap, it frees all storage associated with the
specified pixmap. The pixmap should not be referenced again.

Parameters
DisplayPtr Specifies the connection to the X Server.

Pixmap/D Specifies the pixmap.

Error Codes
Bad Pixmap

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The FreePixmap protocol request.

Enhanced X-Windows Subroutines 7-239

XGContextFromGC

XGContextFromGC Subroutine

Purpose

Libraries

C Syntax

Gets the GContext resource ID for a graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

GContext XGContextFromGC(GraphicsContex/Df)
GC GraphicsContextlD;

FORTRAN Syntax
integer*4 fxgcontextfromgc
external fxgcontextfromgc
integer*4 GraphicsContextlD
integer*4 GraphicsContextlD
GraphicsContextlD = fxgcontextfromgc(GraphicsContextlD)

Description

Parameter

The XGContextFromGC subroutine obtains the GContext resource ID for the specified
graphics context.

GraphicsContext Specifies the graphics context.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

7-240 User Interface Reference

I

\

XGeometry

XGeometry Subroutine

Purpose

Libraries

C Syntax

Parses window geometry, given a user-specified position and a default position.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGeometry(DisplayPtr, ScreenNumber, Position, DefaultPosition, BorderWidth,
FontWidth, FontHeight, XAdder, YAdder, XReturn, YReturn,
WidthReturn, HeightReturn

Display * DisplayPtr,
int ScreenNumber,
char *Position, * DefaultPosition;
unsigned int Borderwidth;
unsigned int FontWidth, FontHeight;
int XAdder, YAdder,
int * XReturn, * YReturn;
int *Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxgeometry
external fxgeometry
integer*4 DisplayPtr
integer*4 ScreenNumber
character*256 Position, DefaultPosition
integer*4 BorderWidth, FontWidth, FontHeight
integer*4 XAdder, YAdder
integer*4 XReturn, YReturn
integer*4 WidthReturn, HeightReturn
integer*4 ChangeMask
ChangeMask = fxgeometry(Disp/ayPtr, ScreenNumber, Position, DefaultPosition,

BorderWidth, FontWidth, FontHeight, XAdder, YAdder,
XReturn, YReturn, WidthReturn, HeightReturn)

Description
The XGeometry subroutine determines the placement of a window using the current format
as specified by the XParseGeometry subroutine, in addition to any user-specified
information.

Provided the default geometry specification is fully qualified, if the user-specified geometry is
incomplete, the XGeometry subroutine will return a bitmask value as defined in the
XParseGeometry subroutine.

Enhanced X-Windows Subroutines 7-241

XGeometry

The width and height specified by the DefaultPosition parameter will be overridden by
user-specified input to the Position parameter. The width and height are not affected by the
FontWidth, FontHeight, Xadder, or Yadder parameter values. The X and Y coordinates equal
the width and height from the geometry specifications multiplied by the border width, the
screen width and height, padding as specified by the Xadder and Yadder parameter values,
and the FontHeight and FontWidth parameter values.

Parameters
BorderWidth

DefaultPosition

DisplayPtr

FontHeight

FontWidth

HeightReturn

Position

Screen Number

Width Return

XAdder

YAdder

XReturn

YReturn

Error Code
Bad Implementation

Implementation Specifics

Specifies the border width.

Specifies the geometry specifications.

Specifies the connection to the X Server.

Specifies the font height in pixels (increment size).

Specifies the font width in pixels (increment size).

Returns the height determined.

Specifies the geometry specifications.

Specifies the screen number of the display.

Returns the width determined.

Specifies additional interior padding needed in the
window.

Specifies additional interior padding needed in the
window

Returns the X offset.

Returns the Y offset.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XParseGeometry subroutine.

7-242 User Interface Reference

XGetAtomName Subroutine

Purpose

Libraries

C Syntax

Gets the name of a specified atom identifier.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XGetAtomName(DisplayPtr, Atom/D)
Display * DisplayPtr,
Atom Atom/D;

FORTRAN Syntax
character*256 fxgetatom name
external fxgetatomname
integer*4 DisplayPtr
integer*4 Atom/D
character*256 Name
Name= fxgetatomname(DisplayPtr, Atom/D)

Description

XGetAtomName

The XGetAtomName subroutine returns the name for a specified atom identifier. To free the
resulting string, use the XFree subroutine.

Parameters
Atom ID

DisplayPtr

Specifies the atom for the property name to be returned.

Specifies the conneetion to the X Server.

Error Codes
BadAtom

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetAtomName protocol request.

The XFree subroutine.

Enhanced X-Windows Subroutines 7-243

XGetClassHint

XGetClassHint Subroutine

Purpose

Libraries

C Syntax

Gets the class of a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetClassHint(Oisp/ayPtr, Window!D, ClassHintsReturn)
Display * DisplayPtr,
Window Window/D;
XClassHint *C/assHintsReturn;

FORTRAN Syntax
integer*4 fxgetclasshint
external fxgetclasshint
integer*4 DisplayPtr
integer*4 Window/D, ClassHintsReturn
integer*4 ReasonCode
ReasonCode = fxgetclasshint(Oisp/ayPtr, Window/D, ClassHintsReturn)

Description
The XGetClassHint subroutine gets the class of the specified window.

The XFree subroutine frees the res_name field and the res_class field of the XClassHints
structure.

Parameters
DisplayPtr

Window/D

ClassHintsReturn

Error Codes
Bad Implementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window.

Returns the XClassHint data structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XClassHint data structure.

The XFree subroutine.

7-244 User Interface Reference

XGetDefault

XGetDefault Subroutine

Purpose

Libraries

C Syntax

Gets the window option defaults.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XGetDefault(OisplayPtr, Program, Option)
Display * OisplayPtr,
char *Program;
char *Option;

FORTRAN Syntax
character*256 fxgetdefault
external fxgetdefault
integer*4 DisplayPtr
character*256 Program
character*256 Option
character*256 GetDefault
GetDefault = fxgetdefault(DisplayPtr, Program, Option)

Description
The XGetDefault subroutine helps the client determine the fonts, colors, and other
environment defaults favored by a particular user. The strings returned by the XGetDefault
subroutine are owned by the Xlib library and should not be modified or freed by the client.

Defaults are usually loaded into the RESOURCE_MANAGER property on the root window
at login. If no such property exists, a resource file in the user's home directory is loaded.
This is the $HOME/.Xdefaults file.

After loading these defaults, the XGetDefault subroutine merges additional defaults
specified by the XENVIRONMENT environment variable. If the XENVIRONMENT defaults
are defined, they contains a full path name for the additional resource file. If the
XENVIRONMENT valuable defaults are not defined, the XGetDefault subroutine looks for
the $HOME/.Xdefaults-Name resource file in the user's home directory. The Name
parameter specifies the name of the system running the application.

Parameters
DisplayPtr

Option

Program

Specifies the connection to the X Server.

Specifies the option name.

Specifies the program name for the Xlib library defaults (usually argv[O] of
the main program).

Enhanced X-Windows Subroutines 7-245

XGetDefault

Return Values
NULL

String

Error Code

Indicates that the option name specified does not exist.

Indicates that the option value.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

..• 7~246 User Interface Reference

('
\
'<:

(

(
\

XGetErrorDatabaseText

XGetErrorDatabaseText Subroutine

Purpose

Libraries

C Syntax

Gets error messages from the error database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a}

XGetErrorDatabaseText(Oisp/ayPtr, Name, Message, DefaultString, BufferReturn,
Length)

Display DisplayPtr,
char *Name, *Message;
char * DefaultString;
char * BufferReturn;
int Length;

FORTRAN Syntax
external fxgeterrordatabasetext
integer*4 DisplayPtr
character*256 Name
character*256 Message
character*256 DefaultString
character*256 BufferReturn
integer*4 Length
call fxgeterrordatabasetext(DisplayPtr, Name, Message, OefaultString, BufferReturn,

Length)

Description
The XGetErrorDatabaseText subroutine returns a message or the default message from
the error message database. The error message database file is the
/usr/lpp/X11 /messages/XErrorDB file on an AIX-based system.

The Name parameter generally specifies the name of the application. The Message
parameter indicates which type of error message to use. The Xlib library uses three
predefined, case-sensitive message types:

XProtoError

XlibMessage

XRequest

The protocol error number is used as a search string for the
Message parameter.

The message strings used internally by the Xlib library.

The major request protocol number is used for the Message
parameter.

If no string is found in the error database, the DefaultString parameter is returned to the
BufferReturn parameter.

Enhanced X-Windows Subroutines 7-247

XGetErrorDatabaseText

Parameters
BufferReturn

DefaultString

DisplayPtr

Length

Message

Name

Error Code
Badlmplementation

Implementation Specifics

Returns the error description.

Specifies the default error message if none is found in the database.

Specifies the connection to the X Server.

Specifies the size of the buffer.

Specifies the type of error message.

Specifies the application name.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-248 User Interface Reference

XGetErrorText Subroutine

Purpose

Libraries

C Syntax

Gets the error text for a specified error code.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGetErrorText(DisplayPtr, Code, BufferReturn, Length)
Display * DisplayPtr,
int Code;
char * BufferReturn;
int Length;

FORTRAN Syntax
external fxgeterrortext
integer*4 DisplayPtr
integer*4 Code
character*256 BufferReturn
integer*4 Length
call fxgeterrortext(DisplayPtr, Code, BufferReturn, Length)

Description

XGetErrorText

The XGetErrorText subroutine copies a null-terminated string describing the specified error
code into the specified buffer. Use of this subroutine is recommended, as extensions to the
Xlib library may define their own error codes and error strings.

Parameters
BufferReturn Returns the error text.

Code Specifies the error code for which to obtain error text.

DisplayPtr

Length

Specifies the connection to the X Server.

Specifies the size of the buffer.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-249

XGetFontPath

XGetFontPath Subroutine

Purpose

Libraries

C Syntax

Gets the current font search path.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char **XGetFontPath(DisplayPtr, NumberPathsReturn)
Display * DisplayPtr,
int * NumberPathsReturn;

FORTRAN Syntax
integer*4 fxgetfontpath
external fxgetfontpath
integer*4 DisplayPtr
integer*4 NumberPathsReturn
integer*4 Path
Path = fxgetfontpath{ DisplayPtr, NumberPathsReturn)

Description
The XGetFontPath subroutine allocates and returns an array of strings containing the
search path. The data in the font path should be freed by using the XFreeFontPath
subroutine when it is no longer needed.

Parameters
DisplayPtr

NumberPathsReturn

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the number of strings in the font path array.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The XFreeFontPath subroutine.

The GetFontPath protocol request.

7-250 User Interface Reference

(
\. ...

XGetFontProperty

XGetFontProperty Subroutine

Purpose

Libraries

C Syntax

Gets a specified font property.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XGetFontProperty(FontStructure, Atom!D, ValueReturn)
XFontStruct * FontStructure;
Atom Atom/D;
unsigned long *Value Return;

FORTRAN Syntax
integer*4 fxgetfontproperty
external fxgetfontproperty
integer*4 FontStructure
integer*4 Atomf D, ValueReturn
integer*4 ReturnCode
ReturnCode = txgetfontproperty(FontStructure, Atom/D, ValueReturn)

Description
The XGetFontProperty subroutine returns the value of a specified font property. There is a
set of predefined atoms for font properties in the <X11 /Xatom.h> file. This set contains the
standard properties associated with a font.

Parameters
Atom ID

FontStructure

Value Return

Return Values
True

False

Error Code
Badlmplementation

Implementation Specifics

Specifies the atom for the property name to be returned.

Specifies the storage associated with the font.

Returns the value of the font property.

Indicates that the font property is found.

Indicates that the font property cannot be found.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XFontStruct data structure.

Enhanced X-Windows Subroutines 7-251

XGetGeometry

XGetGeometry Subroutine

Purpose

Libraries

C Syntax

Gets the current geometry of a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetGeometry(DisplayPtr, Drawable/D, RootReturn, XReturn, YReturn,
WidthReturn, HeightReturn,BorderWidthReturn,
Depth Return)

Display * DisplayPtr,
Drawable Drawable/D;
Window * RootReturn;
int * XReturn, * YReturn;
unsigned int *Width Return, * HeightReturn;
unsigned int * BorderWidthReturn;
unsigned int* Depth Return;

FORTRAN Syntax
integer*4 fxgetgeometry
external fxgetgeometry
integer*4 Disp/ayPtr
integer*4 Drawable/D
integer*4 RootReturn
integer*4 XReturn, YReturn
integer*4 WidthReturn, HeightReturn
integer*4 BorderWidthReturn
integer*4 DepthReturn
integer*4 Status
Status= fxgetgeometry(DisplayPtr, Drawable/D, RootReturn, XReturn, YReturn,

WidthReturn, HeightReturn, BorderWidthReturn,
Depth Return)

Description
The XGetGeometry subroutine gets the root ID and current geometry of the specified
drawable.

The XGetGeometry subroutine can be used with a window that has an of lnputOnly class.

Parameters
BorderWidthReturn

Depth Return

DisplayPtr

Drawable/D

7-252 User Interface Reference

Returns the border width in pixels. If the drawable is a
pixmap, it returns 0.

Returns the depth of the drawable in bits per pixel.

Specifies the connection to the X Server.

Specifies the drawable, which may be either a window
or a pixmap.

/

\'Ji

HeightReturn

RootReturn

Width Return

XReturn

YReturn

Error Codes
Bad Drawable

Badlmplementation

Implementation Specifics

XGetGeometry

Returns the height of the inside of the drawable,
excluding the border.

Returns the root window ID.

Returns the width of the inside of the drawable,
excluding the border.

Returns the x coordinate defining the location of the
drawable. If the drawable is a window, this coordinate
specifies the upper-left outer corner relative to the
origin of the parent. If it is a pixmap, this coordinate is
always 0.

Returns they coordinate defining the location of the
drawable. If the drawable is a window, this coordinate
specifies the upper-left outer corner relative to the
origin of the parent. If it is a pixmap, this coordinate is
always 0.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetGeometry protocol request.

Enhanced X-Windows Subroutines 7-253

XGetlconName

XGetlconName Subroutine

Purpose

Libraries

C Syntax

Gets the name to be displayed for a window icon.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGetlconName(DisplayPtr, Window/D, lconNameReturn)
Display * DisplayPtr;
Window Window/D;
char **Icon Name Return;

FORTRAN Syntax
integer*4 fxgeticonname
external fxgeticonname
integer*4 DisplayPtr
integer*4 Window/D
integer*4 lconNameReturn
integer*4 Reasoncode
ReasonCode = fxgeticonname(DisplayPtr, Window!D, lconNameReturn)

Description
The XGetlconName subroutine gets the name to be displayed in the window icon.

If no name is specified for a window icon, the XGetlconName subroutine sets the
lconNameReturn parameter to the value of NULL.

Parameters
DisplayPtr

lconNameReturn

Window/D

Return Values
Nonzero

0

7-254 User Interface Reference

Specifies the connection to the X Server.

Returns a pointer to the null-terminated string which represents the
window icon name.

Specifies the window ID for the target window.

Indicates that the XGetlconName subroutine executes successfully.

Indicates that no window icon name has been specified.

XGetlconName

Error Codes
BadWindow

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFree subroutine.

Enhanced X-Windows Subroutines 7-255

XGetlconSizes

XGetlconSizes Subroutine

Purpose

Libraries

C Syntax

Gets the values of the icon sizes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetlconSizes(DisplayPtr, Window!D, SizelistReturn, CountReturn)
Display * DisplayPtr,
Window Window!D;
XlconSize ** SizelistReturn;
int *CountReturn;

FORTRAN Syntax
integer*4 fxgeticonsizes
external fxgeticonsizes
integer*4 DisplayPtr
integer*4 Window/D, SizelistReturn, CountReturn
integer*4 ReturnCode
ReturnCode = fxgeticonsizes(DisplayPtr, Window/D, SizelistReturn, CountReturn)

Description
The XGetlconSizes subroutine returns the values of the icon sizes.

The XGetlconSizes subroutine should be called by an application to determine the best icon
sizes for the window manager. The application should then use the XSetWMHints
subroutine to supply the window manager with an icon pixmap or window in one of the
supported sizes.

Using the XFree subroutine frees the data allocated in the SizelistReturn parameter.

Parameters
CountReturn

DisplayPtr

SizelistReturn

Window/D

Return Values
0

Nonzero

7-256 User Interface Reference

Returns the number of items in the size list.

Specifies the connection to the X Server.

Returns a pointer to the size list.

Specifies the window ID.

Indicates that the window manager has not set icon sizes.

Indicates that the number of items in the size list.

XGetlconSizes

Error Codes
BadWindow

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The GetProperty protocol request.

The XFree subroutine, XSetWMHints subroutine.

Enhanced X-Windows Subroutines 7-257

XGetlmage

XGetlmage Subroutine

Purpose

Libraries

C Syntax

Gets the contents of a rectangle in a specified drawable.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Xlmage *XGetlmage(DisplayPtr, Drawable/D, X, Y, Width, Height, PlaneMask, Format)
Display * DisplayPtr,
Drawable Drawable/D;
intX, Y;
unsigned int Width, Height;
long PlaneMask;
int Format;

FORTRAN Syntax
integer*4 fxgetimage
external fxgetimage
integer*4 DisplayPtr
integer*4 Drawable/D
integer*4 X, Y, Width, Height
integer*4 PlaneMask, Format
integer*4 Image
Image= fxgetimage(DisplayPtr, Drawable/D, X, Y, Width, Height, PlaneMask, Format)

Description
The XGetlmage subroutine returns the contents of the Xlmage data structure for a specified
rectangle in a drawable.

If the Format parameter is the value of XYPixmap, the XGetlmage subroutine returns only (
the bit planes specified in the PlaneMask parameter. If the PlaneMask parameter requests \,
only a subset of the planes of the display, the depth of the returned image will be the number
of planes requested.

If the Format parameter is the value of ZPixmap, the XGetlmage subroutine returns 0 for
the bits in all planes not specified in the PlaneMask parameter.

The XGetlmage subroutine performs no range-checking on the values in the PlaneMask
parameter and ignores extraneous bits.

The XGetlmage subroutine returns the depth of the image, as specified when the drawable
was created, to the Xlmage data structure. When the Format parameter is the value of
XYPixmap, the depth is given by the number of bits set to 1 in the PlaneMask parameter.

If the drawable is a pixmap, the specified rectangle must be wholly contained within the
pixmap, or a BadMatch error results.

If the drawable is a window, the window must be viewable. The specified rectangle of the ~
window must be fully viewable on the screen and wholly contained within the outside edges

7-258 User Interface Reference

\

)

XGetlmage

of the window when there are no inferiors or overlapping windows. Otherwise, a BadMatch
error results. The borders of the window can be included and read.

If the window has backing-store, the backing-store contents are returned for regions of the
window that are obscured by nonferior other windows that are not inferior to it. If the window
does not have backing-store, the returned contents of such obscured regions are undefined.
The returned contents of visible regions of inferiors of a different depth than the specified
window depth are also undefined. The pointer cursor image is not included in the returned
contents.

Parameters
DisplayPtr

Drawable ID

Format

Height

Plane Mask

Width

x

y

Error Codes
Bad Drawable

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the format for the image as the value of XYPixmap or
ZPixmap.

Specifies the height which defines the dimensions of the rectangle of the
subimage.

Specifies the plane mask.

Specifies the width which defines the dimensions of the rectangle of the
subimage.

Specifies the x coordinate. This coordinate, which is relative to the origin
of the drawable, defines the upper-left corner of the rectangle.

Specifies they coordinate. This coordinate, which is relative to the origin
of the drawable, defines the upper-left corner of the rectangle.

Badlmplementation

Bad Match

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xlmage data structure.

The Getlmage protocol request.

Enhanced X-Windows Subroutines 7-259

XGetlnputFocus

XGetlnputFocus Subroutine

Purpose

Libraries

C Syntax

Gets the current input focus.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGetlnputFocus(DisplayPtr, FocusReturn, RevertToReturn)
Display * DisplayPtr;
Window *Focus Return;
int* RevertToReturn;

FORTRAN Syntax
external fxgetinputfocus
integer*4 DisplayPtr
integer*4 FocusReturn, RevertToReturn
call fxgetinputfocus(DisplayPtr, FocusReturn, RevertToReturn)

Description
The XGetlnputFocus subroutine returns the focus window ID and the current focus state.

Parameters
DisplayPtr

Focus Return

RevertToReturn

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the focus window ID, which can be:

PointerRoot

None

Returns the current focus state, which can be:

RevertToParent

RevertToPointerRoot

RevertToNone

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetlnputFocus protocol request.

The XSetlnputFocus subroutine.

7-260 User Interface Reference

!

XGetKeyboardControl Subroutine

Purpose

Libraries

C Syntax

Gets the current keyboard settings.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGetKeyboardControl(Disp/ayPtr, ValuesReturn)
Display * DisplayPtr,
XKeyboardState *Values Return;

FORTRAN Syntax
external fxgetkeyboardcontrol
integer*4 DisplayPtr
integer*4 ValuesReturn

XGetKeyboardControl

call fxgetkeyboardcontrol (DisplayPtr, ValuesReturn)

Description
The XGetKeyboardControl subroutine returns the current control values for the keyboard
to the XKeyboardState data structure.

Parameters
DisplayPtr

Values Return

Implementation Specifics

Specifies the connection to the X Server.

Returns the current keyboard parameter in the specified
XKeyboardState data structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetKeyboardControl protocol request.

The XKeyboardState data structure.

Enhanced X-Windows Subroutines 7-261

XGetKeyboardMapping

XGetKeyboardMapping Subroutine

Purpose

Libraries

C Syntax

Obtains the symbols for the specified key codes.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

KeySym *XGetKeyboardMapping (DisplayPtr, FirstKeycodeWanted, KeycodeCount,
KeysymPerKeycodeReturn)

Display * DisplayPtr;
KeyCode FirstKeycodeWanted;
int KeycodeCount,
int * KeysymPerKeycodeReturn;

FORTRAN Syntax
integer*4 fxgetkeyboardmapping
external fxgetkeyboardmapping
integer*4 DisplayPtr
integer*4 FirstKeycode Wanted
integer*4 KeycodeCount
integer*4 KeysymPerKeycodeReturn
integer*4 Keysym
Keysym = fxgetkeyboardmapping(Disp/ayPtr, FirstKeycodeWanted, KeycodeCount,

KeysymPerKeycodeReturn)

Description
The XGetKeyboardMapping subroutine returns the symbols for the specified number of
key codes starting with the value in the FirstKeycodeWanted parameter. This value must be
greater than or equal to the min_keycode as returned by the XDisplayKeycodes
subroutine, or a BadValue error occurs.

In addition, the following expression must be less than or equal to the max_keycode as
returned by the XDisplayKeycodes subroutine:

FirstKeycodeWanted + KeycodeCount - 1

The number of elements in the key symbols list is:

KeycodeCount * KeysyrnbolsPerKeycodeReturn

Then, the key symbol N counting from 0 for the K key code has the following index in the
list, counting from 0:

(K - FirstKeycodeWanted) * KeysyrnbolsPerKeycodeReturn + N

Use the XFree subroutine to free the storage returned by the XGetKeyboardMapping
subroutine.

Parameters
DisplayPtr

7-262 User Interface Reference

Specifies the connection to the X Server.

I
I
\

FirstKeycodeWanted

KeycodeCount

KeysymPerKeycodeReturn

XGetKeyboardMapping

Specifies the first key code to be returned.

Specifies the number of key codes to be returned.

Returns the number of key symbols per key code.

This value is chosen arbitrarily by the X Server to be large enough to report all requested
symbols. A special KeySym value of NoSymbol is used to fill in unused elements for
individual key codes.

Error Codes
BadValue

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDisplayKeycodes subroutine.

The GetKeyboardMapping protocol request.

Enhanced X-Windows Subroutines 7-263

XGetModifierMapping

XGetModifierMapping Subroutine

Purpose

Libraries

C Syntax

Gets the keycodes used as modifiers.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XModifierKeymap *XGetModifierMapping(Display Pt!);
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxgetmodifiermapping
external fxgetmodifiermapping
integer*4 DisplayPtr
integer*4 ModifierMap
ModifierMap = fxgetmodifiermapping(DisplayPtr)

Description

Parameter

The XGetModifierMapping subroutine returns a pointer to a newly created
XModifierKeymap data structure that contains the keycodes being used as modifiers. The
XModifierKeymap data structure should be freed after use with the
XFreeModifierMapping subroutine.

If only zero values appear in the set for any modifier, that modifier is disabled.

DisplayPtr Specifies the connection to the X Server.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XModifierKeymap data structure.

The GetModifierMapping protocol request.

7-264 User Interface Reference

(

'\

XGetMotionEvents

XGetMotionEvents Subroutine

Purpose

Libraries

C Syntax

Gets the motion history of a window for a specified period.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XTimeCoord *XGetMotionEvents(Oisp/ayPtr, Window/D, Start,Stop,
NumberEventsReturn)

Display * DisplayPtr,
Window Window/D;
Time Start, Stop;
int * NumberEventsReturn;

FORTRAN Syntax
integer*4 fxgetmotionevents
external fxgetmotionevents
integer*4 DisplayPtr
integer*4 Window/D, Start, Stop, NumberEventsReturn
integer*4 TimeCoordinates
TimeCoordinates = fxgetmotionevents(Oisp/ayPtr, Window/D, Start, Stop,

NumberEventsReturn)

Description
The XGetMotionEvents subroutine returns all events in the motion history buffer that fall
between specified start and stop times (inclusive), and that have coordinates within the
specified window (including borders) at the window's present placement.

The Start and Stop parameter times are set to in a timestamp, expressed in milliseconds, or
as the value of CurrentTime.

If the Start parameter time is later than the Stop parameter time, or if the Start parameter
time is in the future, no events are returned. If the Stop parameter time is in the future, it is
equivalent to specifying a value of the CurrentTime.

The X and Y parameter values are set to the coordinates of the pointer and are reported
relative to the origin of the specified window.

Enhanced X-Windows Subroutines 7-265

XGetMotionEvents

The return type for the XGetMotioriEvents subroutine is defined as follows:

typedef struct {
Time time;
unsigned short x, y;

} XTimeCoord;

time Specifies the time in milliseconds.

x Specifies the x coordinate of the pointer relative to the origin of the specified window.

y Specifies the y coordinate of the pointer relative to the origin of the specified window.

Use the XFree subroutine to free the data returned.

Parameters
DisplayPtr

Window/D

Start, Stop

NumberEventsReturn

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID of the window for which associated
pointer motion events are to be retrieved.

Specifies the time interval in which the events are returned
from the motion history buffer in a timestamp, which is
expressed in milliseconds, or the value of CurrentTime.

Returns the number of events from the motion history
buffer.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFree subroutine.

The GetMotionEvents protocol.

7-266 User Interface Reference

(
I

\"

~
~

XGetNormalHints Subroutine

Purpose

Libraries

C Syntax

Gets the size hints for a window in its normal state.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetNormalHints(Disp/ayPtr, Window/D, HintsReturn);
Display * DisplayPtr;
Window Window/D;
XSizeHints *Hints Return;

FORTRAN Syntax
integer*4 fxgetnormalhints
external fxgetnormalhints
integer*4 DisplayPtr
integer*4 Window/D
integer*4 HintsReturn
integer*4 ReturnCode

XGetNormalHints

ReturnCode = fxgetnormalhints(Disp/ayPtr, Window/D, HintsReturn)

Description
The XGetNormalHints subroutine returns the size hints for a window in its normal state.

Parameters
DisplayPtr

Window/D

HintsReturn

Return Values
0

Nonzero

Specifies the connection to the X Server.

Specifies the window ID.

Returns the sizing hints for the window in its normal state.

If the application specified no normal size hints for the specified window.

If the XGetNormalHints subroutine succeeds in returning the size hints for
a window in its normal state.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-267

XGetNormalHints

Related Information
The GetProperty protocol.

7-268 User Interface Reference

XGetPixel

XGetPixel Subroutine

Purpose

Libraries

C Syntax

Gets a pixel value in an image.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

unsigned long XGetPixel(XlmagePtr, X, Y)
Xlmage * XlmagePtr,
int X;
int Y;

FORTRAN Syntax
integer*4 fxgetpixel
external fxgetpixel
integer*4 XlmagePtr, X, Y,
integer*4 Pixel
Pixel= fxgetpixel(Xlmage, X, Y)

Description
The XGetPixel subroutine gets the specified pixel from the named image. The pixel value is
returned in normalized format, where the least-significant byte of the long is the
least-significant byte of the pixel.

Parameters
XlmagePtr

x

y

Specifies a pointer to the image.

Specifies the x coordinate of the upper left corner relative to the origin of the
image.

Specifies they coordinate of the upper left corner relative to the origin of the
image.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The Xlmage data structure.

Enhanced X-Windows Subroutines 7-269

XGetPointerControl

XGetPointerControl Subroutine

Purpose

Libraries

C Syntax

Gets the current pointer acceleration parameters.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGetPointerControl(DisplayPtr, AccelerationNumeratorReturn,
AccelerationDenominatorReturn, ThresholdReturn)

Display * DisplayPtr;
int * AccelerationNumeratorReturn, * AccelerationDenominatorReturn;
int * ThresholdReturn;

FORTRAN Syntax
external fxgetpointercontrol
integer*4 DisplayPtr
integer*4 AccelerationNumeratorReturn
integer*4 AccelerationDenominatorReturn, ThresholdReturn
call fxgetpointercontrol(Disp/ayPtr, AccelerationNumeratorReturn,

AccelerationDenominatorReturn, ThresholdReturn)

Description
The XGetPointerControl subroutine returns the current acceleration multiplier and
acceleration threshold of the pointer.

Parameters
AccelerationDenominatorReturn

AccelerationNumeratorReturn

DisplayPtr

ThresholdReturn

Error Code
Badlmplementation

Implementation Specifics

Returns the denominator for the acceleration
multiplier.

Returns the numerator for the acceleration
multiplier.

Specifies the connection to the X Server.

Returns the acceleration threshold.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenVSOOO.

7-270 User Interface Reference

\

' \
/

Related Information
The GetPointerControl protocol request.

The XChangePointerControl subroutine.

XGetPointerControl

Enhanced X-Windows Subroutines 7-271

XGetPointerMapping

XGetPointerMapping Subroutine

Purpose

Libraries

C Syntax

Gets the mapping of the buttons on the pointer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGetPointerMapping(Disp/ayPtr, MapReturn, NumberMap)
Display * DisplayPtr;
unsigned char MapReturn[];
int NumberMap;

FORTRAN Syntax
integer*4 fxgetpointermapping
external fxgetpoi ntermappi ng
integer*4 DisplayPtr
integer*4 MapReturn
integer*4 NumberMap
integer*4 ReturnCode
ReturnCode = fxgetpointermapping(Disp/ayPtr, MapReturn, NumberMap)

Description
The XGetPointerMapping subroutine returns the current mapping of the pointer. Elements
in the list are indexed starting from one. The number of items in the list is the actual number
of physical buttons. The nominal mapping for a pointer is the identity mapping as follows:

map[i]=i

and only the first NumberMap parameter elements are returned in the MapReturn
parameter.

Parameters
DisplayPtr

MapReturn

NumberMap

Specifies the connection to the X Server.

Specifies the mapping list.

Specifies the number of items in the mapping list.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetPointerMapping protocol.

7-272 User Interface Reference

(

\"i

XGetScreenSaver

XGetScreenSaver Subroutine

Purpose

Libraries

C Syntax

Gets the current screen saver values.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGetScreenSaver(Oisp/ayPtr, TimeoutReturn, /nterva/Return, PreferB/ankingReturn,
AllowExposuresReturn)

Display * DisplayPtr,
int * TimeoutReturn, *Interval Return;
int * PreferBlankingReturn;
int * AllowExposuresReturn;

FORTRAN Syntax
external fxgetscreensaver
integer*4 DisplayPtr
integer*4 TimeoutReturn, lnterva/Return
integer*4 PreferB/ankingReturn, AllowExposuresReturn
call fxgetscreensaver(Oisp/ayPtr, TimeoutReturn, lnterva/Return, PreferB/ankingReturn,

AllowExposuresReturn)

Description
The XGetScreenSaver subroutine obtains the current screen saver value.

Parameters
AllowExposuresReturn Returns the current screen save control value. This parameter

can have the following values:

AllowExposures
DefaultExposures
DontAllowExposures

DisplayPtr Specifies the connection to the X Server.

lnterva/Return Returns the interval between screen saver invocations.

PreferBlankingReturn Returns the current screen blanking preference. This parameter
can have the following values:

DefaultBlanking
DontPreferBlanking
PreferBlanking

TimeoutReturn Returns the timeout, in minutes, until the screen saver turns on.

Enhanced X-Windows Subroutines 7-273

XGetScreenSaver

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XForceScreenSaver and the XSetScreenSaver subroutines.

The SetScreenSaver protocol request and the GetScreenSaver protocol request.

7-274 User Interface Reference

(

XGetSelectionOwner Subroutine

Purpose

Libraries

C Syntax

Gets the selection owner.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Window XGetSelectionOwner{DisplayPtr, Selection)
Display * DisplayPtr,
Atom Selection;

FORTRAN Syntax
integer*4 fxgetselectionowner
external fxgetselectionowner
integer*4 DisplayPtr
integer*4 Selection
integer*4 ID
ID= fxgetselectionowner{DisplayPtr, Selection)

Description

XGetSelectionOwner

The XGetSelectionOwner subroutine returns the window ID associated with the window
that currently owns the specified selection.

Parameters
DisplayPtr Specifies the connection to the X Server.

Selection Specifies the selection atom to be returned.

Return Values
None Indicates that if no selection is specified or if no owner exists. The window

ID associated with the selection is returned.

Error Codes
BadAtom

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GetSelectionOwner protocol.

Enhanced X-Windows Subroutines 7-275

XGetSizeHints

XGetSizeHints Subroutine

Purpose

Libraries

C Syntax

Gets the values of type WM_SIZE_HINTS properties.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetSizeHints (DisplayPtr, Window!D, HintsReturn, Property)
Display * DisplayPtr;
Window Window/D;
XSizeHints * HintsReturn;
Atom Property;

FORTRAN Syntax
integer*4 fxgetsizehints
external fxgetsizehints
integer*4 DisplayPtr
integer*4 Window!D, HintsReturn, Property
integer*4 ReturnCode
ReturnCode = fxgetsizehints(DisplayPtr, Window/D, HintsReturn, Property)

Description
The XGetSizeHints subroutine returns the XSizeHints structure for the named property and
the specified window. This subroutine is used by the XGetNormalHints subroutine and the
XGetZoomHints subroutine. The XSizeHints structure can also be used to retrieve the
value of any WM_SIZE_HINTS properties. Thus, it can be useful if other properties of that
type are defined.

Parameters
DisplayPtr

Window/D

HintsReturn

Property

Return Values
0

Nonzero

Error Codes
Bad Atom

Bad Implementation

BadWindow

7-276 User Interface Reference

Specifies the connection to the X Server.

Specifies the window ID.

Returns the size hints.

Specifies the property atom.

If a size hint was undefined.

If a size hint was defined.

(

\

XGetSizeHints

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSizeHints data structure.

The XGetNormalHints subroutine and XGetZoomHints subroutine.

The GetProperty protocol request.

Enhanced X-Windows Subroutines 7-277

XGetStandardColormap

XGetStandardColormap Subroutine

Purpose

Libraries

C Syntax

Gets the colormap associated with the specified atom.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetStandardColormap (DisplayPtr, Window/D, ColormapReturn, Property)
Display * DisplayPtr;
Window Window/D;
XStandardColormap * ColormapReturn;
Atom Property;

FORTRAN Syntax
integer*4 fxgetstandardcolormap
external fxgetstandardcolormap
integer*4 DisplayPtr
integer*4 Window/D, ColormapReturn, Property
integer*4 ReturnCode
ReturnCode = fxgetstandardcolormap (DisplayPtr, Window/D, ColormapReturn, Property)

Description
The XGetStandardColormap subroutine returns the colormap definition associated with the
atom supplied as the Property parameter.

This colormap can be used to convert RGB values into pixel values.

Using addition rather than the logical OR for composing pixel values permits allocations
where the RGB value is not aligned to bit boundaries.

To get the standard gray-scale colormap for a display screen, use the
XGetStandardColormap subroutine with the following syntax:

XGetStandardColormap(display,DefaultRootWindow(display),Cmap,XA _
_ RGB_GRAY_MAP);

This colormap can be used to.convert the RGB values into pixel values. For example, given
an XStandardColormap subroutine structure and floating-point RGB coefficients in the
range 0.0 to 1.0, compose pixel values with the following C expression:

pixel = base_pixel
+ ((unsigned long)(0.5 + r * red_max)) * red_rnult
+ ((unsigned long)(0.5 + g * green_max)) * green_mult
+ ((unsigned long)(0.5 + b * blue_max)) * blue_rnult;

7-278 User Interface Reference

(
\

)

Parameters
ColormapReturn

DisplayPtr

Property

Window/D

Error Codes
Bad Atom

Badlmplementation

BadWindow

Implementation Specifics

XGetStandardColormap

Returns the colormap associated with the specified atom.

Specifies the connection to the X Server.

Specifies the property atom.

Specifies the window ID.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XStandardColormap data structure.

Enhanced X-Windows Subroutines 7-279

XGetSublmage

XGetSublmage Subroutine

Purpose

Library

C Syntax

Updates the specified image with the specified subimage.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Xlmage *XGetSublmage(DisplayPtr, Drawable!D, X, Y, Width, Height, PlaneMask,Format,
Destination Image, Destina tionX, Destination Y)

Display * DisplayPtr;
Drawable Drawable/D;
intX, Y;
unsigned int Width, Height;
unsigned long PlaneMask;
int Format;
Xlmage * Destinationlmage;
int DestinationX, Destination Y;

FORTRAN Syntax
integer*4 fxgetsubimage
external fxgetsubimage
integer*4 DisplayPtr
integer*4 Drawable/D
integer*4 X, Y, Width, Height
integer*4 PlaneMask, Format
integer*4 Destinationlmage, DestinationX, DestinationY
integer*4 Sublmage
Sublmage = fxgetsubimage(Disp/ayPtr, Drawable!D, X, Y, Width, Height, PlaneMask,

Format, Destinationlmage, DestintationX, DestinationY)

Description
The XGetSublmage subroutine updates the destination image with the specified subimage.
If the Format parameter is XYPixmap, the image contains only the bit planes passed to the
PlaneMask parameter. If the Format parameter is ZPixmap, this subroutine returns as zero
the bits in all planes not specified in the PlaneMask parameter.

The XGetSublmage subroutine performs no range checking on the values in the PlaneMask
parameter and ignores extraneous bits. As a convenience, this subroutine returns a pointer
to the same Xlmage structure specified by Destinationlmage.

The depth of the destination Ximage structure must be the same as that of the specified
drawable. If the specified subimage does not fit at the specified location on the destination
image, the right and bottom edges are clipped.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap,
or a BadMatch error results. If the drawable is a window, the window must be viewable, and
it must also be the case that if there are no inferiors or overlapping windows, the specified '
rectangle of the window is fully visible on the screen. Otherwise, a BadMatch error results. ~

7-280 User Interface Reference

XGetSublmage

If the window has backing-store, the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. Otherwise, the contents returned for
obscured regions of the window are undefined.

The contents returned for visible regions of inferiors with a depth different than the depth of
the specified window are also undefined.

Parameters
DisplayPtr

Drawable ID

x

y

Width

Height

Plane Mask

Format

Destination Image

DestinationX

Destination Y

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the x coordinate relative to the origin of the
specified drawable. The x and y coordinates define the
upper-left corner of the rectangle.

Specifies they coordinate relative to the origin of the
specified drawable. The x and y coordinates define the
upper-left corner of the rectangle.

Specifies the width of the rectangle of the subimage.

Specifies the height of the rectangle of the subimage.

Specifies the plane mask.

Specifies the format for the image. The Format
parameter can have the following values:

XV Bitmap

XYPixmap

ZPixmap

Specifies the destination image.

Specifies the x coordinate of the destination rectangle.
The x and y coordinates, specify the upper-left corner of
the destination rectangle relative to its origin. These
coordinates determine where the subimage is placed
within the destination image.

Specifies the y coordinate of the destination rectangle.
The x and y coordinates, specify the upper-left corner of
the destination rectangle relative to its origin. These
coordinates determine where the subimage is placed
within the destination image.

Enhanced X-Windows Subroutines 7-281

XGetSublmage

Error Codes
Bad Drawable

BadGC

Badlmplementation

Bad Match

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xlmage data structure.

7-282 User Interface Reference

/
(
\
"

XGetTransientForHint

XGetTransientForHint Subroutine

Purpose

Libraries

C Syntax

Gets WM_ TRANSIENT _FOR property for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetTransientForHint(Disp/ayPtr, Window/D, PropertyWindowReturn)
Display * DisplayPtr;
Window Window!D;
Window * PropertyWindowReturn;

FORTRAN Syntax
integer*4 fxgettransientforhint
external fxgettransientforhint
integer*4 DisplayPtr
integer*4 Window!D, PropertyWindowReturn
integer*4 ReturnCode
ReturnCode = fxgettransientforhint(Disp/ayPtr, Window/D, PropertyWindowReturn)

Description
The XGetTransientForHint subroutine obtains the WM_ TRANSIENT _FOR property for the
specified window.

Parameters
DisplayPtr

Window/D

PropertyWindowReturn

Return Values
False

True

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Returns the WM_ TRANSIENT _FOR property of the specified
window.

The XGetTransientForHint subroutine is not successful.

The XGetTransientForHint subroutine is successful.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-283

XGetVisuallnfo

XGetVisuallnfo Subroutine

Purpose

Libraries

C Syntax

Gets list of visual information structures.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XVisuallnfo *XGetVisuallnfo(DisplayPtr, VisuallnformationMask,
Visuallnformation Template, NumberltemsReturn)

Display * DisplayPtr;
long VisuallnformationMask;
XVisuallnfo * VisuallnformationTemplate;
int * NumberltemsReturn;

FORTRAN Syntax
integer*4 fxgetvisualinfo
external fxgetvisualinfo
integer*4 DisplayPtr, VisuallnformationMask
integer*4 Visuallnformation Template
integer*4 NumberltemsReturn
integer*4 Visuallnformation
Visuallnformation = fxgetvisualinfo(DisplayPtr, VisuallnformationMask,

Visuallnformation Template,
NumberltemsReturn)

Description
The XGetVisuallnfo subroutine gets a list of visual structures that match the attributes
specified in the VisuallnformationTemplate parameter. If visual structures match the
template, this subroutine returns a pointer to the list of visual structures. To free the data
returned by this function, use the XFree subroutine.

Parameters
DisplayPtr

NumberltemsReturn

VisuallnformationMask

Visuallnformation Template

Return Values
NULL

Visual structures

7-284 User Interface Reference

Specifies the connection to the X Server.

Returns the number of matching visual structures.

Specifies the visual mask value.

Specifies the visual attributes for matching the visual
structures. See Determining the Appropriate Visual.

No visual structures match the template

The array that matches the template

/

Error Code
Badlmplementation

Implementation Specifics

XGetVisuallnfo

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XVisuallnfo data structure.

Determining the Appropriate Visual and the XFree subroutine.

Enhanced X-Windows Subroutines 7-285

XGetWindowAttributes

XGetWindowAttributes Subroutine

Purpose

Libraries

C Syntax

Gets the current attributes for the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetWindowAttributes(Disp/ayPtr, Window/D, WindowAttributesReturn)
Display * DisplayPtr,
Window Window/D;
XWindowAttributes * WindowAttributesReturn;

FORTRAN Syntax
integer*4 fxgetwindowattributes
external fxgetwindowattributes
integer*4 DisplayPtr
integer*4 Window/D
integer*4 WindowAttributesReturn
integer*4 Status
Status= fxgetwindowattributes(Disp/ayPtr, Window!D, WindowAttributesReturn)

Description
The XGetWindowAttributes subroutine obtains the current attributes for a specified
window. This subroutine returns the current attributes to an XWindowAttributes data
structure.

Parameters
DisplayPtr

Window/D

WindowAttributesReturn

Return Values
False

True

7-286 User Interface Reference

Specifies the connection to the X Server.

Specifies the window ID for the window for which current
attributes are to be obtained.

Returns the attributes in the XWindowAttributes
subroutine structure of the specified window.

The XGetWindowAttributes subroutine is not successful.
None of the return arguments are updated.

The XGetWindowAttributes subroutine is successful.

(
\~

1
I

Error Codes
Bad Drawable

Badlmplementation

BadWindow

Implementation Specifics

XGetWindowAttributes

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XWindowAttributes data structure.

The GetWindowAttributes protocol request, GetGeometry protocol request.

Enhanced X-Windows Subroutines 7-287

XGetWindowProperty

XGetWindowProperty Subroutine

Purpose

Libraries

C Syntax

Gets the atom type and property format for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGetWindowProperty(DisplayPtr, Window/D, Property, ,LongOffset,Longlength,
Delete, RequestedType, ActualTypeReturn,

ActualFormatReturn, NumberltemsReturn,

Display * DisplayPtr;
Window WindowlD;
Atom Property,
long LongOffset, Longlength;
Bool Delete;
Atom RequestedType;
Atom * ActualTypeReturn;
int * ActualFormatReturn;

BytesA fterReturn, PropertyReturn)

unsigned long * NumberltemsReturn;
unsigned long * BytesAfterReturn;
unsigned char * PropertyReturn;

FORTRAN Syntax
integer*4 fxgetwindowproperty
external fxgetwindowproperty
integer*4 DisplayPtr
integer*4 WindowlD
integer*4 Property
integer*4 LongOffset, Longlength
integer*4 Delete, RequestedType, Actua/TypeReturn
integer*4 ActualFormatReturn, NumberltemsReturn
integer*4 BytesAfterReturn, PropertyReturn
integer*4 ReturnCode
ReturnCode = fxgetwindowproperty(DisplayPtr, Window/D, Property, LongOffset,

Description

Longlength, Delete, RequestedType,
ActualTypeReturn, ActualFormatReturn,
NumberltemsReturn, BytesAfterReturn,
PropertyReturn)

The XGetWindowProperty subroutine obtains the atom type and property format for a
specified window. This subroutine sets the return parameters according to the following:

/

\

• If the specified property does not exist for the specified window, the
XGetWindowProperty subroutine returns a value of None to the ActualTypeReturn
parameter and a value of 0 to the ActualFormatReturn and BytesAfterReturn parameters. ~
The NumberltemsReturn parameter is empty. The Delete parameter is ignored.

7-288 User Interface Reference

XGetWindowProperty

• If the specified property exists, but the property type does not match the specified type,
the XGetWindowProperty subroutine returns the actual property type to the
Actua/TypeReturn parameter. It returns the actual property format (never a value of 0) to
the ActualFormatReturn parameter. It also returns the property length in bytes (even if the
ActualFormatReturn parameter is 16-bit or 32-bit) to the BytesAfterReturn parameter. It
ignores the Delete parameter. The NumberltemsReturn parameter is empty.

• If the specified property exists and the RequestedType parameter is set to the
AnyPropertyType identifier or if the specified type matches the actual property type, the
XGetWindowProperty subroutine returns the actual property type to the
ActualTypeReturn parameter and returns the actual property format (never a value of
Ozero) to the ActualFormatReturn parameter. The XGetWindowProperty subroutine also
returns a value to the BytesAfterReturn and NumberltemsReturn parameters by defining
the following values:

N actual length of the stored property in bytes

I 4 * long_of f set

T N I

L MINIMUM(T, 4 * long_length)

A N - (I + L)

The value returned starts at byte index I in the property (indexing from zero). The length
in bytes is L. If the value for the LongOffset parameter makes L negative, an error is
generated.

The BytesAfterReturn parameter is A, giving the number of trailing unread bytes in the
stored property.

The XGetWindowProperty subroutine always allocates one extra byte in the
PropertyReturn parameter (even if the property is O length) and sets it to the value of ASCII
NULL so that simple properties consisting of characters do not have to be copied into yet
another string before use. If the Delete parameter is a True value and the BytesAfterReturn
parameter is a value of 0, the subroutine deletes the property from the window and
generates a PropertyNotify event value on the window.

This subroutine returns a Success value if it executes successfully. To free the resulting
data, use the Xfree subroutine.

Parameters
Actua/FormatReturn

ActualTypeReturn

BytesAfterReturn

Delete

DisplayPtr

Long Length

Returns the actual format (in 8-bit, 16-bit, or 32-bit) of the
property.

Returns the atom identifier that defines the type of the property.

Returns the number of bytes remaining in the property if a partial
read was performed.

Specifies a Boolean value that determines if the property is to be
deleted from the window. It can be set to a True or False value.

Specifies the connection to the X Server.

Specifies the length (in 32-bit multiples) of the data to be
retrieved.

Enhanced X-Windows Subroutines 7-289

XGetWindowProperty

LongOffset

NumberltemsReturn

Property

PropertyReturn

RequestedType

Window/D

Return Value
Success

Error Codes
BadAtom

Badlmplementation

BadValue

BadWindow

Implementation Specifics

Specifies the offset (in 32-bit quantities) in the specified property
where data will be retrieved.

Returns the actual number of items transferred.

Specifies the property atom.

Returns a pointer to the data in the specified format.

Specifies an atom identifier or the AnyPropertyType identifier
associated with the property type.

Specifies the window ID for the window for which atom type and
property format is to be obtained.

The XGetWindowProperty subroutine runs successfully.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XFree subroutine.

The GetProperty protocol request.

7-290 User Interface Reference

(
\

XGetWMHints Subroutine

Purpose

Libraries

C Syntax

Gets the value of the window manager hints atom.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XWMHints *XGetWMHints(Oisp/ayPtr, Window/D)
Display * DisplayPtr,
Window Window!D;

FORTRAN Syntax
integer*4 fxgetwmhints
external fxgetwmhints
integer*4 Disp/ayPtr
integer*4 Window/O
integer*4 WMHints
WMHints = fxgetwmhints(Oisp/ayPtr, Window!O)

Description

XGetWMHints

The XGetWMHints subroutine reads the value of the window manager hints atom. If
successful, this subroutine returns a pointer to a XWMHints structure. When finished with
the data, free the space used for it by calling the XFree subroutine.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies the window ID.

Return Value
NULL The XGetWMHints subroutine is unsuccessful. This subroutine is

unsuccessful if a WM_HINTS property was set for the specified window.

Pointer to the XWMHints structure.

Error Codes
Bad Implementation

BadWindow

Enhanced X-Windows Subroutines 7-291

XGetWMHints

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XWMHints data structure.

The XFree subroutine.

The GetProperty protocol request.

7-292 User Interface Reference

XGetZoomHints

XGetZoomHints Subroutine

Purpose

Libraries

C Syntax

Gets values of the zoom hints atom.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XGetZoomHints(DisplayPtr, Window/D, ZoomHintsReturn)
Display * DisplayPtr,
Window Window/D;
XSizeHints * ZoomHintsReturn;

FORTRAN Syntax
integer*4 fxgetzoomhints
external fxgetzoomhints
integer*4 DisplayPtr
integer*4 Window!D, ZoomHintsReturn
integer*4 Status
Status= fxgetzoomhints(Oisp/ayPtr, Window/D, ZoomHintsReturn)

Description
The XGetZoomHints subroutine returns the size hints for a window in its zoomed state.
This subroutine returns these hints in its last argument.

The XGetZoomHints subroutine can be unsuccessful if the application did not specify the
zoom size hints for this window.

Parameters
DisplayPtr

Window/D

ZoomHintsReturn

Return Values
False

True

Error Codes
Badlmplementation

BadWindow

~ Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Returns a pointer to the structure containing the zoom hints.

The application specified no zoom size hints.

The XGetZoomHints subroutine succeeds.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-293

XGetZoomHints

Related Information
The XSizeHints data structure.

The GetProperty protocol request.

7-294 User Interface Reference

/
i
\

)

XGrabButton

XGrabButton Subroutine

Purpose

Libraries

C Syntax

Grabs a mouse button.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGrabButton(DisplayPtr, Button, Modifiers, GrabWindow, OwnerEvents, EventMask,
PointerMode, KeyboardMode, ConfineTo, Cursor)

Display * DisplayPtr,
unsigned int Button;
unsigned int Modifiers;
Window GrabWindow;
Bool OwnerEvents;
unsigned int EventMask;
int PointerMode, KeyboardMode;
Window ConfineTo;
Cursor Cursor,

FORTRAN Syntax
external fxgrabbutton
integer*4 DisplayPtr
integer*4 ButtonGrab, Modifiers, GrabWindow
integer*4 OwnerEvents, EventMask, PointerMode
integer*4 KeyboardMode, ConfineTo, Cursor
call fxgrabbutton(Oisp/ayPtr, ButtonGrab, Modifiers, GrabWindow, OwnerEvents,

EventMask, PointerMode, KeyboardMode, ConfineTo, Cursor)

Description
The XGrabButton subroutine establishes a passive grab procedure. Consequently, in the
future, the pointer is actively grabbed (as for the XGrabPointer subroutine), the
last-pointer-grab time is set to the time at which the button was pressed (as transmitted in
the ButtonPress event), and the ButtonPress event is reported if all of the following
conditions are true:

• If the pointer is not grabbed and the specified button is pressed when the specified
modifier keys are down, (and no other buttons or modifier keys are down).

• The Grab Window parameter contains the pointer.

• The ConfineTo parameter window, if any, is viewable.

• The passive grab on the same button-key combination does not exist on any ancestor of
the grab window

The interpretation of the remaining parameters is as for the XGrabPointer subroutine. The
active grab is ended automatically when the logical state of the pointer has all buttons
released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) can lag the physical
state if device event processing is frozen.

Enhanced X-Windows Subroutines 7-295

XGrabButton

This request overrides all previous grab procedures by the same client on the same
button-key combinations on the same window. A modifier of the AnyModifier value is
equivalent to issuing the grab request for all possible modifier combinations (including the
combination of no modifiers). It is not required that all modifiers specified have currently
assigned key codes. A button of the AnyButton value is equivalent to issuing the request for
all possible buttons. Otherwise, it is not required th.at the specified button currently be
assigned to a physical button.

If some other client has already issued the XGrabButton subroutine with the same
button/key combination on the same window, a BadAccess error results. When using the
AnyModifier or AnyButton value, the request is unsuccessful, and a BadAccess error
code results (no grabs are established) if there is a conflicting grab procedure for any
combination.

The active grab is terminated automatically when all buttons are released (independent of
the state of the modifier keys). All modifiers specified do not need to have currently assigned
key codes. A button with the AnyButton value is equivalent to issuing the request for all
possible buttons. Otherwise, it is not required that the specified button currently be assigned
to a physical button.

This variable can also be set to the value of AnyModifier, which is equivalent to issuing the
grab request for all possible modifier combinations (including the combination of no
modifiers).

Both the PointerMode and KeyboardMode parameters can be the GrabModeSync or
GrabModeAsync value.

The XGrabButton subroutine is unsuccessful and generates an error if another client issues
this subroutine with the same button-key combination on the same window.

The XGrabButton subroutine is unsuccessful, does not establish a grab procedure, and
generates an error if the AnyModifier or AnyButton modifier is used with a conflicting grab
procedure.

The XGrabButton subroutine has no effect on an active grab procedure.

Parameters
Button

Confine To

Cursor

DisplayPtr

EventMask

7-29'6 User Interface Reference

Specifies the pointer button to be grabbed when the specified modifier
keys are down or the value of AnyButton is the modifier.

Specifies the window ID in which to confine the pointer. Or, this
parameter specifies the None value if the pointer is not to be confined.

Specifies the cursor to be displayed during the grab procedure. Or, this
parameter specifies the None value if the cursor is not to be displayed.

Specifies the connection to the X Server.

Specifies what pointer events are reported to the client. This
parameter is a bitwise-inclusive OR of the valid pointer event mask
bits. It can be set to one of the following values:

ButtonPressMask

EnterWi ndowMask

PointerMotionMask

ButtonReleaseMask

LeaveWindowMask

PointerMotionHintMask

Grab Window

KeyboardMode

Modifier

OwnerEvents

PointerMode

Error Codes
Bad Access

BadCursor

Badlmplementation

BadValue

BadWindow

Button Motion Mask

ButtonMotion1 Mask

ButtonMotion3Mask

ButtonMotionSMask

XGrabButton

KeymapStateMask

ButtonMotion2Mask

ButtonMotion4Mask

Specifies the window ID of the window to be grabbed.

Controls further processing of keyboard events. This parameter can be
the following values:

GrabModeSync GrabModeAsync

Specifies the set of keymasks or the value of AnyModifier. This
parameter is the bitwise-inclusive OR of valid keymask bits. It can be
set to the following valid values:

ShiftMask

Mod1Mask

Mod3Mask

Mod5Mask

Lock Mask

Mod2Mask

Mod4Mask

Specifies a Boolean value that indicates whether the pointer events
are to be reported as usual or reported with respect to the grab
window if selected by the event mask. The OwnerEvents parameter
can be the following values:

True A key event is reported to this client normally.

False All key events are reported with respect to the
Grab Window parameter.

Controls further processing of pointer events. This parameter can be
the following:

GrabModeSync GrabModeAsync

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

~ Related Information
The XGrabPointer subroutine.

Enhanced X-Windows Subroutines 7-297

XGrabButton

The GrabButton protocol request.

/
(
\q

7.-298 User Interface Reference

\
;

XGrabKey

XGrabKey Subroutine

Purpose

Libraries

C Syntax

Grabs a single key of the keyboard.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGrabKey(DisplayPtr, Keycode, Modifiers , GrabWindow,OwnerEvents, PointerMode,
KeyboardMode)

Display * DisplayPtr,
int Keycode;
unsigned int Modifiers;
Window GrabWindow;
Bool OwnerEvents;
int PointerMode, KeyboardMode;

FORTRAN Syntax
external fxgrabkey
integer*4 DisplayPtr
integer*4 Keycode, Modifiers, GrabWindow
integer*4 OwnerEvents, PointerMode, KeyboardMode
call fxgrabkey(Disp/ayPtr, Keycode, Modifiers, GrabWindow, OwnerEvents, PointerMode,

Keyboard Mode)

Description
The XGrabKey subroutine establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for the XGrabKeyboard subroutine), and the
last-keyboard-grab time is set to the time at which the key was pressed (as transmitted in
the KeyPress event), and, the KeyPress event is reported if the following conditions are
true:

• The Keyboard is not grabbed and the specified key, which can be a modifier key, is
logically pressed when the specified modifier keys are logically down, and, no other keys
are logically down.

• Either the Grab Window parameter is an ancestor of or is the focus window or, the
Grab Window parameter is a descendent of the focus window and, it contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of the
Grab Window parameter.

The active grab is terminated automatically when the specified key has been released
(independent of the state of the modifier keys).

Note that the logical state of a device (as seen by client applications) can lag the physical
state if device eventprocessing is frozen.

The Modifier parameter can be set to the modifier AnyModifier, which is equivalent to
issuing the grab key request for all possible modifier combinations (including no modifiers). It
is not required that all modifiers specified have currently assigned KeyCodes. Specifying the

Enhanced X-Windows Subroutines 7-299

XGrabKey

AnyKey modifier is equivalent to issuing the request for all possible KeyCodes. Otherwise,
the key must be in the range specified by the MinimumKeycode and MaximumKeycode
parameters in the connection setup or a BadValue error results.

Both the PointerMode and the KeyboardMode parameters be set to the GrabModeSync or
the GrabModeAsync value.

The XGrabKey subroutine is unsuccessful and an error is generated if another client issues
this subroutine with the same key combination on the same window.

When using the AnyModifier or AnyKey modifier, the XGrabKey subroutine is
unsuccessful, no grabs are established, and an error is generated if another grab conflicts
with this grab.

Parameters
DisplayPtr Specifies the connection to the X Server.

Grab Window

Keycode

KeyboardMode

Modifiers

OwnerEvents

7-300 User Interface Reference

Specifies the window ID of the window associated with the keys to
be grabbed.

Specifies the keycode or the AnyKey modifier to the specific key to
be grabbed.

Controls further processing of keyboard events. This parameter can
have the following values:

GrabModeAsync

GrabModeSync

Indicates that pointer event processing is
unaffected by the activation of the grab.

Indicates that the state of the pointer as
seen by clients appears to freeze, and the
X Server generates no further pointer
events until the grabbing client issues a
releasing XAllowEvents subroutine or until
the keyboard grab is released. Actual
keyboard changes are not lost while the
keyboard is frozen; they are queued in the
server for later processing.

Specifies the set of keymasks. This is a set of bitwise inclusive OR
of valid keymask bits. This parameter can have the following values:

ShiftMask

Mod1Mask

Mod3Mask

Mod5Mask

LockMask

Mod2Mask

Mod4Mask

Specifies a Boolean value. This parameter can have the following
values:

False Indicates that the pointer events are
reported with respect to the GrabWindow
parameter.

(

\~

PointerMode

Error Codes
Bad Access

Badlmplementation

BadValue

BadWindow

Implementation Specifics

True

XGrabKey

Indicates that a generated key event is
reported to the client, if it would normally be
reported. Otherwise, the key event is
reported with respect to the Grab Window
parameter.

Controls further processing of pointer events. This parameter can
have the following values:

GrabModeAsync

GrabModeSync

Indicates that pointer event processing is
unaffected by the activation of the grab.

Indicates that the state of the pointer as
seen by clients appears to freeze, and the
X Server generates no further pointer
events until the grabbing client issues a
releasing XAllowEvents subroutine or until
the keyboard grab is released. Actual
keyboard changes are not lost while the
keyboard is frozen; they are queued in the
server for later processing.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GrabKey protocol request.

Enhanced X-Windows Subroutines 7-301

XGrabKeyboard

XGrabKeyboard Subroutine

Purpose

Libraries

C Syntax

Grabs the keyboard.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGrabKeyboard(DisplayPtr, GrabWindow, OwnerEvents, PointerMode,
KeyboardMode, TimeStamp)

Display * DisplayPtr,
Window GrabWindow;
Bool OwnerEvents;
int PointerMode, KeyboardMode;
Time TimeStamp;

FORTRAN Syntax
integer*4 fxgrabkeyboard
external fxgrabkeyboard
integer*4 DisplayPtr
integer*4 GrabWindow, OwnerEvents
integer*4 PointerMode, KeyboardMode
integer*4 TimeStamp
integer*4 ReturnCode
re= fxgrabkeyboard{Oisp/ayPtr, Grab Window, OwnerEvents, PointerMode,

KeyboardMode, TimeStamp)

Description
The XGrabKeyboard subroutine actively grabs control of the main keyboard and generates
the Focusln and FocusOut events. Further key events are reported only to the grabbing
client. This subroutine overrides any active keyboard grab by this client.

Both the KeyPress and KeyRelease events are always reported, independent of any event
selection made by the client.

Parameters
DisplayPtr

Grab Window

OwnerEvents

7-302 User Interface Reference

Specifies the connection to the X Server.

Specifies the window ID of the window associated with the keyboard
to be grabbed.

Specifies a Boolean value. If the OwnerEvents parameter is the
following:

False

True

All generated key events are reported with
respect to the Grab Window parameter.

The generated key event is reported
normally to this client.

PointerMode

KeyboardMode

TimeStamp

Return Values

XGrabKeyboard

Controls further processing of pointer events. This can be the
following:

G rabModeAsync

G rabModeSync

The processing of pointer events is
unaffected by activation of the grab.

The pointer, as seen by client applications,
appears to freeze, and no further pointer
events are generated by the server until the
grabbing client issues the XAllowEvents
subroutine call or until the keyboard grab is
released.

Controls further processing of keyboard events. If the
KeyboardMode parameter is the following:

GrabModeAsync

G rabModeSync

The processing of keyboard events
continues normally. If the keyboard is
currently frozen by this client, the
processing of keyboard events is resumed.

The keyboard events, as seen by client
applications, appear to freeze, and no
further keyboard events are generated by
the server until the grabbing client issues
the XAllowEvents subroutine call or until
the keyboard is released. Actual keyboard
changes are not lost while the keyboard is
frozen; instead, these changes are queued
for later processing.

Specifies the time in a timestamp, which is expressed in
milliseconds, or the CurrentTime value.

If the XGrabKeyboard subroutine is unsuccessful, it returns one of the following values:

AlreadyGrabbed

GrabNotViewable

GrablnvalidTime

GrabFrozen

Error Codes
Badlmplementation

BadValue

BadWindow

The keyboard is actively grabbed by another client.

The Grab Window parameter is not viewable.

The specified time is earlier than the last-keyboard-grab time or
later than the current X Server time. Otherwise, the
last-keyboard-grab time is set to the specified time and the
CurrentTime value is replaced by the current X Server time.

The keyboard is frozen by an active grab of another client.

Enhanced X-Windows Subroutines 7-303

XGrabKeyboard

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAllowEvents subroutine.

The GrabKeyboard protocol request.

7-304 User Interface Reference

(

XGrabPointer

XGrabPointer Subroutine

Purpose

Libraries

C Syntax

Grabs the pointer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XGrabPointer(Oisp/ayPtr, GrabWindow, OwnerEvents, EventMask, PointerMode,
Keyboard Mode, Confine To, Cursor, TimeStamp)

Display * DisplayPtr,
Window GrabWindow;
Bool OwnerEvents;
unsigned int EventMask;
int PointerMode, KeyboardMode;
Window ConfineTo;
Cursor Cursor,
Time TimeStamp;

FORTRAN Syntax
integer*4 fxgrabpointer
external fxgrabpointer
integer*4 DisplayPtr
integer*4 GrabWindow, OwnerEvents, EventMask
integer*4 PointerMode, KeyboardMode
integer*4 ConfineTo, Cursor, TimeStamp
integer*4 ReturnCode
ReturnCode = fxgrabpointer(Oisp/ayPtr, GrabWindow, OwnerEvents, EventMask,

PointerMode, Keyboard Mode, Confine To, Cursor,
TimeStamp)

Description
The XGrabPointer subroutine actively grabs control of the pointer and returns the
GrabSuccess value if the grab was successful. Further pointer events are reported only to
the grabbing client. This function overrides any active pointer grab by this client.

The XGrabPointer subroutine generates the EnterNotify and LeaveNotify events.

Parameters
Confine To

Cursor

Specifies the window in which to confine the pointer or the value of
None if the pointer is not to be confined. If the pointer is not in the
Confine To window initially, it is warped automatically to the closest
edge of the window before the grab activates. Enter or leave events
are generated normally. If the Confine To window is reconfigured
consequently, the pointer is warped automatically to contain it within
the window.

Specifies the cursor to be displayed during the grab. If the Cursor
parameter is the value of NONE, the normal cursor for that window

Enhanced X-Windows Subroutines 7-305

XGrabPointer

Display

EventMask

Grab Window

KeyboardMode

OwnerEvents

PointerMode

7-306 User Interface Reference

is displayed when the pointer is in the Grab Window parameter or
one of its subwindows.

Specifies the connection to the X Server.

Specifies which pointer events are reported to the client. The mask
is the bitwise inclusive OR of valid pointer event mask bits.

Specifies the ID of the window relative to which events are reported
while it is grabbed.

Controls further processing of keyboard events. The KeyboardMode
parameter can be the following values:

GrabModeAsync

GrabModeSync

Keyboard event processing is unaffected by
activation of the grab.

The keyboard, as seen by client
applications, appears to freeze, and no
further keyboard events are generated by
the X Server until the grabbing client calls
the XAllowEvents subroutine or until the
pointer grab is released. Actual keyboard
changes are not lost while the pointer is
frozen; they are simply queued for later
processing.

Specifies a Boolean value that indicates whether the pointer events
are to be reported normally or with respect to the grab window if
selected by the event mask. The OwnerEvent parameter can be the
following values:

False

True

All generated pointer events are reported
with respect to the Grab Window parameter.
These events are reported only if selected
by the EventMask parameter. Unreported
events are discarded.

It is reported normally if a generated pointer
event would be reported to this client
normally. Otherwise, the event is reported
with respect to the Grab Window parameter
and is reported only if selected by the
EventMask parameter. Unreported events
are discarded.

Controls further processing of pointer events. The PointerMode
parameter can be the following values:

GrabModeAsync

GrabModeSync

Processing of pointer events continues
normally. If the pointer is currently frozen by
this client, the processing of events for the
pointer is resumed.

The pointer, as seen by client applications,
appears to freeze, and no further pointer

Time

Return Values

·xGrabPointer

events are generated by the X Server until
the grabbing client calls the XAllowEvents
subroutine or until the pointer grab is
released. Actual pointer changes are not
lost while the pointer is frozen; they are
simply queued for later processing.

Specifies the time in a timestamp, which is expressed in
milliseconds, or the CurrentTime value. The Time parameter helps
avoid certain situations that can occur. For example, if two
applications that normally grab the pointer when clicked on have a
specified timestamp, the second application can grab the pointer
successfully, while the first application is notified that the pointer
was grabbed before its request was processed.

If the XGrabPointer subroutine is unsuccessful, it returns one of the following values:

GrabNotViewable

AlreadyGrabbed

GrabFrozen

GrablnvalidTime

Error Codes
Bad Cursor

Badlmplementation

BadValue

BadWindow

Implementation Specifics

The Grab Window or Confine To window is not viewable.

The pointer is actively grabbed by another client.

The keyboard is frozen by an active grab of another client.

The specified time is earlier than the last-pointer-grab time or later
than the current X Server time. Otherwise, the last-pointer-grab time
is set to the specified time and the CurrentTime value is replaced
by the current X Server time.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAllowEvents subroutine.

The GrabPointer protocol request.

Enhanced X-Windows Subroutines 7-307

XGrabServer

XGrabServer Subroutine

Purpose

Libraries

C Syntax

Grabs the server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XGrabServer(DisplayPtl}
Display * DisplayPtr,

FORTRAN Syntax
external fxgrabserver
integer*4 DisplayPtr
call fxgrabserver(DisplayPtl}

Description

Parameter

The XGrabServer subroutine disables processing of requests and closes down all
connections except the one that it arrived on. This subroutine performs a closedown. The
X Server should be grabbed only when absolutely necessary because no processing of
reque.sts or closedowns on any other connections occur while it is grabbed.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The GrabServer protocol request.

7-308 User Interface Reference

XlfEvent

XlfEvent Subroutine

Purpose

Libraries

C Syntax

Checks event queue for specified event and removes it.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XlfEvent(DisplayPtr, EventReturn, Predicate, Argument)
DisplayPtr * DisplayPtr,
XEvent * EventReturn;
Boo I (*Predicate)();
char *Argument;

FORTRAN Syntax
external fxifevent
integer*4 DisplayPtr
integer*4 EventReturn
integer*4 Predicate
character*256 Argument
call fxifevent(DisplayPtr, EventReturn, Predicate, Argument)

The fxifevent statement requires a predicate procedure to pass as a parameter. The
procedure determines if the event matches the one specified in the corresponding function.
The predicate procedure is defined as follows:

external FunctionName
integer*4 DisplayPtr
integer*4 Event
integer*4 Arguments
call FunctionName (DisplayPtr, Event, Arguments)

Description
The XlfEvent subroutine checks the event queue for a matching event, using the predicate
procedure. If a matching event is found, the XlfEvent subroutine removes the event from the
queue and copies the event structure into the client-supplied XEvent structure. This
subroutine flushes the output buffer if it blocks waiting for additional events.

The XlfEvent subroutine completes only when the specified predicate procedure returns the
value of True for an event, which indicates that an event on the queue matched the .specified
event. This predicate procedure also is called when an event is added to the queue.

The XlfEvent statement requires a predicate procedure to pass as a parameter. The
procedure determines if the event matches the one specified in the corresponding function.
The C Syntax for the predicate procedure is as follows:

Bool (* Predicate)(DisplayPtr, Event, Argument)
DisplayPtr * DisplayPtr
XEvent *Event
Char *Argument

Enhanced X-Windows Subroutines 7-309

XlfEvent

• The DisplayPtr parameter specifies the connection to the X Server.

• The Event parameter specifies a pointer to the XEvent structure.

• The Argument parameter specifies the argument passed in from the XlfEvent subroutine.

The predicate procedure is called once for each event in the queue until it finds a match.
After finding a match, the predicate procedure must return the value of True. If it does not
find a match, it must return the value of False. The predicate procedure must decide only if
the event is useful and must not call Xlib functions.

Parameters
Argument Specifies the user-supplied argument passed to the predicate

procedure.

DisplayPtr

EventReturn

Predicate

Return Values
False

True

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Copies the structure of the matched event into this client-supplied
structure.

Specifies the procedure that is called to determine if the next event
in the queue matches the one event specified in the Argument
parameter.

Indicates that no event on the queue matched the specified event.

Indicates that an event on the queue matched the specified event.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-31 O User Interface Reference

(

XlnitExtension Subroutine

Purpose

Library

Syntax

Determines if the extension exists.

Enhanced X-Windows Library (libX11.a)

XExtCodes *XlnitExtension (DisplayPtr, Name);
Display * DisplayPtr,
char *Name;

Description

XlnitExtension

The XlnitExtension subroutine determines if the extension exists. It then allocates storage
for maintaining the information about the extension on the connection, chains this onto the
extension list for the connection, and returns the information needed to access the
extension. If the extension does not exist, the XlnitExtension subroutine returns NULL.

Parameters
DisplayPtr Specifies the display.

Name Specifies the name of the extension.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The _XExtCodes data structure.

Enhanced X-Windows Subroutines 7-311

XlnsertModifiermapEntry

XlnsertModifiermapEntry Subroutine

Purpose

Libraries

C Syntax

Adds an entry to the XModifierKeymap structure.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XModifierKeymap *XlnsertModifiermapEntry(Modifiermap, Keycode, Modifier,
XModifierKeymap * Modifiermap;
KeyCode Keycode;
int Modifier;

FORTRAN Syntax
integer*4 fxinsertmodifiermapentry
external fxinsertmodifiermapentry
integer*4 Modifiermap
integer*4 Keycode
integer*4 Modifier
integer*4 Keymap
Keymap = fxinsertmodifiermapentry{Mod;termap, Keycode, Modifier,

Description
The XlnsertModifiermapEntry subroutine adds the specified keycode to the set that
controls the specified modifier. This subroutine returns the result to the XModifierKeymap
structure (expanded as needed).

Parameters
Modifiermap Specifies a pointer to the XModifierKeymap structure.

Keycode Specifies the keycode.

Modifier Specifies the modifier.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XModifierKeymap data structure.

7-312 User Interface Reference

(
I
\i

XlnstallColormap

XlnstallColormap Subroutine

Purpose

Libraries

C Syntax

Installs a colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XlnstallColormap(DisplayPtr, Colormapl 0)
DisplayPtr * DisplayPtr;
Colormap Colormap/D;

FORTRAN Syntax
external fxinstallcolormap
integer*4 DisplayPtr
integer*4 Colormap/O
call fxinstallcolormap(Oisp/ayPtr, Colormap/D)

Description
The XlnstallColormap subroutine installs the specified colormap for its associated screen.
All windows associated with this colormap immediately display with true colors. Colormaps
become associated with windows through the XCreateWindow, XCreateSimpleWindow,
XChangeWindowAttributes, or XSetWindowColormap subroutine.

The X Server obtains the colormap from a required list, which is an ordered list containing a
subset of the installed colormaps. If the specified colormap is not an installed colormap, the
X Server generates a ColormapNotify event on each window that has the Colormapf D
parameter as its resource ID. In addition, for every other colormap that is installed as a result
of a call to the XlnstallColormap subroutine, the X Server generates a ColormapNotify
event on each window that has the uninstalled colormap as its resource ID.

Parameters
Colormap/D Specifies the colormap ID.

DisplayPtr Specifies the connection to the X Server.

Error Codes
Bad Color

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-313

XlnstallColormap

Related Information
The XCreateWindow subroutine, XCreateSimpleWindow subroutine,
XChangeWindowAttributes subroutine, XSetWindowColormap subroutine.

The lnstallColormap protocol request.

7-314 User Interface Reference

\

XlnternAtom

XlnternAtom Subroutine

Purpose

Libraries

C Syntax

Gets an atom for the specified name.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Atom XlnternAtom(DisplayPtr, AtomName, OnlylfExists)
Display * DisplayPtr,
char *Atom Name;
Bool OnlylfExists;

FORTRAN Syntax
integer*4 fxinternatom
external fxinternatom
integer*4 DisplayPtr
character*256 AtomName
integer*4 OnlylfExists
integer*4 Id
Id= fxinternatom(OisplayPtr, AtomName, OnlylfExists)

Description
The XlnternAtom subroutine returns an atom identifier associated with the specified
AtomName parameter string. You should use a null-terminated ISO Latin-1 string for the
AtomName parameter. The AtomName parameter is case-sensitive. For example the strings
"thing", "Thing" and "thinG" all designate different atoms. The atom will remain defined even
after the client's connection closes. It will become undefined only when the last connection to
the X Server closes.

Parameters
DisplayPtr

Atom Name

OnlylfExists

Return Values
None

Specifies the connection to the X Server.

Specifies the name associated with the atom to be returned.

Specifies a Boolean value that indicates if the XlnternAtom
subroutine creates the atom. The OnlylfExists parameter can be as
follows:

True The XlnternAtom subroutine returns the atom
specified in the AtomName parameter.

False The XlnternAtom subroutine creates the atom if it
does not exist.

The specified atom does not exist.

Enhanced X-Windows Subroutines 7-315

XlnternAtom

Atom

Error Codes
BadAlloc

Badlmplementation

BadValue

Implementation Specifics

The value of the atom.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lnternAtom protocol request.

7-316 User Interface Reference

XlntersectRegion

XlntersectRegion Subroutine

Purpose

Libraries

C Syntax

Computes the intersection of two regions.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XlntersectRegion(SourceA, SourceB, DestinationReturn)
Region SourceA, SourceB, DestinationReturn;

FORTRAN Syntax
external fxintersectregion
integer*4 SourceA, SourceB, DestinationRegion
call fxintersectregion(SourceA, SourceB, DestinationRegion)

Description
The XlntersectRegion subroutine computes the intersection of two regions.

Parameters
Destination Return

SourceA

SourceB

Error Code
Bad Implementation

Implementation Specifics

Stores the result of the.computation.

Specifies one of the two regions with which to perform the
computation.

Specifies one of the two regions with which to perform the
computation.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Subroutines 7-317

XKeycodeToKeysym

XKeycodeToKeysym Subroutine

Purpose

Library

C Syntax

Converts the KeyCode to a KeySym value.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

KeySym XKeycodeToKeysym(OisplayPtr, Keycode, Index)
Display * DisplayPtr,
KeyCode Keycode;
int Index;

FORTRAN Syntax
integer*4 fxkeycodetokeysym
external fxkeycodetokeysym
integer*4 DisplayPtr
integer*4 Keycode, lndexReturn
integer*4 Keysym
Keysym = fxkeycodetokeysym(OisplayPtr, Keycode, lndexReturn)

Description
The XKeycodeToKeysym subroutine converts a key code received in a keyboard event to
the key symbol that is engraved on the physical key. It uses the internal Xlib tables received
from the X Server. The keysyms are defined in the <lusr/include/X11/keysymdef.h>
header file.

Parameters
DisplayPtr

Keycode

Specifies the connection to the X Server.

Specifies the key code.

Index Specifies the column of the Xlib library's two-dimensional
keycode-to-keysym array. The Index parameter can be one of the following
values:

7-318 User 1nterface Reference

0 Specifies the base state (no modifier keys are applied).

1 Specifies the shift state (the shift modifier key is applied).

2 Specifies the mode_switch base state (the mode_switch modifier
is applied).

3 Specifies the mode_switch shift state (the mode_switch, and the
shift modifiers are applied).

Return Values
No Symbol

KeySym

Error Code
Badlmplementation

Implementation Specifics

XKeycodeToKeysym

No symbol is defined.

The key symbol corresponding to Keycode.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lsCursorKey macro.

The XKeysymToKeycode subroutine, XKeysymToString subroutine, XlookupKeysym
subroutine, XLookupString subroutine, XStringToKeysym subroutine, XRebindKeysym
subroutine.

Enhanced X-Windows Subroutines 7-319

XKeysymToKeycode

XKeysymToKeycode Subroutine

Purpose

Libraries

Syntax

Syntax

Converts KeySym value to KeyCode.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

KeyCode XKeysymToKeycode(Oisp/ayPtr, Keysym)
Display * DisplayPtr,
Keysym Keysym;

integer*4 fxkeysymtokeycode
external fxkeysymtokeycode
integer*4 DisplayPtr
integer*4 Keysym
integer*4 Keycode
Keycode = fxkeysymtokeycode(Oisp/ayPtr, Keysym)

Description
The XKeysymToKeycode subroutine converts a key symbol value to the appropriate key
code and returns the key code.

Parameters
DisplayPtr

Keysym

Return Values
0

Keycode

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the key symbol that is to be searched for.

The key symbol value specified is not defined for any key code.

The key code corresponding to the specified Keysymbol.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-320 User Interface Reference

\

XKeysymToString Subroutine

Purpose

Libraries

C Syntax

Converts the KeySym value to the KeySym name.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XKeysymToString(Keysym)
KeySym Keysym;

FORTRAN Syntax
character*256 fxkeysymtostri ng
external fxkeysymtostring
integer*4 Keysym
character*256 KeysymName
KeysymName = fxkeysymtostring(Keysym)

Description

XKeysymToString

The XKeysymToString subroutine converts a key symbol code to the name of the key
symbol. The name string returned is in a static area and must not be modified.

Parameter
Keysym

Return Values
NULL

String

Error Code
Badlmplementation

Implementation Specifics

Specifies the key symbol to be converted.

The specified key symbol is not defined.

The string corresponding to the specified the KeySym parameter.

This Xlib subroutine is part of AlXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-321

XKillClient

XKillClient Subroutine

Purpose

Libraries

C Syntax

Forces a closedown of a client.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XKillClient(DisplayPtr, Resource)
Display * DisplayPtr;
XID Resource;

FORTRAN Syntax
external fxkillclient
integer*4 DisplayPtr
integer*4 Resource
call fxkillclient(Disp/ayPtr, Resource)

Description
The XKillClient subroutine forces a closedown of the client that created the resource if a
valid resource is specified.

If the client has terminated already in the RetainPermanent or RetainTemporary value
mode, all of the client resources are destroyed.

If the AllTemporary value is specified, the resources of all clients that have terminated in
the RetainTemporary value mode are destroyed and the server is reset. This permits
implementation of window manager facilities that aid debugging. A client can set its
closedown mode to the RetainTemporary value. If the client then crashes, its windows
would not be destroyed. The programmer can then inspect the application window tree and
use the window manager to destroy the zombie windows.

Parameters
DisplayPtr

Resource

Specifies the connection to the X Server.

Specifies any resource associated with the client to be destroyed.

Error Codes
Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The KillClient protocol request.

7-322 User Interface Reference

XlistFonts

XlistFonts Subroutine

Purpose

Libraries

C Syntax

Gets a list of available font names.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char **Xlistfonts (DisplayPtr, Pattern, MaximumNames, Actua/CountReturn)
Display * DisplayPtr,
char *Pattern;
int MaximumNames;
int * Actua/CountReturn;

FORTRAN Syntax
integer*4 fxlistfonts
external fxlistfonts
integer*4 DisplayPtr
character*256 Pattern
integer*4 MaximumNames, Actua/CountReturn
integer*4 Fontlnformation
Fontlnformation = fxlistfonts(Oisp/ayPtr, Pattern, MaximumNames, Actua/CountReturn)

Description
The Xlistfonts subroutine returns an array of font names (as controlled by the font search
path; see the XSetFontPath subroutine) that matches the string passed to the Pattern
parameter. The string should be ISO Latin-1 character set; uppercase and lowercase do not
matter. Each string is terminated by the ASCII NULL value. The pattern string can contain
any characters, but each * (asterisk) is a pattern-matching character for any number of
characters, and each ? (question mark) is a pattern-matching character for a single
character. The client should call the XFreeFontNames subroutine when this subroutine is
completed.

Parameters
DisplayPtr

Pattern

Maximum Names

Actua/CountReturn

Specifies the connection to the X Server.

Specifies the null-terminated string associated with the font
names to be returned. Specify an * (asterisk), which indicates
a pattern-matching character on any number of characters, or
a ? (question mark), which indicates a pattern-matching
character on a single character.

Specifies the maximum number of names to be in the returned
list.

Returns the actual number of font names.

Enhanced X-Windows Subroutines 7-323

XListFonts

Return Value
List of font names as specified in Actua/CountReturn long.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The XFreeFontNames subroutine.

The ListFonts protocol request.

7-324 User Interface Reference

XListFontsWithlnfo

XlistFontsWithlnfo Subroutine

Purpose

Libraries

C Syntax

Gets names and information about fonts.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char **XlistFontsWithlnfo(Disp/ayPtr, Pattern, MaximumNames, CountReturn,
Information Return;

Display * DisplayPtr;
char *Pattern;
int MaximumNames;
int * CountReturn;
XFontStruct **Information Return;

FORTRAN Syntax
integer*4 fxlistfontswithinfo
external fxlistfontswith info
integer*4 DisplayPtr
character*256 Pattern
integer*4, MaximumNames, CountReturn, lnformationReturn
integer*4 Fontlnformation
Fontlnformation = fxlistfontswithinfo(Disp/ayPtr, Pattern, MaximumNames, CountReturn,

Information Return)

Description
The XlistFontsWithlnfo subroutine returns a list of names of fonts that match the specified
pattern and their associated font information. The list of names is limited to the size specified
in the MaximumNames parameter. The information returned for each font is identical to what
the XloadQueryFont subroutine would return except that the per-character metrics are not
returned. The pattern string can contain any characters, but each * (asterisk), indicates a
pattern-matching character on any number of characters, and each ? (question mark),
indicates a pattern-matching character on a single character. Note that the only matching
occurs with the pattern string not with any font information.

To free the allocated name array, the client should call the XFreeFontNames subroutine. To
free the font information array, the client should call the XFreeFontlnfo subroutine.

Parameters
DisplayPtr

Pattern

MaximumNames

CountReturn

Specifies the connection to the X Server.

Specifies the null-terminated pattern string that can contain pattern
matching characters.

Specifies the maximum number of names to be in the returned list.

Returns the actual number of matched font names.

Enhanced X-Windows Subroutines 7-325

XListFontsWithlnfo

Information Return Returns a pointer to the font information.

Return Value
List of font names as specified in CountReturn long.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XFontStruct data structure.

The XLoadQueryFont subroutine, XFreeFontNames subroutine,
XFreeFontlnfosubroutine.

The ListFontsWithlnfo protocol request.

7-326 User Interface Reference

I

I
\

XlistHosts

XListHosts Subroutine

Purpose

Libraries

C Syntax

Gets the list of hosts.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XHostAddress *XlistHosts(DisplayPtr, NumberHostsReturn, StateReturn)
Display * DisplayPtr,
int * NumberHostsReturn;
Boo I *State Return;

FORTRAN Syntax
integer*4 fxlisthosts
external fxlisthosts
integer*4 DisplayPtr, NumberHostsReturn, StateReturn
integer*4 HostAddress
HostAddress = fxl isthosts(DisplayPtr, NumberHostsReturn, StateReturn)

Description
The XListHosts subroutine returns the current access control list and the state of the control
which indicates if connection setup was enabled or disabled. This subroutine allows a client
to determine what systems can make connections. It returns a pointer to a list of host
structures that were allocated by the routine.

Use the XFree subroutine to free the allocated memory when it is no longer needed.

Parameters
DisplayPtr

NumberHostsReturn

State Return

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the number of hosts currently in the access control list.

Returns the state (enabled or disabled) of the access control list.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XHostAddress data structure.

The XFree subroutine.

The ListHosts protocol request.

Enhanced X-Windows Subroutines 7-327

XlistlnstalledColormaps

XListlnstalledColormaps Subroutine

Purpose

Libraries

C Syntax

Gets a list of currently installed colormaps for a given screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Colormap *XlistlnstalledColormaps(DisplayPtr, Window!D, NumberReturn)
Display * DisplayPtr,
Window Windowf D;
int *NumberReturn;

FORTRAN Syntax
integer*4 fxlistinstalledcolormaps
external fxlistinstalledcolormaps
integer*4 Disp/ayPtr
integer*4 Window!D, NumberReturn
integer*4 Colormap
Colormap = fxlistinstalledcolormaps(Disp/ayPtr, Window/D, NumberReturn)

Description
The XlistlnstalledColormaps subroutine returns a list of the currently installed colormaps
for the screen of the specified window. The order of the colormaps in the list is insignificant,
and there is no explicit indication of the required list.

Use the XFree subroutine to free the allocated list when it is no longer needed.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window ID Specifies the window ID for the window for which a screen list of currently
installed colormaps is to be obtained.

NumberReturn Returns the list of currently installed colormaps.

Return Value
A list of installed colormaps as specified in the NumberReturn parameter.

Error Codes
Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

7-328 User Interface Reference

I

\

XListlnstalledColormaps

Related Information
The XFree subroutine.

The ListlnstalledColormaps protocol request.

Enhanced X-Windows Subroutines 7-329

XlistProperties

XlistProperties Subroutine

Purpose
Gets the specified window property list.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Atom *XlistProperties(DisplayPtr, WindowlD, NumberPropertiesReturn)
Display * DisplayPtr;
Window WindowlD;
int * NumberPropertiesReturn;

FORTRAN Syntax
integer*4 fxlistproperties
external fxlistproperties
integer*4 DisplayPtr
integer*4 WindowlD
integer*4 NumberPropertiesReturn
Atom= fxlistproperties(Disp/ayPtr, WindowlD, NumberPropertiesReturn)

Description
The XListProperties subroutine obtains a property list for a specified window. It returns a
pointer to an array of atom properties that are defined for the specified window.

Use the XFree subroutine to free the allocated memory when it is no longer needed.

Parameters
DisplayPtr

NumberPropertiesReturn

WindowlD

Return Values
NULL

Specifies the connection to the X Server.

Returns the length of the properties list.

Specifies the window ID for the window for which a property
list is to be obtained.

No properties were found.

List of the atoms of properties on the specified window as indicated in the
NumberPropertiesReturn parameter.

Error Codes
Badlmplementation

BadWindow

7-330 User Interface Reference

XListProperties

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xfree subroutine.

The ListProperties protocol request.

Enhanced X-Windows Subroutines 7-331

XLoadFont

XLoadFont Subroutine

Purpose

Libraries

C Syntax

Loads a font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Font XloadFont(DisplayPtr, Name)
Display * DisplayPtr,
char *Name;

FORTRAN Syntax
integer*4 fxloadfont
external fxloadfont
integer*4 DisplayPtr
character*256 Name
integer*4 Font
Font= fxloadfont(DisplayPtr, Name)

Description
The XloadFont subroutine loads the specified font and returns the associated font ID. The
name should be ISO Latin-1 encoding; it is not case-sensitive. Use the XUnloadFont
subroutine when the font is no longer needed.

Fonts are not associated with a particular screen and can be stored as a component of any
graphics context.

Parameters
DisplayPtr

Name

Error Codes
BadAlloc

Specifies the connection to the X Server.

Specifies the font name (a null-terminated string).

Badlmplementation

Bad Name

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-332 User Interface Reference

Related Information
The XChar2b data structure.

The XUnloadFont subroutine.

The OpenFont protocol request.

XLoadFont

Enhanced X-Windows Subroutines 7-333

XLoadQueryFont

XLoadQueryFont Subroutine

Purpose

Libraries

C Syntax

Loads and queries a font in one operation.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFontStruct *XloadQueryFont(DisplayPtr, Name)
Display * DisplayPtr;
char *Name;

FORTRAN Syntax
integer*4 fxloadqueryfont
external fxloadqueryfont
integer*4 DisplayPtr
character*256 Name
integer*4 XFontStruct
XFontStruct = fxloadqueryfont(Disp/ayPtr, Name)

Description
The XloadQueryFont subroutine provides the most common way for accessing a font. It
opens or loads the specified font and returns a pointer to the appropriate XFontStruct
structure.

The XFontStruct structure contains all the font information and a pointer to an array of
XCharStruct structures for the characters contained in the font.

Parameters
DisplayPtr Specifies the connection to the X Server.

Name Specifies the font name (a null-terminated string).

Return Values
NULL The specified font does not exist.

Pointer to the XFontStruct structure.

Error Codes
BadAlloc

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

7-334 User Interface Reference

I
I
I
\

XLoadQueryFont

Related Information
The XChar2b data structure, XFontStruct data structure.

The XFreeFont subroutine.

The OpenFontprotocol request, QueryFont protocol request.

Enhanced X-Windows Subroutines 7-335

XLookUpAssoc

XLookUpAssoc Subroutine

Purpose

Library

Syntax

Obtains data from a specific associate table.

Enhanced X-Windows Library (liboldX.a)

#include <X11/X1 O.h>
char *XlookUpAssoc(DisplayPtr, Table, x_id)
Display * DisplayPtr,
XAssocTable *Table;
XID x_id;

Description
The XLookUpAssoc subroutine obtains data from a specific associate table. It retrieves the
data stored in an XAssocTable structure by its XID. If an appropriately matching XID is
found in the table the subroutine returns the data associated with it. If the XID cannot be
found in the table the subroutine returns NULL.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples samples.c -loldX -lXll

Parameters
DisplayPtr

Table

x_id

Specifies the connection to the X Server.

Specifies the associate table.

Specifies the XID.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XCreateAssocTable subroutine.

7-336 User Interface Reference

XLookupColor

XlookupColor Subroutine

Purpose

Libraries

C Syntax

Looks up a color name.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XlookupColor(DisplayPtr, ColorMap!D, ColorName, ExactDefinitionReturn,
ScreenDefinitionReturn)

Display * DisplayPtr,
Colormap ColorMap!D;
char * ColorName;
XColor * ExactDefintionReturn, * ScreenDefinitionReturn;

FORTRAN Syntax
integer*4 fxlookupcolor
external fxlookupcolor
integer*4 DisplayPtr
integer*4 Colormap!D
character*256 ColorName
integer*4 ScreenDefinedReturn
integer*4 ExactDefinedReturn
integer*4 Status
Status= fxlookupcolor(Oisp/ayPtr, Colormap!D, ColorName, ScreenDefinedReturn,

ExactDefinedReturn)

Description
The XLookupColor subroutine looks up the string of a name for the screen associated with
the specified ColorMap/D parameter. It returns the color values and the closest values
provided by the screen with respect to the visual type of the specified colormap. You should
use the ISO Latin-1 encoding; it is not case-sensitive.

Parameters
ColorMap/D

ColorName

DisplayPtr

ExactDefinitionReturn

Screen Definition Return

Specifies the colormap ID.

Specifies the string of the color name for the color definition
structure to be returned.

Specifies the connection to the X Server.

Returns the exact RGB values for the color specified in the
ColorName parameter.

Returns the closest RGB values provided by the hardware.

Enhanced X-Windows Subroutines 7-337

XLookupColor

Return Values
False

True

Error Codes
BadColor

Bad Implementation

Bad Name

Implementation Specifics

The color is not in the RGB database.

The color is in the RGB database.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XColor data structure.

The LookupColor protocol request.

7-338 User Interface Reference

XLookupKeysym Subroutine

Purpose

Libraries

C Syntax

Translates keyboard event into a key symbol value.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

KeySym XlookupKeysym(EventKey, Index)
XKeyEvent * EventKey,
int Index;

FORTRAN Syntax
integer*4 fxlookupkeysym
external fxlookupkeysym
integer*4 EventKey
integer*4 Index
integer*4 Keysym
Keysym = fxlookupkeysym(EventKey, Index)

Description

XLookupKeysym

The XlookupKeysym subroutine looks up the key symbol. It uses a given keyboard event
and the index specified to return the key symbol from the list that corresponds to the
keycode field in the XKeyPressedEvent or the XKeyReleasedEvent structure.

Parameters
EventKey

Index

Return Values
NoSymbol

KeySym

Error Code

Specifies the key event, which can be either the KeyPress or the
KeyRelease key event to be used.

Specifies the index into the key symbol table.

If no key symbol is defined for the key code of the event.

Key symbol corresponding to event.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced x Windows Subroutines 7-339

XLookupMapping

XLookupMapping Subroutine

Purpose

Library

C Syntax

Gets mapping of the keyboard event from a keymap file.

Enhanced X-Windows Library (liboldX.a)

FORTRAN 77 Library (libXfx.a)

char* XlookupMapping (Event, NumberBytes)
XKeyPressedEvent *Event;
int * NumberBytes;

FORTRAN Syntax
external fxlookupmapping
integer*4 fxlookupmapping
integer*4 Event
integer*4 Numberbytes
integer*4 Map
map= fxlookupmapping (Event, NumberBytes)

Description
The XLookupMapping subroutine maps events to counted character strings (an array of
characters and the length; the null character is legitimate in this use). The subroutine returns
a pointer to a static counted character string, which must not be modified by a client, and the
number of bytes in the string.

The XlookupMapping subroutine searches for the current keyboard mapping in the
following order of files:

• $XDIR/imkeymap

• $HOME/imkeymap

• /usr/lib/nls/im/$LANG/imkeymap

If these files are not present, the XLookupMapping subroutine defaults to the
XlookupString subroutine.

The imkeymap file is produced by the keycomp command, which reads a text file of
keyboard mappings. The keyboard mappings in this file are based on KeySym values, not
Keycode values. Therefore, the first key symbol in the list of KeySyms associated with the
key code in the XKeyPressedEvent subroutine is used to access the imkeymap file. The
/usr/lib/nls/im/$LANG directory, where $LANG is the version 3 environment variable for
language/locale, contains the keyboard mappings for languages selected during installation
of Enhanced X-Windows.

The XlookupMapping subroutine performs normal interpretation of shift bits (alt, shift, shift
lock, and control). It supports Alt-NumPad and Numlock key processing as well as the dead
key processing defined in the keycomp subroutine.

7-340 User Interface Reference

XLookupMapping

The Alt-NumPad subroutine processing begins when the first Alt-NumPad key is pressed
and ends when either the third Alt-NumPad key is pressed or a non-Alt-NumPad key is
pressed.

The final keymapping is not returned to the user until a terminating event occurs. If the
terminating event is a non-Alt-NumPad key, then both the generated Alt-NumPad keycode
and the string of the non-Alt-NumPad key is returned in a single buffer.

For this to process correctly, both the Alt key and the NumPad key (in Alt state) must be
defined as UNBOUND in the source keymap. In addition, the XlookupMapping subroutine
tracks the Numlock state only if the Numlock key is defined as UNBOUND.

Use the strncpy command to copy the result for storage if the data must be modified. If a
different keymap file is desired, use the XUseKeymap subroutine. On the RISC
System/6000, the XlookupMapping subroutine invokes the Input Method. Thus it is
necessary to include the Input Method library (/usr/lib/liblM.a) when linking a program by
using the flag -llM, as in th efollowing example:

cc filel.c file2.c -lXll -loldX -lIM

Parameters
Event

NumberBytes

Error Code

Specifies the KeyPress event to be used.

Returns a pointer to the number of bytes returned in the character string
or a value of O if no text is mapped to the event.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XlookupString subroutine, XUseKeymap subroutine.

The keycomp command.

Enhanced X-Windows Subroutines 7-341

XLookupString

XLookupString Subroutine

Purpose

Libraries

C Syntax

Translates a keyboard event into a character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XLookupString(EventStructure, BufferReturn, BytesBuffer, KeysymReturn,
Status Return)

XKeyEvent * EventStructure;
char * BufferReturn;
int BytesBuffer,
KeySym * KeysymReturn;
XComposeStatus * StatusReturn;

FORTRAN Syntax
integer*4 fxlookupstring
external fxlookupstring
integer*4 EventStructure
character*256 BufferReturn
integer*4 BytesBuffer
integer*4 KeysymReturn, StatusReturn
integer*4 Stringlength
Stringlength = fxlookupstring(EventStructure, BufferReturn, BytesBuffer, KeysymReturn,

Status Return)

Description
The XLookupString subroutine maps a key event to an ISO Latin-1 string, using the
modifier bits in the key event to deal with the Shift, Lock, and Control keys. This subroutine
returns the translated string into the user's buffer. The XLookupString subroutine also
detects any rebound KeySyms and returns the specified bytes. It returns the length of the
string stored in the tag buffer as its value. If the lock modifier has a Caps Lock key
associated with it, the XLookupString subroutine interprets the lock modifier to perform
Caps Lock processing.

If present, (non-NULL) the XCompose data structure records the state, which is private to
the Xlib library, that needs preservation across calls to the XLookupString subroutine to
implement compose processing.

7-342 User Interface Reference

Parameters
EventStructure

BufferReturn

BytesBuffer

KeysymReturn

Status Return

Error Code
Badlmplementation

Implementation Specifics

XLookupString

Specifies the key event structure (XKeyPressedEvent or
XKeyReleasedEvent) to be used.

Returns the translated characters.

Specifies the length of the BufferReturn parameter.

Returns the KeySym computed from the event.

Specifies the status of the processing. This parameter returns a
pointer to the XCompose data structure or the value of NULL.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
XRebindKeysym subroutine.

Enhanced X-Windows Subroutines 7-343

XlowerWindow

XLowerWindow Subroutine

Purpose

Libraries

C Syntax

Lowers the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XlowerWindow(DisplayPtr, Window!D)
Display * DisplayPtr,
Window Window!D;

FORTRAN Syntax
external fxlowerwindow
integer*4 DisplayPtr
integer*4 Window!D
call fxlowerwindow(Oisp/ayPtr, Window!D)

Description
The XLowerWindow subroutine lowers the specified window to the bottom of the stack so
that it does not obscure any sibling windows. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then lowering a window is analogous to moving the
sheet to the bottom of the stack but leaving its x and y coordinates location on the desk
constant. Lowering a mapped window generates Expose events on any formerly obscured
windows.

The X Server generates a ConfigureRequest event and no processing is performed if the
OverrideRedirect attribute of the window is a False value and another client selected the
SubstructureRedirectMask event mask on the parent window. Otherwise, the window is
lowered to the bottom of the stack.

Parameters
DisplayPtr

Window/D

Specifies the connection to the X Server.

Specifies the window ID of the window to be lowered.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ConfigureWindow protocol request.

7-344 User Interface Reference

XMakeAssoc

XMakeAssoc Subroutine

Purpose

Library

Syntax

Creates an entry in a specific associate table.

Enhanced X-Windows Library (liboldX.a)

#include <X11 /X1 O.h>
XMakeAssoc(DisplayPtr, Table, x_id, Data)
Display * DisplayPtr,
XAssocTable *Table;
XID x_id;
char *Data;

Description
The XDeleteAssoc subroutine creates an entry in a specific associate table. It inserts data
into an XAssocTable structure keyed on an XID. Data is inserted only once. Redundant
inserts are meaningless and do not cause problems. The queue in each association bucket
is sorted from the lowest XID to the highest XID.

Note: This subroutine is in the liboldX.a library. Include this library in the compiler
command to build your program. For example:

{compiler-option} -o samples samples.c -loldX -lXll

Parameters
DisplayPtr

Table

x_id

Data

Specifies the connection to the X Server.

Specifies the associate table.

Specifies the XID.

Specifies the data to be associated with the x_id parameter.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCreateAssocTable subroutine.

Enhanced X-Windows Subroutines 7-345

XMapRaised

XMapRaised Subroutine

Purpose

Libraries

C Syntax

Maps and raises a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMapRaised(DisplayPtr, Window/D)
Display * DisplayPtr,
Window Window/D;

FORTRAN Syntax
external fxmapraised
integer*4 DisplayPtr
integer*4 Window/D
call fxmapraised(DisplayPtr, Window/D)

Description
The XMapRaised subroutine maps a specified window and all of its subwindows that have
had map requests. It also raises the specified window to the top of the stack.

Parameters
DisplayPtr

Window/D

Error Codes

Specifies the connection to the X Server.

Specifies a window ID.

Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XMapWindow subroutine.

The ConfigureWindow protocol request, MapWindow protocol request.

7-346 User Interface Reference

\

XMapSubwindows Subroutine

Purpose

Libraries

C Syntax

Maps all subwindows of a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMapSubwindows(Oisp/ayPtr, Window/D)
Display * DisplayPtr,
Window Windowf D;

FORTRAN Syntax
external fxmapsubwindows
integer*4 DisplayPtr
integer*4 Window/D
call fxmapsubwindows(Oisp/ayPtr, Window/D)

Description

XMapSubwindows

The XMapSubwindows subroutine maps all subwindows of a specified window in
top-to-bottom stacking order.

The X Server generates the Expose events on each newly displayed window. Using the
XMapSubwindows subroutine can be more efficient than individually mapping multiple
windows.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies the window ID.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The MapSubwindows protocol request.

Enhanced X-Windows Subroutines 7-347

XMapWindow

XMapWindow Subroutine

Purpose

Libraries

C Syntax

Maps a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMapWindow(DisplayPtr, Window/D)
Display * DisplayPtr;
Window Window/D;

FORTRAN Syntax
external fxmapwindow
integer*4 DisplayPtr
integer*4 Window/D
call fxmapwindow(Disp/ayPtr, Window/D)

Description
The XMapWindow subroutine maps a specified window and all of its subwindows that have
had map requests. Mapping a window that has an unmapped ancestor does not display the
window; such a window is unviewable. Mapping marks it as eligible for display once all the
ancestors of the window are mapped. The window then becomes viewable and is visible on
the screen if it is not obscured by another window. The XMapWindow subroutine has no
effect on a window that already mapped.

If the override_ redirect field of a specified window is a value of False and if another client
has selected the SubstructureRedirectMask value on the parent window, the X Server
generates a MapRequest event and the XMapWindow subroutine does not map the
window. Otherwise, the X Server generates a MapNotify event and the window is mapped.

If the specified window becomes viewable and has no stored contents, the X server tiles the
window with its background. If the background is undefined, the existing screen contents are
not altered, and the X Server can generate the Expose events.

If backing store is maintained while the window is unmapped, no Expose events are
generated. If a backing store is now maintained, a full window exposure is always
generated. Otherwise, only visible regions can be reported. Similar tiling and exposure take
place for any newly viewable inferiors.

If the specified window is an lnputOutput window, the XMapWindow subroutine generates
the Expose events on each lnputOutput window displayed as a result.

If the client maps and paints the window, and begins processing events, the window is
painted twice. To avoid this, request Expose events, then map the window, so the client
processes input events as usual. The event list includes the Expose events for each window
displayed on the screen. The normal response of the client to an Expose event is to repaint

/ the window. ~

7-348 User Interface Reference

XMapWindow

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies the window ID.

Error Codes
Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The MapWindow protocol request.

Enhanced X-Windows Subroutines 7-349

XMaskEvent

XMaskEvent Subroutine

Purpose

Libraries

C Syntax

Removes the next event that matches a specified event mask.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMaskEvent(DisplayPtr, EventMask, EventReturn)
Display * DisplayPtr,
unsigned long EventMask;
XEvent * EventReturn;

FORTRAN Syntax
external fxmaskevent
integer*4 DisplayPtr
integer*4 EventMask, EventReturn
call fxrnaskevent(DisplayPtr, EventMask, EventReturn)

Description
The XMaskEvent subroutine searches the event queue for events associated with a
specified mask. When it finds a match, it removes matched events, then copies them into
the specified XEvent data structure. Other events stored in the queue are not discarded.

If a requested event is not in the queue, the XMaskEvent subroutine flushes the output
buffer, then blocks until one is received.

Parameters
DisplayPtr

EventMask

EventReturn

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the event mask.

Returns the associated data structure of the matched event.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-350 User Interface Reference

XMatchVisuallnfo

XMatchVisuallnfo Subroutine

Purpose

Libraries

C Syntax

Gets the visual information that matches the specified depth and class of the screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XMatchVisuallnto(DisplayPtr, Screen, Depth, Class, VisuallnformationReturn)
Display * DisplayPtr,
int Screen;
int Depth;
int Class;
XVisuallnfo * VisuallnformationReturn;

FORTRAN Syntax
integer*4 fxmatchvisualinfo
external fxmatchvisualinfo
integer*4 DisplayPtr, Screen
integer*4 Depth, Class
integer*4 VisuallnformationReturn
integer*4 Status
Status= fxmatchvisualinfo(DisplayPtr, Screen, Depth, Class, VisuallnformationReturn)

Description
The XMatchVisuallnfo subroutine obtains the visual information for a visual that matches
the specified depth and class of the screen. Since multiple visuals that match the specified
depth and class can exist, the exact visual chosen is undefined. If a visual that matches is
found, the XMatchVisuallnfo subroutine returns the information on the visual to the
VisuallnformationReturn parameter.

Parameters
Class

Depth

DisplayPtr

Screen

Visual Information Return

Return Values
False

True

Specifies the class of the screen.

Specifies the depth of the screen.

Specifies the connection to the X Server.

Specifies the screen.

Returns the matched visual information.

A visual that matches is not found.

A visual that matches is found.

Enhanced X-Wlndows Subroutines 7-351

XMatchVisu·allnfo

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-352 User Interface Reference

XMoveResizeWindow Subroutine

Purpose

Libraries

C Syntax

Changes the size and location of a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMoveResizeWindow(Disp/ayPtr, Window!D,

Display * DisplayPtr,
Window Window!D;
intX, Y;
unsigned int Width, Height;

X, Y, Width, Height)

FORTRAN Syntax
external fxmoveresizewi ndow
integer*4 DisplayPtr
integer*4 WindowlD
integer*4 X
integer*4 Y
integer*4 Width
integer*4 Height
call fxmoveresizewindow(Disp/ayPtr, Window!D, X, Y, Width, Height)

Description
The XMoveResizeWindow subroutine changes the size and location of a specified window
without raising it. Moving and resizing a mapped window can generate an Expose event on
the window. Depending on the new size and location parameters, moving and resizing a
window can generate exposure events on windows that the window formerly obscured.

If the override_redirect field of the window is a value of False and another client has
selected the SubstructureRedirectMask mask on the parent window, the X Server
generates a ConfigureRequest event; no further processing is performed. Otherwise, the
window size and location are changed.

The X and Y parameters define the new position of the window relative to its parent window.
The Width and Height parameters define the interior size of the window.

Enhanced X-Windows Subroutines 7-353

Parameters
DisplayPtr

Height

Width

Window/D

x

y

Error Codes
Badlmplementation

BadValue

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the new height of the window.

Specifies the new width of the window.

Specifies the window to be reconfigured.

Specifies the x coordinate for the new position of the window
relative to the parent.

Specifies they coordinate for the new position of the window
relative to the parent.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ConfigureWindow protocol request.

Configuring Enhanced X-Windows Windows

7-354 User Interface Reference

(

\

XMoveWindow

XMoveWindow Subroutine

Purpose

Libraries

C Syntax

Moves a specified window without changing its size.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XMoveWindow(DisplayPtr, Window!D, X, Y)
Display * DisplayPtr,
Window Window/D;
intX, Y;

FORTRAN Syntax
external fxmovewindow
integer*4 DisplayPtr
integer*4 Window/D
integer*4 X
integer*4 Y
call fxmovewindow(Oisp/ayPtr, Window/D, X, Y)

Description
The XMoveWindow subroutine moves the specified window to the coordinates specified by
the X and Yparameters. It does not change the size or mapping state of the window, and
does not raise the window.

A mapped window can lose its contents when moved and one of the following occurs:

• If its background_pixmap field is the parentRelative value

• If it is obscured by a non-child window and has no backing store.

If the contents of the window are lost, the X Server generates the Expose events. Moving a
mapped window generates the Expose events on any formerly obscured windows.

If the override_redirect field of the window is a value of False and another client has
selected the SubstructureRedirectMask on the parent window, the X Server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the window is
moved.

The X and Y parameters define the new location for either the top-left pixel of the window
border or of the window itself, if it has no border.

Parameters
DisplayPtr

Window/D

x
y

Specifies the connection to the X Server.

Specifies the window to be moved.

Specifies the x coordinate for the new location of the window.

Specifies the y coordinate for the new location of the window

Enhanced X-Windows Subroutines 7-355

XMoveWindow

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ConfigureWindow protocol request.

7-356 User Interface Reference

/
i
\

XNewMod ifiermap

XNewModifiermap Subroutine

Purpose

Libraries

C Syntax

Creates an XModifierKeymap data structure.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XModifierKeymap *XNewModifiermap(MaximumKeysPerModifiers)
int MaximumKeysPerModifiers;

FORTRAN Syntax
integer*4 fxnewmodifiermapping
external fxnewmodifiermapping
integer*4 MaximumKeysPerModifier
integer*4 Modifiermap
Modifiermap = fxnewmodifiermapping(MaximumKeysPerModifiery

Description

Parameter

The XNewModifiermap subroutine returns a pointer to an XModifierKeymap data structure
for later use.

Use the XFreeModifierMap subroutine to free the storage when the modifier map is no
longer needed.

MaximumKeysPerModifiers Specifies the maximum number of key codes assigned to
any of the modifiers in the map.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-357

XNextEvent

XNextEvent Subroutine

Purpose

Libraries

C Syntax

Gets the next event and removes it from the queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (xlibXfx.a)

XNextEvent(DisplayPtr, EventReturn)
Display * DisplayPtr;
XEvent * EventReturn;

FORTRAN Syntax
external fxnextevent
integer*4 DisplayPtr
integer*4 EventReturn
call fxnextevent(DisplayPtr, EventReturn)

Description
The XNextEvent subroutine copies the first event from the event queue into a specified
XEvent data structure, then removes it from the queue. If the event queue is empty, the
XNextEvent subroutine flushes the output buffer, then blocks until an event is received.

Parameters
DisplayPtr

EventReturn

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Returns the next event in the queue.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ me nt/6000.

7-358 User Interface Reference

XNoOp Subroutine

Purpose

Libraries

C Syntax

Sends a NoOperation protocol request to the X Server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XNoOp(DisplayPtr)
Display * DisplayPtr,

FORTRAN Syntax
external fxnoop
integer*4 DisplayPtr
call fxnoop(DisplayPtr)

Description

XNoOp

The XNoOp subroutine sends a NoOperation protocol request to the X Server in order to
check the connection to the display system. It does not flush the output buffer.

Parameter
DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The NoOperation protocol request.

Enhanced X-Windows Subroutines 7-359

XOffsetRegion

X'OffsetRegion Subroutine

Purpose

Libraries

C Syntax

Moves a region by a specified amount.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XOffsetRegion(RegionPtr, DefineX, Define Y)
Region RegionPtr,
int DefineX, Define Y;

FORTRAN Syntax
external fxoffsetregion
integer*4 RegionPtr, DefineX, Define Y
call fxoffsetregion(RegionPtr, DefineX, DefineY)

Description
The XOffsetRegion subroutine moves a specified region by a specified amount. The
coordinates specified in the DefineX and Define Y parameters define the amount to move the
specified region.

Parameters
RegionPtr

DefineX

DefineY

Specifies the region.

Specifies the x coordinate.

Specifies they coordinate.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-360 User Interface Reference

(
\

XOpenDisplay

XOpenDisplay Subroutine

Purpose

Libraries

C Syntax

Opens a connection to the X Server that controls a display device.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Display *XOpenDisplay(DisplayName)
char * DisplayName;

FORTRAN Syntax
integer*4 fxopendisplay
external fxopendisplay
integer*4 Display
character*6 Hostname
Hostname = 'unix:O'
Display= fxopendisplay(Hostname)

Description

Parameter

The XOpenDisplay subroutine opens a connection to the X Server controlling the specified
display device. The DisplayName parameter establishes the display and communications
domain to be used. The X Server can implement various types of access control
mechanisms that allow clients to use the screens in the display.

On a UNIX based system, the host name is of the following format:

HostName: Number. Screen Number

If the DisplayName parameter is the NULL value, the XOpenDisplay subroutine uses the
DISPLAY environment variable. If the DISPLAY environment variable is the NULL value, the
XOpenDisplay subroutine uses the default display name.

If successful, the XOpenDisplay subroutine returns a pointer to a Display data structure,
defined in the <X11 /Xlib.h> file. If the XOpenDisplay subroutine is not successful, it returns
a NULL value, and the value of the DisplayName parameter defaults to the DISPLAY
environment variable.

After a successful call to the XOpenDisplay subroutine, all the screens in the display can be
used by the client. The screen number specified in the DisplayName parameter is returned
by the DefaultScreen macro or the XDefaultScreen subroutine. Elements of the Display
and Screen data structures can only be accessed by using the information macros or
functions.

DisplayName Specifies the display device.

Enhanced X-Windows Subroutines 7-361

XOpenDisplay

Return Values
NULL

Pointer to display structure

Error Code
Badlmplementation

Implementation Specifics

The XOpenDisplay subroutine is not successful.

The XOpenDisplay subroutine is successful.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateGC protocol request.

The DefaultScreen macro.

7-362 User Interface Reference

(

XParseColor

XParseColor Subroutine

Purpose

Libraries

C Syntax

Creates RGB values from color name strings.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XParseColor(DisplayPtr, Colormap!D, Specification, ExactDefinitionReturn)
Display * DisplayPtr,
Colormap Colormap!D;
char *Specification;
XColor * ExactDefinitionReturn;

FORTRAN Syntax
integer*4 fxparsecolor
external fxparsecolor
integer*4 DisplayPtr, Colormap!D
character*256 Specification
integer*4 ExactDefinitionReturn
integer*4 Status
Status= fxparsecolor(DisplayPtr, Colormap!D, Specification, ExactDefinitionReturn)

Description
The XParseColor subroutine creates a standard user interface to color. It takes a string
specification of a color, typically from a command line or from the Option parameter of the
XGetDefault subroutine, and returns the corresponding RGB (red, green, and blue) values
that are suitable for a subsequent call to the XAllocColor or XStoreColor subroutines.

The color can be specified as a color name, as in the XAllocNamedColor subroutine; or, it
can be specified by an initial sharp sign character followed by a numeric specification, as in
one of the following formats:

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB

(4 bits each)

(8 bits each)

(12 bits each)

(16 bits each)

In this format, the R, G, and B values represent single hexadecimal digits (upper or lower
case). When fewer than 16 bits each are specified, these bits represent the most-significant
bits of the value. For example, #3a7 is the same as #3000a0007000.

The colormap determines the screen on which to look up the color. The default colormap for
the screen can be used.

The ExactDefinitionReturn parameter returns the exact color value for later use and sets the
DoRed, DoGreen, and DoBlue flags of the XColor data structure.

Enhanced X-Windows Subroutines 7-363

XParseColor

Parameters
Colormap/D

DisplayPtr

ExactDefinitionReturn

Specification

Return Values
True

False

Error Codes
BadColor

Badlmplementation

Implementation Specifics

Specifies the colormap ID.

Specifies the connection to the X Server.

Returns the exact color value.

Specifies the color name as a string (not case sensitive).

The XParseColor subroutine is successful.

The XParseColor subroutine is not successful for one of the
following reasons:

• The initial character is a sharp sign, but the string is not
in the proper format.

• The initial character is not a sharp sign and the color
does not exist in the database of the server.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XAllocColor subroutine, XAllocNamedColor subroutine, XStoreColor subroutine.

The LookupColor protocol request.

7-364 User Interface Reference

(
'~

/
I
\

XParseGeometry

XParseGeometry Subroutine

Purpose

Libraries

C Syntax

Parses standard window geometry.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XParseGeometry(ParseString, XReturn, YReturn, WidthReturn,HeightReturn)
char * ParseString;
int * XReturn, * YReturn;
int *Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxparsegeometry
external fxparsegeometry
character*256 ParseString
integer*4 XReturn, YReturn
integer*4 WidthReturn, HeightReturn
integer*4 Changemask
Changemask = fxparsegeometry(ParseString, XReturn, YReturn, WidthReturn,

HeightReturn)

Description
The XParseGeometry subroutine parses standard window geometry. It uses a standard
string to indicate window size and placement. Strings to be parsed are in the following
format:

=I l<width>x<height>I l{+-}<xoffset>{+-}<yoffset>I

Items enclosed in <> are integers; items enclosed in II are optional; and, items enclosed
in {} indicate choose one of. Brackets should not be displayed in the actual string.

The items in this form map into the parameters of the XParseGeometry subroutine.

The XParseGeometry subroutine returns a bit mask indicating values (width, height, x
offset, and y offset) found in the string. It also indicates if x and y are negative. By
convention, the value of -0 is not equal to the value of +O, so that the window can be
positioned relative to the right edge or to the bottom edge.

For each value found, the corresponding parameter is updated. For each value not found,
the parameter is left unchanged.

Each value is set when it is defined or when one of the signs is set. The bits are represented
by the XValue, VValue, WidthValue, HeightValue, XNegative, or VNegative values in the
<X1 1/Xutil.h> data file.

If the subroutine returns to the value of XValue or YValue, the window can be placed at the
requested position. The window is not automatically placed; the user must place the window
at the requested position.

Enhanced X-Windows Subroutines 7-365

XParseGeometry

Parameters
HeightReturn

ParseString

Width Return

XReturn

YReturn

Return Value

Returns the height determined.

Specifies the string to be parsed.

Returns the width determined.

Returns the x coordinate offset.

Returns they coordinate offset.

Bit mask specifying the fields set.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-366 User Interface Reference

XPeekEvent

XPeekEvent Subroutine

Purpose

Libraries

C Syntax

Peeks at the event queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XPeekEvent(DisplayPtr, EventReturn)
Display * DisplayPtr
XEvent * EventReturn;

FORTRAN Syntax
external fxpeekevent
integer*4 DisplayPtr
integer*4 EventReturn
cal I fxpeekevent(DisplayPtr, EventReturn)

Description
The XPeekEvent subroutine returns the first event from the event queue without removing it
from the queue. If the queue is empty, this subroutine flushes the output buffer, then blocks
until an event is received. The XPeekEvent subroutine copies the event into the
client-supplied XEvent data structure without removing the event from the event queue.

Parameters
DisplayPtr

EventReturn

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Returns a copy of the matched event's associated structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-367

XPeeklf Event

XPeeklf Event Subroutine

Purpose

Libraries

C Syntax

Checks the event queue for a specified matching event without removing it from the queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XPeeklfEvent(DisplayPtr, EventReturn, Predicate, Argument)
Display * DisplayPtr,
XEvent * EventReturn;
Boo I (*Predicate)();
char *Argument;

FORTRAN Syntax
external fxpeekifevent
integer*4 DisplayPtr
integer*4 EventReturn
integer*4 Predicate
character*256 Argument
call fxpeekifevent(DisplayPtr, EventReturn, Predicate, Argument)

Description
The XPeeklfEvent subroutine requires a predicate procedure to check the event queue for a
matching event. It returns only when the specified predicate procedure returns True for an
event.

The following predicate procedure is used:

Bool predicate(DisplayPtr, Event, Argument)
Display * DisplayPtr,
XEvent *Event;
char *Argument;

The predicate procedure is called once for each event in the queue until it finds a match.
After finding a match, it returns to the value of True. If it does not find a match, it returns to
the value of False.

After the predicate procedure finds a match, the XPeeklfEvent subroutine copies the
matched event into the client-supplied XEvent data structure without removing the event
from the queue. The XPeeklfEvent subroutine flushes the output buffer if it blocks waiting
for additional events.

7-368 User Interface Reference

I
\

Parameters
Argument

DisplayPtr

EventReturn

Predicate

Error Code

XPeeklf Event

Specifies the user-supplied value for the Argument parameter of the
predicate procedure.

Specifies the connection to the X Server.

Returns a copy of the associated structure of the matched event.

Specifies the predicate procedure to be called.

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-369

XPending

XPending Subroutine

Purpose

Libraries

C Syntax

Gets the number of events that are pending in the event queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XPending(DisplayPtt}
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxpending
external fxpending
integer*4 DisplayPtr
integer*4 NumberEvents
NumberEvents = fxpending(DisplayPtt}

Description

Parameter

The XPending subroutine returns the number of events received from the X Server but not
yet removed from the event queue. Use the XNextEvent subroutine or the XWindowEvent
subroutine to remove events from the queue.

Using the XPending subroutine is equivalent to using the XEventsQueued subroutine with
a Mode parameter of QueuedAfterFlush.

DisplayPtr Specifies the connection to the X Server.

Return Value
Number of events received from the server but not yet removed from the event queue.

Error Code
Badlmplen?entation

!:

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ menV6000.

Related Information
The XNextEvent subroutine.

XWindowEvent subroutine, XEventsQueued subroutine.

7-370 User Interface Reference

Xpermalloc Subroutine

Purpose

Libraries

C Syntax

Provides for a permanent allocation of memory.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *Xpermalloc(Size}
unsigned int Size;

FORTRAN Syntax
integer*4 fxpermalloc
external fxpermalloc
integer*4 Size
integer*4 ReturnCode
ReturnCode = fxpermalloc(Size}

Description

Xpermalloc

The Xpermalloc subroutine creates a permanent allocation of memory. This subroutine is
used by some toolkits to improve performance and storage use by comparison with using
the completely general memory allocator.

Parameter
Size Amount of memory, in bytes, to allocate.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Subroutines 7-371

XPointlnRegion

XPointlnRegion Subroutine

Purpose

Libraries

C Syntax

Determines if a point lies in a specified region.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XPointlnRegion(RegionPtr, X, Y)
Region RegionPtr,
intX, Y;

FORTRAN Syntax
integer*4 fxpointinregion
external fxpointinregion
integer*4 RegionPtr, X, Y
integer*4 ReturnCode
ReturnCode = fxpointinregion(RegionPtr, X, Y)

Description
The XPointlnRegion subroutine determines if a specified point lies in a specified region.
The values of the X and Yparameters define the coordinates of the point.

Parameters
RegionPtr

x

y

Specifies the region.

Specifies the x coordinate of the point.

Specifies they coordinate of the point.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Return Values
False The point defined by the x and y coordinates does not lie in the specified

region.

True The point defined by the x and y coordinates lies in the specified region.

7-372 User Interface Reference

XPolygonRegion Subroutine

Purpose

Libraries

C Syntax

Generates a region from a polygon.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Region XPolygonRegion(Points, Number, Fil/Rule)
XPoint Points[];
int Number;
int Fil/Rule;

FORTRAN Syntax
integer*4 fxpolygonregion
external fxpolygonregion
integer*4 Number
integer*4 Points, Fil/Rule
integer*4 Region
Region= fxpolygonregion(Points, Number, Fil/Rule)

Description

XPolygonRegion

The XPolygonRegion subroutine returns a region for a polygon defined by an array of
points.

The Fil/Rule parameter can be set to either the value of EvenOddRule or WindingRule.

Parameters
Fil/Rule ' Specifies the fill rule to be set for the specified graphics context.

Number Specifies the number of points in the polygon.

Points Specifies an array of points.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related lnformadon
The XCreateGC subroutine.

Using Enhanced X-Windows to Draw Points, Lines, Rectangles, and Arcs

Enhanced X-Windows Subroutines 7-373

XPutBackEvent

XPutBackEvent Subroutine

Purpose

Libraries

C Syntax

Pushes an event back into the event queue.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XPutBackEvent(Disp/ayPtr, Event)
Display * DisplayPtr,
XEvent *Event;

FORTRAN Syntax
external fxputbackevent
integer*4 DisplayPtr
integer*4 Event
call fxputbackevent(Disp/ayPtr, Event)

Description
The XPutBackEvent subroutine pushes an event back to the top of the event queue of the
current display. When using this subroutine an event can be read, ·then dealt with later.
There is no limit to the number of times in succession the XPutBackEvent subroutine can
be called.

Parameters
DisplayPtr

Event

Specifies the connection to the X Server.

Specifies a pointer to an event.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Envi ronment/6000.

7-374 User Interface Reference

XPutlmage

XPutlmage Subroutine

Purpose

Libraries

C Syntax

Combines an image in memory with a rectangle of a drawable on the display screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XPutlmage(DisplayPtr, Drawable/D, GraphicsContext, Image, SourceX SourceY,
DestinationX, Destination Y, Width, Height)

Display * DisplayPtr,
Drawable DrawablelD;
GC GraphicsContext,
Xlmage *Image;
int SourceX, SourceY;
int DestinationX, Destination Y;
unsigned int Width, Height.

FORTRAN Syntax
external fxputimage
integer*4 DisplayPtr
integer*4 DrawablelD, GraphicsContext, Image
integer*4 SourceX, Source Y, DestinationX, Destination Y
integer*4 Width, Height
call fxputimage(DisplayPtr, Drawable!D, GraphicContext, Image, SourceX, SourceY,

DestinationX, Destination Y, Width, Heigh~

Description
The XPutlmage subroutine combines an image in memory with a rectangle of a specified
drawable.

If the XVBitmap format is used, the depth of the image must be a value of 1. The
foreground pixel in the graphics context defines the source for the one bits in the image, and
the background pixel defines the source for the 0-bits.

If the XVPixmap and ZPixmap values are used, the depth of the image must match the
depth of the drawable. The section of the image defined by the SourceX, SourceY, Width,
and Height parameters is drawn on the specified part of the drawable.

The XPutlmage subroutine uses the function, plane_mask, subwindow_mode, clip_x_origin,
clip_y_origin, and clip_mask graphics context fields. It also uses the foreground and
background graphics context mode-dependent fields.

Parameters
DestinationX

Destination Y

Specifies the x coordinate of the subimage, relative to the origin of
the drawable.

Specifies the y coordinate of the subimage, relative to the origin of
the drawable.

Enhanced X-Windows Subroutines 7-375

XPutlmage

DisplayPtr

Drawable/D

GraphicContext

Height

Image

SourceX

SourceY

Width

Error Codes
Bad Drawable

BadGC

Bad Implementation

Bad Match

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the resource ID.

Specifies the graphics context.

Specifies the height of the subimage.

Specifies the image to be combined with the rectangle.

Specifies the offset in the x coordinate from the left edge of the
image defined by the Xlmage data structure.

Specifies the offset in the y coordinate from the top edge of the
image defined by the Xlmage data structure.

Specifies the width of the subimage.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Putlmage protocol request.

7-376 User Interface Reference

XPutPixel Subroutine

Purpose

Libraries

C Syntax

Sets a pixel value in an image.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XPutPixel(XlmagePtr, X, Y, Pixe~
Xlmage * XlmagePtr,
int X;
int Y;
unsigned long Pixel;

FORTRAN Syntax
integer*4 fxputpixel
external fxputpixel
integer*4 XlmagePtr, X, Y, Pixel
integer*4 Status
Status = fxputpixel(XlmagePtr, X, Y, Pixe~

Description

XPutPixel

The XPutPixel subroutine sets a pixel value in an image, overwriting the pixel value in the
specified image with a new value.

The input pixel value must be in normalized format. The least-significant byte of the long flag
defined in the <X11 /Xutil.h> data file is the least-significant byte of the pixel.

The image must contain the x and y coordinates.

Parameters
Pixel Specifies the new pixel value.

x Specifies the x coordinate relative to the origin of the image.

XlmagePtr Specifies a pointer to the image.

y Specifies they coordinate relative to the origin of the image.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-377

XQueryBestCursor

XQueryBestCursor Subroutine

Purpose

Libraries

C Syntax

Gets the best size for the cursor.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XQueryBestCursor(Disp/ayPtr, Drawable!D, Width, Height, WidthReturn,
HeightReturn)

Display * DisplayPtr,
Drawable DrawablelD;
unsigned int Width, Height;
unsigned int* Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxquerybestcursor
external fxquerybestcursor
integer*4 DisplayPtr
integer*4 Drawable!D, Width, Height
integer*4 WidthReturn, HeightReturn
integer*4 Status
Status= fxquerybestcursor(Disp/ayPtr, Drawable!D, Width, Height, WidthReturn,

HeightReturn)

Description
The XQueryBestCursor subroutine provides a way to find out what size cursors are actually
possible on the display. It returns the largest size that can be displayed. Applications should
be prepared to use smaller cursors on displays that cannot support large ones.

Parameters
DisplayPtr

Drawable ID

Height

HeightReturn

Width

Width Return

Return Values
False

True

7-378 User Interface Reference

Specifies the connection to the X Server.

Specifies any drawable.

Specifies the height of the cursor.

Returns the height dimension closest to the specified height.

Specifies the width of the cursor.

Returns the width dimension closest to the specified width.

The XQueryBestCursor subroutine is not successful.

The XQueryBestCursor subroutine is successful.

XQueryBestCursor

Error Codes
Bad Drawable

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryBestSize protocol request.

Enhanced X-Windows Subroutines 7-379

XQueryBestSize

XQueryBestSize Subroutine

Purpose

Libraries

C Syntax

Gets the best size for the tile, stipple, or cursor.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XQueryBestSize(DisplayPtr, Class, WhichScreen, Width,, Height, WidthReturn,
HeightReturn)

Display * DisplayPtr,
int Class;
Drawable WhichScreen;
unsigned int Width, Height;
unsigned int* Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxquerybestsize
external fxquerybestsize
integer*4 DisplayPtr
integer*4 Class
integer*4 WhichScreen
integer*4 Width, Height
integer*4 WidthReturn, HeightReturn
integer*4 Status
Status= fxquerybestsize(Oisp/ayPtr, Class, WhichScreen, Width, Height, WidthReturn,

HeightReturn)

Description
The XQueryBestSize subroutine returns the best size of a tile, stipple, or cursor.

If the Class parameter is specified as the value of CursorShape, the XQueryBestSize
subroutine returns the largest size that can be fully displayed on the display screen specified
in the WhichScreen parameter.

If the Class parameter is specified as the value of TileShape, the XQueryBestSize
subroutine returns the size that can be tiled fastest. The drawable specified in the
WhichScreen parameter indicates the display screen and, optionally, the window class and
depth.

