

First Edition (March 1990)

This edition of the User's Guide for IBM AIX VS COBOL Compiler/6000 applies to Version Number 1.1 of
the IBM AIX VS COBOL Compiler/6000 Licensed Program and to all subsequent releases of these products
until otherwise indicated in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow dis
claimer of express or implied warranties in certain transactions; therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or infor
mation must not be construed to mean that IBM intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

IBM is a registered trademark of International Business Machines Corporation.

©Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

©Copyright Micro Focus, Ltd. 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or disclo
sure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks apply to this book.

• IBM is a registered trademark of International Business Machines Corporation.

• RT is a registered trademark of International Business Machines Corporation.

• AIX is a trademark of International Business Machines Corporation.

• AIX VS COBOL Compiler/6000 is a trademark of International Business
Machines Corporation.

• OS/VS COBOL and VS COBOL II are trademarks of International Business
Machines Corporation.

• Micro Focus and VS COBOL Workbench are trademarks of Micro Focus.

• Micro Focus COBOL/2, VS COBOL, FILESHARE, LEVEL II COBOL/ET,
Professional COBOL, Professional COBOL/2, and ANIMATOR are trademarks
of Micro Focus.

• UNIX is a registered trademark of AT&T.

• RM/COBOL is a trademark of Ryan McFarland Corporation.

• Microsoft is a trademark of Microsoft Corporation.

• Data General is a trademark of Data General Corporation.

Trademarks and Acknowledgements iii

iv User's Guide for IBM AIX VS COBOL Compiler/6000

About This Book

This book explains how to develop and execute COBOL programs on the IBM AIX
Operating System.

Who Should Read This Book
This book is intended for users who have a good understanding of the COBOL pro
gramming language. A detailed presentation is provided in the Language Reference.
Users should also be familiar with the IBM AIX Operating System.

How to Use This Book
The following highlighting and notation conventions are used in this book:

• Commands, keywords, file names, and keys appear in bold type. Not all com-
mands are case-sensitive. For example, you can type b or B for break.

• New terms appear in bold italic type.

• Examples appear in monospace type.

• Lowercase italics appear when the presence of a variable item is implied, for
which you must substitute a particular value.

ACCEPT dataname FROM CRT

• When items are enclosed in braces { }, you must choose only one of the items.

• When items are enclosed in square brackets [], you can choose one or none of
the items.

• An item followed by an ellipsis ... may be repeated multiple times.

CALL procedure USING parameter • • •

• In text and in command line formats, the symbol ..-1 is used to represent the
Enter or Return key on your keyboard.

How This Book is Organized
This book contains the following information:

• Chapter 1, "Introduction" provides an overview of using IBM AIX VS COBOL
on the IBM AIX Operating System.

• Chapter 2, "Advice on Writing COBOL Programs" provides information about
how to write AIX VS COBOL programs as efficiently as possible.

• Chapter 3, "Device- and File-Handling" describes AIX files and devices as they
appear to AIX VS COBOL programs.

• Chapter 4, "The COBOL Interface" describes the cob command, which provides
the user interface to the AIX VS COBOL system.

• Chapter 5, "Compiler Options" describes the system-wide compiler options and
their default values.

About This Book V

• Chapter 6, "Native Code Generator Opticms" describes the Native Code Gener
ator options and their default values.

• Chapter 7, "Running an AIX VS COBOL Program" describes the procedure for
running an AIX VS COBOL program.

• Chapter 8, "File Sharing in the Multi-User Environment" describes how AIX
VS COBOL provides independent COBOL programs with the ability to share
data files in AIX VS COBOL multiple-user environments.

• Chapter 9, "Advanced Programming Features" describes three advanced pro
gramming features: library subroutines, Run Time Environment (RTE) subpro
grams for special features, and the file handler.

• Chapter 10, "Configuring Your AIX VS COBOL System" describes how to alter
the default behavior of the AIX VS COBOL ACCEPT and DISPLAY state
ments.

• Chapter 11, "Debugging Your Program Using ANIMATOR" describes how to
debug your programs interactively using ANIMATOR.

• Chapter 12, "Designing Display Screens and Programs Using FORMS-2"
describes how to use FORMS-2 to create and edit data entry screens and pro
grams in interactive mode.

• Chapter 13, "Ryan-McFarland COBOL: Conversion Series 3" describes how to
use IBM AIX VS COBOL to process Version 2 RM/COBOL source programs.

• Chapter 14, "Data General COBOL: Conversion Series 5" describes how to
migrate from the DGCOBOL environment to an AIX VS COBOL environment.

• Chapter 15, "Error Messages" lists error messages that you may see in syntax
checking, code generation, and system-generated messages.

• Appendix A, "Environment Variables" describes the environment variables you
can set for AIX VS COBOL.

• Appendix B, "National Language Support" provides information on national
language support.

• Appendix C, "Character Sets and Collating Sequence" contains tables of char
acter sets and the collating sequence for AIX VS COBOL.

• Appendix D, "Packaging Application Programs" explains how to compile appli
cation programs that will be distributed.

Related Publications
The AIX VS COBOL Compiler/6000 documentation is available in hardcopy publi
cations only. Softcopy information to support AIX and other licensed programs is
provided with the product. The entire AIX library is available as softcopy on a
CD-ROM. Refer to the operating system documentation for more detailed informa
tion on the various features of AIX. The following hardcopy documentation is also
available.

Language Reference describes how to compile and execute AIX VS COBOL pro
grams.

vi User's Guide for IBM AIX VS COBOL Compiler/6000

Ordering Additional Copies of This Book
To order additional copies of this book (without the program media), use form
number SC23-2178-00.

About This Book vii

viii User's Guide for IBM AIX VS COBOL Compiler/6000

Contents

Chapter 1. Introduction
Contents
About This Chapter . .
Introduction
AIX VS COBOL System Components

Compiler
Native Code Generator
Run Time Environment
Linker
ANIMATOR
FORMS-2
Sta tic Linking and Dynamic Loading
Statically Linked Code . .
Dynamically Loaded Code

Program Development Cycle
Program Source Conventions

Checking Out the AIX VS COBOL System with Demonstration Programs
pi.cbl
stockl.cbl
stock2.cbl

Chapter 2. Advice on Writing COBOL Programs
Contents
About This Chapter
Optimizing COBOL Programs
Features to be Used with Care
Programming Restrictions
Current Restrictions on the Use of Some SAA Functionality
Using Intermediate or Native Code
Optimizing Native Code
Handling Large Programs

Segmentation (Overlaying)
Interprogram Communication (Call and Cancel)
Calling AIX VS COBOL Subprograms .
Search Sequence for Locating File Name
Multiple Entry-Points
Calling Non-COBOL Subprograms

Cancelling Non-COBOL Subprograms
Mixing C and COBOL Programs
Passing the Command Line
Calling Operating System Functions
AIX VS COBOL Dialect Flagging and Error Reporting

Chapter 3. Device~ and File-Handling
Contents
About This Chapter
Devices

File Assignment .
Special Characters in Environment Variables

AIX VS COBOL Disk File Structure under AIX
Record-Sequential Files

Contents

1-1
1-2
1-3
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-7
1-8
1-9

1-10
1-11

2-1
2-2
2-3
2-4
2-4
2-5
2-6
2-7
2-8
2-8
2-9
2-9

2-11
2-11
2-13
2-15
2-18
2-18
2-21
2-23
2-24

3-1
3-2
3-3
3-4
3-4
3-9

3-12
3-12

ix

Line-Sequential Files
Relative Files .
Indexed Sequential Files
Library Files
File Restrictions
Input-Output Error-Handling (File Status)
Alternate File Status Table
Writing Output Directly to a Printer

Chapter 4. The COBOL Interface
Contents
About This Chapter
COBOL Interface Command .
The Development Cycle
Option Specification

System-Wide Default Options
Optional User Default Options
Command Line Options
Embedded Source File Options

Command Line Conventions
Command Line Examples

Chapter 5. Compiler Options
Contents
About This Chapter
Format of Compiler Options . .

Permitted Options
Excluded Combinations
ANS85 Options . .
Default Options
Mainframe Options
SAA Options
Options Permitted in $SET Statements
Compiler Messages
Listing Format

Chapter 6. Native Code Generator Options
Contents
About This Chapter
Permitted Options
Default Options
Native Code Generator Messages .

Chapter 7. Running an AIX VS COBOL Program
Contents
About This Chapter
Command Line Syntax
Command Line Examples

Examples
Switch Parameters

Run-Time Switches
ANIMATOR Switch (A)
Skip Locked Record Switch (B)
ANSI COBOL Debug Switch (D)
COBOL Symbol Switch (e)

X User's Guide for IBM AIX VS COBOL Compiler/6000

3-12
3-12
3-13
3-16
3-17
3-17
3-18
3-20

4-1
4-2
4-3
4-4
4-5
4-7
4-7
4-7
4-8

4-15
4-16
4-17

5-1
5-2
5-3
5-4
5-5

5-23
5-24
5-24
5-27
5-27
5-28
5-29
5-30

6-1
6-2
6-3
6-4
6-5
6-6

7-1
7-2
7-3
7-4
7-5
7-5
7-6
7-7
7-7
7-7
7-8
7-8

Error Switch (E) 7-8
Compatibility Check Switch (F) 7-8
Keyboard Interrupt Switch (i) 7-9
ISAM Files Sequence Check Switch (K) 7-10
Memory Switch (1) 7-10
Null Switch (N) 7-10
Dynamic Linkage Setup Switch (p) 7-10
File Status Error Switch (Q) 7-11
Reread Locked Record Switch (R) 7-11
Sort Memory Switch (s) 7-12
Sort Switch (S) 7-12
Tab Switch (T) 7-12
Examples 7-13

Run Time Environment Error Messages 7-13
COBOL Profiler 7-14

Profiler Directives 7-14
Profiler Output 7-15

Chapter 8. File Sharing in the Multi-User Environment 8-1
Contents 8-2
About This Chapter 8-3
A Typical Multi-User Environment 8-4
Including Multi-User Syntax in Your Program 8-4
Facilities for Multi-User AIX VS COBOL 8-4

Data Locking 8-5
Organization of Shared Files 8-6
Tw Procedure Division 8-11
File Status 8-11

Demonstration Programs 8-13
Running the Demonstration Programs 8-13

Chapter 9. Advanced Programming Features 9-1
Contents 9-2
About This Chapter 9-3
Library Subroutines 9-4

cobsetjmp and coblongjmp 9-4
cobtidy 9-5

RTE Subprograms 9-5
Put a Character to the Screen 9-6
Read a Character from the Keyboard 9-7
Split/Join a File Name 9-7
File-Related Operations 9-8
Modifying the Behavior of User Attributes 9-9
Modifying the Behavior of ACCEPT/DISPLAY 9-9
Display Screen Input and Output 9-11
Test Keyboard Status 9-13
Sound the Audible Alarm 9-13
Move the Cursor to a Defined Position 9-13
Pack Byte 9-14
Unpack Byte 9-14

CRT Screen Handling 9-14
The ACCEPT and DISPLAY Statements 9-14
Display Attributes 9-15
Screen Handling From C 9-16

Using Escape Sequences to Send Attribute Information to the Screen 9-19

Contents xi

File Handler
Interface to the COBOL File Handler .

Operation Codes Passed in the Second Byte of the First Parameter
Information Passed in the FCD at Open Time
Information Passed for Other Operations

FCD Information Format
Key Definitions for Indexed Files

Global Information
Key Definitions
Component Definitions

CISAM Features

Chapter 10. Configuring Your AIX VS COBOL System
Contents
About This Chapter
Introduction
terminfo
cobkeymp ..
ADISCTRL .
Keyboard Conversion Process
key bcf Utility

Specifying and Accessing Multiple or Alternate cobkeymp Files
Invoking the keybcf Utility
Using the key bcf Utility
Maximum Size of keybcf Buffers

adiscf Utility
Invoking the adiscf Utility
Using the adiscf Utility

Chapter 11. Debugging Your Program Using ANIMATOR
Contents
About This Chapter
Introduction
Facilities Not Supported by ANIMATOR
Getting Started
Running ANIMATOR

Specifying Directives
ANIMATOR Directives
ANIMATOR Display Screen

Using ANIMATOR Commands
Help Display Screens
Animating STOCKI
Using Break Points
Examining the Contents of Data Items . . .
Ending Animation
Animating Your Own Programs
Using the ANIMATOR Switch
Command Line Switches
File Searches
Animating CALLed Programs
os;vs COBOL-Style PERFORMS
Other Remarks about Animation

Cursor Control Keys
ANIMATOR Commands

Help

xii User's Guide for IBM AIX VS COBOL Compiler/6000

9-20
9-21
9-21
9-22
9-22
9-23
9-25
9-25
9-25
9-26
9-26

10-1
10-2
10-3
10-4
10-5
10-5
10-5
10-5
10-6
10-7
10-8
10-9

10-14
10-14
10-14
10-14

11-1
11-2
11-3
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-8
11-9
11-9

11-11
11-13
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-19

View
Align
exchange
Where
looKup .
word-left (<) and word-right (>)

Escape Key
Letter Commands

Step
Go
next-If
Perform
Reset
Break
Env
Query
Find .
Locate
Text .
Do

ANIMATOR Command Summary

Chapter 12. Designing Display Screens and Programs Using FORMS-2
Contents
About This Chapter
Introduction

Outputs
Phases

Operator Interface . .
FORMS-2 Validation
Initialization Phase

Initialization Display Screen 101
Initialization Display Screen 102

Work Phase
Display Screen WOl
Work Display Screen
Work Phase Completion . .

Data Descriptions
Record Name and Data-Name Generation
Picture Generation
Editing the DDS File
Incorporation of DDS File Contents

Checkout Program
Checkout Program Generation .
Checkout Program Compilation
Checkout Program Running
Checkout Processing .
Checkout Completion

Display Screen Image File
Display Screen Image File Generation
FORMS-2 Maintenance
Printed Forms
Form Images in the Design Process .. .

FORMS-2 User Display Screen Generation Example
Index Program .

Contents

11-20
11-20
11-20
11-20
11-21
11-21
11-21
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-27
11-32
11-37
11-38
11-39
11-40
11-41

12-1
12-2
12-3
12-4
12-5
12-5
12-6
12-7

12-16
12-16
12-17
12-18
12-18
12-19
12-28
12-29
12-29
12-30
12-30
12-30
12-31
12-31
12-31
12-31
12-32
12-32
12-33
12-33
12-33
12-34
12-34
12-35
12-39

xiii

Index Program Generation
Index File Generation
Index Program Compilation
Index Program Running . .

User Index Program Example

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3
Contents
About This Chapter .
Converting RM/COBOL Applications to AIX VS COBOL

Submitting RM/COBOL Source Programs to AIX VS COBOL
Converting Data Files

Enhancing Your Converted Application
Other Considerations for Conversion .
Submitting an RM/COBOL Application to the AIX VS COBOL System

Migrating from the RM/COBOL Environment
tabx Program

Source Compatibility
RM Directive
SPZERO Option
Perform Statements
Types of Data
COMPUTATIONAL-I (COMP-I) Data Types .
COMPUT A TIONAL-6 (COMP-6) Data Types . .
COMPUTATIONAL (COMP) Data Types

Conversion Problem Solving
Length of Nonnumeric Literals
Source Code in Columns 73 to 80
Reserved Words
Numbering Segments
Program Identification and Data-Names .
Column Number Specification
End-of-File Notification ..
HIGH-VALUES
Duplicate Paragraph Names
Display of Input Data in Concealed ACCEPT Fields

Executable Code Problems
Trailing Blanks in Line-Sequential Files
Undefined Results of MOVE and Arithmetic Operations
Embedded Control Sequences in DISPLAY Statements
Redefinition of COMPUTATIONAL or COMPUTATIONAL-6 Data

Items
ON SIZE ERROR Clause
Field Wrap-Around .
COMPUTATIONAL-I Data Items with a Picture Other Than S9(4) ...
File and Record Locking .
Initialization of the WORKING-STORAGE

Converting Data Files for Use with Converted Programs
Supported Data File Types
COMP/COMPUTATIONAL Data
COMP-3/COMPUTATIONAL-3 Data
COMP-6/COMPUTA TIONAL-6 Data
DISPLAY Data
Program Modifications Required by convert3 . . .

Running convert3

xiv User's Guide for IBM AIX VS COBOL Compiler/6000

I2-40
12-41
12-41
12-4I
12-43

13-1
13-2
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-8
13-9
13-9
13-9
13-9

13-10
13-10
13-10
13-10
13-11
13-11
13-12
13-I2
13-I2
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-I5
13-15
13-15

13-16
13-17
13-17
13-18
13-19
13-19
13-20
13-20
13-20
13-21
13-22
13-22
13-23
13-24

Running convert3 in Interactive Mode
File Details
Print File Name
Record Type Specification
Binary Sequential Files
Generate Program
Escape
Running convert3 in Batch Mode
Running convert3 with a Parameter File

Using the File Conversion Program
Creating an Executable File Conversion Program
Running the File Conversion Program
Indexed Sequential Files with Duplicate Alternate Keys

convert3 and File Conversion Program Error Messages
convert3 Error Messages
File Conversion Program Error Messages

Chapter 14. Data General COBOL: Conversion Series 5
Contents
About This Chapter .
Converting DG Interactive COBOL Applications to AIX VS COBOL

Submitting Source Programs
Enhancing Converted Applications
Source Compatibility

The DG Directive
Reserved Words .
DG International Character Set
DG File Status and Other Exception Values
Calls
LINKAGE SECTION Access
Arithmetic of Group Level Items
Run-Time Switches
Program Identification and Data-Names

Reformatting a DG Source File
Using reforms
Reformatting Rules

Converting Data Files for Use with Converted Programs
Supported Data File Types
DG Data Types
Source File Restrictions
The File Conversion Process

Running converts
Running converts in Interactive Mode
Running converts in Batch Mode
Example Parameter List
Running convert5 with a Parameter File

Using the File Conversion Program
Creating an Executable File Conversion Program
Running the File Conversion Program

Error Messages
Errors Reported by converts
Errors Reported by the Conversion Program

Chapter 15. Error Messages
Contents

Contents

13-24
13-2S
13-2S
13-26
13-28
13-28
13-29
13-29
13-33
13-33
13-34
13-34
13-34
13-3S
13-3S
13-36

14-1
14-2
14-3
14-4
14-4
14-4
14-S
14-S
14-S
14-S
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-7
14-8

14-10
14-11
14-12
14-12
14-13
14-17
14-19
14-20
14-20
14-20
14-20
14-22
14-22
14-23

lS-1
lS-2

xv

About This Chapter
Introduction
Compiler Messages

Severe Compiler Messages
Compiler Error Messages
Compiler Warning Messages
Compiler Information Messages
Compiler Flags

Errors Encountered During Code Generation
Native Code Generator Messages

Run Time Environment Errors
Types of Errors
Run Time Environment Error Messages

cob Command Errors

Appendix A. Environment Variables
Introduction

COBATTR
COBCPY
COBCTRLCHAR
COBDIR .
COBHELP ..
COBIDY ...
COBLPFORM
COBOPT ...
COBPATH
COBPRINTER
COB SW
TMPDIR

Appendix B. National Language Support
Introduction

Features Provided by National Language Support
Compiling Programs with National Language Support
Running Programs with National Language Support
Running Your Program
RTE NLS Initialization
String Comparisons
Class Condition Tests
Indexed Sequential File Operations
Comparisons Performed as Part of SORT or MERGE Statements
The NLS Support Routines .
Mixing Programs with and without National Language Support

Appendix C. Character Sets and Collating Sequence

Appendix D. Packaging Application Programs
Introduction
The Run Time Package
Preparing Application Packages

Statically Linkable Native Code (.o)
Dynamically Loadable Native Code (.gnt)
Intermediate Code (.int)

rno~acy

xvi User's Guide for IBM AIX VS COBOL Compiler/6000

15-3
15-4
15-4
15-7

15-40
15-43
15-46
15-47
15-54
15-54
15-60
15-60
15-62
15-85

A-1
A-3
A-3
A-4
A-4
A-4
A-5
A-5
A-5
A-6
A-6
A-7
A-7
A-8

B~I

B-3
B-3
B-4
B-5
B-5
B-6
B-6
B-6
B-7
B-7
B-7
B-8

C-1

D-1
D-3
D-3
D-3
D-3
D-4
D-4

G-1

Index . X-1

Contents xvii

xviii User's Guide for IBM AIX VS COBOL Compiler/6000

Figures

1-1. Program Development Cycle 1-7
2-1. Sample CALL Tree Structure 2-10
8-1. A Hypothetical Multi-User Environment 8-6
8-2. FILE-CONTROL Paragraph Syntax for Record and Line-Sequential

Files . 8-7
8-3. FILE-CONTROL Paragraph Syntax for Relative Files 8-8
8-4. FILE-CONTROL Paragraph Syntax for Indexed Sequential Files 8-10
8-5. Initial Display Screen of the Demonstration Program 8-14

10-1. Character Conversion Process 10-6
10-2. Main keybcf Display Screen 10-9
10-3. Alter Function Key Options 10-11
10-4. Main adiscf Command Menu 10-15
10-5. Load Option . 10-27
11-1. ANIMATOR Display Screen 11-7
11-2. Example of CALL Statement/PERFORM Level Relationship 11-29
14-1. Example Program to Reformat DG Interactive COBOL Relative

Data File 14-9
14-2. An Example Parameter File . 14-19

Figures xix

XX User's Guide for IBM AIX VS COBOL Compiler/6000

Tables

3-1.
4-1.
5-1.
9-1.
9-2.

10-1.
10-2.
10-3.
11-1.
12-1.
13-1.
14-1.
C-1.

File Name Mapping
Development Cycle of Input File to cob Command
Excluded Combinations of Options
Default File Handlers
Operation Codes Passed in the Second Byte of the First Parameter
Default ADIS Control Keys
Hexadecimal Sequences for Key Functions Not on Your Keyboard
Default Mappings of ADIS Function Keys
ANIMATOR Command Summary
Cursor Control Keys
Error Message Identification
Error Message Identification
Character Set and Collating Sequence

3-8
4-6

5-24
9-20
9-21
10-7

10-12
10-26
11-41

. 12-6
13-35
14-22

. C-1

Tables xxi

xxii User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 1. Introduction

Chapter 1. Introduction 1-l ·

Contents
About This Chapter
Introduction
AIX VS COBOL System Components

Compiler
Native Code Generator
Run Time Environment .
Linker
ANIMATOR
FORMS-2
Static Linking and Dynamic Loading
Statically Linked Code
Dynamically Loaded Code

Program Development Cycle
Program Source Conventions

Checking Out the AIX VS COBOL System with Demonstration Programs
pi.chi
stock I .cbl
stock2.cbl

1-2 User's Guide for IBM AIX VS COBOL Compiler/6000

1-3
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-7
1-8
1-9

1-10
1-11

About This Chapter
This chapter discusses the components of the IBM AIX VS COBOL Compiler/6000
Version 1.1, and provides a program development cycle overview, installation
instructions, and demonstration programs that illustrate the use of the AIX VS
COBOL compiler.

Chapter 1. Introduction 1-3

Introduction
IBM AIX VS COBOL Compiler/6000 Version 1.1 provides a high performance opti
mizing compiler that produces object code for execution on the IBM RISC
System/6000 under theAIX Operating System. AIX VS COBOL accepts COBOL
source code as defined by the following standards:

• ANSI COBOL X3.23 1985 High
• ANSI COBOL X3.23 1974 High
• IBM SAA Level 1 COBOL
• PIPS PUB 21-2.

Conversion utilities are provided to migrate Data General COBOL and
Ryan-McFarland COBOL source to AIX VS COBOL source.

· In addition,· AIX VS COBOL offers these enhanced functions:

• Source compatibility with the following:

IBM AIX PS/2 VS COBOL
IBM AIX/RT VS COBOL
IBM OS/VS COBOL (Release 2.4 and earlier)

- IBM VS COBOL II (Release 1, December 1984)
- IBM COBOL/2 (Release 1)
- Micro Focus Extensions (Level 4 and earlier)
- Data General Interactive COBOL Revision 1.30
- Ryan-McFarland COBOL 2.0
- Microsoft'COBOL LO and 2.2

• Automated installation

• Optimized code

• Operating system interface library

• Interlanguage linkages with C

• Detailed on-screen messages

• Development and debugging environment

• Interactive design of application screen layouts

• National Language Support.

AIX VS COBOL System Components
The AIX VS COBOL system is a compact, interactive system. The major compo
nents of the AIX VS COBOL system are as follows:

•. Compiler
• Native Code Generator
• Run Time Environment (RTE)
• ANIMATOR debugging tool
• FORMS-2 screen/program facility.

1-4 Us~r's Guide for IBM AIX VS COBOL Compiler/6000

Compiler

The cob command provides access to the compiler, the Native Code Generator, the
cc command and the AIX system linker. Files specified to this command can be any
mixture of COBOL source, intermediate code, native code, linkable object code,
assembler source files or C source files. By default, the cob command converts the
specified files into intermediate code files that are suitable for animation. The cob
command can output native code, intermediate code, or statically linked executable
modules, depending on the options you specify. The AIX system linker is used to
link the object files to the RTE which creates one executable file.

The AIX VS COBOL compiler translates COBOL source code into an intermediate
code. This intermediate code is a sequence of instructions to the machine.

Native Code Generator
The Native Code Generator translates the intermediate code produced by the com
piler into the native code of the IBM RISC System/6000.

Run Time Environment

Linker

ANIMATOR

FORMS-2

The Run Time Environment (RTE) loads files of intermediate or native code. By
default, the RTE passes native code to the IBM RISC System/6000 processor for
direct execution, although it can execute code interactively. The RTE also acts as
the interface between your COBOL program and such operating system functions as
file and device-handling and memory management.

Note: You may see the phrase Run Time Environment referred to as Run Time
System in various places in the AIX VS COBOL publications. The phrases
are synonymous and are interchangeable. The same holds true for the acro
nyms RTE and RTS.

The linker links the object files to the RTE and creates one executable file.

ANIMATOR is an interactive tool that allows for quick and easy program debug
ging. ANIMATOR allows you to do the following:

• See in what sequence the statements of your program are executed.
• Halt the program at any time.
• Display the contents of data items and change them.
• Alter the sequence in which statements are executed.
• Cause statements to be skipped.

The FORMS-2 package is an extension to the software development system that
enables you to create and edit data entry screens for application programs at a
console.

Chapter 1. Introduction 1-S

Static Linking and Dynamic Loading
The AIX VS COBOL system allows you to execute statically linked or dynamically
loaded code, both of which can be output by the cob command, depending on the
options specified.

To design COBOL application programs that make the most efficient use of avail
able memory, use a mixture of static and dynamic modules in your programs.

Statically Linked Code
Statically linked code is in the form of a standard AIX a.out executable object
module that has all of its overlays or other procedures linked into memory. To
execute such modules, specify the name of the executable object module on the AIX
command line. The name of the module that you would specify is dependent upon
how you instructed the cob command to create the module. See Chapter 4, "The
COBOL Interface" for more information.

The advantage of statically linking programs in a multi-user environment is that it
allows users to share programs. It also allows programs to call other programs
within the same suite with the maximum possible speed. Static linking can result in
large executable files; however, the size of available memory on the AIX system
should not be a constraint.

If you want your program to CALL a program that is written in a different lan
guage, the called program must be statically linked to the AIX VS COBOL RTE.

Dynamically Loaded Code
Dynamically loaded code can be either COBOL intermediate files (.int) or COBOL
native files (.gnt). This code loads modules as needed. Use the cobrun command to
execute dynamically loadable code. See Chapter 7, "Running an AIX VS COBOL
Program" for more information.

Dynamically loaded programs are especially suitable for development environments.
It allows you to debug parts of your program while the rest of it is running, and to
reload the amended part of your code without needing to reload the entire applica
tion. An advantage of dynamically loaded programs is that they require less avail
able memory.

Program Development Cycle
Figure 1-1 on page 1-7 illustrates the typical cycle of creating a COBOL source
program and submitting it to the cob command.

The type of program output by the cob command depends upon command line
options specified when you submit your input files. See Chapter 4, "The COBOL
Interface" for full details about available options.

1-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Testing
Phase

COBOL
SOURCE

COMPILE

INTERMEDIATE
CODE

ANIMATE

EDIT

No

GENERATE
OBJECT MODULE

No AND LINK TO RTS
TO PRODUCE
A ST AND-ALONE
EXECUTABLE
COBOL PROGRAM

No GENERATE DYNAMICALLY
LOADABLE NATIVE CODE
FILE

GENERATE OBJECT MODULE AND LINK TORTS TO
PRODUCE PARTIALLY LINKED EXECUTABLE PROGRAM

RUN

Figure 1-1. Program Development Cycle

Program Source Conventions
The AIX VS COBOL compiler accepts source code from a standard AIX text file (as
created by an AIX editor such as vi). The format of the AIX text file is the same as
for standard COBOL and is described in the Language Reference.

Each line of your COBOL source programs, including the last line, must be termi
nated by a new line character.

Your COBOL source programs must not contain any control characters (characters
with hexadecimal values 00 to lF inclusive, or 7F) except the tab character, unless
they are embedded in literal strings. The tab is expanded with spaces to the next
character position that is a multiple of 8.

Chapter 1. Introduction 1-7

Checking Out the AIX VS COBOL System with Demonstration Programs
A number of demonstration programs have been provided. The source code for
these programs is in the following files of the /usr/lpp/COBOL/lib/demo directory:

• pi.chi
• stockl.cbl
• stock2.cbl
• mudemo.cbl
• stockin.cbl
• stockioa.cbl
• stockiom.cbl
• stockout.cbl

Each file has a specific function to help you verify that your AIX VS COBOL
system is accurately configured to your console, as follows:

File
pi.chi

stockl.chl

stock2.chl

mudemo.chl
stockin.chl
stockioa.cbl
stockiom.cbl
stockout.cbl

Description
This program displays on the screen the mathematical
constant pi to 12 decimal places and is the basic screen
test for AIX VS COBOL DISPLAY.

Do not run this program until you are confident that
pi.chi is working correctly. It is the test for AIX VS
COBOL ACCEPT, which provides the basic interactive
functions, and indexed-sequential file input-output.

This program uses a data file created by running
stockl.chl and is dependent on having run that program
successfully. The source code contains a deliberate error
that does not affect the program's execution, but pro
vides an example of an AIX VS COBOL error message.

These programs show how the file and record locking
syntax of AIX VS COBOL allows a number of pro
grams to have simultaneous access to the same set of
indexed-sequential files without interfering with one
another. These programs are explained in Chapter 8,
"File Sharing in the Multi-User Environment."

The pi.chi, stockl.cbl, and stock2.chl programs introduce you to the program devel
opment cycle. They also indicate how simple COBOL programs can have sophisti
cated screen and file-handling features.

Copy these programs into one of your work directories before walking through the
examples given in the rest of this section.

1-8 User's Guide for IBM AIX VS COBOL Compiler/6000

pi.cbl
Type the following command line:

cob -vxP pi.cbl .-1

The cob command recognizes the .cbl file extension and invokes the compiler. Speci
fying the -v option causes any messages output by cob to be displayed on the screen.
The -x option causes the input file to be processed to a statically linked executable
module. By default, the name of this module is the base name of the first file input
to the cob command. In this case, as there is only one input file, the statically linked
module takes its base name, pi. The -P option forces cob to create a listing file,
pi.1st. Full details on the use of the cob command and its options can be found in
Chapter 4, "The COBOL Interface."

The first lines displayed immediately tell you that the compiler has been loaded and
is executing.

* IBM AIX VS COBOL Compiler/6000 LP
* 5601-258 (C) Copyright IBM Corp. 1987, 1990
* Copyright (C) 1984, 1987 Micro Focus, Ltd.
* All Rights Reserved
* Licensed Materials - Property of IBM
* Accepted-verbose
*Accepted-list (pi.1st)
*Compiling pi.cbl

When the compilation is finished, the compiler reports the results as follows:

* Total messages: 1
* Unrecoverable: 0 Severe: 0
* Errors: 0 Warnings: 0
* Information: 1 Flags: 0

It also outputs a message giving the sizes of the code, the data areas, and the com
piler dictionary.

Next, the Native Code Generator is invoked. Messages are displayed to tell you that
the Native Code Generator is loaded and is executing.

When code generation is completed, the Native Code Generator outputs a message
giving the sizes of the data and code areas, the literals, and the Native Code Gener
ator dictionary.

Then, a single executable file (pi) is created, which contains the RTE support
libraries required by the program pi, with pi linked to them.

In addition to the executable file, pi, the compiler generates the following two files:

• pi.1st, which contains the list file
• pi.int, which contains the intermediate code.

Chapter 1. Introduction 1-9

Running the Linked RTE

Problem Diagnosis

stock1 .cbl

Running stock1

To run pi, enter the name of the file containing the linked RTE, as follows:

pi .i

The display screen clears, the cursor appears at the top left, and the pi screen is dis
played as illustrated below for the final term:

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

If the screen is not displayed or is displayed incorrectly, the terminfo entry for your
console type may be incorrect. See Chapter 10, "Configuring Your AIX VS
COBOL System" for further information.

To submit stockl.cbl to the cob command and output a single statically linked exe
cutable module named stockl, enter the following:

cob -vxP stockl.cbl .i

This command outputs a listing in the file stockl.lst, and causes the cob command to
display any messages it outputs on the display screen.

After the cob process has finished successfully, you can run the single executable file
stockl it produced by entering:

stockl .i

The display screen clears and the following screen is displayed:

STOCK CODE < >

DESCRIPTION < >

UNIT SIZE < >

The program waits for you to enter data through the keyboard using the Tab key,
the Backspace key, and the Return (.i) key.

Before entering any data, try moving the cursor from data item to data item using
the cursor control keys. Note that AIX VS COBOL does not allow you to position
the cursor outside the bounds of the data to be entered. While entering data, check
the following two functions:

• Left zero-fill, which can be tested using the'.' on data entered into UNIT SIZE.
Keying 1. should result in 0001.

• Return (.i), to enter your first display screen full of data.

In the following two cases, pressing .i will not result in data being written to the
file.

1. When UNIT SIZE is not numeric

2. When a record with this STOCK CODE number already exists on the file.

1-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Problem Diagnosis

stock2.cbl

Reference to the listing of the source program shows why. The relevant statements
are as follows:

IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR.

and

WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR.

Case 1 is the result of an explicit test by the programmer for valid data input. Case
2 arises from the fact that the STOCK CODE is being used as the Record key, and
duplicate keys are not permitted in the indexed sequential file to which these records
are being written.

To terminate the run cleanly, you must key spaces into the STOCK CODE field and
press~. The program tests for this end-of-run signal in the line:

IF CRT-STOCK-CODE= SPACE GO TO END-IT.

Typical problems that may be experienced are as follows:

• Cursor fails to move or moves incorrectly, with one or more of the cursor move
ment keys. If you are using the keys correctly, the terminfo entry for your
console type may be incorrect.

• A run-time error may occur if the files STOCK.IT and STOCJ{.IT.idx, gener
ated and referenced by stockl, have been damaged; for example, by a previous
run of stockl that was incorrectly terminated. To recover, delete the two files
STOCK.IT and STOCK.IT.idx, and start again with the stockl program.

Compile stock2.cbl using the same command line options used to compile stockl.cbl.

Run the program, and retrieve the records you entered to the file using stockl by
entering into the STOCK CODE field the values you previously used. Again, spaces
in the STOCK CODE field must be used to terminate the run.

Chapter 1. Introduction 1-11

1-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 2. Advice on Writing COBOL Programs

Chapter 2. Advice on Writing COBOL Programs 2-1

Contents
About This Chapter
Optimizing COBOL Programs
Features to be Used with Care
Programming Restrictions
Current Restrictions on the Use of Some SAA Functionality
Using Intermediate or Native Code
Optimizing Native Code
Handling Large Programs

Segmentation (Overlaying)
Interprogram Communication (Call and Cancel)
Calling AIX VS COBOL Subprograms .
Search Sequence for Locating File Name
Multiple Entry-Points
Calling Non-COBOL Subprograms

Cancelling Non-COBOL Subprograms
Mixing C and COBOL Programs
Passing the Command Line
Calling Operating System Functions
AIX VS COBOL Dialect Flagging and Error Reporting

2-2 User's Guide for IBM AIX VS COBOL Compiler/6000

2-3
2-4
2-4
2-5
2-6
2-7
2-8
2-8
2-9
2-9

2-11
2-11
2-13
2-15
2-18
2-18
2-21
2-23
2-24

About This Chapter
This chapter highlights a number of IBM AIX VS COBOL procedures for which the
AIX VS COBOL system produces particularly efficient code. It also describes a
number of implementation restrictions that you must be aware of when writing AIX
VS COBOL programs. This chapter describes considerations for handling large pro
grams and explains how to call subprograms written in COBOL and other lan
guages.

Chapter 2. Advice on Writing COBOL Programs 2-3

Optimizing COBOL Programs
The following information will increase the performance of your COBOL programs:

• The CALL statement executes faster when parameters appear in the same order
in the CALL statement as they do in the Procedure Division header and in the
LINKAGE SECTION of the called program.

• Place any LINKAGE SECTION items that are not referenced in the Procedure
Division header after those that are.

• All parameters are 01 or 77 level items.

• Parameter passing is faster when an out-of-line PERFORM statement is a single
section, and if the system is sure that the section is entered and left only under
the control of a PERFORM statement. Try to ensure that any section that is to
be PERFORMed has no jumps in or out of it, or any alterable GO TO state
ments. You must also ensure that every preceding section is either entered or
left under the control of a PERFORM statement, or finishes with a STOP
RUN. An EXIT PROGRAM statement is not sufficient.

• Access to a table is fastest if every occurrence of a given item is aligned in the
same way, and if the length of each entry is a power of 2 or 4. You can achieve
this by placing FILLERs in the table.

• Items in the WORKING-STORAGE SECTION are accessed more quickly than
those in the LINKAGE SECTION.

• The fastest type of comparison is a comparison for equality with binary zero.

• In complex conditions, you should place first those tests that will give the
quickest decisions or are most likely to be true.

Features to be Used with Care
The following information clarifies a number of features that can be misunderstood
and cause programming errors:

• A MOVE operation caused by an INTO phrase in either a READ or RETURN
statement is executed even if the READ or RETURN operation is unsuccessful.

• Bound checking on a variable-length table operates if the subscript or index
points outside the maximum length of the table. It does not take into account
the current length of the table (that is, the value of the item specified in the
DEPENDING phrase).

• If you attempt a MOVE between two numeric-edited items the result will be
undefined, although no error status is returned. /

• If you use the DECIMAL POINT IS COMMA clause, you must ensure that any
commas separating two numeric literals are followed by a space. Any commas
which are not followed by a space are treated as decimal points.

• The comp option can alter the results of certain arithmetic statements. In partic
ular, the comp option can alter the result of a SUBTRACT statement. This is
because the comp option allows true unsigned overflow. For example, if you
subtract 1 from 0, where both digits are unsigned comp values, a large positive
number results when the comp option is set on. With the default nocomp, the
result is 1.

2-4 User's Guide for IBM AIX VS COBOL Compiler/6000

• When the OSVS option is set, all statements are treated as a comment until a
DIVISION heading is read. This means copy statements are not recognized
before a DIVISION heading is encountered.

• When porting your program, be sure numeric parameters stored in binary
format passed to another language have the correct byte order. AIX VS
COBOL Compiler/6000 byte order is HIGH/LOW.

Programming Restrictions
You should be aware of the following limits while using the AIX VS COBOL
system:

• If you are calling COBOL code, you can have a maximum of 59 parameters. If
you are calling C code, you can have a maximum of 254 parameters.

• According to the ANSI standard, numbers are limited to 18 significant decimal
digits, and all significant digits are within 18 digits of the decimal point.

• In AIX VS COBOL the result of a multiplication or division that is greater than
36 digits gives a SIZE ERROR, as will the result of an addition or subtraction
that is greater than 37 digits.

• The maximum number of indexed files that can be open simultaneously is 64.

• The maximum indexed sequential record size is 8 Kbytes.

• The maximum number of keys in an indexed sequential file is 64 (63 alternate).

• The maximum length of an indexed sequential record key is 120 bytes. If this
limit is exceeded, a run time error message is issued and the program aborts.
The length of all keys cannot exceed 7680 bytes.

• The maximum number of parts for a split key is 8.

• Maximum nesting of PERFORMS in .int programs is 100. (This does not
apply to .gnt programs.)

• The maximum number of file or record locks that may be held depends upon the
system parameter ntlocks in the /etc/master file. See the AIX operating system
documentation for details.

• If your program contains a CHAIN statement that includes a subscripted item
greater than 8 Kbytes as a USING field, unpredictable results will occur at run
time. The following Native Code Generator error message will be output:

ILLEGAL INTERMEDIATE CODE

• The maximum number of USING parameters per entry point is 62.

• The maximum number of nested IF statements in a source program is 64.

• The maximum record length is 65 535 bytes.

• The ISAM block size is 1 Kbyte.

Chapter 2. Advice on Writing COBOL Programs 2-5

• Where a CHAIN statement or a CALL PROGRAM statement includes USING
parameters which are defined in the Linkage Section or File Section of the
chaining program, results at run time can be unpredictable. Data should be
moved from these sections into Working-Storage items for use as a USING
parameter. The CALL PROGRAM statement refers to Data General Interac
tive COBOL syntax. The AIX VS COBOL CALL statement is not included in
this restriction.

• In order to use reference modification within an IF statement or an EV AL-
U ATE statement, the compiler directive osvs must not be set when you compile
your source code under AIX VS COBOL.

• AIX VS COBOL does not support tape. Syntax related to tape manipulation is
supported for compatibility. Such operations will behave as described for non
reel media.

• In order to be able to WRITE output directly to a printer, you must be a
member of the "system" group. This is due to permissions for the files /dev/lpO
and /dev/lpl on the AIX file system.

• If you call the AIX system routine load from a module that is statically bound
into the RTE, you will not be able to dynamically load .int or .got COBOL rou
tines.

• When running programs compiled with the SIGN= EBCDIC compiler option,
comparisons with numeric literals do not function correctly in .got and execut
able code.

Current Restrictions on the Use of Some SAA Functionality
The following restrictions apply to the use of some of the functionality found in the
COBOL SAA Reference.

• OPEN WITH NO REWIND should return a file status of 07 when the physical
device is not a tape. This operation currently returns a file status of 00.

• If a record key number is too large to be contained in the variable declared as
the relative key, then the WRITE for that record should fail. Currently, that
WRITE will create a record on the file.

• A READ statement with an improper INTO phrase does not currently produce
an error. Given:

FI LE SECTION.
FD A.
01 a-1 pie aa.
01 a-2.

02 a-3 pie aa.
WORKING-STORAGE SECTION.
77 A-4 PIC AA.
PROCEDURE DIVISION.

READ A RECORD INTO a-4.

2-6 User's Guide for IBM AIX VS COBOL Compiler/6000

This should produce an error since the following rules in SAA are not met
regarding when an INTO phrase is allowed:

1. Only one record description is subordinate to the file description entry.

2. All record-names associated with file-name-1 and the data item referenced
by identifier-I describe a group item or an elementary alphanumeric item.

• When a file fills up a file system, the file status code returned is 9/28 (No space
on device) instead of 24. If the file exceeds the ulimit that is set, the file status
will be 9 /194 (File size too large).

• Currently, the compiler wrongly issues the message 232-S Numeric-edited
picture string too large for an ALPHANUMERIC-EDITED data item larger
than 32767 bytes.

• The message 232-S Numeric-edited PICTURE string is too large is issued for
some declarations such as:

77 over-replication-edit PIC 98(512) VALUE ALL SPACES.

The message text implies that the number of characters in the source file for the
PICTURE specification exceeds the limit of 30 characters. The message should
say that the PICTURE specifies a storage area that is too large for the data
item. For SAA, the maximum number of characters for a data item of type
NUMERIC EDITED is 127.

Using Intermediate or Native Code
If you wish to run your code in an unlinked environment, you can choose whether
you wish the cob command to output intermediate or native code. See Chapter 4,
"The COBOL Interface," for details of how you can do this.

To maximize performance, compile your programs to native code, since native code
programs execute much faster than intermediate code programs. However, a
program that is I-0 bound (that is, spends most of its time moving data to and from
files and devices rather than performing arithmetic) derives less benefit from faster
code generation. Programs that are processor bound (that is, spend most of their
time operating on data rather than transferring it) are likely to increase their run
time speed significantly as a result of code generation.

Although native code gives better performance than intermediate code, you should
be aware that the native code version of a program takes up more space than its
intermediate code equivalent, since intermediate code is very compact. In fact, the
only difference between intermediate and native code files lies in the code area; the
data areas are identical. Typically, the code area of a native code program is a little
less than twice the size of the code area of the equivalent intermediate code program.

Native code cannot be animated. The ANIMATOR operates only on the interme
diate code versions of your programs. AIX system debuggers can be used to debug
your native code. See the information on the -g option in Chapter 4, "The COBOL
Interface."

If your program is divided into a main COBOL program and a number of subpro
grams called from the main program, some of the programs can be processed to
intermediate code and others to native code. You can mix the two freely.

Chapter 2. Advice on Writing COBOL Programs 2-7

Optimizing Native Code
The following information increases the performance of the COBOL programs com
piled to native code.

• Operations on items of USAGE COMP-X are the fastest types of operations;
operations on items of USAGE COMP are the next fastest type of operation;
operations on items of USAGE DISPLAY the next; while those on items of
USAGE COMP-3 are the slowest.

• MOVEs between items of USAGE COMP are faster if you specify notrunc or
trunc "ANSI" rather than trunc. See Chapter 5, "Compiler Options" for details
of these options.

• Operations on items which have the same PICTURE, USAGE, and alignment in
memory are very fast. See details on the SYNC clause in Language Reference.

• Operations on items are faster if the operands are of nine digits or less.

• Performance is improved when operations are used on items of 1, 2, 4 or 8 bytes
in length.

• You will find the following statements, phrases, and operations relatively slow:

- MULTIPLY
DIVIDE
Exponentiation
COMPUTE
ON SIZE ERROR
ROUNDED

In particular, decimal operations such as DISPLAY and COMP-3 are slower
because of the computations that are needed for decimal precision.

• Specifying the ibmcomp compiler option may speed up many operations,
including complex arithmetic operations, such as COMPUTE statements. See
Chapter 5, "Compiler Options" for details of the ibmcomp option.

Handling Large Programs
The AIX VS COBOL system allows you to execute statically linked or dynamically
loaded code. Statically linked code is a standard AIX a.out executable object
module which has all of its overlays linked into memory. Dynamically loaded code,
either a COBOL intermediate code file or a COBOL native code file, loads its over
lays as needed.

When designing a COBOL application program that is to be dynamically loaded,
you can make efficient use of the available memory. This chapter describes the ways
in which even quite large applications can make use of limited memory space. These
techniques are:

• Segmentation, in which you divide the Procedure Division code into segments.

• Interprogram communication, in which you design an application as a set of sepa
rately compiled programs passing control to one another by means of CALL
statements.

2-8 User's Guide for IBM AIX VS COBOL Compiler/6000

Segmentation (Overlaying)
AIX VS COBOL provides syntax to divide a COBOL program with a large Proce
dure Division into a COBOL program with a small Procedure Division and a
number of segments containing the remainder of the Procedure Division. This was a
feature on older systems to make effective use of small memory sizes.

The AIX system is a virtual memory system. This means that the operating system
itself has a very robust system of memory management, and that programmers do
not need to manage segments themselves. N onsegmented code is more efficient in
this environment.

AIX VS COBOL will accept COBOL programs either with or without segmenting
syntax. If you are creating .int code (intermediate code) files to be executed, you
have a choice of using either real or simulated segments (by selecting either the seg
or noseg option during compilation). When segmentation is used, extra intermediate
code files are generated by the AIX VS COBOL system as follows:

filename.inn

where:

filename is the name without the extension of the principal intermediate code file,
and

nn is a segment number that ident~fies the particular segment.

A separate intermediate code file is generated for each independent segment. Due to
the efficiency of the AIX virtual memory system, when native code is being gener
ated, either .gnt or .o code, simulated segments will always be used. This means that
for native code, individual, small modules for each segment are not produced.
Instead, the entire program is created as a single large code module. See Chapter 5,
"Compiler Options" for the options to use to determine which kind of code to
produce (.int, .gnt, or .o).

lnterprogram Communication (Call and Cancel)
You can design an application as a group of independently compiled subprograms
that pass control to one another by means of the CALL statement. The main pro
grams and the subprograms in your application can be written in the COBOL lan
guage or in some other language, such as C. You may mix these programs freely in
an application. However, before you call a non-COBOL subprogram from an AIX
VS COBOL program, you must link it to the COBOL libraries. An intermediate
code program can call a native code program and vice versa.

Figure 2-1 on page 2-10 shows a sample application using interprogram communi
cation.

Chapter 2. Advice on Writing COBOL Programs 2-9

A

B~l~H
/!"\ x~~k

~/I~
M N Q

Figure 2-1. Sample CALL Tree Structure

The main program A, which is permanently resident in memory, calls B, C, or H,
which are subsidiary and stand-alone functions within the application. These pro
grams call other specific functions as follows:

• B calls D, E, and F
• C calls X, Y, Z, L, or K conditionally
• H calls K
• K calls M, N, or Q conditionally
• L calls M if it needs to

As the functions B, C, and H are stand-alone, they do not need to be permanently
resident in memory together, and can therefore be called as necessary, using the
same physical memory when called. The same applies to their subfunctions in the
tree structure.

The CANCEL statement releases dynamically allocated memory occupied by the
cancelled program and closes any files opened by it. The memory is released to
either the dynamic loader for later use or to the AIX operating system for use by
other processes. This is dependent on the setting of the memory run-time switch.
See "Memory Switch 0)" on page 7-10 for information on that run-time switch.

In the example shown in Figure 2-1, you would plan the use of CALL and
CANCEL so that a frequently called subroutine such as K would be kept in memory
to save load time. However, because it is called by C or H, K cannot be initially
called without C or H in memory. Thus, the larger of C or H should call K initially
so as to allot space. It is also important to avoid overflow of programs. At the level
of X, Y, and Z it does not matter in which order loading takes place; these programs
do not make calls at a lower level.

Called programs that open other files should be left in memory so that files do not
have to be reopened on every call. Note that EXIT PROGRAM does not close files,
but CANCEL does.

The CANCEL statement releases dynamically allocated memory occupied by the
canceled program and closes any files opened by it. The format of this statement is
described in the Language Reference.

The considerations mentioned above about memory usage and load time are only
potentially involved when dynamically loaded modules are used. Even then, the
AIX Operating System can handle any memory management requirements.

2-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Calling AIX VS COBOL Subprograms
You can call an AIX VS COBOL subprogram by using either of the following
formats of the CALL statement:

CALL "literal" USING •.•

or

CALL dataname USING .•.

For COBOL programs, the literal string or the dataname is the PROGRAM-ID, the
entry-point name, or the base name of the source file (that is, the file name without
any extension). For statically linked modules, the Native Code Generator converts
calls with literal strings to subroutine calls which refer to external symbols. If the
symbol has not been defined when linking is performed, it is assumed to be the name
of a file to be dynamically loaded, provided you specify the -U option on the cob
command line. See Chapter 4, "The COBOL Interface" for details. The AIX VS
COBOL system automatically creates a routine to define the symbol and to load the
associated file if it is entered at run time.

A CALL literal statement to a statically linked program results in the relevant
program being called directly.

When you make a CALL using a literal to represent a user-defined subprogram, the
literal must be numeric and in the range of "01" to "127". Calls to user-defined
subprograms are supported for compatibility with older code. In some previous
implementations, this was the only method available to call C code programs. You
can now call C code programs by using the name of the C program. Making calls
using numeric literals to represent user-defined subprograms is not recommended.

Calls to user-defined subprograms are only supported for .int code. Neither form of
native code (.gnt or statically bound) will support this method of calling. The mech
anism for passing parameters using user-defined subprograms is very inefficient. (It
uses calargc and calargv and sets up the parameters on the stack.) Native code is
intended to produce the best performance possible. Therefore, using the user-defined
subprogram method of passing parameters is not appropriate for native code.

When you make a call using a literal to represent a user-defined subprogram, you
must add code to the file "usercall.c", which is delivered with AIX VS COBOL. It is
in the $COBDIR/src directory. This file contains a routine, "xequcall", which must
be set up to recognize the number of the call you wish to make, and to take the
appropriate action. This is usually just to code a normal call to your C code. There
are more details on "usercall.c" in the comments at the top of that file.

See the Language Reference for more information on CALLs.

Search Sequence for Locating File Name
A CALL literal statement to a dynamically loaded program or a CALL dataname
statement causes the RTE to search for the called program. The search sequence
followed by the RTE to find the named file is as follows:

1. The RTE searches through the entry-points of all COBOL programs which have
already been CALLed but have not yet been CANCELed.

2. If it cannot find the named file, the RTE searches through the entry-points of all
statically linked programs (both COBOL and non-COBOL).

Chapter 2. Advice on Writing COBOL Programs 2-11

3. If it still cannot find the named file, the RTE searches the fixed-disk and tries to
find a suitable file from which the program could be loaded. It searches for the
file directory by directory, then extension by extension in each directory. If you
specify a directory path, the RTE searches for the file only in the named direc
tory.

Before completing the search operation, the RTE splits the required program name
into its component parts: directory, base name, and extension. The RTE does not
use the directory portion of the program name in its search of loaded programs. It
compares the base name with the entry-point names of all loaded programs. If you
specify no extension, the first matching name that the RTE finds is assumed to be
the program you wish to CALL. If you do specify an extension, the extension of the
loaded program must be the same if a match is to be made. Alternate entry-points
to programs are treated as if they had the extension of the file from which they were
loaded.

When the RTE searches the table of programs linked to it, it uses only the base
name of the specified file.

When CALL specifies a file with no path name:

1. The RTE first searches for the named file in the directory from which the calling
program was loaded.

2. If no match is found, the RTE searches the directories specified by the
COBPATH environment variable. (See Appendix A, "Environment Variables.")

3. If a match is still not found, the RTE searches the directory specified by the
COBDIR environment variable. (See Appendix A, "Environment Variables.")

If you specify a file extension, the RTE will search only for a file with a matching
extension. However, it is not recommended that you include the extensions .int and
.gnt in the file names you specify to the CALL statement. If you specify a file
without an extension, the RTE uses the following algorithm to search for it:

1. It searches for the named statically linked file in memory.

2. If the file is not linked with the COBOL libraries, the RTE adds the extension
.gnt to the base name of the file and tries to find the corresponding native code
file on fixed-disk.

3. If it cannot find the native code file on fixed-disk, it adds the extension .int to
the base name of the file and searches the fixed-disk for the corresponding inter
mediate code file.

The RTE always assumes that the first matching program name which it finds is the
program you want to CALL.

If no matching program is found, a run-time error occurs.

Note that if the first character of a file name that is to be dynamically loaded at run
time is "$", the string of characters from the "$" to the first "/" character is treated
as an AIX environment variable, and is replaced by the value of that variable. See
Chapter 3, "Device- and File-Handling," for details.

2-12 User's Guide for IBM AIX VS COBOL Compiler/6000

For example, if the statement:

CALL "$COBDIR/A"

is found in the source program, A is loaded from the path given in COBDIR at run
time.

Multiple Entry-Points
AIX VS COBOL allows you to define multiple entry-points in a COBOL program
using the ENTRY statement. You can CALL a program either via the main entry
point (at the start of the Procedure Division) or via one of the points in the program
marked by an ENTRY statement. See the Language Reference. for a description of
the ENTRY statement.

Multiple Entry-Points in Dynamically Loaded Programs
You can CALL a dynamically loaded program via an entry-point in the same way
that you would call it via its main entry-point. For example:

Procedure Division using param-1,param-2.
first-para.

entry "other" using param-3,param-4,param-5.

Using multiple entry-points in programs is regarded in many circles as bad program
ming practice. If you do use multiple entry-points, avoid entering a program for the
first time via an entry-point other than the main entry-point.

If you compile the above program into an intermediate code file mainprog.int (or
dynamically loaded code file, mainprog.gnt), then you can CALL it via its main
entry-point, as follows:

CALL "mainprog" USING PAR-l,PAR-2.

At some later point CALL the same program via its other entry-point, as follows:

CALL "other" USING PAR-3,PAR-4,PAR-5.

It is recommended that if you do use multiple entry-points, you avoid entering a
program for the first time via an entry-point other than the main entry-point. You
need to be aware of the following features when calling dynamically loaded pro
grams via entry-points.

When the RTE loads the program called via its main entry-point, it notes the names
of any other entry-points within the program. When you subsequently CALL the
same program via its other entry-point, the RTE can detect that the program con
taining this entry-point is already loaded, provided that you have not used the
CANCEL statement to release the memory occupied by the program after the first
CALL.

Chapter 2. Advice on Writing COBOL Programs 2-13

If, on the other hand, your first entry to a program is via the entry-point "other"
rather than by the main entry-point, the RTE will not be able to associate the entry
point "other" with the program mainprog.int, and the RTE will be unable to load the
program. You can solve this problem by creating a link between mainprog.int and
the entry-point "other" using the AIX command In, as follows:

ln mainprog.int other.int -.J
If you are calling via an entry-point in an overlay segment, you must also establish a
link between the intermediate code overlay file and the entry-point. For example, if
you are calling via an entry-point "other" in mainprog.int that is located in a section
with segment number 52, you must create a link as follows:

ln mainprog.i52 other.i52 -.J

If you are animating a program that is being entered initially by an entry-point other
than the main entry-point, you must establish a link between the .idy file used by
ANIMATOR and the entry-point. For example:

ln mainprog.idy other.idy -.J

However, you may still experience problems if you want to CALL the program
again later using the main entry-point (rather than "other"). When you CALL a
program via any of its entry-points, the RTE picks up the references to all its other
entry-points. Unless your program has a program name assigned to it in the
PROGRAM-ID paragraph, the main entry-point will not have a name associated
with it. The consequence is that if you CALL the above program by:

CALL "other" USING ...

and later call the same program again by:

CALL 11 mainprog 11 USING .••

the RTE, unaware of a main entry-point, does not detect the already loaded
program and loads a duplicate copy. This can cause a severe problem by duplicating
the data in the program.

When the RTE loads a program, it initializes the area of memory holding the
program data so that the data is initially either undefined or has the initial values
assigned to it by the VALUE clauses in the Data Division. If you exit from the
program without CANCELing the memory it occupies, when you reenter the
program its data will be in the state in which the program left it.

If the RTE loads a duplicate copy of the above program because it is not aware that
the program has already been loaded, it will initialize the data in the program. This
means that when you enter the program the second time (via the main entry-point),
the data in the program will reflect none of the changes made to it during the first
entry to the program (via the "other" entry-point).

You can make the RTE aware of the main entry-point of a program that you enter
via another entry-point by including a program name in the PROGRAM-ID para
graph in the Identification Division of your program. For example:

identification division.
program-id. mainprog.

2-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Now when you CALL the program, the RTE will be aware of the entry-point
"mainprog". Consequently, to reenter the program successfully via the main entry
point after having entered it first via the "other" entry-point, you would have to use:

CALL 11 MAINPROG 11 USING ...

In order to ensure complete portability of your applications, use only digits and
letters in your PROGRAM-ID and entry-point names. The first character of a
program name (that is, the file name of the source code, PROGRAM-ID, name, and
any ENTRY" ... " USING names) must be alphabetic. If it is numeric it may be
converted to an alphabetic character as follows:

0 converts to J
1-9 converts to A-I

This applies only if the digit is in the first character position of the program name.
However, if your program name contains a hyphen, it is converted to zero, regard
less of its position in the name.

For intermediate code and dynamically loadable native code, the RTE maps the
names of all calls before searching for the program in memory. If the program is
not found in memory, an attempt is made to load it from the filesystem using the
unmapped name. After loading, the program name and entry-point names are held
by the RTE in their mapped format.

For statically bound native code, the PROGRAM-ID, all alternate entry-points, and
all CALL literal names are mapped. The RTE searches for the mapped name in
memory. If it is not found in memory, the RTE searches for the mapped name in
the filesystem. If the mapped name is not found in the filesystem, no attempt is
made to unmap the name and search for it. A statically bound native code CALL
identifier behaves the same as described for intermediate code.

You must not use entirely numeric call names as COBOL PROGRAM-IDs, since
these are reserved for user calls.

Calling Non-COBOL Subprograms
You can access non-COBOL (C and Assembler) subprograms using the standard
COBOL CALL ... USING statement. The address of each USING parameter is
passed to the argument in the non-COBOL subprogram that has the same ordinal
position in the formal parameter declarations. You must ensure that all formal
parameter declarations are pointers.

Chapter 2. Advice on Writing COBOL Programs 2-15

In the following example, C functions are accessed from a COBOL program.

$ SET OSVS
*
* Enables reserved word RETURN-CODE which is an
* OSVS special-register
*

*

WORKING-STORAGE SECTION.
01 STR.

03 STR-TEXT PIC X(10).
03 FILLER PIC X VALUE X "00".

* NULL TERMINATE STRING FOR C FUNCTION
*

*

01 COUNTER PIC 9(8) COMP VALUE ZERO.

PROCEDURE DIVISION.
CALL-C SECTION.

CALL "cfunc" USING STR, COUNTER.
IF RETURN-CODE NOT = ZERO

* RETURN-CODE SET FROM RETURN () IN C
*

DISPLAY "ERROR"
ELSE

DISPLAY "OK".
STOP RUN.

cfunc (st, c)
char *st;
int *c;
{

return (0);
}

2-16 User's Guide for IBM AIX VS COBOL Compiler/6000

All non-COBOL subprograms you wish to call from COBOL must be statically
linked to the RTE using the cob command. The format of the cob command you
use determines whether all COBOL programs invoked with this RTE, or only the
specified COBOL program, can access the non-COBOL programs linked to it. For
example:

cob -xe 1111 cprog.c -o rts .-'

allows all COBOL programs invoked with rts to access the C functions linked torts
since the entry-point is null and can be supplied at run time, while:

cob -x cobprog.cbl cprog.c -o cobprog .-'

allows only the specified COBOL program (cobprog.cbl) and any of its called sub
programs to access the C functions linked to the RTE. See Chapter 4, "The
COBOL Interface," for information on the use of the cob command.

When you use the CALL statement from within a COBOL program to access a
non-COBOL module as described above, you must ensure that the COBOL run envi
ronment is not accidentally damaged. This means you must ensure that:

• The called module preserves the local COBOL run environment (that is, the reg
isters) according to C calling conventions. Refer to the information on subrou
tine linkage and system calls in the AIX operating system documentation for
allocation of registers over calls and a definition of which registers should be
preserved and which can be used as work registers.

• The global COBOL run environment (that is, data areas allocated by the
COBOL system, such as open file, buffers, and environment variables) should
only be destroyed or altered under the direct control of the COBOL system.
The routine cobtidy() is provided to tidy up the global COBOL run environ
ment. You can call this routine from non-COBOL modules to empty buffers,
close files, and free any data areas allocated by the COBOL system. Call
cobtidy() when all COBOL modules have been exited and you do not intend to
reenter them. You may use this routine if you wish to close down the COBOL
system but are not yet ready to exit to the operating system -- for example,
before you execute the exec() routine. Do not call cobtidy() directly from
COBOL, as this gives undefined results. See Chapter 9, "Advanced Program
ming Features," for more information about cobtidy.

• The COBOL run environment (that is, the memory map image of the current
terminal screen) is not aware of any changes to the screen which the
non-COBOL module may make. Also, the stty settings required by the COBOL
run environment may be different from those required by the non-COBOL
module. The non-COBOL module is responsible for saving and restoring the
COBOL run environment. The demo programs call_sys.c and call_sys.cbl illus
trate how this can be accomplished. All demo programs are located in the
$COBDIR/demo directory.

When you wish to shut down the current COBOL environment and start another,
you should use the CHAIN statement. While you are in the COBOL system but not
within a COBOL module, you should use the cobexit() routine to return to the
operating system.

Chapter 2. Advice on Writing COBOL Programs 2-17

Cancelling Non-COBOL Subprograms
The CANCEL statement has no effect when it references a non-COBOL program.

Mixing C and COBOL Programs

Example

A C program can call a COBOL program in the same way as it would call another
C program. In the following example the COBOL program name is called using the
arguments a and b:

name (a, b);

The following functions are also provided to allow you to mix C and COBOL pro
grams in an application. Parameters are passed by reference:

cobcancel (name)
char *name;

The above function cancels the COBOL program name previously called. It leaves
the data contained in this program in the initial state as defined for the COBOL
CANCEL verb. See the Language Reference for more information.

cobfunc (name, argc, argv)
char *name;
int argc;
char **argv;

This function has the same effect as specifying the previous two examples. However,
this function, unlike the previous example, causes the program to behave as if it had
been called using C function rules, not COBOL CALL rules.

cobexit (exitstatus)
int exitstatus;

This function allows the terminal to be reset if ADIS was used in a called COBOL
program. It also terminates the program's run in the same way as if a COBOL
STOP RUN statement had been executed.

The following example shows a C program calling a COBOL program. The example
demonstrates how to:

• Pass a string from C to COBOL
• Pass a number from C to COBOL
• How a called COBOL program can keep its data active
• Use the powerful COBOL editing facilities from C
• Animate a COBOL program called from C
• Use the symbolic debugger dbx to debug a C program calling COBOL.

2-18 User's Guide for IBM AIX VS COBOL Compiler/6000

account.cbl

$set OSVS
program-id.
account.

data division.
working-storage section.
78 account-name-len value 80.

01 account-name pie x(account-name-len).
01 total pie 9(9) value zero.
01 result pie $$$,$$$,$$9.

linkage section.
01 strlen
01 newname
01 next-item

procedure division.

pie x(4) comp-5.
pie x(80).
pie x(4) comp-5.

display spaces upon crt.
exit program.

entry 11 validate 11 using strlen newname.
if strlen > account-name-len

else

display 11 account name exceeds 11
, account-name-len,

11 characters. 11

move 1 to return-code

move newname(l:strlen) to account-name.
exit program.

entry 11 ta lly" using next-item.
add next-item to total

on size error
display 11 numeric overflow 11

move 2 to return-code.
exit program.

entry 11 showaccount 11
•

display spaces upon crt.
display account-name
move total to result.
display result.
exit program.