If the Class parameter is specified as the value of StippleShape, the XQueryBestSize
subroutine returns the size that can be stippled fastest.

An lnputOnly window cannot be used as the drawable if the Class parameter is specified as
the value of TileShape or StippleShape.

The drawable specified in the WhichScreen parameter indicates the display screen and,
optionally, the window class and depth.

7-380 User Interface Reference

Parameters
Class

DisplayPtr

Height

HeightReturn

Which Screen

Width

Width Return

Return Values
False

True

Error Codes
Bad Drawable

Badlmplementation

Bad Match

BadValue

Implementation Specifics

XQueryBestSize

Specifies the class as the value of TileShape,
CursorShape, or StippleShape.

Specifies the connection to the X Server.

Specifies the height of the drawable.

Returns the height of the drawable best supported by
the display system.

Specifies any drawable on the screen.

Specifies the width of the drawable.

Returns the width of the drawable best supported by the
display system.

The XQueryBestSize subroutine is not successful.

The XQueryBestSize subroutine is successful.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-381

XQueryBestStipple

XQueryBestStipple Subroutine

Purpose

Libraries

C Syntax

Gets best stipple shape.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XQueryBestStipple(Oisp/ayPtr, WhichScreen, Width, Height, WidthReturn
, HeightReturn)

Display * DisplayPtr,
Drawable WhichScreen;
unsigned int Width, Height;
unsigned int* Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxquerybeststipple
external fxquerybeststipple
integer*4 DisplayPtr
integer*4 WhichScreen
integer*4 Width, Height
integer*4 WidthReturn, HeightReturn
integer*4 Status
Status= fxquerybeststipple(Disp/ayPtr, WhichScreen, Width, Height, WidthReturn,

HeightReturn)

Description
The XQueryBestStipple subroutine obtains the size that can be stippled fastest on the
screen, closest to the size specified.

The drawable specified by the WhichScreen parameter indicates the display screen and,
optionally, the window class and depth.

An lnputOnly window cannot be used as the drawable for this subroutine.

Parameters
DisplayPtr

Height

HeightReturn

WhichScreen

Width

Width Return

7-382 User Interface Reference

Specifies the connection to the X Server.

Specifies the height of the drawable.

Returns the height best supported by the display system.

Specifies any drawable.

Specifies the width of the drawable.

Returns the width best supported by the display system.

XQueryBestStipple

Return Values
False The XQueryBestStipple subroutine is not successful.

True The XQueryBestStipple subroutine is successful.

Error Codes
Bad Drawable

Badlmplementation

Bad Match

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryBestSize protocol request.

Enhanced X-Windows Subroutines 7-383

XQueryBestTile

XQueryBestTile Subroutine

Purpose

Libraries

C Syntax

Gets the best fill tile shape.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XQueryBestTile(Oisp/ayPtr, WhichScreen, Width, Height, WidthReturn,
HeightReturn)

Display * DisplayPtr,
Drawable WhichScreen;
unsigned int Width, Height;
unsigned int* Width Return, * HeightReturn;

FORTRAN Syntax
integer*4 fxquerybesttile
external fxquerybesttile
integer*4 DisplayPtr
integer*4 WhichScreen
integer*4 Width, Height
integer*4 WidthReturn, HeightReturn
integer*4 Status
Status= fxquerybesttile(Oisp/ayPtr, WhichScreen, Width, Height, WidthReturn,

HeightReturn)

Description
The XQueryBestTile subroutine obtains the size that can be tiled fastest on the screen,
closest to the size specified.

The drawable specified in the WhichScreen parameter indicates the display screen and,
optionally, the window class and depth.

An lnputOnly window cannot be used as the drawable for this subroutine.

Parameters
OisplayPtr

Height

HeightReturn

WhichScreen

Width

Width Return

7-384 User Interface Reference

Specifies the connection to the X Server.

Specifies the height of the drawable.

Returns the height best supported by the display
system.

Specifies any drawable.

Specifies the width of the drawable.

Returns the width best supported by the display
system.

\

Return Values
False

True

Error Codes
Bad Drawable

Badlmplementation

Bad Match

Implementation Specifics

XQueryBestTile

The XQueryBestTile subroutine is not successful.

The XQueryBestTile subroutine is successful.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The QueryBestSize protocol request.

Enhanced X-Windows Subroutines 7-385

XQueryColor

XQueryColor Subroutine

Purpose

Libraries

C Syntax

Obtains the RGB (red, green, and blue) value for a specified pixel.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XQueryColor(DisplayPtr, Colormap/D, DefinitionlnOut)
Display * DisplayPtr,
Colormap Colormap/D;
XColor * DefinitionlnOuf",

FORTRAN Syntax
external fxquerycolor
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 DefinitionlnOut
call fxquerycolor(DisplayPtr, Colormap!D, DefinitionlnOut)

Description
The XQueryColor subroutine obtains the color values for a single specified pixel value. It
returns the RGB values stored in the Colormap parameter for the pixel value passed as the
pixel field in the XColor data structure. This subroutine sets the flags field of the XColor
data structure to the appropriate flag.

Parameters
Co/ormap!D

DefinitionlnOut

DisplayPtr

Error Codes
BadColor

Badlmplementation

BadValue

Implementation Specifics

Specifies the colormap ID.

Returns the RGB value. Specifies the pixel value. This is both the
Input and the Output parameter.

Specifies the connection to the X Server.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryColors protocol request.

7-386 User Interface Reference

(

\

XQueryColors

XQueryColors Subroutine

Purpose

Libraries

C Syntax

Queries the RGB (red, green, and blue) values for an array of pixels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XQueryColors(Oisp/ayPtr, Colormap/D, DefinitionslnOut, NumberColors)
Display * DisplayPtr,
Colormap ColormaplD;
XColor DefinitionslnOut[J;
int NumberColors;

FORTRAN Syntax
external fxquerycolor
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 DefinitionslnOut
integer*4 NumberColors
call fxq uerycolor(DisplayPtr, Colormap!D, DefinitionslnOuO

Description
The XQueryColors subroutine obtains color values for a list of pixels stored in the list of
XColor data structures. It returns the RGB values stored in the Colormap parameter for the
pixel value passed in the pixel fields of XColor data structures. The XQueryColors sets the
flags field of the XColor data structure to the appropriate flags.

Parameters
Colormap/D

DefintionslnOut

DisplayPtr

NumberColors

Error Codes
BadColor

Badlmplementation

BadValue

Implementation Specifics

Specifies the colormap ID.

Specifies pixels and returns a list of RGB color definition data
structures for the pixels specified in the data structure.

Specifies the connection to the X Server.

Specifies the number of XColor data structures in the color
definition list.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-387

XQueryColors

Related Information
The QueryColors protocol request.

7-388 User Interface Reference

XQueryFont

XQueryFont Subroutine

Purpose

Libraries

C Syntax

Returns information about a loaded font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XFontStruct *XQueryfont(DisplayPtr, Font/D}
Display * DisplayPtr;
XID Font/D;

FORTRAN Syntax
integer*4 fxqueryfont
external fxqueryfont
integer*4 DisplayPtr
integer*4 Font!D
integer*4 Font/O
Font!D = fxqueryfont(Oisp/ayPtr, Font!D)

Description
The XQueryf ont subroutine returns information about a loaded font and returns a pointer to
the XFontStruct data structure, which provides information about the font.

The XQueryf ont subroutine can query a font or the fonts stored in the graphics context.
The font ID stored in the XFontStruct data structure will be the GContext ID. (The
GContext ID, however, is not valid as a font ID in all other subroutines.)

The Xfreefontlnfo subroutine frees the data obtained by using the XQueryf ont
subroutine.

Parameters
DisplayPtr

Font!D

Return Values

Specifies the connection to the X Server.

Specifies the font ID or the GContext ID.

NULL The query about a font is not successful.

Pointer to the XFontStruct data structure containing the information.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-389

XQueryFont

Related Information
The XFreeFont subroutine, XFreeFontlnfo subroutine, XGContextFromGC subroutine,
XLoadQueryFont subroutine, XListFonts subroutine, XListFontsWithlnfo subroutine.

The QueryFont protocol request.

7-390 User Interface Reference

\

XQueryKeymap Subroutine

Purpose

Libraries

C Syntax

Gets a bit vector that describes the state of the keyboard.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XQueryKeymap(Disp/ayPtr, KeysReturn)
Display * DisplayPtr,
char KeysReturn[32];

FORTRAN Syntax
external fxquerykeymap
integer*4 DisplayPtr
integer*4 KeysReturn
call fxquerykeymap(Disp/ayPtr, KeysReturn)

Description

XQueryKeymap

The XQueryKeymap subroutine returns a bit vector representing the logical state of the
keyboard, where each 1-bit indicates that the corresponding key is currently pressed down.
The vector is represented as 32 bytes. Byte N (from O} contains the bits for keys SN to
SN + 7 with the least-significant bit in the byte representing key SN.

Parameters
DisplayPtr Specifies the connection to the X Server.

KeysReturn Returns an array of bytes, where each bit represents one key of the
keyboard, to identify which keys are pressed down.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryKeymap protocol request.

Enhanced X-Windows Subroutines 7-391

XQueryPointer

XQueryPointer Subroutine

Purpose

Libraries

C Syntax

Obtains the root window and the pointer coordinates relative to the origin of the root for the
current pointer position.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XQueryPointer(DisplayPtr, Window!D, RootReturn, ChildReturn, RootXReturn,
RootYReturn, WindowXReturn, WindowYReturn, MaskReturn)

Display * DisplayPtr;
Window Window/D;
Window * RootReturn, *Child Return;
int * RootXReturn, * RootYReturn;
int* WindowXReturn, * WindowYReturn;
unsigned int *MaskReturn;

FORTRAN Syntax
integer*4 fxquerypointer
external fxquerypointer
integer*4 DisplayPtr
integer*4 Window/D
integer*4 RootReturn, ChildReturn
integer*4 RootXReturn, R9otYReturn
integer*4 WindowXReturn, WindowYReturn
integer*4 MaskReturn
integer*4 ReturnCode
ReturnCode = fxquerypointer(DisplayPtr, Window/D, RootReturn, ChildReturn,

RootXReturn, RootYReturn, WindowXReturn,
WindowYReturn, MaskReturn)

Description
The XQueryPointer subroutine returns the root window and the pointer coordinates relative
to the origin of the root for the current pointer position.

If the pointer coordinates returned to the WindowXReturn and WindowYReturn parameters
are relative to the origin of the specified window, the XQueryPointer subroutine returns
True. If a child window contains the pointer, its window ID is returned in the ChildReturn
parameter. Otherwise, the ChildReturn parameter is None.

If the pointer is not on the same screen as the specified window, the XQueryPointer
subroutine returns False. In addition, None is returned in the ChildReturn parameter, and
value of 0 is returned in the WindowXReturn and WindowYReturn parameters.

The XQueryPointer subroutine returns the current logical state of the pointer buttons and
modifier keys to the MaskReturn parameter. It sets the MaskReturn parameter to the
bitwise-inclusive OR of the current state of one or more of the pointer button or modifier key
bit masks.

7-392 User Interface Reference

I
I
\

Parameters
Child Return

DisplayPtr

Mask Return

RootReturn

RootXReturn

RootYReturn

Window/D

WindowXReturn

XQueryPointer

Returns the child window ID, if any, for the current pointer position.

Specifies the connection to the X Server.

Returns the current state of the modifier keys and pointer buttons.

Returns the root window ID for the current pointer position.

Returns the x coordinate for the current pointer position, relative to the
origin of the root window.

Returns the y coordinate for the current pointer position, relative to the
origin of the root window.

Specifies the window ID.

Returns the x coordinate for the current pointer position, relative to the
origin of a specified window.

WindowYReturn Returns the y coordinate for the current pointer position, relative to the
origin of a specified window.

Return Values
True The pointer coordinates returned to the WindowXReturn and

WindowYReturn parameters are relative to the origin of the specified
window.

Returns the Child ID of the window containing the pointer, if any.

False The pointer is not on the same screen as the specified window.

Returns the value of None to ChildReturn.

Returns 0 to the WindowXReturn and WindowYReturn parameters.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryPointer protocol request.

Enhanced X-Windows Subroutines 7-393

XQueryTextExtents

XQueryTextExtents Subroutine

Purpose

Libraries

C Syntax

Queries the server for the bounding box of an 8-bit character string in a specified font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XQueryTextExtents(Oisp/ayPtr, Font!D, String, NumberCharacters, DirectionReturn,
FontAscentReturn, FontDescentReturn, Overal/Return)

Display * DisplayPtr,
XID Font/D;
XChar2b *String;
int NumberCharacters;
int *Direction Re turn;
int * FontAscentReturn, * FontDescentReturn;
XCharStruct *Overall Return;

FORTRAN Syntax
external fxq uerytextextents
integer*4 DisplayPtr
integer*4 Font!D
character*256 String
integer*4 NumberCharacters, DirectionReturn, FontAscentReturn
integer*4 FontDescentReturn, Overal/Return
call fxquerytextextents(Oisp/ayPtr, Font!D, String, NumberCharacters, DirectionReturn,

FontAscentReturn, FontDescentReturn, Overal/Return)

Description
The XQueryTextExtents subroutine returns either the bounding box of a specified 8-bit
character string in a font or the font contained in a specified graphics context. It returns an
XCharStruct data structure with the following values:

• The ascent member is set to the maximum of the ascent metrics of all characters in the
string.

• The descent member is set to the maximum of the descent metrics.

• The width member is set to the sum of the character-width metrics of all characters in the
string.

• Let w be the sum of the character-width metrics of all characters preceding it for each
character in the string.

• Let L be the left-side-bearing metric of the character plus w.

• Let R be the right-side-bearing metric of the character plus w.

• The /bearing field is set to the minimum L of all characters in the string.

• The rbearing field is set to the maximum R of all characters in the string.

7-394 User Interface Reference

XQueryTextExtents

If the font has no defined default character, undefined characters in the string are taken to
have zero metrics.

Note: Since the XQueryTextExtents subroutine queries the X Server, there is more
round-trip overhead involved than when using the XTextExtents subroutine.

Parameters
Direction Return

DisplayPtr

FontAscentReturn

FontDescentReturn

Font/D

NumberCharacters

Overall Return

String

Error Codes
Bad Font

BadGC

Bad Implementation

Implementation Specifics

Returns the value of the direction hint field, which can be either
the value of FontleftToRight or FontRightToleft.

Specifies the connection to the X Server.

Returns the font ascent member.

Returns the font descent member.

Specifies either the font ID or the GContext value ID that
contains the font.

Specifies the number of characters in the string.

Returns the overall size in the specified XCharStruct data
structure.

Specifies a character string.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCharStruct data structure.

The QueryTextExtents protocol request.

Enhanced X-Windows Subroutines 7-395

XQueryTextExtents16

XQueryTextExtents16 Subroutine

Purpose

Libraries

C Syntax

Queries the server for the bounding box of a 2-byte, 16-bit, character string in a specified
font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XQueryTextExtents16(DisplayPtr, Font!D, String, NumberCharacters, DirectionReturn,
FontAscentReturn, FontDescentReturn, Overal/Return)

Display * DisplayPtr,
XID Font!D;
XChar2b *String;
int NumberCharacters;
int* Direction Return;
int * FontAscentReturn, * FontDescentReturn;
XCharStruct *Overal/Return;

FORTRAN Syntax
external fxquerytextextents16
integer*4 DisplayPtr
integer*4 Font!D
integer*4 String
integer*4 NumberCharacters, DirectionReturn, FontAscentReturn
integer*4 FontDescentReturn, Overal/Return
call fxquerytextextents16(DisplayPtr, Font!D, String, NumberCharacters, DirectionReturn,

FontAscentReturn, FontDescentReturn, Overal/Return)

Description
The XQueryTextExtents16 subroutine returns either the bounding box of a specified 16-bit ·

\
character string in a font or the font contained in a specified graphics context. It returns an
XCharStruct data structure with the following values:

• The ascent member is set to the maximum of the ascent metrics of all characters in the
string.

• The descent member is set to the maximum of the descent metrics.

• The width member is set to the sum of the character-width metrics of all characters in the
string.

• Let w be the sum of the character-width metrics of all characters preceding it for each
character in the string.

• Let L be the left-side-bearing metric of the character plus w.

• Let R be the right-side-bearing metric of the character plus w.

• The /bearing field is set to the minimum L of all characters in the string.

• The rbearing field is set to the maximum R of all characters in the string.

7-396 User Interface Reference

XQueryTextExtents16

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b data
structure is interpreted as a 16-bit number with Byte 1 as the most-significant byte. If the font
has no defined default character, undefined characters in the string are taken to have zero
metrics.

Note: Since the XQueryTextExtents16 subroutine queries the X Server, there is more
round-trip overhead involved than when using the XTextExtents16.

Parameters
FontAscentReturn

FontDescentReturn

Direction Return

DisplayPtr

Font ID

NumberCharacters

Overall Return

String

Error Codes
Bad Font

BadGC

Badlmplementation

Implementation Specifics

Returns the font ascent member.

Returns the font descent member.

Returns the value of the direction hint field which can be either
the value of FontleftToRight or FontRightToleft.

Specifies the connection to the X Server.

Specifies either the font ID or the GContext value ID that
contains the font.

Specifies the number of characters in the string.

Returns the overall size in the specified XCharStruct data
structure.

Specifies a character string.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure.

The QueryTextExtents protocol request.

Enhanced X-Windows Subroutines 7-397

XQueryTree

XQueryTree Subroutine

Purpose

Libraries

C Syntax

Obtains information on the window tree for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XQueryTree(DisplayPtr, Window!D, RootReturn, ParentReturn, ChildrenReturn,
NumberChildrenReturn)

Display * DisplayPtr;
Window Window!D;
Window * RootReturn;
Window * ParentReturn;
Window **ChildrenReturn;
unsigned int * NumberChildrenReturn;

FORTRAN Syntax
integer*4 fxquerytree
external fxquerytree
integer*4 DisplayPtr
integer*4 Window/D
integer*4 RootReturn, ParentReturn
integer*4 ChildrenReturn
integer*4 NumberChildrenReturn
integer*4 Status
Status= fxquerytree(DisplayPtr, Window!D, RootReturn, ParentReturn, ChildrenReturn,

NumberChildrenReturn)

Description
The XQueryTree subroutine returns the root ID, the parent window ID, a pointer to the list of
child windows, and the number of children for a specified window. The child windows are
listed in current stacking order from bottom to top (first to last).

Use the XFree subroutine to free this list when it is no longer needed.

Parameters
Children Return

DisplayPtr

NumberChildrenReturn

ParentReturn

RootReturn

Window!D

7-398 User Interface Reference

Returns a pointer to the list of children for a specified
window.

Specifies the connection to the X Server.

Returns the number of children for a specified window.

Returns the window ID of the parent for a specified window.

Returns the root window ID for a specified window.

Specifies the window ID.

Return Values
False

True

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

XQueryTree

The XQueryTree subroutine does not succeed.

The XQueryTree subroutine succeeds.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The QueryTree protocol request.

Enhanced X-Windows Subroutines 7-399

XRaiseWindow

XRaiseWindow Subroutine

Purpose

Library

C Syntax

Raises the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRaiseWindow(Oisp/ayPtr, Window!D)
Display * DisplayPtr,
Window Window!D;

FORTRAN Syntax
external fxraisewindow
integer*4 DisplayPtr
integer*4 Window/D
call fxraisewindow(Oisp/ayPtr, Window/D)

Description
The XRaiseWindow subroutine raises the specified window to the top of the stack so that a
sibling window does not obscure it. If the windows are regarded as overlapping sheets of
paper stacked on a desk, raising a window is the same as moving the sheet to the top of the
stack while leaving its x and y location on the desk constant.

Raising a mapped window may generate the Expose events for the window and for any
mapped subwindows that were formerly obscured.

If the override_redirect field of the window is the value of False and some other client has
selected the SubstructureRedirectMask value on the parent window, the X Server
generates a ConfigureRequest event, and processing is not performed. Otherwise, the
window is raised. r

Parameters
DisplayPtr

Window/D

Error Codes
BadWindow

Specifies the connection to the X Server.

Specifies the window ID.

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ConfigureWindow protocol request.

7-400 User Interface Reference

\

XReadBitmapFile

XReadBitmapFile Subroutine

Purpose

Libraries

C Syntax

Creates a bitmap from a description in a bitmap file.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XReadBitmapFile(DisplayPtr, DrawablelD, Filename, WidthReturn, HeightReturn,
BitmapReturn, XHotReturn, YHotReturn)

Display * DisplayPtr,
Drawable OrawablelD;
char *Filename;
unsigned int* Width Return, * HeightReturn;
Pixmap * BitmapReturn;
int * XHotReturn, * YHotReturn;

FORTRAN Syntax
integer*4 fxreadbitmapfile
external fxreadbitmapfile
integer*4 DisplayPtr, OrawablelD
character*256 Filename
integer*4 WidthReturn, HeightReturn, BitmapReturn
integer*4 XHotReturn, YHotReturn
integer*4 Status
Status= fxreadbitmapfile(Disp/ayPtr, DrawablelD, Filename, WidthReturn, HeightReturn,

BitmapReturn, XHotReturn, YHotReturn)

Description
The XReadBitmapFile subroutine creates a bitmap from a description in a bitmap file.

The XReadBitmapFile subroutine assigns the height and width from the bitmap file that was
read to the height and width of the target bitmap file or the file initiating the call. This
subroutine then creates a pixmap using the XCreatePixmap subroutine, reads the bitmap
data from the file into the pixmap, and assigns the pixmap to the bitmap of the target file.

When this subroutine is completed, free the bitmap with the XFreePixmap subroutine.

If the x and y hot spots have assigned values, the XReadBitmapFile subroutine returns
these values. If a hot spot is not defined, the XReadBitmapFile subroutine sets the x and y
hot spots to the values of -1 , -1 .

Parameters
DisplayPtr

Drawable ID

Filename

Specifies the connection to the X Server.

Specifies the drawable.

Specifies the file name to use. The format of the file name
depends on the operating system.

Enhanced X-Windows Subroutines 7-401

XReadBitmapFile

Width Return

HeightReturn

Bitmap Return

XHotReturn

YHotReturn

Return Values
BitmapOpenFailed

BitmapFilelnvalid

BitmapNoMemory

BitmapSuccess

Error Codes
BadAlloc

Badlmplementation

Implementation Specifics

Returns the width value of the read operation in the bitmap file.

Returns the height values of the read operation in the bitmap
file.

Returns the bitmap ID created.

Returns the x hot spot coordinate.

Returns the y hot spot coordinates.

The file cannot be opened.

The file can be opened but it contains invalid bitmap data.

The insufficient working space was allocated.

The file is readable and valid.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreePixmap subroutine.

7-402 User Interface Reference

XRebindCode

XRebindCode Subroutine

Purpose

Libraries

C Syntax

Changes the keyboard mapping in the key map file.

Enhanced X-Windows Library (liboldX.a)

FORTRAN 77 Library (libXfx.a)

XRebindCode(DisplayPtr, Keycode, Shiftbits, String, NumberBytes)
Display * DisplayPtr,
unsigned int Keycode;
unsigned int Shiftbits;
char *String;
int NumberBytes;

FORTRAN Syntax
external fxrebindcode
integer*4 DisplayPtr
integer*4 Keycode
integer*4 ShiftBits
integer*4 String
integer*4 NumberBytes
call fxrebindcode(Oisp/ayPtr, Keycode, Shiftbits, String, NumberBytes)

Description
The XRebindCode subroutine changes the binding of the keyboard temporarily. After
issuing the XRebindCode subroutine, subsequent calls to the XLookupMapping
subroutine return the supplied string instead of the string found in the keymap file. The string
should be stored in static storage; an automatic string may be deallocated by the time it is
needed.

If the NumberBytes parameter is a value of O and the String parameter is not NULL, then
the String parameter points to a 2-byte array that contains the code page and code point of a
dead key. If the String parameter is the NULL value and the NumberBytes parameter is not
0, then the NumberBytes parameter defines a subroutine ID.

Parameters
DisplayPtr

Keycode

Shiftbits

String

NumberBytes

Error Code
Badlmplementation

Specifies the connection to the X Server.

Specifies which keycode to change temporarily.

Specifies shift bits.

Returns a pointer to the string.

Specifies the number of bytes in the string.

Enhanced X-Windows Subroutines 7-403

XRebindCode

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XLookupMapping subroutine.

The keycomp command.

7-404 User Interface Reference

(
I

"'

XRebindKeysym

XRebindKeysym Subroutine

Purpose

Libraries

C Syntax

Maps character string to the specified key symbol and modifiers.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRebindKeysym(Disp/ayPtr, KeySym, List, ModifierCount, String, BytesString)
Display * DisplayPtr,
KeySym KeySym;
KeySym List[];
int ModifierCount,
unsigned char *String;
int BytesString;

FORTRAN Syntax
external fxrebindkeysym
integer*4 DisplayPtr
integer*4 KeySym, List, ModifierCount
character*256 String
integer*4 BytesString
call fxrebindkeysym(Disp/ayPtr, KeySym, List, ModifierCount, String, BytesString)

Description
The XRebindKeysym subroutine changes the bindings of the meaning of a keysym for a
client. This subroutine does not redefine the key code in the X Server but provides a way to
attach long strings to keys. The XLookupString subroutine returns this string when the
appropriate set of modifier keys is pressed and when the key symbol is used for the
translation. You can rebind a key symbol that may not exist.

Parameters
DisplayPtr

KeySym

List

ModifierCount

String

ByteString

Specifies the connection to the AIX Server.

Specifies the key symbol to be rebound.

Specifies a pointer to an list of key symbols that are being used as
modifiers.

Specifies the number of modifiers in the modifier list.

Specifies a pointer to the string to be returned by the XLookupString
subroutine.

Specifies the length of the string.

Error Code
Badlmplementation

Enhanced X-Windows Subroutines 7-405

XRebindKeysym

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XLookupString subroutine.

7-406 User Interface Reference

/
\

XRecolorCursor

XRecolorCursor Subroutine

Purpose

Libraries

C Syntax

Changes the color of a cursor.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRecolorCursor(DisplayPtr, Cursor/D, ForegroundColor, BackgroundColot?
Display * DisplayPtr,
Cursor Cursor/D;
XColor * ForegroundColor, * BackgroundColor,

FORTRAN Syntax
external fxrecolorcursor
integer*4 DisplayPtr
integer*4 Cursor/D
integer*4 ForegroundColor, BackgroundColor
call fxrecolorcursor(DisplayPtr, Cursor/D, ForegroundColor, BackgroundColot?

Description
The XRecolorCursor subroutine changes the color of the specified cursor. If the cursor is
being displayed on a screen, this change is visible immediately.

Parameters
DisplayPtr

Cursor/D

ForegroundColor

BackgroundColor

Error Codes
Bad Cursor

Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the cursor.

Specifies the red, green, and blue (RGB) values for the
foreground of the source.

Specifies the red, green, and blue (RGB) values for the
background of the source ..

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The RecolorCursor protocol request.

Enhanced X-Windows Subroutines 7-407

XRectlnRegion

XRectlnRegion Subroutine

Purpose

Libraries

C Syntax

Determines if a rectangle lies in the specified region.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XRectlnRegion(RegionPtr, X, Y, Width, Height)
Region RegionPtr,
intX, Y;
unsigned int Width, Height;

FORTRAN Syntax
integer*4 fxrectinregion
external fxrectinregion
integer*4 RegionPtr, X, Y, Width, Height
integer*4 Returncode
Returncode = fxrectinregion(RegionPtr, X, Y, Width, Height)

Description
The XRectlnRegion subroutine determines if a specified rectangle resides in the specified
region.

Parameters
RegionPtr

x, y

Width, Height

Return Values
Rectangle In

RectangleOut

Rectangle Part

Error Code
Badlmplementation

Implementation Specifics

Specifies the region.

Specifies the x and y coordinates which define the upper-left corner
of the rectangle.

Specifies the width and height of the rectangle.

The rectangle is entirely in the specified region.

The rectangle is entirely out of the specified region.

The rectangle is partially in the specified region.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-408 User Interface Reference

XRefreshKeyboardMapping

XRefreshKeyboardMapping Subroutine

Purpose

Libraries

C Syntax

Refreshes stored modifier and keymap information.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

X Ref re sh Keyboard Mapping (E ventMap)
XMappingEvent * EventMap;

FORTRAN Syntax
external fxrefreshkeyboardmapping
integer*4 EventMap
call fxrefreshkeyboardmapping(EventMap)

Description

Parameter

The XRefreshKeyboardMapping subroutine refreshes the stored modifier and keymap
information. Usually, this subroutine is called when a MappingNotify event occurs to update
client knowledge of the keyboard.

EventMap Specifies the mapping event to be used.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-409

XRemoveFromSaveSet

XRemoveFromSaveSet Subroutine

Purpose

Libraries

C Syntax

Removes a window from the client's save-set.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRemoveFromSaveSet(DisplayPtr, WindowRemove)
Display * DisplayPtr,
Window WindowRemove;

FORTRAN Syntax
external fxremovefromsaveset
integer*4 DisplayPtr
integer*4 WindowRemove
call fxrernovefromsaveset(DisplayPtr, WindowRemove)

Description
The XRemoveFromSaveSet subroutine removes the specified window and the children of
the specified window from the client save-set. The specified window must be created by
another client. The X Server automatically removes windows from the save-set when the
windows are destroyed.

Parameters
DisplayPtr

WindowRemove

Error Codes
Badlmplementation

Bad Match

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID of the window to be removed.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeSaveSet protocol request.

7-41 O User Interface Reference

(

\

XRemoveHost Subroutine

Purpose

Libraries

C Syntax

Removes the specified host from the access control list for a display.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRemoveHost(DisplayPtr, Host)
Display * DisplayPtr,
XHostAddress *Host;

FORTRAN Syntax
external fxremovehost
integer*4 DisplayPtr, Host
call fxremovehost(DisplayPtr, Host)

Description

XRemoveHost

The XRemoveHost subroutine removes the specified host from the access control list for
that display. The server must be on the same host as the client process.

A system removed from the access list can no longer connect to that server. Reset the
server, to regain access.

Parameters
DisplayPtr Specifies the connection to the X Server.

Host Specifies the network address of the host system.

Error Codes
BadAlloc

Bad Implementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeHosts protocol request.

Enhanced X-Windows Subroutines 7-411

XRemoveHosts

XRemoveHosts Subroutine

Purpose

Libraries

C Syntax

Removes each specified host.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRemoveHosts(DisplayPtr, Hosts, NumberHosts)
Display * DisplayPtr,
XHostAddress *Hosts;
int NumberHosts;

FORTRAN Syntax
external fxremovehosts
integer*4 DisplayPtr, Hosts, NumberHosts
call fxremovehosts(DisplayPtr, Hosts, NumberHosts)

Description
The XRemoveHosts subroutine removes each specified host from the access control list for
that display. The display must be on the same host as the client process.

A system removed from the access list cannot connect to that server. You must reset the
server to regain access.

Parameters
DisplayPtr

Hosts

NumberHosts

Error Codes
Bad Access

Badlmplementation

BadValue.

Specifies the connection to the X Server.

Specifies the list of hosts to be removed.

Specifies the number of hosts in the list.

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XHostAddress data structure.

The ChangeHosts protocol request.

7-412 User Interface Reference

(
~

XReparentWindow

XReparentWindow Subroutine

Purpose

Libraries

C Syntax

Changes the parent of a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XReparentWindow(Oisp/ayPtr, Window/O, Parent, X, Y)
Display * DisplayPtr,
Window Window/O;
Window Parent;
intX, Y;

FORTRAN Syntax
external fxreparentwindow
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Parent
integer*4 X, Y
call fxreparentwindow(Oisp/ayPtr, Window!D, Parent, X, Y)

Description
The XReparentWindow subroutine reparents the specified window by inserting it as the
child of the specified parent. If the specified window is mapped, the XReparentWindow
subroutine automatically performs the XUnmapWindow subroutine on it. Then, the
XReparentWindow subroutine removes the specified window from its current position in the
hierarchy and inserts it as the child of the specified parent. The window is placed on top in
the stacking order with respect to the sibling windows.

After reparenting the specified window, the X Server generates a ReparentNotify event.
The override_redirect field of the structure returned by this event can be set to the value of
True or False. If the value is True, window manager clients normally ignore this event.

Finally, if the specified window was mapped originally, the XReparentWindow subroutine
performs the XMapWindow subroutine on it automatically.

The X Server performs normal exposure processing on formerly obscured windows. The X
Server might not generate the Expose events for regions from the initial XUnmapWindow
request that are immediately obscured by the final XMapWindow ·request.

A BadMatch error is generated if one of the following occurs:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified window.

• The specified window has a ParentRelative background and the new parent window is
not the same depth as the specified window.

Enhanced X-Windows Subroutines 7-413

XReparentWindow

Parameters
DisplayPtr

Window/D

Parent

x

y

Error Codes
Bad Match

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the parent window ID.

Specifies the x coordinate, which defines the position of the specified
window in the new parent window.

Specifies they coordinate, which defines the position of the specified
window in the new parent window.

Badlmplementation

BadWlndow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XMapWindow subroutine, XUnmapWindow subroutine.

The ReparentWindow protocol request.

7-414 User Interface Reference

\

XResetScreenSaver Subroutine

Purpose

Libraries

C Syntax

Resets the screen saver.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XResetScreenSaver(DisplayPtry
Display * DisplayPtr,

FORTRAN Syntax
external fxresetscreensaver
integer*4 DisplayPtr
call fxresetscreensaver(DisplayPtry

Description
The XResetScreenSaver subroutine resets the screen saver.

Parameter
DisplayPtr Specifies the connection to the X Server.

Implementation Specifics

XResetScreenSaver

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetScreenSaver subroutine.

The ForceScreenSaver protocol request, CreateColormap protocol request.

Enhanced X-Windows Subroutines 7-415

XResizeWindow

XResizeWindow Subroutine

Purpose

Libraries

C Syntax

Changes the size of the specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XResizeWindow(DisplayPtr, Window/D, Width, Height)
Display * DisplayPtr,
Window Window!D;
unsigned int Width, Height;

FORTRAN Syntax
external fxresizewindow
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Width
integer*4 Height
call fxresizewindow(DisplayPtr, Window!D, Width, Heighn

Description
The XResizeWindow subroutine changes the inside dimensions of the specified window.
This subroutine does not change the borders, the upper-left coordinates, or the origin of the
window. It does not raise the window. A mapped window may or may not lose its contents
after it is resized. A mapped window generates an Expose event if it loses its contents. If a
mapped window is made smaller, exposure events are generated on windows that it formerly
obscured.

If the override_redirect field of the window is the False value and another client has selected
the SubstructureRedirectMask event mask on the parent window, a ConfigureRequest
event is generated and no further processing is performed.

Parameters
DisplayPtr

Window ID

Width, Height

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the width and height of the resized window.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-416 User Interface Reference

XResizeWindow

Related Information
The ConfigureWindow protocol request.

Enhanced X-Windows Subroutines 7-417

XResourceManagerString

XResourceManagerString Subroutine

Purpose

Libraries

C Syntax

Returns the resource manager string from the screen of the root window of screen zero.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

char *XResourceManagerString(Disp/ayPtr)
Display * DisplayPtr,

FORTRAN Syntax
integer*4 fxresourcemanagerstring
external fxresourcemanagerstring
integer*4 DisplayPtr
integer*4 String
String= fxresourcemanagerstring(Disp/ayPtr)

Description

Parameter

The XResourceManagerString subroutine returns the RESOURCE_MANAGER property
from screen zero of the server's root window.

DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
En vi ronment/6000.

Related Information
The XOpenDisplay subroutine.

7-418 User Interface Reference

(
\
\;

XRestackWindows

XRestackWindows Subroutine

Purpose

Libraries

C Syntax

Restacks a set of windows from top to bottom.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRestackWindows(DisplayPtr, Windows, NumberWindows)
Display * DisplayPtr;
Window Windows[];
int NumberWindows;

FORTRAN Syntax
external fxrestackwindows
integer*4 DisplayPtr
integer*4 Windows
integer*4 NumberWindows
call fxrestackwindows(Oisp/ayPtr, Windows, NumberWindows)

Description
The XRestackWindows subroutine restacks the windows from top to bottom in the specified
order. The stacking order of the first window in the windows array is not affected, but the
other windows in the array are stacked underneath the first window in the specified order.
For each window in the windows array that is not a child of the specified window, a
BadMatch error results.

If the override_ redirect field of the window is the False value and another client has selected
the SubstructureRedirectMask event mask on the parent window, a ConfigureRequest
event is generated for each window whose override_redirect is not set, and no further
processing is performed. Otherwise, the windows are restacked from top to bottom.

Parameters
DisplayPtr

Windows

NumberWindows

Error Codes
BadWindow

Bad Implementation

Specifies the connection to the X Server.

Specifies an array containing the windows to be restacked. The
specified windows must have the same parent window.

Specifies the number of windows to be restacked.

Enhanced X-Windows Subroutines 7-419

XRestackWindows

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The ConfigureWindow protocol request.

7-420 User Interface Reference

XRotateBuffers Subroutine

Purpose

Libraries

C Syntax

Rotates the cut buffers.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRotateBuffers(DisplayPtr, Rotate)
Display * DisplayPtr;
int Rotate;

FORTRAN Syntax
external fxrotatebuffers
integer*4 DisplayPtr, Rotate
call fxrotatebuffers(Oisp/ayPtr, Rotate)

Description

XRotateBuffers

The XRotateBuffers subroutine rotates all eight cut buffers. Buffer o becomes buffer n;
buffer 1 becomes n+ 1 mod 8. The current cut buffer numbering is global to the display. If
any of the eight buffers has not been created, the XRotateBuffers subroutine generates an
error.

Parameters
DisplayPtr Specifies the connection to the X Server.

Rotate Specifies the amount of rotation.

Error Codes
Bad Implementation

Bad Match

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The RotateProperties protocol request.

Enhanced X-Windows Subroutines 7-421

XRotateWindowProperties

XRotateWindowProperties Subroutine

Purpose

Libraries

C Syntax

Rotates the property list of a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XRotateWindowProperties(DisplayPtr, Window!D, Properties, NumberProperties,
NumberPositions);

Display * DisplayPtr;
Window Window!D;
Atom Properties[];
int NumberProperties;
int NumberPositions;

FORTRAN Syntax
external fxrotatewindowproperties
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Properties
integer*4 NumberProperties, NumberPositions
call fxrotatewindowproperties(Oisp/ayPtr, Window!D, Properties, NumberProperties,

NumberPositions)

Description
The XRotateWindowProperties subroutine rotates properties in the properties list. It
rotates the integer values of the NumberPositions parameter around a virtual ring of property
names (right for positive values, left for negative values).

The XRotateWindowProperties subroutine rotates the properties of a window. The number
of properties is specified in the NumberProperties parameter. Where the NumberProperties
parameter represented by I, and the NumberPositions parameter represented by n, the
XRotateWindowProperties subroutine causes each property to become n+l mod I.

If the value of the NumberPositions parameter is a nonzero value, the X Server generates a
PropertyNotify event for each property in the order listed in the array.

An error is generated and no properties are changed if an atom occurs more than once in
the list, if a property name is undefined, or if it does not exist.

7-422 User Interface Reference

(

\

Parameters
DisplayPtr

Window/D

Properties

NumberProperties

NumberPositions

Error Codes
BadAtom

Badlmplementation

Bad Match

BadWindow

Implementation Specifics

XRotateWindowProperties

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the array of properties to be rotated.

Specifies the length of the properties array.

Specifies the amount of rotation.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
. Environment/6000.

Related Information
The RotateProperties protocol request.

Enhanced X-Windows Subroutines 7-423

XrmGetFileDatabase

XrmGetFileDatabase Subroutine

Purpose

Libraries

C Syntax

Retrieves a database from disk.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Xrm Database XrmGetFileDatabase(Database Filename)
char *Database Filename;

FORTRAN Syntax
integer*4 fxrmgetfiledatabase
external fxrmgetfi ledatabase
character*256 DatabaseFilename
integer*4 ResourceDatabase
Resource Database = fxrmgetfiledatabase(DatabaseFi/ename)

Description
The XrmGetFileDatabase subroutine retrieves a database from disk. This subroutine opens
the specified file, creates a new resource database, and loads it with the specifications read
from the specified file. The specified file must contain lines in the format accepted by the
XrmPutlineResource subroutine. A value of the XrmDatabase type is returned.

Parameter
Database Filename

Return Values
NULL

Error Code
Badlmplementation

Implementation Specifics

Specifies the resource database file name.

The subroutine cannot open the specified file. Otherwise, it returns
a value of type XrmDatabase.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmPutlineResource subroutine.

7-424 User Interface Reference

XrmGetResource

XrmGetResource Subroutine

Purpose

Libraries

C Syntax

Retrieves a resource from a database.

Enhanced X-Windows Library (libX.a)

FORTRAN 77 Library (libXfx.a)

Bool XrmGetResource{Oatabase, StringName, StringC/ass, StringTypeReturn,
String Value Return)

XrmDatabase Database;
char *String Name;
char * StringClass;
char ** StringTypeReturn;
XrmValue *StringValueReturn;

FORTRAN Syntax
integer*4 fxrmgetresource
external fxrmgetresource
integer*4 Database
character*256 StringName
character*256 StringC/ass
integer*4 StringTypeReturn
integer*4 StringValueReturn
integer*4 Boo/
Boo/= fxrmgetresource{Database, StringName, StringClass, StringTypeReturn,

String ValueReturn)

Description
The XrmGetResource subroutine retrieves a resource from a database.

Parameters
Database

String Name

StringClass

StringTypeReturn

String Value Return

Implementation Specifics

Specifies the database to be used.

Specifies the fully qualified name (as a string) of the value being
retrieved.

Specifies the fully qualified class (as a string) of the value being
retrieved.

Returns a pointer (as a string) to the representation type of the
destination.

Returns the value in the database.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-425

XrmGetStringDatabase

XrmGetStringDatabase Subroutine

Purpose

Libraries

C Syntax

Creates a database from a specified string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library(libXfx.a)

Xrm Database XrmGetString Database(Database)
char *Database;

FORTRAN Syntax
integer*4 fxrmgetstringdatabase
external fxrmgetstringdatabase
character*256 Database
integer*4 ResourceDatabase
ResourceDatabase = fxrmgetstringdatabase(Database)

Description

Parameter

The XrmGetStringDatabase subroutine creates a new database and stores the resources
specified in the specified null-terminated string. This subroutine reads the information out of
a string. Each line is separated by a new-line character in the format accepted by the
XrmPutlineResource subroutine.

Database Specifies the database contents using a string.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmPutlineResource subroutine.

7-426 User Interface Reference

Xrmlnitialize Subroutine

Purpose

Libraries

C Syntax

Initializes the resource manager.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library(libXfx.a)

void Xrmlnitialize()

FORTRAN Syntax
external fxrminitialize
call fxrminitialize()

Description

Xrmlnitialize

The Xrmlnititalize subroutine initializes the resource manager.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
Basic Resource Manager Definitions

Enhanced X-Windows Subroutines 7-427

XrmMergeDatabases

XrmMergeDatabases Subroutine

Purpose

Libraries

C Syntax

Merges two databases.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmMergeDatabases(SourceDatabase, TargetDatabase)
XrmDatabase SourceDatabase, * TargetDatabase;

FORTRAN Syntax
external fxrmmergedatabases
integer*4 SourceDatabase
integer*4 TargetDatabase
call fxrmmergedatabases(Source Database, TargetDatabase)

Description
The XrmMergeDatabases subroutine merges the contents of one database into another.
This subroutine may overwrite entries in the destination database. The
XrmMergeDatabases subroutine is used to combine databases such as an application
specific database of defaults with a database of user preferences. The original database is
destroyed.

Parameters
SourceDatabase

TargetDatabase

Error Code
Badlmplementation

Implementation Specifics

Specifies the resource database to be merged into the target
database.

Specifies a pointer to the resource database where the source
database is to be merged.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

7-428 User Interface Reference

\

XrmParseCommand

XrmParseCommand Subroutine

Purpose

Libraries

C Syntax

Stores command options into a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmParseCommand(Database, Table, TableCount, Name,argclnOut, argvlnOut)
XrmDatabase *Database;
XrmOptionDesclist Table;
int TableCount;
char *Name;
int * argclnOut;
char ** argvlnOut;

FORTRAN Syntax
external fxrmparsecommand
integer*4 Database, Table, TableCount
character*256 Name
integer*4 argclnOut, argv/nOut
call fxrmparsecommand(Database, Table, TableCount, Name, argclnOut, argvlnOut)

Description
The XrmParseCommand subroutine loads a database from a C language command line
according to the following:

• It parses an argc, argv parameter pair according to the specified option table.

• It loads recognized options into the specified database with type "String".

• It modifies the argc, argv parameter pair to remove all recognized options.

If the resource database is NULL, a new resource database is created and a pointer is
returned to the new resource database.

The specified table is used to parse the command line. Recognized entries in the table are
removed from the argvlnOut parameter, and entries are made in the specified resource
database. The table entries contain information on the option string, the option name, the
style of option and a value to provide if the option kind is the XrmOptionNoArg subroutine.

Use the application name as the Name parameter. This parameter is prefixed to the
ResourceName parameter in the option table before storing the specification.

The argc/nOut parameter specifies the number of arguments in the argvlnOut parameter
and is set to the number of arguments that remain.

Enhanced X-Windows Subroutines 7-429

XrmParseCommand

Parameters
Database

Table

TableCount

Name

argclnOut

argvlnOut

Specifies a pointer to the resource database.

Specifies the table of command line arguments to be parsed.

Specifies. the number of entries in the table.

Specifies the application name.

Specifies the number of arguments before the call. Returns the number of
arguments remaining after the call.

Specifies a pointer to the command line arguments before the call. Returns
the matched arguments removed after the call.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmOptionDescRec data structure.

7-430 User Interface Reference

(

\

XrmPutFileDatabase Subroutine

Purpose

Libraries

C Syntax

Copies a database into a specified file.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmPutFileDatabase(Oatabase, Filename)
XrmDatabase Database;
char *Filename;

FORTRAN Syntax
external fxrmputfiledatabase
integer*4 Database
character*256 Filename
call fxrmputfiledatabase(Oatabase, Filename)

Description

XrmPutFileDatabase

The XrmPutFileDatabase subroutine stores a copy of the current database of an
application in the specified file. The file is an ASCII text file that contains lines in the format
accepted by the XrmPutlineResource subroutine.

Parameters
Database

Filename

Error Code
Badlmplementation

Implementation Specifics

Specifies the database to be used.

Specifies the file name for the stored database.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmPutlineResource subroutine.

Enhanced X-Windows Subroutines 7-431

XrmPutlineResource

XrmPutlineResource Subroutine

Purpose

Libraries

C Syntax

Stores a single resource entry into a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmPutlineResource(Oatabase, Line)
XrmDatabase *Database;
char *Line;

FORTRAN Syntax
external fxrmputlineresource
integer*4 Database
character*256 Line
call fxrmputlineresource(Database, Line)

Description
The XrmPutlineResource subroutine adds a single resource entry to the specified
database. The resource entry is specified as a string that contains both a name and a value
pair. Any white space before or after the name or a colon in the Line parameter is ignored.
The value is ended by a new-line character or a NULL character.

The value pair can contain embedded new-line characters prefixed by the \n (backslash n)
character pair, which are removed before the value is stored in the database.

For example, the Line parameter might have the value:

aixterm*background:green\n

Null-terminated strings without a new-line character are also permitted.

If the Database parameter is NULL, a new resource database is created and a pointer to the
new resource database is returned in the Database parameter.

Parameters
Database

Line

Specifies a pointer to the resource database.

Specifies the resource value pair as a single string. A colon (:) separates
the name from the value.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-432 User Interface Reference

(

XrmPutResource

XrmPutResource Subroutine

Purpose

Libraries

C Syntax

Stores a resource into a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmPutResource(Database, Specifier, Type,
Value)

XrmDatabase *Database;
char *Specifier;
char *Type;
XrmValue *Value;

FORTRAN Syntax
external fxrmputresource
integer*4 Database
character*256 Specifier
character*256 Type
integer*4 Value
call fxrmputresource(Database, Specifier, Type, Value)

Description
The XrmPutResource subroutine calls the XrmStringToBindingQuarklist subroutine,
followed by the following expression:

XrrnQPutResource(database, bindings, quarks,
XrrnStringToQuarkList(type), value)

The XrmPutResource subroutine stores resources into the database. This subroutine takes
a partial resource specification, a representation type, and a value. This value is copied into
the specified database.

If the Database parameter is NULL, a new resource database is created and a pointer to the
new resource database is returned in this parameter.

Parameters
Database

Specifier

Type

Value

Error Code
Bad Implementation

Specifies a pointer to the resource database.

Specifies a partial specification of the resource.

Specifies the type of the resource.

Specifies the value of the resource.

Enhanced X-Windows Subroutines 7-433

XrmPutResource

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmStringToBindingQuarklist subroutine.

7-434 User Interface Reference

XrmPutStringResource

XrmPutStringResource Subroutine

Purpose

Libraries

C Syntax

Stores a string resource into a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmPutStringResource(Database, Resource, Value)
XrmDatabase *Database;
char *Resource;
char *Value;

FORTRAN Syntax
external fxrmputstringresource
integer*4 Database
character*256 Resource
character*256 Value
call fxrmputstringresource(Database, Resource, Value)

Description
The XrmPutStringResource subroutine adds a resource with the specified value to the
specified database. This subroutine takes both the resource and the value as strings,
converts them to quarks, and then calls the XrmQPLitResource subroutine.

If the Database parameter is the NULL value, a new resource database is created and a
pointer to the new database is returned.

Parameters
Database

Resource

Value

Error Code
Badlmplementation

Implementation Specifics

Specifies a pointer to the resource database.

Specifies the resource as a string.

Specifies the value of the resource.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XrmQPutResource subroutine.

Enhanced X-Windows Subroutines 7-435

XrmQGetResource

XrmQGetResource Subroutine

Purpose

Libraries

C Syntax

Retrieves a resource from a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Boolean XrmQGetResource(Database, OuarkName, QuarkClass, QuarkTypeReturn,
ValueReturn)

XrmDatabase Database;
XrmNamelist OuarkName;
XrmClasslist OuarkC/ass;
XrmRepresentation *QuarkTypeReturn;
XrmValue * ValueReturn;

FORTRAN Syntax
integer*4 fxrmqgetresource
external fxrmqgetresource
integer*4 Database
integer*4 QuarkName
integer*4 QuarkClass
integer*4 QuarkTypeReturn
integer*4 ValueReturn
integer*4 Boolean
Boolean= fxrmqgetresource(Database, OuarkName, QuarkClass, OuarkTypeReturn,

ValueReturn)

Description
The XrmQGetResource subroutine gets a resource from a resource database. It takes a
fully qualified name-class pair, a destination resource representation, and the address of a
value (size, address pair). The value and returned type point into database memory;
therefore, you must not modify the data.

The database only frees or overwrites entries on the XrmPutResourc, XrmQPutResource,
or XrmMergeDatabases subroutine. A client that is not storing new values into the database
or is not merging the database should be safe using the address passed back at any time
until it exists.

7-436 User Interface Reference

(
\

Parameters
Database

QuarkName

QuarkC/ass

QuarkTypeReturn

Value Return

Return Values
False

True

Error Code
Bad Implementation

Implementation Specifics

XrmQGetResource

Specifies the database to be used.

Specifies the fully qualified name, as a quark, of the value being
retrieved.

Specifies the fully qualified class, as a quark, of the value being
retrieved.

Returns a pointer, as a quark, to the representation type of the
destination.

Returns the value in the database.

The resource does not exist.

The resource exists.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-437

XrmQGetSearchlist

XrmQGetSearchlist Subroutine

Purpose

Libraries

C Syntax

Gets a list of database levels.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XrmQGetSearchlist(Database, Names, Classes, ListReturn, ListLength)
XrmDatabase Database;
XrmNamelist Names;
XrmClasslist Classes;
XrmSearchlist ListReturn;
int ListLength;

FORTRAN Syntax
integer*4 fxrmqgetsearchlist
external fxrmqgetsearchlist
integer*4 Database
integer*4 Names
integer*4 Classes
integer*4 ListReturn
integer*4 Listlength
integer*4 Boo/
Boo/= fxrmqgetsearchlist(Database, Names, Classes, ListReturn, ListLength)

Description
The XrmQGetSearchlist subroutine takes a list of names and classes and returns a list of
database levels where a match might occur. The returned list is in best-to-worst order. It
uses the same algorithm as the XrmGetResource subroutine for determining precedence.

Sufficient space must be allocated before using the XrmQGetSearchlist subroutine. The
requirement for allocation size is dependent upon the number of levels and pattern-matching
characters in the resource specifiers stored in the database. The worst case length is 3** n,
where n is the number of name or class components.

When using the XrmQGetSearchlist subroutine followed by multiple probes for resources
with a common name and class prefix, only the common prefix should be specified in the
name and class list.

7-438 User Interface Reference

!

\

Parameters
Database

Names

Classes

ListReturn

ListLength

Return Values

XrmQGetSearch List

Specifies the database to be used.

Specifies a list of resource names.

Specifies a list of resource classes.

Returns a search list for further use. Sufficient space must be allocated
before using the XrmQGetSearchlist subroutine.

Specifies the number of entries (not the byte size) allocated for the
ListReturn parameter.

True Indicates that sufficient space is allocated for the search list.

False Indicates that insufficient space is allocated for the search list.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-439

XrmQGetSearchResource

XrmQGetSearchResource Subroutine

Purpose

Libraries

C Syntax

Searches resource database levels for a specified resource.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Bool XrmQGetSearchResource(List, Name, Class, TypeReturn, ValueReturn)
XrmSearchlist List;
XrmName Name;
XrmClass Class;
XrmRepresentation * TypeReturn;
XrmValue * ValueReturn;

FORTRAN Syntax
integer*4 fxrmqgetsearchresource
external fxrmqgetsearchresource
integer*4 List, Name
integer*4 Class, TypeReturn, ValueReturn
integer*4 Boo/
Boo/= fxrmqgetsearchresource(List, Name, Class, TypeReturn, ValueReturn)

Description
The XrmQGetSearchResource subroutine searches the specified database levels for the
resource identified by the specified name and class. The search stops with the first match.

If a call to the XrmQGetSearchlist subroutine with a name and class list containing all but
the last component of a resource name is followed by a call to the
XrmQGetSearchResource subroutine with the last component name and class, the same
database entry is returned as when a call is made to either the XrmGetResource or
XrmQGetResource subroutine with the fully qualified name and class list.

Parameters
List

Name

Class

Type Return

Value Return

7-440 User Interface Reference

Specifies the search list returned by the XrmQGetSearchlist
subroutine.

Specifies the resource name.

Specifies the resource class.

Returns data representation type.

Returns the value in the database.

(

\

Return Values
True

False

Error Code
Badlmplementation

Implementation Specifics

XrmQGetSearchResource

Indicates that the requested resource is found.

Indicates that the requested resource is not found.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-441

XrmQPutResource

XrmQPutResource Subroutine

Purpose

Libraries

C Syntax

Stores resources into a database.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmQPutResource(Database, Bindings, Quarks, Type, Value);
Xrm Database *Database;
XrmBindinglist Bindings;
XrmQuarklist Quarks;
XrmRepresentation Type;
XrmValue *Value;

FORTRAN Syntax
external fxrmqputresource
integer*4 Database
integer*4 Bindings
integer*4 Quarks
integer*4 Type
integer*4 Value
call fxrmqputresource(Database, Bindings, Quarks, Type, Value)

Description
The XrmQPutResource subroutine stores resources into a database. It takes a partial
resource specification, a representation type, and a value. This value is copied into the
specified database.

If the Database parameter is a value of NULL, the XrmQPutResource subroutine creates a
new resource database and returns a pointer to it.

Parameters
Database

Bindings

Quarks

Type

Value

Specifies a pointer to a resource database.

Specifies a list of bindings.

Specifies the complete or partial name, or class list, of the resource to be
stored.

Specifies the type of the resource.

Specifies, as a string, the value of the resource.

Error Code
Badlmplementation

7-442 User Interface Reference

I

~

XrmQPutResource

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-443

XrmQPutStringResource

XrmQPutStringResource Subroutine

Purpose

Libraries

C Syntax

Stores a string resource into a database using quarks as a specification.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XrmQPutStringResource(Database, Bindings, Quarks, Value)
XrmDatabase *Database;
XrmBindinglist Bindings;
XrmQuarklist Quarks;
char *Value;

FORTRAN Syntax
external fxrmqputstringresource
integer*4 Database
integer*4 Bindings
integer*4 Quarks
character*256 Value
call fxrmqputstringresource(Database, Bindings, Quark, Value)

Description
The XrmQPutStringResource subroutine stores a string resource into a database using
quarks as a specification. It constructs an XrmValue data structure for the value string by
calling the strlen function, which computes the size. It then calls the XrmQPutResource
subroutine, using a string data type.

If the Database parameter is NULL, the XrmQPutStringResource subroutine creates a
new resource database and returns a pointer to it.

Parameters
Database

Bindings

Quarks

Value

Specifies a pointer to the resource database.

Specifies a list of bindings.

Specifies the complete or partial name, or class list, of the resource.

Specifies as a string the value of the resource.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-444 User Interface Reference

(
\

XrmQuarkToString

XrmQuarkToString Subroutine

Purpose

Libraries

C Syntax

Converts a quark to a character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

#define XrmNameToString(Name) XrmQuarkToString(Name)
#define XrmClassToString(Class) XrmQuarkToString(Class)
#define XrmRepresentationToString(Type) XrmQuarkToString(Type)

char *XrmQuarkToString(Quark)
XrmQuark Quark;

FORTRAN Syntax
character*256 fxrmquarktostring
external fxrmquarktostring
integer*4 Quark
character*256 QuarkToString
QuarkToString = fxrmquarktostring(Quark)

Description
The XrmQuarkToString subroutine converts a quark to a string. The string pointed to by the
return value must not be modified or freed.

Parameter
Quark

Return Values
NULL

String

Error Code
Badlmplementation

Implementation Specifics

Specifies the quark to be converted to a string.

Indicates that no string exists for the specified quark.

String converted from Quark.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-445

XrmStringToBindingQuarklist

XrmStringToBindingQuarklist Subroutine

Purpose

Libraries

C Syntax

Converts a string having one or more components to a binding list and to a quark list.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XrmStri ngToB ind ing Qua rklist(String, BindingsReturn, Quarks Return)
char *String;
XrmBindinglist BindingsReturn;
XrmQuarklist QuarksReturn;

FORTRAN Syntax
external fxrmstringtobindingquarklist
character*256 String;
integer*4 BindingsReturn;
integer*4 QuarksReturn

call fxrmstringtobindingquarklist(String, BindingsReturn, QuarksReturn)

Description
The XrmStringToBindingQuarklist subroutine converts a string having one or more
components to a binding list and to a quark list.

Component names in the list are separated by the . (period) or the* (asterisk) character. If
the first character of the string is not a period or an asterisk, a period is inserted by default.

For example, *a. b*c becomes the following:

Quarks

Bindings

a

loose

b c

tight loose

Sufficient space must be allocated for binding and quarks lists before calling the
XrmStringToBindingQuarklist subroutine.

Parameters
String

Bindings Return

Quarks Return

Error Code
Bad Implementation

Implementation Specifics

Specifies the string for which a quark is to be allocated.

Returns the binding list.

Returns the quark list.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-446 User Interface Reference

(

\

XrmStringToQuark Subroutine

Purpose

Libraries

C Syntax

Converts a character string to a quark.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

#define XrmStringToName(String) XrmStringToQuark(String)
#define XrmStringToClass(String) XrmStringToQuark(String)

XrmStringToQuark

#define XrmStringTo Representation(String) XrmStringToQuark(String)

XrmQuark XrmStringToQuark(String);
char *String;

FORTRAN Syntax
integer*4 fxrmstringtoquark
external fxrmstringtoquark
character*256 String
integer*4 Quark
Quark= fxrmstringtoquark(String)

Description
The XrmStringToQuark subroutine converts a string to a quark. The string pointed to by the
return value must not be modified or freed.

Parameter
String Specifies the string to be converted to a quark.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-447

XrmStringToQuarklist

XrmStringToQuarklist Subroutine

Purpose

Libraries

C Syntax

Converts a character string with one or more components to a quark list.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

#define XrmStringToNamelist(String,Name) XrmStringToQuarklist((String),(Name))
#define XrmStri ngToClasslist(String, Class) XrmStringToQuarklist((String),(Class))

void XrmStringToQuarklist(String, QuarksReturn);
char *String;
XrmQuarklist QuarksReturn;

FORTRAN Syntax
external fxrmstringtoquarklist
character*256 String
integer*4 QuarksReturn
call fxrmstringtoquarklist(String, QuarksReturn)

Description
The XrmStringToQuarklist subroutine converts a null-terminated string to a list of quarks.
This string is generally a fully qualified name. The components of the string are separated by
the . (period) or* (asterisk) character.

A binding list is a list of the XrmBindinglist type and indicates if components in name or
class lists are bound tightly or loosely. Components are bound loosely when
pattern-matching characters are specified.

The XrmBindTightly value indicates that a period separates the components. The
XrmBindloosely value indicates that an asterisk separates the components.

Parameters
String

Quarks Return

Specifies the string to be converted to a quark.

Returns the list of quarks.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-448 User Interface Reference

(

XrmUniqueQuark Subroutine

Purpose

Libraries

C Syntax

Allocates a new quark.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XrmQuark XrmUniqueQuark()

FORTRAN Syntax
integer*4 fxrmuniquequark
external fxrmuniquequark
integer*4 Quark
Quark= fxrmuniquequark()

Description

XrmUniqueQuark

The XrmUniqueQuark subroutine allocates a new quark and is guaranteed not to represent
any string known to the resource manager.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-449

XSaveContext

XSaveContext Subroutine

Purpose

Libraries

C Syntax

Stores data associated with a window and its context type.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XSaveContext(DisplayPtr, Window!D, Context, Data);
Display * DisplayPtr,
Window Window/D;
XContext Context;
caddr_t Data;

FORTRAN Syntax
integer*4 fxsavecontext
external fxsavecontext
integer*4 DisplayPtr, Windowf D, Context
integer*4 Data
integer*4 Status
Status= fxsavecontext(DisplayPtr, Window/D, Context, Data)

Description
The XSaveContext subroutine saves a data value that corresponds to a window and its
context type. If an entry with the specified window and its context type already exists, the
XSaveContext subroutine overrides that entry with the specified context.

Parameters
DisplayPtr

Window/D

Context

Data

Return Values
0

Nonzero

7-450 User Interface Reference

Specifies the connection to the X Server.

Specifies the window with which the data is associated.

Specifies the context type to which the data belongs.

Specifies the data to be associated with the window and context type.

Indicates that the XSaveContext subroutine runs successfully.

Indicates that the XSaveContext subroutine cannot run.

(

~
~

XSaveContext

Error Codes
Bad Implementation

XCNOMEM (out of memory)

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-451

XSelectlnput

XSelectlnput Subroutine

Purpose

Libraries

C Syntax

Selects events to be reported to the client.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSelectlnput(DisplayPtr, Window/D, EventMask);
Display * DisplayPtr,
Window Window!D;
unsigned long EventMask;

FORTRAN Syntax
external fxselectinput
integer*4 DisplayPtr
integer*4 Window/O
integer*4 EventMask
call fxselectinput(DisplayPtr, Window/O, EventMask)

Description
The XSelectlnput subroutine requests that the X Server report the events associated with a
specified event mask. By default, Enhanced X-Windows does not report these events.

Events are reported relative to a window. If a device event is not relevant to the specified
window, the window usually propagates to the closest ancestor that is relevant provided that
the do_not_propagate_mask parameter does not prohibit it.

Setting the EventMask parameter of a window overrides any previous call for the same
window, but not for other clients. Multiple clients can select for the same events on the same
window with the following restrictions:

• Multiple clients can select events on the same window because their event masks are
disjointed. When the X Server generates an event, it reports it to all interested clients.

• Only one client at a time can select the CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the SubstructureRedirectMask event
mask.

• Only one client at a time can select a ResizeRequest event, which is associated with the
ResizeRedirectMask event mask.

• Only one client at a time can select a ButtonPress event, which is associated with the
ButtonPressMask event mask.

The X Server reports the event to all interested clients.

Note: Setting the event_ mask field of the XSetWindowAttributes data structure when
using the XCreateWindow and XChangeWindowAttributes subroutines indicates
to the server that it should report events to a client applications.

7-452 User Interface Reference

I

~

XSelectlnput

If a client passes both ButtonPressMask and ButtonReleaseMask for a specified window, a
ButtonPress event in that window will automatically grab the mouse until all buttons are
released and ButtonRelease events are sent to windows as described for the XGrabPointer
subroutine. This ensures that a window will see the ButtonRelease event corresponding to
the ButtonPress event, even though the most may have exited the window in the
meantime.

If a client passes PointerMotionMask, the X Server sends MotionNotify events
independent of the estate of the pointer buttons. Instead, the client passes one or more of
the event masks Button1 MotionMask Button5MotionMask, the X Server generates
MotionNotify events only when one or more of the specified buttons are pressed. These
masks are used to request MotionNotify events only when particular buttons are held down.

Parameters
DisplayPtr

Window/D

EventMask

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID of the window for which events are to be
reported.

Specifies the event mask.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeWindowAttributes protocol request.

Enhanced X-Windows Subroutines 7-453

XSendEvent

XSendEvent Subroutine

Purpose·

Libraries

C Syntax

Sends an event to a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Status XSendEvent(DisplayPtr, Window!D, Propagate, EventMask, EventSend)
Display * DisplayPtr,
Window Window/D;
Bool Propagate;
unsigned long EventMask;
XEvent * EventSend;

FORTRAN Syntax
external fxsendevent
integer*4 DisplayPtr
integer*4 Window/D, Propagate, EventMask, EventSend
call fxsendevent(DisplayPtr, Window!D, Propagate, EventMask, EventSend)

Description
The XSendEvent subroutine identifies a destination window, determines which clients
should receive specified events, and ignores any active grabs. This subroutine requires that
a valid event mask be specified.

If the EventMask parameter is a value of NULL, the event is sent to the client that created
the destination window. If that client no longer exists, no event is sent.

The event sent by the XEvent subroutine must be one of the core events or one of the
events defined by an extension so that the X Server can correctly byte-swap the contents.

Parameters
DisplayPtr

Window/D

7-454 User Interface Reference

Specifies the connection to the X Server.

Specifies the window ID of the destination window. The Window/D
parameter can be either of the following values:

PointerWindow

lnputFocus

The destination window is the window that
contains the pointer.

If the focus window contains the pointer,
the destination window is the window that
contains the pointer; if the focus window
does not contain the pointer, the destination
window is the focus window.

(

\

Propagate

EventMask

EventSend

XSendEvent

Specifies a Boolean value. The Propagate parameter specifies
which clients receive specified events, and can be either of the
following values:

False

True

The event is sent to every client selecting
on destination any of the event types in the
EventMask parameter.

If no clients have selected on destination
any of the event types in the EventMask
parameter, the destination is replaced with
the closest ancestor of destination for
which some client has selected a type in
the EventMask parameter and for which no
intervening window has that type as its
DoNotPropagateMask parameter. If no
such window exists or if the window is an
ancestor of the focus window and the
lnputFocus value was originally specified
as the destination, the event is not sent to
any clients. Otherwise, the event is
reported to every client selecting on the
final destination any of the values specified
in the EventMask parameter.

Specifies the event mask as the bit-wiseinclusive OR of one or more
of the valid event mask bits.

Specifies a pointer to the event to be sent.

Return Values
0 Indicates that the conversion to wire protocol format does not succeed.

Nonzero Indicates that the conversion to wire protocol format succeeds.

Error Codes
Badlmplementation

BadValue

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SendEvent protocol request.

Enhanced X-Windows Subroutines 7-455

XSetAccessControl

XSetAccessControl Subroutine

Purpose

Libraries

C Syntax

Changes access control.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetAccessControl(DisplayPtr, Mode);
Display * DisplayPtr,
int Mode;

FORTRAN Syntax
external fxsetaccesscontrol
integer*4 DisplayPtr, Mode
call fxsetaccesscontrol(DisplayPtr, Mode)

Description
The XSetAccessControl subroutine enables or disables the use of the access control list at
each connection setup.

Either the client and the X Server must reside on the same host or the client must have the
required permission in the initial authorization at connection setup for the
XSetAccessControl subroutine to run successfully.

Parameters
DisplayPtr

Mode

Error Codes
Bad Access

Specifies the connection to the X Server.

Specifies the mode as the EnableAccess or DisableAccess value.

Badlmplementation

Bad Value

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The SetAccessControl protocol request.

7-456 User Interface Reference

(

XSetAfterFunction

XSetAfterFunction Subroutine

Purpose

Libraries

C Syntax

Sets the subroutine to be called after another function generates a protocol request.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int (*XSetAfterFunction(Oisp/ayPtr, Procedure)) ();
Display * OisplayPtr,
int (*Procedure)();

FORTRAN Syntax
integer*4 fxsetafterfunction
external fxsetafterfunction
integer*4 DisplayPtr
integer*4 Procedure
integer*4 ReturnCode
ReturnCode = fxsetafterfunction(Oisp/ayPtr, Procedure)

Description
The XSetAfterFunction subroutine sets which subroutine is to be called following the
execution of a subroutine that generates a protocol request. The specified procedure is
called with a display pointer only.

Parameters
Displayptr

Procedure

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the subroutine to be called.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-457

XSetArcMode

XSetArcMode Subroutine

Purpose

libraries

C Syntax

Sets the arc mode of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetArcMode(DisplayPtr, GraphicsContext, ArcMode);
Display * DisplayPtr,
GC GraphicsContext,
int ArcMode;

FORTRAN Syntax
external fxsetarcmode
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 ArcMode
call fxsetarcmode(DisplayPtr, GraphicsContext, ArcMode)

Description
The XSetArcMode subroutine sets the arc mode in a specified graphics context. Arcs are
filled with either chord or pie-slice patterns.

Parameters
DisplayPtr

GraphicsContext

ArcMode

Error Codes
BadAlloc

BadGC

Badlmplementation

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the arc mode as the value of either ArcChord or
ArcPieSlice.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The ChangeGC protocol request.

7-458 User Interface Reference

(

XSetBackground Subroutine

Purpose

Libraries

C Syntax

Sets the background for a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetBackground(Oisp/ayPtr, GraphicsContext, Background);
Display * DisplayPtr;
GC GraphicsContext;
unsigned long Background;

FORTRAN Syntax
external fxsetbackground
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Background
call fxsetbackground(Oisp/ayPtr, GraphicsContext, Background)

Description

XSetBackground

The XSetBackground subroutine sets the background color for the specified graphics
context.

Parameters
DisplayPtr

GraphicsContext

Background

Error Codes
BadAlloc

BadGC

Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the background color for a specified graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-459

XSetClassHint

XSetClassHint Subroutine

Purpose

Libraries

C Syntax

Sets the class of a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetClassHint(DisplayPtr, Window!D, ClassHints);
Display * DisplayPtr,
Window Window!D;
XClassHint *ClassHints;

FORTRAN Syntax
external fxsetclasshint
integer*4 DisplayPtr
integer*4 Window!D, ClassHints
call fxsetclasshint(Disp/ayPtr, Window!D, ClassHints)

Description
The XSetClassHint subroutine sets the class hint for the specified window.

Parameters
DisplayPtr

Window ID

ClassHints

Error Codes
BadAlloc

Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies a pointer to a specified XClassHint data structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-460 User Interface Reference

I
I

\

XSetClipMask Subroutine

Purpose

XSetClipMask

Sets the clip mask of a specified graphics context to a specified pixmap.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetClipMask(Oisp/ayPtr, GraphicsContext, Pixmap/D);
Display * DisplayPtr,
GC GraphicsContext",
Pixmap Pixmap/D;

FORTRAN Syntax
external fxsetclipmask
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Pixmap!D
call fxsetclipmask(Oisp/ayPtr, GraphicsContext, Pixmap/D)

Description
The XSetClipMask subroutine sets the clip mask of a specified graphics context to a
specified pixmap. If the Pixmap/D parameter is specified as a value of None, the pixels are
always drawn regardless of the clip origin.

Parameters
DisplayPtr

GraphicsContext

Pixmap ID

Error Codes
BadAlloc

BadGC

Badlmplementation

Bad Match

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the ID of the pixmap or None.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-461

XSetClipOrigin

XSetClipOrigin Subroutine

Purpose

Libraries

C Syntax

Sets the clip mask origin of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetClipOrigin(DisplayPtr, GraphicsContext, ClipXOrigin, ClipYOrigin);
Display * DisplayPtr;
GC GraphicsContext;
int ClipXOrigin, Clip YOrigin;

FORTRAN Syntax
external fxsetcliporigin
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 ClipXOrigin, Clip YOrigin
call fxsetcliporigin(Disp/ayPtr, GraphicsContext, ClipXOrigin, ClipYOrigin)

Description
The XSetClipOrigin subroutine sets the clip mask origin of a specified graphics context. The
clip mask origin is relative to the origin of the destination drawable specified in the graphics
protocol request.

Parameters
DisplayPtr

GraphicsContext

ClipXOrigin

Clip YOrigin

Error Codes
BadAlloc

BadGC

Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the x coordinate of the clip mask origin.

Specifies the y coordinate of the clip mask origin.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-462 User Interface Reference

(

XSetClipRectangles

XSetClipRectangles Subroutine

Purpose

Libraries

C Syntax

Sets the clip mask of a specified graphics contexts to a specified list of rectangles.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetClipRectangles(DisplayPtr, GraphicsContext,
ClipXOrigin, Clip YOrigin,
Rectangles, Number, Ordering);

Display * DisplayPtr;
GC GraphicsContexf',
int ClipXOrigin, ClipOrigin;
XRectangle Rectangles[];
int Number;
int Ordering;

FORTRAN Syntax
external fxsetcliprectangles
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 ClipXOrigin, Clip YOrigin
integer*4 Rectangles
integer*4 Number, Ordering
call fxsetcliprectangles(DisplayPtr, GraphicsContext, ClipXOrigin,

Clip YOrigin, Rectangles, Number, Ordering)

Description
The XSetClipRectangles subroutine changes the ClipMask parameter in the specified
graphics context to the specified list of rectangles.

The output is clipped to remain contained within the rectangles. The ClipOrigin parameter is
interpreted relative to the origin of whatever destination drawable is specified in a graphics
request. The rectangle coordinates are interpreted relative to the ClipOrigin parameter.

If the rectangles intersect, the graphics results are undefined. An empty array of rectangles
disables output.

If known by the client, ordering relations on the rectangles can be specified with the Ordering
parameter.

If incorrect ordering is specified, the X Server may generate a BadMatch error, but is not
required to do so. On occasions when no error is generated the graphics results are
undefined.

Parameters
DisplayPtr

GraphicsContext

Specifies the connection to the X Server.

Specifies the graphics context.

Enhanced X-Windows Subroutines 7-463

XSetClipRectangles

ClipXOrigin

Clip YOrigin

Rectangles

Number

Ordering

Error Codes
BadAlloc

BadGC

Bad Implementation

Bad Match

BadValue

Implementation Specifics

Specifies the X coordinate of the clip mask origin.

Specifies the Y coordinate of the clip mask origin.

Specifies an array of rectangles that define the clip mask.

Specifies the number of rectangles.

Specifies the ordering of the rectangles. The Ordering parameter
can be:

Unsorted

YSorted

YXSorted

YXBanded

Indicates that the rectangles are in arbitrary order.

Indicates that all rectangles are nondecreasing in
their Y origin.

Indicates that all rectangles are nondecreasing in
their Y origin; and, rectangles with an equal Y origin
are nondecreasing in their X origin.

Indicates that all rectangles are nondecreasing in
their Y origin; rectangles with an equal Y origin are
nondecreasing in their X origin; and, for every
possible Y scan line, all rectangles that include that
scan line have an identical Y origin and Y extents.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetClipRectangles protocol request.

7-464 User Interface Reference

XSetCloseDownMode

XSetCloseDownMode Subroutine

Purpose

Libraries

C Syntax

Changes the close down mode of a client.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetCloseDownMode(DisplayPtr, CloseMode);
Display * DisplayPtr,
int CloseMode;

FORTRAN Syntax
external fxsetclosedownmode
integer*4 DisplayPtr
integer*4 CloseMode
call fxsetclosedownmode(Oisp/ayPtr, CloseMode)

Description
The XSetCloseDownMode subroutine defines what happens to the client's resources at
connection close.

The Close Mode parameter is set to the value of Destroy All by default. It can be changed to
the value of RetainPermanent or RetainTemporary by using the XSetCloseDownMode
subroutine.

Parameters
DisplayPtr Specifies the connection to the X Server.

Close Mode Specifies the client close down mode as one of the following values:

Error Codes
Bad Implementation

BadValue

Implementation Specifics

Destroy All

Retain Permanent

RetainTemporary

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetCloseDownMode protocol request.

Enhanced X-Windows Subroutines 7-465

I

XSetCommand

XSetCommand Subroutine

Purpose

Libraries

C Syntax

Sets the value of the command property.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetCommand(DisplayPtr, Window!D,
argv, argc);

Display * DisplayPtr;
Window Windowf D;
char ** argv;
int argc;

FORTRAN Syntax
external fxsetcommand
integer*4 DisplayPtr
integer*4 Window!D
integer*4 argv, argc
call fxsetcommand(DisplayPtr, Window!D, argv, argc)

Description
The XSetCommand subroutine sets the WM_COMMAND property.

Parameters
DisplayPtr

Window/D

argc

argv

Error Codes
BadAlloc

Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the number of parameters.

Specifies the parameter list of an application. Typically, this
parameter is the argv parameter array of your main program.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
E nvi ro n me nt/6000.

Related Information
The ChangeProperty protocol request.

7-466 User Interface Reference

(

XSetDashes

XSetDashes Subroutine

Purpose

Libraries

C Syntax

Sets the dash offset and the dash list of dashed-line style for a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetDashes(DisplayPtr, GraphicsContext, DashOffset, DashList, Numbery;
Display * DisplayPtr,
GC GraphicsContexf",
int DashOffset;
char Dash List[];
int Number,

FORTRAN Syntax
external fxsetdashes
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 DashOffset, DashList, Number
call fxsetdashes(DisplayPtr, GraphicsContext, DashOffset, DashList, Numbery

Description
The XSetDashes subroutine sets the DashOffset and Dash List parameters for the
dashed-line style in a specified graphics context. There must be at least one element
specified for the Dash List parameter. The initial and alternating elements of the Dash List
parameter are the even dashes, while the rest are the odd dashes. Specifying an odd-length
list results in a list that concatenates with itself to produce an even-length list.

Each element of the DashList parameter specifies a dash length in pixels. All the elements
must be nonzero.

The DashOffset parameter defines the phase of the pattern, specifying how many pixels into
the dash list the pattern should actually begin in any single graphics request. Dashing is
continuous through path elements combined with a join-style but is reset to the dash offset
value each time a cap-style is applied at a line end point.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but implementations are only required to
match this ideal for horizontal and vertical lines. Otherwise, length should be measured
along the major axis of the line.

The major axis is defined as the x axis for lines drawn at an angle of between -45 and +45
degrees or between 315 and 225 degrees from the x axis. For all other lines, the major axis
is the y axis.

Enhanced X-Windows Subroutines 7-467

XSetDashes

Parameters
DisplayPtr

GraphicsContext

DashOffset

Dash list

Number

Error Codes
BadAlloc

BadGC

Badlmplementation

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the phase of the pattern for the dashed-line style for the
specified graphics context.

Specifies the dash list of the dashed-line style for the specified
graphics context.

Specifies the number of elements in the dash list.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetDashes protocol request.

7-468 User Interface Reference

(
"

XSetErrorHandler

XSetErrorHandler Subroutine

Purpose

Libraries

C Syntax

Sets the error handler.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetErrorHandler(Hand/er};
int (* Hand/er}(Display*, XErrorEvent*)

FORTRAN Syntax
external fxseterrorhandler
integer*4 Handler
call fxseterrorhandler{Handler}

Description

Parameter

The XSetErrorHandler subroutine specifies the active error handler.

The Xlib library includes a default error handler to handle error events that are usually fatal,
as well as one to handle error events from the X Server. The default error handlers print an
explanatory message, and whichthen exit.

The XSetErrorHandler subroutine enables user-supplied routines for error handling. The
error handler specification can be changed at any time.

The XSetErrorHandler subroutine calls the user-supplied error handler whenever an XError
event is received. The error is handled as nonfatal. The error handler should not perform any
direct or indirect operations on the display.

Handler Specifies the error handler. If NULL, the default error handler is
invoked.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XErrorEvent data structure

Enhanced X-Windows Subroutines 7-469

XSetFillRule

XSetFillRule Subroutine

Purpose

Libraries

C Syntax

Sets the fill rule of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetFillRule(OisplayPtr, GraphicsContext, Fi/IRule);
Display * DisplayPtr;
GC GraphicsContext;
int Fil/Rule;

FORTRAN Syntax
external fxsetfillrule
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Fi!IRule
call fxsetfillrule(OisplayPtr, GraphicsContext, Fil/Rule)

Description
The XSetFillRule subroutine sets the fill rule in a specified graphics context.

Parameters
DisplayPtr

GraphicsContext

Fil/Rule

Error Codes
BadAlloc

BadGC

Badlmplementation

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the fill rule as the value of EvenOddRule or the
Winding Rule.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-470 User Interface Reference

XSetFillStyle Subroutine

Purpose

Libraries

C Syntax

Sets the fill style of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetFi I I Style(DisplayPtr, GraphicsContext, Fil/Style);
Display * DisplayPtr,
GC GraphicsContext,
int Fil/Style;

FORTRAN Syntax
external fxsetfillstyle
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Fil/Style
call fxsetfillstyle(DisplayPtr, GraphicsContext, Fil/Style)

Description

XSetFillStyle

The XSetFillStyle subroutine sets the fill style of a specified graphics context.

Parameters
DisplayPtr

GraphicsContext

Fil/Style

Error Codes
BadAlloc

BadGC

Badlmplementation

BadValue

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the fill style as one of the following values:

F=i11Solid

Fill Stippled

FillTiled

FillOpaqueStippled

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-471

XSetFont

XSetFont Subroutine

Purpose

Libraries

C Syntax

Sets the current font of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetFont(DisplayPtr, GraphicsContext, Font);
Display * DisplayPtr;
GC GraphicsContext;
Font Font;

FORTRAN Syntax
external fxsetfont
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Font
call fxsetfont(DisplayPtr, GraphicsContext, Font)

Description
The XSetFont subroutine sets the current font of a specified graphics context.

Parameters
DisplayPtr

GraphicsContext

Font

Error Codes
BadAlloc

Bad Font

BadGC

Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the font ID.

This Xlib subroutine is part of AIXwindows Run Time Environme~t in AIXwindows
Environ ment/6000.

7-472 User Interface Reference

(

XSetFont

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-473

XSetFontPath

XSetFontPath Subroutine

Purpose

Libraries

C Syntax

Sets the font search path.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetFontPath(DisplayPtr, Directories, NumberDirectories);
Display * DisplayPtr;
char **Directories;
int NumberDirectories;

FORTRAN Syntax
external fxsetfontpath
integer*4 DisplayPtr
integer*4 Directories
integer*4 NumberDirectories
call fxsetfontpath(DisplayPtr, Directories, NumberDirectories)

Description
The XSetFontPath subroutine defines the directory search path for looking up fonts. There
is one search path per X Server, not one per client. The contents of directory listings should
not be used by client applications.

The X Server can usually cache font information internally, but flushes all cached information
about fonts for which there are currently no resource IDs allocated.

An error from this request is system-specific.

Parameters
DisplayPtr Specifies the connection to the X Server.

Directories

NumberDirectories

Error Codes
Bad Implementation

Bad Value

Implementation Specifics

Specifies the directory search path. Setting the path to NULL
restores the default path defined for the X Server.

Specifies the number of directories in the path.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-474 User Interface Reference

(

XSetFontPath .

Related Information
The XChar2b data structure.

The SetFontPath protocol request.

Enhanced X-Windows Subroutines 7-475

XSetForeground

XSetForeground Subroutine

Purpose

Libraries

C Syntax

Sets the foreground color for a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetForeg round(DisplayPtr, GraphicsContext, Foreground);
Display * DisplayPtr;
GC GraphicsContext;
unsigned long Foreground;

FORTRAN Syntax
external fxsetforeground
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Foreground
call fxsetforeground(DisplayPtr, GraphicsContext, Foreground)

Description
The XSetForeground subroutine sets the foreground color for a specified graphics context.

Parameters
DisplayPtr

GraphicsContext

Foreground

Error Codes
BadAlloc

BadGC

Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the foreground color for a specified graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-476 User Interface Reference

/

(
"

XSetFunction

XSetFunction Subroutine

Purpose

Libraries

C Syntax

Sets the display function for a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetFunction(DisplayPtr, GraphicsContext, Function)
Display * DisplayPtr,
GC GraphicsContext,
int Function;

FORTRAN Syntax
external fxsetfunction
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Function
call fxsetfunction(DisplayPtr, GraphicsContext, Function)

Description
The XSetFunction subroutine sets a specified display function in a specified graphics
context.

Parameters
DisplayPtr

Graphics Context

Specifies the connection to the X Server.

Specifies the graphics context.

Function Specifies the display function to set for a specified graphics context.

Error Codes
BadAlloc

BadGC

Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-477

XSetGraphicsExposures

XSetGraphicsExposures Subroutine

Purpose

Libraries

C Syntax

Sets the graphics-exposures flag of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetGraphicsExposures(Disp/ayPtr, GraphicsContext, GraphicsExposures);
Display * DisplayPtr,
GC GraphicsContext,
Boolean GraphicsExposures;

FORTRAN Syntax
external fxsetgraphicsexposures
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 GraphicsExposures
call fxsetgraphicsexposu res(DisplayPtr, GraphicsContext, GraphicsExposures)

Description
The XSetGraphicsExposures subroutine sets the graphics-exposures flag of a specified
graphics context. It specifies if GraphicsExpose and NoExpose events are to be reported
when using the XCopyArea and XCopyPlane subroutines with the specified graphics
context.

Parameters
DisplayPtr Specifies the connection to the X Server.

GraphicsContext

GraphicsExposures

Return Values

Specifies the graphics context.

Specifies a Boolean value.

True Indicates that GraphicsExpose events are reported.

False Indicates that GraphicsExpose events are not reported.

Error Codes

7-478

BadAlloc

BadGC

Badlmplementation

BadValue

User Interface Reference

(
\

XSetGraphicsExposures

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCopyArea subroutines, XCopyPlane subroutine.

The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-479

XSetlOErrorHandler

XSetlOErrorHandler Subroutine

Purpose

Libraries

C Syntax

Handles fatal 110 errors.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetlOErrorHandler (Handler)
int (*Hand/el)(Display *);

FORTRAN Syntax
external fxsetioerrorhandler
integer*4 Handler
call fxsetioerrorhandler(Handlel)

Description

Parameter

The XSetlOErrorHandler subroutine sets the fatal 1/0 error handler. The Xlib library then
calls the program-supplied error handler if a subroutine error occurs. This is handled by
default as a fatal condition, and the subroutine should not return. If the 1/0 error handler
does return, the client process exits.

Handler Specifies the program-supplied error handler.

Error Code
Badlmplementation

Implementation Specifics

7-480

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

" I
;

XSetlconName

XSetlconName Subroutine

Purpose

Library

C Syntax

Sets the name to be displayed in a specified window icon.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetlconName(DisplayPtr, Window!D, lconName);
Display * DisplayPtr;
Window Window!D;
char *Icon Name;

FORTRAN Syntax
external fxseticonname
integer*4 DisplayPtr
integer*4 Window/D
character*256 lconName
call fxseticonname(DisplayPtr, Window/D, lconName)

Description
The XSetlconName subroutine sets the name to be displayed in a specified window icon.
The name should be a null-terminated string.

Parameters
DisplayPtr

Window/D

Icon Name

Error Codes
BadAlloc

Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the icon name.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-481

XSetlconSizes

XSetlconSizes Subroutine

Purpose

Libraries

C Syntax

Sets the icon size hints.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetlconSizes(DisplayPtr, Window!D, Sizelist,
Count)

Display * DisplayPtr,
Window Window!D;
XlconSize * Sizelist;
int Count;

FORTRAN Syntax
external fxseticonsizes
integer*4 DisplayPtr
integer*4 Window!D, SizeList, Count
call fxseticonsizes(Oisp/ayPtr, Window!D, Sizelist, Count)

Description
The XSetlconSizes subroutine, used only by window managers, sets supported icon sizes.

Parameters
DisplayPtr Specifies the connection to the X Server.

Specifies the window ID. Window/D

Size list Specifies a pointer to the size list.

Count Specifies the number of items in the size list.

Error Codes
BadAlloc

Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The ChangeProperty protocol request.

7-482 User Interface Reference

c

XSetlnputFocus

XSetlnputFocus Subroutine

Purpose

Libraries

C Syntax

Sets the input focus.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetlnputFocus(DisplayPtr, Focus,
RevertTo, Timestamp)

Display * DisplayPtr,
Window Focus;
int RevertTo;
Time Timestamp;

FORTRAN Syntax
external fxsetinputfocus
integer*4 DisplayPtr
integer*4 Focus, RevertTo, Timestamp
call fxsetinputfocus(Oisp/ayPtr, Focus, RevertTo, Timestamp)

Description
The XSetlnputFocus subroutine changes the input focus and last-focus-change time. It has
no effect if the specified time is earlier than the current last-focus-change time or later than
the current X Server time. Otherwise, the last-focus-change time is set to the specified time
and the CurrentTime value is replaced by the current X Server time. The XSetlnputFocus
subroutine generates the Focusln and FocusOut events.

The specified focus window must be viewable at the time the XSetlnputFocus subroutine is
called. If, at some later time, the focus window is not viewable, the X Server evaluates the
RevertTo parameter to determine the new focus window.

When the input focus reverts to a value of RevertToPointerRoot or RevertToNone, the
X Server generates the Focusln and FocusOut events, but the last-focus-change time is
not affected.

Parameters
DisplayPtr

Focus

Specifies the connection to the X Server.

Specifies the window ID for the input focus. The Focus parameter
can specify one of the following values:

None

A window ID

Indicates that all keyboard events are
discarded until a new focus window is
set. In this case, the RevertTo
parameter is ignored.

Becomes the focus window for the
keyboard. If a generated keyboard

Enhanced X-Windows Subroutines 7-483

XSetlnputFocus

Revert To

TimeStamp

Error Codes
Badlmplementation

BadMatch

BadValue

BadWindow

Implementation Specifics

Pointer Root

event is usually reported to this
window or to one of its ·inferiors, the
event is reported normally. Otherwise,
the event is reported relative to the
focus window.

Indicates that the focus window is the
root window of whatever screen the
pointer is on at each keyboard event.
In this case, the RevertTo parameter
is ignored.

Specifies an alternative for when the specified focus window is not
viewable. The RevertTo parameter can specify one of the following
values:

RevertToParent

Revert To Poi nterRoot

RevertToNone

The input focus reverts to the parent
or to the closest viewable ancestor;
the RevertTo parameter is reset to a
RevertToNone value.

The input focus reverts to a
PointerRoot value.

The input focus reverts to a value of
None.

Specifies the time as the CurrentTime value or as a time stamp
expressed in milliseconds.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetlnputFocus protocol request.

7-484 User Interface Reference

/
l\j

XSetlineAttributes

XSetlineAttributes Subroutine

Purpose

Libraries

C Syntax

Sets the line-drawing components of a graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetlineA ttributes(Displa yPtr, GraphicsContext,
Line Width, LineStyle,
CapStyle, JoinStyle)

Display * DisplayPtr,
GC GraphicsContexf",
unsigned int LineWidth;
int LineStyle;
int CapStyle;
int JoinStyle;

FORTRAN Syntax
external fxsetlineattributes
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 LineWidth, LineStyle
integer*4 CapStyle, JoinStyle
call fxsetlineattributes(Oisp/ayPtr, GraphicsContext, LineWidth,

LineStyle, CapStyle, JoinStyle}

Description
The XSetlineAttributes subroutine sets the line-drawing components in the specified
graphics context.

Parameters
DisplayPtr

GraphicsContext

Line Width

LineStyle

CapStyle

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the line width for the specified graphics context.

Specifies the line style as the following values:

LineSolid

LineOnOffDash

LineDoubleDash.

Specifies the cap style as the following values:

Cap Not Last

Cap Butt

Enhanced X-Windows Subroutines 7-485

XSetLineAttributes

JoinStyle

Error Codes
BadGC

Badlmplementation

BadValue

Cap Round

Cap Projecting

Specifies the line-join style as the following values:

Join Miter

Join Round

Join Bevel

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-486 User Interface Reference

(
\~

XSetModifierMapping

XSetModifierMapping Subroutine

Purpose

Libraries

C Syntax

Sets the key codes to be used as modifiers.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XSetModifierMapping(Oisp/ayPtr, ModifierMap);
Display * DisplayPtr;
XModifierKeymap * ModifierMap;

FORTRAN Syntax
integer*4 fxsetmodifiermapping
external fxsetmod ifiermappi ng
integer*4 DisplayPtr, ModifierMap
integer*4 ReturnCode
ReturnCode = fxsetmodifiermapping(Oisp/ayPtr, ModiferMap)

Description
The XSetModifierMapping subroutine specifies any keycodes to be used as modifiers. If it
succeeds, the X Server generates a MappingNotify event, and the XSetModifierMapping
subroutine returns a value of MappingSuccess. As many as eight modifier keys are
permitted.

The modifiermap field of the XModifierKeymap data structure contains eight sets of
max_keypermod key codes, one for each modifier in the Shift, Lock, Control, Mod1,
Mod2, Mod3, Mod4, and Mods order. Only nonzero key codes have meaning in each set;
zero key codes are ignored. Also, nonzero keycodes must be in the range specified by the
min_keycode and max_keycode fields of the Display data structure. No key code can be
displayed twice.

An X Server can impose restrictions on how modifiers can be changed.

Parameters
DisplayPtr Specifies the connection to the X Server.

ModifierMap Specifies a pointer to the XModifierKeymap data structure.

Return Values
Mapping Busy

MappingFailed

MappingSuccess

Indicates that the new keycodes specified for a modifier differ from
those currently defined, and if any keys (current or new) for that
modifier are in the logically down state, and none of the modifiers
are changed.

Indicates that a restriction is disregarded, and none of the modifiers
are changed.

Indicates that the XSetModifierMapping subroutine succeeds.

Enhanced X-Windows Subroutines 7-487

XSetModifierMapping

Error Codes
BadAlloc

Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XModifierKeymap data structure.

The SetModifierMapping protocol request.

7-488 User Interface Reference

(

XSetNormalHints

XSetNormalHints Subroutine

Purpose

Libraries

C Syntax

Sets size hints for a specified window in its normal state.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XSetNormalHints(Oisp/ayPtr, Window!D, Hints)
Display * DisplayPtr,
Window Window/D;
XSizeHints *Hints;

FORTRAN Syntax
external fxsetnormalhints
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Hints
call fxsetnormalhints(Oisp/ayPtr, Window/D, Hints)

Description
The XSetNormalHints subroutine sets the size hints structure for a specified window. It
allows an application to inform the window manager of the size or position desired for a
window.

Also, an application can use XSetNormalHints subroutine along with direct calls to the Xlib
library to resize or move its own window, since window managers may ignore redirected
configure requests, but act on property changes.

To set size hints, an application must assign values to the appropriate members in the
XSizeHints subroutine, and must set the flags field of the structure to indicate which
information is present and where it came from.

Parameters
DisplayPtr

Window/D

Specifies the connection to the X Server.

Specifies the window ID.

Hints Specifies a pointer to the sizing hints for the window in its normal state.

Error Codes
BadAlloc

Badlmplementation

BadWindow

Enhanced X-Windows Subroutines 7-489

XSetNormalHints

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The· XSizeHints data structure.

The ChangeProperty protocol request.

7-490 User Interface Reference

XSetPlaneMask

XSetPlaneMask Subroutine

Purpose

Libraries

C Syntax

Sets the plane mask of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetPlaneMask(Oisp/ayPtr, GraphicsContext, PlaneMask);
Display * DisplayPtr;
GC GraphicsContext",
unsigned long PlaneMask;

FORTRAN Syntax
external fxsetplanemask
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 PlaneMask
call fxsetplanemask(Oisp/ayPtr, GraphicsContext, PlaneMask)

Description
The XSetPlaneMask subroutine sets the plane mask of a specified graphics context.

Parameters
DisplayPtr

GraphicsContext

PlaneMask

Error Codes
BadAlloc

BadGC

Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the plane mask.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-491

XSetPointerMapping

XSetPointerMapping Subroutine

Purpose

Libraries

C Syntax

Sets the mapping of the pointer buttons.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XSetPointerMapping(Oisp/ayPtr, Map, NumberMap);
Display * DisplayPtr;
unsigned char Map[];
int NumberMap;

FORTRAN Syntax
integer*4 fxsetpointermapping
external fxsetpointermapping
integer*4 DisplayPtr
integer*4 Map
integer*4 NumberMap
integer*4 ReturnCode .
ReturnCode = fxsetpointermapping(Oisp/ayPtr, Map, NumberMap)

Description
The XSetPointerMapping subroutine sets the mapping of the pointer. If it succeeds, the X
Server generates a MappingNotify event, and the XSetPointerMapping subroutine returns
the value of MappingSuccess.

Elements of the mapping list are indexed starting from 1. The length of the list must be the
same as would be returned by the XGetPointerMapping subroutine. The index is a core
button number, and the element of the list defines the effective number. A 0 element
disables a button. Elements are not restricted in value by the number of physical buttons.
However, no two elements can have the same nonzero value. If any of the buttons to be
altered are logically in the down state, the XSetPointerMapping subroutine returns the
value of MappingBusy, and the mapping is not changed.

Parameters
DisplayPtr Specifies the connection to the X Server.

Map Specifies the mapping list.

NumberMap Specifies the number of items in the mapping list.

Error Codes
Bad Implementation

BadValue

7-492 User Interface Reference

/
i
\

XSetPointerMapping

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
Processing MappingNotify Events

The SetPointerMapping protocol request.

Enhanced X-Windows Subroutines 7-493 .

XSetRegion

XSetRegion Subroutine

Purpose

Libraries

C Syntax

Sets the clip-mask of a graphics context to a region.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetRegion(DisplayPtr, GraphicsContext, Region Pt!?
Display * DisplayPtr,
GC GraphicsContext,
Region RegionPtr,

FORTRAN Syntax
external fxsetregion
integer*4 DisplayPtr
integer*4 GraphicsContext, RegionPtr
call fxsetregion(DisplayPtr, GraphicsContext, RegionPtry

Description
The XSetRegion subroutine sets the clip-mask in a graphics context to a specified region.
Once the clip mask is set in the graphics context or once this subroutine completes and the
region is no longer needed, the region can be deleted.

Parameters
DisplayPtr

GraphicsContext

RegionPtr

Error Code
Badlmplementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the region to be used as the clip-mask.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

7-494 User Interface Reference

I

~

)

XSetScreenSaver

XSetScreenSaver Subroutine

Purpose

Libraries

C Syntax

Sets the screen saver.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetScreenSaver(DisplayPtr, Timeout, Interval,
PreferBlanking, AllowExposures)

Display * DisplayPtr,
int Timeout, Interval;
int PreferBlanking;
int AllowExposures;

FORTRAN Syntax
external fxsetscreensaver
integer*4 DisplayPtr
integer*4 Timeout, Interval
integer*4 PreferBlanking, AllowExposures
call fxsetscreensaver(DisplayPtr, Timeout, Interval,

PreferBlanking, AllowExposures)

Description
The XSetScreenSaver subroutine sets the screen saver. The Timeout and Interval
parameters are specified in seconds.

If the Timeout parameter value is nonzero, the screen saver is enabled. A value of 0
disables the screen saver, and a value of -1 restores the default. Other negative values
generate an event error.

A value of 0 for the Interval parameter disables random pattern motion. Once the screen
saver is enabled, if no device input is generated for the specified number of time out
seconds, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if exposures are allowed or the screen can be
regenerated without sending the Expose events to clients, the screen is tiled with the root
window background tile. Otherwise, the state of the screens does not change, and the
screen saver is not activated. The screen saver is deactivated and all screen states are
restored by a subsequent device input or a call to the XForceScreenSaver subroutine set to
the ScreenSaverReset mode.

Parameters
DisplayPtr

Timeout

Interval

Specifies the connection to the X Server.

Specifies the time out, in seconds, until the screen saver activates.

Specifies the interval between screen saver activities.

Enhanced X-Windows Subroutines 7-495

XSetScreenSaver

PreferBlanking

AllowExposures

Error Codes
Bad Implementation

BadValue

Implementation Specifics

Specifies the enable screen blanking as the following values:

DontPreferBlanking

PreferBlanking

DefaultBlanking

Specifies the current screen saver control as the following values:

DontAllowExposures

AllowExposures

DefaultExposures

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetScreenSaver protocol request.

7-496 User Interface Reference

XSetSelectionOwner

XSetSelectionOwner Subroutine

Purpose

Libraries

C Syntax

Sets the selection owner.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetSelectionOwner(DisplayPtr, Selection, Owner,
TimeStamp)

Display * DisplayPtr,
Atom Selection;
Window Owner,
Time TimeStamp;

FORTRAN Syntax
external fxsetselectionowner
integer*4 DisplayPtr
integer*4 Selection
integer*4 Owner
integer*4 TimeStamp
call fxsetselectionowner(DisplayPtr, Selection, Owner, TimeStamp)

Description
The XSetSelectionOwner subroutine sets the selection owner. It sets the last-change time
to the value specified for the TimeStamp parameter; this value can be a time stamp
expressed in milliseconds, or the value of CurrentTime, which is the current X Server time.
However, it has no effect if the specified time is earlier than the last-change time of the
specified selection or is later than the current X Server time.

If a value of None is specified for the Owner parameter, the selection will have no owner.
Otherwise, the owner of the selection is the client executing the request. If the new owner is
not the same as the current owner of the selection and the current owner is not a value of
None, the current owner is sent a SelectionClear event.

If the connection is subsequently closed for the owner of the specified window, the owner of
the selection defaults to a value of None. The last-change time is not affected.

The X Server does not interpret the selection atom. The owner window is returned by the
XGetSelectionOwner subroutine and is reported in the SelectionRequest and
SelectionClear events. Selections are global to the X Server.

Parameters
DisplayPtr

Selection

Owner

Specifies the connection to the X Server.

Specifies the selection atom.

Specifies the owner of the specified selection atom as a window ID
or as a value of None.

Enhanced X-Windows Subroutines 7-497

XSetSelectionOwner

TimeStamp

Error Codes
BadAtom

Badlmplementation

BadWindow

Implementation Specifics

Specifies the time as the value of CurrentTime or in a time stamp
expressed in milliseconds.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The SetSelectionOwner protocol request.

7-498 User Interface Reference

XSetSizeHints Subroutine

Purpose

Libraries

C Syntax

Sets the values of a property of type WM_SIZE_HINTS.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetSizeHints(DisplayPtr, Window!D, Hints,
Property);

Display * DisplayPtr,
Window Window/D;
XSizeHints *Hints;
Atom Property;

FORTRAN Syntax
external fxsetsizehints
integer*4 DisplayPtr
integer*4 Window!D, Hints, Property
call fxsetsizehints(Oisp/ayPtr, Window/D, Hints, Property)

Description

XSetSizeHints

The XSetSizeHints subroutine sets the XSizeHints data structure for a named property and
specified window. These values are used by the XSetNormalHints and XSetZoomHints
subroutines; they can be used to set the value of any property of type WM_SIZE_HINTS.

Parameters
DisplayPtr

Window/D

Hints

Property

Error Codes
BadAlloc

Bad Atom

Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies a pointer to the size hints.

Specifies the property atom.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-499

XSetSizeHints

Related Information
The XSizeHints data structure.

The GetProperty protocol request.

7-500 User Interface Reference

XSetStandardColormap

XSetStandardColormap Subroutine

Purpose

Libraries

C Syntax

Sets a standard color map.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

void XSetStandardColormap(Oisp/ayPtr, Window!D, ColormapPtr, Property)
Display * DisplayPtr,
Window Window/D;
XStandardColormap * ColormapPtr,
Atom Property;

FORTRAN Syntax
external fxsetstandardcolormap
integer*4 DisplayPtr
integer*4 Window!D, ColormapPtr, Property
call fxsetstandardcolormap(Oisp/ayPtr, Window!D, ColormapPtr, Property)

Description
The XSetStandardColormap subroutine creates or changes a standard colormap.

The XSetStandardColormap subroutine is usually used only by window managers to create
a standard colormap, according to the following procedure:

1. Opens a connection to the same server.

2. Grabs the server.

3. Sees if the Property parameter is on the property list of the root window for the screen.

4. If the desired property is not present:

• Creates a colormap (not required for the RGB_DEFAULT _MAP property).

• Determines the color capabilities of the display.

• Calls either the XAllocColorPlanes or the XAllocColorCells subroutine to allocate
cells in the colormap.

• Calls the XStoreColors subroutine to store appropriate color values in th~ colormap.

• Fills in the descriptive fields in the XStandardColormap data structure.

• Attaches the property to the root window by calling the XSetColormap subroutine.

• Calls the XSetCloseDownMode subroutine to make the resource permanent.

5. Ungrabs the server.

Parameters
Colormap Specifies the colormap description.

Enhanced X-Windows Subroutines 7-501

XSetStandardColormap

DisplayPtr

Property

Window/D

Error Codes
BadAlloc

BadAtom

Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the property name to be set.

Specifies the window ID.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabServer subroutine.

7-502 User Interface Reference

XSetStandardProperties

XSetStandardProperties Subroutine

Purpose

Libraries

C Syntax

Specifies a minimum set of properties.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetStandardProperties(Oisp/ayPtr, Window/D,
WindowName, Icon Name,
lconPixmap, argv, argc, Hints)

Display * DisplayPtr,
Window Window/D;
char * WindowName;
char *Icon Name;
Pixmap lconPixmap;
char ** argv;
int argc
XSizeHints *Hints;

FORTRAN Syntax
external fxsetstandardproperties
integer*4 DisplayPtr
integer*4 Window/D
character*256 WindowName
character*256 lconName
integer*4 lconPixmap, argv, argc, Hints
call fxsetstandardproperties(DisplayPtr, Window/D,

WindowName, lconName,
lconPixmap, argv, argc, Hints)

Description
The XSetStandardProperties subroutine sets all or portions of. the WM_NAME, WM_ICON,
WM_ICON_NAME, WM_HINTS, WM_COMMAND, and WM_NORMAL_HINTS properties. It
provides a way for simple applications to set essential properties with a single call. It should
not be used by applications that need to communicate more information than is possible with
this subroutine.

Parameters
argc

argv

DisplayPtr

Hints

Icon Name

Specifies the number of arguments.

Specifies the argument list of the application.

Specifies the connection to the X Server.

Specifies a pointer to the size hints for the window in its normal
state.

Specifies the icon name .

Enhanced X-Windows Subroutines 7-503

XSetStandardProperties

Icon Pixmap

Window/D

WindowName

Error Codes
BadAlloc

Bad Implementation

BadWindow

Implementation Specifics

Specifies the icon as a pixmap or as None.

Specifies the window ID.

Specifies the window name as a null-terminated string.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeProperty protocol request.

7-504 User Interface Reference

(
\

XSetState

XSetState Subroutine

Purpose
Sets the foreground, background, plane mask and function components in the graphics
context.

Libraries

C Syntax

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetState(DisplayPtr, Graphics Context, Foreground,
Background, Function, PlaneMask)

Display * DisplayPtr,
GC GraphicsContexf',
unsigned long Foreoround, Background;
int Function;
unsigned long PlaneMask;

FORTRAN Syntax
external fxsetstate
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Foreground, Background
integer*4 Function, PlaneMask
call fxsetstate(Oisp/ayPtr, GraphicsContext, Foreground, Background,

Function, PlaneMask)

Description
The XSetState subroutine sets the foreground, background, plane mask, and function
components in the specified graphics context.

Parameters
DisplayPtr

GraphicsContext

Foreground

Background

Function

PlaneMask

Error Codes
BadGC

Badlmplementation

Bad Value

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the foreground for the graphics context.

Specifies the background.

Specifies the function component.

Specifies the plane mask.

Enhanced X-Windows Subroutines 7-505

XSetState

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-506 User Interface Reference

(

XSetStipple

XSetStipple Subroutine

Purpose

Libraries

C Syntax

Sets the stipple of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetStipple(OisplayPtr, GraphicContext, Stipple)
Display * DisplayPtr,
GC GraphicsContexf",
Pixmap Stipple;

FORTRAN Syntax
external fxsetstipple
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Stipple
call fxsetstipple(OisplayPtr, GraphicsContext, Stipple)

Description
The XSetStipple subroutine sets the stipple in a specified graphics context. The depth of the
stipple must be 1.

Parameters
DisplayPtr

GraphicsContext

Stipple

Error Codes
BadAlloc

BadGC

Badlmplementation

Bad Match

Bad Pixmap

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the stipple for the specified graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-507

XSetSubwindowMode

XSetSubwindowMode Subroutine

Purpose

Libraries

C Syntax

Sets the subwindow mode of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetSu bwi ndowMode(DisplayPtr, GraphicsContext, SubwindowMode)
Display * DisplayPtr,
GC GraphicsContext;
int SubwindowMode;

FORTRAN Syntax
external fxsetsubwi ndowmode
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 SubwindowMode
call fxsetsubwindowmode(Oisp/ayPtr, GraphicsContext, SubwindowMode)

Description
The XSetSubwindowMode subroutine sets the subwindow mode of a specified graphics
context

Parameters
DisplayPtr

GraphicsContext

SubwindowMode

Error Codes
BadAlloc

BadGC

Bad Implementation

BadValue.

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the subwindow mode as the value of
ClipByChildren or lncludelnferiors.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-508 User Interface Reference

I
I~

XSetTSOrigin

XSetTSOrigin Subroutine

Purpose

Libraries

C S"yntax

Sets the tile or stipple origin of the specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetTSOrigin(Oisp/ayPtr, GraphicsContext, TSXOrigin,
TSYOrigin)

Display * DisplayPtr,
GC GraphicsContext;
int TSXOrigin, TSYOrigin;

FORTRAN Syntax
external fxsettsorigin
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 TSXOrigin, TSYOrigin
call fxsettsorigin(Oisp/ayPtr, GraphicsContext, TSXOrigin, TSYOrigin)

Description
The XSetTSOrigin subroutine sets the tile or stipple origin of the specified graphics context.

Parameters
DisplayPtr

GraphicsContext

TSXOrigin

TSYOrigin

Error Codes
BadAlloc

BadGC

Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the x coordinate of the tile or stipple origin for the
specified graphics context.

Specifies they coordinate of the tile or stipple origin for the
specified graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

Enhanced X-Windows Subroutines 7-509

XSetTile

XSetTile Subroutine

Purpose

Libraries

C Syntax

Sets the fill tile of a specified graphics context.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetTi le(DisplayPtr, GraphicsContext, Tile)
Display * DisplayPtr,
GC GraphicsContexf',
Pixmap Tile;

FORTRAN Syntax
external fxsettile
integer*4 DisplayPtr
integer*4 GraphicsContext
integer*4 Tile
call fxsettile(DisplayPtr, GraphicsContext, Tile)

Description
The XSetTile subroutine sets the fill tile of a specified graphics context. The depth of the tile
must be the same as the depth of the screen.

Parameters
DisplayPtr

GraphicsContext

Tile

Error Codes
BadAlloc

BadGC

Badlmplementation

Bad Match

Bad Pixmap

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the fill tile for the specified graphics context.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeGC protocol request.

7-510 User Interface Reference

(

XSetTransientForHint

XSetTransientForHint Subroutine

Purpose

Libraries

C Syntax

Sets the WM_ TRANSIENT _FOR property for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetTransientForHint(Oisp/ayPtr, Window/D, PropertyWindow)
Display * DisplayPtr,
Window Window/D;
Window PropertyWindow;

FORTRAN Syntax
external fxsettransientforhint
integer*4 DisplayPtr
integer*4 Window/D, PropertyWindow
call fxsettransientforhint(Oisp/ayPtr, Window/D, PropertyWindow)

Description
The XSetTransientForHint subroutine sets the WM_ TRANSIENT _FOR property of a
specified window to a specified PropertyWindow parameter. It indicates to the window
manager that a transient, top-level window is operating on behalf of another window, as
when a dialog box is transient for the window of an application. Some window managers can
use this information to unmap an application's dialog boxes; this may be desirable, for
example, when the main application window gets iconified.

Parameters
DisplayPtr

Window ID

PropertyWindow

Error Codes
BadAlloc

Bad Implementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the window ID for which the WM_ TRANSIENT _FOR
property is to be set.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-511

XSetWMHints

XSetWMHints Subroutine

Purpose

Libraries

C Syntax

Sets the window manager hints for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWMHints(DisplayPtr, Window/D, WMHintsPttj
Display * DisplayPtr,
Window Window!D;
XWMHints *WMHintsPtr,

FORTRAN Syntax
external fxsetwmhints
integer*4 DisplayPtr
integer*4 Window!D
integer*4 WmHintsPtr
call fxsetwmhints(DisplayPtr, Window!D, WmHintsPttj

Description
The XSetWMHints subroutine sets the window manager hints, which includes icon
information and location, the initial state of the window, and whether the application relies on
the window manager to get keyboard input.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window!D Specifies the window ID.

WMHintsPtr Specifies a pointer to the window manager hints.

Error Codes
BadAlloc

Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information

7-512

The XWMHints data structure.

The XGetWMHints subroutine.

The ChangeProperty protocol.

User Interface Reference

XSetWindowBackground

XSetWindowBackground Subroutine

Purpose

Libraries

C Syntax

Sets the background of a window to a specified pixel.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWindowBackground(Oisp/ayPtr, Window!D, BackgroundPixe~
Display * DisplayPtr,
Window Window/O;
unsigned long BackgroundPixet;

FORTRAN Syntax
external fxsetwindowbackground
integer*4 DisplayPtr
integer*4 Window/D
integer*4 BackgroundPixel
call fxsetwindowbackground(Oisp/ayPtr, Window!D, BackgroundPixe~

Description
The XSetWindowBackground subroutine sets the background pixel of a window to a
specified pixel value. Changing the background does not cause the window contents to
change. The XSetWindowBackground subroutine uses a pixmap of undefined size filled
with the pixel value specified in the Background Pixel parameter.

The XSetWindowBackground subroutine cannot be used to change the background of an
lnputOnly window.

Parameters
DisplayPtr

Window/D

Background Pixel

Error Codes
Badlmplementation

Bad Match

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

Specifies the pixel to be used for the background.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The ChangeWindowAttributes protocol request.

Enhanced X-Windows Subroutines 7-513

XSetWindowBackgroundPixmap

XSetWindowBackgroundPixmap Subroutine

Purpose

Libraries

C Syntax

Sets the background of a window to a specified pixmap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWindowBackgroundPixmap(Oisp/ayPtr, Window!D, BackgroundPixmap);
Display * DisplayPtr;
Window Window/D;
Pixmap BackgroundPixmap;

FORTRAN Syntax
external fxsetwindowbackgroundpixmap
integer*4 DisplayPtr
integer*4 Window/D
integer*4 BackgroundPixmap
call fxsetwindowbackgroundpixmap(Disp/ayPtr, Window/D, BackgroundPixmap)

Description
The XSetWindowBackgroundPixmap subroutine sets the background pixmap of a window
to a specified pixmap. Changing the background does not cause the window contents to be
changed. The background pixmap can be freed immediately if no further references to it will
be made.

If the value of ParentRelative is specified for the BackgroundPixmap parameter, the
background pixmap of the parent of the window is used; on the root window, the default
background is restored. If a value of None is specified for the BackgroundPixmap
parameter, the window has no defined background.

The XSetWindowBackgroundPixmap subroutine cannot be used on an lnputOnly
window.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D

Background Pixmap

Error Codes

7-514

BadColor

Badlmplementation

Bad Match

Bad Pixmap

User Interface Reference

Specifies the window ID.

Specifies the background pixmap as the value of
ParentRelative or a value of None.

XSetWindowBackgroundPixmap

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The ChangeWindowAttributes protocol request.

Enhanced X-Windows Subroutines 7-515

XSetWindowBorder

XSetWindowBorder Subroutine

Purpose

Libraries

C Syntax

Changes and repaints the border of a window to a specified pixel.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx !:I'

XSetWindowBorder(DisplayPtr, Window/D, BorderPixeO;
Display * DisplayPtr,
Window Window/D;
unsigned long BorderPixel;

FORTRAN Syntax
external fxsetwi ndowborder
integer*4 DisplayPtr
integer*4 Window/D
integer*4 BorderPixel
call fxsetwindowborder(Oisp/ayPtr, Window!D, BorderPixeO

Description
The XSetWindowBorder subroutine sets the border pixel of the window to the pixel value
specified.

The XSetWindowBorder subroutine cannot be used on an lnputOnly window.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies the window ID.

BorderPixel Specifies the entry in the colormap.

Error Codes
Badlmplementation

Bad Match

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeWindowAttributes subroutine, XSetWindowBorderPixmap subroutine

The ChangeWindowAttributes protocol request.

7-516 User Interface Reference

XSetWindowBorderPixmap

XSetWindowBorderPixmap Subroutine

Purpose

Libraries

C Syntax

Changes and repaints the border tile of a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWi ndowBorderPixmap(OisplayPtr, Window/ 0, BorderPixmap)
Display * DisplayPtr,
Window Window/O;
Pixmap BorderPixmap;

FORTRAN Syntax
external fxsetwindowborderpixmap
integer*4 DisplayPtr
integer*4 Windowf D
integer*4 BorderPixmap
call fxsetwindowborderpixmap(Oisp/ayPtr, Window/D, BorderPixmap)

Description
The XSetWindowBorderPixmap subroutine sets the border pixmap of the window to the
pixmap specified. The border pixmap can be freed immediately if no further references to it
will be made.

If the value of CopyFromParent is specified for the BorderPixmap parameter, a copy of the
border pixmap of the parent window is used.

The XSetWindowBorderPixmap subroutine cannot be used on an lnputOnly window.

Parameters
OisplayPtr Specifies the connection to the X Server.

Window/O

BorderPixmap

Specifies the window ID.

Specifies the border pixmap.

Error Codes
Badlmplementation

Bad Match

Bad Pixmap

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-517

XSetWindowBorderPixmap

Related Information

7-518

The ChangeWindowAttributes protocol request.

The XChangeWindowAttributes subroutine, XSetWindowBorder subroutine,
XSetWindowBorderWidth subroutine.

User Interface Reference

I

\

XSetWindowBorderWidth

XSetWindowBorderWidth Subroutine

Purpose

Libraries

C Syntax

Changes the border width of a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWindowBorderWidth(Oisp/ayPtr, Window/D, Width)
Display * DisplayPtr,
Window Windowf D;
unsigned int Width;

FORTRAN Syntax
external fxsetwindowborderwidth
integer*4 DisplayPtr
integer*4 Window/D
integer*4 Width
call fxsetwindowborderwidth(DisplayPtr, Windowf D, Width)

Description
The XSetWindowBorderWidth subroutine sets the width of a specified window border.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window ID Specifies the window ID.

Width Specifies the width for the window border.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeWindowAttributes subroutine, XSetWindowBorder subroutine,
XSetWindowBorderPixmap subroutine.

The ConfigureWindow protocol.

Enhanced X-Windows Subroutines 7-519

XSetWindowColormap

XSetWindowColormap Subroutine

Purpose

Libraries

C Syntax

Sets the colormap of a specified window.

Enhanced X-Windows LibraryJlibX11.a)

FORTRAN 77 Library (libXfx.a)

XSetWi ndowColorma p(DisplayPtr, Window/ D, Colormap!D)
Display * DisplayPtr,
Window Window/D;
Colormap Colormap/D;

FORTRAN Syntax
external fxsetwindowcolormap
integer*4 DisplayPtr
integer*4 Window!D, Colormap!D
call fxsetwindowcolormap(DisplayPtr, Window!D, Colormap!D)

Description
The XSetWindowColormap subroutine sets the colormap for a specified window. The
colormap must have the same visual type as the window, or a BadMatch error results ..

Parameters
DisplayPtr Specifies the connection to the X Server.

Window ID Specifies the window ID.

Colormap!D Specifies the colormap ID.

Error Codes
BadColor

Badlmplementation

Bad Match

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeWindowAttributes subroutine.

The ChangeWindowAttributes protocol request.

7-520 User Interface Reference

(

XSetZoomHints

XSetZoomHints Subroutine

Purpose

Libraries

C Syntax

Sets the value of the zoom hints for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSetZoomHints(Oisp/ayPtr, Window!D, ZoomHints)
Display * DisplayPtr,
Window Window!D;
XSizeHints * ZoomHints;

FORTRAN Syntax
external fxsetzoomhints
integer*4 OisplayPtr
integer*4 Windowf D
integer*4 ZoomHints
call fxsetzoomhints(Oisp/ayPtr, Window/O, ZoomHints)

Description
The XSetZoomHints subroutine provides the window manager with information for the
window in the zoomed state by setting the WM_ZOOM_HINTS property.

Parameters
DisplayPtr

WindowlD

Zoom Hints

Error Codes
BadAlloc

Specifies the connection to the X Server.

Specifies the window ID.

Specifies a pointer to the zoom hints.

Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSizeHints data structure.

The XGetNormalHints subroutine, XGetSizeHints subroutine, XGetZoomHints subroutine,
XSetNormalHints subroutine, XSetSizeHints subroutine.

The ChangeProperty protocol.

Enhanced X-Windows Subroutines 7-521

XShrinkRegion

XShrinkRegion Subroutine

Purpose

Libraries

C Syntax

Reduces or enlarges a region by a specified amount.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XShrinkRegion{ RegionPtr, DestinationX, Destination Y)
Region RegionPtr;
int DestinationX, Destination Y;

FORTRAN Syntax
external fxshrinkregion
integer*4 RegionPtr, DestinationX, DestinationY
call fxshrinkregion{ RegionPtr, DestinationX, Destination Y)

Description
The XShrinkRegion subroutine reduces or enlarges a region by a specified amount.
Positive values reduce the size of the region; negative values increase the size of the region.

Parameters
RegionPtr Specifies the region.

DestinationX

Destination Y

Specifies the x coordinate for the amount by which to reduce or enlarge
the specified region.

Specifies the y coordinate for the amount by which to reduce or enlarge
the specified region.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XCreateRegion subroutine, XDestroyRegion subroutine, XOffsetRegion subroutine.

7-522 User Interface Reference

I
I

I'll

XStoreBuffer

XStoreBuffer Subroutine

Purpose

Libraries

C Syntax

Stores data in a specified cut buffer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreBuffer(DisplayPtr, Bytes, NumberBytes, Buffer?
Display * DisplayPtr,
char *Bytes;
int NumberBytes;
int Buffer,

Fortran Syntax
external fxstorebuffer
integer*4 OisplayPtr
integer*4 Bytes
integer*4 NumberBytes, Buffer
call fxstorebuffer(Oisp/ayPtr, Bytes, NumberBytes, Buffer?

Description
The XStoreBuffer subroutine stores data in a specified cut buffer. The data to be stored
does not have to be null-terminated or an ASCII string.

Parameters
DisplayPtr

Bytes

Specifies the connection to the X Server.

Specifies the bytes to be stored.

NumberBytes Specifies the number of bytes to be stored.

Buffer Specifies the buffer in which to store the string.

Error Codes
BadAlloc
BadAtom
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFetchBuffer subroutine, XFetchBytes subroutine, XStoreBytes subroutine.

The ChangeProperty protocol.

Enhanced X-Windows Subroutines 7-523

XStoreBytes

XStoreBytes Subroutine

Purpose

Libraries

C Syntax

Stores data in cut buffer zero.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreBytes(DisplayPtr, Bytes, NumberBytes)
Display * DisplayPtr,
char *Bytes;
int NumberBytes;

FORTRAN Syntax
external fxstorebytes
integer*4 DisplayPtr
integer*4 Bytes
integer*4 NumberBytes
call fxstorebytes(DisplayPtr, Bytes, NumberBytes)

Description
The XStoreBytes subroutine stores data in cut buffer 0. The data to be stored does not
have to be null-terminated or an ASCII string.

The cut buffer contents can be retrieved later by any client with the XFetchBytes
subroutine.

Parameters
DisplayPtr Specifies the connection to the X Server.

Bytes Specifies the bytes to be stored.

NumberBytes Specifies the number of bytes to be stored.

Error Codes
BadAlloc

Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XFetchBytes subroutine.

The ChangeProperty protocol.

7-524 User Interface Reference

XStoreColor

XStoreColor Subroutine

Purpose

Libraries

C Syntax

Stores an RGB (red, green, and blue) value into a single colormap cell.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreColor(DisplayPtr, Colormap!D, Definitions);
Display * DisplayPtr;
Colormap Colormap/D;
XColor *Definitions;

FORTRAN Syntax
external fxstorecolor
integer*4 DisplayPtr
integer*4 Colormap/D
integer*4 Definitions
call fxstorecolor(Disp/ayPtr, Colormap/D, Definitions)

Description
The XStoreColor subroutine changes the colormap entry of the pixel value specified in the
pixel field of the XColor data structure. This pixel value must be a read-write cell and a valid
index into the colormap. If it is not a valid index into the colormap, a BadValue error is
generated. The XStoreColor subroutine also changes the RGB color components. The
components to be changed are specified by setting the DoRed, DoGreen, and/or DoBlue
values in the flags field of the XColor data structure. If the colormap is an installed map for
its screen, the changes are visible immediately.

Parameters
DisplayPtr Specifies the connection to the X Server.

Colormap/D Specifies the colormap ID.

Definitions Specifies the pointer to the color definitions structure. This contains the
pixel and RGB values.

Error Codes
Bad Access

BadColor

Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-525

XStoreColor

Related Information

7-526

The XColors data structure.

The XStoreColors subroutine.

The StoreColors protocol.

User Interface Reference

XStoreColors

XStoreColors Subroutine

Purpose

Libraries

C Syntax

Stores multiple RGB (red, green, and blue) values into colormap cells.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreColors(DisplayPtr, ColormaplD, Definitions,
NumberColors);

Display * DisplayPtr;
Colormap ColormaplD;
XColor Definitions[];
int NumberColors;

FORTRAN Syntax
external fxstorecolors
integer*4 DisplayPtr
integer*4 ColormaplD
integer*4 Definitions, NumberColors
call fxstorecolors(DisplayPtr, ColormaplD, Definitions,

NumberColors)

Description
The XStoreColors subroutine changes the colormap entries of the pixel values specified in
the pixel field of each of the members of the XColor data structure array.

The components to be changed are specified by setting the DoRed, DoGreen, and DoBlue
values in the flags field in each of the XColor data structures. If the colormap is an installed
map for its screen, the color changes are visible immediately.

The XStoreColors subroutine changes the specified pixels that are allocated writable in the
ColormaplD parameter by any client, even if one or more pixels is not a valid index into the
colormap. If more than one pixel is not a valid index into the colormap, it is arbitrary which
one will be reported.

Parameters
DisplayPtr

ColormaplD

Definitions

NumberColors

Specifies the connection to the X Server.

Specifies the colormap ID.

Specifies an array of color definition structures.

Specifies the number of XColor data structures in the color
definition array.

Enhanced X-Wlndows Subroutines 7-527

XStoreColors

Error Codes
Bad Access

BadColor

Badlmplementation

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XColors data structure.

The XStoreColor subroutine.

The StoreColors protocol request.

7 529 User Interface Reference

(

XStoreName Subroutine

Purpose

Libraries

C Syntax

Assigns a name to a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreName(DisplayPtr, Window!D, WindowName)
Display * DisplayPtr,
Window Window!D;
char * WindowName;

FORTRAN Syntax
external fxstorename
integer*4 DisplayPtr
integer*4 Window/D
character*256 WindowName
call fxstorename(DisplayPtr, Window!D, WindowName)

Description
The XStoreName subroutine assigns the name specified in the WindowName parameter to
a specified window. This name is returned in subsequent calls to the XFetchName
subroutine.

A window manager can display the window name in a prominent place, such as the title bar,
so users can identify windows easily. The window name can also be displayed in the window
icon, although using an existing window icon name is recommended.

Parameters
DisplayPtr

Window/D

WindowName

Error Codes
BadAlloc

Spedfies the connection to the X Server.

Specifies the window ID.

Specifies the window name as a null-terminated string.

Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFetchName subroutine, XGetlconName subroutine, XSetlconName subroutine.

Enhanced X-Windows Subroutines 7-529

The ChangeProperty protocol.

(

7-530 User Interface Reference

XStoreNamedColor

XStoreNamedColor Subroutine

Purpose

Libraries

C Syntax

Sets the color of a pixel to a named color.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XStoreNamedColor(DisplayPtr, Colormap!D,
ColorName, Pixel, Flags)

Display * DisplayPtr;
Colormap Colormap/D;
char * ColorName;
unsigned long Pixel;
int Flags;

FORTRAN Syntax
external fxstorenamedcolor
integer*4 DisplayPtr
integer*4 ColormaplD
character*256 ColorName
integer*4 Pixel, Flags
call fxstorenamedcolor(OisplayPtr, ColormaplD, ColorName,

Pixel, Flags)

Description
The XStoreNamedColor subroutine looks up the named color for the screen associated
with the colormap and stores the result in the specified colormap.

The specified pixel must be a valid index into the colormap, and must be allocated. It must
not, however, be allocated as read-only.

The Flags parameter specifies which RGB (red, green, and blue) components are set. This
parameter can be set to the bitwise inclusive OR of the bits from the constant set to the
values of DoRed, DoGreen, and DoBlue.

The XStoreNamedColor subroutine employs the ISO Latin-1 encoding; it is not
case-sensitive.

Parameters
DisplayPtr Specifies the connection to the X Server.

ColormaplD Specifies the colormap ID.

ColorName Specifies the color name string.

Flags Specifies which RGB components are set.

Pixel Specifies the entry in the colormap.

Enhanced X-Windows Subroutines 7-531

XStoreNamedColor

Error Codes
BadAccess

BadColor

Badlmplementation

Bad Name

BadValue

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreeColors subroutine, XStoreColor subroutine, XStoreColors subroutine.

The StoreNamedColor protocol request.

7-532 User Interface Reference

(
\

XStringToKeysym

XStringToKeysym Subroutine

Purpose

Libraries

C Syntax

Converts the name of a key symbol to the key symbol code.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

KeySym XStringToKeysym(KeySymName)
char * KeySymName;

FORTRAN Syntax
integer*4 fxstringtokeysym
external fxstringtokeysym
character*256 KeySymName
integer*4 Status
Status= fxstringtokeysym(KeySymName)

Description
The XStringToKeysym subroutine converts the key symbol name to the key symbol code.
Valid key symbol names are listed in the <X11 /keysymdef.h> data file by removing the XK _
prefix from each name. If the specified string does not match a valid key symbol, the
XStringToKeysym subroutine returns the value of NoSymbol.

Parameter
KeySymName Specifies the name of the key symbol to be converted.

Return Values
NoSymbol The specified string does not match a valid key symbol.

Symbol The symbol that matches the specified string.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XKeycodeToKeysym subroutine, XKeysymToString subroutine,
XKeysymToKeycode subroutine, XRebindKeysym subroutine.

Enhanced X-Windows Subroutines 7-533

XSublmage

XSublmage Subroutine

Purpose

Libraries

C Syntax

Creates a subimage.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

Xlmage *XSublmage(XlmagePtr, X, Y, SublmageWidth, SublmageHeight)
Xlmage * XlmagePtr,
int X;
int Y;
int SublmageWidth;
int SublmageHeight;

FORTRAN Syntax
integer*4 fxsubimage
external fxsubimage
integer*4 XlmagePtr, X, Y, SublmageWidth, SublmageHeight
integer*4 Sublmage
Sublmage = fxsubimage(XlmagePtr, X, Y, SublmageWidth, SublmageHeigM

Description
The XSublmage subroutine creates a new image that is a subsection of an existing image.
It allocates the memory necessary for the new Xlmage data structure and returns a pointer
to the new image. The data is copied from the source image. The source image must
contain the rectangle defined by the values for the X, Y, SublmageWidth, and
SublmageHeight parameters. The XSublmage subroutine uses repetitive calls to the
XGetPixel and XPutPixel subroutines.

Parameters
XlmagePtr Specifies a pointer to the image.

X Specifies the x coordinates.

Y Specifies the y coordinates.

SublmageWidth Specifies the width of the new subimage, in pixels.

SublmageHeight Specifies the height of the new subimage, in pixels.

Error Code
Badlmplementation

Implementation Specifics

7-534

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

XSublmage

Related Information
The Xlmage data structure.

The XAddPixel subroutine, XCreatelmage subroutine, XGetPixel subroutine, XPutPixel
subroutine.

Enhanced X-Windows Subroutines 7-535

XSubtractRegion

XSubtractRegion Subroutine

Purpose

Libraries

C Syntax

Subtracts two regions.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSubtractRegion(SourceA, SourceB, Destination Region)
Region SourceA, SourceB, DestinationRegion;

FORTRAN Syntax
external fxsubtractregion
integer*4 SourceA, SourceB, DestinationRegion
call fxsubtractregion(SourceA, SourceB, DestinationRegion)

Description
The XSubtractRegion subroutine subtracts the region in the SourceB parameter from the
region in the SourceA parameter, and then stores the result in the DestinationRegion
parameter.

Parameters
DestinationRegion Stores the result of the computation.

SourceA Specifies one of the two regions for the computation.

SourceB Specifies one of the two regions for the computation.

Error Code (
Badlmplementation ~

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information

7-536

The XlntersectRegion subroutine, XUnionRegion subroutine, XUnionRectWithRegion
subroutine, XXorRegion subroutine.

User Interface Reference

XSync

XSync Subroutine

Purpose

Library

C Syntax

Flushes the output buffer and waits until all requests are completed.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XSync(DisplayPtr, Discard)
Display * DisplayPtr,
int Discard;

FORTRAN Syntax
external fxsync
integer*4 DisplayPtr, Discard
call fxsync(DisplayPtr, Discard)

Description
The subroutine XSync flushes the output buffer. Then, it waits until all requests have been
received and processed by the X Server. Errors generated must be handled by the error
handler. For each error event received and processed by the X Server, the XSync
subroutine calls the XError subroutine. Any events generated by the server are enqueued
into the library's event queue.

Client applications seldom need to call the XSync subroutine.

Parameters
DisplayPtr

Discard

Error Code
Bad Implementation

Implementation Specifics

Specifies the connection to the X Server.

Specifies whether to discard all events on the event queue. The
Discard parameter can be one of the following values:

False Indicates that the XSync subroutine does not discard the
events on the queue.

True Indicates that the XSync subroutine discards all events
on the queue, including those events that were on the
queue before it was called.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-537

XSync

Related Information
The XFlush subroutine.

The GetlnputFocus protocol request.

(

7-538 User Interface Reference

XSynchronize

XSynchronize Subroutine

Purpose

Libraries

C Syntax

Enables or disables synchronization.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int (*XSynchronize(Disp/ayPtr, OnOff))()
Display * DisplayPtr,
int OnOff,

FORTRAN Syntax
integer*4 fxsynchronize
external fxsynchronize
integer*4 DisplayPtr
integer*4 OnOff
integer*4 ReturnCode
ReturnCode = fxsynchronize(Disp/ayPtr, OnOff)

Description
The XSynchronize subroutine returns the previous after function. The XSynchronize
subroutine enables or disables sychronization.

Parameters
DisplayPtr

On Off

Specifies the connection to the X Server.

Specifies whether to enable or disable synchronization. The OnOff
parameter can be either of the following values:

False If the XSynchronize subroutine disables synchronization or turns
synchronization to off.

True If the XSynchronize subroutine sets synchronization to on.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-539

XTextExtents

XTextExtents Subroutine

Purpose

Libraries

C Syntax

Gets the bounding box of 1-byte character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XTextExtents(FontStructure, String, NumberCharacters, DirectionReturn,
FontAscentReturn, FontDescentReturn, Overal/Return)

XFontStruct * FontStructure;
char *String;
int NumberCharacters;
int *Direction Return;
int * FontAscentReturn, * FontDescentReturn;
XCharStruct *Overall Return;

FORTRAN Syntax
external fxtextextents
integer*4 FontStructure
character*256 String
integer*4 NumberCharacters, DirectionReturn, FontAscentReturn
integer*4 FontDescentReturn, Overal/Return
call fxtextextents(FontStructure, String, NumberCharacters, DirectionReturn,

FontAscentReturn, FontDescentReturn, Overal/Return)

Description

7-540

The XTextExtents subroutine determines the logical extents of the specified 8-bit character
string. The logical extents of a string are the width and height of the bounding box occupied
by the string in the specified font. The XTextExtents subroutine performs the size
computation locally.

The XTextExtents subroutine returns an XCharStruct structure with the width field set to
the sum of the character-width metrics of all characters in the string. For each character in
the string following should occur:

• Let Wbe the sum of the character-width metrics of all characters preceding it in the string.

• Let R be the right-side-bearing metric of the character plus W.

• The /bearing member is set to the the minimum L value of all characters in the string.

• The rbearing member is set to the maximum R value of all characters in the string.

Use the XQueryTextExtents subroutine to query the server for the sizes of an 8-bit
character string.

User Interface Reference

Parameters
FontStructure

String

NumberCharacters

Direction Return

FontAscentReturn

FontDescentReturn

Overall Return

Error Code
Badlmplementation

Implementation Specifics

XTextExtents

Specifies a pointer to the XFontStruct structure.

Specifies the character string.

Specifies the number of characters in the character string.

Returns the value of the direction (the value of
FontleftToRight or FontRightToleft) hint member.

Returns the font ascent member, which is the maximum of the
ascent metrics of all characters in the string.

Returns the font descent member, which is the maximum of the
descent metrics.

Returns the overall size in the specified XCharStruct structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XCharStruct data structure, XFontStruct data structure.

The XQueryTextExtents subroutine, XQueryTextExtents16 subroutine, XTextExtents16
subroutine.

Enhanced X-Windows Subroutines 7-541

XTextExtents16

XTextExtents16 Subroutine

Purpose

Libraries

C Syntax

Gets the bounding box of 2-byte character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XTextExtents16(FontStructure, String, NumberCharacters, DirectionReturn,
FontAscentReturn, FontDescentReturn, Overal/Return)

XFontStruct * FontStructure;
XChar2b *String;
int NumberCharacters;
int * DirectionReturn;
int * FontAscentReturn, * FontDescentReturn;
XCharStruct *Overall Return;

FORTRAN Syntax
external fxtextextents16
integer*4 FontStructure
integer*4 String
integer*4 NumberCharacters, DirectionReturn, FontAscentReturn
integer*4 FontDescentReturn, Overal/Return
call fxtextextents16(FontStructure, String, NumberCharacters, Direction Return,

FontAscentReturn, FontDescentReturn, Overal/Return)

Description

7-542

The XTextExtents16 subroutine returns the logical extents of the specified 2-byte character
string. It performs the size computation locally.

The XTextExtents16 subroutine returns an XCharStruct structure with the width field set to
the sum of the character-width metrics of all characters in the string. For each character in
the string the following should occur:

• Let W be the sum of the character-width metrics of all characters preceding it in the string.

• Let R be the right-side-bearing metric of the character plus the Wvariable value.

• The /bearing member is set to the minimum L value of all characters in the string.

• The rbearing member is set to the maximum R value of all characters in the string.

If the font has no defined default character, undefined characters in the string are a vlaue of
0.

Use the XQueryTextExtents16 subroutine to query the server for the sizes of a 16-bit
character string.

User Interface Reference

Parameters
FontStructure

String

NumberCharacters

Direction Return

FontAscentReturn

FontDescentReturn

Overall Return

Error Code
Badlmplementation

Implementation Specifics

XTextExtents16

Specifies a pointer to the XFontStruct structure.

Specifies the character string.

Specifies the number of characters in the character string.

Returns the value of the direction (the value of
FontleftToRight or FontRightToleft) hint member.

Returns the font ascent member, which is the maximum of the
ascent metrics of all characters in the string.

Returns the font descent member, which is the maximum of
the descent metrics.

Returns the overall size in the specified XCharStruct
structure.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XCharStruct data structure, XFontStruct data structure.

The XQueryTextExtents subroutine, XQueryTextExtents16 subroutine, XTextExtents
subroutine.

Enhanced X-Windows Subroutines 7-543

XTextWidth

XTextWidth Subroutine

Purpose

Libraries

C Syntax

Gets the width of an 8-bit character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XTextWidth(FontStructure, String, Count)
XFontStruct * FontStructure;
char *String;
int Count;

FORTRAN Syntax
integer*4 fxtextwidth
external fxtextwidth
integer*4 FontStructure
character*256 String
integer*4 Count
integer*4 WidthB
WidthB = fxtextwidth(FontStructure, String, Count)

Description
The XTextWidth subroutine determines the width of an 8-bit character string. The width is
computed by adding the character widths of all of the characters. The XTextWidth
subroutine returns the sum of the character metrics in pixels.

Parameters
FontSructure Specifies the font used for the width computation.

Specifies the character string. String

Count

Error Code
Badlmplementation

Implementation Specifics

Specifies the character count in the named string.

This X!ib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChar2b data structure, XFontStruct data structure.

The XTextWidth16 subroutine.

7-544 User Interface Reference

XTextWidth16

XTextWidth16 Subroutine

Purpose

Libraries

C Syntax

Gets the width of a 2-byte character string.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XTextWidth16(FontStructure, String, Count)
XFontStruct * FontStructure;
XChar2b *String;
int Count;

FORTRAN Syntax
integer*4 fxtextwidth16
external fxtextwidth16
integer*4 FontStructure
integer*4 String
integer*4 Count
integer*4 Width16
Width16 = fxtextwidth16(FontStructure, String, Count)

Description
The XTextWidth16 subroutine determines the width of a 2-byte character string. Width is
computed by adding the character widths of all of the characters. The XTextWidth16
subroutine returns the sum of the character metrics in pixels.

Parameters
Font Structure Specifies the font used for the width computation.

String Specifies the character string.

Count Specifies the character count in the string.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFontStruct data structure, XChar2b data structure.

The XTextWidth subroutine.

Enhanced X-Windows Subroutines 7-545

XTranslateCoordinates

XTranslateCoordinates Subroutine

Purpose

Libraries

C Syntax

Transforms coordinates between windows.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XTranslateCoordinates(DisplayPtr, Source Window,
Destination Window, SourceX,
Source Y, DestinationXReturn,
Destination YReturn, Child Return)

Display * DisplayPtr,
Window Source Window, Destination Window;
int SourceX, Source Y;
int * DestinationXReturn, *Destination YReturn;
Window *ChildReturn;

FORTRAN Syntax
integer*4 fxtranslatecoordinates
external fxtranslatecoordinates
integer*4 DisplayPtr
integer*4 SourceWindow
integer*4 Destination Window
integer*4 SourceX, Source Y
integer*4 DestinationXReturn, Destination YReturn
integer*4 ChildReturn
integer*4 ReturnCode
ReturnCode::: fxtranslatecoordinates(Disp/ayPtr, SourceWindow,

Destination Window, SourceX,
Source Y, DestinationXReturn,
DestinationYReturn, ChildReturn)

Description

7-546

The XTranslateCoordinates subroutine performs a coordinate transformation from the
coordinate space of one window to another window, or it determines which subwindow
contains a coordinate.

The XTranslateCoordinates subroutine takes the SourceX and Source Y parameter
coordinates (relative to the origin of the source window) within the source window. It returns
these coordinates (relative to the origin of the destination window) to the DestinationXReturn
and Destination YReturn parameters.

If the XTranslateCoordinates subroutine returns a value of 0, it indicates that the
Source Window and Destination Window parameters are on different screens and that the
DestinationXReturn and DestinationYReturn parameters have a value of 0.

If the coordinates are contained in a mapped child window of the Destination Window
parameter, that child window is returned to the ChildReturn parameter.

User Interface Reference

I

~

Parameters
Child Return

Destination Window

DestinationXReturn

Destination YReturn

DisplayPtr

Source Window

SourceX

SourceY

Return Values
False

True

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

XTranslateCoord i nates

Returns the child window if the
coordinates are contained in a mapped
child of the destination window.

Specifies the window ID of the
destination window.

Returns the x coordinate within the
destination window.

Returns they coordinate within the
destination window.

Specifies the connection to the X Server.

Specifies the window ID of the source
window.

Specifies the x coordinate within the
source window.

Specifies the y coordinate within the
source window.

The windows are not located on the
same screen. The DestinationXReturn
and the Destination YReturn parameters
have a value of 0.

The windows are located on the same
screen.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The TranslateCoordinates Protocol Request.

Enhanced X-Windows Subroutines 7-547

XUndefineCursor

XUndefineCursor Subroutine

Purpose

Libraries

C Syntax

Defines a cursor for a window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUndefineCursor(DisplayPtr, Window/D);
Display * DisplayPtr;
Window Window/D;

FORTRAN Syntax
external fxundefinecursor
integer*4 DisplayPtr
integer*4 Window/D
call fxundefinecursor(DisplayPtr, Window/D)

Description
The XUndefineCursor subroutine undefines the cursor in the window. When the mouse is in
the window, the cursor of the parent window is used. When the root window cursor is
undefined, the default cursor is restored.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the window ID.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDefineCursor subroutine.

The ChangeWindowAttributes protocol.

7-548 User Interface Reference

XUngrabButton

XUngrabButton Subroutine

Purpose

Libraries

C Syntax

Ungrabs a mouse button.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUngrabButton(Disp/ayPtr, ButtonUngrab, Modifiers,
UngrabWindow);

Display * DisplayPtr;
unsigned int ButtonUngrab;
unsigned int Modifiers;
Window UngrabWindow;

FORTRAN Syntax
external fxungrabbutton
integer*4 DisplayPtr
integer*4 ButtonUngrab
integer*4 Modifiers, UngrabWindow
call fxungrabbutton(Disp/ayPtr, ButtonUngrab, Modifiers, UngrabWindow)

Description
The XUngrabButton subroutine ungrabs a mouse button. It releases the button-key
combination on the specified window if it was grabbed by this client. This request fails if
another client has already issued an XGrabButton subroutine with the same button key
combination on the same window.

The ButtonUngrab parameter can be set to the AnyButton value, which is equivalent to
issuing the ungrab request for all possible buttons. This request has no effect on an active
grab.

Parameters
DisplayPtr

ButtonUngrab

Modifiers

Specifies the connection to the X Server.

Specifies the pointer button that is to be released in combination with
the modifier keys.

Specifies the set of keymasks. This mask is the bitwise-inclusive OR of
valid keymask bits. The Modifiers parameter can be one of the
following valid keymask bits:

Control Mask

LockMask

ShiftMask

Mod1Mask

Mod2Mask

Mod3Mask

Mod4Mask

Mod5Mask

Enhanced X-Windows Subroutines 7-549

XUngrabButton

AnyModifier This is equivalent to issuing the ungrab request
for all possible modifier combinations, including
the combination of no modifiers. This request
has no effect on an active grab.

UngrabWindow Specifies the window ID of the window to be ungrabbed.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeActivePointerGrab subroutine, XGrabButton subroutine.

The UngrabButton Protocol Request.

7-550 User Interface Reference

(
\\j

XUngrabKey

XUngrabKey Subroutine

Purpose

Libraries

C Syntax

Ungrabs a key.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUngrabKey(Disp/ayPtr, Keycode, Modifiers,
UngrabWindow);

Display * DisplayPtr;
int Keycode;
unsigned int Modifiers;
Window UngrabWindow;

FORTRAN Syntax
external fxungrabkey
integer*4 DisplayPtr
integer*4 Keycode, Modifiers, UngrabWindow
call fxungrabkey(Disp/ayPtr, Keycode, Modifiers, UngrabWindow)

Description
The XUngrabKey subroutine ungrabs a key. It releases the key combination on the
specified window if it was grabbed by this client. It has no effect on an active grab.

Parameters
DisplayPtr

Keycode

Modifiers

UngrabWindow

Specifies the connection to the X Server.

Specifies the keycode or the value of AnyKey which maps to the
specific key to be ungrabbed.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
valid keymask bits. The Modifiers parameter can be set to the following
valid keymask bits:

ShiftMask Mod2Mask

LockMask Mod3Mask

Control Mask Mod4Mask

Mod1Mask Mod5Mask

Or, it can be set to the value of AnyModifier, which is equivalent to
issuing the ungrab key request for all possible modifier combinations.

Specifies the window ID of the window associated with the keys to be
ungrabbed.

Enhanced X-Windows Subroutines 7-551

XUngrabKey

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabKey subroutine, XGrabKeyboard subroutine, XUngrabKeyboard subroutine.

The UngrabKey Protocol Request.

7-552 User Interface Reference

(

XUngrabKeyboard

XUngrabKeyboard Subroutine

Purpose

Libraries

C Syntax

Ungrabs the keyboard.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUngrabKeyboard(Disp/ayPtr, TimeStamp);
Display * DisplayPtr;
Time TimeStamp;

FORTRAN Syntax
external fxungrabkeyboard
integer*4 DisplayPtr
integer*4 TimeStamp
call fxungrabkeyboard(Disp/ayPtr, TimeStamp)

Description
The XUngrabKeyboard subroutine releases the keyboard and any queued events if the
client has actively grabbed it with the XGrabKeyboard subroutine or the XGrabKey
subroutine. If the specified time is earlier than the last-keyboard-grab time or is later than the
current X Server time, the XUngrabKeyboard subroutine does not release the keyboard
and any queued events.

The XUngrabKeyboard subroutine generates Focusln and FocusOut events. The
X Server automatically performs an XUngrabKeyboard subroutine if the event window for
an active keyboard grab becomes unviewable.

Parameters
DisplayPtr Specifies the connection to the X Server.

TimeStamp Specifies the time in a time stamp, which is expressed in milliseconds, or
the value of CurrentTime.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabKey subroutine, XGrabKeyboard subroutine, XUngrabKey subroutine.

The UnGrabKeyboard Protocol Request.

Enhanced X-Windows Subroutines 7-553

XUngrabPointer

XUngrabPointer Subroutine

Purpose

Libraries

C Syntax

Ungrabs the pointer.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUngrabPointer(Disp/ayPtr, TimeStamp)
Display * DisplayPtr,
Time TimeStamp;

FORTRAN Syntax
external fxungrabpointer
integer*4 DisplayPtr
integer*4 TimeStamp
call fxungrabpointer(Disp/ayPtr, TimeStamp}

Description
The XUngrabPointer subroutine releases the pointer and any queued events, if this client
has actively grabbed the pointer with the XGrabPointer or XGrabButton subroutines or
from a normal button press. If the specified time is earlier than the last-pointer-grab time or
is later than the current X Server time, this function does not release the pointer.

The XUngrabPointer subroutine also generates EnterNotify and LeaveNotify events. If
the event window or confine-to window for an active pointer grab becomes unviewable, the
X Server performs an XUngrabPointer subroutine automatically.

Parameters
DisplayPtr Specifies the connection to the X Server.

TimeStamp Specifies the time in a time stamp, which is expressed in milliseconds, or
the value of CurrentTime.

Error Codes
Badlmplementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeActivePointerGrab subroutine, XGrabPointer subroutine.

The UngrabPointer Protocol Request.

7-554 User Interface Reference

XUngrabServer

XUngrabServer Subroutine

Purpose

Libraries

C Syntax

Ungrabs the server.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUngrabServer(Disp/ayPt(J
Display * DisplayPtr,

FORTRAN Syntax
external fxungrabserver
integer*4 DisplayPtr
call fxungrabserver(Disp/ayPt(J

Description
The XUngrabServer subroutine restarts processing of requests and closedowns on other
connections. If it is necessary to grab the X Server, do so only for short amounts of time
because no processing of requests or closedowns on any connection occurs while the
server is grabbed.

Parameter
DisplayPtr Specifies the connection to the X Server.

Error Code
Badlmplementation

Implementation Specifics
This Xli.b subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabServer subroutine.

The UngrabServer Protocol Request.

Enhanced X-Windows Subroutines 7-555

XUninstallColormap

XUninstallColormap Subroutine

Purpose

Libraries

C Syntax

Uninstalls a colormap.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUninstallColormap(DisplayPtr, ColorMap!D);
Display * DisplayPtr;
Colormap ColorMap!D;

FORTRAN Syntax
external fxuninstallcolormap
integer*4 DisplayPtr
integer*4 ColorMap/D
call fxuninstallcolormap(Disp/ayPtr, ColoMap/D)

Description
The XUninstallColormap subroutine removes the specified colormap from the required list
for its screen. -As a result, the specified colormap will be uninstalled, and the X Server might
implicitly install or uninstall additional colormaps. Which colormaps get installed or
uninstalled is server-dependent, but the required list must remain installed.

If the specified colormap becomes uninstalled, the X Server generates a ColormapNotify
event on every window that has the same ColorMap/D resource ID. In addition, for every
other colormap that is either installed or uninstalled as a result of a call to the
XUninstallColormap subroutine, the X Server generates a ColormapNotify event on each
window that has the same ColorMap/D resource ID.

Parameters (
DisplayPtr Specifies the connection to the X Server.

ColorMap!D Specifies the colormap ID.

Error Codes
BadColor

Badlmplementation

Implementation Specifics

7-556

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

Related Information
The XlnstallColormap subroutine.

The ColormapNotify event subroutine.

The UninstallColormap Protocol Request.

XUninstallColormap

Enhanced X-Windows Subroutines 7-557

XUnionRectWithRegion

XUnionRectWithRegion Subroutine

Purpose

Libraries

C Syntax

Creates a union of a source region and a rectangle.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUnionRectWithRegion(RectanglePtr, SourceRegion,
Destination Region Return);

Rectangle * RectanglePtr;
Region SourceRegion;
Region DestinationRegionReturn;

FORTRAN Syntax
external fxunionrectwithregion
integer*4 RectanglePtr
integer*4 SourceRegion
integer*4 DestinationRegionReturn
call fxunionrectwithregion(Rectang/ePtr, SourceRegion, DestinationRegionReturn)

Description
The XUnionRectWithRegion subroutine updates the destination region from a union of the
specified rectangle and the specified source region.

Parameters
RectanglePtr

SourceRegion

Destination Region Return

Error Code
Badlmplementation

Implementation Specifics

Specifies the rectangle.

Specifies the source region.

Returns the destination region.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information

7-558

The XlntersectRegion subroutine, XSubtractRegion subroutine, XUnionRegion
subroutine, XXorRegion subroutine.

User Interface Reference

XUnionRegion

XUnionRegion Subroutine

Purpose

Library

C Syntax

Computes union of two regions.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUnionRegion(SourceA, SourceB, DestinationRegion)
Region SourceA, SourceB, DestinationRegion;

FORTRAN Syntax
external fxunionregion
integer*4 SourceA, SourceB, DestinationRegion
call fxunionregion(SourceA, SourceB, DestinationRegion)

Description
The XUnionRegion subroutine computes the union of two regions.

Parameters
SourceA, SourceB

Destination Region

Error Code
Badlmplementation

Implementation Specifics

Specifies the two regions for the computation.

Stores the result of the computation.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Subroutines 7-559

XUniqueContext

XUniqueContext Subroutine

Purpose
Creates a new context.

Libraries
Enhanced X-Windows Library (libX11.a)

C Syntax
XContext XUniqueContext()

Description
The XUniqueContext subroutine creates a unique context type that can be used in
subsequent calls to the XSaveContext subroutine and the XFindContext subroutine.

Error Code
Bad Implementation

Implementation Specifics

7-560

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

XUnloadFont

XUnloadFont Subroutine

Purpose

Libraries

C Syntax

Unloads the specified font.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUnloadFont(DisplayPtr, Font/D)
Display * DisplayPtr,
Font FontlD;

FORTRAN Syntax
external fxunloadfont
integer*4 DisplayPtr
integer*4 FontlD
call fxunloadfont(Disp/ayPtr, Font/D)

Description
The XUnloadFont subroutine unloads the specified font loaded by the XloadFont
subroutine. It deletes the association between the font resource ID and the specified font.
The font is freed when no other resource references it. The font should not be referenced
again.

Parameters
DisplayPtr Specifies the connection to the X Server.

Font/D Specifies the font ID.

Error Codes
Bad Font

Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Char2b data structure.

The CloseFont Protocol Request.

Enhanced X-Windows Subroutines 7-561

XUnmapSubwindows

XUnmapSubwindows Subroutine

Purpose

Libraries

C Syntax

Unmaps all subwindows for a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUn mapSubwindows(DisplayPtr, Window/D)
Display * DisplayPtr;
Window Window/D;

FORTRAN Syntax
external fxunmapsubwindows
integer*4 DisplayPtr
integer*4 Window/D
call fxunmapsubwindows(Disp/ayPtr, Window/D)

Description
The XUnmapSubwindows subroutine unmaps all subwindows at one time for a specified
window. Subwindows are unmapped in bottom-to-top stacking order.

The X Server generates an UnmapNotify event on each subwindow and an Expose event
on formerly obscured windows.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D Specifies the window ID.

Error Codes
Bad Implementation

BadWindow

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The UnmapSubwindows Protocol Request.

7-562 User Interface Reference

(

XUnmapWindow

XUnmapWindow Subroutine

Purpose

Libraries

C Syntax

Unmaps a specified window.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XUnmapWindow(Disp/ayPtr, Window/D)
Display * DisplayPtr;
Window Windowf D;

FORTRAN Syntax
external fxunmapwindow
integer*4 DisplayPtr
integer*4 Window/D
call fxunmapwindow(Oisp/ayPtr, Window/D)

Description
The XUnmapWindow subroutine unmaps a specified window. The X Server generates an
UnmapNotify event. Unmapping a window generates the Expose events on formerly
obscured windows.

If the specified window is already unmapped, the XUnmapWindow subroutine has no effect.
Normal exposure processing on formerly obscured windows is performed. Any child window
will no longer be visible until another map call is made on the parent. That is, the
subwindows are still mapped but are not visible until the parent window is mapped.

Parameters
DisplayPtr

Window/D

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The UnmapWindow Protocol Request.

Enhanced X-Windows Subroutines 7-563

XUseKeymap

--xuseKeymap Subroutine

Purpose

Libraries

C Syntax

Changes keymap files.

Enhanced X-Windows Library (liboldX.a)

FORTRAN 77 Library (libXfx.a)

Status XUseKeymap(KeymapFile)
char * KeymapFile;

FORTRAN Syntax
external fxusekeymap
integer*4 fxusekeymap
integer*4 Status
integer*4 KeymapFile
status = fxusekeymap(KeymapFi/e)

Description

Parameter

The XUseKeymap subroutine provides an alternate keymap file for the XLookupMapping
subroutine. It changes the keymap file. This change only affects the keymap within the
current process. If the XUseKeymap subroutine is unsuccessful, the existing keymap is
untouched.

KeymapFile Specifies the name of the keymap file to use with the current process.

Return Values
One The XUseKeymap subroutine succeeds.

Zero

Error Code
Badlmplementation

The XUseKeymap subroutine cannot find the keymap file named
keymapfile, or if the file contains a bad magic number.

Implementation Specifics

7-564

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

XVisuallDFromVisual Subroutine

Purpose

Libraries

C Syntax

Gets the visual ID for a specified visual type.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

VisuallD XVisuallDFromVisual(Visua/Ptt}
Visual * Visua/Ptr;

FORTRAN Syntax
external fxvisualidfromvisual
integer*4 Visua/Ptr
integer*4 DisplayPtr
Visua/Ptr = fxvisualidfromvisual(Disp/ayPttJ

Description

XVisuallDFromVisual

The XVisuallDFromVisual subroutine returns the visual ID for the specified visual type.

Parameter
Visua!Ptr Specifies the visual type.

Error Code
Bad Implementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Subroutines 7-565

XWarpPointer

XWarpPointer Subroutine

Purpose

Libraries

C Syntax

Moves the pointer to arbitrary point on the screen.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library_ (libXfx.a)

XWarpPointer{ DisplayPtr, Source Window, Destination Window,
SourceX, SourceY, SourceWidth, SourceHeight,
DestinationX, Destination Y)

Display * DisplayPtr;
Window Source W, Destination W;
int SourceX, Source Y;
unsigned int SourceWidth, SourceHeight;
int DestinationX, DestinationY;

FORTRAN Syntax
external fxwarppointer
integer*4 DisplayPtr
integer*4 SourceWindow, DestinationWindow
integer*4 SourceX, Source Y
integer*4 SourceWidth, SourceHeight
integer*4 DestinationX, Destination Y
call fxwarppointer{Disp/ayPtr, SourceWindow, DestinationWindow, SourceX,

SourceY, SourceWidth, SourceHeight,
DestinationX, Destination Y)

Description

7-566

The XWarpPointer subroutine moves the pointer to an arbitrary point on the screen.

• If the Destination Window parameter has the value of None, the XWarpPointer subroutine
moves the pointer by the DestinationX and Destination Y parameter offsets relative to the
current position of the pointer-. If the Destination Window parameter is a window, the
XWarpPointer subroutine moves the pointer to the DestinationX and Destination Y
parameter offsets relative to the origin of the Destination Window parameter.

• If the Source Window parameter has the value of None, the move is independent of the
current position. If the Source Window parameter is a window ID, the move only takes
place if the pointer is currently contained in a visible porion of the specified rectangle of
the Source Window parameter.

• The SourceX and Source Yparameter coordinates are relative to the origin of the
Source Window parameter. If the SourceHeight parameter is the value of 0, it is replaced
with the current height of the SourceWindow parameter minus the SourceYparameter. If
the SourceWidth parameter is a value of 0, it is replaced with the current width of the
Source Window parameter minus the SourceX parameter.

Normally, pointer movement control is left to the user. The XWarpPointer subroutine
generates events just as if the user had instantaneously moved the pointer from one position
to another.

User Interface Reference

(

XWarpPointer

Note: Do not use the XWarpPointer subroutine to move the pointer outside the confine_to
window of an active pointer grab. An attempt to do so will only move the pointer as
far as the closest edge of the confine_to window.

Parameters
DisplayPtr

Source Window

Destination Window

SouceX

SourceY

Source Width

Source Height

DestinationX

Destination Y

Error Codes
Badlmplementation

BadWindow

Implementation Specifics

Specifies the connection to the X Server.

Specifies the window ID of the source window, or the value of
None.

Specifies the window ID of the destination window, or the value of
None.

Specifies the x coordinate, which is relative to the origin of the
source window.

Specifies they coordinate, which is relative to the origin of the
source window.

Specifies a rectangle in the source window.

Specifies a rectangle in the source window.

Specifies the x coordinate of the destination window.

Specifies the y coordinate of the destination window.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The WarpPointer Protocol Request.

Enhanced X-Windows Subroutines 7-567

XWindowEvent

XWindowEvent Subroutine

Purpose

Libraries

C Syntax

Removes the next event that matches both a window and an event mask.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XWindowEvent(DisplayPtr, Window/D, EventMask,
EventReturn)

Display * DisplayPtr,
Window Window/D;
long EventMask;
XEvent * EventReturn;

FORTRAN Syntax
external fxwindowevent
integer*4 DisplayPtr
integer*4 Window/D, EventMask, EventReturn
call fxwindowevent{Disp/ayPtr, Window/D, EventMask, EventReturn)

Description
The XWindowEvent subroutine searches the event queue for an event that matches both
the specified window and event mask. When it finds a match, the XWindowEvent
subroutine removes that event from the queue and copies it into the specified XEvent data
structure.

The other events stored in the queue are not discarded. If a matching event is not in the
queue, the XWindowEvent subroutine flushes the output buffer and blocks until one is
received.

Parameters
DisplayPtr Specifies the connection to the X Server.

Window/D

EventMask

EventReturn

Error Code
Badlmplementation

Specifies the Window ID.

Specifies the event mask.

Returns the associated structure of the matched event.

Implementation Specifics

7-568

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

I

\

XWriteBitmapFile

XWriteBitmapFile Subroutine

Purpose

Libraries

C Syntax

Writes out a bitmap to a file.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

int XWriteBitmapFile(Oisp/ayPtr, FileName, Bitmap,
Width, Height, XHot, YHot)

Display * DisplayPtr,
char * FileName;
Pixmap Bitmap;
int Width, Height",
int XHot, YHot",

FORTRAN Syntax
integer*4 fxwritebitmapfile
external fxwritebitmapfile
integer*4 DisplayPtr
character*256 FileName
integer*4 Bitmap, Width, Height, XHot, YHot
integer*4 ReturnCode
ReturnCode = fxwritebitmapfile(Oisp/ayPtr, FileName, Bitmap, Width,

Height, XHot, YHot)

Description
The XWriteBitmapFile subroutine writes a bitmap to a file.

The default hot spot coordinates for the bitmap, if not specified in the XHot and YHot
parameters, are -1, -1. Otherwise the XWriteBitmapFile subroutine writes out the specified
values for the XHot and YHot parameters to the file as the the hotspot coordinates.

Note: The XWriteBitmapFile subroutine writes out X version 11 format only.

Parameters
DisplayPtr

File Name

Bitmap

Width

Height

XHot

YHot

Specifies the connection to the X Server.

Specifies the file name to use. The format for this file name is operating
system dependent.

Specifies the bitmap to be written.

Specifies the width of the bitmap.

Specifies the height of the bitmap.

Specifies the hotspot coordinates; or, -1, -1, if not specified.

Specifies the hotspot coordinates; or, -1, -1, if not specified.

Enhanced X-Windows Subroutines 7-569

XWriteBitmapFile

Return Values
BitmapOpenFailed

BitmapNoMemory

BitmapSuccess

Error Codes
Bad Drawable

Badlmplementation

Bad Match

Implementation Specifics

Indicates that the file cannot be opened for writing.

!Indicates that insufficient memory is allocated.

!Indicates that no error occurs.

This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XReadBitmapFile subroutine.

7-570 User Interface Reference

(

\

XXorRegion

XXorRegion Subroutine

Purpose

Library

C Syntax

Gets the difference between the union and the intersection of two regions.

Enhanced X-Windows Library (libX11.a)

FORTRAN 77 Library (libXfx.a)

XXorRegion(SourceA, SourceB, DestinationRegion)
Region SourceA, SourceB, DestinationRegion;

FORTRAN Syntax
external fxxorregion
integer*4 SourceA, SourceB, DestinationRegion
call fxxorregion(SourceA, SourceB, DestinationRegion)

Description
The XXorRegion subroutine calculates the difference between the union and the
intersection of two regions.

Parameters
Source A Specifies the the first of two regions for the computation.

SourceB

Destination Region

Specifies the the second of two regions for the computation.

Stores the result of the computation.

Error Code
Badlmplementation

Implementation Specifics
This Xlib subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XlntersectRegion subroutine, the XUnionRegion subroutine.

Enhanced X-Windows Subroutines 7-571

XXorRegion

7-572 User Interface Reference

Enhanced X-Windows Protocols

Enhanced X-Windows Protocols 8-1

8-2 User Interface Reference

AllocColor Protocol Request

Purpose
Allocates a read-only color map entry.

Protocol Request Format
Colormap: COLORMAP
Red, Green, Blue: CARD16

=>
Pixel: CARD32

Red, Green, Blue: CARD16

Description

AllocColor

The AllocColor protocol request allocates a read-only colormap entry corresponding to the
closest available RGB values supported by the hardware. The AllocColor protocol request
returns the pixel and the RGB values actually used.

Fields
Blue

Blue

Colormap

Green

Green

Pixel

Red

Red

Specifies the blue color value actually used.

Returns the blue color value actually used.

Specifies the colormap.

Specifies the green color value actually used.

Returns the green color value actually used.

Returns the number of bitplanes used in a particular window or
pixmap.

Specifies the red color value actually used.

Returns the red color value actually used.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAllocColor subroutine.

Enhanced X-Windows Protocols 8-3

AHocColorCells

AllocColorCells Protocol Request

Purpose
Allocates color cells.

Protocol Format
Colormap: COLORMAP
Colors, Planes: CARD16
Contiguous: BOOL

=>

Pixels, Masks: LISTofCARD32

Description

Fields

The AllocColorCells protocol request allocates color cells. The number of colors must be
positive and the number of planes must be non-negative or a Value error results. This
protocol request combines masks and pixels to produce distinct pixels. The RGB values of
the allocated entries are undefined.

If C colors and P planes are requested, then C pixels and P masks are returned. No mask
will have any bits in common with any other mask, or with any of the pixels. By ORing the
masks and pixels together, c * 2 * * P distinct pixels values can be produced. These pixel
values are allocated writable by the protocol request.

If Contiguous is a value of True and all masks are ORed together, the following sets of bits
are formed:

• A single contiguous set of bits for the Grayscale or PseudoColor colormap class (each
mask has exactly one bit set to 1).

• Three contiguous sets of bits (one within each pixel subfield) for the DirectColor
colormap class (each mask has exactly three bits set to 1).

A Value error occurs if the number of colors is non-positive or the number of planes is
negative.

Colormap

Colors

Planes

Contiguous

Pixels

Masks

Specifies the colormap.

Specifies the number of colors to be allocated.

Specifies the number of planes to be allocated.

Specifies whether the set of bits formed will be contiguous.

Specifies the pixels returned.

Specifies the masks returned.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

8-4 User lnterface''Reference

(

~

AllocColorCells

Related Information
The XAllocColorCells subroutine.

Enhanced X-Windows Protocols 8-5

AllocColorPlanes

AllocColorPlanes Protocol Request

Purpose
Allocates writable color planes.

Protocol Format
Colormap: COLORMAP
Colors, Reds, Greens, Blues: CARD16
Contiguous: BOOL

=>

Pixels: LISTofCARD32

RedMask, GreenMask, BlueMask: CARD32

Description

Fields

The AllocColorPlanes protocol request brings the Masks and Pixels fields together to
produce distinct pixels. The number of colors must be positive and the reds, greens, and
blues must be non-negative. The RGB values of the allocated entries are undefined.

If C colors, R reds, G greens, and B blues are requested, then C pixels are returned, and the
masks have the R, G, and B bits set respectively.

If the Contiguous field is the value of True, then each mask will have a contiguous set of
bits. No mask will have any bits in common with other masks or with any of the values in the
Pixels fields.

For the DirectColor colormap class, each mask will lie within the corresponding Pixels
subfield. By ORing together subsets of masks with pixels, C* 2 * * (R+G+B) distinct pixels
can be produced; these masks are allocated by the protocol.

There are only c * 2 * * R independent red entries, c * 2 * * G independent green entries, and
C*2**B independent blue entries in the colormaps. This is true even for the PseudoColor
colormap class.

When the colormap entry for a pixel value is changed using the StoreColors protocol
request or the StoreNamedColor protocol request, the Pixels field is decomposed
according to the masks and the corresponding independent entries are updated.

A Value error occurs if the number of colors is negative or the number of reds, greens, and
blues is non-positive.

Colormap

Colors

Reds

Greens

Blues

Contiguous

Specifies the colormap.

Specifies the number of colors to be allocated.

Specifies the red values used.

Specifies the green values used.

Specifies the blue values used.

Specifies whether each mask will have a contiguous set of bits.

8-6 User Interface Reference

AllocColorPlanes

Pixel Specifies the number of pixels returned.

RedMask Specifies the red mask returned.

GreenMask Specifies the green mask returned.

BlueMask Specifies the blue mask returned.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAllocColorPlanes subroutine.

Enhanced X-Windows Protocols 8-7

AllocNamedColor

AllocNamedColor Protocol Request

Purpose
Searches for the named color of the screen associated with a specified colormap.

Protocol Format
Colormap: COLORMAP
Name: STRINGS
=>
Pixel CARD32
ExactRed, ExactGreen, ExactBlue: CARD16
Visual Red, VisualGreen, VisualBlue: CARD16

Description

Fields

The AllocNamedColor protocol request searches for the named color of the screen
associated with the specified colormap. Then, this protocol completes an AllocColor
protocol request on the Colormap fields. The name should use the ISO Latin-1 encoding.
****The name is not case-sensitive.****

The exact RGB values specify the true values for the color and the visual values specify the
values used in the colormap.

Colormap Specifies the colormap.

Name Specifies the named color.

Pixel Specifies the pixels returned.

ExactRed Specifies the true red value.

ExactGreen Specifies the true green value.

ExactBlue Specifies the true blue value.

Visual Red Specifies the red value actually used.

Visua/Green Specifies the green value actually used.

Visual Blue Specifies the blue value actually used.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XAllocNamedColor subroutine.

8-8 User Interface Reference

(
"

(

AllowEvents

AllowEvents Protocol Request

Purpose
Releases queued events if the client has caused a device to freeze.

Protocol Format
Mode: {AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard, SyncKeyboard,
ReplayKeyboard, AsyncBoth, SyncBoth}
Time: TIMESTAMP or CurrentTime

Description
The AllowEvents protocol request releases some queued events if the client has caused a
device to freeze. This protocol has no effect if the specified Time field is earlier than the
last-grab time of the most recent active grab for the client or if the specified Time field is later
than the current server time.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously by the
same clients or by different clients. When a device is frozen on behalf of a pointer grab or a
keyboard grab, no event processing is performed for the device. It is possible for a single
device to be frozen due to both grabs. In this case, the freeze must be released on behalf of
both grabs before the events can be processed again.

• If the Mode field is the AsyncPointer mode and the pointer is frozen by the client, then
the pointer event processing continues normally. If the pointer is frozen twice by the client
on behalf of two separate grabs, the AsyncPointer mode releases both.

The AsyncPointer mode has no effect if the pointer is not frozen by the client, but the
pointer does not have to be grabbed by the client.

• If the Mode field is the SyncPointer mode and the pointer is frozen and actively grabbed
by the client, then the pointer event processing continues normally until the next
ButtonPress or ButtonRelease event is reported to the client, at which time the pointer
again appears to freeze. However, if the reported event causes the pointer grab to be
released, then the pointer does not freeze.

The SyncPointer mode has no effect if the pointer is not frozen by the client or if the
pointer is not grabbed by the client.

• If the Mode field is the ReplayPointer mode and the pointer is actively grabbed by the
client or frozen as the result of an event having been sent to the client (either by a
GrabButton protocol request or a previous AllowEvents protocol request with the Mode
field the SyncPointer mode but not from a GrabPointer protocol request). Then, the
pointer grab is released, the event is completely reprocessed, and the event ignores
passive grabs at or above (towards the root) the grab-window of the grab just released.

The ReplayPointer mode has no effect if the pointer is not grabbed by the client or if
the pointer is not frozen as the result of an event.

• If the Mode field is the AsyncKeyboard mode and the keyboard is frozen by the client,
then keyboard event processing continues normally. If the keyboard is frozen twice by the
client on behalf of two separate grabs, the AsyncKeyboard mode releases both.

The AsyncKeyboard mode has no effect if the keyboard is not frozen by the client, but
the keyboard does not need to be grabbed by the client.

Enhanced X-Windows Protocols 8-9

AllowEvents

Fields

• If the Mode field is the SyncKeyboard mode, and the keyboard is frozen and actively
grabbed by the client, keyboard event processing continues normally until the next
KeyPress or KeyRelease event is reported to the client, at which time the keyboard
appears to freeze again. However, if the reported event causes the keyboard grab to be
released, then the keyboard does not freeze.

The SyncKeyboard mode has no effect if the keyboard is not frozen by the client or if
the keyboard is not grabbed by the client.

• If the Mode parameter is the ReplayKeyboard mode and the keyboard is actively
grabbed by the client, and is frozen as the result of an event having been sent to the client
(either from a GrabKey protocol request, or from a previous AllowEvents protocol
request with the Mode field in the SyncKeyboard field, but not from a GrabKeyboard
protocol request); then, the keyboard grab is released, the event is completely
reprocessed, and the event ignores passive grabs at or above (towards the root) the
grab-window of the grab just released.

The ReplayKeyboard mode has no effect if the keyboard is not grabbed by the client
or if the keyboard is not frozen as the result of an event.

• If the Mode field is the SyncBoth mode, and both pointer and keyboard are frozen by the
client, then, event processing for both devices continues normally until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event is reported to the client
for a grabbed device (button event for the pointer, key event for the keyboard). At this
time, the devices again appear to freeze. However, if the reported event causes the grab
to be released for both devices and both devices do not freeze or the other device is still
grabbed then a subsequent event for it will cause both devices to freeze.

The SyncBoth mode has no effect unless both pointer and keyboard are frozen by the
client. If the pointer of keyboard is frozen twice by the client on behalf of two separate
grabs, the SyncBoth mode releases both (but a subsequent freeze for the SyncBoth
mode freezes each device only once).

• If the Mode field is the AsyncBoth mode and both the pointer and the keyboard are
frozen by the client, then event processing for both devices continues normally. If a device
is frozen twice by the client on behalf of two separate grabs, the AsyncBoth mode
releases both.

The AsyncBoth mode has no effect unless both pointer and keyboard are frozen by
the client.

The AsyncPointer, SyncPointer, and Replay Pointer modes have no effect on processing
of keyboard events. The AsyncKeyboard, SyncKeyboard, and ReplayKeyboard modes
have no effect on processing of pointer events.

Mode

Time

Specifies the keyboard and pointer modes.

Specifies the time.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAllowEvents subroutine.

8-1 0 User lnterface"ffeference

/
I

~

Bell Protocol Request

Purpose
Regulates the volume of the keyboard bell.

Protocol Format
Percent INT8

Description

Bell

The Bell protocol request rings the bell on the keyboard at a volume relative to the base
volume for the keyboard, if possible. The Percentfield can range from -100 to 100 inclusive.
The volume at which the bell is rung when the Percent field is non-negative will be the
following:

Fields

base - [(base* percent)/ 100] +percent

and when the Percent field is negative, will be the following:

base + [(base * percent)/ 100]

Percent Specifies the desired level of volume.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XBell subroutine.

Enhanced X-Windows Protocols 8-11

ChangeActivePointerGrab

ChangeActivePointerGrab Protocol Request

Purpose
Changes the specified dynamic fields if the pointer is grabbed by client.

Protocol Format
EventMask SETof POINTEREVENT
Cursor. CURSOR or None
Time: TIMESTAMP or CurrentTime

Description

Fields

The ChangeActivePointerGrab protocol request changes specified dynamic fields if the
pointer is actively grabbed by the client and the specified Time field is no earlier than the
last-pointer-grab time and no later than the current server time. This protocol request has no
effect on the passive fields of a GrabButton protocol request.

If a Cursorfield is specified, it is displayed regardless of which window contains the pointer.
If a Cursorfield is not specified when the pointer is in the GrabWindowor one of its
subwindows, the normal cursor for that window is displayed. Otherwise, the Cursor field for
the GrabWindowparameter is displayed.

The ChangeActivePointerGrab protocol request generates events if the EventMask field
specified is in the Set of Event masks.

EventMask Specifies a mask from the Set of Event masks.

Cursor Specifies the cursor.

Time Specifies the time.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XChangeActivePointerGrab subroutine.

8-12 User Interface· Reference

(

ChangeGC

ChangeGC Protocol Request

Purpose
Changes components in the graphics context.

Protocol Format
GraphicsContext GCONTEXT
ValueMask BITMASK
Valuelist LISTofVALUE

Description

Fields

The ChangeGC protocol request changes components in the GraphicsContextfield. The
ValueMask and Va/uelistfields specify which components to be changed. The values and
restrictions are the same as for the CreateGC protocol request.

Changing the clip-mask overrides any previous SetClipRectangles protocol request on the
context. Changing the dash-offset or dashes overrides any previous SetDashes protocol
request on the context.

The order in which components are verified and altered is server-dependent. If an error is
generated, a subset of the components may have been altered.

GraphicsContext

Value Mask

Value list

Specifies the graphics context.

Specifies which components are to be changed.

Specifies which components are to be changed.

Error Codes
Alloc

Font

GContext

Match

Pixmap

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The CreateGC protocol request.

The XChangeGC subroutine, XSetArcMode subroutine, XSetArcMode subroutine,
XSetBackground subroutine, XSetClipMask subroutine, XSetClipOrigin subroutine,
XSetFillRule subroutine, XSetFillStyle subroutine, XSetFont subroutine, XSetForeground
subroutine, XSetFunction subroutine, XSetGraphicsExposures subroutine,
XSetlineAttributes subroutine, theXSetPlaneMask subroutine, XSetState subroutine,

Enhanced X-Windows Protocols 8-13

ChangeGC

XSetStipple subroutine, XSetSubwindowMode subroutine, XSetTile subroutine,
XSetTSOrigin subroutine.

8-14 User Interface Reference

(
\'<.!

Change Hosts

ChangeHosts Protocol Request

Purpose
Adds or removes the specified host from the access control list.

Protocol Format
Mode: {Insert, Delete}
Host HOST

Description

Fields

The ChangeHosts protocol request adds or removes the specified host from the access
control list. When access control is enabled and a host attempts to establish a connection to
the server, the host must be in this list or the server will refuse the connection.

The client must reside on the same host as the server or the client must have permission by
a server-dependent method to run this protocol request. Otherwise, an Access error is
returned.

An initial access control list can usually be specified by naming a file that the server reads at
startup and reset.

Some address families are defined, but the server can support families that are not defined.

For the Internet family, the address must be 4 bytes long. The address bytes are in standard
IP order. The server performs no automatic swapping on the address bytes.

• For the Class A address, the network number is the first byte in the address, and the host
number is the remaining 3 bytes with the most-significant byte first.

• For the Class B address, the network number is the first 2 bytes and the host number is
the last 2 bytes with the most-significant byte first.

• For the Class C address, the network number is the first 3 bytes with the most-significant
byte first. The last byte is the host number.

For the DECnet family, the server performs no automatic swapping on the address bytes. A
Phase IV address is 2 bytes long: the first byte contains the least-significant eight bits of the
node number, and the second byte contains the most-significant two bits of the node number
in the least-significant two bits of the byte and the area in the most significant six bits of the
byte.

For the Chaos family, the address must be 2 bytes long. The host number is always the first
byte in the address, and the subnet number is always the second byte. The server performs
no automatic swapping on the address bytes.

Use of an unsupported family or an improper address format or length within a supported
family results in a Value error.

Mode Specifies the mode.

Host Specifies the host.

Enhanced X-Windows Protocols 8-15

Change Hosts

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XAddHost subroutine, XAddHosts subroutine, XRemoveHost subroutine,
XRemoveHosts subroutine.

8-16 User Interface Reference

ChangeKeyboardControl

ChangeKeyboardControl Protocol Request

Purpose
Controls various aspects of the keyboard.

Protocol Format
ValueMask: BITMASK
Valuelist LISTofVALUE

Description
The ChangeKeyboardControl protocol request controls various aspects of the keyboard.
The ValueMask and Valuelistfields specify which controls are to be changed. The possible
values for the ValueMask and Valuelistfields are the following:

Control

AutoRepeatMode:
Bel/Duration:
Bel/Percent
Bel/Pitch:
Key.
KeyC/ickPercent
Led:
Led Mode:

AutoRepeatMode

Bel/Duration

Bel/Percent

Bel/Pitch

Key

KeyClickPercent

Type

{On, Off, Default}
INT16
INT8
INT16
KEYCODE
INT8
CARDS
{On, Off}

If specified with the Key value, the Auto Repeat mode of only that
key is changed if possible. If the AutoRepeatMode value only is
specified, the global AutoRepeat mode for the entire keyboard is
changed without affecting the per-key settings.

Sets the duration (in milliseconds) of the bell if possible. To restore
the default, set it to a value of -1. Other negative values generate a
Value error.

Sets the base volume for the bell between O (off) and 100 (loud)
inclusive if possible. To restore the default, set it to a value of -1.
Other negative values generate a Value error.

Sets the pitch (in Hz) of the bell. To restore the default, set it to a
value of -1. Other negative values generate a Value error.

If specified without an AutoRepeatMode value , a Match error is
returned.

Sets the volume for key clicks between O (off) and 100 (loud)
inclusive. To restore the default, set it to a value of -1. Other
negative values generate a Value error.

Enhanced X-Windows Protocols 8-17

ChangeKeyboardControl

Fields

No standard interpretation of the LEDs is defined. Numbering from one, 32 LEDs are
supported.

• If both the LedMode and the Led are specified, the state of that LED is changed.

• If only the LedMode is specified, the state of all LEDs is changed, if possible.

• If an LED is specified without the LedMo_de, a Match error is returned.

Each key has an individual mode of whether it should auto-repeat and a default setting for
that mode. In addition, there is a global mode of whether auto-repeat should be enabled and
a default setting for that mode. When the global mode is set to On, keys should obey their
individual auto-repeat modes. When the global mode is set to Off, no keys should
auto-repeat. An auto-repeating key generates alternating KeyPress and KeyRelease
events. When a key is used as a modifier, it is desirable for the key not to auto-repeat,
regardless of the auto-repeat setting for that key. When a key is specified without an
auto-repeat mode, a Match error is generated.

A bell generator, which is connected with the console, but not directly to the keyboard, is
treated as if it were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error is
generated, a subset of the controls may have been altered.

ValueMask Specifies the arguments to be provided.

Valuelist Contains one value for each bit set to 1 in the mask.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XAutoRepeatOff subroutine, XAutoRepeatOn subroutine,
XChangeKeyboardControl subroutine.

8-18 User Interface Reference

(

ChangeKeyboardMapping

ChangeKeyboardMapping Protocol Request

Purpose
Defines the symbols for the specified number of key codes.

Protocol Format
FirstKeycode: KEVCODE
KeysymsPerKeycode: CARDS
Keysyms: LISTofKEVSVM

Description

Fields

The ChangeKeyboardMapping protocol request defines the symbols for the specified
number of key codes, starting with the specified key code. The symbols for key codes
outside this range remain unchanged. This protocol request generates a MappingNotify
event.

The number of elements in the Keysyms field list must be a multiple of the
KeysymsPerKeycode field, otherwise a Length error is returned.

The FirstKeycode field must be greater than or equal to the MinKeycode field as returned in
the connection setup, and

FirstKeycode + (Keysyms_length/KeysymsPerKeycode) -1

must be less than or equal to the MaxKeycode field as returned in the connection setup or a
Value error results. The KEYSYM number N (counting from 0) for the Keycode K field has an
index (counting from 0) of

(K - FirstKeycode) * KeysymsPerKeycode + N

in the Keysyms field.

The KeysymsPerKeycode field value can be chosen arbitrarily by the client to be large
enough to hold the necessary symbols. A special KEYSYM value of the NoSymbol value
should be used to fill in unused elements for individual key codes. The NoSymbol value can
be used in non-trailing positions of the effective list for a key code.

The server does not have to interpret this mapping; it merely stores it for reading and writing
by clients.

FirstKeycode

KeysymsPerKeycode

Keysyms

Specifies the first physical key.

Specifies the mapping of key symbols to key codes.

Specifies the encoding of a symbol on the cap of a key.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XChangeKeyboardMapping subroutine.

Enhanced X-Windows Protocols 8-19

ChangePointerControl

ChangePointerControl Protocol Request

Purpose
Defines how the pointer moves.

Protocol Format
DoAcceleration, DoThreshold: BOOL
Acceleration Numerator, Acceleration Denominator. INT16
Threshold: INT16

Description

Fields

The ChangePointerControl protocol request defines how the pointer moves. The
acceleration is a multiplier for movement. Acceleration is expressed as a fraction. For
example, specifying 3I1 means that the pointer moves three times as fast as normal. The
fraction can be rounded off arbitrarily by the server.

Acceleration only takes effect if the pointer moves more than the Threshold field pixels at
once and applies to the amount beyond the Threshold field only.

To restore the default, set to a value of-1. Other negative values generate a Value error. A
value of O for the AccelerationDenominatorfield also generates a Value error.

DoAcceleration

Do Threshold

AccelerationNumerator

Acceleration Denominator

Threshold

Specifies a Boolean value that controls whether the values
for the AccelerationNumerator and
Acceleration Denominator fields are used.

Specifies a Boolean value that controls whether the value
for the Threshold field is used.

Specifies the pointer movement speed multiplier.

Specifies the normal pointer movement speed.

Specifies the acceleration threshold, in pixels.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XChangePointerControl subroutine.

8-20 User lnterfaee Reference

(

Change Property

ChangeProperty Protocol Request

Purpose
Alters the property for a specified window.

Protocol Format
Window. WINDOW
Property, Type: ATOM
Format {8, 16, 32}
Mode: {Replace, Prepend, Append}
Data: LISToflNTS or LISToflNT16 or LISToflNT32

Description

Fields

The ChangeProperty protocol request alters the property for the specified window. This
protocol request generates a PropertyNotify event on the window.

The maximum size of a property is server-dependent and may vary dynamically. The lifetime
of a property is not tied to the storing client. Properties remain until explicitly deleted, the
window is destroyed, or the server is reset.

Window

Property

Type

Format

Mode

Specifies the window.

Defines the property of the window. If the Property field is undefined, it is
treated as defined with the correct Type and Format fields with data that has
the length of 0.

Specifies an arbitrary atom used to identify the interpretation of property
data. The Type field is uninterpreted by the server.

Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities so that the server can swap bytes as necessary.

Specifies what to do with the data. If the Mode field is the following:

Replace

Prepend

Append

The previous Property field value is discarded.

Adds the data to the beginning of the existing data.

Adds the data to the end of the existing data.

For the Prepend or Append value, the Type and Format fields must match
the existing value of the Property field or a Match error results.

Data Specifies the description of the properties.

Enhanced X-Windows Protocols 8-21

ChangeProperty

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XChangeProperty subroutine, XSetCommand subroutine, XSetlconSizes subroutine,
XSetNormalHints subroutine, XSetSizeHints subroutine, XSetStandardProperties
subroutine, XSetWMHints subroutine, XSetZoomHints subroutine, XStoreBuffer
subroutine, XStoreBytes subroutine, XStoreName subroutine.

8-22 User Interface Reference

I

\.

ChangeSaveSet

ChangeSaveSet Protocol Request

Purpose
Adds or removes the specified window from the client save-set.

Request Format
Window. WINDOW
Mode: {Insert, Delete}

Description

Fields

The ChangeSaveSet protocol request adds or removes the specified window from the client
save-set. The specified window must be created by another client or a Match error results.
The server automatically removes windows from the save-set when the client is destroyed.

Window Specifies the window.

Mode Specifies how to deal with specified window.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
Closing the Connections to the Server, Save Set

The XAddToSaveSet subroutine. XChangeSaveSet subroutine, XRemoveFromSaveSet
subroutine.

Enhanced X-Windows Protocols 8-23

ChangeWindowAttributes

ChangeWindowAttributes Protocol Request

Purpose
Changes window attributes.

Protocol Format
Window. WINDOW
ValueMask: BITMASK
Va/uelist LISTofVALUE

Description
The ChangeWindowAttributes protocol request changes window attributes. The
ValueMask and Valuelist fields specify which attributes to change. The values and
restrictions are the same as for the CreateWindow protocol request, as follows:

• Setting a new background, using either the background pixmap or background pixel,
overrides any previous background.

• Setting a new border with the border pixel or border pixmap overrides any previous
border.

• Changing the background does not cause the window contents to be changed.

• Setting the border or changing the background so that the border tile origin changes,
causes the border to be repainted.

• Changing the background of a root window to the value of None or ParentRelative
restores the default background pixmap.

• Changing the border of a root window to CopyFromParent restores the default border
pixmap.

• Changing the win-gravity does not affect the current position of the window.

• Changing the backing store of an obscured window to WhenMapped or Always may
have no immediate effect.

• Changing the backing planes, backing pixel, or save-under of a mapped window may
have no immediate effect.

• Multiple clients can select input on the same window but their event-masks are disjointed.

• When an event is generated, it is reported to all interested clients. However, only one
client at a time can select the following:

- SubstructureRedirect

- ResizeRedirect

- ButtonPress

An attempt to violate these restrictions results in an Access error.

• There is only one do_not_propagate_mask per window, not one per client.

• Changing the Colormap attribute of a window, by defining a new colormap, not by
changing the contents of the existing map, generates a ColormapNotify event.

8-24 User Interface Reference

(

\~

Fields

ChangeWindowAttributes

• Changing the Colormap attribute of a visible window may have no immediate effect on the
screen.

• Changing the Cursor attribute of a root window to the value of None restores the default
cursor.

The order in which attributes are verified and altered is server-dependent. If an error is
generated, a subset of the attributes may have been altered.

Window Specifies the window.

ValueMask Specifies which components are to be changed.

Value list Specifies which components are to be changed.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateWindow protocol request, lnstallColormap protocol request.

The XChangeWindowAttributes subroutine, XDefineCursor subroutine, XSelectlnput
subroutine, XUndefineCursor subroutine, XSetWindowBackground subroutine,
XSetWindowBackgroundPixmap subroutine, XSetWindowBorder subroutine,
XSetWindowBorderPixmap subroutine, XSetWindowColormap subroutine.

Enhanced X-Windows Protocols 8-25

CirculateWindow

CirculateWindow Protocol Request

Purpose
Circulates the specified window in a specified direction.

Protocol Format
Window. WINDOW
Direction: {Raiselowest, LowerHighest}

Description

Fields

The CirculateWlndow protocol request circulates the specified window in the specified
direction.

The ClrculateWindow protocol request generates a CirculateNotify event if the window is
restacked. This protocol request generates a CirculateRequest event if another client
selects the SubstructureRedirect event on the window. In this case, no further processing
is performed.

Exposure processing is performed on formerly obscured windows.

Window

Direction

Specifies the window.

Specifies the direction to circulate the specified window. The Direction field
can be the following:

Ralselowest

LowerHlghest

It raises the lowest mapped child window, if any,
that is occluded by another child window, to the top
of the stack.

It lowers the highest mapped child window, if any,
that occludes another child window, to the bottom of
the stack.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCirculateSubwindows subroutine, XCirculateSubwindowsDown subroutine,
XCirculateSubwindowsUp subroutine.

8-26 User Interface Reference

I
\

Clear Area

ClearArea Protocol Request

Purpose
Clears the area within a window.

Protocol Format
Window. WINDOW
X, Y: INT16
Width, Height CARD16
Exposures: BOOL

Description

Fields

The ClearArea protocol request clears the area within a window.

In the following cases, if the Exposures field is the value of True, one or more exposure
events for regions of the rectangle that are visible or in a backing store are generated.

• If the Window field has a defined background tile, the rectangle is tiled with a plane mask
of all ones and has a Copy function and has a subwindow-mode of ClipByChildren.

• If the Window field has a background the value of None, the contents of the window are
not changed.

If the ClearArea protocol request is used with an lnputOnly window, a Match error is
generated.

Window

x

y

Width

Height

Exposures

Specifies the window.

Specifies the x coordinate of the upper-left corner of the rectangle
relative to the origin of the specified window.

Specifies the y coordinate of the upper-left corner of the rectangle
relative to the origin of the specified window.

Specifies the width of the specified window. If the Width field is a
value of 0, it is replaced with the current width of the window minus
x.

Specifies the height of the specified window. If the Height field is a
value of 0, it is replaced with the current height of the window minus
y.

Indicates whether exposure events are generated for regions of the
rectangle that are either visible or are being retained in a backing
store.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XClearArea subroutine, XClearWindow subroutine.

Enhanced X-Windows Protocols 8-27

CloseFont

CloseFont Protocol Request

Purpose
Deletes the association between the resource ID and the font.

Protocol Format
Font FONT

Description
The CloseFont protocol request deletes the association between the resource ID and the
font. The font is freed when no other resource references it.

Field
Font Specifies the font.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreeFront subroutine, XUnloadFont subroutine.

8-28 User Interface Reference

(

~

Configure Window

ConfigureWindow Protocol Request

Purpose
Reconfigures the size, position, border, and stacking order of a window.

Protocol Format
Window. WINDOW
ValueMask: BITMASK
Valuelist LISTofVALUE

Description
The ConfigureWindow protocol request reconfigures the size, position, border, and
stacking order of a window. Attempts to configure a root window have no effect.

The values to be changed are in the ValueMask and Valuelist fields. The values not
specified are taken from the existing geometry of the window. Possible values for the
Valuelistfield are the following:

X:
Y:
Width:
Height
BorderWidth:
Sibling:
StackMode:

INT16
INT16
CARD16
CARD16
CARD16
WINDOW
{Above, Below, Top If, Bottom If, Opposite}

• The X and Yattributes, which are coordinates relative to the origin of the parent window,
specify the position of the upper-left outer corner of the window.

• The Width and Height attributes specify the inside of the window, excluding the border.
The width and height must be a nonzero value, or a Value error results.

• Changing just the BorderWidth attribute leaves the outer-left corner of the window in a
fixed position but moves the absolute position of the origin of the window. If the
BorderWidth field of an lnputOnly window is a nonzero, a Match error is generated.

If the OverrideRedirect attribute of the window has the value of False and another client
has selected the SubstructureRedirect event on the parent, then a ConfigureRequest
event is generated, and no further processing is performed.

If another client selects the ResizeRedirect event on the window and the inside width or
height of the window is being changed, then a the ResizeRequest event is generated
and the current inside width and height are used instead.

The OverrideRedirect attribute of the window has no effect on the ResizeRedirect event,
and the SubstructureRedirect event on the parent window has precedence over the
ResizeRedirect event on the window.

If the window state changes, the geometry of the window is changed as specified, the
window is restacked among siblings, and a ConfigureNotify event is generated.

Enhanced X--Windows Protocols ~29

ConfigureWindow

• If the inside Width or Height field of the window is changed, the children of the window are
affected according to window gravity.

- Exposure processing is performed on formerly obscured windows, including the
window and its inferiors, if regions of the formerly obscured windows were obscured
but are no longer obscured.

- Exposure processing is also performed on any new regions of the window, as a result
of increasing the width or height, and any regions where window contents are lost.

• If the inside width or height of a window is not changed, but the window is moved or its
border is changed, then the contents of the window are not lost but moved with the
window. Changing the inside width or height of the window causes its contents to be
moved or lost, depending on the bit gravity of the window, and causes children to be
reconfigured, depending on their window gravity.

For a change of width Wand height H the following values are defined as [X, YJ pairs:

North West [0,0]

North [W/2,0]

North East [W,O]

West [O,H/2]

Center [W/2,H/2]

East [W,H/2]

South West [O,Hj

South [W/2,Hj

South East [W,HJ

When a window with one of these bit gravities is resized, the corresponding pair defines
the change in position of each pixel in the window. When a window with one of these
window gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When a window's position is changed,
a GravityNotify event is generated. GravityNotify events are generated after the
ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to the
origin of the root window. If the change in size of the window is coupled with a change in
position of [X, YJ, then for the BitGravity attribute, the change in position of each pixel is
[-X, -Y], and for the WindowGravity attribute, the change in position of a child when its
parent is resized is [-X, -Y]. The Static gravity takes effect only when the width or height
of the window is changed, not when the window is moved only.

8-30 User Interface Reference

ConfigureWindow

• A BitGravity attribute of Forget indicates the following (even if backing store or
save-under has been requested):

- The window contents are always discarded after a size change

- The window is tiled with its background. If no background is defined, the existing
screen contents are not altered.

- Zero or more exposure events are generated.

A server can ignore the specified BitGravity field and use Forget instead.

• A WindowGravity attribute of Unmap is like a NorthWest value, except that the child is
also unmapped when the parent is resized, and an UnmapNotify event is generated.
UnmapNotify events are generated after the ConfigureNotify event is generated.

• If Sibling and StackMode are specified, the window is restacked as follows:

Stack-mode

Above

Below

Top If

Bottom If

Opposite

Stack Order

Window is placed just above the sibling.

Window is placed just below the sibling.

If the sibling occludes the window, the window is placed at the
top of the stack.

If the window occludes the sibling, the window is placed at the
bottom of the stack.

If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the window is
placed at the bottom of the stack.

If StackMode is specified, but no Sibling is specified, the window is restacked as follows:

Stack-mode

Above

Below

Top If

Bottom If

Opposite

Stack Order

The window is placed at the top of the stack.

The window is placed at the bottom of the stack.

If any sibling occludes the window, the window is placed at the
top of the stack.

If the window occludes any sibling, the window is placed at the
bottom of the stack.

If any sibling occludes the window, the window is placed at the
top of the stack. If the window occludes any sibling, the window is
placed at the bottom of the stack.

If a sibling is specified without a StackMode or if the window is not actually a sibling, a
Match error occurs.

The computations for the Bottomlf, Toplf, and Opposite stack modes are performed
with respect to the final geometry of the window (as controlled by the other arguments to
the protocol), not by the initial geometry of the window.

Enhanced X-Windows Protocols 8-31

ConfigureWindow

Fields
Window

Value Mask

Value List

Specifies the window.

Specifies which components are to be changed.

Specifies which components are to be changed.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XConfigureWindow subroutine, XLowerWindow subroutine, XMapRaised subroutine,
XMoveResizeWindow subroutine, XMoveWindow subroutine, XRaiseWindow subroutine,
XResizeWindow subroutine, XRestackWindows subroutine, XSetWindowBorderWidth
subroutine.

8-32 User Interface Reference

ConvertSelection

ConvertSelection Protocol Request

Purpose
Converts a selection.

Protocol Format
Selection, Target: ATOM
Property:. ATOM or None
Requestor: WINDOW
Time: TIMESTAMP or CurrentTime

Description

Fields

The ConvertSelection protocol request converts a selection by sending a
SelectionRequest event to its owner. The fields remain unchanged from their original state.
This protocol does not change the property.

If the specified Selection field has an owner, the server sends a SelectionRequest event to
that owner. If there is no owner for the specified Selection field, the server generates a
SelectionNotify event to the requester with the property specified as the None value.

Selection

Target

Property

Requestor

Time

Specifies what is to be converted.

Specifies the type of the selection to be converted.

Specifies the property of the window.

Specifies the client making the request.

Specifies the time in a timestamp or the CurrentTime.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XConvertSelection subroutine.

Enhanced X-Windows Protocols 8-33

Copy Area

CopyArea Protocol Request

Purpose
Combines the specified source and destination rectangles.

Protocol Format
SourceDrawable, DestinationDrawable: DRAWABLE
GraphicsContext GCONTEXT
SourceX, Source Y: INT16
Width, Height CARD16
DestinationX, Destination Y: INT16

Description

Fields

The CopyArea protocol request combines the specified rectangle of the source drawable
with the specified rectangle of the destination drawable. The SourceXand SoucreYfields
are relative to the source drawable's origin. The DestinationX and DestinationYfields are
relative to the destination drawable's origin, each pair specifying the upper-left corner of the
rectangle. The source drawable and the destination drawable must have the same root and
the same depth, or a Match error occurs.

If regions of the source rectangle are obscured and have not been retained in backing-store
or if regions outside the boundaries of the source drawable are specified, those regions are
not copied. However, the following occurs on all corresponding destination regions that are
either visible or retained in backing-store. If the destination drawable is a window with a
background other than the value of None, these corresponding destination regions are tiled
(with plane-mask of all ones and function Copy) with that background.

Regardless of tiling and whether the destination is a window or a pixmap, if
graphics-exposures in GraphicsContextfield is the value of True, GraphicsExpose events
for all corresponding destination regions are generated. If graphics-exposure is the value of
True but no GraphicsExpose events are generated, a NoExpose event is generated.

Destination Drawable

DestinationX

Destination Y

GraphicsContext

Height

SourceDrawable

Sourcex·

Specifies the destination drawable of the specified
rectangle.

Specifies the x coordinate of the upper-left corner of the
rectangle relative to the origin of the destination drawable.

Specifies the y coordinate of the upper-left corner of the
rectangle relative to the origin of the destination drawable

Specifies the graphics context. This field has the following
components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and
clip-mask.

Specifies the height of the specified rectangle.

Specifies the source drawable of the specified rectangle.

Specifies the x coordinate of the upper-left corner of the
rectangle relative to the origin of the source drawable.

8-34 User Interface Reference

SourceY

Width

Implementation Specifics

Copy Area

Specifies they coordinate of the upper-left corner of the
rectangle relative to the origin of the source drawable.

Specifies the width of the specified rectangle.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XCopyArea subroutine.

Enhanced X-Windows Protocols 8-35

CopyColormapAndFree

CopyColormapAndFree Protocol Request

Purpose
Creates a colormap.

Protocol Format
Map/D, SourceColormap: COLORMAP

Description

Fields

The CopyColormapAndFree protocol request creates a colormap of the same visual type
and for the same screen as specified in the SourceColormap field, and associates the map
identifier with it.

The CopyColormapAndFree protocol request moves all of the existing allocations of the
client from the SourceColormap field to the new colormap with the color values intact, and
their read-only or writable characteristics intact. This protocol also frees these colormap
entries in the SourceColormap field. Color values in other entries in the new colormap are
undefined.

If the SourceColormap field was created by the client with the Allocate attribute set to the
value of All in the CreateColormap protocol request, then the following occurs:

• A new colormap is also created with the Allocate attribute set to the value of All.

• The color values for all entries are copied from the SourceColormap field.

• All entries in the SourceColormap field are freed.

If the SourceColormap was not created by the client with the Allocate attribute set to the
value of All, the allocations to be moved are all pixels and planes that have been allocated
by the client using AllocColor, AllocColorCells, AllocColorPlanes, or AllocNamedColor,
and that have not been freed since they were allocated.

Map ID

SourceColormap

Specifies the identifier for the source colormap.

Specifies the source colormap.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The CreateColormap protocol.

The XCopyColormapAndFree subroutine.

8-36 User Interface Reference

CopyGC

CopyGC Protocol Request

Purpose
Copies graphics context (GC) components from a source to a destination.

Protocol Format
SourceGraphicsContext, DestinationGraphicsContext GCONTEXT
ValueMask. BITMASK

Description

Fields

The CopyGC protocol request copies components from the SourceGraphicsContextfield to
the DestinationGraphicsContext field. The source GC and the destination GC must have the
same root and the same depth or a Match error results.

SourceGraphicsContext

DestinationGraphicsContext

Value Mask

Specifies the GC components to be copied.

Specifies the location the GC components will be
copied to.

Specifies which components to copy. The CreateGC
protocol request lists these components.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The CreateGC protocol.

The XCopyGC subroutine.

Enhanced X-Windows Protocols 8-37

CopyPlane

CopyPlane Protocol Request

Purpose
Combines the source drawable with the destination drawable.

Protocol Format
SourceDrawable, DestinationDrawable: DRAWABLE
GraphicsContext GCONTEXT
SourceX, SourceY: INT16
Width, Height CARD16
DestinationX, DestinationY: INT16
BitP/ane: CARD32

Description

Fields

The CopyPlane protocol request combines the SourceDrawable field with the
DestinationDrawable field. The source drawable and the destination drawable must have the
same root or a Match error will result. The source and the destination drawables need not
have the same depth.

The BitPlane field must have exactly one bit set to the value of 1 and the value of BitPlane

field must be less than 2**n, where n is the depth of the source drawable, or a Value error
results. Effectively, a pixmap of the same depth as the destination drawable with the size
specified by the source region is formed using the foreground and background pixels in the
graphics context.

• The BitPlane in the source drawable contains a 1 bit for foreground.

• The BitPlane in the source drawable contains a Obit for background.

The equivalent of a CopyArea protocol request is performed, with all the same exposure
semantics.

The CopyPlane protocol request is the same as using the specified region of the source bit
plane as a stipple with a fill-style of OpaqueStippled for filling a rectangular area of the
destination.

The GraphicsContext components are function, plane_mask, foreground, background,
subwindow_mode, graphics_exposures, clip_x_origin, clip_y_origin, and clip_mask.

BitPlane

Destination Drawable

DestinationX

Destination Y

GraphicsContext

Height

Specifies the bit plane of the source drawable.

Specifies the destination drawable.

Specifies the x coordinate relative to the origin of the destination
drawable.

Specifies the y coordinate relative to the origin of the destination
drawable

Specifies the graphics context.

Specifies the height of the specified plane.

8-38 User Interface Reference

(

Source Drawable

SourceX

SourceY

Width

Implementation Specifics

CopyPlane

Specifies the source drawable of the specified plane.

Specifies the x coordinate relative to the origin of the source
drawable.

Specifies the y coordinate relative to the origin of the source
drawable.

Specifies the width of the specified plane.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Copy Area protocol request.

The XCopyPlane subroutine.

Enhanced X-Windows Protocols 8-39

CreateColormap

CreateColormap Protocol Request

Purpose
Creates a colormap.

Protocol Format
MaplD: COLORMAP
Visual: VISUALID
Window. WINDOW
Allocate: {None, All}

Description

Fields

The CreateColormap protocol request creates a colormap of the specified visual type for
the screen on which the Window field resides, and associates the map identifier with it. The
visual type must be supported by the screen, or a Match error results.

The initial values of the colormap entries are undefined for Grayscale, PseudoColor, and
DirectColor. For these classes, if the value of Allocate is set to the value of None, clients
can allocate the colormap entries.

The colormap entries for StaticGray, StaticColor, and TrueColor are defined values
specific to Visual field, but not defined by the Core protocol request. Allocate field for these
classes must be specified as the value of None, or a Match error results. For the other
classes, if the value of Allocate field is set to the value of None, the colormap initially has no
allocated entries, and clients can allocate entries.

If Allocate field is set to the value of All, then the entire colormap is allocated writable. The
initial value of allocated entries is undefined.

• For the Grayscale and PseudoColor visual types, the effect is as if an A·llocColor
protocol request returned all pixel values from 0 to N-1, where N is the colormap-entries
value in the specified visual.

• For DirectColor, the effect is as if an AllocColorPlanes protocol request returned a pixel
value of 0 and red-mask, green-mask, and blue-mask values containing the same bits as (
the corresponding masks in the specified visual. ~

However, in these cases, these entries cannot be freed with the FreeColors protocol
request.

Allocate

MaplD

Visual

Window

Specifies the colormap entries to be allocated. This field can have the
values of All or None.

Specifies the identifier for the colormap.

Specifies the visual ID of the display.

Specifies the window.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

8-40 User Interface Reference

CreateColormap

Related Information
The XCreateColormap subroutine, XResetScreenSaver subroutine.

Enhanced X-Windows Protocols 8-41

CreateCursor

CreateCursor Protocol Request

Purpose
Creates a cursor.

Protocol Format
Cursor/D: CURSOR
Source: PIXMAP
Mask PIXMAP or None
Foreground Red, ForegroundGreen, ForegroundB/ue: CARD16
Background Red, BackgroundGreen, BackgroundBlue: CARD16
X, Y: CARD16

Description

Fields

The CreateCursor protocol request creates a cursor to be associated with the Cursor/D
field. The foreground and background RGB values must be specified, even if the server only
has a StaticGray or Grayscale screen.

• The foreground is used for the 1 bit in the source.

• The background is used for the O bit in the source.

The source pixmap and the mask pixmap must have depth of one (or a Match error results).
Source and mask pixmaps can have any root. The mask pixmap does not need to be
specified.

The Mask field pixmap defines the shape of the cursor, or the one bit in the Mask field define
which pixels in the Source field will be displayed.

• If the Mask field has O bit, the corresponding bits of the Source field pixmap are ignored.

• If no Mask field is given, all pixels of the Source field are displayed.

The Mask field and the Source field must be the same size or a Match error results.

The X and Y coordinates define the hotspot. These coordinates are relative to the origin of
the Source field pixmap and must be a point within the Source field pixmap or a Match error
results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references are made to these
pixmaps. Subsequent drawing in the source or the mask pixmap has an undefined effect on
the cursor. The server may or may not make a copy of the pixmap.

Background Blue

BackgroundGreen

Background Red

Cursor/D

Mask

Specifies the intensity value for the background blue.

Specifies the ir:itensity value for the background green.

Specifies the intensity value for the background red.

Specifies the identifier for the cursor.

Defines the shape of the cursor.

8-42 User Interface Reference

Source

ForegroundB/ue

ForegroundGreen

Foreground Red

x

y

Implementation Specifics

CreateCursor

Specifies the orgin of the specified cursor.

Specifies the intensity value for the foreground blue.

Specifies the intensity value for the foreground green.

Specifies the intensity value for the foreground red.

Specifies the x coordinate of the hotspot relative to the orgin of
the source.

Specifies the y coordinate hotspot relative to the orgin of the
source.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCreatePixmapCursor subroutine.

Enhanced X-Windows Protocols 8-43

CreateGC

CreateGC Protocol Request

Purpose
Creates a graphics context (GC) and assigns an identifier to it.

Protocol Format
GraphicsContextlD: GCONTEXT
Drawable: DRAWABLE
ValueMask: BITMASK
Valuelist LISTofVALUE

Description
The CreateGC protocol request creates a graphics context. This protocol request assigns
the identifier as specified in the GraphicsContextld field to the newly created GC. The GC
can be used with any destination drawable with the same root and depth as the specified
Drawable field. Other drawables result in a Value error.

The ValueMask field and the Valuelist field specify which components are to be explicitly
initialized. The GC components include the following:

Component Type Default

Function {Clear, And, AndReverse,
Copy, Andlnverted, NoOp,

Copy

Xor, Or, Nor, Equiv, Invert,
OrReverse, Copylnverted,
Orlnverted, Nand, Set}

PlaneMask CARD32 all ones

Foreground CARD32 0

Background CARD32 1

Line Width CARD16 0

LineStyle {Solid, OnOffDash, Solid
Double Dash}

CapStyle {Notlast, Butt, Round, Butt
Projecting}

JoinStyle {Miter, Round, Bevel} Miter

Fil/Style {Solid, Tiled, Solid
OpaqueStippled, Stippled}

Fil/Rule {EvenOdd, Winding} Even Odd

ArcMode {Chord, PieSlice} PieSlice

Tile PIXMAP Pixmap of unspecified
size filled with
Foreground pixel
(client-specified pixel, if
any, otherwise zero).
Subsequent changes to
Foreground pixel do not
affect this pixmap.

8-44 User Interface Reference

v

CreateGC

Stipple PIXMAP Pixmap of unspecified
size filled with ones.

TileStippleXOrigin INT16 0

TileStipple YOrigin INT16 0

Font FONT <Server-dependent-font>

SubwindowMode {ClipByChildren, ClipByChildren
lncludelnferiors}

GraphicsExposures BOOL True

ClipXOrigin INT16 0

Clip YOrigin INT16 0

ClipMask PIXMAP or None None
DashOffset CARD16 0

Dashes CARDS 4 (the first [4,4])

In graphics operations, given a source and destination pixel, the result is computed bitwise
on corresponding bits of the pixels. That is, a Boolean operation is performed in each bit
plane. The PlaneMask field restricts the operation to a subset of planes. The result is the
following:

((source FUNC destination) AND PlaneMask) OR (destination AND (NOT
PlaneMask))

Range checking is not performed on the values for the Foreground, Background, or
PlaneMask fields. These values are truncated to the appropriate number of bits. These field
values are defined as the following:

Function Operation

Clear 0

And source AND destination

And Reverse source AND (NOT destination)

Copy source

And Inverted (NOT source) AND destination

No Op destination

Xor source XOR destination

Or source OR destination

Nor (NOT source) AND (NOT destination)

Equiv (NOT source) XOR destination

Invert NOT destination

OrReverse source OR (NOT destination)

Copylnverted NOT source

Enhanced X-Windows Protocols 8-45

CreateGC

Orlnverted (NOT source) OR destination

Nand (NOT source) OR (NOT destination)

Set

The LineWidth field, measured in pixels, can be either of the following:

• A wide line (greater than or equal to one).

Wide lines are drawn centered on the path described by the graphics protocol request.
Unless otherwise specified by the JoinStyle or CapStyle fields, the bounding box of a
wide line with endpoints [xl, yl], [x2, y2], and width w is a rectangle with vertices at
the following real coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

where sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A
pixel is part of the drawn line if the center of the pixel is fully inside the bounding box,
which is viewed as having infinitely thin edges. If the center of the pixel is exactly on the
bounding box, it is part of the line if and only if the interior is immediately to its right (the x
increasing direction).

Pixels with centers on a horizontal edge are part of the line, if and only if, the interior is
immediately below (they increasing direction) and the interior of the boundary is
immediately to the right (the x increasing direction).

NOTE: This description is a mathematical model describing the pixels that are drawn for a
wide line and does not imply that trigonometry is required to implement such a model.

Real-point or fixed-point arithmetic is recommended for computing the corners of the line
endpoints for lines greater than one pixel in width.

• A thin line (zero-width lines).

Thin lines are drawn, one-pixel wide lines that use an unspecified, device-dependent
algorithm. The two constraints on this algorithm are the following:

1. If a line is drawn unclipped from [xl, y 1] to [x2, y2] and another line is drawn C
unclipped from [xl+dx,yl+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by
drawing the first line if and only if the point [x+dx, y+dy] is touched by drawing the
second line.

2. The effective set of points comprising a line cannot be affected by clipping. A point is
touched in a clipped line if and only if the point lies inside the clipping region and the
point would be touched by the line when drawn unclipped.

A wide line drawn from [xl, yl J to [x2, y2 J always draws the same pixels as a wide line
drawn from [x2, y2 J to [xl, yl], not including cap and join styles. It is encouraged that you
make this property true for thin lines.

A LineWidth field with the value of O may differ from a Line Width field with the value of 1 in
which pixels are drawn. In general, drawing a thin line is faster than drawing a wide line of
width one, but thin lines may not mix well aesthetically with wide lines because of the
different drawing algorithms. To obtain precise and uniform results across all displays, a r1
client should always use a LineWidth field with the value of 1, rather than a LineWidth field 1i4

with the value of O.

The LineStyle field defines which sections of a line are drawn:

8-46 User Interface Reference

Solid

Double Dash

On Off Dash

CreateGC

The full path of the line is drawn.

The full path of the line is drawn, but the even dashes are
filled
differently than the odd dashes (as in the Fil/Style field). The
Butt value is used where even and odd dashes meet.

Only the even dashes are drawn, and cap-style applies to
all internal ends of the individual dashes (except the
Notlast value is treated as the CapStyle field value of the
Butt value).

The CapStyle field defines how the endpoints of a path are drawn:

Not last

Butt

Round

Projecting

This is the equivalent to the Butt value, except that for a
LineWidth field of O or one the final endpoint is not drawn.

Square at the endpoint (perpendicular to the slope of the
line), with no projection beyond.

A circular arc with diameter equal to the Line Width field
centered on the endpoint; equivalent to the Butt value for
Line Width field of zero.

Square at the end, but the path continues beyond the
endpoint for a distance equal to half the line width;
equivalent to the Butt value for a LineWidth field of zero.

The JoinStyle value defines how corners are drawn for wide lines:

Miter

Round

Bevel

The outer edges of the two lines extend to meet at an
angle.

A circular arc with diameter equal to the Line Width value,
centered on the joinpoint.

The Butt value endpoint styles and then the triangular
notchfilled.

For a line with coincident endpoints (xl=x2, yl=y2), when the CapStyle field is applied
to both endpoints, the semantics depends on the Line Width and CapStyle fields.

Cap and Line Combo

Not last/thin

Butt/thin

Round thin

Projecting thin

Butt wide

Round wide

Definition

Device-dependent, but the desired effect is that nothing is
drawn.

Device-dependent, but the desired effect is that a single
pixel is drawn.

Same as Butt thin.

Same as Butt thin.

Nothing is drawn.

The closed path is a circle centered at the endpoint with
diameter equal to the Line Width field.

Enhanced X-Windows Protocols 8-47

CreateGC

Projecting wide The closed path is a square aligned with the coordinate
axes centered at the endpoint, with sides equal to the
Line Width field.

For a line with coincident endpoints (xl=x2, yl=y2), when the JoinStyle field is applied
at one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of (or is reduced to) a single point joined with itself, the
effect is the same as when the CapStyle field is applied at both endpoints.

The TileStipple field and clip origins are interpreted relative to the origin of whatever
destination drawable is specified in a graphics protocol request.

The Tile field pixmap must have the same root and depth as the GraphicsContext field or a
Match error results.

The Stipple field pixmap must have depth one and must have the same root as the
GraphicsContext field or a Match error results.

For the Fil/Style Stippled field (but not the Fil/Style OpaqueStippled field), the stipple
pattern is tiled in a single plane and acts as an additional clip mask to be ANDed with the
ClipMask field. Any size pixmap can be used for tiling or stippling, although some sizes can
be faster to use than others.

The Fil/Style field defines the contents of the source for line, text, and fill requests. For all
text and fill requests for line requests with the LineStyle Solid field, and for the even dashes
for line requests with a LineStyle OnOffDash or DoubleDash field:

Fill-Style

Solid

Tiled

OpaqueStippled

Stippled

Definition

Foreground.

Tile.

A Tile field with the same width and height as stipple, but
with background everywhere the Stipple field has a value of
O and with foreground everywhere the Stipple field has a
value of 1.

Foreground masked by the Stipple field.

For the odd dashes for line requests with the LineStyle DoubleDash field:

Fill-Style

Solid

Tiled

OpaqueStippled

Stippled

Definition

Background.

Same as for even dashes.

Same as for even dashes.

Background masked by stipple.

The allowed Dashes field value is actually a simplified form of the more general patterns that
can be set with the SetDashes protocol request. Specifying a value of n is equivalent to
specifying the two-element list [n, n] in the SetDashes protocol request. The value must be
nonzero or a Value error results. DashOffset and Dashes fields are defined in the
SetDashes protocol request.

8-48 User Interface Reference

CreateGC

The ClipMask field restricts writes to the destination Drawable field. Only pixels where the
C/ipMaskfield has a one bit are drawn; pixels are not drawn outside the area covered by the
ClipMask field or where the ClipMask field has a O bit. The ClipMask field affects all graphics
protocol requests, but it does not clip sources. The ClipMask field origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics protocol
request. If a pixmap is specified as the ClipMask field, it must have depth of 1 and have the
same root as the GC, or a Match error results. If the ClipMask field is the value of None, the
pixels are drawn (regardless of the clip origin). The ClipMaskfield also can be set with the
SetClipRectangles protocol request.

For the ClipByChildren type, both source and destination windows are additionally clipped
by all viewable lnputOutput children windows. For the lncludelnferiors type, neither
source nor destination window is clipped by inferiors; this will result in including subwindow
contents in the source and drawing through subwindow boundaries of the destination. The
lncludelnferiors type can be used on windows with different depths, but the results are
undefined by the core protocol request. .

The Fil/Rule field defines what pixels are inside and are drawn for paths given in the FillPoly
protocol request as follows.

EvenOdd

Winding

Indicates that a point is inside if an infinite ray with the point as the origin
crosses the path an odd number of times.

Indicates that a point is inside if an infinite ray with the point as an origin
crosses an unequal number of clockwise and counterclockwise directed
path segments.

A clockwise path is one which crosses the ray from left to right as observed
from the point. A counterclockwise segment is one that crosses the ray from
right to left as observed from the point. The case where a directed line
segment is coincident with the ray is uninteresting because you can choose
a different ray, which is not coincident with a segment.

For both fill rules, a point is infinitely small, and the path is an infinitely thin line. A pixel is
inside if the center point of the pixel is inside and the center point is not on the boundary. If
the center point is on the boundary, the pixel is inside if, and only if, the polygon interior is
immediately to its right (x increasing direction). Pixels with centers along a horizontal edge
are a special case and are inside if and only if the polygon interior is immediately below (y
increasing direction).

The ArcMode field controls filling in the PolyFillArc protocol request.

The GraphicsExposures field controls the GraphicsExposure event generation for
CopyArea and CopyPlane protocol requests (and any similar protocol requests defined by
extensions).

Enhanced X-Windows Protocols 8-49

CreateGC

Fields

Storing a pixmap in a graphics context might or might not result in a copy being made. If the
pixmap is later used as the destination for a graphics protocol request, the change might or
might not be reflected in the graphics context. If the pixmap is used simultaneously in a
graphics protocol request as both a destination and as a Tile or Stipple field, the results are
not defined.

It is quite likely that some amount of graphics context information will be cached in display
hardware and that such hardware can only cache a small number of graphics contexts.
Given the number and complexity of components, clients should view switching between
graphics contexts with nearly identical states as significantly more time-consuming than
making minor changes to a single graphics context.

GraphicsContextlD

Drawable

ValueMask

Valuelist

Specifies the identifier for the graphics context.

Specifies the drawable.

Specifies which graphics context components are to be
explicitly initialized.

Specifies the values associated with the components in the
ValueMask field.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XCreateGC subroutine, XOpenDisplay subroutine.

· 8-50 User Interface Reference

CreateGlyphCursor

CreateGlyphCursor Protocol Request

Purpose
Creates a cursor and associates an identifier with it.

Protocol Format
Cursor/D: CURSOR
SourceFont FONT
MaskFont FONT or None
SourceCharacter, MaskCharacter. CARD16
Foreground Red, ForegroundGreen, ForegroundBlue: CARD16
Background Red, BackgroundGreen, BackgroundB/ue: CARD16

Description

Fields

The CreateGlyphCursor protocol request creates a cursor and associates the Cursor/D
field with it. This protocol request obtains the source and mask bit maps from the specified
font glyphs.

• The SourceCharacterfield must be a defined glyph in the SourceFontfield and the
MaskCharacter field, if it is given, must be a defined glyph in the MaskFont field.

• The MaskFont and MaskCharacter fields are optional.

• The origins of the source and the mask glyphs (if defined) are positioned coincidently and
define the hotspot. The source and mask do not need to have the same bounding box
metrics. There are no restrictions on the placement of the hotspot relative to the bounding
boxes. If no mask is given, all pixels of the source are displayed.

• The SourceCharacter and MaskCharacter fields are CARD16, not Char2B. For 2-byte
matrix fonts, the 16-bit value is formed with byte 1 in the most-significant byte and byte 2
in the least-significant byte.

The cursor components can be transformed arbitrarily to meet display limitations. The fonts
can be freed immediately if no further explicit references to them are made.

Cursor/D

Source Font

MaskFont

SourceCharacter

MaskCharacter

ForegroundRed

ForegroundGreen

ForegroundB/ue

Background Red

BackgroundGreen

Specifies the identifier for the cursor.

Specifies the font for the source glyph.

Specifies the font for the mask glyph.

Specifies the character glyph for the source.

Specifies the character glyph for the mask.

Specifies the intensity value for the foreground red.

Specifies the intensity value for the foreground green.

Specifies the intensity value for the foreground blue.

Specifies the intensity value for the background red.

Specifies the intensity value for the background green.

Enhanced X-Windows Protocols 8-51

CreateGlyphCursor

BackgroundBlue Specifies the intensity value for the background blue.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCreateFontCursor subroutine, XCreateGlyphCursor subroutine.

8-52 User Interface Reference

CreatePixmap Protocol Request

Purpose
Creates a pixmap and assigns an identifier to it.

Protocol Format
PixmaplD: PIXMAP
Drawable: DRAWABLE
Depth: CARDS
Width, Height CARD16

Description

Create Pixmap

The CreatePixmap protocol request creates a pixmap and assigns the identifier specified by
the PixmaplD parameter to it.

• The Width and Height fields must be nonzero or a Value error results.

• The Depth field must be supported by the root of the specified Drawable field or a Value
error results.

• The initial contents of the pixmap are undefined.

An lnputOnly window can be used as a Drawable field in this protocol request.

Parameters
Depth

Drawable

Height

Pixmap ID

Width

Specifies the depth of the pixmap.

Specifies the drawable.

Specifies the height of the pixmap.

Specifies the identifier of the pixmap.

Specifies the width of the pixmap.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCreatePixmap subroutine.

Enhanced X-Windows Protocols 8-53

CreateWindow

CreateWindow Protocol Request

Purpose
Creates an unmapped window and assigns an identifier to it.

Protocol Format
Window/D, Parent WINDOW
Class: {lnputOutput, lnputOnly, CopyFromParent}
Depth: CARDS
Visual: VISUALID or CopyFromParent
X, Y: INT16
Width, Height, Borderwidth: CARD16
ValueMask: BITMASK
ValueList LISTofVALUE

Description
The CreateWindow protocol request creates an unmapped window and assigns the
Window/D field to it. Then, this protocol request generates a CreateNotify event.

• If the Class field is the CopyFromParent value, the class is taken from the parent
window.

• A depth of 0 for the lnputOutput or CopyFromParent value will result in the Depth field
being taken from the parent window.

• If the Visual field is the CopyFromParent value, the Visual field type is taken from the
parent window.

• If the Class field is the lnputOutput value, the Visual field type and the Depth field must
be a combination supported for the screen or a Match error results. The Depth field does
not need to be the same as the Parent field, but the Parent field must not be the
lnputOnly value class or a Match error results.

• If the Class field is the lnputOnly value, the Depth field must be the value of 0 and the
Visual field type must be supported for the screen or a Match error results; but the Parent
field can have any Depth and Class field. ~

An lnputOnly window cannot be used for the purposes of graphics requests, exposure
processing, and the VisibilityNotify events, and cannot be used as a source or destination
drawables for graphics protocol requests. Otherwise, the lnputOnly and lnputOutput
windows act the same with respect to properties, grabs, and input control.

The window is placed on top in the stacking order with respect to siblings.

• The x and y coordinates, which are relative to the origin of the parent window, specify the
position of the upper-left outer corner of the window, not the origin.

• The Width and Height fields specify the inside of the window, excluding the border. The
Width and Height fields must be nonzero or a Value error results.

• The BorderWidth field for an lnputOnly window must be a value of O or a Match error
results.

• The ValueMask and ValueListfields specify window fields that are to be explicitly
initialized.

8-54 User Interface Reference

CreateWindow

The following are possible values and the default values for the variables in the
CreateWindow protocol request.

Field Possible Values Default Values

Background Pixmap PIXMAP, None, ParentRelative None

Background Pixel CARD32 No default

BorderPixmap PIXMAP or CopyFromParent CopyFrom Parent

BorderPixel CARD32 No default

BitGravity BITGRAVITY Forget

WinGravity WIN GRAVITY North West

BackingStore {NotUseful, WhenMapped, NotUseful
Always}

Backing Planes CARD32 all 1s

Backing Pixel CARD32 Zero

Save Under BOOL False

EventMask SETofEVENT {} (empty set)

DoNotPropagateMask SETofDEVICEEVENT {} (empty set)

Override Redirect BOOL False

Colormap COLOR MAP or CopyFrom Parent CopyFromParent

Cursor CURSOR or None None

The window fields in the CreateWindow protocol request include the following:

• If the BackgroundPixmap field is specified, it overrides the default BackgroundPixmap.
The BackgroundPixmap field and the window must have the same root and the same
depth or a Match error results. Any size pixmap can be used, although some sizes can be
faster than others.

- If the BackgroundPixmap field is the value of None, the window has no defined
background.

- If the BackgroundPixmap field is the ParentRelative value, the background of the
parent window is used, but the window must have the same depth as the parent
window or a Match error results.

- If the BackgroundPixmap field of the parent window is the value of None, the window
will also have the value of None for this variable. A copy of the parent window
BackgroundPixmap field is not made, but is re-examined each time the window
background is required.

• If the BackgroundPixelfield is specified, it overrides the default the BackgroundPixmap
field and any of the BackgroundPixmap field given explicitly. A pixmap of undefined size
filled with BackgroundPixel is used for the background. Range checking is not performed
on the BackgroundPixelfield value; it is simply truncated to the appropriate number of
bits.

- With the BackgroundPixmap field of the ParentRelative value, the background tile
origin aligns with the background of the parent tile origin. Otherwise, the background
tile origin is always the window origin.

Enhanced X-Windows Protocols 8-55

Create Window

- When regions of the window are exposed and the server has not retained the contents,
the server automatically tiles the regions with the background of the window unless the
window has the BackgroundPixmap field with the value of None.

- If the BackgroundPixmap field is the value of None, the previous screen contents from
other windows of the same depth as the window are left in place if the contents come
from the parent of the window or an inferior of the parent window and its parent are the
same depth. Otherwise, the initial contents of the exposed regions are undefined.
Exposure events are then generated for the regions, even if the BackgroundPixmap
field is the value of None.

For borders, the border tile origin is always the same as the background tile origin. Output
to a window is always clipped to the inside of the window so that the border is never
affected.

- If the BorderPixmap field is given, it overrides the default BorderPixmap field or a
Match error results. The BorderPixmap and the window must have the same root and
the same depth. Any size pixmap can be used, although some sizes may be faster
than others.

If the BorderPixmap field is the CopyFromParent value, the BorderPixmap of the
parent is copied. Subsequent changes to the parent window border field do not affect
the child window. The window must have the same depth as the parent window, or a
Match error results.

The pixmap can be copied by sharing the same pixmap object between the child and parent
window or by making a complete copy of the pixmap contents.

• If the BorderPixel field is given, it overrides the default BorderPixmap field and any
BorderPixmap field given explicitly. A pixmap of undefined size filled with BorderPixel is
used for the border. Range checking is not performed on the BorderPixel; it is simply
truncated to the appropriate number of bits.

• The BitGravity field defines the region of the window that should be retained if the window
is resized.

• The WinGravity field defines how the window should be repositioned if the parent window
is resized. See the ConfigureWindow protocol request.

• The BackingStore field can be set to one of the following:

- The WhenMapped value, which advises the server that maintaining contents of
obscured regions when the window is mapped would be beneficial.

- The Always value, which advises the server that maintaining contents even when the
window is unmapped would be beneficial. In this case, the server can generate an
exposure event when the window is created. Even if the window is larger than the
parent window, the server should maintain complete contents, not just the region within
the parent boundaries.

- The NotUseful value, which advises the server that maintaining contents is
unnecessary, although a server can still choose to maintain contents while the window
is mapped.

- If the server maintains contents, exposure events will not be generated, but the server
may stop maintaining contents at any time. While the server maintains contents,
exposure events will not normally be generated, but the server may stop maintaining its
contents at any time.

8-56 User Interface Reference

Create Window

• If the SaveUnder field is the value of True, it advises the server that when this window is
mapped, saving the contents of the windows it obscures would be beneficial.

• When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination (and source, when the
window is the source) of graphics protocol requests, but regions obscured by interior
windows are not included.

• The BackingP/anes field indicates (with one bits) which bit planes of the window hold
dynamic data that must be preserved in the BackingStores field and during the
SaveUnders field.

• The Backing Pixel field specifies the value to use in planes not covered by Backing Planes
field. The server can save only the specified bit planes in the BackingStore or SaveUnder
fields and regenerate the remaining planes with the specified pixel value. Any bits beyond
the specified depth of the window in these values are ignored.

• The EventMask field defines which events the client is interested in for this window or for
some event types for inferiors of the window.

• The DoNotPropagateMask field defines which events should not be propagated to
ancestor windows when no client has the event type selected in this window.

• The Override Redirect field specifies whether map and configure protocol requests on this
window should override a SubstructureRedirect event on the parent window. This is
typically done to inform the window manager not to tamper with the window.

• The Colormap field specifies the colormap that best reflects the true colors of the window.
Servers capable of supporting multiple hardware colormaps can use this information, and
window managers can use it for lnstallColormap protocol request. The colormap must
have the same visual type as the window or a Match error results.

If the CopyFromParent value is specified, the colormap of the parent is copied. However,
the window must have the same visual type as the parent window and the parent window
must not have a Colormap field is set to the value of None, or a Match error results.
Subsequent changes to the parent window do not affect the child window. For an
explanation of the value of None allocation setting, see the FreeColormap protocol
request.

• If the Cursor field is specified, it will be used whenever the pointer is 1 in the window. If the
value of None is specified, the cursor of the parent window will be used, and any change
in the cursor of the parent window will cause an immediate change in the displayed
cursor.

The BackgroundPixmap, BorderPixmap and the cursor can be freed immediately if no
further explicit references to them are made.

Subsequent drawing into the background or BorderPixmap has an undefined effect on the
window state; the server might or might not make a copy of the pixmap.

The only attributes defined for the lnputOnly windows are the WinGravity, EventMask,
DoNotPropagateMask, OverrideRedirect, and Cursorfields. Specifying other fields for the
lnputOnly windows generates a Match error.

Enhanced X-Windows Protocols 8-57

Create Window

Fields
Parent

Class

Depth

Visual

Width

Height

Borderwidth

ValueMask

Valuelist

Windowld

x

y

Specifies the parent window.

Specifies the class type of the window .

Specifies the depth of the window.

Specifies where the visual type of the window.

Specifies the inside width of the window.

Specifies the inside height of the window.

Specifies the border width of the window.

Specifies the attributes of the window that are to be explicitly initialized.

Specifies the values associated with ValueMask that are to be explicitly
initialized.

Specifies the identifier of the window.

Specifies the x coordinate that is relative to the origin of the parent
window.

Specifies the x coordinate that is relative to the origin of the 'parent
window.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AtXwindows
Environment/6000.

Related Information
The XCreateSimpleWindow subroutine, XCreateWindow subroutine, ConfigureWindow
protocol request.

8-58 User Interface Reference

(

I~

DeleteProperty Protocol Request

Purpose
Deletes the property from the window.

Protocol Format
Window. WINDOW
Property. ATOM

Description

Delete Property

The DeleteProperty protocol request deletes a specified property from a window. Unless
the specified property does not exist, this request generates a PropertyNotify event on the
window.

Parameters
Window Specifies a window ID.

Property Specifies the atom corresponding to the property to be deleted.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDeleteProperty subroutine.

Enhanced X-Windows Protocols 8-59

DestroySubwindows

DestroySubwindows Protocol Request

Purpose
Deletes all subwindows of a specified window.

Protocol Format
Window. WINDOW

Description

Parameter

The DestroySubwindows protocol request generates a DestroyWindow protocol request,
in bottom-to-top stacking order, on all children of a specified window.

Window Specifies a window ID.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XDestroySubwindows subroutines.

8-60 User ln'terface Reference

(
~

DestroyWindow

DestroyWindow Protocol Request

Purpose
Deletes a window and all its inferiors.

Protocol Format
Window. WINDOW

Description

Field

The DestroyWindow protocol request deletes a specified window and all its inferiors.

If the specified window is mapped, an UnmapWindow protocol request occurs automatically
before the specified window and inferiors are deleted. The DestroyNotify events are
generated for each inferior, then for the specified window. The ordering among siblings and
subhierarchies is not otherwise constrained.

The DestroyWindow protocol request performs normal exposure processing on formerly
obscured windows.

If the window specified is a root window, this request has no effect.

Window Specifies the window ID of the window to be destroyed.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDestroyWindow subroutine.

Enhanced X-Windows Protocols 8-61

Fill Poly

FillPoly Protocol Request

Purpose
Fills the region defined by a set of points.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Shape: {Complex, Nonconvex, Convex}
CoordinateMode: {Origin, Previous} ·
Points: LISTof POINT

Description

Fields

8-62

The FillPoly protocol request fills the region defined by the specified set of points. The set of
points is closed automatically if the last set of points in the list does not coincide with the first
set of points. No pixel of the region is drawn more than once.

The first point is always relative to the origin of the Drawable field. The remaining points are
relative to the origin or to the previous point (Previous) depending on the CoordinateMode
field.

The FillPoly protocol request uses the GC fields function, plane_mask, filLstyle, fi/Lrule,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. This protocol also uses the
GC mode-dependent fields foreground, background, tile, stipple, ts_x_origin, and
ts_y_origin.

Drawable Specifies the drawable.

GraphicsContext Specifies the graphics context.

Shape Defines the path so the X Server can improve drawing performance.
This field may be used by the server to improve performance. If the
Shape field is the following:

Complex Indicates that the path may self-intersect.

Non convex Indicates that the path does not self-intersect, but
the Shape field is not completely convex. If the
Nonconvex value is specified for a self-intersecting
path, the graphics results are undefined.

If the Nonconvex or Complex value is known by
the client, specifying the Nonconvex value over the
Complex value may improve performance.

Convex Indicates that the path is wholly convex.

If the Nonconvex or Complex value is known by
the client, specifying the Convex value may
improve performance.

If the Convex value is specified for a path that is
not convex, the graphics results are undefined.

User Interface Reference

I

~

~

Coordinate Mode

Points

Implementation Specifics

Fill Poly

Specifies if a point is relative to the origin of the drawable or to a
previous point.

Specifies the points in a polygon.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFillPolygon subroutine.

Enhanced X-Windows Protocols 8-63

ForceScreenSaver

ForceScreenSaver Protocol Request

Purpose
Activates the screen-saver function.

Protocol Format.
Mode: {Activate, Reset}

Description

Field

The ForceScreenSaver protocol request activates the screen saver function if the Mode
field is the Activate value and the screen saver function is currently deactivated, even if
screen-saver has been disabled with a time out value of 0.

If the Mode field is Reset and the screen saver function is currently enabled, then the screen
saver function is deactivated (if it was activated) and the activation timer is reset to its initial
state as if device input had just been received.

Mode Specifies the value for the screen-saver function.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XActivateScreenSaversubroutine, XForceScreenSaver subroutine,
XResetScreenServer subroutine.

8-64 User Interface Reference

/
(

~

FreeColormap

FreeColormap Protocol Request

Purpose
Deletes the association between the resource ID and the colormap, and frees the colormap
storage.

Protocol Format
Colormap: COLORMAP

Description

Field

The FreeColormap protocol request deletes the association between the resource ID and
the colormap and frees the colormap storage. If the colormap is an installed colormap for a
screen, it is uninstalled.

If the Colormap field is defined by the CreateWindow protocol request or the
ChangeWindowAttributes protocol request, as the colormap for a window, the colormap
for the window is changed to the value of None, and a ColormapNotify event is generated.

If the Colormap field of a window is set to the value of None, the colors displayed for the
window are not defined by the protocol request.

The FreeColormap protocol request has no effect on a default colormap for a screen.

Colormap Specifies the colormap.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The UninstallColormap protocol.

The XFreeColormap subroutine.

Enhanced X-Windows Protocols 8-65

FreeColors

FreeColors Protocol Request

Purpose
Frees all pixel parameters.

Protocol Format
Colormap: COLORMAP
Pixels: LISTofCARD32
PlaneMask CARD32

Description

Fields

The FreeColors protocol request frees all pixels in the list of the Pixels field allocated by the
client with the AllocColor protocol request, the AllocNamedColor protocol request, the
AllocColorCells protocol request, and the AllocColorPlanes protocol request.

The PlaneMask field should not have any bits in common with the any of the pixels. The set
of all the Pixels field is produced by ORing together subsets of the PlaneMask field with the
Pixels field.

Freeing an individual pixel obtained from the AllocColorPlanes protocol request may not
actually allow its reuse until all of its related Pixels fields are also freed.

All specified pixels allocated by the client in the Colormap field, are freed, even if one or
more pixels produce an error.

A Value error is generated if a specified pixel is not a valid index in the Colormap field. An
Access error is generated if a specified pixel is not allocated by the client or is unallocated
or is only allocated by another client. If more than one pixel is in error, it is arbitrary as to
which pixel is reported.

Colormap

Pixels

PlaneMask

Specifies the colormap.

Specifies the list of pixels to be freed.

Specifies the bit mask describing which planes are to be
modified.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreeColors subroutine.

8-66 User Interface Reference

FreeCursor Protocol Request

Purpose

FreeCursor

This protocol deletes the association between the resource ID and the cursor.

Protocol Format
Cursor. CURSOR

Description

Field

The FreeCursor protocol request deletes the association between the resource ID and the
cursor. The cursor storage is freed when no other resource references it.

Cursor Specifies the cursor to be freed.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreeCursor subroutine.

Enhanced X-Windows Protocols 8-67

FreeGC

FreeGC Protocol Request

Purpose
Deletes the resource ID and hte GraphicsContextfield association.

Protocol Format
GraphicsContext GCONTEXT

Description
The FreeGC protocol request deletes the association between the resource ID and the
GraphicsContextfield and deletes the GraphicsContextfield.

Field
GraphicsContext

Error Code
GraphicsContext

Implementation Specifics

Specifies the graphics context.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreeGC subroutine.

8-68 User Interface Reference

FreePixmap Protocol Request

Purpose
Deletes the resource ID and the Pixmap field association.

Protocol Format
Pixmap: PIXMAP

Description

Free Pixmap

The FreePixmap protocol request deletes the association between the resource ID and the
Pixmap field. The Pixmap field storage will be freed when no other resource references it.

Field
Pixmap Specifies the pixmap to be freed.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFreePixmap subroutine.

Enhanced X-Windows Protocols 8-69

GetAtomName

GetAtomName Protocol Request

Purpose
Returns the name for a specified atom.

Protocol Format
Atom: ATOM
=>
Name: STRINGS

Description
The GetAtomName protocol request returns the name for a specified atom.

Parameters
Atom Specifies an atom.

Name Returns the name of the specified atom.

Error Code
Atom

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetAtomName subroutine.

8-70 User Interface Reference

GetFontPath Protocol Request

Purpose
Returns the search path for fonts.

Protocol Format
=>
Path: LISTofSTRING8

Description

GetFontPath

The GetFontPath protocol request returns the current search path for fonts.

Field
Path Specifies the font path.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetFontPath subroutine.

Enhanced X-Windows Protocols 8-71

GetGeometry

GetGeometry Protocol Request

Purpose
Returns the root and current geometry of a specified drawable.

Protocol Form.at
Drawable: DRAWABLE
=>
Root WINDOW
Depth: CARDS
X, Y: INT16
Width, Height, BorderWidth: CARD16

Description

Fields

The GetGeometry protocol request returns the root and current geometry of a specified
drawable.

The Depth field returns the number of bits per pixel for the drawable.

For a pixmap:

• The X, Y, and BorderWidth fields return a value of 0.

For a window:

• The X and Yfields return the coordinate values of the upper left outer corner of the
window relative to parent origin.

• The Width and Height fields return the inside size of the window, not including its border.

The GetGeometry protocol request can specify an lnputOnly window as the specified
drawable.

Drawable

Root

Depth

x
y

Width

Height

BorderWidth

Specifies a pixmap or a window ID.

Returns the window ID of the drawable's root window.

Returns the depth of the specified drawable in bits per pixel.

Returns the x coordinate of the upper-left outer corner.

Returns the y coordinate of the upper-left outer corner.

Returns the width of the specified drawable excluding borders.

Returns the height of the specified drawable excluding borders.

Returns the border width of the specified drawable.

Error Code
Drawable

8-72 User Interface Reference

I
'"'*

GetGeometry

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetGeometry subroutine, XGetWindowAttributes subroutine.

Enhanced X-Windows Protocols 8-73

Getlmage

Getlmage Protocol Request

Purpose
Returns the contents of the given rectangle of the drawable in the specified format.

Protocol Format
Drawable: DRAWABLE
X, Y: INT16
Width, Height: CARD16
PlaneMask CARD32
Format {XYPixmap, ZPixmap}

=>
Depth: CARDS

Visual: VISUALID or None

Data: LISTofBYTE

Description
The Getlmage protocol request returns the contents of the given rectangle of the specified
drawable in the specified format.

The X and Yfield coordinates, which are relative to the origin of the Drawable field, define
the upper left corner of the rectangle.

If the Format field is the XYPixmap value, only the bit planes specified in the PlaneMask
field are transmitted with the planes appearing from most significant to least significant in bit
order.

If the Format field is the ZPixmap value, the bits in all planes not specified in the PlaneMask
field are transmitted as the values of 0.

Range checking is not performed on the PlaneMask field. Therefore, extraneous bits are
ignored.

The Depth field returned is the Depth field specified when the Drawable field was created. It (
is the depth specified in a FORMAT structure in the connection setup, not a bits-per-pixel ~
component.

If the Drawable field is a pixmap, the Visualfield is the value of None, and the given
rectangle must be contained wholly within the pixmap (or a Match error results).

If the Drawable field is a window, its Visualfield is returned, and the window must be
viewable. It must be the case that, if there were no inferiors or overlapping windows, the
specified rectangle of the window would be fully visible on the screen and completely
contained within the outside edges of the window. The borders of the window can be
included and read with this protocol reques.t.

If the window has a backing store, then the backing store contents returned are for regions
of the window that are obscured by non-inferior windows. Otherwise, the contents returned
of such obscured regions are undefined, and the contents returned of visible regions of
inferior windows of depths different than the depth for the specified window are also
undefined.

This protocol request is intended for rudimentary hardcopy support.

8-7 4 User Interface Reference

\
)

Fields
Drawable

x

y

Width

Height

Plane Mask

Format

Depth

Visual

Data

Error Codes
Drawable

Match

Value

Implementation Specifics

Getlmage

Specifies the drawable.

Defines the upper left corner of the rectangle in conjunction with the
Yfield.

Defines the upper left corner of the rectangle in conjunction with the
Xfield.

Specifies the width of the area to be returned.

Specifies the height of the area to be returned.

Specifies the planes to be returned.

Specifies the format for the image. This field can be either
XYPixmap or ZPixmap.

Specifies the depth of the window.

Specifies the visual ID of the window if the Drawable field is a
window. If the Drawable field is a pixmap, this field is the value of
None.

Specifies the returned image.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
En vi ran ment/6000.

Related Information
The XGetlmage subroutine.

Enhanced X-Windows Protocols 8-75

GetlnputFocus

GetlnputFocus Protocol Request

Purpose
Returns the current focus state.

Protocol Format
=>
Focus: WINDOW or POINTERROOT or NONE
RevertTo: {Parent, PointerRoot, None}

Description

Fields

The Getlnputfocus protocol request returns the current focus state.

Focus

Revert To

Specifies the focus window.

Specifies the revert-to value should a window become not viewable.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetlnputFocus, XSync subroutine.

8-76 User Interface Reference

GetKeyboardControl

GetKeyboardControl Protocol Request

Purpose
Returns the current control values for keyboard settings.

Protocol Format
=>
KeyC/ickPercent CARDS
Bel/Percent CARDS
Bel/Pitch: CARD16
Bel/Duration: CARD16
LedMask CARD32
Globa/AutoRepeat {On, Off}
AutoRepeats: LISTofCARDS

Description

Fields

The GetKeyboardControl protocol request returns the current control values for the
keyboard.

For the LEDs, the least significant bit of the LedMask field corresponds to LED one. Each
one bit in the LedMask field indicates that an LED is lit.

The value of the AutoRepeats field is a bit vector. Each one bit indicates that AutoRepeat
field is enabled for the corresponding key. The vector is represented as 32 bytes.

Byte n {from 0) contains the bits for the Sn to Sn+ 7 keys, with the least significant bit in the
byte representing the Sn key.

KeyC/ickPercent

Bel/Percent

Bel/Pitch

Bel/Duration

Led Mask

Globa/AutoRepeat

Auto Repeats

Specifies the key click percentage.

Determines the volume of the ring on the bell on the keyboard.

Specifies the pitch of the bell.

Specifies the duration of the bell.

Indicates which LEDs are lit.

Determines whether an autorepeat is enabled for all the keys.

Indicates which keys have autorepeat enabled.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetKeyboardControl subroutine.

Enhanced X-Windows Protocols 8-77

GetKeyboardMapping

GetKeyboardMapping Protocol Request

Purpose
Returns the symbols for the specified key codes.

Protocol Format
FirstKeycode: KEYCODE
Count CARDS
=>
KeysymsPerKeycode: CARDS
Keysyms: LISTofKEYSYM

Description
The GetKeyboardMapping protocol request returns the symbols for the specified number
of keycodes, starting with the specified keycode.

The FirstKeycode field must be greater than or equal to the MinimumKeycode field as it was
returned in the connection setup. The result of

FirstKeycode +count -1

must be less than or equal to the MaximumKeycode field as it was returned in the
connection setup.

The number of elements in the Keysyms field list is

count* KeysymsPerKeycode

and the KEYSYM Number n (counting from 0) for the key code k has an index (counting
from 0) of

(K - FirstKeycode) * KeysymsPerKeycode + N

in the Keysyms field list.
I

The KeysymsPerKeycode field is chosen arbitrarily by the server to be large enough to ~

Fields

report all requested symbols; a special KEYSYM value of NoSymbol is used to fill in unused
elements for individual key codes.

FirstKeycode

Count

KeysymsPerKeycode

Keysyms

Specifies the first key code.

Sets the number of elements in the keysyms list.

Value chosen by the server to be large enough to report
all requested symbols.

Returns the symbols for specified key codes.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

8-78 User Interface Reference

GetKeyboardMapping

Related Information
The XGetKeyboardMapping subroutine.

Enhanced X-Windows Protocols 8-79

GetModifierMapping

GetModifierMapping Protocol Request

Purpose
Returns the key codes for keys being used as modifiers.

Protocol Format
=>
KeycodesPerModifier. CARDS
Keycodes: LISTofKEYCODE

Description

Fields

The GetModifierMapping protocol request returns the key codes of the keys being used as
modifiers.

The number of key codes in the list is 8* KeycodesPerModifierfield. The key codes are
divided into eight sets, with each set containing KeycodesPerModifier field elements. The
sets are assigned in the modifiers in the following order: the Shift, Lock, Control, Mod1,
Mod2, Mod3, Mod4, and Mods values in order.

The KeycodesPerModifierfield is chosen arbitrarily by the server. The value of Os are used
to fill in unused elements within each set. If only the values of O are given in a set, the use of
the corresponding modifier has been disabled. The order of the key codes within each set is
chosen arbitrarily by the server.

KeycodesPerModifier

Keycodes

Specifies the number of key codes per modifier.

Specifies the key codes being used as modifiers.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetModifierMapping subroutine.

8-80 User Interlace Reference

GetMotionEvents

GetMotionEvents Protocol Request

Purpose
Returns all events in the motion history buffer.

Protocol Format
Start, Stop: TIMESTAMP or CURRENTTIME
Window. WINDOW
=>
Events: LISTofTIMECOORD
where:

TIMECOORD: {X, Y: CARD16
Time: TIMESTAMP}

Description

Fields

The GetMotionEvents protocol request returns all events in the motion history buffer that:

• Occurred between specified start and stop times, inclusive.

• Have coordinates lying within the specified window, including borders, at its present
placement.

The x and y coordinate values are reported relative to the origin of the window.

No events are returned if:

• The time specified for the Start field is later than the time specified for the Stop field.

• The time specified for the Start field is in the future.

If the time specified for the Stop field is in the future, it is equivalent to specifying a
CurrentTime value.

Start Specifies a start time.

Stop Specifies a stop time.

Window Specifies a window ID.

Events Returns a list of events.

x Returns the x coordinate.

y Returns the y coordinate.

Time Returns a timestamp.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetMotionEvents subroutine.

Enhanced X-Windows Protocols 8-81

GetPointerControl

GetPointerControl Protocol Request

Purpose
Returns the acceleration and threshold fields for the pointer.

Protocol Format
=>
AccelerationNumerator, AccelerationDenominator. CARD16
Threshold: CARD16

Description

Fields __ _

The GetPointerControl protocol request returns the current acceleration and the Threshold
field for the pointer.

Acceleration Numerator

AccelerationDenominator

Threshold

Expresses the numerator of the acceleration multiplier.

Expresses the denominator of the acceleration multiplier.

Specifies the normal acceleration of the pointer in pixels
at one time.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XForceScreenSaver, XGetPointerControl subroutines.

8-82 User Interface Reference

GetPointerMapping

GetPointerMapping Protocol Request

Purpose
Returns the current mapping of the pointer.

Protocol Format
Map: LISTofCARDS

Description

Field

The GetPointerMapping protocol request returns the current mapping of the pointer.
Elements of the list are indexed starting from 1. The length of the list indicates the number of
physical buttons.

The nominal mapping for a pointer is the identity mapping: map[i]=i.

Map Specifies the map call for the pointer.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetPointerMapping subroutine.

Enhanced X-Windows Protocols 8-83

Get Property

GetProperty Protocol Request

Purpose
Returns the value of a property for a specified window.

Protocol Format
Window. WINDOW
Property. ATOM
Type: ATOM or AnyPropertyType
LongOffset, Longlength: CARD32
Delete: BOOL
=>
Type: ATOM or None
Format{0,8,16,32}
BytesAfter. CARD32
Value: LISToflNTS or LISToflNT16 or LISToflNT32

Description
The GetProperty protocol request returns the value of a property for a specified window.

• If the specified property does not exist for the specified window:

- The Type field returns a value of None.

- The Format and BytesAfterfields return a value of 0.

- The Value field is empty.

- The Delete field is ignored.

• If the specified property exists but its type does not match the type specified:

- The Type field returns the actual type of the property.

- The Format field returns the nonzero value of the actual format of the property.

- The BytesAfterfield returns the length of the property in bytes, even if the value
returned for the Format field is 16 or 32.

- The Value field is empty.

- The Delete field is ignored

• If the specified property exists and its actual type matches the type specified or
AnyPropertyType is specified for the Type field:

- The Type field returns the actual type of the property.

- The Format field returns the nonzero value of the actual format of the property.

- The BytesAfter and Value fields are returned as follows:

N = actual length of the stored property in bytes
(even if the Format field returns 16 or 32)

I = 4 * LongOf f set

8-84 User Interface Reference

Fields

GetProperty

T N - I

L MINIMUM(T, 4 * LongLength)

A = N - (I + L)

Indexing from zero, the value returned by the Value field starts at byte index I in
the property; L equals the length in bytes of this value.

If a value is specified for the LongOffset field such that the value of L is a
negative, a Value error occurs.

BytesAfterfield returns A, giving the number of trailing unread bytes in the stored
property.

- If a value of True is specified for Delete and BytesAfterfields returns to the value of 0,
the property is deleted from the window and a PropertyNotify event is generated on
the window.

Window

Property

Type

LongOffset

Long Length

Delete

Type

Format

BytesAfter

Value

Specifies a window ID.

Specifies the atom corresponding to the property to be returned.

Specifies the atom type.

Specifies the offset in the property where the data is to be retrieved.

Specifies the length in 32-bit multiples of the data to be retrieved.

Specifies whether to delete the specified property.

Returns the property type.

Returns the property format.

Returns the number of trailing unread bytes in the property.

Returns the property length in bytes.

Error Codes
Atom

Value

Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFetchBytes subroutine, XFetchName subroutine, XGetlconSizes subroutine.,
XGetNormalHints subroutine, XGetSizeHints subroutine, XGetWMHints subroutine,
XGetWindowProperty subroutine, XGetZoomHints subroutine.

Enhanced X-Windows Protocols 8-85

GetScreenSaver

GetScreenSaver Protocol Request

Purpose
Returns the current screen saver control values.

Protocol Format
=>
Timeout, Interval: CARD16
PreferBlanking: {Yes, No}
AllowExposures: {Yes, No}

Description
The GetScreenSaver protocol request returns the current screen saver control values.

Fields
Timeout

Interval

PreferBlanking

AllowExposures

Implementation Specifics

Specifies the timeout value.

Specifies the interval between screen saver invocations.

Specifies the current screen blanking preference value.

Specifies the current screen save control value.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetScreenSaver subroutine.

8-86 User Interface Reference

GetSelectionOwner Protocol Request

Purpose
Returns the current owner window of a specified selection.

Protocol Format
Selection: ATOM
=>
Owner. WINDOW or None

Description

GetSelectionOwner

The GetSelectionOwner protocol request returns the current owner window of a specified
selection if any. If the Ownerfield returns a value of None, there is no owner for the
selection.

Fields
Specifies a selection. Selection

Owner Returns the owner of the specified selection.

Error Code
Atom

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetSelectionOwner subroutine.

/

Enhanced X-Windows Protocols 8-87

GetWindowAttributes

GetWindowAttributes Protocol Request

Purpose
Returns the current attributes of a window.

Protocol Format
Window. WINDOW
=>
Visual: VISUALID
Class: {lnputOutput, lnputOnly}
BitGravity. BITGRAVITV
WindowGravity. WINGRAVITV
BackingStore: {NotUseful, WhenMapped, Always}
BackingPlanes: CARD32
BackingPixel: CARD32
SaveUnder. BOOL
Colormap: COLORMAP or None
Maplslnstalled: BOOL
MapState: {Unmapped, Unviewable, Viewable}
Al/EventMasks, YourEventMask SETofEVENT
DoNotPropagateMask SETofDEVICEEVENT
OverrideRedirect BOOL

Description

Fields

The GetWindowAttributes protocol request returns the current attributes for a specified
window.

If a value of Unviewable is returned for the MapState field, the window is mapped but an
ancestor is unmapped.

The Al/EventMasks field returns the inclusive OR of all event masks selected on the window
by clients. The YourEventMask field returns the event mask selected by the querying client.

Window

Visual

Class

BitGravity

WindowGravity

BackingStore

Backing Planes

Specifies a window for which to get current attributes.

Returns the visual ID.

Returns the window class as lnputOutput, lnputOnly, or
CopyFrom Parent.

Returns the bit gravity value as the Forget, Static,
NorthWest, North, NorthEast, West, Center, East,
SouthWest, South, or SouthEast values.

Returns the window gravity value as the Unmap, Static,
NorthWest, North, NorthEast, West, Center, East,
Southwest, South, or SouthEast values.

Returns the backing store value as the WhenMapped,
Always, or NotUseful values.

Returns which bit planes of the window hold dynamic data.

8-88 User Interface Reference

Backing Pixel

Save Under

Colormap

Map ls Installed

MapState

Al/EventMasks

YourEventMasks

DoNotPropagateMask

Override Redirect

Error Code
Window

Implementation Specifics

GetWindow Attributes

Returns what value to use in planes not covered by backing
planes.

Returns the value of True or False, if set to save the
content of windows obscured when the specified window is
mapped.

Returns a colormap ID or the value of None.

Returns installed status of a colormap.

Returns the map state as the Unmapped, Unviewable, or
Viewable values.

Returns the inclusive OR of all event masks.

Returns the event mask.

Returns which events are not to be propagated to ancestor
windows.

Returns whether the SubstructureRedirect events are to
be overridden.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
En vi ronment/6000.

Related Information
The XGetWindowAttributes subroutine.

Enhanced X-Windows Protocols 8-89

GrabButton

GrabButton Protocol Request

Purpose
Establishes a passive grab on a button-key combination.

Protocol Format
Modifiers: SETofKEYMASK or AnyModifier
Button: BUTTON or AnyButton
GrabWindow. WINDOW
OwnerEvents: BOOL
EventMask. SETofPOINTEREVENT
PointerMode, KeyboardMode: {Synchronous, Asynchronous}
ConfineTo: WINDOW or None
Cursor. CURSOR or None

Description
The GrabButton protocol request establishes a passive grab on a button-key combination.
This request overrides all previous passive grabs by the same client on the same button/key
combinations on the same window.

If all of the following are true:

• The pointer is not grabbed.

• The specified button is logically pressed when the specified modifier keys are logically
down, and no other buttons or modifier keys are logically down.

• The window specified by GrabWindowfield contains the pointer.

• The window specified by Confine To field is viewable.

• A passive grab on the same button-key combination does not exist on any ancestor of a
window specified in the GrabWindowfield.

then the following occurs:

• The pointer is actively grabbed.

• A ButtonPress event is reported.

• The last pointer-grab time is set to the time at which the button was pressed, as reported
by the ButtonPress event.

The active grab is terminated when all buttons are released without regard to the logical
state of modifier keys. The logical state of a device may lag the physical state if device event
processing is frozen.

If the Modifier field is set to the AnyModifier type, the request is issued for all possible
modifier key combinations, including the combination of no modifier keys. It is not required
that all specified modifier keys have currently assigned key codes.

If the Button field is set to the AnyButton type, the request is issued for all possible buttons.
It is not required that a specified button be currently assigned to a physical button.

If another client has already issued a GrabButton protocol request with the same button-key
combination, and on the same window, an Access error is generated.

8-90 User Interface Reference

(
\~

GrabButton

If there is a conflicting grab when the Modifierfield is set to the AnyModifier typeor the
Button field is set to the AnyButton type, no grabs are established, and an Access error is
generated.

The GrabButton protocol request has no effect on an active grab.

See the GrabPointer protocol request for further discussion of values.

Fields
Modifiers

Button

Grab Window

OwnerEvents

EventMask

PointerMode

Keyboard Mode

Confine To

Cursor

Error Codes
Access

Cursor

Value

Window

Specifies a modifier key combination or the AnyModifier type.

Specifies a physical button or the AnyButton type.

Specifies a window ID.

Specifies whether to report events to the client.

Specifies the pointer event.

Specifies asynchronous or synchronous mode.

Specifies asynchronous or synchronous mode.

Specifies a window ID.

Specifies a cursor or the value of None.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabButton subroutine.

Enhanced X-Windows Protocols 8-91

Grab Key

GrabKey Protocol Request

Purpose
Establishes a passive grab on the keyboard.

Protocol Format
Key. KEYCODE or AnyKey
Modifiers: SETofKEYMASK or AnyModifier
GrabWindow. WINDOW
OwnerEvents: BOOL
PointerMode, KeyboardMode: {Synchronous, Asynchronous}

Description

Fields
Key

The GrabKey protocol request establishes a passive grab on the keyboard. This request
overrides all previous passive grabs by the same client on the same key combinations on
the same window.

If all of the following are true:

• The keyboard is not grabbed.

• The specified key, which can be a modifier key, is logically pressed when the specified
modifier keys are logically down, and no other modifier keys are logically down.

• The window specified by the GrabWindowfield is the focus window, or is an ancestor of
the focus window, or is a descendent of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of the
window specified by the GrabWindowfield.

then the following occurs:

• The keyboard is actively grabbed.

• A KeyPress event is reported.

• The last keyboard-grab time is set to the time at which the key was pressed, as reported
by the KeyPress event.

The active grab is terminated when the specified key is released, without regard to the
logical state of modifier keys. The logical state of a device may lag the physical state if
device event processing is frozen.

A modifier set to the AnyModifier value is equivalent to issuing the request for all possible
modifier key combinations, including the combination of no modifier keys. It is not required
that all specified modifier keys have currently assigned key codes.

A Key field of the AnyKey value is equivalent to issuing the request for all possible keys.
Otherwise, the key must be in the range specified by the min_keycode and max_keycode
fields at the connection setup.

If there is a conflicting grab when Modifiers field is set to the AnyModifier value or Key field
is set to the AnyKey value, no grabs are established, and an Access error is generated.

See the GrabKeyboard protocol request for further discussion of values.

Specifies a physical key, or the AnyKey value.

8-92 User Interface Reference

(
~

I
/

Grab Key

Modifiers

Grab Window

OwnerEvents

PointerMode

KeyboardMode

Specifies a modifier key combination, or the AnyModifier value.

Specifies a window ID.

Error Codes
Access

Value

Window

Specifies whether to report events to the client.

Specifies asynchronous or synchronous mode.

Specifies asynchronous or synchronous mode.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabKey subroutine.

Enhanced X-Windows Protocols 8-93

GrabKeyboard

GrabKeyboard Protocol Request

Purpose
Grabs control of the keyboard.

Protocol Format
GrabWindow. WINDOW
OwnerEvents: BOOL
PointerMode, KeyboardMode: {Synchronous, Asynchronous}
Time: TIMESTAMP or CurrentTime
=>
Status: {Success, AlreadyGrabbed, Frozen, lnvalidTime, NotViewable}

Description

Fields

The GrabKeyboard protocol request actively grabs control of the keyboard. Further key
events are reported only to the grabbing client. This protocol overrides any active keyboard
grab by this client.