Chapter 2. Advice on Writing COBOL Programs 2-19

cmain.c

#include <stdio.h>

#define BUFFSZ 80

extern int account();
extern int validate();
extern int tally();
extern int showaccount();
extern void cobexit();
extern int cobprintf();
extern int cobgetch();

main()
{

int status;
long num;
char buf[BUFFSZ];
int strlen();

if (status =account())
cobexit(status);

cobprintf("account: ");
get_string(buf);

num = strlen(buf);

/* temp buffer size */

/*Cobol program - initialization */
/* Cobol program - takes account name */
/* Cobol program - increments total */
/* Cobol program - controls displays */
/* close down Cobol system and exit */
/* COBOL dfsplay from C */
/* COBOL character get */

/* Call COBOL to initialise */

/* select account code */

if (status = validate(&num, buf))
cobexit(status);

}

do
{ cobprintf("cost [0 to end]: ");

get_string(buf);
num = atoi(buf); /*tally items*/
if (status = tally(&num))

cobexit(status);
} while (num ! = 0);

showaccount();

cobexit(status);

get_string(buffer)
char buffer[];
{

int=O;

/* display total */

while (((buffer[i] = cobgetch()) != 1 \n 1
) && i < BUFFSZ)

cobprintf("%c",buffer[i++]);
cobprintf(11 \n");
buffer[i] = 0;

}

2-20 User's Guide for IBM AIX VS COBOL Compiler/6000

If you wish to statically link and run the programs used in the above example you
would type:

cob -x cmain.c account.cbl ~

To link the C program, cmain.c, to the COBOL libraries and run the above pro
grams you would type:

cob -Uo crts cmain.c account.cbl ~
crts ~

To allow animation of the dynamically loaded COBOL modules you would type:

cob -Uo crts cmain.c account.cbl ~
COBSW=+A ~
export COBSW ~
crts ~

To use the symbolic debugger dbx to debug the C program you would type:

cob -gx cmain.c account.cbl ~
dbx cmain ~

To use the symbolic debugger dbx to debug the C program and animate the COBOL
program, you would type:

cob -gU cmain.c account.cbl ~
COBSW=+A ~
export COBSW ~
dbx cmain ~

Passing the Command Line
The AIX VS COBOL system allows you to call a program and pass the command
line to the main program as a parameter to be accessed via the Linkage Section.
The main program in a run-unit is the first program within it; that is, the one which
is called directly by the AIX system. The command line parameter, in the format
shown below, is passed to the Linkage Section of the main program:

01 CMD-LINE.
02 ARGC PIC 9(4) COMP.
02 ARG.

10 ARGS PIC X OCCURS 0 TO 65535 DEPENDING ON ARGC.

To be able to access this example parameter, the main program must declare the
above area in its Linkage Section and must have the following Procedure Division
header:

PROCEDURE DIVISION USING CMD-LINE.

This causes the main program to be invoked as though the system program which
had invoked it were a COBOL program calling with a CALL statement of the form:

CALL "program name 11 USING CMD-LINE.

You can substitute your own names for the items shown in the above example, but
you must use a format which is similar to that shown here.

Chapter 2. Advice on Writing COBOL Programs 2-21

ARGC contains a count of the actual number of occurrences of ARGS, that is, the
number of characters on the command line, and you must not access data beyond
this. It is recommended that you test that the length field contains a non-zero value
which does not exceed the maximum limit of the occurs. You should take care not
to access data beyond the end of the command line (for example, by defining a fixed
length field and then MOVEing it) as this would be an illegal reference, and could
give you a hardware error on some systems.

Consider the following example:

WORKING STORAGE SECTION.
01 ARGV PIC X(20).
01 ARGV-LENGTH PIC 9(4) COMP.
01 ARGV-MAX-LENGTH PIC 9(4) COMP VALUE 20.
01 NEXT-ARGV PIC 9(4) COMP VALUE 1.
LINKAGE SECTION.
01 CMD-PARAM.
03 CMD-LENGTH PIC 9(4) COMP-X.
03 CMD-LINE.

05 CMD-CHAR PIC X OCCURS 1 TO 999 DEPENDING ON CMD-LENGTH.
PROCEDURE DIVISION USING CMD-PARAM.
AOOO SECTION.

IF CMD-LENGTH = 0
DISPLAY "No command line

IF CMD-LENGTH > 999
DISPLAY "Command line too long" STOP RUN.

PERFORM UNTIL NEXT-ARGV > CMD-LENGTH
UNSTRING CMD-LINE DELIMITED BY ALL 11 11 INTO ARGV

COUNT IN ARGV-LENGTH WITH POINTER NEXT-ARGV
IF ARGV-LENGTH > ARGV-MAX-LENGTH

DISPLAY "Argument too long"
ELSE

END-PERFORM.
PERFORM PROCESS-ARGV

PROCESS-ARGV.

To ensure that your program is portable, you must use the OCCURS DEPENDING
clause. If you do not use this clause, characters after the end of the specified
command line length may be accessed, which may give a memory validation error on
some systems.

The length of the command line is held as a two-byte integer which can hold values
larger than the COBOL picture.

2-22 User's Guide for IBM AIX VS COBOL Compiler/6000

Calling Operating System Functions
The following example shows how parameters can be passed to AIX system service
routines.

* Example of direct calling of C routines from a COBOL program using
*sleep (), an operating system service routine, and getenv(), a general
* library routine.

$set rtncode-size(4)

* Note that the return code size of 4 bytes is required for
* returning a pointer so set the compiler directive. This
* is the default for the AIX VS COBOL system.

working-storage section.
01 errno is external pie 9(9) comp-5.

* errno is the external AIX data item to which the error number
* returned by an AIX system service routine is assigned.

01 sleep-time
01 term
01 env-name

linkage section.

pie 9(9) comp-5.
pie x(100) value spaces.
pie x(100).

01 namebuf pie x(100).
01 return-code2.

05 return-pointer usage is pointer.

* Linkage items have no physical storage but the names can
* be used to reference addresses given by the SET verb.
* Return-code2 is used to reference return-code and redefine it
* as a character pointer named as return-pointer.
* Return-pointer is then used to dereference the pointer and set
* namebuf to point to the character string associated with the
*pointer returned by the call to genenv().

*

*

procedure division.
get-cobdir section.

set address of return-code2 to address of return-code.
move 0 to errno.

* 11 getenv () 11 expects a pointer to an array of characters terminated
* by a low-value.
*Cobol can pass its parameters by REFERENCE, CONTENT, or VALUE:-
* BY REFERENCE will pass to the function the address of the parameter
* (in Ca PIC X(n) would look like a char*, except it would not be
* NULL terminated).

Chapter 2. Advice on Writing COBOL Programs 2-23

* BY CONTENT wi 11 pass to the function the address of a temporary data
* item (to which there is an implied move from the parameters before
*the call is made). The only difference between BY CONTENT and BY
* REFERENCE is that the called module cannot effect the value of the
* parameter as seen from the calling module.
*BY VALUE will pass to the function the actual value of the data item
* rather than its address. BY VALUE should only be used to call non-COBOL
* modules (because the PROCEDURE DIVISION USING statement has no way of
*specifying that a VALUE parameter is to be expected). Note that if
* the size of the parameter being passed exceeds 4 bytes then it will
* be passed as if BY REFERENCE has been specified, also any numeric
* literals passed in this way will be passed to the called module
* as a 4 byte comp numeric in machine byte order (in C as a long on
*a 32 bit machine).
* EG:

*

display "about to sleep".
move 10 to sleep-time.
call "sleep" using by value sleep-time.
display "have had a very nice sleep thanks 11

•

* Now back to demonstrate how to find the value of the environment
* variable TERM and display it.
*
* Ensure that parameter to "getenv ()" is NULL terminated.

string "TERM" low-values delimited by size into env-name.
*

*

*

call "getenv" using env-name.
if return-code = 0

display "TERM not found"
stop run.

set address of namebuf to return-pointer.

* Function result of "getenv() 11 is a NULL terminated string. Cobol
* requires SPACE termination.

*
string namebuf delimited by low-values into term.

display term.
stop run.

AIX VS COBOL Dialect Flagging and Error Reporting
When you select a particular COBOL dialect to use when you compile your
program, for example, vsc2 or mf, the additional reserved words in that dialect are
enabled. When a particular dialect is turned off, for example, novsc2 or nomf, the
reserved words associated uniquely with that dialect are disabled. If a reserved word
is used in some other context in a dialect that is still enabled, all functionality for
that reserved word will still be available, that is, no error will be issued for any use
of that reserved word.

2-24 User's Guide for IBM AIX VS COBOL Compiler/6000

For example, the reserved word ON is used in many contexts. One of these is the
ON statement, which is part of the osvs dialect of COBOL. However, the reserved
word ON is used elsewhere in COBOL, so that even when the option noosvs is used,
all uses of the reserved word ON will be accepted by AIX VS COBOL. For
instance, you will still be able to code the ON statement even when the noosvs option
is used, since the reserved word ON is not unique to the dialect of COBOL that is
disabled.

On the other hand, the reserved word OTHER WISE is unique to the dialect osvs.
Therefore, the option osvs must be set for any syntax using the word OTHERWISE
to be accepted. If the word OTHERWISE is coded and the osvs option is not on,
(either by default or by explicit action), you will get a severe error reported.

Other examples of being able to use syntactic constructions even though they belong
to a dialect that is not selected are:

• Omitting optional reserved words. Since no reserved word is used wrongly,
there is no error to report.

• Using syntactic constructions that do not involve reserved words, for example,
reference modification.

You can always determine if you are coding within the bounds of a particular dialect
through the use of flagging. Consider the example discussed above regarding the
reserved word ON. If you wanted to code only to the ANSI 1985 COBOL standard
and you used tlag(ans85) on your compilation, the use of the ON statement would
be flagged as being outside of the chosen dialect. The additional examples cited
above would also be flagged if the flagging dialect selected did not allow the syntax
you used.

The choice of a dialect of COBOL should be viewed as a. means of enabling or disa
bling specific reserved words. It will not necessarily report errors for coding outside
of the chosen dialects, unless the syntax used does not exist in any dialect. In order
to keep your coding within a specific dialect or standard, you should use flagging in
addition to the proper dialect options.

See Chapter 5, "Compiler Options" for more information on the available options
and how to set them for compilation.

Most of the time, the error messages reported for your compilation are interspersed
into your source code when seen on the listing. However, some errors cannot be
detected until the entire program has been scanned. Since the AIX VS COBOL
compiler is a one-pass compiler, it is not possible for errors such as these to be
reported interspersed in the source. These errors will be reported at the end of the
source listing.

Chapter 2. Advice on Writing COBOL Programs 2-25

2-26 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 3. Device- and File-Handling

Chapter 3. Device- and File-Handling 3-1

Contents
About This Chapter
Devices

File Assignment .
Special Characters in Environment Variables

AIX VS COBOL Disk File Structure under AIX
Record-Sequential Files
Line-Sequential Files ..
Relative Files
Indexed Sequential Files
Library Files
File Restrictions
Input-Output Error-Handling (File Status)
Alternate File Status Table
Writing Output Directly to a Printer

3-2 User's Guide for IBM AIX VS COBOL Compiler/6000

3-3
3-4
3-4
3-9

3-12
3-12
3-12
3-12
3-13
3-16
3-17
3-17
3-18
3-20

About This Chapter
This chapter describes some aspects of AIX files and devices as they appear to AIX
VS COBOL programs. In particular, it describes:

• How to use special devices recognized by the RTE
• How to assign files in a program, statically and dynamically, to files and devices
• How AIX VS COBOL file structures map onto AIX file structures
• How the COBOL COPY statement operates in an AIX environment
• How to handle input-output errors.

Chapter 3. Device- and File-Handling 3-3

Devices

File Assignment

The compiler and the RTE are programmed to use certain devices. A program that
reads from the standard input device std.in will access the standard AIX input. A
program that writes to the standard output device stdout will access the standard
AIX output. A program that writes to the standard error device stderr will access
the standard AIX error output. All AIX VS COBOL utilities write error messages to
error output, and not to standard output. At run time, the RTE recognizes sequen
tial or line-sequential files opened with these names and directs output to the appro
priate target. Note that if stdio is line-sequential, the first READ is from the
command line tail.

The system emulates printer channels COi through C12 by line feeds and form feeds.
If you want to write to these channels, set the environment variable COBLPFORM
to define the line numbers on the form. See Appendix A, "Environment Variables,"
for details on how to set this variable. The format consists of a series of numbers
separated by colons, as in the following example:

COBLPFORM = "1:::::::::::60"

This sets channel I to line 1 (the beginning of the page) and channel 12 to line 60.
You can specify only a single line number for each channel. Those channels which
have line number zero; mnemonics SOI, S02, CSP; or are undefined, are set to line 1.

Any WRITE BEFORE/AFTER PAGE statements cause positioning at line 1. Each
line that is advanced increases the line number by 1. A request to skip to a line
number less than or equal to the current line causes a new page to begin. The
appropriate number of line feeds are then generated.

Any WRITE BEFORE/AFTER TAB statements generate a form feed and cause any
subsequent skips to a channel number to start a new page.

The AIX VS COBOL system offers three types of file assignments:

• Fixed file assignment, in which you assign the internal user file name to a literal
operating system file name when you write the program.

• Dynamic file assignment, in which you assign the internal user file name to a
data item defined within your program. You can store the name of an operating
system file in this variable at run time and assign the internal user file name to
this file.

• File name mapping, which allows you to assign files to AIX pipes or to assign the
index and data files of indexed-sequential files to different directories.

In the interest of program portability it is advised not to build the full path names of
files into your programs. You should use logical file names instead.

3-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Fixed File Assignment
In fixed file assignment, the internal file name is assigned to an external AIX file
name in the FILE CONTROL paragraph of your program. With fixed file assign
ment, the external file name cannot be changed without recompiling your program.
You do this in the SELECT clause for the file, which has the form:

.....- SELECT-file -ASSIGN ----~~L- z iteral
L TO _J DISK~---~---'

L literal _J

where file is the internal file name used by your program and literal is the AIX file
name (with or without path qualification) of the corresponding file. For example:

SELECT MYFILE ASSIGN TO 11 myl ib/file3 11

associates the file that your program refers to as MYFILE with the file namedfile3
in directory mylib.

If you use the DISK option in the SELECT clause, you have the choice of specifying
the file name literal either in the SELECT clause or in the FD entry for the file in
the FILE SECTION. For example:

SELECT MYFILE ASSIGN TO DISK 11 myl ib/file3 11

has the same effect as the first example. However, you could achieve the same effect
another way:

SELECT MYFILE ASSIGN TO DISK

DATA DIVISION.
FILE SECTION.

FD MYFILE VALUE OF FILE-ID IS 11mylib/file3 11

If you do not specify a literal with the DISK option in the SELECT clause and do
not specify the VALUE OF FILE-ID clause in the FD entry of the file, the effect is
to assign the internal file name to a file with the same name as the internal file
name. So, if in the above example you were to leave out the VALUE OF FILE-ID
clause in the FD entry, the file MYFILE would be associated with a file with the
AIX file name MYF/LE.

Dynamic File Assignment
In dynamic file assignment, you associate the internal file name used by your
program with either of the following:

• A data item declared in your program. You can then move a literal value
representing the AIX file name into this data item.

• An external file reference. This identifies an AIX environment variable whose
value will be used as the AIX file name.

Chapter 3. Device- and File-Handling 3-5

You do this in the SELECT clause for the file, which has the form:

..,._SELECT-Ji le -ASSIGN--t-[--~---.-___,.t- DYNAMIC-data-item
TO EXTERNAL - file-reference

DISK-------~

where:

data-item is the name of a data item declared in the WORKING-STORAGE
SECTION of your program. You must declare this item as PIC X(n), where n is the
maximum length of the file name you want to use. If you do not declare this data
item, the compiler declares it for you automatically as PIC X(21).

file-reference is a user-defined name. Before you run a program that contains such a
file assignment, you must ensure that you have declared an environment variable
with the same name as the name that follows EXTERNAL. You must also ensure
that the value of this environment variable includes the file name for the appropriate
file. If the file-reference contains hyphens, only the positions to the right of the
rightmost hyphen have any significance.

If no environment variable is set, the file name used for the AIX file is file-reference.

If you use the DISK option in the SELECT clause, you specify the name of the data
item that holds the file name in the VALUE OF FILE-ID clause in the FD entry of
the file.

The following example shows how to use DYNAMIC:

SELECT MYFILE ASSIGN TO DYNAMIC FILE-NAME

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FILE-NAME PIC X(25).

PROCEDURE DIVISION.

MOVE 11 myl ib/file3 11 TO FILE-NAME.
OPEN MYFILE ...

3-6 User's Guide for IBM AIX VS COBOL Compiler/6000

File Name Mapping

DYNAMIC associates the path and file name myl i b/f i l e3 with the internal file
name myf i le. You can achieve the same effect using DISK:

SELECT MYFILE ASSIGN TO DISK

DATA DIVISION.

FI LE SECTION.

FD MYFILE VALUE OF FILE-ID IS FILE-NAME.

WORKING-STORAGE SECTION.

81 FILE-NAME PIC X(25).

PROCEDURE DIVISION.

MOVE 11mylib/file3 11 TO FILE-NAME.
OPEN MYFI LE •.•

The following example shows how you can use EXTERN AL:

SELECT MYFILE ASSIGN TO EXTERNAL MYENV

PROCEDURE DIVISION.

OPEN MYFI LE. ••

Before running this program, you would create an AIX environment variable called
dd_MYENV and give it a value, such as mylib/file3. When you run the program, the
file with the internal file name MYFI LE is associated with the AIX file, mylib/file3 (the
current value of the environment variable dd_MYENV).

If you use the EXTERNAL feature, you must be careful how you specify file and
environment names. The file reference that follows EXTERNAL is not a literal in
the usual COBOL sense; the compiler treats it as a user name. One consequence of
this is that if the name following EXTERNAL is in lowercase, the compiler converts
it internally to uppercase. Therefore, when you create the environment variable its
name must be in uppercase.

AIX VS COBOL allows file names to be mapped or changed at run time through
environment variables. This allows the physical file name to be changed by the user
each time the COBOL program is run.

This use of environment variables to re-map a file's name at run time is distinct from
the use of environment variables to associate the name of a file declared
EXTERNAL with a physical file. If both types of environment variables are used,
the one specifying add_ name has precedence.

Chapter 3. Device- and File-Handling 3-7

When a file is opened by a COBOL program, the system checks to see ifthere is an
environment variable defined that will cause a different file to be used. If no envi
ronment variable is defined for the ASSIGNed file name, substitution does not take
place, and the file is opened as usual.

If an environment variable exists for the ASSIGNed file name, the value of the envi
ronment variable is used for the physical file name. The environment variable name
searched for is constructed with the first element of the ASSIGNed file name, pre
fixed with dd_. For example, if you try to open a file named dir/file, the system
searches for the environment variable dd_dir. If you try opening a file named
dirl/dir2/filel, the system searche~ for dd_dirl. And, if you try opening a file named
filel, the system searches for dd_filel.

After the system finds an environment variable name, it takes the value of that envi
ronment variable and adds it to the beginning of the remaining elements of the ori
ginal file name. This name is then the physical file name that the RTE searches for.
Consider the examples in Table 3-1:

Table 3-1. File Name Mapping

File Name Environment Environment
ASSIGNed Variable Variable Physical
in Program Searched for Contents File Name

dirl.filel dd_dir d2 d2/filel

dirl.filel dd_dir d4 d4/filel

dirl.filel dd_dir d2/d4 d2 I d4I.file1

dir 1/dir2/file1 dd_dirl d2 d2 /dir2 /fl/el

dir 1/dir2/file1 dd_dirl d4 d4 / dir 2/file1

dir 1/dir2/file1 dd_dirl d2/d4 d2 / d4 / dir 2/file1

fl/el dd_filel d2 d2

/ dir3 / dir4/file1 dd_ d2 d2 / dir3 / dir4/file1

If you try to open a file whose name begins with the slash (/) character, the system
searches for dd _.

Do not start any file name with the characters cob.

dd_ can be uppercase, lowercase, or mixed case; the RTE recognizes the combina
tions dd_, DD_, dD _, and Dd_. However, you must be careful not to define multiple
variables for the same file using different case combinations, because the RTE may
select the wrong file name. For example:

SELECT FILEl ASSIGN TO "mYfile"

3-8 User's Guide for IBM AIX VS COBOL Compiler/6000

When FILEl is opened, the RTE searches for the environment variable dd_mYfile.
If it is defined, as in dd_m Yfile =another file, the physical file name another file is
used for FILEl. Otherwise, mYfile ~s used as the physical file name.

The rules for file name mapping described above allow you to put all the files con
nected with one application in the same directory and be certain that the AIX VS
COBOL system will be able to find them all. You achieve this by defining each file
as application-name/file-name and by setting up the environment variable
dd_application, which points to the name of the application directory containing all
these files.

Be aware that if you dynamically change any environment variable names, they are
not accessed again. These environment variables are accessed only at the start of a
run. However, external variables are accessed again.

Special Characters in Environment Variables

Indexed Files

Not all special characters used in COBOL file names can be used in environment
variables. Four characters, the greater-than symbol (>), less-than symbol (<), colon
(:),and ampersand(&), have a special meaning in this context. You cannot map a
filename containing these characters using environment variable logical filename
mapping. These characters are described in the following sections.

A period(.) in an environment variable must be replaced by an underscore U so
that file mapping can proceed. For example, to map the COBOL file file.1st to the
file my Jile.list, define the environme~t variable as follows:

dd_file_lst=my_file.list

COBOL indexed files are implemented as two files: a data file and an index file.
For example, the COBOL indexed file idJile has a data file· named idJile and an
index file named idJile.idx. An environment variable dd_idJile = x has a data file x
and an index file x.idx. If you want to change the names of the data and index files
independently, you must use the ampersand(&) character, as follows:

dd_id_file="&datafile&indexfile"

In the preceding example, the data file is now named datafile and the index file is
named indexfile. When you use & to rename files, you can place data and index files
in separate directories to increase performance capabilities.

Notes:

1. Double quotation marks (" ")must be used with the & character.

2. The & character can only be used with indexed files.

3. You cannot use the & character when specifying multiple paths. (See "Multiple
Files" on page 3-10).

Chapter 3. Device- and File-Handling 3-9

The "$"Character in Filenames

Multiple Files

If the physical filename in your program starts with a "$" character, this forces the
system to attempt to map the specified file. If no mapping exists a "file not found"
condition is returned; the system does not search for the unmapped filename. Con
sider the following example contents of a SELECT statement:

select filename assign "$filel"

This causes the system to search for the environment variable "dd_filel". If this is
found the system follows the rules for filename mapping given in the previous
sections. If this is not found, a "file not found" condition is returned; the system
does not attempt to search for "filel ".

You can set up a search path for files that are opened for reading by using colons (:)
to separate alternate paths in a manner similar to the AIX PATH environment vari
able. For example, the environment variable dd_my_file = ":filel:dir/file2" causes the
COBOL file my _file to use filel if it exists at the time the file is opened. Otherwise,
dir /file2 is used.

Notes:

1. The initial colon is required. If the colon is absent, the program searches for the
file "filel :dir /file2".

2. Do not use this technique for indexed files. Otherwise, an environment variable
containing colons(:) will be interpreted as a single file name, and the colons will
be interpreted as part of the name of the indexed files.

Warning: This technique works only for files opened for input. If you attempt to
use the technique for files opened for output or for I-0, a fatal RTE error will occur.

Redirection and Pipes
When you are specifying the contents of an environment variable you can use the
following three characters to set up pipes:

• >
• <

•

The meanings of these characters when used in the value of an environment variable
are described in the remainder of this section. These special characters are only
recognized by the AIX VS COBOL system if they appear at the start of the environ
ment variable. You cannot use these characters while specifying multiple paths.
You also cannot use these special characters with variable length records, except in
line sequential files that have no record varying syntax in the FD; no multiple 01
level data items; and no RECORDING MODE clause.

The < character defines the specified file as a pipe connected to the standard output
of the given command. The file ASSIGNed within your program must be either
sequential or line sequential, and it must be OPENed for INPUT. Its name can be
only one element long, this is, it must not contain a/ character.

3-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Consider the following example contents of an environment variable named dd_dir:

dd_di r= 11 <l S -1 o o o II

This causes every READ in the program of the original ASSIGNed file to return the
value of the next line of the output from the ls -1 command.

The pipe is set up using the AIX popen() library routine.

The > character defines the specified file as a pipe connected to the standard input
of the command. The file ASSIGNed within your program must be either sequential
or line sequential, and it must be OPENed for OUTPUT. Its name can only be one
element long, that is, it must not contain a/ character.

Consider the following example contents of an environment variable named dd_dir:

dd_dir= 11 >pr -h Title ••• 11

This causes every WRITE to the ASSIGNed file in the program to be passed to the
standard input of the pr - h Title command.

The I character defines the specified file as a two-way pipe to the specified process.
The file ASSIGNed within your program must be either sequential or line sequential,
and it must be OPENed for I-0.

Consider the following example contents of an environment variable named ddfzle:

dd_fi le= 11 I proc 11

This defines the file file as a two-way pipe to the process "proc". That is, all the
read operations on that file will read the standard output of the process "proc",
while all the WRITE operations to that file will write to the standard input of the
process "proc".

Also consider the following example contents of an environment variable named
dd_UPPERCS:

dd_UPPERCS= 11 ltoupper.sh 11

Then, create a file called toupper.sh that contains:

tr '[a-z]' '[A-Z]' >out.file

and make this file executable.

After you have done these steps, execute your COBOL program that does a WRITE
to the file that is ASSIGNed to UPPERCS. The shell script toupper.sh receives the
program's output as input which causes the shell command tr to convert the lower
case letters to uppercase and write the results to the file out.file.

You receive an error if you attempt to WRITE to a line sequential file or a sequen
tial file OPENed for I-0 unless the file has been mapped using the I character.

As these three characters do have a special meaning in environment variables, if you
wish to reference any file whose name begins with any of these characters, you must
precede the name with a\ character.

Chapter 3. Device- and File-Handling 3-11

AIX VS COBOL Disk File Structure under AIX
AIX VS COBOL offers four types of file organization for use by the COBOL pro
grammer: record-sequential, line-sequential, relative, and indexed sequential.

Record-Sequential Files
Record-sequential files consist of a series of fixed-length records. The length of a
record-sequential file record is the length of the longest FD entry for the file in the
FILE SECTION of the program.

Normally, the space occupied by a record-sequential file record is the same as the
record length as defined in the FD entry. However, if records are written to the file
using WRITE BEFORE ADVANCING or WRITE AFTER ADVANCING, extra
control characters are written to the file. Programs then will be unable to read the
data correctly.

Line-Sequential Files

Relative Files

Line-sequential files are intended to cater to text (ASCII) files created by text editors
and similar utilities.

A line-sequential file consists of a series of variable-length records, each of which is
terminated by the character hex OA. From the point of view of a program accessing
a line-sequential file, the file record has a maximum length as specified by the FD
entry of the file in the FILE SECTION. When your program reads a record from a
line-sequential file:

• The record area is padded on the right with spaces if the record is shorter than
the maximum record length.

• The record area is filled if the record is longer than the maximum record length.
Subsequent READs will fill the record area until the record terminator is read.
If the next character after a READ is hex OA, it is omitted; that is, the READ
will not return a blank line.

In both cases the OA character is stripped from the record; it is not present in the file
record area.

If records are written to a line-sequential file using ADVANCING phrases (except
for BEFORE 1), the records will contain extra device control characters. Such files
cannot be read by a program.

You should store only legal ASCII characters in a line-sequential file.

Relative files allow you to access data randomly by specifying its position within the
file.

A relative file consists of a series of fixed-length records, where the length is given by
the longest FD entry for the file in the FILE SECTION of the program.

Each record is uniquely identified by a record number. The first record in the file is
record number one, the second is record number two, and so on.

3-12 User's Guide for IBM AIX VS COBOL Compiler/6000

At the end of each relative file record there is a one-byte control field (no-'· included
in the record length as defined in the FD entry), whose value indicates whether that
record logically exists in the file. This control field can have either of two values:

• hex OA

The record exists and can be accessed by a program.

• hex 00

The record has been deleted and cannot be accessed by a program.

When you DELETE a record from a relative file all that happens is that the control
field of the record is changed from OA to 00. The data itself remains in the file in its
original position.

You can read a relative file by declaring it in a program as a sequential file with
record length n + 1 (where n is the record length of the relative file). This will allow
you to read records that have been deleted. If, for security purposes, you need to
ensure that deleted data can never be accessed, you must overwrite the record before
deleting it.

Indexed Sequential Files
An indexed sequential file is implemented as two separate files: the data file and the
key or index file. The data file is in relative file format.

The name that you supply is the name of the data file; the name of the associated
key file is produced by using the extension .idx with the root of the data file name.
For example:

Data File
myfile

clock.fie

Key File
myfile.idx

clock.fle.idx

It is advisable to avoid using the extension .idx in other contexts, and to limit the
data-name portion of the file name to 10 characters or less.

The index is built up as an inverted tree structure that grows in height as records are
added. The number of key file accesses required to locate a randomly selected
record depends primarily on the number of records in the file and the key length.

Faster response times are obtainable when reading the file sequentially, but only if
other indexed sequential operations do not intervene.

The necessity of making regular backup copies of all types of files cannot be empha
sized too strongly, and this should always be regarded as the main safeguard. There
are situations with indexed sequential files (for example, media corruption) that can
lead to only one of the two files becoming unusable. If the index file is lost in this
way, you can recover data records from just the data file (although not in key
sequence) and thus reduce the time lost due to an error. As an aid to this, all
unused data records are marked as deleted at the relative file level by appending one
byte to each record that contains LOW-VALUES. For undeleted records this byte
contains the character hex OA.

Chapter 3. Device- and File-Handling 3-13

The recovery operation may therefore be done with a simple COBOL program by
defining the data file as organization sequential access sequential with records defined
as one byte longer than in the indexed sequential file description. The records are
then read sequentially, the data MOVEd from the sequential file record area into the
indexed (sequential) file record area, and written to a new version of the indexed
sequential file. Those records with LOW-VALUES in the last (extra) byte are dis
carded. Note that this byte (containing line feed characters in a required record) is
not written to the indexed sequential file on recovery because of the record length
discrepancy of one byte in the record definitions.

Another way to recover indexed sequential files that you suspect are corrupt is to use
the bcheck utility. This is described in "The bcheck Utility."

Indexed Sequential File Format

The bcheck Utility

The size of an indexed sequential file depends on the number of records it contains,
as follows:

m +(n*m) + (K*m) +(F*m)

where:

m is the default block size.

n is the number of keys.

K is 508/(total key length + (8*n)).

Fis the number of records/126.

This formula gives the minimum size of the index file in bytes. The value of K is the
number of blocks required to hold the index information. The value of Fis the
number of free list blocks required for the file. These blocks are needed only if the
file is fragmented.

You can run the bcheck utility to check the consistency of an indexed sequential file.
If the index is found to be corrupt, bcheck can construct a new index for the file.

To run bcheck, enter a command of the form:

bcheck [options] file-list -.J
where options is a string of one or more of the following:

-i Checks the index file only (the default is to check both the .idx and .dat files
that make up an indexed sequential file)

-I Lists the entries in the index binary tree

-n Answers "no" to all questions

-y Answers "yes" to all questions

file-list is a list of the names of the indexed sequential files to be checked.

3-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Unless you specify-nor -y, bcheck is entirely interactive. Each time it finds an
error, it asks you whether or not to delete the index.

In order for the bcheck utility to reconstruct a file, the index file must exist and
cannot be empty. The reconstructed index file produced by bcheck is functionally
equivalent to the original file.

For example:

bcheck -n sale.ship.idx .-1
checks the index file sale.ship.idx. If errors are found, all requests to delete the
corrupt index are answered "no". If such errors are found, you could then delete
and rebuild the index as follows:

bcheck -y sale.ship.idx .-1

You should limit the data-name portion of index file names to 10 characters or less.
This is because the bcheck utility removes any .idx extension from a file name, trun
cates the name to 10 characters, and then adds its own .idx extension.

For example, if you enter the following command:

bcheck -n mustock.dat

bcheck uses mustock.dat as the physical file name and the index file name is con
verted to mustock.da.idx .. However, if you pass the file mustock.da.idx to bcheck:

bcheck -n mustock.da.idx

mustock.da is used for the physical file name, but this file does not exist.

The following error messages may be issued by the bcheck utility.

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
275

Duplicate record
File not open
Illegal argument
Bad key descriptor
Too many files
Corrupted isam file
Need exclusive access
Record or file locked
Index already exists
Primary index
End of file
Record not found
No current record
File is in use
File name is too long
Back lock device
Can't allocate memory
Bad collating table
NLS Language mismatch

(illegal key descriptor)
(too many files open)
(bad isam file format)

(key already exists)
(is primary key)
(end/begin of file)

(file locked)

(wrong language nl_init()ed)

Chapter 3. Device- and File-Handling 3-15

Library Files
The COBOL COPY statement allows you to specify the name of a file from which
COBOL source programs are read by the compiler when the COPY statement is exe
cuted. See the Language Reference for a description of how the COPY statement
works. This section is concerned with how the specification of the copy file in the
COPY statement maps onto the AIX file system.

The copy file in a COPY statement is identified as follows:

~COPY T text-name
L external-file-name-literal J

where:

[OF IT library-name J ••
IN library-name-literal

text-name is the name of.a file without an extension. The compiler searches for this
file in the current directory. This name will be converted to uppercase before
searching.

external-file-name-literal is the name of a file in quotation marks. This file name
m~y have an extension, and may include a path name if there is no library name or
library name literal. The case of this name will be exactly as written in the quoted
string.

library-name is a single letter and must be the name of a directory within the current
directory. The compiler searches for the file specified in text-name or external-file-
name-literal within this subdirectory. ·

library-name-literal is a path name in quotation marks. The compiler searches for
the file specified in text-name or external-file-name-literal in the context of this path
name.

For example:

COPY prog OF A

is converted to A/PROG (relative to the current directory).

COPY "~rog.cbl" OF D

is converted to D/prog.cbl (relative to the current directory).

If the system cannot find the required COPY file, it searches for the environment
variable COBCPY. You can use this environment variable to specify a path, or mul
tiple paths, for COBOL COPY libraries. If multiple paths are specified, the first
character must be a colon. For example:

COBCPY=":/usr/group/sharedcpy:/usr/mydir/mycpy 11

See Appendix A, "Environment Variables" for more details on COBCPY.

If the system still cannot find the specified COPY file, then the extension specified
by the osext compiler option is appended to the filename, and a search is made for
that name. The default for the osext option is ".cbl". See Chapter 5, "Compiler
Options" for information about the osext option.

3-16 User's Guide for IBM AIX VS COBOL Compiler/6000

File Restrictions
The maximum size of any file you can create is limited by the system parameter
ulimit. You may find that the default limit, as supplied with your AIX system, is not
large enough for your code. However, this limit can be increased by a superuser.

The following remarks indicate some uses of files by AIX VS COBOL:

• Each indexed sequential file counts as two files while it is open.

• Up to five files may be required while a SORT or MERGE statement is exe
cuting, depending on the number of records to be sorted. However, in most
cases no files are required at all.

• One file is required for loading an overlay or calling a subprogram. This file
will be open only during execution of the GO TO, PERFORM, or CALL state
ment that causes the load.

• If you are using ANIMATOR, it requires two more open files.

Input-Output Error-Handling (File Status)
If you have specified the STATUS clause in the FILE-CONTROL paragraph in a
program and an error occurs during an operation on the file, the status value
returned will contain a character "9" in the first byte and the error number in binary
(COMP) in the second byte. If the operation is successful, the first byte will contain
"O". It is your responsibility to check for error conditions and to take appropriate
corrective action or to terminate the program run. See the Language Reference for a
list of file status errors.

If you have not specified the FILE ST A TUS clause in the FILE-CONTROL para
graph in a program, file errors with a first byte value of "9" will result in a run-time
error being output.

If you wish to display this status with its correct decimal value, careful redefinition
of data items is required in order to avoid truncation of the value. This is because
the facility that enables the storage of a nonnumeric value greater than decimal 99 as
a hexadecimal value is an extension to the ANSI COBOL standard X3.23 (1974), but
the rules for moving or manipulating such data are restricted by the standard to a
maximum of decimal 99.

The example that follows illustrates one method of retrieving the value of status key
2 for display purposes. ·Note how truncation has been avoided by redefining the two
status bytes as one numeric data item (length two bytes) capable of storing up to
four decimal digits.

Chapter 3. Device- and File-Handling 3-17

USE Procedures

000010
000020
000030
000040
000050
000060
000070
000080
000090
00010(:)
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILEl

ASSIGN "TST.FIL"
STATUS is FILEl-STAT.

DATA DIVISION.
FILE SECTION.
FD FI LEl.
01 Fl-REC PIC X(80).
WORKING-STORAGE SECTION.
01 flLEl-STAT.

02 Sl PIC X.
02 S2 PIC X.

01 STAT~BIN REDEFINES FILEl-STAT PIC 9(4) COMP.
01 DISPLY-STAT.

02 Sl-DISPL PIC X.
02 FILLER PIC X(3).
02 S2-DISPL PIC 9999.

PROCEDURE DIVISION.
START -TEST.

OPEN INPUT FILEl.
IF Sl NOT = 9

GO TO END-TEST.
MOVE Sl TO Sl-DISPL.
MOVE LOW-VALUES TO Sl.
MOVE STAT-BIN TO S2-DISPL.
DISPLAY DISPLY-STAT.

END-TEST.
STOP RUN.

If you declare USE procedures in the DECLARATIVE SECTION to handle input
output errors, these procedures are only executed if a FILE STATUS data item is
also declared.

Alternate File Status Table
The AIX VS COBOL system comes supplied with a C source file filestat.c, which
contains tables of the file status values defined by the ANSI 74 and ANSI 85 stand
ards. We recommend that you not alter these two tables in any way. However, this
file also contains a table giving an alternate set of file status values for those input
output error conditions which return a value of "9" in the first byte. You can alter
this table if you wish. By default, this alternate set of error numbers is that output
by RM/COBOL. If you want the AIX VS COBOL system to output error messages
from this list, rather than from its standard list of run-time error messages as defined
in Chapter 15, "Error Messages," you must either:

• Compile your program with the RM option set (see Chapter 5, "Compiler
Options" for details)

• Specify the +Q run-time switch when you execute your program (see Chapter 7,
"Running an AIX VS COBOL Program" for details).

3-18 Uset::s Guide for IBM AIX VS COBOL Compiler/6000

If you wish to alter the default table of alternate file status values to a set of values
which conform with the statuses returned in the COBOL dialect of your choice by
editing the file filestat.c in $COBDIR/src, you must index the table using the second
byte of any status "9" items. The table entry then contains the new value for that
file status in Binary Coded Decimal (BCD) format. Any undefined or unrecognized
status values are mapped onto status "30": "permanent I-0 error".

Once you have altered the table you must rebuild the RTE so that it uses your
altered version of filestat.c rather than the original version. You can either do this
globally or individually for each RTE; see "Globally Altering File Status Values"
and "Altering File Status Values for Individual Run Time Environments" for details.

Globally Altering File Status Values
To globally rebuild the RTE so that it uses your altered version of filestat.c when
outputting file status error messages, you must first compile your new version of the
module by entering the command:

cc -c filestat.c ~

As any further Run Time Environments that you build will use the new version 01

filestat.c, we recommend that you keep a copy of the original version.

Once you have compiled your new version of the module, you must replace filestat.o
in the COBOL library by entering:

ar rv /usr/lpp/COBOL/lib/coblib/libcobol.a filestat.o ~

You must replace /usr/lpp/COBOL/lib/coblib with the correct directory if this is dif
ferent.

You must then rebuild the RTE using the cob command. For example:

cd /usr/lpp/COBOL/lib ~
cob -xvo rts32 ..-1

See Chapter 4, "The COBOL Interface" for full details on the cob command.

Altering File Status Values for Individual Run Time Environments
You can use the cob command to rebuild a single RTE so that it uses your altered
version of filestat.c when outputting file status error messages. For example, enter:

cc -c filestat.c
ln filestat.o filestat
cob -xvo rts filestat

As usual, you can include any COBOL or C programs or other object modules in
the command line.

See Chapter 4, "The COBOL Interface" for a full description of the cob command.

Chapter 3. Device- and File-Handling 3-19

Writing Output Directly to a Printer
You can code your COBOL program so that it will WRITE output directly to the
printer. The writing will go through the print spooler, which means that the output
will be buffered until the CLOSE statement. At that time, the entire file is released
to the printer.

To get this effect, code the SELECT statement as follows:

SELECT myprfile ASSIGN TO EXTERNAL mypr

The internal and external file names myprfile and mypr are arbitrary names created
by the user. Notice that mypr will be converted to uppercase since it is not a quoted
string. In order to be able to write directly to the printer, EXTERNAL is required
in the SELECT statement. Alternatively, you can compile with the -C compiler
option assign= external to get the same effect as EXTERNAL in the SELECT state
ment.

To run this program and have the output sent to the printer using the spooler, you
must use an environment variable to redirect the output to the printer device to be
used. This is done as follows:

cob -uv prtr.cbl
dd_MYPR="> /bin/print"
export dd_MYPR
cobrun prtr.gnt

The above setting of the environment variable is for the ksh shell. To set it under
csh, do:

setenv dd_MYPR 11 > /bin/print"

You can also specify which printer to use in the dd name:

dd_MYPR="> /bin/print lpl"

This will direct all of the output from the WRITE directly to the chosen printer.

3-20 User's Guide for IBM AIX VS COBOL Compiler/6000

Example

*

Identification Division.
Program-id. prtr.

* Example to write a file directly to the printer.
*

*

*

*

Environment Division.
Input-Output Section.
File-control.

select myprfile assign to EXTERNAL MYPR
organization is line sequential
access is sequential
file status is filestat.

Data Division.
File Section.
FD myprfile.
01 myrec.

02 info pie x(80).
Working-Storage Section.
01 filestat pie xx.
01 mydata pie x.

Procedure division.
Action section.

* Dummy accept to grab the empty command line to prepare for next
* REAL accept.
*

*

accept mydata.
display "Starting the print test.".

write-it.
open output myprfile.
move "This " to info.
write myrec.
move "is " to info.
write myrec.
move "my 11 to info.
write myrec.
move "output 11 to info.
write myrec.

* Show that the writing is delayed until the CLOSE.
*

*

*

display "We have written 4 records but none should"
display "have printed yet. Now hit enter to CLOSE"
display "the file and get the whole file printed.".
accept mydata.

close myprfile.

conclusion.
display "Finished the print test. 11

•

stop run.
end program prtr.

Chapter 3. Device- and File-Handling 3-21

3-22 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 4. The COBOL Interface

Chapter 4. The COBOL Interface 4-1

Contents
About This Chapter
COBOL Interface Command
The Development Cycle .. .
Option Specification

System-Wide Default Options
Optional User Default Options
Command Line Options
Embedded Source File Options

Command Line Conventions
Command Line Examples

4-2 User's Guide for IBM AIX VS COBOL Compiler/6000

4 .. 3
4-4
4-5
4-7
4-7
4-7
4-8

4-15
4-16
4-17

About This Chapter
The cob command provides the interface to the IBM AIX VS COBOL system. This
chapter describes options to the cob command and how to use the cob command to
compile and link source files to produce an executable module.

Chapter 4. The COBOL Interface 4-3

COBOL Interface Command
The cob command handles all phases involved in the production of an executable
module. These phases range from checking COBOL source syntax to generating
native code object modules and linking them with the COBOL and system libraries.

The result of the cob command can be any combination of statically linked and
dynamically loaded executable files, depending on the input and options used. This
allows flexibility in the development of a COBOL application.

One consideration when writing source code is the compile time involved in getting
the source code into a form that can be debugged. The cob -a option enables fast
compilation to intermediate code suitable for source level debugging on
ANIMATOR. Another consideration is execution speed. Debugged code can be
compiled with cob -u or cob -x to produce native code, which requires more time to
compile but results in a module that executes faster.

The AIX VS COBOL system is installed in the /usr/lpp/COBOL/lib directory with
the installp procedure. This directory is searched first for the various components
when you issue the cob command, unless the COBDIR environment variable has
been used to change the search directory. See Appendix A, "Environment
Variables" for more information.

The files created by the cob command are placed in the current directory. Any tem
porary files are created in the system temporary directory, /tmp, unless you set and
export the environment variable TMPDIR and specify a valid path name. See
Appendix A, "Environment Variables" for more information.

The cob command recognizes the following file types:

File Type

.chi, .CBL, or .cob

.int

.got

.c

.o

.a

.s

Description

COBOL source text file

Intermediate code file

Dynamically loaded native code file

C source text file

Object module file

Archive file

Assembler source file

You can force the cob command to recognize files with extensions other than those
listed above by specifying the -k option on the command line. See "Option
Specification" on page 4-7 for more information.

To invoke the cob command type the following on the AIX VS COBOL system:

cob [options] Ji lename ~

where:

options is one or more of the options or flags described in "Option Specification" on
page 4-7.

4-4 User's Guide for IBMAIX VS COBOL Compiler/6000

filename is any mixture of COBOL source, intermediate code, native code, linkable
object code, C source, assembler source, or archive files. These files are recognized
by their extension. Any unrecognized files are saved to be used at link time. The
system assumes that they are either valid linker options or input files.

Any archive files supplied to the cob command are passed to the linker. The entry
point for a COBOL file is derived by taking the base name of the file without the
extension. If the first character of the entry-point is numeric, it is converted as
follows:

0 to J
1 through 9 to A through

filename must not contain a hyphen. Any hyphens in filename are converted to
zeros.

The Development Cycle
Use the cob command to do the following:

• Check COBOL source file syntax.
• Generate intermediate code files suitable for interpretation by cobrun.
• Code-generate the resulting intermediate code files into native code.
• Link native code with COBOL libraries.
• Output any mixture of statically linked or dynamically loaded executable files.

The type of file created by the cob command depends on the options you specify on
the command line. These are described in "Option Specification" on page 4-7. By
default, the cob command creates a dynamically loadable intermediate code file (with
the extension .int), which is suitable for animation.

The cob command passes each input file through a series of steps. Each step trans
forms one file type into another file type. These types are characterized by the file
suffixes, and each type is available depending on the options you specify on the
command line.

Table 4-1 on page 4-6 shows the development cycle of an input file to the cob
command.

Chapter 4. The COBOL Interface 4-5

Table 4-1. Development Cycle of Input File to cob Command

Input Output
File Type File Type Action

.cbl .int Checked by compiler

.CBL

.cob

.int .gnt Code generated for dynamic
loading

.int .o Code generated for static linking

.gnt No further action possible

.s .o Passed to system assembler

.c .o Passed to C compiler

.o [[.o] ..] a.out Linked with RTE

File type determines the point in the development cycle at which an input file starts.
The default end point (the point at which the cob command terminates) creates an
intermediate code file suitable for animation from the input COBOL source files. To
process files beyond the intermediate code stage, specify the relevant option to the
cob command (see "Option Specification" on page 4-7).

For example, to obtain a dynamically loadable native code file instead of an inter
mediate code file, specify -u on the cob command line. Under the -u option, source
files with the extension .cbl are compiled and then code-generated. Files with the
extension .int are just code-generated. The development cycle for a source file
named myfile.cbl given to the cob command with the -u flag specified is as follows:

myfile.cbl ~ myfile.int ~ myfile.gnt

To obtain a single, statically linked executable module, specify -x on the cob
command line. Under the -x option, COBOL source files with the extension .cbl are
compiled, code-generated, and then linked with the COBOL libraries to form a
single executable module. The development cycle for a source file named myfile.cbl
given to the cob command with the -x flag specified is as follows:

myfile.cbl ~ myfile.int ~ myfile.o ~ myfile

where myfile is an a.out format file.

If you are producing a dynamically loadable file, any file names with the extension .o
supplied on the cob command line are linked to the dynamic loader to produce a
statically linked RTE library. The RTE library takes the base name of the first
object module file supplied on the command line. A dynamically loadable program
can access any modules in the static RTE library, or any other valid dynamically
loadable program, using the CALL statement.

A statically linked program can access any other statically linked program written in
a language that compiles to AIX a.out and follows C calling conventions. A stat
ically linked program can also access any valid dynamically loadable program.

4-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Option Specification
The order in which options are passed to the various AIX VS COBOL tools deter
mines their precedence, with later options overriding previous options. This is
important if you plan to specify additional options to the defaults of the AIX VS
COBOL system. The higher numbers override previous defaults.

The cob command processes options in the following order:

1. System-wide defaults, as defined in $COBDIR/cobopt
2. Optional user defaults, as defined in the COBOPT environment variable
3. Command line options
4. Embedded source file options.

System-Wide Default Options
System-wide default options are defined in the file $COBDIR/cobopt. This is the file
the cob command reads first when invoked. This file has the following format:

compiler: [[COBOL-COMPILER-OPTION]
neg: [[NCG-OPTION] • • •]
[SET environment-variable=vaZue]
[;comment-entry .••]

Notes:

1. Any lines in this file which begin with a semicolon (;) are treated as comment
lines by the cob command.

2. Since the contents of this file affect the operation of the entire AIX VS COBOL
system, you should only alter the file after careful consideration of the effect you
might have on the default COBOL options in your system.

See Chapter 5, "Compiler Options" and Chapter 6, "Native Code Generator
Options" for complete information on the default compiler and Native Code Gener
ator options.

Optional User Default Options
Use the COBOPT environment variable to do the following:

• Supply options which supplement or override the system-wide default options
defined in $COBDIR/cobopt

• Specify the path of a file which contains user options.

When using COBOPT to point to a file which contains user options, that file must
have the same format as $COBDIR/cobopt. If COBOPT itself contains the options,
it has the following format:

COBOPT= 11 compi 1 er: [[COBOL-COMPILER-OPTION] •••]
neg: [[NCG-OPTION] •••]
[SET environment-variable=vaZue .••]
[; comment-entry .••] 11

Note: You must include the quotation marks. There cannot be any spaces between
the colons following each component name.

Chapter 4. The COBOL Interface 4• 7

You can use the SET statement in COBOPT to force the cob command to set the
specified environment variable to the given value. For example:

SET COBCPY=:$COBDIR/srclib:$HOME/mylib::

See Chapter 5, "Compiler Options" and Chapter 6, "Native Code Generator
Options" for complete information on permitted options.

Command Line Options
Options and flags specified on the command line override user default options set up
in COBOPT and the system-wide default options specified in $COBDIR/cobopt.

The cob command supports the following flags:

Flag

-a

-c

-d symb

-e epsym

-g

-i

-k ext

-1 key

+I key

-m symb = newsym

-ofilename

-p

-pg

-u

-v

-x

-A option

-CC option

-C option

-D

-F

+F symb

-L dir

-N option

Description

Compile for animation (default) when no other options are
specified.

Compile to object module (.o).

Dynamically load symb.

Set initial entry-point to epsym.

Create information for symbolic debugger (dbx). Code
source is unaffected.

Compile for unlinked environment (.int).

Recognize extra source COBOL file extensions.

Pass -1 key to system linker (Id) maintaining relative
ordering.

Pass -I key to system linker after all other options.

Map text symb onto newsym.

Specify output file name.

Compile and link with AIX profiling routines.

Compile and link with AIX Berkeley profiling routines.

Compile for unlinked environment (.gnt).

Set verbose mode.

Process to statically linked executable module.

Pass option to assembler (as).

Pass option to C compiler.

Pass option to COBOL compiler.

Show each command line step involved in compilation.

Create an RTE quickly.

Create an RTE quickly and add symb to a linked data table.

Pass -L dir option to system linker changing search algo
rithm.

Pass option to Native Code Generator.

4-8 User's Guide for IBM AIX VS COBOL Compiler/6000

-0

-P

-Q option

-S

-T

-U

-V

-W err-level

-X symb

Tum optimization on.

Produce COBOL compilation listing file.

Pass option to system linker (Id).

Do not assemble the .s file.

Put only text symbols into the "loaded" table.

Pass unresolved reference to linker (Id)~

Report version number.

Control error level for cob termination.

Exclude text symb from the executable output file.

Options and flags specified on the command line override any user default options
set up in COBOPT and the system-wide default options defined in
$COBDIR/cobopt. The following subsections describe each flag.

Compile for Animation {-a)
-a compiles the source file input to the cob command ready for animation. This is
the default end point of the cob command. The cob command outputs intermediate
code files (with the suffix .int) and ANIMATOR files (with the suffix .idy). Both of
these are used by ANIMATOR when you debug your code. See Chapter 11,
"Debugging Your Program Using ANIMATOR" for details on how to use
ANIMATOR. If you supply any .o files to the cob command, they are linked with
the COBOL libraries to form a single executable file. The executable file is the one
you need to use when you run ANIMATOR.

In this way it is possible to animate programs that call, or are called by, programs
written in languages other than COBOL.

For example:

cob -a myfile.cbl c.o .-1
creates the files myfile.int, myfile.idy, and c. The file c contains the RTE and the file
c.o. The command:

cob myfile.cbl c.o .-1
has the same effect. You do not need to specify -a because by default the cob
command processes each input file as though this flag had been set.

If you then want to animate myfile.int, use the commands:

COBSW=+A
export COBSW
c myfile. int

Compile to Statically Linkable Object Module {-c)
-c compiles source text files and code generates them no further than .o modules. If
you supply intermediate files instead of source files, these files are just code
generated to statically linkable .o modules. This flag has an effect only if specified
with the -x or -u options.

Chapter 4. The COBOL Interface 4-9

Dynamically load symb (-d symb)
-d symb causes symb to be dynamically loaded if it is referenced. This option allows
certain parts of the RTE to be loaded as necessary rather than to be loaded perma
nently. The ADIS module is by default dynamically loaded with your program.

Set Initial Entry-Point (·e epsym)
By default, the entry-point address for a statically linked module is the base name of
the first file input to the cob command. This option allows you to override the
default and set the default entry-p<?int address to be that of the symbol epsym. For
this option to take effect epsym must be defined in a COBOL module. epsym can
also be null, in which case the entry-point address is read from the command line at
run time. If you wish the entry-point to be null, use the command:

cob -xe "" -o rts

Create Information for Symbolic Debugger (-g)
The compiler creates additional information needed for the use of the symbolic
debugger dbx. This debugger is used to debug native code that has been statically
bound. The dbx debugger can be used for C code or for COBOL code. See the
documentation on dbx on how to use its features.

When using dbx to debug code, you can, for example, do the following actions:

• Set breakpoints
• See call trace backs
• Step through source code lines or native instructions
• See the declarations of variables
• See the value of variables.

When debugging C code, the full features of dbx can be used. When debugging
COBOL code, all of the features are not implemented. For example, you cannot
evaluate COBOL expressions under dbx.

You can mix the use of dbx with the use of the animator. That is, you can debug
code that is statically bound at the same time as you debug .int code using the
animator. See the example in "Mixing C and COBOL Programs" on page 2-18.

When the -g flag is given, a lookahead optimization feature in the native code gener
ator is suppressed. This lookahead suppression is needed to make the source line
numbers used by the debugger correspond correctly to the line numbers that the gen
erated native code references. This effect, combined with the additional code needed
to reference symbolic debug information, will result in reduced performance for code
compiled with -g. This is typical behavior for code compiled for debugging.

Compile for Unlinked Environment (·i)
This compiles the source files input to the cob command into dynamically loadable
intermediate code files.

Recognize Extra COBOL Source File Extensions (-k ext)
The cob command recognizes file types which have the following extensions: .chi,
.CBL, .cob, .int, .gnt, .c, .a, .. sand .o. You can submit COBOL source files with
other extensions to the cob command provided you specify -k on the command line
before each of the filenames which has the non-conventional extension.

4-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Pass -1 key to System Linker Maintaining Relative Ordering (-1 key)
-I key is passed to the system linker (Id) maintaining the relative ordering. The
system linker searches the library libkey.a for any external routines. The system
linker searches a library when its name is encountered, so where you place -I is sig-:
nificant. By default, libraries are searched for in $COBDIR/coblib and then in the
/lib and /usr/lib directories. See "Pass -L dir to System Linker Changing Search
Algorithms (-L dir)" on page 4-13 for details on how you can specify alternative
search paths.

Pass -1 key to System Linker after All Other Options (+ I key)
-I key is·passed to the system linker after all other linker options and the COBOL
libraries have been passed to it. The system linker searches the library libkey.a for
any external routines. By default, libraries are searched for in $COBDIR/coblib and
then in the /lib and /usr/lib directories. See "Pass -L dir to System Linker Changing
Search Algorithms (-L dir)" on page 4-13 for details on how you can specify alterna-
tive search paths. ·

Map symb to newsym (-m symb = newsym)
-m maps unresolved symbol symb to newsym. This creates a routine to satisfy any
references to symb. If this routine is called, control passes to the routine which has
the entry name newsym. newsym must be defined. You could use this flag to
dummy out unwritten optimized routines into one general purpose routine, provided
the calling sequence is the same. For example,

cob -x -m sl=xl -m s2=x2 myprog.cbl mylib.a ~

maps the unwritten routines sl () and s2 () to the functionally similar xl () and x2 ()
routines, which must already have been coded. You can also use this option to sub
stitute your own file handler for indexed file operations, in place of the one supplied
with your AIX VS COBOL system. You can do this only if your file handler con
forms to the Callable File Handler Interface standard. See Chapter 9, "Advanced
Programming Features" for details.

Specify Output filename (-o filename)
By default, the name of the final executable module created by the cob command, if
the -x option is specified, is the base name without the suffix of the first file entered
to the cob command. This option allows you to change the name of this module.

Compile and Link with AIX Profiling Routines (-p)
-p prepares the AIXVS COBOL program so that the prof command can generate an
execution profile. The -p causes the compiler to produce code that counts the
number of times each procedure is called. The-pis also passed to the C compiler if
any c source files are specified on the cob command line. If you are using cob to
output a statically linked executable module, this option causes cob to include the
system library libc_p.a instead of libc.a. It also binds in the startup module mcrtO.o
instead of crtO.o. See the AIX system documentation for more details.

Compile and Link with AIX Berkeley Profiling Routines (-pg)
-pg is similar to the -p option, but the -pg uses the AIX Berkeley Profiling Routines.
It invokes a run time recorder that keeps extensive statistics on the running process.
The -pg is also passed to the C compiler if any C source files are specified on the cob
command line. If you are using cob to output a statically linked executable module,
this option causes cob to include the system library libc_p.a instead of libc.a. It also
binds in the startup module gcrtO.o instead of crtO.o. See the AIX system documen
tation for more details.

Chapter 4. The COBOL Interface 4-11

Compile for Unlinked Environment (-u)
-u compiles source text files and code generates them to dynamically loadable native
code. The intermediate code file will be created in the current directory. You can
supply intermediate code files instead of source text files; these are just code
generated. If you supply any .o files as input files to the cob command, they are
statically linked to the dynamic loader to produce the static RTE library for dynam
ically loadable files. Dynamically loaded programs can access (via CALL) any of
the modules in the statically linked RTE library and also any other valid dynam
ically loadable program.

Verbose Module (-v)
-v sends the verbose option to the compiler and the native code generator.

Process to Statically Linked Executable Module (-x)
-x creates a single statically linked executable module from the files input to the cob
command. By default, the name of this module is the base name without the exten
sion of the first file input to the cob command. You can use this option to produce
a full RTE. For example,

cob -xo rts.new ~

Warning: Do not try to use any other method to create a full RTE.

Pass option to Assembler (-A option)
-A option passes the specified option to the assembler.

Pass option to the COBOL Compiler (-C option)
-C option passes the specified option to the COBOL compiler. Chapter 5, "Com
piler Options" contains full details on the options you may use with this flag.

Pass option to the C Compiler (-CC option)
-CC option passes the specified option to the C compiler. See the AIX commands
documentation for valid -CC options.

Show Each Command Line Step Involved in Compilation (-D)
The -D flag will show a detailed expansion of each step that is taken for the compi
lation processing. This flag only has effect when it is used with the -v flag. It will
show the exact invocation and the full path names of files and all arguments given to
each of the commands to do COBOL and C compilations, assembly, and binding.

If you give the flag -DDD, the temporary work files that are created as part of com
pilation processing will not be erased. The cob command will issue a message when
it is finished telling you what the name of the work directory is under /tmp. The
-DDD flag can be used with or without the -v flag. If the -v flag is not used, the
only information shown by the cob command is the name of the temporary work
directory.

4-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Create an RTE Quickly (-F)
Allows the fast creation of a statically linked executable module with dynamic load
support. When a statically linked executable module is being produced, all the
entry-points and external data (from both COBOL and C modules) are made avail
able to dynamically loaded programs. This is achieved by cob creating an entry for
each entry-point and all external data in a "loaded table" - ldtab. If you specify
the -F flag, cob only creates entries for modules named on the command line plus a
default list found in $COBDIR/coblib/cobfsym. Any symbols for objects in archive
files are not included in ldtab if you specify the -F option, which reduces the time
taken to create a statically linked executable module. If a reference from a dynam
ically loaded module is made to any name which is not in ldtab, then you will receive
RTE error 173:

Called program file not found in drive/directory

See "Create a RTE Quickly and Add symb to a Linked Data Table (+ F)" for details
of how to add symbols to ldtab.

You cannot specify this option if you set the -U option.

Create a RTE Quickly and Add symb to a Linked Data Table (+ F)
Specifying the + F option has exactly the same effect as specifying the -F option as
described in "Create an RTE Quickly (-F)," with the exception that the + F option
allows you to specify a symbol which you wish to add to the linked data table, ldtab.

You cannot specify this option if you set the -U option.

Pass -L dir to System Linker Changing Search Algorithms (-L dir)
-L dir is passed to the system linker maintaining the relative ordering. This option
changes the search algorithm for libraries which do not have an absolute path name.
By default, cob searches the $COBDIR/coblib directory first and then the /lib and
/usr/lib directories next, but if you specify this option, cob searches the specified
directory first instead.

Pass option to NCG (-N option)
-N option passes the specified option to the Native Code Generator. Chapter 6,
"Native Code Generator Options" contains full details on the options you may use
with this flag.

Turn Optimization On (-0)
-0 enables maximum performance at run time because minimum run-time checks are
carried out. It is recommended that use of this flag be limited to debugged code. At
a minimum this flag passes the nobound option to the compiler and Native Code
Generator.

Produce Listing File (-P)
-P causes the compiler to produce a listing file (with the extension .1st) for each
COBOL source file.

Chapter 4. The COBOL Interface 4-13

Pass option to System Linker (-Q option)
-Q option passes the specified option to the system linker. When you use the -Q flag
on the cob command line to pass options to the system linker, you must use a sepa
rate -Q flag for each option. Options that begin with hyphens or have embedded
spaces in them must be enclosed in quotation marks.

Do Not Assemble the .s File (-S)
This option suppresses the assembly of the .s file if the asm NCG option is given. It
will also suppress the binding step if the obj NCG option is given. The combinations
of relevant options and their effects are:

asm noobj -S Produces a .s file but does not assemble it. No .o is produced.

asm obj -S Produces a.sand an .o file. No assembly or binding is done.

noasm obj -S Produces a .o file but does not bind it. No .s file is produced.

Put Only Text Symbols into the "Loaded Table" - ldtab (-T)
-T causes the cob command to put only entry-point symbols into the "loaded table"
- ldtab. External data items are not put into the loaded table if the -T option is set.

Unresolved Reference (-U)
Any unresolved reference found at link time causes the code to call the dynamic
loader to be included with the name of the unresolved symbol. This allows the cob
command to attempt to load and execute any valid dynamically loadable file of that
name that may exist.

Report Version Number (-V)
-V reports the version number of any of the invoked components. This implies that
you have also set the -v (verbose) option.

Control Error Level for cob Termination (-W err-level)
-W err-level specifies the level of COBOL compiler error which causes the cob
command to stop processing. err-level is a single alphabetic character representing
the following possible levels of error:

u Unrecoverable
s Severe
e Error
w Warning

Informational

The cob command terminates if your code contains an error at the specified level or
higher, provided such errors are reported to the cob command by the compiler. This
is dependent upon the setting of the warning compiler option, which controls the
level of error reported by the compiler. For example, if you set the warning option
to force the compiler to report only unrecoverable, severe, and error level errors, and
you set -W to abort the cob command should any errors at the information level (or
above) be reported, only errors in the categories unrecoverable, severe, or error will
actually cause the cob command to terminate.

By default, the cob command terminates if your code contains reported errors in the
severe category or above.

4-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Exclude symb from the Executable Output File (-X symb)
-X symb excludes the unresolved text symbol symb from the executable output file.
It can be used to satisfy undefined symbols to modules which are not required. This
will allow an executable file to be produced. This option can also be used to exclude
from the RTE those parts of it which the program does not need. Those parts and
the symbols to represent them are:

Symbol Description

ANIMATOR

Dynamic loader

ANIM

DYNLOAD

INTERPRETER

PROFILE

RTECALL

USER CALL

COBOL interpreter for .int code

COBOL profiler

RTE call by number routines

User call support

syms Run Time support for dynamically loaded .gnt files

If you attempt to call any undefined symbol, the following RTE error message
appears:

164 Run Time subprogram not found

When you use the -X flag to exclude certain modules from the executable output file,
the resulting file is not actually any smaller than it would have been if you had not
specified the flag. Setting this flag does ensure that you will receive a meaningful
error message if you attempt to call any excluded module.

Embedded Source File Options
One or more compiler options can be specified within your COBOL source code.
The compiler will use these options each time you compile that code. In order to
embed options within the source code, use the $SET statement. This has the form:

$SET [COBOL-COMPILER-OPTION] .••

where:

COBOL-COMPILER-OPTION can be one or more of the compiler options specified
in Chapter 5, "Compiler Options." It cannot contain a native code generator
option. Each item in the option list must be separated by spaces. An option list can
be no longer than one line. To specify additional options that exceed the space
available on one line, use another $SET statement, as follows:

$SET noalter bound nocomp list
$SET errlist

To modify a compiler option in a $SET statement by an argument, enclose the argu
ment within either double quotation marks or parentheses:

-•-~- 11
- argument - 11

--r-............

L (- argument -) J

Chapter 4. The COBOL Interface 4-15

Note that you cannot precede an argument by an equal sign in a $SET statement, as
you can when you specify argument with a compiler option on the cob command
line or in the $COBOPT file.

argument can contain spaces if enclosed in quotation marks, but not if enclosed in
parentheses.

Both of the following examples have the same effect: They cause the compiler to
assume all file assignments to .data-names will be resolved externally, and to flag fea
tures in your program which are not in the ANS85 dialect of the COBOL language.

• $SET assign(external) flag(ans85)
• $SET assign "external" flag "ans85"

$ must be in column 7; if it is not, the compiler will not recognize it and will
produce errors. Failure to place the$ character in column 7 may also "hang" the
compiler. The same is true for any character at the start of a source file which the
compiler does not recognize.

You can specify multiple $SET statements within your source code, and these can
appear anywhere in the code. However, if you want to specify any dialect
controlling compiler options, for example ans85, these must appear as the first line
of your source code, as shown below:

$ SET ANS85.
IDENTIFICATION DIVISION.

Once you have set a dialect-controlling option at the beginning of your source code,
you cannot unset it later in the program. Refer to "Options Permitted in $SET
Statements" on page 5-28 to know which options are permitted with the $SET state
ment and where in the source file they are permitted.

Options specified within COBOL source files by means of the $SET command have
the highest precedence of all the options specified to the compiler. They override
those specified on the cob command, with the environment variable COBOPT, and
the system default options as defined in $COBDIR/cobopt.

Command .Line Conventions
You should observe the following rules while using the cob command:

• All flags must be delimited by the hyphen (-).

• Flags which have no arguments can be grouped behind one delimiter. For
example:

cob -Pa pi.cbl ..-1
compiles the COBOL source contained in pi.cbl into a file that is suitable for
animation and produces a listing file, pi.1st.

• The first argument following a flag must be preceded by at least one space.

4-16 User's Guide for IBM AIX VS COBOL Compiler/6000

• Groups of arguments following a flag must be separated by at least one space,
and they must be enclosed in quotation marks. For example:

cob -C 11 list noalter 11 pi.cbl ~

has the same effect as:

cob -C list -C noalter pi.cbl .-1

Both pass the list and noalter options to the compiler.

• All flags must precede operands.

• You may use two hyphens(--) to delimit the end of the flags.

Command Line Examples
The following examples demonstrate how to use the cob command:

• cob -a pi.cbl .-1

This is the default case. It compiles the program in pi.chi into a file called pi.int,
which is suitable for animation.

• cob -x pi.cbl .-1

The COBOL source file pi.chi is compiled, code-generated, and then linked to
the RTE to form a statically linked a.out format file named pi.

• cob -i pi.cbl ~

The COBOL source file pi.chi is compiled for the unlinked environment to
produce an intermediate code file, pi.int.

• cob -u pi.cbl .-1

This command compiles and code generates the program in pi.chi into a dynam
ically loadable native code file called pi.got.

• cob -x -e 1111 pi.cbl .-1

This command compiles, code generates and links the program contained in
pi.chi to form a statically linked executable file named pi. Specifying the -e
option with a null argument ensures that the entry-point is read from the
command line at run time.

See Chapter 7, "Running an AIX VS COBOL Program" for details of the com
mands you can use to execute the files produced by the above examples of the cob
command.

Chapter 4. The COBOL Interface 4-17

4-18 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 5. Compiler Options

Chapter 5. Compiler Options 5-1

Contents
About This Chapter
Format of Compiler Options

Permitted Options
Excluded Combinations
ANS85 Options . .
Default Options ..
Mainframe Options
SAA Options
Options Permitted in $SET Statements
Compiler Messages
Listing Format

5-2 User's Guide for IBM AIX VS COBOL Compiler/6000

5-3
5-4
5-5

5-23
5-24
5-24
5-27
5-27
5-28
5-29
5-30

About This Chapter
This chapter details the system-wide default compiler options as defined in
SCOBDIR/cobopt. You can supplement or override these default options by setting
up a user-defined option variable: $COBOPT. Chapter 4, "The COBOL Interface,"
contains full details on the format of these files. You can also override the default
options by using the -C command line flag or a $SET statement. See Chapter 4 for
details.

Throughout this chapter, all references to $COBOPT refer to the contents of the
COBOPT environment variable, or the file to which it points.

Chapter 5. Compiler Options 5-3

Format of Compiler Options
Compiler options, whether they appear in the system default $COBLIB/cobopt file,
the user-defined options file $COBO PT, or following the -C flag in the cob
command line, have the general form:

LNO~ ' keyword L 11
- argument - ~ ~

L (- argument~
=-argument

where:

keyword is one of the keywords described in "Permitted Options" on page 5-5.

no, if specified, switches off the effect of the option, and may adjoin keyword or be
separated from it by one or more spaces. A particular option may be on or off by
default.

argument, where applicable, qualifies the action of the option in some way and may
adjoin keyword or be separated from it by one or more spaces. argument must be
preceded by an equal sign, or it must be enclosed within either double quotation
marks or parentheses.

Compiler options, where they appear in $SET statements, have the general form:

' keyword -r 11
- argument - "_J

L (- argument -)

where no, keyword, and argument are as described above, with the exception that
argument must be enclosed within either double quotation marks or parentheses; it
cannot be preceded by an equal sign.

Wherever possible, you should use the format of the option that contains an equal
sign before any modifying argument. This is because if you use either of the other
possible formats, you must escape the quotation marks or the parentheses whenever
they might be misinterpreted by the AIX shell. Compiler options whose argument
contains an em.bedded blank must use the keyword "argument" format to pass the
option to the compiler.

For example, we recommend you use either:

cob -C assign=external -C flag=ans85 pi.cbl .i

or

cob -C 11 assign=external flag=ans85 11 pi.cbl .i

5-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Both of these examples cause the compiler to assume that all file assignments to
data-names will be resolved externally, and to flag features in your program which
are not in the ANSI 85 dialect of the COBOL language. The quotation marks in the
second example are necessary as they inform AIX that all the material within them is
grouped behind the -C flag. If you omit the quotation marks, second and subse
quent options are ignored. A warning is given to this effect.

Permitted Options
Options must be separated by one or more spaces. Options default to values that
yield the highest performance when appropriate. The following are the permitted
options:

[no] align
align [=integer]

[no] alter

Specifies the byte boundaries on which data items are aligned. 01 and 77
items are aligned on addresses which are multiples of integer.

Default: align = 4

Controls the use of alter statements within the program being compiled.
no alter allows the compiler to operate more efficiently.

Default: alter

[no] analyze

[no] anim

[no] ans85

Is reserved for use with other AIX VS COBOL products that can be
added to the AIX VS COBOL system.

Default: no analyze

Causes the program to be compiled in a manner suitable for animation.
See Chapter 11, "Debugging Your Program Using ANIMATOR" for
more details.

Default: no anim

ans85 =syntax

Specifies that those reserved words that are specific to the ANSI 85
COBOL standard (other than those in ANSI 74 COBOL) should be
regarded as reserved words. This also alters the behavior of certain state
ments to conform to the ANSI 85 COBOL standard. See the Language
Reference for details. To ensure full compatibility with the ANSI 85
COBOL standard, you must also set the no optional-file option.

When used with the optional syntax parameter, this option enables ANSI
85 syntax. However, it retains ANSI 74 behavior for those elements of
the COBOL language that occur in both the ANSI 85 and ANSI 74
standards with different behavior. These features are:

• Definition ofl-0 status values
• Behavior of the alphabetic class test
• Order in which control variables in performs are initialized
• Behavior of moves to a variable-length group item.

Default: ans85

Chapter 5. Compiler Options 5-5

assign = { extern~} }
dynamic

Specifies the default value for an ASSIGN clause that does not specify
either external or dynamic.

Default: assign = dynamic

[no] auto lock

[no] bell

Causes the default locking for files opened I-0 or EXTEND to be auto
matic rather than exclusive. This option does not appear in the list
produced by the setting option if its state is the same as the writelock
option. If this is the case, the state of the fileshare option in the setting
list also indicates the state of the autolock and writelock options.

Default: no autolock

bell [=integer]

[no] bound

[no] brief

Defines the character used to cause the bell (the audible warning of the
terminal) to sound. integer is the ASCII character in decimal.

Turning the option off (no bell or bell = 0) causes no bell character to be
set.

Specifying bell with no integer indicates that the character to be used is
the character specified in the terminfo entry for your terminal type. See
the AIX operating system documentation for more details.

Default: no bell

Specifies that on each table access during execution of intermediate code
the subscript value is checked to ensure that it is within the limits implied
by the associated OCCURS clause. no bound turns off this run-time
checking.

For a constant subscript that is out of bounds, a message will always be
issued at compile time. If the bound option is given, this message will be
an Error; if no bound is given, then this compile-time message will be a
Warning level message.

This option bound is synonymous with the option check.

Default: no bound

Produces error numbers only on the listing and stderr. The text of error
messages is suppressed.

Default: no brief (unless no error message file can be found)

charset =character-set

Defines the character-set of your environment. All literals and collating
sequences will be handled in the specified character-set, which must be
either ASCII or EBCDIC.

Default: charset = ASCII

5-6 User's Guide for IBM AIX VS COBOL Compiler/6000

[no] check

[no] comp

Specifies that on each table access during execution of intermediate code
the subscript value is checked to ensure that is it within the limits implied
by the associated OCCURS clause. no check turns off this run-time
checking.

For a constant subscript that is out of bounds, a message will always be
issued at compile time. If the check option is given, this message will be
an Error; if nocheck is given, then this compile-time message will be a
Warning level message.

This option check is synonymous with the option bound.

Default: no check

Is supported for compatibility purposes only. Unsigned integer USAGE
COMP items are compiled as COMP-X items, and signed integer
USAGE COMP items are compiled as DECIMAL items.

Default: no comp

[no] coms85

Alters the behavior of communications syntax to be as specified in the
ANSI 85 COBOL standard. See the Language Reference for details.

The syntax for the Communications module can be compiled; however,
the Communications module is not supported at run time.

Default: coms85

[no] confirm

The compiler options specified after this option are echoed to the display
screen.

Default: confirm, but this is visible only if you specified verbose (the -v
flag) to the cob command.

[no] copylbr

This is reserved for use by the AIX VS COBOL system.

Default: no copylbr

[no] copylist [=integer]

Causes the contents of any files named in COPY statements to be listed.
Whatever the state of this option, the name of any copy file open at the
time a page heading is output is listed as part of the heading.

The optional integer, which must be 0 or in the range 50 to 99 inclusive,
allows the selection of particular segments with this option. A 0 means
all root segments. For example:

copylist = 53 causes copylist to be set only in the Identification Division
and in segment 53.

no copy list = 53 causes copylist to be set in segment 53 only.

Default: no copylist

Chapter 5. Compiler Options 5-7

5-8
I
I

currency-sign= integer

[no] date

Kanji feature. Causes the compiler to recognize integer as the currency
sign character. integer must be a 2-digit decimal number specifying the
ASCII value of the currency sign required. Values not allowed in the
CURRENCY-SIGN clause in the Special-Names paragraph are also not
allowed as values for integer. See the Language Reference for a list of
these values. You can override the currency sign specified by this option
by specifying a CURRENCY-SIGN clause within the Special-Names
paragraph of your source code. If you set both the currency-sign and the
nls options when compiling your program, the currency sign specified in
the CURRENCY-SIGN compiler option is overridden by that supplied
by AIX (from an environment variable) during the execution of your
program.

Default: currency-sign= 36 (the $ character)

date [=string]

[no] dbcs

nodbcssosi

date causes the system date to be entered into the comment entry in the
DATE-COMPILED paragraph (if present). To provide your own date,
specify date= string. The date option also causes the system date or
string to be output at the top of each page of the listing.

no date causes spaces to be used in place of date.

Default: date

Kanji feature. Causes the compiler to accept characters of the Double
Byte Character Set (DBCS) for use in ideographic languages such as
Japanese, Chinese, and Korean.

For this option to have effect, you must have installed the DBCS variety
of the AIX VS COBOL compiler. See Chapter 1, "Introduction" for
more information on installing the AIX VS COBOL system.

For the dbcs option to have complete effect (all the needed additional
reserved words, for example), you must also use the vsc2 option.

The option dbcs cannot be used together with the nls option.

Default in the DBCS-variety of the compiler: dbcs
·Default in the non-DBCS-variety of the compiler: nodbcs

dbcssosi(integer) (integer)

Kanji feature. Defines the 2 characters used as the shift-out and shift-in
delimiters in DBCS literals. The 2 integers are the ASCII codes, given in
decimal, of the characters. If shift-out and shift-in characters are speci
fied, each DBCS literal must have the shift-out character immediately
after the opening quotation mark and the shift-in character immediately
before the closing quotation mark. They act as additional delimiters to
the literal, and are not part of its value. If nodbcssosi is specified, then
no shift-out and shift-in characters are needed or recognized in the DBCS
literals.

User's Guide for II~M AIX VS COBOL Compiler/6000

If dbcssosi is specified, then the two integer parameters are required.

Default in the non-DBCS variety of the compiler: nodbcssosi

Default in the DBCS variety of the compiler: nodbcssosi

[no] defaultbyte
defaultbyte [=integer]

[no] dg

Initializes the Data Division to the specified byte; by default this is to
spaces.

Default: defaultbyte = 32

Specifies that those reserved words and features specific to the Data
General Interactive COBOL language are enabled. See the Language
Reference for details.

Default: no dg

[no] directives
directives

{
"filename"}
(filename)

[no] echo

Enables you to load preset options from the file named in filename. If
you specify this option on the cob command line, it must be the last
option on the line. If you specify it in a $SET statement, it must be at
the beginning of your source file. See Chapter 4, "The COBOL
Interface" for details. Options within the file specified by filename must
be separated by a space, and no option can be broken across two lines.
The options are read from the file until the end-of-file (EOF) is reached
or another directives option is specified. You can specify more than one
options file in a program by specifying directives =filename within an
options file or by writing more than one $SET statement at the beginning
of your program. If you specify directives within an options file, the
compiler switches to the new options file, but does not return to the ori
ginal options file. The setting of the directives option does not appear in
the list produced by the setting option.

Default: no directives

Causes error lines and flags to be echoed to stderr. Each error message
shows the source line of the error, the error number, and (unless brief is
set) an explanatory message.

Default: echo
[no] echoall

[no] errlist

Ensures that a full listing is sent to stdout, if the list or print option is
specified.

Default: no echo all

Causes the listing to be restricted to those COBOL lines containing
syntax errors or flags, together with associated error messages.

Default: no errlist

Chapter 5. Compiler Options 5-9

[no] errq
Asks whether you want compilation to stop or continue when an error
occurs.

Default: no errq
[no] filecase

Specifies whether the compiler is to be case-sensitive. no filecase ineans
that the compiler is sensitive to case. It is recommended that you do not
alter the default setting of this option since it has been set up for your
AIX environment.

Default: no filecase
[no] fileshare

[no J flag

Has the same effect as specifying both the autolock and writelock
options. It is provided for compatibility with earlier FILESHARE pro
ducts. It is recommended that you do not use it in new programs.

De fa ult: no fileshare

flag=

ans74
ans85
mf
osvs
saa
vsc2

[no] flagq

Causes the compiler to flag every feature used in the program that is
outside a given dialect. These dialects are:

ans74

ans85

mf

osvs

saa

vsc2

Full implementation of ANSI standard X3.23 - 1974 COBOL.

Full implementation of ANSI standard X3.23 - 1985 COBOL.

Micro Focus COBOL extensions.

As for ans74, plus features taken from IBM OS/VS COBOL
syntax. (See the Language Referem;e for details.)

Full implementation of IBM System Application Architecture
definition of COBOL.

As for ans74, plus features taken from IBM VS COBOL II
syntax. (See the Language Reference for details.)

The message output by the compiler lists the dialect in which the feature
you have used would be acceptable.

Default: no flag

Specifies whether you want the compiler to terminate its run should it
output a flag.

Default: no flagq

5-10 User's Guide for IBM AIX VS COBOL Compiler/6000

[no] flagstd

[no] form

.....

Causes ANSI 85 language level certification flags to be output as the
source program is checked. Flags are issued to the selected COBOL
subset, optional modules, and obsolete elements arguments of the flagstd
option.

If the flagstd is set, it must include at least one of the following 3 argu
ments:

m ANSI 85 defined Minimum COBOL subset

ANSI 85 defined Intermediate COBOL subset

h ANSI 85 defined High COBOL subset

Optionally, you may narrow th,f!, scope of flagging by adding any of the
following arguments. These arguments may be in any order but must be
separated by at least one space.

cl Communications optional module level 1

c2 Communications optional module level 2

dl Debug optional module level 1

d2 Debug optional module level 2

sl Segmentation optional module level 1

s2 Segmentation optional module level 2

r Report Writer optional module

0 All Obsolete language elements

Note that the flag and flagstd options provide similar functionality and
thus only one may be used at any time.

Default: noflagstd

form =integer

Specifies the number of lines per page of the listing. integer must be at
least 3 and not greater than 255.

A form feed character is always produced at the head of the listing file,
unless no form is used. no form specifies that no form feed characters or
page headings are produced anywhere in the listing.

If the listing is directed to stdout (by use of the list option), interpretation
of the form feed character is dependent on the type of your display
screen.

Default: form= 60

Chapter 5. Compiler Options 5-11

[no] ibmcomp

Causes data items with USAGE COMP to be compiled in IBM synchro
nized (SYNC) format. This improves performance at the cost of
increasing the required memory by a small amount. (See the Language
Reference for details.)

Default: no ibmcomp

[no] { ibm-ms }
pcl

[no] int

Specifies that those reserved words and features that are specific to the
IBM-Microsoft COBOL Language are enabled under AIX VS COBOL.
See the Language Reference for details. Note that ibm-ms and pcl are
synonymous.

The ibm-ms option provides compatibility with Microsoft COBOL 1.0.
See also the option ms(2) for compatibility with Microsoft COBOL 2.2.

Default: no ibm-ms

int [=file-name]

Specifies the file to be used to hold the intermediate code output by the
compiler. If the specified file already exists, it is overwritten. This
filename may include a pa th.

no int suppresses the production of an intermediate code file (the com
piler is used for syntax checking only).

Note that if file-name is specified without a"." extension, then an exten
sion must be added later, or the Run Time Environment (RTE) will be
unable to find the file and will respond with an error. The RTE assumes
that an intermediate code file has the extension .int.

You cannot specify this option in a $SET statement.

Default: the compiler adds .int to the source file name, replacing any
existing file name extension. The intermediate code file is written to the
same directory as the source file.

linkcount = integer

Specifies the maximum number of LINKAGE SECTION items, external
data items, and external files allowed in the compilation of nested pro
grams.

integer must not be less than the total number of LINKAGE SECTION
items, external data items, and external files in the compilation after the
end of the first LINKAGE SECTION, external data item, or external
file, whichever appears first.

Default: linkcount = 64

5-12 User's Guide for IBM AIX VS COBOL Compiler/6000

[no] {list 1

printJ

{
list } [= destination]
print

Specifies the destination of the listing file. If an existing file is specified it
is overwritten. You can omit destination, in which case the listing is
directed to stdout. If destination is stdout, the listing is directed to stdout.
Note that list and print are synonymous.

Provided that the listing facility is turned on (by specifying either the .. p
or the list option on the cob command line, or by specifying the list
option in $COBOPT) you can repeatedly use the $SET statement to set
this facility on or off for specified portions of your source code. Include
a $SET NOLIST statement at the start of the portion of source cbde for
which you do not wish a listing to be produced. A $SET LIST statement
later in your source code will turn the listing facility back on. The
resulting list file will not contain a listing of the code contained within
the two $SET statements.

Default: no list

{ ~~twidth} = integer

Sets the width of the listing. integer is the number of character positions
across the listing page; the value must be in the range 72 to 132.

Default: listwidth = 80

[no] mfcomment

Specifies whether those lines within COBOL source programs which
contain an asterisk (*) in column 1, or a form feed character in columns
1 and 2 followed by an asterisk, are processed by the compiler and
appear in the list file. If you set mfcomment, such lines are ignored by
the compiler and will not appear within the list file. If you set
nomfcomment, these lines are processed by the compiler and appear
within the list file. If ANIMATOR is invoked for programs input to the
cobol process with nomfcomment specified, the results will be unpredict
able.

Default: mfcomment

Chapter 5. Compiler Options 5-13

[no] mf [level]
mf [level] =integer

[no] ms(2)

Specifies that those reserved words that are specific to Micro Focus
extensions to the ANSI 74 COBOL standard should be regarded as
reserved words. integer is used to specify which version of Micro Focus
COBOL is to be treated in this way, as follows:

1 Professional COBOL

2 As 1 plus additional features in VS COBOL Workbench, Version
1.2

3 As 2 plus additional features in VS COBOL Workbench, Version
1.3; VS COBOL Workbench, Version 2.0; Professional COBOL
Version 2.0; and VS COBOL Version 1.5

4 As 3 plus additional features in Micro Focus COBOL/2 and Profes
sional COBOL/2

Default: mf [level] = 4

Specifies that those reserved words and features that are specific to the
IBM-Microsoft COBOL language are enabled under AIX VS COBOL.
See the Language Reference for details.

The ms(2) option provides compatibility with Microsoft COBOL 2.2. See
also the option ibm-ms for compatibility with Microsoft COBOL 1.0.

Default: no ms(2)

native [=collating-sequence]

Specifies the default collating sequence to be used for comparisons.
collating-sequence must be either ASCII or EBCDIC.

Default: native = ASCII

[no] nestcall

[no] nls

Indicates whether the source program includes nested programs.

Default: nestcall

Specifies that special National Language Support (NLS) operations are
to be done for the following:

• Explicit string comparisons, class condition tests, and numeric editing
• Key comparisons performed on indexed sequential files
• Comparisons performed as part of SORT or MERGE operations.

Selecting nonls causes normal operations for these comparisons.

See Appendix B, "National Language Support" for more details on
using the NLS facility.

The option nls cannot be used together with the dbcs option.

Default: nonls

5-14 User's Guide for IBM AIX VS COBOL Compiler/6000

[no] odoslide

Determines the location of the second of two data items in the same
group, where the first has an OCCURS DEPENDING ON clause and
the second follows the first but is not subordinate to it. When you set
odoslide, the second item is located immediately after the current size of
the OCCURS DEPENDING ON table. If you set no odoslide, the
second item is located after the maximum size of the OCCURS
DEPENDING ON table.

Default: no odoslide

[no] oldcopy

Causes the COPY statement to operate according to the ANSI 68
COBOL standard (see the Language Reference for details).

Default: no oldcopy

[no]oldfileio

This is for use by the AIX VS COBOL system.

Default: no oldfileio

[no] oldindex

Causes indexes to be generated as subscripts. This option allows IBM
OS/VS COBOL comparisons of index data items with arithmetic
expressions. It is turned off by default because it may reduce the per
formance of code.

Default: no oldindex

[no] oldvsc2

When used with the vsc2 option, this alters certain features from the
ANSI 85 COBOL standard to make them compatible with Issue 1 of
IBM VS COBOL II. This means that:

• No explicit scope delimiter is allowed in a statement without a condi
tional phrase (for example, AT END, ON SIZE ERROR).

• The word ALSO in an EVALUATE statement can be omitted.

• The CLASS clause in the SPECIAL-NAMES paragraph is not
allowed.

• Conditional phrases with NOT (for example, NOT AT END, NOT
ON SIZE ERROR) are not allowed.

Default: no oldvsc2

[no] optional-file

Causes the compiler to treat all SELECT statements in files opened for
I-0 .or EXTEND as if they were OPTIONAL. Under ANSI 85 standard
COBOL, SELECT statements are treated by default as NOT
OPTIONAL. To ensure complete compatibility with the ANSI 85
standard you must thus specify both the ans85 and the no optional-file
options.

Default: no optional-file

Chapter 5. Compiler Options 5-15

[no] osext

osext==ext

[no] osvs

Causes the compiler to search by default for a file name with the speci
fied extension. This will only affect the search for COPY files. ext can
be up to 3 characters long. Use this option with caution.

Default: osext = cbl

Specifies whether those reserved words that are specific to OS/VS
COBOL language extensions should be treated as reserved words. This
also alters the behavior of certain statements in the OS/VS COBOL lan
guage (for example, COPY). See the Language Reference for details.
Note that no bounds checking is carried out on subscripts for programs
compiled with this option set.

Default: no osvs

override(reserved-word) = = (user-defined-word)

Changes the COBOL reserved word to the specified user-defined word.
See the Language Reference for a list of words which are reserved in the
COBOL language. Although you should precede arguments to options
with an equal sign when you specify them on the cob command line or in
$COBOPT, you cannot do this with the override option. You must
enclose both the reserved word and its replacement in parentheses. There
must be one space before the first equal sign and another after the
second, although there must not be a space between them. This option
does not appear in the list produced by the setting option.

If you set this option in your source code using the $SET mechanism,
there is only one equal sign between the old and the new word.

Default: no change of reserved words takes place.

perform-type = {=s}

Causes PERFORM statements to behave as in the specified language:

mf The AIX VS COBOL standard type of PERFORM statement.
See the Language Reference for details.

osvs The IBM OS/VS COBOL type of PERFORM statement.
Under IBM OS/VS COBOL all the exit points of the
PERFORM statements currently being executed are active
simultaneously, unlike AIX VS COBOL type PERFORM
statements which are strictly nested so only the exit point of
the innermost PERFORM statement is active. Thus, under
OS/VS COBOL, if control reaches any of the exit points of
the current PERFORM statement, a return jump will occur.
Under AIX VS COBOL, if control reaches any of the exit
points of the outer levels of the current PERFORM, these will
be ignored.

5-16 User's Guide for IBM AIX VS COBOL Compiler/6000

[no] profile

[no] qual

[no] query

rm The rm type of PERFORM statement. See Chapter 13,
"Ryan-McFarland COBOL: Conversion Series 3" for details.

Default: performMtype = mf

Allows the compiler to include code in your program to produce detailed
performance statistics each time you run the program. See Chapter 7,
"Running an AIX VS COBOL Program" for a description of the profile
facility.

Default: no profile

no qual prohibits qualified data-names or procedure names in the
program being compiled. This allows the compiler to operate more effi
ciently.

Default: qual

Prompts you to supply the path name for a COPY file when the compiler
is unable to find it. By default, this condition causes the compiler to
output a severe compiler message. See Chapter 15, "Error Messages"
for full details on compiler messages.

You are prompted as follows:

FILE BELOW NOT FOUND - Stop run Retry Continue Alter path

test.cbl

Respond by entering one of the following:

S Terminate the compilation with errors.

R Retry to copy the file. Before typing R, you can place the copy file
where the computer is searching for it so that it is found.

C Continue the compilation without including the specified copy file.

A Prompts you with Pl ease input new path name. Respond by speci
fying the path in which the COPY file resides. If a correct path
name is specified, the compiler prints OK and continues compilation.
Otherwise, copy prompting starts over.

Default: no query

recmode =format

Determines the format of all the files in your source program unless you
have specified a different format for a file in the FD statement. format
can be either F, to denote fixed-length records, or V, to denote variable
length records.

Default: recmode = F

Chapter 5. Compiler Options , 5-17

[no] ref

Causes four-digit location addresses to be included on the right-hand side
of the listing file. Note that you may need a listing with location
addresses in order to identify the locations reported in RTE error mes
sages.

Default: no ref

remove = reserved-word

[no] reseq

Disables the specified reserved word, allowing you to use it as a user
defined word within your source code. Note that if you wish to disable
more than one reserved word you must specify a separate remove option
for each word.

You can only remove words which are already enabled. For example, if
you wish to disable the reserved word ACTUAL, you can only remove it
if the osvs option has already been specified. This is because ACTUAL
is a reserved word in the IBM OS/VS COBOL language and is only
treated as a reserved word by AIX VS COBOL if the osvs option is set.

You wµst specify the remove option after any other options that affect
reserved words have been specified. For example, if you specify the
remove option in the cobopt file, you cannot specify any dialect
controlling options on the cob command line, since these are processed
after options found in cobopt. See Chapter 4, "The COBOL Interface"
for details on the order in which options are processed. This option does
not appear in the list output by using the setting option.

You cannot use remove to remove the reserved words used to name and
reference special registers from the reserved word list.

Default: No reserved words are removed.

Causes the compiler to generate COBOL line sequence numbers, starting
at 1, in increments of 1.

Default: no reseq

[no] retryiock

Specifies that a record found to be locked is retried until the record is
released. This option is only effective if the + R and + Q run-time
switches are set. See Chapter 7, "Running an AIX VS COBOL
Program" for details on these switches.

Default: noretrylock

[no] rewrite-Is

Specifies whether rewrite of line-sequential files is permitted. If you use
this facility it is your responsibility to ensure that the record written is
the same size as the one replaced.

Default: rewrite-Is

5-18 User~s Guide for IBM AIX VS COBOL Compiler/6000

[no] rm
rm=ansi

Changes the behavior of certain features so that they are compatible with
RM/COBOL V2.0. If the ansi option is specified, these features behave
as they do when a program is compiled in that system with the ANSI
switch set. See the Language Reference for details.

Setting the rm option causes the table of alternate file status values
described in the "RM Appendix" of the Language Reference to be used in
file operations. By default, this table contains the status "9" file status
values returned by RM/COBOL.

Setting rm automatically sets the notrunc, oldindex, nooptional-file,
retrylock, align= 2, and sequential= line options. It also causes compiler
behavior as if your program contained the syntax:

sign trailing separate

for signed numeric data items, and

lock mode is automatic

for each file with no explicit locking syntax.

Setting rm= ansi automatically sets the notmnc, oldindex, nooptional-tile,
retrylock, .align= 2, and sequential= record options. It also causes com
piler behavior as if your program contained the syntax:

sign trailing included

for signed numeric data items, and

lock mode is automatic

for each file with no explicit locking syntax.

Setting norm automatically sets the trunc = ansi, nooldindex, nooptional
tile, noretrylock, align= 8, and sequential= record options. ·It also causes
compiler behavior as if your program contained the syntax:

sign trailing included

for signed numeric data items. It does not set any locking for those files
which have no explicit locking specified.

Note: See also the option perform-type.

Default: Each of the options set by this one has its own default value.
See the individual entries for each option in this chapter.

Chapter 5. Compiler Options 5-19

rtncode-size =integer

[no] rw

[no] seg

Specifies the size of the RETURN-CODE special register and its align
ment in the computer memory. integer can be either 2 or 4. A value of
2 implies a data description of PIC S9(4) COMP for a register of 2 bytes
which is aligned on a 2-byte boundary. A value of 4 implies a data
description of PIC S9(9) COMP for a register of 4 bytes which is aligned
on a 4-byte boundary.

If a program with a 4-byte return code returns control to a program with
a 2-byte return code, binary truncation of the return code will take place.
If a program with a 2-byte return code returns control to a program with
a 4-byte return code, the top two bytes of the return code will be unde
fined.

Default: rtncode-size = 4

Specifies whether those reserved words that are specific to the ANSI
COBOL standard Report Writer module should be treated as reserved
words. See the Language Reference for details.

Default: rw

no seg causes the compiler to ignore segmentation by treating all section
numbers as if they were zero. A monolithic program is produced.

Default: no seg

[no] seqchk

Checks the sequence numbers in columns one to six and flags lines whose
sequence numbers are out of order.

Default: no seqchk

sequential = { r.ecord }
lme

[no] setting

Causes all files whose organization is implicitly or explicitly sequential to
default to either record-sequential (a standard sequential file) or line
sequential. See Chapter 3, "Device- and File-Handling" for more infor
mation on file structures.

Default: sequential = record

Causes the compiler to include a list of the current settings of the
majority of the compiler options in the listing file .1st. The settings of a
few options are not shown in this list. See the descriptions of the indi
vidual options to determine which these are.

Default: no setting

5-20 User's Guide for IBM AIX VS COBOL Compiler/6000

sign= convention

[no] struct

[no] supff

[no] time

[no] trace

[no] trunc

Indicates whether included signs for numeric display fields are to be
interpreted according to the ASCII or EBCDIC convention.

Default: sign = ASCII

Is reserved for use by COBOL products which can be added to the AIX
VS COBOL system. Do not change its setting.

Default: no struct

Suppresses form feed characters in the output listing. This only has an
effect with the list option.

Default: no supff

Can only be used with the date option. Where date inserts the system
date into the source program and listing, time adds the current system
time.

Default: time

Specifies whether the ready trace and reset trace syntax should be
enabled. ready trace and reset trace cause code to be inserted at each
paragraph and section heading to display the name of that paragraph or
section each time it is executed at run time. See the Language Reference
for details.

Default: no trace

trunc=ANSI

Controls the behavior of data moved into USAGE COMP items. trunc
truncates decimal values to the number of digits specified by the
PICTURE clause. no trunc truncates binary values to the capacity of the
allocated memory (for small systems). trunc = ANSI truncates the
decimal values of data moved by nonarithmetic statements to the number
of digits specified by the PICTURE clause. For moves involving arith
metic statements when the size error condition occurs, if you specify
trunc = ANSI but no on size error phrase, the value stored in the usage
comp item is undefined.

Default: trunc = ANSI

[no] verbose

Sends messages output by the compiler concerning accepted options and
the size of the code and data areas of your programs to stdout.

Default: no verbose

Chapter 5. Compiler Options 5-21

[no] vsc2
vsc2 =integer

Specifies that those reserved words that are specific to the IBM VS
COBOL II language extensions should be treated as reserved words. See
the Language Reference for details. It also enables or disables subscript
array bound checking.

The possible values for integer are:

1 VS COBOL II Release 1.0

This replaces the options oldvsc2 and vsc2.

• No explicit scope delimiter is allowed in a statement without a
conditional phrase (AT END, ON SIZE ERROR, and so on).

• The word ALSO in an EV ALU ATE statement can be omitted.

• The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

• Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

2 VS COBOL II Release 2.0

• The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

• Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

• When used in conjunction with the flag= vsc2 it provides
similar functionality to the VS COBOL II Release 2.

• Also sets the compiler option dbcs = 1.

3 VS COBOL II Release 3.0

• When used in conjunction with the flag= vsc2 it provides
similar functionality to the VS COBOL II Release 3.

Notes:

1. ans85 status codes are used when vsc2 = 3 option is selected.

2. Do not use the noans85 option after specifying vsc2 = 3
since this will turn off some of the ans85 behavior sup
ported by vsc2 = 3.

• The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

• Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

• Also sets the compiler option dbcs = 2.

When vsc2 is specified without integer, vsc2 = 3 is assumed.

Default: no vsc2

5-22 User's Guide for IBM AIX VS COBOL Compiler/6000

warning= integer

Controls the level of compiler error messages output by the compiler.
integer must be 1, 2, or 3. Unrecoverable-level and Severe-level errors
are always output. Specifying integer as 1 causes Error-level errors to be
output; 2 causes Error- and Warning-level errors to be output; and 3
causes all five levels of error messages to be output (Unrecoverable,
Severe, Error, Warning, and Informational).

Default: warning = 3

[no] writelock

[no] xref

Causes WRITE and REWRITE statements to acquire a record lock
when the program is locking multiple records in a file (see Chapter 8,
"File Sharing in the Multi-User Environment"). This option does not
appear in the list produced by the setting option if its state is the same as
the autolock option. If this is the case, the state of the fileshare option
shown in the setting list also indicates the state of the autolock and
writelock options.

Default: no writelock

Produces a cross-referenced listing, consisting of a list of all data items in
alphabetical order and an associated sequence number, which shows the
line where the item is defined. This reference number is marked with a
#. Further sequence numbers show each time the item is used. The
listing also shows the data item type and the length (in bytes) of group
items. The listing continues with a similar description of paragraph
names.

Default: no xref

[no] zeroseq

Excluded Combinations

Causes zero suppression in the sequence numbers in columns one to six.

Default: no zeroseq

Certain options may not be used in combination with other options. Table 5-1 on
page 5-24 shows the options that are excluded if the option shown adjacent in the
left-hand column is specified.

Chapter 5. Compiler Options 5-23

Table 5-1. Excluded Combinations of Options

Option Excluded Options

no list list
print
[no] form
re seq
copy list
errlist
[no] ref
echo all

err list reseq
copy list
[no] ref

ANS85 Options
The ANS85 options are as follows:

• ans85
• coms85
• nestcall
• nooptional-file
• trunc = ansi

Default Options
The default compiler options set by cob are as follows:

• align=4
• alter
• noanalyze
• noanim
• ans85
• assign = dynamic
• noautolock
• nobell
• nobound
• nobrief
• charset =ASCII
• nocomp
• coms85
• confirm
• nocopylbr
• nocopylist
• currency-sign= 36
• date
• nodbcs
• nodbcssosi
• defaultbyte = 32
• nodg
• nodirectives
• echo

5-24 User's Guide for IBM AIX VS COBOL Compiler/6000

• noechoall
• noerrlist
• noerrq
• nofilecase
• nofileshare
• noflag
• noflagq
• noflagstd
• form=60
• noibmcomp
• noibm-ms
• int= filename.int
• linkcount = 64
• nolist
• listwidth = 80
• mfcomment
• mf[level] = 4
• noms(2)
• native= ASCII
• nestcall
• nonls
• noodoslide
• nooldcopy
• nooldfileio
• nooldindex
• nooldvsc2
• nooptional-file
• osext=cbl
• noosvs
• perform-type = mf
• noprofile
• qual
• noquery
• recmode=F
• noref
• noreseq
• noretrylock
• rewrite-ls
• norm
• rtncode-size = 4
• rw
• noseg
• noseqchk
• sequential = record
• nosetting
• sign= ASCII
• nostruct
• nosupff
• time
• notrace
• trunc = ansi

Chapter 5. Compiler Options 5-25

• noverbose
• novsc2
• warning=3
• nowritelock
• noxref
• nozeroseq

5-26 User's Guide for IBM AIX VS COBOL Compiler/6000

You can override the above default compiler options by any of the following:

• An entry in the file $COBDIR/cobopt.

• An entry in the environment variable $COBOPT, or in the file to which this
environment variable points.

• Specifying -C on the cob command line.

• Embedding parameters in the COBOL source code.

For example, in the $COBDIR/cobopt file, the entry:

compiler: nolist nobell ,.J

passes the options nolist and nobell to the compiler. The same effect would be
achieved if you entered either of the following cob command lines:

cob -C 11 nol ist nobel in filel ist ,.J

or

cob -C nolist -C nobell filelist ,.J

Entries in the $COBOPT environment variable (or the file it points to) override the
system-wide default compiler options found in $COBDIR/cobopt, while options spec
ified on the command line override entries in both $COBDIR/cobopt and
$COBOPT. Parameters in the source code override all of the above.

Mainframe Options

SAA Options

If you want the AIX VS COBOL system to emulate the mainframe environment, set
the following compiler options. These options depend on the mainframe facilities
used.

• sequential = line
• assign = external
• ibmcomp
• defaultbyte = 48
• native = EBCDIC
• osvs
• notrunc

If you want the AIX VS COBOL system to provide support for the SAA definition
of COBOL, you should set the following options:

• vsc2
• nomf
• flag(saa)

Chapter 5. Compiler Options 5-27

Options Permitted in $SET Statements
You can imbed certain compiler options within your source code in $SET state
ments. In the following list the entry "any" specifies that a particular compiler
option can be specified in any $SET statement regardless of its position within your
source code; "initial" specifies that a particular compiler option can be specified only
in a $SET statement which appears at the start of your source code; while "not
available" specifies that a particular compiler option cannot be specified in any
$SET statement.

align Initial
alter Initial
analyze Not available
anim Not available
ans85 Initial
assign Initial
auto lock Initial
bell Initial
bound Initial
brief Any
charset - Not available
comp Initial
coms85 Initial
confirm Not available
copylib Not available
copy list Any
currency-sign Initial
date Not available
dbcs Initial
dbcssosi Any
defaultbyte Initial
dg Initial
directives Any
echo Any
echo all Any
err list Not available
errq Any
filecase Not available
file share Initial
flag Any
flagq Any
flagstd Any
form Any
ibmcomp Initial
ibm-ms Initial
int Not available
link count Initial
list Any
Iistwidth Any
mfcomment Any
mf[Ievel] Initial
ms(2) Initial
native Initial
nestcall Initial
nls Not available
odoslide Initial

5-28 User's Guide for IBM AIX VS COBOL Compiler/6000

oldcopy Any
oldfileio Initial
oldindex Initial
oldvsc2 Initial
optional-file Initial
osext Any
osvs Initial
override Initial
perform-type Initial
profile Not available
qual Any
query Any
rec mode Initial
ref Any
remove Initial
re seq Initial
retry lock Any
rewrite-ls Not available
rm Initial
rtncode-size Initial
rw Initial
seg Initial
seqcbk Any
sequential Initial
setting Not available
sign Initial
struct Not available
sup ff Any
time Not available
trace Any
trunc Initial
verbose Not available
vsc2 Initial
warning Any
write lock Initial
xref Not available
zero seq Any

Compiler Messages
If you specify the verbose flag (-v) on the cob command line, each compiler option is
acknowledged by the compiler on a separate line and is either accepted, rejected, or
ignored. Options that are ignored are those which are not applicable to your envi
ronment. After all the options have been acknowledged, the compiler opens its files
and starts to compile. At this point it displays the message:

* Compiling file-name

If any file fails to open correctly, the compiler displays:

Open fail : file-name

The compilation is aborted, returning control to AIX. Open fai 1 results, for
example, if the source file is located in another directory, or if the file name was
typed incorrectly.

Chapter 5. Compiler Options 5-29

Listing Format

When the compilation completes successfully, the compiler displays a message which
gives the total number of compiler error messages reported by the compiler, and the
sizes of the code and data areas and the compiler dictionary. See "Listing Format"
for details.

The dictionary size information does not include the overheads of the virtual
memory mechanism, and so the dictionary file is likely to be larger than the statistic
given here.

The general layout of the list file is as follows:

* IBM AIX VS COBOL Compiler/6000 LP <date><time> Page n
* <Ji le-name>
<list of options>

1 Statement 1

n Statement n

* IBM AIX VS COBOL Compiler/6000 LP
* 5601-258 (c) COPYRIGHT IBM CORP. 1987, 1990
* Copyright (c) 1984, 1987 Micro Focus, Ltd
* All Rights Reserved
* Licensed Material - Property of IBM
* Last Error on page : nn
*
* Total messages: n
* Unrecoverable: n
* Errors: n
*Informational: n
* Data = nnnnn

Severe: n
Warnings: n
Flags: n

Code = nnnnn Dictionary = nnnnn

If no options were specified, the list of options is replaced by the message:

No Options Selected

Note that if you specify the ref option during compilation, a hexadecimal value
denoting the address of each data-name or PROCEDURE statement appears to the
right of the page. Addresses of data-names are relative to the start of the data area,
while addresses of procedures (that is, sections and paragraphs) are relative to the
start of the code area. There is some overhead at the start of the data area and a
few bytes of initialization code at the start of the procedure area for each SELECT
statement.

The sequence following ref is the compiler reference number.

A syntax error is marked in the listing by an error line with the following format:

nnnnnn
** nnn-N********* •••
(nnnn)**
** id# message-text

where:

illegal statement

nnnnnn is the sequence number of the erroneous line.

5-30 User's Guide for IBM AIX VS COBOL Compiler/6000

nnn is the compiler error number.

N is a single alphabetic character representing the category of the severity of the
error.

The asterisks following the error number indicate the character position of the error
in the preceding erroneous source line. The asterisks at the end of the line simply
highlight the error line.

The compiler may not echo an erroneous line to the terminal. Check the previous
line if there is any doubt.

The number nnnn in parentheses at the end of the line indicates the page of the
listing on which the previous error occurred. This enables you to trace back from
one error to the previous error. However, this feature assumes that you used the
copylist option; if this is not the case, the page numbers reported are incorrect.

The line following the compiler error number has the text of the error message. At
the beginning of each message is the AIX VS COBOL component identifier. This
component number is 1103 for compiler error messages.

Compiler error messages are split into the following five categories:

Unrecoverable

Severe

Error

Warning

Informational

Indicates a fatal error.

Indicates an error that the compiler was unable to correct.
Compilation continues, but the statement at fault is not com
piled.

Indicates an error which the compiler has attempted to correct.

Flags a statement that although syntactically correct may
contain a possible error.

Draws your attention to something in your source code you
should be aware of.

An unrecoverable error always causes the compiler to stop running, outputting the
relevant error message once it does. However, by default, any other level of error
causes processing of the cob command to terminate once an intermediate code file
has been produced. If the compiler reports any Severe-level compiler errors, you can
override these by using the -W option with the cob command, or by setting the
warning compiler option. See Chapter 4, "The COBOL Interface" for details. The
message given at the close of the compiler's run, provided it is not terminated by an
unrecoverable error, indicates both the total number and the category of the errors
which occurred.

You will not be able to run or code-generate intermediate code programs which
contain any Unrecoverable-level errors. You will have to correct these errors and
resubmit your source code to the compiler using the cob command.

You can run programs which contain Severe-level errors only if you set the E run
time switch to on. See Chapter 7, "Running an AIX VS COBOL Program" for full
details of how you may do this. If the E run-time switch is set off (-E), attempting
to run intermediate code programs which contain Severe-level errors will give a run
time error, and the program run will terminate.

Chapter 5. Compiler Options 5-31

Flagging

The default setting of the E run-time switch is -E; that is, you will not be able to run
programs that contain Severe-level compiler errors. If you wish to do so you must
explicitly set and export the COBSW environment variable to + E (see Chapter 4,
"The COBOL Interface" for details).

You will not be able to produce object code from intermediate code programs which
contain Severe-level errors. Attempting to do so will result in a Native Code Gener
ator error.

You can animate programs with Severe-level errors regardless of the setting of the E
run-time switch. If you animate such a program with the -E switch setting, a run
time error is reported, but animation does not terminate.

You can animate, run, and produce object files from intermediate code files which
contain Error-, Warning-, and Informational-level errors, regardless of the setting of
the E run-time switch. However, you may wish to correct these errors first.

A full list of compiler error messages together with recovery hints can be found in
Chapter 15, "Error Messages."

Flagging can be used to ensure portability of the COBOL syntax you have used in
your program. If you use syntax that is outside the dialect of COBOL that you have
selected in the flag option, it will produce a flagging message on the listing.

A flag is marked in the listing by a flagging line with the following format:

nnnnnn flagged feature
** nnn-level--------- ••. (nnnn)--
** id# flag-text

where:

nnnnnn is the sequence number of the flagged line.

nnn is the flag number.

level represents the level at which the feature is flagged, using the following aero-
nyms:

MF Micro Focus COBOL extensions

osvs IBM OS/VS COBOL extensions

VSC2 IBM VS COBOL II extensions

ANS74 ANSI COBOL Standard X3.23, 1974

ANS85 ANSI COBOL Standard X3.23, 1985

LOW GSA ANSI Low level

L-1 GSA ANSI Low-intermediate level

H-1 GSA ANSI High-intermediate level

HIGH GSA ANSI High level

The flagged feature is pinpointed at the position of the end of the line of characters
beneath the flagged line. The dashes at the end of the line simply highlight the flag
ging line.

5-32 User's Guide for IBM AIX VS COBOL Compiler/6000

The number in parentheses at the end of the line indicates the page of the listing on
which the previous flag occurred. This enables you to trace back from one flag to
the previous one. However, this feature assumes that the copylist option has been
used; if this is not the case, the page numbers reported are incorrect.

The line following the flag number and level has the text of the flag message. At the
beginning of each message is the AIX VS COBOL component identifier. This com
ponent number is 1103 for flagging messages.

A program in which flags are indicated can still be run. Further details can be
found in Chapter 15, "Error Messages."

If the compiler detects an error in a data declaration, it may skip some subsequent
data declarations, with the result that error messages are produced when references
are made to data items whose declarations have been skipped.

Chapter 5. Compiler Options 5-33

5-34 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 6. Native Code Generator Options

Chapter 6. Native Code Generator Options 6-1

Contents
About This Chapter .
Permitted Options
Default Options
Native Code Generator Messages

6-2 User's Guide for IBM AIX VS COBOL Compiler/6000

6-3
6-4
6-5
6-6

About This Chapter
This section describes the system-wide default Native Code Generator options. You
can supplement or override these default options by modifying the
$COBDIR/cobopt supplied with your compiler, setting up your variable, $COBOPT,
or by using the -N option on the cob command line. Chapter 4, "The COBOL
Interface" contains details on how to do this.

Throughout this chapter all references to $COBOPT refer to the contents of the
COBOPT environment variable, or the file to which it points.

Chapter 6. Native Code Generator Options 6-3

Permitted Options
The available Native Code Generator (NCG) options are:

[no] asm [=filename]

Suppresses or requests an assembler listing of the intermediate file being
generated. The assembly file is placed in:

progname.s

where:

progname is the name of the program being code-generated. This name
may be overridden by the inclusion of a filename in the command line.
The filename may include a path. If the filename is specified with this
option, the tmpdir option is ignored.

Default: no asm

[no] boundopt

[no] check

Specifies whether array access optimization is enabled. Noboundopt turns
off array access optimizations and so allows you to access elements that
are outside the array (this will increase execution time). If the vsc2 or
osvs compiler option is set at compile time, the default is noboundopt.

If the picture clause for a subscript has more digits than required for the
table being indexed, boundopt may cause the compiler to use only the
least significant bytes of the subscript. This reduces the amount of data
used, and could adversely affect programs which access table elements
outside of the declared size.

Default: boundopt

Specifies checking of run-time limit violations (for example, PERFORM
stack, table bounds). nocheck suppresses limit checking and so allows
overwriting of data areas (reducing execution time). If the vsc2 or osvs
compiler options are set at compile time, the default is nocheck.

Default: check

[no] list [=filename]

Suppresses or requests the NCG error listing file. The listing may be sent
to stderr, or may be overridden by including a filename in· the command
line.

Default: list

[no] Ink.align

Specifies that linkage records in a USING statement are 01 or 77 level
items (they are aligned according to the compiler align option, as
described in Chapter 5, "Compiler Options").

Note: This option may reduce the time needed to access a linkage item,
but no checks are made to ensure that the items are aligned (your
program could access data incorrectly).

Default: nolnkalign

6-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Default Options

[no] obj [=filename]

[no] spzero

Suppresses or requests production of a native object file of the interme
diate file being generated. The object file is placed in:

progname.o

where:

progname is the name of the program being code-generated. This name
may be overridden by the inclusion of a filename in the command line.
The filename may include a path. If the filename is specified with this
option, the tmpdir option is ignored.

Default: obj

Causes spaces to be treated as zeros in numeric display fields. This
option requires overhead at run time and so may reduce performance.
Use the + F COBSW for equivalent function in the .int code.

Default: nospzero

[no] sysprof

Causes AIX system profiling code to be added to the COBOL generated
native code. See the AIX system documentation for more information
on the AIX system profiler.

De fa ult: nosysprof

tmpdir =path

Sets the temporary directory path to be path. This must specify only a
path; it cannot include the file name.

Default: Undefined

[no] verbose

Sends messages to the screen output by the Native Code Generator con
cerning accepted options and the size of your program's code and data
areas.

Default: noverbose

The default options can be overridden either by an entry in the file $COBOPT or by
using the -N flag on the cob command line. The following entry in the $COBOPT
file:

ncg:nocheck

passes the option nocheck to the Native Code Generator. An alternative way of
achieving the same effect is the cob command line:

cob -N nocheck file list _..l

Entries in the $COBOPT file override the system-wide default Native Code Gener
ator options. Options specified to the cob command line override entries in both
$COBDIR/cobopt and $COBOPT.

Chapter 6. Native Code Generator Options 6-5

Native Code Generator Messages
If you specify the verbose option (-v) on the cob command line, each option is
acknowledged by the Native Code Generator on a separate line and is either
accepted, rejected, or ignored. After all the options have been acknowledged, the
Native Code Generator opens its files and starts processing the file.

6-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 7. Running an AIX VS COBOL Program

Chapter 7. Running an AIX VS COBOL Program 7-1

Contents
About This Chapter .
Command Line Syntax
Command Line Examples .

Examples
Switch Parameters .

Run-Time Switches .
ANIMATOR Switch (A) ..
Skip Locked Record Switch (B)
ANSI COBOL Debug Switch (D)
COBOL Symbol Switch (e)
Error Switch (E) .
Compatibility Check Switch (F) .
Keyboard Interrupt Switch (i) .
ISAM Files Sequence Check Switch (K)
Memory Switch (1)
Null Switch (N) .
Dynamic Linkage Setup Switch (p)
File Status Error Switch (Q) ..
Reread Locked Record Switch (R)
Sort Memory Switch (s)
Sort Switch (S)
Tab Switch (T) .
Examples

Run Time Environment Error Messages
COBOL Profiler .

Profiler Directives
Profiler Output

7-2 User's Guide for IBM AIX VS COBOL Compiler/6000

7-3
7-4
7-5
7-S
7-6
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-9

7-10
7-10
7-10
7-10
7-11
7-11
7-12
7-12
7-12
7-13
7-13
7-14
7-14
7-15

About This Chapter
This chapter describes how to run a program compiled with the AIX VS COBOL
compiler. The chapter includes a description of the COBSW switches, which allow
you to alter the way your program is run. Also included is a description of the
format of run-time error messages. This section finishes with a description of the
COBOL profiler facility, which can be used to produce statistics on the run-time per
formance of your program.

Chapter 7. Running an AIX VS COBOL Program 7-3

Command Line Syntax
You can run a statically-linked module output by the cob command by entering a
command line of the form:

file-name [parameter-list] .i

where file-name is the name of the a.out module output by the cob command and
parameter-list is an optional list of parameters to be passed to AIX VS COBOL.
Each parameter is a string, separated from adjoining parameters by one or more
spaces. These parameters can be read by the module in either of the following ways:

• If a program linked into the module opens file stdio (console input) for input,
with ORGANIZATION LINE SEQUENTIAL, the first READ from this file
accesses the program parameters in the command line.

• ACCEPT FROM CONSOLE also reads from std.in, so the first ACCEPT
FROM CONSOLE will also access the program parameters.

Note: ACCEPT without a FROM clause is, by default, ACCEPT FROM
CONSOLE, unless CONSOLE IS CRT is specified in the
SPECIAL-NAMES paragraph. ACCEPT FROM CRT does not access
program parameters.

You can run dynamically loadable programs created by using the cob command by
entering a command line of the form:

cobrun [option] [switch] filename [parameter-list]

where:

option is one of the two following options that can be passed to the cobrun
command:

-b is a help option that displays a usage banner on the screen; no other action is
taken by the cobrun command if the -b option is given.

-v is a verbose option that shows the built command line that is being executed by
the cobrun command in order to process your requested run.

switch is an option list of switches. See "Switch Parameters" on page 7-6 for details
on what these switches can be.

filename is the name of the .int or .got file output by the cob command. If both .int
and .got versions of the file exist and you do not specify an explicit file extension in
the cobrun command, the .got version is the one that is run.

parameter-list is an optional list of parameters to be passed to your COBOL
program. Parameter lists are described in more detail earlier in this section.

7-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Command Line Examples

Examples

This section shows examples of command lines.

For a full description of the effect of the cob command in the following examples,
see Chapter 4, "The COBOL Interface;"

1. To execute the statically linked module pi, in which the generated version of the
program pi is linked to the COBOL libraries, enter the following:

cob -x pi.cbl ..-1
pi .-1

2. To execute the intermediate code file pi.int, which is the default output of the
cob command, enter the following:

cob pi.cbl ..-1
cobrun pi.int .-1

3. To animate the intermediate code contained in the file pi.int output by the cob
command, enter the following:

cob -a pi.cbl ..-1
anim pi.int ..-1

If you set the A switch in the COBSW environment variable, the same effect can
be achieved by entering the following commands:

cob -a pi.cbl ..-1
cobrun pi.int .-J

4. To execute the generated code in the file pi.got output, using the cob command,
enter the following:

cob -u pi.cbl ..-1
cobrun pi.gnt ..-1

5. To execute the statically linked executable file named pi, which is output by the
cob command, enter the following:

cob -x -e 1111 pi.cbl _.J
pi pi ..i

Specifying the -e option with a null argument on the cob command line ensures
that the entry point is read from the command line at run time. Since the entry
point is supplied at run time, you can use the static module pi to execute any
intermediate or native code file. For example, to run the file myfile.int, enter the
following command:

pi myfile ~

where myfile could be a free-standing intermediate or native code program, or
could call the statically linked pi module.

Chapter 7. Running an AIX VS COBOL Program 7-5

Switch Parameters
You can set certain switches when you execute files output, using the cob command.
These switches can be any of the following:

• Run-time switches
• ANIMATOR switch (A)
• Skip locked record switch (B)
• ANSI COBOL debug switch (D)
• COBOL symbol switch (e)
• Error switch (E)
• Compatibility check switch (F)
• Keyboard interrupt switch (i)
• ISAM files sequence check switch (K}
• Memory switch (1)
• Null switch (N)
• Dynamic linkage setup switch (p)
• RM file status error switch (Q)
• Reread locked record switch (R)
• Sort memory switch (s)
• Sort switch (S)
• Tab switch (T)

To specify any of these switches, set the environment variable COBSW to those
which you require. Each switch you want to set to on must be preceded by a'+'
sign. Each switch that you wish to set to off must be preceded by a'-' sign.

If your program does not require any of the above switches, you do not need to set
COBSW. In this case, the default values of the switches will apply.

Note: The use of'+' or'-' is significant for these switches, but the values are used
only to delimit the run-time options. If you are running the "sh" shell, you
will need to export COBSW after you set it, as follows:

export COBSW

You can also include run-time switches in the cobrun command line as follows:

cobrun [switch] filename [parameter-list] ..-1

where:

switch is an optional list of the run-time switches listed above.

filename is the name of the .int or .gnt file output by the cob command.

parameter-list is the optional list of parameters to be passed to AIX VS COBOL.

7!"'6 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Switches
By default, all run-time switches are set to off. AIX VS COBOL provides a facility
that allows you to control events in a program at run time by setting or unsetting up
to nine run-time switches in the SPECIAL-NAMES paragraph of your program (see
the Language Reference for details).

To set a run-time switch to on, set the COBSW environment variable as follows:

COBSW=+n

where n is in the range 0 to 8.

You can specify switches in any order, but each individual switch must be preceded
by a sign. For example:

COBSW=+1+4

sets the run-time switches as follows:

0 Off
l On
2 Off
3 Off
4 On
5 Off
6 Off
7 Off
8 Off

ANIMATOR Switch (A)
By default, this switch is set to off. If you wish to animate intermediate code output
by the cob command, you can do so using the anim command (see Chapter 11,
"Debugging Your Program Using ANIMATOR"), which automatically sets the
ANIMATOR switch to on. To use the cobrun command to execute intermediate
code, but still have ANIMATOR invoked, set the COBSW environment variable to
the ANIMATOR switch as follows:

COBSW=+A

If you animate your program using COBSW =+A when COBPATH is set, the .cbl
files must be in the same directory as the .int files.

Skip Locked Record Switch {B)
By default, this switch is set to off. If you attempt a READ operation on an ISAM
file opened for INPUT or I-0 and the record is found to be locked, the file position
indicator remains pointing to that record. Subsequent READs then attempt the read
operation again until the record is found to be unlocked. However, if the Skip
Locked Record Switch is set to ON, if a READ operation tries to access a record
that is locked, then the file position indicator is moved to the next record in the file.
Since the record was locked, an I-0 status "record locked" is returned for that
READ.

Chapter 7. Running an AIX VS COBOL Program 7-7

To set this switch to on, set the COBSW environment variable to the Skip Locked
Record Switch as follows:

COBSW=+B

This switch only has effect for files with sequential access.

ANSI COBOL Debug Switch (D)
By default, this switch is set to off. If your program is to use the ANSI COBOL
debug facility (see Language Reference), set the COBSW environment variable to the
ANSI COBOL debug switch, as follows:

COBSW=+D

COBOL Symbol Switch (e)

Error Switch (E)

Setting this switch off causes the RTE to search only for COBOL programs or
symbols to satisfy CALL operations or EXTERNAL data items. The RTE will not
search for any C programs or symbols if you set this switch off.

By default, this switch is set on, that is, the RTE does not search for C programs
and symbols. If you wish to turn it off, you must set the COBSW environment vari
able as follows:

COBSW=-e

The method used to avoid finding C programs and symbols is that the RTE will not
look up that name in the file "ldtab.s". This is a file that is created during a compi
lation where such names are collected for resolution. The RTE does the lookup for
names in this file. Therefore, if the code that handles the CALL does not go
through the RTE, finding C programs and symbols cannot be avoided by using this
switch. The -e switch will only have effect if the calling program is a dynamically
loaded COBOL program, that is, a .gnt or .int code file. If the COBOL program is
statically bound, then a CALL to C code (which must also be statically bound) will
have no need to go through the RTE, and so finding the C program or symbol will
not be avoided.

By default, this switch is set to off. If you try to run intermediate code programs
which contain S-level compiler errors, you will receive a run-time error. See
Chapter 15, "Error Messages" for more information about these errors. To execute
intermediate code output by the cob command, which contains S-level compiler
errors, set the COBSW environment variable to the Error switch as follows:

COBSW=+E

Compatibility Check Switch (F)
By default, this switch is set to on. The switch enables or disables various checks at
run time to allow programs that would usually fail at run time with run-time error
163 to run successfully. Run-time error 163 is output for a number of error condi
tions, all of which are described in Chapter 15, "Error Messages." Most of these
conditions are cases where intermediate code versions and generated code versions of
the same source program produce different effects at run time. To suppress the
checking for these error conditions, set this switch to off, as follows:

COBSW=-F

7-8 User's Guidefor IBM AIX VS COBOL Compiler/6000

For example, one of the checks enabled or disabled by the compatibility check
switch is the numeric field check. If this switch is set to on when the RTE loads a
numeric item into one of its numeric registers, the RTE will check the loaded value
to see if the value contains a nonnumeric character. If this is the case, run-time
error 163 is output.

Consider the following short program:

WORKING-STORAGE SECTION.
01 VAR PIC 9.

PROCEDURE DIVISION.
IF VAR = 0 DISPLAY 11 ZER0 11

ELSE DISPLAY 11 NON-ZER0 11
•

The variable VAR is not initialized with a VALUE clause and so contains space (hex
20). If you try to run this program with the compatibility switch set to on (the
default setting), the RTE checks for a nonnumeric character in the numeric field and
the program fails with run-time error 163.

If you run the intermediate code version of this program with the compatibility
switch suppressed, the RTE masks out the top four bits of the value in VAR. This
makes the comparison true, and the program displays "ZERO". However, if you
then run the generated code version of this program with the compatibility switch
suppressed, the RTE performs a byte by byte comparison between the value of VAR
(hex 20) and zero (hex 00). In this case, the comparison yields the result false, and
the program displays "NON-ZERO".

The following table summarizes the results of running the intermediate and native
code versions of the above program with the two settings of the compatibility check
switch:

.int

.gnt

-F
Displays "ZERO"
Displays "_NON-ZERO"

+F
Fails with RTE error 163
Displays "NON-ZERO"

If an intermediate code file needs the F switch suppressed (that is, ;.....F set) to run
successfully, you must set the SPZERO Native Code Generator option if you want
to generate your code and obtain the same results. See Chapter 6, "Native Code
Generator Options" for details.

Keyboard Interrupt Switch (i)
By default, this switch is set to on. The AIX VS COBOL system allows you to
enable or disable keyboard interrupts by setting or unsetting the interrupt switch at
run time. If you want keyboard interrupts to be disabled, set this switch to off as
shown below:

COBSW=-i

Chapter 7. Running an AIX VS COBOL Program 7-9

ISAM Files Sequence Check Switch {K)
By default, this switch is set to off. The AIX VS COBOL system allows you to
enable or disable sequence-checking of indexed keys in ISAM files. This switch
allows you to specify if records can be written in any order to ISAM files opened in
sequential mode, or if these records must be written in key sequence. You can set
this switch to on by entering the following:

COBSW=+K

Memory Switch (I)

Null Switch (N)

By default, the Run Time Environment performs logical CANCELs unless all the
available memory has been used up. As far as your program is concerned, the
behavior of logical and real CANCELs is identical, but logical CANCELs are faster.
A logical CANCEL flushes all file buffers but does not free any memory after using
it. If you do not set the size of the available memory, the RTE requests the
maximum amount possible from the operating system. Set the size of the available
memory by setting the memory switch at run time.

COBSW=-1 integer

where integer is the size of the available memory in bytes.

If you want all CANCELs to be "real," set this switch to:

COBSW=-10

By default, when the RTE requires memory space it checks that the new request
does not exceed the available memory. If the new request exceeds available memory,
the memory that should have been freed by any CANCEL is freed, and the RTE
repeats its request for memory. The RTE loads programs that have been logically
canceled in preference to reloading from fixed-disk.

By default, the null switch is set to on, as follows:

COBSW=+N

When a program writes records to a line-sequential file, the default action in cases
where a record contains control characters (all characters with ASCII code less than
or equal to hex IB) is to add a null character (hex 00) before each control character.
Similarly, on reading a record from a line-sequential file, the default action is to strip
these null characters from control characters.

If you wish control characters to be written and read in the same way as other char
acters, set this switch to off, as shown below:

COBSW=-N

Dynamic Linkage Setup Switch (p)
If you set the p run-time switch off as follows:

COBSW=-p

the RTE will set up COBOL parameters (tha1. is, Linkage Section items) on demand.
By default, this switch is set on which causes the RTE to set up the addressability
for all the Linkage Section items in a program when it is called.

7-10 User's Guide for IBM AIX VS COBOL Compiler/6000

You may find that setting the -p run~time switch for subprograms with large linkage
areas gives improved run-time performance, since the linkage setup is done the first
time an item is accessed. Thus, if an item is not accessed, no setup is performed for
it.

File Status Error Switch (Q)
By default, this switch is set to off, as follows:

COBSW=-Q

By setting the file status error switch to on, all status 9 file errors reported in your
code are mapped, by means of an internal RTE table, to a status which conforms
with the statuses returned in the COBOL dialect of your choice. Any undefined or
unrecognized status values are mapped onto status 30, permanent I-0 error. See the
Language Reference for full details on file status errors.