This protocol generates the Focusln and the FocusOut events.

Grab Window Specifies a window ID.

OwnerEvents

False

True

Specifies whether to report events to the client or with respect to the
Grab Window field. The OwnerEvents field is specified as the following:

All generated keyboard events are reported with respect to the window
specified by the GrabWindowfield.

Generated keyboard events that would normally be reported to this client
continue to be reported as usual. Other key events are reported with respect
to the window specified by the Grab Window field.

Both KeyPress and KeyRelease events are always reported, independent of any event
selection made by the client.

PointerMode Specifies asynchronous or· synchronous mode. The PointerMode field is
specified as the following:

Asynchronous Pointer event processing continues normally.

Synchronous For purposes of this request, the pointer appears to be frozen. No further
pointer events are generated by the server until the grabbing client issues
an AllowEvents protocol request or until the pointer grab is released.

Actual pointer changes are not lost while the pointer is frozen. They are simply queued for
later processing.

KeyboardMode Specifies asynchronous or synchronous mode. The KeyboardMode field is
specified as the following:

Asynchronous

Synchronous

8-94 User Interface Reference

Keyboard event processing continues normally. If the keyboard is currently
frozen by this client, processing of keyboard events is resumed.

For purposes of this request, the keyboard appears to be frozen. No further
keyboard events are generated by the server until the grabbing client issues
an AllowEvents request or until the keyboard grab is released.

Grab Keyboard

Actual keyboard changes are not lost while the keyboard is frozen. They are simply queued
for later processing.

Time Specifies a timestamp or the CurrentTime value. If the GrabKeyboard
protocol request succeeds, the last keyboard-grab time is reset to the time
specified in the Time field. The CurrentTime value is the current server
time; a timestamp is expressed in milliseconds.

Status Returns the outcome of the request. The GrabKeyboard protocol request
fails if the Status field returns any of the following values:

AlreadyGrabbed The keyboard is actively grabbed by another client.Frozen. The keyboard is
actively grabbed by another client, and is frozen.

NotViewable The window specified in the Grab Window field is not viewable.

lnvalidTime The specified time is earlier than the last keyboard-grab time or later than
the current server time.

Error Codes
Value

Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabKeyboard subroutine.

Enhanced X-Windows Protocols 8-95

GrabPointer

GrabPointer Protocol Request

Purpose
Grabs control of the pointer.

Protocol Format ·
GrabWindow. WINDOW
OwnerEvents: BOOL
EventMask SETof POINTEREVENT
PointerMode, KeyboardMode: {Synchronous, Asynchronous}
ConfineTo: WINDOW or None
Cursor. CURSOR or None
Time: TIMESTAMP or CurrentTime
=>
Status: {Success, AlreadyGrabbed, Frozen, lnvalidTime, NotViewable}

Description

Fields

The GrabPointer protocol request actively grabs control of the pointer. This request
overrides any other active pointer grabs by this client. Further pointer events are reported
only to this client.

The GrabPointer protocol request generates the EnterNotify and the LeaveNotify events.

Grab Window

OwnerEvents

EventMask

PointerMode

Specifies a window ID.

Specifies whether to report events to the client or the GrabWindow
field. The OwnerEvents field can be specified as either of the
following:

False

True

All generated pointer events, if also selected
in the EventMask field, are reported with
respect to the window specified by the
GrabWindowfield. Unreported events are
discarded.

Generated pointer events that would normally
be reported to this client continue to be
reported as usual. Other generated pointer
events, if also selected in the EventMask field,
are reported with respect to the window
specified by the GrabWindowfield.
Unreported events are discarded.

Specifies the pointer event.

Specifies pointer mode. The PointerMode field can be either of the
following:

Asynchronous Pointer event processing continues normally.
If the pointer is currently frozen by this client,
processing of pointer events is resumed.

8-96 User Interface Reference

Keyboard Mode

Confine To

Cursor

Time

Status

Synchronous

Grab Pointer

For the purposes of this request, the pointer
appears to be frozen. No further pointer
events are generated by the server until the
grabbing client issues an AllowEvents
request or until the pointer grab is released.

Actual pointer changes are not lost while the
pointer is frozen. They are simply queued for
later processing.

Specifies the keyboard mode. The KeyboardMode field can be
either of the following:

Asynchronous

Synchronous

Keyboard event processing continues
normally.

For the purposes of this request, the keyboard
appears to be frozen. No further keyboard
events are generated by the server until the
grabbing client issues an AllowEvents
request or until the keyboard grab is released.

Actual keyboard changes are not lost while
the pointer is frozen. They are simply queued
for later processing.

Specifies a window ID. If a Confine To field window is specified, the
pointer position is restricted to that window. It is not necessary that
the Confine To field window be related to the GrabWindowfield.
Prior to the active grab, if the pointer is not already in the window
specified in the Confine To field, it is warped to the closest edge. The
EnterNotify or the LeaveNotify events occur normally. If the
window specified in the Confine To field is subsequently
reconfigured, the pointer is warped to keep it in the window.

Specifies a cursor or the value of None. If the Cursorfield is
specified, a cursor is displayed regardless of what window contains
the pointer. If not specified, and the pointer is in a window specified
in the GrabWindowf field, or one of its subwindows, the normal
cursor for that window is displayed. Otherwise, the cursor for the
window specified by the GrabWindowfield is displayed.

If the GrabPointer protocol request succeeds, the last pointer-grab
time is reset to the time specified in the Time field. The
CurrentTime type is the current server time; a timestamp is
expressed in milliseconds.

Returns the outcome of the request. If the GrabPointer protocol
request succeeds, the Status field returns the Success value. The
GrabPointer protocol request fails if the Status field returns any of
the following values:

AlreadyGrabbed The pointer is actively grabbed by another
client.

Enhanced X-Windows Protocols 8-97

GrabPointer

Error Codes
Cursor

Value

Window

Implementation Specifics

Frozen

NotViewable

lnvalidTime

The pointer is actively grabbed by another
client, and is frozen.

A window specified in the Grab Window or
Confine To field is not viewable, or a window
specified in the Confine To field lies
completely outside the boundaries of the
root window.

The specified time is earlier than the last
pointer-grab time or later than the current
server time.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabPointer subroutine.

8-98 User Interface Reference

\

GrabServer Protocol Request

Purpose
Disables request processing and connection close-downs.

Description

GrabServer

The GrabServer protocol request disables processing of protocol requests and close-downs
on all connections other than the one receiving this request.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGrabServer subroutine.

Enhanced X-Windows Protocols 8-99

GrabServer

8-1 00 User Interface Reference

I
J

lmageText16

lmageText16 Protocol Request

Purpose
Fills in a destination rectangle with the background pixel and paints text with the foreground
pixel.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
X, Y: INT16
String: STRING16

Description

Fields

The lmageText16 protocol request fills in a destination rectangle with the background pixel
defined in the GraphicsContext field and paints the text with the foreground pixel. It uses
2-byte (or 16-bit) characters. For fonts defined with linear indexing rather than 2-byte matrix
indexing, the server interprets each CHAR2B value as a 16-bit number that has been
transmitted with the Byte 1 of the CHAR2B value as the most-significant byte.

The X and Y coordinates, which are relative to the origin of the Drawable field, specify the
base line starting position of the origin of the initial character.

The upper left corner of the filled rectangle is at

[x, y - font-ascent]

the width is Overal/Width, and the height is

font-ascent + font-descent

where the Overal/Width, FontAscent, and FontDescent fields are the same as returned by
the QueryTextExtents protocol request using the GraphicsContext field and the String field.

The function and fill-style defined in the GraphicsContextfield are ignored for this request;
the effective function is Copy and the effective fill-style is Solid.

Drawable

Graphics Context

x
y

String

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate.

Specifies the y coordinate.

Specifies the character string.

Error Codes
Drawable

GContext

Match

Enhanced X-Windows Protocols 8-101

lmageText16

impiementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDrawlmageString16 subroutine.

8-1 02 User Interface Reference

/.
1\4

Image Texts

lmageTextS Protocol Request

Purpose
Fills in a destination rectangle with the background pixel and paints the text with the
foreground pixel.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
X, Y: INT16
String: STRINGS

Description

Fields

The lmageTextS protocol request fills in a destination rectangle with the background pixel
defined in the GraphicsContext field and paints the text with the foreground pixel.

The X and Y coordinates, which are relative to the origin of the Drawable field, specify the
base line starting position of the origin of the initial character.

The upper left corner of the filled rectangle is at

[x, y - font-ascent]

the width is Overal/Width, and the height is

font-ascent + font-descent

where the Overal/Width, FontAscent, and FontDescent fields are the same as returned by
the QueryTextExtents protocol request using the GraphicsContext field and the String field.

The function and fill-style defined in the GraphicsContext field are ignored for this protocol;
the effective function is Copy and the effective fill-style is Solid.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as a Byte2
value of a CHAR2B value with a Byte1 value of O.

The lmageTextS protocol request uses the following GraphicsContext fields, the
plane_mask, foreground, background, font, subwindow_mode, clip_x_origin, clip_y_origin,
and clip_mask fields.

Drawable

GraphicsContext

x
y

String

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate.

Specifies the y coordinate.

Specifies the character string.

Enhanced X-Windows Protocols 8-103

Image Texts

Error Codes
Drawable

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDrawlmageString subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

8-104 User Interface Reference

lnstallColormap

lnstallColormap Protocol Request

Purpose
Installs colormap for the screen.

Protocol Format
Colormap: COLORMAP

Description

Field

The lnstallColormap protocol request installs this colormap for the screen. All windows
associated with this colormap are displayed immediately with true colors. Depending on the
server, this protocol can install or uninstall additional colormaps. Regardless of the server,
the required list must remain installed.

A subset of the installed colormaps viewed as an ordered list is the required list. The length
of the required list is at most M, where M is the minimum installed colormaps specified for the
screen in the connection setup. The required list is maintained as follows:

• When a colormap is an explicit argument to the lnstallColormap protocol request, it is
added to the top of the required list, and the required list is truncated at the end, if
necessary, to keep the length of the list at M.

• When a colormap is an explicit argument to the UninstallColormap protocol request and
it is in the required list, it is removed from the list.

A colormap is not added to the required list implicitly by the server when it is installed, nor
does the server uninstall a colormap explicitly from the required list.

If the specified Colormap field is not an installed colormap, a ColormapNotify event is
generated on every window having the Colormap field as an attribute. In addition, for every
other colormap that is installed or uninstalled as a result of this protocol, a ColormapNotify
event is generated on every window having that colormap as an attribute.

Initially, the default colormap for a screen is installed but is not in the required list.

Colormap Specifies the colormap.

Error Code
Colormap

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XlnstallColormap subroutine, XQueryColor subroutine, XQueryColors subroutine.

Enhanced X-Windows Protocols 8-105

lnternAtom

lnternAtom Protocol Request

Purpose
Returns the atom for the given name.

Protocol Format
Name: STRINGS
OnlylfExists: BOOL
=>
Atom: ATOM or None

Description

Fields

The lnternAtom protocol request returns the atom for the given name.

If the OnlylfExists field is a value of False, the atom is created if it does not exist. The string
should use the ISO Latin-1 encoding. The string is case-sensitive.

The lifetime of an atom is not tied to the interning client. Atoms remain defined until the
server is reset.

Atom

Name

OnlylfExists

Specifies the atom ID.

Specifies the name associated with the atom to be returned.

Specifies a Boolean value that indicates if the atom should be
created if it does not already exist.

Error Codes
Alloc

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XlnternAtom subroutine.

8-106 User Interface Reference

Kill Client

KillClient Protocol Request

Purpose
Forces a closedown of the client.

Protocol Format
Resource: CARD32 or AllTemporary

Description
The KillClient protocol request forces a closedown of the client that created the resource for
a valid Resource field. If the client is terminated already in the RetainPermanent or
RetainTemporary mode, all client resources are deleted.

If the AllTemporary value is specified, the Resource field of all ended clients in the
RetainTemporary value is deleted.

Field
Resource

Error Code
Value

Implementation Specifics

Specifies any resource associated with the client to be
deleted.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XKillClient subroutine.

Enhanced X-Windows Protocols 8-107

ListExtensions

ListExtensions Protocol Request

Purpose
Returns a list of all extensions supported by the X Server.

Protocol Format
==>
Names: LISTofSTRINGS

Description
The ListExtensions protocol request returns a list of all extensions supported by the server.

Field
Names Returns the list of extension names.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XListExtensions Extension.

8-1 08 User Interface Reference

/

List Fonts

ListFonts Protocol Request

Purpose
Returns a list of fonts that match the specified pattern.

Protocol Format
Pattern: STRINGS
Maximum Names: CARD16
=>
Names: LISTofSTRING8

Description

Fields

The Listfonts protocol request returns a list of fonts (as controlled by the font search path;
see the SetFontPath protocol request) that matches the specified pattern. The number
specified in the MaximumNames field is the maximum number of font names returned. The
Pattern field, which is not case-sensitive, should use the ISO Latin-1 encoding. In the
Pattern field, the ? character (octal value 77) matches any single character, and the*
character (octal value 52) matches any number of characters.

The names returned in the Names field are lowercase.

Maximum Names

Pattern

Names

Specifies the maximum number of names to be returned.

Specifies the null-terminated pattern string that can contain
pattern matching characters.

Specifies the names of the fonts.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The Xlistfonts subroutine.

Enhanced X-Windows Protocols 8-109

ListFontsWithlnfo

ListFontsWithlnfo Protocol Request

Purpose
Returns a list with information about each font.

Protocol Format
Pattern: STRINGS
MaximumNames: CARD16

Name: STRINGS

=>

Into: FONTINFO

RepliesHint: CARD32

where
FONTINFO: <same type definition as in the QueryFont protocol>

Description

Fields

The ListFontsWithlnfo protocol request returns a list with information about each font. This
list is the same as the list returned by the QueryFont protocol request, except that the
per-character metrics are not returned.

The ListFontsWithlnfo protocol request can generate multiple replies. With each reply, the
RepliesHintfield indicates how many more fonts are to be returned. This number is a hint ~
only. The number of fonts returned can be larger or smaller than the number in the
RepliesHintfield. A value of O does not guarantee that no more fonts are to be returned.
After the font replies, a reply with a 0-length name is sent to indicate the end of the reply
sequence. See the QueryFont protocol request.

Info

Maximum Names

Name

Pattern

RepliesHint

Specifies font information.

Specifies the maximum number of names to be returned.

Specifies the name of the font whose information is in the
current Info field.

Specifies the null-terminated pattern string associated with the
font names to be returned.

Specifies how many additional fonts are to be returned.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XListFontsWithlnfo subroutine.

8-11 0 User Interface Reference

List Hosts

ListHosts Protocol Request

Purpose
Returns the hosts on the access control list.

Protocol Format
=>
Mode: {Enabled, Disabled}
Hosts: LISTofHOST

Description
The ListHosts protocol request returns the hosts on the access control list. It also indicates
whether use of the list at connection setup is currently enabled or disabled.

Fields

Each Hosts field is padded to a multiple of 4 bytes.

Mode

Hosts

Specifies the mode, either the Enabled or Disabled value.

Specifies the list of hosts.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XListHosts subroutine.

Enhanced X-Windows Protocols 8-111

ListlnstalledColormaps

ListlnstalledColormaps Protocol Request

Purpose
Returns a list of the colormaps currently installed for the screen of the specified window.

Protocol Format
Window. WINDOW
=>
Colormaps: LISTofCOLORMAP

Description

Fields

The ListlnstalledColormaps protocol request returns a list of the colormaps installed
currently for the screen of the specified the Window field. The order of colormaps is
insignificant and there is no explicit indication of the required list. See the lnstallColormap
protocol request.

Colormaps Specifies the colormaps.

Window Specifies the window for the colormap list.

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lnstallColormap protocol request.

The XListlnstalledColormaps subroutine.

8-112 User Interface Reference

List Properties

ListProperties Protocol Request

Purpose
Returns the atoms of properties currently defined on the window.

Protocol Format
Window. WINDOW
=>
Atoms: LISTof ATOM

Description
The ListProperties protocol request returns the atoms of properties currently defined on the
Window.

Fields
Atoms

Window

Error Code
Window

Implementation Specifics

. Returns the list of atom IDs.

Specifies the window.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XlistProperties subroutine.

Enhanced X-Windows Protocols 8-113

LookupColor

LookupColor Protocol Request

Purpose
Searches for the string name of a color.

Protocol Format
Colormap: COLORMAP
Name: STRINGS
=>
ExactRed, ExactGreen, ExactBlue: CARD16
Visual Red, Visua/Green, Visua/Blue: CARD16

Description

Fields

The LookupColor protocol searches for the string name of a color with respect to the
screen associated with the Colormap field. It returns both the exact color values and the
closest values provided by the hardware with respect to the visual type of the Colormap
field. The Name field, which is not case-sensitive, should use the ISO Latin-1 encoding.

Colormap

Name

Exact Red

ExactGreen

ExactBlue

Visual Red

Visua/Green

Visual Blue

Returns the colormap.

Returns the name.

Returns the exact red component of the color specified in the
Name field.

Returns the exact green component of the color specified in
the Name field.

Returns the exact blue component of the color specified in the
Name filed.

Returns the closest red component provided by the hardware.

Returns the closest green component provided by the
hardware.

Returns the closest blue component provided by the hardware.

Error Codes
Colormap

Name

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XLookupColor subroutine, XParseColor subroutine.

8-114 User Interface Reference

MapSubwindows

MapSubwindows Protocol Request

Purpose
Performs a MapWindow protocol request of unmapped children of the window.

Protocol Format
Window/D: WINDOW

Description
The MapSubwindows protocol request performs a MapWindow protocol request on all
unmapped children of the Window/D in a top-to-bottom stacking order.

Field
Window/D

Error Code
Window

Specifies the window.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XMapSubwindows subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-115

Map Window

MapWindow Protocol Request

Purpose
Maps an unmapped window.

Protocol Format
Window. WINDOW

Description

Field

The MapWindow protocol request maps an unmapped window. If the override-redirect
attribute of the Window is a value of False and another client has selected the
SubstructureRedirect value on the parent window, then a MapRequest event is generated,
but the window remains unmapped. Otherwise, the window is mapped and a MapNotify
event is generated.

If the window is now viewable and its contents have been discarded, then the window is tiled
with its background and O or more exposure events are generated. If no background is
defined, the existing screen contents are not altered. If a backing store is maintained while
the window is unmapped, exposure events are not generated. If a backing store is
maintained, a full-window exposure is always generated. Otherwise, only visible regions can
be reported. Similar tiling and exposure takes place for any newly viewable inferiors.

This protocol request has no effect if the window is already mapped.

Window Specifies the window.

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XMapRaised subroutine, XMapWindow subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-116 User lnh~rf~~A RAfArAn~A

('

\'4

)

NoOperation

NoOperation Protocol Request

Purpose
Forces request to begin on 64-bit boundaries.

Description
This protocol request has no fields and no results, but the protocol request length field can
be nonzero, allowing the protocol request to be any multiple of 4 bytes in length. The bytes
contained in the protocol request are uninterpreted by the server.

The NoOperation protocol request can be used in its minimum 4-byte form as padding
where necessary by client libraries that find it convenient to force protocol requests to begin
on 64-bit boundaries.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XNoOp subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-117

Open Font

OpenFont Protocol Request

Purpose
Loads the specified font and associates an identifier with it.

Protocol Format
Font/D: FONT
Name: STRINGS

Description

Fields

The OpenFont protocol request loads the specified font, if necessary, and associates the
Font/D field identifier with it. The font name should use the ISO Latin-1 encoding and is not
case-sensitive.

Fonts are not associated with a particular screen and can be stored as a component of any
graphics context.

Font/D Identifies the font.

Name Name of the font.

Error Codes
Allee

I DC ho ice

Name

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
Th~ XLoadFont subroutine, XLoadQueryFont subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

8-118 User Interface Reference

PolyArc Protocol Request

Purpose
Draws circular or elliptical arcs.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Arcs: LISTof ARC

Description

Poly Arc

The Poly Arc protocol request draws circular or elliptical arcs. Each Arc field is specified by a
rectangle and two angles. The angles are signed integers in degrees scaled by 64. A
positive sign indicates counterclockwise motion and a negative sign indicates clockwise
motion. The start of the Arc field is specified by the Ang/et relative to the 3 o'clock position
from the center of the rectangle. The path and extent of the Arc field is specified by the
Angle2 relative to the start of the Arc field. If the magnitude of the Angle2 is greater than 360
degrees, it is truncated to 360 degrees. The x and y coordinates of the rectangle are relative
to the origin of the Drawable field.

For an Arc field specified as [x, y, w, h, a 1 , a2], the origin of the major and minor axes is at
[x+ (w I 2), y+ (hi 2)], and the infinitely thin path describing the entire circle/ellipse
intersects the horizontal axis at [x, y+ (hi 2)] and [x+w, y+ (hi 2)] and intersects the
vertical axis at [x+ (w I 2), y] and [x+ (w I 2), y+h]. These coordinates can be fractional; they
are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line width lw, the bounding outlines for filling are
given by two infinitely thin paths consisting of all points whose perpendicular distance from
the path of the circle/ellipse is equal to lwl2 (which may be a fractional value) describing
the Arc field. The CapStyle and JoinStyle are applied the same as for a line corresponding to
the tangent of the circle/ellipse at the endpoint.

For an Arc specified as [x, y, w, h, al, a2], the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coordinate systems are
identical). The relationship between these angles and angles expressed in the normal
coordinate system of .the screen (as measured with a protractor) is as follows:

SkewedAngle = Atan(tan(NormalAngle) * wlh) + Adjust

where SkewedAngle and NormalAngle are expressed in radians (rather than in degrees
scaled by 64) in the range [O, 2*PI], and where Atan returns a value in the range
[-Pil2, Pil2], where the Adjust value is as follows:

0

Pl

2*PI

forNormalAnglein~erange[O,Pil2]

for NormalAngle in the range [PI/2, (3*PI) /2]

forNormalAngleintherange[(3*PI)l2,2*PI]

The arcs are drawn in the order listed. If the last point in one arc coincides with the first point
in the following arc, the two arcs will join correctly. If the first point in the first arc coincides
with the last point in the last arc, the two arcs will join correctly. For any given arc, no pixel is
drawn more than once. If two arcs join correctly, the line-width is greater than 0, and the arcs
intersect; no pixel is drawn more than once. Otherwise, the intersecting pixels of intersecting
arcs are drawn several times. Specifying an arc with one endpoint and a clockwise extent

Enhanced X-Windows Protocols 8-119

Poly Arc

Fields

draws the same pixels as specifying the other endpoint and an equivalent counterclockwise
extent, except as it affects joins.

By specifying one axis to be 0, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

The PolyArc protocol request uses the GraphicsContext fields function, plane_mask,
line_ width, line_style, cap_style, join_style, filLstyle, subwindow_mode, clip_x_origin,
clip_y_origin, and clip_mask. It also uses the GraphicsContext mode-dependent fields
foreground, background, tile, stipple, ts_x_origin, ts_y_origin, dash_offset, and dashes.

Drawable Specifies the drawable.

GraphicsContext Specifies the graphics context.

Arcs Specifies the list of arcs.

Error Codes
Drawable

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDrawArc subroutine, XDrawArcs subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

8-120 User Interface Reference

PolyFillArc

PolyFillArc Protocol Request

Purpose
Fills the regions closed by the path described in the arc and arc mode.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Arcs: LISTof ARC

Description
For each arc, the PolyFillArc protocol request fills the region closed by the infinitely thin
path described by the specified arc and one or two line segments, depending on the arc
mode.

For the Chord mode, the single line segment joining the endpoints of the arc is used. For
the PieSlice mode, the two line segments joining the endpoints of the arc with the center
point are used. The Arcs field are as specified in the Poly Arc protocol request.

The arcs specified in the Arcs field are filled in the order listed. For any given arc, no pixel is
drawn more than once. If regions intersect, the intersecting pixels are drawn several times.

The PolyFillArc protocol request uses the GraphicsContext fields function, plane_mask,
fill_style, arc_mode, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. It also
uses the GraphicsContext mode-dependent fields foreground, background, tile, stipple,
ts_x_origin, and ts_y_origin.

Fields
Drawable

GraphicsContext

Arcs

Specifies the drawable.

Specifies the graphics context.

Specifies the arcs to be filled.

Error Codes
Drawable

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFillArc subroutine, XFillArcs subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-121

Poly Fill Rectangle

PolyFillRectangle Protocol Request

Purpose
Fills the specified rectangles.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Rectangles: LISTofRECTANGLE

Description

Fields

The PolyFillRectangle protocol request fills the specified rectangles as if a four-point
FillPoly protocol request was specified for each rectangle as follows:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

The x and y coordinates of each Rectangle field, which are relative to the origin of the
Drawable field, define the upper left corner of the rectangle.

The rectangles are drawn in the order listed. For any rectangle, no pixel is drawn more than
once. If the rectangles intersect, the intersecting pixels are drawn multiple times.

The PolyFillRectangle protocol request uses the GraphicsContext fields function,
plane_mask, filLstyle, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. It also
uses the GraphicsContext mode-dependent fields foreground, background, tile, stipple,
ts_x_origin, and ts_y_origin.

Drawable

GraphicsContext

Rectangles

Specifies the drawable.

Specifies the graphics context.

Specifies the list of rectangles.

Error Codes
Drawable

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XFillRectangle soubroutines, XFillRectangles subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

8-122 User Interface Reference

PolyPoint

PolyPoint Protocol Request

Purpose
Combines the foreground pixel with the pixel at each point in the drawable.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
CoordinateMode: {Origin, Previous}
Points: LISTof POINT

Description

Fields

The PolyPoint protocol request combines the foreground pixel in the GraphicsContextfield
with the pixel at each point in the Drawable field. The points are drawn in the order listed in
the Points field.

The first point is always relative to the origin of the drawable. The other points are relative
either to the origin of the drawable (the Origin value) or to the origin of the previous point
(the Previous value) depending on the CoordinateMode field.

The PolyPoint protocol request uses the GraphicsContext fields function, plane_mask,
foreground, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask.

Drawable

GraphicsContext

CoordinateMode

Points

Specifies the drawable.

Specifies the graphics context.

Specifies whether all points after the first are relative to the
origin of the drawable or relative to the previous point.

Specifies the points to be drawn.

" Error Codes
/ Drawable

GContext

Value

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDrawPoint subroutine, XDrawPoints subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-123

Polyline

Polyline Protocol Request

Purpose
Draws lines between each pair of Points field.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
CoordinateMode: {Origin, Previous}
Points: LISTof POINT

Description

Fields

The Polyline protocol request draws lines between each pair of points specified on the
Points field (point[i], point[i + 1]). The lines are drawn in the order listed. The lines join
correctly at all intermediate points and, if the first and last points coincide, the first and last
lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (0 line width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire Polyline protocol request were a single, filled shape.

The first point is always relative to the origin of the drawable. The other points are relative to
the origin of the drawable (the Origin value) or to the origin of the previous point (the
Previous value) depending on the CoordinateMode field. (

The Polyline protocol request uses the GraphicsContext fields function, plane_mask,
line_ width, line_style, cap_style, join_style, fi/Lstyle, subwindow_mode, clip_x_origin,
clip_y_origin, and clip_mask. It also uses the GraphicsContext mode-dependent fields
foreground, background, tile, stipple, ts_x_origin, ts_y_origin, dash_offset, and dashes.

Drawable

GraphicsContext

Coordinate Mode

Points

Specifies the drawable.

Specifies the graphics context.

Specifies the relation of a point either to a previous point or to
the drawable's origin.

Specifies the points to be drawn.

Error Codes
Drawable

GContext

Match

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

8-124 User Interface Reference

~.
'I
,J
I

Polyline

Related Information
The XDrawlines subroutine, XDrawRectangle subroutine, XDrawRectangles subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-125

PolyRectangle

PolyRectangle Protocol Request

Purpose
Draws the outlines of the specified rectangles.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Rectangles: LISTofRECTANGLE

Description

Fields

The PolyRectangle protocol request draws the outlines of the rectangles specified in the
Rectangles field, as if a five-point Polyline protocol request was specified for each
rectangle as follows:

[x, y] [x + width, y] [x + width, y + height]
[x, y + height] [x, y]

The x and y coordinates of each rectangle, which are relative to the origin of the drawable
specified in the Drawable field, define the upper left corner of the Rectangle field.

The rectangles are drawn in the order listed. For any rectangle, no pixel is drawn more than
once. If the rectangles intersect, the intersecting pixels are drawn several times.

The PolyRectangle protocol request uses the GraphicsContext fields function,
plane_mask, line_ width, line_style, join_style, fi/Lstyle, subwindow_mode, clip_x_origin,
c/ip_y_origin, and clip_mask. It also uses the GraphicsContext mode-dependent fields
foreground, background, tile, stipple, ts_x_origin, ts_y_origin, dash_offset, and dashes.

Drawable

GraphicsContext

Rectangles

Specifies the drawable.

Specifies the graphics context.

Specifies the list of rectangles.

Error Codes
Drawable

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XDrawRectangle subroutine, XDrawRectangles subroutine.

Enhanced X-Windows Programming Introduction
Enhanced X-Windows Protocols Overview

8-126 User Interface Reference

PolySegment Protocol Request

Purpose
Draws a line for each segment.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Segments: LISTofSEGMENT
where
SEGMENT: [xl, yl, x2, y2: INT16]

Description

PolySegment

The PolySegment protocol request draws a line between [xl, yl] and [x2, y2] for each
segment. The lines are drawn in the order listed. No joining is performed at coincident
endpoints. For any given line, no pixel is drawn more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

The PolySegment protocol request uses the GraphicsContext fields function, plane_mask,
line_width, line_style, cap_style, fil/_style, subwindow_mode, clip_x_origin, clip_y_origin,
and clip_mask. It also uses the GraphicsContext mode-dependent fields foreground,
background, tile, stipple, ts_x_origin, ts_y_origin, dash_offset, and dashes.

1
Fields

I

Drawable

GraphicsContext

Segments

Error Codes
Drawable

GContext

Match

Implementation Specifics

Specifies the drawable.

Specifies the graphics context.

Specifies the line segments to be drawn.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDrawline subroutine, XDrawSegments subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-127

PolyText16

PolyText16 Protocol Request

Purpose
Draws text.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
X, Y: INT16
Items: LISTofTEXTITEM16

where
TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [De/ta: INT8
String: STRING16)

Description

Fields

The PolyText16 protocol request is the same as the PolyText8 protocol request except that
2-byte (or 16-bit) characters are used.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server interprets
each CHAR2B value as a 16-bit number transmitted with the most significant byte first
(Bytet).

Drawable

GraphicsContext

x
y

Items

Delta

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate.

Specifies they coordinate.

Specifies the text items font or character string.

Specifies an additional change in the position along the x axis
before the string is drawn. It is always added to the character
origin.

Error Codes
Drawable

Font

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

8-128 User Interface Reference

(

PolyText16

Related Information
The XDrawlmageString1 &subroutine, XDrawString16 subroutine, XDrawText16
subroutine.

The PolyText8 protocol request.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-129

PolyText8

PolyText8 Protocol Request

Purpose
Draws text.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
X, Y: INT16
Items: LISTofTEXTITEMS

where
TEXTITEMS: TEXTELTS or FONT
EXTELTS: [Delta: INTS String: STRINGS]

Description
The PolyTextS protocol request draws text. Each text item is processed in turn. A font item
causes the font to be stored in the GraphicsContext, and to be used for subsequent text;
switching among fonts does not affect the next character origin.

The x and y coordinates, which are relative to the origin of the Drawable field, specify the
baseline starting position (the initial character origin).

A text element Delta field specifies an additional change in the position along the x axis
before the string is drawn; the Delta field is always added to the character origin. Each
character image, as defined by the font in the GraphicsContext, is treated as an additional
mask for a fill operation on the Drawable field.

All contained FONT values are transmitted with the most significant byte first.

If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as a Byte2
value of a CHAR2B with a Byte1 value of 0.

/
!

The PolyTextS protocol request uses the GraphicsContext fields function, plane_mask, ~
fi/Lstyle, font, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. It also uses the
GraphicsContext mode-dependent fields foreground, background, tile, stipple. ts_x_origin,
and ts_y_origin.

8-130 User Interface Reference

PolyText8

Fields
Drawable

GraphicsContext

x
y

Items

Specifies the drawable.

Specifies the graphics context.

Specifies the x coordinate.

Specifies they coordinate.

Specifies the text items or character string:

Delta Specifies an additional change in the position along the x
axis before the string is drawn. It is always added to the
character origin.

String Specifies the string to be drawn.

Error Codes
Drawable

Font

GContext

Match

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-131

Putlmage

Putlmage Protocol Request

Purpose
Combines an image with a rectangle of the specified drawable.

Protocol Format
Drawable: DRAWABLE
GraphicsContext GCONTEXT
Depth: CARDS
Width, Height CARD16
DestinationX, Destination Y: INT16
Leff Pad: CARDS
Format {Bitmap, XYPixmap, ZPixmap}
Data: LISTofBYTE

Description

Fields

The Putlmage protocol request combines an image with a rectangle of the specified
Drawable field. The DestinationX and Destination Y field coordinates are relative to origin of
the Drawable field.

If the value of the Format field is Bitmap, the depth must be a value of 1 (or a Match error
results) and the image must be in XYFormat.

The foreground pixel in the GraphicsContext defines the source for one bits in the image,
and the background pixel defines the source for the 0 bits.

For XYPixmap and ZPixmap formats, the depth must match the depth of the Drawable field
(or a Match error results).

• For the XYPixmap format, the image must be in XYFormat.

• For the ZPixmap format, the image must be in ZFormat for the specified depth.

The first LeftPadfield bits in each scanline are ignored by the server; the actual image
begins that number of bits into the data.

• For the ZPixmap format, the Leff Padfield must be a value of 0.

• For the Bitmap and XYPixmap value, the Leff Pad field must be less than the
BitmapScanlinePadfield as specified in the server connection setup (or a Match error
results).

The Width field defines the width of the actual image and does not include the Leff Pad field.

The Putlmage protocol request uses the GraphicsContext function, plane_mask,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. It also uses the
GraphicsContext mode-dependent foreground and background.

Drawable

GraphicsContext

Depth

Specifies the destination drawable.

Specifies the graphics context.

Specifies the depth of the actual image.

8-132 User Interface Reference

)

Putlmage

Width Specifies the width of the actual image and does not include
left-pad.

Height

DestinationX

Destination Y

LeftPad

Format

Data

Error Codes
Drawable

GContext

Match

Value

Implementation Specifics

Specifies the height of the actual image.

Specifies the x coordinate relative to the origin of the
drawable.

Specifies they coordinates relative to the origin of the
drawable.

Specifies the left-pad bits in a scanline.

Specifies the organization of pixel values for a pixmap.

Specifies the data for a pixmap.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XPutlmage subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols ·8-133

QueryBestSize

QueryBestSize Protocol Request

Purpose
Returns the size closest to the specified size.

Protocol Format
Class: {Cursor, Tile, Stipple}
Drawable: DRAWABLE
Width, Height CARD16
"">
Width, Height CARD16

Description

Fields

The QueryBestSize protocol request returns the size closest to the specified size.

If the Class field is Cursor, this is the largest cursor that can be displayed fully on the
Drawable (screen) field.

If the Class field is Tile, this is the size that can be tiled fastest on the Drawable field, which
can be the screen or the window class and depth. An lnputOnly window cannot be used as
the Drawable field for Tile.

If the Class field is Stipple, this is the size that can be stippled fastest on the specified
Drawable field, which can be the screen or the window class and depth. An lnputOnly
window cannot be used as the Drawable field for Stipple.

Class

Drawable

Width

Height

Width

Height

Specifies the type of information being queried.

Specifies the drawable.

Specifies the window width.

Specifies the window height.

Returns the best width.

Returns the best height.

Error Codes
Drawable

Match

Value

8-134 User Interface Reference

' \
I

QueryBestSize

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryBestCursorsubroutine, XQueryBestSizesubroutine, XQueryBestStipple
subroutine, XQueryBestTile subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-135

QueryColors

QueryColors Protocol Request

Purpose
Returns the color values for the specified pixels.

Protocol Format
Colormap: COLORMAP
Pixels: LISTofCARD32
=>
Colors: LISTofRG B where
RGB: [red, green, blue: CARD16]

Description

Fields

The QueryColors protocol request returns the color values stored in the Colormap field for
the specified pixels. Values returned for an unallocated entry are not defined. A Value error
is generated if a pixel is not a valid index into the Colormap field. If more than one pixel is in
error, it is arbitrary as to which pixel is reported.

Colormap

Pixels

Colors

Specifies the colormap.

Specifies pixels for query.

Returns the colors stored in the colormap that correspond to the specified
pixels.

Error Codes
Colormap

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XQueryColor subroutine, XQueryColors subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-136 User Interface Reference

/
I
\'I

QueryExtension

QueryExtension Protocol Request

Purpose
Determines if the extension named is present.

Protocol Format
Name: STRINGS
=>
Present: BOOL
MajorOpcode: CARDS
FirstEvent: CARDS
FirstError: CARDS

Description

Fields

The QueryExtension protocol request determines if the named extension is present. If the
extension is present, the MajorOpcode field is returned, if it has one. If the extension is not
available, the MajorOpcode field returns a value of 0. Any minor-opcode and the protocol
request formats are specific to the extension. If the extension involves additional event
types, the base event type code is returned. Otherwise, a value of 0 is returned.

The format of the events is specific to the extension. If the extension involves additional error
codes, the base error code is returned. Otherwise, a value of O is returned. The format of
additional data in the errors is specific to the extension.

The extension name, which is case-sensitive, should be in ISO Latin-1 encoding.

Name Specifies the name of the extension being queried.

Present Returns the boolean specifying the presence of the extension.

MajorOpcode Returns the major opcode of the extension.

FirstEvent

FirstError

Returns the base event type.

Returns the base error type.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryExtension extension subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Over\tiew

Enhanced X-Windows Protocols 8-137

QueryFont

QueryFont Protocol Request

Purpose
Returns logical information about a font.

Protocol Format
Font FONTABLE
=>
Fontinfo: FONTINFO

Characterlnformations: LISTofCHARINFO
where:

Description

FONTINFO: [DrawDirection: {LeftToRight, RightToleft}
MinimumCharacterOrByte2, MaximumCharacterOrByte2: CARD16
MinimumBytet, MaximumBytet: CARDS
Al/CharactersExist BOOL
DefaultCharacter. CARD16
MinimumBounds: CHARINFO
MaximumBounds: CHARINFO
FontAscent I NT16
FontDescent INT16
Properties: LISTofFONTPROP]

FONTPROP: [Name: ATOM
Value: <32-BitValue>]

CHARINFO: [LeftSideBearing: INT16
RightSideBearing: INT16
CharacterWidth: INT16
Ascent INT16
Descent INT16
Attributes: CARD16]

The QueryFont protocol request returns logical information about a font. If
GraphicsContext is given, the currently contained font is used.

The DrawDirection field is just a hint, indicating whether most Characterlnformations field
have a positive (the LeftToRight ~alue) or a negative (the RightToleft value)
CharacterWidth field. The core protocol request defines no support for vertical text.

If the MinimumBytet and MaximumByte1 fields are both the value of 0, then the
MinimumCharacter0rByte2 field specifies the linear character index corresponding to the
first element of the Characterlnformations field, and MaximumCharacterOrByte2 field
specifies the linear character index of the last element. If either the MinimumBytet or the
MaximumBytet fields are nonzero, then both the MinimumCharacter0rByte2 and
MaximumCharacterOrByte2 fields will be less than 256, and the 2-byte character index
values corresponding to the Characterlnformations field element N (counting from 0) are as
follows:

bytel = N/D + MinirnurnBytel
byte2 = N/D + MinirnurnCharacterOrByte2
where
D = MaxirnurnCharacterOrByte2 - MinirnurnCharacterOrByte2 + 1
I integer division
\ = integer modulus

8-138 User Interface Reference

(
\\I

Query Font

If the Characterlnformations field has a length of 0, then the MinimumBounds and
MaximumBounds fields will be identical, and the effective Characterlnformations field is one
filled with this Characterlnformation field, of the following length:

L = D * (MaxirnurnBytel - MinirnurnBytel + 1)

All glyphs in the specified linear or matrix range have the same information as that given by
the MinimumBounds field (and MaximumBounds field). If the Al/CharactersExistfield is the
value of True, all characters in the Characterlnformations field have nonzero bounding
boxes.

The DefaultCharacterfield specifies the character that will be used when an undefined or
non-existent character is used. Note that the DefaultCharacterfield is a CARD16 type (not a
CHAR2B type); for a font using 2-byte matrix format, the DefaultCharacterfield has the
byte 1 field in the most significant byte, and the byte2 field is in the least significant byte. If
the DefaultCharacterfield itself specifies an undefined or non-existent character, then
printing is not performed for an undefined or non-existent character.

The MinimumBounds and MaximumBounds fields contain the minimum and maximum
values of each individual CHARINFO component over all the Characterlnformations fields
(ignoring non-existent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing all characters at the same origin [x, y]) has
its upper-left coordinate at the following:

[x + MinirnurnBounds.left-side-bearing, y - MaxirnurnBounds.ascent]

with a width of:

MaxirnurnBounds.right-side-bearing - MinirnurnBounds.left-side-bearing

and a height of:

MaxirnurnBounds.ascent + MaxirnurnBounds.descent

The FontAscent field is the logical extent of the font above the base line for determining line
spacing. Specific characters can extend beyond this. The FontDescentfield is the logical
extent of the font at or below the base line, for determining line spacing. Specific characters
may extend beyond this. If the base line is at the Y-coordinate y, then the logical extent of
the font is inclusive between the Y-coordinate values (Y - FontAscent) and
(Y + FontDescent - 1).

A font is not guaranteed to have any properties. The interpretation of the property value
(such as, INT32, CARD32) must be derived from prior knowledge of the property. When
possible, fonts should have at least the following properties. The following names are
case-sensitive.

Enhanced X-Windows Protocols 8-139

QueryFont

Property Name Type

MIN_SPACE CARD32

NORM_ SPACE CARD32

MAX_ SPACE CARD32

END_SPACE CARD32

SUPERSCRIPT _X INT32
SUPERSCRIPT_Y

SUBSCRIPT_X INT32
SUBSCRIPT_Y

UNDERLINE_POSITION INT32

UNDERLINE_ THICKNESS CARD32

STRIKEOUT _ASCENT INT32
STRIKEOUT _DESCENT

ITALIC_ANGLE INT32

X_HEIGHT INT32

QUAD_WIDTH INT32

CAP_HEIGHT INT32

WEIGHT CARD32

8-140 User Interface Reference

Description

The minimum inter-word spacing (in pixels).

The normal inter-word spacing (in pixels).

The maximum inter-word spacing (in
pixels).

The additional spacing (in pixels) at the end
of sentences.

Offsets from the character origin where
superscripts should begin (in pixels). If the
origin is at [X, Yj, then superscripts should
begin at [X +SUPERSCRIPT _X, Y-
SUPERSCRIPT_ Y]

Offsets from the character origin where
subscripts should begin (in pixels). If the
origin is at [X, Yj, then subscripts should
begin at [X + SUBSCRIPT_X, Y +
SUBSCRIPT_ Y].

Y offset from the baseline to the top of an
underline (in pixels). If the baseline is the
Y-coordinate Y, then the top of the underline
is at (Y + UNDERLINE_POSITION).

Thickness of the underline (in pixels)

Vertical extents for boxing or voiding
characters (in pixels). If the baseline is at
the Y-coordinate Y, then the top of the
strikeout box is at (Y-
STRIKEOUT _ASCENT), and the height of
the box is (STRIKEOUT_ASCENT +
STRIKEOUT _DESCENT).

The angle of the dominant staffs of
characters in the font, in degrees scaled by
64, relative to the 3 o'clock position from the
character origin, with positive indicating
counterclockwise motion as in the DrawArc
protocol request.

1 ex as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

1 em as in TeX, but expressed in units of
pixels. Often the width of the digits 0-9.

Y offset from the baseline to the top of the
capital letters, ignoring accents (in pixels). If
the baseline is at the Y-coordinate Yvariable,
then the top of the capitals is at
(Y- CAP _HEIGHT).

The weight or boldness of the font,
expressed as a value between 0 and 1000.

(
I
\~

Fields

QueryFont

POINT_SIZE CARD32 The point size of this font at the ideal
resolution, expressed in 1 /1 Oths of points.
There are 72.27 points to the inch.

RESOLUTION CARD32 The number of pixels per point, expressed in
1 /1 OOths, at which this font was created.

The bounding box of a character is the smallest rectangle enclosing the shape of the
character. If this bounding box has a character origin at [x, y] and is described in terms of
CHARINFO type components, then it is a rectangle with its upper-left corner at:

[x + LeftSideBearing, y - Ascent]

and a width of:

RightSideBearing - LeftSideBearing

and a height of:

Ascent + Descent

and the origin for the next character is defined to be:

[x + CharacterWidth, y]

Note that the baseline is logically viewed as being just below non-descending characters
(when the Descent field is the value of 0, only pixels with Y-coordinates less than y are
drawn), and that the origin is logically viewed as being coincident with the left edge of a
non-kerned character (when the LeftSideBearing field is the value of 0, no pixels with
X-coordinate less than x are drawn).

Note that CHARINFO metric values can be negative.

A non-existent character is represented with all CHARINFO components the value of 0.

The interpretation of the per-character attributes field is server-dependent.

Font

Fontinfo

Characterlnformations

Specifies the font.

Defines the characteristics of the specified font.

If present, specifies the dimensions and attributes of font
elements.

Draw Direction Indicates whether most of the Characterlnformations field
have a positive or negative CharacterWidth field metric.
This hint can have the following values:

MinimumCharacterOrByte2

LeftToRight Indicates that most of the
Characterlnformations field have a positive
CharacterWidth field metric.

RightToleft Indicates that most of the
Characterlnformations field have a negative
CharacterWidth field metric.

Specifies the linear character index corresponding to the
first element in the Characterlnformations field (first
character).

Enhanced X-Windows Protocols 8-141

QueryFont

MaximumCharacter0rByte2 Specifies the linear character index of the last element (last
character).

MinimumByte 1 Determines whether the MinimumCharacter0rByte2 field
and the MaximumCharacterOrByte2 field will be less than
256 (first row that exists).

Maximum Byte 1 Determines whether the MinimumCharacterOrByte2 field
and the MaximumCharacterOrByte2 field will be less than
256 (last row that exists).

AllCharactersExist Specifies whether all characters in the
Characterlnformations field have nonzero bounding boxes.

DefaultCharacter Specifies the character that will be used when an undefined
or non-existent character is used.

MinimumBounds Contains the minimum value of each CHARINFO
component over all Characterlnformations.

Maximum Bounds

FontAscent

FontDescent

Properties

Name

Value

LeftSideBearing

RightSideBearing

CharacterWidth

Ascent

Descent

Attributes

Contains the maximum value of each CHARINFO
component over all Charaterlnformations.

Returns the logical extent of the ascent metrics.

Returns the logical extent of the descent metrics.

Specifies the properties of the referenced font.

Specifies the name of the property.

Specifies the value of the property.

Origin to left edge of raster.

Origin to right edge of raster.

Specifies the width of the specified character.

Logical extent above baseline for spacing.

Logical extent below baseline for spacing.

Specifies the attributes of the specified character.

Error Codes
Font

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XLoadQueryFont subroutine.

The QueryTextExtents protocol.

8-142 User Interface Reference

QueryKeymap

QueryKeymap Protocol Request

Purpose
Returns "a bit vector for the keyboard.

Protocol Format
=>
Keys: LISTofCARDS

Description
The QueryKeymap protocol request returns a bit vector for the logical state of the keyboard.

Field

Each one bit indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys SN to SN+ 7, with the
least significant bit in the byte representing the SN key.

Note: The logical state of a device (as seen by means of the protocol request) may lag
behind the physical state if the device event processing is frozen.

Keys Specifies an array of bytes that represents the keys.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryKeymap subroutine.

Enhanced X-Windows Protocols 8-143

QueryPointer

QueryPointer Protocol Request

Purpose
Returns the root window and the coordinates for the current pointer position.

Protocol Format
Window. WINDOW
=>
Root WINDOW
Child: WINDOW or None
SameScreen: BOOL
RootX, RootY, WindowX, WindowY: INT16
Mask SETofKEVBUTMASK

Description

Fields

The QueryPointer protocol request returns the root window the pointer is logically on and
the coordinates of the pointer relative to the origin of the root. The current logical state of the
modifier keys and the buttons are also returned.

If the SameScreen field returns a value of False, the pointer is not on the same screen as
specified by the Window field, the Child field has a value of None, and the WindowX and
WindowYfields have a value of 0.

If the SameScreen field returns a value of True, the WindowX and WindowYfield are the
pointer coordinates relative to the origin of the specified window. The Child field returns the
window containing the pointer, if it is contained in a child window of the specified window.

The Mask field returns the current logical state of the modifier keys and buttons.

Note: The logical state of a device might lag behind the physical state if device event
processing is frozen.

Window Specifies the window ID.

Root Returns the root window the pointer is logically on.

Child Returns the child window containing the pointer.

SameScreen Returns the value of True or False if the pointer is on the same
window as Window field.

RootX Returns the x coordinate for the pointer relative to the root window.

RootY Returns the y coordinate for the pointer relative to the root window.

WindowX Returns the x coordinate for the pointer relative to the Window field.

WindowY Returns they coordinate for the pointer relative to the Window field.

Mask Returns the current logical state of the modifier keys and buttons.

8-144 User Interface Reference

(

\.

~

QueryPointer

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryPointer subroutine.

Enhanced X-Windows Protocols 8-145

QueryTextExtents

QueryTextExtents Protocol Request

Purpose
Returns the logical extents of a specified string of characters in a specified font.

Protocol Format
Font FONTABLE
String: STRING16
=>
DrawDirection: {LeftToRight, RightToleft}
FontAscent INT16
FontDescent INT16
Overal/Ascent INT16
Overal/Descent INT16
Overal/Width: INT32
Overal/Left. INT32
Overal/Right INT32

Description
The QueryTextExtents protocol returns the logical extents of a specified string of characters
in a specified font.

If a graphics context is given, the font currently contained is used.

Values are specified for the DrawDirection, FontAscent, and FontDescent fields the same as
for the QueryFont protocol.

The Overal/Ascentfield is the maximum of the ascent metrics of all characters in the string;
the Overal/Descent field is the maximum of the descent metrics of all characters in the
string.

The Overal/Width field is the sum of the character-width metrics of all characters in the
string.

For each character specified in the String field:

• Let w be the sum of the character-width metrics of all characters preceding it in the string;

• Let 1 be the left-side-bearing metric of the character plus w.

• Let r be the right-side-bearing metric of the character plus w.

Then, the value returned for:

• The Overal/Leftfield is the minimum 1 value of all characters in the string.

• The Overal/Rightfield is the maximum r value of all characters in the string.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted with Byte 1 as the
most significant byte.

Characters with all zero metrics are ignored. If the font has no defined default character,
then undefined characters in the string are also ignored.

8-146 User Interface Reference

(
I\!

QueryTextExtents

Fields
Font

String

DrawDirection

FontAscent

FontDescent

Overal/Ascent

Overall Descent

Overall Width

Overall Left

Overall Right

Error Code
Font

Implementation Specifics

Specifies the font or the Graphics Context containing the font.

Specifies the character string.

Returns the draw directions.

Returns the logical extent of the ascent metrics.

Returns the logical extent of the descent metrics.

Returns the maximum of the ascent metrics.

Returns the maximum of the descent metrics.

Returns the overall width of the character-width metrics.

Returns the left-side-bearing metrics.

Returns the right-side-bearing metrics.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryTextExtents subroutine, XQueryTextExtents16 subroutine.

The QueryFont protocol.

Enhanced X-Windows Protocols 8-147

QueryTree

QueryTree Protocol Request

Purpose
Returns the root, the parent, and the child windows of a specified window.

Protocol Format
Window. WINDOW
=>
Root WINDOW
Parent WINDOW or None
Children: LISTofWINDOW

Description

Fields

The QueryTree protocol request returns the root, the parent, and the child windows of a
specified window. If the specified window has no parent window, it returns the value of
None. Child windows are listed in bottom-to-top stacking order.

Window

Root

Parent

Children

Specifies the window ID.

Specifies the root window of the specified window.

Specifies the parent window of the specified window.

Specifies the child windows of the specified window.

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XQueryTree subroutine.

8-148 User Interface R~ference

RecolorCursor

RecolorCursor Protocol Request

Purpose
Changes the color of the cursor.

Protocol Format
Cursor. CURSOR
ForegroundRed, ForegroundGreen, ForegroundBlue: CARD16
Background Red, BackgroundGreen, Background Blue: CARD16

Description
The RecolorCursor protocol request changes the color of the cursor. If the cursor is
currently displayed, the change is visible immediately.

Fields
Cursor

Foreground Red,
ForegroundGreen,
ForegroundB/ue

Background Red,
BackgroundGreen,
Background Blue

Error Code
Cursor

Implementation Specifics

Specifies the cursor.

Specifies the foreground color.

Specifies the background color.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XRecolorCursor subroutine.

Enhanced X..,.Windows Protocols 8-149

ReparentWindow

ReparentWindow Protocol Request

Purpose
Removes a window from its current hierarchical position and inserts it as a child window of a
specified parent window.

Protocol Format
Window, Parent WINDOW
X, Y: INT16

Description

Fields

The ReparentWindow protocol request removes a window from its current position in the
hierarchy and inserts it as a child window of a specified parent window.

If the window is mapped, an UnmapWindow protocol request is performed. Then the
ReparentWindow protocol request is processed as specified.

The x and y coordinates are relative to the parent window's origin and specify the new
position of the upper-left outer corner of the window. Relative to the sibling windows, the
window is placed on top in the stacking order.

A ReparentNotify event is then generated. If the OverrideRedirect field in the
ReparentNotify event is True, window managers should not tamper with the window.

Finally, if the window was originally mapped, a MapWindow protocol request is performed.

A call to the ReparentWindow protocol request performs normal exposure processing on
formerly obscured windows. The server may not generate exposure events for regions from
the initial unmap if they are immediately obscured by the final map.

A Match error is generated if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the window itself or an inferior of the window.

• The window has a ParentRelative background and the new parent is not the same depth
as the window.

Window

Parent

x
y

Specifies the window ID.

Specifies the parent of the specified window.

Specifies the x coordinate.

Specifies the y coordinate.

Error Codes
Match

Window

8-150 User Interface Reference

ReparentWindow

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XReparentWindow subroutine.

The ReparentNotify event.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-151

RotateProperties

RotateProperties Protocol Request

Purpose
Rotates the states of window properties.

Protocol Format
Window. WINDOW
Delta: INT16
Properties: LISTofATOM

Description

Fields

The RotateProperties protocol request rotates the states of window properties in the
property list..

If the property names in the Properties list are numbered starting from O and there are N

property names in the list, then the value associated with property name I is (r + de 1 ta)
mod N, for all I from 0 to N - 1. Property states rotate by delta places around a virtual ring
of property names (right for positive delta, left for negative delta.)

If delta mod N is nonzero, a PropertyNotify event is generated in the order listed for
each property.

If an atom occurs more than once in the list or if no property with that name is defined for the
window, a Match error is generated. If an Atom or Match error is generated, no properties
are changed.

Window Specifies the window ID.

Delta Specifies the number of places to rotate properties.

Properties Specifies the list of properties for a window.

Error Codes
Atom

Match

Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XRotateBuffers subroutine, XRotateWindowProperties subroutine.

The PropertyNotify event.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-152 User Interface Reference

Send Event

SendEvent Protocol Request

Purpose
Sends an event to the specified window.

Protocol Format
Destination: WINDOW or PointerWindow or lnputFocus
Propagate: BOOL
EventMask SETofEVENT
Event <normal-event-format>

Description

Fields

The SendEvent protocol request sends an event to the Destination window.

If the PointerWindow type is specified in the Destination field, the Destination feld is
replaced with the window that currently contains the pointer. If the lnputFocus type is
specified in the Destination field, the Destination field is replaced with the focus window only
if it currently contains the pointer. Otherwise, the Destination field is replaced with the focus
window.

If the EventMask field is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

If Propagate field is the value of False, then the event is sent to every client selecting on
Destination field any of the event types in the EventMask field.

If Propagate field is the value of True and no clients have selected on Destination field any
of the event types in the EventMask field, the Destination field is replaced with the closest
ancestor of Destination field for which some client has selected a type in the EventMask and
for which no intervening window has that type as its DoNotPropagateMask field. If no such
window exists or if the window is an ancestor of the focus window and the lnputFocus type
was originally specified as the destination, then the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the final destination any of the
types specified in the EventMask field.

The event code must be one of the core events or one of the events defined by an extension
so the X Server can correctly byte-swap the contents or a Value error results. The contents
of the event are otherwise unaltered and unchecked by the X Server except to force on the
most significant bit of the event code and to correctly set the sequence number in the event.

Active grabs are ignored by this request.

Destination

Propagate

EventMask

Event

Specifies the window to receive the specified event.

Specifies which client or clients are to receive the specified event.

Specifies the event types.

Specifies the event code.

Enhanced X-Windows Protocols 8-153

Sen.dEvent

Error Codes
Value

Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XSendEvent subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-154 User Interface Reference

(

SetAccessControl

SetAccessControl Protocol Request

Purpose
Enables or disables the use of the access control list at connection setups.

Protocol Format
Mode: {Enable, Disable}

Description
The SetAccessControl protocol request enables or disables the use of the access control
list at connection setups.

The client must reside on the same host as the server or have been granted permission by a
server-dependent method to execute this request, or an Access error results.

Field
Mode Specifies use of the access control list.

Error Codes
Access

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XDisableAccessControl subroutine, XEnableAccessControl subroutine,
XSetAccessControl subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-155

SetClipRectangles

SetClipRectangles Protocol Request

Purpose
Changes the clip-mask in the GraphicsContext field to a specified list of rectangles and sets
the clip origin.

Protocol Format
GraphicsContext GCONTEXT
ClipXOrigin, Clip YOrigin: INT16
Rectangles: LISTofRECTANGLE
Ordering: {Unsorted, YSorted, YXSorted, YXBanded}

Description

Fields

The SetClipRectangles protocol request changes the clip-mask defined in the specified
graphics context to a specified list of rectangles and sets the clip origin. Output is clipped to
remain within the specified rectangles.

Clip origin is relative to the origin of the destination drawable specified in a graphics request.
Rectangle coordinates are relative to the clip origin. Unless rectangles are non-intersecting,
graphics results are undefined.

An empty list for Rectangles field disables output, and is the opposite of specifying a value of
None as the clip-mask member in the CreateGC or ChangeGC protocol requests.

If a client knows the ordering relations for the rectangles, they can be specified in the
Ordering field. This may allow the X Server to operate faster. If the ordering is specified, but
is incorrect, the X Server may or may not generate a Match error. If no error is generated,
graphics results are undefined.

GraphicsContext

ClipXOrigin

Clip YOrigin

Rectangles

Ordering

Specifies a graphics context.

Specifies the x coordinate of the clip-mask origin.

Specifies the y coordinate of the clip-mask origin.

Specifies a list of rectangles.

Specifies the ordering relations of the specified list of rectangles.
The Ordering field can be specified as the following:

Un Sorted

YSorted

YXSorted

YXBanded

The rectangles are in arbitrary order.

The rectangles are nondecreasing in their y origin.

The rectangles are nondecreasing in their y origin;
and, rectangles with an equal Y origin are
nondecreasing in their x origin.

The rectangles are nondecreasing in their y origin;
rectangles with an equal y origin are nondecreasing
in their x origin; and, for every possible y scan line,

8-156 User Interface Reference

SetClipRectangles

Error Codes
Alloc

GContext

Match

Value

Implementation Specifics

all rectangles that include that scan line have an
identical y origin and y extents.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetClipRectangles subroutine.

The CreateGC protocol request, ChangeGC protocol request.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-157

SetCloseDownMode

SetCloseDownMode Protocol Request

Purpose
Defines the handling of client resources at connection close.

Protocol Format
Mode: {Destroy, RetainPermanent, RetainTemporary}

Description

Field

The SetCloseDownMode protocol request defines the handling of client resources at
connection close.

The default value of the Mode field is the Destroy value.

Mode Specifies how client resources are handled at connection close.

Error Code
Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetCloseDownMode subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-158 User Interface Reference

Set Dashes

SetDashes Protocol Request

Purpose
Sets a dashed-line style.

Protocol Format
GraphicsContext GCONTEXT
DashOffset CARD16
Dashes: LISTofCARD8

Description

Fields

The SetDashes protocol request sets a dashed-line style in a specified graphics context.

A list of elements must be specified for the Dashes field; that is, the Dashes field cannot be
the empty set.

If the Dashes field has an odd number of elements, the list is concatenated with itself to
produce one with an even number of elements. The initial and alternating elements specify
the even dashes; the others specify the odd dashes.

Each element specifies a dash length in pixels and must be nonzero, or a Value error
results.

The DashOffset field defines the phase of the pattern, specifying how many pixels into
dashes the pattern should begin in any single graphics request.

Dashing is continuous through path elements combined with a join-style, but it is reset to the
value specified for the DashOffset field each time a cap-style is applied at the endpoint of a
line.

The unit of measure for dashes is the same as in the ordinary coordinate system. When
possible, dash length is measured along the slope of the line, but this implementation is only
required for horizontal and vertical lines. It is suggested in other instances that length be
measured along the major axis of the line. The major axis is defined as the following:

• The x axis for lines drawn at an angle of between -45 and +45 degrees, or between 315
and 225 degrees, from the x axis.

• The y axis for all other lines.

GraphicsContext

DashOffset

Dashes

Specifies a graphics context.

Defines the phase of the pattern for a dashed-line style.

Specifies the dash length for a dashed-line style.

Error Codes
Alloc

GContext

Value

Enhanced X-Windows Protocols 8-159

Set Dashes

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetDashes subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-160 User Interface Reference

SetFontPath

SetFontPath Protocol Request

Purpose
Defines the directory path to search for fonts.

Protocol Format
Path: LISTofSTRING8

Description
The SetFontPath protocol request defines the directory path used to search for fonts.

There is only one search path per server, not one per client. The strings specified are
intended to be searched in the order listed, although their interpretation is operating-system
dependent.

Specifying an empty list for the Path field restores the default path defined for the X Server.

When the SetFontPath protocol request is executed, the X Server flushes all cached
information about fonts for which there currently are no explicit resource IDs allocated.

The meaning of the error code generated by the SetFontPath protocol request is
system-specific.

Field
Path Specifies a directory search path.

Error Code
Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetFontPath subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-161

SetlnputFocus

SetlnputFocus Protocol Request

Purpose
Changes the input focus and last-focus-change time.

Protocol Format
Focus: Window or PointerRoot or None
RevertTo: {Parent, PointerRoot, None}
Time: TIMESTAMP or CurrentTime

Description

Fields

The SetlnputFocus protocol request changes the input focus and the last-focus-change
time. It has no effect if the specified time is earlier than the current last-focus-change time or
is later than the current X Server time. Otherwise, the last-focus-change time is set to the
value specified in the Time field, with the CurrentTime replaced by the current X Server
time.

If a value of None is specified as the Focus field, all keyboard events are discarded until a
new focus window is set; the RevertTo field is inoperative.

If a window ID is specified as the Focus field, the specified window becomes the focus
window of the keyboard. If a generated keyboard event would normally be reported to this
window or one of its inferiors, the event is reproted normally. Otherwise, the event is
reported with respect to the focus window.

If the PointerRoot type is specified as the Focus field, the focus window is the root window
of the screen that contains the pointer at the time of each keyboard event; the RevertTo field
is inoperative.

The SetlnputFocus protocol request generates the Focusln and FocusOut events.

The window specified as the Focus field must be viewable at the time of the request or a
Match error results.

If the focus window becomes unviewable later, the new focus window is specified in the
RevertTo field.

• If the Parent value is specified in the RevertTo field, the focus window reverts to the
parent window or the closest viewable ancestor of the window specified as the focus
window; the value of the RevertTo field reverts to a value of None.

• If the RevertTo field is the PointerRoot or None value, the Focus field reverts to that
value.

When the focus window changes, the Focusln and FocusOut events are generated, but the
last-focus-change time is not affected.

Focus

Revert To

Specifies the focus window.

Specifies the new focus window if a previously specified window becomes
unviewable.

Time Specifies the current X Server time or a timestamp expressed in
milliseconds.

8-162 User Interface Reference

(

\

SetlnputFocus

Error Codes
Match

Value

Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetlnputFocus subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-163

SetModifierMapping

SetModifierMapping Protocol Request

Purpose
Specifies the key codes to be used as modifiers.

Protocol Format
KeycodesPerModifier. CARDS
Keycodes: LISTofKEYCODE
=>
Status: {Success, Busy, Failed}

Description
The SetModifierMapping protocol request specifies the key codes, if any, to be used as
modifier keys.

The number of key codes in the list must be 8 * the KeycodesPerModifierfield; otherwise, a
Length error occurs.

The keycodes are divided into eight sets, with each set containing the KeycodesPerModifier
field elements. The sets are assigned, in order, to the following modifier keys: Shift, Lock,
Control, Mod1, Mod2, Mod3, Mod4, and Mods.

Only nonzero key code values are used within each set; O values are ignored. All no-zero
key codes must be in the range specified by the min_keycode and max_keycode fields at
connection setup; otherwise, a Value error occurs.

The order of the keycodes within a set does not matter. If only 0 values are specified, the
use of the corresponding modifier key is disabled, and the modifier bit have a value of 0.
Otherwise, when at least one of the keys in the corresponding set is in the down position,
the modifier bit will have a value of 1.

A server can impose restrictions on how modifier keys can be changed: for example, if
certain keys do not generate up transitions in hardware; if the autorepeat cannot be disabled
for certain keys; or, if multiple keys per modifier are not supported.

8-164 User Interface Reference

/'
I~

~,

\

i/

Fields

SetModifierMapping

KeycodesPerModifier Specifies the maximum number of keys per modifier.

Keycodes

Status

Specifies an 8 by the KeycodesPerModifer field array of modifiers.

Returns the status of the request. If the Status field returns the
following values:

Failed An attempt is made to override a server-dependent
restriction; no modifier key is changed.

Busy New keycodes specified are nonzero and differ from
those currently defined, but a modifier key (existing or
new) is in the down state at the time; no modifier key
is changed.

Success Modifier keys are changed and a MappingNotify
event is generated.

Error Codes
Alloc

Length

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetModifierMapping subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-165

SetPointerMapping

SetPointerMapping Protocol Request

Purpose
Sets the mapping of the pointer.

Protocol Format
Map: LISTofCARDS
=>
Status: {Success, Busy}

Description

Fields

The SetPointerMapping protocol request sets the mapping of the pointer.

The elements of the mapping list are indexed starting with a value of 1. The index is a core
button number and the element of the list defines the effective number. The length of the list
must match the return value of the GetPointerMapping protocol request, or a Value error
results.

A 0 element disables a button. Elements are not restricted in value by the number of
physical buttons, but a Value error results if two elements have the same nonzero value.

Map

Status

Specifies the mapping of the pointer.

Returns the status of the request. If the Status field returns the following
values:

Busy

Success

A button to be changed is in the down state; mapping is not
changed.

The mapping is changed and a MappingNotify event is
generated.

Error Code
Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetPointerMapping subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-166 User Interface Reference

(

i'
\

SetScreenSaver

SetScreenSaver Protocol Request

Purpose
Sets the status and method for the screen-saver.

Protocol Format
Timeout, Interval: INT16
PreferBlanking: {Yes, No, Default}
AllowExposures: {Yes, No, Default}

Description

Fields

The SetScreenSaver protocol request sets screen-saver status and method.

For each screen, if the screen blanking is preferred, the screen goes blank if this is
supported by the hardware. When screen blanking is not preferred, the screen is changed in
a server-dependent fashion to avoid phosphor burn, if exposures are allowed or the screen
can be regenerated without sending exposure events to clients. Otherwise, the state of the
screens does not change and the screen-saver function is not activated.

The screen-saver function is deactivated and all screen states are restored upon input from
the keyboard or pointer, or by a ForceScreenSaver protocol request with a value of Reset
for the Mode field.

Periodic change as a screen-saver method is server-dependent. If it is supported, the value
of the Interval field is a hint for the frequency of screen changing. A value of 0 hints that no
periodic change is requested.

Examples of ways to periodically change the screen include: scrambling the colormap;
moving an icon image; or, tiling the screen with the root window background tile, randomly
reorigined.

Timeout

Interval

PreferBlanking

AllowExposures

Specifies the time before the screen-saver is activated. Values for
the Timeout and Interval fields are specified in seconds. If the
Timeout field is specified as the following:

Nonzero

0

-1

The screen-saver function is enabled. Once
enabled, the screen-saver function is activated if
the keyboard or pointer do not receive input within
the period specified by the Timeout field.

The screen-saver function is disabled.

The default screen-saver status is restored. Other
negative values generate a Value error.

Specifies the time between periodic screen-saver activity.

Specifies the type of screen blanking.

Specifies exposure event reporting.

Enhanced X-Windows Protocols 8-167

SetScreenSaver

Error Code
Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetScreenSaver subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-168 User Interface Reference

SetSelectionOwner

SetSelectionOwner Protocol Request

Purpose
Changes the owner, owner window, and last-change time of a specified selection.

Protocol Format
Selection: ATOM
Owner. WINDOW or None
Time: TIMESTAMP or CurrentTime

Description

Fields

The SetSelectionOwner protocol request changes the owner, owner window, and
last-change time of the specified selection.

The SetSelectionOwner protocol request has no effect if the specified time is earlier than
the last-change time of the specified selection or if it is later than the current X Server time.
Otherwise, the last-change time is set to the specified time and the CurrentTime fype is
replaced by the current X Server time.

If the None type is specified for the Owner field, the selection will have no owner. Otherwise,
the owner of the selection is the client executing the request. If the new owner is not the
same as the current owner of the selection and the current owner is not the None type, the
current owner is sent a SelectionClear event.

If a client that is the owner of a selection is later terminated (that is, its connection is closed)
or if the owner window it has specified in the request is later destroyed, the owner of the
selection automatically reverts to a None type. However, the last-change time is not
affected.

This protocol has no effect if the specified Time field is earlier than the current last-change
time of the specified Selection field or is later than the current server time. Otherwise, the
last-change time is set to the specified Time field and the CurrentTime type is replaced by
the current server time.

The X Server does not interpret the selection atom. The owner window is returned by the
GetSelectionOwner protocol request and is reported in the SelectionRequest and
SelectionClear events.

Selections are global to the X Server.

Selection

Owner

Time

Specifies the selected atom.

Specifies the owner of the selection.

Specifies the current X Server time or a timestamp expressed in
milliseconds.

Error Codes
Atom

Window

Enhanced X-Windows Protocols 8-169

SetSelectionOwner

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XSetSelectionOwner subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-170 User Interface Reference

\

StoreColors

StoreColors Protocol Request

Purpose
Changes the colormap entries of specified pixels.

Protocol Format
Colormap: COLORMAP
Items: LISTofCOLORITEM

where:
COLORITEM:

Description

[Pixel: CARD32
DoRed, DoGreen, DoBlue: BOOL
Red, Green, Blue: CARD16]

The StoreColors protocol request changes the colormap entries of specified pixels. If the
colormap for the screen is an installed map, changes are visible immediately.

The DoRed, DoGreen, and DoBlue fields of each item indicate which components are to be
changed.

All specified pixels in the colormap that are allocated by any client as writable are changed,
even if one or more pixels produce an error.

• If a specified pixel is not a valid index into the colormap, a Value error is generated.

• If a specified pixel is unallocated or is allocated as read-only, an Access error is
generated.

If more than one pixel is in error, it is arbitrary as to which pixel is reported.

Fields
Colormap

Items

Pixel

DoRed, DoGreen, DoBlue

Red, Green, Blue

Error Codes
Access

Colormap

Value

Implementation Specifics

Specifies a colormap.

Specifies a list of color components to be changed.

Specifies an entry into the colormap.

Specifies which components to change.

Specifies a color component.

~ This protocol is part of AIXwindows Run Time Environment in AIXwindows
~ Environment/6000.

Enhanced X-Windows Protocols 8-171

StoreColors

Related Information
The XStoreColor subroutine, XStoreColors subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-172 User Interface Reference

I

,/

"StoreNamedColor

StoreNamedColor Protocol Request

Purpose
Stores a colormap entry for a specified color name.

Protocol Format
Colormap: COLORMAP
Pixel: CARD32
Name: STRINGS
DoRed, DoGreen, DoBlue: BOOL

Description
The StoreNamedColor protocol request searches for a named color for the screen
associated with a specified colormap, then stores the colormap entry for the specified pixel.
The specified name should use the ISO Latin-1 encoding, and is not case-sensitive.

Fields

• If a specified pixel is not a valid index into the colormap, a Value error is generated.

• If a specified pixel is unallocated or is allocated as read-only, an Access error is
generated.

Colormap

Pixel

Name

DoRed, DoGreen, DoBlue

Specifies a colormap.

Specifies a pixel.

Specifies a color name.

Specifies which component to change.

Error Codes
Access

Colormap

Name

Value

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XStoreNamedColor subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X;...Windows Protocols 8-173

TranslateCoordinates

TranslateCoordinates Protocol Request

Purpose
Translates coordinate values from a specified source window to a specified destination
window.

Protocol Format
SourceWindow, DestinationWindow. WINDOW
SourceX, Source Y: INT16
=>
SameScreen: BOOL
Child: WINDOW or None
DestinationX, DestinationY: INT16

Description

Fields

The TranslateCoordinates protocol request translates coordinate values from a specified
source window to a specified destination window.

The coordinate values for the SourceXand SourceYfields are relative to the origin of the
source window. These values are returned as the coordinate values of the DestinationX and
DestinationYfields relative to the origin of the destination window.

If a value of False is returned for the SameScreen field, then the specified source window
and destination window are on different screens, and a value of 0 is returned for the
coordinate values for the DestinationX and DestinationYfields.

If the coordinates are contained in a mapped child window of the destination window, the
window ID of that child window is returned in the Child field.

Source Window

Destination Window

SourceX

SourceY

SameScreen

Child

DestinationX

Destination Y

Specifies the window ID of the source window.

Specifies the window ID of the destination window.

Specifies the x coordinate relative to the source window.

Specifies the y coordinate relative to the source window.

Returns the status of the screen for the specified destination
window relative to the specified source window.

Returns the window ID of a mapped child window of the
destination window.

Returns the x coordinate relative to the destination window.

Returns the y coordinate relative to the destination window

Error Code
Window

8-17 4 User Interface Reference

~';
J y

TranslateCoordinates

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XTranslateCoordinates subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-175

UngrabButton

UngrabButton Protocol Request

Purpose
Releases the button-key combination of a passive pointer grab.

Protocol Format
Modifiers: SETofKEYMASK or AnyModifier
Button: BUTTON or AnyButton
GrabWindow. WINDOW

Description

Fields

The UngrabButton protocol request releases the button-key combination of a passive
pointer grab for a specified window if it was grabbed by the specified client. It has no effect
on an active grab.

If the AnyModifier type is specified for the Modifiers field, the request is issued for all
possible modifier combinations, including the combination of no modifiers.

If the AnyButton type is specified for the Button field, the request is issued for all possible
buttons.

Modifiers

Button

Grab Window

Specifies the set of key masks.

Specifies the set of pointer buttons.

Specifies the window ID.

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XUngrabButton subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-176 User Interface Reference

UngrabKey

UngrabKey Protocol Request

Purpose
Releases the key combination for a specified window.

Protocol Format
Key. KEYCODE or AnyK.ey
Modifiers: SETofKEYMASK or AnyModifier
GrabWindow. WINDOW

Description
The UngrabKey protocol request releases the key combination for a specified window if it
was grabbed by the specified client. It has no effect on an active grab.

Fields

If the AnyModifier type is specified for the Modifiers field, the request is issued for all
possible modifier combinations, including the combination of no modifiers.

If the AnyKey type is specified for the Key field, the request is issued for all possible key
codes.

Key

Modifiers

Grab Window

Specifies the set of key codes.

Specifies the set of key masks.

Specifies the window ID.

Error Codes
Value

Window

, Implementation Specifics
) This protocol is part of AIXwindows Run Time Environment in AIXwindows

Environment/6000.

Related Information
The XUngrabKey subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-177

UngrabKeyboard

UngrabKeyboard Protocol Request

Purpose
Releases the keyboard from an active keyboard grab.

Protocol Format
Time: TIMESTAMP or CurrentTime

Description

Field

The UngrabKeyboard protocol request releases the keyboard if the client has grabbed the
keyboard actively with the GrabKeyboard or the GrabKey protocol requests. It releases any
queued events but has no effect if the specified time is earlier than the last keyboard-grab
time or is later than the current X Server time.

The UngrabKeyboard protocol request generates the Focusln and FocusOut events.

The UngrabKeyboard protocol occurs automatically if the event window for an active
keyboard grab becomes unviewable.

Time Specifies the current X Server time or a timestamp expressed in
milliseconds.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUngrabKeyboard subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-178 User Interface Reference

UngrabPointer

UngrabPointer Protocol Request

Purpose
Releases the pointer.

Protocol Format
Time: TIMESTAMP or CurrentTime

Description

Fields

The UngrabPointer protocol request releases the pointer if the client has grabbed the
pointer actively with the GrabPointer protocol request, the GrabButton protocol request, or
a normal button press. It releases any queued events but has no effect if the specified time
is earlier than the last pointer-grab time or is later than the current X Server time.

The UngrabPointer protocol request generates the EnterNotify and LeaveNotify events.

The UngrabPointer protocol request occurs automatically:

• If the event window becomes unviewable.

• If the Confine To field window of an active pointer grab request becomes unviewable.

• If window reconfiguration causes the Confine To field window of an active pointer grab
request to lie completely outside the boundaries of the root window.

Time Specifies the current X Server time or a timestamp expressed in
milliseconds.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUngrabPointer subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-179

UngrabServer

UngrabServer Protocol Request

Purpose
Restarts processing of protocols and close-downs.

Description
The UngrabServer protocol request restarts processing of protocol requests and
close-downs on other connections.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUngrabServer subroutine.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-180 User Interface Reference

UninstallColormap

UninstallColormap Protocol Request

Purpose
Removes a colormap from the required list for its screen.

Protocol Format
Colormap: COLORMAP

Description

Field

If a specified colormap is on the required list for its screen, the UninstallColormap protocol
request removes it from the list. In addition, the colormap might be uhinstalled, and
additional colormaps might be implicitly installed or uninstalled. Whether a colormap gets
installed or uninstalled is server-dependent; however, the required list must remain installed.

When a specified colormap becomes uninstalled, a ColormapNotify event is generated on
each window where this colormap is an attribute. In addition, the ColormapNotify events
are generated if other colormaps are installed or uninstalled as a result of this protocol
request.

Colormap Specifies a colormap.

Error Code
Colormap

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUninstallColormap subroutine.

The lnstallColormap protocol request.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-181

UnmapSubwindows

UnmapSubwindows Protocol Request

Purpose
Unmaps the children windows of a specified window.

Protocol Format
Window. WINDOW

Description

Field

The UnmapSubwindows protocol request performs an UnmapWindow protocol request on
all mapped children windows of the specified window. Windows are unmapped in
bottom-to-top stacking order.

Window Specifies the window ID.

Error Code
Window

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUnmapSubwindows subroutine.

The UnmapWindow protocol request.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

8-182 User Interface Reference

(
\

UnmapWindow

UnmapWindow Protocol Request

Purpose
Unmaps a specified window.

Protocol Format
Window. WINDOW

Description
The UnmapWindow protocol request unmaps a specified window and generates an
UnmapNotify event.

The UnmapWindow protocol request enables normal exposure processing on formerly
obscured windows.

If the specified window is already unmapped, the UnmapWindow protocol request has no
effect.

Field
Window

Error Code
Window

Specifies the window ID.

Implementation Specifics
This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XUnmapWindow subroutine.

The UnmapSubwindows protocol request.

Enhanced X-Windows Introduction
Enhanced X-Windows Protocols Overview

Enhanced X-Windows Protocols 8-183

Warp Pointer

WarpPointer Protocol Request

Purpose
Changes the current position of the pointer.

Protocol Format
SourceWindow. WINDOW or None
DestinationWindow. WINDOW or None
SourceX, Source Y: INT16
Source Width, SourceHeight CARD16
DestinationX, Destination Y: INT16

Description
The WarpPointer protocol request generates an instantaneous change in the current
position of the pointer. It generates events as if the user had moved the pointer
instantaneously.

If a value other than the None type is specified for the Source Window field, the position of
the pointer changes only if the pointer is contained in the window specified and in the
rectangle specified by the SourceWidth and SourceHeightfield values.

If the None type is specified for the DestinationWindowfield, the position of the pointer
changes relative to its current position by the coordinate values specified in the DestinationX
and Destination Y field.

If a window ID is specified for the DestinationWindowfield, the position of the pointer
changes relative to the origin of the specified window by the coordinate values specified in
the DestinationX and DestinationYfield.

The coordinates specified in the SourceX and SourceYfield are relative to the origin of the
window specified by the SourceWindowfield.

If a value of O is specified for the Source Width field, this value is replaced with the current
width of the Source Window minus SourceX.

/ii

If a value of O is specified for the SourceHeight field, this value is replaced with the current ~

Fields

height of the SourceWindowfield minus the SourceYfield.

The WarpPointer protocol request cannot be used to move the pointer outside a ConfineTo
field window of an active pointer grab. This protocol request moves the pointer only as far as
the closest edge of such a window.

Source Window

Destination Window

SourceX

SourceY

Source Width

Specifies a window ID.

Specifies a window ID.

Specifies the X coordinate relative to the origin of the source
window.

Specifies the y coordinate relative to the origin of the source
window.

Specifies the width of the source rectangle.

8-184 User Interface Reference

WarpPointer

Source Height

DestinationX

Destination Y

Error Code
Window

Implementation Specifics

Specifies the height of the source rectangle.

Specifies the x coordinate for the destination of the pointer.

Specifies the y coordinate for the destination of the pointer.

This protocol is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XWarpPointer subroutine.

Enhanced X-Windows Protocols 8-185

WarpPointer

8-186 User Interface Reference

Enhanced X-Windows Extensions

Enhanced X-Windows Extensions 9-1

9-2 User Interface Reference

XAIXCheckTypedWindowEvent

XAIXCheckTypedWindowEvent Extension Subroutine

Purpose

Library

Syntax

Returns the next matched event in the queue for the specified window.

Enhanced X-Windows Library (libXext.a)

int XAIXCheckTypedWindowEvent(Oisp/ayPtr, Window/O, EventType, EventReturn)
Display *DisplayPtr,
Window Window/D;
int EventType;
XEvent *EventReturn;

Description
The XAIXCheckTypedWindowEvent extension subroutine returns the next matched event
in the queue for the specified window. First, it searches the event queue, and then any
events available on the server for an event that matches the specified type and window.

When the XAIXCheckTypedWindowEvent extension subroutine finds a match, it removes
the event from the queue, copies it into the specified XEvent structure and returns the value
of True. Other events in the queue are not discarded. If the event is not available, the
XAIXCheckTypedWindowEvent extension subroutine flushes the output buffer and returns
the value of False.

Parameters
DisplayPtr Specifies the connection to the X Server.

EventReturn Specifies a client-supplied structure that receives a copy of the associated
structure event that matches the extension subroutine event.

EventType Specifies the event type to compare.

Window/D Specifies the window ID.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-3

XAIXCheckWindowEvent

XAIXCheckWindowEvent Extension Subroutine

Purpose

Library

Syntax

Removes the next extension event that matches both the passed window and the passed
mask.

Enhanced X-Windows Library (libXext.a)

Boo I XAIXCheckWindowEvent(DisplayPtr, Window/D, ExtensionEventMask, EventReturn)
Display * DisplayPtr,
Window Window/D;
unsigned long ExtensionEventMask;
XEvent * EventReturn;

Description
The XAIXCheckWindowEvent extension subroutine removes the next extension event that
matches both the passed window and the passed mask. This subroutine does not block and
it returns the value of O or 1 to indicate if the event was returned.

The XIAXCheckWindowEvent extension subroutine first searches the event queue, and
then the events available on the server connection, for the first event that matches the
specified window and extension event mask. When a match is found, the
XAIXCheckWindowEvent extension subroutine removes that extension event, copies it into
the specified XEvent structure, and returns the value of True. The other events stored in the
queue are not discarded. If an event is not found, the XAIXCheckWindowEvent extension
subroutine flushes the output buffer and returns the value of False.

Parameters
DisplayPtr

EventReturn

ExtensionEventMask

Window/D

Implementation Specifics

Specifies the connection to the X Server.

Specifies a client-supplied structure that receives a copy of the
associated structure event that matches the extension event.

Specifies the event mask, which is the bitwise-inclusive OR of
one or more of the valid extension event mask bits.

Specifies the window ID for the window with the next matched
extension event to be removed.

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-4 User Interface Reference

XAIXMaskEvent

XAIXMaskEvent Extension Subroutine

Purpose

Library

Syntax

Removes the next event that matches an extension event mask.

Enhanced X-Windows Library (libXext.a)

XAIXMaskEvent(DisplayPtr, Extension EventMask, EventReturn)
Display * DisplayPtr,
unsigned long ExtensionEventMask;
XEvent * EventReturn;

Description
The XAIXMaskEvent extension subroutine removes the next event that matches an
extension event mask. This extension subroutine searches the event queue for the
extension events associated with the specified mask. When the XAIXMaskEvent extension
subroutine finds a match, it removes that event and copies it into the specified XEvent
structure. Other events stored in the queue are not discarded. If the extension event
requested is not in the queue, the XAIXWindowEvent extension subroutine flushesthe
output buffer and blocks until one is received.

The XAIXWindowEvent extension subroutine remains blocked if extension events do not
come across the wire.

Parameters
DisplayPtr

EventReturn

ExtensionEventMask

Implementation Specifics

Specifies the connection to the X Server.

Specifies a client-supplied structure that receives a copy of the
associated structure event that matches the extension event.

Specifies the extension event mask, which is the bitwise-inclusive
OR of one or more of the valid event mask bits.

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-5

XAIXWindowEvent

Key Concepts

Purpose

Library

Syntax

Removes the next event that matches both a window and an extension event mask.

Enhanced X-Windows Library (libXext.a)

XAIXWindowEvent(DisplayPtr, Window/D, ExtensionEventMask, EventReturn)
Display * DisplayPtr,
Window Window!D;
unsigned long ExtensionEventMask;
XEvent * EventReturn;

Description
The XAIXWindowEvent extension subroutine removes the next event that matches both a
window and an extension event mask. This extension subroutine searches the event queue
for an event that matches both the specified window and the extension event mask. When it
finds a match, it removes that extension event from the queue and copies it into the
specified XEvent structure. Other events stored in the queue are not discarded. If the
extension event requested is not in the queue, the XAIXWindowEvent extension subroutine
flushes the output buffer and blocks until one is received.

The XAIXWindowEvent extension subroutine remains blocked if extension events do not
come across the wire.

Parameters
DisplayPtr

EventReturn

ExtensionEventMask

Window/D

Implementation Specifics

Specifies the connection to the X Server.

Specifies a client-supplied structure that receives a copy of the
associated structure event that matches the extension event.

Specifies the event mask, which is the bitwise-inclusive OR of
one or more of the valid extension event mask bits.

Specifies the window ID of the next matched extension event to
be removed.

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-6 User Interface Reference

(

XActivateAutoload

XActivateAutoload Extension Subroutine

Purpose

Library

Syntax

Sets the mode of the dial or lighted programmable function key (LPFK) devices to the
Autoload mode.

Enhanced X-Windows Library (libXext.a)

XActivateAuto Load(DisplayPtf1
Display * DisplayPtr,

Description

Parameter

The XActivateAutoload extension subroutine sets the mode of the dial or LPFK devices to
the Autoload mode.

The LPFK devices and dials can operate in either the Autoload or EventReport mode. In
the Autoload mode, the X Server automatically installs the attributes to the specified
devices. In the EventReport mode, the client is responsible for setting the appropriate
attributes of the specified device.

This is analogous to the cursor automatically changing shape when crossing a window
boundary, when the cursor is set in the window structure through the
XSetWindowAttributes subroutine.

DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-7

XAsynclnput

XAsynclnput Extension Subroutine

Purpose

Library

Syntax

Sets up asynchronous input support.

Enhanced X-Windows Library (libXext.a)

int (*XAsynclnput(DisplayPtr, /nputHandlet)) ()
Display * DisplayPtr,
int(* lnputHandlef)();

Description
The XAsynclnput extension subroutine sets up asynchronous input support. Once it is set
up, the routine passed as the lnputHandler parameter is called for each event received by
the client. If the input handler returns the value of 0, the event is discarded. If the input
handler returns the value of 1, the event is queued and another Enhanced X-Windows call
can be used to remove it from the queue.

lnputHandler(DisplayPtr, Event, Leve~;
Display * DisplayPtr,
XE vent *Event,
int Level;

• The Event parameter specifies the event from the X Server.

• The Level parameter specifies the level of asynchronous input.

The input handler can make Enhanced X-Windows calls with the Level parameter indicating
the depth of nesting. If an application is on an XNextEvent() extension subroutine, the input
handler still sees every event first.

Parameters
DisplayPtr

lnputHandler

Specifies the connection to the X Server.

Specifies the procedure called for every event reported by the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

9-8 User Interface Reference

XBlink

XBlink Extension Subroutine

Purpose

Library

Syntax

Causes the Colormap/D parameter to be installed and the screen to blink with the specified
information.

Enhanced X-Windows Library (libXext.a)

void XBlink (DisplayPtr, Colormap/D, Rate, XColorPtt')
Display * DisplayPtr,
Colormap Colormap/D;
Time Rate;
XColor * XColorPtr,

Description
The XBlink extension subroutine causes the Colormap/D to be installed and the screen to
blink with the information specified in the XColorPtr parameter. If the colormap is not already
installed, the extension will remember the colot and blink whenever the colormap is installed
with a call to the XlnstallColormap subroutine or through the setting of the Colormap/D
attribute with the XSetWindowAttributes subroutine. The blinking is accomplished by
swapping the rgb value in the colormap at the index specified by the pixel field in the
XColor data structure with the rgb value specified in the XColor data structure.

The colormap entry will continue to blink at the rate specified by the Rate parameter until the
XBlink extension subroutine is called with a rate of 0. If the XBlink extension subroutine is
called multiple times with the same colormap and the same rate, all the colors will blink
synchronously.

Parameters
Colormap/D Specifies colormap resource ID of the colormap to be used for the blinking.

DisplayPtr Specifies the connection to the X Server.

Rate Specifies number of milliseconds to wait between blinks.

XColorPtr Specifies the pointer to color information needed to blink.

Error Code
BadAlloc

Bad Color

BadColormap

Enhanced X-Windows Extensions 9-9

XBlink

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XColor data structure.

9-10 User Interface Reference

XCreateCrossHairCursor

XCreateCrossHairCursor Extension Subroutine

Purpose

Library

Syntax

Creates a pair of cross hairs and returns the cursor resource ID associated with it.

Enhanced X-Windows Library (libXext.a)

Cursor XCreateCrossHairCursor (DisplayPtr, LineWidth, LineColor, Base)
Display *DisplayPtr;
INT32 LineWidth;
XColor * LineColor;
int Base;

Description
The XCreateCrossHairCursor extension subroutine creates a pair of cross hairs and
returns the cursor resource ID associated with it. This cursor ID can then be used with
theXRecolorCursor, XFreeCursor and XDefineCursor subroutines. The XDefineCursor
subroutine associates the cursor resource with a WindowlD.

If the LineWidth parameter is the value of O, single pixel wide lines are drawn by using the
server's new line width algorithms. The color specified is used as the line color for both
vertical and horizontal crossbars.

The Base parameter specifies if the cursor to be created is a full screen cursor or a cross
hair clipped to the associated WindowlD. The default value is clipped to the associated
WindowlD or a window based cursor.

Parameters
Base

Error Code

LineColor

DisplayPtr

Line Width

BadAlloc

Specifies if the cursor to be created is a full screen cursor or a cross
hair clipped to the associated WindowlD. The default value is
clipped to the associated WindowlD.

Specifies the color of the vertical and horizontal lines.

Specifies the connection to the XServer.

Specifies the width of the vertical and horizontal lines of the cursor.

Enhanced X-Windows Extensions 9-11

XCreateCrossHairCursor

Return Codes
CursorlD

0

The XCreateCrossHairCursor extension subroutine succeeds

The XCreateCrossHairCursor extension subroutine fails

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-12 User Interface Reference

XCreateMultiColorCursor

XCreateMultiColorCursor Extension Subroutine

Purpose

Library

Syntax

Creates a multicolored cursor and returns the resource ID associated with the cursor.

Enhanced X-Windows Library (libXext.a)

Cursor XCreateMultiColorCursor (DisplayPtr, Source, Number, Colors, X, Y)
Display * DisplayPtr,
Pixmap Source;
INT32 Number,
XColor *Colors;
INT32 X, Y;

Description
The XCreateMultiColorCursor extension subroutine creates a multicolored cursor and
returns the X Server cursor resource ID associated with the cursor. This cursor ID can then
be used with the XRecolorMultiColorCursor extension subroutine, and the XFreeCursor
and XDefineCursor subroutines. The XDefineCursor subroutine associates the cursor
resource with a WindowlD.

The cursor is colored according to the colors specified in an array of XColor structures. The
pixel value in each array element corresponds to the pixel value in the source pixmap. This
pixel value in the source pixmap is colored with color specified by the rgb values in the
same array element. Typically, the O value in a cursor pixmap is considered transparent.

To create a multicolored cursor there must be hardware available that contains multiple
cursor planes. If hardware support is not available, a software cursor resource is created by
using the color specified by array element 1 for any pixel in the pixmap that contains a pixel
value. A pixel value of O will continue to be transparent.

Any source pixmap pixel value without a corresponding rgb value specified in the array of
XColor structures is considered undefined. Any pixel value outside the range of the
hardware capability is ignored.

Enhanced X-Windows Extensions 9-13

XCreateMultiColorCursor

Parameters
Colors

DisplayPtr

Number

Source

x

y

Error Codes
BadAlloc

Bad Drawable

Bad Match

Bad Pixmap

Return Codes
CursorlD

0

Specifies an array of XColor structures that describe the values for each
pixel value in the source pixmap.

Specifies the connection to the X Server.

Specifies the number of colors in the Colors parameter.

Specifies the X Server resource ID of the pixmap to be used for the cursor.

Indicates the x coordinate for the cursor hotspot relative to the origin of the
source pixmap. This coordinate must be a point within the source pixmap.

Indicates the y coordinate for the cursor hotspot relative to the origin of the
source pixmap. This coordinate must be a point within the source pixmap.

Succeeds

Fails

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XColor data structure.

9-14 User Interface Reference

XDirectAdapter Access

XDirectAdapterAccess Extension Subroutine

Purpose

Library

Syntax

Indicates to the X Server that the client will be a direct access client.

Enhanced X-Windows Library (libXext.a)

#include <gai/adapter.h>

gAdapterPtr XDirectAdapterAccess (DisplayPtr, screenNumber, argc, argv)
Display * DisplayPtr,
int screenNumber,
int argc;
char argv;

Description
The XDirectAdapterAccess extension subroutine call indicates to the X Server that the
client will be a direct access client. The XDirectAdapterAccess extension subroutine
returns a gAdapterPtr. The argc and the argv parameters are used to pass command line
parameters and may or may not be of any use.

Parameters
argc

argv

DisplayPtr

screen Number

Return Values

Specifies the argument list.

Specifies the number of arguments.

Specifies the connection to the X Server.

Specifies the screen number.

NULL A NULL pointer will be returned if direct adapter access is not possible.

gAdapterPtr A pointer to the adapter structure in shared memory.

Error Code
BadAlloc

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Extensions 9-15

XDirectFontAccess

XDirectFontAccess Extension Subroutine

Purpose

Library

Syntax

Returns a structure that contains the shared memory key and the offset of each of the
necessary structures in shared memory.

Enhanced X-Windows Library (libXext.a)

#include <gai/font.h>

gFontPtr *XDirectFontAccess (DisplayPtr, XFontlD)
Display * DisplayPtr,
Font XFont!D;

Description
The XDirectFontAccess extension subroutine allows client programs to directly access
font structures in shared memory. Font files are mapped into shared memory when the
files are opened. The XDirectFontAccess extension subroutine returns a pointer to
these structures in shared memory.

The X Server and client must be local to perform any of the direct access functions.

Parameters
DisplayPtr

XFontlD

Return Values

Specifies the connection to the X Server.

Specifies the X Server font resource ID to be accessed directly.

NULL Indicates that Direct Font Access is not available for this adapter.

gFontPtr Indicates that Direct Font Access is available for this adapter.

Error Codes
Bad Access

Bad Font

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-16 User Interface Reference

XDirectWindowAccess

XDirectWindowAccess Extension Subroutine

Purpose

Library

Syntax

Causes the X Server to mark the specified window structure and return a shared memory
pointer.

Enhanced X-Windows Library (libXext.a)

#include <gai/wingeom.h>

gWingeomPtr XDirectWindowAccess (DisplayPtr, Window/D)
Display * DisplayPtr,
Drawable Windowf D;

Description
The XDirectWindowAccess extension subroutine creates a GAi window geometry resource
and returns a pointer to this structure in shared memory. The only attribute useful to a client
is the gsc_handle information which is passed back by the X Server. All other attributes are
set to the value of 0.

The X Server and client must be local in order to perform any of the direct access calls.

Parameters
DisplayPtr

Window/D

Return Value

Specifies the connection to the X Server.

Specifies the resource ID of the window to be accessed directly.

NULL Indicates that direct window access is not allowed.

Error Codes
Bad Drawable

BadAlloc

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-17

XDisablelnputDevice

XDisablelnputDevice Extension Subroutine

Purpose

Library

Syntax

Disables the specified input device.

Enhanced X-Windows Library (libXext.a)

XDisablelnputDevice(DisplayPtr, Device)
Display * DisplayPtr,
int Device;

Description
The XDisablelnputDevice extension subroutine disables the specified input device so that
the X Server cannot report events to it.

Parameters
Device

DisplayPtr

Error Code
AIXBadDevice

Specifies the input device.

Specifies the connection to the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-18 User Interface Reference

/

\

XDrawPolyMarker

XDrawPolyMarker Extension Subroutine

Purpose

Library

Syntax

Draws a single marker into the specified window with extended graphics context.

Enhanced X-Windows Library (libXext.a)

XDrawPolyMarker(DisplayPtr, Window/D, GraphicsContext, X, Y)
Display * DisplayPtr,
Window Window/D;
GC GraphicsContext;
int X, Y;

Description
The XDrawPolyMarker extension subroutine draws a single marker into the specified
window with extended graphics context. This extension subroutine is not affected by the tile
or stipple in the graphics context.

The XDrawPolyMarker extension subroutine uses the Function, PlaneMask, Foreground,
ClipXOrigin, and Clip YOrigin graphics context components.

Parameters
DisplayPtr

GraphicsContext

Window ID

x

y

Error Codes
Bad Drawable

BadGC

Bad Match

Implementation Specifics

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the window ID.

Specifies the x coordinate where the marker will be drawn.

Specifies the y coordinate where the marker will be drawn.

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Extensions 9-19

XDrawPolyMarkers

XDrawPolyMarkers Extension Subroutine

Purpose

Library

Syntax

Draws multiple markers in the specified window.

Enhanced X-Windows Library (libXext.a)

XDrawPolyMarkers(Disp/ayPtr, Window/D, GraphicsContext, Points, NumberPoints, Mode)
Display * DisplayPtr;
Window Window/D;
GC GraphicsContext;
XPoint *Points;
int NumberPoints;
int Mode;

Description
The XDrawPolyMarkers extension subroutine draws multiple markers in the specified
window. This extension subroutine uses the marker extended graphics context component.

The XDrawPolyMarkers extension subroutine draws multiple markers into the specified
window, but is not affected by the tile or stipple in the graphics context. The location of
individual polymarkers is specified by an array of XPoint structures. The
XDrawPolyMarkers extension subroutine draws the markers in the order listed in the array.

The XDrawPolyMarkers extension subroutine uses the function, plane_mask, foreground,
clip_x_origin, and clip_y_origin graphics context components.

Parameters
DisplayPtr Specifies the connection to the X Server.

GraphicsContext

Mode

NumberPoints

Points

Window/D

9-20 User Interface Reference

Specifies the graphics context.

Specifies the coordinate mode. This parameter indicates whether the
points are relative to the window origin or to the previous point. This
parameter can have the following values:

CoordModeOrigin

CoordModePrevious

Indicates that all points after the first are
relative to the window origin. The first point
is always relative to the window origin.

Indicates that all points after the first are
relative to the previous point.

Specifies the number of points in the array.

Specifies a pointer to an array of points.

Specifies the WindowlD.

(

Error Codes
Bad Drawable

BadGC

Bad Match

BadValue

Implementation Specifics

XDrawPolyMarkers

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Extensions 9-21

XESetCloseDisplay

XESetCloseDisplay Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when the XCloseDisplay subroutine is called.

Enhanced X-Windows Library (libXext.a)

int (*XESetCloseDisplay(Disp/ayPtr, Extension, Procedure))()
Display * DisplayPtr,
int extension;
int(* Procedure)();

Description
The XESetCloseDisplay extension subroutine defines a procedure to call when the
XCloseDisplay subroutine is called. This subroutine returns any previously defined
procedure, usually the value of NULL.

When the XCloseDisplay subroutine is called, it is called with the following syntax:

(*Procedure)(DisplayPtr, Codes);
Display *displayptr;
XExtCodes *codes;

Parameters
DisplayPtr

Extension

Procedure

Specifies the connection to the X-Server.

Specifies the extension number.

Specifies the subroutine to call when the display device is closed.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XCloseDisplay subroutine.

9-22 User Interface Reference

XESetCopyGC

XESetCopyGC Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when a graphics context (GC) is copied.

Enhanced X-Windows Library (libXext.a)

int (*XESetCopyGC(Oisp/ayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
int (*Procedure)();

Description
The XESetCopyGC extension subroutine defines a procedure to call whenever a GC is
copied. This procedure returns any previously defined procedure, usually the value of
NULL.

When a GC is copied, the subroutine is called with the following syntax:

(*Procedure)(DisplayPtr, GraphicsContext, Codes);
Display *DisplayPtr;
GraphicsContext GraphicsContext;
XExtCodes *Codes;

Parameters
DisplayPtr

Extension

Procedure

Specifies the display device.

Specifies the extension number.

Specifies the routine to call when a GC is copied.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-23

XESetCreateFont

XESetCreateFont Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when the XloadQueryFont subroutine is called.

Enhanced X-Windows Library (libXext.a)

int (*XESetCreateFont(DisplayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
int(* Procedure)();

Description
The XESetCreateFont extension subroutine defines a procedure to call when the
XloadQueryFont subroutine is called. This extension returns any previously defined
procedure, usually the value of NULL.

When the XLoadQueryFont subroutine is called, it is called with the following syntax:

(*Procedure)(DisplayPtr, FontStruct, Codes);
Display *DisplayPtr;
XFontStructure *FontStruct;
XExtCodes *Codes;

Parameters
DisplayPtr

Extension

Procedure

Specifies the display device.

Specifies an extension number.

Specifies a routine to call when a font is created.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XloadQueryFont subroutine.

9-24 User Interface Reference

\
!

XESetCreateGC

XESetCreateGC Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when a new graphics context is created.

Enhanced X-Windows Library (libXext.a)

int (*XESetCreateGC(DisplayPtr, Extension, Procedure))(}
Display * DisplayPtr,
int Extension;
int {*Procedure)(};

Description
The XESetCreateGC extension subroutine defines a procedure to call when a new GC is
created. It returns any previously defined procedure, usually the value NULL.

When a graphics context is created, the routine is called with the following syntax:

(*Procedure)(DisplayPtr, GraphicsContext, Codes);
Display *display;
GC graphics context;
XExtCodes *codes;

Parameters
DisplayPtr

Extension

Procedure

Specifies the display device.

Specifies the extension number.

Specifies the routine to call when a graphics context is created.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-25

XESetError

XESetError Extension Subroutine

Purpose

Library

Syntax

Suppresses the call to an external error handling routine and defines an alternative routine
for error handling.

Enhanced X-Windows Library (libXext.a)

int (*XESetError(DisplayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
int(* Procedure)();

Description
The XESetError extension subroutine suppresses the call to an external error handling
routine and defines an alternative routine for error handling. This extension subroutine
allows status to be returned on a call at the cost of the call being synchronous (though most
such routines are query operations and are typically programmed to be synchronous).

When the Xlib library detects a protocol error in the _XReply extension subroutine, it calls
the procedure with the following syntax:

int (*Procedure)(DisplayPtr, Error, Codes, ReturnCode);
Display *DisplayPtr;
xError *Error;
XExtCodes *Codes;
int *ReturnCode;

• The Error parameter is a pointer to the 32-byte wire format error.

• The Codes parameter is a pointer to the extension subroutine codes structure.

• The ReturnCode parameter is the return code returned by the _XReply extension
subroutine.

If the extension subroutine returns the value of zero, the error is not suppressed, and the
XError extension subroutine is called. If the extension subroutine returns a nonzero, the
error is suppressed and the _XReply extension subroutine returns the value in the
ReturnCode parameter.

Parameters
DisplayPtr Specifies a display device.

Extension Specifies an extension number.

Procedure Specifies a routine to call when an error code is received.

Implementation Specifics

9-26

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

(

XESetErrorString

XESetErrorString Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when an 1/0 error is detected.

Enhanced X-Windows Library (libXext.a)

char *(*XESetErrorString(Oisp/ayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
char *(*Procedure)();

Description
The XESetErrorString extension subroutine defines a procedure to call when an 1/0 error is
detected.

Parameters
DisplayPtr

Extension

Procedure

Specifies a display device.

Specifies an extension number.

Specifies a routine to call when an 1/0 error occurs.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-27

XESetEventToWire

XESetEventToWire Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when an event needs to be converted from the host format to the
wire format.

Enhanced X-Windows Library (libXext.a)

int (*XESetEventToWire(Disp/ayPtr, EventNumber, Procedure))()
Display * DisplayPtr,
int EventNumber,
int (*Procedure)();

Description
The XESetEventToWire extension subroutine defines a procedure to call when an event
needs to be converted from the host format (the XEvent structure found in the <X11/Xlib.h>
file) to the wire format (the xEvent structure found in the <X11/Xproto.h> header file). This
extension returns any previously defined procedure.

Note: The host event structure size cannot be larger than the size of the XEvent union of
structures.

When the Xlib library needs to convert an event from the host format to the wire format, the
routine is called with the following syntax:

(*Procedure)(DisplayPtr, Re, Event);
Display *DisplayPtr;
XEvent *Re;
xEvent *Event;

• The Re variable is a pointer to the host format event.

• The Event variable is a pointer to where the 32-byte wire event structure should be
stored.

In the XEvent structure, the type field should be the first element and the window field
should be the second element. The type field should be copied from the xEvent structure.
The other elements should be copied from the host format to the XEvent structure.

Parameters
DisplayPtr Specifies a display device.

EventNumber Specifies a protocol event number to replace with the conversion routine.

Procedure Specifies a routine to call when converting an event.

Implementation Specifics

9-28

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

XESetFlushGC

XESetFlushGC Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when a graphics context needs to be updated in the server.

Enhanced X-Windows Library (libXext.a)

int (*XESetFlushGC(Disp/ayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
char*(* Procedure)();

Description
The XESetFlushGC extension subroutine defines a procedure to call when a graphics
context in the cache needs to be updated in the server.

Parameters
DisplayPtr

Extension

Procedure

Specifies a display device.

Specifies an extension number.

Specifies a routine to call when the GC cache needs to be updated.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-29

XESetFreeFont

XESetFreeFont Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when the XFreeFont subroutine is called.

Enhanced X-Windows Library (libXext.a)

int *XESetFreeFont(DisplayPtr, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
int (*Procedure)();

Description
The XESetFreeFont extension subroutine defines a procedure to call when the XFreeFont
subroutine is called. This extension subroutine returns any previously defined procedure,
usually the value of NULL.

When the XFreeFont subroutine is called, the defined procedure is called with the following
syntax:

(*Procedure)(DisplayPtr, FontStructure, Codes);
Display *Display;
XFontStruct *FontStructure;
XExtCodes *Codes;

Parameters
DisplayPtr Specifies a display device.

Extension Specifies an extension number.

Procedure Specifies a routine to call when a font is freed.

Implementation Specifics

9-30

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

XESetFreeGC

XESetFreeGC Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when a graphics context is freed.

Enhanced X-Windows Library (libXext.a)

int (*XESetFreeGC(Oisp/ay, Extension, Procedure))()
Display * DisplayPtr,
int Extension;
int (*Procedure)();

Description
The XESetFreeGC extension subroutine defines a procedure to call when a graphics
context is freed. This extension subroutine returns any previously defined procedure, usually
the value of NULL.

When a graphics context is freed, the defined procedure is called with the following syntax:

(*Procedure)(Display, GraphicsContext, Codes)
Display *DisplayPtr;
GC GraphicsContext;
XExtCodes *Codes;

Parameters
DisplayPtr

Extension

Specifies the display device.

Specifies the extension number.

Procedure Specifies the routine to call when a graphics context is freed.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-31

XESetWireToEvent

XESetWireToEvent Extension Subroutine

Purpose

Library

Syntax

Defines a procedure to call when an event is to be converted from wire format to host
format.

Enhanced X-Windows Library (libXext.a)

int (*XESetWireToEvent(Disp/ayPtr, EventNumber, Procedure))()
Display * DisplayPtr,
int EventNumber,
Bool (*Procedure)();

Description
The XESetWireToEvent extension subroutine defines a procedure to call when an event is
to be converted from wire format (the xEvent structure in the <X11/Xproto.h> header file) to
host format (the XEvent structure in the <X11/Xlib.h> header file).

The XESetWireToEvent extension subroutine returns any previously defined procedure.

Note: The host event structure size cannot be bigger than the size of the XEvent union of
structures.

When the Xlib library needs to convert an event from wire format to natural host format, the
XESetWireToEvent extension subroutine is called with the following syntax:

Status(*Procedure)(DisplayPtr, Re, Event);
Display *DisplayPtr;
XEvent *Re;
xEvent Event;

• The Re parameter is a pointer to where the host format event should be stored. It is the
source (the information to be converted).

• The Event parameter is the 32-byte wire event structure. It is the destination (the structure
that needs to be filled).

In the XEvent structure, the type field must be the first field and the window field must be the
second field. Copy the type field with the type specified for the xEvent structure. Copy all
other fields from the xEvent structure (wire format) to the XEvent structure (host format).

Parameters
DisplayPtr Specifies a display device.

EventNumber Specifies a protocol event routine to replace with the conversion routine.

Procedure Specifies a routine to call when converting the event.

Implementation Specifics

9-32

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

(

\~

XEnablelnputDevice Extension Subroutine

Purpose

Library

Syntax

Enables event input.

Enhanced X-Windows Library (libXext.a)

int XEnablelnputDevice(Disp/ayPtr, Device)
Display *Display,
int Device;

Description

XEnablelnputDevice

The XEnablelnputDevice extension subroutine enables event input by allowing the X
Server to report events from the specified input device.

Parameters
Device

DisplayPtr

Error Code
AIXBadDevice

Specifies the input device.

Specifies the connection to the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Enhanced X-Windows Extensions 9-33

XFreeExtensionlist

XFreeExtensionlist Extension Subroutine

Purpose

Library

Syntax

Frees the memory allocated by the XlistExtensions extension subroutine.

Enhanced X-Windows Library (libXext.a)

XFreeExtension List(List)
char **List,

Description

Parameter

The XFreeExtensionlist extension subroutine frees the memory allocated by the
XlistExtensions extension subroutine.

List Specifies the allocated memory to be freed.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-34 User Interface Reference

XGetDevicelnputFocus

XGetDevicelnputFocus Extension Subroutine

Purpose

Library

Syntax

Returns the current dial or lighted programmable function key (LPFK) input focus state and
focus WindowlD.

Enhanced X-Windows Library (libXext.a)

XGetDevicelnputFocus(Disp/ayPtr, Device, FocusReturn, RevertToReturn)
Display * DisplayPtr,
int Device;
Window *Focus Return;
int *Revert To Return;

Description
The XGetDevicelnputFocus extension subroutine returns the current dial or LPFK input
focus state and focus WindowlD.

Parameters
Device

DisplayPtr

FocusReturn

RevertToReturn

Implementation Specifics

Specifies the input device. This parameter can have the following
values:

DEVDIAL

DEVLPFK

Specifies the connection to the X-Server.

Returns the focus WindowlD. This parameter can have the
following values:

None

PointerRoot

Returns the current focus state. This parameter can have the
following values:

RevertToNone

RevertToParent

RevertToPointerRoot

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XGetlnputFocus subroutine.

Enhanced X-Windows Extensions 9-35

XGetDialAttributes

XGetDialAttributes Extension Subroutine

Purpose

Library

Syntax

Returns the dial resolutions specified on the Dia/Mask parameter of the specified window.

Enhanced X-Windows Library (libXext.a)

XGetDialAttributes(DisplayPtr, Window/D, Dia/Mask, Resolution, Numbet)
Display * DisplayPtr,
Window Window/D;
unsigned long Dia/Mask;
char *Resolution;
int Number,

Description
The XGetDialAttributes extension subroutine returns the dial resolutions for the dials
specified by the Dia/Mask parameter of the specified window. Each bit of the Dia/Mask
parameter represents one possible dial. The resolution array should be as large as the
largest numbered dial plus 1.

For example, if the client program wanted to get the attributes for dials 0, 2, 5, and 7, it
would specify the following in the Dia/Mask parameter:

DialMaskO I Dia1Mask2 I Dia1Mask5 I Dia1Mask7

In addition, it would create the resolution array with 8 bytes.

When the XGetDialAttributes subroutine is completed, it returns data in bytes 0, 2, 5, and 7
of the resolution array. Each of these bytes contains a value between 2 and 8. These values
can be interpreted as follows:

Value in Array
2
3
4
5
6
7
8

9-36 User Interlace Reference

Points Per Revolution
4
8

16
32
64

128
256

c

Parameters
Dia/Mask

DisplayPtr

Number/D

Resolution

Window

XGetDialAttributes

Specifies the dial mask, which is the bitwise-inclusive OR of one or more
valid dial mask bits. Valid values for this parameter are the DialMaskO
through Dia1Mask23 values, and the AllDialsMask value.

Specifies the connection to the X-Server.

Specifies the number of entries in the resolution array.

Specifies an array of dial resolutions.

Specifies the WindowlD.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-37

XGetDialControl

XGetDialControl Extension Subroutine

Purpose

Library

Syntax

Returns the current dial resolutions for the dials specified by the Dia/Mask parameter.

Enhanced X-Windows Library (libXext.a)

XGetDialControl(DisplayPtr, Dia/mask, Resolution, Number,
Display * DisplayPtr;
int Dia/Mask;
char *Resolution;
int Number;

Description
The XGetDialControl extension subroutine returns the current dial resolutions for the dials
specified by the Dia/Mask parameter. Each bit of the Dia/Mask parameter representsone
possible dial. When the resolution array is allocated, 1 byte should be allocated for each dial.

Parameters
Dia/mask

DisplayPtr

Number

Resolution

Specifies the dial mask bits. Valid values for this parameter are the
DialMaskO through Dia1Mask23 values, and AllDialsMask value.

Specifies the connection to the X Server.

Specifies the number of entries in the resolution array.

Returns dial resolutions.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-38 User Interface Reference

(

\

XGetlpfkAttributes

XGetlpfkAttributes Extension Subroutine

Purpose

Library

Syntax

Retrieves the current setting for the individual keys of the lighted programmable function key
(LPFK) device for the specified window.

Enhanced X-Windows Library (libXext.a)

XGetlpfkAttributes(Disp/ayPtr, Window!D, LPFKMask, LightMask)
Display * DisplayPtr,
Window Window/D;
unsigned long * LPFKMask;
unsigned long LightMask;

Description
The XGetlpfkAttributes extension subroutine retrieves the current setting for the individual
keys of the LPFK device for the specified window.

Each bit in the LPFKMask and LightMask parameters represents one key. If a bit is set in the
LPFKMask parameter, the corresponding key is enabled for input. If the bit is not set, the
X-Server will not return any key press events for this key. If a bit is set in the LightMask
parameter, the key is lighted. If it is not set, the key is not lighted.

Parameters
DisplayPtr

LightMask

LPFKMask

Window/D

Specifies the connection to the X-Server.

Returns the LPFK mask, which is the bitwise-inclusive OR of one or more
valid LPFK mask bits. Valid values for this parameter are the LPFKMaskO
value, and the LPFKMask2 through LPFKMask31 values.

Returns the LPFK mask, which is the bitwise-inclusive OR of one or more
valid LPFK mask bits. Valid values for this parameter are the LPFKMaskO
value, and the LPFKMask2 through LPFKMask31 values.

Specifies the WindowlD.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The lighted programmable function key.

Enhanced X-Windows Extensions 9-39

XGetlpfkControl

XGetlpfkControl Extension Subroutine

Purpose

Library

Syntax

Retrieves the current settings for the individual keys of the lighted programmable function
key (LPFK) device.

Enhanced X-Windows Library (libXext.a)

XGetlpfkControl(Oisp/ayPtr, LPFKMask, LightMask)
Display * DisplayPtr;
unsigned long * LPFKMask;
unsigned long * LightMask;

Description
The XGetlpfkControl extension subroutine retrieves the current settings for the individual
keys of the lighted programmable function key (LPFK) device.

Each bit in the LPFKMask and LightMask parameters represents one key. If a bit is set in the
LPFKMask parameter, the corresponding key is enabled for input. If the bit is not set, the X
Server will not return any key press events for this key. If a bit is set in the LightMask
parameter, the key is lighted. If the bit is not set, the key is not lighted.

Parameters
DisplayPtr

LightMask

LPFKMask

Specifies the connection to the X Server.

Returns the current LPFK output mask setting. Valid values for this
parameter are the LPFKMaskO value, and the LPFKMask1 through
LPFKMask31 values.

Returns the current LPFK input mask setting. Valid values for this
parameter are the LPFKMaskO value, and the LPFKMask1 through
LPFKMask31 values.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

9-40 User Interface Reference

XListExtensions Extension Subroutine

Purpose

Library

C Syntax

Returns a list of all extensions supported by the server.

Enhanced X-Windows Library (libXext.a)

char **XlistExtensions(Disp/ayPtr, NumberExtensions)
Display * DisplayPtr,
int * NumberExtensions;

Description

XlistExtensions

The XlistExtensions extension subroutine returns a list of all extension subroutines
supported by the server.

Parameters
DisplayPtr

NumberExtensions

Return Values

Specifies the display device.

Returns the number of extension subroutines.

A list of all extension subroutines supported by the server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The ListExtensions protocol request.

Enhanced X-Windows Extensions 9-41

XlistlnputDevices

XListlnputDevices Extension Subroutine

Purpose

Library

Syntax

Obtains a list of devices currently supported by the X Server.

Enhanced X-Windows Library (libXext.a)

AIXlnputDevicelnfo *XlistlnputDevices(DisplayPtr, NumberDevices, Enabled)
Display * DisplayPtr;
int * NumberDevices;
Boo I *Enabled;

Description
The XlistlnputDevices extension subroutine obtains a list of devices currently supportedby
the X Server. This extension subroutine finds out which devices are available and returns a
pointer to a list of device structures that were allocated by the routine.

Use the XFree subroutine to free the memory after this function has completed.

The AIXlnputDevicelnfo data structure is the following:

Typedef struct {
short deviceID;
short state;
int size;
char *devinfo;

} AIXInputDeviceinfo;

device ID

devinfo

Specifies the device ID, which is defined in the <X11/XAIX.h> file.

Specifies a pointer to a device private structure. This could be the value of
NULL.

size Specifies the size of the devinfo parameter.

state Specifies the on or off state of the specified device.

Parameters
DisplayPtr Specifies the connection to the X Server.

Enabled Returns the number of currently enabled devices.

NumberDevices Returns the number of devices currently supported by the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XFree subroutine.

9-42 User Interface Reference

I
I~

XMaxRequestSize

XMaxRequestSize Extension Subroutine

Purpose

Library

Syntax

Returns the maximum request size supported by the server.

Enhanced X-Windows Library (libXext.a)

long XMaxRequestSize(Disp/ayPtry
Display * DisplayPtr

Description

Parameter

The XMaxRequestSize extension subroutine returns the maximum request size (4-byte
units) supported by the server. Single protocol requests to the server cannot be any longer
than this. Extension subroutines should be designed so that long protocol requestscan be
split up into smaller requests. The protocol guarantees the maximum request size to be no
smaller than 4096 units (16384 bytes).

DisplayPtr Specifies the connection to the X Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-43

XQueryAutoload

XQueryAutoload Extension Subroutine

Purpose

Library

Syntax

Returns the current event mode of the dial and the lighted programmable function key
(LPFK) devices.

Enhanced X-Windows Library (libXext.a)

XQueryAutoload (DisplayPtr, Onom
Display * DisplayPtr,
int *OnOff,

Description
The XQueryAutoload extension subroutine returns the current event mode of the dial and
the LPFK devices.

The LPFK devices and dials can operate in either the Autoload or EventReport mode. In
the Autoload mode, the X Server automatically installs the attributes to the specified
devices. In the EventReport mode, the client is responsible for setting the appropriate
attributes of the specified device.

This is analogous to the cursor automatically changing shape when crossing a window
boundary, when the cursor is set in the window structure through the
XSetWindowAttributes subroutine.

Parameters
DisplayPtr

On Off

Specifies the connection to the X Server.

Returns the event mode of the dial and LPFK device. This parameter can
have the following values:

AIXDeviceAuto Load Off Indicates that the EventReport mode is on.

AIXDeviceAutoloadOn Indicates that the Autoload mode is on.

These define values can be found in the <AIX.h/include> file.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9~4 User Interface Reference

(

\

XQueryCrossHairCursor

XQueryCrossHairCursor Extension Subroutine

Purpose

Library

Syntax

Returns information about the size and colors in a cross hair cursor for a particular display
device.

Enhanced X-Windows Library (libXext.a)

Status XQueryCrosshairCursor (DisplayPtr, MinWidth, MaxWidth, BestWidth, Colors,
Base)

Display * DisplayPtr,
int *MinWidth;
int *Max Width;
int * BestWidth;
int *Colors;
int *Base

Description
The XQueryCrossHairCursor extension subroutine returns the minimum width of the
vertical and horizontal lines, the maximum width, the best width of a cross hair cursor,
andthe number of colors in a cross hair cursor for a particular display device.

Parameters
BestWidth

Colors

DisplayPtr

Max Width

Min Width

Base

Return Values

Returns the best width of the vertical and horizontal cross hairs.

Returns the number of colors the hardware will support for a cross hair
cursor.

Specifies the connection to the X Server.

Returns the maximum width of the vertical and horizontal cross hairs.

Returns the minimum width of the vertical and horizontal cross hairs.

Returns whether the base is the screen base or the window base.

True Succeeds

False Fails

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-45

XQueryExtension

XQueryExtension Extension Subroutine

Purpose

Library

Syntax

Determines if the named extension subroutine is present.

Enhanced X-Windows Library (libXext.a)

Bool XQueryExtension(Disp/ayPtr, Name, MajorOpCode, FirstEvent, FirstError)
Display * DisplayPtr,
char *Name;
int * MajorOpCode;
int * FirstEvent,
int * FirstError,

Description
The XQueryExtension extension subroutine determines if the named extension subroutine
is present. Any minor opcode, request formats, the format of the events, and the format of
additional data in errors are specific to the extension subroutine.

Parameters
DisplayPtr Specifies the display device.

FirstError

FirstEvent

MajorOpcode

Name

Specifies the returned base error code for the named extension
subroutine or the value of 0.

Specifies the returned base event type code for the named extension
subroutine or the value of 0.

Specifies the returned major operation code for the named extension
subroutine or the value of 0.

Specifies the name of an extension subroutine in the form of a
case-sensitive ASCII string.

Implementation Specifics

9-46

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

(
\~

XQuerylnputDevice

XQuerylnputDevice Extension Subroutine

Purpose

Library

Syntax

Returns the current status of the specified device.

Enhanced X-Windows Library (libXext.a)

XQuerylnputDevice (DisplayPtr, Device, OnOf~
Display * DisplayPtr,
int Device;
int *OnOff,

Description
The XQuerylnputDevice extension subroutine returns the current status of the specified
device.

Parameters
Device

DisplayPtr

On Off

Specifies the device ID.

Specifies the connection to the X-Server.

Returns the on or off status of the specified device. This parameter can
have the following values:

False Indicates that the specified device is off.

True Indicates that the specified device is on.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-47

XRecolorMultiColorCursor

XRecolorMultiColorCursor Extension Subroutine

Purpose

Library

Syntax

Changes one or more of the colors in a multicolored cursor.

Enhanced X-Windows Library (libXext.a)

Status XRecolorMultiColorCursor (DisplayPtr, CursorResourcelD, Number, Colors)
Display * DisplayPtr,
Cursor CursorResourcelD;
INT32 Number,
XColor *Colors;

Description
The XRecolorMultiColorCursor extension subroutine changes one or more of the colors in
a multicolored cursor. The Number parameter indicates the number of colors to be changed.
The array of XColor structures specifies which colors are to be changed and what their new
values are.

The pixel value in each array element corresponds to the pixel value in the cursor. This pixel
value will be colored with the color specified by the rgb values in the same array element.
Typically, a pixel value of OxOO in a cursor is considered transparent.

Parameters
Colors

CursorResourcelD

DisplayPtr

Number

Error Codes
BadCursor

BadValue

Return Values

Specifies the array of XColor structures that indicate the pixel
values to be changed to new rgb values for these pixels.

Specifies the X Server resource ID of the cursor to be recolored
used for the cursor.

Specifies the connection to the X Server.

Specifies the number of colors in the Colors parameter.

True The XRecolorMultiColorCursor extension subroutine succeeds.

False The XRecolorMultiColorCursor extension subroutine fails.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

9-48 User Interface Reference

(

\

XRecolorMultiColorCursor

Related Information
The XColor data structure.

Enhanced X-Windows Extensions 9-49

XSelectDevicelnput

XSelectDevicelnput Extension Subroutine

Purpose

Library

Syntax

Requests the X-Server to report the events associated with the event masks from the
specified device.

Enhanced X-Windows Library (libXext.a)

XSelectDevicelnput(DisplayPtr, Device, Windowf D, ExtensionEventMask)
Display * DisplayPtr,
int Device;
Window Window/D;
unsigned long ExtensionEventMask;

Description
The XSelectDevicelnput extension subroutine requests the X-Server to report the events
associated with the event masks from the specified device.

With this extension subroutine, events are reported relative to a window. If a window is not
interested in an event, the events are reported to the closest ancestor window that is
interested.

A call to the XSelectDevicelnput extension subroutine overrides any previous call to the
XSelectDevicelnput extension subroutine for the same window from the same client, but
not for other clients. Different clients can select events on the same window. Events are
reported to all interested clients.

Parameters
Device Specifies the device ID.

9-50

DisplayPtr

ExtensionEventMask

Window/D

Badlmplementation

BadValue

BadWindow

User Interface Reference

Specifies the connection to the X-Server.

Specifies the extension event mask, which is the bitwise
inclusive OR of one or more of the valid extension event mask
bits. Valid values for this parameter are the following:

LPFKPressMask

AIXDeviceMapChangeMask

AIXButtonPressMask

AIXKeyPressMask

DialRotateMask

AIXFocusChangeMask

AIXButtonReleaseMask

AIXKeyReleaseMask

Specifies the WindowlD. Client applications interested in an
extension event for a particular window pass that WindowlD.

XSelectDevicelnput

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSelectDial extension subroutine.

The XSelectlnput subroutine.

Enhanced X-Windows Extensions 9-51

XSelectDiallnput

XSelectDiallnput Extension Subroutine

Purpose

Library

Syntax

Requests the server to report events associated with the event masks.

Enhanced X-Windows Library (libXext.a)

XSelectDiallnput(DisplayPtr, Window/D, ExtensionEventMask)
Display * DisplayPtr,
Window Window/D;
unsigned long ExtensionEventMask;

Description
The XSelectDiallnput extension subroutine requests the server to report events associated
with the event masks passed to the ExtensionEventMask parameter.

With this extension subroutine, events are reported relative to a window. If a window is not
interested in an event, the events are reported to the closest ancestor window that is
interested.

A call to the XSelectDiallnput extension subroutine overrides any previous call to the
XSelectDiallnput extension subroutine for the same window from the same client, but not
for other clients. Different clients can select events on the same window. Events are reported
to all interested clients.

Parameters
DisplayPtr Specifies the connection to the X-Server.

ExtensionEventMask

Window/D

Specifies the extension event mask, which is the bitwise
inclusive OR of one or more of the valid extension event mask
bits. Valid values for this parameter are the following:

AIXDeviceMapChangeMask DialRotateMask

AIXButtonPressMask

AIXFocusChangeMask

AIXButtonReleaseMask

Specifies the WindowlD. Client applications interested in an
extension event for a particular window pass that WindowlD.

Implementation Specifics

9-52

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

(

XSelectDial

XSelectDial Extension Subroutine

Purpose

Library

Syntax

Associates a dial with a WindowlD.

Enhanced X-Windows Library (libXext.a)

XSelectDial(Disp/ayPtr, Window!D, Dia/Mask)
Display * DisplayPtr,
Window Window/D;
unsigned long Dia/Mask;

Description
The XSelectDial extension subroutine associates a dial with a WindowlD. Typically, the
application would call the XSelectDiallnput extension subroutine to select the events in
which it is interested, and then the XSelectDial extension subroutine to select the specific
dials in which it is interested.

Parameters
Dia/Mask

DisplayPtr

Window/D

Specifies the dial mask, which is the bitwise-inclusive OR of one or more
valid dial mask bits. Valid values for this parameter are the DialMaskO
value.and the Dia1Mask1 through Dia1Mask23 values.

Specifies the connection to the X Server.

Specifies the WindowlD. Client applications interested in an extension event
for a particular window pass that WindowlD.

Error Codes
Badlmplementation

BadValue

BadWindow

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSelectDevicelnput extension subroutine, XSelectDiallnput extension subroutine.

The XSelectlnput subroutine.

Enhanced X-Windows Extensions 9-53

XSelectlpfk

XSelectlpfk Extension Subroutine

Purpose

Library

Selects specified keys from the lighted programmable function key (LPFK) device for input
and output for a specified window.

Enhanced X-Windows Library (libXext.a)

Syntax
Description

XSelectlpfk(DisplayPtr, Window!D, LPFKMask, LightMask)
Display * DisplayPtr,
Window Window/D;
unsigned long LPFKMask;
unsigned long LightMask;

The XSelectlpfk extension subroutine selects specified keys from the LPFK device for
input and output for a specified window. Typically, the XSelectlpfk extension subroutine
follows the XSelectlpfklnput extension subroutine.

Parameters
DisplayPtr

LightMask

LPFKMask

Window/D

Specifies the connection to the X-Server.

Allows the application to select the keys it is interested in for output. Valid
values for this parameter are the LPFKMaskO value, and the LPFKMask1
through LPFKMask31.

Allows the application to select the keys it is interested in for input. Valid
values for this parameter are the LPFKMaskO value, and the LPFKMask1
through LPFKMask31.

Specifies the WindowlD. Client applications interested in an extension event
for a particular window pass that WindowlD.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-54 User Interface Reference

(

\

XSelectlpfklnput

XSelectlpfklnput Extension Subroutine

Purpose

Library

Syntax

Requests the server to report events associated with the event masks for the lighted
programmable function key (LPFK) device.

Enhanced X-Windows Library (libXext.a)

XSelectlpfklnput(DisplayPtr, Window!D, ExtensionEventMask)
Display * DisplayPtr,
Window Window!D;
unsigned long ExtensionEventMask;

Description
The XSelectlpfklnput extension subroutine requests the server to report events associated
with the event masks for LPFK device.

With this subroutine, events are reported relative to a window. If a window is not interested in
an event, the events are reported to the closest ancestor window that is interested.

A call to the XSelectlpfklnput extension subroutine overrides any previous call to the
XSelectlpfklnput extension subroutine for the same window from the same client, but not
for other clients. Different clients can select events on the same window. Events are reported
to all interested clients.

Parameters
DisplayPtr

ExtensionEventMask

Window/D

Implementation Specifics

·Specifies the connection to the X Server.

Specifies the extension event mask, which is the bitwise-inclusive
OR of one or more of the valid extension event mask bits. Valid
values for this parameter are the following:

AIXDeviceMapChangeMask

AIXFocusChangeMask

AIXButtonReleaseMask

AIXKeyReleaseMask

LPFKPressMask

AIXButtonPressMask

AIXKeyPressMask

Specifies the window ID. Client applications interested in an
extension event for a particular window pass that window ID.

This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-55

XSetDevicelnputFocus

XSetDevicelnputFocus Extension Subroutine

Purpose

Library

Syntax

Sets the device input focus and the last focus-change time.

Enhanced X-Windows Library (libXext.a)

XSetDevicelnputFocus(Disp/ayPtr, Device, Focus, RevertTo, Time)
Display * DisplayPtr,
int Device;
Window Focus;
int RevertTo;
Time Time;

Description
The XSetDevicelnputFocus extension subroutine sets the device input focus and the last
focus-change time. The X Server generates the AIXFocusln and AIXFocusOut events.

This extension subroutine has no effect if the specified time is earlier than the current last
focus-change time or is later than the current X Server time. Otherwise, the last
focus-change time is set to the specified time and the CurrentTime value is replaced by the
current X Server time.

The specified focus window must be viewable at the time the XSetDevicelnputFocus
extension subroutine is called. Otherwise, a BadMatch error is generated.

Parameters
Device Specifies the input device. This parameter can have the following values:

9-56

DisplayPtr

Focus

DEVDIAL

DEVLPFK

Specifies the connection to the X Server.

Specifies the window for setting the input focus. This parameter can have
one of the following values:

None

PointerRoot

A WindowlD

Indicates that all dial and LPFK events are
discarded until a new focus window is set. In
this case, the RevertTo parameter is ignored.

Indicates that the focus window is the root
window of whatever screen contains the
pointer during each dial or LPFK event. In this
case, the RevertTo parameter is ignored.

Indicates that this window becomes the focus
window of dial or LPFK. If a generated dial or
LPFK event is normally reported to this
window or one of its inferiors, the event is still

User Interface Reference

Revert To

XSetDevicelnputFocus

reported normally. Otherwise, the event is
reported relative to the focus window.

Specifies the window the input focus reverts to if the window becomes
unviewable. If the focus window becomes unviewable later, the X Server
evaluates this parameter to determine the new focus window. This
parameter can have the following values:

RevertToNone

RevertToParent

RevertToPoi nterRoot

Indicates that the focus reverts to that value.
When the focus reverts, the X Server
generates the AIXFocusln and AIXFocusOut
events, but the last focus-change time is not
affected.

Indicates that the focus reverts to the parent
window (or the closest viewable ancestor
window), and the new RevertTo parameter
value is the RevertToNone value.

Indicates that the focus reverts to that value.
When the focus reverts, the X Server
generates the AIXFocusln and AIXFocusOut
events, but the last focus-change time is not
affected.

Time Specifies the time in a timestamp (in milliseconds) or the CurrentTime
value.

Error Codes
AIXBadDevice

Bad Match

BadValue

BadWindow

Implementation Specifics
This extension subroutine is part of AIXwindows Runtime Environment in AIXwindows
Environment/6000.

Related Information
The XSetlnputFocus subroutine.

The AIXFocusln event, AIXFocusOut event.

Enhanced X-Windows Extensions 9-57

XSetDialAttributes

XSetDialAttributes Extension Subroutine

Purpose

Library

Syntax

Sets dial resolution.

Enhanced X-Windows Library (libXext.a)

XSetDialAttributes(Disp/ayPtr, WindowlD, Dia/Mask, Resolution, Numbet)
Display * DisplayPtr,
Window WindowlD;
unsigned long Dia/Mask;
char *Resolution;
int Number,

Description
The XSetDialAttributes extension subroutine sets the dial resolution for a specified window
if the Autoload mode is set. Each bit of the Dia/Mask parameter represents one possible
dial. The resolution array must be as large as the largest numbered dial in the dial mask plus

1. Valid values for each byte of the array are 2 through 8 inclusive. This value n represents

2**n points per revolution.

For example, if the client program wants to set the attributes for dials 0, 2, 5, and 7, it
specifies the following in the Dia/Mask parameter:

DialMaskO I Dia1Mask2 I DialMaskS I Dia1Mask7

In addition, it creates the resolution array with 8 bytes. Each of these bytes would contain a
value between 2 and 8. These values can be interpreted as follows:

Value in Array
2
3
4
5
6
7
8

9-58 User Interface Reference

Points Per Revolution
4
8

16
32
64

128
256

(

Parameters
Dia/Mask

DisplayPtr

Number

Resolution

Window/D

Error Codes
AIXBadMode

Bad Value

BadWindow

XSetDialAttributes

Specifies the dial mask, which is· the bitwise-inclusive OR of one or more
valid dial mask bits. Valid values for this parameter are the DialMaskO
value.and the Dia1Mask1 through Dia1Mask23 values.

Specifies the connection to the X Server.

Specifies the number of the 1-bit in the Dia/Mask parameter.

Specifies an array of dial resolutions. For each byte in the array, valid values
for this parameter are 2 through 8.

Specifies the WindowlD.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-59

XSetDialControl

XSetDialControl Extension Subroutine

Purpose

Library

Syntax

Controls the global granularity of a dial input device.

Enhanced X-Windows Library (libXext.a)

XSetDialControl(DisplayPtr, Dia/mask, Resolution, Number)
Display * DisplayPtr,
Bool Dia/mask;
char *Resolution;
int Number,

Description
The XSetDialControl extension subroutine controls the global granularity of a dial input
device. This extension subroutine sets the dial granularity if the Autoload mode is off. The
X Server generates the AIXDeviceMappingNotify event to all clients.

Parameters
Dia/Mask

DisplayPtr

Number

Resolution

Error Codes
AIXBadMode

BadValue

Specifies the dial mask bits.

Specifies the connection to the X Server.

Specifies the number of the 1-bits in the Dia/Mask parameter.

Specifies an array of dial resolutions. For each byte in the array, valid values
for this parameter are 2 through 8.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Related Information
The XSetDialAttributes extension subroutine.

9-60 User Interface Reference

I

\

XSetlpfkAttributes

XSetlp,fkAttributes Extension Subroutine

Purpose

Library

Syntax

Selects the specific lighted programmable function keys (LPFK) available for input and
output.

Enhanced X-Windows Library (libXext.a)

XSetlpfkAttributes(Disp/ayPtr, Window/D, LPFKMask, LightMask)
Display * DisplayPtr;
Window Window/D;
unsigned long LPFKMask;
unsigned long LightMask;

Description
The XSetlpfkAttributes extension subroutine uses the LPFKMask and LightMask
parameters to select which of the keys are available for input and output when the
Autoload mode is on. Each bit in the mask represents one key. To receive input from the
key, the bit in the LPFKMask parameter should be set. To light the key, the bit in the
LightMask parameter should be set.

Thus, when the pointer enters the window specified in the Window/D parameter, the keys
specified by the LightMask parameter are turned on and the rest are turned off. The keys
specified by the LPFKMask parameter return events, and events from the rest are ignored.

Parameters
DisplayPtr

LightMask

LPFKMask

Window ID

Error Codes
Bad Value

BadWindow

Specifies the connection to the X Server.

Specifies the LPFK output mask, which is the bitwise-inclusive OR of one or
more valid LPFK mask bits. Valid values for this parameter are the
LPFKMaskO value, and the LPFKMask2 through LPFKMask31 values.

Specifies the LPFK input mask which is the bitwise-inclusive OR of one or
more valid LPFK mask bits. This indicates if the X Server reports the LPFK
keypress event to a client. Valid values for this parameter are the
LPFKMaskO value, and the LPFKMask2 through LPFKMask31 values.

Specifies the WindowlD.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-61

XSetlpfkAttributes

Related Information
The XGetlpfkAttributes extension subroutine, XGetlpfkControl extension subroutine.

(

9-62 User Interface Reference

XSetlpfkControl

XSetlpfkControl Extension Subroutine

Purpose

Library

Syntax

Changes the input and output of lighted programmable function keys (LPFK).

Enhanced X-Windows Library (libXext.a)

XSetlpfkControl(Oisp/ayPtr, LPFKMask, LightMask)
Display * DisplayPtr,
unsigned long LPFKMask;
unsigned long LightMask;

Description
The XSetlpfkControl extension subroutine changes the input and output of LPFKs. This
extension subroutine uses the LPFKMask and LightMask parameters to select which of the
keys are available for input and output when the Autoload mode is off. Each bit in the mask
represents one key. To receive input from the key, the bit in the LPFKMask parameter should
be set. To light the key, the bit in the LightMask parameter should be set. The server
generates AixDeviceMappingNotify events to all clients.

Parameters
DisplayPtr

LightMask

LPFKMask

Error Codes
AIXBadMode

BadValue

Specifies the connection to the X Server.

Specifies the LPFK output mask. Valid values for this parameter are the
LPFKMaskO value, and the LPFKMask2 through LPFKMask31 values.

Specifies the LPFK input mask. Valid values for this parameter are the
LPFKMaskO value, and the LPFKMask2 through LPFKMask31 values.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

Related Information
The XGetlpfkAttributes extension subroutine, XSetlpfkAttributes extension subroutine.

Enhanced X-Windows Extensions 9-63

XSetPolyMarker

XSetPolyMarker Extension Subroutine

Purpose

Library

Syntax

Sets the marker in the specified graphics context.

Enhanced X-Windows Library (libXext.a)

XSetPolyMarker(Oisp/ayPtr, GraphicsContext, Marker, X, Y)
Display * DisplayPtr;
GC GraphicsContext;
Pixmap Marker;
intX, Y;

Description
The XSetPolyMarker extension subroutine sets the marker in the specified graphics
context. The hotspot is used to associate a point within the marker to a point within a
window.

Parameters
DisplayPtr

GraphicsContext

Marker

x

y

Error Codes
BadAlloc

BadGC

Bad Match

Bad Pixmap

Specifies the connection to the X Server.

Specifies the graphics context.

Specifies the marker to set for the specified graphics context. Note that
the depth of Pixmap is the value of 1 .

Specifies the x coordinate where the x coordinate of the hotspot will be
placed. This hotspot is relative to the origin of the marker and must be
a point within the marker.

Specifies the y coordinate where the y coordinate of the hotspot will be
placed. This hotspot is relative to the origin of the marker and must be
a point within the marker.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

9-64 User Interface Reference

(

(

XStopAutoload

XStopAutoload Extension Subroutine

Purpose

Library

Syntax

Resets the EventReport mode of the dial and lighted programmable function key (LPFK) de
vices.

AIXwindows Library (libXext.a)

XStopAutoload(Display)
Display *Display,

Description

Parameter

The XStopAutoload extension subroutine resets the EventReport mode of the dial and LP
FK devices.

Display Specifies the connection to the X-Server.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Extensions 9-65

XinitExtension

XinitExtension Extension Subroutine

Purpose

Library

Syntax

Determines if the extension exists.

Enhanced X-Windows Library (libXext.a)

XExtCodes *XinitExtension(Disp/ay/D, Name)
Display * Display/D;
char *Name;

Description
The XinitExtension extension subroutine determines if the extension exists. Then, it
allocates storage for maintaining the information about the extension on the connection,
chains this onto the extension list for the connection and returns the information the stub
implementor needs to access the extension.

The extension number in the XExtCodes data structure is needed in the other calls that
follow. This extension number is unique only to a single connection.

Parameters
Display ID Specifies the ID of the display.

Name Specifies the name of the extension.

Return Value
NULL If the extension does not exist.

Implementation Specifics
This extension subroutine is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Related Information
The XExtCodes data structure.

9-66 User Interface Reference

/
\

(
\

Enhanced X-Windows Events

Enhanced X-Windows Events. 10-1

10-2 User Interface Reference

CirculateNotify Event

Purpose

CirculateNotify

Reports when a window is restacked.

Event Format
Event, Window. WINDOW
Place: {Top, Bottom}

Description
The CirculateNotify event is reported to clients selecting the StructureNotify mask on the
window and to clients selecting the SubstructureNotify mask on the parent window. This
event is generated when the window is restacked as a result of a CirculateWindow protocol
request.

Parameters
Event Specifies the window on which the event is generated.

Place Specifies the position of the window within the stack.This parameter can
have the following values:

Bottom

Top

Indicates that the window is placed below all its sibling
windows.

Indicates that the window is placed on top of all its sibling
windows.

Window Specifies the window to be restacked.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 1 ~3

CirculateRequest

CirculateRequest Event

Purpose
Reports when a CirculateWindow protocol request is begun by another client on a specified
window.

Event Format
Parent, Window: WINDOW
Place: {Top, Bottom}

Description
The CirculateRequest event is reported to the client selecting the SubstructureRedirect
mask on the parent window. This event is generated when a CirculateWindow protocol
request is issued on the Parent parameter, and a Window parameter needs to be restacked.

Parameters
Parent

Place

Window

Specifies the parent window.

Specifies the new position of the window in the stack.

Bottom

Top

Indicates that the window is placed below all its sibling
windows.

Indicates that the window is placed on top of all its sibling
windows.

Specifies the window to be restacked.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

1 0-4 User Interface Reference

(

Client Message

ClientMessage Event

Purpose
Reports when a client uses the SendEvent protocol request.

Event Format
Window. WINDOW
Type: ATOM
Format (8, 16, 32)
Data: LISToflNTS or LISToflNT16 or LISToflNT32

Description
The ClientMessage event is generated only when clients use the XSendEvent protocol
request.

Parameters
Data

Format

Type

Window

Represents data of twenty 8-bit values, ten 16-bit values, or five 32-bit
values, although particular Type parameter messages may not use all of
these values.

Specifies whether data should be in a list of 8-bit, 16-bit, or 32-bit quantities
so the server can byte-swap as necessary.

Specifies an atom indicating how the data is to be interpreted by the
receiving client. The server places no interpretation on the type or the data.

Specifies the window to which the event was sent.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-5

ColormapNotify

ColormapNotify Event

Purpose
Reports colormap status.

Event Format
Window. WINDOW
ColorMap: COLORMAP or None
New. BOOL
State: {Installed, Uninstalled}

Description
The ColormapNotify event is reported to clients selecting the ColormapChange mask on
the window. This event is generated with the value of True for the New parameter when the
colormap parameter of the window is changed. It is generated with the value of False for the
New parameter when the colormap of a window is installed or not installed. The State
parameter indicates whether the colormap is currently installed.

Parameters
Colormap Specifies the colormap that is changed, installed, or not installed. This

parameter can have the following values:

None Indicates that the Window parameter will no longer have the
associated COLORMAP Colormap parameter.

If the colormap is changed, installed, or not installed using some other
subroutine, the value for this parameter specifies the colormap.

New Specifies the prior status of a colormap for a specific window. This
parameter can have the following values:

State

Window

False Indicates that the colormap was installed or not installed.

True Indicates that the colormap was changed.

Specifies whether the colormap is installed or not installed.

Specifies the window whose associated colormap is changed, installed, or
not installed.

Implementation Specifics

10-6

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

User Interface Reference

/

\

ConfigureNotify Event

Purpose

ConfigureNotify

Reports changes in the state of the window.

Event Format
Event, Window. WINDOW
X, Y: INT16
Width, Height, BorderWidth: CARD16
AboveSibling: WINDOW or None
OverrideRedirect BOOL

Description
The ConfigureNotify event is reported to clients selecting the StructureNotify mask on the
window, and to clients selecting the SubstructureNotify mask on the parent window. It is
generated when a ConfigureWindow protocol request changes the state of the window.

Parameters
AboveSibling

BorderWidth

Event

Height

Override Redirect

Width

Window

x

y

Implementation Specifics

Specifies the position of the window among the sibling windows.
This parameter can have the value of None, which indicates that
the window is at the bottom of the stack with respect to its sibling
windows. Other values indicate that the window is immediately on
top of the specified sibling windows.

Specifies the width of the window border, in pixels.

Specifies the window on which the event is generated.

Specifies the inside height of the window, excluding the border.

This parameter is from the window's attributes.

Specifies the inside width of the window, excluding the border.

Specifies the window that was changed.

Specifies the position of the x coordinate of the upper-left outer
corner of the window relative to the origin of the new parent window.

Specifies the position of the y coordinate of the upper-left outer
corner of the window relative to the origin of the new parent window.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

Enhanced X-Windows Events 10-7

ConfigureRequest

ConfigureRequest Event

Purpose
Reports when a ConfigureWindow protocol request is begun by another client on any child
window of the specified window. Reported to the client with the SubstructureRedirect mask
selected.

Event Format
Parent, Window. Window
X, Y: INT16
Width, Height, BorderWidth: CARD16
Sibling: Window or None
StackMode: (Above, Below, Toplf, Bottomlf, Opposite)
ValueMask: BITMASK

Description
The ConfigureRequest event is reported to the client selecting the SubstructureRedirect
mask on the parent window. This event is generated when a ConfigureWindow protocol
request is issued by another client on the child window.

Parameters
BorderWidth Specifies the width of the border of the window in pixels. The value for this

parameter is taken from the current geometry of the window.

Height Specifies the height of the window in pixels. The value for this parameter is
taken from the current geometry of the window.

Parent Specifies the parent window.

Sibling Has the value of None unless otherwise specified in the ConfigureWindow
protocol request.

Stack Mode

ValueMask

x

Width

Window

y

Has the Above value unless otherwise specified in the ConfigureWindow
protocol request.

Specifies which components were specified in the request.

Specifies the x coordinate of the window. The value for this parameter is
taken from the current geometry of the window.

Specifies the width of the window in pixels. The value for this parameter is
taken from the current geometry of the window.

Specifies the window to be reconfigured.

Specifies the y coordinate of the window. The value for this parameter is
taken from the current geometry of the window.

Implementation Specifics

10-8

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

User Interface Reference

(
\

ConfigureRequest

Related Information
The XConfigureRequestEvent data structure, XLowerWindow subroutine,
XRestackWindows subroutine.

Enhanced X-Windows Events 1 0-9

Create Notify

CreateNotify Event

Purpose
Reports information about the creation of windows.

Event Format
Parent, Window. WINDOW
X, Y: INT16
Width, Height, BorderWidth: CARD16
OverrideRedirect BOOL

Description
The CreateNotify event is reported to clients selecting the SubstructureNotify mask on the
parent window. This event is generated whenever clients create new windows.

Parameters
BorderWidth

Height

Override Redirect

Parent

Width

Window

x

y

Implementation Specifics

Specifies the width of the border of the created window, in pixels.

Specifies the inside height (excluding the border) of the created
window. The value for this field is always nonzero.

Specifies whether the window overrides structure control facilities. If
this parameter is the value of True, window manager clients
normally should ignore the window.

Specifies the parent window of the created window.

Specifies the inside width (excluding the border) of the created
window. The value for this field is always nonzero.

Specifies the ID of the created window.

Specifies the x coordinate of the created window relative to the
origin of the parent window.

Specifies they coordinate of the created window relative to the
origin of the parent window.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

1 0-10 User Interface Reference

(
\~

Destroy Notify

DestroyNotify Event

Purpose
Reports information about which windows are deleted.

Event Format
Event, Window: WINDOW

Description
The DestroyNotify event is reported to clients selecting the StructureNotifyMask on the
window and to clients selecting the SubstructureNotifyMask on the parent window. This
event is generated whenever a client deletes a window.

For any given window, a DestroyNotify event is generated on all subhierarchies of the
window before it is generated on the window itself. The ordering among sibling windows and
across subhierarchies is not constrained.

Parameters
Event

Window

Specifies the window on which the event is generated.

Specifies the window to be deleted.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-11

Enter Notify

EnterNotify Event

Purpose
Reports if a pointer motion or window hierarchy change causes the pointer to move from one
window to another window.

Event Format
Root, Event WINDOW
Child: WINDOW or None
SameScreeh: BOOL
RootX, RootY, EventX, EventY: INT16
Mode: {Normal, Grab, Ungrab}
Detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
Focus: BOOL
State: SETofKEYBUTMASK
Time:TIMESTAMP

Description
The EnterNotify event is generated if a pointer motion or window hierarchy change causes
the pointer to move from one window to another. Only clients selecting the EnterWindow
value on a window receive the EnterNotify events. The position of the pointer reported in
the event is always the final position of the pointer, not the initial position of the pointer.

The EnterNotify event caused by a hierarchy change is generated after the hierarchy event
(the UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, or CirculateNotify event)
caused by that change. The ordering of this event with respect to the FocusOut,
VisibilityNotify, and Expose events is not constrained.

Normal events are generated according to the following scenarios:

• When the pointer moves from window A to window 8 and A is an inferior of B, an
EnterNotify event (with Detail set to the Inferior value) is generated on 8.

• When the pointer moves from window A to window Band Bis an inferior of A:

- An EnterNotify event (with Detail set to the Virtual value) is generated on each
window between A and B, exclusive (in that order).

- An EnterNotify event (with Detail set to the Ancestor value) is generated on B.

• When the pointer moves from window A to window B, with window C being their least
common ancestor:

- An EnterNotify event (with Detail set to the NonlinearVirtual value) is generated on
each window between C and 8, exclusive (in that order).

- An EnterNotify event (with Detail set to the Nonlinear value) is generated on B.

• When the pointer moves from window A to window 8 on different screens:

- If Bis not a root window, an EnterNotify event (with Detail set to the NonlinearVirtual
value) is generated on each window from the root of B through all child windows down
to but not including B (in that order).

- An EnterNotify event (with Detail set to the Nonlinear value) is generated on 8.

1 0-12 User Interface Reference

EnterNotify

Pseudo-motion modes of the EnterNotify events are generated when a pointer grab
activates or turns off:

• When a pointer grab activates (after any initial warp into a ConfineTo window, and before
a ButtonPress event that activates the grab) with window G being the grab-window for
the grab and window P being the window where the pointer is located, the EnterNotify
events (with Detail set to the NotifyGrab value) are generated as if thepointer suddenly
warped from its current position in window P to some position in window G. However, the
pointer does not warp and the pointer position is used as both the initial pointer position
and the final pointer position for the events.

• When a pointer grab turns off (after generating a ButtonRelease event that turns off the
grab) with window G being the grab-window for the grab and window P being the window
where the pointer is located, the EnterNotify events (with Detail set to the NotifyUngrab
value) are generated as if the pointer suddenly warped from some position in window G to
its current position in window P. However, the pointer does not warp and the current
pointer position is used as both the initial pointer position and the final pointer position for
the events.

Parameters
Child

Detail

Event

EventX

EventY

Focus

Mode

Specifies the child window containing the final pointer position. This
parameter can have the value of None, which indicates that no child
window contains the final pointer position. Otherwise, the value for this
parameter indicates the specified child window.

Specifies the Notify detail value. This parameter can have the
following values:

Ancestor
Inferior
NonlinearVirtual

Virtual
Nonlinear

Specifies the window on which the event is generated.

Specifies the x coordinate of the pointer relative to the origin of the
event window, if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Specifies they coordinate of the pointer relative to the origin of the
event window, if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Specifies whether the event window is related to the focus window.
This parameter can have the following values:

True

False

Indicates that the event window is the focus
window or a subhierarchy of the focus window.

Indicates that the event window is not the focus
window or an inferior of the focus window.

Specifies the mode of the EnterNotify event. This parameter can have
the following values:

Grab Indicates a pseudo-motion event.

Normal Indicates a normal pointer motion event.

Enhanced X-Windows Events 10-13

EnterNotify

Root

RootX

RootY

SameScreen

State

Time

Ungrab Indicates pseudo-motion events generated when
a grab turns off.

Specifies the root window of the screen on which the event occurred.

Specifies the x coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies the y coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies whether the event window is on the same screen as the root
window. This parameter can have the following values:

False

True

Indicates that the event and root windows are not
on the same screen.

Indicates that the event and root windows are on
the same screen.

Specifies the state of the pointer buttons and modifier keys
immediately prior to the event. This parameter can have values set to
the bitwise- inclusive OR to one or more of the button or modifier key
masks.

Specifies the time when the event was generated, in milliseconds.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-14 User Interface Reference

/

\

Expose

Expose Event

Purpose
Reports information about when the contents of window regions are visible.

Event Format
Window. WINDOW
X, Y, Width, Height CARD16
Count: CARD16

Description
The Expose event is reported to clients selecting the Exposure mask on the window. The
circumstances under which this event is generated are not as definite as those for other
events. This event can be generated when no valid contents are available for regions of a
window and:

• The regions are visible.

OR

• The regions are viewable and the server is (perhaps newly) maintaining a backing store
on the window.

OR

• The window is not viewable but the server is (perhaps newly) observing the Always or
WhenMapped attributes of the BackingStore parameter of the window.

This event, however, is not generated on the lnputOnly windows.

The window regions dissociate into a set of rectangles, and an Expose event is generated
for each rectangle. All regions exposed by a given action are guaranteed to be reported
contiguously.

All Expose events caused by a hierarchy change are generated after the hierarchy event
(the UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, or CirculateNotify event)
caused by that change.

All Expose events on a window are generated after any VisibilityNotify event on that
window, but it is not required that all Expose events on all windows be generated after all
Visibility events on all windows. The ordering of Expose events with respect to the
FocusOut, EnterNotify, and LeaveNotify events is not constrained.

Parameters
Count

Height

Specifies the number of the Expose events that are to follow. This
parameter can have the following types of values:

Nonzero

0

Indicates that at least the specified number of Expose
events (and possibly more) are to follow.

Indicates that no more Expose events follow for the
given window.

Specifies the height of the rectangle.

Enhanced X-Windows Events 10-15

Expose

Width

Window

x

y

Specifies the width of the rectangle.

Specifies the exposed window.

Specifies the x coordinate of the upper-left corner of the rectangle relative
to the origin of the window.

Specifies the y coordinate of the upper-left corner of the rectangle relative
to the origin of the window.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

1 0-16 User Interface Ref ere nee

I

\

Focusln

Focusln Event

Purpose
Reports input focus changes.

Event Format
Event WINDOW
Mode: {Normal, WhileGrabbed, Grab, Ungrab}
Detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual,
Pointer, PointerRoot, None}

Description
The Focusln events are reported to clients selecting the FocusChange mask on the
window. These events are generated when the input focus changes.

Events with the Normal and WhileGrabbed values are generated according to the following
scenarios:

• When the focus moves from window A to window Band A is an inferior of B with the
pointer in window P:

- A Focusln event (with the Detail set to the Inferior value) is generated on B.

- If Pis an inferior of B, but Pis neither A nor an inferior or an ancestor of A, a Focusln
event (with the Detail set to the Pointer value) is generated on each window from B
down to and including P (in order).

• When the focus moves from window A to window Band Bis an inferior of A with the
pointer in window P:

- A Focusln event (with the Detail set to the Virtual value) is generated on each window
from A to B, exclusive (in order).

- A Focusln event (with the Detail set to the Ancestor value) is generated on B.

• When the focus moves from window A to window B, with window C being their least
common ancestor and with the pointer in window P:

- A Focusln event (with the Detail set to the Virtual value) is generated on each window
from C to B, exclusive.

- A Focusln event (with the Detail set to the Nonlinear value) is generated on B.

- If Pis an inferior of B, a Focusln event (with the Detail set to the Pointer value) is
generated on each window below B down to and including P (in order).

• When the focus moves from window A to window Bon different screens, with the pointer
in window P:

- If Bis not a root window, a Focusln event (with the Detail set to the NonlinearVirtual
value) is generated on each window from the root of B down to but not including B (in
order).

- A Focusln event (with the Detail set to the Nonlinear value) is generated on 8.

Enhanced X-Windows Events 10-17

Focusln

- If Pis an inferior of B, a Focusln event (with the Detail set to the Pointer value) is
generated on each window below B down to and including P (in order).

• When the focus moves from window A to the NotifyPointerRoot value (indicating that
events are sent to the window under the pointer) or to the NotifyNone value (indicating
that events are discarded) with the pointer in window P:

- A Focusln event (with the Detail set to the PointerRoot or None value) is generated
on all root windows.

- If the new focus is the NotifyPointerRoot value, a Focusln event (with the Detail set
to the Pointer value) is generated on each window from the root of P down to and
including P (in order).

• When the focus moves from the NotifyPointerRoot or NotifyNone value to window A
with the pointer in window P:

- If A is not a root window, a Focusln event (with the Detail set to the NonlinearVirtual
value) is generated on each window from the root of A down to but not including A (in
order).

- A Focusln event (with the Detail set to the Nonlinear value) is generated on A.

- If Pis an inferior of A, a Focusln event (with the Detail set to the Pointer value) is
generated on each window below A down to and including P (in order).

• When the focus moves from the NotifyPointerRoot value to the NotifyNone value (or
vice versa) with the pointer in window P:

- A Focusln event (with the Detail set to the PointerRoot or None value) is generated
on all root windows.

- If the new focus is the NotifyPointerRoot value, a Focusln event (with the Detail set
to the Pointer value) is generated on each window from the root of P down to and
including P (in order).

When a keyboard grab activates before generating a KeyPress event that activates the
grab, with G being the grab-window for the grab and F being current focus window, Focusln
events with the Grab value are generated as if the focus were to change from Fto G.

When a keyboard grab deactivates after generating a KeyRelease event that deactivates
the grab, with window G being the grab-window for the grab and window F being the current
focus window, the Focusln events (with the Grab value) are generated as if the focus were
to change from G to F.

Parameters
Detail Specifies the Notify detail value depending on the event

mode. This parameter can have the following values:

Event

Mode

1 0-18 User Interface Reference

Ancestor
Inferior
NonlinearVirtual
PointerRoot

Virtual
Nonlinear
Pointer
None

Specifies the window on which the event is generated.

Specifies the position of the keyboard at the time the event
is generated. This parameter can have the following values:

/

\'4

Normal

Grab, Ungrab

WhileGrabbed

Implementation Specifics

Focusln

Indicates that the events
are generated with the
keyboard not grabbed.

Indicates that the events
are generated after a
keyboard grab activates or
turns off.

Indicates that the events
are generated with the
keyboard grabbed.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-19

FocusOut

FocusOut Event

Purpose
Reports input focus changes.

Event Format
Event WINDOW
Mode: {Normal, WhileGrabbed, Grab, Ungrab}
Detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual,
Pointer, PointerRoot, None}

Description
The FocusOut events are reported to clients selecting the FocusChange mask on the
window. These events are generated when the input focus changes.

The FocusOut events caused by a window unmap operation are generated after an
UnmapNotify event. Otherwise, the order of the FocusOut events with respect to the
EnterNotify, VisibilityNotify, and Expose events is not constrained.

Events with the Normal and WhileGrabbed values are generated according to the following
scenarios:

• When the focus moves from window A to window Band A is a subhierarchy of B with the
pointer in window P:

- A FocusOut event (with the Detail parameter set to the Ancestor value) is generated
on A.

- A FocusOut event (with the Detail set to Virtual) is generated on each window from A
to B, exclusive (in order).

• When the focus moves from window A to window Band Bis a subhierarchy of A with the
pointer in window P:

- If Pis a subhierarchy of A, but Pis neither a subhierarchy nor an ancestor window of
B, a FocusOut event (with the Detail parameter set to the Pointer value) is generated
on each window from Pup to but not including A (in order).

- A FocusOut event (with the Detail parameter set to the Inferior value) is generated on
A.

• When the focus moves from window A to window B with window C being their least
common ancestor and with the pointer in window P:

- If Pis a subhierarchy of A, a FocusOut event (with the Detail parameter set to the
Pointer value) is generated on each window from Pup to but not including A (in order).

- A FocusOut event (with the. Detail parameter set to the Nonlinear value) is generated
on A.

- A FocusOut event (with the Detail parameter set to the NonlinearVirtual value) is
generated on each window from A to C, exclusive (in order).

10-20 User Interface Reference

(

('<I

FocusOut

• When the focus moves from window A to window Bon different screens, with the pointer
in window P:

- If Pis a subhierarchy of A, a FocusOut event (with the Detail parameter set to the
Pointer value) is generated on each window from Pup to but not including A (in order).

- A FocusOut event (with the Detail parameter set to the Nonlinear value) is generated
on A.

- If A is not a root window, a FocusOut event (with the Detail parameter set to the
NonlinearVirtual value) is generated on each window above A up to and including its
root (in order).

• When the focus moves from window A to the PointerRoot value (indicating that events
are sent to the window under the pointer) or to the NotifyNone value (indicating that
events are discarded) with the pointer in window P:

- If Pis a subhierarchy of A, a FocusOut event (with the Detail parameter set to the
Pointer value) is generated on each window from Pup to but not including A (in order).

- A FocusOut event (with the Detail parameter set to the Nonlinear value) is generated
on A.

- If A is not a root window, a FocusOut event (with the Detail parameter set to the
NonlinearVirtual value) is generated on each window above A up to and including its
root (in order).

• When the focus moves from the NotifyPointerRoot or NotifyNone value to window A
with the pointer in window P:

- If the old focus is the NotifyPointerRoot, a FocusOut event (with the Detail
parameter set to the Pointer value) is generated on each window from the root of A
down to but not including A (in order).

- A FocusOut event (with the Detail parameter set to the PointerRoot or None value) is
generated on all root windows.

• When the focus moves from the PointerRoot value to the None value (or vice versa) with
the pointer in window P:

- If the old focus is the PointerRoot value, a FocusOut event (with the Detail set to
Pointer) is generated on each window from Pup to and including its root (in order).

- A FocusOut event (with the Detail set to PointerRoot or None) is generated on all
root windows.

When a keyboard grab activates before generating a KeyPress event that activates the
grab, with window G being the grab-window for the grab and window F being the current
focus window, the FocusOut events with the Grab value are generated as if the focus were
to change from window F to window G.

When a keyboard grab turns off after generating a KeyRelease event that turns off the grab,
with window G being the grab-window for the grab and window Fbeing the current focus
window, the FocusOut events with the Ungrab value are generated as if the focus were to
change from window G to window F.

Enhanced X-Windows Events 10-21

FocusOut

Parameters
Detail

Event

Mode

Implementation Specifics

Specifies the Notify detail value depending on the event
mode. This parameter can have the following values:

Ancestor
Inferior
NonlinearVirtual
PointerRoot

Virtual
Nonlinear
Pointer
None

Specifies the window on which the event is generated.

Specifies the position of the keyboard at the time the event
is generated. This parameter can have the following values:

Normal

Grab, Ungrab

WhileGrabbed

Indicates that the events
are generated with the
keyboard not grabbed.

Indicates that the events
are generated after a
keyboard grab activates or
turns off.

Indicates that the events
are generated with the
keyboard grabbed.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

1 0-22 User Interface Reference

(
~

GraphicsExposure

GraphicsExposure Event

Purpose
Reports when a destination region cannot be computed because the source region is
obscured or out of balance.

Event Format
Drawable: DRAWABLE
X, Y, Width, Height CARD16
Count CARD16
MajorOpCode: CARDS
MinorOpCode: CARD16

Description
The GraphicsExpose event is reported to clients selecting graphics-exposures in a
graphics context. This event is generated when a destination region cannot be computed
due to an obscured or out-of-bounds source region. All regions exposed by a given graphics
subroutine are guaranteed to be reported contiguously.

Parameters
Count

Drawable

Height

MajorOpCode

MinorOpCode

Width

x

Specifies the number of GraphicsExpose events to follow. This
parameter can have the following types of values:

Nonzero

0

Indicates that at least the specified number of
GraphicsExpose events (and possibly more) are to
follow.

Indicates that no more GraphicsExpose events are to
follow.

Specifies the drawable of the destination region on which the graphics
subroutine is to be performed.

Specifies the extent of the rectangle.

Specifies which graphics subroutine was initiated by the client. This field
can have the following values for the Core protocol request:

CopyArea Indicates that the client began the CopyArea protocol
request.

CopyPlane Indicates that the client began the CopyPlane
protocol request.

Specifies which graphics subroutine was began by the client. This
parameter, however, is not defined by the Core protocol request, and its
value in these cases is 0, although it may be used by extension
subroutines.

Specifies the extent of the rectangle.

Specifies the x coordinate of the upper left corner of the rectangle relative
to the origin of the Drawable.

Enhanced X-Windows Events 10-23

GraphicsExposure

y Specifies the x coordinate of the upper left corner of the rectangle relative
to the origin of the Drawable.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-24 User Interface Reference

(

\~

GravityNotify

GravityNotify Event

Purpose
Reports when a window is moved as a result of resizing the parent window.

Event Format
Event, Window. WINDOW
X, Y: INT16

Description
The GravityNotify event is reported to clients selecting the SubstructureNotify mask on
the parent and to clients selecting the StructureNotify mask on the window. This event is
generated when a window is moved as a result of resizing the parent window.

Parameters
Event

Window

x

y

Specifies the window on which the event is generated.

Specifies the window that was moved.

Specifies the x coordinate of the upper-left outer corner of the window
relative to the origin of the new parent window.

Specifies the y coordinate of the upper-left outer corner of the window
relative to the origin of the new parent window.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-25

KeyPress, ...

KeyPress, KeyRelease, ButtonPress, ButtonRelease, or
MotionNotify Events

Purpose
Reports when a key or button changes state or when the pointer moves.

Event Format
Root, Event WINDOW
Child: WINDOW or None
SameScreen: BOOL
RootX, RootY, EventX, EventY: INT16
Detail: <See below>
State: SETofKEYBUTMASK
Time: TIMESTAMP

Description
The KeyPress and KeyRelease events are generated when a key changes state. The
KeyPress and KeyRelease events are generated for all keys, even those mapped to
modifier bits. These events are reported to clients selecting the KeyPress or KeyRelease
mask on the window.

The ButtonPress and ButtonRelease events are generated when a button changes state.
These events are reported to clients selecting the ButtonPress or ButtonRelease mask on
the window.

The MotionNotify events are generated when the pointer moves and the pointer motion
begins and ends in the window. The granularity of the MotionNotify events is not
guaranteed, but a client selecting this event type is guaranteed to receive at least one event
when the pointer moves and then rests. To receive the MotionNotify events, one or more of
the following masks must be selected on the window:

• The Button (1-5) Motion mask, which indicates that the MotionNotify event is reported
only when one or more of the specified buttons is pressed.

• The ButtonMotion mask, which indicates that the MotionNotify event is reported only
when at least one button is pressed.

• The PointerMotion mask, which indicates that the MotionNotify event is reported
independent of the state of the pointer buttons.

• The PointerMotionHint mask, which indicates that only one MotionNotify event (with
the Hint detail value) can be reported for the event window until the key or button state
changes, or the pointer leaves the event window, or the client initiates the QueryPointer
or GetMotionEvents protocol request.

For all these events, the source of the event is the window in which the pointer is located.
The server finds the window to which the event normally is reported (the event window) by
searching the hierarchy (beginning with the source window). The event window is the
firstwindow on which any client has selected interest in the event, if no other window
prohibitsevent generation by including the event type in its DoNotPropagate mask. The
actual window used for reporting can be modified by active grabs, and, in the case of
keyboard events, by the focus window. ~

1 0-26 User Interface Reference

Parameters
Child

Detail

Event

EventX

EventY

Root

RootX

RootY

SameScreen

State

KeyPress, ...

Specifies whether the source window is a subhierarchy of the event
window. This parameter can have the value of None, which indicates
that the source window is not a subhierarchy of the event window.
Otherwise, the value for the Child parameter is set to the child of the
event window that is the source window or its ancestor.

Specifies the detail corresponding to the event selected. This
parametercan have one of the following names, depending on the
event type selected:

Button

Hint

Keycode

Specifies the pointer button that changed state
for the ButtonPress and ButtonRelease
events. This parameter can have the Button1,
the Button2, the Button3, the Button4, or the
Buttons value.

Specifies the detail for the MotionNotify event.
This parameter can have the NotifyNormal or
the NotifyHint value.

Specifies the detail for the KeyPress or the
KeyRelease events. This parameter is set to a
number that represents a physical key on the
keyboard.

Specifies the window on which the event is generated.

Specifies the x coordinate of the pointer relative to the origin of the
event window if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Specifies the y coordinate of the pointer relative to the origin of the
event window if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Specifies the root window of the source window.

Specifies the x coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies the y coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies whether the event window is on the same screen as the root
window. This parameter can have the following values:

False

True

Indicates that the event and root windows are not
on the same screen.

Indicates that the event and root windows are on
the same screen.

Specifies the state of the pointer buttons and modifier keys
immediately prior to the event. This parameter has the value of the

Enhanced X-Windows Events 10-27

KeyPress, ...

Time

bitwise-inclusive OR of one or more of the button or modifier key
masks.

Specifies the time the event is generated, in miiliseconds.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000. ·

1 0-28 User Interface Reference

I

i
~

KeymapNotify

KeymapNotify Event

Purpose
Reports information about changes in the keyboard state.

Event Format
Keys: LISTofCARD8

Description

Parameter

The KeymapNotify event is reported to clients selecting the KeymapStateMask on a
window. This event is generated immediately after every EnterNotify and Focusln events.

Keys Specifies the bit vector of the keyboard. Each bit set to the value of 1
indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from the value of 0) contains the bits for
keys 8N to 8N + 7 with the least significant bit in the byte representing key
8N.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-29

Leave Notify

LeaveNotify Event

Purpose
Reports if a pointer motion or window hierarchy change causes the pointer to move from one
window to another window.

Event Format
Root, Event WINDOW
Child: WINDOW or None
SameScreen: BOOL
RootX, RootY, EventX, EventY: INT16
Mode: {Normal, Grab, Ungrab}
Detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
Focus: BOOL
State: SETofKEVBUTMASK
Time:TIMESTAMP

Description
The LeaveNotify event is generated if a pointer motion or window hierarchy change causes
the pointer to move from one window to another. Only clients selecting the LeaveWindow
mask on a window receive the LeaveNotify events. The position of the pointer reported in
the event is always the final position of the pointer, not the initial position of the pointer.

The LeaveNotify event caused by a hierarchy change is generated after the hierarchy event
(the UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, CirculateNotify hierarchy
event) caused by that change. The ordering of this event with respect to the FocusOut,
VisibilityNotify, and Expose events is not constrained.

Normal events are generated according to the following scenarios:

• When the pointer moves from window A to window 8 and A is an inferior of 8:

- A LeaveNotify event (with the Detail parameter of the Ancestor value) is generated
on A.

- A LeaveNotify event (with the Detail parameter of the Virtual value) is generated on
each window between A and 8, exclusive (in that order).

• When the pointer moves from window A to window 8 and 8 is an inferior of A:

- A LeaveNotify event (with the Detail parameter of the Inferior value) is generated on
A.

• When the pointer moves from window A to window 8 with window C being their least
common ancestor:

- A LeaveNotify event (with the Detail parameter of the Nonlinear value) is generated
on A.

- A LeaveNotify event (with the Detail parameter of the NonlinearVirtual value) is
generated on each window between A and C, exclusive (in that order).

1 0-30 User Interface Reference

Leave Notify

• When the pointer moves from window A to window Bon different screens:

- If A is not a root window, a LeaveNotify event (with the Detail parameter of the
NonlinearVirtual value) is generated on each window above A up to and including its
root (in that order).

- A LeaveNotify event (with the Detail parameter of the Nonlinear value) is generated
on A.

Pseudo-motion modes of the LeaveNotify events are generated when a pointer grab
activates or turns off:

• When a pointer grab activates (after any initial warp into a ConfineTo window and before
a ButtonPress event that activates the grab) with window G being the grab-window for
the grab and window P being the window where the pointer is located, the LeaveNotify
events (with the Mode Grab) are generated as if the pointer suddenly warped from its
current position in window P to some position in window G. However, the pointer does not
warp and the pointer position is used as both the initial pointer position and the final
pointer position for the events.

• When a pointer grab turns off {after generating a ButtonRelease event that turns off the
grab) with window G being the grab-window for the grab and window P being the window
where the pointer is located, the LeaveNotify events (with the Mode parameterof the
Ungrab value) are generated as if the pointer suddenly warped from some position in
window G to its current position in window P. However, the pointer does not warp and the
current pointer position is used as both the initial pointer position and the final pointer
position for the events.

Parameters
Child

Detail

Event

EventX

EventY

Specifies the child window containing the final pointer position. This
parameter can have the value of None, which indicates that no child
window contains the final pointer position. Otherwise, the value for this
parameter indicates the specified child window.

Specifies the Notify detail value. This parameter can have the
following values:

Ancestor
Inferior
NotifyNonli near

Virtual
Nonlinear

Specifies the window on which the event is generated.

Specifies the x coordinate of the pointer relative to the origin of the
event window, if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Specifies the y coordinate of the pointer relative to the origin of the
event window, if the event window is on the same screen as the root
window. Otherwise, this parameter is the value of 0.

Enhanced X-Windows Events 10-31

Leave Notify

Focus

Mode

Root

RootX

RootY

SameScreen

State

Time

Specifies whether the event window is related to the focus window.
This parameter can have the following values:

True

False

Indicates that the event window is the focus
window or a subhierarchy of the focus window.

Indicates that the event window is not the focus
window or a subhierarchy of the focus window.

Specifies the mode of the LeaveNotify event. This parameter can
have the following values:

Grab

Normal

Ungrab

Indicates a pseudo-motion event.

Indicates a normal pointer motion event.

Indicates pseudo-motion events generated when
a grab turns off.

Specifies the root window of the screen on which the event occurred.

Specifies the x coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies they coordinate of the pointer relative to the origin of the root
window at the time of the event.

Specifies whether the event window is on the same screen as the root
window. This parameter can have the following values:

False

True

Indicates that the event and root windows are not
on the same screen.

Indicates that the event and root windows are on
the same screen.

Specifies the state of the pointer buttons and modifier keys
immediately prior to the event. This parameter can have values set to
the bitwise-inclusive OR or to one or more of the button or modifier key
masks.

Specifies the time when the event was generated, in milliseconds.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-32 User Interface Reference

I

~

Map Notify

MapNotify Event

Purpose
Reports information about which windows are mapped.

Event Format
Event, Window: WINDOW
OverrideRedirect BOOL

Description
The MapNotify event is reported to clients selecting the StructureNotifyMask on the
window and to clients selecting the SubstructureNotifyMask on the parent window. This
event is generated when the window changes from an unmapped state to a mapped state.

Parameters
Event

Override Redirect

Window

Implementation Specifics

Specifies the window on which the event is generated.

Specifies whether the window overrides structure control facilities.
Clients normally should ignore the window if this parameter is the
value of True.

Specifies the window that was mapped.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-33

MapRequest

MapRequest Event

Purpose
Reports when MapWindow protocol requests are called by other clients.

Event Format
Parent, Window. WINDOW

Description
The MapRequest event is reported to the client selecting the SubstructureRedirectMask
on the parent window. This event is generated when a MapWindow protocol request is
issued on an unmapped window with the OverrideRedirect parameter set to thevalue of
False.

Parameters
Parent

Window

Specifies the parent window.

Specifies the window to be mapped.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-34 User Interface Reference

MappingNotify Event

Purpose

Mapping Notify

Reports mapping changes.

Event Format
Request {Modifier, Keyboard, Pointer}
FirstKeycode, Count CARDS

Description
The MappingNotify event is sent to all clients. No mechanism exists to disengage this
event.

Parameters
Count

FirstKeycode

Request

Implementation Specifics

Specifies the number of keyboards altered. This parameter is set
only if the value for the Request parameter is the Keyboard value.

Indicates the range of the altered keycode. This parameter is set
only if the value for the Request parameter is the Keyboard value.

Specifies the kind of mapping change that occurred. This parameter
can have the following values:

Keyboard

Modifier

Pointer

Indicates that the
ChangeKeyboardMapping protocol
request was successful.

Indicates that the SetModifierMapping
protocol request was successful.

Indicates that the SetPointerMapping
protocol request was successful.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenU6000.

Related Information
The SetModifierMapping protocol request, ChangeKeyboardMapping protocol request,
SetPointerMapping protocol request.

Enhanced X-Windows Events 10-35

NoExposure

NoExposure Event

Purpose
Reports whenever no GraphicsExpose event is produced, where one may have been
produced by a graphics subroutine.

Event Format
Drawable: DRAWABLE
MajorOpCode: CARDS
MinorOpCode: CARD16

Description
The NoExposure event is generated whenever no GraphicsExpose event is produced,
where one may have been produced by a graphics subroutine. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

Parameters
Drawable

MajorOpCode

MinorOpCode

Specifies the drawable of the destination region on which the graphics
subroutine is to be performed.

Specifies which graphics subroutine was initiated by the client. This
parameter can have the following values for the core protocol request:

CopyArea Indicates that the client initiated the CopyArea
protocol request.

CopyPlane Indicates that the client initiated the CopyPlane
protocol request.

Specifies which graphics subroutine was initiated by the client. This
parameter, however, is not defined by the Core protocol request, and in
these cases the value is 0.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-36 User Interface Reference

PropertyNotify Event

Purpose

Property Notify

Reports information about property changes for a specified window.

Event Format
Window. WINDOW
Atom: ATOM
State: {NewValue, Delete}
Time: TIMESTAMP

Description
The PropertyNotify event is reported to clients selecting the PropertyChange mask on the
window. This event is generated when a property of the window is changed by the
ChangeProperty, DeleteProperty, GetProperty, or RotateProperties protocol request.

Parameters
Atom

State

Time

Window

Implementation Specifics

Specifies the atom of the property and indicates which property
was changed or selected.

Specifies whether the property was changed to a new value or
was deleted. This parameter can have the following values:

Deleted

NewValue

Indicates that a property of the
window was deleted using the
DeleteProperty protocol request or, if
the Delete parameter is the value of
True, by using the GetProperty
protocol request.

Indicates that a property of the
window was changed (or all or part of
a property was replaced with identical
data) using the ChangeProperty or
RotateProperties protocol request
even when adding zero-length data or
when replacing all or part of a
property with identical data.

Specifies the server time when the property was changed.

Specifies the window for which the associated property was
changed.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-37

ReparentNotify

ReparentNotify Event

Purpose
Reports when a window is re-parented.

Event Format
Event, Window, Parent WINDOW
X, Y: INT16
OverrideRedirect BOOL

Description
The ReparentNotify event is reported to clients selecting the SubstructureNotify mask on
the old or the new parent window and to clients selecting the StructureNotify mask onthe
window. This event is generated wh~n the window is re-parented.

Parameters
Event

OverrideRedirect

Parent

Window

x

y

Implementation Specifics

Specifies the window on which the event is generated.

Is the flag specified in the window attributes.

Specifies the new parent window.

Specifies the window that was re-parented.

Specifies the x coordinate of the upper left corner of the
re-parented window relative to the origin of the new parent
window.

Specifies the y coordinate of the upper left corner of the
re-parented window relative to the origin of the new parent
window.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
EnvironmenV6000.

10-38 User Interface Reference

I

I
\~

ResizeRequest Event

Purpose

Resize Request

Reports when another client attempts to change the size of a window.

Event Format
Window. WINDOW
Width, Height CARD16

Description
The ResizeRequest event is reported to the client selecting the ResizeRedirect mask on
the window. This event is generated whenever another client attempts to change the size of
the specified window by using the ConfigureWindow protocol request.

Parameters
Height

Width

Window

Implementation Specifics

Specifies the inside height (excluding the border) of the window.

Specifies the inside width (excluding the border) of the window.

Specifies the window to be resized.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-39

Selection Clear

SelectionClear Event

Purpose
Reports when a new owner is being defined by the SetSelectionOwner protocol request.

Event Format
Owner. Window
Selection: ATOM
Time: TIMESTAMP

Description
The SelectionClear event is reported to the current owner of a selection. This event is
generated whenever a client initiates the SetSelectionOwner protocol request. This event is
generated on the window losing ownership of the selection to a new owner.

Parameters
Owner

Selection

Time

Specifies the window that is specified by the current owner in its initiation of
the SetSelectionOwner protocol request.

Specifies the selection atom.

Specifies the last change time recorded for the selection.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

10-40 User Interface Reference

Selection Notify

SelectionNotify Event

Purpose
Reports in response to a ConvertSelection protocol request when there is no owner for the
selection, or to the SendEvent protocol request when there is an owner.

Event Format
Requestor. WINDOW
Selection, Target ATOM
Property. ATOM or None
Time: TIMESTAMP or CurrentTime

Description
The SelectionNotify event is generated by the server in response to a ConvertSelection
protocol request when there is no owner for the selection. If there is an owner, this event
should be generated with the SendEvent protocol request.

The owner of a selection should send this event to a requester when a selection is converted
and stored as a property, or when a selection conversion cannot be performed, indicated by
the Property parameter of the value of None.

Parameters
Property

Requestor

Selection

Target

Time

Specifies the atom that indicates which property the result was stored on. If
the conversion could not be performed, this parameter is set to the value of
None.

Specifies the window associated with the requester of the selection.

Specifies the atom that indicates the selection.

Specifies the atom that indicates the converted type.

Specifies the time the conversion took place.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-41

Selection Request

SelectionRequest Event

Purpose
Reports whenever a client requests a selection conversion by initiating the
ConvertSelection protocol request and the specified selection is owned by a window.

Event Format
Owner. WINDOW
Selection: ATOM
Target ATOM
Property. ATOM or None
Requestor. WINDOW
Time: TIMESTAMP or CurrentTime

Description
The SelectionRequest event is reported to the owner of a selection. This event is
generated whenever a client issues a ConvertSelection protocol request.

The client who owns the selection should do the following:

• Convert the selection based on the atom specified in the Target parameter.

• If a property is specified, store the result as that property on the requester window and
send a SelectionNotify event to the requester using the SendEvent protocol request
with an empty event mask. (That is, the event should be sent to the creator of the
requester window.)

• If no property is specified (that is, the Property parameter is the value of None), choose a
property name, store the results as that property on the requester window and send
aSelectionNotify event giving the actual name.

• If the selection cannot be converted as requested, send a SelectionNotify event with the
Property parameter set to the value of None.

Parameters
Owner

Property

Requestor

Selection

Target

Time

Specifies the window owning the selection. This parameter is set to the
window that is specified by the current owner in its initiation of the
SetSelectionOwner protocol request.

Specifies the property associated with the window.

Specifies the window requesting the selection.

Specifies the atom that names the selection.

Specifies the atom that indicates the specified type of the selection.

Specifies the time the conversion took place.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environ ment/6000.

10-42 User Interface Reference

UnmapNotify Event

Purpose

UnmapNotify

Reports when a window changes from a mapped state to an unmapped state.

Event Format
Event, Window. WINDOW
FromConfigure: BOOL

Description
The UnmapNotify event is reported to clients selecting the StructureNotify mask on the
window and to clients selecting the SubstructureNotify mask on the parent window. This
event is generated when the window changes from a mapped state to an unmapped state.

Parameters
Event

FromConfigure

Window

Implementation Specifics

Specifies the window on which the event is generated.

Set to the value of True if the event was generated as a result of
resizing the parent of a window when the window itself had a
WindowGravity parameter of the Unmap value.

Specifies the window that is unmapped.

This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

Enhanced X-Windows Events 10-43

VisibilityNotify

VisibilityNotify Event

Purpose
Reports whenever there is a change in the visibility of a specified window.

Event Format
Window. WINDOW
State: {Unobscured, PartiallyObscured, FullyObscured}

Description
The VisibilityNotify event is reported to clients selecting the VisibilityChange mask on the
window. This event is generated whenever the visibility of a specified window changesstate.
However, it is never generated on the lnputOnly windows.

The VisibilityNotify events caused by a hierarchy change are generated after the hierarchy
event (the UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, or CirculateNotify
hierarchy event) that caused the change.

The VisibilityNotify events on a window are generated before the Expose events on
thatwindow, but not all VisibilityNotify events on all windows must be generated before all
Expose events on all windows. The order of the VisibilityNotify events with respect to the
FocusOut, EnterNotify, and LeaveNotify events is not constrained.

Parameters
State Specifies the visibility state of the window. All subwindows of a window are

ignored when determining the visibility state of the window. This parameter
can have the following values:

Window

FullyObscured Indicates that the window changed state from
viewable and completely unobscured, viewable and
partially obscured, or not viewable to viewable and
fully obscured.

PartiallyObscured Indicates that the window changed state from
viewable and completely unobscured or not viewable
to viewable and partially obscured.

Unobscured Indicates that the window changed state from partially
obscured, fully oqscured, or notviewable to viewable
and completely unobscured.

Specifies the window whose visibility state changes.

Implementation Specifics
This protocol event is part of AIXwindows Run Time Environment in AIXwindows
Environment/6000.

1 0~4 User Interface Reference

Curses Subroutine Library

Curses Subroutines library 11-1

11-2 User Interface Reference

(
\

Curses

Curses Subroutine Library

Purpose

Library

Syntax

Controls cursor movement and windowing.

Curses Library (libcurses.a)

#include <Curses.h>
#include <term.h>

Description
The curses subroutine library allows you to manipulate data structures called windows,
which can also be thought of as two-dimensional arrays of characters representing all or
part of a screen. A default window called stdscr is supplied, and other windows can be
created using the curses library newwin routine. Routine names which begin with the letter
w refer to windows. For example, wsetscrreg. Routine names which begin with m_ refer to
macros. The macros perform the same function as the routines. For example, m_move.

minicurses is a sub-set of the full curses subroutine library. It allows you to perform screen
optimization programs, but it does not allow you to issue windowing or input functions.
minicurses routines are marked with an asterisk(*).

For ease of use, the curses routines have been separated by function:

• Initialization Routines
• Option Setting Routines
• Terminal Mode Setting Routines
• Window Manipulation Routines
• Displaying Output to the Terminal Routines
• Writing on Window Structures Routines

- Moving the Cursor
- Writing One Character
- Writing a String
- Clearing Areas of the Screen
- Inserting and Deleting Text
- Formatted Output
- Input from a Window
- Input from the Terminal

• Video Attributes Routines
- Bells and Flashing Lights

• Portability Functions Routines
• Cursor Movement Routine
• Miscellaneous Functions Routines
• Terminfo Level Routines
• Termcap Compatibility Routines

Curses Subroutines Library 11-3

Curses

Initialization Routines
The following functions are called when initializing a program.

initscr ()*

Determines the terminal type and initializes curses data structures. Also arranges that the
first call to refresh will clear the screen.

endwin ()*

Restores tty modes, moves the cursor to the lower left corner of the screen, resets the
terminal into the proper non-visual mode, and tears down all appropriate data structures. A
program should always call endwin before exiting.

newterm(type, outfd, infd)

Set up new terminal of given type to output on outfd and input from infd. If output is to be
directed to more than one terminal, newterm should be called instead of initscr. newterm
should be called once for each terminal. It returns a variable of type SCREEN* which should
be saved as a reference to that terminal. The arguments are the type of the terminal (a
string) and a stdio file descriptor (FILE *) for output to the terminal. The program should also
call endwin for each terminal being used.

set_term(new)

This function is used to switch to a different terminal. The screen reference new becomes
the new current terminal. The previous terminal is returned by the function. All other calls
affect only the current terminal.

longname()

This function returns a pointer to a static area containing a verbose description of the current
terminal. It is defined only after a call to initscr, newterm, or setupterm.

Option Setting Routines

11-4

The following functions set options within curses. In each case, win is the window affected,
and bf is the boolean flag with the value TRUE or FALSE indicating whether to enable or to
disable the option. All options are initially FALSE. It is not necessary to turn these options off
before calling endwin.

clearok(win, bf)

If set, the new call to wrefresh with this window will clear the screen and redraw the entire
screen. If win is curscr, the next call to wrefresh with any window will cause the screen to be
cleared. This is useful when the contents of the screen are uncertain, or in some cases for a
more pleasing visual effect.

idlok(win, bf)*

If enabled, curses will consider using the hardware insert/delete line feature of terminals so
equipped. If disabled, curses will never use this feature. The insert/delete character feature
is always considered. Enable this option only if your application needs insert/delete line, for
example, for a screen editor. If insert/delete line cannot be used, curses will redraw the
changed portions of all lines that do not match the desired line.

User Interface Reference

/
\

Curses

keypad(win, bf)

This option enables the keypad of the user's terminal. If enabled, the user can press a
function key (such as an arrow key) and getch will return a single value representing the
function key. If disabled, curses will not treat function keys specially. If the keypad in the
terminal can be turned on (made to transmit) and off (made to work locally), turning on this
option will turn on the terminal keypad.

leaveok(win, flag)

Normally, the hardware cursor is left at the location of the window cursor being refreshed.
This option allows the cursor to be left wherever the update happens to leave it. It is useful
for applications where the cursor is not used, since it reduces the need for cursor motions. If
possible, the cursor is made invisible when this option is enabled.

meta(win, flag)*

If enabled, characters returned by getch are transmitted with all 8 bits, instead of stripping
the highest bit. The value of OK is returned if the request succeeded, the value ERR is
returned if the terminal or system is not capable of 8-bit input.

node lay(win, bf)

This option causes getch to be a non-blocking call. If no input is ready, getch will return -1.
If disabled, getch will hang until a key is pressed.

intrflush(win, bf)

If this option is enabled when an interrupt key is pressed on the keyboard (interrupt, quit,
suspend), all output in the tty driver queue will be flushed, giving the effect of faster
response to the interrupt but causing curses to have the wrong idea of what is on the
screen. Disabling the option prevents the flush. The default is for the option to be enabled.
This option depends on support in the underlying teletype driver.

typeahead(fd)

Sets the file descriptor for typeahead check. fd should be an integer returned from open or
fileno. Setting typeahead to -1 will disable typeahead check. By default, file descriptor 0
(stdin) is used. Typeahead is checked independently for each screen, and for multiple
interactive terminals it should probably be set to the appropriate input for each screen. A call
to typeahead always affects only the current screen.

scrollok(win, flag)

This option controls what happens when the cursor of a window is moved off the edge of the
window, either from a newline on the bottom line, or typing the last character of the last line.
If disabled, the cursor is left on the bottom line. If enabled, wrefresh is called on the window,
and then the physical terminal and window are scrolled up one line. Note that in order to get
the physical scrolling effect on the terminal, it is also necessary to call idlok.

setscrreg(t, b)

wsetscrreg(win, t, b)

These functions allow the user to set a software scrolling region in a window win or stdscr. t
and bare the line numbers of the top and bottom margin of the scrolling region. (Line 0 is
the top line of the window.) If this option and scrollok are enabled, an attempt to move off
the bottom margin line will cause all lines in the scrolling region to scroll up one line.

Curses Subroutines Library 11-5

Curses

Terminal Mode Setting Routines
These functions are used to set modes in the tty driver. The initial mode usually depends on
the setting when the program was called: the initial modes documented here represent the
normal situation.

cbreak ()*

nocbreak ()*

These two functions put the terminal into and out of CBREAK mode. In this mode,
characters typed by the user are immediately available to the program. When out of this
mode, the teletype driver will buffer characters typed until newline is typed. Interrupt and flow
control characters are unaffected by this mode. Initially the terminal is not in CBREAK mode.
Most interactive programs using curses will set this mode.

echo ()*

noecho ()*

These functions control whether characters typed by the user are echoed as typed. Initially,
characters typed are echoed by the teletype driver.

nl ()*

nonl ()*

These functions control whether newline is translated into carriage return and linefeed on
output, and whether return is translated into newline on input. Initially, the translations do
occur. By disabling these translations, curses is able to make better use of the linefeed
capability, resulting in faster cursor motion.

raw ()*

noraw ()*

The terminal is placed into or out of raw mode. Raw mode is similar to cbreak mode in that
characters that are typed are immediately passed to the user program. In RAW mode the
interrupt, quit, and suspend characters are passed uninterpreted instead of generating a
signal. RAW mode also causes 8-bit input and output.

resetty ()*

savetty ()*

These functions save and restore the state of the tty modes. savetty saves the current state
in a buffer, resetty restores the tty state to what it was prior to calling savetty.

Window Manipulation Routines
The following routines allow you to create, change, move, and otherwise manipulate
windows.

newwin(/ines, cols, begin_y, begin_x)

Creates a new window with the given number of lines and columns. The upper left corner of
the window is at line begin_y column begin_x. If the value for either lines or cols is zero, they
will default to the value of Lines-begin_y and COLS-begin_x. If you create a new window
with all values set to zero, a full-screen window will be created.

11-6 User Interface Reference

Curses

newpad(numlines, numcols)

Creates a new pad data structure. A pad is similar to a window, except that it is not restricted
by the screen size, and is not associated with a particular part of the screen. Pads can be
used when a large window is needed, and only a part of the window will be on the screen at
one time. Automatic refreshes of pads (i.e., from scrolling or echoing of input) do not occur.
It is not valid to call refresh with a pad as an argument, instead, the prefresh or
pnoutrefresh routines should be called. Note that these routines require additional
parameters to specify the part of the pad to be displayed and the location on the screen to
be used for display.

subwin(win, lines, cols, begin_y, begin_x)

Creates a new window within a window. The new window is at position begin_y, begin_x on
the screen. The window is relative to the screen, and is created in the middle of window win.
Any changes made to one window will affect both windows. When using this function it is
often necessary to call touchwin before calling wrefresh.

delwin(win)

Deletes the named window, freeing up all memory associated with it. If there are overlapping
windows, subwindows should be deleted first.

mvwin(win, by, bx)

Moves the window so that the upper left corner will be at position (by, bx). If a move would
cause the window to be moved off the screen, an error occurs, and the window is not
moved.

touchwi n(win)

This routine discards all optimization information about which parts of the window have been
touched, by pretending that the entire window has been drawn on. This is sometimes
necessary when using overlapping windows, since a change to one window will affect the
other window, but the records of which lines have been changed in the other window will not
reflect the change.

overlay(win 1, win2)

overwrite(win 1, win2)

These functions overlay win1 on top of win2. All text in win1 is copied into win2. Blanks
(spaces) are not copied when using the overlay function. Blanks (spaces) are copied when
using the overwrite function.

Curses Subroutines Library 11-7

Curses

Displaying Output to the Terminal Routines

11..;.S

The following routines cause output to be directed to the terminal.

refresh()*

m_refresh()*

wrefresh(win)

These functions must be called to get any output on the terminal, because other routines
merely manipulate data structures. wrefresh makes the current screen look like window.
Optimization is performed according to what is already present in the window. refresh
performs the same function, except it makes the current screen look like stdscr. The physical
terminal cursor is left at the location of the window's cursor, unless leaveok has been
enabled.

doupdate()

wnoutrefresh(win)

These two functions allow multiple updates with more efficiency than wrefresh. In addition
to all window structures, curses keeps two data structures representing the terminal screen:
a physical screen, describing what is actually on the screen, and a virtual screen, describing
what the programmer wants to have on the screen. wrefresh works by first copying the
named window to the virtual screen (wnoutrefresh), and then calling the routine to update
the screen (doupdate). If the request is to have several windows output at the same time, a
series of calls to wrefresh will result in alternating calls to wnoutrefresh and doupdate. By
calling wnoutrefresh for each window, it is then possible to call doupdate once, resulting in
only one burst of output.

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxco~

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxco~

These routines are the same as wrefresh and wnoutrefresh, except that pads, instead of
windows, are involved. The additional parameters are necessary to indicate what part of the
pad and screen are involved. pminrow and pmincol specify the upper left corner, in the pad,
of the rectangle to be displayed. sminrow, smincol, smaxrow, and smaxcol specify the /
edges, on the screen, of the rectangle to be displayed in. The lower right corner in the pad of \,
the rectangle to be displayed is calculated from the screen coordinates, since the rectangles
must be the same size. Both rectangles must be entirely contained within their respective
structures.

User Interface Reference

Curses

Writing on Window Structures Routines
These routines are used to "draw" text on windows. In all cases, a missing win is taken to be
stdscr. y and x are the row and column, respectively. The upper left corner is always (0,0),
not (1, 1). The mv functions imply a call to move before the call to the other function.

Moving the Cursor
move(y, x)*

m_move(y, x)*

wmove(win, y, x)

The cursor associated with the window is moved to the given location. This does not move
the physical cursor of the terminal until refresh is called. The position specified is relative to
the upper left corner of the window,

Writing One Character
addch(ch)

m_addch(ch)

waddch(win, ch)

mvaddch(y, x, ch)

mvwaddch(win, y, x, ch)

The character ch is put in the window at the current cursor position of the window. If ch is a
tab, newline, or backspace, the cursor will be moved appropriately in the window. If ch is a
different control character, it will be drawn in the "X notation. The position of the window
cursor is advanced. At the right margin, an automatic newline is performed. At the bottom of
the scrolling region, if scrollok is enabled, the scrolling region will be scrolled up one line.

The ch parameter is actually an integer, not a character. Video attributes can be combined
with a character by or-ing them into the parameter. This will result in these attributes also
being set. (The intent here is that text, including attributes, can be copied from one location
to another using inch and addch.

Writing a String
addstr(str)*

m_addstr(str)*

waddstr(win, str)

mvaddstr(y, x, str)

mvwaddstr(win, y, x, str)

These functions write all the characters of the null terminated character string str on the
given window. They are identical to a series of calls to addch.

Curses Subroutines Library 11-9

Curses

Clearing Areas of the Screen
erase {)

m_erase {)

werase{ win)

These functions copy blanks (spaces) to every position in the window.

erasechar {)

This function returns an erased character. This is helpful if you erase a character
accidentally.

clear{)

m_clear{)

wclear{ win)

These functions are similar to erase and werase except that they also call clearok,
arranging for the screen to be cleared on the next call to refresh for that window.

clrtobot{)

wclrtobot{ win)

These functions erase all lines below the cursor. The current line to the right of the cursor is
also erased.

clrtoeol {)

wclrtoeol{ win)

These functions erase the current line to the right of the cursor.

Inserting and Deleting Text
delch{)

wdelch{ win, c)

mvdelch{y, x)

mvwdelch{ win, y, x)

The character under the cursor in the window is deleted. All characters to the right on the
same line are moved to the left one position. This does not imply use of the hardware delete
character feature.

deleteln{)

wdeleteln{win)

The line under the cursor in the window is deleted. All lines below the current line are moved
up one line. The bottom line of the window is cleared. This does not imply use of the
hardware delete line feature.

11-10 User Interface Reference

insch{c)

winsch{ win, c)

mvinsch{y, x, c)

mvwinsch{win, y, x, c)

Curses

The character c is inserted before the character under the cursor. All characters to the right
are moved one space to the right. The rightmost character on the line may be lost. This does
not imply use of the hardware insert character feature.

insertln{)

winsertln{win)

A blank line is inserted above the current line. The bottom line is lost.This does not imply use
of the hardware insert line feature.

Formatted Output
printw{fmt, argt, arg2, ...)

wprintw{win, fmt, arg1, arg2, ...)

mvprintw{y, x, fmt, args)

mvwprintw{ win, y, x, fmt, args)

These functions correspond to printf. waddch is being used for the output of characters on
the given window instead of printf.

Input from a Window
getyx{ win, y, x)

The cursor position of the window is placed in the two integer variables y and x. Since this is
a macro, an ampersand(&) is not necessary.

inch{)

winch(win)

mvinch{y, x)

mvwinch(win, y, x)

The character at the current position in the named window is returned. If any attributes are
set for that position, their values will be or-ed into the value returned. The predefined
constants A_ATTRIBUTES and A_CHARTEXT can be used with the & operator to extract
the character or attributes.

Curses Subroutines Library 11-11

Curses

Input from the Terminal
getch()*

wgetch(win)

mvgetch(y, x)

mvwgetch(win, y, x)

A character is read from the terminal associated with the window. In nodelay mode, if there
is no input waiting, the value -1 is returned. In delay mode, the program will hang until the
system passes text through to the program. Depending on the setting of cbreak, this will be
after one character, or after the first newline.

getstr(str)

wgetstr(win, str)

mvgetstr(y, x, str)

mvwgetstr(win, y, x, str)

A series of calls to getch is made until a newline is received. The resulting value is placed in
the area pointed at by the character pointer str. Erase and kill characters are interpreted.

scanw(fmt, arg1, arg2, ...)

wscanw(win, fmt, arg 1, arg2, ...)

mvscanw(y, x, fmt, args)

mvwscanw(win, y, x, fmt, args)

This function corresponds to scanf. wgetstr is called on the window, and the resulting line is
used as input for that scan.

Video Attributes Routines
These functions set the current attributes of the named window. These attributes can be any
combination of A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, A_BLINK, and
A_UNDERLINE. These constants are defined in <CUrses.h> and can be combined with the
C I (or) operator.

The current attributes of a window are applied to all characters that are written into the
window with waddch. Attributes are a property of the character, and move with the
character through any scrolling and insert/delete line/character operations.

attroff(attrs)*

wattroff(win, attrs)

Turns off the named attributes without affecting any other attributes

attron(attrs)*

wattron(win, attrs)

Turns on the named attributes without affecting any others.

11....;12 User Interface Reference

{
\

attrset(attrs)*

wattrset(win, attrs)

Sets the current attributes of the given window to attrs.

standout ()*

wstandout(win)

standout is the same as attron(A_STANDOUT).

standend ()*

wstandend(win)

standend is the same as attrset(O), it turns off all attributes.

Bells and Flashing Lights
beep ()*

flash ()

Curses

These functions are used to signal the programmer. beep will sound the audible alarm on
the terminal, if possible. flash will flash the screen (visible flash), if possible. If neither signal
is possible for your current terminal, nothing will happen.

Portability Functions Routines
baudrate ()*

Queries current terminal and returns the output speed. The number returned is the integer
baud rate, for example 9600.

erasechar ()

The erase character chosen by the user is returned. This is the character typed by the user
to erase the character just typed.

killchar ()

The line kill character chosen by the user is returned. This is the character typed by the user
to forget the entire line being typed.

flushinp ()*

flushinp throws away any typeahead that has been typed by the user and has not yet been
read by the program.

Cursor Movement Routine
mvcur(oldrow, oldcol, newrow, newco~

This routine moves the cursor from (oldrow, oldco~ to (newrow, newco~.

Curses Subroutines Library 11-13

Curses

Miscellaneous Functions Routines
box(win, vert, hory

Draws a box around the edge of the window. vert and hor are the characters used to draw
the box.

scroll(win)

The window is scrolled up one line. This moves the lines in the window data structure. If the
window is stdscr and the scrolling region is the entire window, the physical screen will be
scrolled at the same time.

delay_output(ms)*

Insert pause of ms milliseconds in output.

fixterm ()

Restore terminal to in curses state.

flushok (win, bf)

Set the flush-on-refresh flag for win.

getcap (name)

Get terminal capability name.

gettmode ()

Establish current tty modes.

has_ic ()

Has value of TRUE if terminal can insert character.

has_il ()

Has value of TRUE if terminal can insert line.

longname ()

Return verbose name of terminal.

longname(termbuf, name)

Set name to the full name of the terminal described by termbuf. Used in programs that are
compiled with the -DBSD option to provide BSD compatibility.

make new(window)

Sets up a new window buffer and returns a pointer to it.

resetterm ()*

Set tty modes to out of curses state.

restartterm ()*

Saves modes and windows prior to restart.

11-14 User Interface Reference

/
\

Curses

saveterm ()*

S~ve current modes as in curses state.

setterm(type)

Establish terminal with a give type.

touchline(win, y, firstcol, numco~

Mark numcol columns, starting at column firstcol, of line y as changed.

touchoverlap(win 1, win2)

Mark overlap of win 1 on win2 as changed.

traceoff ()

Turn off debugging trace output.

traceon ()

Turn on debugging trace output.

unctrl(ch)*

Use printable version of ch.

vsscanf(buf, fmt, args)

Similar to sscanf except that it takes a va_list args as an argument pointer instead of the
argument list itself. This is an internal Curses function.

_showstring(y, x, first, last, line)

Dumps the string running from the string address first to the string address last out to the
terminal on the location (y, x). Struct line contains the actual text data. This is an internal
Curses function.

Terminfo Level Routines
These routines are called by low-level programs that need access to specific capabilities of
terminfo. Programs using terminfo routines should include both <Curses.h> and <term.h>
in that order. If the program needs to use only one terminal, the definition -OSINGLE can be
passed to the C compiler. Using this definition can result in a smaller program, but also
restricts the program to run on one terminal only. Due to the low level of this interface, its
use is discouraged. See Using the Terminfo Level Subroutines for additional information on
the use of these routines.

setupterm(term, fd, re)

Reads in the data base. The term parameter is a character string that specifies the terminal
name. If term is 0, then the value of the TERM environment variable is used. One of the
following status values is stored into the integer pointed to by re:

1 Successful completion

0 No such terminal

-1 An error occurred while locating the terminfo data base.

Curses Subroutines Library 11-15

Curses

If the re parameter is 0, then no status value is returned, and an error causes setupterm to
print an error message and exit, rather than return. The fd parameter is the file descriptor of
the terminal being used for output. setupterm calls the termdef to determine the number of
lines and columns on the display. If termdef cannot supply this information, then setupterm
uses the values in the term info data base. The simplest call is setupterm(O, 1,0), which
uses all the defaults.

After the call to setupterm, the global variable cur_term is set to point to the current
structure of terminal capabilities. It is possible for a program to use more than one terminal
at a time by calling setupterm for each terminal and saving and restoring cur_term.

delay_ output(ms)

Sets the output delay, in milliseconds.

def_prog_mode

Saves the current terminal mode as program mode, in cur_term->Nttyb.

def _shelf _mode

Saves the shell mode as normal mode, in cur_term->Ottyb. def_shell_mode is called
automatically by setupterm.

putp(stry

Calls tputs(str, 1, putchar).

reset_prog_ mode

Puts the terminal into program mode.

reset_ shell_ mode

Puts the terminal into shell mode. All programs must call reset_shell_mode before they
exit. The higher-level routine endwin automatically does this.

The setupterm subroutine also initializes the global variable ttytype as an array of
characters to the value of the list of names for the terminal. The list comes from the
beginning of the terminfo description.

tparm(str, p1, p2, ... p9)

Instantiates the string str with parameters pi. The character string returned has the given
parameters applied.

tputs(str, affcnt, putc)

Applies padding information to string str. The affcnt parameter is the number of lines
affected, or 1 if not applicable. The putc parameter is a putchar-like routine to which the
characters are passed one at a time.

Some strings are of a form like $<20>, which is an instruction to pad for 20 milliseconds.

vidputs(attrs, putc)

Outputs the string to put terminal in video attribute mode attrs. Characters are passed to the
putchar-like routine putc. The attrs are defined in <Curses.h>. The previous mode is
retained by this routine

11-16 User Interface Reference

(
.'<!

(

Curses

vidattr(attrs)

Similar to vidputs, but outputs through putchar.

Termcap Compatibility Routines
These routines are included for compatibility with programs that require termcap. Their
parameters are the same as for termcap, and they are emulated using the terminfo data
base.

tgetent(bp, name)

tgetflag(id)

tgetnum(id)

tgetstr(id, area)

tgoto(cap, col, row)

tputs(cap, affcnt, fn)

two(ch 1, ch2)

twostr(str)

vsprintf(buf, fmt, args)

Implementation Specifics

Looks up the termcap entry for name. Both bp and name are
strings. The name parameter is a terminal name; bp is
ignored. Calls setupterm.

Returns the Boolean entry for id, which is a 2-character string
that contains a termcap identifier.

Returns the numeric entry for id, which is a 2-character string
that contains a termcap identifier.

Returns the string entry for id, which is a 2-character string
that contains a termcap identifier. The area parameter is
ignored.

Applies parameters to the given cap. Calls tparm.

Applies padding to cap calling fn as putchar.

Make a two letter code into an integer. This is an internal
Curses routine used to convert the two letter termcaps into
integers so that they can be switched on easily.

Makes the first two characters of a string into an integer,
similar to two. This is also an internal Curses routine.

Uses the format control string specified by the fmt parameter
to reformat the values specified by the args parameter into
but. This is an internal Curses routine.

The curses Subroutine Library is part of Base Operating System (BOS) Runtime of AIX for
RISC System/6000.

Related Information
The printf command, scanf command.

The termdef subroutine

The terminfo file format

Curses Subroutines Library 11-17

Function

Function Keys for the curses getch Subroutine

Purpose
Describes the function keys for the getch subroutine.

Description
The following function keys might be returned by the getch subroutine if keypad has been
enabled. Note, however, that not all of these are supported due to lack of definitions in
terminfo, or due to the terminal not transmitting a unique code when the key is pressed.

KEY_BREAK Break key (unreliable)

KEY_DOWN Down arrow key

KEY_UP Up arrow key

KEY_LEFT Left arrow key

KEY_RIGHT Right arrow key

KEY_HOME Home key

KEY _BACKSPACE Backspace (unreliable)

KEY_F(n) Function key Fn, where n is an integer from 0 to 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert character or enter insert mode

KEY_EIC Exit insert character mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backwards (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

11-18 User Interface Reference

(

Function

KEY_ENTER Enter or send (unreliable)

KEY_SRESET Soft (partial) reset (unreliable)

KEY_RESET Reset or hard reset (unreliable)

KEY PRINT Print or copy

KEY LL Home down or bottom (lower left)

KEY_A1 Upper left key of keypad

KEY_A3 Upper right key of keypad

KEY 82 Center key of keypad

KEY_C1 Lower left key of keypad

KEY_C3 Lower right key of keypad

Implementation Specifics
The curses Subroutine Library is part of Base Operating System (BOS) Runtime of AIX for
RISC System/6000.

Related Information
The curses subroutine library.

Curses Subroutines Library 11-19

Attributes

Attributes for Use with Curses Subroutine Library

Purpose
Describes the attributes that can be set using the curses subroutine library.

Description
The following video attributes can be passed to the attron, attroff, and attrset subroutines,
which are part of the curses library, libcurses.a.

A_ STANDOUT

A_ UNDERLINE

A_ REVERSE

A_BLINK

A_DIM

A_ BOLD

A_INVIS

A_PROTECT

A_ALTCHARSET

A_ NORMAL

Implementation Specifics

The terminal's best highlighting mode

Underlined

Reverse video

Blinking

Half bright

Extra bright or bold

Invisible (blanked or zero-intensity)

Protected

Alternate character set

Normal attributes

The curses Subroutine Library is part of Base Operating System (BOS) Runtime of AIX for
RISC System/6000.

Related Information
The curses subroutine library.

11-20 User Interface Reference

Screen

Screen Attributes Sample Program
The following is a sample code fragment showing how to use the display constants to
change the default set of attributes:

#include <curOO.h>
#include <cur03.h>

int attrs []
{

} ;

main(
{

_dBOLD, _dBLINK,
_dF_WHITE, dF RED, _dF_BLUE, _dF_GREEN,
_dF_BROWN, _dF_MAGENTA, _dF_CYAN, _dF_BLACK,
_dB_BLACK, _dB_RED, _dB_BLUE, _dB_GREEN,
_dB_BROWN, _dB_MAGENTA, _dB_CYAN, _dB_WHITE,
_dREVERSE, _dINVISIBLE, _dDIM, _dUNDERSCORE,
NULL

sel_attr(attrs);
initscr() ;
if (REVERSE == NORMAL) REVERSE = F_BLACK I B_WHITE;
if (INVISIBLE == NORMAL) INVISIBLE = F_BLACK I B_BLACK;
if (DIM == NORMAL) DIM = F_BLACK I BOLD;
if (UNDERSCORE == NORMAL) UNDERSCORE = F_WHITE I B_RED;
STANDOUT = REVERSE;

<rest of program>

endwin () ;
} /* end main */

The routines only define 8 bits of unique attribute information. Selecting foreground color,
backrgound color or font requires either 1, 2 or 3 bits depending upon the number of colors
or fonts in the list. 1 bit for 2 or fewer, 2 bits for 3 or 4, and 3 bits for 5 to 8. Each character
attribute takes 1 bit. However, the attribute names passed to wcolorout are variables, so
that you can make combinations from the other attributes as shown in the last part of the
preceding sample program. If a requested attribute (that is not the terminal default) is equal
to NORMAL, then it is either not supported by the terminal, or there is not enough space in
the window structure for its mask.

Curses Subroutines Library 11-21

Screen

(

<

11-22 User Interface Reference

Extended Curses Subroutine Library

Extended Curses Subroutines Library 12-1

\

12-2 User Interface Reference

Extended

Extended Curses Subroutine Library

Purpose
Controls cursor movement and windowing.

Library
Extended Curses Library (libcur.a)

Syntax
#include <cur01.h>

Description
The Extended Curses subroutines control input and output to a work station, performing
optimized cursor movement, windowing, and other functions. This package is based on the
curses subroutine package, which is included in most UNIX-compatible systems.

The enhancements provided by Extended Curses include:

• A wider range of display attributes

• Generalized drawing of boxes

• Terminal-independent input data processing

• Extended window control

• Pane, panel, and field concepts

• Support for extended characters

• Handling of mouse input.

To understand how the Extended Curses subroutines can be used in a program, see Curses
Programming Example.

For Japanese Language Support: The Extended Curses subroutines also handle the
input and display of 2-byte Japanese characters.

Parameters
The following declarations serve for all of the routines:

char ch *string;
NLSCHAR xc;
int line, col, firstline, firstcol;
int numlines, numcols, numchars, length, mode;
bool boolf;
WINDOW *win, *win1, *win2, *oldwin, *newwin;
PANE *pane;
PANEL *panel;

Return Values
Unless otherwise noted, each routine returns a value of type int that is either OK (indicating
successful completion) or ERR (if an error is encountered).

Extended Curses Subroutines Library 12-3

Extended

Header Files
• The curOO.h header file replaces curses.h when converting programs from the original

curses package to Extended Curses.

• All routines require the cur01.h header file.

• The key codes returned by getch are defined in cur02.h.

• The cur03.h header file defines attribute priority codes, and is not needed by application
programs.

• The unctrl routine requires cur04.h.

• The routines that manage panes and panels (the routines whose names begin with ec)
also require the cur05.h header file.

Naming Conventions
The new routines added to the original curses package begin with the letters ec.

Many routines operate on stdscr, the standard screen, by default. Corresponding routines
that allow you to specify a window have the same name, prefixed with the letter w. For
example, addch adds a character to stdscr, while waddch allows you to specify the
window. Sometimes a routine beginning with p also exists, such as paddch, which allows
you to specify a pane.

Some routines also allow you to specify cursor movement with the action to be performed.
These routines have a prefix of mv. Thus, addch becomes mvaddch, waddch becomes
mvwaddch, and paddch becomes mvpaddch. Each of these routines is equivalent to
calling move or wmove before performing the operation.

The various prefixed forms of the routines are implemented as macros. In each case, the
routine beginning with w is the base subroutine from which the others are defined.

Using the Extended Curses Routines
For ease of use, the Extended Curses routines have been separated by function.

• Writing to a Window

• Getting Input from the Terminal

• Controlling the Screen

• Display Attributes

12-4 User Interface Reference

(

\

Extended

Writing to a Window
Use the following functions to change the contents of a window:

addch (xc)
waddch (win, xc)
waddfld (win, string, length, numlines, numcols, mode, xc)

The xc parameter is a value of type NLSCHAR, rather than a single-byte char as used by
curses.

The addch routine adds the NLSCHAR specified by the xc parameter on the window at the
current (line, co~ coordinates. paddch adds the character to the presentation space for the
pane specified by the pane parameter. If the character is '\n' (new-line character), the line is
cleared to the end, and the current (line,co~ coordinates will be changed to the beginning of
the next line. A '\r' (return character) moves the current position to the beginning of the
current line on the window. A '\t' (tab character) is expanded into spaces in the normal tab
stop positions of every eighth column.

Adding a character to the lower right corner of a window that includes the lower right corner
of the display causes many terminals to scroll the entire display image up one line. If adding
a character or a character attribute causes such scrolling to occur, then addch makes the
change on the window, but does not mark it for wrefresh purposes; addch returns the value
ERR.

Adding only a single-shift control to the window does not change the current position in the
window. If the current position in the window does contain only a single-shift control code
and xc is a valid character data code, then the two are combined to form an IBM National
Language Support character, which is added to the window at the current position.
Otherwise, xc is treated as a valid NLSCHAR and is added to the window at the current
position.

For Japanese Language Support:

A 2-byte character must be added to addch in a single call. If adding a
character would cause that character to split across two lines, the system
appends a blank to the end of the current line and adds the entire character
at the beginning of the following line. If an added character overwrites half
an existing 2-byte character, the system replaces the remaining half of that
existing character with the partial-character indicator@ (at sign).

The waddfld routine adds data to a field within a window. The current coordinates specify
the upperleft corner of the field in the window. The num and num parameters specify the
number of lines and columns in the field, respectively. The length parameter specifies the
length of the data. The mode parameter specifies the attribute for the field output. The xc
parameter specifies the NLSCHAR that is used to fill the remainder of the field after the data
has been added to it.If the string contains a '\n' (new-line character), the fill character is
added to the reminder of the columns on that line of the field, and the remainder of the data
is added starting at the first column of the next line of the field. A '\r' (return character)
changes the current position to the beginning column of the field. A '\t' (tab character) is
expanded with fill characters up to the next normal tabstop position within the field.The
waddfld routine follows the same rules as addch for adding single-shift control codes and
character data codes to the window.

Extended Curses Subroutines Library 12-5

Extended

addstr (string)

For Japanese Language Support:

The fill character must be a 1-byte character. If a 2-byte character is
supplied, waddfld returns ERR and no change is performed.

waddstr (win, string)
paddstr (pane, string)
mvaddstr (line, col, string)
mvwaddstr (win, line, col, string)
mvpaddstr (pane, line, col, string)

The addstr routine adds the string pointed to by the string parameter on the window at the
current (line, co~ coordinates. The string can contain single-shift control codes.

Upon successful completion, addstr returns OK and the current (line, co~ coordinates point
to the location just beyond the end of the string. The addstr routine returns ERR if an
attempt is made to add a character to the lower right corner of a window that includes the
lower right corner of the display. In this case, addstr writes as much of the string on the
window as possible.

waddfld (win, string, length, numlines, numcols, mode, xc)

The waddfld routine adds data to a field within a window. The current coordinates specify
the upperleft corner of the field in the window. The num and num parameters specify the
number of lines and columns in the field, respectively. The length parameter specifies the
length of the data. The mode parameter specifies the attribute for the field output. The xc
parameter specifies the NLSCHAR that is used to fill the remainder of the field after the data
has been added to it.

If the string contains a '\n' (new-line character), the fill character is added to the reminder of
the columns on that line of the field, and the remainder of the data is added starting at the
first column of the next line of the field. A '\r' (return character) changes the current position
to the beginning column of the field. A '\t' (tab character) is expanded with fill characters up
to the next normal tabstop position within the field.

The waddfld routine follows the same rules as addch for adding single-shift control codes
and character data codes to the window.

For Japanese Language Support:

The fill character must be a 1-byte character. If a 2-byte character is
supplied, waddfld returns ERR and no change is performed.

box (win, vert, hory
NLSCHAR vert, hor,

The box routine draws a box around the window specified by the win parameter. box uses
the NLSCHAR specified by the vert parameter to draw the vertical sides of the box, and the
NLSCHAR specified by the hor parameter for drawing the horizontal lines and corners. The
vert and hor parameters must be 1-byte characters.

If the window includes the lower right corner of the display and scrollok is not set, then the
lower right corner of the box is not shown on the window and the box routine returns ERR.

The box routine is a macro that invokes superbox.

12-6 User Interface Reference

Extended

cbox (win)

The cbox routine draws a box around the window specified by the win parameter. The
characters used are those defined in /usr/lib/terminfo or those specified as defaults
during initialization. To use the characters defined in /usr/lib/terminfo, the application needs
to call wcolorout prior to the cbox routine. Also wcolorend afterward.

The cbox routine is implemented as a macro that invokes superbox.

The cbox routine returns ERR if the window includes the lower right corner of the display
and scrollok is not set on.

chgat (numcharc, mode)
wchgat (win, numchars, mode)
pchgat (pane, numchars, mode)
mvchgat (line, col, numchars, mode)
mvwchgat (win, line, col, numchars, mode)
mvpchgat (pane, line, col, numchars, mode)

The chgat routine changes the attributes of the next numchars characters in the window,
starting from the current (line, co~ coordinates. The attributes are changed to the attributes
specified by the mode parameter. This routine will not wrap around to the next line; however,
specifying a value for the numchars parameter that would cause a line wrap is not an error.

The mode parameter is one or more of the attributes defined by the global attribute
variables. More than one attribute may be specified by logically ORing them together. The
following example changes the attributes of the next 1 O characters to bold blue characters
on a black background:

chgat (10, BOLD I F_BLUE I B_BLACK)

The chgat routine returns ERR if the change forces scrolling and scrollok is not set to on
for the window.

For Japanese Language Support:

chgat (numcols, mode)
wchgat (win, numcols, mode)
pchgat (pane, numcols, mode)
mvchgat (line, col, numcols, mode)
mvwchgat (win, line, col, numcols, mode)
mvpchgat (pane, line, col, numcols, mode)

The chgat routine changes the attributes of the next numcols columns in
the window, starting from the current (line, co~ coordinates. The attributes
are changed to the attributes specified by the mode parameter. This routine
will not wrap around to the next line; however, specifying a value for the
numcols parameter that would cause a line wrap is not an error.

Note: The range of columns to be changed should include entire
characters. The range should not begin on the second byte of a
2-byte character, nor end on the first byte of a 2-byte character.
Beginning or ending a range with one part of a 2-byte character does
not cause an error. However, the system does not display a 2-byte
character with a different attribute for each byte. Instead, it
unpredictably displays su~h a character with either one attribute or
the other.

Extended Curses Subroutines Library 12-7

Extended

clear ()
wclear (win)

The clear routine resets the entire stdscr (standard screen) window to blank characters.
clear sets the current (line, co~ coordinates to (0, 0).

clearok (scr, boo/~
WINDOW *scr;

The clearok routine sets the clear flag for the screen specified by the scr parameter. If the
boolfparameter is TRUE, then the screen will be cleared on the next call to refresh or
wrefresh. If the boolf parameter is FALSE, then the screen will not be cleared on the next
call to refresh or wrefresh. This works only on screens, and, unlike clear, does not alter the
contents of the screen. If the scr parameter is curscr (current screen), the next refresh will
cause a clear-screen sequence, even if the window passed to refresh is not a screen.

The clearok routine returns ERR if the window is not a full screen window.

clrtobot ()
wclrtobot (win) ·

The clrtobot routine erases the window from the current (line, co~ coordinates to the
bottom, leaving the current (line, co~ coordinates unchanged. This does not force a
clear-screen sequence on the next refresh.

The clrtobot routine always returns the value OK.

clrtoeol ()
wclrtoeol (win)

For Japanese Language Support:

If the current (line, co~ position is on the second byte of a 2-byte character,
clearing begins at position co/-1.

The clrtoeol routine clears the window from the current (line, co~ coordinates to the end of
the current line. The current (line, co~ coordinates are not changed.

The clrtoeol routine always returns the value OK.

For Japanese Language Support:

If the current (line, co~ position is on the second byte of a 2-byte character,
clearing begins at position co/-1.

colorend ()
wcolorend (win)

The colorend routine returns the terminal to NORMAL mode. By default, NORMAL is
usually defined as (F _WHITE I B_BLACK).

The colorend routine is a macro that invokes xstandend.

The colorend routine always returns the value OK.

12-8 User Interface Reference

r1
I'
'Ii

(

colorout (mode)
wcolorout (win, mode)

Extended

The colorout routine sets the current standout bit-pattern of the window (win->_csbp) to
the attribute specified by the mode parameter. Characters added to the window after such a
call will have mode as their attribute. The mode parameter is constructed by logically ORing
together attributes that are declared in the cur01.h header file that are supported by the
terminal.

The colorout routine overrides the current setting of the window, and will work in
conjunction with almost all of the routines that cause output to be placed on the window.

The colorout routine is a macro that invokes wstandout.

The colorout routine always returns the value OK.

delch ()
wdelch (win)
mvdelch (line, co~
mvwdelch (win, line, co~

The delch routine deletes the character at the current (line, co~ coordinates. Each character
after the deleted character on the line shifts to the left, and the last character becomes
blank.

The delch routine always returns the value OK.

deleteln ()
wdeleteln (win)

For Japanese Language Support :

If the current (line, co~ position is on the second byte of a 2-byte character,
the position moves back to the first byte before the system deletes that
character.

Note: One call to delch deletes an entire character, whether it contains 1 or
2 bytes.

The deleteln routine deletes the current line. Every line below the current line moves up,
and the bottom line becomes blank. The current (line, co~ coordinates remain unchanged.

The deleteln routine always returns the value OK.

drawbox (win, line, col, numlines, numcols)

The drawbox routine draws a box with the upper left corner located at the position specified
by the line and col parameters. The numlines parameter specifies the number of rows to be
used by the box, and the numcols parameter specifies the number of columns to be used by
the box.

The characters used to draw the box are either those specified in the terminfo file, or those
defaulted at initialization.

The drawbox routine returns ERR if part or all of the box is outside the window, or the box
addresses the lower right corner of the screen an scrollok is not on.

Extended Curses Subroutines Library 12-9

Extended

#include <cur05.h>
ecactp (pane, boolf)

The ecactp routine specifies the active pane in a panel. The pane specified by the pane
parameter is made the active pane if the boolfparameter is TRUE. If an active pane has
been previously designated, then the border of that pane is reset to the inactive display
mode, and the border of the pane specified by the pane parameter is set to the active
display mode. If the boolf parameter is FALSE, then the border of the pane specified by the
pane parameter is set to the inactive display mode.

WINDOW *ecblks ()

The ecblks routine returns a pointer to a window that is filled with blanks. This window is
intended to be used as a filler for panes that have no real content. It requires less storage
than normal windows because all lines will always contain blanks.

Do not modify or delete this window.

#include <cur05.h>
ecshpl(panen

The ecshpl routine shows the panel specified by the panel parameter on the terminal.

If the specified panel is currently the top panel, no action is taken and no error is returned. If
there is another top panel, the active pane in that panel is changed to the inactive state. The
specified panel is placed at the top of the panel chain. This routine should be followed by a
call to ecrfpl to update the display.

The ecshpl routine always returns OK.

#include <Cur05.h>
ecrfpl(panen

The ecrfpl routine refreshes the panel specified by the panel parameter. If that panel is
partially obscured by other panels, then those panels are also written to the display. If the
panel parameter is NULL, then all panels that have been marked as modified (with
ecpnmodf) are written. If any panels have been removed (with ecrmpl), then all panels are
written.

For Japanese Language Support:

If a panel is partially obscured so that half of one or more 2-byte characters
is hidden, the system displays the partial-character indicator@ (at sign) in
place of the visible half of the character or characters. This display in no
way affects the data stored for the panel. If the obscured part of the panel is
later uncovered, the system again displays the full 2-byte character.

#include <cur05.h>
ecrfpn(pane)

The ecrfpn routine refreshes the pane specified by the pane parameter on the display. If the
pane is the active pane, then the window might be scrolled to ensure that the cursor is
visible. If the pane is not active, then the window is not scrolled.

The ecrfpn routine always returns OK.

12-10 User Interface Reference

/
\

#include <CUr05.h>
ecrmpl(pane~

Extended

The ecrmpl routine removes the panel specified by the panel parameter from the list of
panels that are currently being displayed. If the panel is not currently in that list, no action is
taken and no error is returned. This routine should be followed by a call to ecrfpl to update
the display.

The ecrmpl routine always returns OK.

#include <cur05.h>
ecscpn(pane, numlines, numcols)

The ecscpn routine causes the pane specified by the pane parameter to be scrolled over
the underlying window the distance indicated by the numcols and the numlines parameters.
The numcols parameter specifies the distance to scroll horizontally and the numlines
parameter specifies the distance to scroll vertically. These parameters can be positive or
negative and can imply a movement that positions the viewport partially or completely off the
window. If such a position results from the scroll, the scroll stops after moving as far in the
indicated direction as possible. Positive values move to the right or down. Negative values
move to the left or up.

If there are other panes linked to the pane specified, those panes will also scroll an amount
necessary to maintain the identical horizontal or vertical positioning on the respective
windows. If the resulting position requires placing the viewport partially or completely off the
window, the scroll request terminates at the edge of the window.

erase()
werase(win)
perase(pane)

The erase routine clears the window and sets it to blanks without setting the clear flag.
Similarly, perase erases the pane specified by the pane parameter. This is analogous to the
clear routine, except that it does not cause a clear-screen sequence to be generated on a
refresh.

full box(win, vert, hor, top/, topr, bot!, botry
NLSCHAR vert, hor, top!, topr, bot!, botr,

The fullbox routine puts box characters on the edges of the window. The vert parameter
specifies the NLSCHAR to use for the vertical sides. The hor parameter specifies the
NLSCHAR to use for the horizontal lines. The top/ and the topr parameters specify the
NLSCHARs to use for the top left and the top right corners. The bot/ and the botr
parameters specify the NLSCHARs to use for the bottom left and the bottom right corners.

For Japanese Language Support:

The fullbox routine does not accept 2-byte box characters. If a 2-byte
character is used, the fullbox routine substitutes a 1-byte character and
draws the box. The system returns ERR.

The f.ullbox routine returns ERR if an attempt is made to scroll when scrollok is not active.

The fullbox routine is a macro that invokes superbox.

Extended Curses Subroutines Library 12-11

Extended

insch (xc)
winsch (win, xc)
mvwinsch (win, line, col, xc)
mvinsch (line, col, xc)

The insch routine inserts the NLSCHAR specified by the xc parameter into the window at
the current (line, co~ coordinates. Each character after the inserted character shifts to the
right, and the last byte on the line disappears.

For Japanese Language Support:.

If the current position is at the second byte of a 2-byte character, the
position is moved left to the first byte of that character before the specified
NLCHAR is inserted.

The insch routine always returns the value OK.

insertln ()
winsertln (win)

The insertln routine inserts a line above the current line. Each line below the current line is
shifted down, and the bottom line disappears. The current line becomes blank and the
current (line, co~ coordinates remain unchanged.

The insertln routine always returns the value OK.

move (line, co~
wmove (win, line, co~

The move routine changes the current (line, co~ coordinates of the window to the
coordinates specified by the line and col parameters.

The move routine returns ERR if the destination for the cursor is outside the window or
viewport.

overlay (win 1, win2)

The overlay routine overlays the window specified by the win 1 parameter on the window
specified by the win2 parameter. The contents of the window specified by the win1

(
~

parameter, insofar as they fit, are placed on the window specified by the win2 parameter at (
their starting (line, co~ coordinates. This is done nondestructively; that is, blanks on the win 1
window leave the contents of the space on the win2 window untouched.

The overlay routine moves data only if the data is nonblank or if the display attribute is
different.

The only data that is considered for moving from the win 1 window to the win2 window is data
that occupies display positions that are common to both windows.

The overlay routine is implemented as a macro that invokes overput, which uses waddch
to transfer the data from window to window.

The overlay routine returns ERR if the overlay addresses the lower right corner of the
display and scrollok is FALSE.

12-12 User Interface Reference

Extended

overwrite (win 1, win2)

The overwrite routine copies data from the window specified by the win 1 parameter to the
window specified by the win2 parameter. The contents of the win 1 window, insofar as they
fit, are placed on the win2 window at their starting (line, co~ coordinates. This is done
destructively; that is, blanks on the win 1 window become blanks on the win2 window.

Only the data that occupies positions on the display that are common to the two windows will
be moved from the win1 window to the win2window.

The overwrite routine is implemented as a macro that invokes overput which uses waddch
to transfer the data from window to window.

The overwrite routine returns ERR if an attempt is made to write to the lower right corner
and scrollok is not set.

printw (fmt [, value, ...])
wprintw (win, fmt [, value, ...])
char *fmt;

The printw routine performs a printf on the window using the format control string specified
by the fmt parameter and the values specified by the value parameters. The output to the
window starts at the current (line, co~ coordinates. Use the field width options of printf to
avoid leaving items on the window from earlier calls.

Note: The maximum length of the format control string after being expanded is 512
characters.

The printw routine returns ERR if it causes the screen to scroll illegally.

refresh ()
wrefresh (win)

The refresh routine synchronizes the terminal screen with the window. If the window is not a
screen, then only the part of the display covered by it is updated. refresh checks for
possible scroll errors at display time.

The refresh routine returns ERR if the change specified is in the last position of a window
that includes the lower right corner of the display, or if they would cause the screen to scroll
illegally. If they would cause the screen to scroll illegally, refresh updates whatever can be
updated without causing the scroll.

standend ()
wstandend (win)

The standend routine stops displaying characters in standout mode.

standout ()
wstandout (win)

The standout routine starts displaying characters in standout mode. Any characters added
to the window are put in standout mode on the terminal if the terminal has that capability.
The first available attribute as determined by sel_attr is used for standout. This is normally
the reverse attribute when the default display attribute priority is used.

The standout routine always returns the value OK.

Extended Curses Subroutines Library 12-13

Extended

Use the refresh routine to transfer the contents of the current window to the screen after all
changes to the window are complete. The refresh routine does not rewrite any part of the
window that has not changed since the last refresh call. To force the whole window to be
rewritten, use the touchwin routine before the refresh routine. Also use ecrfpn to refresh a
pane, and ecrfpl to refresh a panel.

superbox (win, line, col, numlines, numcols, vert, hor, top!, topr, bot!, botry
NLSCHAR vert, hor, top!, topr, bot!, botr,

The superbox routine draws a box on the window specified by the win parameter. The line
and col parameters specify the starting coordinates for the box. The numlines parameter
specifies the depth of the box. The numcols parameter specifies the width of the box. The
vert parameter specifies the NLSCHAR to use for vertical delimiting. The hor parameter
specifies the NLSCHAR to use for horizontal delimiting. The top!, topr, bot!, and botr
parameters specify the NLSCHARs to use for the top left corner, the top right corner, the
bottom left corner, and the bottom right corner, respectively.

If the window specified by the win parameter is a _SCROLLWIN window and scrolling is not
allowed, then the bottom right corner is not put on the window.

The superbox routine uses addch to place the characters on the window.

For Japanese Language Support:

If any of the box characters is a 2-byte character, the superbox routine
substitutes a 1-byte box character for every 2-byte box character. The box
is drawn with the 1-byte box characters, but superbox returns ERR.

The superbox routine returns ERR if the defined box is outside the window, or an attempt is
made to write to the lower right corner of the display when scrollok is off.

Getting Input from the Terminal
Input is the complementary function to output. The screen package needs to know what is
on the terminal at all times. Therefore, if a program echoes input characters, the terminal
must be in a mode that passes characters immediately to the program, rather than waiting
for a carriage return to send input to the program. The getch routine sets the terminal to the
character input mode and then reads in the character.

Use the following routines for input from the terminal:

crmode ()
nocrmode ()

The crmode routine turns off the canonical processing of input by the system device driver.
When canonical processing is off, data is made available without waiting for a '\n' (new-line
character). The nocrmode routine enables canonical processing by the system device
driver.

The wgetch routine, which is used for all Extended Curses input, forces the equivalent of
crmode before requesting input if echoing is active, and reinstates the original status on
exit. If you are using echo, you should issue a call to either crmode or raw to avoid multiple
calls by wgetch.

The crmode routine differs from raw in that crmode has no effect on output data processing
and does not disable signal processing by the device driver.

The crmode routine always returns the value OK.

12-14 User Interface Reference

/
\

Extended

cresetty (boot~

The cresetty routine resets the terminal to the state saved by the last call to csavetty. Use
this routine after the completion of a program that uses the terminal as a simple terminal. If
the boo/f parameter is TRUE, then the data in curscr is redisplayed.

csavetty (boot~ ·

The csavetty routine saves the current Extended Curses state so that it can later be reset
by cresetty. Use this routine before running a program that uses the terminal as a simple
terminal. If the boo/f parameter is TRUE, then the following status is set before saving the
terminal status: crmode, noecho, meta, nonl, and keypad (TRUE).

echo()
noecho()

The echo routine causes the terminal to echo characters to the display. If echo is set on,
wgetch places all input into the data structure for the window.

The noecho routine turns echo off. If echo is turned off, characters are not written to the
display.

#include <cur05.h>
ecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, mask)
Nlecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, length, mask)
char *pat, *buf, *mask;

The ecflin and Nlecflin routines input field data to a pane. Nlecflin is supplied for
international character support, and ecflin is retained to preserve traditional functionality.
Nlecflin works like ecflin, but has an additional parameter, length, which specifies the
length of the buffer in which the input data is stored.

The ecflin routine inputs field data to the pane pointed to by the pane parameter. The
firstline and the firstcol parameters specify the upper left corner of the field in the current
window being shown in the pane. The numcols parameter specifies the number of columns
in the field, and the numlines parameter specifies the number of rows in the field.

The buf parameter points to a buffer in which input data is stored. This buffer must be at
least numlines x numcols characters long.

Note: When ecflin is called, buf should contain data representing the initial contents of the
field, with an uninitialized field represented by null characters. If ecflin is called to
operate on a field in which data is already displayed, buf should reflect that data as
though the field contained the output of a previous call to ecflin. The characters in
but are edited to correspond to changes in the displayed field.

The xc parameter specifies the first NLSCHAR to be entered in the field. If the xc parameter
is a null character, it is ignored.

The pat and mask parameters specify the set of characters that are to be accepted as valid
input.

The position in the field may not always correspond to the position in the input buffer, since a
2-byte extended character corresponds to a single display character in the field in the
window. Input is accepted from the terminal as long as the cursor remains within the bounds
of the field. However, if the input buffer is filled before the cursor exits the field, input
processing stops and ecflin returns.

Extended Curses Subroutines Library 12-15

Extended

Cursor movement that moves the cursor outside the field is allowed and is reflected on the
display. If cursor movement places the cursor in a position where data input would cause the
input buffer to overflow, input processing stops. Any data keys entered are checked against
the character set specified by the pat parameter. If the data character is acceptable, then it is
echoed. If the character is not acceptable, then the ecflin routine returns its value.

Insert and delete keys are honored and data are shifted within the field as needed. If the
field spans more than one line and insertions or deletions are made, then data that are
shifted out of one line of the field are shifted into the end of the next line. Data shifted out of
the field are lost. When characters are deleted, null characters are shifted into the end of the
field.

For Japanese Language Support:

Cursor motion always leaves the cursor on the first byte of a 2-byte
character. If the cursor is moved vertically in such a way that it rests on the
second byte of a character, the system moves the cursor to the left, placing
it on the first byte of the character.

When an entered character overwrites half an existing 2-byte character, the
system replaces the remaining half of that existing character with a
partial-character indicator@ (at sign). Attempting to insert a 2-byte
character in the last column of the last line also causes the system to insert
an@. If an insertion shifts a 2-byte character so that it begins in the last
column of the last line, the system again places an @ in that position. In all
such cases, the partial-character indicator appears both on the screen and
in buf.

When a 2-byte character is entered in the last column of any line but the
last, or when shifting as a result of insertion would cause a 2-byte character
to begin in the last column of a line, the system temporarily splits the
character. The screen then displays partial-character indicators in both the
last column of the line and the first column of the following line.

If subsequent editing moves the split 2-byte character so that it appears on
only one line, the system again correctly displays the full character.
However, if the character remains split when ecflin returns, the
partial-character indicators remain displayed, and the two parts of the
character cannot subsequently be rejoined. In such a case, the original
character value is lost, but the contents of buf continue to show the actual
character rather than partial-character indicators.

The pat parameter points to a string that indicates the set of characters that is acceptable as
valid input. These characters include all code points of the PO, P1, and P2 code pages (see
dispsym.).

For Japanese Language Support:

The valid set of input characters includes all 1-byte code points, plus a
string that represents 2-byte codes from specific groups.

12-16 User Interface Reference

Extended

The string is formed from the following codes:

u

L

N

A

B

p

G

x

Uppercase letters: 'A-Z', also uses the accented uppercase letters from
code pages PO, P1, and P2.

Lowercase letters: 'a-z', also uses the accented lowercase letters from
code pages PO, P1, and P2.

Numeric characters: '0-9', also uses 2-byte codes.

Alphanumeric characters: 'A-Z', 'a-z', and '0-9', also uses the accented
letters from code pages PO, P1, and P2.

Blank (space character-Ox20).

Printable characters: blank-'-' (Ox20-0x7E).

Graphic characters: '!'-'-' (Ox21-0x7E)

Hexadecimal characters: '0-9', 'A-F', and 'a-f'.

Note: The codes U, L, A, B, P, G, and X allow only single-byte ASCII codes in order to
maintain compatibility with previous versions of ecflin.

c Control Characters:

• Cursor Up, Cursor Down, Cursor Left, Cursor Right

• Backspace

• Back-tab (to first position of field)

• Insert (enable or disable insert mode)

• Delete (delete current character)

• New-line (to left column and down one line).

D Default characters:

• Ox20-0x7E

• Ox80-0xFF

• Ox1FAO-Ox1FFF

• Ox1 E80-0x1 EFF

• Ox1 DAO-Ox1 OFF

• Ox1 C80-0x1 CFF

• Controls, as defined for code C.

Note: Allowing control characters (code C) means the keypad can be used to move the
cursor, select insert mode, and so on. The codes for control keys are not returned as
field input.

Extended Curses Subroutines Library 12-17

Extended

z
+

For Japanese Language Support:

D

J

H

k

K

Default characters:

• All ASCII graphic characters

• All 2-byte codes

• Controls, as defined for code C.

All Japanese text characters, including 1- and 2-byte
katakana, hiragana, and kanjii.

Hiragana.

One-byte katakana.

All katakana (1- and 2-byte forms).

These codes can be combined. For example, "HK-k" allows all 2-byte
kana characters (hiragana and 2-byte katakana).

Note: The codes U, L, A, B, P, G, and X allow only single-byte ASCII
codes in order to maintain compatibility with previous versions of
ecflin.

Application-specified character set.

Allows characters indicated by following codes.

Does not allow characters indicated by the following codes.

If the first character of pat is + or-, the set of characters specified by the rest of the string is
added to (+)or taken from (-)the default characters (which can also be specified with D). If
the first character in this string is not+ or-, the set of characters specified by pat replaces
the default. After the first character, the sets indicated are allowed unless preceded by a -
(minus or hyphen). For example:

"PC-L"

"-CBN"

Allows the printable and control characters, except for lowercase letters.

Allows all of the default characters, except for control characters, blanks, or
numeric characters.

If the pat string contains a Z, the array to which the mask parameter points specifies a
character validity mask. This array must be exactly 128 bytes long (1024 bits), where each
bit corresponds to a character codes as returned by the wgetch routine.

12-18 User Interface Reference

(

Extended

The bytes in the array correspond as follows:

Bytes

0-31

32-63

64-79

80-95

96-111

112-127

Characters Selected

PO characters OxOO-OxFF

Keycodes0x100-0x1FF

Low P1 characters Ox1 F80-0x1 FFF

High P1 characters Ox1 E80-0x1 EFF

Low P2 characters Ox1 D80-0x1 OFF

High P2 characters Ox1 C80-0x1 CFF

For Japanese Language Support:

If the pat string contains a Z, the array to which the mask parameter points
specifies a character validity mask. This array must be exactly 64 bytes
long (512 bits). Within the bytes of mask, the upper bit corresponds to the
first code.

Because of the many characters used in Japanese Language Support, a
complete bit map of the character set would be so large as to be
unamangeable. Instead of a bit map, Japanese Language Support provides
separate mask bits that are used for 1-byte codes. You can select 2-byte
codes in groups based on the first byte of their encoding.

The bytes in the array correspond as follows:

Bytes Characters Selected

0-15 ASCII subset, Ox00-0x7F

16 Special (see following list)

17-19 Kanjii, Ox88??-0x9F??

20-27 One-byte katakana, codes OxAO-OxDF

28-31 Kanjii conitnued, codes OxEO??-OxFF??

32-37 Keypad special keys

38-55 (Reserved)

56-63 Function keys

With the exception of the bits in byte 16, a character's bit position in mask
corresponds in the following way:

• One-byte character Bit position in mask corresponds to its code.

• Two-byte character Bit position in mask corresponds to the upper byte of
its code.

Extended Curses Subroutines Library 12-19

Extended

The values in byte 16 represent codes Ox81 ??-Ox84 ?? . These codes are
divided because the upper byte is not sufficient to create logical groupings
of characters. The bit values within byte 16 are as follows:

Value Codes Characters Selected

Ox BO Ox81?? Punctuation and
symbols

Ox40 Ox824F-Ox8258 Two-byte digits

Ox20 Ox8260-0x829E Two-byte roman
alphabet

Ox10 Ox829F-Ox82FF Hiragana

Ox OB Ox8340-0x839E Two-byte katakana

Ox04 Ox839F-Ox83FF Greek alphabet

Ox02 Ox8440-0x849E Cyrillic alphabet

Ox01 Ox849F-Ox84FF Line drawing

If a given bit is set to 1, the corresponding character is accepted (for +Z) or rejected (for -Z).
If a bit is set to 0, then the acceptance status of the corresponding character, as determined
by the rest of pat, is not changed.

Upon successful completion, the ecflin routine returns the code associated with the last
input that terminated an operation.

The ecflin routine returns ERR if one or more of the following are true:

• There is an error in the parameters.

• The firstline parameter is outside the window.

• The firstcol parameter is outside the window.

• The numcols parameter is too large.

• The numlines parameter is too large.

#include <cur05.h>
ecpnin(pane, boolf, xc)

The ecpnin routine causes the pane to accept keyboard input. The pane specified by the
pane parameter is scrolled, if necessary, to ensure that the cursor is visible on the display.
Keyboard input is then accepted. If the boolf parameter is TRUE and if the input character is
a simple cursor movement, then the resulting cursor position is reflected on the display.
Further input is then read from the terminal. If the boo/f parameter is FALSE, or if the input
character is not a simple cursor movement, then the value of the input character is returned.

The xc parameter specifies the first NLSCHAR to be assumed from the display. If xc is a null
character, then it is ignored.

This routine tracks the mouse cursor if mouse tracking is enabled.

extended(boo/~

12-20 User Interface Reference

0
"-l

(
\

"'

Extended

The extended routine turns on and off the combining of input bytes into 2-byte extended
characters. If the boolf parameter is TRUE, then this input processing is turned on; if
FALSE, then it is turned off. By default, extended processing is initially turned on.

#include <cur02.h>
int getch()
int wgetch(win)
int mvgetch(line, co~
int mvwgetch(win, line, co~

The getch routine gets a character from the terminal and echoes it on the window, if
necessary. If noecho has been set, then the window does not change. The noecho routine
and either crmode or raw must be set for Extended Curses to know what is actually on the
terminal. If these settings are not correct, wgetch sets noecho and crmode and resets
them to the original mode when done.

If extended processing is turned on, then getch combines input sequences that contain
single-shift controls into 2-byte extended characters. By default, extended processing is
turned on.

Upon completion, the character code for the data key or one of the following values is
returned:

KEY_NOKEY nodelay is active and no data is available.

KEY xxxx keypad is active and a control key was recognized. See the cur02.h
header file for a complete list of the key codes that can be returned.

ERR

#include <cur02.h>
int getstr (string)

Echoing the character would cause the screen to scroll illegally.

int wgetstr (win, string)
int mvgetstr (line, col, string)
int mvwgetstr (win, line, col, string)

The getstr routine gets a string through the window and stores it in the location pointed to by
the string parameter. The string can contain single-shift control codes. The area pointed to
must be large enough to hold the string. The getstr routine calls wgetch to get the
characters until a new-line character or some other control character is encountered.

For Japanese Language Support:

The string cannot contain single-shift codes.

Upon completion, one of the following values is returned:

OK

KEY_NOKEY

KEY_xxxx

ERR

The input string was terminated with a new-line character.

nodelay is active and no data is available.

The input string ended with a control key, and the code for this key
was returned. See the cur02.h header file for a complete list of the key
codes that can be returned.

The string caused the screen to scroll illegally.

Extended Curses Subroutines Library 12-21

Extended

keypad (boom

The keypad routine turns on and off the mapping of key sequences to single integers. If the
boo/f parameter is TRUE, input processing is turned on. If the boolf parameter is FALSE,
input processing is turned off. By default, input processing is initially turned off.

When turned on, sequences of characters from the terminal are translated into integers that
are defined in the cur02.h header file.

The codes available on a given terminal are determined by the terminfo terminal description
file.

The keypad routine always returns the value OK.

raw ()
noraw ()

The raw routine sets the terminal to raw mode. In raw mode, canonical processing by the
device driver and signal processing are turned off. The noraw routine turns off raw mode.

The raw and noraw routines always return the value OK.

Controlling the Screen
Use the following library routines to control and manipulate the windows, panes, and panels
on the screen:

delwin (win)

The delwin routine deletes the window specified by thewin parameter. All resources used
by the deleted window are freed for future use.

If a window has a subwindow allocated inside of it, the deletion of the window does not affect
the subwindow even though the subwindow is invalidated. Therefore, subwindows must be
deleted before the outer windows are deleted.

The delwin routine always returns the value OK.

#include <CUr05.h>
ecadpn (pane, win)

The ecadpn routine adds the window specified by the win parameter to the list of windows
that can be presented in the pane specified by the pane parameter. No visible action occurs
as a result of this routine. A call to ecaspn must be made after ecadpn to change the data
associated with the pane display.

The ecadpn routine returns ERR if the system is unable to allocate the storage required.

#include <Cur05.h>
ecaspn (pane, win)

The ecaspn routine makes the window specified by the win parameter the current window
for display in the pane specified by the pane parameter. A refresh call for the pane or panel
is needed to cause the data to be presented on the display. The viewport associated with the
pane is positioned with the top left corner of the viewport at the top left corner of the data for
the window.

The ecaspn routine returns ERR if the window specified by the win parameter was not
previously associated with this pane using ecadpn.

12-22 User Interface Reference

11
I
't~

Extended

#include <Cur05.h>
PANEL *ecbpls (numlines, numcols, firstline, firstcol, title, divdim, border, pane)
short numlines, numcols, firstline, firstco;;
char *title;
char divdim, border,

The ecbpls routine builds a panel structure.

The numlines parameter specifies the panel size in rows.

The numcols parameter specifies the panel size in columns.

The firstline parameter specifies the panel's origin on the display's upper left corner row
coordinate.

The firstcol parameter specifies the panel's origin on the display's upper left corner column
coordinate.

The title parameter points to a title string. The title is shown centered in the top border. If no
title is desired, this parameter should be NULL.

The divdim parameter specifies the dimension along which this panel is to be divided: either
Pdivtyv (vertical) or Pdivtyh (horizontal).

The border parameter indicates whether or not this panel is to have a border: either Pbordry
(yes) or Pbordrn (no).

The pane parameter points to the first pane that defines the divisions of this panel.

All parameters should be given as defined here. However, they are not checked or used until
a call is made to ecdvpl. An application may modify values put into this structure until it calls
ecdvpl.

Upon successful completion, a pointer to the new panel is returned. ecbpls returns ERR if
there is not enough storage available.

#include <Cur05.h>
PANE *ecbpns (numlines, numcols, In, Id, divdim, ds, du, border, lh, Iv)
short numlines, numcols, ds;
PANE. *In, *Id, *lh, *Iv;
char divdim, du, border,

The ecbpns routine builds a pane structure.

The numlines parameter specifies the number of rows in the presentation space for the
pane.

The numcols parameter specifies the number of columns in the presentation space for the
pane.

The In parameter points to a neighboring pane either above or to the left.

The Id parameter points to the start of a chain for divisions of the pane.

The divdim parameter specifies the dimension of the pane along which division is to occur.
This parameter is used if and only if the Id parameter is not NULL. Valid values for this
parameter are Pdivpnv (vertical dimension) and Pdivpnh (horizontal dimension).

Extended Curses Subroutines Library 12-23

Extended

The ds and du parameters together specify the size of this pane as part of the division of a
parent pane:

du

Pdivszc

Pdivszp

Pdivszf

Vertical or Horizontal Size of the Pane

The size is specified by the ds parameter.

The size is ds divided by 10000 of the available space. For example, if ds is
5000, then the row or column size is half of the available space.

The pane has a floating size. The value of the ds parameter is not used.

The border parameter specifies whether or not this pane has a border: either Pbordry (yes)
or Pbordrn (no).

The lh parameter points to a pane that is to scroll with this pane when the pane scrolls
horizontally.

The Iv parameter points to a pane that is to scroll with this pane when the pane scrolls
vertically.

If you specify NULL for the Id parameter, or if you are not sure which value to use for du,
then specify Pdivszf for the du parameter.

If the In parameter is not NULL, the divs field of the pane structure being built receives the
value that was in the In.divs field. The In.divs field is modified to point to the new pane
structure being built.

If the lh and the Iv parameters are not NULL, they will be used to link the new structure to
the specified structures and to link the specified structures to the new structure. The links
thus created will form a ring that includes all panes that scroll together.

Upon successful completion, a pointer to the new pane structure is returned. ecbpns returns
ERR if a error is detected during processing.

#include <Cur05.h>
ecdfpl (panel, boo/~

The ecdfpl routine creates the Extended Curses window structures needed to define the
specified panel. (

At the time this routine is invoked, all size and location specifications of the panel and its
constituent panes must be properly set. ecdfpl does not examine any of the division size
specifications or the scroll link specifications.

The fpane pointer in the indicated panel structure must point to the first leaf pane for the
panel, and the subsequent nxtpn pointers from that pane must form a loop back to the first
leaf pane. (This is done by ecdvpl.)

A WINDOW structure is built for the panel specified by the panel parameter. This WINDOW
will have a size that corresponds to the size of the panel. For each of the panes in the
subsequent chain, a separate WINDOW structure is built with a size that corresponds to the
specified presentation space size or the viewport size, whichever is larger.

If borders are specified for any of the panes, those borders are drawn on the WINDOW for
the panel. All corners are checked and, if needed, proper junction characters are used to
draw the corner.

12-24 User Interface Reference

Extended

The boo/f parameter indicates whether to suppress the creation of presentation spaces for
the panes. If the value is TRUE, then presentation spaces are not created. If FALSE, then
presentation spaces are created.

The ecdfpl routine returns ERR if sufficient storage is not available for the WINDOW
structures being created.

#include <cur05.h>
ecdppn (pane, oldwin, newwin)

The ecdppn routine adds, drops or replaces a presentation space for a pane.

First, if the oldwin parameter is not NULL, then ecdppn drops oldwin from the list of
windows that are alternatives for the pane specified by the pane parameter. The previous
association should have been established using ecadpn. If the oldwin parameter is NULL,
then no window is dropped.

Next, if the newwin parameter is not NULL, then ecdppn adds newwin as a valid pane for
this window, replacing oldwin, if it was associated with the pane specified by the pane
parameter. (See ecadpn for a better way to add a pane.)

The ecdppn routine always returns OK.

#include <Cur05.h>
ecdspl (pane~

The ecdspl routine releases all of the data structures associated with the panel specified by
the panel parameter. The released data structures are returned to the free pool. The
released data structures include the panel structure, all associated pane structures, any
window structures associated with the panes, any auxiliary window structures associated
with the panes, and all private control structures used by Extended Curses.

#include <Cur05.h>
ecdvpl (pane~

The ecdvpl routine assigns a real size and relative position to all the panes defined for the
panel specified by the panel parameter. All of the panes must be linked to the panel. The
structure of a tree will be followed to determine the sizes for each pane.

The direction of the first set of divisions and the size of the first set of divisions is
determined. This information is used to control the division algorithm. First, the total space
for the interior of panes is determined by counting the panes and their borders, using the
size along the direction of division. Next, any panes with fixed size are given the space
indicated by the divsz field in the pane structure. The remaining available space is then
assigned to the panes that have specified a proportional size. Finally, any space that
remains is assigned to those panes that specified a floating size. Once the sizes are
determined, the origin for each pane relative to the panel origin is determined and entered
into the pane structure. A final pass is made over the list of panes in the current division,
and, for each that is itself divided, the process is repeated.

If adjacent panes both have a border specified, the border space is shared between them.

If all of the panes have a fixed size and the total is less than the available space, there will
be space that cannot be accessed by the application in the resulting structure.

If, after allocating space to the proportional panes, there is space remaining and no floating
panes are in the current set, the remaining free space is allocated to the proportional panes.

Extended Curses Subroutines Library 12-25

Extended

The ecdvpl routine returns ERR and the structures are invalid for use by ecdfpl if one or
more of the following occur:

void ecpnmodf(pane)

The ecpnmodf macro marks the panel that contains the pane specified by the pane
parameter as modified. This information is used by ecrfpl to determine whether a panel
needs to be written to the display.

• The total size specified for fixed panes exceeds the space available.

• The total fractions specified for the proportional panes exceed a total of 1 .

• The number of panes exceeds the number of positions available.

#include <CUr05.h>
ecrlpl(pane~

The ecrlpl routine returns the structures associated with the panel specified by the panel
parameter to the free storage pool. This includes all window structures associated with the
panes of the panel, all Extended Curses private structures, and any added window
structures. The panel and associated pane structures are not released and can be reused.

The ecrlpl routine always returns OK.

#include <Cur05.h>
ectitl(title, line, co~
char *title;

The ectitl routine creates or modifies the title panel. The title panel is always visible, that is,
on top of any other panels. The title parameter points to a character string that is displayed
as the new title. If title is NULL, then any existing title is removed. The line and col
parameters specify the coordinates for the upper left corner of the title panel. If firstline is not
valid, then it defaults to 1. If firstcol is not valid, then the title will be centered.

endwin()

The endwin routine ends window routines before exiting. Ending window routines before
exiting restores the terminal to the state it was before initscr (or gettmode and setterm)
was called. endwin should always be called before exiting. endwin does not exit.

gettmode ()

The gettmode routine issues the needed control operation to the display device driver to
save the processing flags in a fixed global area. gettmode is invoked by initscr and is not
normally called directly by applications.

getyx (win, line, co~

The getyx routine stores the current (line, co~ coordinates of the window specified by the
win parameter into the variables line and col. Because getyx is a macro and not a
subroutine, the names of line and col passed, not their addresses.

Upon successful completion, line and col contain the current row and column coordinates for
the cursor in the specified window.

12-26 User Interface Reference ·,

NLSCHAR inch ()
NLSCHAR winch (win)
NLSCHAR mvinch (line, co1
NLSCHAR mvwinch (win, line, co1

Extended

The inch routine returns the NLSCHAR at the current (line, co1 coordinates on the specified
window. No changes are made to the window.

Upon successful completion, the code for the character located at the current cursor location
is returned.

WINDOW *initscr ()

The initscr routine performs screen initialization. initscr must be called before any of the
screen routines are used. It initializes the terminal-type data, and without it, none of the
Extended Curses routines can operate properly.

If standard input is not a tty, initscr sets the specifications to the terminal whose name is
pointed to by Def_term (initially "dumb"). If the value of the bool global variable My_term is
TRUE, Def_term is always used.

If standard input is a terminal, the specifications for the terminal named in the environment
variable TERM are used. These specifications are obtained from the terminfo description
file for that terminal.

The initscr routine creates the structures for stdscr, (the standard screen) and curscr (the
current screen) and saves the pointers to those structures in global variables with the
corresponding names.

Upon successful completion, a pointer to stdscr is returned.

leaveok (win, boo/~

The leaveok routine sets a flag, used by the window specified by the win parameter, which
controls where the cursor is placed after the window is refreshed. If the boolf parameter is
TRUE, when the window is refreshed, the cursor is left at the last point where a change was
made on the terminal, and the current (line, co1 coordinates for the window specified by the
win parameter are changed accordingly. If the (line, co1 coordinates are outside the window,
the coordinates are forced to (0, 0). If the boo/f parameter is FALSE, when the window is
refreshed, the cursor is moved to the current(/ine, co1 coordinates within the window. The
controlling flag is initially set to FALSE.

The leaveok routine always returns the value OK.

char *longname ()

The longname routine returns a pointer to a static area that contains the long (full) name of
the terminal as it appears in the terminfo entry for the terminal.

mvcur

The mvcur routine moves the terminal's cursor from the coordinates specified by the line
and col parameters to the coordinates specified by the newline and newcol parameters.

It is possible to use this optimization without the benefit of the screen routines. In fact,
mvcur should not be used with the screen routines. Use move and refresh to move the
cursor position and inform the screen routines of the move.

mvwi n (win, line, co1

Extended Curses Subroutines Library 12-27

Extended

The mvwin routine moves the position of the viewport or the subwindow specified by the win
parameter from its current starting coordinates to the coordinates specified by the line and
col parameters. The line parameter specifies the row on the display for the top row of the
window. The col parameter specifies the column on the display for the first column of the
window.

The mvwin routine returns ERR if a part of the window position is outside the bounds of the
window on which the viewport is defined.

WINDOW *newview (win, numlines, numcols)

The newview routine creates a new window that has the number of lines specified by the
numlines parameter and the number of columns specified by the numcols parameter. The
new window is a viewport of the window specified by the win parameter and starts at the
current (line, co~ coordinates of the window specified by the win parameter. The resulting
window's initial position on the display is set to (0, 0).

The viewport window returned by newview is a special subwindow that is suitable for
viewport scrolling. Viewport scrolling here refers to the type of scrolling that is characteristic
of full-screen editors.

Because the returned viewport window is a subwindow, any change made in either window
in the area covered by the viewport window appears in both windows. Both windows actually
share the relevant storage area. A viewport window cannot be scrolled using scroll.

Other than the exceptions noted above, viewport windows behave like subwindows.

Upon successful completion, a pointer to the control structure for the new viewport is
returned.

The newview routine returns ERR if the window specified by the win parameter is a
subwindow or a viewport, or if sufficient storage is not available for the new structures.

For Japanese Language Support:

Do not construct a view that includes less than the full line-width of lines
containing 2-byte characters.

WINDOW *newwin (numlines, numcols, firstline, firstco~

The newwin routine creates a new window that contains the number of lines specified by
the numlines parameter and the number of columns specified by the numcols parameter.
The new window will start at the coordinates specified by the firstline and the firstcol
parameters.

If the numlines parameter is 0, then that dimension is set to (LINES - firstline). If the
numcols parameter is 0, then that dimension is set to (COLS - firstco~. Therefore, to get a
new window of dimensions (LINES x COLS), use:

nev..rwin (0, 0, 0, 0)

The size specified for the window can exceed the size of the real display. In this case, a
viewport or subwindow must be used to present the data from the window on the terminal.

Upon successful completion, a pointer to the new window structure is returned.