If you want file status errors to be mapped to the values in this alternate table, set
this switch to on, as follows:

COBSW=+Q

The defaults in this alternate table are the file status values used in RM COBOL.

The contents of the internal RTE table that allows this mapping to be performed are
as follows:

unsigned char alt_Stat[256];

The table is indexed by the second byte of any status 9 file errors. Any entry is
interpreted as a two-digit binary coded decimal (BCD) number, which is converted
to two ASCII digits. This number is stored in place of the original file status. If
you want to alter this table, you can do so by patching or by supplying a C routine
to alter certain table entries at run time. See "Alternate File Status Table" on
page 3-18 for more details on using an alternate file status table.

Reread Locked Record Switch (R)
By default, this switch is set to off. You can set it to on as follows:

COBSW=+R

If a read is attempted on a file of any organization that is OPEN for INPUT or I-0
and has no file status item declared, and the record is found to be locked, the READ
is attempted again until the record becomes available (provided the switch is set to
on).

Note: This feature makes possible a situation in which two applications cannot
proceed because each is trying to access a record locked by the other. Should
this situation occur, you will probably have to kill the process.

This behavior is also available on files with file status items declared (but no declar
atives) providing you set the retrylock compiler option when you compile your
program. In this case you must also set the +Q run-time switch when you run such
programs.

If this switch is set to off, if a READ is attempted on a record which is locked, the
READ is not attempted again.

Chapter 7. Running an AIX VS COBOL Program 7-11

Sort Memory Switch (s)

Sort Switch (S)

Tab Switch·(T)

The Sort Memory switch sets the size to allocate for internal workspace to be used
for sorting files.

The default size is equal to the size of 1000 records.

To override the default, set this switch as follows:

COBSW=+snnnn

where nnnn is the number of bytes to be allocated for the sorting workspace. The
sort workspace is not allocated until the actual sorting operations begin. When the
SORT is complete, the workspace is returned to the system.

Setting this switch will affect the performance of your application.

• If the size allocated is too small for your application, then many work files will
be created. The management of these multiple files will reduce performance.

• If the size allocated is too large for the amount of real memory installed on your
system, then the system may thrash as it tries to manage that sort file work
space.

When it is necessary to set this switch, the user must consider the actual needs of the
application to estimate a reasonable value for the size of this sort workspace. A
possible estimation method would be to use a reasonable multiple of the logical
record size for the sort file. Setting the value very large will not always be optimal.

·1,

By default, this switch is set to on. You can set it to off as follows:

COBSW=-S

The S switch forces all SORT statements within your source code to list duplicates in
the order in which they appear in the input stream. If this switch is set to off, dupli
cates are not guaranteed to be in any particular order, even if the SORT ... WITH
DUPLICATES IN ORDER statement is used. The benefit of setting the sort switch
to off is that this allows the Run Time Environment to use a faster sorting algo
rithm.

By default, this switch is set to off. When a program writes records to a line
sequential file, the default action is to expand tab characters and output multiple
spaces in the record as they occur. You can cause multiple spaces to be replaced by
tab characters by setting the tab switch to on, as follows:

COBSW=+T

On input, tab characters are always expanded to spaces.

When the tab switch is set on, the REWRITE clause does not work correctly on
line-sequential files containing tab characters. The tab characters expand when you
READ the record. This makes the record to be rewritten longer than the record to
be read. The record you rewrite must be the same length as the record you read. ~

7-12 Usees Guide for IBM AIX VS COBOL Compiler/6000

Examples
Switches can be separated by spaces, although spaces are not required. However, do
not include a space between the sign C+' or'-') and its associated switch. If you do
include spaces between the switches, then you must quote the entire string so it will
be accepted by the AIX shell as a single environment variable.

1. COBSW=+D+ T

This enables the ANSI COBOL debug switch and replaces multiple spaces in
line-sequential files with tab characters.

2. COBSW=+0-i

This sets run-time switch 0 to on and disables keyboard interrupts.

Run Time Environment Error Messages
Run Time Environment errors are reported by the Run Time Environment (RTE)
and may occur when you are running the compiler, ANIMATOR, the Native Code
Generator, or one of your own COBOL programs. An RTE error is returned on a
program that is syntactically correct but has problems during the actual running of
the intermediate code.

RTE error messages are output by the operating system in the following form:

action error: file 'filename'
error code: 999, pc=nnnnnnnn, call=m, seg=x
999 id# message-text

where:

action is what the RTE was doing at the time the message was caused (for example,
execution, load, or write).

filename is the name of the file on which the RTE was operating.

999 is the RTE message number. Possible message numbers are listed in
Chapter 15, "Error Messages."

nnnnnnnn is a hexadecimal number giving the address of the program counter.

mis a number that is used internally to identify the program that is in error. This is
1 for a main program or greater than 1 for a subprogram.

xis a number that identifies the segment containing the error when .int code is exe
cuted and the seg option was used. x will be 0 if the error is in the root, or from 51
to 99 if the error is in an overlay. If noseg was used for .int or .gnt code, x will
always be 0. x has no meaning for statically bound code.

id# will appear at the beginning of each RTE message. For RTE messages, this AIX
VS COBOL component identifier is 1203.

message-text is text associated with the message number. The possible message texts
are listed in Chapter 15, "Error Messages."

Chapter 7. Running an AIX VS COBOL Program 7-13

COBOL Profiler
The COBOL profiler is a facility that lets you obtain detailed statistics on the run
time performance of a COBOL program.

When you submit a COBOL source program to the cob command, you can specify
the profile compiler option (see Chapter 5, "Compiler Options"). This option causes
the compiler to include code in your program to produce performance statistics each
time you run the compiled program. Each time you run a program that was sub
mitted to the cob command with the profile option set, a file is produced called:

name. ipf

where name is the program name if intermediate code was executed, or the first
entry-point name if native code was executed. This file contains the performance
statistics for that run of the program in a compact form. To convert this compact
form of the performance statistics to a readable format, use the cobprof program.

The cobprof command creates a file called:

name.prf

where name is the name of the program. This file contains the performance report
for that run of the program.

To run cobprof, use a command line of the form:

cobprof file-list [+directive-list] ,..i

where:

file-list is a list of files containing compact profiler output. Specify only the root
(that is, program) names; do not use the .ipf file extension. File names should be
separated by one or more spaces.

directive-list is an optional list of directives that control the operation of cobprof.
The following section describes each of these directives.

Profiler Directives
Profiler directives should be separated by one or more spaces.

The profiler directives are:

alpha Performance statistics are output in alphabetic order by paragraph name.
If you do not specify alpha, statistics are output in descending order of
the total percentage time spent in each paragraph.

all A full performance profile is output. If you do not specify all, no statis
tics are produced for sections or paragraphs that are not entered or
PERFORMed during execution of the program.

form "integer"
Specifies the assumed page size for the listing file. The default is 60 lines.
The value of integer must be within the range of 3 to 9999.

When you enter this directive, you must escape the double quotes by
typing a \ in front of them. Parenthesis also may be used in place of the
quotes, but they also must be escaped.

7-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Profiler Output

list ["destination"]

[no]verbose

Specifies where the listing is to be produced. If you do not specify list at
all, the output is produced in file name.prf, where name is the first name
in file-list in the command line.

If you specify list on its own, the output is sent to the console. In this
case, page heading and line feeds are omitted.

If you specify list with a filename, the output is written to that file.

Specifying list on its own automatically sets the verbose option.

When you enter this directive, you must escape the the double quotes by
typing a\ in front of them. Parenthesis also may be used in place of the
quotes, but they also must be escaped.

Displays messages output by PROFILER on the screen. The default is
no verbose.

wide This allows lines in the profiler output to be up to 131 characters wide.
If you do not specify wide, lines are truncated to 79 characters.

When you run cobprof with the +verbose directive you will see the following:

IBM AIX VS COBOL Compiler/6000 LP
5601-258 (C) Copyright IBM Corp. 1987, 1990
Profiler V2.0
Copyright (c) 1984, 1987 Micro Focus Ltd.
All Rights Reserved
Licensed Materials - Property of IBM
* name-1

* name-n

where each name is one of the names in file-list in the command line.

For example, if you submit the demonstration program stockl to the cob command
with the profile directive, run stockl, using cobmn, and then enter:

cobprof stockl +LIST ~

Chapter 7. Running an AIX VS COBOL Program 7-15

The output will be in the following format:

* IBM AIX VS COBOL Compiler/6000 LP
* 5601-258 (C) Copyright IBM Corp. 1987,
* Profiler V2. 0
* Copyright (c) 1985 Micro Focus Ltd.
*All Rights Reserved
* Licensed Material - Property of IBM
* stockl
Total time:
%time

51.43
25.71
17.14
5.71
o.oe

time

576
288
192
64
o

1120 milliseconds.
entries ms/entry

11
1
1
3
1

52
288
192

21
0

1990

Module called once.
paragraph

CORRECT-ERROR
SRl
END-IT
NORMAL-INPUT
INITIAL(UNNAMED) PARAGRAPH

For each section and paragraph in the program, the following information is given:

• % time

The total percentage of execution time spent in that section or paragraph

• time

The total time (in milliseconds) spent in that section or paragraph

• entries

The number of times the section or paragraph was entered

• ms/entries

The average time (in milliseconds) per entry to the section or paragraph.

Note: The product of the average time and the number of entries should equal the
total time spent in the section or paragraph. However, because all three
values are truncated, there may be a slight discrepancy. The output also
includes the total execution time (in milliseconds).

The INITIAL (UNNAMED) PARAGRAPH in the program is the initialization
code executed before the user part of the program is entered.

7-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 8. File Sharing in the Multi-User Environment

Chapter 8. File Sharing in the Multi-User Environment 8-1

Contents
About This Chapter .
A Typical Multi-User Environment
Including Multi-User Syntax in Your Program
Facilities for Multi-User AIX VS COBOL ~.

Data Locking
Organization of Shared Files
The Procedure Division
File Status

Demonstration Programs
Running the Demonstration Programs

8-2 User's Guide for IBM AIX VS COBOL Compiler/6000

8-3
8-4
8-4
8-4
8-5
8-6

8-11
8-11
8-13
8-13

About This Chapter
AIX VS COBOL provides the ability for independent COBOL programs to share
data files in its multi-user environment. Each program that uses shared files can
have access to those files with file security maintained in a predictable and control
lable manner.

You specify file sharing with COBOL syntax in your program. See the Language
Reference for details of this syntax. See "Including Multi-User Syntax in Your
Program" on page 8-4 and "Organization of Shared Files" on page 8-6 for further
information on COBOL syntax for the various types of file organization.

If you run AIX VS COBOL within a single-user environment, this multi-user syntax
is accepted by the compiler, although the multi-user syntax has no effect when you
run your programs. This allows you to develop applications designed for use within
multi-user environments in a single-user environment.

Chapter 8. File Sharing in the Multi-User Environment 8-3

A Typical Multi-User Environment
Using AIX VS COBOL, you can lock either a single record, a group of records, or a
whole file. When data is locked by one program, no other program can delete or
change that data.

If the program locks the whole file (called an exclusive lock), no other program can
access that file. If your program locks records (either single record locks or multiple
record locks), the file can be shared with other programs. Other programs may also
lock records in the same file. Each program can lock a single record or multiple
records. Any program can access any data that is not locked by another program.

Your program can open several data files at the same time and can specify locking
for each data file opened. However, your program is allowed only one type of
locking for each file, as follows:

• Locking the whole file
• Locking a single record
• Locking multiple records.

When you do not explicitly specify locking in your program, files opened as I-0,
OUTPUT, or EXTEND acquire an exclusive lock by default. That is, the whole file
is locked by your program. If your program opens the file for INPUT, the file
becomes shareable, and your program cannot hold record locks on the file. Other
programs can open the file for INPUT or I-0 in a shareable mode. This default
locking is used for each file that your program opens when no LOCK MODE syntax
is included in your program.

Including Multi-User Syntax in Your Program
All of the syntax that is used to make data files shareable is part of the ANSI 1985
Standard X3.23.

Existing programs written without multi-user syntax can be modified to make them
suitable for use in a shared file environment. If you require default locking, submit
your original source programs to the cob command. For any other kind of locking,
add the required syntax to your source program before submitting it to the cob
command. If your program does not already contain a status item, you must declare
one in your program and add any code you require to handle specific status infor
mation. When a file status data item is included in your program and the program
tries to read a file, a status is returned in this data item. The value in this data item
tells you whether the operation was successful (see Chapter 3, "Device- and File
Handling" and the Language Reference).

Facilities for Multi-User AIX VS COBOL
By using the compiler options autolock or fileshare, you can change the default
locking to automatic locking of single records without any extra syntax in your
program. It is recommended that new programs explicitly specify the required lock
mode in the SELECT statement.

8-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Data Locking

You can obtain more sophisticated locking on a single record or a group of records
if you include extra syntax in your program. Depending on the organization of the
shared files, there are different syntax and programming considerations. The
sections that follow describe how to program for shared sequential or line-sequential
files, relative files, and indexed sequential files.

There are three types of data locking:

• Automatic locking
• Manual locking
• Exclusive locking.

These data locking mechanisms can be used in the following manner:

Automatic

Manual

Exclusive

Locks a single record or multiple records. Automatic single record
locks mean that when the program reads a record from a file
opened for I-0, that record is automatically locked until the
program next accesses that file. For files that have been opened for
INPUT, records are never locked. Files opened for OUTPUT
cannot support automatic locking and always hold an exclusive lock
on the whole file.

Your program cannot access a file in automatic (shareable) mode if
another program has already opened the file in the exclusive mode.

You can lock records using automatic multiple record locks. The
records are locked automatically as they are read and are not
released until a CLOSE, UNLOCK or COMMIT statement is exe
cuted. When the writelock or fileshare compiler options are speci
fied, WRITE and REWRITE statements also acquire a record lock
when you are locking multiple records.

Locks a single record or multiple records. Manual record locking is
similar to automatic, except that you must explicitly lock the record
when it is read. That is, you must specify READ WITH LOCK
(single records) or READ WITH KEPT LOCK (multiple records)
to acquire a lock. As with automatic, only files opened for I-0 can
acquire record locks. In addition, with multiple records, WRITE
and REWRITE statements also acquire a lock if you have specified
the writelock or fileshare compiler option.

Locks the entire file as soon as your program executes an OPEN
statement on the file. Your program cannot open a file in exclusive
mode if another program is already accessing the file. To obtain an
exclusive lock on a file, you must have READ and WRITE permis
sions for that file. With exclusive data locking, the file remains
locked until it is closed. If your program opens a data file for
OUTPUT, this implies an exclusive lock on the file.

In a multi-user environment, each program can open more than one data file, and
each program may have access to the same data files. A file that is shareable can be
accessed by one or more programs, each locking one or more records in the file.
Figure 8-1 on page 8-6 shows a hypothetical multi-user environment.

Chapter 8. File Sharing in the Multi-User Environment 8-5

Program 3

One record locked
by Program 1,

multiple
records locked
by Program 2

Multiple records
locked by
Programs
1and2

One record locked
by each Program

Figure 8-1. A Hypothetical Multi-User Environment

Organization of Shared Files

Program 2

Depending on the organization of the shared files, there are different syntax and pro
gramming considerations. The sections that follow describe how to program for
sequential, relative, and indexed sequential files.

Record-Sequential and Line-Sequential Files
When your program uses record-sequential files, you can lock individual records or
whole files. You cannot lock groups of records. When your program uses line
sequential files, there is no record locking at all, only file locking. This is because
line-sequential files contain variable-length records, and therefore cannot be opened
as I-0.

8-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Relative Files

The FILE-CONTROL paragraph for record-sequential and line-sequential files is as
follows:

.,.__SELECT- Ji lename - ASSIGN [~ ["external-Ji lename-l i teral" T
-TO Ji le-identifier----~

.,.__ORGANIZATION---~~- SEQUENTIAL --~--------1111
LIS _J L LINE-SEQUENTIAL _J

..___ACCESS---..------.,....- SEQUENTIAL-------------
L MODE IS_J

.,.__ LOCK -....--------r---.-- EXCLUSIVE ---...-------------1111

LMODE IS_J LAUTOMAT~~_J
L MANUAL _:___J

-1111-----~- STATUS---~- data-name_...,.
LFILE_J Lis_J

Figure 8-2. FILE-CONTROL Paragraph Syntax for Record and Line-Sequential Files

Each time your program accesses a file with an OPEN, READ, or READ WITH
LOCK statement, the file locking you have specified is taken into account. This
means that:

• When you specify LOCK MODE IS EXCLUSIVE, the whole file is locked from
the time your program opens the file unless the file has been opened for INPUT.
If the whole file is locked, other programs will still be able to access the file and
to read it, provided they have both READ and WRITE access to the file, but
the exclusive lock will prevent other programs from modifying the file.

• When you specify LOCK MODE IS AUTOMATIC, a single record is locked as
the program reads it.

• When you specify LOCK MODE IS MANUAL, single records are locked as the
program executes a READ WITH LOCK on them.

• When you do not specify a LOCK MODE IS clause, the default locking is used.
Files opened for INPUT are shareable. Files opened for OUTPUT, I-0, or
EXTEND are exclusive.

When your program uses relative files, you can lock whole files, single records, or
groups of records. The FILE-CONTROL paragraph for relative files is shown in
Figure 8-3 on page 8-8.

Chapter 8. File Sharing in the Multi-User Environment 8-7

...-SELECT- filename-ASSIGN L ~ c"external-filename-literal"T
TO Ji le-identifier ____ ___.

..._ORGANIZATIQN--..----,--RELATIVE-------------
L1s_J

RELATIVE
L KEY IS_J L EQUENTIAL L

L RANDOM--r RELATIVE
DYNAMIC_J LKEY IS_J

LOCK L MODE IS =:J

data-name-1 j
data-name-1

WITH
LOCK ON L J L RECORD

MULTIPLE RECORDS

~MANUAL L AUTOMATIC

EXCLUSIVE---------------------'

L =1 STATUS --:--L--=oJ--.-- data-name ___.,..
FILE IS

Figure 8-3. FILE-CONTROL Paragraph Syntax for Relative Files

You can lock several records simultaneously using the WITH LOCK ON MUL
TIPLE RECORDS clause. If you receive the following RTE message,

213 Too many locks.

you must close the file or execute a COMMIT statement or an UNLOCK statement
to release these records.

Both manual and automatic locking can be performed on files with both single
record locking and multiple record locking.

Each time a file is accessed with an OPEN, READ, READ WITH LOCK, READ
WITH KEPT LOCK, WRITE, or REWRITE statement, the file locking you have
specified is taken into account. This means that:

• When you specify LOCK MODE IS EXCLUSIVE, the whole file is locked from
the time your program opens the file unless the file was opened for INPUT. If
the whole file is locked, other programs will still be able to access the file and to
read it, provided they have both READ and WRITE access to the file. The
exclusive lock will prevent programs from modifying the file in any way.

• When you specify LOCK MODE IS AUTOMATIC, a single record is locked as
the program reads it.

8-8 User's Guide for IBM AIX VS COBOL Compiler/6000

• When you specify LOCK MODE IS AUTOMATIC WITH LOCK ON MUL
TIPLE RECORDS, multiple records are locked as your program executes
READ statements. Records remain locked until one of the following occurs:

The file is closed.
- A COMMIT statement is executed.
- An UNLOCK statement is executed.

• When you specify LOCK MODE IS MANUAL, single records are locked as
your program executes a READ WITH LOCK on the record.

• When you specify LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE
RECORDS, multiple records are locked as your program executes READ
WITH KEPT LOCK statements. Records remain locked until one of the fol
lowing occurs:

The file is closed.
- A COMMIT statement is executed.
- An UNLOCK statement is executed.

• When you do not specify a LOCK MODE IS clause, the default locking is used.
Files opened for INPUT are shareable. Files opened for OUTPUT or for I-0
are exclusive.

When your program is locking multiple records, you can also acquire a record lock
on a WRITE or REWRITE statement. To do this, you must specify the writelock
or fileshare compiler option when you submit your program. See Chapter 5, "Com
piler Options" for details on these options.

Unless you explicitly include the WITH LOCK ON MULTIPLE RECORDS clause,
single record locks are assumed when the lock is automatic or manual.

Indexed Sequential Files
With indexed sequential files, you can lock whole files, single records, or groups of
records. The FILE-CONTROL paragraph for indexed sequential files is as follows:

Chapter 8. File Sharing in the Multi-User Environment 8-9

.._SELECT- filename-ASSIGN [OJ ["external-filename-lite~
TO file-identifier

....__ORGANIZATION -----.L--_J--.--- INDEXED--------------
IS

...._ACCESS ~L---_J~~t- SEQUENT~IAL
MODE IS DYNAMIC

RANDOM

LOCK ON L J L RECORD -
MULTIPLE RECORDS

~MANUAL L AUTOMATIC

EXCLUSIVE---------------------'

..

..--- RECORD ~----_J~- data-name-J --------------
L KEY IS

L , ..
ALTERNATE RECORD L _J data-name-2 L J

KEY IS WITH DUPLICATES

..
L _J STATUS L _J

FILE IS
data-name ___.....

Figure 8-4. FILE-CONTROL Paragraph Syntax for Indexed Sequential Files

As with relative files, use the WITH LOCK ON RECORD clause to specify single
record locking and the WITH LOCK ON MULTIPLE RECORDS clause to specify
multiple record locking. You can lock single or multiple records in either manual or
automatic lock mode.

You can OPEN an indexed sequential file only if you have WRITE permission to
the index portion of the file.

8-10 User's Guide for IBM AIX VS COBOL Compiler/6000

The Procedure Division

File Status

Generally, COBOL programs designed to be run in a multi-user environment do not
require any extra consideration in the Procedure Division. One exception to this is
when you are checking the file status for a lock condition (see "File Status"). Other
instances where you need to use a different syntax in your Procedure Division are as
follows:

• The COMMIT statement

This statement releases record locks on all records in all the files the program
has opened. This includes SEQUENTIAL, RELATIVE, and INDEXED files,
with automatic or manual locking on single and multiple records. The
COMMIT statement has no effect on exclusive files.

• The UNLOCK statement

The statement UNLOCKfilename releases all record locks your program has
acquired on the specified file. You may use this statement only for files that are
shareable.

• The READ statement

With shareable files opened for I-0 whose LOCK MODE is manual, you must
include the WITH LOCK phrase (for single record locks) or the WITH KEPT
LOCK phrase (for multiple record locks).

Additionally, with shareable files with multiple record locking, the REWRITE and
WRITE statements may also lock the record that is acquired. REWRITE and
WRITE statements lock records if the writelock or fileshare compiler option is speci
fied. For more information, see Chapter 5, "Compiler Options."

In a multi-user environment, the file status item set up with the FILE STATUS IS
dataname clause in the FILE-CONTROL paragraph is used to check the status of a
file operation. This section explains how to interpret the status codes returned in
dataname.

The dataname you specify must be a two character alphanumeric data item. The
first character of dataname is called status key 1. This character reports on the
success or failure of an input-output operation on a file. The second character of
dataname is status key 2. If any further information is available, it is returned in
status key 2. Redefine the status key 2 as a PIC 9(4) COMP item so that this data
item can hold the error message numbers.

See the Language Reference for the values that may be returned in these status keys.
See Chapter 15, "Error Messages" for a list of the run-time errors.

Additionally, where status key 1 contains the value 9 (operating system error
message), status key 2 can contain any of the following values that are specific to a
multi-user environment:

65 Locked file. Another program has already locked the file to the exclu
sion of other programs.

68 Locked record. Another program has already locked the record.

213 Too many locks. The program has already acquired the maximum
number of locks on the file. You must execute a COMMIT, UNLOCK,
or CLOSE statement to release record locks before continuing.

Chapter 8. File Sharing in the Multi-User Environment 8-11

Test specifically for these conditions in your program. Also, check for status codes,
and decide what action you want your program to take upon finding the various
status codes.

If another program has already locked the record your program wants to acquire, an
attempted WRITE, REWRITE, or DELETE operation will fail.

If your program attempts to read a record already locked by another program, a
lock status (error 68) is returned in the file status data-item. However, valid data is
also returned. When a sequential read finds a record lock, the current record pointer
is not updated. The START ... KEY IS GREATER THAN statement can be used
to skip over locked records in relative or indexed files.

If your program finds a lock on a record that you are attempting to START, the
record lock is ignored, and the current record pointer is updated.

Handling a File or Record Lock
Whenever your program tries to access a file that has been exclusively opened by
another program, you must wait until the other program has closed the file before
you can access the data in the file.

When your program finds a record lock, you must wait until that record has been
released before your program can access it. In the case of a program that has locked
multiple records, you must wait until the other program executes a COMMIT or
UNLOCK statement, or closes the file.

If a READ is attempted on a file which is OPEN for INPUT or I-0 and has no file
status item declared, and the record is found to be locked, the READ operation is
attempted again at one second intervals until the record becomes available, if you
have set the R (Reread Locked Record) run-time switch on. See Chapter 7,
"Running an AIX VS COBOL Program" for details.

Note: This feature makes possible a situation in which two applications cannot
proceed because each is trying to access a record locked by the other. Should
this situation occur, you will probably have to kill the process.

Sharing Files on Multi-User Systems
See your Language Reference for more information about how files are shared
between users in a multi-user environment.

8-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Demonstration Programs
Your AIX VS COBOL software includes several programs that show how to write
programs to run in a shared file environment. The demonstration programs are as
follows:

mudemo.cbl

stockin.cbl

stockioa.cbl

stockiom.cbl

stockout.cbl

The COBOL source for the controlling program. This program dis
plays information and presents the program with a choice of access
and input modes. Depending on the program's choice, one of the
four subprograms may be called.

The COBOL source for the subprogram that demonstrates opening
a shared data file for input only.

The COBOL source for the subprogram that demonstrates opening
a shared data file for I-0, and with automatic record locking.

The COBOL source for the subprogram that demonstrates opening
a shared data file for I-0, and with manual record locking.

The COBOL source for the subprogram that demonstrates opening
a shared data file for output only.

Running the Demonstration Programs
After you install the AIX VS COBOL software as described in Chapter 1,
"Introduction," submit the demonstration programs to the COBOL process using the
following command:

cob -x mudemo.cbl stockin.cbl stockout.cbl stockioa.cbl stockiom.cbl~

Move the resulting executable module mudemo, the base name of the first file input
to the cob command, to an area where users on both terminals can access it. Make
sure that both users are accessing the same file.

To run the multi-user demonstration programs, enter the following on both
terminals:

mudemo ~

Chapter 8. File Sharing in the Multi-User Environment 8-13

Both screens display the initial screen shown in Figure 8-5.

IBM AIX VS COBOL
Date dd/rrm/yy
Time hh:rrm

This is a demonstration program for use with VS COBOL. The program
demonstrates how multi-user VS COBOL can lock both records and files.
The program allows an indexed file to be opened in a number of
modes, which demonstrate the locking facility. For more information
on locking refer to the Language Reference Manual.

1. Input 2. 1-0 Lock Mode Automatic 3. 1-0 Lock Mode Manual 4. Output 5. Exi1

INPUT CHOICE [OJ

Figure 8-5. Initial Display Screen of the Demonstration Program

When the initial screen is displayed, each operator chooses the access and lock
modes by pressing the number associated with the required mode, then pressing~.

Set up the multi-user environment by creating a data file that the two operators can
share. One operator must create this file by selecting choice 4 to open the file for
output. This display screen shows a "Stock Control System" with stock code, stock
description, stock held, and cost per unit. The bottom of the display screen shows
the open and lock modes, what the last operation was, whether the last operation
was successful, and the file status. Again, there is a choice of operations for the
program to perform.

Enter data in the following fields:

• Stock code
• Stock description
• Stock held
• Cost per unit fields.

Use the tab key to move from one field to the next.

Write the data into the data file mustock.DAT by writing the record. To do this,
operator 1 selects option 1 (write record) and press~. Write five or six more
records, and then close the file by selecting option 2 (Exit) and pressing~.

8-14 User's Guide for IBM AIX VS COBOL Compiler/6000

While program 1 is creating a file to share, program 2 can try to access the data file
mustock.DAT. Program 2 will fail to gain access to this file, because opening a file
for output locks the file exclusively. Program 2 will receive a f i 1 e 1 ocked status.

After user 1 creates the mustock.DAT file, both users can access the data file at the
same time.

If user 1 selects option 2, I-0 Lock Mode Automatic on the initial display screen,
and accesses the first record, then the first record in the data file mustock.DAT is
locked by program 1, and remains locked until program 1 accesses the file again.
Program 2 can access any other record in the file by choosing to open the file for
I-0 Lock Mode Automatic or for Input.

Program 2 may try to access the first record, but receives a file status of Record

1 ocked and the access is unsuccessful. However, the data will be returned.

Try the various combinations of locking and access for yourself so you become
familiar with the way AIX VS COBOL locks data.

Chapter 8. File Sharing in the Multi-User Environment 8-15

8-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 9. Advanced Programming Features

Chapter 9. Advanced Programming Features 9-1

Contents
About This Chapter
Library Subroutines

cobsetjmp and coblongjmp
cobtidy

RTE Subprograms
Put a Character to the Screen
Read a Character from the Keyboard .
Split/Join a File Name
File-Related Operations
Modifying the Behavior of User Attributes
Modifying the Behavior of ACCEPT/DISPLAY
Display Screen Input and Output
Test Keyboard Status
Sound the Audible Alarm
Move the Cursor to a Defined Position
Pack Byte
Unpack Byte

CRT Screen Handling
The ACCEPT and DISPLAY Statements
Display Attributes
Screen Handling From C

Using Escape Sequences to Send Attribute Information to the Screen
File Handler .
Interface to the COBOL File Handler

Operation Codes Passed in the Second Byte of the First Parameter
Information Passed in the FCD at Open Time
Information Passed for Other Operations

FCD Information Format
Key Definitions for Indexed Files . .

Global Information
Key Definitions
Component Definitions

CISAM Features

9-2 User's Guide for IBM AIX VS COBOL Compiler/6000

9-3
9-4
9-4
9-5
9-5
9-6
9-7
9-7
9-8
9-9
9-9

9-11
9-13
9-13
9-13
9-14
9-14
9-14
9-14
9-15
9-16
9-19
9-20
9-21
9-21
9-22
9-22
9-23
9-25
9-25
9-25
9-26
9-26

About This Chapter
IBM AIX VS COBOL provides the following advanced programming features:

• Library subroutines
• Run Time Environment (RTE) subprograms (for performing special functions)
• CRT screen handling
• File handler.

This chapter describes these features.

Chapter 9. Advanced Programming Features 9-3

Library Subroutines
This section describes the library routines provided with your AIX VS COBOL
system.

cobsetjmp and coblongjmp

Example

The library routines cobsetjmp and coblongjmp are provided with the AIX VS
COBOL system. These routines provide functions similar to the C routines setjmp
and longjmp (see the AIX Operating System documentation) for details of setjmp and
longjmp). These library routines provide a non-local GO TO to use in error
handling and exception-handling.

cobsetjmp saves the environment of the current COBOL program in the buffer pro
vided by the USING parameter, and returns immediately with the status flag set to
0. A subsequent call to coblongjmp from somewhere else in the program that called
cobsetjmp, or from one of the program's subprograms, causes execution to be
resumed at the point immediately after the call to cobsetjmp.

Note: Before calling coblongjmp, the status flag in the buffer may be set to a non
zero value. This allows the value to be tested after the cobsetjmp call.

The compiler option nonestcall must be set to use these library routines. It is recom
mended that you set this option in your program source with the $SET statement.

cobsetjmp and coblongjmp can only be used in native code.

A typical use of the cobsetjmp and the coblongjmp routines is as follows:

01 err-buf.
02 err-stat pie 9(8) comp.
02 err-env pie X(N).

procedure division.
p-00.

call "cobsetjmp" using err-buf.
if err-stat not equal 0

perform error-handling.
go to main-loop.

main-loop.
perform get-operator-input.
perform process-input.
perform create-report.
go to main-loop.

process-input.

if 'something went wrong•
move 5 to err-stat
call "coblongjmp" using err-buf.

9-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Restrictions

cobtidy

Format

Usage

where the value of N is based on the sizeof (jmpbut) field found in the setjmp.h file in
the /usr/include directory. The value of N should be the value of the sizeof (jmpbut)
field plus 20.

When using these routines, the following restrictions apply:

• coblongjmp must be called from the same or lower level CALL/PERFORM hier
archy as was cobsetjmp. In the intervening time, control must not be returned to
a higher level.

• If coblongjmp returns control to a CALL level that differs from the one used by
cobsetjmp, programs exited by this mechanism appear to have been exited
normally and may be CALLed again later in the program run.

• coblongjmp cannot be used if a CHAIN has been made since cobsetjmp was last
CAL Led.

The cobtidy library routine closes all files opened by the AIX VS COBOL system,
and frees all the memory it has used.

The format of cobtidy is as follows:

void cobtidy();

The cobtidy routine can only be called from non-COBOL modules. It can be used to
ensure that all COBOL file buffers are flushed and closed when the COBOL system
is not to be re-entered. Applications normally use the COBOL verb CHAIN if the
current COBOL environment will be closed, and another created. To exit from a
non-COBOL module in the AIX VS COBOL system to the operating system, you
must use the cobexit function.

RTE Subprograms
Included in the RTE are a number of subprograms that you can call from an AIX
VS COBOL program. These provide functions that are not available in the COBOL
language itself.

Note: Use these routines sparingly and with caution. They are not compatible with
every language extension listed in the Language Reference.

RTE subprograms are called by a CALL statement in the following form:

CALL X 11 hh 11 USING parameter-list

where hh is a two-digit hexadecimal code that identifies the RTE subprogram, and
parameter-list is a list of the data items in your program to be passed as parameters
(the number and type of parameters depend on the particular RTE subprogram you
are calling).

Chapter 9. Advanced Programming Features 9-5

In the following descriptions of the calls to these subprograms, the arguments are
described to give the correct size of the data object when the ibmcomp option is not
used. In that case, those objects will be I byte in size. If the ibmcomp option is
used, however, that object would be 2 bytes in size and the call to the RTE subpro
gram would fail. To adapt these descriptions for use with the ibmcomp option,
change

PIC 99 COMP to PIC X

You can give a value to these items with a hex specification, e.g.,

VALUE x 11 02 11

to set the value to 2. See the Language Reference for a discussion of the ibmcomp
option and its effect on data object sizes.

Currently supported RTE subprograms ar(f as follows:

Code

82

83

8C

8D

91

A7

AF

B7, B8

D9

E5

E6

F4

F5

Description

Put a character to the screen

Read a character from the screen

Split a filename

Join a filename

A number of miscellaneous routines mainly connected with file-related
operations

A number of routines that affect the behavior of user attributes

A number of routines that affect the behavior of ACCEPT/DISPLAY
statements in a program

A number of routines that provide several functions for handling
memory-mapped display screens

Test the keyboard status

Sound the audible alarm

Move the cursor to a specified position

Pack byte

Unpack byte

Put a Character to the Screen
The subprogram with call code X"82" allows you to display a character on the
screen. A call to this subprogram has the form:

CALL X11 82 11 USING character

where character is a PIC X field containing the character to be displayed at the
current cursor position. The cursor moves one position to the right. If the initial
position of the cursor is in the last column of a line, the subsequent position of the
cursor is dependent on the terminal you are using.

9-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Read a Character from the Keyboard
The subprogram with call code X"83" accepts a character from the keyboard. A call
to this subprogram has the form:

CALL X"83" USING character

where character is a PIC X field that contains the character that is returned.

Split/Join a File Name
The subprograms with the call codes X"8C" and X"8D" allow you to separate the
standard file names into their component parts, or to join the parts to make a
standard file name. The component parts of a file name are the directory (for
example, /usr/demo), the name itself (for example, prog), and the file extension (for
example, cbl) which together form the file specification (for example,
/usr/demo/prog.cbl). A call to this subprogram has the form:

CALL X"8C 11 USING fi lespec, directory,fi lename, extension

to split a file name or:

CALL X"8D" USING filespec,directory,filename,extension

to join a file, where:

• filespec is a PIC X field of variable length, but not less than 101 bytes, con
taining the full file specification

• directory is a PIC X field of variable length, but not less than 101 bytes, con
taining the directory pathname

• filename is a PIC X field of variable length, but not less than 15 bytes, con
taining the name of the file

• extension is a PIC X field of variable length, but not less than 15 bytes, con
taining the file name extension.

The split subprogram takes the string found infilespec and stores its component
parts in directory, filename, and extension.

The join subprogram takes the strings found in directory,filename, and extension and
combines then to form a complete file specification which it stores infilespec.

The AIX VS COBOL system uses these two subprograms to:

• Produce default listing and intermediate code file names from the source file
name

• Produce overlay names
• Produce file names for segments and their inter-segment reference files.

The values allowed infilespec, directory, filename, and extension must conform to the
standards described in the documentation supplied with the AIX operating system,
and each data item must end with a space character. You must ensure that the area
allocated within the WORKING-STORAGE section for each data item is not less
than the minimum length given above.

Chapter 9. Advanced Programming Features 9-7

File-Related Operations
The RTE subprogram with call code X"91" provides access to seven RTE subpro
grams. A call to this subprogram has the following form:

CALL X11 91 11 USING result, function, file

where result is the name of a PIC 99 COMP field in which a status code is returned.
A zero status code indicates that the call was successful; a nonzero code indicates
that the call failed for some reason. For function 18,file is the name of a group
item that identifies the file on which the subprogram is to operate. This group item
is declared as follows:

01 FI LE.
02 NAME-SIZE PIC 99 COMP.

*
* THE NUMBER OF CHARACTERS IN NAME
*

02 FILE-NAME PIC X(n).
*
* THE NAME ITSELF
*

For functions 46 through 53, file is the name of the file descriptor (FD) of the file
the subprogram is using. function is the name of a PIC 99 COMP field whose value
indicates which of the seven RTE subprograms controlled by this call code is to be
called. The possible values are as follows:

Value

18

46

47

48

49

52

53

Description

Delete the file.

Set the null switch on for the file.

Set the null switch off for the file.

Set the tab switch on for the file.

Set the tab switch off for the file.

Use 2-byte record terminators for line-sequential and relative files.

Use I-byte record terminators for line-sequential and relative files.

Functions 46 through 49 apply only to line-sequential files. When you run an AIX
VS COBOL program, you can set switches in the COBSW environment variable that
determine how control characters and tab characters are treated in line-sequential file
records read or written by the program. These functions allow you to override the
COBSW switch settings for particular files within the program. See Chapter 7,
"Running an AIX VS COBOL Program" for a description of the null and tab
switches.

When your program writes records to a line-sequential or relative file, the default is
to include a 1-byte record terminator, value hexadecimal OA (line feed). You can
alter this default for particular files by using function 52, which causes a 2-byte
record terminator to be used; this has the value hexadecimal ODOA (carriage return -
line feed). Use function 53 to restore the default of I-byte terminators.

9-8 User's Guide for IBM AIX VS COBOL Compiler/6000

Modifying the Behavior of User Attributes
The RTE subprogram with call code X"A7" invokes the cursor's display screen
handling system and gives access to a number of RTE subprograms that affect the
behavior of the user attribute. When enabled, the user attribute causes all of the
characters shown on the display screen to have the same (specified) attribute. See
Chapter 10, "Configuring Your AIX VS COBOL System" for further details on the
cursor's display screen-handling system and the user attribute.

A call to this subprogram has the following form:

CALL X11 A7 11 USING function, parameter

where function is the name of a PIC 99 COMP field whose value indicates which of
the RTE subprograms controlled by this call code is to be called. parameter is the
name of a PIC 99 COMP field whose value depends on the value of function.

The function field may take any of the following values:

Value

6

7

16

Description

Read the current user attribute contained in parameter.

Set the current user attribute, which is held in parameter.

Turn the user attribute on or off. parameter can contain one of two
values:

• 0 to turn the user attribute on
• 1 to turn the user attribute off.

The user attribute is initially disabled. Once enabled, some of the methods you can
U:se to show text on the display screen (such as DISPLA Y. .. UPON CONSOLE,
display screen input-output subprograms, and the ADIS subprogram) use this attri
bute. The ANSI form of the DISPLAY statement (DISPLAY ... UPON CONSOLE)
uses the user attribute only if one of the other DISPLAY methods has been used
previously. DISPLAY SPACE UPON CONSOLE clears the display screen to the
user attribute for each display screen position.

Modifying the Behavior of ACCEPT/DISPLAY
The RTE subprogram with call code X"AF" gives access to a number of RTE sub
programs that affect the behavior of ACCEPT and DISPLAY statements in a
program. ACCEPT and DISPLAY statements are handled by a part of the RTE
called ADIS.

A call to this subprogram has the following form:

CALL X11 AF 11 USING function,parameter

where function is the name of a PIC 99 COMP field whose value indicates which of
the RTE subprograms controlled by this call code is to be called. parameter is the
name of a data item whose size and type depends on the value of function.

Chapter 9. Advanced Programming Features 9-9

The function field may take any of the following values:

Value

1

Description

Allow individual user function keys, or a series of consecutive user func
tion keys, to be enabled or disabled at run time. You must have already
set up the actual key codes for the user functions with the keybcf utility.
See Chapter 10, "Configuring Your AIX VS COBOL System" for
details. parameter is a group item consisting of the following four data
items:

• A PIC 99 COMP field that contains 0 to disable user function keys,
or 1 to enable them.

• A PIC X field whose value must be 1.

• A PIC 99 COMP field that contains the number of the first function
key to be enabled or disabled. This number is defined with the
keybcf utility. See Chapter 10, "Configuring Your AIX VS COBOL
System" for details.

• A PIC 99 COMP field that specifies the number of consecutive func
tion keys that are to be enabled or disabled. These numbers are
defined with the keybcf utility.

18 Display a character to the display screen at the current cursor position.
parameter is the name of a PIC X item containing the character to be
displayed.

22 Sound the terminal alarm. parameter is the name of a PIC X item that
can contain any value.

27 Get a character from the keyboard. parameter is the name of a 3-byte
group item declared in the form of a CONSOLE status data item (see the
Language Reference). A keystroke is read from the keyboard, and
parameter is updated as follows:

Byte 1 Meaning

The second byte contains the number of a user-defined func
tion key, in binary (in the range 1 to 127). See Chapter 10,
"Configuring Your AIX VS COBOL System" for more
details on function keys.

2 The second byte contains the number of an ADIS function
key, in binary (in the range 1 to 127). See Chapter 10, "Con
figuring Your AIX VS COBOL System" for more details on
function keys.

3 The second byte contains the ASCII code of the keyed char
acter.

9 The second byte contains one of the following error codes:

8 A disabled character has been keyed and byte 3
contains the character.

9 An invalid keystroke (more than one byte) has
occurred.

This subprogram also causes the cursor's display screen-handling system to be
invoked. See Chapter 10, "Configuring Your AIX VS COBOL System" for more
information.

9-10 User's Guide for IBM AIX VS COBOL Compiler/6000

The RTE subprogram with the call code "_raw_display" gives access to an addi
tional RTE subprogram that affects the behavior of DISPLAY statements in a
program.

A call to this subprogram has the following form:

CALL 11 _raw_di spl ay 11 USING function

where function is the name of a PIC 99 COMP field whose value indicates which
DISPLAY mode you wish to be in.

The function field may take any of the following values:

Value

0

Description

Normal mode. All non-printable characters are converted to spaces prior
to writing them to the screen. This is the default mode.

Raw mode. Non-printable characters are allowed. The raw mode does a
direct write to stdout, bypassing the AIX VS COBOL screen interface
package completely.

Use of raw mode is not recommended. Use of this mode causes all optimization
features of the screen handling module to be bypassed, thereby degrading the per
formance of screen output. Hardcoding of escape sequences is never recommended
for portable, maintainable programs in which a variety of terminals are to be used.
The AIX VS COBOL system cannot guarantee the future support of hardcoded
escape sequence programming, nor guarantee a consistent result for escape sequences
or combinations of escape sequences that are hardcoded. Please refer to "Using
Escape Sequences to Send Attribute Information to the Screen" on page 9-19 for
more information.

Raw mode allows the ability to write escape sequences directly to the screen (stdout)
bypassing the AIX VS COBOL screen interface package completely. This mode
might be useful when you want to send an escape sequence to a terminal to enable
an auxiliary port but do not want to modify the terminal screen. In this case, you
should call _raw _display passing a 0 in the function parameter to go back into the
normal mode immediately after the DISPLAY statement.

Display Screen Input and Output
The RTE subprograms with call codes X"B7" and X"B8" give access to a number of
RTE subprograms that control display screen input and output. These subprograms
cause the cursor's display screen-handling system to be invoked.

You should not use the X"B7" run time environment call in conjunction with AIX
VS COBOL ACCEPT and DISPLAY statements that also specify attributes. This is
because you can cause semantic inconsistencies as to whether text ACCEPTed or
DISPLA Yed by these statements should complement, override, or be overridden by
attributes placed on the screen map by the X"B7" call.

Thus, where you use X"B7" calls to specify attributes, any ACCEPT and DISPLAY
statements used to place text on the area of the screen affected by these calls only
appears in the attribute specified by these calls if no other ACCEPT or DISPLAY
statements have been executed that also specify any attributes. Otherwise, the effect
is undefined.

Chapter 9. Advanced Programming Features 9-11

A call to the X"B7" subprogram has the following form:

CALL X11 87 11 USING function, parameter, buffer

where function is the name of a PIC 99 COMP data item whose value indicates
which of the RTE subprograms controlled by this call code is to be called.

parameter is a group item consisting of the following three data items:

• A PIC 9(4) COMP field showing the length of the data to be read or written.

• A PIC 9(4) COMP field giving the start position on the display screen. Top left
is position I and 81 is the start of the next line, assuming an 80-column display.

• A PIC 9 (4) COMP field showing the start position in the buffer, starting from
position 1.

buffer is the COBOL data area. It is a PIC X (n) field and may be as large or as
small as you require in order to write your data. function may take any of the fol
lowing values:

Value Description

0 Read a string of characters from the display screen.

Write a string of characters to the display screen.

2 Read a string of attributes from the display screen.

3 Write a string of attributes to the display screen.

4 Clear a specified string of consecutive character positions to spaces.

5 Clear a specified string of consecutive character positions to normal attri
butes.

6 Write a specified character to a string of consecutive character positions.

7 Write a specified attribute to a string of consecutive character positions.

The RTE subprogram with call code X"B8" gives access to a number of other sub
programs that affect display screen input and output.

A call to the X "B8" subprogram has the following form:

CALL X11 88 11 USING function, parameter, text-buffer, attribute-buffer

where function is the name of a PIC 99 COMP data item whose value indicates
which of the RTE subprograms controlled by this call code is to be called.

parameter is a group item consisting of three data items:

• A PIC 9(4) COMP field showing the length of the data to be read or written.

• A PIC 9(4) COMP field giving the start position on the display screen.

• A PIC 9(4) COMP field showing the start position in the buffer, starting from
position 1.

9-12 User's Guide for IBM AIX VS COBOL Compiler/6000

function may take any of the following values:

Value Description

0 Read strings of text and attributes from the display screen.

Write strings of text and attributes to the display screen.

2 Swap the text and attributes on the display screen with those in the text
and attribute buffers, respectively.

Test Keyboard Status
You can use the RTE subprogram with call code X"D9" to determine whether there
is a character waiting to be read from the keyboard. The call of this subprogram
has the following form:

CALL X11 D9 11 USING parameter

where parameter is the name of a PIC 99 COMP item. The subprogram returns a
zero value in parameter if there is .no character waiting to be read. The subprogram
returns a non-zero value if there is a character waiting to be read.

You must use the syntax CONSOLE IS CRT in the SPECIAL-NAMES paragraph
for this call to have effect.

Although this subprogram does not invoke the curses display screen-handling system,
its effect is undefined if it is invoked.

Sound the Audible Alarm
The subprogram with call code X"E5" causes the audible alarm (the CRT bell) to
sound. A call to this subprogram has the form:

CALL X11 ES 11

Move the Cursor to a Defined Position
The subprogram with call code X"E6" positions the cursor at the specified screen
position. A call to this subprogram has the form:

CALL X11 E6 11 USING result,parameter

where result is not used and parameter is a 01 level item containing:

02 ROW-NUMBER PIC 99 COMP.
02 COLUMN-NUMBER PIC 99 COMP.

The value of ROW-NUMBER must be in the range 1 to 25, and the value of
COLUMN-NUMBER must be in the range 1 to 80.

Chapter 9. Advanced Programming Features 9-13

Pack Byte

Unpack Byte

The subprogram with call code X"F4" takes eight I-byte fields from an array, and
uses the least significant bit of each byte to form a I-byte field. The first occurrence
of the array becomes the most significant bit of the new byte (bit 7). A call to this
subprogram has the form:

CALL X"F4 11 USING byte,array

where byte is a PIC 99 COMP field that contains the new byte and array is a PIC 99
COMP OCCURS 8 field that contains the eight bytes to be packed.

The subprogram with the call code X"F5" is similar to the pack byte subprogram,
except that a I-byte field is unpacked to form eight I-byte fields. Each bit of the
byte is moved to the corresponding occurrence in the array, so that bit 6 of the ori
ginal byte is moved to the 6th occurrence within the array. A call to this subpro
gram has the form:

CALL X11 F5 11 USING byte,array

where byte is a PIC 99 COMP field containing the byte to be unpacked, and array is
a PIC 99 COMP OCCURS 8 field that contains the unpacked bits.

CRT Screen Handling
The AIX VS COBOL system supports three different formats of the the ACCEPT
and DISPLAY statements:

• ANSI COBOL ACCEPT and DISPLAY
• Screen item ACCEPT and DISPLAY
• Data item ACCEPT and DISPLAY

Both the screen and the data item ACCEPT and DISPLAY statements use the
COBOL screen handling routine for screen input-output. The ANSI ACCEPT and
DISPLAY statements use this routine only if a screen or data item ACCEPT
occurred previously. Once this routine has been invoked, all terminal input-output is
controlled with it. It changes your terminal mode and automatically clears the
screen on the first output operation.

Your AIX VS COBOL system comes with a demonstration program that uses screen
handling features. This program is scdemol .cbl in the $COBDIR/demo directory.

The AIX VS COBOL system also supports calls, designed to be used from a C
program, which allow you to mix the output from a C program with ACCEPT and
DISPLAY statements.

These features are described in the following sections.

The ACCEPT and DISPLA V Statements
The ANSI COBOL ACCEPT and DISPLAY statements supported by AIX VS
COBOL are the standard ANSI ACCEPT and DISPLAY statements, with minor
extensions. These statements allow for up to one line of data to be read into
memory from the console, and for one line to be displayed, at a time.

9-14 User's Guide for IBM AIX VS COBOL Compiler/6000

The other two formats of the ACCEPT and DISPLAY statements supported by AIX
VS COBOL are Micro Focus extensions to the COBOL language, to make it fully
interactive. They allow full screens of data to be displayed or accepted into memory
using single statements.

The screen item ACCEPT and DISPLAY statements allow you to display non
scrolling forms, which consist of areas of the screen defined in detail in a part of the
Data Division named the Screen Section. Data is moved automatically between
screen areas and data items.

The data item ACCEPT and DISPLAY statements allow you to display data items,
which consist of non-scrolling forms. At run time, data can be entered into these
forms. The areas of screen to be used in these statements are defined in the state
ments themselves.

The Language Reference contains detailed specifications of the above formats of the
ACCEPT and DISPLAY statements.

Note: It is illegal to try to display control characters.

Display Attributes
Whenever a text character is displayed on the screen, it has an attribute (that is, a
character or byte of information) associated with it. The way the c4aracter is dis
played depends upon its attribute byte. AIX VS COBOL RTE allows characters to
be displayed on the screen with a number of display attributes.

The attributes available to you are dependent on the terminal you are using and the
terminfo entry for that terminal. They could include high or low intensity, underline,
reverse video, or blinking options. If you wish, you can alter the value of the attri
bute byte and so alter the way characters are displayed on the screen. You can do
so by amending either the screen attribute or the user attribute. You can do this by
using the screen control RTE subprograms described in this chapter.

The screen attribute allows you to specify an attribute that is associated with each·
character position on the screen. You can define areas of the screen as having dif
ferent attributes. Whenever a character is displayed on the screen, it has the attri
butes associated with that position.

The user attribute is associated with a whole screen. All of the characters displayed
on the screen take that attribute. Once a program has set the user attribute it is
enabled through the whole of that run, although another program within the same
suite may change the attribute. The user attribute overrides any screen attributes
you may have defined.

The Structure of the Attribute Byte
The following list shows the structure of the screen and user attribute byte:

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4 to 7

Highlight

Underline

Reverse video

Blink

Must be set to 0

Chapter 9. Advanced Programming Features 9-15

Highlighting

Each bit indicates one type of attribute. You can set these bits by using the RTE
subprograms with call codes X" A 7", X"B7", and X"B8". If you wish you can set
several bits to give a combination of attributes. The attributes available to you and
how they may be combined is dependent on the type of terminal you are using.

By default, the behavior of ACCEPT and DISPLAY operations that use high inten
sity attributes is as follows:

• Highlighted text appears in high intensity mode for terminals which support a
high intensity attribute but no low intensity attribute. This is as specified in
terminfo.

• Highlighted text appears in normal mode for terminals which support low inten
sity mode (as specified in terminfo) and which use this low intensity mode as the
default mode for unhighlighted text.

For more details on terminfo, see Chapter 10, "Configuring Your AIX VS COBOL
System." The AIX VS COBOL system assumes that low intensity and high intensity
space characters cannot be distinguished from normal spaces, and so the RTE will
attempt some optimization because of this. This is particularly effective on terminals
which support low intensity mode.

You can change the behavior of the high and low intensity attributes by setting the
COBATTR environment variable:

COBATTR=n

where n can be any of the following values:

0 Default action, as specified above.

1 Always use the terminfo high intensity mode for highlighting; never attempt to
use low intensity mode.

2 High and low intensity space characters are not assumed to be the same as
normal mode space characters.

3 As for 1 and 2 above.

Screen Handling From C
The RTE subprograms with the call codes X"B7" and X"B8" allow you to perform
screen handling operations from COBOL. However, the AIX VS COBOL system
also supports some additional screen-handling routines which can be used from C
programs. These allow the RTE and run-time support libraries to handle output
from both C programs called from COBOL programs, and from
ACCEPT/DISPLAY operations performed by the calling COBOL programs.
Normally, if any screen-handling is carried out outside of the control of COBOL (for
example, under the control of C), COBOL is not aware of the output of that screen
handling operation when control returns to COBOL. The effect of subsequent
screen-handling operations could thus be undefined. The routines described below
enable you to avoid this problem.

For screen output that uses called C routines and ACCEPT/DISPLAY operations,
you must ensure that you explicitly position the cursor before the cobprinf() or
DISPLAY statement. In C you use the cobmove() routine and in COBOL you use
the DISPLA Y. .. AT statement.

9-16 User's Guide for IBM AIX VS COBOL Compiler/6000

cobmove Routine

cobaddch Routine

The routines currently supported are:

• cobmove
• cobaddch
• cobaddstr
• cobaddstrc
• cobprintf
• cobscroll
• cobclear
• cobgetch
• coblines
• cobcols

These routines are described in the following sections.

When using any of these routines, you must include the header file cobscreen.h,
which is provided with the AIX VS COBOL system software. This file defines the
attributes you can use, the type (cobchtype), and declares any external functions
which the routine needs.

For those routines where attributes are allowed, you can use the bit-wise OR oper
ator to combine any of the attributes defined in the cobscreen.h file. These attributes
are listed below:

Description Attribute
A_NORMAL
A_BOLD
A_UNDER
A_REVERSE
A_BLINK

Normal, no attribute
Bold or highlight
Underline
Reverse video
Blink

This routine moves the virtual cursor to the specified line and column on the screen.
It has the form:

void cobmove(y,x)
int y,x;

where y is the number of the line to which the virtual cursor is to be moved, and xis
the number of the column to which the virtual cursor is to be moved.

This routine displays the specified character on the screen at the current virtual
cursor position. It has the form:

void cobaddch(ch)
cobchtype ch;

where ch is the required character. This may include attributes.

Chapter 9. Advanced Programming Features 9-17

cobaddstr Routine

cobaddstrc Routine

cobprintf Routine

cobscroll Routine

cobclear Routine

This routine displays the specified string on the screen at the current virtual cursor
position. It has the form:

int cobaddstr(s)
cobchtype *s;

wheres is the required string which can be up to 255 characters long. This may
include attributes, but cannot include any control characters other than "\n"
(newline).

This routine displays the specified string on the screen at the current virtual cursor
position. It has the form:

int cobaddstrc(c)
char *c;

where c is the required string which can be up to 255 characters long. This can only
contain ordinary characters; it cannot include attributes. The routine uses the
normal attribute. It cannot include any control characters other than "\n" (newline).

This routine displays the specified formatted string on the screen at the current
virtual cursor position. It has the form:

int cobprintf(fmt)
char *fmt;

where f mt is the required string in printf() style, which can be up to 255 characters
long in its extended form. This can only contain ordinary characters; it cannot
include attributes. It cannot include any control characters other than "\n"
(newline).

This routine returns the number of arguments output, or if an error condition arises,
it returns the value "-1 ".

This routine scrolls the screen display up one line; starting and finishing at the speci
fied lines. It has the form:

void cobscroll (top,bot)
int top,bot;

where top is the first line to be scrolled up one line and bot is the last line to be
scrolled up one line.

This routine clears the screen display and positions the virtual cursor at line 0,
column 0. It has the form:

void cobclear()

9-18 User's Guide for IBM AIX VS COBOL Compiler/6000

cobgetch Routine

coblines Routine

cobcols Routine

This routine gets a character from the keyboard. It has the form:

int cobgetch ()

This routine returns the number of lines on the screen. It has the form:

int cobl ines ()

This routine returns the number of columns on the screen. It has the form:

int cobco ls ()

Using Escape Sequences to Send Attribute Information to the
Screen

AIX VS COBOL will allow the use of raw escape sequences to send attribute infor
mation to the screen. This is to support some older programs that may have had no
other means of indicating attributes. This method of coding is not recommended for
newer code.

In order to be able to use escape sequences to send information to the screen, you
must set the COBCTRLCHAR environment variable:

COBCTRLCHAR=y
export COBCTRLCHAR

When this environment variable is set, all optimization features of the screen han
dling module will be bypassed. Without these optimization techniques, screen
output will be noticeably slower. Also, if escape sequences are used to handle attri
butes, some screen management may need to be done by the user programs. Since
these raw escape sequences are outside of the AIX VS COBOL screen handling
module, the effects created by them are not known to the COBOL screen handling
module.

The hardcoding of escape sequences is never recommended for portable, maintain
able programs in which a variety of terminals are to be used. The terminfo mech
anism for terminal access is fully supported by AIX VS COBOL to allow terminal
selection flexibility.

AIX VS COBOL cannot guarantee the future support of hardcoded escape sequence
programming, nor guarantee a consistent result for escape sequences or combina
tions of escape sequences that are hardcoded.

It is recommended that the following syntax be used for attribute handling:

or

SCREEN SECTION.
CH screen-name.

LINE xxx
COL YYY
HIGHLIGHT

DISPLAY data-item LINE xxx POSITION yyy REVERSE HIGH ..•

Chapter 9. Advanced Programming Features 9-19

File Handler

To display special graphic characters to the screen, it is recommended that the
Screen Input and Output internal RTE subprograms named X"B7" and X"B8" be
used. These are documented in "Display Screen Input and Output" on page 9-11.

You can create a run time environment (RTE) that is linked to your file handler(s)
rather than the default file handler(s) supplied with the AIX VS COBOL system.
The default file handlers for the various types of file organization and record format
are shown in Table 9-1.

Table 9-1. Default File Handlers

Default File Handler Default File Handler
File Type Fixed-Length Records Variable-Length Records

line-seq uen ti al lsfile lsfilev

sequential sq file sqfilev

indexed ix file ixfilev

relative rlfile rlfilev

sort csort csortv

The file handler(s) you link to the RTE in preference to any of the default file han
dlers in Table 9-1 must conform to the format of the file handler interface. See
"Interface to the COBOL File Handler" on page 9-21 for format information.

To link your own file handler(s) to the RTE, use the -m option on the cob command
line. See Chapter 5, "Compiler Options" for information on this command.

After compiling your new file handler so that it exists as a .o file, consider the fol
Jowing examples. This example,

ln newix.o newix ._J
cob -xo rts32 newix -m ixfile=newix ._J

creates an RTE that uses the user-defined file handler "newix" for all fixed-length
records indexed file operations.

The following example is similar to the previous example, except that "newix" can
handle both fixed- and variable-length records.

ln newix.o newix ._J
cob -xo rts32 newix -m ixfile=newix -m ixfilev=newix ._J

Note: If you do not specify a mapping for the file handler(s) as illustrated in the
above examples, the default file handlers shown in Table 9-1 are those used
by the RTE.

9-20 User's Guide for IBM AIX VS COBOL Compiler/6000

Interface to the COBOL File Handler
Any file handler(s) that you link to the RTE in preference to the default file
handler(s) must conform to the interface rules given in the rest of this chapter.

The file handler is invoked through a simple call with two parameters.

The first of these parameters describes the action required and consists of two bytes,
the first of which is currently always X'FA'. The second byte describes the opera
tion to be performed.

The second parameter is a parameter block, known as a File Control Description
(FCD), through which all other relevant information is passed.

The offsets given in the following sections are from the base of this FCD with the
first byte having an offset of 0.

For a detailed description of these fields, see "FCD Information Format" on
page 9-23. Unless otherwise noted, a reference to a sequential file includes files with
the organization LINE-SEQUENTIAL.

Operation Codes Passed in the Second Byte of the First Parameter
Table 9-2 shows a list of operation codes. The value corresponding to the required
operation is passed in the second byte of the first parameter to the file handler. The
effect of the instruction on the file handler is also listed.

Table 9-2 (Page 1 of 2). Operation Codes Passed in the Second Byte of the First
Parameter

Value Effect of Instruction File Type

00
01
02
03
04
05
08
80
81
82
84
85
86
8C
8D
8E
D8
D9
DA
DB
DC
DD
DE
DF
El

OPEN in INPUT mode
OPEN in OUTPUT mode
OPEN in I-0 mode
OPEN in EXTEND mode
OPEN in INPUT mode with NO REWIND
OPEN in OUTPUT mode with NO REWIND
OPEN in INPUT mode REVERSED
CLOSE
CLOSE WITH LOCK
CLOSE WITH NO REWIND
CLOSE REEL/UNIT
CLOSE REEL/UNIT FOR REMOVAL
CLOSE REEL/UNIT WITH NO REWIND
READ PREVIOUS WITH NO LOCK
Sequential READ WITH NO LOCK
Random READ WITH NO LOCK
Sequential READ WITH LOCK
Sequential READ WITH KEPT LOCK
Random READ WITH LOCK
Random READ WITH KEPT LOCK
COMMIT
ROLLBACK
READ PREVIOUS WITH LOCK
READ PREVIOUS WITH KEPT LOCK
WRITE BEFORE

Any
Any
Any
Any
Sequential
Sequential
Sequential
Any
Any
Sequential
Sequential
Sequential
Sequential
Indexed/relative
Any
Indexed/relative
Any
Any
Indexed/relative
Indexed/relative
Any
Any
Indexed/relative
Indexed/relative
Sequential

Chapter 9. Advanced Programming Features 9-21

Table 9-2 (Page 2 of 2). Operation Codes Passed in the Second Byte of the First
Parameter

Value Effect of Instruction File Type

WRITE AFTER
WRITE BEFORE TAB
WRITE AFTER TAB
WRITE BEFORE PAGE
WRITE AFTER PAGE
START with no key value
ST ART with key value

E2
E3
E4
E5
E6
ES
E9
EB
EC
ED
F2
F3
F4
F5
F6
F7
F8
F9
FE
FF

START with key not less than value
WRITE BEFORE mnemonic name
WRITE AFTER mnemonic name
WRITE AFTER POSITIONING
WRITE
REWRITE
Sequential READ
Random READ
DELETE
DELETE file
READ PREVIOUS
ST ART with key less than value
START with key less than value or equal

Information Passed in the FCD at Open Time
Information passed to the file handler:

File organization
File access mode
File name length
Lock mode flags
Other flags
Maximum record length
Minimum record length
Recording mode (fixed/variable)
File name pointer

For indexed files only:

Key definition block pointer
File format (C-ISAM/level II/current)

Information returned by the file handler:

Status
Handle
Open mode

Information Passed for Other Operations
Information passed to the file handler:

Handle

Offset 5
Offset 6
Offset 11
Offset 24
Offset 25
Offset 38
Offset 50
Offset 47
Offset 60

Offset 64
Offset 34

Offset 0
Offset 28
Offset 7

Sequential
Sequential Only
Sequential Only
Sequential Only
Sequential Only
Indexed/relative
Indexed/relative
Indexed/relative
Sequential
Sequential
Sequential
Any
Any
Any
Indexed/relative
Indexed/relative
Any
Indexed/relative
Indexed /relative
Indexed/relative

Current record length
Offset 28
Offset 48 (WRITE and REWRITE on

variable-length files)
Record pointer Offset 56

9-22 User's Guide for IBM AIX VS COBOL Compiler/6000

For sequential files only:

Line count

For relative files only:

Relative key

For indexed files only:

Key identifier
Key length

Offset 52

Offset 43

Offset 52
Offset 54

(WRITE AFTER n)

(RANDOM or DYNAMIC
without NEXT)

(START or random READ)
(START only)

Information returned by the file handler:

Status
Current record length

For relative files only:

Relative key

FCD Information Format

Offset 0
Offset 48

Offset 43

(READ on variable-length
files)

(SEQUENTIAi access or
READ NEXT)

The following figure shows the offset, size, and description of the FCD information
formats.