The newwin routine returns ERR if any of the parameters are invalid, or if there is
insufficient storage available for the new structure.

12-28 User Interface Reference

I

\

Extended

nl ()
nonl ()

The nl routine sets the terminal to nl mode. When in nl mode, the system maps '\r' (return
characters) to '\n' (new-line or line-feed characters). If the mapping is not done, refresh can
do more optimization. nonl turns nl mode off.

The nl routine and nonl do not affect the way in which waddch processes new-line
characters.

The nl and nonl routines always return the value OK.

resetty (boom

The resetty routine restores the terminal status flags that were previously saved by savetty.
If the boo/f parameter is TRUE, then the screen is cleared in addition to resetting the
terminal. resetty is performed automatically by endwin and is not normally called directly by
applications.

restore_colors ()

This routine restores the screen to GREEN foreground color and BLACK background color.
This routine is performed automatically by endwin if the character variable do_colors is set
to TRUE.

savetty ()

The savetty routine saves the current terminal status flags. savetty is performed
automatically by initscr and is not normally called directly by applications.

scroll (win)

The scroll routine moves the data in the window specified by the win parameter up one line
and inserts a new blank line at the bottom.

scrollok (win, boo If)

The scrollok routine sets the scroll flag for the window specified by the win parameter. If the
boolf parameter is TRUE, then scrolling is allowed. The default setting is FALSE, which
prevents scrolling.

setscrreg (t,b)
wsetscrreg (w, t, b)

The setscrreg routine sets the user scrolling region to lines t through b.

setterm (name)
char *name;

The setterm routine sets the terminal characteristics to be those of the terminal specified by
the name parameter. setterm is called by initscr so you do not normally have to use it
unless you wish to use just the cursor motion optimizations.

Extended Curses Subroutines Library 12-29

Extended

WINDOW *subwin (win, numlines, numcols, firstline, firstco~

The subwin routine creates a subwindow in the window pointed to by the win parameter.
The subwindow has the number of lines specified by the numlines parameter and the
number of columns specified by the numcols parameter. The new subwindow starts at the
coordinates specified by the firstline and the firstcol parameters. Any change made to the
window or the subwindow in the area covered by the subwindow is made to both windows.

The firstline and firstcol parameters are specified relative to the overall screen, not to the
relative (0, 0) of the window specified by the win parameter.

If the numlines parameter is 0, then the lines dimension is set to (LINES - firstline). If the
numcols parameter is 0, then the columns dimension is set to (COLS - firstco~.

Upon successful completion, a pointer to the control structure for the new subwindow is
returned.

The subwin routine returns ERR if the window specified by the win parameter already has a
subwindow, or if there is insufficient storage for the new control structure.

touchwin (win)

The touchwin routine makes it appear as if every location on the window specified by the
win parameter has been changed. This is useful when overlapping windows are to be
refreshed. A subsequent refresh request considers all portions of the window as potentially
modified. If touchwin is not used, then only those positions of the window that have been
addressed by an addch are inspected.

trackloc (boom

The trackloc routine turns on and off the tracking of the mouse cursor on the screen. If the
boolf parameter is TRUE, then mouse tracking is turned on; if FALSE, then it is turned off.
By default, mouse tracking is initially tL:Jrned off.

The keycode KEY _LOCESC is returned from getch when a mouse report is input. The
mouse report is stored in the global char array ESCSTR, which is 128 bytes long.

Mouse tracking is handled by the ecpnin routine. However, the application needs to activate
the mouse by using the HFT function call.

Warning: The meta and raw functions should be performed when the mouse is turned on
which will disable all of the control characters (e.g., INTR, Quit, etc.).

tstp ()

The tstp routine saves the current tty state and then put the process to sleep. When the
process is restarted, the tty state is restored and then wrefresh (curscr) is called to redraw
the screen. The initscr routine sets the signal SIGTSTP to trap tstp.

The tstp routine always returns the value OK.

#include <Cur04.h>
char *unctrl (xc)

The unctrl routine returns a string that represents the value of the xc parameter. Control
characters become the lowercase equivalents preceded by a" (circumflex). Other letters are
unchanged. The unctrl routine supports only the characters OxOO through Ox7F.

Upon successful completion, a pointer to the string for the parameter character is returned.

12-30 User Interface Reference

I
\\i

Extended

dounctrl (boo/~

The dounctrl routine turns the printing of control characters on or off. If the boolf parameter
is TRUE, then the printing is turned on; if FALSE, printing is turned off. By default, dounctrl
processing is initially turned off. The unctrl routine defined in cur04.h is used to get the
string of printable characters being printed. Control characters become the printable
character represented by the control character plus Ox40, preceded by a 11 (circumflex).

vscroll (win, numlines, numcols)

The vscroll routine scrolls the viewport specified by the win parameter on the window.

The numlines parameter specifies the direction and amount to scroll up or down. If the
numlines parameter is positive, the viewport scrolls down the number of lines specified. If
the numlines parameter is negative, the viewport scrolls up the number of lines specified.

The numcols parameter specifies the direction and amount to scroll left or right. If the
numcols parameter is positive, the viewport scrolls to the right the number of characters
specified. If the numcols parameter is negative, then the viewport scrolls to the left the
number of characters specified.

The vscroll routine always scrolls as much of a requested scroll as possible. Specifying a
parameter with a magnitude larger than that of the underlying window is not an error.

The vscroll routine calls touchwin if any scrolling is done.

The vscroll routine returns ERR if the window specified by the win parameter is not a
window created by a call to newview.

Display Attributes
Use the following routines to change display attributes. See Changing Display Attributes for
information on the external variables that can be changed.

sel_attr (set)
int* set;

The sel_attr routine allows you to change the selection and priority of attributes for the
run-time terminal. The set parameter points to a NULL-terminated integer array that
contains display attribute values from the cur03.h header file in the order that you want them
regardless of whether or not they are available on the terminal.

Groups of attributes (colors and fonts) cannot be split in the array. For instance, all
foreground colors specified must be in adjacent locations in the array.

The first element of a group of attributes must be the default color or font of the terminal. For
example, the first foreground color specified is usually F _WHITE, and the first background
color specified is usually B_BLACK.

It is recommended that sel_attr only be called before initscr. If sel_attr is called after
initscr, then the routine setup_attr should be called after calling sel_attr. If sel_attr is
called after data has been added to a window, the values in the associated attribute array for
that window may denote different attributes than the original attributes used when displaying
the data (except NORMAL, which remains constant). A subsequent refresh of the window
shows the different attributes only if the data has been modified or if a total refresh has been
forced by a previous call to touchwin.

Extended Curses Subroutines Library 12-31

Extended

To use this routine, put the following statement at the beginning of the program file:

#include <cur03.h>

The sel_attr routine always returns the value OK.

setup_attr ()

The setup_attr routine creates the display attribute masks assigned to the attribute
variables declared in the cur01.h header file. The priorities of the attributes determine how
the masks are created.

This routine is called by initscr and is not normally called by applications. This routine
should only be called following a call to sel_attr, which follows a call to initscr.

Implementation Specifics
The Extended curses Subroutine Library is part of Base Operating System (BOS) Runtime
of AIX for RISC System/6000.

Related Information
The printf command, scanf command, captoinfo command.

12-32 User Interface Reference

i
\

Curses

Curses Programming Example
The following example program, twinkle.c, uses the extended curses library routines
(libcur.a) to create a series of displays on the screen.

#include <curOO.h>
#include <signal.h>

#define NCOLS 80
#define NLINES 24
#define MAXPATTERNS 11

struct locs
{

char y, x;
} ;

typedef struct locs LOCS;

LOCS layout[NCOLS * NLINES]; /*current board layout*/

int pattern, /* current pattern number */
numstars; /* numbers of stars in ptern */

main()
{

char * getenv () ;
int die();

srand (getpid ()) ;
initscr();

/* initialize random sequence */

}

/*

signal(SIGINT, die);
noecho ();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (; ;)
{

}

makeboard();
puton ('*') ;

system("sleep 2");
erase () ;
refresh ();

/* make the board setup */
/* put on '*'s */

** On program exit, move the cursor to the lower left corner by
** direct addressing, since current location is not certain.
** We say we used to be at the upper right corner to obtain
** absolute addressing.
*/

die()
{

signal(SIGINT, SIG IGN);
mvcur(LINES/2, COLS/2, 0, 0);

Extended Curses Subroutines Library 12-33

Curses

}

/*

wclear(curscr);
wrefresh(curscr);
endwin();
exit(O);

** Make the current board setup. It picks a random pattern and
** calls ison() to determine if the character is on that pattern
** or not.
*/

make board ()
{

}

/*

reg int
reg LOCS

y' x;
*lp;

pattern = rand() % MAXPATTERNS;
lp = layout;
for(y = O; y < NLINES; y++)
{

for(x 0; x < NCOLS; x++
{

if (ison(y, x))
{

lp -> y y;
lp++ -> x = x· ,

}
}

}
numstars lp - layout;

** Return TRUE if (y, x) is on the current pattern.
*/

ison(y, x

reg int y, x;

{
switch(pattern)
{

/*
** Alternating lines:
*/
case 0:

return !(y & 01);
/*
** Box:
*/
case 1:

/*

if (y < 3 : : y >= NLINES - 3)
return TRUE;

return(x < 4 I I x >= NCOLS - 4);

** Cross:
*/

12-34 User Interface Reference

(
'

case 2:
return ((x + y) & 01) ;

/*
** Bar across center:
*/
case 3:

return(y >= 9 && y <= 15);
/*
** Alternating columns:
*/
case 4:

return !(x & 02);
/*
** Bar down center:
*/
case 5:

return(x >= 36 && x <= 44);
/*
** Bar across and down center:
*/
case 6:

Curses

return((y >= 9 && y <= 15) 11 (x >= 37 && x <= 43)) ;
/*
** Bar across and down center, in a box:
*/
case 7:

if (y < 3 I I y >= NLINES - 3)
return TRUE;

if (x < 4 I I x >= NCOLS - 4)
return TRUE;

return((y >= 10 && y <= 14) 11 (x >= 36 && x <= 44)) ;
/*
** Asterisk:
*/
case 8:

if(abs(x - y) <= 2 I I abs(NLINES - (x + y)) <= 2)
return TRUE;

if (abs((NLINES/2 - x) <= 2)
return TRUE;

return(abs((NLINES/2 - y) <= 1 && x <= NLINES);
/*
** Ellipse:
*/
case 9:

return

) ;
/*

((float
((float
<= 1

** Circle:
*/
case 10:

return

((x-40
((y-12

* (x-40))
* (y-12))

I 1521 +
I 121

((float) ((x-28) * (x-28))) I 729 +

Extended Curses Subroutines Library 12-35

Curses

) ;

((float) ((y-12) * (y-12))) I 121
<= 1

} /* end of switch(pattern) */
} /* not reached */

puton(ch)
reg char ch;
{

}

reg LOCS
reg LOCS
LOCS
reg int

*lp;
*end;
temp;

r;

end= &layout[numstars];
for(lp = layout; lp < end; lp++
{

}

r =rand() % numstars;
temp = *lp;
*lp =layout[r];
layout[r) = temp;

for(lp = layout; lp < end; lp++
{

mvaddch(lp -> y, lp -> x, ch
refresh ();

}
/* end of twinkle */

) ;

12-36 User Interface Reference

I

\

Appendix A. Enhanced X-Windows Xlib Data Structures

The XAIXDeviceMappingEvent data structure
The XVisuallnfo data structure
The XSetWindowAttributes data structure
The XWindowChanges data structure
The XWindowAttributes data structure
The XColor data structure
The XGCValues data structure
The XStandardColormap data structure
The XSegment data structure
The XRectangle data structure
The XPoint data structure
The XArc data structure
The XCharStruct data structure
The XFontProp data structure
The XChar2b data structure
The XFontStruct data structure
The XTextltem data structure
The XTextltem16 data structure
The Xlmage data structure
The XKeyboardControl data structure
The XKeyboardState data structure
The XModifierKeymap data structure
The XHostAddress data structure
The XAnyEvent data structure
The XEvent data structure
The XButtonPressedEvent data structure
The XButtonReleasedEvent data structure
The XKeyPressedEvent data structure
The XKeyReleasedEvent data structure
The XPointerMovedEvent data structure
The XCrossingEvent data structure
The XEnterWindowEvent data structure
The XLeaveWindowEvent data structure
The XFocuslnEvent data structure
The XFocusOutEvent data structure
The XKeymapEvent data structure
The XExposeEvent data structure
The XGraphicsExposeEvent data structure
The XNoExposeEvent data structure
The XCirculateEvent data structure
The XConfigureEvent data structure
The XCreateWindowEvent data structure
The XDestroyWindowEvent data structure
The XGravityEvent data structure
The XMapEvent data structure
The XMappingEvent data structure
The XReparentEvent data structure
The XUnmapEvent data structure
The XVisibilityEvent data structure
The XCirculateRequestEvent data structure

Enhanced X-Windows Xlib Data Structures A-1

The XConfigureRequestEvent data structure
The XMapRequestEvent data structure
The XResizeRequestEvent data structure
The XColormapEvent data structure
The XClientMessageEvent data structure
The XPropertyEvent data structure
The XSelectionClearEvent data structure
The XSelectionRequestEvent data structure
The XSelectionEvent data structure
The XErrorEvent data structure
The XWMHints data structure
The XSizeHints data structure
The XlconSize data structure
The XClassHint data structure
The XrmValue data structure
The XrmOptionDesclist data structure

A-2 User Interface Reference

(

!
\

XVisuallnfo Data Structure
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

VisualNoMask
VisualIDMask
VisualScreenMask
VisualDepthMask
VisualClassMask
VisualRedMaskMask
VisualGreenMaskMask
VisualBlueMaskMask
VisualColorrnapSizeMask
VisualBitsPerRGBMask
VisualAllMask

OxO
Oxl
Ox2
Ox4
Ox8
OxlO
Ox20
Ox40
Ox80
OxlOO
OxlFF

typedef struct {
Visual *visual;
VisualID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_rnask;
unsigned long green_rnask;
unsigned long blue_rnask;
int colorrnap_size;
int bits_per_rgb;

} XVisualinfo;

The fields of the XVisuallnfo data structure are as follows:

bits_per_rgb

blue_mask

class

Specifies the log base 2 of the approximate number of distinct color
values (individually) of red, green, and blue (RGB). Actual RGB values
are unsigned 16-bit numbers.

Defined only for DirectColor and TrueColor. Each mask has one
contiguous set of bits with no intersections.

Specifies the possible visual classes of the screen. It can be one of the
following: PseudoColor, Grayscale, DirectColor, TrueColor,
StaticColor, or StaticGray. Conceptually, as each pixel is read out of
video memory, it goes through a lookup stage by indexing into a
colormap. Colormaps can be manipulated arbitrarily on some
hardware, in a limited way on other hardware, and not at all on other
hardware. The visual types affect the colormap and the RGB values in
the following ways:

PseudoColor A pixel value indexes a colormap to produce
independent RGB values, and the RGB values can
be changed dynamically.

Enhanced X-Windows Xlib Data Structures A-3

colormap_ size

depth

green_mask

red_mask

screen

visual

visualid

Related Information

Grayscale

DirectColor

TrueColor

StaticColor

StaticGray

A pixel value indexes a colormap to produce
independent RGB values, and the RGB values can
be changed dynamically, except that the primary
that drives the screen is not defined. Therefore, the
client should always store the same value for red,
green, and blue in the colormaps.

A pixel value is decomposed into separate RGB
subfields, and each subfield separately indexes the
colormap for the corresponding value. The RGB
values can be changed dynamically.

A pixel value is decomposed into separate RGB
subfields, except that the colormap has predefined
read-only RGB values. These values are
server-dependent, but provide linear or near-linear
ramps in each primary.

A pixel value indexes a colormap to produce
independent RGB values, and the RGB values can
be changed dynamically, except that the colormap
has predefined read-only server-dependent RGB
values.

A pixel value indexes a colormap to produce
independent RGB values, and the RGB values can
be changed dynamically, except that the red, green,
and blue values are equal for any single pixel value
that results in shades of gray. StaticGray with a
two-entry colormap can be considered
monochrome.

Defines the number of available colormap entries in a newly created
colormap. For DirectColor and TrueColor, this number is the size of
an individual--pixel subfield.

Specifies the depth of the screen.

Defined only for DirectColor and TrueColor. Each mask has one
contiguous set of bits with no intersections.

Defined only for DirectColor and TrueColor. Each mask has one
contiguous set of bits with no intersections.

Specifies the screen.

Specifies the visual.

Specifies the visual ID.

The XGetVisuallnfo subroutine, XMatchVisuallnfo subroutine, XVisuallDFromVisual
subroutine

A-4 User Interface Reference

XSetWindowAttributes Data Structure
#define CWBackPixmap (lL«O)
#define CWBackPixel (lL<<l)
#define CWBorderPixmap (1L«2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L«5)
#define CWBackingStore (1L«6)
#<;le fine CWBackingPlanes (1L<<7)
#define CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L«9)
#define CWSaveUnder (lL«lO)
#define CWEventMask (lL«ll)
#define CWDontPropagate (1L<<l2)
#define CWColormap (1L«l3)
#define CWCursor (1L«l4)

typedef struct {
Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel;
int bit_gravity;
int window_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
long event_mask;
long do_not_propagate_mask;
Bool override redirect;
Colormap colormap;
Cursor cursor;

} XSetWindowAttributes;

The following table lists the defaults for each window field and indicates if the field is
applicable to lnputOutput or lnputOnly windows.

Window Field Default Values lnputOutput lnputOnly

background_pixmap None Yes No

background_pixel Undefined Yes No

border_pixmap CopyFromParent Yes No

border _pixel Undefined Yes No

bit_gravity ForgetGravity Yes No

win_gravity NorthWestGravity Yes Yes

backing_ store NotUseful Yes No

backing_planes All 1s Yes No

backing_pixel 0 Yes No

Enhanced X-Windows Xlib Data Structures A-5

save_under False Yes No

event_ mask empty set Yes Yes

do_not_propagate_mask empty set Yes Yes

override_redirect False Yes Yes

colormap CopyFromParent Yes No

cursor None Yes Yes

The fields of the XSetWindowAttributes data structure are as follows:

background_pixmap Specifies the pixmap to be used for a window background. This
pixmap can be any size, but some sizes are faster than others. Use
the XQueryBest Sizes subroutine to determine the optimum size. The
background_pixmap field can be set to a pixmap ID, or either the value
of None or ParentRelative. The default is the value of None. The
background_pixmap field and the window must have the same depth,
or a BadMatch error is returned.

Only lnputOutput windows can have backgrounds.

When regions of the window are exposed and the X Server has not
retained the contents of the window, the X Server automatically tiles
the regions with the window background as long as the
background_pixmap field is not the value of None.

• If the background_pixmap field is set to the value of None, the
contents of the previous screen are left in place if the window and
the parent window have the same depth. Otherwise, the initial
contents of the exposed regions are undefined. Expose events are
then generated for the regions, even if the background_pixmap field
is the value of None.

• If the background_pixmap field is set to ParentRelative, the
following occurs:

- The background_pixmap field of the parent window is used if

(
\

the child window has the same depth as the parent window, or (

A-6 User Interface Reference

a BadMatch error is returned. "l

- The window has no defined background. If the parent window
has a background_pixmap field of the value of None, the
window also has a background_pixmap field of the value of
None.

- A copy of the background_pixmap field of the parent window is
not made. The background_pixmap field of the parent window
is examined each time the background_pixmap field of the
child window is required.

- The background tile origin always aligns with the background
tile origin of the parent window. Otherwise, the background tile
origin is always the child window origin.

Setting a new background with the background_pixmap field overrides
any previous background_pixmap field. The background_pixmap field
can be freed immediately if no further explicit reference is made to it.
The X Server keeps a copy to use when needed.

background_pixel Specifies a pixel value of a single color for the background of the
window. This field can be set to any pixel value. The default value for
the background_pixel field is undefined.

border_pixmap

border_pixel

bit_gravity

If the background_pixel field is specified, it overrides the default
background_pixmap field or any value set in the background_pixmap
field, and a pixmap of undefined size is created and filled with the
specified pixel and used for the background. All pixels, in the
background of the window, will be set to this value. Range checking is
not performed on the pixel, as it is truncated to the appropriate number
of bits.

Setting a new background with the background_pixelfield overrides
any previous background.

Specifies the pixmap for the border of a window. This pixmap can be
any size. The border_pixmap field and the child window must have the
same depth, or a BadMatch error is returned.

Only lnputOutput windows can have a border.

Setting a new border with the border_pixmap field overrides any
previous border. Setting a border_pixmap field value overrides the
default value. The default value is CopyFromParent.

If the border_pixmap is CopyFromParent, the border_pixmap field is
copied from the parent window. Subsequent changes to the border
attribute of the parent window do not affect the child window.

The pixmap used for the border_pixmap field can be freed immediately
if no further explicit reference to it is made. If the pixmap used for the
border_pixmap field is freed, the X Server may or may not keep a copy
of it. The X Server can use the same pixmap each time the window is
repainted or it may make a copy.

Specifies a pixel value to be used for the window border. The server
creates a pixmap of unspecified size filled with the pixel for the window
border. The border tile origin is always the same as the background tile
origin. The default for the border_pixelfield is undefined. Range
checking is not performed on the pixel, as it is truncated to the
appropriate number of bits.

Only lnputOutput windows can have a border.

If you specify a border_pixel field, it overrides the default value or the
assigned value of border_pixmap field. Then, all pixels in the border of
the window are set to the border_pixel field value.

The output to a window is always clipped to the inside of the window
so that graphics operations are not affected by the border.

Specifies which region of the window should be retained when an
lnputOutput window is resized. The default bit_gravity is the

Enhanced X-Windows Xlib Data Structures A-7

win_gravity

A-8 User Interface Reference

ForgetGravity value. Changing the inside width or height of the
window causes the contents of the window to be moved or lost
depending on the bit_gravity field of the window. The values for the
bit_gravity field include:

ForgetG ravity

StaticG ravity

Indicates that the contents of the window are
always discarded after a size change, even if a
backing store or save under has been requested.
The window is tiled with its background, and one or
more Expose events are generated. If no
background is defined, the existing screen contents
are not altered. Some X Servers may ignore the
specified bit_gravity field and always generate
exposure events.

Indicates that the contents or origin of the window
should not move relative to the origin of the root
window. If the change in size of the window is
coupled with a change in position (x, y), the change
in position of each pixel becomes (-x, -y).

The StaticGravity value takes effect only when the
width or height of the window is changed, not when
the window is moved.

If the inside width or height of a window is not
changed and if the window is moved or its border is
changed, the contents of the window are not lost
but are moved with the window. For a change of
width and height, the (x, y) pairs are defined as
follows:

Gravity Coordinates Direction

NorthWestGravity (0, 0)

North Gravity (Width/2, 0)

North EastG ravity (Width, 0)

WestGravity (0, Height/2)

CenterGravity (Width/2, Height/2)

EastGravity (Width, Height/2)

SouthWestGravity (0, Height)

SouthGravity (Width/2, Height)

South EastG ravity (Width, Height)

When a window with one of these bit_gravity field
values is resized, the corresponding pair defines
the change in position of each pixel in the window.

Specifies how the lnputOutput or lnputOnly window should be
repositioned if the parent window is resized. Changing the inside width

(

I

\

backing_ store

or height of the window causes child windows to be reconfigured,
depending on the specified win_gravity field. The default for the
win_gravityfield is the value of NorthWestGravity.

If the inside width or height of a window is not changed and if the
window is moved or its border is changed, the contents of the window
are not lost but are moved with the window. For a change of width and
height, the (x, y) pairs are defined as follows:

Gravity Coordinates Direction

NorthWestGravity (0, 0)

NorthGravity (Width/2, 0)

NorthEastGravity (Width, 0)

WestGravity (0, Height/2)

CenterG ravity (Width/2, Height/2)

EastGravity (Width, Height/2)

SouthWestGravity (0, Height)

SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a window with one of these win_gravity field values has its
parent window resized, the corresponding pair defines the change in
position of the window within the parent window. When the window is
repositioned, a GravityNotify event is generated.

StaticGravity If the change in size of the window is coupled with a
change in position (x, y), the change in position of a
child window when the parent window is resized
becomes (-x, -y).

The StaticGravity value takes effect only when the
width or height of the window is changed, not when
the window is moved.

UnmapGravity This is like the NorthWestGravity value; the
window is not moved, but the child window is
unmapped when the parent window is resized, and
an UnmapNotify event is generated.

Advises the X Server what to do with the contents of a window. Some
implementations may choose to maintain the contents of lnputOutput
windows. If the X Server maintains the contents of a window, the pixels
saved offscreen are known as the backing store. This field can be set
to the following values:

NotUseful Advises the X Server that maintaining contents is
not necessary. Some X implementations can still
maintain contents; therefore, exposure events are
not generated. This is the default value.

Enhanced X-Windows Xlib Data Structures A-9

backing_planes

backing_pixel

save_under

event_ mask

A-10 User Interface Reference

When Mapped

Always

Advises the X Server that maintaining contents of
obscured regions when the window is mapped
would be beneficial. The X Server can generate an
Expose event when the window is created.

Advises the X Server that maintaining contents
even when the window is unmapped would be
beneficial. Even if the window is larger than the
parent window, this requests that the X Server
maintain the complete contents of the window, not
just the contents of the region within the boundaries
of the parent window. While the X Server maintains
the contents of the window, Expose events are not
normally generated. The X Server can .. stop
maintaining contents at any time.

When the contents of obscured regions of a window
are being maintained, the regions obscured by
noninferior windows are included in the destination
of graphics requests (and source, when the window
is the source). Regions obscured by inferior
windows, however, are not included.

Indicates (with one bits) which bit planes of the lnputOutput window
hold dynamic data that must be preserved in the ba~king store and
during save unders. If you request backing store or save unders, the
backing_planes field will minimize the amount of off-screen memory
required to store your window. The default is all bits set to the value of
1.

Specifies the values to use in planes not covered by the
backing_planes field. The X Server is free to save only the specified bit
planes in the backing store or the save under and is free to regenerate
the remaining planes with the specified pixel value. Any extraneous
bits in these values, beyond the depth of the window, can be ignored. If
you request backing store or save unders, the backing_pixel field will
minimize the amount of off-screen memory required to store your
window. The default is the value of 0.

If the save_under field is the value of True, the X Server is advised
that saving the contents of the windows that it obscures would be
beneficial when this window is mapped. The default is the value of
False.

Some server implementations can preserve bits of lnputOutput
windows under other lnputOutput windows. This is not the same as
preserving the contents of a window. If transient windows, such as
pop-up menus, request that the system preserve the bits under them,
the temporarily obscured applications do not have to repaint.

Defines events the client is interested in for this lnputOutput or
lnputOnly window or, in some cases, for the inferiors of the window.
This mask is the bitwise-inclusive OR of one or more of the valid event
mask bits. If the NoEventMask constant is specified, no maskable
events are reported. The default is the empty set.

(

~

do_not_propagate_mask

override_redirect

colormap

cursor

Defines events that should not be propagated to ancestor windows
when no client has the event type selected in this window. These
masks are the bitwise-inclusive OR of one or more of the valid event
mask bits. If the NoEventMask constant is specified, no maskable
events are reported. The default is the empty set.

Specifies if a map or configure request on a window should override a
SubstructureRedirectMask request on the parent window. The
default is the value of False.

To control window placement or to add decoration, a window manager
may need to intercept or redirect a map or configure request. Pop-up
windows, however, need to be mapped so that a window manager
does not interfere with the response they receive. To do this, the
override_redirectfield must be used.

Specifies the colormap, if any, that best reflects the true colors of an
lnputOutput window. The colormap must have the same visual type
as the window, or a BadMatch error is returned. The colormap field
can be set to a specific colormap or to the value of CopyFromParent,
Ylhich is the default.

If the colormap field is set to the value of CopyFromParent, the
colormap of the parent window is copied and used by the child window.
However, the child window must have the same visual type as the
parent, or a BadMatch error is returned. A BadMatch error is also
returned if the parent window has the colormap field is set to the value
of None. The colormap is copied by sharing the colormap object
between the child and parent windows, not by making a complete copy
of the colormap contents. Subsequent changes to the parent window
do not affect the child window.

If a cursor is specified, it is used whenever the pointer is in the
specified window. The default is the value of None.

If the value of None is specified, the cursor of the parent is used when
the pointer is in the lnputOutput or lnputOnly window. Any change in
the parent cursor will change the displayed cursor immediately. Use
the XFreeCursor subroutine to free the cursor immediately if no
further explicit reference to it is made.

~
Enhanced X-Windows Xlib Data Structures A-11

XWindowChanges Data Structure

A-12

#define cwx (l«O)
#define CWY (l«l)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1«5)
#define CWStackMode (1<<6)

typedef struct {
in.t x, y;
int width, height;
int border_width;
Window sibling;
int stack_ mode;
} XWindowChanges

The fields of the XWindowChanges data structure are as follows:

x

y

width

height

border_width

sibling

stack_ mode

User Interface Reference

Specifies the position of the x coordinate of the upper-left outer corner
of the window. This coordinate is relative to the origin of the parent
window.

Specifies the position of they coordinate of the upper-left outer corner
of the window. This coordinate is relative to the origin of the parent
window.

Specifies the width of the inside of the window, excluding the border.
This field should be a nonzero value or a BadValue error is returned.
Attempts to configure a root window have no effect.

Specifies the width of the inside of the window, excluding the border.
This field should be a nonzero value or a BadValue error is returned.
Attempts to configure a root window have no effect.

Specifies the width of the border in pixels. Changing only the
border_ width field leaves the outer-left corner of the window in a fixed
position, but moves the absolute position of the window origin.
Attempts to change the border_ width field on an lnputOnly window
will result in a BadMatch error.

Specifies the sibling window for stacking operations. If the sibling field
is specified without the stack_mode field, a BadMatch error will result.

Specifies how the window is to be restacked. The stack_mode field
can be the Above, Below, Toplf, Bottomlf, or Opposite value.

If a sibling and a stack_mode field are specified, the window is
restacked as follows:

StackMode Sibling Specified.

Above The window is placed just above the sibling window.

(

Below

Top If

Bottom If

Opposite

The window is placed just below the sibling window.

If the sibling window occludes the window, the
window is placed at the top of the stack.

If the window occludes the sibling window, the
window is placed at the bottom of the stack.

If the sibling window occludes the window, the
window is placed at the top of the stack. Otherwise,
if the window occludes the sibling window, the
window is placed at the bottom of the stack.

If the stack_mode field is specified without a sibling
window, the window is restacked as follows:

StackMode

Above

Below

Top If

Bottomlf

Opposite

Sibling Not Specified.

The window is placed at the top
of the stack.

The window is placed at the
bottom of the stack.

If any sibling window occludes
the window, the window is
placed at the top of the stack.

If the window occludes any
sibling window, the window is
placed at the bottom of the
stack.

If any sibling window occludes
the window, the window is
placed at the top of the stack.
Otherwise, if the window
occludes any sibling window, the
window is placed at the bottom
of the stack.

If the override_redirect field of the window is the value of False, and if
some other client has selected the SubstructureRedirectMask on the
parent window, then the X Server generates a ConfigureRequest
event, and no further processing is performed.

Otherwise, if some other client has selected the ResizeRedirectMask
value on the window and the inside width or height of the window is
being changed, a ResizeRequest event is generated, and the current .
inside width and height are used instead.

The override_redirect field of the window does not affect the
ResizeRedirectMask value, and the SubstructureRedirectMask
value on the parent window has precedence over the
ResizeRedirectMask value on the window.

Enhanced X-W!ndows Xlib Data Structures A-13

When the geometry of the window is changed as specified, the window ~
is restacked among sibling windows, and a ConfigureNotify event is
generated if the state of the window actually changes. The X Server
generates GravityNotify events after generating ConfigureNotify
events. If the inside width or height of the window has changed, the
children of the window are affected as follows:

• If the size of the window actually changes, the subwindow may
move according to the window gravity. Depending on the window's
bit gravity, the contents of the window may also be moved.

• If regions of the window were obscured but are not now, exposure
processing is performed on formerly obscured windows, including
the window itself and its inferiors.

• By increasing the width or height, exposure processing is also
performed on any new regions of the window and on any regions
where window contents are lost.

• The restack check, specifically the computation for the Bottomlf,
Toplf, and Opposite values, is performed with respect to the final
size and position of the window as controlled by the other fields of
the request, not the initial position of the window. A sibling field
should be specified with a stack_mode field.

Related Information

A-14

The XChangeWindowAttributes subroutine, XCirculateSubwindows subroutine,
XCirculateSubwindowsDown subroutine, XCirculateSubwindowsUp subroutine,
XConfigureWindow subroutine, XlowerWindow subroutine, XMoveResizeWindow
subroutine, XMoveWindow subroutine, XRaiseWindow subroutine, XResizeWindow
subroutine, XRestackWindows subroutine, XSetWindowBackground subroutine,
XSetWindowBackgroundPixmap subroutine, XSetWindowBorder subroutine,
XSetWindowBorderPixmap subroutine, XSetWindowBorderWidth subroutine,
XTranslateCoordinates subroutine.

The ChangeWindowAttributes protocol request, CirculateWindow protocol request,
ConfigureWindow protocol request.

User Interface Reference

(
\

XWindowsAttributes Data Structure
typedef struct {

int x, y; /* location of window */
int width, height; /* width and height of window */
int border_width; /*·border width of window */
int depth; /* depth of window */
Visual *visual; /* the associated visual structure */
Window root; /* root of screen containing window */
int class; /* InputOutput, InputOnly */
int bit_gravity /* one of the bit gravity values */
int window_gravity; /* one of the window gravity values */
int backing_store; /* NotUseful, WhenMapped, Always */
unsigned long backing_planes;/* planes to be preserved if

possible */
unsigned long backing_pixel; /* value to be used when restoring

planes */
Bool save_under; /* boolean, should bits under be

saved? */
Colormap colormap; /* colormap to be associated with

Bool map_installed;

int map_state;

long all_event_masks;

window */

/* boolean, is colormap currently
installed? */

/* IsUnmapped, IsUnviewable,
IsViewable */

/* set of events all people have
interest in */

long your_event_mask; /* my event mask*/
long do_not_propagate_mask; /* set of events that should not

propagate */
Bool override_redirect; I* boolean value for

override-redirect */
Screen *screen;

} XWindowAttributes;
/* back pointer to correct screen */

The fields of the XWindowAttributes data structure are as follows:

x

y

width

height

border_ width

Defines the x coordinate of the drawable. If the drawable is a window,
this coordinate specifies the upper-left outer-corner of the window
relative to the origin of the parent window. If the drawable is a pixmap,
this coordinate is set to a value of 0.

Defines the x coordinate of the drawable. If the drawable is a window,
this coordinate specifies the upper-left outer-corner of the window
relative to the origin of the parent window. If the drawable is a pixmap,
this coordinate is set to the value of 0.

Specifies the width of the inside of the window, excluding the border,
for a window.

Specifies the height of the inside of the window, excluding the border,
for a window.

Specifies the width of the border in pixels. If the drawable is a pixmap,
this field is set to the value of 0.

Enhanced X-Windows Xlib Data Structures A-15

depth

visual

root

class

bit_gravity

win_gravity

backing_ store

backing_planes

backing_pixel

save_under

colormap

map_installed

A-16 User Interface Reference

Specifies the depth of the pixmap or window in bits per pixel for the
object. The depth must be supported by the root window of the
specified drawable.

Specifies a pointer to the Visual structure associated with the screen.

Specifies the root ID of the screen containing the window.

Specifies the window class, which is either the lnputOutput or
lnputOnly value.

Specifies the bit gravity of the window. The bit_gravity field can be set
to one of the following values:

CenterGravity SouthGravity

EastG ravity South EastG ravity

ForgetGravity SouthWestGravity

North Gravity StaticGravity

North EastGravity WestGravity

NorthWestGravity

Specifies the gravity of the window. The win_gravity field can be set to
one of the following values:

CenterGravity SouthGravity

EastGravity SouthEastGravity

ForgetGravity SouthWestGravity

North Gravity StaticGravity

North EastGravity WestGravity

North WestGravity

Indicates how the X Server should maintain the contents of a window.
It can be set to the NotUseful, WhenMapped, or Always value.

Indicates which bit planes of the window that hold dynamic data must
be preserved in backing_store and during save_under.

Indicates the values to use when restoring planes from a partial
backing store.

Indicates if the area under the newly mapped windows should be
saved and restored. It can be either the value of True or False.

Indicates colormap for the window specified. It can be set to a
colormap ID or to the value of None.

Indicates if the colormap is currently installed. It can be either the
value of True or False.

(

map_state Indicates the state of the window. It can be lsUnmapped,
lsUnviewable, or lsViewable value. If the window is mapped, but an
ancestor is unmapped, the map_state field is set to the value of
lsUnviewable.

al/_event_masks Specifies the bitwise inclusive-OR of all event masks selected on the
window by interested clients.

your_event_mask Specifies the bitwise inclusive-OR of all event masks selected by the
querying client.

do_not_propagate_ mask

override_redirect

screen

Related Information

Specifies the bitwise inclusive-OR gate or operation of the set of
events that should not propagate.

Indicates if this window overrides structure control facilities. It can be
either the value of True or False. If the override_redirect field is the
value of True, window manager clients usually should ignore the
window.

Transient windows should mark the windows associated with them.

Returns a pointer to the correct screen.

The XGetGeometry subroutine, XGetWindowAttributes subroutine, XQueryPointer
subroutine, XQueryTree subroutine.

Enhanced X-Windows Xlib Data Structures A-17

XColor Data Structure
typedef struct {

unsigned long pixel; /* pixel value */
/* RGB values */ unsigned short red, green, blue;

char flags;
char pad;

} XColor;

/* DoRed, DoGreen, DoBlue */

The fields of the XColor data structure are as follows:

blue

flags

green

pad

pixel

red

Specifies a scale between 0 and 65535. That is, on full, the color value
would be 65535 independent of the number of bit planes of the display.
For half brightness in a color, the value would be 32767. The color
value would be O for off. This value gives uniform results for color
values across displays with different numbers of bit planes.

Specifies which colors are to be set. The flags field can be one or
more of the DoRed, DoGreen, or DoBlue values.

Specifies a scale between 0 and 65535. That is, on full, the color value
would be 65535 independent of the number of bit planes of the display.
For half brightness in a color, the value would be 32767. The color
value would be O for off. This value gives uniform results for color
values across displays with different numbers of bit planes.

Indicates to fill unused positions in a field with dummy data, usually
zeros or blanks.

Specifies the value of the pixel.

Specifies a scale between 0 and 65535. That is, on full, the color value
would be 65535 independent of the number of bit planes of the display.
For half brightness in a color, the value would be 32767. The color
value would be O for off. This value gives uniform results for color
values across displays with different numbers of bit planes.

Related Information

A-18

The XCopyColormapAndFree subroutine, XCreateColormap subroutine, XFreeColormap
subroutine, XSetWindowColormap subroutine.

The ChangeWindowAttributes protocol request, CopyColormapAndFree,
CreateColormap protocol request, FreeColormap protocol request.

User Interface Reference

(

XGCValues Data Structure
#define GCFunction (lL«O)
#define GCPlaneMask (lL«l)
#define GCForeground (1L«2)
#define GCBackground (1L«3)
#define GCLineWidth (1L«4)
#define GCLineStyle (lL«S)
#define GCCapStyle (1L«6)
#define GCJoinStyle (1L«7)
#define GCFillStyle (1L«8)
#define GCFillRule (1L<<9)
#define GCTile (lL«lO)
#define GCStipple (lL«ll)
#define GCTileStipXOrigin (1L«l2)
#define GCTileStipYOrigin (1L«13)
#define GCFont (1L«l4)
#define GCSubwindowMode (lL«lS)
#define GCGraphicsExposures (1L«l6)
#define GCClipXOrigin (1L«l7)
#define GCClipYOrigin (1L«18)
#define GCClipMask (1L«l9)
#define GCDashOf fset (1L«20)
#define GCDashList (1L«21)
#define GCArcMode (1L«22)

typedef struct {
int function; /* logical operation */

unsigned long plane_mask; /* plane mask */

Unsigned long foreground; /* foreground pixel */
unsigned long background; /* background pixel */

int line_width; /* line width (in pixels) */
int line _style;

int cap_style;

int join_style;

int fill _style;

int fill_rule;
int arc_mode;

Pixmap tile;

Pixmap stipple;

int ts_x_origin;

int ts_y_origin;

Font font;

int subwindow_mode;

/* LineSolid, LineOnOffDash,
LineDoubleDash */

/* CapNotLast, CapButt, CapRound,
CapProjecting */

/* JoinMiter, JoinRound,
JoinBevel */

/* FillSolid, FillTiled,
FillStippled, or
FillOpaqueStippled */

/* EvenOddRule, WindingRule */

/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling

operations */
/* stipple 1 plane pixmap for

stippling */
/* x offset for tile or stipple

operations */
/* y offset for tile or stipple

operations */
/* default text font for text

operations */

/* ClipByChildren,

Enhanced X-Windows Xlib Data Structures A-19

A-20

Bool graphics_exposures;

int clip_x_origin;
int clip_y_origin;

Pixmap clip_mask;

Includeinferiors */
/* Boolean, should exposures be

generated */
/* x origin for clipping */

/* y origin for clipping */
/* bitmap clipping; other calls

for rects */
int dash_offset; /* patterned or dashed line

information */
char dashes;

} XGCValues;

In graphics operations, given a source and destination pixel, the result is computed bitwise
on corresponding bits of the pixels. A Boolean operation is performed in each bit plane.

For a line with coincident endpoints (x1 =X2, y1 =Y2), when the cap_style field is applied to
both endpoints, the semantics depends on the line_ width field and the cap_style field:

CapNotLast thin Nothing is drawn.

CapButt thin A single pixel is drawn.

Cap Butt wide Nothing is drawn.

Cap Round wide The closed path is a circle, centered at the endpoint,
with diameter equal to the line_ width field.

Cap Round thin A single pixel is drawn.

Cap Projecting wide The closed path is a square 4, aligned with the
coor~inate axes, centered at the endpoint, with
sides equal to the line_ width field.

Cap Projecting thin A single pixel is drawn.

For a line with concident endpoints (x1 =X2, y1 =Y2), when the join_style field is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of or is reduced to a single point joined with itself, the
effect is the same as when the cap_style field is applied at both endpoints.

The fields of the XGCValues data structure are as follows:

function

plane_mask

line_ width

User Interface Reference

Specifies the logical operation to be performed.

Specifies the operations to a subset of planes that need to be
restricted. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT pla
ne-mask))

Range checking is not performed on the values for the foreground,
background, or plane_mask fields. These values are truncated to the
appropriate number of bits.

Specifies the width of the line, measured in pixels. It can be greater
than or equal to 1 (wide line) or can be the special value 0 (thin line).

Wide lines are drawn centered on the path described by the graphics
request.

(

\

line_style

Unless otherwise specified by the join_style or the cap_style fields, the
bounding box of a wide line with endpoints [x1 , y1] to [x2, y2] and
width w is a rectangle with vertices at the following real coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2
)] ,
[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2
)]

In this example, sn is the sine of the angle of the line, and cs is the
cosine of the angle of the line. A pixel is part of the line and is drawn
that way only if the center of the pixel is fully inside the bounding box,
which has infinitely thin edges. If the center of the pixel is exactly on
the bounding box, it is part of the line only if the interior is immediately
to its right (the x increasing direction). Pixels with centers on a
horizontal edge are a special case and are part of the line only if the
interior or the boundary is immediately below (the y increasing
direction) and the interior or the boundary is immediately to the right
(the x increasing direction).

Thin lines (zero line width) are one pixel wide lines drawn using an
unspecified, device-dependent algorithm. There are only the following
two constraints on this algorithm:

• If a line is drawn unclipped from [x 1 , y 1 1 to [x2 , y 2] and if
another line is drawn unclipped from [xl+dx, yl+dy] to
[x2+dx, y2+dy], a point [x, y] is touched by drawing the first
line only if the point [x+dx, y+dy] is touched by drawing the
second line.

• The effective set of points comprising a line cannot be affected by
clipping. That is, a point is touched in a clipped line only if the point
lies inside the clipping region and the point would be touched by the
line when drawn unclipped.

A wide line drawn from [xl, yl] to [x2, y2] always draws the
same pixels as a wide line drawn from [x2, y2] to [xl, yl], not
counting the cap_style and the join_style fields. A line_ width field of O
may differ from a line_ width field of 1 in which pixels are drawn.

In general, drawing a thin line is faster than drawing a wide line of
width 1. However, because of their different drawing algorithms, thin
lines may not mix well, aesthetically speaking, with wide lines. If it is
desirable to obtain precise and uniform results across all displays, a
client should always use a line_width of 1, rather than a line_width of
0.

Defines which sections of a line are drawn. The line_style field can be
one of the following values:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even
dashes are filled differently than the odd dashes
(see fill-style) with the CapButt value used where
even and odd dashes meet.

Enhanced X-Windows Xlib Data Structures A-21

cap_style

join_style

tile

stipple

clip_x_ origin

A-22 User Interface Reference

LineOnOffDash Only the even dashes are drawn, and the cap_style
field applies to all internal ends of the individual
dashes, except the CapNotlast value is treated as
the CapButt value.

Defines how the endpoints of a path are drawn. The cap_style field
can be one of the following values:

CapNotlast Equivalent to the CapButt value, except that for a
line_ width field of O or 1, the final endpoint is not
drawn.

CapButt Square at the endpoint, perpendicular to the slope
of the line, with no projection beyond.

CapRound A circular arc with the diameter equal to the
line_ width field, centered on the endpoint
(equivalent to the CapButt value for a line_width
field O or 1).

CapProjecting Square at the end, but the path continues beyond
the endpoint for a distance equal to half the
line_ width field (equivalent to the CapButt value for
line_ width field 0 or 1).

Defines how corners are drawn for wide lines. The join_style field can
be one of the following values:

Join Miter

Join Round

Join Bevel

The outer edges of two lines extend to meet at an
angle.

A circular arc with diameter equal to the line_width
field, centered on the join point.

CapButt endpoint styles, and then the triangular
notch filled.

Specifies the tile to be used. The tile pixmap must have the same root
window and depth as the graphics context, or a BadMatch error
results .. The tile field is interpreted relative to the origin of whatever
destination drawable is specified in a graphics request.

Specifies the stipple to be used. The stipple pixmap must have depth
one and must have the same root window as the GC, or a BadMatch
error results. For stipple operations where the fill_style field is
FillStippled, but not FillOpaqueStippled, the stipple pattern is tiled in
a single plane and acts as an additional clip mask to be ANDed with
the clip_mask field. Any size pixmap can be used for tiling or stippling
although some sizes may be faster to use than others.The stipple field
is interpreted relative to the origin of whatever destination drawable is
specified in a graphics request.

Specifies that the field is interpreted relative to the origin of whatever
destination drawable is specified in a graphics request.

(

clip_y_origin

fill_ style

dashes

dash_offset

Specifies that the field is interpreted relative to the origin of whatever
destination drawable is specified in a graphics request.

Specifies that the field defines the contents of the source for line, text,
and fill requests. For all text and fill requests, for line requests with
line_style field of LineSolid, and for the even dashes for line requests
with line_style field of LineOnOffDash or LineDoubleDash the
following applies:

Fill Solid Foreground.

FillTiled Tile.

FillOpaqueStippled A tile with the same width and height as
stipple, but with stipple background has a O
and with stipple foreground has a 1.

FillStippled Foreground masked by stipple.

When drawing lines with the line_style field value of LineDoubleDash,
the odd dashes are controlled by the fi!Lstyle field in the following
manner:

FillSolid Background.

FillTiled Same as even dashes.

FillOpaqueStippled Same as even dashes.

FillStippled Background masked by stipple.

Storing a pixmap in a GC may result in a copy being made. If the
pixmap is later used as the destination for a graphics request, the
change may be reflected in the graphics context. If the pixmap is used
simultaneously in a graphics request both as a destination and as a tile
or stipple, the results are not defined.

Specifies the dash list for the dashed line style to be set for the
specified GC.

The value allowed by the dashes field is a simplified form of the more
general patterns that can be set with the XSetDashes subroutine.
Specifying a value of N is equivalent to specifying the two-element list
[N, N] in the XSetDashes subroutine. N specifies the length of the
dash list. This value must be nonzero, or a BadValue error results.
The default dash list in a newly created GC is equivalent to [4,4].

Specifies the phase of the pattern for the dashed line style to be set for
the graphics context specifying how many elements into the dash list
the pattern should actually begin in any single graphics request.

Dashing is continuous through path elements combined with join_style,
but is reset to the dash_offset each time a cap_style is applied at a line
endpoint.

The unit of measure for dashes is the same as in the ordinary
I

coordinate system. Ideally, a dash length is measured along the slope

Enhanced X-Windows Xlib Data Structures A-23

A-24

of the line, but implementations are required to match only for
horizointal and vertical lines. It is suggested that you measure the
length along the major axis of the line. The major axis is defined as the
x axis for lines drawn at an angle of between -45 and +45 degrees or
between 315 and 225 degrees from the x axis. For all other lines, the
major axis is the y axis. The default value for the dash list in a newly
created GC is equivalent to (4, 4].

clip_mask Restricts writes to the destination drawable. If a pixmap is specified as
the clip_mask field, it must have a depth of one and have the same
root window as the GC. If the clip_mask field is the value of None, the
pixels are always drawn, regardless of the clip origin. The clip_mask
field can also be set with the XSetClipRectangles or XSetRegion
subroutines. Only pixels where the clip_mask field has a 1-bit are
drawn. Pixels are not drawn outside the area covered by the clip_mask
field or where the clip_ mask field has a Obit. It affects all graphics
requests.The clip_mask field does not clip sources.The clip_mask field
origin is interpreted relative to the origin of the specified destination
drawable in the graphics request.

subwindow_mode Specifies how the subwindow should be clipped. The
subwindow_mode field can be one of the following values:

fill_ rule

EvenOddRule

Winding Rule

arc_mode

User Interface Reference

ClipByChildren Indicates that both source and destination windows
are clipped additionally by all viewable lnputOutput
children.

lncludelnferiors Indicates that neither the source window nor the
destination window is clipped by inferiors. This
results in drawing through the boundaries of
subwindows. Using the lncludelnferiors value on a
window with the depth of one with mapped inferiors
of differing depth is allowed, but the semantics are
undefined by the core protocol.

Defines which pixels are inside (drawn) for paths given in the
XFillPolygon subroutine. The fill_rule field can be set to one of the
following values:

Specifies that a point is inside if an infinite ray with the point as origin
crosses the path an odd number of times.

Specifies that a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise
directed path segments.A clockwise directed path segment is one that
crosses the ray from left to right as observed from the point.A
counterclockwise segment is one that crosses the ray from right to left
as observed from the point.

For EvenOddRule and WindingRule, a point is infinitely small, and
the path is an infinitely thin line.

Controls filling in the XFillArcs subroutine. The arc_mode field can be
one of the following values:

ArcPieSlice Specifies that arcs are pie-sliced filled.

(

\

ArcChord Specifies that arcs are chord-filled.

graphics_ exposures Controls the GraphicsExpose event generation for the XCopyArea
and XCopyPlane subroutines and any similar requests defined by
extension subroutines. The GraphicsExpose events are sent even
when they are not explicitly requested. To suppress them, set the
graphics_ exposures field to the value of False.

Related Information
The AllPlanes macro.

The XChangeGC subroutine, XCopyGC subroutine, XCreateGC subroutine, XFreeGC
subroutine, XQueryBestSize subroutine, XQueryBestStipple subroutine, XQueryBestTile
subroutine, XSetArcMode subroutine, XSetBackground subroutine, XSetClipMask
subroutine, XSetClipOrigin subroutine, XSetClipRectangles subroutine, XSetDashes
subroutine, XSetFillRule subroutine, XSetFillStyle subroutine, XSetFont subroutine,
XSetForeground subroutine, XSetFunction subroutine, XSetGraphicsExposures
subroutine, XSetlineAttributes subroutine, XSetPlaneMask subroutine, XSetState
subroutine, XSetStipple subroutine, XSetSubwindowMode subroutine, XSetTile
subroutine, XSetTSOrigin subroutine

Enhanced X-Windows Xlib Data Structures A-25

XStandardColormap Data Structure

A-26

typedef struct {
Colormap colormap;

unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;

unsigned long blue_mult;
unsigned long base_pixel;

} XStandardColormap;

The properties containing the XStandardColormap data structure have the type
RGB_COLOR_MAP.

The fields in the XStandardColormap data structure include the following:

colormap Specifies the ID of a colormap created by the XCreateColormap
subroutine.

red_max

green_max

blue_max

red_mult

green_mult

blue_mult

base_pixel

User Interface Reference

Specifies the maximum red values.

Specifies the maximum green values.

Specifies the maximum blue values. Each color coefficient ranges from
zero (0) to its maximum, inclusive.

An example of a common colormap allocation is 3 I 3 I 2 (3 planes for
red, 3 planes for green, and 2 planes for blue). This colormap would
have red_max = 7, green_ max= 7, and blue_max = 3.

An alternate allocation that uses only 216 colors is red_max = 5,
green_max = 5, and blue_max = 5.

Specifies the scale factors used to compose a full pixel value.

Specifies the scale factors used to compose a full pixel value.

Specifies the scale factors used to compose a full pixel value.

For a 3/3/2 allocation red_multmight be 32, green_multmight be 4,
and blue_mult might be 1.

For a 6-colors-each allocation, red_mult might be 3 6, green_mult
might be 6, and blue_mult might be 1.

Specifies the base pixel value used to compose a full pixel value. The
base_pixel field value is usually obtained from the XAllocColorPlanes
subroutine.

Given integer red, green, and blue coefficients in the appropriate
ranges, you can compute a corresponding pixel value by using the
following expression:

r * red mult + g * green_mult + b * blue mult + base
_pixel

(

\

For Grayscale colormaps, only the colormap, red_max, red_mult, and
base_pixel fields are defined. The other fields are ignored. Compute a
gray-scale pixel value by using the following expression:

gray * red mult + base_pixel

XSegment Data Structure
typedef struct {

short xl, x2, yl, y2;
} XSegment;

All x and y fields are 16-bit signed integers. Do not generate coordinates and sizes out of the
16-bit ranges because the protocol has only 16-bit fields for these values. For example, the
rectangle {0,0,50000, 1} references the coordinates x > = 49,999, and y = 0. This cannot be
represented in 16 bits and the results are not defined.

Related Information
The XDrawline subroutine, XDrawlines subroutine, XDrawRectangle subroutine,
XDrawRectangles subroutine, XDrawSegments subroutine.

The PolySegment protocol request.

XRectangle Data Structure
typedef struct {

short x, y;
unsigned short width, height;

} XRectangle;

Allx and y fields are 16-bit signed integers. The width and height fields are 16-bit unsigned
integers. Do not generate coordinates and sizes out of the 16-bit ranges because the
protocol has only 16-bit fields for these values. For example, the rectangle {0,0,50000, 1}
references the coordinates X > = 49,999, and Y = 0. This cannot be represented in 16 bits
and the results are not defined.

Related Information
The XDrawline subroutine, XDrawlines subroutine, XDrawRectangle subroutine,
XDrawRectangles subroutine, XDrawSegments subroutine.

The PolyRectangle protocol request

Enhanced X-Windows Xlib Data Structures A-27

XPoint Data Structure
typedef struct {

short x, y,
} XPoint;

All x and y fields are 16-bit signed integers. Do not generate coordinates and sizes out of the
16-bit range because the protocol has only 16-bit fields for these values.

Related Information
The XDrawPoint subroutine, XDrawPoints subroutine.

XArc Data Structure
typedef struct {

short x, y;
unsigned short width, height;
short anglel, angle2;

} XArc;
/* Degrees multiplied by 64 */

All x and y fields are 16-bit signed integers. The width and height fields are 16-bit unsigned
integers. Your application should not generate coordinates and sizes out of the 16-bit ranges
because the protocol has only 16-bit fields for these values.

Related Information
The XDrawArc subroutine, XDrawArcs subroutine.

XCharStruct Data Structure

A-28

typedef struct {
short lbearing;
short rbearing;
short width;

short ascent;
short descent;

/* origin to left edge of raster */
/* origin to right edge of raster */
/* advance to next character's

original */
/* baseline to top edge of raster */
/* baseline to bottom edge of

raster */
unsigned short attributes; /* per character flags (not

predefined) *I
} XCharStruct;

The XCharStruct data structure defines the bounding box of a single character, a string, or
the overall characteristics of a font. A nonexistent character is represented with all fields of
the XCharStruct data structure set to the value of 0. Any of the fields of the XCharStruct
data structure can be negative.

The fields of the XCharStruct data structure are defined as follows:

/bearing Specifies the extent of the left edge of the character ink from the origin.

User Interface Reference

(

rbearing

width

ascent

descent

attributes

Specifies the extent of the right edge of the character ink from the
origin.

Specifies the logical width of the character. If the width field is
negative, the next character is placed to the left of the current origin.

Specifies the extent of the top edge of the character ink from the
origin.

Specifies the extent of the bottom edge of the character ink from the
origin.

If the baseline is at the y coordinate y, the logical extent of the font is
inclusive between they coordinate values (y - font. ascent) and
(y + font. descent - 1). Typically, the minimum interline spacing
between rows of text is given by ascent + descent.

For a character origin at [x, y], the bounding box of a character in
terms of XCharStruct components, is a rectangle:

The upper-left corner is:

[x + lbearing, y - ascent]

The width is:

rbearing - lbearing

The height is:

ascent + descent

The origin for the next character is defined as:

[x + width, y]

The baseline is logically viewed as being immediately below
non-descending characters. When the descent field is zero, only pixels
with y coordinates less than y are drawn. The origin is logically viewed
as being concident with the left edge of a non-kerned character.

When lbear ing is the value of 0, no pixels with the X-coordinate less
than x are drawn. Any of these values can be negative.

Specifies the per character flags. The X protocol does not define the
interpretation of the attributes field.

The baseline (they position of the character origin) is logically viewed as being the scan line
just below nondescending characters. When descent is 0, only pixels with Y coordinates less
than y are drawn, and the origin is logically viewed as being coincident with the left edge of a
nonkerned character. When /bearing is zero, no pixels with X coordinates less than x are
drawn. Any of the XCharStruct metric members could be negative. If the width is negative,
the next character will be placed to the left of the current origin. The X protocol does not
define the interpretation of the attributes member in the XCharStruct structures. A
nonexistent character is represented with all members of its XCharStruct structure set to
zero.

Enhanced X-Windows Xlib Data Structures A-29

XFontProp Data Structure
typedef struct {

Atom name;
unsigned long card32;

} XFontProp;

The XFontProp data structure describes a font property. A pointer to a list of these
properties is included in the XFontStruct data structure.

XChar2b Data Structure

A-30

typedef struct { /* normal 16-bit characters are 2 bytes */
unsigned char bytel;
unsigned char byte2;

} XChar2b;

The XChar2b data structure is used in the Xlib library subroutines that use 2-byte matrix
fonts.

Enhanced X-Windows supports both single byte per character and two bytes per character
text operations. Either form can be used with a font, but a single byte per character text
request can specify a single byte only, that is, the first row of a two-byte font. A two-byte font
is similar in concept to a two-dimensional matrix of defined characters.

byte 1 Specifies the range of defined rows.

byte2 Defines the range of defined columns of the font.

Single byte per character fonts have no rows defined. The byte2 range specified in the
structure defines a range of characters.

User Interface Reference

I
(J
\I

XFontStruct Data Structure
The XFontStruct data structure contains all the information for the font, including font
specific information and a pointer to an array of XCharStruct data structures for the
characters contained in the font. If characters are undefined or nonexistent, the default_char
field is used. If the font has characters all the same size, only the information in the
min_bounds and max_bounds fields is used.

typedef struct {
XExtData *Ext data;

Font fid;
unsigned direction;

unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_bytel;
unsigned max_bytel;
Boal all_chars_exist;

unsigned default char;

int n_properties;
XFontProp *properties;

XCharStruct min_bounds;

XCharStruct max_bounds;

XCharStruct *per_char;

int ascent;

int descent;

} XFontStruct;

/* hook for extension to hang
data*/

/* Font ID for this font */
/* hint about the direction font

is painted */
/* first character */
/* last character */
/* first row that exists */
/* last row that exists */
/* flag if all characters have

nonzero size */
/* char to print for undefined

character */
/* how many properties there are */
/* pointer to array of additional

properties */

/* minimum bounds over all
existing char */

/* maximum bounds over all
existing char */

/* first char to last char
information */

/* logical extent above baseline
for spacing */

/* logical decent below baseline
for spacing */

The fields of the XFontStruct data structure include the following:

direction Provides a hint as to what most XCharStruct elements have in terms
of character-width metric. The Core protocol does not support vertical
text. The direction field can be set to one of the following:

FontleftToRight Specifies a positive character-width metric.

FontRightToleft Specifies a negative character-width metric.

min_byte 1 Indicates the first row that exists.

max_byte 1 Indicates the last row that exists.

min_char_or_byte2 Specifies the linear character index of the last element. If the
min_byte 1 and max_byte 1 fields are both the value of 0, then the
max_char_or_byte2 field specifies the linear character index
corresponding to the first element of the per_charfield array. If either
the min_byte 1 or max_byte 1 field is nonzero, then both the

Enhanced X-Windows Xlib Data Structures A-31

per_char

all_ chars_ exist

default_ char

min_bounds

max_ bounds

ascent

descent

A-32 User Interface Reference

min_char_or_byte2 and max_char_or_byte2 fields are less than 256,
and the two-byte character index values corresponding to the per_char
field array element N (counting from 0) are:

bytel N/D + min_bytel
byte2 = N\D + min_char_or_byte2

where:

D max_char_or_byte2 - min_char_or_byte2 + 1
I = integer division
\ = integer modulus

Specifies information about each character. If the per_char field is the
value of NULL, all glyphs between the first and last character, indexes
inclusive, have the same information as given by both the min_bounds
and max_bounds fields.

If the al/_ chars_ exist field is the value of True, all characters in the
per_charfield array have nonzero bounding boxes.

Specifies the character to use when an undefined or nonexistent
character is specified by the client. The default_ char is a 16-bit
character. For a font using 2-byte matrix format, the default_ char has
byte 1 in the most-significant byte and byte2 in the least-significant
byte.

If the default_charspecifies an undefined or nonexistent character, no
printing is performed.

Specifies the smallest rectangle enclosing the shape obtained by
superimposing all of the characters at the same origin [x,y].

Specifies the most extreme values of each individual XCharStruct
component over all elements of this array which ignores nonexistent
characters. The bounding box of the font is defined as follows:

The upper-left coordinate is:

[x + min_bounds.lbearing, y - max_bounds.ascent]

The x and y coordinates are the baseline coordinates of the box,
relative to the origin.

The width is:

max_bounds.rbearing - min_bounds.lbearing

The height is:

max_bounds.ascent + max bounds.descent

Specifies the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters can extend beyond
this.

Specifies the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend
beyond this.

(

The interpretation of the attributes field in the XCharStruct data structure is not defined by
the core protocol. A nonexistent character is represented with members of the XCharStruct
data structure set to the value of 0.

A font is not guaranteed to have any properties. The interpretation of the property value, for
example, INT32, CARD32, must be derived from a prior knowledge of the property. When
possible, fonts should have the properties listed in the following table. (Atom names are
case-sensitive.) The following built-in property atoms are in <X11/Xatom.h>.

Property Name Type Description

MIN_ SPACE unsigned The minimum interword spacing, specified in
pixels.

NORM_ SPACE unsigned The normal interword spacing, specified in
pixels.

MAX_ SPACE unsigned The maximum interword spacing, specified in
pixels.

END_SPACE unsigned The additional spacing at the end of sentences,
specified in pixels.

SUPERSCRIPT _X integers The offset, specified in pixels from character
SUPERSCRIPT_ Y origin where superscripts should begin.

If the origin is at [x, y], then superscripts
should begin at [x + SUPERSCRIPT_X'

y - SUPERSCRIPT_Y].

SUBSCRIPT_X integers Offset, specified in pixels, from character origin
SUBSCRIPT_ Y where subscripts should begin. If origin is at

[x, y), then subscripts should begin at
[x + SUPERSCRIPT_X, y
+SUPERSCRIPT_Y].

UNDERLINE_POSITION integer The y offset, specified in pixels from the base-
line to the top of an underline. If the baseline is
the y coordinate y, then the top of the underline
is at (y + UNDERLINE_POSITION) •

UNDERLINE_ THICKNESS unsigned Thickness of the underline, specified in pixels.

STRIKEOUT _ASCENT integers Vertical extents, specified in pixels, for boxing
STRIKEOUT _DESCENT or voiding characters. If the baseline is at

Y-coordinate y, then the top of the strikeout box
is at (y - STRIKEOUT_ASCENT), and the
height of the box is (STRIKEOUT_ASCENT +
STRIKEOUT _DESCENT).

ITALIC_ANGLE integer The angle of the dominant staffs of characters
in the font, in degrees scaled by 64, relative to
the three o'clock position from the character
origin, with positive indicating counterclockwise
motion.

X_HEIGHT integer 1 ex as in TeX, but expressed in pixels. Often
the height of lowercase x.

Enhanced X-Windows Xlib Data Structures A-33

QUAD_WIDTH integer 1 em as in TeX, but expressed in pixels. Often
the width of the digits 0-9.

CAP _HEIGHT integer The y offset, specified in pixels from the
baseline to the top of the capital letters,
ignoring accents. If the baseline is at the y
coordinate y, then the top of the uppercase
letters is at (y - CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the font, expressed
as a value between 0 and 1000.

POINT_SIZE unsigned The point size of the font at the ideal resolution,
expressed in 1 /1 Oths of points. There are 72.27
points to the inch.

RESOLUTION unsigned The number of pixels per point, expressed in
1 /1 OOths, at which the font was created.

Related Information
The XFreeFont subroutine, XFreeFontlnfo subroutine, XFreeFontNames subroutine,
XFreeFontPath subroutine, XGContextFromGC subroutine, XGetFontPath subroutine,
XGetFontProperty subroutine, XListFonts subroutine, XListFontsWithlnfo subroutine,
XloadFont subroutine, XloadQueryFont subroutine, XQueryTextExtents subroutine,
XQueryTextExtents16 subroutine, XSetFontPath subroutine, XTextExtents subroutine,
XTextExtents16 subroutine, XTextWidth subroutine, XTextWidth16 subroutine,
XUnloadFont subroutine.

XTextltem Data Structure
typedef struct {

char *chars;
int nchars;
int delta;
Font font;

} XTextitern;

/* pointer to string */
/* number of characters */
/* delta between strings along the x axis */
/* Font to print it in, None does not change */

If the font field is the value of None, the font is changed before printing and is stored in the
GC. If an error is generated during text drawing, the font in the GC is undefined.

Related Information
The XDrawText subroutine

A-34 User Interface Reference

XTextltem16 Data Structure
typedef struct {

XChar2b *chars; /* pointer to two byte characters */
int nchars; /* number of characters */
int delta; /* delta between strings along the x axis */
Font font; /* font to print it in, None does not change */

} XTextitern16;

The fields of the XTextltem16 data structure are as follows:

chars

nchars

delta

font

Related Information

Specifies a pointer to two-byte characters. The chars field of the
XTextltem16 data structure is of type XChar2b. The X Server interprets
each member of the XChar2b structure as a 16-bit number that has been
transmitted by most-significant byte first. The byte1 field of the XChar2b
structure is taken as the most-significant byte.

Specifies the number of characters.

Specifies the delta between strings along the x axis.

Specifies the font to print it in. If the font field is the value of None, the font
is changed before printing and stored in the GC. If an error is generated
during text drawing, the font in the GC is undefined.

The XDrawText16 subroutine

Enhanced X-Windows Xlib Data Structures A-35

Xlmage Data Structure
typedef struct _XImage {

int width, height;
int xoffset;

int format;
char *data;
int byte_order;

int bitmap_unit;
int bitrnap_bit_order;
int bitrnap_pad;

int depth;
int bytes_per_line;
int bits_per_pixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
char *obdata;

/* size of image */
/* number of pixels offset in X

direction */
/* XYBitmap, XYPixmap, ZPixmap */
/* pointer to image data */
/* data byte order, MSBFirst or

LSBFirst */
/* quant. of scanline 8, 16, 32 */
/* MSBFirst or LSBFirst */
/* 8, 16, 32 either XYPixmap or

ZPixmap */
/* depth of image */
/* accelerator to next line */
/* bits per pixel (ZPixmap) */
/* bits in z arrangement */
/* bits in z arrangement */
/* bits in z arrangement */
/* hook for the object routines to
/* hang on */

struct funcs { /* image manipulation routines */
struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} f;

} XImage;

The Xlmage data structure describes an image as it exists in client memory. You can
request changes to some fields in this data structure, for example, height, width, and xoffset.
These changes create a subset of the image. Other fields of this structure, for example,
byte_order and bitmap_unit, are characteristic of both the image and the server. If these (
fields differ between the image and the server, XPutlmage makes the appropriate
conversions.

If the image is formatted as an XYPixmap, the first byte of the first line of plane n must be
located at the address of the client as follows:

(data+ (n *height* bytes_per_line)).

Related Information

A-36

The XAddPixel subroutine, XCreatelmage subroutine, XDestroylmage subroutine,
XGetlmage subroutine, XGetPixel subroutine, XGetSublmage subroutine, XPutlmage
subroutine, XPutPixel subroutine, XSublmage subroutine.

User Interface Reference

XKeyboardControl Data Structure
#define KBKeyClickPercent (lL«O)
#define KBBellPercent
#define KBBellPitch
#define KBBellDuration
#define KBLed
#define KBLedMode
#define KB Key
#define KBAutoRepeatMode

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode;
int key;
int auto_repeat_mode;

} XKeyboardControl;

(lL«l)
(1L«2)
(1L«3)
(1L<<4)
(lL«S)
(1L<<6)
(1L«7)

/* LedModeOn, LedModeOff */

/* AutoRepeatModeOff, AutoRepeatModeOn,
AutoRepeatModeDefault */

The fields of the XKeyboardControl data structure include the following values:

key_click_percent Sets the volume for key clicks between 0 (off) and 100 (loud) inclusive,
if possible. A setting of -1 restores the default. Other negative values
generate an error.

bel/_percent Sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other
negative values generate an error.

bel/_pitch Sets the pitch, specified in hertz (Hz) of the bell, if possible. A setting
of -1 restores the default. Other negative values generate an error.

bel/_duration Sets the duration of the bell (in milliseconds), if possible. A setting of -1
restores the default. Other negative values generate an error.

led Specifies the LED member. If the led_mode and the led fields are
specified, the state of those LEDs is changed, if possible. This occurs
where the led field is the ordinal number of the LED to be changed and
not a mask.

led_mode The state of all LEDs is changed, if possible. At most 32 LEDs,
numbered from 1, are supported. If an LED is specified without
led_mode, a BadMatch error is generated. No standard interpretation
of LEDs is defined.

key Specifies a key on the keyboard.

Enhanced X-Windows Xlib Data Structures A-37

auto_repeat_mode Specifies the auto repeat mode. If the auto_repeat_mode and the key
fields are specified, the auto_repeat_mode of that key is changed, if
possible. If only the auto_repeat_mode field is specified, the global
auto_repeat_mode for the entire keyboard is changed, if possible, and
does not affect the per key settings. If a key is specified without the
auto_repeat_mode field, a BadMatch error is generated.

The order in which controls are verified and altered is server-dependent. If an error is
generated, a subset of the controls may have been altered.

XKeyboardState Data Structure
typedef struct {

int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;

For the LEDs, the least-significant bit of the led_mask field corresponds to LED 1, and each
bit in led_mask that is set to 1 indicates an LED that is lit.

The auto_repeats field is a bit vector. Each bit indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits
for keys 8N to 8N+ 7, with the least-significant bit in the byte representing key 8N.

The globaLauto_repeat field can be set to the value of AutoRepeatModeOn or
AutoRepeatModeOff.

Related Information
The XAutoRepeatOn subroutine, XBell subroutine, XChangeKeyboardControl
subroutine, XGetKeyboardControl subroutine, XGetPointerMapping subroutine,
XQueryKeymap subroutine, XSetPointerMapping subroutine.

XModifierKeymap Data Structure
typedef struct {

int max_keypermod;

KeyCode *modifiermap;

} XModifierKeymap;

/* Max number of keys per
modifier of this server */

/* An 8 by max_keypermod array
of the modifiers */

Related Information

A-38

The <X11/keysym.h> header file, <X11/keysymdef.h> header file

The XChangeKeyboardMapping subroutine, XDeleteModifiermapEntry subroutine,
XFreeModifiermap subroutine, XGetKeyboardMapping subroutine,
XGetModifierMapping subroutine, XlnsertmodifiermapEntry subroutine, XLookupString
subroutine, XNewModifiermap subroutine, XSetModifierMapping subroutine.

User Interface Reference

XHostAddress Data Structure
typedef struct {

int family;
int length;
char *address;

} XHostAddress;

/* for example Familyinternet */
/* length of address, in bytes */
/* pointer to where to find the address */

The fields of the XHostAddress data structure are:

family

length

address

Related Information

Specifies which protocol address family to use (for example, the TCP/IP or
UNIX domain). The family symbols are defined in the <X11/X.h> header file.

Specifies the length of the address in bytes.

Specifies a pointer to the address.

The <X11 /X.h> header file, /etc/X? .hosts file.

The XAddHost subroutine, XAddHosts subroutine, XlistHosts subroutine, XRemoveHost
subroutine, XRemoveHosts subroutine.

Enhanced X-Windows Xlib Data Structures A-39

XAnyEvent Data Structure
For each event type, a corresponding structure is declared in the <X11/Xlib.h> header file.

typedef struct {
int type;
unsigned long serial; /* Number of last request processed

by the server */
Boal send_event; /* True if this came from a SendEvent

request */
Display *display;
Window window;

/* Display the event was read from */

} XAnyEvent:

All the event structures have the following common fields.

type

display

send_event

serial

Set to the event type constant name that uniquely identifies the event
type. For example, when the X Server reports a GraphicsExpose
event to a client application, the event sends an
XGraphicsExposeEvent structure with the type member set to
GraphicsExpose.

Set to a pointer to the display the event was read on.

Set to the value of TRUE if the event was generated by an
XSendEvent request.

Set to the serial number reported in the protocol but expanded from
the 16-bit least significant bits to a full 32-bit value.

Related Information
The <X11 /Xlib.h> header file.

A-40 User Interface Reference

/
ii
I,

'"l

(

XEvent Data Structure
typedef union _XEvent {

int type
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;

/* Must not be changed */

XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnrnapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xrnaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeReque~tEvent xresizerequest;
XConf igureRequestEvent xconf igurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;

XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;

XKeymapEvent xkeymap;
long pad[24];

} XEvent;

Related Information
The <X11 /Xlib.h> header file.

Enhanced X-Windows Xlib Data Structures A-41

XButtonPressedEvent or XButtonReleasedEvent Data
Structure

A-42

typedef struct {
int type,·
unsigned long serial;

/* ButtonPress or ButtonRelease */
/* Number of the last request

processed by the server */
Bool send_event; /* True if this came from a

SendEvent request */
Display *display; /* The display the event was read

from */
Window window; /* The event window it is reported

relative to */
Window root; /* Root window that the event

occurred on */
Window subwindow;
Time time;

/* The child window */
/* Milliseconds */

int x, y; /* Pointer x, y coordinates in the
event window */

int x_root, y_root; /* Coordinates relative to the root
window */

unsigned int state;
unsigned int button;

/* Key or button mask */
/* Detail */

Bool sarne_screen;
} XButtonEvent;

/* Sarne screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

The fields for these structures are defined as follows:

type

display

send_ event

serial

window

root

x_root

User Interface Reference

Set to the event type constant name that uniquely identifies the event
type. For example, when the X Server reports a GraphicsExpose
event to a client application, the event sends an
XGraphicsExposeEvent structure with the type field set to
GraphicsExpose.

Set to a pointer to the display the event was read on.

Set to the value of TRUE if the event was generated by an
XSendEvent request.

Set to the serial number reported in the protocol but expanded from
the 16-bit least significant bits to a full 32-bit value.

The window ID of the window on which the event was generated. This
is the event window. The X Server uses this window to report the
event.

The window ID of the root window of the source.

This is set to the x pointer coordinate relative to the origin of the root
window at the time of the event.

y_root

same_screen

subwindow

x

y

time

state

button

Related Information

This is set to they pointer coordinate relative to the origin of the root
window at the time of the event.

Indicates if the event window is on the same screen as the root
window. This parameter can be:

TRUE If the event and root windows are on the same screen.

FALSE If the event and root windows are not on the same
screen.

Can be one of the following:

• The child of the event window that is an ancestor of or is the source
member, if the event window is on the same screen as the root
window.

• Otherwise, the subwindow is the value of None.

Can be one of the following:

• If the event window is on the same screen as the root window, the x
coordinate is set to the coordinate relative to the event window's
origin

• Otherwise, Xis the value of 0.

Can be one of the following:

• If the event window is on the same screen as the root window, the y
coordinate is set to the coordinate relative to the event window's
origin

• Otherwise, Y is the value of 0.

The time that the event was generated. The time is expressed in
milliseconds since the server reset.

Indicates the state of the pointer buttons and modifier keys just prior to
the event. The X Server can set this member to the bitwise-inclusive
OR of one or more of the following button or modifier key masks:

Button1 Mask
Button2Mask
Button3Mask
Button4Mask
ButtonSMask

ShiftMask
Lock Mask
Control Mask

Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

This represents the pointer buttons that changed state for the
XButtonPressedEvent and XButtonReleasedEvent data structures,
and can be set to one or more of the following button names: Button1,
Button2, Button3,Button4,Button5.

The ButtonPress protocol event, ButtonRelease protocol event.

Enhanced X-Windows Xlib Data Structures A-43

XKeyPressedEvent or XKeyReleasedEvent Data Structure

A-44

typedef struct {
int type;
unsigned long serial;

/* KeyPress or KeyRelease */
/* Number of the last request

processed by the server */
Bool send_event; /* True if this came from a SendEvent

request */
Display *display; /* The display the event was read

from */
Window window; /* The event window it is reported

relative to */
Window root; /* Root window that the event

occurred on */
Window subwindow;
Time time;

/* The child window */

/* Milliseconds */
int x, y; /* Pointer x, y coordinates in the

event window */
int x_root, y_root; /* Coordinates relative to the root

window */
unsigned int state;
unsigned int keycode;

/* Key or button mask */
/* Detail */

Bool same_screen;
} XKeyEvent;

/* Same screen flag */

typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

The fields for these structures are defined as follows:

type

display

send_ event

serial

window

root

x_root

y_root

User Interface Reference

Set to the event type constant name that uniquely identifies the event
type. For example, when the X Server reports a GraphicsExpose
event to a client application, the event sends an
XGraphicsExposeEvent data structure with the type field set to
GraphicsExpose.

Set to a pointer to the display the event was read on.

Set to the value of TRUE if the event was generated by an
XSendEvent request.

Set to the serial number reported in the protocol but expanded from
the 16-bit least significant bits to a full 32-bit value.

The window ID of the window on which the event was generated. This
is the event window. The X Server uses this window to report the
event.

The window ID of the root window of the source.

This is set to the x pointer coordinate relative to the origin of the root
window at the time of the event.

This is set to the y pointer coordinate relative to the origin of the root
window at the time of the event.

!
I
\

(
\

same_screen

subwindow

x

y

time

state

keycode

Related Information

Indicates if the event window is on the same screen as the root
window. This field can be either of the following values:

TRUE If the event and root windows are on the same screen.

FALSE If the event and root windows are not on the same
screen.

Can be one of the following:

• The child of the event window that is an ancestor of or is the source
member, if the event window is on the same screen as the root
window.

• Otherwise, the subwindow field has the value of None.

Can be one of the following:

• The x coordinate relative to the origin of the event window if the root
window is on the same screen as the event window.

• Otherwise, the x field has the value of 0.

Can be one of the following:

• The y coordinate relative to the origin of the event window if the root
window is on the same screen as the event window.

• Otherwise, they field has the value of 0.

The time that the event was generated. The time is expressed in
milliseconds since the server reset.

Indicates the state of the pointer buttons and modifier keys just prior to
the event. The X Server can set this member to the bitwise include OR
of one or more of the following button or modifier key masks:

Button1 Mask
Button2Mask
Button3Mask
Button4Mask
Buttons Mask

ShiftMask
LockMask
Control Mask

Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
ModSMask

This is set to a number that represents a physical key on the keyboard
for the XKeyPressedEvent and XKeyReleasedEvent data structures.

The KeyPress event, KeyRelease event.

Enhanced X-Windows Xlib Data Structures A-45

XPointerMovedEvent Data Structure

A-46

typedef struct {
int type; /* MotionNotify */
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Bool send_event;

Display *display; /* The display the event was read
from */

Window window; /* The event window it is reported
relative to */

Window root; /* Root window that the event
occurred on */

Window subwindow;
Time time;

/* The child window */
/* Milliseconds */

int x, y; /* Pointer x, y coordinates in the
event window */

int x_root, y root; /* Coordinates relative to the root
window */

unsigned int state;
unsigned int keycode;
char is_hint;

/* Key or button mask */
/* Detail */
/* Detail */

Bool same screen;
} XMotionEvent;

/* Same screen flag */

typedef XMotionEvent XPointerMovedEvent;

The fields for the XPointerMovedEvent data structure are defined as follows:

type

display

send_event

serial

window

root

x_root

y_root

User Interface Reference

Set to the event type constant name that uniquely identifies the event
type. For example, when the X Server reports a GraphicsExpose
event to a client application, the event sends an
XGraphicsExposeEvent structure with the type field set to the value
of GraphicsExpose.

Set to a pointer to the display the event was read on.

Set to the value of TRUE if the event was generated by an
XSendEvent request.

Set to the serial number reported in the protocol but expanded from
the 16-bit least significant bits to a full 32-bit value.

The window ID of the window on which the event was generated. This
is the event window. The X Server uses this window to report the
event.

The window ID of the root window of the source.

This is set to the x pointer coordinate relative to the origin of the root
window at the time of the event.

This is set to the y pointer coordinate relative to the origin of the root
window at the time of the event.

(

same_screen

sub window

x

y

time

state

is_hint

Related Information

Indicates if the event window is on the same screen as the root
window. This field can be either of the following values:

TRUE If the event and root windows are on the same screen.

FALSE If the event and root windows are not on the same
screen.

Can be one of the following:

• The child of the event window that is an ancestor of or is the source
member, if the event window is on the same screen as the root
window.

• Otherwise, the subwindow field has the value of None.

Can be one of the following:

• The x coordinate relative to the origin of the event window if the
source window and the event window are on the same screen.

• Otherwise, the x field has the value of 0.

Can be one of the following:

• They coordinate relative to the origin of the event window if the
source window and the event window are on the same screen.

• Otherwise, the yfield has the value of 0.

The time that the event was generated. The time is expressed in
milliseconds since the server reset.

Indicates the state of the pointer buttons and modifier keys just prior to
the event. The X Server can set this member to the bitwise- inclusive
OR of one or more of the following button or modifier key masks:

Button1 Mask
Button2Mask
Button3Mask
Button4Mask
Button5Mask

ShiftMask
Lock Mask
Control Mask

Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

This can be set to the value of NotifyNormal or NotifyHint for the
XPointerMovedEvent data structure.

The MotionNotify event.

Enhanced X-Windows Xlib Data Structures A-47

XCrossingEvent or XEnterWindowEvent or
XleaveWindowEvent Data Structures

typedef struct {
int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;

Window root;

Window subwindow;
Time time;
int x, y;

int x_root, y_root;

int mode;

int detail;

Bool same_screen;
Bool focus;

unsigned int state;
. } XCrossingEvent;

/* EnterNotify or LeaveNotify */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */
/* The event window it is

reported relative to */
/* Root window that the event

occurred on */
/* The child window */

/* Milliseconds */
/* Pointer x, y coordinates in

the event window */
/* Coordinates relative to the

root window */
/* NotifyNormal, NotifyGrab,

NotifyUngrab */
/* NotifyAncestor, NotifyVirtual,

Notifyinferior,
NotifyNonlinear,
NotifyNonlinearVirtual */

/* Same screen flag */
/* Boolean focus */

/* Key or button mask */

typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

(

\

The fields of the XCrossingEvent, XEnterWindowEvent, and XleaveWindowEvent data (
structures are as follows:

A-48

type

display

send_event

serial

window

root

User Interface Reference

Set to the event type constant name that uniquely identifies the event
type. For example, when the X Server reports a GraphicsExpose
event to a client application, the event sends an
XGraphicsExposeEvent structure with the type field set to
GraphicsExpose.

Set to a pointer to the display the event was read on.

Set to the value of TRUE if the event was generated by an
XSendEvent request.

Set to the serial number reported in the protocol but expanded from
the 16-bit least significant bits to a full 32-bit value.

The window ID of the window on which the EnterNotify or
LeaveNotify event was generated. This window is the event window.
The X Server uses this window to report the events.

The ID of the root window on which the event occurred.

sub window

subwindow

time

x

y

x_root

y_root

same_screen

focus

state

In a LeaveNotify event, if a child of the event window contains the
initial position of the pointer, the subwindowfield is set to that child.
Otherwise, the X Server sets the subwindowfield to the value of None.

In an EnterNotify event, if a child of the event window contains the
final pointer position, the subwindow is set to that child. Otherwise, it is
set to the value of None.

The time (in milliseconds) the event was generated.

The x pointer position in the event window. This position is always the
final position of the pointer, not the initial position of the pointer.

The y pointer position in the event window. This position is always the
final position of the pointer, not the initial position of the pointer.

If the event window is on the same screen as the root window, x and y
are the pointer coordinates relative to the origin of the event window.
Otherwise, the x and yfields are set to the value of 0.

Set to the x pointer coordinate relative to the origin of the root window
at the time of the event.

Set to the y pointer coordinate relative to the origin of the root window
at the time of the event.

Indicates if the event window is on the same screen as the root
window. The same_screen field can be either of the following values:

True The event and root windows are on the same screen.

False The event and root windows are not on the same screen.

Indicates whether the event window is the focus window or an inferior
of the focus window. The focus field can be either of the following
values:

True The event window is the focus window or an inferior of
the focus window.

False The event window is neither the focus window nor an
inferior of the focus window.

Indicates the state of the pointer buttons and modifier keys
immediately prior the event. The X Server can set this field to the
bitwise-inclusive OR of one or more of the following button or modifier
key mask values.

Button1 Mask
Button2Mask
Button3Mask
Button4Mask
Button5Mask

ShiftMask
Lock Mask
Control Mask

Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

Enhanced X-Windows Xlib Data Structures A-49

mode

detail

Indicates if the events are normal events or pseudo motion events
when a grab activates, or when a grab deactivates. The X Server can
set the mode field to one of the following values:

NotifyNormal

NotifyGrab

NotifyUngrab.

Indicates the notify detail can be set to one of the following values:

NotifyAncestor NotifyVirtual

Notifylnferior Notify Nonlinear

Notify Non Ii nearVi rtual

Related Information

A-50

The EnterNotify event, LeaveNotify event.

The XChangeActivePointerGrab subroutine, XGrabKeyboard subroutine, XGrabPointer
subroutine, XUngrabPointer subroutine.

User Interface Reference

(

(

XFocusChangeEvent or XFocuslnEvent or XFocusOutEvent
Data Structures

typedef struct {
int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
int mode;

int detail;

} XFocusChangeEvent;

/* Focusin or FocusOut */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */
/* The window of the event */

/* NotifyNormal, NotifyGrab,
NotifyUngrab */

/* NotifyAncestor, NotifyVirtual,
Notifyinferior,
NotifyNonlinear,
NotifyNonlinearVirtual,
NotifyPointer,
NotifyPointerRoot,
NotifyDetailNone */

typedef XFocusChangeEvent XFocusinEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The fields of the XFocusChange, XFocuslnEvent and XFocusOutEvent data structures
include the following definitions:

window

mode

Specifies the window ID of the window on which the Focusln or
FocusOut event was generated. The X Server uses this window to
report the event.

Specifies the type of focus event. The mode field can be set to one of
the following values:

NotifyNormal

NotifyWhileGrabbed

NotifyGrab

NotifyUngrab

Specifies a normal focus event.

Specifies a focus event while grabbed.

Specifies a focus event when a grab
activates.

Specifies a focus event when a grab
deactivates.

Enhanced X-Windows Xlib Data Structures A-51

detail Indicates the notify detail depending on the event mode. The detail
field can be one of the following values:

Notify Ancestor NotifyVirtual

Notifylnferior NotifyNonlinear

NotifyNonlinearVirtual NotifyPointer

NotifyPointerRoot Notify Detail None

All FocusOut events caused by a window unmap are generated after any UnmapNotify
event, but the ordering of FocusOut events with respect to generated EnterNotify,
LeaveNotify, VisibilityNotify, and Expose events is not constrained by the X protocol.

Related Information
The Focusln event, FocusOut event.

The XGrabKeyboard subroutine, XUngrabKeyboard subroutine.

A-52 User Interface Reference

(

XKeymapEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
char key_vector[32];

} XKeymapEvent;

/* KeymapNotify */

/* Number of the last request
processed by the server */

/* True if this came from a
SendEvent request */

/* The display the event was
read from */

The fields of the XKeymapEvent data structure associated with this event include the
following:

window

key_ vector

Related Information

This is not used, but present for use with toolkit operations.

Specifies the bit vector of the keyboard. Each bit indicates that the
corresponding key is currently pressed. The vector is represented as
32 bytes. Byte N (from O) contains the bits for keys SN to 8N+7
with the least significant bit in the byte representing key BN.

The KeymapNotify event.

Enhanced X-Windows Xlib Data Structures A-53

XExposeEvent Data Structure
typedef struct {

int type; /* Expose */
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Bool send_event;

Display *display;

Window window;
int x, y;
int width, height:
int count;

/* The display the event was read
from */

/* If nonzero, at least this many
more *I

} XExposeEvent;

The fields of the XExposeEvent data structure include the following:

window

x

y

width

height

count

The window ID of the exposed (damaged) window.

Indicates the x coordinate of the rectangle. This coordinate is set
relative to the origin of the drawable.

Indicates the y coordinate of the rectangle. This coordinate is set
relative to the origin of the drawable.

Specifies the width extent of the rectangle.

Specifies the height extent of the rectangle.

Specifies the number of Expose events that should follow. The count
field can be:

0

nonzero

No Expose events will follow. (Applications not
designed to optimize re display by distinguishing
between subareas of a window re display entirely if
the count field is the value of 0.)

At least that number, and possibly more, Expose
events will follow. (Applications not designed to
optimize re display by distinguishing between
subareas of a window, do not respond if the count
field is a nonzero value.)

Related Information
The Expose event.

A-54 User Interface Reference

(

XGraphicsExposeEvent Data Structure
typedef struct {

int type; /* GraphicsExpose */
unsigned long serial;

Boal send_event;

Display *display;

Drawable drawable;
int x, y;
int width, height:
int count;

int major_code;
int minor_code;

/* Number of the last request
processed by the server */

/* True if this came from a
SendEvent request */

/* The display the event was read
from */

/* If nonzero, at least this many
more */

/* core is CopyArea or CopyPlane */
/* Not defined in the core */

} XGraphicsExposeEvent;

The XGraphicsExposeEvent data structure included the following fields:

drawable

major_code

minor_code

x

y

width

height

count

Specifies the drawable ID of the destination region on which the
graphics request is to be performed.

Specifies the graphics request initiated by the client This field can have
one of the following values:

X_CopyArea

X_CopyPlane

Indicates that a call to the XCopyArea subroutine
initiated the request.

Indicates that a call to the XCopyPlane subroutine
initiated the request.

These constants are defined in the <X11 /Xproto.h>
file.

Specifies the graphics request initiated by the client. This field,
however, is not defined by the core X protocol and will have the value
of O in these cases, although it may be used as an extension.

Specifies the x coordinate of the upper left corner of the rectangle.
This coordinate is relative to the origin of the drawable.

Specifies the y coordinate of the upper left corner of the rectangle.
This coordinate is relative to the origin of the drawable.

Specifies the size (extent) of the rectangle.

Specifies the size (extent) of the rectangle.

Specifies the number of GraphicsExpose events to follow for the
specified window. This field can have the following values:

0

nonzero

Indicates that no GraphicsExpose events will
follow.

Indicates that at least that number, and possibly
more, GraphicsExpose events will follow.

Enhanced X-Windows Xlib Data Structures A-55

Related Information

A-56

The GraphicsExposure event, NoExpose event.

The XCopy Area subroutine, XCopyPlane subroutine, XCreateGC subroutine,
XSetGraphicsExposures subroutine.

User Interface Reference

(

(

XNoExposeEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

/* NoExpose */
/* Number of the last request

processed by the server */
/* True if this came from a SendEvent

request */
/* The display the event was read

from */

/* core is CopyArea or CopyPlane */
/* Not defined in the core */

The XGraphicsExposeEvent and XNoExposeEvent data structures have the following
common fields:

drawable

major_code

minor_code

Related Information

Specifies the drawable ID of the destination region on which the
graphics request is to be performed.

Specifies the graphics request initiated by the client The major_code
field can have either of the following values:

X_CopyArea

X_CopyPlane

Indicates that a call to the XCopyArea subroutine
initiated the request.

Indicates that a call to the XCopyPlane subroutine
initiated the request.

Specifies the graphics request initiated by the client. The minor_code
field, however, is not defined by the core X protocol and will have the
value of 0 in these cases, although it may be used as an extension.

The <X11/Xproto.h> file.

The GraphicsExpose event, NoExpose event.

The XCopyArea subroutine, XCopyPlane subroutine, XCreateGC subroutine,
XSetGraphicsExposures subroutine.

Enhanced X-Windows Xlib Data Structures A-57

XCirculateEvent Data Structure
typedef struct {

int type; /* CirculateNotify */
unsigned long serial; /* Number of last request processed

by the server */
Bool send_event; /* True if this came from a SendEvent

request */
Display *display; /* The display the event was read

from */
Window event;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} XCirculateEvent;

The XCirculateEvent data structure includes the following fields:

type

serial

send_ event

display

event

window

place

Specifies the event type, CirculateNotify.

Specifies the number of the last request processed by the server.

Specifies True if this came from a SendEvent request.

Specifies the display that the event was read from.

Specifies the window on which the event was generated. This field is
set to either the restacked window or its parent, depending on whether
StructureNotify or SubstructureNotify was selected.

Specifies the window that was restacked.

Specifies the window position after the restack occurs. The place field
can have either of the following values:

PlaceOnTop Indicates that the window is now on top of all
siblings.

PlaceOnBottom Indicates that the window is now below all siblings.

Related Information

A-58

The CirculateNotify event.

The XCirculateSubwindows subroutine, XCirculateSubwindowsDown subroutine,
XCirculateSubwindowsUp subroutine.

User Interface Reference

(
'~

XConfigureEvent Data Structure
typedef struct {

int type; /* ConfigureNotify */
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Boal send_event;

Display *display;

Window event:
Window window;
int x, y;
int width, height;
int border_width;
Window above;

/* The display the event was read
from */

Boal override_redirect;
} XConfigureEvent;

The XConfigureEvent data structure includes the following fields:

event

window

x

y

width

height

border_ width

above

override_redirect

Specifies the window on which the event was genereated. This field is
set to either the reconfigured window or its parent, depending on
whether StructureNotify or SubstructureNotify was selected.

Specifies the window whose size, position, border, or stacking order
was changed.

Specifies the x coordinate of the upper left corner of the window. This
coordinate is relative to the origin of the new parent window.

Specifies the y coordinate of the upper left corner of the window. This
coordinate is relative to the origin of the new parent window

Specifies the size of the window, excluding the border.

Specifies the size of the window, excluding the border.

Specifies the width of the window border, in pixels.

Specifies the window ID of the sibling window. This field is used for
stacking operations.

If the above field is set to the value of None, the reconfigured window
is on the bottom of the stack with respect to sibling windows.

If this field is set to a sibling window, the reconfigured window is placed
on top of this sibling window.

Specifies the value set in the override_redirect field of the window. If
this field is the value of True, window manager clients should ignore
the window.

Enhanced X-Windows Xlib Data Structures A-59

Related Information

A-60

The ConfigureNotify event.

The XConfigureWindow subroutine, XlowerWindow subroutine, XRaiseWindow
subroutine, XRestackWindows subroutine, XMoveWindow subroutine, XResizeWindow
subroutine, XMoveResizeWindow subroutine, XMapRaised subroutine,
XSetWindowBorderWidth subroutine.

User Interface Reference

XCreateWindowEvent Data Structure
The XCreateWindowEvent data structure includes the following fields:

parent

window

x

y

width

height

border_ width

override_redirect

Related Information

Specifies the parent of the created window.

Specifies the created window.

Specifies the x coordinate of the upper left outside corner of the
created window. This coordinate is relative to the inside of the borders
of the parent window.

Specifies the y coordinate of the upper left outside corner of the
created window. This coordinate is relative to the inside of the borders
of the parent window.

Specifies the inside size of the created window, excluding the border.
This field is always a nonzero value.

Specifies the inside size of the created window, excluding the border.
This field is always a nonzero value.

Specifies the width of the border of the created window, in pixels.

Specifies the value set in the override_redirect field of the window. If
this field is set to the value of True, window manager clients should
ignore the window.

The CreateNotify event.

The XCreateSimpleWindow subroutine, XCreateWindow subroutine.

Enhanced X-Windows Xlib Data Structures A-61

XDestroyWindowEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window event;
Window window;

} XDestroyWindowEvent;

/* DestroyNotify */
/* Number of the last request

processed by the server */
/* True if this came from a SendEvent

request */
/* The display the event was read

from */

The XDestroyWindowEvent data structure includes the following fields:

event

window

Specifies the window on which the event was generated. This field is
set to either the destroyed window or its parent, depending on whether
StructureNotify or SubstructureNotify was selected.

Specifies the window that is destroyed.

Related Information
The DestroyNotify event.

The XDestroySubwindows subroutine, XDestroyWindow subroutine.

A-62 User Interface Reference

XGravityEvent Data Structure
typedef struct {

int type; /* GravityNotify */
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Bool send_event;

Display *display;

Window event;
Window window;
int x, y;

/* The display the event was read
from */

} XGravityEvent;

The XGravityEvent data structure includes the following fields:

event

window

x

y

Related Information

Specifies the window on which the event was generated. This field can
be set to either the window that was moved or its parent, depending on
whether StructureNotify or SubstructureNotify was selected.

Specifies the window that was moved.

Specifies the x coordinate of the upper left outside corner of the
window. This coordinate is relative to the origin of the new parent
window.

Specifies they coordinate of the upper left outside corner of the
window. This coordinate is relative to the origin of the new parent
window.

The GravityNotify event.

The XConfigureWindow subroutine, XMoveResizeWindow subroutine, XResizeWindow
subroutine.

Enhanced X-Windows Xlib Data Structures A-63

XMapEvent Data Structure
typedef struct {

int type; /* MapNotify*/
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Bool send_;_event;

Display *display; /* The display the event was read
from */

Window event;
Window window;
Bool override_redirect;

} XMapEvent;
/*Boolean, is override set •.. */

The XMapEvent data structure includes the following fields:

event

window

override_redirect

Specifies the window on which the event was generated. This field is
set to either the mapped window or its parent, depending on whether
StructureNotify or SubstructureNotify was selected.

Specifies the window that was mapped.

Specifies the value set in the override_redirect field of the window. If
this field is the value of True, window manager clients should ignore
this window, because these events usually are generated from pop
ups, which override structure control.

Related Information
The MapNotify event.

The XMapRaised subroutine, XMapSubwindows subroutine, XMapWindow subroutine.

A-64 User Interface Reference

XMappingEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
int request;

int first_keycode;
int count;

} XMappingEvent;

/* MappingNotify */
/* Number of the last request

processed by the server */
/* True if this came from a SendEvent

request */
/* The display the event was read

from */
/* Unused */
/* MappingModifier, MappingKeyboard,

MappingPointer */
/* The first_keycode */
/* Defines the range of change with

first_keycode*/

The XMappingEvent data structure includes the following fields:

request

first_keycode

count

Specifies the kind of mapping change that occurred. The request field
can have the following values:

Mapping Modifier

Mapping Keyboard

Mapping Pointer

Indicates that the modifier mapping was
changed.

Indicates that the keyboard mapping was
changed.

Indicates that the pointer button mapping was
changed.

Specifies the first number in the range of the altered mapping. This
field is set only if the requestfield is MappingKeyboard.

Specifies the number of keycodes altered. This field is set only if the
request field is Mapping Keyboard.

To update the client application's knowledge of the keyboard, use the
XRefreshKeyboardMapping subroutine.

Related Information
The MappingNotify event.

The XChangeKeyboardMapping subroutine, XRefreshKeyboardMapping subroutine,
XSetModifierMapping subroutine, XSetPointerMapping subroutine.

Enhanced X-Windows Xlib Data Structures A-65

XReparentEvent Data Structure
typedef struct {

int type; /* ReparentNotify */
unsigned long serial;

Bool send_event;

Display *display;

Window event;
Window window;
Window parent;
int x, y;

/* Number of the last request
processed by the server */

/* True if this came from a
SendEvent request*/

/* The display the event was read
from */

Bool override_redirect;
} XReparentEvent;

The XReparentEvent data structure includes the following fields:

event

window

parent

x

y

override_redirect

Specifies the window on which the event was generated. This field is
set to either the reparented window or the old or new parent,
depending on whether StructureNotify or SubstructureNotify was
selected.

Specifies the window that was reparented.

Specifies the new parent window.

Specifies the x coordinate of the upper left outer corner of the
reparented window. This coordinate is relative to the origin of the new
parent window.

Specifies the y coordinate of the upper left outer corner of the
reparented window. This coordinate is relative to the origin of the new
parent window

Specifies the value set in the override_redirect field of the re parented
window. If this field is the value of True, window manager clients
should ignore the window.

Related Information
The ReparentNotify event.

The XReparentWindow subroutine.

A-66 User Interface Reference

(,

(~

(

XUnmapEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Boal sendevent;

Display *display;

Window event;
Window window;
Boal from_configure;

} XUnmapEvent;

/* UnmapNotify */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

The XUnmapEvent data structure includes the following fields:

event

window

from_configure

Related Information

Specifies the window on which this event was generated. This paramer
may be set to either the unmapped window or its parent, depending on
whether StructureNotify or SubstructureNotify was selected.

Specifies the window that was unmapped.

Specifies the value of True if the event was generated as a result of
resizing the parent window when the window itself had a win_gravity
field of UnmapGravity.

The UnmapNotify event.

The XUnmapSubwindows subroutine, XUnmapWindow subroutine.

Enhanced X-Windows Xlib Data Structures A-67

XVisibilityEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
int state;

} XVisibilityEvent;

/* VisibilityNotify */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

The XVisibilityEvent data structure includes the following fields:

window

state

Specifies the window whose visibility state changes.

Specifies the visibility state of the window. This field can have one of
the following values:

VisibilityUnobscured

VisibilityPartiallyObscured

VisibilityFullyObscured.

Related Information
The VisibilityNotify event.

A-68 User Interface Reference

XCirculateRequestEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window parent;
Window window;
int place;

} XCirculateRequestEvent;

/* CirculateRequest */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

/* PlaceOnTop, PlaceOnBottom */

The XCirculateRequestEvent data structure includes the following fields:

parent

window

place

Related Information

Specifies the parent window.

Specifies the subwindow to be restacked.

Specifies the new position of the window in the stacking order. This
field can have either of the following values:

PlaceOnTop Indicates that the window will be placed on top of all
siblings.

PlaceOnBottom Indicates that the window will be placed below all
siblings.

·The CirculateRequest event.

The XCirculateSubwindows subroutine, XCirculateSubwindowsDown subroutine,
XCirculateSubwindowsUp subroutine.

Enhanced X-Windows Xlib Data Structures A-69

XConfigureRequestEvent Data Structure

A-70

typedef struct {
int type; /* ConfigureRequest */
unsigned long serial;

Bool send_event;

Display *display;

Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail;

/* Number of the last request
processed by the server */

/* True if this came from a
SendEvent request */

/* The display the event was read
from */

/* Above, Below, Topif, Bottomif,
Opposite */

unsigned long value mask;
} XConfigureRequestEvent;

The XConfigureRequestEvent data structure includes the following fields:

parent

window

x

y

width

height

border_ width

above

Specifies the parent window.

Specifies the window to be reconfigured.

Specifies the x coordinate of the upper left outer corner of the
reconfigured window. The value for this field is set according to the
current geometry of the window.

Specifies the y coordinate of the upper left outer corner of the
reconfigured window. The value for this field is set according to the
current geometry of the window.

Specifies the size of the reconfigured window, excluding the border.
The value for this field is set according to the current geometry of the
window.

Specifies the size of the reconfigured window, excluding the border.
The value for this field is set according to the current geometry of the
window.

Specifies the width of the border of the reconfigured window, in pixels.
The value for this field is set according to the current geometry of the
window.

Specifies the sibling window. This field can have one of the following
values:

None Indicates that the reconfigured window is placed on
the bottom of the stack with respect to sibling
windows. This is the default value for this field.

SiblingWindow IDs The reconfigured window is placed on top of these sibling windows.

User Interface Reference

(~

\"i

(

detail

value_mask

Related Information

Specifies the notify detail. This member can be set to Below, Toplf,
Bottomlf, or Opposite. The default value for this field is Above.

Specifies which components were indicated in the configure window
request.

The ConfigureRequest event.

The XConfigureWindow subroutine, XLowerWindow subroutine, XMapRaised subroutine,
XMoveResizeWindow subroutine, XMoveWindow subroutine, XRaiseWindow subroutine,
XResizeWindow subroutine, XRestackWindows subroutine, XSetWindowBorderWidth
subroutine.

Enhanced X-Windows Xlib Data Structures A-71

XMapRequestEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Boal send_event;

Display *display;

Window parent;
Window window;

} XMapRequestEvent;

/* MapRequest */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

The XMapRequestEvent data structure includes the following fields:

parent

window

Specifies the parent window.

Specifies the window to be mapped.

Related Information
The MapRequest event.

The XMapRaised subroutine, XMapSubwindows subroutine, XMapWindow subroutine.

A-72 User Interface Reference

/

\

XResizeRequestEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window parent;
int width, height;

} XResizeRequestEvent;

/* ResizeRequest */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

The XResizeRequestEvent data structure includes the following fields:

window

width

height

Related Information

Specifies the window that another client attempted to resize.

Specifies the inside size of the window, excluding the border.

Specifies the inside size of the window, excluding the border.

The ResizeRequest event.

The XConfigureWindow subroutine, XMoveResizeWindow subroutine, XResizeWindow
subroutine.

Enhanced X-Windows Xlib Data Structures A-73

XColormapEvent Data Structure
typedef struct {

int type; /* ColormapNotify */
unsigned long serial; /* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
Bool send_event;

Display *display;

Window window;
Colormap colormap;
Bool new;

/* The display the event was read
from */

/* The colormap or None */

int state; /* Colormapinstalled,
ColormapUninstalled*/

} XColorrnapEvent;

The XColormapEvent data structure includes the following fields:

window

colormap

new

state

Specifies the window whose associated colormap is changed,
installed, or uninstalled.

Specifies the colormap associated with the window for a colormap
changed by a call to the XChangeWindowAttributes subroutine. For
a colormap changed by a call to the XFreeColormap subroutine, this
field is the value of None.

Specifies if the colormap for the specified window was changed or
installed or uninstalled. This field can have either of the following
values:

True Indicates that the colormap was changed.

False Indicates that the colormap was installed or uninstalled.

Specifies if the colormap is installed or uninstalled. This field can have
either of the following values:

Colormaplnstalled

ColormapUninstalled

Related Information

A-74

The ColormapNotify event.

The XChangeWindowAttributes subroutine, XFreeColormap subroutine,
XlnstallColormap subroutine, XSetWindowColormap subroutine, XUninstallColormap
subroutine.

User Interface Reference

(

XClientMessageEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
Atom message_type;
int format;
union {

char b[20];
short s[lO];
long 1[5];
} data;

} XClientMessageEvent;

/* ClientMessage */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was read

from */

The XClientMessageEvent data structure includes the following fields:

window

message_type

format

data

Related Information

Specifies the window to which the event was sent.

Specifies an atom which indicates how the data is to be interpreted by
the receiving client. This field is not interpreted by the X Server.

Specifies whetner the data should be viewed as a list of bytes, shorts,
or longs. This field should be set to 8 bits, 16 bits, or 32 bits.

Specifies a union which contains the members b (bytes), s (shorts),
and I (longs). These members represent data of 20 8-bit values, 10
16-bit values, and 5 32-bit values. Some message types may not use
all these values. This field is not interpreted by the X Server.

The XAnyEvent data structure.

The ClientMessage event.

The XSendEvent subroutine.

Enhanced X-Windows Xlib Data Structures A-75

XPropertyEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window window;
Atom atom;
Time time;
int state;

} XPropertyEvent;

/* PropertyNotify */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was

read from */

/* PropertyNewValue,
PropertyDeleted*/

The XPropertyEvent data structure includes the following fields:

window

atom

time

state

Specifies the window whose associated property is changed.

Specifies the atom of the property that is changed or requested.

Specifies the server time when the property is changed.

Specifies whether the property is changed to a new value or deleted.
This field can have the following values:

PropertyNewValue

PropertyDeleted

Indicates that the property is changed or that it
is replaced with identical data using the
XChangeProperty or
XRotateWindowProperties subroutines.

Indicates that the property is deleted using the
XDeleteProperty or XGetWindowProperty
subroutines.

Related Information

A-76

The PropertyNotify event.

The XChangeProperty subroutine, XDeleteProperty subroutine, XGetWindowProperty
subroutine, XRotateWindowProperties subroutine.

User Interface Reference

I

~

XSelectionClearEvent Data Structure
typedef struct {

int type;
unsigned long seriaL;

Boal send_event;

Display *display;

Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

/* SelectionClear */
/* Number of the last request

processed by the server */

/* True if this came from a
SendEvent request */

/* The display the event was read
from */

The XSelectionClearEvent data structure includes the following fields:

window

selection

time

Related Information

Specifies the window losing ownership of the selection.

Specifies the selection atom.

Specifies the last change time recorded for the selection.

The SelectionClear event.

The XSetSelectionOwner subroutine.

Enhanced X-Windows Xlib Data Structures A-77

XSelectionRequestEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time ;

} XSelectionRequestEvent;

/* SelectionRequest */
/* Number of the last request

processed by the server */

/* True if this came from a
SendEvent request */

/* The display the event was read
from */

The XSelectionRequestEvent data structure includes the following fields:

owner

requestor

selection

target

property

time

Specifies the window owning the selection. This is the window
specified by the current owner in the XSetSelectionOwner subroutine.

Specifies the window requesting the selection.

Specifies the atom that names the selection.

Specifies the atom which indicates the type the selection is requested
in.

Specifies a property name or the value of None.

Specifies the time, either in a timestamp (milliseconds) or in
CurrentTime, taken from the XConvertSelection request.

Related Information
The SelectionRequest event.

The XConvertSelection subroutine, XSetSelectionOwner subroutine.

A-78 User Interface Reference

XSelectionEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;

Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionEvent;

/* SelectionNotify */
/* Number of the last request

processed by the server */
/* True if this came from a

SendEvent request */
/* The display the event was

read from */

/* The atom or None */

The XSelectionEvent data structure includes the following fields:

requestor

selection

target

property

time

Related Information

Specifies the window associated with the requestor of the selection.

Specifies the atom that indicates the selection.

Specifies the atom that indicates the converted type.

Specifies the atom that indicates the property the result is stored on.
This field is set to the value of None if the conversion fails.

Specifies the time when the conversion took place. This can be a
timestamp (in milliseconds) or CurrentTime.

The SelectionNotify event.

The XConvertSelection subroutine, XSendEvent subroutine.

Enhanced X-Windows Xlib Data Structures A-79

XErrorEvent Data Structure
typedef struct {

int type;
Display *display; /* The display the event was

read from */
unsigned long serial;

unsigned char error code; -

unsigned char request_ code;

unsigned char minor code; -

/* The serial number of the
failed request */

/* The error code of the failed
request */

I* The major op code of the
failed request */

/* The minor op code of the
failed request */

XID resourceid;
} XErrorEvent;

/* The resource id */

The XErrorEvent data structure includes the following fields:

display

serial

error_code

request_ code

minor_code

resourceid

Specifies the display that the event was read from.

Specifies the number of requests, starting with the one sent over the
network connection when it was opened. This value is the value of
NextRequest immediately before the failing call was made.

Specifies the error code of the failed request.

Specifies a protocol request of the procedure that failed. The
request_code field values are defined in the <X11/Xproto.h> file.

Specifies the minor op code of the failed request.

Specifies the resource ID.

Related Information

A-80

The <X11/Xproto.h> header file.

The XDisplayName subroutine, XGetErrorDatabaseText subroutine, XGetErrorText
subroutine, XSetErrorHandler subroutine, XSetlOErrorHandler subroutine.

User Interface Reference

XWMHints Data Structure
#define
#define
#define
#define
#define
#define
#define
#define

InputHint
StateHint
IconPixmapHint
IconWindowHint
IconPositionHint
IconMaskHint
WindowGroupHint
AllHints

typedef struct {
long flags;

Boal input;

int initial state;

Pixmap icon_pixmap;
Window icon_window;
int icon_x, icon_y;
Pixmap icon_mask;

XID window_group;

} XWMHints ;

(lL<<O)
(lL<<l)
(1L<<2)
(1L<<3)
(1L<<4)
(lL«S)
(1L«6)
(InputHint/StateHint/IconPixmapHint/
IconWindowHint/IconPositionHint/
IconMaskHint/WindowGroupHint)

/* Marks which fields in this
structure are defined */

/* Indicates whether this application
relies on the window manager to get
keyboard input */

/* The initial state of the
application */

/* The pixmap to be used as the icon */

/* The window to be used as the icon */

/* The initial position of the icon */

/* The pixmap to be used as the mask
for the icon_pixmap field */

/* The id of the related window
group */

The XWMHints data structure includes the following fields:

flags Specifies which fields are defined in the XWMHints data structure.
The values for this field are as follows:

lnputHint

State Hint

lconPixmapHint

lconWindowHint

Icon Position Hint

lconMaskHint

WindowGroupHint

All Hints

Enhanced X-Windows Xlib Data Structures A-81

input

initial_ state

icon_mask

icon_window

window_group

Related Information

Specifies the input focus model used by the application. This field
communicates the input focus model to the window manager and can
have the following values:

True Indicates that the application accepts input, but never
explicitly sets focus to any of the subwindows. These
applications use the push model of focus management.
The input field also has this value if the application sets
input focus to its subwindows only when it is given to its
top level window by a window manager.

False Indicates that the application manages its input focus by
explicitly setting focus to one of its subwindows
whenever keyboard input is requested. These
applications use the pull model of focus management.
The input field also has this value if the application never
expects any keyboard input.

Pull model window managers should make it possible for
push model application to get input by setting input focus
to the top level windows of applications with the input
field set to the value of True. Push model window
managers should ensure that pull model applications do
not break them by resetting the input focus to
PointerRoot when it is appropriate.

Specifies the initial state of the application. The values for this field
are:

DontCareState Don't know or care

NormalState Most applications start this way

ZoomState The application wants to start zoomed

lconicState The application wants to start as an icon

lnactiveState The application believes it is seldom used; some
window managers may put it on inactive menu

Specifies which pixels of the icon_pixmap field should be used as the
icon. The icon_mask field allows for nonrectangular pixmaps. Both
fields must be bit maps.

Specifies the window to be used as an icon for window managers that
support such use.

Specifies if this window belongs to a group of other windows. For
example, if a single application manipulates multiple top level windows,
this field provides the window manager with enough information to
iconify all of the windows instead of only one window.

The XGetWMHints subroutine, XSetWMHints subroutine.

A-82 User Interface· Reference

XSizeHints Data Structure
#de.fine USPosition
#define US Size

#define PPosition
#define PSize
#define PMinSize

#define PMaxSize

#define PResizeinc

#define PAspect

#define PAllHints

typedef struct {
long flags;

int x, y;
int width, height;

(lL<<O)
(lL<<l)

(1L<<2)
(1L<<3)
(1L<<4)

(lL<<S)

(1L<<6)

(1L«7)

int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;

} XSizeHints

/* user specified x, y */
/* user specified width,

height */
/* program specified position
/* program specified size *I
/* program specified minimum

size */
/* program specified maximum

size */
/* program specified resize

increments */
/* program specified min and

max aspect ratios */
(PPosition/PSize/PMinSize/
PMaxSize/PResizeinc/PAspect)

/* Marks which fields in this
structure are defined */

/* The numerator */
/* The denominator */

The XSizeHints data structure includes the following fields:

*/

flags Specifies how the position and size of the window is set. The values
for this field are as follows:

US Position

USSize

PPosition

PSize

PMinSize

PMaxSize

PResizelnc

PAspect

User specified x, y

User specified width, height

Program specified position

Program specified size

Program specified minimum size

Program specified maximum size

Program specified resize increments

Program specified minimum and maximum aspect
ratios

Enhanced X-Windows Xlib Data Structures A-83

x

y

width

height

min_ width

min_height

max_ width

max_height

width_inc

height_inc

min_aspect

max_aspect

base_ width

base_height

PAii Hints (PPositionlPSizelPMinSizelPMaxSizelPResizelnclP
Aspect)

Specifies the x coordinate for the upper left corner of the window.

Specifies the y coordinate for the upper left corner of the window.

Specifies the width of the window.

Specifies the height of the window.

Specifies the minimum width of the window for the application.

Specifies the minimum height of the window for the application.

Specifies the maximum width of the window.

Specifies the maximum height of the window.

Specifies an arithmetic progression of sizes, from minimum size to
maximum size, for the window resize requests.

Specifies an arithmetic progression of sizes, from minimum size to
maximum size, for the window resize requests.

Specifies the minimum of the range of aspect ratios the application
prefers. This field is expressed as a ratio of the x and y fields.

Specifies the maximum of the range of aspect ratios the application
prefers. This field is expressed as a ratio of the x and y fields.

Defines an arithmetic progression, when used with the width_inc field,
of the preferred window width.

Defines an arithmetic progression, when used with the height_inc field,
of the preferred window height.

Related Information

A-84

The XGetNormalHints subroutine, XGetSizeHints subroutine, XGetZoomHints subroutine,
XSetNormalHints subroutine, XSetSizeHints subroutine, XSetZoomHints subroutine.

User Interface Reference

I

\

XlconSize Data Structure
typedef struct {

int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} XIconSize;

The XlconSize data structure includes the following fields:

min_width

min_height

max_ width

max_height

width_inc

height_inc

Related Information

Specifies the minimum icon width.

Specifies the minimum icon height.

Specifies the maximum icon width.

Specifies the maximum icon height.

Specifies an arithmetic progression of sizes, from minimum to
maximum, that represent the supported icon sizes.

Specifies an arithmetic progression of sizes, from minimum to
maximum, that represent the supported icon sizes.

The XGetlconSizes subroutine, XSetlconSizes subroutine.

Enhanced X-Windows Xlib Data Structures A-85

XClassHint Data Structure
typedef struct {

char *res_name;
char *res_class;

} XClassHint;

The XClassHint data structure includes the following fields:

res_name Specifies the application name.

res_class Specifies the application class.

Related Information
The XGetClassHint subroutine, XSetClassHint subroutine.

A-86 User Interface Reference

(
i,,
~

XrmValue Data Structure
typedef struct {

unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource database is an opaque type used by the lookup routines.

typedef struct _XrmHashBucketRec *XrmDat
abase;

Database values consist of a size, an address, and a representation type. The
representation type allows storage of data tagged by some application defined type (for
example, font or color). It has nothing to do with the C language data type or with its class.

The XrmValue data structure has the following fields:

size Specifies the size of the resource database, specified in bytes.

addr Specifies the location of the resource database.

Enhanced X-Windows Xlib Data Structures A-87

XrmOptionDesclist Data Structure

A-88

typedef enum {
XrmoptionNoArg,

XrrnoptionisArg,

XrmoptionStickyArg,

XrmoptionSepArg,
XrrnoptionResArg,

XrmoptionSkipArg,

XrmoptionSkipLine,

} XrmOptionKind;

typedef struct {
char *option;

char *resourceName;

XrmOptionKind argKind;
caddr_t value;

/* Value is specified in
OptionDescRec.value */

/* Value is the option string
itself */

/* Value is characters immediately
following option */

/* Value is next argument in argv
/* Resource and value in next

argument in argv */
/* Ignore this option and the next

argument in argv */
/* Ignore this option and the rest

of argv */

/* Option specification string in
argv */

/* Binding and resource name
(sans application name)

/* Which style of option it is */
/* Value to provide if

XrrnoptionNoArg */
} XrmOptionDescRec, *XrmOptionDescList;

The XrmOptionDesclist data structure includes the following fields:

option

resourceName

argKind

Specifies the option specification string in the argv field.

Specifies the binding and resource name (without the application
name).

Specifies the style of option. This field can be one of the following
values:

XrmoptionNoArg The value is specified in the value field.

XrmoptionlsArg The value is the option string itself.

XrmoptionSticky Arg The value is found in the characters
immediately following the option.

*/

XrmoptionSepArg The value is the next argument in the argv
field.

User Interface Reference

(

\

value

Related Information

XrmoptionResArg The resource and value in the next argument
in the argv field.

XrmoptionSkipArg Ignore this option and the next argument in
the argv field.

XrmoptionSkipline Ignore this option and the rest of the argv
field.

The value to provide if the argKind field is XrmoptionNoArg.

The XrmParseCommand subroutine.

Enhanced X-Windows Xlib Data Structures A-89

XAIXDeviceMappingEvent Data Structure

A-90

typedef struct {
int type; /* Event type */
unsigned long serial /* Number of last request processed by

server */
Bool send_event; /* True if from SendEvent request */
Display *display; /* Display event was read from */
Window window; /* unused */
int request; /* AIXMappingDial or AIXMappingLpfk */
int lpfkmask; /* lpfk input */
int lightmask; /* lpfk output */
int dialmask; /* dial mask */

} XAIXDeviceMappingEvent;

type

serial

send_ event

display

window

lpfkmask

lightmask

dialmask

User Interface Reference

Specifies the event type, which is AIXDeviceMappingNotify.

Specifies the serial number of last event processed in the server.

Specifies if the event was generated by a SendEvent protocol
request. If it was, the send_ event field is set to the value of True.

Specifies the connection to the X Server.

Unused in this request.

Set to new lpfkmask value if the request is AIXMappinglpfk.

Set to the new lightmask value if the request is AIXMappinglpfk.

Set to the new dialmask value if the request is AIXMappingDial.

(

Enhanced X-Windows Xlib Data Structures A-91

Appendix B. Enhanced X-Windows Toolkit Data Structures

Related Information
The ApplicationShellClassRec data structure.
The ApplicationShellPart data structure.
The ApplicationShellWidget data structure.
The CompositeClassPart data structure.
The CompositePart data structure.
The ConstraintClassPart data structure.
The ConstraintPart data structure.
The CoreClassPart data structure.
The CorePart data structure.
The OverrideShellClassRec data structure.
The OverrideShellPart data structure.
The OverrideShellWidget data structure.
The ShellClassRec data structure.
The ShellPart data structure.
The ShellWidget data structure.
The ToplevelShellClassRec data structure.
The ToplevelShellPart data structure.
The ToplevelShellWidget data structure.
The TransientShellClassRec data structure.
The TransientShellPart data structure.
The TransientShellWidget data structure.
The VendorShellClassRec data structure.
The VendorShellPart data structure.
The VendorShellWidget data structure.
The WMShellClassRec data structure.
The WMShellPart data structure.
The WMShellWidget data structure.
The XrmValue data structure.
The XtAcceptFocusProc data type.
The XtActionProc procedure pointer.
The XtActionlist data structure.
The XtAddressMode enumerated type.
The XtAlmostProc data type.
The Arglist data structure.
The XtArgsFunc data type.
The XtArgsProc data type.
The XtCallbacklist data structure.
The XtCallbackProc data type.
The XtCaseProc data type.
The XtConvertArgRec data structure.
The XtConvertSelectionProc data type.
The XtConverter data type.
The XtErrorHandler data type.
The XtErrorMsgHandler data type.
The XtEventHandler data type.
The XtExposeProc data type.
The XtGeometryHandler data type.
The XtGeometryResult data structure.

Enhanced X-Windows Toolkit Data Structures B-1

The XtlnitProc data type.
The XtlnputCallbackProc data type.
The XtKeyProc data type.
The XtloseSelectionProc data type.
The XtOrderProc data type.
The XtPopdownlD data structure.
The XtProc data type.
The XtRealizeProc data type.
The XtResource data structure.
The XtResourceDefaultProc data type.
The XtSelectionCallbackProc data type.
The XtSelectionDoneProc data type.
The XtStringProc data type.
The XtTimerCallbackProc procedure.
The XtWidgetClassProc data type.
The XtWidgetGeometry data structure.
The XtWidgetProc data type.
The XtWorkProc data structure.

B~2 User Interface Reference

(

\

CoreClassPart Data Structure
The common fields for all widget classes are defined in the CoreClassPart data structure:

typedef struct {
WidgetClass superclass;
String class_name;

Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
Boolean class inited;
XtinitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
Boolean compress_exposure;
Boolean compress_enterleave;
Boolean visible_interest;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
_XtOffsetList callback_private;
String tm_table;
XtGeometryHandler query_geometry;
XtStringProc display_accelerator;
caddr_t extension;

} CoreClassPart;

Related Information
The XtArgsFunc data type.

Enhanced X-Windows Toolkit Data Structures 8-3

CorePart Data Structure
The common fields for all widget instances are defined in the CorePart structure:

typedef struct _CorePart {
Widget self;
WidgetClass widget_class;
Widget parent;
XrmName xrm_name;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
caddr_t constraints;
Position x;
Position y;
Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;
XtEventTable event_table;
XtTMRec tm;
XtTranslations accelerators;
Pixel border_pixel;
Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;
Screen *screen;
Colormap colormap;
Window window;
Cardinal depth;
Pixel background_pixel;
Pixmap background_pixmap;
Boolean visible;
Boolean mapped_when_managed;

} CorePart;

The default values for the core fields are filled in by the Core resource list and the Core
initialize procedure. The default values for the CorePart data structure are:

Field Default Value

self Address of the widget structure (may not be changed)

widget_ class widget_class argument to the XtCreateWidget subroutine
(may not be changed)

parent parent argument to the XtCreateWidget subroutine
(may not be changed)

xrm_name Encoded name argument to the XtCreateWidget subroutine
(may not be changed)

being_ destroyed being_destroyedvalue of the parent widget

8-4 User Interface Reference

destroy_ callbacks NULL

constraints NULL

x 0

y 0

width 0

height 0

border_ width 1

managed False

sensitive True

ancestor_ sensitive Bitwise AND of sensitive & ancestor_sensitive fields of the
parent widget

event_ table Initialized by the event manager

tm Initialized by the translation manager

accelerators NULL

border_pixel X t Defaul tForeground

border _pixmap NULL

popup_list NULL

num_popups 0

name The name argument to the XtCreateWidget subroutine
(may not be changed)

screen Parent screen; top-level widget uses display specifier
(may not be changed)

colormap Default colormap for the screen

window NULL

depth Parent's depth; top-level widget uses root window depth

background_pixel XtDefaultBackground

background_pix- NULL
map

visible True

map_ when_man- True

aged

Enhanced X-Windows Toolkit Data Structures B-5

CompositeClassPart Data Structure
In addition to the Core widget class fields, Composite widgets have the following class
fields:

typedef struct {
XtGeometryHandler geometry_rnanager;
XtWidgetProc change_rnanaged;
XtWidgetProc insert_child;
XtWidgetProc delete_child;
caddr_t extension;

} CompositeClassPart;

Related Information
The CompositePart data structure.

CompositePart Data Structure
In addition to the CorePart fields, Composite widgets have the following fields defined in
the CompositePart structure:

typedef struct {
WidgetList children;
Cardinal nurn_children;
Cardinal nurn_slots;
XtOrderProc insert_position;

} CornpositePart;

The default values are filled in by the Composite resource list and the Composite initialize
procedure. The default values for the CompositePart data structure are:

Field Default Value

children NULL

num_children 0

num_slots 0

insert_position Internal function lnsertAtEnd

Related Information
The CompositeClassPart data structure.

8-6 User Interface Reference

ConstraintClassPart Data Structure
In addition to the Composite class fields, Constraint widgets have the following class
fields:

typedef struct {
XtResourceList resources;

Cardinal nurn_resources;
Cardinal constraint_size;
XtinitProc initialize;
XtWidgetProc destroy;
XtSetValuesFunc set_values;
caddr_t extension;

} ConstraintClassPart;

Related Information
The ConstraintPart data structure.

ConstraintPart Data Structure
In addition to the CompositePart fields, Constraint widgets have the following fields
defined in the ConstraintPart data structure:

typedef struct { int empty; } ConstraintPart;

Related Information
The ConstraintClassPart data structure.

Enhanced X-Windows Toolkit Data Structures 8-7

Arglist Data Structure
typedef something ArgList;

typedef struct {
String name;
ArgList value;

} Arg, *ArgList;

The Arglist data structure is a pointer to the Arg data structure. The Arglist data type is a
C language type which is large enough to contain the following: caddr_t, char*, long, int*,
or a pointer to a function.

Many of the Intrinsics routines need to receive pairs of resource names and values, called
an argument list. These are passed as an Arglist structure.

name Specifies the name of the resource.

value Contains the resource value if the size of the resource is less than or equal
ArgListto the size of an Arglist structure. Otherwise, the value field is a
pointer to the resource value.

Related Information
The XtMergeArglists subroutine, XtSetArg subroutine.

8-8 User Interface Reference

XtlnitProc Data Type
typedef void (*XtinitProc)(Widget, Widget)

Widget request;
Widget new;

The XtlnitProc procedure is the initialize procedure (the procedure specified in the initialize
field of a widget class) pointer type for a widget class.

An initialization procedure performs the following:

• Allocates space for and copies any resources that are referenced by address. For
example, if a widget has a field that is a String, it cannot depend on the characters at that
address remaining constant but must dynamically allocate space for the string and copy it
to the new space. (note that you should not allocate space for or copy callback lists.)

• Computes values for unspecified resource fields. for example, if the width and height are
0, the widget should compute an appropriate width and height based on ohter resources.
This is the only time that a widget should ever directly assign its own width and height.

• Computes values for uninitialized nonresource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources
like background, foreground, and font.

An initialization procedure can also check certain fields for internal consistancy. For
example, it makes no sense to specify a color map for a depth that does not support that
color map.

A subclass compares the difference between a specified size and a size computed by a
superclass by checking the request and new fields in the XtlnitProc data type.

request

new

Specifies the widget with resource values as requested by the argument list,
the resource database, and the widget defaults.

Specifies a widget with the new values, both resource and nonresource, that
are allowed. A subclass initialize procedure compares the values to resolve
potential conflicts.

Enhanced X-Windows Toolkit Data Structures 8-9

XtArgsProc Data Type
typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);

Widget w;
ArgList args;
Cardinal *nurn_args;

Description
The XtArgsProc specifies the interface for the initialize_hook and get_ values_hook
procedures of a widget.

If the XtArgsProc procedure is not the value of NULL, it is called immediately after the
corresponding initialize procedure or in place of it, if the initialize procedure is the value of
NULL..

Parameters
w

args

num_args

B-1 O User Interface Reference

Specifies the widget ID.

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in the argument list.

(

\

(

XtCallbackProc Data Type

Fields

typedef void (*XtCallbackProc)(Widget, caddr_t, caddr_t);
Widget w;
caddr_t client_data;
caddr_t call_data;

The XtCallbackProc data type specifies the interface of a callback procedure to be used in
callback lists. A client can register the callback and client-specific data (such as a pointer to
additional information about the widget) in the clienLdata field. The client data should be the
value of NULL if all necessary information is in the widget.

The call_data field allows the client application to specify data about the callback. This
parameter helps the client avoid using the XtGetValues subroutine or a widget-specific
subroutine to retrieve data from the widget. For example, if the Scrollbar executes the
thumbChanged callback list, the call_data field passes the new position of the thumb.

Note: Do not use the call_data field for complex information.

w

clienLdata

call_ data

Specifies the widget ID for which the callback is registered.

Specifies the data that should be passed to the client when the widget
executes the client's callback. If all necessary information is in the widget,
this parameter has the value of Null.

Specifies any callback data that should be passed to the client when the
widget executes the client's callback.

Related Information
The XtCallbacklist data structure.

The XtCreateWidget subroutine, XtGetValues subroutine.

XtCallbacklist Data Structure
typedef struct {

XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

The XtCallbacklist structure specifies the address of a null-terminated list, and is used to
pass callback information to the XtCreateWidget subroutine, XtSetValues subroutine, or
XtGetValues subroutine.

callback Specifies a pointer to the callback procedure.

closure Specifies any client data to be passed to the callback procedure.

Related Information
The XtCreateWidget subroutine, XtGetValues subroutine, XtSetValues subroutine.