Offset

0

2
4
5

6

Size

2
1
1

Description

First user status byte -- values as defined by
ANSI
Second user status byte -- values as defined by
ANSI unless the first status byte= 9
Reserved
Reserved
File organization indicator:

0 = Line-sequential
1 = Sequential
2 = Indexed
3 = Relative

Passed at OPEN time
User status indicator and access mode:

128 = User has declared a status field
0 = Sequential access mode
4 = Random access mode
8 = Dynamic access mode

Passed at OPEN time

Chapter 9. Advanced Programming Features 9-23

Offset Size Description

7 File open mode (set at OPEN and CLOSE time):
128 = Closed (initial state)

0 = Open input
1 = Open output
2 = Open I-0
3 = Open extend

8 3 Reserved
11 2 File name length

Passed at OPEN time
13 11 Reserved
24 1 Lock mode flags for shareable files:

Bit 7 Set if lock on multiple records
Bit 6 Set if WRITELOCK enabled
Bit 5 Reserved
Bit 4 Reserved
Bit 3 Reserved
Bit 2 Set if lock mode MANUAL
Bit 1 Set if lock mode AUTOMATIC
Bit 0 Set if lock mode EXCLUSIVE

Passed at OPEN time
25 Other flags:

Bit 7 Set if OPTIONAL file (open input)
Bit 6 Reserved
Bit 5 Set if NOT OPTIONAL (open I-0 and

extend)
Bit 4 Set if file name is EXTERNAL
Bit 3 Reserved
Bit 2 Reserved
Bit 1 Set if MULTIPLE REEL file

(sequential only)
Bit 0 Set if LINE ADVANCING file

(sequential only)
Passed at OPEN time

26 2 Reserved
28 4 Handle
32 1 Reserved
33 1 Flags

High order bit 'xOOOOOOO' indicates ANSI
behavior
0 = ANS74
1 = ANS85

Passed at OPEN time
34 1 File format type

0 = current
1 = c-isam
2 = level II V2

Passed at OPEN time
35 3 Reserved
38 2 Maximum record length

Passed at OPEN time
40 3 Reserved
43 4 Relative record number

9-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Offset

47

48
50

52

54

56
60

64

68

Size

2
2

2

2

4
4

4

32

Description

Recording mode:
0 = Fixed
1 = Variable

Passed at OPEN time
Current record length
Minimum record length
Passed at OPEN time
Key identifier (indexed files)
Line count (line sequential files)
Effective key length (used only with

ST ART on indexed files)
Pointer to record area
Pointer to file name
Passed at OPEN time
Pointer to key definition area
Passed at OPEN time
Reserved

Key Definitions for Indexed Files
All key definitions come immediately after the global information and before any
component definitions. They contain pointers to the relevant component definitions
in the form of offsets from the structure base.

Global Information

Key Definitions

2 bytes
1 byte
1 byte
1 byte
1 byte
2 bytes
2 bytes
4 bytes

2 bytes
2 bytes
1 byte

Length of key definition block
Reserved for version number
Reserved for index format
Reserved for integrity level
Reserved for tuning flags
Number of keys
Reserved for reserved index areas
Reserved for index record length

Component count
Offset to first component definition for this key
Key flags
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

Reserved
Reserved
Reserved
Set if prime key
Reserved
Reserved
Set if sparse key
Set if password supplied

Chapter 9. Advanced Programming Features 9-25

1 byte

1 byte
1 byte
8 bytes

Component Definitions
1 byte
1 byte
4 bytes
4 bytes

CISAM Features

Compression flags
bit 7 Reserved
bit 6 Reserved
bit 5 Reserved
bit 4 Reserved
bit 3 Reserved
bit 2 Set if compression of trailing spaces
bit 1 Set if compression of identical leading characters
bit 0 Set if compression of following duplicates
Sparse character (key suppressed if whole key contains this value)
Reserved
Password

Component flags (reserved - currently 0)
Component type (reserved - currently 0)
Component offset
Component length

The RTE uses a version of CISAM that has been modified to meet the needs of AIX
VS COBOL record locking requirements. This version of CISAM is embedded in
the mfisam.o module, found in the COBOL library libcobol.a. You cannot access or
use this modified version of CISAM except from a COBOL program that uses the
standard COBOL file-handling syntax.

If you have access to a standard version of CISAM, you may wish to use that in
place of the modified version supplied with your AIX VS COBOL system. An
object module, cixfile.o, is supplied with AIX VS COBOL in the archive libcobol.a.
This provides an interface between the AIX VS COBOL system and the standard
CISAM. In order to link the standard CISAM with a COBOL program, use the +I
flag on the cob command line to specify that cob is to use the standard CISAM
library (which is probably named libisam.a). You must also specify the -m flag on
the cob command line to map the symbol "ixfile" onto the CISAM interface
"cixfile". cixfile.o contains the necessary external references to the CISAM libraries
to ensure that they are included in the resulting executable file, in preference to the
AIX VS COBOL modified libraries.

Note that you must specify the +I flag on the cob command line. If you specify the
normal library inclusion flag -I, the standard CISAM libraries are not included in the
executable file.

You can also build a version of animator that has your own version of CISAM
linked to it. In this case, you cannot animate your programs using the anim
command; you must run them with the +A run-time switch set. See "Run-Time
Switches" on page 7-7 for details on the run-time switches.

Consider the following examples:

• cob -x progl.cbl prog2.cbl prog3.cbl ~

compiles and links progl .cbl, prog2.cbl, and prog3.cbl with the modified version
of CISAM supplied with your AIX VS COBOL system in libcobol.a.

9-26 User's Guide for IBM AIX VS COBOL Compiler/6000

• cob -x progl.cbl prog2.cbl prog3.cbl -m ixfile=cixfile +lisam ..-1
compiles and links progl.cbl, prog2.cbl, and prog3.cbl with the standard version
of CISAM found in libisam.a.

• cob -xo rts32 -e 1111 -m ixfile=cixfile +lisam ..-1
outputs an RTE that you can use to run intermediate and unlinked native code
files with the standard version of CISAM. For example, to run the intermediate
code file progl.int using the standard CISAM libraries, enter:

rts32 progl.int ..-1

You need to be aware of the following differences between the standard CISAM
libraries and the modified version supplied with the AIX VS COBOL system.

• The standard CISAM does not support WRITE and REWRITE operations
acquiring locks, but the modified CISAM does.

• The standard CISAM does not support the READ WITH NO LOCK statement;
it treats this as a normal READ operation. However, the modified CISAM does
support this operation.

• The standard CISAM does not support the creation of data and index files in
separate directories, but the modified CISAM does. Therefore, the I option of
COBCAP and the & option of logical filename mapping using environment vari
ables will not work with the standard CISAM.

• The modified CISAM has a maximum record length of 8 Kbytes. The standard
CISAM imposes a lower maximum record length. Check your CISAM doc
umentation for specific details.

Chapter 9. Advanced Programming Features 9-27

9-28 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 10. Configuring Your AIX VS COBOL System

Chapter 10. Configuring Your AIX VS COBOL System 10-1 ·

Contents
About This Chapter
Introduction
tenninfo ..
cobkeymp .
ADISCTRL
Keyboard Conversion Process
keybcf Utility .

Specifying and Accessing Multiple or Alternate cobkeymp Files ..
Invoking the keybcf Utility
Using the keybcf Utility
Maximum Size of keybcf Buffers

adiscf Utility
Invoking the adiscf Utility
Using the adiscf Utility

10-2 User's Guide for IBM AIX VS COBOL Compiler/6000

10-3
10-4
10-5
10-5
10-5
10-5
10-6
10-7
10-8
10-9

10-14
10-14
10-14
10-14

About This Chapter
Your IBM AIX VS COBOL software is supplied with the default configuration tai
lored for your system. This chapter describes the information you must have to alter
the default behavior of the AIX VS COBOL extensions to the ACCEPT and
DISPLAY statements as described in the Language Reference. Do not attempt to
alter the default behavior of the AIX VS COBOL extensions to the ACCEPT and
DISPLAY statements unless you have system administrator authority.

Chapter 10. Configuring Your AIX VS COBOL System 10-3

Introduction
The Run Time Environment (RTE) module that provides extended ACCEPT and
DISPLAY facilities is called ADIS. The configuration inforniation needed before
these facilities can function correctly is provided in the following three databases:

• terminfo
• cobkeymp
• ADISCTRL.

The information provided in these three databases allows ADIS to translate the
machine-specific character codes it receives from your keyboard into a terminal inde
pendent code. ADIS then maps this terminal independent code to AIX VS COBOL
system program code.

10-4 User's Guide for IBM AIX VS COBOL Compiler/6000

terminfo

cobkeymp

ADISCTRL

The terminfo database is the AIX terminal description database. It provides the
RTE with information concerning the terminal you are using. You must ensure that
an entry exists within terminfo for your particular terminal, and that the TERM
environment variable is set to the name of that terminal. See the AIX Operating
System documentation for a full description of terminfo.

Entries in the cobkeymp database map control characters and terminfo codes onto a
standard set of function keys that the ADIS ACCEPT/DISPLAY module can recog
nize. You can set up your own cobkeymp database using the keybcf utility. See
"keybcf Utility" on page 10-6 for further details. If you do not set up your own
cobkeymp database, the AIX VS COBOL system uses a set of internal defaults for its
functions.

The ADISCTRL database is the configuration file for the AIX VS COBOL ADIS
ACCEPT/DISPLAY module. It specifies the editing functions to be used by the
ADIS function keys, You can alter the entries in this database using the adiscf
utility. See "adiscf Utility" on page 10-14 for further details.

Information held in both the terminfo and the cobkeymp databases is terminal spe
cific. Both define, to the ADIS ACCEPT/DISPLAY module, the hexadecimal
sequences a terminal sends when any particular key is pressed.

The information held in the ADISCTRL database is terminal independent. It
defines, to the ADIS ACCEPT/DISPLAY module, the action to be taken when a
keystroke is recognized as a function key.

Keyboard Conversion Process
Figure 10-1 on page 10-6 shows how ADIS translates the machine-specific character
codes it receives from your keyboard into editing commands.

Chapter 10. Configuring Your AIX VS COBOL System 10-5

keybcf Utility

II The
keyboard
sends
terminal
dependent
characters

TERMINAL~

B The RTE
translates
characters
sent from the
keyboard
into machine
independent
codes ...

... using
data read
from terminfo,
the AIX
terminal
description
database.
This provides
information
on your
terminal
type. You
do not
need to
alter this
database

AIX

E1 The terminal
handling
library (curses)
sends AIX
characters or
function
keycodes

El The RTE
sends the
IBM
character
or the
function
keycode

terminal L__.,,,,,J Keystroke L___a,J

handling r--ri Mapping ~
library

ADIS

• a The RTE
1:,11 ADIS reads

maps the
AIX
characters
or function
keycodes onto
a set of
functions used
by ADIS.
It reads a
description
of these
functions from
the cobkeymp
database,
or if no such
file exists it
takes a set of
internal
default values

terminfo
database

cobkeymp
database

the
IBM
character
or the
function
keycode and
translates
it into
editing
commands

... using
data read
from
ADISCTRL,
the ADIS
configuration
database

ADISCTRL
database

Screen or
~user

program

II ADIS sends
characters
to your
screen, or
character
codes to
your
program

Allows Allows
keybcf
utility

you to adiscf you to
change utility change

,__ ___ _. cobkeymp .._ ___ __. ADISCTRL

Figure 10-1. Character Conversion Process

A set of internal default values for how the RTE interprets control characters and
keystroke mnemonics is provided with your AIX VS COBOL system software.
These default values are contained in the cobkeymp file. See Table 10-1 on
page 10-7 for a list of these defaults.

To change any of the default values, use the keybcf utility to set up your own
cobkeymp file. This contains your own set of keystrokes that you wish to perform
for each function.

You do not need to create a different cobkeymp file for each terminal type on your
system. Instead, try to ensure that your cobkeymp file is suitable for as many dif
ferent types of terminals as possible. All terminal-specific decoding is done by the
RTE using the terminfo database. However, you may have to supply alternative
keystrokes for terminals not having special function keys.

10-6 User's Guide for IBM AIX VS COBOL Compiler/6000

If you wish to edit the cobkeymp file located in the $COBDIR directory, you must
have superuser authority to update this file. It is recommended that you make a
copy of the original cobkeymp file for safe keeping prior to editing this file.

In addition to the COBOL keybcf mapping of keys, the AIX VS COBOL system by
default does not map a carriage return (hex OD) to a newline (hex OA) on input.
Earlier versions of AIX VS COBOL by default did map a carriage return to a
newline. If you do not use the AIX system default terminfo files, then you need to
make sure your terminfo files are correct based on the new default.

Specifying and Accessing Multiple or Alternate cobkeymp Files
You can create multiple cobkeymp files. By default, a user-specified cobkeymp file
must exist in the directory where it will be used for the running of the user program.
To use a cobkeymp file from another directory to run a program, you must use the
dd_ style file name mapping as described in "File Name Mapping" on page 3-7.
This method can also be used to select from several different cobkeymp files that you
have defined.

For example, you could create two cobkeymp files:

/u/test/cobkeymp

and

/u/other/test/cobkeymp

Then, if you want to run a program "mycode.cbl", you could do the following:

cob mycode.cbl
dd_cobkeymp=/u/test/cobkeymp
export dd_cobkeymp
cobrun mycode.int

This would find and use the /u/test/cobkeymp keyboard configuration.

Table 10-1 (Page 1 of 2). Default ADIS Control Keys

ADIS Function
Key Number Meaning RT Default Key

00 Terminate Accept Enter Keyboard
Enter Keypad
Ctrl+M
Ctrl +J

01 Terminate Program Ctrl+D

02 Carriage Return

03 Cursor Left Left arrow

04 Cursor Right Right Arrow

05 Cursor Up Up arrow

06 Cursor Down Down Arrow

07 Move to start of screen Home

08 Move to next tab stop undefined

09 Move to previous tab stop undefined

Chapter 10. Configuring Your AIX VS COBOL System 10-7

Table 10-1 (Page 2 of 2). Default ADIS Control Keys

ADIS Function
Key Number Meaning RT Default Key

10 Move to end of screen End
Ctrl+O

11 Move to next field Ctrl+N
Tab
Ctrl +I

12 Move to previous field Ctrl +P
Shift Tab
Ctrl + L

13 Change case of character Ctrl + F

14 Rubout character Backspace
shift + Backspace
Ctrl+H

15 Retype rubout character Ctrl+R

16 Insert single character Insert
shift + Insert

17 Delete character Delete

18 Restore deleted character Ctrl+ U

19 Clear to end of field Ctrl + Delete

20 Clear Field Ctrl+X

21 Clear to end of screen Ctrl+End

22 Clear screen Ctrl+Home

23 Set Insert mode Ctrl + Insert

24 Set Replace mode undefined

25 Reset field to its original value Ctrl+A

26 Move to start of field Ctrl+W

Invoking the keybcf Utility
To set up your own cobkeymp file using the keybcf utility, type the command line:

keybcf .i

The RTE searches for a cobkeymp file, first in the current directory and then in the
COBOL system directory, $COBDIR. If RTE finds a cobkeymp file, it uses the
values given there. However, if RTE does not find a cobkeymp file, it uses the
default values. If a cobkeymp file already exists, you are asked if you want to edit it.

In order to change the system cobkeymp file (that is, the one located in $COBDIR),
you must have superuser authority.

10-8 User's Guide for IBM AIX VS COBOL Compiler/6000

Using the keybcf Utility
keybcf is menu-driven. Once keybcf is invoked, it displays the initial menu, as
shown in Figure 10-2.

ADIS Keyboard Configuration Program V1 .3

The following options are available:

1. Review existing function key definitions.
2. Alter function key definitions.
3. Save function key definitions.
4. Exit.

Enter number of option required

Figure 10-2. Main keybcf Display Screen

To select the option of your choice, press its associated number. The submenu for
that function is then displayed.

Review Existing Function Key Definitions
Enter a 1 on the main keybcf display screen to see a submenu in which you are
prompted to choose the set of function keys you want to review. You can review the
following currently defined lists:

• ADIS function key list
• ANIMATOR function key list
• User function key list
• Compatibility function key list.

Chapter 10. Configuring Your AIX VS COBOL System 10-9

The ADIS function key list defines the keys that carry out specified functions when
you are executing a COBOL program in ACCEPT mode. ANIMATOR and
COBOL system programs use the ANIMATOR function key list. It describes the
mappings of control and terminfo codes onto various special operation keys. The
user function key list defines the mapping of control and tenninfo codes onto user
function keys. During an ACCEPT operation, the user function key table is
searched before the ADIS function key table is searched. The user function keys are
initially enabled. To disable these function keys during the execution of a program,
you must first disable them by CALLing the X"AF" subprogram. See Chapter 9,
"Advanced Programming Features" for more information.

The compatibility function key list defines the mapping of control and terminfo
codes onto user keys defined in a dialect of COBOL other than AIX VS COBOL. If
you want function keys to return values that are compatible with other dialects of
COBOL, alter the compatibility function key list rather than the user function key
list. By default, the compatibility function key list is configured for compatibility
with Ryan McFarland COBOL Version 2.0, under UNIX.

The CRT STATUS clause allows you to ascertain which function key was used to
end an ACCEPT operation. See the Language Reference for information on how to
use this clause.

To select an option, press its associated number. Once you have entered the number
of the list you want to review, the hexadecimal values of all the currently defined
function keys in that list are displayed. Press any key to move from one display
screen to the next. At the end of the list, press any key to return to the review
submenu.

Alter Function Key Definitions
Enter a 2 on the main keybcf menu to see a submenu from which you can choose a
set of function keys to alter. As with the review submenu, you can select the ADIS,
ANIMATOR, user, or compatibility key lists. Figure 10-3 on page 10-11 shows the
format of the display screen as it appears after you have made your selection.

10-10 User's Guide for IBM AIX VS COBOL Compiler/6000

ADIS/ANIMATOR/User/Compatibi lity Function Key List

Function nn

Enter required key sequence:

!=Insert. D=Delete. X=Hexadecimal Input. Space=Skip, Q=Quit

Figure 10-3. Alter Function Key Options

Note: nn is the hexadecimal value of the key assigned to that function.

Each function in the function key list you selected is displayed individually, as shown
in Figure 10-3. To cycle from one function to the next without altering the key
defined for each function, press the Space bar. To replace any keys currently
defined in one of the lists, press the new key(s) that will perform that function; Any
keys used (pressed) must be defined in terminfo. Once you have entered the new
keys, the program automatically cycles to the next function. There is a pause before
the program cycles to the next function. To retain a currently defined function key,
and add another key to perform the same function, press I before you enter the
required key. If you want to delete a defined function key from a list, press D;
keybcf automatically cycles to the next function.

To enter new function keys, do either of the following:

• Press the actual key(s) you want to perform a certain function.
• Enter the hexadecimal sequence for the key(s).

Normally, you enter new function keys by pressing the actual key to which the func
tion is to be assigned. However, you may need to define keys that are not on the
keyboard you are using but are available on the one on which your program will
run. You can do this by entering the hexadecimal sequences for the keys you want
to define.

Chapter 10. Configuring Your AIX VS COBOL System 10-11

To enter a hexadecimal sequence, press X. The word Hex appears at the bottom
right of your display screen, indicating that the program is expecting- hexadecimal
input. If you enter an invalid hexadecimal sequence, you receive an error when you
try to cycle to the next function and are prompted to enter a valid sequence.

To determine valid hexadecimal sequences, you can refer to the AIX Operating
System documentation, to the terminfo file on your system, and to Table 10-2. The
AIX Operating System documentation regarding keyboards gives the strings that are
returned by each of the possible key states. If the returned string for a particular
key state is a hexadecimal value, you can directly enter that value as the hexadecimal
sequence representing the key you wish to define.

However, if the returned string begins with an ESC, refer to your terminfo source
file, normally found in the /usr/lib/terminfo directory. The standard IBM terminfo
source file is named ibm.ti. For a key state that has a returned string starting with
an ESC to be valid, the key state needs to be related to a capability in your terminfo
file, and the referenced capability needs to be one that is defined in Table 10-2.

The terminfo source file relates capabilities to particular key states. To determine if
a particular key state represents a valid hexadecimal sequence for keybcf, locate your
terminal type and then the particular ESC sequence in your terminfo source file.
Note that the short capability name appears to the left of the equals sign. If this
short capability name appears in Table 10-2, the FF XX YY number associated with
this name is a valid hexadecimal sequence and can be entered as the required key
sequence.

For example, suppose you want to use the left arrow key (key number 79) to carry
out the cursor left function. First, refer to the information on keyboards in the AIX
Operating System documentation to find that key 79 returns the string type and note
that kcubl is the short capability name equated to this escape sequence. Next, look
in Table 10-2 and find that kcubl, key _left, gives the valid key sequence FF 01 04.
Then enter this hexadecimal sequence in keybcf.

Alternatively, if you press the left arrow key on your keyboard, the system enters
these three bytes for you.

You can return to the Alter submenu at any time by pressing Q. Entering 5 on this
submenu returns you to the main keybcf menu.

Table 10-2 (Page 1 of 2). Hexadecimal Sequences for Key Functions Not
on Your Keyboard

Capability Name Variable Key Sequence

kcudl KEY_DOWN FF 01 02

kcuul KEY_UP FF 01 03

kcubl KEY_LEFT FF 01 04

kcufl KEY_RIGHT FF 01 05

khome KEY_HOME FF 01 06

kbs KEY _BACKSPACE FF 01 07

kfO KEY FO 1B

10-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Table 10-2 (Page 2 of 2). Hexadecimal Sequences for Key Functions Not
on Your Keyboard

Capability Name Variable Key Sequence

kfl KEY_Fl FF 01 81

kflO KEY_FlO FF 01 SA

kf2 KEY_F2 FF 01 82

kf3 KEY F3 FF 01 83

kf 4 KEY F4 FF 01 84

kf5 KEY F5 FF 01 85

kf6 KEY F6 FF 01 86

kf7 KEY F7 FF 01 87

kf8 KEY F8 FF 01 88

kf9 KEY_F9 FF 01 89

kdll KEY_DL FF 01 08

kill KEY_IL FF 01 09

kdchl KEY_DC FF 01 OA

kichl KEY_IC FF 01 OB

krmir KEY_EIC FF 01 OC

kclr KEY_CLEAR FF 01 OD

ked KEY_EOS FF 01 OE

kel KEY_EOL FF 01 OF

kind KEY SF FF 01 10

kri KEY SR FF 01 11

knp KEY_NPAGE FF 01 12

kpp KEY_PPAGE FF 01 13

khts KEY_STAB FF 01 14

kctab KEY_CTAB FF 01 15

ktbc KEY_CATAB FF 01 16

kll KEY_LL FF 01 1B

Save Function Key Definitions
To save any alterations you have made to any of the function lists, press 3 on the
main keybcf menu. This saves the amended function lists in a cobkeymp file.

Chapter 10. Configuring Your AIX VS COBOL System 10-13

Exit
Press 4 on the main keybcf menu to return to the main AIX VS COBOL system.

Maximum Size of keybcf Buffers

adiscf Utility

The keybcf buffers hold the key definitions for all four key lists: the ADIS key list,
the Animator key list, the user key list, and the compatibility key list. The total size
of all the keys defined must not exceed 768 bytes.

The compatibility key list is an alternative user key list, which can be selected using
adiscf. The intended use of this alternative user key list is for compatibility with
other COBOL dialects, such as RM.

If you are unlikely to use this alternative key list, you could delete the key defi
nitions, freeing space to define the keys in the user key list. This would give you
more space to define keys if you need it.

ADISCTRL is the configuration database for the ADIS module. It can hold up to a
maximum of 16 configurations, any of which are available to you. An entry at the
start of the ADISCTRL file determines which configuration ADIS uses.

You can alter any of the configurations held in the ADISCTRL database using the
configuration utility adiscf. This program is designed around a hierarchy of menus.
These menus appear at the bottom of your display screen and list the options avail
able to you at any time. You select the option you require by pressing a single key
(often a function key) on your keyboard.

Invoking the adiscf Utility
To invoke adiscf, enter the command line:

adiscf ~

The RTE searches for an ADISCTRL database, first in the current directory and
then in the COBOL system directory, $COBDIR. If one exists, adiscf reads in the
configuration currently selected for use by ADIS.

If you want to alter the file, first copy it to your own directory. Otherwise, any
alterations you make will affect the environments of all of the users on your system.
If an ADISCTRL file does not exist, the following message is shown on your display
screen:

ADISCTRL does not exist - Defaults used

adiscf has a set of default values built into it. These are used if ADISCTRL does
not exist.

Using the adiscf Utility
Once you have invoked adiscf, the initial menu is displayed, as shown in Figure 10-4
on page 10-15.

10-14 User's Guide for IBM AIX VS COBOL Compiler/6000

ADISCF--Standard-Conf iguration---------------------
F1=Help F2=Alter F3=Load F4=Save FS=Delete F6=Choose

Figure 10-4. Main adiscf Command Menu

Escape

The line above the line showing available menu options lists information that identi
fies the menu you are on and the configuration currently loaded (the standard con
figuration in this case). Each menu contains a similar information line.

To select the option you require from the main menu, press the relevant function key
or letter:

Fl or H Help facility (available on each menu). It shows a display screen with
information on the facilities of the current menu.

F2 or A Alters the currently loaded configuration file.

F3 or L Loads a particular configuration file from the ADISCTRL database into
memory. You must load a configuration before you can alter it.

F4 or S Saves the new configuration file you have written in the ADISCTRL
database.

F5 or D Deletes a configuration from the ADISCTRL database.

F6 or C Chooses the configuration to be used by ADIS.

Escape Escapes from the adiscf utility and returns to the AIX VS COBOL
system. If you have changed a configuration file since it was last saved,
you are asked to confirm that you wish to leave the adiscf program
without saving your changes in the ADISCTRL database.

Chapter 10. Configuring Your AIX VS COBOL System 10-15

Alter Option

Once you select an option, adiscf displays a submenu for that particular option.
Most of these menus have the following form:

ADISCF--Name---------Value----------------------

where Name is the name of the particular submenu (for example,
Alter-CRT-Under-Highlighting), and Value is the value currently selected for that
feature (for example, Underline).

The following sections describe the submenus available to you when you select one
of the options from the main menu.

Select the Alter option by pressing F2 or A on the Main Configuration menu to alter
all, or part, of a configuration. By pressing the appropriate function key on the
Alter Configuration menu, you can change the following:

• The way your programs display text when you use the CRT-UNDER phrase
• One or all of the ACCEPT/DISPLAY options
• TAB stops
• Indicator texts
• Message texts
• Positions at which indicator and message texts are displayed
• APIS key mappings.

The following sections give details on how you can change these features. See the
Language Reference for a description of free-format and fixed-format fields.

Altering CRT-UNDER-HIGHLIGHTING Options
Pressing F2 or Con the Alter Configuration menu displays a submenu that allows
you to alter the type of highlighting used with the DISPLAY ... UPON
CRT-UNDER statement, the DISPLAY ... WITH UNDERLINE statement, or when
the UNDERLINE clause is used in the display screen section.

The following list gives the key you press to select each option:

F2 or I
F3 orU
F4 or R
F5 or B

Intensity; text appears bold
Underscore (the default); text is underlined
Reverse video; text appears in reverse video
Blink; text appears blinking.

Press Escape to return to the Alter Configuration menu. Some terminals do not
support bold and blink. Your particular terminal may not function with these
options.

Altering ACCEPT-DISPLAV Options
Pressing F3 or A on the Alter Configuration menu displays a submenu that allows
you to specify how you want the cursor to behave, and what you want the fields to
look like during an ACCEPT operation. You can choose to alter individual options
or all the available options.

10-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Press F2 or A to alter all of the ACCEPT/DISPLAY options. A description of each
option and its current value is displayed, with one option per display. Press .-J to
move from one display screen to the next. To change the value of an option, type
the number of your choice at the relevant prompt on each display screen. You can
alter as few or as many options as you wish.

Press F3 or I to alter individual ACCEPT/DISPLAY options. This displays a list of
the available options with a number next to each. Press F2 or/N to toggle to the
next page of options. Type the number of the option you want to alter, or move the
cursor to the relevant line, either by using the keys configured to move the cursor up
or down a line, or by typing /U to move the cursor up or /D to move the cursor
down. Press .-J to select the option you want. A description of that option and its
current value is then displayed. To alter the value of an option, type the number of
your choice at the prompt and press .-J.

The following is a list of the ACCEPT/DISPLAY options you can change:

• User function keys enable/disable

Allows you to disable or enable the user function keys. These are usually the
function keys on your keyboard. You can choose the following:

1. Disables all user function keys. If you press a user function key during an
ACCEPT, it is treated as an invalid key.

2. The default. Enables all user function keys. If you press a user function
key during an ACCEPT, the ACCEPT is terminated.

• Range of data keys accepted

Allows you to specify which characters are to be allowed during input to an
ACCEPT. You are prompted to enter the number of the option you require.

1. Characters with ASCII codes in the range 0 to 127 are allowed.

2. Characters with ASCII codes in the range 0 to 255 are allowed.

3. Characters with ASCII codes in the range 32 to 127 are allowed.

4. The default. Characters with ASCII codes in the range 32 to 255 are
allowed.

Note: Even if you enable characters within the range 0 to 31 (that is, you
choose either option 1 or 2), you may still not be able to enter some of
these characters into a field. This is because some of these characters
may form the start of some key sequences generated by function or
cursor keys. If these keys are enabled, they have priority over the data
keys.

• Prompt character

Allows you to specify the character to be displayed in the empty part of the field
during an ACCEPT. The system displays the selected character in all portions
of the field into which you have not yet entered data. The selected character
also indicates the extent of the field. This prompt character is used for all
picture types except PIC G.

Chapter 10. Configuring Your AIX VS COBOL System 10-17

• Prompt character used in PIC N fields

Allows you to specify the character to be displayed in the empty part of a PIC G
field during an ACCEPT. (PIC N is the same as PIC Gin AIX VS COBOL.
PIC N was part of an alternate implementation of DBCS support.)

• Pre-display of fields before an ACCEPT

Allows you to specify whether you want the contents of data fields to be dis
played automatically before an ACCEPT statement. If you do not specify auto
matic .display of data fields before an ACCEPT statement, the display screen
remains as it is. You can choose between the following options:

1. Pre-display of numeric-edited fields with numeric editing enabled (when the
cursor moves into them). No other pre-display occurs.

2. Pre-display of numeric fields with numeric editing enabled (when the cursor
moves into them). No other pre-display occurs.

3. Pre-display of all fields immediately before data is accepted into the field.

4. The default. Pre-display of all fields before any data entry is allowed.

• ACCEPT in a SECURE field

Allows you to specify how you want the cursor to behave, and what you want
the field to look like, during an ACCEPT into a SECURE field. Possible
options are as follows:

1. The default. No character display is shown on the display screen as each
character is entered, but the cursor advances to the next character position.

2. An asterisk(*) is displayed as each character is entered, and the cursor
advances to the next character position.

3. A space is displayed as each character is entered, and the cursor advances to
the next character position.

• Auto-skip between fields

Allows you to specify whether you want the cursor to move to the next field
automatically when the current field is full. This applies only to multiple data
fields within one ACCEPT statement. The available options are as follows:

I. No auto-skip. You must press an explicit field-tab or cursor key (other than
rubout) to move to the next field.

2. The default. Auto-skip enabled. If the current field is full, any cursor
movement, or pressing a character key, causes the cursor to move to the
next field.

Note: This option has no effect on display screen section ACCEPT operations.
Auto-skip is off by default for these operations. You can turn this
option on by specifying the AUTO phrase in your source program.

• Termination of an ACCEPT

Allows you to specify which actions terminate an ACCEPT, as follows:

I. The default. Pressing the terminate accept key.

2. Pressing the next field key when the cursor is in the last field of an accept.

3. Typing or retyping a data character in the last available character position
of an accept (provided auto-skip between fields is enabled).

10-18 User's Guide for IBM AIX VS COBOL Compiler/6000

Note: This option controls only normal termination. Function keys still termi
nate an ACCEPT, if they are enabled.

• Validation control if ACCEPT is terminated by a function key

Allows you to specify whether validation clauses must be satisfied, when termi
nating an ACCEPT using a function key. You can choose between the
following:

1. The default. No validation takes place.

2. Normal validation criteria must be satisfied for the current field.

• End of field effects

Allows you to specify how you want the cursor to behave, if you attempt to type
data once a field is full. You can select one of the following options:

1. The cursor moves beyond the end of the field, and overtyping is rejected.

2. The cursor stays at the end of the field, and overtyping is rejected.

3. The default. The cursor stays at the end of the field, and overtyping is
allowed.

• Field overflow buffers enable/disable

Allows you to specify whether data is to be saved in an overflow buffer when
displaced from the end of a field.

1. The default. Displaced data is saved in an overflow buffer.

2. Displaced data is not saved in an overflow buffer.

• Auto-restore during rubout in replacement editing mode

Allows you to specify the action of the rubout key in free-format fields, when in
replacement editing mode.

1. The default. Auto-restore is enabled. Previously overtyped characters are
restored, as characters are deleted.

2. Auto-restore is disabled. Deleted characters are replaced by the filler char
acter.

• Accepts into numeric-edited fields

Allows you to specify how you want numeric-edited fields to look during an
ACCEPT, as follows:

1. Input is accepted as for alphanumeric fields and is normalized to remove
illegal characters on exit from the field.

2. Same as for option 1; however, you can enter only digits, signs, decimal
points, or commas.

3. The default. Fields up to 32 characters long are accepted in formatted
mode. Characters other than digits, signs, and decimal points are rejected.
Fields are reformatted to show the editing symbols as data is entered. Fields
longer than 32 characters are accepted as for option 1.

4. Same as for option 3, with the exception that fields longer than 32 charac
ters are accepted as for option 2.

Chapter 10. Configuring Your AIX VS COBOL System 10-19

• Accepts into nonedited numeric fields

Allows you to specify how you want nonedited numeric fields to look during an
ACCEPT, as follows:

1. The default. Unsigned and embedded signed nonedited numeric fields with
a V in their PIC clauses are treated as though they were a PIC 9(m) field
followed by a PIC 9(n) field. Fields with separate signs are treated as
though they were PIC S9(m + n).

2. Same as for option 1 except that fields with a Vin the PIC clause are
treated as PIC S9(m + n).

3. All nonedited numeric fields are treated as alphanumeric fields.

Note: If you specify a nonzero SIZE clause, all nonedited numeric fields are
treated as free-format fields, regardless of the setting of this option.

• Enable/Disable auto-clear or pre-clear

Allows you to specify how you want a field to appear when the cursor first
enters it, as follows:

1. The default. No pre-clear or auto-clear takes place.

2. Pre-clear mode. The field is cleared to spaces or zeroes. Pressing the Undo
key restores the original contents of the field.

3. Auto-clear mode. If the first keystroke made after the cursor enters a new
field is a valid data character, the field is cleared to spaces or zeroes before
processing the character. An invalid data character turns auto-clear mode
off. Press the Undo key to restore the original contents of the field.

4. Same as for option 2, except that pressing the Undo key does not restore the
original contents of the field.

• Force a field to be updated if it is not altered

Allows you to specify how you want the contents of a field to appear if you
leave the field without altering it, as follows:

1. The default. The data item is not updated if the field is not altered.

2. The data item is always updated, even if the field is not altered. This option
has effect only under either of the following conditions:

The field is numeric or numeric-edited and the original data item did not
contain any numeric data

The field is right justified and the original contents of the field were not.

• Note end of field

Allows you to specify if ADIS notes the position of the last character entered
into a field:

1. The default. ADIS does not note the position of the last character.

2. ADIS notes the position of the last character entered into a field during an
ACCEPT.

This option applies only if the prompt character is disabled.

10-20 User's Guide for IBM AIX VS COBOL Compiler/6000

• RM/COBOL-style numeric data entry

Allows you to specify if you want your system to emulate RM/COBOL-style
entry of numeric data items, as follows:

1. The default. The standard IBM entry of numeric data items is enabled.
2. The RM/COBOL style of numeric and numeric-edited data entry is enabled.

• Restrict maximum size of a field

Allows you to specify if the size of ACCEPT fields is restricted to one line, as
follows:

1. The default. Fields are not restricted to one line.
2. Fields are restricted to one line.

• Control cursor positioning after an ACCEPT

Allows you to control where the cursor is placed at the end of an ACCEPT
operation, as follows:

1. The default. The cursor is moved to the next character position following
the end of the current field.

2. The cursor is left at its current position.

• Control behavior of UPDATE phrases

Allows you to specify if a CONVERT clause is implied if you specify an
UPDATE phrase, as follows:

1. The default. The CONVERT clause is not implied.
2. The CONVERT clause is implied.

This option is provided to enable you to emulate the behavior of RM/COBOL,
Versions 2.0 and 2.1.

• Selection of the function key list to be used

Allows you to specify which function key list your system will use to map
control and terminfo codes onto user function keys, as follows:

1. The default. The standard IBM user function key list.

2. The compatibility function key list. The list supplied with the AIX VS
COBOL system is the RM/COBOL function key list, but you may alter this
for compatibility with any supported dialect of COBOL.

• Control action of the COLUMN + n clause

Controls the location of the field in a SCREEN SECTION accept or display
when COLUMN + 1 is used, as follows:

1. The default. The field will be positioned immediately following the previous
field if COLUMN + 1 is used.

2. There will be a one-character gap between this field and the preceding field
if COLUMN+ 1 is used.

Chapter 10. Configuring Your AIX VS COBOL System 10-21

• Control the default color for SCREEN SECTION accepts or displays

Allows you to specify whether the current default screen color or white-on-black
is used when no color is specified, as follows:

1. The default. The current default screen color is used when no color is speci
fied.

2. White-on-black is used when no color is specified.

• Control of whether cursor left/right keys can exit a field

Allows you to control whether pressing a right or left arrow key should be able
to exit an input field, as follows:

1. The default. At the start or end of a field, the cursor left/right keys move to
the previous or next field, if there is one.

2. The cursor left and cursor right keys cannot move the cursor out of the
field.

• Left justification of free format edited numerics

Allows you to control whether free format edited numeric fields are left-justified
as they are entered, as follows:

1. The default. The field is not left-justified.

2. The field switch is left-justified, provided RM numeric handling is switched
off.

• Control action of Kanji modifier characters Daku-On and Han-Daku-On during an
accept

Allows you to control whether Daku-On and Han-Daku-On act as modifier
characters or not.

Press Escape to return to the Alter Configuration menu.

Altering Tab Stop Options
Press F4 or T on the Alter Configuration menu to display a submenu that allows
you to set a maximum of 80 tab stops. This submenu displays a ruler at the top of
the display screen on which the current positions of tab stops are shown by the letter
T. Use the Cursor Left and Cursor Right keys to move the cursor along the ruler.
Press one of the following keys to perform the function of your choice:

F2 or S Set tab stop

Sets a tab stop at the current cursor position. Tis displayed to show the
new tab stop.

F3 or D Delete tab stop

Deletes any existing tab stop. T, which shows the tab stop position, is
also deleted.

Finish editing tab stops

Saves the changes you have made to the positions of the tab stops.

Press Escape to return to the Alter Configuration menu.

10-22 User's Guide for IBM AIX VS COBOL Compiler/6000

Altering Indicators

Altering Messages

Pressing F5 or I on the Alter Configuration menu displays a submenu which allows
you to alter the text displayed by ADIS during an ACCEPT operation to indicate
various conditions. The text for each message can be up to 32 characters long.
Type your own message, then press .i to make the change.

Press one of the following keys to select the message you want to alter:

F2 or I Insert/ replace

Allows you to create your own messages for the insert/replace indicators
and the clear insert/replace indicators.

F3 or 0 Off-end-of-field

F4 or A

Allows you to create your own messages for the off-end-of-field and
clear-off-end-of-field in di ca tors.

Auto-clear

Allows you to create your own messages for the auto-clear and clear
auto-clear indicators.

Note: A limited amount of space in a configuration is available for message texts
for indicators. If the new messages you create are too large to fit into the
amount of space you have left in your configuration, an audible warning is
emitted.

If you receive this warning, you must write a shorter message.

After you have successfully entered your messages, press Escape to return to the
Alter Configuration menu.

Press F6 or Mon the Alter Configuration menu to display a submenu that allows
you to alter the text of messages displayed by ADIS during an ACCEPT operation,
to indicate various error conditions. You can choose to alter all the available
options or individual ones.

Press F2 or A to alter all of the messages. The current text of each message and the
conditions under which the text is output are shown, with one message per display
screen. Press .i to cycle from one display screen to the next. To alter any message,
type the text of the new message at the prompt on the appropriate display screen.
You can alter as few or as many messages as you wish.

Press F3 or I to alter individual messages. This displays a numbered list of the cur
rently defined messages. Press F2 or /N to move to the next display screen of avail
able messages. Type the number of the message you want to change, or position the
cursor on the appropriate line, either by using the keys configured to move the
cursor up or down a line, or by typing /U to move the cursor up or /D to move the
cursor down. Press .i to select that message. The message currently configured for
that error condition is displayed. Type the new message at the prompt on the
display screen. Press~ to enter the change and return to the list of messages.

Chapter 10. Configuring Your AIX VS COBOL System 10-23

You can alter the messages for the following conditions:

• Abort confirmation when the Abort key is pressed.
• Field must be completely filled.
• Field cannot be left empty.
• End of field has been reached.
• The cursor is past the end of field.
• Data is lost from end of field.
• Cannot insert here.
• Cannot delete here.
• Keystroke has no meaning here.
• No field beyond here.
• Cannot change character case here.
• Nothing available to retype.
• Nothing available to restore.
• Leading part of number is outside range.
• Trailing part of number is outside range.
• Sign is used incorrectly.
• Cannot use a negative value.
• No room for a two-byte character.
• Cannot use more than one decimal point.
• Must enter numeric digits.

Note: Only a limited amount of space in a configuration is available for message
texts. If the new messages you create are too large to fit into the amount of
space you have left in your configuration, an audible warning is emitted.

If you receive this warning, you must write a shorter message.

Once you have successfully entered your messages, press Escape to return to the
Alter Configuration menu.

Altering Message and Indicator Positions
Pressing F7 or Pon the Alter Configuration menu takes you to a submenu that
allows you to specify whether messages and indicators normally displayed by ADIS
during an ACCEPT operation are to be displayed. The submenu also allows you to
alter the position on the display screen at which the messages and indicators are dis
played.

Use the cursor keys to move around the display screen from field to field. If you
want error messages or a specific indicator to be displayed during an ACCEPT oper
ation, enter Y at the relevant field. Enter N if you do not wish them to be displayed.

Note: Even if you choose not to display error messages, the Abort Confirmation
message is always displayed when the Abort key is pressed during an
ACCEPT operation, unless you delete any text currently configured for this
message. Enter the Altering Messages submenu to do this.

If you do choose to display the messages or any specific indicators, you can alter the
default positions at which they are shown on your display screen during an
ACCEPT operation. Use the cursor keys to position the cursor in the relevant fields
and type the new lines and columns at which you wish the messages or indicators to
be displayed.

10-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Note: 0101 is at the top left-hand corner of your display screen. If you configure
more than one indicator to be displayed at the same position, and more than
one needs to be displayed at the same time, the off-end-of-field and auto
clear indicators take priority over the insert/replace indicator.

Press ,.J once you have made your entries to return to the Alter Configuration menu
and save your changes. Press Escape to return to the Alter Configuration menu if
you do not wish to save your changes, or if you have made none.

Altering ADIS Key Control
Pressing F8 or K on the Alter Configuration menu displays a submenu which allows
you to alter the function performed by any specific key, make a key act as an ADIS
function key, or disable it completely. An ADIS function key is a key which is used
during an ACCEPT operation to perform an editing function, such as moving the
cursor.

Note: You can achieve the same effect by modifying the cobkeymp file using keybcf.
You cannot use adiscf to alter the ANIMATOR or user function key codes,
although these can be changed using keybcf.

Pressing F2 or E on this submenu shows a display screen which allows you to enable
or disable ADIS control keys. A list of all the functions performed by the ADIS
function keys is displayed, together with the current status of each key. You can
alter the status of any key to be one of the following:

D Disabled. The key does not perform its associated function during an
ACCEPT operation.

E Enabled. The key performs its associated function during an ACCEPT
operation.

F Function key. The key acts as a function key during an ACCEPT opera
tion.

Use the cursor keys to move from field to field on the display screen, and type the
required letter in the field(s) you wish to alter.

Pressing F3 or F on this submenu displays a list of all the available function keys
and their current editing function. The function normally associated with a key can
be changed. You can map any function to any key that is defined in terminfo. Each
function key is associated with three fields that can be altered. These fields are as
follows:

Align field

Mapping field

Validate field

By default this field is set to N. If set to Y, a field is cleared
from the current cursor position to the end of the field during an
ACCEPT operation. Numeric fields are aligned to the decimal
point if it is to the right of the current cursor position.

This field contains the number of the function to which the asso
ciated key is currently mapped. Enter the number of the required
function if you wish to alter this.

If you set this field to Y, all validation criteria must be satisfied
before the cursor can leave a field during an ACCEPT operation.
If you enter N, validation criteria is not checked during an
ACCEPT.

Table 10-3 on page 10-26 shows the default settings for each of the above fields for
all of the ADIS function keys.

Chapter 10. Configuring Your AIX VS COBOL System 10-25

Table 10-3. Default Mappings of ADIS Function Keys

No. Function Vali- Align No. Mapped to
Name date Name

0 Terminate accept [YJ [NJ [OJ Terminate ACCEPT

1 Terminate program [YJ [NJ [lJ Terminate program

2 Carriage return [YJ [NJ [OJ Terminate ACCEPT

3 Cursor left [YJ [NJ [3J Cursor left

4 Cursor right [YJ [NJ [4] Cursor right

5 Cursor up [YJ [NJ [5J Cursor up

6 Cursor down [Y] [NJ [6] Cursor down

7 Move to start of screen [YJ [NJ [7J Move to start of screen

8 Move to next tab stop [YJ [NJ [l lJ Move to next field

9 Move to previous tab stop [Y] [NJ [12J Move to previous field

10 Move to end of screen [YJ [NJ [lOJ Move to end of screen

11 Move to next field [YJ [NJ [llJ Move to next field

12 Move to previous field [YJ [NJ [12J Move to previous field

13 Change case of character [YJ [NJ [13J Change case of character

14 Rubout character [YJ [NJ [14] Rubout character

15 Retype rubbed out character [YJ [NJ [15] Retype rubbed out character

16 Insert single character [YJ [NJ [16J Insert single character

17 Delete character [YJ [NJ [17J Delete character

18 Restore deleted character [YJ [NJ [18J Restore deleted character

19 Clear to end of field [YJ [NJ [19] Clear to end of field

20 Clear field [YJ [NJ [20J Clear field

21 Clear to end of screen [Y] [NJ [21] Clear to end of screen

22 Clear screen [Y] [NJ [22] Clear screen

23 Set insert mode [YJ [NJ [58J Insert toggle

24 Set replace mode [-] [-] [255] Undefined

25 Reset field (Undo) [YJ [NJ [25] Reset field (Undo)

26 Move to start of field [Y] [NJ [26] Move to start of field

Other values that can be mapped:

55: RM clear field
58: Insert toggle
61 : Back tab

56: RM back space 57: RM tab
59: Replace toggle 60: Forward tab
62: Restore 255: Undefined

Press..-' in either submenu after you have made your entries to return to the Alter
Configuration menu and save your changes.

Press Escape in either submenu to return to the Alter Configuration menu if you do
not wish to save your changes or if you have not made any.

10-26 User's Guide for IBM AIX VS COBOL Compiler/6000

Load Option
Selecting the load option by pressing F3 or L on the main adiscf menu loads an
existing configuration into memory. You must load a configuration into memory
before you can make any changes to that particular configuration.

When you select the load option, adiscf shows a display screen on which the avail
able configuration files in ADISCTRL are listed, as shown in Figure 10-5.

Number Name

Default Configuration
2 RM COBOL 2.0 Compatibility

ADISCF----Load-Conf iguration--

F1=/Help ~=/Up List Down=/Down List Enter=Select Configuration Escape
Select configuration using cursor keys or enter number [1]

Figure 10-5. Load Option

In the above example, this is the Default Configuration file. To select a file, enter its
number at the prompt, or move the cursor to the line specifying the required file
(either by using the keys configured to move the cursor up or down a line, or by
typing /U to move the cursor up, or /D to move the cursor down). When you move
the cursor to a file name, that file and its number appear at the prompt position at
the bottom of your display screen.

Once you have selected a configuration file, press ..-1. adiscf loads the configuration
file you have selected into memory from the ADISCTRL file.

You are then returned to the main adiscf menu. The configuration file you have just
selected appears on the information line. You can use the Alter option to alter this
configuration.

Chapter 10. Configuring Your AIX VS COBOL System 10-27

Save Option

Delete Option

Once you have altered a configuration file using the Alter option, press F4 or Son
the main adiscf menu to save your changes. You must do this if you want to use the
new version of your configuration. If you attempt to leave adiscf without first
saving any changes you have made to a configuration, you are asked to confirm that
you want to exit without saving any changes.

Press the relevant key to select the option of your choice:

F2 or U New configuration

Saves your configuration as a new configuration file within ADISCTRL.
You are prompted to type the name of this file.

F3 or 0 Overwrite existing configuration

Saves your configuration in ADISCTRL with the same name as an
existing configuration file.

Note: This option overwrites the existing file with that name.

adiscf displays a numbered list of the existing configuration files. Type
the number of the file you want to overwrite, or position the cursor on
the relevant line (either by using the keys configured to move the cursor
up or down a line, or by typing /U to move the cursor up, or /D to move
the cursor down).

After making your entry, press .-1 in either submenu to return to the main adiscf
menu and save your configuration file.

If you do not wish to save your configuration file, press Escape in either submenu to
return to the main adiscf menu.

Note: You can store up to a maximum of 16 configuration files in ADISCTRL. If
you try to save more than this number, you will receive the following
message:

The configuration file is full - No new entries allowed

If you receive this message, you must either delete or overwrite an existing
configuration before you can save any others.

To delete an existing configuration from the ADISCTRL file, select the delete option
on the main adiscf menu by pressing F5 or D.

adiscf then shows a display screen listing the existing configurations. Choose the
configuration you want to delete by entering its number at the prompt (either by
using the keys configured to move the cursor up or down a line, or by typing /U to
move the cursor up, or /D to move the cursor down).

Press .-1 to delete the selected configuration. The selected file is deleted from the.
ADISCTRL file and you are returned to the main menu.

Note: You cannot delete the configuration which is currently chosen. To delete this
configuration, you must first use the choose option to choose an alternative
configuration.

10-28 User's Guide for IBM AIX VS COBOL Compiler/6000

Choose Option
Select the choose option from the main adiscf menu by pressing F6 or C. This
allows you to choose the configuration to be used by ADIS when you next run your
programs.

adiscf shows a display screen that lists the available configurations. Choose a config
uration either by entering its number to the prompt or by positioning the cursor on
the relevant configuration name (either by using the keys configured to move the
cursor up or down a line, or by typing /U to move the cursor up, or /D to move the
cursor down).

Press ~ to choose the selected configuration and return to the main adiscf menu.
When you next run a program using your AIX VS COBOL system, ADIS will auto
matically use the configuration you have just chosen.

Press Escape to return to the main adiscf menu if you do not want to choose a con
figuration. The current configuration is then used by ADIS the next time you run a
program using your AIX VS COBOL system.

Note: Choosing a configuration specifies the configuration ADIS is to use when you
next run a program. Loading a configuration specifies the configuration you
wish to alter. Loading a configuration does not affect the chosen configura
tion, and choosing a configuration does not affect the loaded one.

Chapter 10. Configuring Your AIX VS COBOL System 10-29

10-30 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 11. Debugging Your Program Using ANIMATOR

Chapter 11. Debugging Your Program Using A NIM ATOR 11-1

Contents
About This Chapter
Introduction
Facilities Not Supported by ANIMATOR
Getting Started
Running ANIMATOR

Specifying Directives
ANIMATOR Directives
ANIMATOR Display Screen

Using ANIMATOR Commands
Help Display Screens .
Animating STOCKI
Using Break Points
Examining the Contents of Data Items
Ending Animation
Animating Your Own Programs
Using the ANIMATOR Switch
Command Line Switches
File Searches
Animating CALLed Programs
OS/VS COBOL-Style PERFORMS
Other Remarks about Animation

Cursor Control Keys
ANIMATOR Commands

Help
View
Align
exchange
Where
looKup .
word-left (<) and word-right (>)

Escape Key
Letter Commands

Step .
Go
next-If
Perform
Reset
Break
Env
Query
Find .
Locate
Text .
Do

ANIMATOR Command Summary

11-2 User's Guide for IBM AIX VS COBOL Compiler/6000

11-3
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-8
11-9
11-9

11-11
11-13
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-19
11-20
11-20
11-20
11-20
11-21
11-21
11-21
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-27
11-32
11-37
11-38
11-39
11-40
11-41

About This Chapter
This chapter describes how to use the ANIMATOR facility. ANIMATOR can be
used to interactively debug your AIX VS COBOL program. This chapter contains a
list of all the available ANIMATOR commands and a step-by-step example of how
to use ANIMATOR to inspect the demo program stockl.

Chapter 11. Debugging Your Program Using ANIMATOR 11-3

Introduction
ANIMATOR is an interactive program debugging tool for use with AIX VS
COBOL. ANIMATOR executes the intermediate code produced by the AIX VS
COBOL compiler, and simultaneously displays the source program on your display
screen. As execution proceeds through the intermediate code, ANIMATOR displays
the corresponding part of the source program on your display screen.

With ANIMATOR, you can see the sequence in which the statements of your
program are executed. You can halt the program at any time and display the con
tents of data items and change them. You can alter the sequence in which state
ments are executed or cause statements to be skipped.

These facilities allow you to debug your programs. You can also use ANIMATOR
to familiarize yourself with the logic of a program written by someone else.

To debug statically bound native code, you can use the symbolic debugger, dbx. See
the -g option in Chapter 4, "The COBOL Interface" for more information.

11-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Facilities Not Supported by ANIMATOR

Getting Started

ANIMATOR will not execute statements that implement the COBOL communi
cations facility (such as SEND, RECEIVE, or ENABLE). You can still animate
such programs, provided you use ANIMATOR commands to ignore all such state
ments.

Programs containing multi-reel file-handling syntax do not display prompts for reel
swaps when you animate them.

ANIMATOR was designed to run on an 80 by 25 character display screen. If you
run ANIMATOR on a display screen that is not 80 by 25, the screen integrity is not
guaranteed.

If you animate a program which contains READs from stdio, you can enter input by
keying it in and terminating with~. When the READ from stdio is executed, you
will not be prompted to enter the input.

When you animate programs that WRITE to stdout, the screen may be corrupted
when the WRITE is executed. You can restore the display by using the TEXT
command followed by the REFRESH command.

If you animate a program using the anim command without specifying an extension
and both the intermediate (.int) and generated code (.got) versions exist, the .gnt
version of the program is run.

If the .idy and copy source files that ANIMATOR requires are not in the directory
specified on the anim command line, you can use COBIDY to specify alternative
paths to search for the idy files and use COBCPY to specify alternative paths to
search for the copy files. See Appendix A "Environment Variables" for details.

Before you can animate a program, you must compile the program with the AIX VS
COBOL compiler using the -a flag. To compile the example program stockl for
animation, enter the following:

cob -a stockl.cbl ~

You can also compile a program by using the ref directive (you must use the -C flag
in the cob command to use the ref option). If you compile a program with ref, the
source listing produced by the compiler includes the addresses of data items within
the intermediate code produced by the compiler. You can use these addresses to
access data items when using ANIMATOR.

Chapter 11. Debugging Your Program Using ANIMATOR 11-5

Running ANIMATOR
Now that you have compiled stockl you can animate it by entering the following:

anim stockl.int ..-J

Specifying Directives
You can also specify directives after the program name on the command line, before
pressing .i to begin animation. Use the following format for directives:

[no] keyword "argument"

where:

no turns keyword off. no can either adjoin the keyword or be separated from it by
one or more spaces. no applies only to certain directives specified later in this
chapter. keyword is a directive. "argument" is a qualifier to keyword and applies to
only certain directives where specified in the list in "ANIMATOR Directives." The
argument must appear in either of the following forms:

• \"argument\"
• \ (argument\) .

The argument can adjoin keyword or be separated from it by one or more spaces.
When quotes are used, argument may contain spaces. When parentheses are used,
no spaces are permitted.

ANIMATOR Directives
Use the following directives to control the animation of your program:

[
no break l

break "procedure-name"
break =procedure-name

end

[no] flash

This directive causes ANIMATOR to zoom through the program to a
break point set at the paragraph or section you have specified in
procedure-name.

Default: no break

This directive indicates the end of the ANIMATOR directives. The
directive can be followed by text for use in ACCEPT data-name FROM
function-name statements where function-name is defined in the
SPECIAL-NAMES paragraph with the clause COMMAND-LINE IS
mnemonic-name.

Specifies whether you want the user display screen to flash during dis
plays to the screen.

Default: noflash

11-6 User's Guide for IBM AIX VS COBOL Compiler/6000

[

no zoom l zoom
zoom "program-name"
zoom =program-name

This directive causes ANIMATOR to execute in zoom mode. If
program-name is specified, normal step mode is restored when the sub
program with the given name is entered.

Default: nozoom

ANIMATOR Display Screen
When you run ANIMATOR, the display screen will clear and you can see the
ANIMATOR display screen and main menu, as illustrated in Figure 11-1.

38 PROCEDURE DIVISION.
39 SR1 SECTION.
40 DISPLAY SPACE.
41 OPEN 1-0 STOCK-FILE.
42 DISPLAY SCREEN-HEADINGS.
43 NORMAL INPUT.
44 MOVE SPACE TO ENTER-IT.
45 DISPLAY ENTER-IT.
46 CORRECT-ERROR.
47 ACCEPT ENTER-IT.
48 IF CRT-STOCK-CODE = SPACE GO TO END-IT.
49 IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR.
50 MOVE CRT-PROD-DESC TO PRODUCT DESC.
51 MOVE CRT-UNIT-SIZE TO UNIT-SIZE.
52 MOVE CRT-STOCK-CODE TO STOCK-CODE.
53 WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR.
54 GO TO NORMAL-INPUT.
55 END-IT.
56 CLOSE STOCK-FILE.
57 DISPLAY SPACE.
58 DISPLAY "END OF PROGRAM".
Animate-srock 1 Level=01-Speed=3. _____________ _
F1•Help F2•View F3-Align F4-eXchange FS-Where F6-looKup f.9/F10-word-</> Escape
Step Go Zoom next-If Perform Reset Break Env Query Find Locate Text Do 0-9-speed

Figure 11-1. ANIMATOR Display Screen

The ANIMATOR display screen shows the PROCEDURE DIVISION of the
example program stockl. The cursor is positioned on the line containing the first
executable statement in the program, DISPLAY SPACE.

At the bottom of your display screen, a menu of ANIMATOR commands is dis
played. See "Using ANIMATOR Commands" on page 11-8 for information on
how to use these commands.

Chapter 11. Debugging Your Program Using ANIMATOR 11-7

The source code of stockl and the command menu are separated by a dotted line,
the information line. The information line contains the following items about the
current state of the program:

• The name of the program, stockl

• The current PERFORM level, which tells you whether or not you are currently
PERFORMing a procedure

• The current animation speed, which tells you how quickly your program will run
when you start to animate it.

At the moment, ANIMATOR is not animating your program, but is waiting for you
to select one of the animator commands.

Using ANIMATOR Commands
This section describes how to use the ANIMATOR commands. The command
menu at the bottom of the display screen tells you which ANIMATOR commands
you can use. To select one of the commands in the command menu, press the key of
the letter capitalized in the comm.and in the command menu. For example, to select
the Break command, press the B key. You can use either b or B (ANIMATOR
commands are not case-sensitive). In this section, uppercase is used for keys that
select ANIMATOR commands, but both uppercase and lowercase letters can be
used to make your selection.

Note: Most commands are se]ected according to the initial letter of the command,
as in Break. There are some exceptions. For example, to select the eXchange
command, the uppercase letter is the second letter X, so you press X to select
this command.

Press B to select Break. The second line of the command menu is replaced by a
different menu:

Set Unset Cancel-all Examine If Do On-count

Note: Some commands have an immediate effect on your program when you select
them. Most commands cause a submenu to be displayed from which you can
make a further selection.

Press Escape to return to the main menu.

A function key from Fl to FlO is associated with each command (see the first line of
the command menu). You can select commands in either of two ways:

• Press the appropriate letter key, as described above.

• Press the appropriate function key, if it is provided on your keyboard.

Most of these function key commands appear on all the ANIMATOR command
menus.

11-8 User's Guide for IBM AIX VS COBOL Compiler/6000

Help Display Screens
Help display screens that describe the commands are available to you while you are
running the program. To look at a Help display screen, type Hand press .i or
press the Fl function key. To return to the main menu, press Fl or the space bar.

Each command has a Help display screen that describes the commands on its
submenu. Access a Help display screen by pressing Hor Fl after you select the
command.

For example, press B to select the Break command. Then, press H or Fl to get the
Help display screen describing Break and its associated command menu. Press Fl or
the space bar to return to the Break command menu, then press Escape to return to
the main command menu.

"Animating STOCKI" describes how to use some of the common commands to
animate stockl, particularly the following:

• Execute your program under the control of ANIMATOR.

• Set break points in your program to halt the execution at certain points.

• Look at and change the value of data items in a program while it is halted.

Animating STOCK1

Step Command

With ANIMATOR running, and the source of stockl on your display screen, you
can execute your program in any of the following three ways:

• Step through the program one statement at a time, using the Step command.

• Run the program continuously, using the Go command.

• Run the program as you would nonnally, without animating it, using the Zoom
command.

Select Step by pressing S. The cursor moves to the next statement in stockl, OPEN
I-0 STOCK-FILE.

You have executed the first statement in stockl, DISPLAY SPACE. Step causes
ANIMATOR to execute the current statement and stop.

Press S four more times to execute the next four statements in stockl. Each time
you press S, the cursor moves to the next statement to be executed. The cursor
moves past lines with NORMAL-INPUT and CORRECT-ERROR because these
are paragraph names and cannot be executed.

After you have pressed S four times, the next statement to be executed is the
following:

ACCEPT ENTER-IT.

Before you execute this statement, take a look at the display screen by pressing V to
select the View command. The ANIMATOR display screen is replaced by the
following:

STOCK CODE < >

DESCRIPTION < >

UNIT SIZE < >

Chapter 11. Debugging Your Program Using ANIMATOR 11-9

Go Command

This is the current state of the display screen as you would see it if you were running
stockl normally. The View command allows you to switch between the
ANIMATOR display screen and the user display screen so that you can keep track
of any display screen output that your program is producing. To get back to the
ANIMATOR display screen, press any key.

Press S again to execute the current statement, ACCEPT. The ANIMATOR display
screen is replaced by the user display screen that you have just viewed. Whenever
ANIMATOR executes an ACCEPT statement, you are automatically switched over
to the user display screen so you can enter the required data. Enter some appro
priate values in the three fields on the user display screen and press .i.

When you press .i, you complete the ACCEPT statement, and the user display
screen is replaced by the ANIMATOR display screen. The next statement to be exe
cuted is now the statement following the ACCEPT; an IF statement.

You can now execute your program statement by statement, using the Step
command. You can also use the Go command to animate your program so that
statements are executed without interruption. Press G to select the Go command.

G restarts stockl. ANIMATOR no longer stops after executing one statement, but
continues executing statements in sequence. As the cursor reaches the last statement
in paragraph CORRECT-ERROR, GO TO NORMAL-INPUT, the cursor moves to
the first statement in paragraph NORMAL-INPUT, the MOVE statement.

When the cursor moves to the second statement in CORRECT-ERROR, the IF
statement, press Escape. A message is displayed, as follows:

Keyboard interrupt

The message is shown at the bottom of your display screen, and ANIMATOR stops
animating the program.

You can interrupt program animation at any time by pressing Escape. This allows
you to use other ANIMATOR commands to find out what is happening in your
program.

You can change the speed at which your program runs while you are animating it.
On the command menu, the following entry is displayed at the bottom of the second
line:

0-9 = speed

The animation speed of a program is established by a number from 0 through 9. 0
is the slowest speed and 9 is the fastest. The following entry appears on the infor
mation line on your display screen:

Speed=3

This entry indicates that the current animation speed is 3. You can alter the ani
mation speed by pressing the appropriate digit key. To increase animation speed to
6, press 6, then press G to restart the program. This causes the cursor to move from
statement to statement more quickly. The information line is updated to reflect the
change in animation speed.

11-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Zoom Command

Let stockl run at speed 6 for a couple of cycles through CORRECT-ERROR~
entering appropriate data on the user display screen as it appears. To change the
animation speed to 1, press 1 while the ANIMATOR display screen is displayed.
The program now runs much more slowly. The execution of the program does not
need to be halted to change the ANIMATOR speed.

Press Escape to halt the program.

You can execute a program as though ANIMATOR is not there, using the Zoom
command. Select Zoom by pressing Z.

Select Z to restart stockl. The ANIMATOR display screen is replaced by the user
display screen. Enter some data and press .-1. When you animate stockl, this has
the effect of returning you to the ANIMATOR display screen. However, since
stockl is running in zoom mode, it behaves in the same way as when it is run
without ANIMATOR. The data that you enter is cleared from the display screen
and you are prompted to enter more data.

You can regain control of a program running in zoom mode by pressing Escape.
When you press Escape, you are returned to the ANIMATOR display screen with
execution stopped at whichever statement was about to be executed.

Using Break Points
You can use ANIMATOR to set break points in a program. A break point is a
point in your program at which execution automatically stops whenever that point is
reached. For example, you can set a break point immediately after a particular
statement so that ANIMATOR stops your program immediately after executing the
statement, allowing you to look at the effect the statement has.

To use Break, press B from the main command menu. The Break command menu is
displayed.

Setting Break Points
To set a break point in stockl so that ANIMATOR stops immediately before exe
cuting the ACCEPT statement at the start of CORRECT-ERROR, use the Cursor
Up and Cursor Down arrow keys to move the cursor from its current position to the
line containing the ACCEPT statement. Select Set by pressing S. Set sets a break
point on the statement at the current cursor position.

When you set a break point on the ACCEPT statement, ANIMATOR detects the
break point when it is about to execute the statement, and halts the program until
you restart it using Step, Go, or Zoom.

Start stockl by pressing G. When the ACCEPT statement is reached, a message is
displayed at the foot of the display screen:

Break-point encountered

The program stops without executing ACCEPT.