Enhanced X-Windows Toolkit Data Structures 8-11

XtWidgetProc Data Type
The XtWidgetProc data type specifies the interface for a user defined destroy, resize,
change_managed, insert_ child, or delete_child procedures of a widget. These procedures
are stored in the following fields of a widget:

destroy

resize

Destroy procedures are called in subclass-to-superclass order.
Therefore, a widget's destroy procedure should only deallocate
storage specific to the subclass and should not bother with the storage
allocated by any of its superclasses. The destroy procedure should
only deallocate resources that have been explicitly created by the
subclass. Any resource that was obtained from the resource database
or was passed in with an argument list was not created by the widget
and, therefore, should not be destroyed by it. If a widget does not need
to deallocate any storage, the destroy procedure entry in its widget
class record can be the value of NULL.

If the composite widget wishes to change the size or border width of
any of its children, it calls the XtResizeWidget subroutine, which first
updates the Core fields and then calls the XConfigureWindow
subroutine if the widget is realized.

A child can be resized by its parent at any time. Widgets usually need
to know when they have changed size so that they can lay out their
displayed data again to match the new size. When a parent resizes a
child, it calls XtResizeWidget, which updates the geometry fields in
the widget., configures the window if the widget is realized, and calls
the child's resize procedure to notify the child. The resize proced1Jre
pointer is of type XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can
specify NULL for the resize field in its class record. This is an unusual
case and should occur only for widgets with very trivial display
semantics. The resize procedure takes a widget as its only argument.
The x, y, width, height and border_width fields of the widget contain
new values. The resize procedure should recalculate the layout of (
internal data as needed. (For example, a centered Label in a window
that changes size should recalculate the starting position of the text.)
The widget must obey resize as a command and must not treat it as a
request. A widget must not issue an XtMakeGeometryRequest or
XtMakeResizeRequest call from its resize procedure.

change_managed Child widgets are added to and removed from the managed set by
using the XtManageChild, XtManageChildren, XtUnmanageChild,
and XtUnmanageChildren subroutines, which notify the parent to
recalculate the physical layout of its children by calling the parent's
change_managed procedure. The XtCreateManagedWidget
convenience subroutine calls the XtCreateWidget and
XtManageChild subroutines on the result.

B-12 User Interface Reference

insert_ child

delete_ child

To add a child to the parent's list of children, the XtCreateWidget
subroutine calls the parent's class routine insert_child.

Most composite widgets inherit their superclass' operation. The
insert_child routine calls the insert_position procedure and inserts the
child at the specified position.

Some composite widgets define their own insert_ child routine so that
they can order their children in some convenient way, create
companion controller widgets for a new widget, or limit the number or
type of their children widgets.

If there is not enough room to insert a new child in the children array
(the num_children field of the widget== the num_slots field), the
insert_child procedure must first reallocate the array and update the
num_slots field of the widget. The insert_ child procedure then places
the child wherever it wants and increments the num_children field of
the widget.

Most widgets inherit the delete_ child procedure from their superclass.
Composite widgets that create companion widgets define their own
delete_ child procedure to remove these companion widgets. To
remove the child from the parent's children array, the
XtDestroyWidget function eventually causes a call to the composite
parent's delete_ child procedure.

The XtWidgetProc data type contains the following field:

w Specifies the widget.

Related Information
The CompositeClassPart data structure, ConstraintClassPart data structure.

The XFreeGC subroutine, XFreePixmap subroutine,
XtAddEventHandlersubroutine, XtAppAddTimeout subroutine, XtCalloc subroutine, XtDe
stroyWidget subroutine, XtFree subroutine, XtGetGC subroutine, XtMalloc subroutine,
XtRemoveEventHandler subroutine, XtRemoveTimeout subroutine, XtResizeWidget
subroutine.

Enhanced X-Windows Toolkit Data Structures 8-13

XtOrderProc Data Type
typedef Cardinal (*XtOrderProc)(Widget);

Widget w;

The XtOrderProc data type is the interface definition for the insert_position procedure in a
composite widget instance. This procedure is useful when composite widgets need a specific
order for their children widgets; it determines where a new child should go in the children list
of the widget. This procedure is called from the insert_child procedure of the widget class.

The return value of the insert_position procedure indicates how many children should go
before the widget

w Specifies the widget.

Return Values
O Indicates that the widget should go before all other children.

num_children Indicates that the widget should go after all other children.

Related Information
The CompositePart data structure.

B-14 User Interface Reference

(

Enhanced X-Windows ShellClassRec Data Structure
typedef struct _ShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;

} ShellClassRec;

Related Information
The ShellPart data structure.
The ShellWidget data structure.

OverrideShellClassRec Data Structure
typedef struct _OverrideShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;

} OverrideShellClassRec;

Related Information
The OverrideShellPart data structure.
The OverrideShellWidget data structure.

WMShellClassRec Data Structure
typedef struct _WMShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
WMShellClassPart wrn_shell_class;

} WMShellClassRec;

Related Information
The WMShellPart data structure.
The WMShellWidget data structure.

VendorShellClassRec Data Structure
typedef struct _VendorShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
WMShellClassPart wrn_shell_class;
VendorShellClassPart vendor_shell_class;

} VendorShellClassRec;

Related Information
The VendorShellPart data structure.
The VendorShellWidget data structure.

User Interface Reference 8-15

TransientShellClassRec Data Structure
typedef struct _TransientShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellClassRec;

Related Information
The TransientShellPart data structure.
The TransientShellWidget data structure.

ToplevelShellClassRec Data Structure
typedef struct _TopLevelShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

} TopLevelShellClassRec;

Related Information
The ToplevelShellPart data structure.
The ToplevelShellWidget data structure.

ApplicationShellClassRec Data Structure
typedef struct _ApplicationShellClassRec {

CoreClassPart core_class;
CornpositeClassPart cornposite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_shell_class;

} ApplicationShellClassRec;

Related Information

B-16

The ApplicationShellPart data structure.
The ApplicationShellWidget data structure.

Enhanced X-Windows Toolkit Data Structures

ShellPart Data Structure
typedef struct {

String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_under;
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;

} ShellPart;

allow_shel/_resize This field controls whether or not the widget contained by the
shell is allowed to resize itself. If the value of the field is False,
geometry requests return the value XtGeometryNo. The
default value for the allow_shel/_resize field is False.

client_ specified By default, the client_ specified field is used internally.

create_popup_child_proc The procedure defined by this field is called by the XtPopup
subroutine. The default value for the create_popup_child_proc
field is NULL.

geometry Specifies size and position and is usually done only from a
command line or a defaults file. The default value for the
geometry field is NULL.

grab_kind By default, the grab_ kind field is used internally.

override_redirect Setting the override_redirect field determines whether or not
the shell window is visible to the window manager. If it is the
value of True, the window is immediately mapped without the
intervention of the manager. The default value for the
override_redirect field is True for the OverrideShell, and
False otherwise.

popdown_callback This field is called during the XtPopdown subroutine. The
default value for the popdown_callback field is NULL.

popped_ up By default, the popped_ up field is used internally.

popup_callback This is called during the XtPopup subroutine. The default
value for the popup_callback field is NULL.

User Interface Reference 8-17

save_under

spring_ loaded

Related Information

Setting the save_underfield instructs the server to attempt to
save the contents of windows obscured by the shell when it is
mapped and to restore its contents automaticlly later. It can be
useful for pop-up menus. The default value for the save_under
field is True for the OverrideShell and TransientShell widget
classes, and False otherwise.

By default, the spring_ loaded field is used internally.

The ShellClassRec data structure.
The ShellWidget data structure.

OverrideShellPart Data Structure
typedef struct { int empty; } OverrideShellPart;

Related Information
The OverrideShellClassRec data structure.
The OverrideShellWidget data structure.

8-18 Enhanced X-Windows Toolkit Data Structures

(

WMShellPart Data Structure
typedef struct {

String title;
int wrn_timeout;
Boolean wait for_wrn;
Boolean transient;
XSizeHints size_hints;
XWMHints wrn_hints;

} WMShellPart;

The common shell fields and their default values in the WMShell widget class and its
subclasses are:

size_hints

title

transient

Specifies resources for sizing the window. This can include the following:

max_ height

max_ width

min_ height

min_ width

height_inc

width_ inc

The default value for the max_height field is None.

The default value for the max_ width field is None.

The default value for the min_heightfield is None.

The default value for the min_ width field is None.

The default value for the height_inc field is None.

The default value for the width_inc field is None.

This value is a string displayed by the window manager. The default value
for the title field is the icon name if one is specified. Otherwise it is the name
of the application.

The default value for the transient field is True for the TransientShell
widget class, and False otherwise.

wait_for_wm The default value for the wait_for_wm field is True. This field is set to False
when a shell does not receive confirmation of a geometry request to the
window manager within the time defined for the wm_timeout field. When the
field is the value of False, the shell does not wait for confirmation but relies
on asynchronous notification.

wm_hints Specifies resources for window manager hints. This can include the
following:

min_aspect_x The default value for the min_aspect_x field is None.

min_aspect_y The default value for the min_aspect_y field is None.

max_aspect_x The default value for the max_aspect_x field is None.

max_aspect_y The default value for the max_aspect_y field is None.

input The default value for the input field is False.

initial_state The default value for the initial_state field is normal.

icon_pixmap The default value for the icon_pixmap field is None.

User Interface Reference B-19

icon_window The default value for the icon_windowfield is None.

icon_x The default value for the icon_x field is None.

icon_y The default value for the icon_yfield is None.

icon_mask The default value for the icon_mask field is None.

window_group The default value for the window_group field is None.

wm_timeout Limits the amount of time a shell is to wait for confirmation of a geometry
request to the window manager. If no confirmation comes before the defined
timeout, the shell assumes the window manager is not functioning properly
and sets the wait_for_wm field to the value of False. The default value for
the wm_timeout field is five seconds.

Related Information
The WMShellClassRec data structure.
The WMShellWidget data structure.

VendorShellPart Data Structure
typedef struct {

int vendor_specific;
} VendorShellPart;

Related Information
The VendorShellClassRec data structure.
The VendorShellWidget data structure.

TransientShellPart Data Structure
typedef struct { int empty; } TransientShellPart;

Related Information
The TransientShellClassRec data structure.
The TransientShellWidget data structure.

8-20 Enhanced X-Windows Toolkit Data Structures

(
~

ToplevelShellPart Data Structure
typedef struct {

String icon_name;
Boolean iconic;

} TopLevelShellPart;

The common shell fields and their default values for the Toplevel shells are:

icon_name The default value for icon_name is the name of the shell widget. This field
contains a string for display in the icon of the shell.

iconic The default value for iconic is False. Setting this field to True is an
alternative way to set the initia/State resource to indicate that a shell is
displayed initially as an icon.

Related Information
The ToplevelShellClassRec data structure.
The ToplevelShellWidget data structure.

ApplicationShellPart Data Structure
typedef struct {

char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

The common shell fields and their default values for Application shells are:

argc This field is used to initialize the WM_COMMAND standard property. The
default value for argc is O (zero).

argv This field is used to initialize the WM_COMMAND standard property. The
default value for argv is NULL.

Related Information
The ApplicationShellClassRec data structure.
The ApplicationShellWidget data structure.

ShellWidget Data Structure
typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

Related Information
The ShellClassRec data structure.
The ShellPart data structure.

User Interface Reference B-21

OverrideShellWidget Data Structure
typedef struct {

CorePart core;
CornpositePart composite;
ShellPart shell;
OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

Related Information
The OverrideShellClassRec data structure.
The OverrideShellPart data structure.

WMShellWidget Data Structure
typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wrn;

} WMShellRec, *WMShellWidget;

Related Information
The WMShellClassRec data structure.
The WMShellPart data structure.

VendorShellWidget Data Structure
typedef struct {

CorePart core;
CornpositePart composite;
ShellPart shell;
WMShellPart wrn;
vendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

Related Information
The VendorShellClassRec data structure.
The VendorShellPart data structure.

B-22 Enhanced X-Windows Toolkit Data Structures

TransientShellWidget Data Structure
typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

Related Information
The TransientShellClassRec data structure.
The TransientShellPart data structure.

ToplevelShellWidget Data Structure
typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

Related Information
The ToplevelShellClassRec data structure.
The ToplevelShellPart data structure.

ApplicationShellWidget Data Structure
typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

Related Information
The ApplicationShellClassRec data structure.
The ApplicationShellPart data structure.

User Interface Reference 8-23

XtWorkProc Data Type
typedef Boolean(*XtWorkProc)(caddr_t)

caddr_t client_data;

The XtWorkProc data type specifies the interface definition for user defined idle-time work
procedures. The user defined procedure must return the value of True if it is done (that is,
the work is complete).

client_ data Specifies the client data generated when the work procedure was
registered.

Related Information
The XtAppAddWorkProc subroutine.

XtExposeProc Data Type

Syntax
typedef void (*XtExposeProc)(Widget, XEvent *,Region)

Widget w;
XEvent *event;
Region region;

Description

Fields

The XtExposeProc data type specifies the interface definition for user defined expose
procedure in widget classes. The expose procedure redisplays a widget upon exposure
(This redisplay is the responsibility of the widget.). If a widget has no display semantics,
specify the value of NULL for its expose procedure. For example, many composite widgets
serve as containers for their children only and have no expose procedure.

Note: If the XtExposeProc procedure is the value of NULL, the XtRealizeWidget
subroutine fills in the default bit gravity of NorthWestGravity before it calls the
widget realize procedure.

event

region

w

Specifies the exposure event that identifies the rectangle that requires
redisplaying. This parameter contains the bounding box for the Region
parameter, if the compress_ exposure field of the widget is the value of True.

Specifies the union of all rectangles in this exposure sequence. This
parameter is the value of NULL if the compress_exposure field of the
widget is the value of False.

Specifies the ID of the widget instance that requires displaying.

Related Information
The XtRealizeWidget subroutine.

B-24 User Interface Reference

XtEventHandler Data Type
typedef void (*XtEventHandler)(Widget, caddr_t, XEvent*);

Widget w;
caddr_t client_data;
XEvent *event;

The XtEventHandler data type is the interface definition for user defined event handler
procedures for widgets that must use event handlers explicitly. Most widgets use the
translation manager, instead of using event handlers explicitly.

client_ data Specifies the client-specific information registered with the event handler. If
the event handler is registered by the widget, this parameter is the value of
NULL.

event Specifies the triggering event.

w Specifies the widget ID for which to handle events.

XtWidgetGeometry Data Structure
The XtWidgetGeometry data structure is similar to a corresponding Xlib structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

The following request_mode values are from the <X11 /X.h> header file:

#define cwx (l«O)

#define CWY (l<<l)

#define CWWidth (1<<2)

#define CWHeight (1«3)

#define CWBorderWidth (1<<4)

#define CWSibling (1<<5)

#define CWStackMode (1<<6)

The Intrinsics also support the following value:

#define XtCWQueryOnly (1<.<7)

The XtCWQueryOnly value indicates that the corresponding geometry request is only a
query asking what would happen if this geometry request were made and that no widgets
are actually changed.

Enhanced X-Wlndows Toolkit Data Structures B-25

The XtMakeGeometryRequest subroutine (like the corresponding Xlib
XConfigureWindow subroutine) uses request_mode to determine which fields in the
XtWidgetGeometry structure you want to specify.

The stack_ mode values are defined in the <X11 /X.h> header file:

#define Above

#define Below

#define Topif

#define Bottomif

#define Opposite

0

1

2

3

4

The Intrinsics also support the following value:

#define XtSMDontChange 5

The XtSMDontChange value indicates that the widget requires its current stacking order
preserved.

Related Information
The XtGeometryResult data structure.

XtGeometryResult Data Structure
The return codes from geometry managers are:

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone,

} XtGeometryResult;

Related Information
The XtWidgetGeometry data structure.

B-26 User Interface Reference

(
\~

(

XtGeometryHandler Data Type

Syntax
typedef XtGeornetryResult(*XtGeornetryHandler)(Widget,

XtWidgetGeornetry*,
XtWidgetGeornetry*)

Description

Widget w;

XtWidgetGeornetry *request;
XtWidgetGeornetry *geornetry_return;

The XtGeometryHandler data type specifies the interface definition for the
geometry_manager procedure in a composite widget. A class can inherit the geometry
manager of its superclass during class initialization.

The same definition is also used for the query_geometry procedure in a widget. The
query_geometry procedure:

• Examines the bits set in the request->request_mode parameter.

• Evaluates the preferred geometry of the widget.

• Stores the result in the geometry_return parameter. It sets the bits in the
geometry_return->request_mode parameter to the corresponding geometry fields.

• Generates the appropriate return value.

A bit set to the value of 0 in the mask field of the request means that the child widget does
not care about the value of the corresponding field. Then the geometry manager can change
it as it wishes. A bit set to 1 means that the child wants that geometry element changed to
the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly is not
specified, it updates the widget's x, y, width, height, and border_width values appropriately.
Then it returns XtGeometryYes, and the value of the geometry_return argument is
undefined. The widget's window is moved and resized automatically by
XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the
request the same as any other widget, possibly reconfiguring it as part of its layout process,
unless XtCWQueryOnly is specified. If it does this, it should return XtGeometryDone to
inform XtMakeGeometryRequest that it does not need to do the configuration itself.

Although XtMakeGeometryRequest resizes the widget's window (if the geometry manager
returns XtGeometryYes), it does not call the widget class's resize procedure. The
requesting widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget cannot change its
geometry. The value of the geometry_return parameter is undefined, and the geometry
manager returns XtGeometryNo.

Enhanced X-Wlndows Toolkit Data Structures B-27

Sometimes the geometry manager cannot satisfy the request exactly, but may be able to ~
satisfy a similar request. That is, it could satisfy only a subset of the requests or a lesser

Fields

request. In such cases, the geometry manager fills in the geometry_return field with the
actual changes it is willing to make, including an appropriate mask, and returns
XtGeometryAlmost. If a bit in the geometry_returrr>request_mode is 0, the geometry
manager does not change the corresponding value if the geometry_return field is used
immediately in a new request. If a bit is 1, the geometry manager does change that element
to the corresponding value in the geometry_return field. More bits may be set in the
geometry_return field than in the original request if the geometry manager intends to change
other fields should the child accept the compromise.

When the XtGeometryAlmost value is returned, the widget must decide if the compromise
suggested in the geometry_return field is acceptable. If it is, the widget must not change its
geometry directly; rather, it must make another call to the XtMakeGeometryRequest
subroutine.

If the next geometry request from this child uses the geometry_return box filled in by an
XtGeometryAlmost return and if there have been no intervening geometry requests on
either its parent or any of its other children, the geometry manager must grant the request, if
possible. That is, if the child asks immediately with the returned geometry, it should get an
answer of XtGeometryYes. However, the user's window manager may affect the final
outcome.

To return an XtGeometryYes value, the geometry manager frequently rearranges the
position of other managed children by calling the XtMoveWidget subroutine. However, a few
geometry managers may sometimes change the size of other managed children by calling
the XtResizeWidget or the XtConfigureWidget subroutine. If XtCWQueryOnly is
specified, the geometry manager must return how it would react to this geometry request
without actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry_return fields point to
independent storage. The caller is permitted to use the same field for both, and the
geometry manager must allocate its own temporary storage , if necessary.

geometry_return

request

w

Specifies the geometry request returned by the geometry manager.

Specifies the request for a geometry change.

Specifies the widget.

Return Values
XtGeometryAlmost Indicates that at least one field in the PreferredReturn parameter is

different from the corresponding field in the Intended parameter or if a
bit is set in PreferredReturn parameter that is not set in the Intended
parameter of the query_geometry procedure.

XtGeometryNo

XtGeometryYes

Related Information

Indicates that the preferred geometry is identical to the current
geometry.

Indicates that the proposed geometry change is acceptable without
modification.

The XtQueryGeometry subroutine.

B-28 User Interface Reference

(
\

XtResource Data Structure
The declaration for the XtResource data structure is:

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
caddr_t default_address;

} XtResource, *XtResourceList;

The following list describes the content of each of these structure fields:

resource_name

resource_ class

Contains the name used by clients to access the field in the widget.
This name starts with a lower-case letter. It is spelled almost the same
as the field name, except that underscores U are deleted, and the
next leter replaced by its uppercase counterpart. For example, the
resource name for background_pixel is backgroundPixel. Widget
header files typically contain a symbolic name for each resource name.
All resource names, classes, and types used by the Intrinsics are in
the <X11 /StringDefs.h> header file. The Intrinsics symbolic resource
names begin with XtN and are followed by the string name; for
example, XtNbackgroundPixel for backgroundPixel.

A resource class has two functions:

• It isolates an application from different representations that widgets
can use for a similar resource.

• It lets an application specify values for several resources with a
single name. A resource class should be chosen to span a group of
closely related fields.

For example, a widget can have several pixel resources, such as
background, foreground, border, block cursor, mouse cursor, and so
on. Typically, the background defaults to white and everything else
defaults to black. The resource class for each of these resources in the
resource list should be chosen so that it takes a minimal number of
entries in the resource database to make background offwhite and
everything else darkblue:

In this case, the background pixel should have a resource class of
Background and all the other pixel entries should have a resource
class of Foreground. Then, the resource file needs just two lines to
change all pixels to offwhite or darkblue:

*Background:
*Foreground:

offwhite
darkblue

Enhanced X-Wlndows Toolkit Data Structures B-29

resource_type

resource_size

8-30 User Interface Reference

Similarly, a widget may have several resource fonts, such as normal
and bold, but all fonts should have the class Font. Changing all fonts
requires one line in the default file:

Font: Rom14.500

Resource class names begin with a capitalized letter. This name is
preceded by XtC (for example. XtCBackground).

The physical representation type of the resource. This name begins
with an uppercase letter and is spelled the same as the type name of
the field. The resource type is used when resources are called to
convert from the resource database format (usually String) or the
default resource format (often String) to the desired physical
representation. The Intrinsics define the following resource types:

Resource Type Structure or Field Type

XtRAcceleratorTable XtAccelerators

XtRBoolean Boolean

XtRBool Boo I

XtRCallback X tCal I backlist

XtRColor XColor

XtRCursor Cursor

XtRDimension Dimension

XtRDisplay Display*

XtRFile FILE*

XtRFloat float

XtRFont Font

XtRFontStruct XFontStruct*

XtRFunction (*)()

XtRlnt int

XtRPixel Pixel

XtRPixmap Pixmap

XtRPointer caddr_t

XtRPosition Position

XtRShort short

XtRString char*

XtRTranslationTable XtTranslations

XtR U nsig nedChar unsigned char

XtRWidget Widget

XtRWindow Window

The size of the physical representation in bytes and should be
specified as sizeof (type) so that the compiler can fill in the value.

/

~

resource_ offset

default_ type

default_ address

Related Information

The offset in bytes of the field within the widget. Use the XtOffset
macro to retrieve this value.

The representation type of the default resource value. If default_type is
different from resource_type and the default_type is needed, the
resource manager invokes a conversion procedure from default_type
to resource_type. Whenever possible, the default type should be
identical to the resource type to minimize widget creation time.
However, there are sometimes no values of the type that the
application can easily specify. In this case, the value should be one
that the converter will work for, such as XtDefaultForeground for a
pixel resource.

The address of the default resource value. The default is used if a
resource is not specified in the argument list or in the resource
database or if the conversion from the representation type stored in the
resource database fails, which can happen for reasons (for example, a
misspelled entry in a resource file).

Two special representation types, XtRlmmediate and XtRCallProc,
can only be used as default resource types. XtRlmmediate indicates
that the value in the default_address field is the actual value of the
resource, rather than the address of the value. The value must be in
correct representation type for the resource. No conversion is possible
since there is no source representation type.

XtRCallProc indicates that the value in the default_address field is a
procedure variable. This procedure is automatically invoked with the
widget, resource_offset, and a pointer to the XrmValue data structure
in which to store the result.

The <X11/StringDefs.h> header file.

The XrmValue data structure.

The XtOffset macro.

Enhanced X-Wlndows Toolkit Data Structures B-31

XtResourceDefaultProc Data Type
The XrmValue data structure is of XtResourceDefaultProc data type, which has the
following structure:

typedef void (*XtResourceDefaultProc)(Widget, int, XrrnValue*)
Widget widget;

int off set;
XrrnValue *value;

The XtResourceDefaultProc data type fills in the addr field of the value parameter with a
pointer to the default data in its correct type.

Note: The default_address field in the resource structure is declared as a caddr_t. On
some machine architectures, this may be insufficient to hold procedure variables.

When the default_ address field of the XtResource data structure contains the resource type
of XtRCallProc, the XtResourceDefaultProc data type is automatically called with the
widget, the resource_ offset field, and a pointer to the XrmValue data structure in which to
store the result.

The fields of the XtResourceDefaultProc data type are as follows:

widget Specifies the widget whose resource is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value to fill in.

Related Information
The XtResource data structure.

XrmValue Data Structure
typedef struct {

unsigned int size;

caddr_t addr;

} XrrnValue, *XrrnValuePtr;

8-32 User Interface Reference

I
I
\

XtConverter Data Type
typedef void (*XtConverter)(XrmValue*, Cardinal*,

Description

XrmValue*, XrmValue*);
XrmValue *args;
Cardinal *num_args;
XrmValue *from;
XrmValue *to;

The Xtconverter data type specifies the interface definition for subroutines that convert
resources from one type to another.

Type converters do the following actions:

• Check to see that the number of arguments passed is correct

• Attempt the type conversion

• If successful, return a pointer to the data in the to parameter; otherwise, call
XtWarningMsg and return without modifying the to parameter.

Most type converters just take the data described by the from parameter and return data by
writing into the specified to parameter. A few need other information which is available in the
specified argument list. A type converter can invoke another type converter, which allows
differing sources that may convert into a common intermediate result to make maximum use
of the type converter cache.

The address written to->addr can not be that of a lock variable because this is not valid after
the converter returns. It should be a pointer to a static variable.

The XtConverter data structure contains the following fields:

args

num_args

from

to

Specifies a list of additional XrmValue arguments to the converter if
additional context is needed to perform the conversion. Otherwise, this field
is the value of NULL. For example, the string-to-font converter needs the
widget's screen, or the string-to-pixel converter needs the widget's screen
and colormap.

Specifies the number of additional XrmValue arguments if additional context
is needed. Otherwise, this field is the value of 0.

Specifies the value to convert.

Specifies the descriptor to use to return the converted value.

Enhanced X-Wlndows Toolkit Data Structures 8-33

XtAddressMode Enumerated Type
typdef enum {

/*address mode
XtAddress,
XtBaseOffset,

Xtirnmediate,
.XtResourceString,
XtResourceQuark,

} XtAddressMode;

parameter representation*/
/*address*/

Related Information

/*offset*/
/*constant*/

/*resource name string*/
/*resource name quark*/

The XtConvertArgRec data structure.
The XtAppAddConverter subroutine.

XtConvertArgRec Data Structure
typedef struct {

XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

address_id

address_mode

size

Related Information

Specifies the address of the resource. See the address_mode field
definition for details.

Specifies how the address_ id field should be interpreted. This field
may have the following values:

XtAddress

XtBaseOffset

Xtlmmediate

Causes address_ id to be interpreted as the
address of the data.

Causes address_idto be interpreted as the
offset from the widget base.

Causes address_idto be interpreted as a
constant.

XtResourceString Causes address_idto be interpreted as the
name of a resource that is to be converted into
an offset from a widget base.

XtResourceQuark Is an internally compiled form of an
XtResourceString.

Specifies the length of the data in bytes.

The XtAddressMode enumerated type.
The XtAppAddConverter subroutine.

8-34 User Interface Reference

XtActionlist Data Structure
typedef struct _XtActionsRec {

String action_name;
XtActionProc action_proc;

} XtActionsRec, *XtActionList;

action_name Specifies the name used in translation tables to access the procedure.

action_proc Specifies a procedure pointer of type XtActionProc, which points to a
procedure that implements the functionality.

Related Information
The XtActionProc procedure pointer.

XtActionProc Procedure Pointer
typedef void (*XtActionProc)(Widget, XEvent*,

String*, Cardinal*);
Widget w;
XEvent *event;
String *params;
Cardinal *num_params;

The XtActionProc procedure pointer specifies the interface definition for action procedures.
All widget class records contain an action table. In addition, an application can register its
own action tables with the translation manager so that the translation tables it provides to
widget instances can access application functionality.

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is called
after a sequence of events, then the last event in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation
table as arguments to the action.

num_params Specifies the number of arguments specified in the translation table.

Related Information
The XtActionlist data structure.

The XtAppAddActions subroutine.

Enhanced X-Windows Toolkit Data Structures B-35

XtKeyProc Data Type
The translation manager provides support for automatically translating key codes in
incoming key events into KeySyms. The XtKeyProc data type provides the interface
definition for Keycode to KeySym translators.

typedef void (*XtKeyProc)(Display*, KeyCode, Modifiers,
Modifiers*, KeySym*);

Display *display;
KeyCode keycode;
Mbdifiers modifiers;
Modifiers *modifiers return;
KeySym *keysym_return;

The XtKeyProc data type takes a Keycode and modifiers and produces a KeySym. For a
given key translator subroutine, the modifiers_return parameter will be a constant that \
indicates the subset of all modifiers that are examined by the key translator. Applications
should register this key converter with the XtSetKeyTranslator subroutine.

The following fields are included in the XtKeyProc data type:

display

keycode

modifiers

modifiers_ re turn

keysym_return

Related Information

Specifies the display that the key code is from.

Specifies the key code to translate.

Specifies the modifiers to the key code.

Returns a mask that indicates the subset of all modifiers are examined
by the key translator.

Returns the resulting KeySym.

The XtCaseProc data type.

The XtRegisterCaseConverter sburoutine, XtSetKeyTranslator subroutine,
XtTranslateKeycode subroutine.

B-36 User Interface Reference

XtCaseProc Data Type
typedef void (*XtCaseProc)(KeySym*, KeySym*, KeySym*);

KeySym *keysym;
KeySym *lower_return;
KeySym *upper_return;

The XtCaseProc data type specifies the interface for a case converter procedure. It allows
capitalization of nonstandard key symbols. A case conversion routine should be registered
with the Intrinsics library by using the XtRegisterCaseConverter subroutine. The
XtConvertCase subroutine calls the appropriate user defined XtCaseProc Procedure. If
there is no case distinction, the user defined XtCaseProc Procedure should store the key
symbols in both return values.

keysym Specifies the key symbol for the conversion.

lower_return Specifies the lowercase equivalent for the key symbol.

upper_return Specifies the uppercase equivalent for the key symbol.

Related Information
The XtConvertCase subroutine, XtRegisterCaseConverter subroutine.

XtAcceptFocusProc Data Type
typedef Boolean (*XtAcceptFocusProc)(Widget, Time);

Widget w;
Time *time;

The XtAcceptFocusProc data type defines the user written interface for the accept_focus
procedure. To allow outside agents to cause a widget to get the input focus, every widget
exports an accept_focus procedure. The widget returns even when it does not accept the
focus, so that the parent can give the focus to another widget.

Widgets that must know when they lose the input focus should use the Xlib library focus
notification mechanism explicitly by specifying translations for the Focusln and FocusOut
events.

Widgets that do not want the input focus should set the accept_focus procedure pointer to
the value of NULL.

Widgets that need the input focus can call the XSetlnputFocus subroutine explicitly.

time Specifies the X time of the event causing the accept_focus procedure.

w Specifies the widget ID.

Related Information
The XtCallAcceptFocus subroutine, XSetlnputFocus subroutine, XtSetKeyboardFocus
subroutine.

Enhanced X-Windows Toolkit Data Structures B-37

XtAlmostProc Data Type
typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeornetry*,

XtWidgetGeornetry*);
Widget w;
Widget new_widget_return;
XtWidgetGeornetry *request;
XTWidgetGeometry *reply;

The XtAlmostProc data type defines the interface for the set_values_almostfield of a
widget. This field is a procedure pointer. Most classes inherit this operation from their
superclass by specifying XtlnheritSetValuesAlmost in the class initialization. The core
set_values_almostfield accepts the compromise suggest.

The set_ values_ almost procedure is called when the geometry manager cannot satisfy a
client's request to set the window geometry with the XtSetValues subroutine. The geometry
manager returns the XtGeometryAlmost value with a compromise geometry.

The set_values_almostprocedure takes the original geometry and the compromise
geometry and determines an acceptable compromise, which may be the current compromise
or a different compromise. It returns the results in the new_widget_return field, which is then
sent to the geometry manager for another try.

new_ widget_return Specifies the new widget which will store the geometry changes.

reply

request

w

8-38 User Interface Reference

Specifies the compromise geometry returned by the geometry
manager.

Specifies the original geometry request sent to the geometry manager.

Specifies the widget ID on which the geometry change is requested.

/
\

XtArgsFunc Data Type
typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);

Widget w;
ArgList args;
Cardinal *num_args;

The XtArgsFunc specifies the interface for the set_ values_hook procedure pointer of a
widget. Widgets with a subpart cari set the resource values with the XtSetValues subroutine
and a set_ values_ hook procedure.

args

num_args

w

Related Information

Specifies the argument list for the XtCreateWidget subroutine.

Specifies the number of arguments in the argument list.

Specifies the widget ID whose non-widget resource values are to be
changed.

The CoreClassPart data structure.

The XtCreateWidget subroutine, XtSetValues subroutine.

XtPopdownlD Data Structure
typedef struct {

Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The XtPopdownlD structure identifies the widgets involved in the XtCallbackPopdown
subroutine. The address of an XtPopdownlD structure is passed as the client data to the
XtCallbackPopdown subroutine.

enable_ widget

shell_ widget

Related Information

Specifies the widget used to pop the (popiup) shell.

Specifies the pop-up shell to be popped down.

The XtCallbackPopdown subroutine, XtSetSensitive subroutine.

Enhanced X-Windows Toolkit Data Structures B-39

XtConvertSelectionProc Data Type
typedef Boolean (*XtConvertSelectionProc)(Widget, Atom*, Atom*,

Atom*, caddr_t*, unsigned long*, int*);
Widget w;
Atom *selection;
Atom *target;
Atom *type_return;
caddr_t *value_return;
unsigned long *length_return;
int *format_return;

The XtConvertSelectionProc data type is the interface definition for user defined
procedures that get the value of a selection as a given type from the current selection owner.

Each XtConvertSelectionProc data type should respond to the target value TARGETS by
returning a value containing the list of the targets that will be used for the selection
conversion.

format_ return

length_return

selection

target

type_return

value_return

w

8-40 User Interface Reference

Specifies a pointer into which the size (in bits) of the data elements of
the selection value is to be stored.

Specifies a pointer into which the number of elements in the
ValueReturn parameter is to be stored.

Specifies the atom that describes the type of selection requested. (For
example, XA_PRIMARY or XA_SECONDARV.)

Specifies the type of the selection requested, for example, a filename,
text, or a window.

Specifies a pointer to an atom that will store the converted value of the
selection. For example, a filename or text could specify XA_STRING
as the value for this parameter.

Specifies a pointer into which a pointer to the converted value of the
selection is stored. The selection owner is responsible for allocating
this storage.

If the selection owner provided an XtSelectionDoneProc procedure
for the selection, the storage is owned by the selection owner.
Otherwise, the storage is owned by the Intrinsics selection mechanism.

Specifies the ID of the widget that currently owns the selection.

Return Values
False Indicates that the conversion did not take place. The values of the return

parameters are undefined.

True

Related Information

Indicates that the selection owner successfully converted the selection to
the target type.

The XtloseSelectionProc data type, XtSelectionDoneProc data type,
XtSelectionCallbackProc data type.

The XtDisownSelection subroutine, XtGetSelectionValue subroutine,
XtGetSelectionValues subroutine, XtOwnSelection subroutine.

XtloseSelectionProc Data Type
typedef void (*XtLoseSelectionProc)(Widget, Atom*);

Widget w;
Atom* selection;

The XtloseSelectionProc data type specifies the interface definition for user defined
procedures that are called by the Intrinsics selection mechanism to inform the specified
widget that it has lost ownership of the specified selection. The user defined procedures do
not initiate the loss of the selection ownership.

selection Specifies the atom that describes the selection type.

w Specifies the widget that has lost selection ownership.

Related Information
The XtConvertSelectionProc data type, XtSelectionCallbackProc data type,
XtSelectionDoneProc data type.

The XtOwnSelection subroutine.

Enhanced X-Windows Toolkit Data Structures B-41

XtSelectionCallbackProc Data Type
typedef void (*XtSelectionCallbackProc)(Widget, caddr_t, Atom*,

Atom*, caddr_t, unsigned long*, int*);
Widget w;
caddr_t client_data;
Atom* selection;
Atom* type;
caddr_t value;
unsigned long* length;
int* format;

The XtSelectionCallbackProc data type specifies the interface for the user defined
procedures that are called by the Intrinsics selection mechanism to deliver the requested
selection to the requester.

An XT_CONVERT_FAIL atom specified in the Type parameter, upon return of the user
defined procedure, indicates that the selection conversion failed because the selection
owner did not respond within the Intrinsics selection time-out interval.

Parameters
client_ data

format

length

selection

type

value

w

Related Information

Specifies a value passed in by the widget when the selection was
requested.

Specifies the size in bits of the data elements of value.

Specifies the number of elements in value.

Specifies the type of selection that was requested.

Specifies the type used to represent the selection value (for example,
XA_STRING).

Specifies a pointer to the selection value.

The requesting client owns the storage allocated for this parameter. Use the
XtFree subroutine to de-allocate the storage space when this routine
completes.

Specifies the widget that requested the selection value.

The XtConvertSelectionProc data type, XtloseSelectionProc data type,
XtSelectionDoneProc data type.

The XtFree subroutine, XtGetSelectionValue subroutine, XtGetSelectionValues
subroutine.

8-42 User Interface Reference

XtSelectionDoneProc Data Type
typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);

Widget w;

Atom* selection;
Atom* target;

The XtSelectionDoneProc data type specifies the interface definition for user defined
procedures that are called by the Intrinsics selection mechanism to inform the selection
owner when a selection requester has retrieved a selection value successfully.

Once the selection owner registers an XtSelectionDoneProc, the procedure will be called
once for each conversion that it performs. This procedure is called after the converted value
has been transferred successfully to the requester.

The selection owner that registers an XtSelectionDoneProc also owns the storage
containing the converted selection value.

selection Specifies the atom that describes the selection type that was converted.

target Specifies the target type to which the conversion was done.

w Specifies the ID of the widget that owns the converted selection.

Related Information
The XtConvertSelectionProc data type, XtloseSelectionProc data type,
XtSelectionCallbackProc data type.

XtErrorHandler Data Type
typedef void (*XtErrorHandler)(String);

String message;

The XtErrorHandler data type specifies the interface definition for the low-level error and
warning handler procedure. The error handler should display the specified message string in
an appropriate manner.

message Specifies the error message.

Related Information
The XtAppSetErrorHandler subroutine, XtAppSetWarningHandler subroutine.

Enhanced X-Windows Toolkit Data Structures B-43

XtErrorMsgHandler Data Type
typedef void (*XtErrorMsgHandler)(String, String, String,

String, String*, Cardinal*);
String name;
String type;
String class;
String defaultp;
String * params;
Cardinal* num_params;

The XtErrorMsgHandler data type specifies the interface definition for high-level error and
warning handler procedures.

The standard printf notation is used to substitute the parameters into the message.

class

defaultp

name

num_params

para ms

type

Related Information

Specifies the resource class of the error message.

Specifies a default message if an error database entry is not found.

Specifies the name that is concatenated with the specified type to form
the resource name of the error message. The specified name can be a
general error, such as invalidParameters or invalidWindow.

Specifies the number of values in the parameter list.

Specifies a pointer to a list of values to be substituted in the message.

Specifies the type that is concatenated with the name to form the
resource name of the error message. The specified type gives extra
information.

The XtAppSetErrorMsgHandler subroutine, XtAppSetWarningMsgHandler subroutine.

B-44 User Interface Reference

XtlnputCallbackProc Data Type
typedef void (*XtinputCallbackProc)(caddr_t, int*, Xtinputid*);

caddr_t client_data;
int* source;
Xtinputid* id;

The XtlnputCallbackProc data type specifies the interface definition for callback
procedures used when there are file events.

client_ data

id

source

Related Information

Specifies the client data registered for this procedure in the XtAppAddlnput
subroutine.

Specifies the ID returned from the corresponding XtAppAddlnput
subroutine.

Specifies the source file descriptor generating the event.

The XtAppAddlnput subroutine, XtRemovelnput subroutine.

XtProc Data Type
typedef void (*XtProc)();

The XtProc data type specifies the interface definition for the class initialization procedure
pointer type. Most class records can be initialized completely at compile time. In some
cases, however, a class may need to register type converters or perform other sorts of
one-time initialization.

A widget class indicates that is has no class initialization procedure by specifying the value
of NULL in its class_initialize field.

Related Information
The XtWidgetClassProc data type.

Enhanced X-Windows Toolkit Data Structures B-45

XtWidgetClassProc Data Type
typedef void (*XtWidgetClassProc)(WidgetClass);

WidgetClass widget_class;

The XtWidgetClassProc data type provides the interface definition for the user defined
procedures that will be stored in the class_part_initialize procedure field of a widget.

Widgets have class initializations will be called exactly once. Some classes need to perform
additional initializations for fields in its part of the class record. These are performed not just
for the particular class, but subclasses as well.

For classes that do not define new class fields and do not need extra processing, the value
of NULL should be specified in the class_part_initialize field of a widget class.

widget_class Specifies the class of the widget.

Related Information
The XtProc data type.

XtRealizeProc Data Type
typedef void (*XtRealizeProc) (Widget, XtValueMask*,

XSetWindowAttributes*);
Widget w;
XtValueMask *value_mask;
XSetWindowAttributes *attributes;

The XtRealizeProc data type specifies the interface definition for the user defined realize
procedure in a widget class.

The generic XtRealizeWidget subroutine fills in a mask and a corresponding
XSetWindowAttributes data structure. It sets the following fields based on information in
the Core structure:

• The background_pixmap field (or the background_pixelfield if the background_pixmap
field is NULL) is filled in from the corresponding field.

• The border_pixmap field (or the border_pixel field if the border_pixmap field is NULL) is
filled in from the corresponding field.

• The event_ mask field is filled in based on the event handlers registered, the event
translations specified, whether the expose field is non-NULL, and whether the
visible_ interest field is True.

• The bit_gravityfield is set to NorthWestGravity if the expose field is NULL.

• The do_not_propagate_mask field is set to propagate all pointer and keyboard events up
the window tree. A composite widget can implement functionality caused by an event
anywhere inside it (including on top of children widgets) as long as children do not specify
a translation for the event.

All other fields in attributes (and the corresponding bits in value_mask) can be set by the
realize procedure.

8-46 User Interface Reference

(
\

Note that because the realize procedure is not a chained operation, the widget class realize
procedure must update the XSetWindowAttributes structure with all the appropriate fields
from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during class initialization.
The realize procedure defined for Core calls the XtCreateWindow subroutine with the
passed ValueMask and Attributes parameters and with the WindowC/ass and Visua/Ptr
parameters set to CopyFromParent. Both CompositeWidgetClass and
ConstraintWidgetClass inherit this realize procedure, and most new widget subclasses can
do the same.

The most common noninherited realize procedures set the bit_gravity in the mask and the
attributes to the appropriate value and then create the window. For example, depending on
its justification, the biLgravity field can be set to the value of WestGravity, CenterGravity,
or EastGravity. Consequently, shrinking the widget just moves the bits appropriately, and no
Expose event is needed for repainting.

If the children of a composite widget should be realized in a particular order (typically to
control the stacking order), that composit widget should call the XtRealizeWidget subroutine
on its children in the appropriate order from within its own realize procedure.

Widgets that have children and that are not a subclass of compositeWidgetClass are
responsible for calling the XtRealizeWidget subroutine on their children, usually from within
the realize procedure.

The XtRealizeProc data type contains the following fields:

attributes Specifies the window attributes to use in the XCreateWindow subroutine.

value_mask Specifies the fields from the attributes structure to use.

w Specifies the ID of the widget.

Related Information
The XSetWindowAttributes data structure.

The XtCreateWindow subroutine, XtRealizeWidget subroutine.

Enhanced X-Windows Toolkit Data Structures B-47

· XtSetValuesFunc Data Type
typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget);

Widget current;
Widget request;
Widget new;

The XtSetValuesFunc data type specifies the inderface definition for the user defined
procedure in the set_ values field of a widget class. This procedure should recompute any
field derived from resources that are changed. If no recomputation is necessary and if none
of the resources specific to a subclass require the window to be redisplayed when their
values are changed, you can specify the value of NULL for the set_ values field in the class
record.

Like the initialize field, the set_ values field mostly deals with the fields defined in the
subclass, but it has to resolve conflicts with its superclass, especially conflicts over width
and height. Sometimes it is necessary for a subclass to overwrite values filled in by its
superclass, particularly in the case of size calculations.

The new and request parameters provide information for a subclass to determine the
difference between a specified size and a size computed by its superclass. The request
parameter is the widget as originally requested. The new parameter starts with the values of
the request parameter, but has been modified by all superclass set_ values fields called so
far. A widget does not need to refer to the request parameter unless it must resolve conflicts
between the widget in the current parameter and the widget in the new parameter. Any
changes, including geometry changes, that the widget needs to make should be made to the
widget specified in the new parameter.

The set_ values field must return a Boolean value that indicates if the widget needs to be
redisplayed. A change in the geometry fields alone does not require the set_ values field to
return the value of True; the X Server will eventually generate an Expose event, if
necessary. After calling all the set_ values fields, the XtSetValues subroutine forces a
redisplay by calling the XClearArea subroutine if any of the set_ values procedures returned
the value of True. Therefore, a set_ values field should not do its own redisplaying.

The set_ values field should not do any work in response to changes in geometry. A widget
should do any geometry-related work in its Resize procedure.

It is permissible to call XtSetValues before a widget is realized. Therefore, the set_ values
field must not assume that the widget is realized.

current

request

new

Related Information

Specifies a copy of the widget as it was before the XtSetValues subroutine
was called.

Specifies a copy of the widget with all values changed as specified in the
XtSetValues subroutine before any class set_ values fields have been
called.

Specifies the widget with the new values that are actually allowed.

The XClearArea subroutine, XtSetValues subroutine.

B-48 User Interface Reference

/

XtStringProc Data Type
typedef void (*XtStringProc)(Widget, String)

Widget w;
String* string;

The XtStringProc data type specifies the interface definition for the user defined procedures
stored in the display_acceleratorfield of a widget. Accelerators can be specified in default
files, and the string representation is the same as for a translation table.

However, the interpretation of the #augment and #override directives apply to what will
happen when the accelerator is installed, that is, whether or not the accelerator translations
will override the translations in the destination widget. The default is #augment, which
means that the accelerator translations have lower priority than the destination translations.
The #replace directive is ignored for accelerator tables.

string Specifies the string representation of the accelerators for this widget.

w Specifies the ID of the widget that the accelerators are installed on.

Related Information
The CoreClassPart data structure.

The XtParseAcceleratorTable subroutine, XtlnstallAccelerators subroutine,
XtlnstallAllAccelerators subroutine.

XtTimerCallbackProc Procedure
typedef void (*XtXtTirnerCallbackProc)

(caddr_t, XtintervalID*);
caddr_t client_data;
Xtintervalid *id;

The XtTimerCallbackProc procedure specifies the interface definition for the user defined
procedures to be used when time-outs expire.

client_ data

id

Related Information

Specifies the client data that was registered for this procedure in the
XtAppAddTimeOut subroutine.

Specifies the ID returned from the corresponding XtAppAddTimeOut
subroutine.

The XtAppAddTimeOut subroutine.

Enhanced X-Windows Toolkit Data Structures B-49

i~

B-50 User Interface Reference

/

Appendix C. Enhanced X-Windows Extension Data Structures

The _XExtCodes data structure
The xDoSomethingReq data structure
The xResourceReq data structure
The XLPFKeyPressedEvent data structure
The XDialRotatedEvent data structure
The XAIXFocusChangeEvent data structure

XExtCodes Data Structure
typedef struct XExtCodes {

int extension; /* extension number */
int major opcode; /* major opcode assigned by server */
int first_event; /* first event number for the extension */
int first_error; /* first error number for the extension */

} XExtCodes;

XLPFKeyPressedEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send event;

Display *display;
Window window;

Window root;

Window subwindow;
Time time;
int x, y;

int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same screen;

} XLPFKeyEvent;

/* of event */
/* number of last request processed by
the server */

/* true if this came from a SendEvent
request */

/* display the ivent was read from */
/* "event" window it is reported

relative to */
/* root window that the event occurred
on */

/* child window */
/* milliseconds */
/* pointer x, y coordinates in the

event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

typedef XLPFKeyEvent XLPFKeyPressedEvent;

Enhanced X-Windows Extension Data Structures C-1

XDialRotatedEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;
Window window;

Window root;

Window subwindow;
Time time;
int x, y;

int x_root, y root;
unsigned int state;
short int dialval;
short int dialnum;
Bool same screen;

} XRotateEvent;

/* of event */
/* number of last request processed by
the server */

/* true if this came from a SendEvent
request */

/* display the ivent was read from */
/* "event" window it is reported

relative to */
/* root window that the event occurred
on */

/* child window */
/* milliseconds */
/* pointer x, y coordinates in the

event window */
/* coordinates relative to root */
/* key or button mask */
/* dial value */
/* dial number */
/* same screen flag */

typedef XRotateEvent XDialRotatedEvent;

XAIXFocusChangeEvent Data Structure
typedef struct {

int type;
unsigned long serial;

Bool send_event;

Display *display;
Window window;

short mode;
short devtype;
int detail;

} XAIXFocusChangeEvent;

/* AIXFocusin or AIXFocusOut */
/* number of last request processed

by the server */
/* true if this came from a SendEvent

request */
/* display the ivent was read from */
/* "event" window it is reported

relative to */
/* NotifyNormal */
/* dial or lpfk */
/* NotifyAncestor, NotifyVirtual,

Notifyinferior, NotifyNonLinear,
NotifyNonLinearVirtual,
NotifyPointer, NotifyPointerRoot,
NotifyDetailNone, */

typedef XAIXFocusChangeEvent XAIXFocusinEvent;
typedef XAIXFocusChangeEvent XAIXFocusOutEvent;

C-2 User Interface Reference

I

\

Index

Symbols
! window manager function, 5-32
***blink extension subroutine, 9-9-9-1 O
***CreateCrosshairCursor extension subroutine,
9-11-9-12

***CreateMulticolorCursor extension subroutine,
9-13-9-14

***DirectAdapterAccess extension subroutine, 9-15
***DirectFontAccess extension subroutine, 9-16
***DirectWindowAccess extension subroutine, 9-17
***QueryCrosshairCursor extension subroutine, 9-51
***RecolorMulticolorCursor extension subroutine,
9-55-9-56
XAllocScratch extension subroutine, 6-195

::)Reply extension subroutine, 6-196-6-198

Numbers
8-bit image text, drawing in a specified drawable,

using XDrawlmageString subroutine,
7-180-7-181

A
accelerator

installing from one widget to another, using
XtlnstallAccelerators subroutine, 6-104

specification syntax of, 5-43
accelerator table, parsing, using

XtParseAcceleratorTable subroutine, 6-134
accept_focus procedure, calling, using

XtCallAcceptFocus subroutine, 6-48
access control list

adding a specified host to, using XAddHost
subroutine, 7-61

adding host to, using ChangeHost protocol
request, 8-15-8-16

adding multiple hosts to, using XAddHosts
subroutine, 7-62

disabling, using XSetAccessControl subroutine,
7-456

disabling at the connection setup, using
SetAccessControl protocol request, 8-167

disabling use of, XDisableAccessControl
subroutine, 7-170

enabling
using XEnableAccessControl subroutine,

7-207
using XSetAccessControl subroutine,

7-456
enabling at the connection setup, using

SetAccessControl protocol request, 8-167

removing each specified host from, using
XRemoveHosts subroutine, 7-412

removing host from, using ChangeHosts
protocol request, 8-15-8-16

removing the specified host from, using
XRemoveHost subroutine, 7-411

returning the hosts on, using ListHosts protocol
request, 8-116

action table
declaring

using XtAddActions subroutine, 6-6
using XtAppAddActions subroutine, 6-20

registering with the translation manager, 6-20
activeBackground resource, description of, 5-13
activeBackgroundPixmap resource, description of,

5-13
activeBottomShadowColor resource, description of,

5-14
activeBottomShadowPixmap resource, description

of, 5-14
activeForeground resource, description of, 5-14
activeTopShadowColor resource, description of,

5-14
activeTopShadowPixmap, description of, 5-15
AIXwindow Library, XmStringGetNextComponent

subroutine, 2-199
AIXwindows Library, 2-215, 7-57

AllPlanes macro, 7-3
ApplicationShell widget class, 1-3
BitmapBitOrder macro, 7-4
BitmapPad macro, 7-5
BitmapUnit macro, 7-6
BlackPixel macro, 7-7
CellsOfScreen macro, 7-9
Composite widget class, 1-5
ConnectionNumber macro, 7-1 O
Constraint widget class, 1-7
CoreWidget class, 1-9
DefaultColormap macro, 7-11
DefaultColormapOfScreen macro, 7-12
DefaultDepth macro, 7-13
DefaultDepthOfScreen macro, 7-14
DefaultGCOfScreen macro, 7-16
DefaultRootWindow macro, 7-17
DefaultScreen macro, 7-18
DefaultScreenOfDisplay macro, 7-19
DefaultVisual macro, 7-20
DefaultVisualOfScreen macro, 7-21
DisplayCellsMacro, 7-22
DisplayHeight macro, 7-23

Index X-1

DisplayPlanes macro, 7-26
DisplayWidth macro, 7-28
DisplayWidthMM macro, 7-29
DoesBackingStore macro, 7-30
DoesSaveUnder macro, 7-31
EventMaskOfScreen macro, 7-32
HeightMMOfScreen macro, 7-33
HeightOfScreenMacro, 7-34
lmageByteOrder macro, 7-35
lsCursorKey macro, 7-36
lsFunctionKey macro, 7-37
lsKeypadkey macro, 7-38
lsMiscFunctionKey macro, 7-39
lsModifierKey macro, 7-40
lsPFKey macro, 7-41
iXmCommand widget class, 1-43
MaxCmapsOfScreen macro, 7-43
MinCmapsOfScreen macro, 7-44
NextRequest macro, 7-45
Object widget class, 1-1 O
OverrideShell widget class, 1-11
PlanesOfScreen macro, 7-46
ProtocolRevision macro, 7-47
ProtocolVersion macro, 7-48
Qlength macro, 7-49
RectObj widget class, 1-13
RootWindow macro, 7-50
RootWindowOfScreen macro, 7-51
ScreenCount macro, 7-52
ScreenOfDisplay macro, 7-53
ServerVendor macro, 7-54
Shell widget class, 1-14
ToplevelShell widget class, 1-16
TransientShell widget class, 1-18
VendorRelease macro, 7-55
VendorShell widget class, 1-'-20
WhitePixel macro, 7-56
WidthMMOfScreen macro, 7-58
WidthOfScreen macro, 7-59
WindowObj widget class, 1-24
WMShell widget class, 1-22
XActivateScreenSaver subroutine, 7-60
XAddHost subroutine, 7-61
XAddHosts subroutine, 7-62
XAddPixel subroutine, 7-63
XAddToSaveSet subroutine, 7-64
XAllocColor subroutine, 7-65-7-66
XAllocColorCells subroutine, 7-67-7-68
XAllocColorPlanes subroutine, 7-69-7-71
XAllocNamedColor subroutine, 7-72-7-73
XAllowEvents subroutine, 7-74-7-76
XAutoRepeatOff subroutine, 7-77
XAutoRepeatOn subroutine, 7-78
XBell subroutine, 7-79-7-80

X-2 User Interface Reference

XChangeActivePointerGrab subroutine,
7-81-7-82

XChangeGC subroutine, 7-83-7-84
XChangeKeyboardControl subroutine
7-85-7-86 '

XChangeKeyboardMapping subroutine,
7-87-7-88

XChangePointerControl subroutine,
7-89-7-90

XChangeProperty subroutine, 7-91-7-93
XChecklfEvent subroutine, 7-98-7-99
XCheckMaskEvent subroutine, 7-100-7-101
XCirculateSubwindows subroutine

7-108-7-109 '
XCirculateSubwindowsUp subroutine, 7-111
XClearArea subroutine, 7-112-7-113
XClearWindow subroutine, 7-114
XClipBox subroutine, 7-115
XCopyColormapAndFree subroutine,

7-123-7-124
XCopyGC subroutine, 7-125-7-126
XCreateBitmapFromData subroutine,

7-130-7-131
XCreateGC subroutine, 7-136-7-137
XCreateGlyphCursor subroutine,

7-138-7-139
XCreatelmage subroutine, 7-140-7-141
XCreatePixmap subroutine, 7-142-7-143
XCreatePixmapCursor subroutine,

7-144-7-145
XCreatePixmapFromBitmapData subroutine,
7-146-7-147

XLoadQueryFont subroutine, 7-334-7-335
XmActivateProtocol subroutine, 2-3
XmAddProtocolCallback subroutine, 2-4
XmAddProtocols subroutine, 2-5
XmAddTabGroup subroutine, 2-6
XmAtomToName subroutine 2-7
XmBulletinBoard widget cla;s, 1-31
XmCascadeButton widget class, 1-34
XmCascadeButtonGadget gadget class, 1-39
XmCascadeButtonHighlight subroutine, 2-8
XmClipboardCancelCopy subroutine, 2-9
XmClipboardCopy subroutine, 2-11
XmClipboardCopyByName subroutine, 2-13
XmClipboardEndCopy subroutine, 2-15
XmclipboardEndRetrieve subroutine, 2-17
XmClipboardlnquireCount subroutine, 2-19
XmClipboardlnquireFormat subroutine, 2-21
XmClipboardlnquirelength subroutine, 2-23
XmClipboardlnquirePendingltems subroutine

2-25 '
XmClipboardlock subroutine, 2-27
XmClipboardRegisterFormat subroutine, 2-29

XmClipboardRetrieve subroutine, 2-31
XmClipboardStartRetrieve subroutine, 2-36
XmClipboardUndoCopy subroutine, 2-38
XmClipboardUnlock subroutine, 2-40
XmClipboardWithdrawFormat subroutine, 2-42
XmCommandAppendValue subroutine, 2-44
XmCommandError subroutine, 2-45
XmCommandGetChild subroutine, 2-46
XmCommandSetValue subroutine, 2-47
XmConvertUnits subroutine, 2-48
XmCreateArrowButton subroutine, 2-50
XmCreateArrowButtonGadget, 2-51
XmCreateBulletinBoard subroutine, 2-52
XmCreateBulletinBoardDialog subroutine, 2-53
XmCreateCascadeButton widget, 2-55
XmCreateCascadeButtonGadget subroutine,

2-56
XmCreateCommand subroutine, 2-57
XmCreateDialogShell subroutine, 2-58
XmCreateDrawingArea subroutine, 2-59
XmCreateDrawnButton subroutine, 2-60
XmCreateErrorDialog subroutine, 2-61
XmCreateFileSelectionBox subroutine, 2-63
XmCreateFileSelectionDialog subroutine, 2-65
XmCreateForm subroutine, 2-67
XmCreateFrame subroutine, 2-69
XmCreatelnformationDialog subroutine, 2-70
XmCreatelabel subroutine, 2-72
XmCreatelabelGadget subroutine, 2-73
XmCreatelist subroutine, 2-74
XmCreateMainWindow subroutine, 2-75
XmCreateMenuBar subroutine, 2-76
XmCreateMenuShell subroutine, 2-78
XmCreateMessageBox subroutine, 2-79
XmCreateMessageDialog subroutine, 2-81
XmCreateOptionMenu subroutine, 2-83
XmCreatePanedWindow subroutine, 2-85
XmCreatePromptDialog subroutine, 2-88
XmCreatePulldownMenu subroutine, 2-90
XmCreatePushButton subroutine, 2-92
XmCreatePushButtonGadget subroutine, 2-93
XmCreateQuestionDialog subroutine, 2-94
XmCreateRadioBox subroutine, 2-95
XmCreateRowColumn subroutine, 2-96
XmCreateScale subroutine, 2-98
XmCreateScrollBar subroutine, 2-99
XmCreateScrolledlist subroutine, 2-100
XmCreateScrolledText subroutine, 2-102
XmCreateScrolledWindow subroutine, 2-104
XmCreateSelectionBox subroutine, 2-105
XmCreateSelectionDialog subroutine, 2-107
XmCreateSeparator subroutine, 2-109
XmCreateSeparatorGadget subroutine, 2-11 O
XmCreateText subroutine, 2-111
XmCreateToggleButton subroutine, 2-112

XmCreateToggleButtonGadget subroutine,
2-113

XmCreateWarningDialog subroutine, 2-114
XmCreateWorkingDialog subroutine, 2-115
XmCreatPopupMenu subroutine, 2-86
XmCvtStringToUnitType subroutine, 2-117
XmDeactivateProtocol subroutine, 2-119
XmDestroyPixmap subroutine, 2-120
XmDialogShell widget class, 1-47
XmDrawingArea widget class, 1-49
XmDrawnButton widget class, 1-52
XmFileSelectionBox widget class, 1-55
XmFileSelectionBoxGetChild subroutine,

2-121
XmFileSelectionDoSearch subroutine, 2-123
XmFontlistAdd subroutine, 2-124
XmFontlistCreate subroutine, 2-125
XmFontlistFree subroutine, 2-127
XmForm widget class, 1-59
XmFrame widget class, 1-61
XmGadget gadget class, 1-63
XMGetMenuCursor subroutine, 2-128
XmGetPixmap subroutine, 2-129
Xmlnstalllmage subroutine, 2-131
XmlnternAtom subroutine, 2-133
XmisMotifWMRunning subroutine, 2-134
Xmlabel widget class, 1-65
XmlabelGadget gadget class, 1-68
Xmlist widget class, 1-70
XmlistAddltem subroutine, 2-135
XmlistAddltemUnselected subroutine, 2-136
XmlistDeleteltem subroutine, 2-137
XmlistDeletePos subroutine, 2-138
XmlistDeselectltem subroutine, 2-140
XmlistDeselectPos subroutine, 2-141
XmlistltemExists subroutine, 2-142
XmlistSelectltem subroutine, 2-143
XmlistSelectPos subroutine, 2-144
XmlistSetBottomltem subroutine, 2-145
XmlistSetBottomPos subroutine, 2-146
XmlistSetHorizPos subroutine, 2-147
XmlistSetltem subroutine, 2-148
XmlistSetPos subroutine, 2-149
XmMainWindow widget class, 1-76
XmMainWindowSep1 subroutine, 2-150
XmMainWindowSep2 subroutine, 2-151
XmMainWindowSetAreas subroutine, 2-152
XmManager widget class, 1-78
XmMenuPosition subroutine, 2-154
XmMenuShell widget class, 1-81
XmMessageBox widget class, 1-84
XmMessageBoxGetChild subroutine, 2-155
XmOptionButtonGadget subroutine, 2-156
XmOptionlabelGadget subroutine, 2-157
XmPanedWindow widget class, 1-88

Index X-3

XmPrimitive widget class, 1-91
XmPushButton widget class, 1-93
XmPushButtonGadget gadget, 1-97
XmRemoveProtocolCallback subroutine, 2-158
XmRemoveProtocols subroutine, 2-159
XmRemoveTabGroup subroutine, 2-160
XmResolvePartOffsets subroutine, 2-161
XmRowColumn widget class, 1-101
XmScale widget class, 1-107
XmScaleGetValue subroutine, 2-163
XmScaleSetValue subroutine, 2-164
XmScrollBar widget class, 1-11 O
XmScrollBarGetValues subroutine, 2-165
XmScrollBarSetValues subroutine, 2-167
XmScrolledWindow widget, 1-113
XmScrolledWindowSetAreas, 2-169
XmSelectionBox widget class, 1-116
XmSelectionBoxGetChild subroutine, 2-171
XmSeparator widget class-, 1-120
XmSeparatorGadget gadget class, 1-122
XmSetFontUnit subroutine, 2-173
XmSetMenuCursor subroutine, 2-174
XmSetProtocolHooks subroutine, 2-175
XmString subroutine, 2-177
XmStringBaseline subroutine, 2-180
XmStringByteCompare subroutine, 2-181
XmStringCompare subroutine, 2-182
XmStringConcat subroutine, 2-183
XmStringCopy subroutine, 2-184
XmStringCreate subroutine, 2-185
XmStringCreateltoR subroutine, 2-186
XmStringDirectionCreate subroutine, 2-187
XmStringDraw subroutine, 2-188
XmStringDrawlmage subroutine, 2-190
XmStringDrawUnderline subroutine, 2-192
XmStringEmpty subroutine, 2-194
XmStringFree subroutine, 2-196
XmStringFreeContext subroutine, 2-197
XmStringGetltoR subroutine, 2-198
XmStringGetNextSegment subroutine, 2-201
XmStringHeight subroutine, 2-202
XmStringlnitContext subroutine, 2-203
XmStringlength subroutine, 2-204
XmStringlineCount subroutine, 2-205
XmStringNConcat subroutine, 2-206
XmStringNCopy subroutine, 2-207
XmStringPeekNextComponent subroutine,

2-208
XmStringSegmentCreate subroutine, 2-209
XmStringSeparatorCreate subroutine, 2-21 O
XmText widget class, 1-124
XmTextClearSelection subroutine, 2-212
XmTextGetEditable subroutine, 2-213
XmTextGetMaxlength subroutine, 2-214
XmTextGetString subroutine, 2-216

X-4 User Interface Reference

XmTextReplace subroutine, 2-217
XmTextSetEditable subroutine, 2-218
XmTextSetMaxlength subroutine, 2-219
XmTextSetSelection subroutine, 2-220
XmTextSetString subroutine, 2-221
XmToggleButton widget class, 1-131
XmToggleButtonGadget gadget class, 1-136
XmToggleButtonGadgetGetState subroutine,

2-222
XmToggleButtonGadgetSetState subroutine,

2-223
XmToggleButtonGetState subroutine, 2-224
XmToggleButtonSetState subroutine, 2-225
XmUninstalllmage subroutine, 2-226
XmUpdateDisplay subroutine, 2-227

AIXwindows Library (liblM.a)
XmCommand widget class, 1-43
XmCreatePromptDialog subroutine, 2-88
XmCreateScrolledText subroutine, 2-102
XmCreateSelectionDialog subroutine, 2-107
XmCreateText subroutine, 2-111
XmFileSelectionBox widget class, 1-55-1-58
XmSelectionBox widget class, 1-116

AIXwindows Toolkit, instructing on need for context,
using XmStringFreeContext subroutine, 2-197

AIXwindows window manager, bypassing shell
windows, using OverrideShell widget class, 1-11

AllocColor protocol request, 8-3
AllocColorCells protocol request, 8-4-8-5
AllocColorPlanes protocol request, 8-6-8-7
AllocNamedColor protocol request, 8-8
AllowEvents protocol request, 8-9-8-10
AllPlanes macro, 7-3
application, issuing commands within a, using

XmPushButtonGadget gadget, 1-97
application context

creating, using XtCreateApplicationContext
subroutine, 6-61

destroying, using XtDestroyApplicationContext
subroutine, 6-69

application state, setting non-transitory data, using
XmToggleButtonGadget gadget class, 1-136

applications, writing upward-compatible, using
XmResolvePartOffsets subroutine, 2-161

ApplicationShell widget class, 1-3
arc mode, filling in the regions closed by the path

described in the, using PolyFillArc protocol request,
8-127

arcs
drawing circular, using PolyArc protocol

request, 8-125-8-126
drawing elliptical, using PolyArc protocol

request, 8-125-8-126
drawing in a specified drawable, using

XDrawArcs subroutine, 7-177-7-178

filling in the regions closed by the path
described in the, using PolyFillArc protocol
request, 8-127

area, identifying manageable children, using
XmMainWindowSetAreas subroutine, 2-152

Arglist structures, merging two, using
XtMergeArglists subroutine, 6-120

argument list, setting values in, using XtSetArg
subroutine, 6-162-6-163

array, determining the number of elements in, using
XtNumber subroutine, 6-126

Arrow Button widget, creation of, using
XmCreateArrowButton subroutine, 2-50

ArrowButtonGadget, creation of, using
XmCreateArrowButtonGadget subroutine, 2-51

atom
getting the colormap associated with, using

XGetStandardColormap subroutine,
7-278-7-279

returning for a name, using XmlnternAtom
subroutine, 2-133

returning the name for, using GetAtomName
protocol request, 8-70

returning the string representation for, using
XmAtomToName subroutine, 2-7

atom identifier, getting the name of, using
XGetAtomName subroutine, 7-243

autoKeyFocus resource, description of, 5-17
autoRaiseDelay resource, description of, 5-17

B
background

setting to a specified pixel, using
XSetWindowBackground subroutine, 7-513

setting to a specified pixmap, using
XSetWindowBackgroundPixmap subroutine,
7-514-7-515

backgroundPixmap resource, description of, 5-11
backing_store field

Always value, A-9
NotUseful value, A-9
WhenMapped value, A-9

bell, setting the volume of, using XBell subroutine,
7-79-7-80

Bell protocol request, 8-11
bit_gravity field

ForgetGravity value, A-8
StaticGravity field, A-8

bitmap
creating from a bitmap file description, using

XReadBitmapFile subroutine, 7-401-7-402
creating from data, using

XCreateBitmapFromData subroutine,
7-130-7-131

returning the ordering of bits in, using
BitmapBitOrder macro, 7-4

writing out to a file, using XWriteBitmapFile
subroutine, 7-569-7-570

bitmap unit, returning the size of, using BitmapUnit
macro, 7-6

BitmapBitOrder macro, 7-4
bitmap Directory, description of, 5-17
BitmapUnit macro, 7-6
black pixel, returning the value of

using BlackPixel macro, 7-7
using BlackPixelOfScreen macro, 7-8

BlackPixel macro, 7-7
BlackPixelOfScreen macro, 7-8
border

changing the width, using
XSetWindowBorderWidth subroutine, 7...,.519

changing to a specified pixel, using
XSetWindowBorder subroutine, 7-516

drawing, using Primitive widget class, 1-91
repainting to a specified pixel, using

XSetWindowBorder subroutine, 7-516
border tile, changing, using

XSetWindowBorderPixmap subroutine,
7-517-7-518

bottomShadowColor resource, description of, 5-11
bottomShadowPixmap resource, description of, 5-12
BulletinBoard child, creating an unmanaged, using

XmCreateBulletinBoardDialog subroutine, 2-53
BulletinBoard widget, creating, using

XmCreateBulletinBoard subroutine, 2-52
button, reporting on a change in the state of a

using ButtonPress event, 10-28-10-30
using ButtonRelease event, 10-28-10-30

button bindings, description of, 5-41
button event, modifiers for, 5-40
button gadget, acting as a superclass for, using

XmlabelGadget gadget class, 1-68
button widgets, acting as superclass, using· Xmlabel

widget class, 1-65
button/key combination, establishing a passive grab

on, using GrabButton protocol request, 8-93-8-94
button Bindings resource, description of, 5-17
Button Press event, 10-28-10-30
Button Release event, 10-28-10-30

c
callback list

adding a callback procedure to, using
XtAddCallback subroutine, 6-7

adding list of callback procedures to,
XtAddCallbacks subroutine, 6-8

calling the entries on, using
XtWidgetCallCallbacks subroutine, 6....;191

callback procedure, executing in a widget callback
list, using XtCallCallbacks subroutine, 6-49

Index X-5

callback routines
adding for a protocol, using

XmAddProtocolCallback subroutine, 2-4
defining widget exposure, using

XmDrawnButton widget class, 1-52
.. defining widget resizing, using XmDrawnButton

widget class, 1-52
invoking, using XmDrawArea widget class,

1-49
removing from the internal list, using

XmRemoveProtocolCallback subroutine,
2-158

cap_style field
concident endpoints, drawing, A-20
values of, A-22

Cascade Button
drawing the shadow highlight, using

XmCascadeButtonHighlight subroutine, 2-8
erasing the shadow highlight, using

XmCascadeButtonHighlight subroutine, 2-8
CascadeButton widget, creating, using

XmCreateCascadeButton subroutine, 2-55
CascadeButtonGadget

drawing the shadow highlight, using
XmCascadeButtonHighlight subroutine, 2-8

erasing the shadow highlight, using
XmCascadeButtonHighlight subroutine, 2-8

obtaining the widget ID for, using RowColumn
subroutine, 2-156

case converter, registering, using
XtRegisterCaseConverter subroutine, 6-147

cells, freeing from colormap, using XFreeColors
subroutine, 7-230-7-231

ChangeActivePointerGrab protocol request, 8-12
ChangeGC protocol request, 8-13-8-14
ChangeHosts protocol request, 8-15-8-16
ChangeKeyboardControl protocol request,
8-17-8-18

ChangeKeyboardMapping protocol request, 8-19
ChangePointerControl protocol request, 8-20
ChangeProperty protocol request, 8-21-8-22
ChangeWindowAttributes protocol request,
8-24-8-25

Chapter, title, more information, X-1
Child widget, maintaining state data for each, using

Constraint widget class, 1-7
child widget, enclosing in a border, usingXmFrame

widget class, 1-61
children widgets

laying our in a vertically-tiled format, using
XmPanedWindow widget class, 1-88

managing, using Composite widget class, 1-5
mapping, using Composite widget class, 1-5
providing simple geometry management for,

using XmBulletinBoard widget class, 1-31
unmapping, using Composite widget class, 1-5

CirculateNotify event, 10-3
Circulate Request event, 10-4

X-5 User Interface Reference

CirculateWindow protocol request, 8-26
reporting when initiated by another client, using

CirculateRequest event, 10-4
class, setting the, using XSetClassHint subroutine,

7-460
cleanText resource, description of, 5-18
ClearArea protocol request, 8-27
client

allowing applications to read out content, using
XmStringlnitContext subroutine, 2-203

changing the close-down mode, usign
XSetCloseDownMode subroutine, 7-465

defining the allocation of resources at
connection close, using SetCloseDownMode
protocol request, 8-170

forcing a closedown
using KillClient protocol request, 8-111
using XKillClient subroutine, 7-322

indicating direct access to X Server, using
***DirectAdapterAccess extension subroutine,
9-15

reporting on attempts to change the windox
size by, using Resize Request event, 10-44

client save set
adding a window to, using ChangeSaveSet

protocol request, 8-23
removing window from, using ChangeSaveSet

protocol request, 8-23
client window

changing to an icon, using f .minimize window
manager function, 5-34

deleting, using f .kill window manager function,
5-33

displaying with its maximum size, using
f.maximize window manager function, 5-34

displaying with its normal size, using
f.normalize window manager function, 5-35

lowering to the bottom of the stack
using f .lower window manager function,

5-33
using f .raise_lower window manager

function, 5-37
minimizing, using f.minimize window manager

function, 5-34
moving interactively, using f.move window

manager function, 5-34
raising to the top of the stack

using f.raise window manager function,
5-37

using f .raise_lower window manager
function, 5-37

redrawing, using f.refresh_win window
manager function, 5-37

resizing interactively, using f.resize window
manager function, 5-37

clientAutoPlace resource, description of, 5-18
cNentDecoration resource, description of, 5-4

/

clientFunctions resource, description of, 5-5
ClientMessage event, 1 0-5
clip-mask

changing in the GraphicsContext to the list of
Rectangles, 8-168-8-169

setting the clip origin in the Rectangles list,
using SetClipRectangles protocol request,
8-168-8-169

clip_x_origin field, description of, A-22
clip_y_origin field, description of, A-23
clipboard

cancelling a copy to, using
XmClipboardCancelCopy subroutine, 2-9

copying a data item, using
XmClipboardCopyByName subroutine, 2-13

copying a data item to temporary storage,
using XmClipboardCopy subroutine, 2-11

deleting the last item on,
XmClipboardUndoCopy subroutine, 2-38

ending a copy from, using
XmClipboardEndRetrieve subroutine, 2-17

ending a copy to, using XmClipboardEndCopy
subroutine, 2-15

locking the, using XmClipboard subroutine,
2-27

registering a new format on, 2-29
retrieving a data item from, using

XmClipboardRetrieve subroutine, 2-31
returning data identification pairs, using

XmClipboardlnquirePendingltems subroutine,
2-25

returning format name, using
XmClipboardlnquireFormat subroutine, 2-21

returning number of data item formats, using
XmClipboardlnquireCount subroutine, 2-19

returning private identification pairs, using
XmClipboardlnquirePendingltems subroutine,
2-25

returning stored data length, using
XmClipboardlnquirelength subroutine, 2-23

setting up data structures, using
XmClipboardStartCopy subroutine, 2-33

setting up storage, using
XmClipboardStartCopy subroutine, 2-33

starting a copy from, using
XmClipboardStartRetrieve subroutine, 2-36

stopping supply of data to, using
XmClipboardWithdrawFormat subroutine,
2-42

unlocking, using XmClipboardUnlock
subroutine, 2-40

close-downs, restarting on other connections,
UngrabServer protocol request, 8-192

CloseFont protocol request, 8-28
color

returning the values for specified pixels, using
QueryColors protocol request, 8-146

searching for named, using AllocNamedColor
protocol request, 8-8

searching for the string name of, using
LookupColorProtocol request, 8-119

color cell, allocating, using AllocColorCells protocol
request, 8-4-8-5

color name, looking up, using XLookupColor
subroutine, 7-337-7-338

color planes
allocating, using XAllocColorPlanes subroutine,
7-69-7-71

allocating writable, using AllocColorPlanes
protocol request, 8-6-8-7

colormap
allocating a read-only entry

using AllocColorProtocol request, 8-3
using XAllocColor subroutine, 7-65-7-66

allocating a read-only entry by name, using
XAllocNamedColor subroutine, 7-72-7-73

changing, using XSetStandardColormap,
7-501-7-502

changing the entries of specified pixels, using
StoreColors protocol request, 8-183-8-184

creating
using CopyColormapAndFree protocol

request, 8-36
using CreateColormap protocol request,
8-40-8-41

using XCreateColormap subroutine,
7-132-7-133

using XSetStandardColormap subroutine,
7-501-7-502

creating from a previously shared colormap,
using XCopyColormapAndFree subroutine,
7-123-7-124

deleting association with the resource ID, using
FreeColormap protocol request, 8-65

freeing cells, using XFreeColors subroutine,
7-230

freeing the storage, using FreeColormap
protocol request, 8-65

getting list for a given screen, using
XListlnstalledColormaps subroutine,
7-328-7-329

installing, using XlnstallColormap subroutine,
7-313-7-314

installing for the screen, using lnstallColormap
protocol request, 8-108

installing the next, using f.next_cmap window
manager function, 5-34

installing the previous, using f.prev_cmap
window manager function, 5-36

removal from its required screen list, using
UninstallColormap protocol request, 8-193

reporting the status of, using ColormapNotify
event, 10-6

Index X-7

returning the default, using
DefaultColormapOfScreen macro, 7-12

returning the default ID, using DefaultColormap
macro, 7-11

returning the maximum number supported by a
screen, using MaxCmapsOfScreen macro,
7-43

returning the minimum number supported by a
specified screen, using MinCmapsOfScreen
macro, 7-44

returning the number of cells, using
CellsOfScreen macro, 7-9

returning the number of entries in the default,
using DisplayCells macro, 7-22

setting, using XSetWindowColormap
subroutine, 7-520

storing an entry for a specified color name,
using StoreNamedColor protocol request,
8-185

uninstalling, using XUninstallColormap
subroutine, 7-556-7-557

colormap focus, setting to a client window, using
f.focus_color window manager function, 5-33

colormap ID, deleting association with the colormap,
using XFreeColormap subroutine, 7-228-7-229

colormapFocusPolicy resource, description of, 5-18
ColormapNotify event, 10-6
command

issuing within an application, using
XmPushButton widget class, 1-93

providing a built-in history mechanism, using
XmCommand widget class, 1-43

setting the property value of a, using
XSetCommand subroutine, 7-466

Command widget, creating, using
XmCreateCommand subroutine, 2-57

commands, storing options into a database, using
XrmParseCommand subroutine, 7-429-7-430

component
accessing

using XmCommandGetChild subroutine,
2-46

using XmSelectionBoxGetChild subroutine,
2-171

returning the component type of, using
XmStringPeekNextComponent subroutine,
2-208

Composite Resource Set, description of, 3-4
Composite widget class, 1-5
compound string

allowing client applications to read out, using
XmStringlnitContext subroutine, 2-203

appending bytes to, XmStringNConcat
subroutine, 2-206

creating
using XmStringDirectionCreate subroutine,

2-187

X-8 User Interface Reference

using XmStringSegmentCreate subroutine,
2-209

creating a copy of, using XmStringNCopy
subroutine, 2-207

creating a single, using
XmStringSeparatorCreate subroutine, 2-21 O

determing the size of enclosing rectangle,
using XmStringExtent subroutine, 2-195

obtaining the length of, XmStringlength
subroutine, 2-204

returning the line height of, using
XmStringHeight subroutine, 2-202

returning the type of the next component in,
using XmStringGetNextComponent
subroutine, 2-199

returning the value of the next component in,
using XmStringGetNextComponent
subroutine, 2-199

returning the width in a, using XmStringWidth
subroutine, 2-211

compound strings, making byte-by-byte
comparison, using XmStringByteCompare
subroutine, 2-181

configFile resource, description of, 5-19
ConfigureNotify event, 10-7
ConfigureRequest event, 10-9-10-10
ConfigureWindow protocol request, 8-29-8-32

reporting when initiated by another client, using
ConfigureRequest event, 10-9-10-10

connection, returning the file descriptor of, using
Connection Number macro, 7-1 O

connection close-down, disabling, using GrabServer
protocol request, 8-103

ConnectionNumber macro, 7-10
Constraint widget class, 1-7
container widget, establishing, using XmForm widget

class, 1-59
context type

creating, using XUniqueContext subroutine,
7-560

deleting data associated with, using
XDeleteContext subroutine, 7-163

storing data associated with, using
XSaveContext subroutine, 7-450-7-451

conversion
key code to key symbol, using

XKeycodeToKeysym subroutine,
7-318-7-319

key symbol name to key symbol code, using
XStringToKeysym subroutine, 7-533

key symbol to key code, using
XKeysymToKeycode subroutine, 7-320

key symbol value to key symbol name, using
XKeysymToString subroutine, 7-321

converter, registering a new
using XtAddConverter subroutine, 6-9

\

using XtAppAddConverter subroutine,
6-21-6-22

ConvertSelection protocol request, 8-33
reporting on existence of no owner for the

selection, using Selection Notify event, 10-46
reporting on selection conversion request,

using SelectionRequest event, 10-47
coordinate values, translating from a source window

to destination window, using TranslateCoordinates
protocol request, 8-186-8-187

coordinates, transforming between windows, using
XTranslateCoordinates subroutine, 7-546-7-547

Copy Area protocol request, 8-34-8-35
CopyColormapAndFree protocol request, 8-36
CopyGC protocol request, 8-37
CopyPlane protocol request, 8-38-8-39
Core widget class, 1-9
CoreWidget class, base class, service as, 1-9
CreateColormap protocol request, 8-40-8-41
CreateCursor protocol request, 8-42-8-43
CreateGC protocol request, 8-44-8-50
CreateGlyphCursor protocol request, 8-51-8-52
CreateNotify event, 10-11
CreatePixmap protocol request, 8-53
CreateWindow protocol request, 8-54-8-58
Curses Library, curses subroutines, list of,

11-3-11-17
curses subroutines

attributes, use in, 11-20
bells and flashing lights, 11-13
clearing areas of the screen routines, 11-10
cursor movement routines, 11-13
displaying output to the terminal routines,

11-8-11-17
formatted output, 11-11
input form a window, 11-11
input from the terminal, 11-12
inserting and deleting text routines, 11-10
miscellaneous functions, 11-14-11-17
moving the cursor routines, 11-9
option setting routines, 11-4-11-17
portability functions routines, 11-13
termcap compatibility routines, 11-17
terminal mode setting routines, 11-6-11-17
terminfo level routines, 11-15-11-17
video attributes routines, 11-12-11-17
window manipulation routines, 11-6-11-17
writing a string routines, 11-9
writing on window structures routines,

11-9-11-17
writing one character routines, 11-9

cursor
changing a color in a multi-colored, using

***RecolorMulticolorCursor extension
subroutine, 9-55-9-56

changing the color of
using RecolorCursor protocol request,

8-160
using XRecolorCursor subroutine, 7-407

creating a, using CreateCursor protocol
request, 8-42-8-43

creating a multi-colored, using
***CreateMulticolorCursor extension
subroutine, 9-13-9-14

creating a pair of crosshairs, using
***CreateCrosshairCursor extension
subroutine, 9-11-9-12

creating from a pixmap, using
XCreatePixmapCursor subroutine,
7-144-7-145

creating from a standard font, using
XCreateFontCursor subroutine,
7-134-7-135

creating from font glyphs, using
XCreateGlyphCursor subroutine,
7-138-7-139

creating with an identifier, using
CreateGlyphCursor protocol request,
8-51-8-52

defining, using XUndefineCursor subroutine,
7-548

defining for a window, using XDefineCursor
subroutine, 7-148-7-149

deleting the association with the cursor ID,
using XFreeCursor, 7-232

deleting the association with the resource ID,
using FreeCursor protocol request, 8-67

getting the best size
using XQueryBestCursor subroutine,
7-378-7-379

using XQueryBestSize subroutine,
7-380-7-381

returning information about the colors in a
cross hair, using ***QueryCrosshairCursor
extension subroutine, 9-51

returning information about the size of a cross
hair, using ***QueryCrosshairCursor
extension subroutine, 9-51

cursor ID, deleting the association with the cursor,
using XFreeCursor subroutine, 7-232

curves, drawing filled, using XDrawFilled subroutine,
7-179

cut buffer
getting data from

using XFetchBuffer subroutine, 7-209
using XFetchBytes subroutine,
7-210-7-211

storing data in, using XStoreBuffer subroutine,
7-523

Index X-9

cut buffer zero, storing data in, using XStore8ytes
subroutine, 7-524

cut buffers, rotating, using XRotate8uffers
subroutine, 7-421

D
dashes field, description of, A-23
data, displaying when too large to view, using

XmScroll8ar widget class, 1-11 O
data structures

_XExtCodes, example of, C-140
ApplicationShellClassRec, 8-106
ApplicationShellPart, 8-111
ApplicationShellWidget, 8-113
CompositeClassPart, fields in, 8-96
CompositePart, fields in, 8-96
ConstraintClassPart, fields in, 8-97
ConstraintPart, fields in, 8-97
CoreClassPart, fields in, 8-93
Core Part

default values for, 8-94
fields in, 8-94

OverrideShellClassRec, 8-105
OverrideShellPart, 8-108
OverrideShellWidget, 8-112
ShellPart, 8-107-8-108
ShellWidget, 8-111
ToplevelShellClassRec, 8-106
TopLevelShellPart, 8-111
ToplevelShellWidget, 8-113
TransientShellClassRec, 8-106
TransientShellPart, 8-110
TransientShellWidget, 8-113
VendorShellClass, 8-105
VendorShellPart, 8-110
VendorShellWidget, 8-112
WMShellClassRec, 8-105
WMShellPart, 8-109-8-110
WMShellWidget, 8-112
XAIXDeviceMappingEvent, description of, A-90
XAnyEvent, description of, A-40
XArc, description of, A-28
XChar2b, description of, A-30
XCharStruct

description of, A-28-A-29
fields of, A-28

XCirculateEvent, description of, A-58
XCirculateRequestEvent, description of, A-69
XClassHint, description of, A-86
XClientMessageEvent, description of, A-75
XColor

description of, A-18
fields of, A-18

XColormap, description of, A-74
XConfigure Event, description of, A-59-A-60

X-10 User Interface Reference

XConfigureRequestEvent, description of,
A-70-A-71

XCreateWindowEvent, description of, A-61
XCrossingEvent, description of, A-48-A-50
XDestroyWindowEvent, description of, A-62
XEnterWindowEvent, description of,
A-48-A-50

XErrorEvent, description of, A-80
XEvent, description of, A-41
XExposeEvent, description of, A-54
XFocusChange, description of, A-51-A-52
XFocuslnEvent, description of, A-51-A-52
XFocusOutEvent, description of, A-51-A-52
XFontProp, description of, A-30
XFontStruct

description of, A-31-A-34
fields of, A-31-A-39

XGCValues
description of, A-19-A-25
fields of, A-20

XGraphicsExposeEvent, description of,
A-55-A-56

XGravityEvent, description of, A-63
XHostAddress

description of, A-39
fields of, A-39

XlconSize, description of, A-85
Xlmage, description of, A-36
XKeyboardControl

description of, A-37-A-38
fields of, A-37

XKeyboardState, description of, A-38
XKeymapEvent, description of, A-53
XKeyPressedEvent, description of,
A-44-A-45

XLeaveWindowEvent, description of,
A-48-A-50

XMapEvent, description of, A-64
XMappingEvent, description of, A-65
XMapRequestEvent, description of, A-72
XModifierKeymap, description of, A-38
XNoExposeEvent, description of, A-57
XPointData, description of, A-28
XPointerMovedEvent, description of, A-46
XPropertyEvent, description of, A-76
XRectangle, description of, A-27
XReparentEvent, description of, A-66
XResizeRequestEvent, description of, A-73
XrmOptionDesclist, description of,
A-88-A-89

XrmValue, 8-122
description of, A-87

XSegment, description of, A-27
XSelectionClearEvent, description of, A-77
XSelectionEvent, description of, A-79

~\
1

/

XSelectionRequestEvent, description of, A-78
XSetWindow Attributes

background_pixel field, A-7
background_pixmap field, A-6
backing_pixel field, A-1 O
backing_planes field, A-10
backing_store value, A-9
bit_gravity field, A-8
border_pixel field, A-7
border_pixmap field, A-7
colormap field, A-11
cursor field, A-11
description of, A-5-A-11
do_not_propagate_mask field, A-11
event_mask field, A-1 O
override_redirect field, A-11
save_under field, A-1 O
win_gravity field, A-9

XSizeHints, description of, A-83-A-84
XStandardColormap

description of, A-26-A-27
fields in, A-26-A-27

XtActionlist, example of, 8-125
XtArgVal, purpose of, 8-98
XtCallbacklist, description of, 8-101
XtConvertArg Rec, 8-124
XTextltem, description of, A-34
XTextltem16, description of, A-35
XtGeometryResult, 8-116
XtPopdownlD, example of, 8-129
XtResource, 8-119-8-121
XtWidgetGeometry, 8-115-8-116
XUnmapEven, description of, A-67
XVisibilityEvent, description of, A-68
XVisuallnfo

description of, A-3-A-4
fields of, A-3

XWindowAttributes, fields of, A-15-A-17
XWindowChanges, description of, A-12-A-14
XwindowChanges, fields of, A-12
XWindowsAttributes, description of,
A-15-A-17

XWMHints, description of, A-81-A-82
database

copying into a specified file, using
XrmPutFileDatabase subroutine, 7-431

creating from a string, using
XrmGetStringDatabase subroutine, 7-426

listing levels, using XrmQGetSearchlist
subroutine, 7-438-7-439

merging with another database, using
XrmMergeDatabases subroutine, 7-428

retrieving a resource from, using
XrmGetResource subroutine, 7-425

retrieving from disk, using XrmGetFileDatabase
subroutine, 7-424

searching for a specified resource, using
XrmQGetSearchResource subroutine,
7-440-7-441

storing resources into, using
XrmQPutResource subroutine, 7-442-7-443

debugging error message, generating from a widget
subclass, using XtCheckSubclass macro, 6-55

DefaultColormap macro, 7-11
DefaultColormapOfScreen macro, 7-12
DefaultDepth macro, 7-13
DefaultDepthOfScreen macro, 7-14
DefaultGCOfScreen macro, 7-16
DefaultRootWindow macro, 7-17
DefaultScreenOfDisplay macro, 7-19
DefaultVisual macro, 7-20
DefaultVisualOfScreen macro, 7-21
deiconifyKeyFocus resource, description of, 5-19
DeleteProperty protocol request, 8-59
DestroyNotify event, 10-13
DestroySubwindow protocol request, 8-60
DestroyWindow protocol request, 8-61
device

returning the current status of, using
XQuerylnputDevice extension subroutine,
9-54

setting the input focus, using
XSetDevicelnputFocus extension subroutine,
9-65-9-66

setting the last-focus-change time, using
XSetDevicelnputFocus extension subroutine,
9-65-9-66

devices, obtaining a list supported, using
XListlnputDevices extension subroutine,
9-47-9-48

dial
associating with a window ID, using

XSelectDial extension subroutine, 9-60
controlling the global granularity of, using

XSetDialControl extension subroutine, 9-69
resetting the EventReport mode, using

XStopAutoload extension subroutine, 9-75
returning the current event mode of, using

XQueryAutoload extension subroutine, 9-50
returning the current resolutions specified by

the Dialmask parameter, using
XGetDialControl extension subroutine, 9-42

returning the resolutions specified on the
Dialmask parameter, using GetDialAttributes
extension subroutine, 9-40-9-41

setting the mode to Autoload, using
XActivateAutoload extension subroutine, 9-7

setting the resolution, using XSetDialAttributes
extension subroutine, 9-67-9-68

dialogs, DialogShell widget class, use of, 1-47
DialogShell widget, creating

using XmCreate8ulletin8oardDialog
subroutine, 2-53

using XmCreateDialogShell subroutine, 2-58

Index X-11

using XmCreateErrorDialog subroutine, 2-61
using XmCreateFileSelectionDialog subroutine,

2-65
using XmCreatePromptDialog subroutine, 2-88

direction arrow, selecting
using ArrowButton widget class, 1-25
using XmArrowButtonGadget gadget class,

1-28
directories

selecting a file, using XmFileSelectionBox
widget class, 1-55

viewing files, using XmFileSelectionBox widget
class, 1-55

display
adding to an application context, using

XtOpenDisplay subroutine, 6-128-6-129
adding to an application context after

initialization, using XtDisplaylnitialize
subroutine, 6-77-6-79

closing
using XCloseDisplay subroutine, 7-116
using XtCloseDisplay subroutine, 6-57

getting the legal keycodes for, using
XDisplayKeycodes subroutine, 7-171

initializing
using XtDisplaylnitialize subroutine,
6-77-6-79

using XtOpenDisplay subroutine,
6-128-6-129

obtaining the resource database for, using
XtDatabase subroutine, 6-68

opening, using XtOpenDisplay subroutine,
6-128-6-129

removing from an application context, using
XtCloseDisplay subroutine, 6-57

reporting an error on the nonexistence of, using
XDisplayName subroutine, 7-173

returning the length of the event queue, using
Qlength macro, 7-49

separating items in
using XmSeparator widget class, 1-120
using XmSeparatorGadget gadget class,

1-122
setting the font unit value for a, using

XmSetFontUnit subroutine, 2-173
display device, opening an X Server connection for

control of, using XOpenDisplay subroutine,
7-361-7-362

DisplayCells macro, 7-22
DisplayHeight macro, 7-23
DisplayHeightMM macro, 7-24
DisplayPlanes macro, 7-26
DisplayString macro, 7-27
DisplayWidth macro, 7-28
DisplayWidthMM macro, 7-29
DoesBackingStore macro, 7-30
DoesSaveUnder macro, 7-31

X-12 User Interface Reference

drawable
combining an image with a rectangle, using

Putlmage protocol request, 8-142-8-143
combining the foreground pixel with the pixel at

each point, using PolyPoint protocol request,
8-131

combining the source with the destination,
using CopyPlane protocol request,
8-38-8-39

copying a single bit-plane, using XCopyPlane
subroutine, 7-127-7-128 ·

copying an area to another drawable, using
XCopyArea subroutine, 7-121-7-122

drawing 2-byte characters in a, using
XDrawString16 subroutine, 7-200-7-201

drawing 2-byte image text in a, using
XDrawlmageString16 subroutine,
7-182-7-183

drawing 8-bit characters in, using XDrawString
subroutine, 7-198-7-199

drawing 8-bit image text in a, using
XDrawlmageString subroutine, 7-180-7-181

drawing a single line between two points in,
using XDrawline subroutine, 7-184-7-185

drawing a single point in a, using XDrawPoint
subroutine, 7-188-7-189

drawing complex 2-byte text in a, using
XDrawText16 subroutine, 7-204-7-205

drawing complex 8-bit characters in a, using
XDrawText subroutine, 7-202-7-203

drawing multiple arcs in a, using XDrawArcs
subroutine, 7-177-7-178

drawing multiple line segments, using
XDrawSegments subroutine, 7-196-7-197

drawing multiple lines in, using XDrawlines
subroutine, 7-186-7-187

drawing multiple points in, using XDrawPoints
subroutine, 7-190-7-191

drawing outline of multiple rectangles in, using
XDrawRectangles subroutine, 7-194-7-195

drawing the outline of a single rectangle in,
using XDrawRectangle subroutine,
7-192-7-193

filling a polygon in a, using XFillPolygon
subroutine, 7-218-7-219

filling a single arc in, using XFillArc subroutine,
7-214-7-215

filling a single rectangular area, using
XFillRectangle subroutine, 7-220-7-221

filling multiple arcs in, using XFillArcs
subroutine, 7-216-7-217

filling multiple rectangular areas in a, using
XFillRectangles subroutine, 7-222-7-223

getting the contents of a rectangle in a, using
XGetlmage subroutine, 7-258-7-259

(

\

\
)

getting the current geometry of, using
XGetGeometry subroutine, 7-252-7-253

returning the contents of the rectangle, using
Getlmage protocol request, 8-74-8-75

returning the root and geometry of a, using
GetGeometry protocol list, 8-72

DrawingArea widget, creating, using
XmCreateDrawingArea subroutine, 2-59

DrawnButton widget, creating,
XmCreateDrawnButton subroutine, 2-60

E
enforceKeyFocus resource, description of, 5-19
Enhanced X-Windows, data structures, list of, A-1
Enhanced X-Windows Library, 7-442-7-443,

7-458, 7-531-7-532,9-26-9-27,9-28
***blink extension subroutine, 9-9-9-1 O
***CreateCrosshairCursor extension

subroutine, 9-11-9-12
***CreateMulticolorCursor extension

subroutine, 9-13-9-14
***DirectAdapterAccess extension subroutine,

9-15
***DirectFontAccess extension subroutine,

9-16
***DirectWindowAccess extension subroutine,

9-17
***QueryCrosshairCursor extension subroutine,

9-51
***RecolorMulticolorCursor extension

subroutine, 9-55-9-56
_XAllocScratch extension subroutine, 6-195
_XReply-extension subroutine, 6-196-6-198
BlackPixelOfScreen macro, 7-8
DefaultGC macro, 7-15
DisplayHeightMM macro, 7-24
DisplayOfScreen macro, 7-25
LastKnownRequestProcessed macro, 7-42
using XPointlnRegion subroutine, 7-372
XActivateAutoLoad extension subroutine, 9-7
XAIXCheckTypedWindowEvent extension

subroutine, 9-3
XAIXCheckWindowEvent extension subroutine,
9-4

XAIXMaskEvent extension subroutine, 9-5
XAIXWindowEvent extension subroutine, 9-6
XAsynclnput extension subroutine, 9-8
XChangeSaveSet subroutine, 7-94-7-95
XChangeWindowAttributes subroutine,
7-96-7-97

XCheckTypedEvent subroutine, 7-102-7-103
XCheckTypedWindowEvent subroutine,
7-104-7-105

XCheckWindowEvent subroutine,
7-106-7-107

XCirculateSubwindowsDown subroutine, 7-11 O
XCloseDisplay subroutine, 7-116

XConfigureWindow subroutine, 7-117-7-118
XConvertSelection subroutine, 7-119-7-120
XCopyArea subroutine, 7-121-7-122
XCopyPlane subroutine, 7-127-7-128
XCreateAssocTable subroutine, 7-129
XCreateColormap subroutine, 7-132-7-133
XCreateFontCursor subroutine, 7-134-7-135
XCreateSimpleWindow Subroutine,
7-157-7-158

XCreateWindow subroutine, 7-159-7-161
XDeleteAssoc subroutine, 7-162
XDeleteContext subroutine, 7-163
XDeleteModifiermapEntry subroutine, 7-164
XDeleteProperty subroutine, 7-165
XDestroyAssocTable subroutine, 7-166
XDestroylmage subroutine, 7-167
XDestroyRegion subroutine, 7-168
XDestroySubwindows subroutine, 7-169
XDestroyWindow subroutine, 7-150-7-151
XDisableAccessControl subroutine, 7-170
XDisplayKeycodes subroutine, 7-171
XDisplayMotionBufferSize subroutine, 7-172
XDisplayName subroutine, 7-173
XDraw subroutine, 7-154-7-155
XDrawArc subroutine, 7-174-7-176
XDrawArcs subroutine, 7-177-7-178
XDrawFilled subroutine, 7-179
XDrawlmageString subroutine, 7-180-7-181
XDrawlmageString16 subroutine,
7-182-7-183

XDrawline subroutine, 7-184-7-185
XDrawlines subroutine, 7-186-7-187
XDrawPoint subroutine, 7-188-7-189
XDrawPoints subroutine, 7-190-7-191
XDrawPolyMarker extension subroutine, 9-19
XDrawPolyMarkers extension subroutine,
9-20-9-21

XDrawRectangle subroutine, 7-192-7-193
XDrawRectangles subroutine, 7-194-7-195
XDrawSegments subroutine, 7-196-7-197
XDrawString subroutine, 7-198-7-199
XDrawString16 subroutine, 7-200-7-201
XDrawText subroutine, 7-202-7-203
XDrawText16 subroutine, 7-204-7-205
XEmptyRegion subroutine, 7-206
XEnableAccessControl subroutine, 7-207
XEnablelnputDevice extension subroutine,

9-36
XEqualRegion subroutine, 7-208
XESetCloseDisplay extension subroutine, 9-22
XESetCopyGC extension subroutine, 9-23
XESetCreateFont extension subroutine, 9-24
XESetCreateGC extension subroutine, 9-25
XESetEventToWire extension subroutine, 9-29
XESetFlushGC extension subroutine, 9-31
XESetFreeFont extension subroutine, 9-32

Index X-13

XESetFreeGC extension subroutine, 9-33
XESetWireToEvent extension subroutine,
9-34-9-35

XEventsQueued subroutine, 7-152-7-153
XFetchBuffer subroutine, 7-209
XFetchBytes subroutine, 7-210-7-211
XFetchName subroutine, 7-212-7-213
XFillArc subroutine, 7-214-7-215
XFillArcs subroutine, 7-216-7-217
XFillPolygon subroutine, 7-218-7-219
XFillRectangle subroutine, 7-220-7-221
XFillRectangles subroutine, 7-222-7-223
XFindContext subroutine, 7-224
XFlush subroutine, 7-225
XForceScreenSaver subroutine, 7-226
XFree.subroutine, 7-227
XFreeColormap subroutine, 7-228-7-229
XFreeColors subroutine, 7-230-7-231
XFreeCursor subroutine, 7-232
XFreeExtensionlist extension subroutine, 9-37
XFreeFont subroutine, 7-233
XFreeFontlnfo subroutine, 7-234
XFreeFontNames subroutine, 7-235
XFreeFontPath subroutine, 7-236
XFreeGC subroutine, 7-237
XFreeModifiermap subroutine, 7-238
XFreePixmap subroutine, 7-239
XGContextFromGC subroutine, 7-240
XGeometry subroutine, 7-241-7-242
XGetAtomName subroutine, 7-243
XGetClassHint subroutine, 7-244
XGetDefault subroutine, 7-245-7-246
XGetDevicelnputFocus extension subroutine,

9-38
XGetDialAttributes extension subroutine,
9-40-9-41

XGetDialControl extension subroutine, 9-42
XGetErrorDatabaseText subroutine,

7-247-7-248
XGetErrorText subroutine, 7-249
XGetFontPath subroutine, 7-250
XGetFontProperty subroutine, 7-251
XGetGeometry subroutine, 7-252-7-253
XGetlconName subroutine, 7-254-7-255
XGetlconSizes subroutine, 7-256-7-257
XGetlmage subroutine, 7-258-7-259
XGetKeyboardControl subroutine, 7-261
XGetKeyboardMapping subroutine,
7-262-7-263

XGetlpfkAttributes extension subroutine, 9-43
XGetlpfkControl extension subroutine, 9-45
XGetModifierMapping subroutine, 7-264
XGetMotionEvents subroutine, 7-265-7-266
XGetNormalHints subroutine, 7-267-7-268
XGetPixel subroutine, 7-269

X-14 User Interface Reference

XGetPointerControJ subroutine, 7-270-7-271
XGetPointerMapping subroutine, 7-272
XGetScreenSaver subroutine, 7-273-7-274
XGetSelectionOwner subroutine, 7-275
XGetSizeHints subroutine, 7-276-7-277
XGetStandardColormap subroutine,
7-278-7-279

XGetSublmage subroutine, 7-280-7-282
XGetTransientForHint subroutine, 7-283
XGetVisuallnfo subroutine, 7-284-7-285
XGetWindowAttributes subroutine,
7-286-7-287

XGetWindowProperty subroutine,
7-288-7-290

XGetWMHints subroutine, 7-291-7-292
XGetZoomHints subroutine, 7-293-7-294
XGrabButton subroutine, 7-295-7-298
XGrabKey subroutine, 7-299-7-301
XGrabKeyboard subroutine, 7-302-7-304
XGrabPointer subroutine, 7-305-7-307
XGrabServer subroutine, 7-308
XlfEvent subroutine, 7-309-7-31 O
XinitExtension extension subroutine, 9-76
XlnitExtension subroutine, 7-311
XlnsertModifiermapEntry subroutine, 7-312
XlnstallColormap subroutine, 7-313
XlnternAtom subroutine, 7-315-7-316
XlntersectRegion subroutine, 7-317
XKeycodeToKeysym subroutine,
7-318-7-319

XKeysymToKeycode subroutine, 7-320
XKeysymToString subroutine, 7-321
XKillClient subroutine, 7-322
XListExtensions extension subroutine, 9-46
XListFonts subroutine, 7-323-7-324
XListFontsWithlnfo subroutine, 7-325-7-326
XListHosts subroutine, 7-327
XListlnputDevices extension subroutine,
9-47-9-48

XListlnstalledColormaps subroutine,
7-328-7-329

XListProperties subroutine, 7-330-7-331
XLoadFont subroutine, 7-332-7-333
XLookUpAssoc subroutine, 7-336
XLookupColor subroutine, 7-337-7-338
XLookupKeysym subroutine, 7-339
XLookupMapping subroutine, 7-340-7-341
XLookupString subroutine, 7-342-7-343
XLowerWindow subroutine, 7-344
XMakeAssoc subroutine, 7-345
XMapRaised subroutine, 7-346
XMapSubwindows subroutine, 7-347
XMapWindow subroutine, 7-348-7-349
XMaskEvent subroutine, 7-350
XMatchVisuallnfo subroutine, 7-351-7-352

XMaxRequestSize extension subroutine, 9-49
XMoveResizeWindow subroutine,
7-353-7-354

XMoveWindow subroutine, 7-355-7-356
XNewModifiermap subroutine, 7-357
XNextEvent subroutine, 7-358
XNoOp subroutine, 7-359
XOffsetRegion subroutine, 7-360
XOpenDisplay subroutine, 7-361-7-362
XParseColor subroutine, 7-363-7-364
XParseGeometry subroutine, 7-365-7-366
XPeekEvent subroutine, 7-367
XPeeklfEvent subroutine, 7-368-7-369
XPending subroutine, 7-370
Xpermalloc subroutine, 7-371
XPolygonRegion subroutine, 7-373
XPutBackEvent subroutine, 7-374
XPutlmage subroutine, 7-375-7-376
XPutPixel subroutine, 7-377
XQueryAutoload extension subroutine, 9-50
XQueryBestCursor subroutine, 7-378-7-379
XQueryBestSize subroutine, 7-380-7-381
XQueryBestStipple subroutine, 7-382-7-383
XQueryBestTile subroutine, 7-384-7-385
XQueryColor subroutine, 7-386
XQueryColors subroutine, 7-387-7-388
XQueryExtension extension subroutine, 9-53
XQueryFont subroutine, 7-389-7-390
XQuerylnputDevice extension subroutine, 9-54
XQueryKeymap subroutine, 7-391
XQueryPointer subroutine, 7-392-7-393
XQueryTextExtents subroutine, 7-394-7-395
XQueryTextExtents16 subroutine,
7-396-7-397

XQueryTree subroutine, 7-398-7-399
XRaiseWindow subroutine, 7-400
XReadBitmapFile subroutine, 7-401-7-402
XRebindCode subroutine, 7-403-7-404
XRebindKeysym subroutine, 7-405-7-406
XRecolorCursor subroutine, 7-407
XRectlnRegion subroutine, 7-408
XRefreshKeyboardMapping subroutine, 7-409
XRemoveFromSaveSet subroutine, 7-41 O
XRemoveHost subroutine, 7-411
XRemoveHosts subroutine, 7-412
XReparentWindow subroutine, 7-413-7-414
XResetScreenSaver subroutine, 7-415
XResizeWindow subroutine, 7-416-7-417
XResourceManagerString subroutine, 7-418
XRestackWindows subroutine, 7-419-7-420
XrmGetFileDatabase subroutine, 7-424
XrmGetResource subroutine, 7-425
XrmGetStringDatabase subroutine, 7-426
Xrmlnitialize subroutine, 7-427
XrmMergeDatabases subroutine, 7-428

XrmParseCommand subroutine, 7-429-7-430
XrmPutFileDatabase subroutine, 7-431
XrmPutlineResource subroutine, 7-432
XrmPutResource subroutine, 7-433-7-434
XrmPutStringResource subroutine, 7-435
XrmQGetResource subroutine, 7-436-7-437
XrmQGetSearchlist subroutine, 7-438-7-439
XrmQGetSearchResource subroutine,
7-440-7-441

XrmQPutStringResource subroutine, 7-444
XrmQuarkToString subroutine, 7-445
XrmStringToBindingQuarklist subroutine,

7-446
XrmStringToQuark subroutine, 7-447
XrmStringToQuarklist subroutine, 7-448
XrmUniqueQuark subroutine, 7-449
XRotateBuffers, 7-421
XRotateWindowProperties subroutine,
7-422-7-423

XSaveContext subroutine, 7-450-7-451
XSelectDevicelnput extension subroutine,
9-57-9-58

XSelectDial extension subroutine, 9-60
XSelectDiallnput extension subroutine, 9-59
XSelectlnput subroutine, 7-452-7-453
XSelectlpfk extension subroutine, 9-62
XSendEvent subroutine, 7-454-7-455
XSetAccessControl subroutine, 7-456
XSetAfterFunction subroutine, 7-457
XSetBackground subroutine, 7-459
XSetClassHint subroutine, 7-460
XSetClipMask subroutine, 7-461
XSetClipOrigin subroutine, 7-462
XSetClipRectangles subroutine, 7-463-7-464
XSetCloseDownMode subroutine, 7-465
XSetCommand subroutine, 7-466
XSetDashes subroutine, 7-467-7-468
XSetDialAttributes extension subroutine,
9-67-9-68

XSetDialControl extension subroutine, 9-69
XSetErrorHandler subroutine, 7-469
XSetFillRule subroutine, 7-470
XSetFillStyle subroutine, 7-471
XSetFont subroutine, 7-472-7-473
XSetFontPath subroutine, 7-474-7-475
XSetForeground subroutine, 7-476
XSetFunction subroutine, 7-477
XSetGraphicsExposures subroutine,
7-478-7-479

XSetlconName subroutine, 7-481
XSetlconSizes subroutine, 7-482
XSetlnputFocus subroutine, 7-483-7-484
XSetlOErrorHandler subroutine, 7-480
XSetlineAttributes subroutine, 7-485-7-486

Index X-15

XSetlpfkAttributes extension subroutine,
9-70-9-71

XSetlpfkControl extension subroutine, 9-72
XSetModifierMapping subroutine,
7-487-7-488

XSetNormalHints subroutine, 7-489-7-490
XSetPlaneMask subroutine, 7-491
XSetPointerMapping subroutine,
7-492-7-493

XSetRegion subroutine, 7-494
XSetScreenSaver subroutine, 7-495-7-496
XSetSelectionOwner subroutine,
7-497-7-498

XSetSizeHints subroutine, 7-499-7-500
XSetStandardColormap subroutine,
7-501-7-502

XSetStandardProperties subroutine,
7-503-7-504

XSetState subroutine, 7-505-7-506
XSetStipple subroutine, 7-507
XSetSubwindowMode subroutine, 7-508
XSetTile subroutine, 7-51 O
XSetTransientForHint subroutine, 7-511
XSetTSOrigin subroutine, 7-509
XSetWindowBackground subroutine, 7-513
XSetWindowBackgroundPixmap subroutine,

7-514-7-515
XSetWindowBorder subroutine, 7-516
XSetWindowBorderPixmap subroutine,
7-517-7-518

XSetWindowBorderWidth subroutine, 7-519
XSetWindowColormap subroutine, 7-520
XSetWMHints subroutine, 7-512
XSetZoomHints subroutine, 7-521
XShrinkRegion subroutine, 7-522
XStoreBuffer subroutine, 7-523
XStoreBytes subroutine, 7-524
XStoreColor subroutine, 7-525-7-526
XStoreColors subroutine, 7-527-7-528
XStoreName subroutine, 7-529-7-530
XStringToKeysym subroutine, 7-533
XSublmage subroutine, 7-534-7-535
XSubtractRegion subroutine, 7-536
XSync subroutine, 7-537-7-538
XSynchronize subroutine, 7-539
XtAppGetSelectionTimeout subroutine, 6-33
XTextExtents subroutine, 7-540-7-541
XTextExtents16 subroutine, 7-542-7-543
XTextWidth subroutine, 7-544
XTextWidth16 subroutine, 7-545
XTranslateCoordinates subroutine,
7-546-7-547

XUndefineCursor subroutine, 7-548
XUngrabButton subroutine, 7-549-7-550
XUngrabKey subroutine, 7-551-7-552
XUngrabKeyboard subroutine, 7-553

X-16 User Interface Reference

XUngrabPointer subroutine, 7-554
XUngrabServer subroutine, 7-555
XUninstallColormap subroutine, 7-556-7-557
XUnionRectWithRegion subroutine, 7-558
XUnionRegion subroutine, 7-559
XUniqueContext subroutine, 7-560
XUnloadFont subroutine, 7-561
XUnmapSubwindows subroutine, 7-562
XUnmapWindow subroutine, 7-563
XUseKeymap subroutine, 7-564
XVisuallDFromVisual subroutine, 7-565
XWarpPointer subroutine, 7-566-7-567
XWindowEvent subroutine, 7-568
XWriteBitmapFile subroutine, 7-569-7-570
XXorRegion subroutine, 7-571

enter event, receiving
using Xmlabel widget class, 1-65
using XmlabelGadget gadget class, 1-68

EnterNotify event, 10-14-10-16
error, suppressing an external handling call, using

XESetError extension subroutine, 9-26-9-27
error code, getting the error text for, using

XGetErrorText subroutine, 7-249
error database

getting error messages from, using
XGetErrorDatabaseText subroutine,
7-247-7-248

obtaining
using XtAppGetErrorDatabaseText

subroutine, 6-31-6-32
using XtAppGetErrorDatabse subroutine,

6-30
using XtGetErrorDatabase subroutine,

6-85
obtaining text for error or warning, using

XtGetErrorDatabaseText subroutine, 6-86
error handler, setting, using XSetErrorHandler

subroutine, 7-469
error message, displaying, using XtErrorMsg

subroutine, 6-81
error messages

customizing, using XTAppErrorMsg subroutine,
6-29

display of, using XmCommandError subroutine,
2-45

event

internalizing, using XtAppErrorMsg subroutine,
6-29

defining a procedure for converting from host to
wire format, using XESetEventToWire
extension subroutine, 9-29

defining a procedure to call when converting
from wire to host format, using
XESetWireToEvent extension subroutine,
9-34

dispatching through event handlers, U$ing
XtDispatchEvent subroutine, 6-75

(

enabling input, using XEnablelnputDevice
extension subroutine, 9-36

removing when matching a window and an
extension event mask, using
XAIXWindowEvent extension subroutine, 9-6

removing when matching an extension event
mask, using XAIXMaskEvent extension
subroutine, 9-5

reporting associations with event masks, using
XSelectDevicelnput extension subroutine,
9-57-9-58

reporting associations with the event masks,
using XSelectDiallnput extension subroutine,
9-59

sending to the specified window, using
SendEvent protocol request, 8-165-8-166

event handler
removing a registered, using

XtRemoveEventHandler subroutine,
6-152-6-153

removing a registered raw, using
XtRemoveRawEventHandler subroutine,
6-156

event handler procedure
registering with the dispatch mechanism,

XtAddEventHanler subroutine, 6-10-6-11
registering with the dispatch mechanism with

no event selection, using
XtAddRawEventHandler subroutine, 6-16

event mask
removing the next event that matches, using

XMaskEvent subroutine, 7-350
retrieving for a specified widget, using

XtBuildEventMask subroutine, 6-4 7
returning initial root, using EventMaskOfScreen

macro, 7-32
event queue

checking for a matching event, using
XPeeklfEvent subroutine, 7-368-7-369

checking for a specified event without blocking,
using XChecklfEvent subroutine, 7-98-7-99

checking for specified event, using XlfEvent
subroutine, 7-309-7-31 O

checking the number of events in, using
XEventsQueued subroutine, 7-152-7-153

getting the next event, using
XCheckTypedWindowEvent subroutine,
7-104-7-105

getting the next event matching an event type,
using XCheckTypedEvent subroutine,
7-102-7-103

getting the number of pending events, using
XPending. subroutine, 7-370

peeking at, using XPeekEvent subroutine,
7-367

pushing an event back into, using
XPutBackEvent subroutine, 7-374

removing specified event, using XlfEvent
subroutine, 7-309-7-31 O

removing the next event, using
XCheckMaskEvent subroutine, 7-100-7-101

removing the next event matching window and
mask, using XCheckWindowEvent subroutine,
7-106-7-107

searching for matching window and event
mask, using XWindowEvent subroutine,
7-568

event source, registering with the default Toolkit
application, 6-15

EventMaskOfScreen macro, 7-32
events

processing according to type, XtProcessEvent
subroutine, 6-141

reporting to the client, using XSelectlnput
subroutine, 7-452-7-453

sending to a specified window, using
XSendEvent subroutine, 7-454-7-455

Expose event, 10-17-10-18
merging with GraphicsExpose events into a

region, using XtAddExposureToRegion
subroutine, 6-12

exposure events, processing all immediately, using
XmUpdateDisplay subroutine, 2-227

Extended Curses Library, Extended Curses
subroutines, list of, 12-3-12-32

Extended Curses subroutines
controlling the screen, 12-22-12-32
display attributes, changing of, 12-31-12-32
enhancements provided by, 12-3
getting input from the terminal, 12-14-12-32
header files, 12-4
Japanese language support, 12-3
naming conventions for, 12-4
writing to a window, 12-5-12-32

extension
determining if a named subroutine is present,

XQueryExtension extension subroutine, 9-53
determining the existence of, using

XinitExtension extension subroutine, 9-76
removing a matching passed window and

passed mask event, using
XAIXCheckWindowEvent extension
subroutine, 9-4

extensions
determining the existence of, using

XlnitExtension subroutine, 7-311
determining the presence of named, using

QueryExtension protocol request, 8-14 7
returning a list of, using ListExtensions protocol

request, 8-112
returning a list of all supported, using

XListExtensions extension subroutine, 9-46

Index X-17

F
f. minimize window manager function, 5-34
f.beep window manager function, 5-32
f .circle_up window manager function, 5-32
f.exec window manager function, 5-32
f.focus_color window manager function, 5-33
f.focus_key window manager function, 5-33
f.kill window manager function, 5-33
f .lower window manager function, 5-33
f .maximize window manager function, 5-34
f .menu window manager function, 5-34
f.move window manager function, 5-34
f.next_cmap window manager function, 5-34
f.next_key window manager function, 5-35
f .nop window manager function, 5-35
f .normalize window manager function, 5-35
f.pack_icons window manager function, 5-35
f.pass_keys window manager function, 5-35
f.post_wmenu window manager function, 5-36
f.prev_cmap window manager function, 5-36
f.prev_key window manager function, 5-36
f.quit_mwm window manager function, 5-36
f.raise window manager function, 5-37
f.raise_lower window manager function, 5-37
f .refresh window manager function, 5-37
f .refresh_ win window manager function, 5-37
f.resize window manager function, 5-37
f.restart window manager function, 5-37
f.send_msg window manager function, 5-38
f .separator window manager function, 5-38
f.set_behavior window manager function, 5-38
fadeNormallcon resource, description of, 5-20
fatal error, registering a procedure to call

using XtSetErrorHandler subroutine, 6-164
using XtSetErrorMsgHandler subroutine, 6-165

fatal error conditions, registering a procedure to call
on

using XtAppSetErrorHandler subroutine, 6-39
using XtAppSetErrorMsgHandler subroutine,

6-40
fatal error procedure, calling

using XtAppError subroutine, 6-28
using XtError subroutine, 6-80

file, property atoms in, A-33-A-34

file, registering as an input source, XtAppAddlnput
subroutine, 6-23

File Selection Box widget, accessing a component
in, using XmFileSelectionBoxGetChild subroutine,
2-121

FileSelectionBox subroutine, initiating a directory
search, XmFileSelectionDoSearch subroutine,
2-123

FileSelectionBox widget, creating an unmanaged
using XmCreateFileSelectionBox subroutine,

2-63

X-18 User Interface Reference

using XmCreateFileSelectionDialog subroutine,
2-65

fill tile, getting the best shape, using XQueryBestTile
subroutine, 7-384-7-385

fill_style, description of, A-23
FillPoly protocol request, 8-62-8-63
focus state

returning, using XGetlnputFocus subroutine,
7-260

returning the current, using GetlnputFocus
protocol request, 8-76

focus window ID
returning, using XGetlnputFocus subroutine,

7-260
returning for the current dial, using

XGetDevicelnputFocus extension subroutine,
9-38

returning for the Lighted Programmable
Function Key, using XGetDevicelnputFocus
extension subroutine, 9-38

focusAutoRaise resource, description of, 5-5
Focusln event, 10-19-10-21
FocusOut event, 10-22-10-24
font

defining the directory path to search for, using
SetFontPath protocol request, 8-173

deleting the association with the font ID, using
XFreeFont subroutine, 7-233

deleting the association with the resource ID,
using CloseFont protocol request, 8-28

freeing a name array, using XFreeFontNames
subroutine, 7-235

freeing the information array, using
XFreeFontlnfo subroutine, 7-234

getting a list of available names, using
XListFonts subroutine, 7-323-7-324

getting a specified property, using
XGetFontProperty subroutine, 7-251

getting name and information about, using
XListFontsWithlnfo subroutine, 7-325-7-326

getting the current search path, using
XGetFontPath subroutine, 7-250

loading
using XLoadFont subroutine,
7-332-7-333

using XloadQueryFont subroutine,
7-334-7-335

loading with an identifier, using OpenFont
protocol request, 8-124

querying, using XLoadQueryFont subroutine,
7-334-7-335

returning a list matching a pattern, using
ListFonts protocol request, 8-113

returning a list with information on, using
ListFontsWithlnfo protocol request, 8-114

returning information about, using XQueryFont
subroutine, 7-389-7-390

~'

,/

returning logical information about, using
QueryFont protocol request, 8-148-8-152

returning the logical extents of a character
string, using QueryTextExtents protocol
request, 8-157-8-158

setting the current, using XSetFont subroutine,
7-472-7-473

setting the search path, using XSetFontPath
subroutine, 7-474-7-475

unloading, using XUnloadFont subroutine,
7-561

font ID, deleting the association with the font, using
XFreeFont subroutine, 7-233

font list
creating, using XmFontlistCreate subroutine,

2-125
creating a new, using XmFontlistAdd

subroutine, 2-124
recovering memory used by, using

XmFontlistFree subroutine, 2-127
font lists

· creating, using XmString subroutine, 2-177
manipulating compound, using XmString

subroutine, 2-177
fontlist resource, description of, 5-12
fonts

allowing client programs to access structures
of, using ***DirectFontAccess extension
subroutine, 9-16

returning the search path for, using
GetFontPath protocol request, 8-71

ForceScreenSaver protocol request, 8-64
foreground resource, description of, 5-12
Form widget, creating, using XmCreateForm

subroutine, 2-67
FORTRAN 77 Library, 7-340-7-341,
7-361-7-362, 7-442-7-443, 7-481

AllPlanes macro, 7-3
BitmapBitOrder macro, 7-4
BitmapPad macro, 7-5
BitmapUnit macro, 7-6
BlackPixel macro, 7-7
BlackPixelOfScreen macro, 7-8
CellsOfScreen macro, 7-9
Connection Number macro, 7-1 O
DefaultColormap macro, 7-11
DefaultColormapOfScreen macro, 7-12
DefaultDepth macro, 7-13
DefaultDepthOfScreen macro, 7-14
DefaultGC macro, 7-15
DefaultGCOfScreen macro, 7-16
DefaultRootWindow macro, 7-17
DefaultScreen macro, 7-18
DefaultScreenOfDisplay macro, 7-19
DefaultVisual macro, 7-20
DefaultVisualOfScreen macro, 7-21
DisplayCells macro, 7-22

DisplayHeight macro, 7-23
DisplayHei.ghtMM macro, 7-24
DisplayOfScreen macro, 7-25
DisplayPlanes macro, 7-26
DisplayString macro, 7-27
DisplayWidth macro, 7-28
DisplayWidthMM macro, 7-29
DoesBackingStore macro, 7-30
DoesSaveUnder macro, 7-31
EventMaskOfScreen macro, 7-32
HeightMMOfScreen macro, 7-33
HeightOfScreen macro, 7-34
lmageByteOrder macro, 7-35
LastKnownRequestProcessed macro, 7-42
MaxCmapsOfScreen macro, 7-43
MinCmapsOfScreen macro, 7-44
NextRequest macro, 7-45
PlanesOfScreen macro, 7-46
ProtocolRevision macro, 7-47
ProtocolVersion macro, 7-48
Qlength macro, 7-49
RootWindow macro, 7-50
RootWindowOfScreen macro, 7-51
ScreenCount macro, 7-52
ScreenOfDisplay macro, 7-53
ServerVendor macro, 7-54
VendorRelease macro, 7-55
WhitePixel macro, 7-56
WhitePixelOfScreen macro, 7-57
WidthMMOfScreen macro, 7-58
WidthOfScreen Macro, 7-59
XActivateScreenSaver subroutine, 7-60
XAddHost subroutine, 7-61
XAddHosts subroutine, 7-62
XAddPixel subroutine, 7-63
XAddToSaveSet subroutine, 7-64
XAllocColor subroutine, 7-65-7-66
XAllocColorCells subroutine, 7-67-7-68
XAllocColorPlanes subroutine, 7-69-7-71
XAllocNamedColor subroutine, 7-72-7-73
XAllowEvents subroutine, 7-74-7-76
XAutoRepeatOff subroutine, 7-77
XAutoRepeatOn subroutine, 7-78
XBell subroutine, 7-79-7-80
XChangeActivePointerGrab subroutine,
7-81-7-82

XChangeGC subroutine, 7-83-7-84
XChangeKeyboardControl subroutine,
7-85-7-86

XChangeKeyboardMapping subroutine,
7-87-7-88

XChangePointerControl subroutine,
7-89-7-90

XChangeProperty subroutine, 7-91-7-93
XChangeSaveSet subroutine, 7-94-7-95

Index X-19

XChangeWindowAttributes subroutine,
7-96-7-97

XChecklfEvent subroutine, 7-98-7-99
XCheckMaskEvent subroutine, 7-100-7-101
XCheckTypedEvent subroutine, 7-102-7-103
XCheckTypedWindowEvent subroutine,
7-104-7-105

XCheckWindowEvent subroutine,
7-106-7-107

XCirculateSubwindows subroutine,
7-108-7-109

XCirculateSubwindowsDown subroutine, 7-11 O
XCirculateSubwindowsUp subroutine, 7-111
XClearArea subroutine, 7-112-7-113
XClearWindow subroutine, 7-114
XClipbox subroutine, 7-115
XCloseDisplay subroutine, 7-116
XConfigureWindow subroutine, 7-117-7-118
XConvertSelection subroutine, 7-119-7-120
XCopyArea subroutine, 7-121-7-122
XCopyColormapAndFree subroutine,

7-123-7-124
XCopyGC subroutine, 7-125-7-126
XCopyPlane subroutine, 7-127-7-128
XCreateBitmapFromData subroutine,

7-130-7-131
XCreateColormap subroutine, 7-132-7-133
XCreateFontCursor subroutine, 7-134-7-135
XCreateGC subroutine, 7-136-7-137
XCreateGlyphCursor subroutine,

7-138-7-139
XCreatelmage subroutine, 7-140-7-141
XCreatePixmap subroutine, 7-142-7-143
XCreatePixmapCursor subroutine,

7-144-7-145
XCreatePixmapFromBitmapData subroutine,
7-146-7-147

XCreateRegion subroutine, 7-156
XCreateSimpleWindow subroutine,
7-157-7-158

XCreateWindow subroutine, 7-159-7-161
XDefineCursor subroutine, 7-148-7-149
XDeleteContext subroutine, 7-163
XDeleteModifiermapEntry subroutine, 7-164
XDeleteProperty subroutine, 7-165
XDestroylmage subroutine, 7-167
XDestroyRegion subroutine, 7-168
XOestr-eySubwindows subroutine, 7-169
XDestroyWindow subroutine, 7-150-7-151
XDisableAccessControl subroutine, -Y-170
XDisplayKeycode subroutine, 7-171
XDisplayMotionBufferSize subroutine, 7-172
XDisplayName subroutine, 7-173
XDrawArc subroutine, 7-174-7-176
XDrawArcs subroutine, 7-177-7-178
XDrawlmageString subroutine, 7-180-7-181

X-20 User Interface Reference

XDrawlmageString16 subroutine,
7-182-7-183

XDrawline subroutine, 7-184-7-185
XDrawlines subroutine, 7-186-7-187
XDrawPoint subroutine, 7-188-7-189
XDrawPoints subroutine, 7-190-7-191
XDrawRectangle subroutine, 7-192-7-193
XDrawRectangles subroutine, 7-194-7-195
XDrawSegments subroutine, 7-196-7-197
XDrawString subroutine, 7-198-7-199
XDrawString16 subroutine, 7-200-7-201
XDrawText subroutine, 7-202-7-203
XDrawText16 subroutine, 7-204-7-205
XEmptyRegion subroutine, 7-206
XEnableAccessControl subroutine, 7-207
XEqualRegion subroutine, 7-208
XEventsQueued subroutine, 7-152-7-153
XFetchBuffer subroutine, 7-209
XFetchBytes subroutine, 7-210-7-211
XFetchName subroutine, 7-212-7-213
XFillArc subroutine, 7-214-7-215
XFillArcs subroutine, 7-216-7-217
XFillPolygon subroutine, 7-218-7-219
XFillRectangle subroutine, 7-220-7-221
XFillRectangles subroutine, 7-222-7-223
XFindContext subroutine, 7-224
XFlush subroutine, 7-225
XForceScreenSaver subroutine, 7-226
XFree subroutine, 7-227
XFreeColormap subroutine, 7-228
XFreeColors subroutine, 7-230-7-231
XFreeCursor subroutine, 7-232
XFreeFont subroutine, 7-233
XFreeFontlnfo subroutine, 7-234
XFreeFontNames subroutine, 7-235
XFreeFontPath subroutine, 7-236
XFreeGC subroutine, 7-237
XFreeModifiermap subroutine, 7-238
XFreePixmap subroutine, 7-239
XGContextFromGC subroutine, 7-240
XGeometry subroutine, 7-241-7-242
XGetAtomName subroutine, 7-243
XGetClassHint subroutine, 7-244
XGetDefault subroutine, 7-245-7-246
XGetErrorDatabaseText subroutine,

7-247-7-248
XGetErrorText subroutine, 7-249
XGetFontPath subroutine, 7-250
XGetFontProperty subroutine, 7-251
XGetGeometry subroutine, 7-252-7-253
XGeticonName subroutine, 7-254;-7-255
XGetlconSizes subroutine, 7-256-7-257
XGetlmage subroutine, 7-258-7-259
XGetKeyboardControl subroutine, 7-261

~

i
/

XGetKeyboardMapping subroutine,
7-262-7-263

XGetModifierMapping subroutine, 7-264
XGetMotionEvents subroutine, 7-265-7-266
XGetNormalHints subroutine, 7-267-7-268
XGetPixel subroutine, 7-269
XGetPointerControl subroutine, 7-270-7-271
XGetPointerMapping subroutine, 7-272
XGetScreenSaver subroutine, 7-273-7-274
XGetSelectionOwner subroutine, 7-275
XGetSizeHints subroutine, 7-276-7-277
XGetStandardColormap subroutine,
7-278-7-279

XGetSublmage subroutine, 7-280-7-282
XGetTransientForHint subroutine, 7-283
XGetVisuallnfo subroutine, 7-284-7-285
XGetWindowAttributes subroutine,
7-286-7-287

XGetWindowProperty subroutine,
7-288-7-290

XGetWMHints subroutine, 7-291-7-292
XGetZoomHint subroutine, 7-293-7-294
XGrabButton subroutine, 7-295-7-298
XGrabKey subroutine, 7-299-7-301
XGrabKeyboard subroutine, 7-302-7-304
XGrabPointer subroutine, 7-305-7-307
XGrabServer subroutine, 7-308
XlfEvent subroutine, 7-309-7-31 O
XlnsertModifiermapEntry subroutine, 7-312
XlnstallColormap subroutine, 7-313
XlnternAtom subroutine, 7-315-7-316
XlntersectRegion subroutine, 7-317
XKeycodeToKeysym subroutine,
7-318-7-319