This break point remains active until you unset it. Refer to "Unsetting Break
Points" on page 11-12.

Chapter 11. Debugging Your Program Using ANIMATOR 11-11

You can set from 1 through 4 break points in a program. To set another break
point on the last statement in CORRECT-ERROR, the GO TO NORMAL-INPUT
statement, press B to get the Break command menu. Then, move the cursor to the
line containing the GO TO statement. Press S to set a break point on the statement.

Press G to start stockl. The program halts before executing the GO TO statement.
Press G again to restart the program. The program is again halted by the first break
point, on the ACCEPT statement. Press G again; the program halts at the GO TO
statement.

The ANIMATOR display screen does not indicate whether a break point is set on a
particular statement. You can find out where break points are set by using Examine
in the Break command menu.

Press B to select the Break command menu. Press E to select the Examine
command. The cursor moves to the line containing the ACCEPT statement, indi
cating that your first break point is set here. Now, press E again. The cursor moves
to the line containing the GO TO statement, indicating the position of your second
break point. Each time you select Examine, the cursor moves to the next break
point. When you have examined the last break point, select Examine again to
display the first break point again.

Unsetting Break Points
You can use the Unset command in the Break command menu to remove break
points you have set.

To remove the break point that you set on the ACCEPT statement, press B to get
the Break menu. Move the cursor to the line of the ACCEPT statement and press U
to Unset the break point. Unset removes the break point from the statement at the
current cursor position.

To check whether the break point has been removed, press G to start stock!. The
execution will not stop at the ACCEPT statement.

You can remove a break point by using the Cancel-all command. Cancel-all
removes all break points that are set. You do not need to position the cursor on a
line with a break point when you use Cancel-all.

To remove the remaining break point on the GO TO statement, press B to select the
Break command menu. Then, press C to select Cancel-all. Press G to restart stockl
and check that the break point is actually gone. Allow the program to cycle a few
times around the loop, entering appropriate data on the display screen, and stop the
program by pressing Escape.

11-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Examining the Contents of Data Items
Query allows you to look at the current contents of any data item in your program.

For example, you can use Query to look at the contents of the data item called
CRT-STOCK-CODE.

Press Q to select Query. The second line of the command menu is replaced by the
Query menu:

Cursor-name Enter-name Repeat Monitor-off Dump-list

To tell ANIMATOR which data item you want to view, do one of the following:

• Position the cursor on the name of the i tern and use the Cursor-name command.

• Use the Enter-name command and enter the name of the data item.

To use Cursor-name command, use the Cursor Up and Cursor Down arrow keys to
move the cursor to any line referring to the item CRT-STOCK-CODE (for instance,
the second line in CORRECT-ERROR). Then, use the Cursor Left and Cursor
Right keys to move the cursor anywhere inside the string CRT-STOCK-CODE.
Press c to select Cursor-name. Cursor-name selects and displays the contents of the
data item indicated by the current cursor position. The current contents of
CRT-STOCK-CODE are displayed at the bottom of the display screen.

To return to the main menu, press Escape. Press S twice to step through the next
two statements. The CRT-STOCK CODE contents display disappears from the
display screen.

You can monitor the data item to watch what happens to the contents of
CRT-STOCK-CODE as your program runs.

To monitor the data item, go to the Query menu by pressing Q. Next, select
CRT-STOCK-CODE in the same manner as with Cursor-name (see "Examining the
Contents of Data Items").

When the contents of CRT-STOCK-CODE are displayed, the Query menu is
replaced by the following menu:

F1or/H=help F2=/C=clear F3=/X=hex F4=/M=monitor
F7=/P=parent F8=/S=son F9=/B=brother /O=Other menu Escape

The Monitor command, shown on the Query menu, causes the contents of the item
you have selected to be displayed on the display screen when you return to the main
menu and restart the program. Each time the contents of that item are changed, the
changes are reflected in the display on the display screen.

Chapter 11. Debugging Your Program Using ANIMATOR 11-13

To select the Monitor command, press the/ key and the M key. In the cases where
ANIMATOR is capable of accepting input on the bottom line, you must press the
following two keys to select a letter command:

• The/ key, which acts as an escape key telling ANIMATOR to expect a
command rather than input

• The appropriate letter key.

Note: When you use two keys rather than one key to select a command, press the
keys sequentially rather than simultaneously. For example, press/, and then
press M.

As an alternative, you can use the appropriate function key to select a command.

Press /M to select Monitor. Now, press G to restart stockl. When ANIMATOR
executes the following statement:

MOVE SPACE TO ENTER-IT.

in NORMAL-INPUT, the displayed contents of CRT-STOCK-CODE are cleared
(replaced by spaces).

Press Escape to halt the program.

Ending Animation
You can end animation of a program in either of the following two ways:

• Allow the program to run to completion.
• Halt the program and leave ANIMATOR.

If your program executes a STOP RUN statement, the program returns control to
ANIMATOR, and ANIMATOR warns you that the program has terminated. You
can cause stockl to terminate normally by entering all spaces in the STOCK CODE
field on the user display screen (press ~ when the user display screen is shown). A
message will be shown at the bottom of the display screen:

STOP RUN encountered with RETURN-CODE=+0000:use Escape to terminate

You are prompted to press Escape to confirm that you want to leave the program.
If you press Escape, you are asked if you want to leave ANIMATOR. If you press
Y, ANIMATOR closes down; if you press N, ANIMATOR repositions the cursor on
the STOP RUN statement.

If you do not press Escape, ANIMATOR leaves the cursor positioned on the STOP
RUN statement and returns you to the main menu.

You can leave ANIMATOR at any time. If the program is animating or running in
zoom mode, press Escape to halt the program, then press Escape again to leave
ANIMATOR. You are prompted to confirm that you want to halt the program and
leave ANIMATOR.

11-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Animating Your Own Programs
To animate your own programs, do the following:

1. Compile your program with the -a flag. This causes the compiler to produce a
file with the extension .idy.

Ensure that all files are present when you animate the program. If the program
contains COPY statements, ensure that the copy files are also present.

2. Enter the following:

anim file-name ~

where file-name is the name of the intermediate code file produced when you
compile your program. Refer to "File Searches" on page 11-16 for details on
how ANIMATOR searches for the file to animate.

3. Enter ANIMATOR commands to control animation of your program.

Using the ANIMATOR Switch
You can animate a compiled program other than with the anim command. An AIX
environment variable called COBSW has several uses, one of which is to set the
ANIMATOR switch. To set the ANIMATOR switch, assign the value "+A" to
COB SW:

• If you are using sh or ksh:

COBSW= 11 +A 11 ~
export COBSW

• If you are using csh:

set COBSW= 11 +A 11

Once you have set the switch, run the AIX VS COBOL programs as usual with the
cobrun command. When the Run Time Environment (RTE) loads and enters an
intermediate code program, that program will be executed under ANIMATOR
control, provided the following conditions are true:

1. The ANIMATOR switch is set.

2. The .idy and .chi files for the program are present. The .idy file is produced only
if you compile the program with the -a flag (the default).

For example:

cob -a myprog.cbl ~

compiles myprog.cbl so that it can be animated. To animate myprog, do one of the
following:

• Enter the command:

anim myprog.int ...-1

• Set the ANIMATOR switch, using the appropriate command for your shell, and
run myprog with cobrun:

COBSW= 11 +A 11

cobrun myprog ..-!

Chapter 11. Debugging Your Program Using ANIMATOR 11-15

You can use the ANIMATOR switch to animate a program called by a nonCOBOL
program, or by a COBOL program that is not itself animated. The switch turns on
ANIMATOR whenever a program that can be animated is loaded and entered.

Command Line Switches

File Searches

When you run a program, you can set or unset a number of switches in the
command line.

If you animate a program, you cannot specify switch settings in the anim command.
You can, however, pass switch settings to an animated program with the COBSW
environment variable and the ANIMATOR switch. Do this by including the values
of switch settings in the value of COBSW, following the setting of the ANIMATOR
switch. For example:

COBSW= 11 +A -1 +4 11

cobrun myprog ..-1

animates myprog, unsets switch 1, and sets switch 4.

See Chapter 7, "Running an AIX VS COBOL Program" for more information
about switch parameters.

When you run ANIMATOR, a search is made along a specified path for the
COBOL source files (the .idy, .cbl, and .cpy files) required by the program to be ani
mated. The path ANIMATOR searches is either specified by default as the current
directory or by the path set up in the command line preceding the name of the file to
be animated.

If you animate your program using the +A run-time switch and you have
COBPATH set, the .cbl files must be in the same directory as the .int files.

You can specify alternative paths that ANIMATOR is to search if the .idy source
files that ANIMATOR requires are not in the directory specified in the command
line. ANIMATOR uses the AIX environment variable COBIDY. This environment
variable must be set up before execution of ANIMATOR is started.

To allow ANIMATOR to search for the .idy files it requires, you can set up
COBIDY with either a single path or a number of paths. You can set up a single
path in COBIDY as follows:

COBIDY="/usr/lib/cobol"

You can set up more than one path as follows:

COBIDY="/usr/l ib/cobol :/usr/myfile: 11
•••

In the examples above, the quotation marks are used to delimit the string. The quo
tation marks are not present in the value of the environment variable.

11-16
4"'\

User's Guide for IBM AIX VS COBOL Compiler/6000

When ANIMATOR fails to find the .idy files for the file to be animated in the path
specified in the command line, COBIDY is automatically appended to the file name.
ANIMATOR uses any paths that have been set up in COBIDY to search the speci
fied directories for the .idy files it requires. If ANIMATOR cannot find the .idy files
using any of the specified paths, and no other error condition has occurred, a f i 1 e
not found error condition is returned.

When more than one path has been specified in COBIDY, and when the use of a
path results in failure to find the files required for animation, the search on the next
specified path occurs only if the fi 1 e not found error condition is returned. If any
error condition other than fi 1 e not found is returned, the system will output the
specific error condition and will not attempt to search any subsequent paths.

Similar path searches use the COBCPY environment variable to find the copy files
needed. The .chi source must be in the current directory.

Animating CALLed Programs
When you animate a program, any programs that it CALLs are also animated, if
these programs have been compiled for animation by setting the -a flag with cob.

You can specify that a CALLed program is to be executed without animation. See
"Step" on page 11-23.

You can animate a CALLed program without animating the program that CALLs it
by using the anim command with the name of the CALLed program. If the
CALLed program does not expect any parameters from the CALLing program (if
the PROCEDURE DIVISION header has no USING phrase), this is sufficient.
However, if the CALLed program expects parameters from the CALLing program,
you must supply these parameter values before you execute the program.

For each parameter expected by the CALLed program, do the following:

1. Find an occurrence of the parameter name (such as the USING phrase of the
PROCEDURE DIVISION header) and move the cursor anywhere within the
name.

2. Press Q to get the Query menu

3. Press C to use the cursor-name command. A message is displayed at the foot of
the display screen:

Linkage record not linked; assign data area? Y/N

4. Press Y and enter the appropriate value in the displayed field.

OS/VS COBOL-Style PERFORMS
Nested PERFORM statements behave differently in IBM OS/VS COBOL and in
AIX VS COBOL. The difference lies in what happens when control reaches the exit
point of a PERFORM while inner PERFORMs are still active.

In AIX VS COBOL, only the innermost PERFORM exit point is active. When
control reaches an exit point for an outer PERFORM, no PERFORM return occurs.

In OS/VS COBOL, all PERFORM exit points are active simultaneously. When
control reaches an exit point for an outer PERFORM, a return from that
PERFORM will occur (and from any inner PERFORMs).

Chapter 11. Debugging Your Program Using ANIMATOR 11-17

You can specify that PERFORMs in an AIX VS COBOL program are to behave as
OS/VS COBOL PERFORMs by compiling the program with the directive perform
type = osvs. When you animate a program compiled with perform-type = osvs,
ANIMATOR displays a message warning you that OS/VS COBOL behavior is being
implemented (rather than AIX VS COBOL behavior) upon reaching a PERFORM
exit point when inner PERFORMs are still active. ANIMATOR prompts you to
indicate if you want future occurrences of this kind to be similarly flagged.

Other Remarks about Animation
You may encounter the following behaviors when using animation:

• If an I-0 error occurs during animation and no file status bytes were defined,
then the RTE error returned for the I-0 error will not indicate the correct status
code. To determine the correct status code, use the query command on the file
in which the error occurred to obtain the file status returned.

• If you animate a program that contains READs from stdin, you will not be
prompted to enter the necessary input when those READs are executed. When
a READ from stdin is executed, you can enter input simply by keying it in and
terminating it by hitting the Enter key.

• When you animate programs that WRITE to stdout, the screen may be cor
rupted when the WRITE is executed. You can restore the display by using the
Text command followed by the Refresh command.

• You can animate an ACCEPT statement which gets information from the
command-line. Use the end animator directive and give the command-line infor
mation after it. The animator will use this data when the ACCEPT statement
accessing the command-line is executed. See "ANIMATOR Directives" on
page 11-6 for more information on using the end animator directive.

Cursor Control Keys
You can use the following cursor control keys on your keyboard to alter the con
tents of the ANIMATOR display screen to show any part of your program:

Key

Tab

Back tab

Home

End

Function

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Moves the cursor to the next tabulated position.

Moves the cursor to the previous tabulated position.

Moves the cursor to column 8 of the current line. If you press
Home twice, the cursor moves to column 8 on the first line of the
display screen. If you press Home three times, the cursor moves to
the first line in the file.

Moves the cursor to the end of the current line. If you press End
twice, the cursor moves to the end of the bottom line of the display
screen. If you press End three times, the cursor moves to the last
line in the file.

Moves the cursor to column 8 of the next line.

Moves the cursor up one line.

11-18 User's Guide for IBM AIX VS COBOL Compiler/6000

i
Pg Up

PgDn

10 x pg up

10 x pg do

Ctrl-e

Ctrl-t

Ctrl-v

Moves the cursor down one line.

Displays the previous 20 lines of source.

Displays the next 20 lines of source.

Moves the cursor up 200 lines (or to the first line, if there are fewer
than 200 lines before the current line).

Moves the cursor down 200 lines (or to the last line, if there are
fewer than 200 lines after the current line).

Moves the cursor to the end of the file.

Moves the cursor to the top of the file.

Escapes to the shell. You are able to enter AIX commands. Type
"exit" to return to the animator.

ANIMATOR Commands

Help

This section describes each of the ANIMATOR commands in detail, with a brief
summary of each command.

The current line is the line of source on which the cursor is currently positioned.
The current statement is the statement in your program that the ANIMATOR will
execute next.

The current line and the current statement are not necessarily the same. When your
program is not executing, you can use the cursor control keys to move the cursor to
any portion of your source program.

You can invoke ANIMATOR commands in either of two ways:

• Press one of the function keys on your keyboard.

• Press one of the letter keys on your keyboard, using either the uppercase or low
ercase version of the letter.

Your keyboard may not have all the same function keys described here. Each func
tion key command has a letter equivalent, so all function key commands are avail
able. Check the contents of the command menu or its associated Help display screen
to verify which commands are available.

Each command menu has an associated Help display screen, providing a brief
description of the commands that you can select from the command menu. If you
select Help from any of the menus, a Help display screen will appear, describing the
commands in that menu. Select Help by pressing either Fl or H.

To leave a Help display screen and return to the command menu the screen
describes, press Fl or the space bar.

You can use Fl from any menu to display a Help display screen. However, on some
command menus, pressing H will not display a Help display screen. Instead, you
must press /H. A command menu will indicate whether you must press /H rather
than H.

Chapter 11. Debugging Your Program Using ANIMATOR 11-19

View

Align

exchange

Where

View switches between the ANIMATOR display screen and the user display screen
(the display screen you would see if you ran your program without animation).

When you are animating a program, your display screen shows the ANIMATOR
display screen, which shows the source of the program as it is animated. You can
view the user display screen from time to time, using View, to check that any display
screen output performed by your program is correct.

Note: If your program performs an ACCEPT, the system will automatically replace
the ANIMATOR display screen with the user display screen for the duration
of the ACCEPT.

Select View by pressing either F2 or V.

If you select View while the ANIMATOR display screen is shown, the ANIMATOR
display screen is replaced by the user display screen. To return to the ANIMATOR
display screen, press any key.

Align alters the contents of the ANIMATOR display screen. When you select Align,
the ANIMATOR display screen is adjusted so that the current line becomes the third
line of the ANIMATOR display screen.

Use the cursor control keys to position the cursor in the line you want to move.
Then, select Align by pressing either F3 or A.

eXchange moves the cursor from one part of a split display screen to another.

Text, described in "Text" on page 11-39, divides the ANIMATOR display screen
into two parts, each of which can display a different portion of your program.
Many commands require you to position the cursor within the displayed source, and
you cannot use the cursor control keys to move the cursor between the two portions
of a split display screen.

Select eXchange by pressing either F4 or X.

If you select eXchange when the ANIMATOR display screen is not divided into two
portions, the command has no effect.

Where moves the cursor to the current statement (the statement in your program
that ANIMATOR will execute next). Use this if you have used the cursor control
keys to display another part of your program and you want to return to the part of
your program that is about to be animated.

Select Where by pressing either F5 or W.

11-20 User's Guide for IBM AIX VS COBOL Compiler/6000

looKup
looKup adjusts the ANIMATOR display screen, by moving a selected line in your
program to the third line on your display screen. (You can use Align, described in
"Align" on page 11-20, only if the line you want as the third line of the
ANIMATOR display screen is already on the ANIMATOR display screen.)

Select looKup by pressing either F6 or K. At the prompt, enter the number of the
line you want to move to the third line on the ANIMATOR display screen. Then,
press~. The ANIMATOR display screen will be adjusted so that the line you have
specified becomes the third line of the ANIMATOR display screen.

You may want to have a listing of the program with line numbers shown. When
you compile the program, use the reseq option and the list option following the -C
flag to obtain a listing with line numbers.

word-left (<) and word-right (>)

Escape Key

word-left moves the cursor to the previous word in the ANIMATOR display screen.
Select word-left by pressing either F9 or <.

word-right moves the cursor to the next word in the ANIMATOR display screen.
Select word-right by pressing either Fl 0 or > .

The Escape key has three functions when you are running ANIMATOR:

• If you press Escape while the main menu is displayed and your program is not
being animated, you will leave ANIMATOR. You are prompted to confirm
that you do want to leave ANIMATOR, in case you have pressed Escape acci
dentally. Press Y if you want to leave ANIMATOR. Otherwise, press N and
you will be returned to the main menu.

• If you press Escape while your program is being animated, animation stops
immediately and you are returned to the main menu. However, if your program
is executing a format ACCEPT when you press Escape, you must press~ to .
complete the ACCEPT before the Escape takes effect.

• If you press Escape while a command menu other than the main menu is dis
played, you are returned to the main menu.

Letter Commands

Step

The first level of letter commands are those shown in the main menu. Several of
these commands, which display other command menus, are described in this section.

Step causes ANIMATOR to execute the current statement in your program and then
stop.

Select Step by pressing S.

Chapter 11. Debugging Your Program Using ANIMATOR 11-21

Go
Go causes ANIMATOR to start animating your program; that is, at any given
moment, the ANIMATOR display screen shows the portion of the source program
being executed, and the cursor appears on the program line that is currently being
executed.

Select Go by pressing G.

Halt animation at any time by pressing Escape. You are returned to the main menu.

You can select commands from the Go menu while your program is being animated.

Animation Speed (0-9)

Zoom

next-If

Alter the speed at which your program is animated by pressing any of the digit keys
0 to 9. Animation speed is expressed as a number from 0 through 9, where 9 is the
fastest speed and 0 is the slowest. The new animation speed takes effect when
ANIMATOR finishes animating the current program statement.

The current animation speed is displayed on the information line. When you enter
ANIMATOR, the animation speed is set at 3.

You do not have to be in the Go command menu to alter animation speed; press the
digit keys 0 to 9 from any ANIMATOR command menu. You can also alter the
animation speed while your program is not being animated. For example, you can
set the animation speed before you select Go.

Zoom causes your program to be executed without animation; that is, the
ANIMATOR display screen is replaced by the user display screen while your
program is running.

Select Zoom by pressing Z.

Note: While your program is executing without animation, it runs at the fastest pos
sible speed, regardless of the current setting of the animation speed.

You can halt your program at any time by pressing Escape. The user display screen
is replaced by the ANIMATOR display screen and you are returned to the main
menu. The cursor is positioned on the line containing the statement that
ANIMATOR will execute next.

Zoom in the main menu has the same effect as Zoom in the Go command menu.

The next-If command executes your program without animation up to, but not
including, the next IF statement. Your program then halts and returns to the
ANIMATOR display screen in which the IF statement will be the current statement.

You select the next-If command by pressing I.

Press Escape to halt your program before it reaches the next IF statement.

If your program does not contain another IF statement, it will run to completion.

11-22 User's Guide for IBM AIX VS COBOL Compiler/6000

Perform

Step

Exit

Reset

Perform displays a menu of commands that allow you to animate your program such
that:

• When a PERFORM statement is animated, the PERFORMed procedures are
executed without animation.

• When a CALL statement is animated, the CALLed subprogram is executed
without animation.

Use this facility to execute portions of your program at the fastest speed when you
are satisfied that they are bug-free.

Select Perform by pressing P.

Step causes ANIMATOR to execute the current statement and then stop, as with the
Step command in the main menu. However, if the next program statement is a
PERFORM or CALL statement, ANIMATOR will execute the PERFORMed
procedure(s) or the CALLed subprogram without animation.

You are returned to the main menu when the statement, procedure, or subprogram
has been executed.

Select Step by pressing S.

If the next program statement to be animated is in a PERFORMed procedure, Exit
executes the rest of the statements in the procedure without animation.

Select Exit by pressing E.

Your program will stop when execution leaves the PERFORMed procedure(s). The
cursor is positioned on the line that contains the next statement to be animated, after
the PERFORM statement that executed the procedure(s).

If you select Exit while execution is not within a PERFORMed procedure, a
message is displayed reminding you that the program is at PERFORM level 1, and
the command has no effect.

Reset displays a menu of commands allowing you to alter the sequence of execution
of your program in various ways.

Select Reset by pressing R.

Note: If you alter the sequence in which statements are executed in your program,
the program may produce unexpected results.

Chapter 11. Debugging Your Program Using ANIMATOR 11-23

Cursor-position

Next

Start

Quit-perform

Break

Set

Cursor-position makes the statement in the current line the current program state
ment. When you start animation, the statements are executed in sequence from this
point.

Use the cursor control keys to position the cursor in the appropriate line before you
select the command. Select Cursor-position by pressing C.

Next skips the current statement without executing it, and makes the statement fol
lowing the current statement the new current statement.

Select Next by pressing N.

Start makes the first statement in the Procedure Division the current program state
ment.

Select Start by pressing S.

If the current program statement is in a PERFORMed procedure, Quit-perform
causes ANIMATOR to ignore the rest of the statements in the PERFORMed
procedure(s), making the statement following the most recent PERFORM the
current program statement.

Select Quit-perform by pressing Q.

If you select Quit-perform when your program is not in a PERFORMed procedure,
a message is displayed reminding you that you are at PERFORM level I and the
command has no effect.

Break displays a menu of commands allowing you to set and unset break points in
your program. When ANIMATOR encounters a break point, it stops animation of
your program and returns to the main menu.

Select Break by pressing B.

Set sets a break point at the statement in the current line. The effect of this break
point is that when ANIMATOR reaches this statement, it stops before executing it.
The statement with the break point then becomes the current statement.

Use the cursor control keys to position the cursor in the appropriate line. Then,
select Set by pressing S.

You can set up to four break points in a program with Break. If you select Set
when you have already set four break points, or if you select Set for a statement that
already has a break point, the command has no effect.

11-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Unset

Cancel-all

Examine

If

Program break points are set only for the duration of the current ANIMATOR
session. If you set a break point and leave ANIMATOR without unsetting the
break point, the break point will not be set the next time you animate the same
program.

Unset removes the break point from the statement in the current line.

Use the cursor control keys to position the cursor in the appropriate line. Then,
select Unset by pressing U.

If you select Unset for a statement that does not have a break point set on it, the
command has no. effect.

Cancel-all removes all of the break points you have set in your program.

Select Cancel-all by pressing C.

If there are no break points set in your program, Cancel-all has no effect.

Examine allows you to see where you have set break points in your program. When
you select Examine for the first time, ANIMATOR moves the cursor to the line con
taining the first break point in your program. Each time you select Examine,
ANIMATOR moves the cursor to the next break point in your program. If you
select Examine after displaying the last break point in your program, ANIMATOR
moves the cursor back to the first break point.

Select Examine by pressing E.

Examine has no effect if there are no break points set in your program.

If sets a conditional break point at the statement in the current line. You can set a
conditional break point in addition to ordinary break points using the Set command.

Note: A conditional break point counts as one of the four available break points in
a program.

ANIMATOR will always stop animating your program when it encounters an ordi
nary break point. When ANIMATOR encounters a conditional break point, it tests
the condition that you associate with the break point. If the condition is true,
ANIMATOR stops animating your program (the conditional break point acts like
an ordinary break point). If the condition is false, ANIMATOR ignores the break
point and continues animating your program.

Select If by pressing I.

Chapter 11. Debugging Your Program Using ANIMATOR 11-25

Do

Use the cursor control keys to position the cursor in the appropriate line before you
select the command. When you select If, a message in the message area prompts
you to enter the condition to be associated with the break point. The condition that
you enter here must conform to the COBOL syntax for conditions (see the Language
Reference for details of the syntax for conditions). If you have already used If, the
condition you specified when you last used the command is displayed. Press .i to
enter the same condition again; otherwise, enter the new condition and press .i.

You can set only one conditional break point in a program. If you want to set
another conditional break point, you must first unset the current conditional break
point using the Unset command.

When you select If, the following menu of commands is displayed:

• Press Fl or /H to see a Help display screen on conditional break points.

• Press F2 or /C to clear the displayed condition to spaces.

• Press Escape to return to the main menu without setting a conditional break
point.

Note: You cannot set a conditional break point on a statement that already has an
ordinary break point or vice versa.

Do executes a COBOL statement input from the keyboard.

Select Do by pressing D.

The Do command allows you to input a COBOL statement that will be executed
when the break point in your program is reached. You can select the Do command
at any time during animation of your program.

The Do facility in the Break command menu is particularly useful if you wish to try
out a new COBOL statement without permanently changing your program. When
you select the Do command, a break point is automatically set at the current line.

ANIMATOR prompts you to enter a COBOL statement. Enter a syntactically valid
COBOL statement, and then press .i. When the break point set by the Do
command is reached during the animation of your program, the COBOL statement
you input is executed. Execution of your program continues once your input state
ment has been executed.

Note: The statement entered here is not included in the source code.

When you select Do, the following menu of commands is displayed:

• Press Fl or /H to see the Help display screen for the Do command.

• Press F2 or /C to clear the displayed COBOL statement to spaces.

• Press Escape to return to the main menu without entering a COBOL statement.

11-26 User's Guide for IBM AIX VS COBOL Compiler/6000

On-count

Env

Program-break

On-count is used in conjunction with a break point to allow you to specify the
number of times you want the program to run until the break point associated with
this value is activated and ANIMATOR stops animating the program.

When ANIMATOR encounters a break point with an On-count set, it calculates the
number of times that the break point has been reached. If this is equal to the value
set up in the On-count, ANIMATOR stops animating your program (the break point
acts as an ordinary break point). If the break point has been reached fewer times
than the value of the On-count, ANIMATOR ignores the break point and continues
animating your program.

Select On-count by pressing 0.

Use the cursor control keys to position the cursor in the appropriate line before you
select the command. When you select On-count, a message in the message area
prompts you to enter the number of times the break point is to be reached before it
is activated. The number of times the break point is to be reached must be greater
than one. If you have already used On-count, the number of times the break point is
to be reached is displayed (it is the number you specified when you last entered the
command). Press Escape to enter the same number of times the break point is to be
reached again, and to return to the Break command menu to set a break point.
Otherwise, enter the new value for the number of times the break point is to be
reached, and press~ to return to the Break command to set a break point. The
on-count numbers must be set before its break point is set.

You can set up to four On-counts in a program, one for each break point, up to the
maximum number of break points allowed.

When you select On~count, the following menu of commands is displayed:

• Press Fl or /H to see the Help display screen for the On-count command.

• Press F2 or /C to clear the displayed value of On-count to zero.

• Press Escape to return to the Break command menu if the displayed On-count is
to be unchanged.

Env displays a command menu that allows you to control various aspects of the
environment in which your program is animated.

Select Env by pressing E.

Program-break displays a command menu that allows you to specify when
ANIMATOR is to take control of a program that you are executing without ani
mation when that program contains CALL statements.

Note: Make the appropriate selection from this command menu before using the
Zoom command.

Select Program-break by pressing P.

Chapter 11. Debugging Your Program Using ANIMATOR 11-27

Threshold-level

The following options are provided on the Program-break command menu:

This: When you select This and you use the Zoom command to execute your
program, ANIMATOR will execute your program without animation until
ANIMATOR returns to the program from a CALLed subprogram. ANIMATOR
will then stop executing your program and return you to the main menu. In effect,
you are setting a break point on the statement immediately after each CALL state
ment in your program.

Select This by pressing T.

Select: Select allows you to specify the name of a CALLed subprogram that you
want to animate. When you are executing your program without animation,
ANIMATOR will stop your program at the first statement in the named subpro
gram.

Select the Select command by pressing S.

A message in the message area prompts you to enter the name of the subprogram
that you want to animate. Enter the name of the subprogram and press ~ .

Note: Select and This are mutually exclusive. If you first select This and then select
the Select command before executing your program in zoom mode, Select
will take effect rather than This. If you reverse the order, This will take effect
rather than Select.

Cancel: Cancel cancels the effect of the command you have chosen from this menu
(This or Select). After selecting Cancel, you can execute your program in zoom
mode without ANIMATOR taking control at any point.

Select Cancel by pressing C.

If you have not previously selected either This or Select, Cancel has no effect.

Threshold-level allows you to indicate to ANIMATOR that PERFORMed proce
dures and CALLed subprograms below a certain level are to be executed without
animation.

The current PERFORM level is displayed on the information line. When you enter
a program at the beginning, the PERFORM level is 01, indicating that you are not
in a PERFORMed procedure.

As execution passes into a PERFORMed procedure, the PERFORM level increases
by one. As execution passes out of a PERFORMed procedure, the PERFORM level
decreases by one.

Note: In-line PERFORMs do not alter the PERFORM level.

Entering a CALLed subprogram also affects the PERFORM level, as shown in
Figure 11-2 on page 11-29.

11-28 User's Guide for IBM AIX VS COBOL Compiler/6000

Main program:

CALL 11 PROGA 11

Subprogram PROGA:

CALL 11 PROGB 11

Subprogram PROGB:

EXIT PROGRAM.

EXIT PROGRAM.

PERFORM levels
Main PROGA PROGB

01

02 01

02 01

03 02 01

03 02 01

02 01
02 01

01

Figure 11-2. Example of CALL Statement/PERFORM Level Relationship

As execution passes into a CALLed subprogram, the PERFORM level of the
CALLing program increases by one. As execution returns from a CALLed subpro
gram, the PERFORM level of the CALLing program decreases by one.

Threshold-level displays a menu of commands that allow you to set and unset the
threshold-level. Whenever the PERFORM level is greater than the threshold level,
your program is executed without animation.

Set Threshold-level by pressing T.

The following options are provided on the Threshold-level command menu:

Set: Set sets the threshold level to the current value of the PERFORM level, as
displayed in the information line.

Set Set by pressing S.

Unset: Unset unsets the threshold level, indicating that all PERFORM levels in
your program are animated.

Select Unset by pressing U.

Chapter 11. Debugging Your Program Using ANIMATOR 11-29

Until
Until allows you to set a general conditional break point in your program. The con
ditional break point that you can set using If in the Break command menu is associ
ated with a particular statement; that is, ANIMATOR only tests the condition when
it executes that statement. The general conditional break point applies to the whole
program. ANIMATOR tests the condition before executing each statement. As
long as the condition remains false, ANIMATOR continues to animate your
program. As soon as the condition becomes true, ANIMATOR stops animating
your program and returns you to the main menu. When animating stops due to a
general conditional break point, this break point is unset.

Select Until by pressing U.

This displays a menu of commands that allow you to set and unset a general condi
tional break point.

Note: The general conditional break point slows the execution of your program
considerably, even at maximum animation speed. Use ordinary break points
wherever possible.

The following options are provided on the Until command menu:

Set: Set sets a general conditional break point for your program. You can set only
one general conditional break point in a program. A general conditional break
point does not count as one of the four available break points.

Select Set by pressing S.

ANIMATOR then prompts you to enter the condition for the break point. This
condition must conform to the syntax for COBOL conditions (see the Language
Reference for details). Enter the condition and press .i to set the break point and
return to the main menu.

If you have already set a general conditional break point, selecting Set displays the
associated condition.

When you select Set, the following menu of commands is displayed:

• Press Fl or /H to see a Help display screen describing the general conditional
break point.

• Press F2 or /C to clear the displayed condition to spaces. This is useful if you
are altering a break point that you have already set.

• Press Escape to return to the main menu without specifying a break point.

Note: The general conditional break point, like all other break points, exists only
during the current ANIMATOR session. If you set a general conditional
break point and leave ANIMATOR, the break point will not be set when you
next animate the same program.

Unset: Unset removes the general conditional break point that you have set. If you
have not set a break point, the command has no effect.

Select Unset by pressing U.

11-30 User's Guide for IBM AIX VS COBOL Compiler/6000

Back track

Examine: Examine displays the condition associated with the general conditional
break point. If you want to change this condition, you must use the Set command.

Select Examine by pressing E.

If you have not set a general conditional break point, the command has no effect.

Back track allows you to record and retrace the statements executed in the execution
path prior to the statement where ANIMATOR stopped animating your program.
Before you can retrace your program using Back track, the execution path must be
recorded.

Select Back track by pressing B.

The following options are provided on the Back track command menu:

Set: Set is used to start the recording of the execution path.

Select Set by pressing S.

From 1 through 100 executable statements can be recorded while the main program
is being run. If a CALL statement is the next statement to be executed, you are able
to record from 1 through 100 additional statements in that CALLed procedure.

Unset: Unset is used to stop the monitoring of the execution path.

Note: If you want to examine the execution path, do so before using Unset, as
Unset will delete the record of the path.

Select Unset by pressing U.

Examine: Examine is used to retrace the statements executed prior to the statement
where ANIMATOR stopped animating. Use the Cursor Up and Cursor Down keys
to move through the backtrack trail. The current statement indicates the executable
statement reached in your retracing.

Select Examine by pressing E.

When you have traced backward 100 statements in a program, have reached the
start or the end of a program, have reached the statement at which you started
recording the execution path, or have reached the statement at which ANIMATOR
stopped animating your program, a message is displayed in the message area to indi
cate that you have reached the end of the backtrack trail.

Threshold-level: Threshold-level in the Examine command menu has the same effect
as Threshold-level in the Env command menu, but only for PERFORMed proce
dures.

Press Escape to return to the Examine command menu.

Chapter 11. Debugging Your Program Using ANIMATOR 11-31

Query

Cursor-name

Enter-name

Query displays a menu of commands allowing you to display and alter the contents
of any data item in your program.

Select Query by pressing Q.

Cursor-name displays the contents of the data item whose name is indicated by the
current cursor position.

Select Cursor-name by pressing C.

Use the cursor control keys to position the cursor anywhere within the appropriate
data item name before you select the command. Any occurrence of the data item
name will serve the purpose.

If you select Cursor-name while the cursor is not positioned within the name of a
data item, ANIMATOR warns you that this is not a data item.

Enter-name displays the contents of the data item you enter.

Select Enter-name by pressing E.

ANIMATOR prompts you to enter the name of the data item.

Enter the appropriate name (in uppercase or lowercase) and press .-1 to display the
contents of the data item.

You have the option of specifying an offset with the data item name. For example,
if your program contains an item called ALPHA-ITEM whose current value is the
string "A short string", then when you select Enter-name and give the name
ALPHA-ITEM, the displayed contents will be:

A short string

If, however, you select Enter-name and give the data item name as follows:

ALPHA- ITEM + 4

the displayed contents will be:

ort string

You must leave at least one space on either side of the"+".

You can also specify a data item when you select Enter-name by giving the
hexadecimal address of the item within the Data Division. To get the correct
address, you have to compile the program with the ref directive to get a source
listing that includes hexadecimal addresses.

When you choose Enter-name, a menu of commands is displayed, as follows:

1. Press Fl or /H to show a Help display screen.

2. Press F2 or /C to clear the displayed data item name to spaces.

3. Press Escape to return to the main menu without entering a data item name.

11-32 User's Guide for IBM AIX VS COBOL Compiler/6000

Repeat

Monitor-off

Dump-list

Repeat displays the contents of the data item that you last displayed. If you have
not previously displayed the contents of any data item, the command has no effect.

Select Repeat by pressing R.

Monitor-off switches off monitoring of the contents of a data item. See "Monitor"
on page 11-34 for details of data item monitoring.

Select Monitor-off by pressing M.

If you are not currently monitoring the contents of a data item, the command has no
effect.

Dump-list allows you to save, on fixed-disk, a list of data values you have created for
use as test data. You can create this list using the commands on a menu that you
display by selecting the Other menu command after selecting and displaying the con
tents of a data item. See "Other Menu" on page 11-36 for more information about
value lists.

Select Dump-list by pressing D.

The data value list is saved in a file called name.ILS, where name is the name of
your program.

Note: If you have already saved a value list from this program, the file containing
the list will be overwritten.

When you animate this program in a later ANIMATOR session, this list is automat
ically restored from the file.

Chapter 11. Debugging Your Program Using ANIMATOR 11-33

Commands That Operate on a Selected Data Item
When you have selected a data item (using either the Cursor-name, Enter-name, or
Repeat command), the Query command menu is replaced by another menu of com
mands that allow you to manipulate the displayed value in various ways. The Query
command menu is replaced by one of two menus:

• The text menu, in which the contents of the selected data item are displayed as
ASCII characters

• The hex menu, in which the contents of the selected data item are displayed both
in ASCII and hexadecimal characters.

When you select a data item, the text menu is displayed by default, but you can
switch between the two menus using one of the commands on the menu. Most of
the commands described in the following sections are common to both menus.

Once you have selected a data item, the name of the item appears in the information
line.

As long as either the hex or text menu is displayed, you can alter the contents of the
selected item by typing in a new value. When you press .-1 this new value will
replace the previous value of the item. If you press Escape instead of .-1 , the new
value you have entered is ignored.

Clear: Clear clears the contents of the selected data item to spaces.

Select Clear by pressing either F2 or /C.

heX and Text: heX appears only in the text menu. heX switches you over to the hex
menu.

Select heX by pressing either F3 or /X.

Text appears only in the hex menu. Text switches you over to the text menu.

Select Text by pressing either F3 or /T.

Monitor: Monitor allows you to display the contents of the selected data item
throughout the execution of your program. If you do not monitor the selected data
item, the display of its contents will disappear when you return to the main menu. If
you do monitor the selected data item, the display of its contents remains on the
display screen and will be updated as the value of the data item changes during exe
cution of your program.

Note: You can monitor only one data item in your program.

Select Monitor by pressing either F4 or /M.

You can discontinue monitoring of a data item by using Monitor-off in the Query
command menu.

11-34 User's Guide for IBM AIX VS COBOL Compiler/6000

Up-table and Down-table: Up-table and Down-table appear on the menu only if the
data item that you select is a table.

When you select a table item using the Query command, the information line will
contain the name of the item and the current value of the variable used as a sub
script. The displayed value at the foot of the display screen represents the contents
of that table entry.

Use Up-table and Down-table to select other entries in the same table and display
their contents.

If you select Up-table, the previous table entry is selected and its contents are dis
played.

Select Up-table by pressing either F5 or /U.

If you select Down-table, the next table entry is selected and its contents are dis
played.

Select Down-table by pressing either F6 or /D.

If you attempt to select an entry that is not in the table (before the first entry or
after the last entry), ANIMATOR warns you that you cannot do this.

Parent: Parent selects and displays the contents of the group item in which the
selected data item occurs.

Select Parent by pressing either F7 or /P.

If the selected data item is not contained within a group item, the command has no
effect.

Son: Son selects the first higher level item within the selected item and displays its
contents.

Select Son by pressing either F8 or /S.

If the selected data item is an elementary item, the command has no effect.

Brother: Brother selects and displays the contents of the next data item with the
same level as the selected data item.

Select Brother by pressing either F9 or /B.

heX/ ASCII: heX/ ASCII appears only in the hex menu, and moves the cursor
between the hexadecimal and ASCII display of the contents of the currently selected
data item.

Select heX/ASCII by pressing either FlO or /X.

Chapter 11. Debugging Your Program Using ANIMATOR 11-35

Other Menu: Other Menu displays a menu of commands allowing you to create and
manipulate a list of data values. This facility allows you to create a set of test data
for your program. Once you have selected a data item using Query, you can select a
value from this list of data values and assign it to the selected data items.

Select Other Menu by pressing /0. To return from the menu displayed by Other
Menu, press /0 again.

Create a list by using the Add command to add values to the end of the list. You
can also use Before and After to add values within the list. The size and type of
value that you can add to the list is determined by the PICTURE clause of the
selected data item. Use Locate to display the declaration of the selected item.

Delete values from the list using Delete. Alter values in the list using Update. Scroll
up and down through the items in the list using Previous and Next.

Update: Update alters the.value of the currently displayed item in the value list.

Use Next or Previous to display the value list item you want to alter and enter the
new value. Now select Update by pressing either F2 or /U.

Add: Add adds a new value to the end of the value list.

Enter the value to be added to the list and select Add by pressing either F3 or /A.

Delete: Delete deletes a value from the value list.

Use Next and Previous to display the value that you want to delete.

Select Delete by pressing either F4 or /D.

Alternatively, enter the value that you want to delete from the list and select Delete.
If that value occurs anywhere in the list, it will be deleted; otherwise the command
has no effect.

Next: Next displays the next item in the value list.

Select Next by pressing either F6 or /N.

Previous: Previous displays the previous item in the value list.

Select Previous by pressing either F5 or /P.

Before: Before inserts a new value into the value list immediately before the cur
rently displayed list item.

Use Previous and Next to display the list item where you want to make the insertion,
then enter the value to be inserted.

Select Before by pressing either F7 or /B.

11-36 User's Guide for IBM AIX VS COBOL Compiler/6000

Following: Following inserts a new value into the value list immediately after the
currently displayed list item.

Use Previous and Next to display the list item where you want to make the insertion,
then enter the value to be inserted.

Select Following by pressing either F8 or /F.

Locate: Locate displays the declaration of the selected data item.

Select Locate by pressing either F9 or /L.

ANIMATOR adjusts the display screen to show the line in which the selected data
item is declared.

Selecting a Value from the Value List
Once you have created a list of data values using the commands in this menu, you
can assign any of these values to the selected data item. To do this, use Previous
and Next to select a particular list value, then press~. The displayed list value is
now assigned to the selected data item and you are returned to the main menu.

Effect of Cursor Control Keys on a Selected Data Item

Find

Once you have selected and displayed the contents of a data item using Query
command menu, you can use the cursor control keys to move the cursor through the
displayed value:

~ Moves the cursor left one character in the displayed value

__.., Moves the cursor right one character in the displayed value

t Displays the previous 80 bytes of a data item in the text menu, or the
previous 16 bytes of a data item in the hex menu

! Displays the next 80 bytes of a data item in the text menu, or the next 16
bytes of a data item in the hex menu.

Note: If you change any characters in the displayed contents when using the cursor
control keys to move through the displayed value, the changes take effect as
soon as you scroll the changed characters out of the displayed area. These
changes are made even if you later return to the main menu by pressing
Escape instead of ~ .

Find searches your program for the next occurrence of a specified character string.

Select Find by pressing F.

You are prompted to enter the character string for which you are searching. If you
have used Find previously in the same session, the last string that you specified is
displayed. Press~ if you want to search for the same string again.

Chapter 11. Debugging Your Program Using ANIMATOR 11-37

Locate

Cursor-name

Otherwise, enter the character string for which you want to search. You can enter a
string up to 32 characters long. Press .i, and ANIMATOR positions the cursor
immediately after the next occurrence of the specified string in your program. If
ANIMATOR cannot find an occurrence of the string, the following message is
displayed:

Not found

and the cursor is not moved.

Find has the following characteristics:

• If the string for which you are searching is in uppercase, you must specify the
search string in uppercase. If you are searching for a lowercase string, you must
specify the search string in lowercase.

• Find searches forward only, starting from the current cursor position.

• You can include significant spaces at the end of the search string by terminating
the search string with the character#.

• If you terminate the search string with the characters #M, ANIMATOR will not
search the contents of any COPY files.

When you select Find, the following menu of commands is displayed:

• Press Fl or /H to see a Help display screen describing the Find command.

• Press F2 or /C to clear the displayed search string to spaces.

• Press Escape to return to the main menu without specifying a search string.

Locate displays a menu of commands allowing you to locate the definition of any
data item, file, or procedure in your program.

Select Locate by pressing L.

Cursor-name locates the declaration of the item indicated by the current cursor posi
tion.

Select Cursor-name by pressing C.

Use the cursor control keys to position the cursor anywhere within an occurrence of
the data item, file, or procedure name before you select the command.

ANIMATOR moves the cursor to one of the following locations:

• The line in which a data item is declared

• The first line of the SELECT clause for a file

• The paragraph or section name at the head of a procedure.

11-38 User's Guide for IBM A.IX VS COBOL Compiler/6000

Enter-name

Text

Split

Enter-name locates the declaration of a data item, file, or procedure whose name you
enter.

Select Enter-name by pressing E.

If you have already used Enter-name in this session, the last name you entered is
displayed. Press~ to use this name again.

Enter the name of the data item, file, or procedure for which you are searching, and
press ~. ANIMATOR moves the cursor to one of the following locations:

• The line in which a data item is declared

• The first line of the SELECT clause for a file

• The paragraph or section name at the head of a procedure.

ANIMATOR warns you if it cannot locate the item whose name you enter.

When you select Enter-name the following menu of commands is displayed:

• Press Fl or /H to see a Help display screen about the Enter-name command.

• Press F2 or /C to clear the displayed name to spaces.

• Press Escape to return to the main menu without specifying a name.

Text displays a menu of commands which allow you to alter the format of the
ANIMATOR display screen.

Select Text by pressing T.

Split divides the ANIMATOR display screen into two separate portions.

Select Split by pressing S.

Use the cursor control keys to move the cursor to the line at which you want to split
the ANIMATOR display screen before you select the command.

When you select Split, a line is drawn across the display screen on the current line
and the text in the top portion is duplicated, as far as possible, in the lower portion.
The cursor is positioned in the lower portion of the display screen.

You cannot move the cursor from one part of a split display screen to the other
using cursor control keys. You must use eXchange (press X or function key F4).
The cursor control keys affect only the portion of the split display screen in which
the cursor is currently positioned.

Chapter 11. Debugging Your Program Using ANIMATOR 11-39

Join

Refresh

Do

When you animate your program, only the portion of the ANIMATOR display
screen that contains the current statement is affected.

You can restore a split display screen to a single display screen using Join. Under
certain circumstances, a split display screen will be restored to a single display screen
automatically. If your program CALLs and animates a subprogram, a split display
screen will be restored to a single display screen upon entering the subprogram
(although you can stop animation in the subprogram and split the display screen
there). Moreover, when control returns to the CALLing program, the split display
screen is no longer split.

Join restores a split display screen to a single display screen.

Select Join by pressing J.

Refresh repaints the ANIMATOR display screen, which may become corrupted as a
result of standard ANSI DISPLAY statements.

Select Refresh by pressing R.

Do executes a COBOL statement input from the keyboard.

Select Do by pressing D.

ANIMATOR prompts you to enter a COBOL statement. You can enter a valid
COBOL statement here. When you enter the statement, press .i. ANIMATOR will
execute the statement immediately.

The statement you enter here is not included in the source code. In particular, the
statement will not be executed when ANIMATOR reaches the same point in your
program again unless you reenter it using Do.

When you select Do, the following command menu is displayed:

• Press Fl or /H to see a Help display screen about the Do command.

• Press F2 or /C to clear the displayed COBOL statement to spaces.

• Press Escape to return to the main menu without entering a COBOL statement.

11-40 User's Guide for IBM AIXVS COBOL Compiler/6000

ANIMATOR Command Summary

Table 11-1 (Page

Main Menu

Help

View

Align

eXchange

Where

looK-up

<

>

Step

Go

Zoom

next-If

Perform

Reset

The ANIMATOR commands are listed with a brief description in Table 11-1. You
can select many of these commands by pressing the appropriate function key speci
fied in the relevant menus.

l of 4). ANIMATOR Command Summary

Submenu ANIMATOR Action

Display Help display screen. Also available from each submenu.
Some submenus may indicate that you must press /H rather than
H. Press the space bar to return from the Help display screen.

Display user display screen. Press any key to return to
ANIMATOR screen.

Make current line the third line of the ANIMATOR display
screen.

Move cursor to other portion of a split display screen.

Move cursor to current statement.

Make specified line number third line of the ANIMATOR
display screen.

Move cursor to previous word in source.

Move cursor to next word in source.

Execute current statement and stop.

Animate program.

0-9 Set animation speed (0 slowest, 9 fastest).

Zoom Execute program without animation.

Execute program without animation.

Execute program without animation up to, but not including, the
next IF statement.

Control animation of PERFORM and CALL.

Step Execute current statement and stop. If current statement is
PERFORM or CALL, execute procedure or subprogram without
animation before stopping.

Exit If current statement is in a procedure or subprogram, execute
rest of procedure or subprogram without animation and then
stop.

Alter location of current statement.

Cursor-position Statement on current line becomes the current statement.

Next Skip current statement and make the next statement the current
statement.

Start First executable statement in Procedure Division becomes the
current statement.

Quit-perform If current statement is in a procedure, make the current state-
ment the statement that follows the PERFORM.

Chapter 11. Debugging Your Program Using ANIMATOR 11-41

Table 11-1 (Page 2 of 4). ANIMATOR Command Summary

Main Menu Submenu ANIMATOR Action

Break Set and unset program break points.

Set Set break point at statement on the current line.

Unset Remove break point at statement on the current line.

Cancel-all Remove all break points from the program.

Examine Move cursor to the next break point.

If Set a conditional break point at statement on the current line.

/Clear Clear displayed condition.

Do Enter COBOL statement for execution when the break point is
reached.

/Clear Clear displayed COBOL statement to spaces.

On-count Set the number of times break point is passed before action is
taken.

/Clear Clear displayed number of times break point passed
to zero.

Env Specify details of animation environment.

Program-break Specify which program is to be animated if a suite of CALLed
programs is executed without animation.

This The current program will always be animated.

Select Enter name of program to be animated.

/Clear Clear displayed name

Cancel Cancel effect of This or Select.

Threshold-level Set PERFORM level above which PERFORMed procedures and
CALLed subprograms are executed without animation.

Set Set threshold level to current PERFORM level.

Unset Unset the threshold level (all procedures and subpro-
grams to be animated).

Until Set or unset a general conditional break point.

Set Enter a condition which, when it becomes true,
causes execution to halt.

/Clear Clear displayed condition.

Unset Remove general conditional break point.

Examine Display condition for current general conditional
break point.

Back track Set, unset, or examine the execution path of program.

Set Start monitoring of each statement executed.

Unset Stop monitoring of each statement executed.

Examine Retrace execution path.

11-42 User's Guide for IBM AIX VS COBOL Compiler/6000

Table 11-1 (Page 3 of 4). ANIMATOR Command Summary

Main Menu Submenu ANIMATOR Action

After selecting the retracing of the execution path:

Cursor-up Display executed statement preceding statement on
current line.

Cursor-down
Display executed statement following statement on
current line.

Threshold-level
Set PERFORM level above which PERFORMed
procedures are executed without animation.

After selecting the level of PERFORM statements below which
PERFORMed procedures are to be animated:

Set Set threshold level to current PERFORM level.

Unset Set threshold level to 01 (all procedures to be ani-
mated).

Query Display and optionally change contents of a data item.

Cursor-name Select and display contents of item indicated by cursor.

Enter-name Select and display contents of specified item.

Repeat Select and display contents of same data item queried last time.

Monitor-off Stop monitoring contents of selected item.

Dump-lists Save data value list in disk file.

After selecting and displaying the contents of a data item:

/Clear Clear i tern con ten ts to spaces.

he/X Switch from text menu to hex menu, or vice versa.

/Text

/Monitor Start monitoring contents of selected item throughout
execution.

/Up-table Select and display contents of previous table item
(only if selected item is a table).

/Down-table
Select and display contents of next table item (only if
selected item is a table).

/Parent Select and display contents of group item containing
selected i tern.

/Son Select and display contents of first higher level item
within selected item.

/Brother Select and display contents of next item at same level
as selected i tern.

he/X-ASCII
Move cursor from hex contents display to ASCII
contents display, or vice versa (only on hex menu).

Chapter 11. Debugging Your Program Using ANIMATOR 11-43

Table 11-1 (Page 4 of 4). ANIMATOR Command Summary

Main Menu Submenu ANIMATOR Action

i Display previous 80 bytes (text) or 16 bytes (hex) of
selected i tern.

t Display next 80 bytes (text) or 16 bytes (hex) of
selected item.

~ Move cursor one character to the right in contents
display.

+-- Move cursor one character to the left in contents
display.

/Other-menu
Display menu of commands for manipulating value
lists.

/Update Replace current value list item by displayed value.

/Add Add displayed value to end of value list.

/Delete Delete displayed value from value list.

/Previous Display previous item in value list.

/Next Display next item in value list.

/Before Insert displayed value into value list immediately
before the current list item.

/Following
Insert displayed value into value list immediately
after the current list item.

/Locate Move cursor to declaration of selected item.

Find Find next occurrence of specified string in the source program.

/Clear Clear displayed string to spaces.

Locate Move cursor to declaration of data item, file, or procedure.

Cursor-name Locate declaration of name indicated by cursor.

Enter-name Locate declaration of specified name.

/Clear Clear displayed name to spaces.

Text Control appearance of ANIMATOR display screen.

Split Split ANIMATOR display screen into two at current line.

Join Replace a split display screen by a single display screen.

Refresh Repaint the ANIMATOR display screen.

Do Enter COBOL statement for immediate execution.

/Clear Clear displayed COBOL statement to spaces.

0-9 Set animation speed (0 slowest, 9 fastest).

11-44 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 12. Designing Display Screens and Programs Using
FORMS-2

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-1

Contents
About This Chapter
Introduction

Outputs
Phases

Operator Interface
FORMS-2 Validation
Initialization Phase

Initialization Display Screen IO 1
Initialization Display Screen 102

Work Phase
Display Screen WOl
Work Display Screen
Work Phase Completion

Data Descriptions
Record Name and Data-Name Generation
Picture Generation
Editing the DDS File
Incorporation of DDS File Contents

Checkout Program
Checkout Program Generation .
Checkout Program Compilation
Checkout Program Running
Checkout Processing
Checkout Completion

Display Screen Image File
Display Screen Image File Generation
FORMS-2 Maintenance
Printed Forms
Form Images in the Design Process

FORMS-2 User Display Screen Generation Example
Index Program

Index Program Generation
Index File Generation
Index Program Compilation
Index Program Running ..

User Index Program Example

12-2 User's Guide for IBM AIX VS COBOL Compiler/6000

12-3
12-4
12-5
12-5
12-6
12-7

12-16
12-16
12-17
12-18
12-18
12-19
12-28
12-29
12-29
12-30
12-30
12-30
12-31
12-31
12-31
12-31
12-32
12-32
12-33
12-33
12-33
12-34
12-34
12-35
12-39
12-40
12-41
12-41
12-41
12-43

About This Chapter
This chapter describes the FORMS-2 facility that can be used to interactively create
and edit display screens for use in your IBM AIX VS COBOL programs. An expla
nation of how to run FORMS-2 and a description of the files produced are included.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-3

Introduction
The FORMS-2 package is an extension to the AIX VS COBOL software develop
ment system that enables you to create and edit data entry display screens for appli
cations programs at a console. The package provides several facilities to aid you in
the design and development of interactive applications written in AIX VS COBOL:

• Translation of user display screen layouts into COBOL record descriptions for
inclusion in AIX VS COBOL applications programs

• Verification of user display screen layouts in a checkout program before their
incorporation in an application program

• Retention of exact display screen images of the user display screens in fixed-disk
files for subsequent editing and printing

• Generation of an entire AIX VS COBOL program to allow data capture,
update, and interrogation by means of application display screens and an
indexed sequential file.

• If the DBCS-variety of AIX VS COBOL is installed, you can enter Double-Byte
Character Set (DBCS) data when using the Forms-2 package.

Note: The maximum length for the environment variable COBDIR is 40 characters
if using the FORMS-2 package.

12-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Outputs

Phases

Initialization Phase

Work Phase

You can choose any valid combination of the above facilities and, depending on the
options you select, FORMS-2 will automatically produce the following four types of
fixed-disk output files:

• A source file of AIX VS COBOL data description statements (DDS) defining the
display screens (forms) that you have designed. You can subsequently include
these statements in an AIX VS COBOL application program using the COPY
verb. The file is generated as file-name.DDS.

• A source file of a checkout program incorporating the data description state
ments defining your display screens. After compilation, you can verify the data
entry form before building the actual application. The file is generated as file
name.CHK.

• Display screen image files of exact copies of the display screen that you have
designed. The files are generated as file-name.Snn.

• A file of the source of an index program based on a display screen that you have
designed. After compilation, the generated program can be used for storing,
retrieving, updating, and deleting data entered through the display screen. The
file is generated as file-name.GEN.

FORMS-2 processing is divided into a number of logically distinct units. Two main
phases can be identified: the initialization phase and the work phase.

The initialization phase is performed only once and establishes the characteristics of
this particular run of the program. It is a series of display screens containing self
explanatory prompts to which you reply as necessary.

At least two work phases are performed for each data entry display screen that you
design.

The FORMS-2 display screen is analogous to a paper form, where the printed fixed
text is used as a guide to entering the variable data in the space provided. To the
human eye it is obvious where the variable data entry areas occur on the form, but
the computer needs to have these areas defined explicitly. There are, therefore, two
types of work phases: one in which you specify fixed text, and one in which you
specify variable data fields.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-5

Operator Interface
FORMS-2 is written in COBOL and uses the extended ACCEPT and DISPLAY
AIX VS COBOL features. These two verbs are described in the Language Reference,
as are the cursor control features.

Advantages of this console interface are:

• Corrections can be directly overtyped.

• Numeric fields accept only numeric characters.

• The full stop or period (.), when typed in a numeric field, automatically zero-fills
the field from the left.

You have the ability to move the cursor quickly and easily about the display screen.
The functions of the cursor control keys are summarized in Table 12-1.

Table 12-1. Cursor Control Keys

Keys Function

-+ Position cursor right one data character
+-- Position cursor left one data character
! Position cursor down at start of next line
i Position cursor up at start of previous line
HOME Move cursor to start of first line
TAB Position to next tab stop

You can correct text either by overtyping or by switching into command mode and
using the editing commands.

12-6 User's Guide for IBM AIX VS COBOL Compiler/6000

FORMS-2 Validation
After you install FORMS-2, check that you have installed the components correctly
by going through the following validation sequence:

1. Enter:

forms2 .-!

2. The program runs and shows the first display screen as follows:

FORMS2 V1.3 INITIALIZATION PHASE SCREEN 101

FORMS2 PARAMETERS:

DATA-NAME & FILE-NAME [J (1-6 alphanumeric characters)

CRT lines [24] (22 or 23 or 24)

SPECIAL-NAMES clause:

CURRENCY SIGN [$] (ANSI currency signs only)

DECIMAL-POINT [.] ("period." or ", ")

Press RETURN when complete

FORMS-2 asks for file names and data-names. You must answer the question
on console size if your console is a nonstandard size. Otherwise, FORMS-2
accepts all the default replies (the values inside []). You need only type a name
(for example, "demo") followed by.-!.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-7

3. FORMS-2 then shows display screen I02 to request the output file option type
and directory prefix:

FORMS2 V1 .3 INITIALIZATION PHASE SCREEN 102

FILES TO BE CREATED:

FILE COMBINATIONS [c]

DEVICE/DIRECTORY PREFIX (0-40 Chars) [

Press RETURN when complete

(A = DDS)
(B = DDS & CHK)
(C = DDS & CHK & Snnl
(0 = DDS & Snn)
(E = Snnl
(f = No files output)
(G = DDS & Snn & GEN)

J

Type F for the output file selection and press ~ . If you wish the files· output by
FORMS-2 to be stored in a directory other than your current directory, enter
the path name in the field marked DEVICE/DIRECTORY PREFIX. You must
provide the final slash in the prefix.

12".'8 User's Guide for IBM AIX VS COBOL Compiler/6000

4. FORMS-2 shows display screen WOl to request the display screen type option,
as follows:

FORMS2 V1. 3

WORK SCREEN SELECTION:

SCREEN TYPE [A]

WORK PHASE SCREEN W01

(A= Fixed text on clear screen)
(B = Fixed text on last screen)
(C =Variable data redefines last screen)
(0 =Variable data without redefinition)
(! =Complete this FORMS run)

Fixed Text allows: All characters

Variable Data allows: X or Y to define alphanumeric fields
9 or 8 to define numeric fields
edit chars to define numeric edit fields

Press RETURN when complete

Note the default, A, and press .i.
5. FORMS-2 shows a blank display screen. You are currently in edit mode, and

should be able to position the cursor at any point on the display screen. Use the
cursor control keys and the normal character keys to set up the following text on
the display screen:

Name [__ ---------------- ____]

Press .i.
6. FORMS-2 puts " __ "in the top left of the display screen, indicating that you are

now in command mode. At this point you would usually proceed directly to
step 16. However, now type ? and press .i.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-9

7. FORMS-2 shows display screen HOI:

FORMS2 V1.3 HELP SCREEN SCREEN H01

GENERAL COM'1AND SLMMARY:
SPACE = Process the work screen

= Reenter EDIT mode
7 = Display the next HELP screen
7n = Display the nth HELP screen
Q = Reenter WORK PHASE screen selection

= Terminate FORMS run immediately
X =Position commands at EDIT mode cursor
* = Indicate Index Form's data area start

NOTE: SPACE is the command to process the EDIT mode screen

HELP option [_] (_ = Reenter EDIT model
(7 = Display next HELP screen)
(! = Abandon FORMS2 run immediately)

Press RETURN when complete

Type ? , then press .i .

12-10 User's Guide for IBM AIX VS COBOL Compiler/6000

8. FORMS-2 shows display screen H02:

FORMS2 V1 .3 HELP SCREEN SCREEN H02

MANIPULATION CCJJMAND SLMMARY:
F = Invoke FOREGROUND/BACKGROUND manipulation
Fx = Invoke FOREGROUND/BACKGROUND option "x"
0 =Turn on automatic WORK screen preparation
01 =Turn off automatic WORK screen preparation
Cn = Insert n spaces at cursor position
On =Delete n chars at cursor position
In = Insert n blank Lines before cursor line
Kn =Delete n lines including cursor line
An =Overwrite n lines with data of cursor line
Un =Move cursor up n lines

. Vn =Move cursor down n lines

HELP option[_] (_ = Reenter EDIT mode)
(? = Display next HELP screen)
(! = Abandon FORMS2 run immediately)

Press RETURN when complete

Type ? , then press ~ .

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-11

9. FORMS-2 shows display screen H03:

FORMS2 V1.3 HELP SCREEN SCREEN H03

PROGRAMMING C(}1MAND Sl.t-1MARY:
G = Give data names screen coordinates suffix
G1 = Give data names sequential number suffix
Jn =Allow up to n consec. spaces in fixed text
Mx = Interpret "x" as "space"
S = Cancel previous Sn command
S1 = Inhibit DDS & CHK output at next processing
S2 = Inhibit Snn output at next processing
S3 = Prompt for Snn file name at next processing
S9 =Line edit DOS output at next processing
P =Display cursor position coordinates

HELP option[_] (_ = Reenter EDIT mode)
(7 = Display next HELP screen)
(! =Abandon FORMS2 run immediately)

Press RETURN when complete

Type ?, then press ~ .

12-12 User's Guide for IBM AIX VS COBOL Compiler/6000

10. FORMS-2 shows display screen H04:

FORMS2 V1 .3 HELP SCREEN SCREEN H04

WINDOW COMMAND Sl.Jv1MARY:
W =Position cursor to current window start
W1 =Start window at cursor line
W2 =End window at cursor line
W3 =Start window at cursor line, no delimiters
W4 =End window at cursor line, no delimiters
WS =Display start window delimiters
W6 =Display end window delimiters
W7 =Redisplay data overwritten by start delimiters
W8 =Redisplay data overwritten by end delimiters
W9 =Position cursor to current window end

HELP option [_] (_ = Reenter EDIT mode)
(7 =Display next HELP screen)
(! =Abandon FORMS2 run immediately)

Press RETURN when complete

Press~.

11. FORMS-2 displays again the fixed text that you keyed in at step 5. Press~.

12. FORMS-2 puts " __ " in the top left of the display screen. Type F then press ~.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-13

13. FORMS-2 shows display screen W02:

FORMS2 V1.3 WORK PHASE

FOREGROUND/BACKGROUND OPERATIONS:

OPTION [] (A = Reenter EDIT MOOE)
(B = Clear FOREGROUND)
(C = Clear BACKGROUND)

SCREEN W02

(0 =Merge BACKGROUND into FOREGROUND)
(E =Merge FOREGROUND into BACKGROUND)
(F =Merge screen image into FOREGROUND)
(G =Merge screen image into BACKGROUND)
(H = Display FOREGROUND)
(I =Display BACKGROUND)
(J = Display screen image)

NOTE: (H & I & J display until RETURN pressed)

FILE NAME [J
(F & G & J only)

Press RETURN when complete

Type A and press -.J .
14. Again FORMS-2 displays again the fixed text entered at step 5. Press -.J.
15. FORMS-2 puts " __ " in the top left of the display screen. Press the space bar

and then -.J .
16. FORMS-2 shows display screen WOl again to prompt for the display screen type

option. The default is C. Press -.J.
17. FORMS-2 shows the fixed text display screen. Use the cursor control keys and

key in Xs alone to set up the display screen:

Name [xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx]

Press -.J.
18. FORMS-2 puts"--" in the top left of the display screen. Press the space bar

and then -.J .
19. FORMS-2 shows display screen WOl again. This time, type! and press -.J to

complete the run.