XKeysymToKeycode subroutine, 7-320
XKeysymToString subroutine, 7-321
XKillClient subroutine, 7-322
XListFonts subroutine, 7-323-7-324
XListFontsWithlnfo subroutine, 7-325-7-326
XListHosts subroutine, 7-327
XListlnstalledColormaps subroutine,
7-328-7-329

XListProperties subroutine, 7-330-7-331
XLoadFont subroutine, 7-332-7-333
XLoadQueryFont subroutine, 7-334-7-335
XLookupColor subroutine, 7-337-7-338
XLookupKeysym subroutine, 7-339
XLookupString subroutine, 7-342-7-343
XLowerWindow subroutine, 7-344 ·
XMapSubwindows subroutine, 7-347
XMapWindow subroutine, 7-348-7-349
XMaskEvent subroutine, 7-350
XMatchVisuallnfo subroutine, 7-351-7-352
XMoveResizeWindow subroutine,
7-353-7-354

XMoveWindow subroutine, 7-355-7-356

XNewModifiermap subroutine, 7-357
XNextEvent subroutine, 7-358
XNoOp subroutine, 7-359
XOffsetRegion subroutine, 7-360
XParseColor subroutine, 7-363-7-364
XParseGeometry subroutine, 7-365-7-366
XPeekEventsubroutine,7-367
XPeeklfEvent subroutine, 7-368-7-369
XPending subroutine, 7-370
Xpermalloc subroutine, 7-371
XPointlnRegion subroutine, 7-372
XPolygonRegion subroutine, 7-373
XPutBackEvent subroutine, 7-374
XPutlmage subroutine, 7-375-7-376
XPutPixel subroutine, 7-377
XQueryBestCursor subroutine, 7-378-7-379
XQueryBestSize subroutine, 7-380-7-381
XQueryBestStipple subroutine, 7-382-7-383
XQueryBestTile subroutine, 7-384-7-385
XQueryColor subroutine, 7-386
XQueryColors subroutine, 7-387-7-388
XQueryFont subroutine, 7-389-7-390
XQueryKeymap subroutine, 7-391
XQueryPointer subroutine, 7-392-7-393
XQueryTextExtents subroutine, 7-394-7-395
XQueryTextExtents16 subroutine,
7-396-7-397

XQueryTree subroutine, 7-398-7-399
XRaiseWindow subroutine, 7-400
XReadBitmapFile subroutine, 7-401-7-402
XRebindCode subroutine, 7-403-7-404
XRebindKeysym subroutine, 7-405-7-406
XRecolorCursor subroutine, 7-407
XRectlnRegion subroutine, 7-408
XRefreshKeyboardMapping subroutine, 7-409
XRemoveFromSaveSet subroutine, 7-410
XRemoveHost subroutine, 7-411
XRemoveHosts subroutine, 7-412
XReparentWindow subroutine, 7-413-7-414
XResetScreenSaver, 7-415
XResizeWindow subroutine, 7-416-7-417
XResourceMangerString subroutine, 7-418
XRestackWindows subroutine, 7-419-7-420
XrmGetFileDatabase subroutine, 7-424
XrmGetResource subroutine, 7-425
XrmGetStringDatabase subroutine, 7-426
Xrmlnitialize subroutine, 7-427
XrmMergeDatabases subroutine, 7-428
XrmParseCommand subroutine, 7-429-7-430
XrmPutFileDatabase subroutine, 7-431
XrmPutlineResource subroutine, 7-432
XrmPutResource subroutine, 7-433-7-434
XrmPutStringResource subroutine, 7-435
XrmQGetResource subroutine, 7-436-7-437
XrmQGetSearchlist subroutine, 7-438-7-439

Index X-21

XrmQGetSearchResource, 7-440-7-441
XrmQPutStringResource subroutine, 7-444
XrmQuarkToString subroutine, 7-445
XrmStringToBindingQuarklist subroutine,

7-446
XrmStringToQuark subroutine, 7-447
XrmStringToQuarklist subroutine, 7-448
XrmUniqueQuark subroutine, 7-449
XRotateBuffers, 7-421
XRotateWindowProperties subroutine,
7-422-7-423

XSaveContext subroutine, 7-450-7-451
XSelectlnput subroutine, 7-452-7-453
XSendEvent subroutine, 7-454-7-455
XSetAccessControl subroutine, 7-456
XSetAfterFunction subroutine, 7-457
XSetArcMode subroutine, 7-458
XSetBackground subroutine, 7-459
XSetClassHint subroutine, 7-460
XSetClipMask subroutine, 7-461
XSetClipOrigin subroutine, 7-462
XSetClipRectangles subroutine, 7-463-7-464
XSetCloseDownMode subroutine, 7-465
XSetCommand subroutine, 7-466
XSetDashes subroutine, 7-467-7-468
XSetErrorHandler subroutine, 7-469
XSetFillRule subroutine, 7-470
XSetFillStyle subroutine, 7-471
XSetFont subroutine, 7-472-7-473
XSetFontPath subroutine, 7-474-7-475
XSetForeground subroutine, 7-476
XSetFunction subroutine, 7-477
XSetGraphicsExposures subroutine,
7-478-7-479

XSetlconSizes subroutine, 7-482
XSetlnputFocus subroutine, 7-483-7-484
XSetlOErrorHandler subroutine, 7-480
XSetlineAttributes subroutine, 7-485-7-486
XSetModifierMapping subroutine,

7-487-7-488
XSetNormalHints subroutine, 7-489-7-490
XSetPlaneMask subroutine, 7-491
XSetPointerMapping subroutine,
7-492-7-493

XSetRegion subroutine, 7-494
XSetScreenSaver subroutine, 7-495-7-496
XSetSelectionOwner subroutine,
7-497-7-498

XSetSizeHints subroutine, 7-499-7-500
XSetStandardColormap subroutine,
7-501-7-502

XSetStandardProperties subroutine,
7-503-7-504

XSetState subroutine, 7-505-7-506
XSetStipple subroutine, 7-507
XSetSubwindowMode subroutine, 7-508

X-22 User Interface Reference

XSetTile subroutine, 7-51 O
XSetTransientForHint subroutine, 7-511
XSetTSOrigin subroutine, 7-509
XSetWindowBackground subroutine, 7-513
XSetWindowBackgroundPixmap subroutine,
7-514-7-515

XSetWindowBorder subroutine, 7-516
XSetWindowBorderPixmap subroutine,
7-517-7-518

XSetWindowBorderWidth subroutine, 7-519
XSetWindowColormap subroutine, 7-520
XSetWMHints subroutine, 7-512
XSetZoomHints subroutine, 7-521
XShrinkRegion subroutine, 7-522
XStoreBuffer subroutine, 7-523
XStoreBytes subroutine, 7-524
XStoreColor subroutine, 7-525-7-526
XStoreColors subroutine, 7-527-7-528
XStoreName subroutine, 7-529-7-530
XStoreNamedColor subroutine, 7-531-7-532
XStringToKeysym subroutine, 7-533
XSublmage subroutine, 7-534-7-535
XSubtractRegion subroutine, 7-536
XSync subroutine, 7-537-7-538
XSynchronize subroutine, 7-539
XTextExtents subroutine, 7-540-7-541
XTextExtents16 subroutine, 7-542-7-543
XTextWidth subroutine, 7-544
XTextWidth16 subroutine, 7-545
XTranslateCoordinates subroutine,

7-546-7-547
XUndefineCursor subroutine, 7-548
XUngrabButton subroutine, 7-549-7-550
XUngrabKey subroutine, 7-551-7-552
XUngrabKeyboard subroutine, 7-553
XUngrabPointer subroutine, 7-554
XUngrabServer subroutine, 7-555
XUninstallColormap subroutine, 7-556-7-557
XUnionRectWithRegion subroutine, 7-558
XUnionRegion subroutine, 7-559
XUnloadFont subroutine, 7-561
XUnmapSubwindows subroutine, 7-562
XUnmapWindow subroutine, 7-563
XUseKeymap subroutine, 7-564
XVisuallDFromVisual subroutine, 7-565
XWarpPointer subroutine, 7-566-7-567
XWindowEvent subroutine, 7-568
XWriteBitmapFile subroutine, 7-569-7-570
XXorRegion subroutine, 7-571

FORTRAN 77 library, XMapRaised subroutine,
7-346

Frame widget, creating, using XmCreateFrame
subroutine, 2-69

frameBorderWidth resource, description of, 5-20
FreeColormap protocol request, 8-65
FreeColors protocol request, 8-66

'\
)

FreeCursor protocol request, 8-67
FreeGC protocol request, 8-68
FreePixmap protocol request, 8-69
frozen device, releasing queued events, using

XAllowEvents subroutine, 7-74-7-76

G
GetAtomName protocol request, 8-70
getch subroutine, function keys for the,

11-18-11-19
GetFontPath protocol, 8-71
GetGeometry protocol request, 8-72-8-73
Getlmage protocol request, 8-74-8-75
GetlnputFocus protocol request, 8-76
GetKeyboardControl protocol request, 8-77
GetKeyboardMapping protocol request, 8-79-8-80
GetMotionEvents protocol request, 8-82-8-83
GetPointerControl protocol request, 8-84
GetProperty protocol request, 8-86-8-87
GetScreenSaver protocol request, 8-89
GetSelectionOwner protocol request, 8-90
GetWindowAttributes protocol request, 8-91-8-92
GrabButton protocol request, 8-93-8-94
GrabKey protocol request, 8-95-8-96
GrabKeyboard protocol request, 8-97-8-98
GrabPointer protocol request, 8-100-8-102
GrabServer protocol request, 8-103
graphics context

assigning an identifier, using CreateGC
protocol request, 8-44-8-50

changing components in, using ChangeGC
protocol request, 8-13-8-14

changing the components in, using
XChangeGC subroutine, 7-83-7-84

copying components from a source to a
destination, using CopyGC protocol request,
8-37

copying components from source to
destination, using XCopyGC subroutine,
7-125-7-126

creating new, using XCreateGC subroutine,
7-136-7-137

deallocating, using XtDestroyGC subroutine,
6-70

deallocating a shared, using XtReleaseGC
subroutine, 6-148

defining a procedure to call upon copying,
using XESetCopyGC extension subroutine,
9-23

defining a procedure to call when creating,
using XESetCreateGC extension subroutine
9-25 '

defining a procedure to call when freeing a,
using XESetFreeGC extension subroutine,
9-33

defining a procedure to call when updated in
the server, using XESetFlushGC extension
subroutine, 9-31

deleting the association with the graphics
context ID, using XFreeGC subroutine, 7-237

getting the GContext resource ID for a, using
XGContextFromGC subroutine, 7-240

returning a read-only shareable, using
XtGetGC subroutine, 6-87

returning the default, using DefaultGCOfScreen
macro, 7-16

setting dash list of dashed-line style, using
XSetDashes subroutine, 7-467-7-468

setting the arc mode, using XSetArcMode
subroutine, 7-458

setting the background
using XSetBackground subroutine, 7-459
using XSetState subroutine, 7-505-7-506

setting the clip mask to a list of rectangles,
using XSetClipRectangles subroutine,
7-463-7-464

setting the clip mask to a specified pixmap,
using XSetClipMask subroutine, 7-461

setting the clip-mask to a region, using
XSetRegion Subroutine, 7-494

setting the clipmap origin, using XSetClipOrigin
subroutine, 7-462

setting the current font, using XSetFont
subroutine, 7-472-7-473

setting the dash offset, using XSetDashes
subroutine, 7-467-7-468

setting the display function, using XSetFunction
subroutine, 7-477

setting the fill rule, using XSetFillRule
subroutine, 7-470

setting the fill style, using XSetFillStyle
subroutine, 7-471

setting the fill tile, using XSetTile subroutine,
7-510

setting the foreground, using XSetState
subroutine, 7-505-7-506

setting the foreground color, using
XSetForeground subroutine, 7-476

setting the function component, using
XSetState subroutine, 7-505-7-506

setting the graphics exposures-flag, using
XSetGraphicsExposures subroutine,
7-478~7-479

setting the line-drawing components, using
XSetlineAttributes subroutine, 7-485-7-486

setting the plane mask
using XSetPlaneMask subroutine, 7-491
using XSetState subroutine, 7-505-7-506

setting the stipple, 7-507
setting the stipple origin, using XSetTSOrigin

subroutine, 7-509
setting the subwindow mode, using

XSetSubwindowMode subroutine, 7-508
setting the tile origin, using XSetTSOrigin

subroutine, 7-509

Index X-23

XmManager widget class, use of, 1-78
graphics context ID, deleting the association with the

graphics context, using XFreeGC subroutine,
7-237

graphics contexts, components, list of (table), 8-44
GraphicsExpose event, reporting on a failure to

produce a, using No Exposure event, 10-40
GraphicsExposure event, 10-25-10-26
GravityNotify event, 10-27
GravityNotify events, generating ConfigureNotify

events, A-14

H
HeightMMOfScreen macro, 7-33
highlighting

using XmGadget gadget class, 1-63
using XmPrimitive widget class, 1-91

hosts, returning the current access control list, using
XListHost subroutine, 7-327

1/0 error, defining a procedure to call when
detecting, using XESetErrorString extension
subroutine, 9-28

1/0 error handler, setting, using XSetlOErrorHandler
subroutine, 7-480

icon
raising from bottom of stack to top, using

f.circle_up window manager function, 5-32
setting the name to be displayed, using

XSetlconName subroutine, 7-481
setting the size hints, using XSetlconSizes

subroutine, 7-482
icon size, getting the value of, using XGetlconSizes

subroutine, 7-256-7-257
iconAutoPlace resource, description of, 5-20
iconBoxGeometry resource, description of, 5-21
iconBoxName resource, description of, 5-21
icon Box Title, description of, 5-21
icon Click resource, description of, 5-21
iconDecoration resource, description of, 5-22
icon Image resource, description of, 5-6
iconlmageBackground resource, description of, 5-6
iconlmageBottomShadowColor resource, description

of, 5-6
iconlmageBottomShadowPixmap resource,

discription of, 5-6
iconlmageForeground resource, description of, 5-7
iconlmageMaximum resource, description of, 5-22
iconlmageMinimum resource, description of, 5-22
iconlmageTopShadowColor resource, description of,
5-7

iconlmageTopShadowPixmap resource, description
of, 5-7

icon Placement resource, description of, 5-23
iconPlacementMargin resource, description of, 5-23

X-24 User Interface Reference

icons
rearranging in the icon box, using f.pack_icons

window manager function, 5-35
rearranging on the root window, using

f.pack_icons window manager function, 5-35
image

adding a value to every pixel, using XAddPixel
subroutine, 7-63

combining with a rectangle of a drawable, using
XPutlmage subroutine, 7-375-7-376

combining with a rectangle of the drawable,
using Putlmage protocol request,
8-142-8-143

getting a pixel value, using XGetPixel
subroutine, 7-269

setting a pixel value in, using XPutPixel
subroutine, 7-377

updating with a specified subimage, using
XGetSublmage subroutine, 7-280-7-282

image cache
adding an image to, using Xmlnstalllmage

subroutine, 2-131
removing a pixmap from, using

XmDestroyPixmap subroutine, 2-120
removing an image from, using

XmUninstalllmage subroutine, 2-226
storing a pixmap, using XmGetPixmap

subroutine, 2-129
lmageByteOrder macro, 7-35
images, specifying the required byte order, using

lmageByteOrder macro, 7-35
lmageText16 protocol request, 8-104-8-105
Image Text8 protocol request, 8-106-8-107
in-memory data, freeing, using XFree subroutine,

7-227
lnformationDialog widget, creating, using

XmCreatelnformationDialog subroutine, 2-70
input

controlling the processing of different types of,
XtAppProcessEvent subroutine, 6-38

processing
using XtAppMainloop subroutine, 6-34
using XtMainloop subroutine, 6-111

removing a source of, using XtRemovelnput
subroutine, 6-155

setting the focus time, using XSetlnputFocus
subroutine, 7-483-7-484

setting up asynchronous support, using
XAsynclnput extension subroutine, 9-8

input compound string, searching for text segment,
using XmStringGetltoR subroutine, 2-198

input device, disabling, using XDisablelnputDevice
extension subroutine, 9-18

input focus
changing, using SetlnputFocus protocol

request, 8-174-8-175
reporting changes in, using Focusln event,

10-19-10-21
reporting on changes in, using FocusOut event,

10-22
input focus state

returning for the current dial, using
XGetDevicelnputFocus extension subroutine,
9-38

returning for the Lighted Programmable
Function Key, using XGetDevicelnputFocus
extension subroutine, 9-38

input queue
determines existence of pending events in,

XtAppPending subroutine, 6-37
determining status of pending events, using

XtPending subroutine, 6-137
returning the value from the front of, using

XtPeekEvent subroutine, 6-136
returning the value from the header of, using

XtNextEvent subroutine, 6-125
returning the value from the top of

using XtAppNextEvent subroutine, 6-35
using XtAppPeekEvent subroutine, 6-36

lnputOnly windows, window fields, defaults for, A-5
lnputOutput subwindow, creating an unmapped,

using XCreateSimpleWindow subroutine,
7-157-7-158

lnputOutput windows, window fields, defaults for,
A-5

lnstallColormap protocol request, 8-108
interactive Placement resource, description of, 5-24
lnternAtom protocol request, 8-110
Intrinsics Library

MenuPopdown Translation Action, 6-3
MenuPopup Translation Action, 6-4-6-5
XtAddActions subroutine, 6-6
XtAddCallback subroutine, 6-7
XtAddCallbacks subroutine, 6-8
XtAddConverter subroutine, 6-9
XtAddEventHandler subroutine, 6-10-6-11
XtAddExposureToRegion subroutine, 6-12
XtAddlnput subroutine, 6-15
XtAddRawEventHandler subroutine,
6-16-6-17

XtAddTimeOut subroutine, 6-18
XtAddWorkProc procedure, 6-19
XtAppAddActions subroutine, 6-20
XtAppAddConverter subroutine, 6-21
XtAppAddlnput subroutine, 6-23
XtAppAddTimeOut subroutine, 6-24
XtAppAddWorkProc subroutine, 6-25
XtAppCreateShell subroutine, 6-26-6-27
XtAppError subroutine, 6-28
XtAppErrorMsg subroutine, 6-29

XtAppGetErrorDatabase subroutine, 6-30
XtAppGetErrorDatabaseText subroutine,
6-31-6-32

XtAppMainloop subroutine, 6-34
XtAppNextEvent subroutine, 6-35
XtAppPeekEvent subroutine, 6-36
XtAppPending subroutine, 6-37
XtAppProcessEvent subroutine, 6-38
XtAppSetErrorHandler subroutine, 6-39
XtAppSetErrorMsgHandler subroutine, 6-40
XtAppSetSelectionTimeout subroutine, 6-41
XtAppSetWarningHandler subroutine, 6-42
XtAppSetWarningMsgHandler subroutine, 6-43
XtAppWarning subroutine, 6-44
XtAppWarningMsg subroutine, 6-45
XtAugmentTranslations subroutine, 6-46
XtBuildEventMask subroutine, 6-4 7
XtCallAcceptFocus subroutine, 6-48
XtCallbackExclusive subroutine, 6-50
XtCallbackNone subroutine, 6-51
XTCallbackNonexclusive subroutine, 6-52
XtCallbackPopdown subroutine, 6-53
XtCallCallbacks subroutine, 6-49
XtCalloc subroutine, 6-54
XtCheckSubclass macro, 6-55
XtClass macro, 6-56
XtCloseDisplay subroutine, 6-57
XtConfigureWidget subroutine, 6-58
XtConvert subroutine, 6-59
XtConvertCase subroutine, 6-60
XtCreateApplicationContext subroutine, 6-61
XtCreateApplicationShell subroutine, 6-62
XtCreateManagedWidget subroutine, 6-63
XtCreatePopupShell subroutine, 6-64
XtCreateWidget subroutine, 6-65-6-66
XtCreateWindow subroutine, 6-67
XtDatabase subroutine, 6-68
XtDestroyApplicationContext subroutine, 6-69
XtDestroyGC subroutine, 6-70
XtDestroyWidget subroutine, 6-71-6-72
XtDirectConvert subroutine, 6-73
XtDisownSelection subroutine, 6-74
XtDispatchEvent subroutine, 6-75
XtDisplay macro, 6-76
XtDisplaylnitialize subroutine, 6-77-6-79
XtError subroutine, 6-80
XtErrorMsg subroutine, 6-81
XtFree subroutine, 6-82
XtGetApplicationResources subroutine,
6-83-6-84

XtGetErrorDatabase subroutine, 6-85
XtGetErrorDatabaseText subroutine, 6-86
XtGetGC subroutine, 6-87
XtGetResourcelist subroutine, 6-88
XtGetSelectionTimeout subroutine, 6-89

Index X-25

XtGetSelectionValue subroutine, 6-90
XtGetSelectionValues subroutine, 6-91-6-92
XtGetSubresources subroutine, 6-93-6-94
XtGetSubvalues subroutine, 6-95
XtGetValues subroutine, 6-96-6-97
XtGrabKey subroutine, 6-98-6-99
XtGrabKeyboard subroutine, 6-100
XtHasCallbacks subroutine, 6-101
Xtlnitialize subroutine, 6-102-6-103
XtlnstallAccelerators subroutine, 6-104
XtlnstallAllAccelerators subroutine, 6-105
XtlsComposite macro, 6-106
XtlsManaged macro, 6-107
XtlsRealized macro, 6-108
XtlsSensitive macro, 6-109
XtlsSubclass subroutine, 6-110
XtMainloop subroutine, 6-111
XtMakeGeometryRequest subroutine,

6-112-6-113
XtMakeResizeRequest subroutine,

6-114-6-115
XtMalloc subroutine, 6-116
XtManageChild subroutine, 6-117
XtManageChildren subroutine, 6-118
XtMapWidget subroutine, 6-119
XtMergeArglists subroutine, 6-120
XtMoveWidget subroutine, 6-121
XtNameToWidget subroutine, 6-122
XtNew subroutine, 6-123
XtNextEvent subroutine, 6-125
XtNumber subroutine, 6-126
XtOffset macro, 6-127
XtOverride Translations subroutine, 6-130
XtOwnSelection subroutine, 6-131-6-132
XtParent macro, 6-133
XtParseAcceleratorTable subroutine, 6-134
XtParse Translation Table subroutine, 6-135
XtPeekEvent subroutine, 6-136
XtPending subroutine, 6-137
XtPopdown subroutine, 6-138
XtPopup subroutine, 6-139-6-140
XtProcessEvent subroutine, 6-141
XtQueryGeometry subroutine, 6-142-6-143
XtRealizeWidget subroutine, 6-144-6-145
XtRealloc subroutine, 6-146
XtRegisterCaseConverter subroutine, 6-147
XtReleaseGC subroutine, 6-148
XtRemoveAllCallbacks subroutine, 6-149
XtRemoveCallback subroutine, 6-150
XtRemoveCallbacks subroutine, 6-151
XtRemoveEventHandler subroutine,
6-152-6-153

XtRemoveGrab subroutine, 6-154
XtRemovelnput subroutine, 6-155
XtRemoveTimeOut subroutine, 6-157

X-26 User Interface Reference

XtRemoveWorkProc subroutine, 6-158
XtResizeWidget subroutine, 6-159
XtResizeWindow subroutine, 6-160
XtScreen macro, 6-161
XtSetArg subroutine, 6-162-6-163
XtSetErrorHandler subroutine, 6-164
XtSetErrorMsgHandler subroutine, 6-165
XtSetKeyboardFocus subroutine,
6-167-6-168

XtSetKeyTranslator subroutine, 6-166
XtSetMappedWhenManaged subroutine, 6-169
XtSetSelectionTimeout subroutine, 6-170
XtSetSensitive subroutine, 6-171
XtSetSubvalues subroutine, 6-172
XtSetValues subroutine, 6-173-6-174
XtSetWarningHandler subroutine, 6-175
XtSetWarningMsgHandler subroutine, 6-176
XtStringConversionWarning subroutine, 6-177
XtSuperclass macro, 6-178
XtToolkitlnitialize subroutine, 6-179
XtTranslateCoords subroutine, 6-180
XtTranslateKeycode subroutine, 6-181
XtUngrabKey subroutine, 6-182
XtUngrabKeyboard subroutine, 6-183
XtUninstallTranslations subroutine, 6-184
XtUnmanageChild subroutine, 6-185
XtUnmanageChildren subroutine, 6-186
XtUnmapWidget subroutine, 6-187
XtWarning subroutine, 6-189
XtWidgetCallCallbacks subroutine, 6-191
XtWidgetToApplicationContext subroutine,

6-192
XtWindow macro, 6-193
XtWindowToWidget subroutine, 6-194

lsCursorKey macro, 7-36
lsFunctionKey macro, 7-37
lsKeypadKey macro, 7-38
lsMiscFunctionKey macro, 7-39
lsModifierKey macro, 7-40
lsPFKey macro, 7-41

J
join_style field, values of, A-22

K
key

releasing the combination for a window, using
UngrabKeyProtocol request, 8-189

reporting on a change in state of a, using
KeyPress event, 10-28-10-30

reporting on a change in the state of, using
Key Release event, 10-28-10-30

ungrabbing, using XUngrabKey subroutine,
7-551-7-552

'\
)

key bindings
disabling for window manager functions, using

f.pass_keys window manager function, 5-35
enabling for window manager functions, using

f .pass_keys window manager function, 5-35
key bindings resource, syntax of, 5-42
key code, obtaining the symbol for, using

XGetKeyboardMapping subroutine, 7-262-7-263
key combination, cancelling a passive grab on,

6-182
key events, syntax of, 5-40
key symbol

changing to keycodes, using
XChangeKeyboardMapping subroutine,
7-87-7-88

determining if a symbol is a keypad key, using
lsKeypadKey macro, 7-38

determining if symbol is a cursor key, using
lsCursorKey macro, 7-36

determining if symbol is a function key, using
lsFunctionKey macro, 7-37

determining if the symbol is a miscellaneous
function key, using lsMiscFunctionKey macro,
7-39

determining if the symbol is a modifier key,
using lsModifierKey macro, 7-40

determining if the symbol is a PF key, using
lsPFKey macro, 7-41

determining the upper or lower case equivalent,
using XtConvertCase subroutine, 6-60

key_code to key_sym translator, invoking the
currently registered, using XtTranslateKeycode
subroutine, 6-181

keyBindings resource, description of, 5-24
keyboard

changing the settings, using
XChangeKeyboardControl subroutine,
7-85-7-86

controlling various aspects of, using
ChangeKeyboardControl protocol request,
8-17-8-18

establishing a passive grab on, using GrabKey
protocol request, 8-95-8-96

getting a bit vector to decribe keyboard state,
using XQueryKeymap subroutine, 7-391

getting the current settings, using
XGetKeyboardControl subroutine, 7-261

grabbing, using XGrabKeyboard subroutine,
7-302-7-304

grabbing a single key, using XGrabKey
subroutine, 7-299-7-301

grabbing control of
using GrabKeyboard protocol request,
8-97-8-98

using XtGrabKeyboard subroutine, 6-100

redirecting to a child of a composit widget,
redirecting input to composite widget child,
6-167-6-168

releasing any active grab on, using
XtUngrabKeyboard subroutine, 6-183

releasing from an active grab, using
UngrabKeyboard protocol request, 8-190

reporting information about changes in the
state of, using KeymapNotify event, 10-31

returning a bit vector for, QueryKeymap
protocol request, 8-154

returning the current control values, using
GetKeyboardControl protocol request, 8-77

setting input focus to a client window, using
f .focus_key window manager function, 5-33

setting input focus to an icon, using f .focus_key
window manager function, 5-33

setting the input focus to the next icon, using
f.next_key window manager function, 5-35

setting the input focus to the next window,
using f.next_key window manager function,
5-35

setting the input focus to the previous icon,
using f.prev_key window manager function,
5-36

setting the input focus to the previous window,
using f.prev_key window manager function,
5-36

turning off auto-repeat, using XAutoRepeatOtf
subroutine, 7-77

turning on the auto-repeat, using
XAutoRepeatOn subroutine, 7-78

ungrabbing, using XUngrabKeyboard
subroutine, 7-553

keyboard bell, regulating the volume of, using Bell
protocol request, 8-11

keyboard event
getting mapping from a keymap file, using

XLookupMapping subroutine, 7-340
translating into a character string, using

XLookupString subroutine, 7-342-7-343
translating into a key symbol value, using

XLookupKeysym subroutine, 7-339
keyboard Focus Policy resource, description of, 5-24
Keycodes, returning for keys used as modifiers,

using GetModifierMapping protocol request, 8-81
keycodes

defining the symbols for, using
ChangeKeyboardMapping protocol request,
8-19

getting those being used as modifiers, using
XGetModifierMapping subroutine, 7-264

returning the maximum number for a display,
using XDisplayKeycodes subroutine, 7-171

Index X-27

returning the minimum number for a display,
using XDisplayKeycodes subroutine, 7-171

returning the symbols for, using
GetKeyboardMapping protocol request,
8-79-8-80

specifying modifier use, using
SetModifierMapping protocol request,
8-176-8-177

keymap, changing, using XUseKeymap subroutine,
7-564

keymap file, changing the keyboard mapping, using
XRebindCode subroutine, 7-403-7-404

KeymapNotify event, 10-31
KeyPress event, 10-28-10-30
Key Release event, 10-28-10-30
keys

establishing a passive grab on, using
XtGrabKey subroutine, 6-98-6-99

modifiers for, 5-40
KillClient protocol request, 8-111

L
Label widget, creating, using XmCreatelabel

subroutine, 2-72
LabelGadget gadget

creating, using XmCreatelabelGadget
subroutine, 2-73

obtaining the ID for, using
XmOptionlabelGadget subroutine, 2-157

labels, specification syntax of, 5-43
last-focus-change time, changing, using

SetlnputFocus protocol request, 8-174-8-175
LastKnownRequestProcessed macro, 7-42
leave event, receiving

using Xmlabel widget class, 1-65
using XmlabelGadget gadget class, 1-68

LeaveNotify event, 10-32-10-34
Lighted Programmable Function Key device

changing the input of, using XSetlpfkControl
extension subroutine, 9-72

changing the output of, using XSetlpfkControl
extension subroutine, 9-72

reporting events associated with event masks
for, using XSelectlpfkl nput extension
subroutine, 9-63

resetting the EventReport mode, using
XStopAutoload extension subroutine, 9-75

retrieving the current key setting, using
XGetlpfkAttributes extension subroutine,
9-43

retrieving the current key settings, using
XGetlpfkControl extension subroutine, 9-45

returning the current event mode of, using
XQueryAutoload extension subroutine, 9-50

selecting keys for input, using XSelectlpfk
extension subroutine, 9-62

X-28 User Interface Reference

selecting keys for output, using XSelectlpfk
extension subroutine, 9-62

selecting the keys available for input, using
XSetlpfkAttributes extension subroutine,
9-70-9-71

selecting the keys available for output, using
XSetlpfkAttributes extension subroutine,
9-70-9-71

setting to mode to Autoload, using
XActivateAutoload extension subroutine, 9-7

limitResize resource, description of, 5-24
line style, setting a dashed, using SetDashes

protocol request, 8-171-8-172
line_style field, values of, A-21
line_width field, description of, A-20
list

adding an item to
using XmlistAddltem subroutine, 2-135
using XmlistAddltemUnselected

subroutine, 2-136
deleting an item at a specified position, using

XmlistDeletePos subroutine, 2-138
deleting an item from, using XmlistDeleteltem

subroutine, 2-137
deselecting the item from a, using

XmlistDeselectltem subroutine, 2-140
deselects an item in a, using

XmlistDeselectPos subroutine, 2-141
determining existence of item in a, using

XmlistltemExists subroutine, 2-142
making an item the first visible in a

using XmlistSetltem subroutine, 2-148
using XmlistSetPos subroutine, 2-149

making an item the last visible, using
XmlistSetBottomltem subroutine, 2-145

making item the last visible position, using
XmlistSetBottomPos subroutine, 2-146

removing all items from a, using
XmlistDeselectAllltems subroutine, 2-139

selecting an item in a
using XmlistSelectltem subroutine, 2-143
XmlistSelectPos subroutine, 2-144

selecting one item from, using XmSelectionBox
widget class, 1-116

unhighlighting an item on a, using
XmlistDeselectAllltems subroutine, 2-139

List widget
creating, using XmCreatelist subroutine, 2-74
creating within a ScrolledWindow widget, using

XmCreateScrolledlist subroutine, 2-100
ListExtensions protocol request, 8-112
ListFonts protocol request, 8-113
ListFontsWithlnfo protocol request, 8-114
ListHosts protocol request, 8-116
ListlnstalledColormaps protocol request, 8-117

/

ListProperties protocol request, 8-118
LookupColor protocol request, 8-119
lowerOnlconify resource, description of, 5-25

M
MainWindow widget, creating, using

XmCreateMainWindow subroutine, 2-75
managed children, adding a child to a parent widget

list of, using XtManageChild subroutine, 6-117
map, reporting changes in a, using MappingNotify

event, 10-38
MapNotify event, 10-36
Mapping Notify event, 10-38
MapRequest event, 1 0-37
MapSubwindows protocol request, 8-121
MapWindow protocol request, 8-122

performing on all unmapped children, using
MapSubwindows protocol request, 8-121

reporting on when called by other clients, using
MapRequest event, 1 0-37

marker
drawing into the window with extended

graphics context, using XDrawPolyMarker
extension subroutine, 9-19

drawing multiples in the specified window,
using XDrawPolyMarkers extension
subroutine, 9-20-9-21

setting in the specified graphics context, using
XSetPolyMarker extension subroutine, 9-73

matteBackground resource, description of, 5-7
matteBottomShadowColor resource, description of,

5-8
matteBottomShadowPixmap resource, description

of, 5-8
matteForeground resource, description of, 5-8
matteTopShadowColor resource, description of, 5-9
matteTopShadowPixmap resource, description of,

5-9
matte Width resource, description of, 5-9
MaxCmapsOfScreen macro, 7-43
maximumClientSize resource, description of, 5-1 O
maximumMaximumSize resource, description of,

5-25
memory

menu

providing for a permanent allocation of, using
Xpermalloc subroutine, 7-371

recovering, using XmStringFree subroutine,
2-196

assocating a pull-down with a pane entry,
using f .menu window manager function, 5-34

associating with a button, using f .menu window
manager function, 5-34

associating with a key binding, using f.menu
window manager function, 5-34

placing a separator in the menu pane, using
f .separator window manager function, 5-38

popping down a spring-loaded, using
MenuPopdown Translation Action, 6-3

popping up, using MenuPopup Translation
Action, 6-4

posting the window, using f .post_wmenu
window manager function, 5-36

menu cursor
modifying for an application, using

XmSetMenuCursor subroutine, 2-17 4
returning the ID for, using XmGetMenuCursor

subroutine, 2-128
menu pane, inserting a title in, using f .title window

manager function, 5-38
menu panes

specification syntax of, 5-43
use of, 5-43

MenuBar widget, linking with two MenuPane
widgets, using XmCascadeButton widget class,
1-34

MenuPane widget, linking to another, using
XmCascadeButtonGadget gadget class, 1-39

MenuPopdown Translation Action, 6-3
MenuPopup Translation Action, 6-4-6-5
MenuShell widget, creating, using

XmCreateMenuShell subroutine, 2-78
message, sending the type

_MOTIF _WM_MESSAGES, using f .send_msg
window manager function, 5-38

message dialogs, creating, using XmMessageBox
widget class, 1-84

MessageBox widget
accessing a component within a, using

XmMessageBoxGetChild subroutine, 2-155
creating, using XmCreateMessageBox

subroutine, 2-79
MessageDialog widget, creating, using

XmCreateMessageDialog subroutine, 2-81
messages, issuing a warning, using

XtStringConversionWarning subroutine, 6-177
MinCmapsOfScreen macro, 7-44
minor protocol revision number, returning, using

ProtocolRevision macro, 7-47
modal widget, removing the redirection of user input

to, XtRemoveGrab subroutine, 6-154
modifiers

available names for, 5-39
setting the keycodes to be used as, using

XSetModifierMapping subroutine,
7-487-7-488

motion buffer, returning the size of, using
XDisplayMotionBufferSize subroutine, 7-172

motion history, getting for a specified period, using
XGetMotionEvents subroutine, 7-265-7-266

motion history buffer, returning all events to, using
GetMotionEvents protocol request, 8-82-8-83

Motion Notify event, 10-28

Index X-29

mouse button
grabbing, using XGrabButton subroutine,
7-295-7-298

ungrabbing, using XUngrabButton subroutine,
7-549-7-550

moveThreshold resource, description of, 5-25
Empty, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9, 5-10,
5-17,5-18,5-19,5-20,5-21,5-22,5-23,5-24,
5-25,5-26,5-27,5-28,5-29,5-30,5-32,5-33,
5-34,5-35,5-36,5-37,5-38

N
name

assigning, using XStoreName subroutine,
7-529-7-530

getting an atom for, using XlnternAtome
subroutine, 7-315-7-316

returning the atom for, using lnternAtom
protocol request, 8-11 O

NextRequest macro, 7-45
No Exposure event, 10-40
non-fatal error

calling the installed procedure, using XtWarning
subroutine, 6-189

registering a procedure to be called, using
XtSetWarningHandler subroutine, 6-175

non-transitory state, setting within an application,
using XmToggleButton widget class, 1-131

nonfatal error, processing, using XtAppWarning
subroutine, 6-44

nonfatal error conditions, registering a procedure to
call on

using XtAppSetWarningHandler subroutine,
6-42

using XtAppSetWarningMsgHandler
subroutine, 6-43

NoOperation protocol, sending request to the X
Server, using XNoOp subroutine, 7-359

NoOperation protocol request, 8-123

0
Object widget class, 1-1 O
OpenFont protocol request, 8-124
Optionmenu widget, linking to MenuPane widget,

using XmCascadeButtonGadget gadget class,
1-39

options, selecting one or more from, Xmlist widget
class, 1-70

output buffer, flushing
using _XReply extension subroutine,
6-196-6-198

using XFlush subroutine, 7-225
using XSync subroutine, 7-537-7-538

OverrideShell widget class, 1-11

X-30 User Interface Reference

p
PanedWindow widget

composition of, 1-88
resource values for, 1-89
setting borders of pane, 1-89

parameter, returning the size closest to size of, using
QueryBestSize protocol request, 8-144-8-145

parent widget list, adding a child, using
XtManageChild subroutine, 6-117

passButtons resource, description of, 5-25
passSelectButton resource, description of, 5-26
pixel

freeing all parameters, using FreeColors
protocl request, 8-66

setting the color to a named color, using
XStoreNamedColor subroutine,
7-531-7-532

pixels, returning the number of, XmStringBaseline
subroutine, 2-180

Pixmap, deleting the association with the resource
ID, using FreePixmapProtocol request, 8-69

pixmap
creating, using XCreatePixmap subroutine,

7-142-7-143
creating from bitmap-format data, using

XCreatePixmapFromBitmapData subroutine,
7-146-7-147

creating with an identifier, using CreatePixmap
protocol request, 8-53

deleting the association with the pixmap ID,
using XFreePixmap subroutine, 7-239

generating, using XmGetPixmap subroutine,
2-129

storing in a cache, using XmGetPixmap
subroutine, 2-129

pixmap ID, deleting the association with the pixmap,
using XFreePixmap subroutine, 7-239

PlanesOfScreen macro, 7-46
pointer

changing the active grab, using
XChangeActivePointerGrab subroutine,
7-81-7-82

changing the current position of, using
WarpPointer protocol request, 8-196-8-197

changing the dynamic fields if grabbed, using
ChangeActivePointerGrab protocol request,
8-12

changing the rate of acceleration in movement
of, using XChangePointerControl subroutine,
7-89-7-90

defining movement of, using
ChangePointerControl protocol request, 8-20

(

getting the current acceleration parameters,
using XGetPointerControl subroutine,
7-270-7-271

getting the mapping of the buttons, using
XGetPointerMapping subroutine, 7-272

grabbing, using XGrabPointer subroutine,
7-305-7-307

grabbing control of, using GrabPointer protocol
request, 8-100-8-102

moving to an arbitrary point on the screen,
using XWarpPointer subroutine,
7-566-7-567

obtaining pointer coordinates, using
XQueryPointer subroutine, 7-392-7-393

obtaining root window relative to root origin,
using XQueryPointer subroutine,
7-392-7-393

releasing, using UngrabPointer protocol
request, 8-191

releasing the button/key combination of a
passive grab, using UngrabButton protocol
request, 8-188

reporting on movement from one window to
another, using EnterNotify event,
10-14-10-16

reporting on movement of the, using
MotionNotify event, 10-28-10-30

reporting on the cause of movement of, using
LeaveNotify event, 10-32-10-34

returning for the specified widget, using
XtDisplay macro, 6-76

returning the acceleration and threshold fields,
using GetPointerControl Protocol, 8-84

returning the coordinates for the current
position, using QueryPointer protocol request,
8-155-8-156

returning the current mapping of, using
GetPointerMapping protocol request, 8-85

returning the root window for the current
position, using QueryPointer protocol request,
8-155-8-156

returning to a null-terminated string, using
ServerVendor macro, 7-54

returning to the screen, using XtScreen macro,
6-161

setting the mapping of, using
SetPointerMapping protocol request, 8-178

setting the mapping of the pointer, using
XSetPointerMapping subroutine,
7-492-7-493

ungrabbing, using XUngrabPointer subroutine,
7-554

points, drawing lines between each pair of, using
Polyline protocol request, 8-133-8-134

PolyArc protocol request, 8-125-8-126
PolyFillArc protocol request, 8-127
PolyFillRectangle protocol request, 8-129

polygons, drawing filled, using XDrawFilled
subroutine, 7-179

Polyline protocol request, 8-133-8-134
PolyPoint protocol request, 8-131
PolyRectangle protocol request, 8-135
PolySegment protocol request, 8-137
PolyText16 protocol request, 8-138-8-139
PolyText8 protocol request, 8-140-8-141
pop-up menu, mapping from a specified widget

callback list
using XtCallbackNone subroutine, 6-51
using XtCallbackNonexlusive subroutine, 6-52

pop-up shell
creating, using XtCreatePopupShell subroutine,

6-64
mapping from within an application, using

XtPopup subroutine, 6-139-6-140
unmapping from within an application, using

XtPopdown subroutine, 6-138
pop-up widget, mapping from a specified widget

callback list, using XtCallbackExclusive subroutine,
6-50

Popup Menu Pane, positioning, 2-154
Position ls Frame resoure, description of, 5-26
positionOnScreen resource, description of, 5-26
primary window, providing the standard layout for,

using XmMainWindow widget class, 1-76
program interfaces, customizing, using XmText

widget class, 1-124
property

deleting from the window, using DeleteProperty
protocol request, 8-59

reporting on changes in a window, using
PropertyNotify event, 10-41

property list, rotating, XRotateWindowProperties
subroutine, 7-422-7-423

PropertyNotify event, 10-41
protocol

activating, using XmActivateProtocol
subroutine, 2-3

adding client callbacks for, using
XmAddProtocolCallback subroutine, 2-4

adding to the protocol manager, using
XmAddProtocols subroutine, 2-5

deactivating without removal, using
XmDeactivateProtocol subroutine, 2-119

returning version number of, using
ProtocolVersion macro, 7-48

protocol message
executing post actions upon receipt of, using

XmSetProtocolHooks subroutine, 2-175
executing pre actions upon receipt of, using

XmSetProtocolHooks subroutine, 2-175
protocol request

forcing a beginning on 64-bit boundaries, using
NoOperation protocol request, 8-123

Index X-31

sets the subroutine to be called after a, using
XSetAfterFunction subroutine, 7-457

ProtocolRevision macro, 7-47
protocols

removing from the protocol manager, using
XmRemoveProtocols subroutine, 2-159

restarting processing of, using UngrabServer
protocol request, 8-192

ProtocolVersion macro, 7-48
PushButton widget, creating, using

XmCreatePushButton subroutine, 2-92
PushButtonGadget widget, creating, using

XmCreatePushButtonGadget subroutine, 2-93
Putlmage protocol request, 8-142-8-143

Q
Qlength macro, 7-49
quark

allocating a new, using XrmUniqueQuark
subroutine, 7-449

coverting to a character string, using
XrmQuarkToString subroutine, 7-445

QueryBestSize protocol request, 8-144-8-145
QueryColors protocol request, 8-146
QueryExtension protocol request, 8-14 7
QueryFont protocol request, 8-148-8-152
QueryKeymap protocol request, 8-154
QueryPointer protocol request, 8-155-8-156
QueryTextExtents protocol request, 8-157-8-158
QueryTree protocol request, 8-159
QuestionDialog widget, creating, using

XmCreateQuestionDialog subroutine, 2-94
queue

getting next event, using XNextEvent
subroutine, 7-358

returning the next matched event, using
XAIXCheckTypedWindowEvent extension
subroutine, 9-3

queued events, releasing when device is frozen,
using AllowEvents protocol request, 8-9-8-10

quitTimeout resource, description of, 5-27

R
RecolorCursor protocol request, 8-160
rectangle, enclosing the smallest region, using

XClipBox subroutine, 7-115
rectangles

combining source and destination, using
CopyArea protocol request, 8-34-8-35

determining residence in a specified region,
using XRectlnRegion subroutine, 7-408

drawing the outlines of, using PolyRectangle
protocol request, 8-135

filling, using PolyFillRectangle protocol request,
8-129

X-32 User Interface Reference

filling in a destination with background pixel
using lmageText16 protocol request,
8-104-8-105

using lmageText8 protocol request,
8-106-8-107

rectangular area, clearing in the specified window,
using XClearArea subroutine, 7-112-7-113

RectObj widget class, 1-13
region

adding to the ScrolledWindow widget, using
XmScrolledWindowSetAreas subroutine,
2-169

comparing offset, size, and shape with another
region, using XEqualRegion subroutine,
7-208

computing the intersection, using
XlntersectRegion subroutine, 7-317

computing union of, using XUnionRegion
subroutine, 7-559

creating a new, using XCreateRegion
subroutine, 7-156

determining empty status, using XEmptyRegion
subroutine, 7-206

enlarging by a specified amount, using
XShrinkRegion subroutine, 7-522

filling as defined by a set of points, using
FillPoly protocol request, 8-62-8-63

freeing the storage associated with, using
XDestroyRegion subroutine, 7-168

generating from a polygon, using
XPolygonRegion subroutine, 7-373

locating a point in, using XPointlnRegion
subroutine, 7-372

moving by a specified amount, using
XOffsetRegion subroutine, 7-360

reducing by a specified amount, using
XShrinkRegion subroutine, 7-522

reporting when destination cannot be
computed, using GraphicsExposure event,
10-25-10-26

subtracting two regions, using XSubtractRegion
subroutine, 7-536

uniting a rectangle with a source region, using
XUnionRectWithRegion subroutine, 7-558

regions, reporting information on visibility of, using
Expose event, 10-17-10-18

ReparentNotify event, 10-43
ReparentWindow protocol request, 8-161-8-162
reply, copying packet contents into the Reply

parameter, using _XReply extension subroutine,
6-196-6-198

request
disabling processing, using GrabServer

protocol request, 8-1 03

(

J

returning the maximum size supported, using
XMaxRequestSize extension subroutine, 9-49

Resize Request event, 1 0-44
resizeBorderWidth resource, description of, 5-27
resizeCursors resource, description of, 5-27
resource

retrieving from a database, using
XrmQGetResource subroutine,
7-436-7-437

retrieving those specific to the application,
using XtGetApplicationResources subroutine,
6-83-6-84

storing a single entry into a database, using
XrmPutlineResource subroutin e, 7-432

storing into a database, using XrmPutResource
subroutine, 7-433-7-434

resource converter, invoking
using XtConvert subroutine, 6-59
using XtDirectConvert subroutine, 6-73

resource ID
deleting association with the colormap, using

FreeColormap protocol request, 8-65
deleting the association with the cursor, using

FreeCursor protocol request, 8-67
deleting the association with the font, using

CloseFont protocol request, 8-28
deleting the association with the Pixmap, 8-69

resource list structure, obtaining for a particular
class, using XtGetResourcelist subroutine, 6-88

resource manager
initializing, using Xrmlnitialize subroutine,

7-427
returning from rootwindow of screen zero,

using XResourceManagerString subroutine,
7-418

resource sets
ApplicationShell, 3-3
Composite, 3-4
Core, 3-5
Object, 3-11
RectObj, 3-12
Shell, 3-14
ToplevelShell, 3-16
VendorShell, 3-17
WMShell, 3-20
XmBulletinBoard, 3-30
XmCascadeButton, 3-37
XmCascadeButtonGadget, 3-39
XmCommand, 3-41
XmDrawing Area, 3-44
XmDrawnButton, 3-46
XmFileSelectionBox, 3-49
XmForm, 3-58
XmFormConstraint, 3-51
XmFrame, 3-60
XmGadget, 3-61

RGB

Xmlabel, 3-64
XmLabelGadget, 3-70
XmlistResource, 3-75
XmMainWindow, 3-81
Xm Manager, 3-83
XmMessageBox, 3-87
XmPanedWindow, 3-93
Xm PanedWindowConstraint, 3-91
XmPrimitive, 3-96
XmPushButton, 3-100
XmScale, 3-119
XmScrollBar, 3-124
XmScrolledlist, 3-129
XmScrolledWindow, 3-132
XmSelectionBox, 3-136
XmSeparator, 3-142
XmSeparatorGadget, 3-144
XmText, 3-150
XmTextlnput, 3-146
XmTextOutput, 3-147
XmTextScrolled, 3-155
XmToggleButton, 3-157
XmToggleButtonGadget, 3-161

storing into a colormap cell, using XStoreColor
subroutine, 7-525-7-526

storing multiple values into colormap cells,
using XStoreColors subroutine,
7-527-7-528

RGB values
creating from color name strings, using

XParseColor subroutine, 7-363-7-364
obtaining for a specified pixel, using

XQueryColor subroutine, 7-386
querying for an array of pixels, using

XQueryColors subroutine, 7-387-7-388
root window

returning
using DefaultRootWindow macro, 7-17
using RootWindow macro, 7-50

returning the depth of, using All Planes macro,
7-3

returning the depth of the default, using
DefaultDepth macro, 7-13

returning the depth of the specified screen,
using DisplayPlanes macro, 7-26

returning the graphics context of, using
DefaultGC macro, 7-15

RootWindow macro, 7-50
RootWindowOfScreen macro, 7-51
RotateProperties protocol request, 8-163
RowColumn widget

configured as Popup MenuPane, using
XmCreatePopupMenu subroutine, 2-86

Index X-33

s

configured as Pulldown MenuPane, using
XmCreatePulldownMenu subroutine, 2-90

creating
using XmCreateOptionMenu subroutine,

2-83
using XmCreateRowColumn subroutine,

2-96
operating as a MenuBar widget, using

XmCreateMenuBar subroutine, 2-76
setting up RadioBox widget, using

XmCreateRadioBox subroutine, 2-95

sample program
attributes, using the display constants to

change the default, 11-21
using extended curses routines to create

screen displays, 12-33
save-set

adding a window from the client's, using
XChangeSaveSet subroutine, 7-94-7-95

adding a window to the client's, using
XAddToSaveSet subroutine, 7-64

removing a window from the client's, using
XChangeSaveSet subroutine, 7-94-7-95

save-set, client, removing a window from, using
XRemoveFromSaveSet subroutine, 7-41 O

saveUnder resource, description of, 5-12
Scale widget, creating, using XmCreateScale

subroutine, 2-98
scratch buffer, returning, using _XAllocScratch

extension subroutine, 6-195
screen

causing information to blink on, using ***blink
extension subroutine, 9-9-9-1 O

describing the height in millimeters, using
HeightMMOfScreen macro, 7-33

describing the height in pixels, using
HeightOfScreen macro, 7-34

describing the width in millimeters, using
WidthMMOfScreen macro, 7-58

describing the width in pixels
using DisplayWidth macro, 7-28
using WidthOfScreen macro, 7-59

determining support for backing store
attributes, using DoesBackingStore macro,
7-30

determining support for the save under flag,
using DoesSaveUnder macro, 7-31

displaying width in millimeters, using
DisplayWidthMM macro, 7-29

getting list of installed colormaps, using
XListlnstalledColormaps subroutine,
7-328-7-329

installing colormap for, using lnstallColormap
protocol request, 8-108

X-34 User Interface Reference

returning a list of installed colormaps, using
ListlnstalledColormaps protocol request,
8-117

returning a pointer to
using ScreenOfDisplay macro, 7-53
using XtScreen macro, 6-161

returning height in millimeters, using
DisplayHeightMM macro, 7-24

returning minimum number of colormaps
supported, using MinCmapsOfScreen macro,
7-44

returning the default
using DefaultScreen macro, 7-18
using DefaultScreenOfDisplay macro, 7-19

returning the default depth of, using
DefaultDepthOfScreen macro, 7-14

returning the depth of, using PlanesOfScreen
macro, 7-46

returning the display of the specified, using
DisplayOfScreen macro, 7-25

returning the height of, using DisplayHeight
macro, 7-23

returning the maximum number of colormaps
supported, using MaxCmapsOfScreen macro,
7-43

returning the root window of, using
RootWindowOfScreen macro, 7-51

searching for the named color, using
AllocNamedColor protocol request, 8-8

visual classes, visual types of, A-3
screen saver

activating, using XActivateScreenSaver
subroutine, 7-60

forcing off, using XForceScreenSaver
subroutine, 7-226

forcing on, using XForceScreenSaver
subroutine, 7-226

getting the current values, using
XGetScreenSaver subroutine, 7-273-7-274

resetting, using XResetScreenSaver
subroutine, 7-415

setting the method for, using SetScreenSaver
protocol request, 8-179-8-180

setting the status for, using SetScreenSaver
protocol request, 8-179-8-180

screen-saver
activating the, using ForceScreenSaver

protocol request, 8-64
returning the current control values, using

GetScreenSaver protocol, 8-89
ScreenOfDisplay macro, 7-53
screens, returning the number of available, using

ScreenCount macro, 7-52
scroll bar

changing the slider position, 2-165

(
~

\
I

/

changing the slider size, using
XmScrollBarGetValues subroutine, 2-165

ScrollBar widget
adding to the ScrolledWindow widget, using

XmScrolledWindowSetAreas subroutine,
2-169

changing slider size, using
XmScrollBarSetValues subroutine, 2-167

changing the increment values of, using
XmScrollBarSetValues subroutine, 2-167

changing the slider position, using
XmScrollBarSetValues subroutine, 2-167

creating, using XmCreateScrollBar subroutine,
2-99

Scrollbar widget, moving to position in a list, 2-14 7
ScrollBar widgets, combining one or more, using

XmScrolledWindow widget, 1-113
ScrolledWindow widget, creating, using

XmCreateScrolledWindow subroutine, 2-104
segment, drawing a line for each, using

PolySegment protocol request, 8-137
selection

changing last-change time, using
SetSelectionOwner protocol request,
8-181-8-182

changing the owner, using SetSelectionOwner
protocol request, 8-181-8-182

changing the owner window, using
SetSelectionOwner protocol request,
8-181-8-182

converting a, using ConvertSelection protocol
request, 8-33

converting to the specified target type, using
XConvertSelection subroutine, 7-119-7-120

obtaining the current value of the selection,
using XtGetSelectionValues subroutine,
6-91-6-92

retrieving the value of the primary, using
XmTextGetSelection subroutine, 2-215

returning the current window owner, using
GetSelectionOwner protocol request, 8-90

setting the owner, using XSetSelectionOwner
subroutine, 7-497-7-498

setting the owner of a, using XtOwnSelection
subroutine, 6-131-6-132

selection owner, returning the window ID, using
XGetSelectionOwner subroutine, 7-275

selection value, obtaining in a single logical unit,
using XtGetSelectionValue subroutine, 6-90

SelectionBox widget, creating an unmanaged
using XmCreatePromptDialog subroutine, 2-88
XmCreateSelectionBox subroutine, 2-105

SelectionBox widget child, creating an unmanaged,
using XmCreateSelectionDialog subroutine, 2-107

SelectionClear event, 10-45
SelectionDialog widget, creating, using

XmCreateSelectionDialog subroutine, 2-107
Selection Notify event, 10-46

Selection Request event, 10-47
SendEvent protocol request, 8-165-8-166

reporting on ownership for the selection, using
SelectionNotify event, 10-46

reporting when a client uses, using
ClientMessage event, 10-5

separator, creating a single, using
XmStringSeparatorCreate subroutine, 2-21 O

Separator widget
creating, using XmCreateSeparator subroutine,

2-109
returning the ID of, using XmMainWindowSep1

subroutine, 2-150
returning the ID of the second, using

MainWindow subroutine, 2-151
SeparatorGadget gadget, creating, using

XmCreateSeparatorGadget subroutine, 2-110
separators, returning the number of, using

XmStringlineCount subroutine, 2-205
serial number

extracting from the last request processed by
the X Server, using LastKnown Request
macro, 7-42

extracting number to be used for the next
request, using NexRequest macro, 7-45

server
grabbing, using XGrabServer subroutine,

7-308
querying for the bounding box of an 2-byte,

16-bit character string, using
XQueryTextExtents16 subroutine,
7-396-7-397

querying for the bounding box of an 8-bit
character string, using XQueryTextExtents,
7-394-7-395

returning the scanline pad unit, using the
BitmapPad macro, 7-5

ungrabbing, using XUngrabServer subroutine,
7-555

ServerVendor macro, 7-54
SetAccessControl protocol request, 8-167
SetCloseDownMode protocol request, 8-170
SetDashes protocol request, 8-171-8-172
SetFontPath protocol request, 8-173
SetlnputFocus protocol request, 8-174-8-175
SetModifierMapping protocol request, 8-176-8-177
SetPointerMapping protocol request, 8-178
SetScreenSaver protocol request, 8-179-8-180
SetSelectionOwner protocol request, 8-181-8-182

reporting when new owner is defined by, using
SelectionClear event, 10-45

shadow border, drawing, using XmGadget gadget
class, 1-63

shell
popping down after being popped up by the

XtCallbackExlusive subroutine, using
XtCallbackPopdown subroutine, 6-53

Index X-35

popping down after being popped up with the
XtCallbackNonexclusive subroutine, using
XtCallbackPopdown subroutine, 6-53

popping down after popped up with
XtCallbacknone subroutine, using
XtCallbackPopdown subroutine, 6-53

shell command, running
using ! window manager function, 5-32
using f.exec window manager function, 5-32

Shell widget class, 1-14
shell windows, manipulating by AIXwindows window

manager, using TransientShell widget class, 1-18
showFeedback resource, description of, 5-28
single byte, operations, support of,· A-30
size hints

slider

getting, using XGetNormalHints subroutine,
7-267-7-268

setting, using XSetNormalHints subroutine,
7-489-7-490

returning the current position of, using
XmScaleGetValue subroutine, 2-163

setting the value of, using XmScaleSetValue
subroutine, 2-164

stack_mode field
restacking order without sibling, A-13
restracking order with sibling, A-12

startupKeyFocus resource, description of, 5-28
stipple

getting the best shape, using
XQueryBestStipple subroutine, 7-382-7-383

getting the best size, using XQueryBestSize
subroutine, 7-380-7-381

stipple field, description of, A-22
storage

allocating, using XtMalloc subroutine, 6-116
allocating for a new instance of a data type,

using XtNew subroutine, 6-123
changing the size of an allocated block of,

using XtRealloc subroutine, 6-146
freeing an allocated block, XtFree subroutine,

6-82
StoreColors protocol request, 8-183-8-184
stored modifier information, using

XRefreshKeyboardMapping subroutine, 7-409
StoreNamedColor protocol request, 8-185
string

appending to another string, using
XmStringConcat subroutine, 2-183

converting character to quark, using
XrmStringToQuark subroutine, 7-447

converting to a binding list, using
XrmStringToBindingQuarklist subroutine,
7-446

converting to a quark list,
XrmStringToQuarklist subroutine, 7-448

X-36 User Interface Reference

converting to a unit-type value, using
XmCvtStringToUnitType subroutine, 2-117

copying an instance, using XtNewString macro,
6-124

coverting to a quark list, using
XrmStringToBindingQuarklist subroutine,
7-446

creating a compound, using XmStringCreate
subroutine, 2-185

drawing a compound
using XmStringDraw subroutine, 2-188
using XmStringDrawlmage subroutine,

2-190
fetching the octets in a, using

XmStringGetNextSegment subroutine, 2-201
getting the bounding box of 1-byte character,

using XTextExtents subroutine,
7-540-7-541

getting the bounding box of 2-byte character,
using XTextExtents16 subroutine,
7-542-7-543

getting the width of a 2-byte character, using
XTextWidth16 subroutine, 7-545

getting the width of an 8-bit character, using
XTextWidth subroutine, 7-544

making a copy of, using XmStringCopy
subroutine, 2-184

mapping to a key symbol, using
XRebindKeysym subroutine, 7-405-7-406

mapping to a modifier, using XRebindKeysym
subroutine, 7-405-7-406

replacing a displayed, using
XmCommandSetValue subroutine, 2-47

underlining, XmStringDrawUnderline
subroutine, 2-192

string resource, storing into a database
using XrmPutStringResource subroutine,

7-435
using XrmQPutString subroutine, 7-444

strings
comparing two, using XmStringCompare

subroutine, 2-182
creating a compound, using

XmStringCreateltoR subroutine, 2-186
creating compound, using XmString subroutine,

2-177
manipulating compound, using XmString

subroutine, 2-177
structure, determining the byte offset of a resource

field within, using XtOffset macro, 6-127
subimage, creating, using XSublmage subroutine,
7-534-7-535

subwindow
circulating down, using XCirculateSubwindows

subroutine, 7-108-7-109

circulating up, using XCirculateSubwindows
subroutine, 7-108-7-109

destroying, using XDestroySubwindows
subroutine, 7-169

unmapping, using XUnmapSubwindows
subroutine, 7-562

subwindows, deleting all, using DestroySubwindows
protocol request, 8-60

superclass, supporting shell classes non-visible to
window manager, using VendorShell widget class,
1-20

synchronization

T

disabling, using XSynchronize subroutine,
7-539

enabling, using XSynchronize subroutine,
7-539

tab group, removing, using XmRemoveTabGroup
subroutine, 2-160

tab groups

table

adding a Manager widget to the list of, using
XmAddTabGroup subroutine, 2-6

adding a Primitive widget to the list of, using
XmAddTabGroup subroutine, 2-6

creating an entry in a specific associate, using
XMakeAssoc subroutine, 7-345

deleting an entry from an associate, using
XDeleteAssoc subroutine, 7-162

freeing memory associated with an associate,
using XDestroyAssocTable subroutine, 7-166

obtaining data from a specific associate, using
XLookUpAssoc subroutine, 7-336

returning a pointer to a new associate, using
XCreateAssocTable subroutine, 7-129

terminal, causing a beep, using f .beep window
manager function, 5-32

text
drawing, using PolyText8 protocol request,

8-140
drawing with 2-byte characters, using

PolyText16 protocol request, 8-138-8-139
non-zero length components, returning

information with XmStringEmpty subroutine,
2-194

painting with the foreground pixel
using lmageText16 protocol request,
8-104-8-105

using lmageText8 protocol request,
8-106-8-107

setting the primary selection of, using
XmTextSetSelection subroutine, 2-220

text string, accessing maximum length from the
keyboard, using XmTextGetMaxlength subroutine,
2-214

Text widget
accessing the edit permission state of, using

XmTextGetEditable subroutine, 2-213
accessing the string value of, XmTextGetString

subroutine, 2-216
clearing the primary selection in, using

XmTextClearSelection subroutine, 2-212
creating, using XmCreateText subroutine,

2-111
creating within a ScrolledWindow widget, using

XmCreateScrolledText subroutine,
2-102-2-103

replacing part of the text string in, using
XmTextReplace subroutine, 2-217

setting the edit permission of, using
XmTextSetEditable subroutine, 2-218

setting the maximum string length, using
XmTextSetMaxlength subroutine, 2-219

setting the string value of, using
XmTextSetString subroutine, 2-221

tile, getting the best size, using XQueryBestSize
subroutine, 7-380-7-381

tile field, description of, A-22
time-out value

creating, using XtAppAddTimeOut subroutine,
6-24

creating in the default application context, using
XtAddTimeOut subroutine, 6-18

getting the current selection, using
XtAppGetSelectionTimeout subroutine, 6-33

obtaining the current selection, using
XtGetSelectionTimeout subroutine, 6-89

removing, using XtRemoveTimeOut subroutine,
6-157

setting for the selection, using
XtSetSelectionTimeout subroutine, 6-170

setting the selection, using
XtAppSetSelectionTimeout subroutine, 6-41

ToggleButton widget
changing the current state of, using

XmToggleButtonSetState subroutine, 2-225
creating an instance of, using

XmCreateToggleButton subroutine, 2-112
obtaining the state of, using

XmToggleButtonGetState subroutine, 2-224
setting the current state of, using

XmToggleButtonSetState subroutine, 2-225
ToggleButtonGadget gadget

changing the current state, using
XmToggleButtonGadgetSetState subroutine,
2-223

creating, using XmCreateToggleButtonGadget
subroutine, 2-113

Index X-37

obtaining the state of, using
Xm ToggleButtonGadgetG etState subroutine,
2-222

setting the current state, using
XmToggleButtonGadgetSetState subroutine,
2-223

toolkit, initializing internals, using Xtlnitialize
subroutine, 6-102-6-103

top-level widget
encapsulating the interaction with the window

manager, using WMShell widget class, 1-22
serving as, using Shell widget class, 1-14

top-level window, serving as, using ApplicationShell
widget class, 1-3

top-level windows, applying to, using ToplevelShell
widget class, 1-16

ToplevelShell widget class, 1-16
topShadowColor resource, description of, 5-13
topShadowPixmap, description of, 5-13
transientDecoration resource, description of, 5-29
transientFunctions resource, description of, 5-29
TransientShell widget class, 1-18
TranslateCoordinates protocol request,

8-186-8-187
translation table, compiling, using

XtParseTranslationTable subroutine, 6-135
translations

merging into widget translation table, using
XtAugmentTranslations subroutine, 6-46

overwriting with new translations, using
XtOverride Translations subroutine, 6-130

removing existing, using
XtUninstallTranslations subroutine, 6-184

translator, registering a key, using
XtSetKeyTranslator subroutine, 6-166

traversal resource, Manager widget class, use of,
1-78

traverse
activating

using XmGadget gadget class, 1-63
XmPrimitive widget class, 1-91

deactivating
using XmGadget gadget class, 1-63
using XmPrimitive widget class, 1-91

two byte, operations, support of, A-30

u
UngrabButton protocol request, 8-188
UngrabKey protocol request, 8-189
UngrabKeyboard protocol request, 8-190
UngrabPointer protocol request, 8-191
UngrabServer protocol request, 8-192
UninstallColormap protocol request, 8-193
union, getting the difference between the intersection

of two regions and the, using XXorRegion
subroutine, 7-571

unit type, coverting, using XmConvertUnits
subroutine, 2-48

X-38 User Interface Reference

UnmapNotify event, 10-49
unmapped subwindow, creating, using

XCreateWindow subroutine, 7-159-7-161
UnmapSubwindows protocol request, 8-194
UnmapWindow protocol request, 8-195
useClientlcon resource, description of, 5-10
use Icon Box resource, description of, 5-30
user, redirecting input to a modal widget, using

XtAddGrab subroutine, 6-13
user interfaces, customizing, using XmText widget

class, 1-124

v
value range, selecting a value from, using XmScale

widget class, 1-107
vendor release, returning a number related to, using

VendorRelease macro, 7-55
VendorRelease macro, 7-55
VendorShell widget class, 1-20
VisibilityNotify event, 10-50
visual, returning the default, using

DefaultVisualOfScreen macro, 7-21
visual information, getting to match depth and class

of the screen, using XMatchVisuallnfo subroutine,
7-351-7-352

visual resource, Manager widget class, use of, 1-78
visual structures, getting a list of, using

XGetVisuallnfo subroutine, 7-284-7-285
visual type

w

getting the visual ID, using
XVisuallDFromVisual subroutine, 7-565

returning the default, using DefaultVisual
macro, 7-20

warning messages
customizing, using XtAppWarningMsg

subroutine, 6-45
displaying based on input parameters, using

XtWarningMsg subroutine, 6-190
WarningDialog widget, creating, using

XmCreateWarningDialog subroutine, 2-114
WarpPointer protocol request, 8-196-8-197
white pixel value, returning, using WhitePixel macro,

7-56
WhitePixel macro, 7-56
WhitePixelOfScreen macro, 7-57
widget

adding a list of widgets to the
geometry-managed parent, using
XtManageChildren subroutine, 6-118

changing the managed state of, using
XtSetMappedWhenManaged subroutine,
6-169

creating a child, XtCreateManagedWidget
subroutine, 6-63

creating a top-level, using XtAppCreateShell
subroutine, 6-26-6-27

creating an instance of, using XtCreateWidget
subroutine, 6-65-6-66

deleting a callback procedure from a callback
list, using XtRemoveCallback subroutine,
6-150

deleting a callback procedures list from a
callback list, using XtRemoveCallbacks
subroutine, 6-151

deleting callback procedures from callback list,
6-149

destroying an instance, using XtDestroyWidget
subroutine, 6-71-6-72

destroying the windows associated with, using
XtUnrealizeWidget subroutine, 6-188

determining if realization occurred, using
XtlsRealized macro, 6-108

determining subclass status of the Composite
class, using XtlsComposite macro, 6-106

determining the current sensitivity state, using
XtlisSensitive macro, 6-109

determining the managed state of a child, using
XtlsManaged macro, 6-107

determining the subclass of, using
XtlsSubclass subroutine, 6-110

getting the application context for, using
XtWidgetToApplicationContext subroutine,
6-192

giving the callback list status, using
XHasCallbacks subroutine, 6-101

informing selection mechanism of loss of
ownership, using XDisownSelection
subroutine, 6-74

installing all accelerators onto one destination,
using XtlnstallAllAccelerators subroutine,
6-105

installing all accelerators' descendants onto
one destination, using XtlnstallAllAccelerators
subroutine, 6-105

making a general geometry manager request
from, using XtMakeGeometryRequest
subroutine, 6-112-6-113

making a simple resize request from, using
XtMakeResizeRequest subroutine,
6-114-6-115

mapping explicitly, using XtMapWidget
subroutine, 6-119

modifying the current resource value, using
XtSetValues subroutine, 6-173-6-17 4

moving the sibling, using XtMoveWidget
subroutine, 6-121

moving the sibling making the geometry
request, using XtConfigureWidget subroutine,
6-58

obtaining resources from subparts of, using
XtGetSubresources subroutine, 6-93-6-94

obtaining the class of, using XtClass macro,
6-56

obtaining the superclass of, using XtSuperclass
macro, 6-178

querying the preferred geometry of a child,
using XtQuery subroutine, 6-142-6-143

realizing an instance, using XtRealizingWidget
subroutine, 6-144-6-145

removing a child from the managed set of its
parent, using XtUnmanageChild subroutine,
6-185

removing list of children from managed list of
the parent, using XtUnmanageChildren
subroutine, 6-186

resizing a child, using XtResizeWindow
subroutine, 6-160

resizing a sibling of the child, using
XtResizeWidget subroutine, 6-159

resizing the sibling making the geometry
request, using XtConfigureWidget subroutine,
6-58

retrieving the current value of a resource
associated with, using XtGetValues
subroutine, 6-96-6-97

retrieving the current value of non-widget
resource data, using XtGetSubvalues
subroutine, 6-95

returning the parent widget for, using XtParent
macro, 6-133

returning the window of, using XtWindow
macro, 6-193

setting the sensitivity state of, using
XtSetSensitive subroutine, 6-171

setting the value of a non-widget resource,
using XtSetSubvalues subroutine, 6-172

translating a name to an instance, using
XtNameToWidget subroutine, 6-122

translating a window and display pointer into,
using XtWindowToWidget subroutine, 6-194

unmapping, using XtUnmapWidget subroutine,
6-187

widget classes
implementing, using WindowObj widget class,

1-24
serving as superclass, using RectObj widget

class, 1-13
supporting, using Object widget class, 1-10

widget translation table, merging new translations
into, using XtAugmentTranslations subroutine,
6-46

widgets, writing upward-compatible, using
XmResolvePartOffsets subroutine, 2-161

WidthMMOfScreen macro, 7-58
win_gravity field

NorthWestGravity value, A-9
StaticGravity value, A-9
UnmapGravity value, A-9

Index X-39

window
altering the property for, using ChangeProperty

protocol request, 8-21-8-22
changing one or more attributes, using

XChangeWindowAttriubutes subroutine,
7-96-7-97

changing size, using XMoveResizeWindow
subroutine, 7-353-7-354

changing the attributes of, using
ChangeWindowAttributes protocol request,
8-24-8-25

changing the hierarchical position of, using
ReparentWindow protocol request,
8-161-8-162

changing the parent, using XReparentWindow
subroutine, 7-413-7-414

changing the property of, using
XChangeProperty subroutine, 7-91-7-93

changing the size of, using XResizeWindow
subroutine, 7-416-7-417

circulating in a specified direction, using
CirculateWindow protocol request, 8-26

clearing, using XClearWindow subroutine,
7-11:4

clearjhg a rectangular area, using XClearArea
su,broutine, 7-112-7-113

clearing the area within, using ClearArea
request, 8-27

configuring border, using XConfigureWindow
subroutine, 7-117-7-118

configuring for position, using
XConfigureWindow subroutine, 7-117-7-118

configuring for size, using XConfigureWindow
subroutine, 7-117-7-118

configuring for stacking order, using
XConfigureWindow subroutine, 7-117-7-118

creating with an identifier, using CreateWindow
protocol request, 8-54-8-58

creating with the widget structure and
parameters, using XtCreateWindow
subroutine, 6-67

deleting a property for, using XDeleteProperty
subroutine, 7-165

deleting data associated with, using
XDeleteContext subroutine, 7-163

deleting the property, using DeleteProperty
protocol request, 8-59

deleting with all its inferiors, using Destroy
Window protocol request, 8-61

destroying, using XDestroyWindow subroutine,
7-150-7-151

getting context type associated with, using
XFindContext subroutine, 7-224

getting current attributes, using
XGetWindowAttributes subroutine,
7-286-7-287

X-40 User Interface Reference

getting property format, using
XGetWindowProperty subroutine,
7-288-7-290

getting th atom type, using
XGetWindowProperty subroutine,
7-288-7-290

getting the class of, using XGetClassHint
subroutine, 7-244

getting the data associated with, using
XFindContext subroutine, 7-224

getting the name of, using XFetchName
subroutine, 7-212-7-213

getting the property list, using XListProperties
subroutine, 7-330-7-331

lowering, using XLowerWindow subroutine,
7-344

lowering highest mapped child, using
XCirculateSubwindowsDown subroutine,
7-110

mapping
using XMapRaised subroutine, 7-346
using XMapWindow subroutine,

7-348-7-349
mapping all subwindows, using

XMapSubwindows subroutine, 7-347
mapping an unmapped, using MapWindow

protocol request, 8-122
marking a structure of the, using

***DirectWindowAccess extension subroutine,
9-17

moving without changing size, XMoveWindow
subroutine, 7-355-7-356

parsing standard geometry, using
XParseGeometry subroutine, 7-365-7-366

raising
using XMapRaised subwindow, 7-346
using XRaiseWindow subroutine, 7-400

raising from bottom of stack to top, using
f.circle_up window manager function, 5-32

raising the lowest mapped child, using
XCirculateSubwindowsUp subroutine, 7-111

reconfiguring the border of, using
ConfigureWindow protocol request,
8-29-8-32

reconfiguring the position of, using
ConfigureWindow protocol request,
8-29-8-32

reconfiguring the size of, using
ConfigureWindow protocol request,
8-29-8-32

reconfiguring the stacking order of, using
ConfigureWindow protocol request,
8-29-8-32

reporting changes in state of, using
ConfigureNotify event, 10-7

reporting movement due to parent window
resizing, using GravityNotify event, 10-27

reporting on a change from a mapped to
unmapped state, using UnmapNotify event,
10-49

reporting on changes in the visibility of, using
VisibilityNotify event, 10-50

reporting on reparenting, using ReparentNotify
event, 10-43

reporting restacking status, using
CirculateNotify event, 10-3

restacking a set, using XRestackWindows
subroutine, 7-419-7-420

returning atoms of properties, using
ListProperties protocol request, 8-118

returning the current attributes of, using
GetWindowAttributes protocol request,
8-91-8-92

returning the relationships of, using QueryTree
protocol request, 8-159

returning the value of a property, using
GetPropertyProtocol Request, 8-86-8-87

rotating the states of properties, using
RotateProperties protocol request, 8-163

unmapping
using UnmapWindow protocol request,

8-195
using XDestroyWindow subroutine,
7-150-7-151

using XUnmapWindow subroutine, 7-563
unmapping the child, using UnmapSubwindows

protocol request, 8-194 .
window geometry, parsing, using XGeometry

subroutine, 7-241-7-242
window icon, getting the name to be displayed, using

XGetlconName subroutine, 7-254-7-255
window manager

determines if running on a screen, using
XmisMotifWMRunning subroutine, 2-134

ending only, using f .quit_mwm window
manager function, 5-36

ending with a restart, using f.restart window
manager function, 5-37

restarting with custom behavior, using
f .set_behavior window manager function,
5-38

restarting with the default OSF behavior, using
f .set_behavior window manager function,
5-38

setting the hints, using XSetWMHints
subroutine, 7-512

win~ow manager hints atom, getting the value of,
using XGetWMHints subroutine, 7-291-7-292

window option, getting the defaults, using
XGetDefault subroutine, 7-245-7-246

window tree, obtaining information on, using
XQueryTree subroutine, 7-398-7-399

window type, storing data associated with, using
XSaveContext subroutine, 7-450-7-451

windowMenu resource, description of, 5-1 O
WindowObj widget class, 1-24
windows

redrawing, using f .refresh window manager
function, 5-37

reporting information on creation of, using
CreateNotify event, 10-11

reporting information on destruction of
windows, using DestroyNotify event, 10-13

reporting on mapping information, using
MapNotify event, 10-36

WM_COMMAND, setting the properties of, using
XSetStandardProperties subroutine, 7-503-7-504

WM_HINTS, setting the properties of, using
XSetStandardProperties subroutine, 7-503-7-504

WM_ICON, setting the properties of, using
XSetStandardProperties subroutine, 7-503-7-504

WM_ICON_NAME, setting the properties of, using
XSetStandardProperties subroutine, 7-503-7-504

WM_NAME, setting the properties of, using
XSetStandardProperties subroutine, 7-503-7-504

WM_NORMAL_HINTS, setting the properities of,
using XSetStandard, 7-503-7-504

WM_SIZE_HINTS
getting the values of, using XGetSizeHints

subroutine, 7-276-7-277
setting the property values of, using

XSetSizeHints subroutine, 7-499-7-500
WM_ TRANSIENT_FOR, getting property, using

XGetTransientForHint subroutine, 7-283
WM_ Transient_For, setting property, using

XSetTransientForHint subroutine, 7-511
wMenuButtonClick resource, description of, 5-30
wMenuButtonClick2 resource, description of, 5-30
WMShell widget class, 1-22
work procedure

registering, using XtAppAddWorkProc
subroutine, 6-25

registering in the default application context,
using XtAddWorkProc procedure, 6-19

removing, using XtRemoveWorkProc
subroutine, 6-158

WorkingDialog widget, creating, using
XmCreateWorkingDialog subroutine, 2-115

x
X Toolkit internals, initializing, using XtToolkitlnitialize

subroutine, 6-179
X,Y coordinate pair, translating from widget

coordinates to root coordinates, using
XtTranslateCoords subroutine, 6-180

X-Windows Toolkit, data structures, list of, B-91
XActivateScreenSaver subroutine, 7-60
XActivitateAutoload extension subroutine, 9-7
XAddHost subroutine, 7-61

Index X-41

XAddHosts subroutine, 7-62
XAddPixel subroutine, 7-63
XAddToSaveSet subroutine, 7-64
XAIXCheckTypedWindowEvent extension

subroutine, 9-3
XAIXCheckWindowEvent extension subroutine, 9-4
XAIXMaskEvent extension subroutine, 9-5
XAIXWindowEvent extension subroutine, 9-6
XAllocColor subroutine, 7-65-7-66
XAllocColorCells subroutine, 7-67-7-68
XAllocColorPlanes subroutine, 7-69-7-71
XAllocNamedColor subroutine, 7-72-7-73
XAllowEvents subroutine, 7-74-7-76
XAppSetErrorMsgHandler subroutine, 6-40
XAsynclnput extension subroutine, 9-8
XAutoRepeatOff subroutine, 7-77
XAutoRepeatOn subroutine, 7-78
XBell subroutine, 7-79-7-80
XChangeGC subroutine, 7-83-7-84
XChangeKeyboardControl subroutine, 7-85-7-86
XChangeKeyboardMapping subroutine, 7-87-7-88
XChangePointerControl subroutine, 7-89-7-90
XChangeProperty subroutine, 7-91-7-93
XChangeSaveSet subroutine, 7-94-7-95
xChangeWindowAttributes subroutine, 7-96-7-97
XCheckedTypedWindowEvent subroutine,
7-104-7-105

XChecklfEvent subroutine, 7-98-7-99
XCheckMaskEvent subroutine, 7-100-7-101
XCheckTypedEvent subroutine, 7-102-7-103
XCheckWindowEvent subroutine, 7-106-7-107
XCirculateSubwindows subroutine, 7-108-7-109
XCirculateSubwindowsDown subroutine, 7-11 O
XCirculateSubwindowsUp subroutine, 7-111
XClearArea subroutine, 7-112-7-113
XClearWindow subroutine, 7-114
XCloseDisplay subroutine, 7-116

defining a procedure to call upon the call of,
using XESetCloseDisplay extension
subroutine, 9-22

XConvertSelection subroutine, 7-119-7-120
XCopyColormapAndFree subroutine, 7-123-7-124
XCopyPlane subroutine, 7-127-7-128
XCreateAssocTable subroutine, 7-129
XCreateBitmapFromData subroutine, 7-130-7-131
XCreateGC subroutine, 7-136-7-137
XCreatelmage subroutine, 7-140-7-141
XCreatePixmap subroutine, 7-142-7-143
XCreatePixmapCursor subroutine, 7-144-7-145
XCreatePixmapFromBitmapData subroutine,
7-146-7-147

XCreateRegion subroutine, 7-156
XCreateSimpleWindow subroutine, 7-157-7-158
XCreateWindow subroutine, 7-159-7-161
XDefineCursor subroutine, 7-148-7-149
XDeleteAssoc subroutine, 7-162
XDeleteContext subroutine, 7-163
XDeleteModifiermapEntry subroutine, 7-164
XDeleteProperty subroutine, 7-165

X-42 User Interface Reference

XDestroyAssocTable subroutine, 7-166
XDestroylmage subroutine, 7-167
XDestroyRegion subroutine, 7-168
XDestroyWidget subroutine, 6-71-6-72
XDestroyWindow subroutine, 7-150-7-151
XDisableAccessControl subroutine, 7-170
XDisablelnputDevice extension subroutine, 9-18
XDisplayKeycodes subroutine, 7-171
XDisplayMotionBufferSize subroutine, 7-172
XDisplayName subroutine, 7-173
XDraw subroutine, 7-154-7-155
XDrawArc subroutine, 7-174-7-176
XDrawArcs subroutine, 7-177-7-178
XDrawFilled subroutine, 7-179
XDrawlmageString subroutine, 7-180-7-181
XDrawlmageString16 subroutine, 7-182-7-183
XDrawline subroutine, 7-184-7-185
XDrawPoint subroutine, 7-188-7-189
XDrawPoints subroutine, 7-190-7-191
XDrawPolyMarker extension subroutine, 9-19
XDrawPolyMarkers extension subroutine,
9-20-9-21

XDrawRectangle subroutine, 7-192-7-193
XDrawRectangles subroutine, 7-194-7-195
XDrawSegments subroutine, 7-196-7-197
XDrawString subroutine, 7-198-7-199
XDrawString16 subroutine, 7-200-7-201
XDrawText subroutine, 7-202-7-203
XDrawText16 subroutine, 7-204-7-205
XEmptyRegion subroutine, 7-206
XEnableAccessControl subroutine, 7-207
XEnablelnputDevice extension subroutine, 9-36
XEqualRegion subroutine, 7-208
XESetCloseDisplay extension subroutine, 9-22
XESetCopyGCExtension subroutine, XESetCopyGC

extension subroutine, 9-23
XESetCreateFont extension subroutine, 9-24
XESetError extension subroutine, 9-26-9-27
XESetErrorString extension subroutine, 9-28
XESetEventToWire extension subroutine, 9-29
XESetFlushGC extension subroutine, 9-31
XESetFreeFont extension subroutine, 9-32
XESetFreeGC extension subroutine, 9-33
XESetWireToEvent extension subroutine,
9-34-9-35

XFetchBuffer subroutine, 7-209
XFetchBytes subroutine, 7-210-7-211
XFillArc subroutine, 7-214-7-215
XFillArcs subroutine, 7-216-7-217
XFillPolygon subroutine, 7-218-7-219
XFillRectangle subroutine, 7-220-7-221
XFindContext subroutine, 7-224
XFlush subroutine, 7-225
XForceScreenSaver subroutine, 7-226
XFree subroutine, 7-227
XFreeColormap subroutine, 7-228-7-229
XFreeColors subroutine, 7-230-7-231
XFreeExtension extension subroutine, 9-37

(

)

XFreeFont extension subroutine, defining a
procedure to call when calling, using
XESetFreeFont extension subroutine, 9-32

XFreeFont subroutine, 7-233
XFreeFontlnfo subroutine, 7-234
XFreeFontNames subroutine, 7-235
XFreeFontPath subroutine, 7-236
XFreeGC subroutine, 7-237
XFreeModifiermap subroutine, 7-238
XGContextFromGC subroutine, 7-240
XGetAtomName subroutine, 7-243
XGetClassHint subroutine, 7-244
XGetDefault subroutine, 7-245-7-246
XGetDevicelnputFocus extension subroutine, 9-38
XGetDialAttributes extension subroutine,
9-40-9-41

XGetErrorDatabaseText subroutine, 7-247-7-248
XGetErrorText subroutine, 7-249
XGetFontPath, freeing data allocated by, using

XFreeFontPath subroutine, 7-236
XGetFontPath subroutine, 7-250
XGetGeometry subroutine, 7-252-7-253
XGetlconName subroutine, 7-254-7-255
XGetlconSizes subroutine, 7-256-7-257
XGetlmage subroutine, 7-258-7-259
XGetlnputFocus subroutine, 7-260
XGetKeyboardControl subroutine, 7-261
XGetKeyboardMapping subroutine, 7-262-7-263
XGetlpfkControl extension subroutine, 9-45
XGetModifierMapping subroutine, 7-264
XGetMotionEvents subroutine, 7-265-7-266
XGetNormalHints subroutine, 7-267-7-268
XGetPixel subroutine, 7-269
XGetPointerControl subroutine, 7-270-7-271
XGetPointerMapping subroutine, 7-272
XGetScreenSaver subroutine, 7-273-7-274
XGetSelectionOwner subroutine, 7-275
XGetSizeHints subroutine, 7-276-7-277,
7-499-7-500

XGetStandardColormap subroutine, 7-278-7-279
XGetSublmage subroutine, 7-280-7-282
XGetTransientForHint subroutine, 7-283
XGetVisuallnfor subroutine, 7-284-7-285
XGetWindowAttributes subroutine, 7-286-7-287
XGetWindowProperty subroutine, 7-288-7-290
XGetWMHints subroutine, 7-291-7-292
XGetZoomHints subroutine, 7-293-7-294
XGrabButton subroutine, 7-295-7-298
XGrabKeyboard subroutine, 7-302-7-304
XGrabPointer subroutine, 7-305-7-307
XGrabServer subroutine, 7-308
XlfEvent subroutine, 7-309-7-310
Xlmage data structure, deallocating memory

associated with, using XDestroylmage subroutine,
7-167

Xlmage subroutine, allocating memory for, using
XCreatelmage subroutine, 7-140

XinitExtension extension subroutine, 9-76
XlnitExtension subroutine, 7-311

XlnsertModifierEntry subroutine, 7-312
XlnstallColormap subroutine, 7-313-7-314
XlnternAtom subroutine, 7-315-7-316
XlntersectRegion subroutine, 7-317
XKeycodeToKeysym subroutine, 7-318-7-319
XKeysymToKeycode subroutine, 7-320
XKeysymToString subroutine, 7-321
XKillClient subroutine, 7-322
XListExtensions extension subroutine, 9-46

freeing the memory allocated by, using
XFreeExtensionlist extension subroutine,
9-37

XListFonts subroutine, 7-323-7-324
XListFontsWithlnfo subroutine, 7-325-7-326
XListlnputDevices extension subroutine, 9-47-9-48
XListlnstalledColormaps subroutine, 7-328-7-329
XListProperties subroutine, 7-330-7-331
XLoadFont subroutine, 7-332-7-333
XLoadQueryFont subroutine, 7-334-7-335

defining a procedure to call when calling, using
XESetCreateFont extension subroutine, 9-24

XLookUpAssoc subroutine, 7-336
XLookupColor subroutine, 7-337-7-338
XLookupKeysym subroutine, 7-339
XLookupMapping subroutine, 7-340-7-341
XLookupString subroutine, 7-342-7-343
XLowerWindow subroutine, 7-344
XmActivateProtocol subroutine, 2-3
XmAddProtocolCallback subroutine, 2-4
XmAddProtocols subroutine, 2-5
XmAddTabGroup subroutine, 2-6
XMakeAssoc subroutine, 7-345
XMapRaise subroutine, 7-346
XMapSubwindows subroutine, 7-347
XMapWindow subroutine, 7-348-7-349
XmArrowButton widget class, 1-25
XmArrowButtonGadget gadget class, 1-28
XMaskEvent subroutine, 7-350
XMatchVisuallnfo subroutine, 7-351-7-352
XmAtomToName subroutine, 2-7
XMaxRequestSize extension subroutine, 9-49
XmBulletinBoard widget class, 1-31
XmCascadeButton widget class, 1-34
XmCascadeButtonGadget gadget, creating, using

XmCreateCascadeButtonGadget subroutine, 2-56
XmCascadeButtonGadget gadget class, 1-39

operating in a menu system, 1-39
XmCasecadeButtonHighlight subroutine, 2-8
XmClipboardCancelCopy subroutine, 2-9
XmClipboardCopybyName subroutine, 2-13
XmClipboardEndCopy subroutine, 2-15
XmClipboardEndRetrieve subroutine, 2-17
XmClipboardlnquireCount subroutine, 2-19
XmClipboardlnquireFormat subroutine, 2-21
XmClipboardlnquirelength subroutine, 2-23
XmClipboardlnquirePendingltems subroutine, 2-25
XmClipboardlock subroutine, 2-27
XmClipboardRegisterFormat subroutine, 2-29

Index X-43

XmClipboardRetrieve subroutine, 2-31
XmClipboardStartCopy subroutine, 2-33
XmClipboardStartRetrieve subroutine, 2-36
XmClipboardUndoCopy subroutine, 2-38
XmClipboardUnlock subroutine, 2-40
XmClipboardWithdrawFormat subroutine, 2-42
XmCommand widget class, 1-43
XmCommandAppendValue subroutine, 2-44
XmCommandError subroutine, 2-45
XmCommandGetChild subroutine, 2-46
XmCommandSetValue subroutine, 2-47
XmConvertUnits subroutine, 2-48
XmCreateArrowButton subroutine, 2-50
XmCreateBulletinBoard subroutine, 2-52
XmCreateBulletinBoardDialog subroutine, 2-53
XmCreateCascadeButton subroutine, 2-55
XmCreateCascadeButtonGadget subroutine, 2-56
XmCreateCommand subroutine, 2-57
XmCreateDialogShell subroutine, 2-58
XmCreateDrawingArea subroutine, 2-59
XmCreateDrawnButton subroutine, 2-60
XmCreateErrorDialog subroutine, 2-61
XmCreateFileSelectionBox subroutine, 2-63
XmCreateFileSelectionDialog subroutine, 2-65
XmCreateForm subroutine, 2-67
XmCreateFormDialog subroutine, 2-68
XmCreateFrame subroutine, 2-69
XmCreatelnformationDialog subroutine, 2-70
XmCreatelabel subroutine, 2-72
XmCreatelabelGadget subroutine, 2-73
XmCreatelist subroutine, 2-74
XmCreateMainWindow subroutine, 2-75
XmCreateMenuBar subroutine, 2-76
XmCreateMenuShell subroutine, 2-78
XmCreateMessageBox subroutine, 2-79
XmCreateMessageDialog subroutine, 2-81
XmCreateOptionMenu subroutine, 2-83
XmCreatePanedWindow subroutine, 2-85
XmCreatePopupMenu subroutine, 2-86
XmCreatePromptDialog subroutine, 2-88
XmCreatePulldownMenu subroutine, 2-90
XmCreatePushButton subroutine, 2-92
XmCreatePushButtonGadget subroutine, 2-93
XmCreateQuestionDialog subroutine, 2-94
XmCreateRadioBox subroutine, 2-95
XmCreateRowColumn subroutine, 2-96
XmCreateScale subroutine, 2-98
XmCreateScrollBar subroutine, 2-99
XmCreateScrolledlist subroutine, 2-100
XmCreateScrolledText subroutine, 2-102-2-103
XmCreateScrolledWindow subroutine, 2-104
XmCreateSelectionBox subroutine, 2-105
XmCreateSelectionDialog subroutine, 2-107
XmCreateSeparator subroutine, 2-109
XmCreateSeparatorGadget subroutine, 2-11 O
XmCreateText subroutine, 2-111
XmCreateToggleButton subroutine, 2-112
XmCreateToggleButtonGadget subroutine, 2-113
XmCreateWarningDialog subroutine, 2-114

X-44 User Interface Reference

XmCreateWorkingDialog subroutine, 2-115
XmCvtStringToUnitType subroutine, 2-117
XmDeactivateProtocol subroutine, 2-119
XmDestroyPixmap subroutine, 2-120
XmDialogShell widget class, 1-47
Xm DrawingArea widget class, 1-49
XmDrawnButton widget class, 1-52
XmFileSelectionBox widget class, 1-55
XmFileSelectionBoxGetChild subroutine, 2-121
XmFileSelectionDoSearch subroutine, 2-123
XmFontlistAdd subroutine, 2-124
XmFontlistCreate subroutine, 2-125
XmForm widget class, 1-59
XmFrame widget class, 1-61
XmGadget gadget class, 1-63
XmGetMenuCursor subroutine, 2-128
XmGetPixmap subroutine, 2-129
Xmlnstalllmage subroutine, 2-131
XmlnternAtom subroutine, 2-133
XmisMotifWMRunning subroutine, 2-134
Xmlabel widget class, 1-65
XmlabelGadget gadget class, 1-68
Xmlist widget class, 1-70
XmlistAddltem subroutine, 2-135
XmlistAddltemUnselected subroutine, 2-136
XmlistBottomltem subroutine, 2-145
XmlistDeleteltem subroutine, 2-137
XmlistDeletePos subroutine, 2-138
XmlistDeselectAllltems subroutine, 2-139
XmlistDeselectltem subroutine, 2-140
XmlistDeselectPos subroutine, 2-141
XmlistltemExists subroutine, 2-142
XmlistSelectltem subroutine, 2-143
XmlistSelectPos subroutine, 2-144
XmlistSetBottomPos subroutine, 2-146
XmlistSetHorizPos subroutine, 2-147
XmlistSetltem subroutine, 2-148
Xm ListSetPos subroutine, 2-149
XmMainWindow widget class, 1-76
XmMainWindowSep1 subroutine, 2-150
XmMainWindowSep2 subroutine, 2-151
XmMainWindowSetAreas subroutine, 2-152
XmManager widget class, 1-78
XmMenuPosition subroutine, 2-154
XmMenuShell widget class, 1-81
XmMessageBox widget class, 1-84
XmMessageBoxGetChild subroutine, 2-155
XmNaccelerator resource, description of, 3-64, 3-70
XmNaccelerators resource, description of, 3-5
XmNacceleratorText resource, description of, 3-64,

3-70
XmNactivateCallback resource, description of, 3-26,

3-28,3-37,3-39,3-46,3-100,3-103,3-150
XmNadjustlast resource, description of, 3-106
XmNadjustMargin resource, description of, 3-106
XmNalignment resource, description of, 3-64, 3-70
XmNallowOverlap resource, description of, 3-30
XmNallowResize resource, description of, 3-91
XmNallowShellResize resource, description of, 3-14

c

\
:/

XmNancestorSensitive resource, description of, 3-5,
3-12

XmNapplyCallback resource, description of, 3-136
XmNapplylabelString resource, 3-136
XmNargc resource, description of, 3-3
XmNargv resource, description of, 3-3
XmNarmCallback resource, description of, 3-26,
3-28,3-46,3-100,3-103,3-157,3-161

XmNarmColor resource, description of, 3-100,
3-103

XmNarmPixmap resource, description of, 3-101,
3-104

XmNarrowDirection resource, description of, 3-26,
3-28

XmNautomaticSelection resource, description of,
3-75

XmNautoShowCursorPosition resource, description
of, 3-150

XmNautoUnmanage resource, description of, 3-30
XmNBackgroundPixmap resource, description of,

3-6
XmNblinkRate resource, description of, 3-147
XmNborderColor resource, description of, 3-6
XmNborderPixmap resource, 3-6
XmNborderWidth resource, 3-7

description of, 3-12
XmNbottomAttachment resource, description of,

3-51
XmNbottomOffset resource, description of, 3-51
XmNbottomPosition resource, description of, 3-52
XmNbottomShadowColor resource, description of,
3-83,3-96

XmNbottomShadowPixmap resource, description of,
3-83

XmNbottomWidget resource, description of, 3-52
XmNbrowseSelectionCallback resource, description

of, 3-75
XmNbuttonFontlist resource, description of, 3-31
XmNcancelButton resource, description of, 3-31
XmNcancelCallback resource, description of, 3-87,

3-136
XmNcancellabelString resource, description of,

3-87,3-137
XmNcascadePixmap resource, 3-37, 3-39
XmNcascadingCallback resource, description of,
3-37,3-39

XmNclipWindow resource, description of, 3-132
XmNcolormap resource, description of, 3-7
XmNcolumns resource, description of, 3-147
XmNcommand resource, description of, 3-41
XmNcommandChangedCallback resource,

description of, 3-41
XmNcommandEnteredCallback resource, description

of, 3-41
XmNcommandWindow resource, description of,

3-81
XmNcreatePopupChildProc resource, description of,
3-14

XmNcursorPosition resource, description of, 3-150

XmNcursorPositionVisible resource, description of,
3-147

XmNdecimalPoints resource, description of, 3-119
XmNdecrementCallback resource, description of,

3-124
XmNdefaultActionCallback resource, description of,

3-75
XmNdefaultButton resource, description of, 3-31
XmNdefaultButtonType resource, description of,

3-87
XmNdefaultPosition resource, description of, 3-31
XmNdeleteResponse resource, description of, 3-17
XmNdepth resource, description of, 3-7
XmNdestroyCallback resource, description of, 3-8,

3-11
XmNdialogStyle resource, description of, 3-32
XmNdialogTitle resource, description of, 3-32
XmNdialogType resource, 3-137

description of, 3-88
XmNdirMask resource, description of, 3-49
XmNdirSpec resource, description of, 3-49
XmNdisarmCallback resource, description of, 3-26,
3-29,3-46,3-101,3-104,3-157,3-161

XmNdoubleClicklnterval resource, description of,
3-76

XmNdragCallback resource, description of, 3-119,
3-124

XmNeditable resource, description of, 3-151
XmNeditmode resource, description of, 3-151
XmNentryAlignment resource, description of, 3-107
XmNentryBorder resource, description of, 3-107
XmNentryCallback resource, description of, 3-107
XmNentryClass resource, description of, 3-108
XmNexposeCallback resource, description of, 3-44,

3-46
XmNextendedSelectionCallback resource,

description of, 3-76
XmNfileSearchProc resource, description of, 3-49
XmNfillOnArm resource, description of, 3-101,

3-104
XmNfillOnSelect resource, description of, 3-161
XmNfillonSelect resource, description of, 3-157
XmNfilterlabelString, description of, 3-50
XmNfocusCallback resource, description of, 3-33,

3-151
XmNfontlist resource, description of, 3-65, 3-71,

3-76,3-119,3-148
XmNforeground resource, description of, 3-83, 3-96
XmNfractionBase resource, description of, 3-58
XmNgeometry resource, description of, 3-14
XmNheight resource, description of, 3-8, 3-12
XmNheightlnc resource, description of, 3-20
XmNhelpCallback resource, description of, 3-61,
3-83,3-96

XmNhelplabelString resource, description of, 3-88,
3-137

XmNhighlightColor resource, description of, 3-84,
3-97

Index X-45

XmNhighlightOnEnter resource, description of, 3-61,
3-97,3-120

XmNhighlightPixmap resource, description of, 3-97
XmNhighlightThickness resource, description of,

3-120
XmNhighlightThinkness resource, description of,

3-61
XmNhightlightThickness resource, description of,

3-98
XmNhistoryltemCount resource, description of, 3-42
XmNhistoryltems resource, description of, 3-42
XmNhistoryMaxltems resource, description of, 3-42
XmNhistoryVisibleltemCount resource, description

of, 3-42
XmNhorizontalScrollBar resource, description of,

3-129,3-132
XmNhorizontalSpacing resource, description of,

3-58
XmNiconic resource, description of, 3-16
XmNiconMask resource, description of, 3-20
XmNiconName resource, description of, 3-16
XmNiconPixmap resource, description of, 3-20
XmNiconWindow resource, description of, 3-21
XmNiconX resource, description of, 3-21
XmNiconY resource, description of, 3-21
XmNincrement resource, description of, 3-124
XmNincrementCallback resource, description of,

3-125
XmNindicatoOn resource, description of, 3-162
XmNindicatorOn resource, description of, 3-158
XmNindicatorType resource, description of, 3-158,

3-162
XmNinitialDelay resource, description of, 3-125
XmNinitialState resource, description of, 3-22
XmNinput resource, description of, 3-22
XmNinputCallback resource, description of, 3-44
XmNisAligned resource, description of, 3-108
XmNisHomogeneous resource, description of, 3-109
XmNitemCount resource, description of, 3-76
XmNitems resource, description of, 3-77
XmNkeyboardFocusPolicy resource, description of,

3-17
XmNlabelFontlist resource, description of, 3-33
XmNlabellnsensitivePixmap resource, description of,
3-65

XmNlabelPixmap, description of, 3-71
XmNlabelPixmap resource, description of, 3-66
XmNlabelString resource, description of, 3-66, 3-72,

3-109
XmNlabelType resource, description of, 3-72
XmNlableType resource, description of, 3-66
XmNleftAttachment resource, description of, 3-52
XmNleftOffset resource, description of, 3-53
XmNleftPosition resource, description of, 3-53
XmNleftWidget resource, description of, 3-53
XmNlistltemCount resource, description of, 3-138
XmNlistitems resource, description of, 3-138
XmNlistlabelString resource, description of, 3-138
XmNlistMarginHeight resource, description of, 3-77

X-46 User Interface Reference

XmNlistMarginWidth resource, description of, 3-77
XmNlistSizePolicy resource, description of, 3-129
XmNlistSpacing resource, description of, 3-77
XmNlistUpdated resource, description of, 3-50
XmNlistVisibleltemCount resource, 3-138
XmNlosingFocusCallback resource, description of,

3-151
XmNmainWindowMarginHeight resource, description

of, 3-81
XmNmainWindowMarginWidth resource, description

of, 3-81
XmNmapCallback resource, description of, 3-33,

3-109
XmNmappedWhenManaged resource, description

of, 3-8
XmNmappingDelay resource, description of, 3-38,

3-40
XmNmargin resource, description of, 3-142, 3-144
XmNmarginBottom resource, description of, 3-66,

3-72
XmNmarginHeight resource, description of, 3-33,

3-44,3-60,3-66,3-73,3-93,3-109,3-152
XmNmarginleft resource, description of, 3-67, 3-73
XmNmarginRight resource, description of, 3-67,

3-73
XmNmarginTop resource, description of, 3-68, 3-73
XmNmarginWidth resource, description of, 3-34,
3-44,3-60,3-68,3-74,3-110,3-152

XmNmaxAspectX resource, description of, 3-22
XmNmaxAspectY resource, description of, 3-22
XmNmaxHeight resource, description of, 3-22
XmNmaximum resource, description of, 3-91,
3-120,3-125

XmNmaxlength resource, description of, 3-152
XmNmaxWidth resource, description of, 3-23
XmNmenuAccelerator resource, description of,

3-110
XmNmenuBar resource, description of, 3-81
XmNmenuCursor resource, description of,
3-117-3-118

XmNmenuHelpWidget resource, description of,
3-110

XmNmenuHistory resource, description of, 3-111
XmNmessageAlignment resource, description of,

3-88
XmNmessageString resource, description of, 3-89
XmNminAspectX resource, description of, 3-23
XmNminAspectY resource, description of, 3-23
XmNminHeight resource, description of, 3-23
XmNminimizeButtons resource, description of, 3-89,

3-139
XmNminimum resource, description of, 3-91, 3-120,

3-125
XmNminWidth resource, description of, 3-24
XmNmnemonic resource, description of, 3-68, 3-74,

3-111
XmNmNhmFunctions resource, key concepts, 3-18
XmNmodifyVerifyCallback resource, description of,

3-152

(
~

\
I

)

XmNmotionVerifyCallback resource, description of,
3-153

XmNmultipleSelectionCallback resource, description
of, 3-78

XmNmustMatch resource, description of, 3-139
XmNmwhlnputMode resource, description of, 3-18
XmNmwmDecorations resource, description of, 3-17
XmNmwmMenu resource, description of, 3-18
XmNmwmTimeout resource, description of, 3-25
XmNnoMatchCallback resource, description of,

3-139
XmNnoResize resource, description of, 3-34
XmNnumColumns resource, description of, 3-111
XmNokCallback resource, description of, 3-89,

3-140
XmNoklabelString resource, description of, 3-89,

3-140
XmNorientation resource, description of, 3-112,

3-120, 3-126,3-142, 3-144
XmNoverrideRedirect resource, description of, 3-15
XmNpacking resource, description of, 3-112
XmNpageDecrementCallback resource, description

of, 3-126
XmNpagelncrement resource, description of, 3-126
XmNpendingDelete resource, description of, 3-146
XmNpopdownCallback resource, description of,

3-15
XmNpopupCallback resource, description of, 3-15
XmNpopupEnabled resource, description of, 3-113
XmNprocessingDirection resource, description of,

3-121,3-127
XmNpromptString resource, description of, 3-43
XmNpushButtonEnabled resource, description of,

3-47
XmNradioAlwaysOne resource, description of, 3-113
XmNradioBehavior resource, description of, 3-113
XmNrecomputeSize resource, description of, 3-68,

3-74
XmNrefigureMode resource, description of, 3-93
XmNrepeatDelay resource, description of, 3-127
XmNresizable resource, description of, 3-54
XmNresizeCallback resource, description of, 3-45,

3-47
XmNresizeHeight resource, description of, 3-114,

3-148
XmNresizePolicy resource, description of, 3-34,

3-45
XmNresizeWidth resource, description of, 3-114,

3-148
XmNrightAttachment resource, description of, 3-54
XmNrightOffset resource, description of, 3-55
XmNrightPosition resource, description of, 3-55
XmNrightWidget resource, description of, 3-55
XmNrowcolumnType resource, description of, 3-114
XmNrows resource, description of, 3-148
XmNrubberPositioning resource, description of, 3-58
XmNsashHeight resource, description of, 3-94
XmNsashindent resource, 3-94

XmNsashShadowThickness resource, description of,
3-94

XmNsashWidth resource, description of, 3-94
XmNsaveUnder resource, description of, 3-15
XmNscaleHeight resource, description of, 3-121
XmNscaleWidth resource, description of, 3-121
XmNscreen resource, description of, 3-8
XmNscrollBarDisplayPolicy resource, description of,

3-129,3-132
XmNscrollBarPlacement resource, description of,

3-130, 3-133
XmNscrolledWindowMarginHeight resource,

description of, 3-130, 3-133
XmNscrolledWindowMarginWidth resource,

description of, 3-131, 3-134
XmNscrollHorizontal resource, description of, 3-155
XmNscrollingPolicy resource, description of, 3-134
XmNscrollleftSide resource, description of, 3-155
XmNscrollTopSide resource, description of, 3-155
XmNscrollVertical resource, description of, 3-155
XmNselectColor resource, description of, 3-158,

3-162
XmNselectedltemCount resource, description of,

3-78
XmNselectedltems resource, description of, 3-78
XmNselectlnsensitivePixmap resource, description

of, 3-158, 3-163
XmNselectionArray resource, description of, 3-146
XmNselectionlabelString resource, description of,

3-140
XmNselectionPolicy resource, description of, 3-79
XmNselectPixmap resource, description of, 3-159,

3-163
XmNselectThreshold resource, description of, 3-146
XmNsensitive resource, description of, 3-9, 3-13
XmNseparatorOn resource, description of, 3-95
XmNseparatorType resource, description of, 3-142,

3-144
XmNset resource, description of, 3-159, 3-163
XmNshadowThickness, description of, 3-62
XmNshadowThickness resource, description of,
3-84,3-98,3-115

XmNshadowType resource, description of, 3-35,
3-47,3-60

XmNshellUnitType resource, description of, 3-18
XmNshowArrows resource, description of, 3-127
XmNshowAsDefault, description of, 3-104
XmNshowAsDefault resource, description of, 3-101
XmNshowSeparator resource, description of, 3-82
XmNshowValue resource, description of, 3-122
XmNsingleSelectionCallback resource, description

of, 3-79
XmNskipAdjust resource, description of, 3-92
XmNspacing resource, description of, 3-95, 3-115,

3-131,3-134,3-159,3-163
XmNstringDirection resource, description of, 3-35,

3-69,3-74, 3-79
XmNsubMenulD resource, description of, 3-40

Index X-47

XmNsubmenuld resource, description of, 3-38,
3-115

XmNsymbolPixmap resource, description of, 3-90
XmNtextAccelerators resource, description of, 3-140
XmNtextColumns resource, description of, 3-141
XmNtextFont resource, description of, 3-36
XmNtextString resource, description of, 3-141
XmNtextTranslations resource, description of, 3-36
XmNtitle resource, description of, 3-24
XmNtitleString resource, description of, 3-122
XmNtoBottomCallback resource, description of,

3-128
XmNtopAttachment resource, description of, 3-55
XmNtopOffset resource, description of, 3-56
XmNtopPosition resource, description of, 3-56,

3-153
XmNtopShadowColor resource, description of, 3-85,

3-98
XmNtopShadowPixmap resource, description of,

3-85
XmNtopWidget resource, description of, 3-57
XmNtoTopCallback resource, description of, 3-128
XmNtransient resource, description of, 3-24
XmNtranslations resource, description of, 3-9
XmNtraversalOn resource, description of, 3-62,

3-98,3-122
XmNunitType resource, description of, 3-62, 3-85,

3-99
XmNunmapCallback resource, description of, 3-36,

3-115
XmNuserData resource, description of, 3-63, 3-86,

3-99
XmNvalue resource, description of, 3-122, 3-128,

3-153
XmNvalueChangedCallback resource, description of,

3-123,3-128,3-154,3-160,3-164
XmNverticalScrollBar resource, description of,

3-131,3-135
XmNverticalSpacing resource, description of, 3-59
XmNvisibleltemCount resource, description of, 3-80
XmNvisibleWhenOff resource, description of, 3-160,

3-164
XmNvisualPolicy resource, description of, 3-135
XmNwaitForWm resource, description of, 3-24
XmNwhichButton resource, description of, 3-116
XmNwidth resource, description of, 3-9, 3-13
XMNwidthlnc resource, description of, 3-25
XmNwindowGroup resource, description of, 3-25
XmNwordWrap resource, description of, 3"'.""" 149
XmNworkWindow resource, description of, 3-135
XmNx resource, description of, 3-9, 3-13
XmNy resource, description of, 3-10, 3-13
XModifier Keymap, adding an entry, using

XlnsertModifiermapEntry subroutine, 7-312
XModifierKeymap data structure

creating, using XNewModifiermap subroutine,
7-357

X-48 User Interface Reference

deleting, using XFreeModifiermap subroutine,
7-238

deleting an entry from, using
XDeleteModifiermapEntry subroutine, 7-164

XmOptionButtonGadget subroutine, 2-156
XmOptionlabelGadget subroutine, 2-157
XMoveResizeWindow subroutine, 7-353-7-354
XMoveWindow subroutine, 7-355-7-356
XmPanedWindow widget, creating an instance of,

using XmCreatePanedWindow subroutine, 2-85
XmPanedWindow widget class, 1-88
XmPrimitive widget class, 1-91

composition of, 1-91
keyboard focus, movement of, 1-91
resources for, 1-91

XmPushButton widget class, 1-93
XmPushButtonGadget gadget, 1-97
XmRemoveProtocolCallback subroutine, 2-158
XmRemoveProtocols subroutine, 2-159
XmRemoveTabGroup subroutine, 2-160
XmResolvePartOffsets subroutine, 2-161
XmRowColumn widget class, 1-101
XmScale widget class, 1-107
XmScaleGetValue subroutine, 2-163
XmScaleSetValue subroutine, 2-164
XmScrollBar widget class, 1-110
XmScrollBarGetValues subroutine, 2-165
XmScrollBarSetValues subroutine, 2-167
XmScrolledWindow widget, 1-113
XmScrolledWindowSetAreas subroutine, 2-169
XmSelectionBox widget class, 1-116
XmSelectionBoxGetChild subroutine, 2-171
XmSeparator widget class, 1-120
XmSeparatorGadget gadget class, 1-122
XmSetFontUnit subroutine, 2-173
XmSetMenuCursor subroutine, 2-174
XmSetProtocolHooks subroutine, 2-175
XmString, appending to a string, using

XmCommandAppendValue subroutine, 2-44
XmString subroutine, 2-177
XmStringBaseline subroutine, 2-180
XmStringByteCompare subroutine, 2-181
XmStringCompare subroutine, 2-182
XmStringConcat subroutine, 2-183
XmStringCopy subroutine, 2-184
XmStringCreate subroutine, 2-185
XmStringCreateLtoR subroutine, 2-186
XmStringDirectionCreate subroutine, 2-187
XmStringDraw subroutine, 2-188
XmStringDrawlmage subroutine, 2-190
XmStringDrawUnderline subroutine, 2-192
XmStringEmpty subroutine, 2-194
XmStringExtent subroutine, 2-195
XmStringFree subroutine, 2-196
XmStringFreeContext subroutine, 2-197
XmStringGetltoR subroutine, 2-198

XmStringGetNextComponent subroutine, 2-199
XmStringGetNextSegment subroutine, 2-201
XmStringHeight subroutine, 2-202
XmStringlnitContext subroutine, 2-203
XmStringlength subroutine, 2-204
XmStringlineCount subroutine, 2-205
XmStringNConcat subroutine, 2-206
XmStringNCopy subroutine, 2-207
XmStringPeekNextComponent subroutine, 2-208
XmStringSegmentCreate subroutine, 2-209
XmStringSeparatorCreate subroutine, 2-210
XmStringWidth subroutine, 2-211
XmText widget class, 1-124
XmTextClearSelection subroutine, 2-212
XmTextGetEditable subroutine, 2-213
XmTextGetMaxlength subroutine, 2-214
XmTextGetSelection subroutine, 2-215
XmTextGetString subroutine, 2-216
XmTextReplace subroutine, 2-217
XmTextSetEditable subroutine, 2-218
XmTextSetMaxlength subroutine, 2-219
XmTextSetSelection subroutine, 2-220
XmTextSetString subroutine, 2-221
XmToggleButton widget class, 1-131
XmToggleButtonGadget gadget class, 1-136
XmToggleButtonGadgetSetState subroutine, 2-223
XmToggleButtonGetState subroutine, 2-224
XmToggleButtonSetState subroutine, 2-225
XmUninstalllmage subroutine, 2-226
XmUpdateDisplay subroutine, 2-227
XNewModifiermap subroutine, 7-357
XNextEvent subroutine, 7-358
XNoOp subroutine, 7-359
XOffsetRegion subroutine, 7-360
XOpenDisplay subroutine, 7-361-7-362

obtaining the string passed to, using
DisplayString macro, 7-27

XParseGeometry subroutine, 7-365-7-366
XPeekEvent subroutine, 7-367
XPeeklfEvent subroutine, 7-368-7-369
XPending subroutine, 7-370
Xpermalloc subroutine, 7-371
XPointlnRegion subroutine, 7-372
XPolygonRegion subroutine, 7-373
XPutBackEvent subroutine, 7-374
XPutlmage subroutine, 7-375-7-376
XPutPixel subroutine, 7-377
XQueryAutoload extension subroutine, 9-50
XQueryBestCursor subroutine, 7-378-7-379
XOueryBestSize subroutine, 7-380-7-381
XQueryBestStipple subroutine, 7-382-7-383
XQueryBestTile subroutine, 7-384-7-385
XQueryColor subroutine, 7-386
XQueryColors subroutine, 7-387-7-388
XQueryExtension extension subroutine, 9-53
XQueryFont subroutine, 7-389-7-390
XQuerylnputDevice extension subroutine, 9-54
XQueryKeymap subroutine, 7-391
XQueryPointer subroutine, 7-392-7-393

XQueryTextExtents16 subroutine, 7-396-7-397
XQueryTree subroutine, 7-398-7-399
XRaiseWindow subroutine, 7-400
XReadBitmapFile subroutine, 7-401-7-402
XRebindCode subroutine, 7-403-7-404
XRebindKeysym subroutine, 7-405-7-406
XRecolorCursor subroutine, 7-407
XRectlnRegion subroutine, 7-408
XRefreshKeyboardMapping subroutine, 7-409
XRemoveFromSaveSet subroutine, 7-410
XRemoveHost subroutine, 7-411
XRemoveHosts subroutine, 7-412
XReparentWindow subroutine, 7-413-7-414
XResetScreenSaver subroutine, 7-415
XResourceManagerString subroutine, 7-418
XRestackWindows subroutine, 7-419-7-420
XrmGetFileDatabase subroutine, 7-424
XrmGetResource subroutine, 7-425
Xrmlnitialize subroutine, 7-427
XrmMergeDatabases subroutine, 7-428
XrmParseCommand subroutine, 7-429-7-430
XrmPutlineResource subroutine, 7-432
XrmPutResource subroutine, 7-433-7-434
XrmPutStringResource subroutine, 7-435
XrmQGetResource subroutine, 7-436-7-437
XrmQGetSearchlist subroutine, 7-438-7-439
XrmQGetSearchResource subroutine,

7-440-7-441
XrmQPutResource subroutine, 7-442-7-443
XrmQPutStringResource subroutine, 7-444
XrmQuarkToString subroutine, 7-445
XrmStringToBindingQuarklist subroutine, 7-446
XrmStringToQuark subroutine, 7-447
XrmStringToQuarklist subroutine, 7-448
XrmUniqueOuark subroutine, 7-449
XRotateWindowProperties subroutine,
7-422-7-423

XSaveContext subroutine, 7-450-7-451
XSelectDevicelnput extension subroutine,
9-57-9-58

XSelectDial extension subroutine, 9-60
XSelectDiallnput extension subroutine, 9-59
XSelectlnput subroutine, 7-452-7-453
XSelectlpfk extension subroutine, 9-62
XSelectlpfklnput extension subroutine, 9-63
XSendEvent subroutine, 7-454-7-455
XSetAccessControl subroutine, 7-456
XSetAfterFunction subroutine, 7-457
XSetArcMode subroutine, 7-458
XSetBackground subroutine, 7-459
XSetClassHint subroutine, 7-460
XSetClipMask subroutine, 7-461
XSetClipOrigin subroutine, 7-462
XSetCloseDownMode subroutine, 7-465
XSetCommand subroutine, 7-466
XSetDashes subroutine, 7-467-7-468
XSetDevicelnputFocus extension subroutine,
9-65-9-66

Index X-49

XSetDialAttributes extension subroutine,
9-67-9-68

XSetDialControl extension subroutine, 9-69
XSetErrorHandler subroutine, 7-469
XSetFillRule subroutine, 7-470
XSetFillStyle subroutine, 7-471
XSetFont subroutine, 7-472-7-473
XSetFontPath subroutine, 7-474-7-475
XSetForeground subroutine, 7-476
XSetFunction subroutine, 7-477
XSetGraphicsExposures subroutine, 7-478-7-479
XSetlconName subroutine, 7-481
XSetlconSizes subroutine, 7-482
XSetlnputFocus subroutine, 7-483-7-484
XSetlOErrorHandler subroutine, 7-480
XSetlineAttributes subroutine, 7-485-7-486
XSetlpfkAttributes extension subroutine,
9-70-9-71

XSetlpfkControl extension subroutine, 9-72
XSetModifierMapping subroutine, 7-487-7-488
XSetNormalHints subroutine, 7-489-7-490
XSetPlaneMask subroutine, 7-491
XSetPointerMapping subroutine, 7-492-7-493
XSetPolyMarker extension subroutine, 9-73
XSetRegion subroutine, 7-494
XSetScreenSaver subroutine, 7-495-7-496
XSetSelectionOwner subroutine, 7-497-7-498
XSetStandardColormap subroutine, 7-501-7-502
XSetStandardProperties subroutine, 7-503-7-504
XSetState subroutine, 7-505-7-506
XSetStipple subroutine, 7-507
XSetSubwindowMode subroutine, 7-508
XSetTile subroutine, 7-510
XSetTransientForHint subroutine, 7-511
XSetTSOrigin subroutine, 7-509
XSetWindow8ackground subroutine, 7-513
XSetWindow8ackgroundPixmap subroutine,
7-514-7-515

XSetWindow8order subroutine, 7-516
XSetWindow8orderPixmap subroutine,
7-517-7-518

XSetWindow8orderWidth subroutine, 7-519
XSetWindowColormap subroutine, 7-520
XSetWMHints subroutine, 7-512
XSetZoomHints subroutine, 7-521
XShrinkRegion subroutine, 7-522
XStopAutoload extension subroutine, 9-75
XStore8uffer subroutine, 7-523
XStore8ytes subroutine, 7-524
XStoreColor subroutine, 7-525-7-526
XStoreColors subroutine, 7-527-7-528
XStoreName subroutine, 7-529-7-530
XStoreNamedColor subroutine, 7-531-7-532
XStringToKeysym subroutine, 7-533
XSublmage subroutine, 7-534-7-535
XSubtractRegion subroutine, 7-536
XSync subroutine, 7-537-7-538
XtAcceptFocusProc data type, example of, 8-127
XtActionProc procedure pointer, example of, 8-125

X-50 User Interface Reference

XtAddCallback subroutine, 6-7
XtAddEventHandler subroutine, 6-10-6-11
XtAddExposureToRegion subroutine, 6-12
XtAddGrab subroutine, 6-13-6-14
XtAddlnput subroutine, 6-15
XtAddRawEventHandler subroutine, 6-16-6-17
XtAddressMode enumerated type, 8-124
XtAddTimeOut subroutine, 6-18
XtAlmostProc data type, example of, 8-128
XtAppAddActions subroutine, 6-20
XtAppAddConverter subroutine, 6-21-6-22
XtAppAddlnput subroutine, 6-23
XtAppAddTimeOut subroutine, 6-24
XtAppCreateShell subroutine, 6-26-6-27
XtAppError subroutine, 6-28
XtAppErrorMsg subroutine, 6-29
XtAppGetErrorDatabase subroutine, 6-30
XtAppGetErrorDatabaseText subroutine,
6-31-6-32

XtAppMainloop subroutine, 6-34
XtAppNextEvent subroutine, 6-35
XtAppPeekEvent subroutine, 6-36
XtAppPending subroutine, 6-37
XtAppProcessEvent subroutine, 6-38
XtAppSetErrorHandler subroutine, 6-39
XtAppSetSelectionTimeout subroutine, 6-41
XtAppSetWarningHandler subroutine, 6-42
XtAppSetWarningMsgHandler subroutine, 6-43
XtAppWarning subroutine, 6-44
XtArgsFunc data type, example of, 8-129
XtArgsProc data type, description of, 8-100
XtAugmentTranslations subroutine, 6-46
Xt8uildEventMask subroutine, 6-47
XtCallAcceptFocus subroutine, 6-48
XtCallbackExclusive subroutine, 6-50
XtCallbackNonexclusive subroutine, 6-52
XTCallbackPopdown subroutine, 6-53
XtCallbackProc data type, description of, 8-101
XtCallCallbacks subroutine, 6-49
XtCalloc subroutine, 6-54
XtCaseProc data type, example of, 8-127
XtCheckSubclass macro, 6-55
XtClass macro, 6-56
XtCloseDisplay subroutine, 6-57
XtConfigureWidget subroutine, 6-58
XtConvert subroutine, 6-59
XtConvertCase subroutine, 6-60
XtConverter data type, 8-123
XtConvertSelectionProc data type, example of,

8-130-8-131
XtCreateApplicationContext subroutine, 6-61
XtCreateApplicationShell subroutine, 6-62
XtCreateManagedWidget subroutine, 6-63
XtCreatePopupShell subroutine, 6-64
XtCreateWidget subroutine, 6-65-6-66
XtCreateWindow subroutine, 6-67
XtDatabase subroutine, 6-68
XtPestroyApplicationContext subroutine, 6-69
XtDestroyGC subroutine, 6-70

\,
/

XtDirectConvert subroutine, 6-73
XtDisownSelection subroutine, 6-74
XtDispatchEvent subroutine, 6-75
XtDisplaylnitialize subroutine, 6-77-6-79
XtError subroutine, 6-80
XtErrorHandler data type, example of, 8-133
XtErrorMsg subroutine, 6-81
XtErrorMsgHandler data type, example of, 8-134
XtEventHandler data type, 8-115
XtExposeProc data type, 8-114
XTextExtents16 subroutine, 7-542-7-543
XTextsExtents subroutine, 7-540-7-541
XTextWidth subroutine, 7-544
XTextWidth16 subroutine, 7-545
XtFree subroutine, 6-82
XtGeometryHandler data type, 8-117-8-118
XtGetApplicationResources subroutine, 6-83-6-84
XtGetErrorDatabase subroutine, 6-85
XtGetErrorDatabaseText subroutine, 6-86
XtGetGC subroutine, 6-87
XtGetResourcelist subroutine, 6-88
XtGetSelectionTimeout subroutine, 6-89
XtGetSelectionValue subroutine, 6-90
XtGetSelectionValues subroutine, 6-91-6-92
XtGetSubresources subroutine, 6-93-6-94
XtGetSubvalues subroutine, 6-95
XtGetValues subroutine, 6-96-6-97
XtGrabKey subroutine, 6-98-6-99
XtGrabKeyboard subroutine, 6-100
XtHasCallbacks subroutine, 6-101
Xtlnitialize subroutine, 6-102-6-103
XtlnitProc data type, description of, 8-99
XtlnputCallbackProc data type, example of, 8-135
XtlnstallAccelerators subroutine, 6-104
XtlnstallAllAccelerators subroutine, 6-105
XtlsComposite macro, 6-106
XtlsManaged macro, 6-107
XtlsSensitive macro, 6-109
Xtlssubclass subroutine, 6-110
XtKeyProc data type, example of, 8-126
XtloseSelectionProc data type, description of,

8-131
XtMainloop subroutine, 6-111
XtMakeGeometryRequest subroutine, 6-112-6-113
XtMakeResizeRequest subroutine, 6-114-6-115
XtMalloc subroutine, 6-116
XtManageChildren subroutine, 6-118
XtMapWidget subroutine, 6-119
XtMergeArglists subroutine, 6-120
XtMoveWidget subroutine, 6-121
XtNameToWidget subroutine, 6-122
XtNewString macro, 6-124
XtNextEvent subroutine, 6-125
XtNumber subroutine, 6-126
XtOffset macro, 6-127
XtOpenDisplay subroutine, 6-128-6-129
XtOrderProc data type, description of, 8-104
XtOverride Translations subroutine, 6-130
XtOwnSelection subroutine, 6-131-6-132

XtParent macro, 6-133
XtParseAcceleratorTable subroutine, 6-134
XtParseTranslationTable subroutine, 6-135
XtPeekEvent subroutine, 6-136
XtPending subroutine, 6-137
XtPopdown subroutine, 6-138
XtPopup subroutine, 6-139-6-140
XtProc data type, description of, 8-135
XtProcessEvent subroutine, 6-141
XtQueryGeometry subroutine, 6-142-6-143
XTranslateCoordinates subroutine, 7-546-7-547
XtRealizeProc data type, example of, 8-136-8-137
XtRealizeWidget subroutine, 6-144-6-145
XtRealloc subroutine, 6-146
XtRegisterCaseConverter subroutine, 6-14 7
XtReleaseGC subroutine, 6-148
XtRemoveAllCallbacks subroutine, 6-149
XtRemoveCallback subroutine, 6-150
XtRemoveEventHandler subroutine, 6-152-6-153
XtRemoveGrab subroutine, 6-154
XtRemovelnput subroutine, 6-155
XtRemoveRawEventHandler subroutine, 6-156
XtRemoveTimeOut subroutine, 6-157
XtRemoveWorkProc subroutine, 6-158
XtResizeWidget subroutine, 6-159
XtResizeWindow subroutine, 6-160
XtResourceDefaultProc data type, 8-122
XtScreen macro, 6-161
XtSelectionCallbackProc data type, example of,

8-132
XtSelectionDoneProc data type, example of, 8-133
XtSetArg subroutine, 6-162-6-163
XtSetErrorHandler subroutine, 6-164
XtSetErrorMsgHandler subroutine, 6-165
XtSetKeyboardFocus subroutine, 6-167-6-168
XtSetKeyTranslator subroutine, 6-166
XtSetSelectionTimeout subroutine, 6-170
XtSetSensitive subroutine, 6-171
XtSetSubvalues subroutine, 6-172
XtSetValues subroutine, 6-173-6-174
XtSetValuesFunc data type, example of, 8-138
XtSetWarningHandler subroutine, 6-175
XtSetWarningMsgHandler subroutine, 6-176
XtStringConversionWarning subroutine, 6-177
XtStringProc data type, example of, 8-139
XtSuperclass macro, 6-178
XtTimerCallbackProc procedure, example of, 8-139
XtToolkitlnitialize subroutine, 6-179
XtTranslateCoords subroutine, 6-180
XtTranslateKeycode subroutine, 6-181
XtUngrabKey subroutine, 6-182
XtUngrabKeyboard subroutine, 6-183
XtUninstallTranslations subroutine, 6-184
XtUnmanageChild subroutine, 6-185
XtUnmanageChildren subroutine, 6-186
XtUnmapWidget subroutine, 6-187
XtUnrealizeWidget subroutine, 6-188
XtWarning subroutine, 6-189
XtWarningMsg subroutine, 6-190

Index X-51

XtWidgetCallCallbacks subroutine, 6-191
XtWidgetClassProc data type, example of, B-136
XtWidgetProc data type, description of, B-102
XtWidgetToApplicationContext subroutine, 6-192
XtWindow macro, 6-193
XtWindowToWidget subroutine, 6-194
XtWorkProc data type, B-114
XUndefineCursor subroutine, 7-548
XUngrabKeyboard subroutine, 7-553
XUngrabPointer subroutine, 7-554
XUngrabserver subroutine, 7-555

· XUninstallColormap subroutine, 7-556-7-557
XUnionRectWithRegion subroutine, 7-558
XUniqueContext subroutine, 7-560

X-52 User Interface Reference

XUnloadFont subroutine, 7-561
XUnmapSubwindows subroutine, 7-562
XUnmapWindow subroutine, 7-563
XUseKeymap subroutine, 7-564
XVisuallDFromVisual subroutine, 7-565
XWindowEvent subroutine, 7-568
XWriteBitmapFile subroutine, 7-569-7-570

z
zoom hints, setting the value of, using

XSetZoomHints subroutine, 7-521
zoom hints atom, getting the values of, using

XGetZoomHints subroutine, 7-293-7-294

(
\

(

Reader's Comment Form

AIX Calls and Subroutines Reference: User Interface for IBM RISC
System/6000
SC23-2198-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

0 If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

0 If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request
additional publications.

Please print

Date-----

Your Name~------------------------------------~
Company Name---------------------------------------

Mailing Address ---

Area Code

No postage necessary if mailed in the U.S.A

I
I
I
I
I
I
I
I

)
I
I
I
I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAUE
NECESSARY

IF MAILED
IN THE

UNITED STATES

~--------~--

J PIO.:::!

I
I
I

b
c:
~
C>
c:
0
ct
"O
0
~

0
'5
b

I
I
I
I
I
I
I
I
I
I
!
I

PIO:!

r---
1 ade1 pue PIO:! a1deis lON ca asea1d ade1 pue PIO:!
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

---------- ----- ---- - ---- --------- ----- ·-
~ IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin , Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2198-00

5[23- 2198-00