12-14 User's Guide for IBM AIX VS COBOL Compiler/6000

20. FORMS-2 terminates with the following message:

END OF FORMS2 RUN

FORM52 V1 .3.8
IBM AIX VS COBOL Compller/6000 LP
5601-258 (Cl Copyright IBM Corp. 1987, 1990
All Rights Reserved
Licensed Material - Property of IBM

You have now used all the FORMS-2 display screens. Everything is in place and
ready to be used.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-15

Initialization Phase
The first step when running FORMS-2 is the initialization phase. In this phase you
specify the names of the files to use, the size of the display screen, and the type of
output you want.

Initialization Display Screen 101
Display screen IOI is the first screen shown when the FORMS-2 program is run. It
asks you for the following information.

Data-Name and File Name Base
The file name base that you type in now is used in the following ways:

• It is taken as the first part of all the data-names and record names generated in
this run. Uniqueness is achieved by adding a two-digit sequence number for new
records and adding the sequential number of the field within the form for data
names within records. Uniqueness may also be achieved by adding the display
screen coordinates by means of a work phase command.

• It is taken as the main file name for generated files. These can consist of the
following:

file-name .DDS

file-name. CHK

file-name .Snn

file-name. GEN

AIX VS COBOL data description statements

Checkout programs

Display screen images (nn = 00, 01, 02, ... , 99)

Index programs

Only one DDS file is output per FORMS-2 run, whereas a separate display screen
image file is output for each display screen built.

Lines per Console Display Screen

Currency Sign

Decimal Point

You can use FORMS-2 with display screens of 22, 23, or 24 lines. The default for
this entry is 24 lines. If your console has fewer than 24 lines, FORMS-2 will not
function correctly with this value. With some consoles, you may have to specify one
fewer than the number of lines actually present on the display screen to avoid having
the display screen "scroll up" when an entry is made on the last line.

This entry allows you to override the default currency sign ($). FORMS-2 will gen
erate an appropriate SPECIAL-NAMES entry in either the checkout or index pro
grams. Use the specified currency sign when specifying numeric-edited fields in the
work phase, and FORMS-2 will use it in the generated data description statements.

The character that you specify here is not validated. See the Language Reference for
a list of valid characters.

This option allows you to exchange the roles of the period or full-stop sign(.) and
the comma sign (,). If you specify ",", FORMS-2 will generate a
DECIMAL-POINT IS COMMA clause in the checkout or index programs. The
default is".". Use the decimal point sign when specifying numeric-edited fields in
the work phase, and FORMS-2 will use it in the generated data description state
ments.

12-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Initialization Display Screen 102
Display screen I02 is shown immediately after you terminate display screen 101
entries by pressing~.

FORMS-2 now prompts you for the following:

• Types of files to be created
• Directory into which files are to be written.

When you release display screen 102 by pressing ~, you enter the work phase. You
can no longer amend information specified during the initialization phase.

FORMS-2 offers options for all valid combinations of the following types of files,
each identified by a unique file name extension as follows:

• .DDS

You may generate AIX VS COBOL source data description statements (DDS)
corresponding to the display screens you have created. These are output to a
standard ASCII text file and may subsequently be compiled into any program
using the standard COBOL COPY facility. In particular, they are used by the
checkout and index programs.

If you are unfamiliar with display screen-handling in AIX VS COBOL, see the
Language Reference, especially the ACCEPT/DISPLAY, FILLER, and REDE
FINES sections.

• .CHK

In addition to generating DDS, FORMS-2 can also generate a checkout
program. This consists of the Procedure Division statements (ACCEPT and
DISPLAY) that correspond to the display screens that you have created. These
statements are contained infile-name.CHK, and they are combined with the fol
lowing COPY files:

file-name.DDS, FORMS2.CH1, FORMS2.CH2

The checkout program allows you to demonstrate on the display screen exactly
how the system will operate by successively displaying the display screens you
have just created, and by allowing you to enter data just as you would do under
actual operating conditions.

• .Snn

You can also output the text of the display screen you have just designed to file
on fixed disk in the form of a display screen image. You can retrieve this file
later in this run or in subsequent FORMS-2 runs for further amendment if
required.

Alternatively, you can print the display screen images and use the hard copies as
a means of communicating between different individuals at different times (for
example, the end user and the programmer).

• .GEN

FORMS-2 can generate an index program. This includes all the code necessary
to set up and maintain an indexed sequential file with records corresponding to
the structure of your form. The code is output to file-name.GEN and is com
bined with the following copy files:

file-name.DDS, FORMS2.GN1, FORMS2.GN2

Chapter 12. Designing Display Screens and Programs Using FORMS-2 . 12-17

Work Phase

Index program generation places certain constraints on you during the FORMS-2
run. The creation and operation of the index program is discussed in "Index
Program" on page 12-39.

If you enter the Q command at this point, FORMS-2 will "quit" back to display
screen IOI, allowing you to amend the information given there. This can be useful if
you inadvertently pressed .-1 before completing display screen IOI. This command is
not mentioned on the display screen.

You define the display screen layouts (forms) to be used in an AIX VS COBOL
application by typing text at the keyboard to produce model forms on the display
screen. You can define as many forms as you wish in a single FORMS-2 run. To
define one form requires at least two work phases: one to define the fixed text of the
form, and another to define the variable data entry fields.

Usually you will use the first work phase to specify the fixed text form and the
second work phase to specify the variable data fields within the form; however, this
need not always be the case. FORMS-2 requires information on which type of text
you are going to input in a particular phase. Therefore, the work phase is intro
duced by a display screen presenting the various options (WOl).

Display Screen W01
Display screen WOl is shown immediately after you terminate display screen I02 by
pressing .-1 . Here you are prompted for the type of work screen you want to
produce.

Display Screen Type Selection
Fixed text selections offered at this display screen are as follows:

A The console is cleared to spaces in preparation for you to type the fixed text
for a new form.

B The previous display screen is displayed again to assist you in defining addi
tional fixed text.

Text from the previous display screen is used only as a background in this
case, and is not included in the record definition for the fixed text you are
about to type. You must therefore ensure that if any part of the previous
display screen is inadvertently overtyped, the original characters must not be
replaced but cleared to spaces.

Variable data selections offered are:

C The previous display screen is displayed again to assist you in the redefi-
nition of the form to incorporate variable data field specifications. In the
application the data is typed into the fixed text form itself.

D The previous display screen is displayed again to assist you in the definition
of variable data area in the application program. This may sometimes be of
assistance, even though it results in larger application programs.

12-18 User's Guide for IBM AIX VS COBOL Compiler/6000

Terminating the Run
Display screen WOl is displayed again after completion of each work phase, and is
the display screen used to terminate the program. You do this by typing! and
pressing~.

Warning: Use of the! command at any other time causes immediate abandonment
of the run.

On termination, FORMS-2 closes the DDS file and displays an identification
message. If you requested the checkout facility during initialization, FORMS-2 com
pletes output of the checkout program to fixed disk, closes the CHK file, and dis
plays an identification message.

FORMS-2 terminates automatically after the second work phase if an index program
is being generated.

Work Display Screen
After you have selected the display screen type, the appropriate work display screen
for the text to be typed is displayed. For example, if you selected option A (fixed
text on clear display screen), a blank display screen is shown. For the other options,
the previous display screen is displayed again to allow correct alignment of the
current input.

Background/Foreground
To process only the data entered in this phase, FORMS-2 must keep this data sepa
rate from previously entered data, which is displayed purely for alignment purposes.
FORMS-2 does this by constructing the displayed work screen from two separate
data areas, termed background and foreground. The foreground holds the data
entered during the current work phase. The background holds previously entered
data that has been retained for alignment of the data entered in the current work
phase. At the end of each work phase FORMS-2 processes the foreground data
only.

If you select option B, C, or D, the foreground is overlayed on the current back
ground contents when display screen WOl is next displayed. Then the foreground is
cleared to spaces. If you select option A, both background and foreground are
cleared to spaces.

In this way the new work display screen is prepared automatically. You can over
ride this automatic work display screen in preparation for the next phase by means
of a work display screen command and leave both areas unchanged.

Generally, you type text into the foreground from the keyboard, and it is moved into
the background only from the foreground. The F work display screen command
provides facilities for further manipulation of these areas. In particular, you can
input a display screen image file from a previous run into the foreground, thus ena
bling you to amend existing forms.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-19

Edit Mode

While entering data onto the work display screen (that is, foreground), you can work
in either of two modes:

• Edit mode, which is the mode in which you enter data to create the model form.
The initial mode is always edit mode.

• Command mode, in which commands are available to assist you in creating and
processing the edited work display screen.

Edit mode is the mode in which you are free to move the cursor to any part of the
display screen by use of the cursor control keys. You may also make entries into
any part of the display screen, in accordance with the display screen type that you
selected at the start of this work phase.

Fixed Text: In the design of the fixed text of a form (that is, the fixed fields analo
gous to the preprinted text on a paper form), you can enter any legible characters
anywhere on the display screen. This text will be displayed as "prompt" text during
a data entry run of the application.

Variable Data: In designing the variable data fields of a form (that is, the fields
analogous to the entry spaces on a preprinted form), you can type the characters X,
Y, 8, and 9.

When typing in variable data, X denotes an alphanumeric character and 9 denotes a
numeric character. If you need to have two alphanumeric fields contiguous with
each other, place Ys in the character positions of the second field. Similarly, for
contiguous numeric fields use 8s in the character positions of the second field.

Suppose in an application the operator must type in an invoice number. The fixed
text in this example could be "INVOICE NO ". For example, an invoice number
could be "CA3021 ". You must define the size and type of this variable data explic
itly. Therefore, if the invoice number always had two alphanumerics followed by
four numerics, you would type XX9999 at the point on the display screen (the dots
in this example) where you wish the operator to type the actual invoice number
when the application itself is running. AIX VS COBOL provides automatic vali
dation of numeric fields.

Additionally, you can input special editing characters to specify numeric-edited
fields. These fields should be separated by spaces. Numeric-edited fields are
described in the Language Reference. The valid characters are as follows:

Z, *, +, -, CR, DB, .(period), ,(comma), B, /, 0, $

The $ sign is the currency sign, which may be replaced by another sign as specified
in the SPECIAL-NAMES clause of the AIX VS COBOL program, either directly or
as specified during the initialization phase of the FORMS-2 run. The picture char
acters S, V, and Pare not allowed.

FORMS-2 checks variable data fields for validity, but only when a DDS file is being
created. See the Language Reference for information on how display screen-handling
works.

12-20 User's Guide for IBM AIX VS COBOL Compiler/6000

Command Mode
To switch to command mode from edit mode, press~. Command mode is the
mode in which two underline characters initially bound the cursor, and the cursor is
constrained to stay within these two characters.

Invoke a command by typing the command and pressing~. When execution of a
command is complete, all commands (except SPACE, 1, and Q) return you to edit
mode.

The default command is the underline character LJ. This causes immediate reentry
to edit mode.

The commands available to you during the work phase fall into three main groups.

1. General work display screen commands

General commands perform such functions as releasing the work display screen
for processing.

2. Work display screen manipulation commands

Work display screen manipulation commands help you to prepare and edit the
work display screen.

3. Programming commands

Programming commands have been introduced mainly for the convenience of
the COBOL programmer, and some of them will not be meaningful without an
understanding of COBOL. They include commands to assist in producing effi
cient code, and to give you more control over the output files.

Enter a command by typing the command character(s) and pressing~.

Commands in groups 1 and 2 are summarized within Help display screens 1 and 2
(HOl and H02). Commands in group 3 are summarized on Help display screens 3
and 4 (H03 and H04).

General Work Display Screen Commands: A description of each general command
is given below.

? Display help screens

If you type ? and then press .-1, the first Help display screen, which
includes a summary of the general commands, is shown. This display
screen remains until the next input command is entered.

Pressing ~ alone at this stage returns you to edit mode.

Typing? and then pressing .-1 again displays the next Help screen, which
is a summary of the work display screen manipulation commands. If
you repeat the sequence, each help display screen will appear in sequence
until the end of the series, when the first display screen appears again.

The? command is also available from the first display screen, WOl.

?n Display help screen n

If you type ? followed by a numeric digit and then press ~ , the nth help
display screen in the series will be shown.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-21

(SPACE) Terminate the work phase

If you press the space bar, you will terminate the current work phase and
initiate processing of the data you have just entered on that work display
screen.

_ (underline)
Return to edit mode (default).

To exit from the command mode back to edit mode, enter the underline
character.

The default command was introduced for convenience in case you enter
command mode inadvertently.

Q Quit

If you type Q, you return to display screen WOI.

The current foreground/background components of the work display
screen are unchanged when you reenter edit mode, regardless of the text
type you then select.

The most likely use for this command is where you select the default
option C (variable data fields) at display screen WOl and then use the
work display screen incorrectly to set up a fixed text form. Validation
errors then occur, and you are returned automaticaJly to edit mode. To
return to display screen WOI and correct the selection without loss of the
text you have just typed, press~ to enter command mode and type Q.
You can now correct the display screen type, and the work display screen
has been preserved for reprocessing (as fixed text). Q is also available at
display screen I02, though it is not mentioned there, and its function is to
return you to a step within the phase (in this case back to display screen
IOI).

Terminate FORMS-2 run

If you type!, you will terminate the program. This command is available
throughout the FORMS-2 program, but you will normally use it on
automatic return to display screen WOI when you have completed a work
phase. When used elsewhere, it abandons the run.

X Reposition command area

The standard command area is in columns 1 and 2 of line 1, as indicated
by the two underline characters displayed on entry to command mode.
FORMS-2 always attempts to restore any data in these positions upon
return to edit mode. However, to enable these positions to be preserved
intact at all times, the facility to reposition the command area is pro
vided. To do this, place the cursor at the desired location before entering
command mode. Type X to cause the required change. The next time
you enter command mode, the prompting underline characters will
appear at the new specified location.

12-22 User's Guide for IBM AIX VS COBOL Compiler/6000

* Define key /data split for index program

This command is used only in connection with generation of the index
program. If you select the index program option G at display screen 102,
you should position the cursor at the first nonkey variable data position
and enter * before termination of the second work phase.

If you do this incorrectly, FORMS-2 will continually return you to edit
mode until you either do it correctly or type ! to terminate the session
and abandon the work in progress.

Work Display Screen Manipulation Commands: F and 0 are preparation com
mands.

F Invoke foreground/background menu display screen (W02)

Display screen W02 contains options to assist you in setting up the fore
ground component of the work display screen.

The options are:

A Return to edit mode.

B Clear foreground to spaces.

C Clear background to spaces.

D Overlay background data onto foreground.

E Overlay foreground data onto background.

F Overlay a display screen image file onto foreground. You can
amend forms defined earlier in this run or in previous runs with
this option. You are prompted for the name of the required file.

G Overlay a display screen image file onto background.

H Show foreground. This displays just the foreground component
of the work display screen for examination. The full work
display screen will be restored on return to edit mode.

I Show background. This displays just the background component
of the work display screen for examination.

J Show a display screen image file. You are prompted for the file
name and the specified file is displayed, but without corrupting
the current contents of either foreground or background. This
enables you to make a check prior to using option D.

The options H, I, and J produce a display that remains until you press
.i.

Fx Specifies required foreground/background option

xis the option code as contained in display screen W02 above. The
specified option is executed and control returned to edit mode without
display of screen W02.

01 Switch off automatic background/foreground preparation

The background/foreground preparation sequence is described earlier.
Use this command to prevent the current foreground from being merged
into the background or from being cleared for the next phase.

The 01 command remains effective until you enter 0.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-23

0 or 00 Reset background/foreground preparation

The background/foreground preparation sequence is reset to automatic
(starting at the beginning of the next work phase).

G has a similar effect, beginning at the next phase.

C, D, I, K, and A are editing commands and are controlled by the position of the
cursor at the time command mode is entered (that is, the current cursor position)
and operate only on the foreground data. Background data remains in the same
position.

Cn Insert n spaces

Insert n (1-9) spaces before the character at the current cursor position.
Only the current line is affected.

Dn Delete n characters

Delete n (1-9) characters including the character at the current cursor
position. Only the current line is affected.

In Insert n blank lines

Insert n (1-9) blank lines before the line containing the current cursor
position, irrespective of the column. You can only insert whole lines.

Kn Delete n lines

Delete n (1-9) lines including the line containing the current cursor posi
tion. You can only delete whole lines using this command.

An Repeat current linen times

Repeat the line containing the current cursor position n (1-9) times.

This does not act as an insert. Any foreground data in the next n lines
will be overwritten.

U and V are cursor positioning commands.

Position the cursor horizontally using the Cursor right and Cursor left keys.

Position the cursor vertically with the Cursor up and Cursor down keys after you
have moved the cursor to the first position of the current line.

Vertical tabulation within the same column may be required when setting up a form.
Two tabulation commands are:

Un Move cursor up n lines

This command moves the cursor up n (1-9) lines from the current cursor
position. Cursor position within the line is maintained.

V n Move cursor down n lines

This command moves the cursor down n (1-9) lines from the current
cursor position. Cursor position within the line is maintained.

12-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Programming Commands: G is the data-name structuring command.

The default record name format generated by FORMS-2 for inclusion in your AIX
VS COBOL source program for display screen formatting is:

bbbbbb-rr (01 level)

where:

bbbbbb is the 1-6 character base that you specified at display screen IOI and rr is the
record number, starting at 00 in the first work phase and increasing by one for each
subsequent work phase.

If you use the window commands to define a window starting in a line other than
line 1, the default record name generated is:

bbbbbb-rr-ll

where fl is the line number.

The default elementary data-name structure generated by FORMS-2 for inclusion in
the AIX VS COBOL source program for display screen formatting is:

bbbbbb-rr-nnnn

where nnnn is the sequence of this field within the display screen, starting at 0001.

Alternatively:

• G (GO) causes nnnn within the data-name to be the display screen coordinates of
the start of the field. This can sometimes be of use as a reference guide when
using AIX VS COBOL facilities to set cursor position.

• Gl restores the default data-name generation to using sequential field numbers.

J and M are multiple spaces and FILLER commands.

The AIX VS COBOL interactive ACCEPT and DISPLAY verbs operate only on
named fields; FILLER areas are left alone. The time taken to show a display screen
depends both on the size and the number of constituent fields.

When processing fixed text display screens, FORMS-2 generates FILLER wherever
multiple spaces appear. On some forms this can result in many small fields sepa
rated by small FILLER fields. The problem can be alleviated by:

Jn Reset multiple spaces

Jn resets the number of contiguous spaces FORMS-2 will allow within
the VALUE clause of a named field. This is initially set to 1 (n can be
0-9).

J or JO will force FILLERs even for single spaces.

An alternative method of forcing spaces within named fields is by use of
the underline; its use in a field results in an actual space in the corre
sponding position in the generated VALUE clause.

If you need to change the designated character from underline to some
thing else (presumably because you need to generate VALUE "_"), use
M as follows:

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-25

Mx Change default FILLER

Mx changes the default"_" character (underline) to that specified by x.

If SPACE () is specified, this will force generation of named fields for
the entire display screen without any FILLERs.

Sn File output control command

S (or SO) Cancels any other Sn commands in effect at the time.

Sl Suppresses DDS (and CHK) text generation for this work
display screen. Generation of this text resumes for the next
work display screen unless the same command is repeated in
the next phase.

S2 Suppresses display screen image (Snn) text generation for this
work display screen. This is commonly used to suppress
display screen images of variable data fields. Again, the
effect only lasts for the current phase.

S3 Enables you to override the default display screen image file
identifier for the current work display screen. Normally, if a
file already exists with the default identifier~ you are given the
option of overriding it. If you reject this option, you are
prompted for an alternative file identifier. This command
forces the alternative file identifier to be requested even when
no file exists with the default identifier.

S9 Causes FORMS-2 to halt after display of each line of code
during DDS generation. FORMS-2 re-ACCEPTs the line
before outputting it to the .DDS file. This provides you with
a limited editing capability that may prove useful under
special circumstances. This option is not available if you
select option C or Bat display screen 102.

P Cursor control command

Causes the coordinates of the current cursor position to be displayed at
the command area position. This display lasts a few seconds, after which
the contents of the work display screen at the command area are restored
and control is returned automatically to edit mode. Where sequential
field numbers are used within data-names, this command provides you
with an easy alternative method of ascertaining the coordinates of any
field.

Wn Window commands

The "window" defines the area (full lines) to be processed by FORMS-2
when generating DDS text. By default the window is the full display
screen. Where window start or end is other than the start or end of the
display screen, a delimiting line of hyphens may optionally be displayed
on the line just outside the window. For example, if a window starts in
line 4, delimiters appear along the length of line 3.

The principal use of the window is to allow you to create a form that
begins below the top of the display screen but saves memory by avoiding
the description of blank lines at the top of the display screen.

12-26 User's Guide for IBM AIX VS COBOL Compiler/6000

Where window is used in this way the generated record name incorpo
rates the start line number of the window, which can then act as a guide
to the programmer, using the AIX VS COBOL ACCEPT/DISPLAY AT
coordinates facility.

The detailed commands give you very comprehensive window formatting
capability, as follows:

W (or WO)

Wl

W2

W3

W4

W5

W6

W7

W8

W9

Positions the cursor at current window start. This is the
equivalent of the HOME key when the window facility
is in use.

Sets start of window to current line with delimiters on
previous line.

Sets end of window to end of current line with delimiters
on next line.

Sets start of window to current line without delimiters.

Sets end of window at end of current line without delim
iters.

Displays delimiters preceding current window start.

Displays delimiters following current window end.

Erases start delimiters and restores any work display
screen data to the display.

Erases end delimiters and restores any work display
screen data to the display.

Positions the cursor at current window end.

Delimiters do not corrupt background/foreground contents.

The current display screen image will include the full foreground part of
the work display screen without delimiters, regardless of whether a
window has been defined. You could use this to include annotation on
the display screen image that does not affect DDS generation.

One use of the window facility is to display a form in two stages: the first
10 lines, followed by the second 10 lines. You can create this as a single
display screen image including both sections of the form, and you can
"window in" on the relevant portions as required when the DDS text is
generated.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-27

Work Phase Completion
To complete the work phase of FORMS-2, select command mode, press SPACE,
and then ~. SPACE is the command to release the work display screen for proc
essing.

FORMS-2 completes the work phase (depending on the file selection at display
screen I02):

1. If this is a variable data field definition work phase (option C or D at display
screen WOI), validation occurs with the message:

WORK SCREEN VALIDATION in progress
DO NOT press RETURN.

2. If you selected DDS file generation at display screen 102, the source code
produced is echoed to the display screen as it is written to fixed disk. If you
used the S9 command, processing stops after each line of code to enable you to
make changes as required. This is recommended only if special requirements
dictate its use.

3. If you requested a display screen image file at display screen 102, the display
screen image is echoed to the display screen as it is written to the fixed disk file.
The name of the created file is displayed. Press ~ to continue.

4. Display screen WOl is displayed again so the run can be terminated or con
tinued.

During validation of variable data only those characters listed in the description of
text types are permitted (plus space). If any other character is encountered, the vali
dation routine signals an error by alternately displaying "?" and the offending char
acter to give a flashing effect. This error indication then ceases and FORMS-2
returns to edit mode with the cursor positioned under the erroneous character. You
must repeat the SPACE command after making any corrections.

FORMS-2 will allow you to edit characters but will not verify that the combinations
of these are valid; AIX VS COBOL editing rules must therefore be obeyed to ensure
error-free code. These fields should be separated by spaces.

Only foreground data is output to the display screen image file.

12-28 User's Guide for IBM AIX VS COBOL Compiler/6000

Data Descriptions
The AIX VS COBOL data descriptions that FORMS-2 generates in the .DDS file
are described in the following text.

The AIX VS COBOL extensions to the ACCEPT and DISPLAY verbs allow com
prehensive display screen-handling to be included in a user application. See the
Language Reference for more information. Programming the necessary data
description statements can be tedious and expensive in terms of programmer time,
particularly since it is prone to simple errors.

FORMS-2 simplifies the production of error-free data descriptions by allowing you
to specify display screen layouts (forms) in the most convenient way, namely by
setting them up on the display screen. If you invoke the facility by selecting an
appropriate option at display screen 102 during the initialization phase, FORMS-2
automatically converts this input to the necessary AIX VS COBOL statements and
outputs these to a DDS file. You then incorporate these statements in your applica
tion source code by means of the AIX VS COBOL COPY verb and use record
names consistent with those generated by FORMS-2.

Record Name and Data-Name Generation

Record Naming

Data Naming

Initialization display screen IOl prompts you for a base name. This is a 6-character
field into which you enter any name of your choice consistent with COBOL data
naming. This base is then used to generate the COBOL data-names.

For detailed information on record naming and data naming, see "Programming
Commands" on page 12-25.

The default record name format generated by FORMS-2 for inclusion in your AIX
VS COBOL source program for display screen formatting is as follows:

bbbbbb-rr (01 level)

where:

bbbbbb is the one- to six-character base that you specified at display screen 101. rr is
the record number, starting at 00 in the first work phase and increasing by one for
each subsequent work phase.

If you use the window commands to define a window starting in a line other than
line one, the record name generated will be as follows:

bbbbbb-rr-ll

where ll is the line number. This serves as a useful reminder when coding the appro
priate ACCEPT/DISPLAY statements.

The elementary data naming structure generated by FORMS-2 for inclusion in your
AIX VS COBOL source program for display screen formatting is as follows:

bbbbbb-rr-nnnn

where nnnn is the sequence of this field within the display screen, starting at 0001.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-29

Sometimes it may be more convenient to have the display screen coordinates incor
porated in the data-name rather than a field sequence number. You can do this by
using the G command during the work phase.

Picture Generation

Fixed Text

Generation of PICTURE clauses by FORMS-2 depends on the type of text you
select at display screen WOI at the start of each work phase. FORMS-2 will force
field boundaries at the end of each line in order to be compatible with certain types
of consoles.

At the end of a fixed text work phase FORMS-2 generates only FILLER areas or
named alphanumeric fields with associated VALUE clauses.

The AIX VS COBOL interactive ACCEPT and DISPLAY verbs operate only on
named fields; FILLER areas are left alone. The time taken to show a display screen
depends both on the size and also the number of constituent fields.

When processing fixed text display screens, FORMS-2 generates FILLER wherever
multiple spaces appear. You can alter this default by using the J command. Alter
natively, you can use_ (underline) to force inclusion of spaces within a VALUE
clause. You can alter the default character used for this purpose by using the M
command.

Variable Data Fields
At the end of a variable data work phase, FORMS-2 generates alphanumeric,
numeric, or numeric-edited fields depending on the actual characters that you typed
in. These are usually the AIX VS COBOL characters 9 and X, but you can use 8
and Y as alternatives to 9 and X. Note also the exclusion of S, V, and P.

Editing the DDS File
Normally the DDS output from FORMS-2 should be all that you require. Where
special circumstances dictate the use of particular data-names or the disallowed pic
tures characters, the S9 command will allow you to edit DDS lines prior to output.
Alternatively, you can use a conventional text editor to edit the file. However, this
editing process must be repeated if you amend the forms using FORMS-2.

You can also completely suppress the DDS output for a particular work phase by
using the Sl command. If you use this, the record number incorporated in data
names will be stepped up by 1 for the next work phase.

Incorporation of DDS File Contents
To incorporate the generated data descriptions into your application program, you
need only copy in the DDS file using the COPY statement available in AIX VS
COBOL.

The COPY statement to incorporate the demol sample forms illustrated in
"FORMS-2 User Display Screen Generation Example" on page 12-35 is:

000000 COPY "demol.DDS".

and would be coded within the Data Division.

This statement is included in all checkout or index programs generated, and you can
refer to any of these for an example.

12-30 User's Guide for IBM AIX VS COBOL Compiler/6000

Checkout Program
The checkout program that FORMS-2 can generate automatically while generating
the created forms enables you to do the following:

• Validate the DDS file.
• Demonstrate the operation of the proposed application.
• Check the use of your forms for data entry.
• Check the use of your forms for data amendment.

The checkout source code, which is in AIX VS COBOL, includes a COPY statement
for the DDS file exactly as it would be coded in your application, and is therefore a
true validation of the DDS file when compiled.

If you include numeric-edited fields in the variable data fields of a form, error free
code is not guaranteed with standard AIX VS COBOL. Compilation is necessary to
fully validate numeric-edited fields. If numeric-edited fields do cause compilation
errors, you can use the FORMS-2 display screen image facility to recall the
offending display screen and alter the variable text numeric-edited fields as neces
sary.

Checkout Program Generation
The checkout program logic is a sequence of DISPLAY or ACCEPT statements for
the display screens that you defined in the FORMS-2 run in the order in which they
were created. A demonstration program using all forms can be created rapidly
without any programming by entering all required forms in a single FORMS-2 run.
For a complex application, the best method is to create each form in isolation, using
only display screen image output. FORMS-2 can then be run again to produce the
required checkout program, using the facility to re-input display screen images (use
the F command and the D option in the subsequent display screen). Use of this
facility also enables you to set up a complex sequence of display screens for demon
stration purposes, incorporating the same display screen more than once.

After the sequence of display screens, checkout gives you the option of repeating the
entire sequence. On the second pass previously entered data is displayed again,
allowing you to checkyour forms for both initial data entry and data amendment.

Checkout Program Compilation
Compile the checkout program in the usual way by entering the following:

cob -ik CHK basename.CHK ..-1

See Chapter 4, "The COBO,L Interface" for information on submitting programs to
the AIX VS COBOL using cob.

Checkout Program Running
Run the executable program output by the cob command by entering:

cobrun basename ..-1

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-31

Checkout Processing
The basic function of the checkout program is to display the fixed text fields of your
form so that data can be entered into the variable data fields of the form in the
sequence in which the display screens were created.

However, the detailed logic is slightly more sophisticated. The following notes make
references to the options taken for display screen type at display screen WOI.

Fixed Text Display Screens
The fixed text of a form is displayed. If there are two consecutive fixed text forms,
the checkout program pauses after the first display until you press ~.

1. Fixed text on a clear display screen

If you selected option A when you created the form, checkout clears the console
before the display screen.

2. Fixed text on last display screen

If you selected option B when you created the display screen, any text displayed
remains on the console, except where it is overwritten by the text of the new
display screen.

Variable Data Display Screens
An ACCEPT statement is issued for a variable data display screen, allowing you to
enter data in the unprotected areas (that is, the fields specified by Xs and 9s, and so
on).

You can check the extents of the fields. For numeric fields you can also check that
only numeric characters may be entered, and the effect of entering the left zero-fill
character".". See the Language Reference for information on use of the "." char
acter.

On other than the first pass through the sequence of display screens, the previously
entered data is displayed again before the ACCEPT is issued.

If the variable data display screen includes numeric-edited fields, the ACCEPT for
the display screen is followed by a corresponding DISPLAY to show the effect of the
editing or normalization by the AIX VS COBOL Run Time Environment. The nor
malized fields are not automatically echoed to the console.

Checkout Completion
After the entire sequence of display screens has been passed, the checkout program
displays:

CHECK-OUT completed
Repeat ? [N] (Y=Yes)

If you wish to repeat the sequence of display screens, type Y and press~. Other
wise, press~ to take the default to terminate the program.

12-32 User's Guide for IBM AIX VS COBOL Compiler/6000

Display Screen Image File
FORMS-2 can generate a display screen image file that contains exact text images of
the forms that you have designed. These form images can:

• Provide the basis for amendments to the form

• Be printed to yield printed copies of the form

• Provide a means of communication between the system designer and the applica
tions programmer.

Display Screen Image File Generation
Invoke this facility by selecting an appropriate option at display screen I02 during
the initialization phase. The default option will cause display screen image output.

Display screen images are output to files named:

basename.Snn

where basename is the name that you entered in the initialization phase (nn is a
number 00-99).

You can override the default file name by issuing the S3 command during the work
phase. This causes FORMS-2 to request input of the required file name during
processing of this work display screen.

A separate file is created at the end of each work phase. The nume1ic part of the
name (nn) is incremented by one each time. A display screen image file is structured
as a standard line-sequential file with a record for each line of the display screen.
Each display screen image contains only text entered during the work phase in which
it is generated (that is, foreground data). Consequently, for a variable data work
phase the output display screen image contains only Xs, 9s, Y s, and 8s.

You can suppress the display screen image output from any work phase by issuing
the S2 command during that phase. If you use this command, the numeric part of
the file name extension will still be updated for the next phase to keep in line with
the record numbering within the generated data description statements (DDS).

FORMS-2 Maintenance
AIX VS COBOL data description statements that have been generated from a user
designed form by FORMS-2 are held in a DDS file. You will probably need to
make corrections and adjustments to maintain the form. You can maintain a DDS
file using a conventional text editor, but this involves the high risk of simple but
expensive errors, which FORMS-2 eliminates.

Your form is output to a display screen image file as an exact image, and FORMS-2
provides you with the facility to read display screen images back from fixed disk to
allow you to amend them. You can do this by running FORMS-2 and issuing the
FF command once the first work display screen is reached. You are then prompted
for the identity of the display screen image required. FORMS-2 reads the screen
image file into the foreground area of the work display screen and returns you to
edit mode. The form is then displayed as if it had just been typed, and you can
make any required amendments before releasing the display screen for processing by
pressing the space bar to get the SP ACE command.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-33

Printed Forms

When you use FORMS-2 for maintenance, it will overwrite the existing files, but
only after issuing warnings that the files already exist, and asking you for confirma
tion to proceed. For display screen image files, FORMS-2 offers you the facility of
specifying an alternative file name if you wish to retain the old version.

The display screen image files are created as line-sequential files in accordance with
the conventions of the operating system. Therefore, you can use standard software
to print them, and the resultant hard copy will be an exact image of your form with
no risk of transcription error.

Form Images in the Design Process
Form images can be used as a step in the applications design process, providing a
valuable part of the designer/programmer interface.

For interactive applications, design of the user interface (that is, the display screen
layouts or forms) may take place well in advance of the actual program being
written, and the forms designer need not have any detailed knowledge of COBOL.

FORMS-2 enables a nontechnical user to generate valid AIX VS COBOL state
ments. An experienced COBOL programmer can make use of commands available
to generate the most efficient code (for example, by influencing the number of fields
to be displayed).

It may sometimes be advantageous to use display screen image output alone as an
intermediate stage in the design process, with the programmer using the image files
as input to FORMS-2 to produce the final DDS file. If you use FORMS-2 in this
way, both fixed text and variable areas could be conveniently indicated on a single
fixed text display screen. You can then use this display screen to generate the DDS
file, and the forms designer need not know any details of COBOL data field specifi
cations.

12-34 User's Guide for IBM AIX VS COBOL Compiler/6000

FORMS-2 User Display Screen Generation Example
In this example, FORMS-2 is used to build the data entry form:

NAME
ADDRESS

TEL

[
[
[
[
[]

J
]
]
]

NAME and ADDRESS are alphanumeric fields and TEL is a numeric field. Use
the checkout program generated by FORMS-2 to experiment with data entry.
Change the ADDRESS field name to ABODE. Afterwards, the display screen will
appear as follows:

NAME
ABODE

TEL

[
[
[
[
[]

J
]
]
]

To do this, you must follow these steps:

1. Invoke FORMS-2 with the command:

forms2 .i
2. FORMS-2 shows display screen 101 requesting a 6-character base for file names

and data-names followed by four other questions. If the console is standard (24
lines), no further questions need be answered for this display screen. Type
demol and press .i if the default display screen size is correct.

3. FORMS-2 shows display screen 101 to prompt for the output file option type
and device/directory prefix. Press .i to accept the default values.

4. FORMS-2 shows display screen WOl to prompt for the display screen type
option. Note the default option A, and press .i.

5. FORMS-2 shows a blank display screen. Use the cursor control keys and the
normal character keys to set up the following text on the display screen:

NAME
ADDRESS

TEL

[_______________________]
[_______________________]
[_______________________]
[_______________________]
[________]

The underline characters are treated as spaces when the form is displayed by an
applications program, and are provided only for your convenience for indicating
the fields to be redefined as variable fields.

Press .i.
6. FORMS-2 puts " __ " in the top left of the display screen. Press SPACE and

then .i.
7. FORMS-2 processes the display screen to create a fixed text form. FORMS-2

displays the DDS source code as generated, followed by a redisplay of the fixed
text as it is written to the display screen image file.

A message is then displayed giving the name of the fixed text display screen
image file that is created. Press .i as directed.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-35

8. FORMS-2 shows display screen WOl to request the display screen type option.
Note the default C, and press .i.

9. FORMS-2 shows the fixed text display screen as background data. Use the
cursor control keys and enter Xs and 9s alone to set up the display screen as
follows:

NAME
ADDRESS

TEL

Press .i.

[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[999-9999]

10. FORMS-2 displays " __ " in the top left hand corner of the display screen. Press
SPACE and then .i. There is a short pause while FORMS-2 validates the
display screen content, during which the following message is displayed:

WORK SCREEN VALIDATION in progress
DO NOT press RETURN

11. FORMS-2 processes the Xs and 9s to create a variable data form displaying the
DDS source code as generated, followed by a redisplay of the variable text as it
is written to the display screen image file.

A message is then displayed giving the name of the variable data display screen
image file created. Press .-1 as directed.

12. FORMS-2 shows display screen WOl again. Enter! and press .-1 to terminate
the run. FORMS-2 displays the names of the DDS and CHK files created and
displays an End of Run message.

13. Compile the checkout program by entering the following:

cob -ik CHK demol.CHK ~

14. When the compilation is finished, check the two display screens by typing:

cobrun demol .i
15. The demonstration program will then run. The fixed data form is shown on the

display screen. The variable data form is used to accept data.

Satisfy yourself that the cursor can only be placed in the variable fields, and that
the data accepted into the fields depends on whether X or 9 was specified. You
may also test the effect of left fill character".".

When satisfied, press .i to complete. A message is displayed:

CHECK-OUT completed
Repeat ? [NO] (Y=Yes)

Press .i to accept the NO default and complete.

16. The checkout program displays:

END OF FORMS-2 CHECK-OUT

The variable form is used in the demonstration for ACCEPTing data. In prac
tice the form can be used for DISPLAYing data as well as ACCEPTing it. The
demonstration shows the extent and type of each field, which will be the same in
DISPLAY as in ACCEPT. A useful technique for clearing just the variable data
fields on the display screen is to move spaces to the ACCEPT record and then
DISPLAY it.

12-36 User's Guide for IBM AIX VS COBOL Compiler/6000

17. You can now examine the fixed disk files:

demol.DDS
demol.CHK
demol.SOO
demol.SOl
demol.int
demol.lst

to check the output from FORMS-2 during this use.

You now know how to use FORMS-2 to create display screens of fixed and var".'
iable data automatically for inclusion in your AIX VS COBOL program.

If you continue with the next step through the end, you will learn to update both
the fixed and variable data display screens already created by moving them from
background to foreground.

18. Reload FORMS-2 by entering:

forms2 .-1
19. FORMS-2 shows display screen IOI prompting for the 6-character file and data

name base in step 2. Answer the questions as necessary in step 2, and press .-1.
20. FORMS-2 shows display screen 102 prompting for the output file option type

and directory; press .-1 to accept the default values.

21. FORMS-2 displays the following message:

File already exists: demol.DDS
overwrite? [N] (Y=Yes)

Type Y and press .-1 .
If you enter the NO default here, the run is abandoned.

22. FORMS-2 displays the message:

File already exists: demol.CHK
overwrite? [NJ (Y=Yes)

Type Y and press ~ .

If you enter the NO default here, the run is abandoned.

23. FORMS-2 shows display screen WO 1 again. Press ~ to accept the default
option A.

24. FORMS-2 shows a blank display screen in edit mode. Press~ to enter
command mode, then F followed by~ to invoke the foreground/background
selection display screen. (You want to update your form, so it must be in fore
ground.)

25. FORMS-2 shows the foreground option display screen. Type F, followed by the
file name demol.SOO, and press.-'.

26. FORMS-2 shows display screen W02 again. Select option A to return to edit
mode.

27. FORMS-2 shows the fixed text display screen (previously created at step 5).
Move the cursor to the word ADDRESS and overtype it with ABODE.
Remember to overtype the extra characters SS with spaces, and then press ~ .

28. Press SPACE, and then~.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-37

29. FORMS-2 shows a message reminding you that your altered fixed text display
screen image is about to overwrite your previous display screen image in the file:

File already exists: demol.S00
overwrite? [NJ (Y=Yes)

Type Y and press .i .
If you type the NO default here, you are prompted for a file identity for a new
display screen image.

30. FORMS-2 shows the display screen image and then displays the file name:

File created = demol.S00

Press .i to continue.

31. FORMS-2 shows display screen WOl with option C as default to enable specifi
cation of variable data fields. Press .i to accept the default.

32. FORMS-2 displays the altered fixed text as follows to assist in defining the vari
able fields:

NAME
ABODE

[_______________________]
[_______________________]
[_______________________]
[_______________________]

TEL [________]

Press .i to enter command mode, then the F command, then .i.
33. FORMS-2 shows display screen W02 again. Type the option F, then the file

named demol.801, then press .i to retrieve your variable text created at step 9.

34. FORMS-2 shows display screen W02 with option H as default. If you press .i
to accept this default, FORMS-2 displays the current foreground contents. This
is only the Xs and 9s that define the variable data fields (the fixed text is in the
background area). Press .i to re-invoke display screen W02.

35. FORMS-2 shows display screen W02 with option A as default. Press .i to
accept this default.

36. FORMS-2 displays the whole form again. You can now alter the variable text
fields, if required.

You have seen facilities to retrieve fixed text and variable text from previously
created files. With a small number of variable data fields such as in this
example it would, in practice, be easier to rekey them.

37. Press~, then SPACE, then .i to process the altered form. Again, there is a
pause while FORMS-2 validates the variable fields.

38. FORMS-2 produces the DDS file, then displays:

File already exists: demol.S01
overwrite? [NJ (Y=Yes)

Type Y and press .i .
39. A message is displayed:

File created = demol.S01
Press RETURN to continue.

40. Press .i FORMS-2 shows display screen WOl again. This time enter! and
press .i to complete the run.

12-38 User's Guide for IBM AIX VS COBOL Compiler/6000

Index Program

41. Repeat steps 13 through 16 if you wish to run the checkout program again to
verify the altered form.

FORMS-2 provides facilities for automatically generating a COBOL program to
create and maintain an indexed sequential file. You supply the input required to
generate the index program and use it to maintain files interactively through the
console.

You can design a data entry display screen using FORMS-2 by specifying the fields
that will comprise the indexed sequential file records in the usual fixed text and vari
able text work phases.

The user interface to the generated index program is the form you design that
reflects the desired record structure. You need to consider only the data require
ments.

You must have access to the AIX VS COBOL software to compile the source index
program that FORMS-2 generates.

The generated index program is written to the file file-name.GEN and provides you
with the following facilities required for creating and maintaining an indexed sequen
tial file:

• Select records by key field for display (enquiry by key field).
• Select records sequentially for display (sequential entry).
• Amend existing records.
• Delete existing records.
• Insert new records.

The program is designed so that you do not have to explicitly state the facility to be
invoked at any time; the program is able to follow the logic from the way you
manipulate the data and cursor position.

Only the variable text data is written to the file, and the fixed text data is merely a
template to enable each field to be entered separately at data entry time. A record
in the indexed sequential file is constructed by linking the variable fields of the form
in the order in which they appear.

The record must include a key area by which it can be uniquely accessed. The index
program logic requires that this key area must be at the beginning of the record.
That is, it must be the first integral field(s) in the form and must not exceed 32 char
acters in length. This key area constitutes part of the record data. For convenience,
the remaining fields are known as the data fields.

Refer to "User Index Program Example" on page 12-43 to see how the sample
application is adapted to create and maintain a file of names, addresses, and tele
phone numbers.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-39

Index Program Generation
You can generate an index program using FORMS-2. All existing FORMS-2 facili
ties are present, but logic is incorporated to prevent the use of inappropriate features
if you select the index program option. The steps involved are as follows:

1. Initialization

a. Display Screen IOI

Specify file and name data base as normal.

b. Display Screen 102

Specify option G for index program generation.

2. Work phase one

a. Display Screen WOI

Work display screen selection. The program forces the default option A for
fixed text entry by refusing to accept anything else, except! to abandon the
run or ? to display help screens.

b. Fixed text work display screen

A blank work display screen is shown for input of the fixed text form.

All FORMS-2 commands are available with the following exceptions:

G The generated program relies on the default data-name structure.
This command is rejected.

S It would be inappropriate to switch off DDS generation, so this
command is rejected.

W This feature is not available, and the command is rejected.
However, the program reserves the bottom line for use in the gener
ated program for system messages, and a delimiting line of hyphens
marks this line.

Release the display screen for processing by the sequence~, SPACE,~, when
the fixed text display screen has been completely entered.

The work display screen selection screen is again shown.

3. Work phase two

a. Display Screen WOI

b. This time the program forces the default option C.

Specify the variable fields, that is, X/Y/8/9 and editing characters. At some
point before releasing this display screen you must define the end-of-
key /start-of-data boundary within the record. You do this by positioning
the cursor on the first data field, entering command mode and typing the *
command (that is, the sequence~,*,~).

A variable field cannot exceed 32 characters.

Release the display screen by the usual ~, SP ACE, ~ sequence. If the program
is not satisfied with the specification of the key/data boundary, it will return to
edit mode.

12-40 User's Guide for IBM AIX VS COBOL Compiler/6000

Upon completion of the variable text display screen, FORMS-2 completes its
processing and terminates automatically without any need for the termination!
command. In fact, the! command is only used to abandon the run when gener
ating the index program.

Index File Generation
The following files are written to the fixed disk by FORMS-2:

basename .SOO
basename.DDS
basename. GEN

Index Program Compilation

Display screen image file
COBOL data description statement file
Source file for the generated index program

Compile the index program in the usual way by entering the command:

cob -ik GEN basename.GEN ~

After compilation, you can run the generated program.

Index Program Running
Run the program immediately after compilation by entering the command:

cobrun basename ~

Data Processing Facilities
Immediately after the program is invoked, your form is displayed. The form
remains on the display screen throughout the run, processing being controlled by
manipulation of the data in the variable fields.

A display screen reflects the structure of a single record. Initiate the required proc
essing function by entering data and positioning the cursor as described, then
pressing~. Index program messages are displayed in an unused area of the display
screen as necessary.

The basic operator functions and index program messages are described below, and
will suffice in general use. Details of the index program interpretation of data
manipulation and cursor position follow this description.

Enquiry by Key Field: Amend key fields only and press ~ . The required record is
displayed. If the record is not found (that is, key cannot be found) the message
Record not found is displayed.

Sequential Enquiry: Press .i to show the next record. If the end of the file is
reached, the message End of file reached - return wi 11 terminate is displayed.

Amend Displayed Record: Amend data fields only and press .i . The message
Record amended is displayed.

Delete Displayed Record: Press the HOME key and press .i. The message Record
de 1 eted is displayed.

Insert New Record: Amend the key and data fields as required and press .i. If the
currently displayed data fields do not need changing, press HOME before pressing
.i.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-41

The message New record written is displayed if insertion takes place. If a record
already exists with the specified key, the current display is retained, and the warning
Record already exists with this key is displayed. The facilities available on the
subsequent input are as follows:

• Force replacement of existing record by pressing HOME and then~.

The record is replaced and the message Record replaced is displayed.

• Amend key field and attempt the insertion again by amending the key fields and
press~ (cursor position is irrelevant).

• Abandon insertion attempt and display existing record by pressing ~ only.

Terminate Run: Enquire up to the end-of-file by means of continual sequential
enquiry or a combination of enquiry by key to a specific record, then sequential
enquiry.

When end-of-file is reached, this message is displayed:

End of file reached - return will terminate

Press~ to terminate the run.

Interpretation of User Requirements
The index program interprets your requirements according to the status of key and
data fields and the cursor position as follows:

Key and Data Fields Unchanged: The function performed depends on cursor
position:

• If an end-of-file condition has been reported, a request to terminate the run is
assumed regardless of cursor position.

• Otherwise, if you have moved the cursor to HOME position and a record is cur
rently displayed, a delete request is assumed.

• If neither of these conditions exists, a request to display the next record relative
to the current position in the file is assumed.

Key Changed and Data Unchanged: The function performed depends on cursor
positions as follows:

• If you have moved the cursor to either the HOME position or the last data
character position, an attempt to insert a record is assumed, and processing is as
described in "Key Unchanged and Data Changed."

• Otherwise, an enquiry with respect to this key is assumed, and either the record
is displayed or its absence is reported.

Key Unchanged and Data Changed: This is a request to update the file. Either a
new record is written or the existing record is amended, as is appropriate.

12-42 User's Guide for IBM AIX VS COBOL Cornpiler/6000

Key and Data Changed: This is a request to insert a new record. However, it is
assumed that you should not overwrite a record without at least being informed of
its presence. Therefore, if a record exists with the specified key, a warning message
is displayed. One of the following three functions can be performed depending on
the status of key and data fields and the cursor position:

• Key and Data Unchanged

The function required depends on cursor position:

If you have moved the cursor to HOME position (or the last data character
position), insertion of the new record is forced, and the existing record is
overwritten.

If the cursor is at any other position, a request to abandon the insertion
attempt and display the existing record is assumed.

• Data Unchanged and Key Changed

An attempt is made to insert the data under the new key regardless of cursor
position. If necessary, the warning message will be repeated.

• Key and Data Changed

A normal insert request as described above is assumed.

User Index Program Example
The following example shows how to generate an indexed sequential file that con
tains records of names, addresses, and telephone numbers with NAME as key field,
and process these records.

NAME
ADDRESS

TEL

[
[
[
[
[]

J
]
]
]

NAME and ADDRESS are alphanumeric fields and TEL is a numeric field.

If you use the form for data entry and key in John Smith, 500 Chestnut St., Santa
Cruz CA 95060, 425-7222, the form will appear as:

NAME [John Smith]
ADDRESS [500 Chestnut St.]

[Santa Cruz]
[CA 95060]

TEL [425-7222]

To do this, carry out the following steps:

1. Type:

forms2 ~

2. FORMS-2 shows display screen IOl prompting you for a 6-character base for
file names and data-names followed by four other questions. If the console is
standard, no further questions need be answered for this display screen. Key
demo2 and press~, if the default display screen size is correct.

3. FORMS-2 shows display screen 102 prompting for the output file option type
and directory. Press G, then~, to accept the option for the index program.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-43

4. FORMS-2 shows display screen WOI to request the display screen type option.
Note the default option A and press~.

5. FORMS-2 shows a blank display screen with the end of the window one line up
from the bottom of the display screen and delimiters in the bottom line. Use the
cursor control keys and the normal character keys to set up the following text on
the display screen:

NAME
ADDRESS

[_______________________]
[_______________________]
[_______________________]
[_______________________]

TEL

Press_..!.

[________]

6. FORMS-2 puts" __ ,, at the top left of the display screen. Press SPACE and
then_..!.

7. FORMS-2 processes the display screen to create a fixed text form. FORMS-2
displays the DDS source code as generated, followed by a redisplay of the fixed
text as it is written to the display screen image file.

A message is then displayed giving the name of the fixed text display screen
image file created. Press ~ as requested.

8. FORMS-2 shows display screen WOl prompting for the display screen type
option. Note the default option C and press_..!.

9. FORMS-2 shows the fixed text display screen as background data; use the
cursor control keys and fill the NAME variable data field with Xs. Move the
cursor to the first character position in the address variable data field and then
press_..! to enter command mode. Type * to set the first character position in
the ADDRESS variable data field as the start of data position and then press
~. Continue to enter Xs and 9s to fill the data fields as shown:

NAME
ADDRESS

TEL

[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[XXXXXXXXXXXXXXXXXXXXX]
[999-9999]

You have now specified the NAME variable data field as the key field. Press
.i.

10. FORMS-2 displays " __ " at the top left of the display screen; press SPACE
and then~. A message is displayed showing that validation is in progress.

11. FORMS-2 processes the Xs and 9s to create a variable data form and displays
the DDS source code as generated, followed by a redisplay of the variable text
as it is written to the display screen image file.

12. FORMS-2 terminates automatically after displaying the end of the run display
screen:

File created = demo2.DDS
File created = demo2.GEN
END OF FORMS2 RUN

13. Compile the index program. Type:

cob -ik GEN demo2.GEN _..!

12-44 User's Guide for IBM AIX VS COBOL Compiler/6000

14. When the compilation is finished, run the generated index program demo2 by
typing:

cobrun demo2 .-1
15. The generated index program will run. Your display screen, as designed in step

9, is displayed. The fixed text form is shown on the display screen. The variable
data fields are used to accept data.

You are now ready to practice all the file maintenance commands. The next steps
show all of these in use, but you can vary the sequence or add steps to these once
you have gained confidence.

1. To insert the first record into the new indexed sequential file, type the name and
address into the display screen format; terminate the record by pressing .-1.
Remember to enter surname first before initials to keep the application feasible.

2. Enter two more complete records, overtyping all data from the previous record,
because all displayed data is written to the file.

3. When you have inserted three records you can amend the second record as
follows:

Enter the name field as for the second record added, followed by .-J . The whole
record is displayed because the name is the key that finds the record. You have
now seen the enquiry facility in operation. You can recall any record in this
manner.

4. Change the town field and press .-J. The message RECORD AMENDED is displayed.

5. Press .-1 and the third record is displayed. You could progress through a whole
file in this way.

6. To delete the third record entered, move the cursor to HOME position and press
.-1 . The fields clear showing deletion of that record, and the message RECORD
DELETED is displayed.

7. Press .-1. The index program attempts to show the next record, but one does
not exist, so an end-of-file message is shown:

END OF FILE REACHED - RETURN WILL TERMINATE.

8. Press .-1 with the END OF FI LE message showing to terminate the program.

This is the end of the record handling method. The following files now exist in
your directory:

demo2.DDS
demo2.GEN
demo2.int
demo2.DAT .idx
demo2.DAT

Data description statements for form (COBOL source)
Source code of index program demo2
Intermediate code of index program
Index file
Data file

The two files demo2.DAT.idx and demo2.DATA constitute the indexed sequential
files created by the generated index program, and in any further runs of this
program these two files will be used.

Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-45

12-46 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 13. Ryan-Mcfarland COBOL: Conversion Series 3

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-1

Contents
About This Chapter
Converting RM/COBOL Applications to AIX VS COBOL

Submitting RM/COBOL Source Programs to AIX VS COBOL
Converting Data Files

Enhancing Your Converted Application
Other Considerations for Conversion
Submitting an RM/COBOL Application to the AIX VS COBOL System

Migrating from the RM/COBOL Environment
tabx Program

Source Compatibility
RM Directive
SPZERO Option
Perform Statements
Types of Data . . .
COMPUTATIONAL-I (COMP-I) Data Types
COMPUT A TIONAL-6 (COMP-6) Data Types
COMPUTATIONAL (COMP) Data Types

Conversion Problem Solving
Length of Nonnumeric Literals
Source Code in Columns 73 to 80 .
Reserved Words
Numbering Segments
Program Identification and Data-Names
Column Number Specification
End-of-File Notification ..
HIGH-VALUES
Duplicate Paragraph Names
Display of Input Data in Concealed ACCEPT Fields

Executable Code Problems
Trailing Blanks in Line-Sequential Files
Undefined Results of MOVE and Arithmetic Operations
Embedded Control Sequences in DISPLAY Statements
Redefinition of COMPUTATIONAL or COMPUTATIONAL-6 Data

Items
ON SIZE ERROR Clause
Field Wrap-Around
COMPUTATIONAL-I Data Items with a Picture Other Than S9(4) .. .
File and Record Locking .
Initialization of the WORKING-STORAGE

Converting Data Files for Use with Converted Programs
Supported Data File Types
COMP/COMPUTATIONAL Data
COMP-3/COMPUTATIONAL-3 Data
COMP-6/COMPUTATIONAL-6 Data
DISPLAY Data
Program Modifications Required by convert3

Running convert3
Running convert3 in Interactive Mode
File Details
Print File Name
Record Type Specification
Binary Sequential Files
Generate Program

13-2 User's Guide for IBM AIX VS COBOL Compiler/6000

13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-8
13-9
13-9
13-9
13-9

13-10
I3-10
13-10
13-10
13-I 1
13-11
13-12
13-I2
13-I2
13-13
13-13
13-13
13-13
13-14
13-I4
13-I4
13-I5
13-I5
13-15

13-16
13-I 7
13-I7
13-I8
13-I9
13-19
I3-20
I3-20
I3-20
I3-2I
13-22
13-22
13-23
13-24
13-24
I3-25
13-25
I3-26
I3-28
I3-28

Escape . 13-29
Running convert3 in Batch Mode 13-29
Running convert3 with a Parameter File 13-33

Using the File Conversion Program 13-33
Creating an Executable File Conversion Program 13-34
Running the File Conversion Program 13-34
Indexed Sequential Files with Duplicate Alternate Keys 13-34

convert3 and File Conversion Program Error Messages 13-35
convert3 Error Messages 13-35
File Conversion Program Error Messages 13-36

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-3

13-4 User's Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter
This chapter details how you can use your IBM AIX VS COBOL to process Version
2 RM/COBOL source programs directly.

This chapter also describes the convert3 file conversion utility, which converts data
files created by RM/COBOL programs into data files that can be accessed by the
same programs under IBM AIX VS COBOL.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-5

Converting RM/COBOL Applications to AIX VS COBOL
There are two steps in converting an RM/COBOL application:

1. Submit your RM/COBOL source programs to the AIX VS COBOL compiler.

2. Use convert3 to convert existing data files from RM/COBOL format to AIX VS
COBOL format.

Submitting RM/COBOL Source Programs to AIX VS COBOL
Your AIX VS COBOL compiler includes certain language additions which allow you
to submit source programs written in the RM/COBOL language. You must set the
-C rm option when you use the cob command to compile these programs. See
"Source Compatibility" on page 13-9 for details.

You will need to alter your source program only if it contains RM/COBOL features
which are not supported by the AIX VS COBOL compiler. You may also want to
change your source program if it contains features which behave differently under
RM/COBOL and AIX VS COBOL, in order to force the AIX VS COBOL system to
emulate the behavior of the RM/COBOL system. See "Conversion Problem
Solving" on page 13-11 for details.

You must run the tabx program before submitting any source programs containing
TAB characters to the AIX VS COBOL compiler. See "ta bx Program" on
page 13-8 for details.

Converting Data Files
Convert3, the RM/COBOL to AIX VS COBOL file conversion utility, converts spec
ified data files from RM/COBOL format to AIX VS COBOL format. This ensures
that when you run your RM/COBOL programs in the AIX VS COBOL environ
ment, you can still access existing data files that they produced. You must supply
convert3 with the syntactically correct RM/COBOL source program which produced
the data files.

Enhancing Your Converted Application
Once you have successfully submitted your RM/COBOL source programs to the
AIX VS COBOL compiler, you may wish to take advantage of some of the
advanced features offered by the AIX VS COBOL system. These include:

• Enhanced screen-handling

• ANSI 85 HIGH syntax

• IBM VS COBOL II syntax

• Report writer syntax.

Full details on these features and their associated syntax can be found in the
Language Reference.

In order to use these features, you must specify certain compiler options when
recompiling your programs. For example, you must set the cob -C rw option if you
use report writer syntax. See Chapter 5, "Compiler Options" for details of system
options and the features they enable.

13-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Other Considerations for Conversion
The following features may affect compilation and run-time behavior of your con
verted RM COBOL code:

• Compiler options (See Chapter 5, "Compiler Options")

• Run Time Switches (See Chapter 7, "Running an AIX VS COBOL Program")

• adiscf (See Chapter 10, "Configuring Your AIX VS COBOL System").

Submitting an RM/COBOL Application to the AIX VS COBOL System
To successfully transfer your source programs and their associated data files from
RM/COBOL to AIX VS COBOL, you must be familiar with:

• The operation of the application which you wish to transfer to AIX VS COBOL.
This knowledge is necessary to ensure that the results given by the application
are the same in both environments.

• The design and implementation of the application.

• The COBOL language.

Migrating from the RM/COBOL Environment
Follow these steps to migrate from the RM/COBOL environment to the AIX VS
COBOL environment:

1. Transfer all source programs and their associated data files to the IBM AIX
system.

2. If the source programs contain any TAB characters, run the tabx program,
which expands them into a form that is acceptable to the AIX VS COBOL com
piler. See "ta bx Program" on page 13-8 for details.

3. Submit source programs to the AIX VS COBOL compiler using the cob
command described in Chapter 4, "The COBOL Interface."

4. Investigate the cause of any problems you may experience when you submit
source programs to the AIX VS COBOL compiler. "Conversion Problem
Solving" on page 13-11 describes problems which you may experience and gives
hints on how you can recover from them. Resubmit your corrected source pro
grams to the AIX VS COBOL compiler.

5. Test any sections of the source programs which do not use data files. If you
receive unexpected results see "Conversion Problem Solving" on page 13-11 for
a description of known problems you may experience in executing your source
programs, and hints on how to correct these. Alternatively, use the
ANIMATOR debugging tool to isolate and correct any problems.

6. Ensure that the ACCEPT/DISPLAY module ADIS is configured correctly. See
Chapter 10, "Configuring Your AIX VS COBOL System" for details.

7. Run convert3 to convert any existing data files used by your source programs.
See "Converting Data Files for Use with Converted Programs" on page 13-20
for full details on how to use convert3.

8. Finish system testing.

9. Archive your original data files to disk or tape.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-7

tabx Program

If disk space on your system is limited, you may not be able to have both the old
and new copies of all your data files present on your system at the same time. If this
is the case, gradually load and unload the data files onto your system during the
conversion process.

If your RM/COBOL source programs contain any TAB characters, you must run
the tabx program before you can successfully submit them to the AIX VS COBOL
compiler. This is necessary because the RM/COBOL and the AIX VS COBOL com
pilers handle TAB characters differently. Under the RM/COBOL compiler the first
TAB stop is at character position 8, while subsequent TAB stops are at 4-character
intervals up to position 72. However, under the AIX VS COBOL compiler, the first
TAB stop is at character position 9, while subsequent TAB stops are at 8-character
intervals.

The tabx program expands any TAB characters in your RM/COBOL source pro
grams to spaces. The resulting source code can be submitted successfully to either
the RM/COBOL or the AIX VS COBOL compiler.

To run tabx enter the following command line:

tabx -options input-filename output-filename ..-'

where options can be any of the following:

v Sets verbose mode. Any messages are displayed on your screen.

Parameters are read from the file specified as input-filename.

t (tab-spec)
Informs tabx of the positions at which TAB characters are set. For
example, -t(l6-8, 64) assumes tab positions are initially at position 16,
and then at 8-character intervals up to column 64. By default this is set
to -t(8-4, 72), which is suitable for RM/COBOL source programs.

input-filename
The file containing the RM/COBOL source program.

output-filename
The file to which the source program output is directed by tabx. If you
do not specify output-filename, tabx directs its output to input-filename,
which would overwrite the original contents of input-filename.

The following example expands the TAB characters in the file myfile.cbl and outputs
a new file, myfile.new:

tabx -v myfile.cbl myfile.new _.J

In the following example tabx treats each line of the file filelist as a command line:

tabx -1 filelist ~

This example expands the TAB characters in the file myfile.cbl and overwrites
myfile.cbl with the resulting source program:

tabx myfile.cbl

13-8 User's Guide for IBM AIX VS COBOL Compiler/6000

Source Compatibility

RM Directive

SPZERO Option

This section describes the options you may need to set to successfully submit your
RM/COBOL programs to the AIX VS COBOL compiler. It also describes the treat
ment of data types by the AIX VS COBOL compiler.

Although the standard AIX VS COBOL language, as documented in the Language
Reference, already supports most of the RM/COBOL syntax, it does not support it
all. To enable the additional syntax in the AIX VS COBOL language which allows
you to process RM/COBOL source programs on the AIX VS COBOL compiler, you
must set the cob -C rm option when compiling your program. This ensures that
most of your RM/COBOL source programs are accepted by the AIX VS COBOL
compiler the first time they are submitted. This additional syntax is documented in
the Language Reference.

If you normally set the ANSI switch when you submit your RM/COBOL source
programs to the RM/COBOL system, use the cob -C rm= ansi option when com
piling your program.

Note that setting the rm option automatically sets additional compiler options, See
Chapter 5, "Compiler Options" for full details.

It is recommended that you use the cob -C nomf option when you compile your
RM/COBOL source programs. This ensures that only those words that are treated
as reserved words under ANSI 85 HIGH COBOL are regarded as reserved words
under the AIX VS COBOL system.

Under RM/COBOL, comparing uninitialized numeric items to zero would be true.
This comparison will be false under AIX VS COBOL if the spzero directive is not
set. However, using the spzero option will seriously affect performance and will
cause numeric items containing alphanumeric values not to have their most signif
icant half-byte validated in comparison operations in native code. This means that
emulation of RM/COBOL's handling of alphanumeric values in numeric fields
would not be complete if the spzero option was set.

If you need to emulate RM/COBOL behavior for comparisons of uninitialized
numeric fields with zero in native code, you can do this by setting the spzero option
explicitly. However, you should be aware of the effect on performance that this will
have, and the possible effects on other results if you move alphanumeric values to
numeric fields in your program. We recommend, therefore, that you ensure that
your numeric fields are correctly initialized to zero before they are used, rather than
use the spzero option.

Perform Statements
PERFORM statements are not treated in the same way by the AIX VS COBOL and
RM/COBOL systems. The AIX VS COBOL system uses a stack-based perform han
dling system, while the RM/COBOL system associates a return address with a spe
cific procedure name. As a result, under the RM/COBOL system, all end-points of
perform statements are always active until they are used. However, under the AIX
VS COBOL system, only the end-point of the last perform statement is active at any
one time.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-9

Types of Data

You must set the cob -C perform-type= rm system directive as well as rm, if the AIX
VS COBOL system is to emulate the behavior of RM/COBOL PERFORM state
ments.

The treatment of data types by AIX VS COBOL is compatible with the action of the
file conversion utility convert3. AIX VS COBOL always allocates the same number
of bytes to the item in question. However, you must be aware that if these items are
redefined and the program logic expects to find a certain binary value in the redefi
nition, you may not receive the behavior you are expecting at run time. You must
also note that at run time, AIX VS COBOL may treat the ON SIZE ERROR clause
differently from the RM/COBOL system. See "Conversion Problem Solving" on
page 13-11 for further details.

The following sections define how the AIX VS COBOL system treats
COMPUTATIONAL-I, COMPUTATIONAL-6, and COMPUTATIONAL types of
data.

COMPUTATIONAL-1 (COMP-1) Data Types
The AIX VS COBOL system allocates a 2-byte signed binary data item capable of
holding hexadecimal values in the range -32768 to + 32767 for each data item
declared as USAGE COMP-I in the source program, regardless of its picture string.
That is, the AIX VS COBOL compiler treats each RM/COBOL USAGE COMP-1
data item as though it had a standard AIX VS COBOL picture string of S9(4)
COMP. See the Language Reference for full details on the standard AIX VS
COBOL language.

COMPUTATIONAL-& (COMP-6) Data Types
AIX VS COBOL treats any COMP-6 data items in your RM/COBOL source
program as AIX VS COBOL COMP format. If, as a result of this, less data space is
allocated to each item than would be under the RM/COBOL system, AIX VS
COBOL pads the space with null bytes.

1. Behavior in truncation of data moved to COMP-6 items differs between AIX VS
COBOL and RM/COBOL. In AIX VS COBOL, should truncation occur when
you move data into a COMP-6 item, the truncation will occur according to the
rules for moves to AIX VS COBOL COMP fields.

2. If you specify the CALL BY CONTENT statement using COMP-6 fields, the
results may not be as you expect.

COMPUTATIONAL (COMP) Data Types
AIX VS COBOL treats any COMP data items in your RM/COBOL source program
as AIX VS COBOL DISPLAY format. The difference in the internal representation
of such data in the two systems is that AIX VS COBOL always sets the most signif
icant four bits of each byte to the value 3, while the RM/COBOL system always sets
such bits to the value 0.

13-10 User's Guide for IBM AIX VS COBOL Compiler/6000

For example, under the RM/COBOL system:

PIC 999 COMP VALUE 123

is held in three bytes as hexadecimal value 01 02 03 while under the AIX VS
COBOL system:

PIC 999 VALUE 123

is held in three bytes as hexadecimal value 31 32 33.

Conversion Problem Solving
Although most of the RM/COBOL source programs which you supply to the com
piler will be accepted syntactically and run successfully, there are a number of areas
in which problems may occur. These may cause the AIX VS COBOL compiler to
reject some of the syntax contained in your original RM/COBOL source program, or
alternatively may cause your program to behave other than expected at run time.

This section details the known features which may give errors or which may not
behave as you expect at run time. Hints are also given on how to correct the cause
of such errors, and how to emulate the RM/COBOL type of behavior with AIX VS
COBOL.

Length of Nonnumeric Literals
RM/COBOL allows you to write source programs which contain nonnumeric literals
in the Procedure Division which are up to 2047 characters long. However, AIX VS
COBOL accepts only nonnumeric literals within the Procedure Division which are
no longer than 160 characters long.

Solution: Amend your source program by creating a new data item in the
WORKING-STORAGE SECTION, and assign the literal to the VALUE clause. If
you then use the data item in the Procedure Division in place of the original long
literal, the AIX VS COBOL compiler will accept your source program.

Example: The RM/COBOL system will accept the following line of code, but the
AIX VS COBOL compiler will not:

MOVE "ABC ... AA" TO SCREEN-BUFFER.

where ABC ... AA represents a literal with 1500 characters. Change the line of code
to:

MOVE LONG-LITERAL-1 TO SCREEN-BUFFER.

Define a new item in the WORKING-STORAGE SECTION of your source
program:

01 LONG-LITERAL-1 PIC X(1500) VALUE "ABC ... AA".

You can now compile your amended RM/COBOL source program with AIX VS
COBOL.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-11

Source Code in Columns 73 to 80

Reserved Words

The AIX VS COBOL compiler ignores any of the code in your source programs
which lies within columns 73 to 80.

Solution: The illegal COBOL code has probably resulted from expanding TAB
characters in your source program to standard TAB stops. If your source program
contains any TAB stops, run the tabx program before compiling. This expands TAB
characters into a form which is acceptable to AIX VS COBOL. See "tabx Program"
on page 13-8 for full details.

To solve this problem, remove enough blanks or split the long line, then recompile.

When you set compiler options such as -C mf or ans85, it enables various features
and their associated reserved words within the AIX VS COBOL language. As a
result, you may receive errors when you compile source programs with such options
set, because data items within them have the same name as words which are enabled
as reserved words.

Solution: Edit your source programs to rename the offending data item(s), or use
the remove system option to remove a specified reserved word from the reserved
word list. See Chapter 5, "Compiler Options" for details of the remove option.

Example: Your RM/COBOL source program may contain the following lines of
code:

03 SORT PIC 99.

MOVE 1 TO SORT

If you compile this you will receive an error, as the AIX VS COBOL compiler sup
ports the SORT verb, while the RM/COBOL compiler does not. However, if you
use cob -C 'remove= sort' to compile you will not receive this error.

Numbering Segments
The RM/COBOL system allows you to specify segment numbers greater than 99.
However, the AIX VS COBOL compiler allows you to specify segment numbers only
in the range 0 to 99 inclusive.

Solution: Amend your source programs so that segment numbers greater than 99
become less than or equal to 99, making sure that any new segment numbers you
allocate do not duplicate an already existing segment number. You should note that
segment numbers between 0 and 49, inclusive, are used for the fixed portion of the
object program, while segment numbers 50 to 99, inclusive, are used for independent
segments. For details on the use of segment numbers, see the Language Reference.

13-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Program Identification and Data-Names
The RM/COBOL system allows the PROGRAM-ID and a data item in that
program to have the same name. However, the AIX VS COBOL compiler does not
allow the use of the same name for the I'~OGRAM-ID and a data item within the
program, requiring instead that each be unique.

Solution: Change either the program name in the PROGRAM-ID, or the name of
the data item to something that follows the conventions of AIX VS COBOL as given
in the Language Reference.

Column Number Specification
AIX VS COBOL allows you to specify column numbers up to and including 255, but
the RM/COBOL system allows you to specify column numbers greater than 255. If
you attempt to run an RM/COBOL source program containing a column number
greater than 255 under AIX VS COBOL, the compiler issues a severe error message.

Solution: Amend your source programs so that column numbers greater than 255
become less than or equal to 255. If you want an item on the screen that has a
column number greater than 255 to remain in the same position under AIX VS
COBOL as under the RM/COBOL system, you will need to recode your program.
See the Language Reference for details on how to do this.

End-of-File Notification

HIGH-VALUES

The first time the READ of a sequential file is unsuccessful in either AIX VS
COBOL or the RM/COBOL system, the FILE STATUS is set to 10 to indicate that
there is no next logical record. When a READ of the same file is again attempted,
without it having been previously CLOSEd and reOPENed or successfully
STARTed, AIX VS COBOL continues to indicate that there is no next logical
record. However, when a READ of the same file is attempted again under the
RM/COBOL system, the FILE STATUS is set to 96, which results in the RTE error
message NO CURRENT RECORD DEFINED FOR SEQUENTIAL READ being displayed.

Solution: Although the solution to the different FILE ST A TUSes returned for the
circumstances given above depends on the way in which your source program is
coded, it is suggested that you include a test for the characters 10 at the same time
as the test for the characters 96 in the FILE ST A TUS portion of your code. You
should note that the inclusion of this test for the characters IO may provide different
results under AIX VS COBOL from those under the RM/COBOL system, if the test
is used the first time the READ of a sequential file is unsuccessful.

The RM/COBOL system allows you to move HIGH-VALUES to a COMP-I data
item, which results in a value of -1. AIX VS COBOL will not allow you to move
HIGH-VALUES to a numeric data item because it is an alphanumeric figurative
constant.

Solution: To initialize COMP-1 data items with HIGH-VALUES, you must change
your program by substituting HIGH-VALUES with -1. Note that if the -F run-time
switch is set, the move of HIGH-VALUES into a COMP-1 data item would be
allowed in AIX VS COBOL, but the result would not be -1.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-13

Duplicate Paragraph Names
If your program contains duplicate paragraph names, AIX VS COBOL and
RM/COBOL will resolve references to the duplicate paragraph names in the same
way, provided that the duplicate paragraph names are only referenced from within
the sections in which they are declared. If, however, you reference a duplicate para
graph name from a different section to the one it is declared in, RM/COBOL will
assume that the reference is to the next declaration of the duplicate paragraph name,
whereas AIX VS COBOL will give a compilation error.

Solution: To ensure that references to duplicate paragraph names are correctly
resolved, you must qualify a reference to a duplicate paragraph name by adding the
section name in which it is declared.

Example: If your source code contains the following:

PERFORM para-2.

sect-1 SECTION.
para-1.

para-2.

sect-2 SECTION.
para-2.

RM/COBOL will resolve the reference to para-2 in the PERFORM statement by
using the declaration of para-2 in the sect-1 SECTION. Under AIX VS COBOL,
however, you must qualify the reference to the duplicate paragraph name in your
source code by using the PERFORM para-2 OF sect-1 statement.

Display of Input Data in Concealed ACCEPT Fields
If you have specified OFF and ECHO clauses for the same ACCEPT statement in
your program, RM/COBOL will conceal any data entered during input for that
statement, but on completion of input will display the data. AIX VS COBOL,
however, will not display the data for this ACCEPT statement once input has been
completed.

Solution: If you wish to display the data input for an ACCEPT statement with the
OFF and ECHO clauses both specified, you must add a DISPLAY statement after
the ACCEPT statement.

Executable Code Problems
Once you have successfully submitted your RM/COBOL source program to the AIX
VS COBOL compiler and produced executable code, you may encounter problems
when you attempt to run this code under AIX VS COBOL. Alternatively, the code
may run, but you may find that its behavior under AIX VS COBOL is not exactly
the same as under the RM/COBOL system.

13-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Trailing Blanks in Line-Sequential Files
AIX VS COBOL always removes trailing blanks from line-sequential records before
writing the record. The RM/COBOL system removes trailing blanks from such
records only if the FD entry contains 01 level records of different sizes. This will not
cause you any problems when you run your converted RM/COBOL programs under
AIX VS COBOL. However, you may receive errors at run time if any REWRITE
operations on line-sequential files change the length of the records.

Solution: Change the file organization to sequential, or move an alternative padding
character (for example, LOW-VALUES) to the end of the record before it is written.
This ensures that full-length records are written.

Also, ensure that the T run-time switch is not set, as this may also change the size of
the record. See Chapter 7, "Running an AIX VS COBOL Program" for details of
this switch.

Undefined Results of MOVE and Arithmetic Operations
The results of MOVE statements involving numeric and alphanumeric data items
may differ under AIX VS COBOL and RM/COBOL systems. So may the results of
arithmetic operations or comparisons on numeric items which contain nonnumeric
data.

Solution: You can overcome most of these incompatibilities by redefining the data
items involved, or by recoding the comparisons.

Example: If you submit a source program containing the following data items and
procedural statements, the specified test will fail at run time under AIX VS COBOL:

01 NUMERIC-FIELD PIC 9(5).

PROCEDURE DIVISION.

MOVE 11 ABC 11 TO NUMERIC-FIELD.
IF NUMERIC-FIELD = 11 00ABC 11

When the rm directive is set, AIX VS COBOL partially emulates the behavior of the
RM/COBOL system for alphanumeric to numeric MOVEs by treating the numeric
item as an alphanumeric item which is right justified. However, the above example
will still fail because the RM system will treat the literal ABC as numeric, and place
00ABC in the numeric item. To make the statement work in AIX VS COBOL, amend
the test in the source program to:

IF NUMERIC-FIELD = II ABC"

and resubmit the source program.

Embedded Control Sequences in DISPLAY Statements
In your RM/COBOL source program, you may have embedded control sequences
within data items which you want to be displayed. One of the most commonly used
sequences is that for selecting underline:

\E[4m

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-15

AIX VS COBOL ignores such control characters at run time because they are hard
ware dependent. It will attempt to display them as literals but the results are unde
fined.

Solution: Remove the control S(!quences from your source program and replace
them with the equivalent AIX VS COBOL syntax, which in the above example
would be WITH UNDERLINE. See the Language Reference for a full description
of syntax. Resubmit your corrected source program to AIX VS COBOL. If any of
the syntax which you have added to your source program needs to have additional
options set before the AIX VS COBOL system will accept it, you must set these
options. In the above example you would need to set the mf(3) option. See
Chapter 5, "Compiler Options" for a full description of all the available options,
and the Language Reference for a list of reserved words enabled by each option.

Redefinition of COMPUTATIONAL or COMPUTATIONAL-& Data Items
AIX VS COBOL fully supports the size and capacity of RM/COBOL type COMPU
TATIONAL and COMPUTATIONAL-6 data items, provided the source program
containing such items is submitted to AIX VS COBOL with the rm option set.
However, the internal representation of such data items in AIX VS COBOL and the
RM/COBOL system is not the same. See "Source Compatibility" on page 13-9 for
full details. This may cause problems if you want to redefine these data items in
order to take advantage of their internal format.

Solution: MOVE the data items concerned to other data items which are not
defined as COMPUTATIONAL or COMPUTA TIONAL-6. This converts the data
automatically.

Example: The following piece of source program is coded to take advantage of the
internal representation of COMPUTATIONAL-6 data items under the RM/COBOL
system, and to analyze a date field:

01 BIRTHDATE-1 PIC 9(6) COMP-6.
01 BIRTHDATE-2 REDEFINES BIRTHDATE-1.

03 MONTH-2 PIC 99 COMP-6.
03 DAY-2 PIC 99 COMP-6.
03 YEAR-2 PIC 99 COMP-6.

PROCEDURE DIVISION.
START-UP SECTION.
PARA-1.

MOVE 082462 TO BIRTHOATE-1.

IF YEAR-2 = 62
DISPLAY "RECORDS NOT AVAILABLE FOR 1962."

13-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Amend your source program to use the DISPLAY format instead of redefining
COMPUTATIONAL-6 data items before submitting it to AIX VS COBOL:

01 BIRTHDATE-1 PIC 9(6) COMP-6.
01 BIRTHDATE-2 REDEFINES BIRTHDATE-1.

03 MONTH-2 PIC 99 COMP-6.
03 DAY-2 PIC 99 COMP-6.
03 YEAR-2 PIC 99 COMP-6.

01 BIRTHDATE-lA PIC 9(6).
01 BIRTHDATE-2A REDEFINES BIRTHDATE-lA.

03 MONTH-2A PIC 99.
03 DAY-2A PIC 99.
03 YEAR-2A PIC 99.

PROCEDURE DIVISION.
START-UP SECTION.
PARA-1.

MOVE 082462 TO BIRTHDATE-1.
MOVE BIRTHDATE-1 TO BIRTHDATE-lA.

IF YEAR-2A = 62
DISPLAY "RECORDS NOT AVAILABLE FOR 1962."

This overcomes any potential problems.

ON SIZE ERROR Clause
AIX VS COBOL and the RM/COBOL systems treat the ON SIZE ERROR condi
tion differently. The ON SIZE ERROR condition exists under the RM/COBOL
system when the value resulting from an arithmetic operation exceeds the capacity
for the associated data item. However, the ON SIZE ERROR condition exists
under AIX VS COBOL when the value resulting from an arithmetic operation
exceeds the capacity of the specified PICTURE string. You may thus have problems
if your source programs contain data items whose capacity is not specified by a
PICTURE string, for example COMPUTATIONAL-1 data items.

Field Wrap-Around
If, when using binary data items (RM/COBOL COMPUTATIONAL-I format
items) an arithmetic operation gives a value which exceeds the capacity of the data
item, and there is no ON SIZE ERROR clause, AIX VS COBOL wraps around the
value of the item. However, under the same conditions the RM/COBOL system sets
the data item to the limit of its capacity.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-17

Example: Under the RM/COBOL system, the following lines of code result in the
value +32767 being stored in the data item CALC-ITEM. However, under AIX VS
COBOL the value -32768 .is stored in CALC-ITEM:

01 CALC-ITEM PIC S9(4) COMP-1.

PROCEDURE DIVISION.

MOVE 32767 TO CALC-ITEM.
ADD 1 TO CALC-ITEM.

COMPUTATIONAL-1 Data Items with a Picture Other Than S9(4)
The RM/COBOL system notes the PICTURE string for the COMPUTATIONAL-I
data item when it is used as the source of a MOVE statement to an alphanumeric
item. However, AIX VS COBOL always assumes a COMPUTATIONAL-I data
item has a PICTURE string of S9(4).

Solution: To produce the result you must redefine the target of the MOVE state
ment.

Example: The following piece of source program causes TEST-RECORD to hold
99 under the RM/COBOL system, but 0099 under the AIX VS COBOL system,
which treats the data item as though it had a PICTURE definition of PIC S9(4).

01 TEST-RECORD PIC X(10).
01 COMP-1-ITEM PIC 99 COMP-1.
PROCEDURE DIVISION.

MOVE 99 TO COMP-1-ITEM.
MOVE COMP-1-ITEM TO TEST-RECORD.

To overcome this problem, redefine TEST-RECORD as shown below:

01 TEST -RECORD.

03 TEST-NUMERIC-FIELD PIC 99.
03 FILLER PIC X(8).

01 COMP-1-ITEM PIC 99 COMP-1.

PROCEDURE DIVISION.
MOVE 99 TO COMP-1-ITEM.
MOVE COMP-1-ITEM TO TEST-NUMERIC-FIELD.

This avoids moving the COMPUTATIONAL-I data item directly to an alphanu
meric field.

13-18 User's Guide for IBM AIX VS COBOL Compiler/6000

File and Record Locking
Certain versions of the RM/COBOL system contain some software errors in the way
locks for files and records are handled. For example:

• Indexed files do not detect or acquire locks if they are opened for output,
regardless of whether you specify the WITH LOCK phrase.

• Relative and sequential files cannot be locked exclusively.

• Files which are opened for input can detect record locks, although the
RM/COBOL documentation states that they cannot.

• The first record in sequential files opened for input-output is locked whenever
any other record in that file is.

These errors are not emulated in AIX VS COBOL.

Initialization of the WORKING-STORAGE
The RM/COBOL system initializes all WORKING-STORAGE to SP ACES, unless
you have placed numeric data items between data items with value clauses. This
behavior is not emulated by AIX VS COBOL.

Solution: If this feature causes any problems, add a VALUE clause with the appro
priate value to your source program and resubmit it to AIX VS COBOL. This will
resolve any problems which may occur if your program relies on the initial value
given to the system.

Example: The RM/COBOL system initializes the following group item to SP ACES:

01 GROUP-ITEM.
03 ITEM-1
03 ITEM-2
03 ITEM-3

PIC X.
PIC 99.
PIC X.

However, if ITEM-1 and ITEM-3 have value clauses associated with them, the
RM/COBOL system initializes the second byte of ITEM-2 to hexadecimal value 0 if
ITEM-2 is defined as USAGE COMP (signed or unsigned) or USAGE DISPLAY
(unsigned only).

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-19

Converting Data Files for Use with Converted Programs
In order to run convert3, you must supply it with the name of an existing
RM/COBOL source program (or copy file) that is syntactically correct. This source
program must contain the FD and SELECT ... ASSIGN entries, together with any
associated record definitions concerning the RM/COBOL data file you want to
convert. The following sections describe the data definition changes that convert3
makes to the source program.

Supported Data File Types
The formats of the data and index portions of files under AIX VS COBOL and the
RM/COBOL systems are not the same.

convert3 can convert COMPUTATIONAL, COMPUTATIONAL-3,
COMPUT A TIONAL-6 and DISPLAY data from RM/COBOL format to AIX VS
COBOL format. The following sections describe how these types of data are con
verted.

COMP/COMPUTATIONAL Data
The RM/COBOL system represents COMP (or COMPUTATIONAL) data in
packed decimal format with one character per byte stored in each least significant
four-bits. The most significant half-byte always contains zero. If the PICTURE
string specifies a signed representation, an additional byte is added to the least signif
icant end of the string: a negative value is represented by the hexadecimal value OD,
and a positive value is represented by the hexadecimal value OB.

Consider the following examples:

RM Representation
Value Picture Clause (Hexadecimal)

1234 PIC 9(5) COMP 00 01 02 03 04

1234 PIC S9(5) COMP 00 01 02 03 04 OB

-1234 PIC S9(5) COMP 00 01 02 03 04 OD

The conversion program produced by convert3 converts COMP data fields into AIX
VS COBOL DISPLAY format, with sign trailing separate. This is compatible with
the AIX VS COBOL compiler's treatment of RM/COBOL COMP fields in the
source program when the rm option is set. See "Source Compatibility" on page 13-9
for details. If the data item is signed, the sign byte has the most significant half-byte
set to hexadecimal value 2.

13-20 User's Guide for IBM AIX VS COBOL Compiler/6000

After conversion, the previous examples are represented as follows:

AIX VS COBOL
Representation

Value Picture Clause (Hexadecimal)

1234 PIC 9(5) DISPLAY 30 31 32 33 34

1234 PIC S9(5) DISPLAY 30 31 32 33 34 2B

-1234 PIC S9(5) DISPLAY 30313233342D

COMP-3/COMPUTATIONAL-3 Data
The RM/COBOL system represents COMP-3 data in packed decimal format with
the least significant half-byte holding the sign.

This sign half-byte contains the following values:

RM Sign Half-byte Value
Field (Hexadecimal)

Unsigned F

Signed, Positive B or F

Signed, Negative D

Consider the following examples:

RM Representation
Value Picture Clause (Hexadecimal)

1234 PIC 9(5) COMP-3 01 23 4F

1234 PIC S9(5) COMP-3 01 23 4F

-1234 PIC S9(5) COMP-3 01 23 4D

The only requirement for conversion is that the sign half-byte has to be changed for
signed positive fields to hexadecimal value C.

After conversion, the examples above are represented as follows:

AIX VS COBOL
Representation

Value Picture Clause (Hexadecimal)

1234 PIC 9(5) COMP-3 01 23 4F

1234 PIC S9(5) COMP-3 01 23 4C

-1234 PIC S9(5) COMP-3 01 23 4D

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-21

COMP-6/COMPUTATIONAL-6 Data

DISPLA V Data

The RM/COBOL system holds COMP-6 data in a similar format to COMP-3 data,
except that there is no sign half-byte. If a sign is indicated in the picture clause it is
ignored and has no effect. The value held is always positive.

Consider the following examples:

RM Representation
Value Picture Clause (Hexadecimal)

1234 PIC 9(5) COMP-6 00 12 34

123456 PIC S9(5) COMP-6 12 34 56

In order to maintain the size and capacity of the data items, the AIX VS COBOL
system treats COMP-6 data items as AIX VS COBOL COMP fields and pads the
field with binary zeros where necessary.

After conversion, the examples above are represented as follows:

AIX VS COBOL
Representation

Value Picture Clause (Hexadecimal)

1234 PIC 9(5) COMP-6 00 04 D2

123456 PIC S9(5) COMP-6 01 E2 40

Note that the 9(5) COMP field is extended by one byte containing binary zero in
order to maintain the size of the original item.

You should be aware of the following differences between the representation of
numeric DISPLAY format data items, with SIGN INCLUDED, under RM/COBOL
and AIX VS COBOL:

• AIX VS COBOL does not encode a sign on the data if the data is positive,
whereas RM/COBOL increments the value of the most significant half-byte by
one to denote a positive value.

• AIX VS COBOL increments the value of the most significant half-byte by 4 to
denote a negative value. RM/COBOL increments the value of the most signif
icant half-byte by 1, and increments the value of the least significant half-byte by
9, to denote negative values.

When there is no sign clause associated with a DISPLAY format data item, AIX VS
COBOL treats these data items as though you had specified the SIGN TRAILING
IS INCLUDED clause. By default, RM/COBOL treats such data items as though
you had specified the SIGN TRAILING IS.SEPARATE clause. You can force AIX
VS COBOL to emulate the behavior of the RM/COBOL system by setting the ANSI
parameter with the rm system options. Similarly, convert3 allows you to specify the
type of sign used for DISPLAY format data items. See Chapter 10, "Configuring
Your AIX VS COBOL System" for details on how you can do this.

13-22 User's Guide for IBM AIX VS COBOL Compiler/6000

Consider the following examples:

RM Representation
(Hexadecimal)

Value Picture Clause Leading Trailing

123 PIC 9(3) DISPLAY 31 32 33 31 32 33

123 PIC S9(3) DISPLAY 41 32 33 31 32 43

-123 PIC S9(3) DISPLAY 4A 32 33 31 32 4C

After conversion, these examples are represented as follows:

AIX VS COBOL
Representation (Hexadecimal)

Value Picture Clause Leading Trailing

123 PIC 9(3) DISPLAY 31 32 33 31 32 33

123 PIC S9(3) DISPLAY 31 32 33 31 32 33

-123 PIC S9(3) DISPLAY 71 32 33 31 32 73

Program Modifications Required by convert3
The following sections list the areas in which you may need to make modifications
to an RM/COBOL source program before you use it as input to convert3.

The REDEFINES Clause
convert3 cannot process data files whose definition includes a REDEFINES clause.
If a record description in the FILE SECTION contains a REDEFINES clause, you
must divide this record description into separate record descriptions.

You must also make sure that each record type in a file with multiple record types is
identifiable by either:

• A user-written subroutine
• An item that is common to each record type.

See "Record Type Specification" on page 13-26 for more information about han
dling multiple record files.

The USAGE IS INDEX Clause
convert3 cannot process items with USAGE IS INDEX in a record description. If a
record description contains such an item, you can alter the item to have a PICTURE
string of S9(4) COMP-1.

The USAGE Clause with Group Items
convert3 cannot process group items with a USAGE clause in a record description.
To overcome this, add a USAGE clause to each elementary item within the group.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-23

Continuation Columns
convert3 cannot process source program statements with a continuation marker in
column 7. This limitation applies only from the beginning of your source program
to the end of the file section. To overcome this limitation, alter the layout of your
source program so that it does not require continuation markers.

The DECIMAL POINT IS COMMA Clause
convert3 cannot process the DECIMAL POINT IS COMMA clause in the
SPECIAL-NAMES paragraph. To overcome this limitation remove the DECIMAL
POINT IS COMMA clause.

Uniqueness of Names in Record Descriptions

DEPENDING Names

PICTURE Strings

All data-names in record descriptions must be unique. Therefore, you must remove
all qualified data-names from record descriptions in the RM/COBOL source pro
grams.

If a record description contains a DEPENDING phrase, the data-name in the
DEPENDING phrase must occur in the same record.

The maximum length of a PICTURE string in a record description is 20 characters.
However, you can overcome this limitation by splitting any PICTURE strings which
exceed this limit into two and defining a FILLER item with a PICTURE string
which corresponds to the size of the second half of the original string.

Running convert3
The first step in converting your RM/COBOL data files is to produce a file conver
sion program. This program reads RM/COBOL data files and converts them to
AIX VS COBOL data files.

Use the convert3 utility to produce a file conversion program. The input to convert3
is the RM/COBOL source program that created the files you are converting. The
output is the file conversion program.

You can use convert3 in either of two modes: interactive mode or batch mode.

If you run convert3 in interactive mode, the system prompts you for various parame
ters that control the production of the file conversion program on your display
screen.

If you run convert3 in batch mode, you must supply the necessary control parame
ters in a file.

Running convert3 in Interactive Mode
The convert3 utility is entirely menu driven when run in the interactive mode. It has
an on-line help facility on each menu. This displays a screen of information on the
facilities available for each menu.

To invoke convert3 enter the command:

convert3 ~

13-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Help

File Details

Print File Name

Once you have invoked convert3, the main menu is displayed. From this menu you
can select any of the following functions:

• Help
• File details
• Printfile name
• Record type specification
• Generate program
• Escape.

To select the function of your choice, press the associated function or character key
indicated in the menu.

The following sections describe these functions.

This function is available to you when the main menu is displayed, and when you
select either the File Details, Printfile Name, or Record Type Specification functions.

When you select the Help function, a help screen is displayed for either the main
menu or the function you have selected.

When you select this function, a screen appears which prompts you to identify which
data files produced by the RM/COBOL source program are to be converted.

Enter the following information on the display screen:

• The FD name of the file to be converted as it appears in the RM/COBOL
source program.

• The name of the RM/COBOL source program which wrote the original data
file.

• The name of the file conversion program which convert3 is to generate. This
name cannot be the same as that of the RM/COBOL source program.

• The setting of the rm directive. This can be either R (the default) or A
(RM(ANSI)).

Press~ to enter the data on this display screen and return to the main menu. If
you specify an invalid parameter, the display screen is displayed again so you may
correct the parameter.

Press Escape to return to the main menu without saving your entries.

Selecting this function from the main menu displays a screen which prompts you to
enter the name of a file to which convert3 will write all status or error messages. If
you choose not to enter this parameter, all messages are output to the display screen.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-25

Record Type Specification
Selecting this function on the main menu displays a screen which allows you to
specify the information needed by convert3 to process data files that contain more
than one record type; that is, the FD for the file has more than one 01 level entry.
You can uniquely determine the type of each record in such multiple-record type
files by entering one of the following parameters:

• The name of a subprogram you have written which determines the type of the
records. convert3 will call this subprogram when it generates a file conversion
program.

• The name of an item within the data file record whose value determines the type
of the records.

You cannot enter both of these parameters.

Press~ to enter the data on this display screen and return to the main menu. If
you specify an invalid parameter, the display screen is displayed again so you may
enter a valid parameter.

Press Escape to return to the main menu without saving your entries.

Identifying Record Types by Subroutine
You can write an AIX VS COBOL subroutine to determine each record type in a
data file with multiple types of records. The file conversion program calls this sub
routine each time it reads a record from the RM/COBOL data file. The program
passes the contents of the record to the subroutine, which must use some method to
determine the type of record. The subroutine then returns a value to the file conver
sion program indicating the record type. This value is an index to the 01 level
entries in the file's FD entry. For example, if a record corresponds to the first 01
level entry in the FD, the subroutine should return the value 1. If a record corre
sponds to the third 01 level entry in the FD, the subroutine should return the value
3.

The format of the CALL statement in the file conversion program is:

call 11 name 11 using record-name, record-number, record-length

where:

name is the subroutine name that you have supplied on this display screen.

record-name is an alphanumeric data item referring to the record that has just been
read from the RM/COBOL data file.

record-number is a PIC 99 field into which your subroutine will return the number
identifying the record type.

record-length is a PIC 9(6) COMP item containing the length of the record. This is
supplied only if you are converting a binary sequential file.

13-26 User's Guide for IBM AIX VS COBOL Compiler/6000

The following is an example of a subroutine that you could write to identify a type
of record:

linkage section.
01 record-name.

02 filler
02 rec-id-field

01 record-type
01 record-length

pie x(6).
pie 9(6).
pie 99.
pie 9(6) COMP.

procedure division using record-name, record-type,
record-length.

main-para.
if rec-id-field < 10

move 1 to record-type
else

if rec-id-field > 9 and < 80
move 2 to record-type

else
move 3 to record-type.

exit program.

Identifying Record Types by Unique Record Item
The file conversion program may be able to determine a type of record in a file with
multiple types of records by examining the value of a particular data item.
However, it can only do this if the value uniquely determines the record type.

If so, enter the name of the record item on this screen as it appears in the FD entry
in the RM/COBOL source program. Now you must enter a list of level 88 condi
tions and the record numbers that each of these conditions identify. The record
number, as with the value returned by a subroutine, indexes the appropriate 01 level
entry in the FD parameter.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-27

For example, you might make the following entries on this display screen:

Identifying Data Item OR User Subprogram Name
[REC-TYPE-ITEM]

record value(s)
number
[1] [1 thru 15 J
[2] [16 J
[3] [17 19 21 24 thru 30 J
[4] [18 20 J
[s] [22 23 J
[J [J
[J [J
[J [J
[J [J
[J [1

J

You can specify the conditions in any order of record number.

Binary Sequential Files
In a binary sequential file with multiple record types, the file conversion program
can identify a record type by its length as long as no two record types have the same
length. However, if they do, you will have to use either the subroutine or unique
identifier method to identify the record type.

Generate Program
When you select this function from the main menu, the file conversion program is
generated. You must have previously supplied convert3 with all of the necessary
parameters to enable it to generate this program.

If any errors occur during generation, relevant error messages are displayed on the
screen. If you have specified the name of a print file, these messages are also written
to that file.

When a file conversion program has been successfully generated, the menu is dis
played.

13-28 User's Guide for IBM AIX VS COBOL Compiler/6000

Escape
This function returns you to your main system prompt from the convert3 utility.
You are asked to confirm that this is what you want to do.

Running convert3 in Batch Mode

The Parameter File

You can run convert3 in batch mode by placing all necessary control parameters in a
parameter file and then running convert3 so that it reads parameters from this file
rather than from the display screen.

You can include parameters for several runs of convert3 in the same parameter file.
This means that you can write a single parameter file to convert all of your data files
at once.

The parameter file is a free format line-sequential file. You can specify one param
eter per line. You can leave blank lines in the parameter file to improve readability,
since the blank lines are ignored by convert3. You can also insert comment lines in
the parameter file by using an asterisk(*) as the first non-space character in the line.

The first word on each line of the parameter file identifies the type of parameter you
are specifying. This can be any of the following (in upper- or lowercase characters):

LISTFILE
SOURCEFILE
FD
PROGRAM
SUBROUTINE
SIGN
IDENTIFIER
RUN

In addition, a line may start with a record number followed by a valid 88-level con
dition.

The LISTFILE Parameter
The LISTFILE parameter specifies the name of the file to which convert3 will write
any status value and error messages. The parameter has the following format:

listfile file-name

If you do not specify a LISTFILE parameter or a file name after LISTFILE, mes
sages are written to stderr.

The SOURCEFILE Parameter
The SOURCEFILE parameter specifies the name of the RM/COBOL source file
containing the description of the data file to be converted. The parameter has the
following format:

sourcefile file-name

You must supply a SOURCEFILE parameter.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-29

The FD Parameter
The FD parameter specifies the name in the FD entry of the data file to be con
verted as it appears in the RM/COBOL source program. The parameter has the
following format:

FD Ji le-name

You must supply an FD parameter.

The PROGRAM Parameter
The PROGRAM parameter specifies the name of the file conversion program that
convert3 will generate. The parameter has the following format:

PROGRAM program-name

The program-name must not be the same as the name used in the SOURCEFILE or
LISTFILE parameters.

You must supply a PROGRAM parameter.

The SUBROUTINE Parameter
The SUBROUTINE parameter specifies the name of a user-supplied AIX VS
COBOL subroutine that the file conversion program can call to determine a type of
record in a file with more than one record type. The parameter has the following
format:

SUBROUTINE program-name

The SIGN Parameter
The SIGN parameter specifies how the sign is represented in items with USAGE
DISPLAY. The parameter has the following format:

SIGN {INCLUDED}
SEPARATE

If you do not supply a SIGN parameter, SEPARATE is assumed as the default.

The IDENTIFIER Parameter
The IDENTIFIER parameter specifies the name of an item in the file record whose
value can be used to uniquely determine a type of record in a file with more than
one record type. The parameter has the following format:

IDENTIFIER item-name

13-30 User's Guide for IBM AIX VS COBOL Compiler/6000

Record Number Parameters

The RUN Parameter

If you have specified an IDENTIFIER parameter, you must specify a number of
parameters that indicate which values of the item named in the IDENTIFIER
parameter correspond to which record types. Each parameter has the following
format:

record-number condition

where:

record-number indicates a record type (1 means the first 01 level entry in the FD
parameter, 2 means the second 01 level entry, and so on). The record identification
is carried out in the order in which the record-numbers are specified.

condition is an 88-level record-type which, if true, indicates that the associated
record-number gives the correct record type. The otherwise condition indicates the
correct record type for those values of the item named in the IDENTIFIER param
eter which you have not previously specified in the record number parameter. These
must be entered in quotation marks.

You can specify these parameters in any order of record-number, but all record
number parameters must immediately follow the IDENTIFIER parameter.

See "Example Parameter File" on page 13-32 for an example of the use of these
parameters.

The mandatory RUN parameter invokes convert3 with those parameters that have
already been read. The parameter has the following format:

RUN

It does not matter whether convert3 has successfully generated a file conversion
program for one set of parameters. convert3 continues to read the next set until the
next RUN parameter is encountered, at which point convert3 again attempts the
program generation process. This cycle continues until all parameters in the param
eter file have been read.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-31

Example Parameter File
The following is an example of a parameter file that generates file conversion pro
grams for three RM/COBOL data files:

**
* Parameters for first run *
**
LISTFILE history.1st
SOURCEFILE payrolll.cbl
FD employee-file
PROGRAM progemp.cbl
SIGN separate
IDENTIFIER employee-status
2 "99" "103" "200" "201"
1 "1" thru "2000"
3 "6786" "9999"
2 "8 11 thru 11 9999"
4 otherwise
RUN

**
* Parameters for second run *
**
SOURCEFILE payroll2.cbl
*listing will go to history.1st
FD branch-file
SIGN included
PROGRAM program.cbl
SUBROUTINE branchek
RUN

**
* Parameters for third run *
**
LISTFILE logfile
SOURCEFILE payroll2.cbl
FD history-file
PROGRAM history.abc
SIGN included
RUN

13-32 User's Guide for IBM AIX VS COBOL Compiler/6000

Note the following about this example:

• In the parameters for the first run, the record number parameters following the
IDENTIFIER parameter do not have to be in record number order.

• You can use the word OTHERWISE as the 88-level condition in a record
number parameter. If none of the previous record number parameters has suc
cessfully determined the record type, the record type associated with the OTH
ERWISE condition is assumed.

• Record identification using record numbers is carried out in the order in which
the parameters are presented in the parameter file. Thus, in the first run:

An item with one of the values 99, 103, 200, or 201 is in record type 2.

An item with any other value in the range 1 to 2000 is in record type 1.

An item with value 6786 or 9999 is in record type 3.

An item with any other value in the range 0 to 9999 is in record type 2.

An item with any other value is in record type 4.

Notice that you can specify the same record number more than once in the same
set of record number parameters.

• The LISTFILE parameter applies to all the runs in the parameter file. The same
list file will be used until another LISTFILE parameter is read. Thus, the file
history.1st is used for the first two runs, and the file logfile is used for the third
run.

Running convert3 with a Parameter File
To run convert3 in batch mode, enter the command:

convert3 parameter-filename ~

Where parameter-name is the name of your parameter file.

Each set of parameters is validated by convert3 before the file conversion program is
generated. If any parameters are invalid, that particular file conversion program is
not generated, and convert3 passes to the next set of parameters in the parameter
file.

You can validate the parameters in a parameter file by entering:

convert3 parameter-filename VALIDATE ..-1

The contents of the parameter file are validated, but no file conversion programs are
generated.

Using the File Conversion Program
When you have generated the file conversion program for an RM/COBOL data file,
the next steps in converting the data file are to:

1. Compile the file conversion program with the AIX VS COBOL compiler to
produce an executable file.

2. Run the file conversion program.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-33

Creating an Executable File Conversion Program
To create an executable file, compile your program with cob -xfile.cbl.

If the file conversion program requires a subroutine to determine a type of record in
a file with different types of records, remember to write and create executable code
for the subroutine before you attempt to run the file conversion program.

When compiling the file conversion program generated by convert3, any informa
tional messages produced may be ignored.

Running the File Conversion Program
You can run the file conversion program in either interactive or batch mode.

To run the file conversion program in interactive mode, you supply the name of the
file after the run command for AIX VS COBOL. This is the same as running any
other program.

This command causes the following prompt to be displayed:

Please enter the input data-file-name

Type the name of the RM/COBOL data file to be converted and press .-'. This file
must be the one for which this file conversion program was generated.

Now the following prompt is displayed:

Pl ease enter the output data-Ji le-name

Type the name of the AIX VS COBOL data file to which the RM/COBOL data file
is to be converted and press .-' . This name must not be the same name as the
RM/COBOL data file.

If any errors occur during conversion, an error message appears on the display
screen.

To run the file conversion program in batch mode, use the run command for AIX
VS COBOL, but before you press ,.J, type: program-file input-file output-file.

The file names used in this command are defined as follows:

program-file is the intermediate or native code file for the file conversion program.

input-file is the name of the RM/COBOL data file to be converted.

output-file is the name to be given to the converted data file.

Indexed Sequential Files with Duplicate Alternate Keys
If you convert an RM/COBOL indexed sequential data file with duplicate alternate
keys, the time order of records with duplicate alternate keys is not preserved in the
conversion.

13-34 User's Guide for IBM AIX VS COBOL Compiler/6000

convert3 and File Conversion Program Error Messages
The following sections describe error messages for both convert3 and file conversion
programs.

convert3 Error Messages
convert3 returns a result code to the calling program once it has finished a run. This
code is in the form of a 3-byte number in ASCII format. If the first byte of this
number is a 0, it denotes that convert3 has completed its run successfully and has
reported no errors. Any other number appearing as the first byte in the result code
indicates that convert3 has detected an error. If an error is reported, the first byte of
the result code indicates the type of that error, as shown in Table 13-1.

Table 13-1. Error Message Identification

1st Byte In Result Value In
Result Code Remaining Bytes Error Type

1 nn Print file error

2 nn Created file error

3 nn Source file error

4 yy File entries (SELECT ...
ASSIGN) error

5 Record description (FD) error

6 Parameter description error

7 nn Dynamic stream error

nn is the relevant RTE error number (see Chapter 15, "Error Messages").

yy is one of the following:

01 Multiple assign clauses found in file control entry.

02 Multiple reserve clauses found in file control entry.

03 Multiple organization clauses found in file control entry.

04 Multiple access clauses found in file control entry.

05 Multiple record clauses found in file control entry.

07 Multiple file status clauses found in file control entry.

08 Keyword expected in file control entry but word found was "xxx" (where xxx
is the actual word found).

10 External file name missing in assign statement.

11 Data-name defined in assign clause is a reserved word.

12 Quote expected at end of external file name.

20 Non numeric entry in reserve clause.

30 Organization type not found in organization clause.

32 Inconsistent file control entry.

Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-35

40 Access mode not specified in access clause.

41 Relative key is a reserved word in record clause.

50 Record name is a reserved word in record clause.

60 The word "record" expected in alternate key clause number.

61 Data-name-3 is a reserved word in alternate record number.

62 The word "duplicated" expected in alternate record number.

71 Data-name-4 is a reserved word in file status clause.

90 Continuation found in file control section.

If you receive an error code which starts with the numbers 5 or 6, then the error
code is not followed by a number to identify a specific error. Instead, these errors
are general and indicate that an error has occurred within the record description or
the parameter description. If you receive one of these errors, you can detect its spe
cific cause by looking through the parameter list in the list file. If you did not
specify a list file, this parameter list is sent to stderr.

File Conversion Program Error Messages
When you attempt to run the file conversion program, you may encounter one of the
following unnumbered error messages, all of which are self-explanatory:

• i/p file name invalid
• o/p file name invalid
• i/p and o/p data files have the same name
• ERROR on opening i/p file
• ERROR on opening o/p file
• ERROR on reading i/p file
• ERROR on writing o/p file
• "record type" record-type "at record-number" is invalid
• Attempt to read beyond end of i/p file.

where i/p file name is the input file name and o/p file name is the output file name.

If you receive any of these errors, the file conversion program terminates imme
diately.

13-36 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 14. Data General COBOL: Conversion Series 5

Chapter 14. Data General COBOL: Conversion Series 5 14-1

Contents
About This Chapter .
Converting DG Interactive COBOL Applications to AIX VS COBOL

Submitting Source Programs
Enhancing Converted Applications
Source Compatibility

The DG Directive
Reserved Words .
DG International Character Set
DG File Status and Other Exception Values
Calls
LINKAGE SECTION Access
Arithmetic of Group Level Items
Run-Time Switches
Program Identification and Data-Names

Reformatting a DG Source File
Using reforms
Reformatting Rules

Converting Data Files for Use with Converted Programs
Supported Data File Types
DG Data Types
Source File Restrictions
The File Conversion Process

Running converts
Running converts in Interactive Mode
Running converts in Batch Mode
Example Parameter List
Running converts with a Parameter File

Using the File Conversion Program
Creating an Executable File Conversion Program
Running the File Conversion Program

Error Messages
Errors Reported by converts
Errors Reported by the Conversion Program

14-2 User's Guide for IBM AIX VS COBOL Compiler/6000

14-3
14-4
14-4
14-4
14-S
14-S
14-5
14-S
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-7
14-8

14-10
14-11
14-12
14-12
14-13
14-17
14-19
14-20
14-20
14-20
14-20
14-22
14-22
14-23

About This Chapter
This chapter provides instructions to migrate from the DG Interactive COBOL envi
ronment to an IBM AIX VS COBOL environment. It is intended for DG Interac
tive COBOL users who want to:

• Retain the use of DG Interactive COBOL on some machine environments while
moving to the AIX VS COBOL environment on others. If this is your goal, you
need to maintain a common set of source programs suitable for all environ
ments.

• Convert applications written in DG Interactive COBOL to the AIX VS COBOL
language and enhance them using the advanced language and development fea
tures offered by AIX VS COBOL.

Chapter 14. Data General COBOL: Conversion Series 5 14-3

Converting DG Interactive COBOL Applications to AIX VS COBOL
To convert a DG Interactive COBOL application to AIX VS COBOL:

I. Use reforms to reformat DG Interactive COBOL source programs written in
DG Interactive COBOL CRT format.

2. Submit your DG Interactive COBOL source programs to AIX VS COBOL.

3. Use converts to convert existing data files from DG Interactive COBOL format
to AIX VS COBOL format.

Submitting Source Programs
AIX VS COBOL includes language enhancements allowing you to submit programs
written in DG Interactive COBOL directly to AIX VS COBOL. Your DG Interac
tive COBOL source programs must conform to the standard file format for the AIX
operating system. Also, ensure that the expansion of tab characters in literals is not
significant to the operation of your program before it is processed by AIX VS
COBOL.

If your program is written in DG CRT format, you must reformat the source file
before you submit it to AIX VS COBOL. A source reformatting utility (reforms) is
provided. See "Reformatting a DG Source File" on page 14-6.

You must set the dg option when you submit your source code to AIX VS COBOL
if your source code contains DG Interactive COBOL features that are not supported
in AIX VS COBOL, or if user-defined words are reserved words in the AIX VS
COBOL language. See the Language Reference for a list of COBOL reserved words,
and a definition of all the syntax supported within the AIX VS COBOL language.
This chapter also contains a list of the additional AIX VS COBOL features enabled
within the AIX VS COBOL language when you set the dg compiler option.
Chapter S, "Compiler Options" contains details of how to set this option.

Enhancing Converted Applications
After you have successfully submitted your DG Interactive COBOL source programs
to the AIX VS COBOL compiler, you may want to use some of the advanced fea
tures of AIX VS COBOL. These features include:

• Enhanced screen-handling
• ANSI 8S syntax
• IBM VS COBOL II syntax
• Report writer syntax.

See the Language Reference for details on these features and their associated syntax.

To use these features, you must specify certain compiler options when submitting
your source programs to AIX VS COBOL. Set the ans85 option if you use ANSI 8S
in your source programs, or set the rw option if you use report writer syntax. See
Chapter S, "Compiler Options" for details of all compiler options and the features
they enable.

14-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Source Compatibility

The DG Directive

Reserved Words

All of the DG Interactive COBOL syntax as defined in revision 02, dated August
1984, of the Data General Interactive COBOL Programmer's Reference Manual, is
supported by AIX VS COBOL with the exception of the following:

UNDELETE RECORD

Support is not guaranteed for any of the syntax of the DG Interactive COBOL lan
guage that is not documented in the stated revision of the above referenced manual.

If your DG Interactive COBOL programs perform any screen-handling operations,
you must run adiscf and select the DG screen-handling configuration option. See
Chapter 10, "Configuring Your AIX VS COBOL System" for more information.

Your DG Interactive COBOL source programs may contain:

1. DG Interactive COBOL syntax that is not found in the AIX VS COBOL lan
guage

2. DG Interactive COBOL syntax that is found in AIX VS COBOL but has a dif
ferent interpretation at run time.

In either case, you must specify the dg directive when you submit such source pro
grams to AIX VS COBOL.

The Language Reference contains the DG syntax which is not found in the standard
AIX VS COBOL language. When you set the dg directive, the DG syntax is
enabled within the AIX VS COBOL language.

Features which are syntactically the same as AIX VS COBOL features but have dif
ferent behavior at run time are described in the following sections of this chapter.
Unless you set the dg directive at the time the object code is produced, this syntax
behaves in the standard AIX VS COBOL manner, as documented in the Language
Reference. You do not need to amend DG Interactive COBOL source programs
which contain these features, but if you try to submit them to AIX VS COBOL
without having compiled them with the dg directive, they may not behave as you
expect.

The Language Reference lists all the words that are reserved in AIX VS COBOL. If
you have included any of these words as user-defined words in your DG Interactive
COBOL program, use the remove directive to disable the relevant reserved words.
See Chapter 5, "Compiler Options" for details on this directive.

DG International Character Set
The environment-dependent feature of DG Interactive COBOL, which allows you to
use an extra 69 characters in addition to the 96 characters (0 x 20 through 0 x 7F) in
the ASCII set, is not supported by AIX VS COBOL. The compiler option nls may
be used to extend the character set for the AIX VS COBOL system. See
Appendix B, "National Language Support" for more details.

Chapter 14. Data General COBOL: Conversion Series 5 14-5

DG File Status and Other Exception Values

Calls

DG Interactive COBOL file status and other exception values are environmentally
dependent and are not supported by AIX VS COBOL. To maintain a common
source for DG Interactive COBOL and AIX VS COBOL, you should maintain copy
books of the file status values returned by DG Interactive COBOL and AIX VS
COBOL.

DG Interactive COBOL system calls are environment dependent and are not sup
ported by AIX VS COBOL. Under AIX VS COBOL you cannot pass a switch in a
CALL statement. Use LINKAGE SECTION items to communicate between pro
grams.

LINKAGE SECTION Access
DG Interactive COBOL allows a main program to access its LINKAGE SECTION,
but this facility is not supported by AIX VS COBOL. If a program is to be accessed
as a main program, transfer the LINKAGE SECTION entries into the
WORKING-STORAGE section.

Arithmetic of Group Level Items
DG Interactive COBOL allows arithmetic of group level items, but this is not sup
ported by AIX VS COBOL. Redefine these fields into numeric items.

Run-Time Switches
DG Interactive COBOL run-time switches A to Z, inclusive, are mapped onto the
AIX VS COBOL switches 1 to 26, respectively. See Chapter 7, "Running an AIX
VS COBOL Program" for details about run-time switches.

Program Identification and Data-Names
The DG Interactive COBOL system allows the PROGRAM-ID and a data item in
that program to have the same name. However, AIX VS COBOL does not allow
the use of the same name for the PROGRAM-ID and a data item in a program,
requiring instead that each name be unique. Either change the program name in the
PROGRAM-ID and in any programs that call this program, or change the name of
the data i tern.

Reformatting a DG Source File
Source programs written in DG Interactive COBOL CRT format cannot be accepted
by AIX VS COBOL unless you change them using a source fiie formatter. The
utility, reform5, supplied with AIX VS COBOL, reformats source programs in CRT
format so they are compatible with the requirements of AIX VS COBOL. This
source file formatter changes the margins and splits any lines containing more than
72 characters. You can use any similar source file formatter to reformat your pro
grams if you do not wish to use reform5.

You must correct DG Interactive COBOL programs written in CRT format using
reform5 or a similar source formatter before supplying these programs to the DG file
conversion utility, convert5.

14-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Using reforms
To invoke reforms, type:

reform5 ...-1

Once you have invoked reforms, the following message is displayed:

Please enter the DG source file name?

Enter the name of the source file to reformat and press -.J. The following message is
displayed:

Please enter the MF source file name?

The name that you type, in reply to this message, is the name of the reformatted
source file. This file is now in a format compatible with AIX VS COBOL.

To run reforms in batch mode, type the following command:

reform5 input-file output-file -.J
where input-file and output-file are described as above.

Reformatting Rules
The reforms utility amends your source program according to the following rules:

1. If the character in column one is an indicator (* / -), reforms appends six space
characters to the beginning of the line.

2. If the character in column one is any non-space character not mentioned in rule
one, reforms appends seven space characters to the beginning of the line.

3. If area A (column 8 through 11 inclusive) contains all spaces, reforms appends
seven additional space characters to the beginning of the line. However, if the
entire line contains spaces, it outputs a single 72-character line containing spaces.

4. If a line is too long to fit onto a single 72-character line, reforms breaks it into
multiple lines, up to a maximum of three. Where possible, these breaks occur at
a space character to preserve the program readability.

S. If a line is expanded beyond 132 characters, reforms truncates the line to 132
characters. This prevents any pseudo comment areas from being included within
the program source.

You can use any source formatter that amends your source program according to
the above rules; you are not restricted to using reforms.

Converting Data Files for Use with Converted Programs
The converts utility is provided to convert your DG Interactive COBOL data files to
AIX VS COBOL data files. The converts utility produces a file conversion program
which is used to convert the data files.

To run converts, you must supply it with the name of an existing DG Interactive
COBOL source program (or copy file) that is syntactically correct. This source
program must contain the FD and SELECT ... ASSIGN statements, together with
any associated record definitions for the DG Interactive COBOL data file that you
want to convert.

Chapter 14. Data General COBOL: Conversion Series 5 14-7

Supported Data File Types

Sequential Files

Relative Files

convert5 can convert sequential, relative and indexed files from DG Interactive
COBOL format to AIX VS COBOL format. It is not necessary to convert line
sequential files, as these are already in a format that is compatible with AIX VS
COBOL.

convert5 supports sequential files with either fixed- or variable-length records. The
default is fixed-length mode. However, you can create a sequential file with
variable-length records by including the RECORDING MODE IS VARIABLE
clause within the FD entry.

Before transferring relative files to AIX VS COBOL, you must reformat them. To
do this, add a four-byte field containing each record's relative key to the beginning
of every record contained within the original data file. Figure 14-1 on page 14-9 is
an example of a program that performs this reformatting for a specified relative file.

14-8 User's Guide for IBM AIX VS COBOL Compiler/6000

*

IDENTIFICATION DIVISION.
PROGRAM-ID. REL2SEQ.
AUTHOR. AIX COBOL
DATE-WRITTEN. 10/22/87.

* THIS PROGRAM CONVERTS A DG RELATIVE FILE TO A FORMAT
* SUITABLE FOR SUBSEQUENT CONVERSION TO AIX VS COBOL FORMAT.
*

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DG-10.
OBJECT-COMPUTER. DG-10.

INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT RELATIVE-FILE ASSIGN TO DISK "DGRELATIVE"
ORGANIZATION IS RELATIVE
ACCESS IS SEQUENTIAL
RELATIVE KEY IS RELATIVE-KEY
FILE STATUS IS FILE-STAT.

SELECT MF-FILE ASSIGN TO DISK "MFRELATIVE"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS FILE-STAT.

DATA DIVISION.
FI LE SECTION.

FD RELATIVE-FILE
LABEL RECORDS ARE OMITTED.

01 RELATIVE-REC PIC X(20).
FD MF-FILE

LABEL RECORDS ARE OMITTED.
01 MF-REC.

03 MF-KEY PIC 9(9) COMP.
03 MF-DATA PIC X(20).

WORKING-STORAGE SECTION.
01 RELATIVE-KEY PIC 9(4) COMP VALUE 0.
01 FILE-STAT PIC XX VALUE "00".
01 RELATIVE-FLAG PIC 9 VALUE 0.
01 RELATIVE-CNT PIC 9(9) VALUE 0.
01 MF-CNT PIC 9(9) VALUE 0.

Figure 14-1 (Part 1 of 2). Example Program to Reformat DG Interactive COBOL Rela
tive Data File

Chapter 14. Data General COBOL: Conversion Series 5 14-9

Indexed Files

DG Data Types

PROCEDURE DIVISION.
MAIN-PROCEDURE SECTION.
MAIN-PROCl.

OPEN INPUT RELATIVE-FILE
OUTPUT MF-FILE.

PERFORM READ-WRITE UNTIL RELATIVE-FLAG = 1.
DISPLAY "RELATIVE RECORDS READ = " RELATIVE-CNT.
DISPLAY "MF RECORDS WRITTEN = 11 MF=CNT.
CLOSE MF-FILE RELATIVE-FILE.
STOP RUN.

READ-WRITE SECTION.
READ-WRITEl.

READ RELATIVE-FILE AT END
MOVE 1 TO RELATIVE-FLAG
GO TO READ-WRITE-EXIT.

IF FILE-STAT NOT = 11 00 11

DISPLAY "INPUT FILE STATUS = 11 FILE-STAT
STOP RUN.

ADD 1 TO RELATIVE-CNT.
ADD 1 TO MF-CNT.
MOVE RELATIVE-KEY TO MF-KEY.
MOVE RELATIVE-REC TO MF-DATA.
WRITE MF-REC.
IF FILE-STAT NOT = 11 00 11

DISPLAY "OUTPUT FILE STATUS = " FILE-STAT
STOP RUN.

READ-WRITE-EXIT.
EXIT.

Figure 14-1 (Part 2 of 2). Example Program to Reformat DG Interactive COBOL Rela
tive Data File

Once you have reformatted your data file following the guidelines in Figure 14-1,
reform5 can read it sequentially and convert it to AIX VS COBOL relative format.

You must pass any indexed data files which you want to convert from DG Interac
tive Cobol to AIX VS COBOL through the DGCOBOL utility REORG. This
enables convert5 to sequentially read the data portion of the files and convert them
to the AIX VS COBOL indexed format.

The following types of DG data are supported by AIX VS COBOL:

COMP

DISPLAY

This is identical to COMP in AIX VS COBOL.

This has the same format as AIX VS COBOL DISPLAY, except any
processing signs are stored differently. convert5 converts the DG
format to the standard IBM AIX ASCII format. To emulate the
DG behavior, manually amend your source code before you run
convert5. You must change the definition of these fields from signed
numeric to alphanumeric. If you do this, you must also set the
sign= ebcdic option when you submit your code to AIX VS COBOL.

convert5 does not support the DG INDEX data format.

14-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Source File Restrictions
Be aware of the following restrictions when using converts:

• You must supply convert5 with a DG Interactive COBOL source program or
copy file that is syntactically correct.

• Make sure that no USAGE IS INDEX, REDEFINES, or RENAMES clauses
appear in the record descriptions contained in your source programs. The inter
pretation of records that contain such clauses is ambiguous, and converts is
unable to handle them. If your source program does contain record descriptions
that use USAGE IS INDEX, REDEFINES, or RENAMES, then before using
converts, split these record descriptions into separate descriptions. Next, before
you attempt to convert the relevant files, ensure that these records are identifi
able, either by a record type field or through a user subroutine.

• You need to define the record structure of multiple record files if converts is to
run successfully.

• The convert5 program does not interpret those statements within your source
program that begin with a continuation mark in column 7. converts returns an
error if it detects such a marker in an area of the source program which it needs
to analyze.

• The time order of duplicate alternate keys in ISAM files cannot be preserved
when you convert such files.

• FD and SELECT ... ASSIGN entries can be contained within a copy file provided
the COPY statement is of the form:

COPY 11/i lename 11
•

convert5 does not support any other form of the COPY statement.

• The USAGE clause is not supported for group level data items.

• The phrase DECIMAL POINT IS COMMA is not supported by convert5.

• As all data-names within a record definition must be unique, you cannot supply
convert5 with DG Interactive COBOL source code that includes qualifiers within
a record.

• convert5 assumes that any depending name occurs in the same record.

• No picture string may be greater than 19 characters in length in a record
description of a file being converted.

• Composite picture strings must not contain numeric characters.

If you supply converts with DG Interactive COBOL source code that is syntactically
incorrect, it outputs an error message only if it detects the syntax error. It will then
close any open files and abandon the conversion. However, converts may not detect
that the supplied code is invalid and may proceed to create a file conversion
program. If you then run this program, it may convert data incorrectly. Be sure the
code which you supply to convert5 is syntactically correct.

You should supply converts with a DG Interactive COBOL source program that
writes rather than reads the data file that you want to convert. This ensures that all
of the necessary information concerning the data files can be found in the supplied
source program.

Chapter 14. Data General COBOL: Conversion Series 5 14-11

The File Conversion Process
Once you have supplied converts with the necessary parameters, it reads the speci
fied source program and searches for certain keywords. It then extracts the neces
sary information from the entries associated with these keywords.

The File-Control paragraph is the first entry for which converts searches. This entry
must be located in your main source file, and it must start in margin A. Once
converts has found this entry, it looks for the SELECT ... ASSIGN statement relating
to the file or record you want to convert to AIX VS COBOL format. This statement
can be in the main source file or in a copy file.

Having read and extracted the relevant information from the File-Control entry and
the SELECT ... ASSIGN statement, converts searches for the following keywords:
FD, WORKING-STORAGE, LINKAGE, and PROCEDURE. These words,
together with their associated entries, can be contained in either the DG Interactive
COBOL source file or in a copy file.

converts extracts the relevant information from all of the above statements. This
enables it to create a file conversion program. The file conversion program is
capable of loading an AIX VS COBOL type file which has the same organization as
that quoted in the SELECT ... ASSIGN statement in the original DG Interactive
COBOL source file.

If the description of the DG Interactive COBOL data file does not match its actual
format, when you attempt to run the file conversion program it will report an appro
priate error message and abort the current file conversion. In this situation, you
must provide a source file description that converts is able to process.

Running converts
The first step in converting your DG Interactive COBOL data files is to produce a
file conversion program. This program reads DG Interactive COBOL data files and
converts them to AIX VS COBOL data files.

Use the converts utility to produce a file conversion program. The input to converts
is the DG Interactive COBOL source program that created the files you are con
verting. The output is the file conversion program.

You can use converts in either interactive mode or batch mode.

If you run converts in interactive mode, the system prompts you to enter various
parameters that control the production of the file conversion program on your
display screen.

If you run converts in batch mode, you must supply the necessary control parame
ters in a file.

14-12 User's Guide for IBM AIX VS COBOL Compiler/6000

Running converts in Interactive Mode

Help

File Details

The convert5 utility is entirely menu driven when run in the interactive mode. It has
an on-line help facility that can be accessed on each menu. This displays a screen of
information on the facilities available for each menu.

To invoke converts, type:

convert5 _..l

Once you have invoked converts, the main menu appears. You can select any of the
following functions from this menu:

• Help
• File Details
• Printfile Name
• Record Type Specification
• Generate Program
• Escape.

To select a function, press the associated function or character key indicated on the
menu.

The following sections describe these functions.

This function is available to you when the main menu is displayed, and when you
select either the File Details, Printfile Name, or the Record Type Specification func
tions.

When you select the Help function, a help screen is displayed for either the main
menu or the function you have selected.

When you select this function, a screen appears which prompts you to identify which
data files produced by the DG INTERACTIVE COBOL source program are to be
converted.

You must enter all of the following information on the screen:

• The FD name of the file to be converted, as it appears in the DG Interactive
COBOL source program.

• The name of a DG Interactive COBOL source program that contains the FD
and SELECT ... ASSIGN statements, as well as any record definitions, for the file
to be converted.

• The name of the file conversion program that convert5 is to generate. This
name cannot be the same as that of the DG Interactive COBOL source
program.

Press _..l to enter the data on this screen and return to the main menu. If you
specify an invalid parameter, the screen is displayed again so you may correct the
parameter.

If you wish to return to the main menu without saving your entries, press Esc.

Chapter 14. Data General COBOL: Conversion Series 5 14-13

Printflle Name
When you select this function from the main menu, a prompt is displayed where you
are to enter the name of a file to which convert5 will write all status or error mes
sages. If you choose not to enter this parameter, all messages are output to the
screen.

Record Type Specification
When you select this function on the main menu, a screen is displayed that allows
you to specify the information needed by convert5 to process data files that contain
more than one record type; that is, the FD for the file has more than one 01 level
entry. You can uniquely determine the type of each record in such multiple-record
files by entering one of the following parameters:

• The name of a subprogram you have written that determines the types of the
records. convert5 will call this subprogram when it generates a file conversion
program.

• The name of an item within the data file record whose value determines the type
of the records.

You cannot enter both of these parameters.

Press~ to enter the data on this screen and return to the main menu. If you
specify an invalid parameter, the screen is displayed again so you may cor~ect the
parameter.

Press Esc to return to the main menu without saving your entries.

Identifying Record Types by Subroutine: You can write an AIX VS COBOL sub
routine to determine each record data type in a data file with multiple types of
records. The file conversion program calls this subroutine each time it reads a
record from the DG Interactive COBOL data file. The conversion program passes
the contents of the record to the subroutine which must use some method to deter
mine the type of record. The subroutine then returns a value to the file conversion
program indicating the record type. This value is an index to the 01 level entries in
the file's FD entry. For example, if a record corresponds to the first 01 level entry
in the FD, the subroutine should return the value 1. If a record corresponds to the
third 01 level entry in the FD, the subroutine should return the value 3.

The format of the CALL statement in the file conversion program is:

CALL "name" USING record-name, record-number, record-length

where:

name is the subroutine name that you have supplied on this screen.

record-name is an alphanumeric data item referring to the record ·that has just been
read from the DG Interactive COBOL data file.

record-number is a PIC 99 field into which your subroutine will return the number
identifyin~ the record type.

recprd-length is a PIC 9(6) COMP item containing the length of the record. This is
supplied only if you are converting a binary sequential file.

14-14 User's Guide for IBM AIX VS COBOL Compiler/6000

Below is an example of a subroutine you could write to identify a type or'record.

linkage section.
01 record-name.

02 filler
02 rec-id-field

01 record-type
01 record-length

pie x(6).
pie 9(6).
pie 99.
pie 9(6) COMP.

procedure division using record-name, record-type, record-length,
main-para.

if rec-id-field < 10
move 1 to record-type

else
if rec-id-field < 80

move 2 to record-type
else

move 3 to record-type.
exit program.

Identifying Record Types by Unique Record Item: The file conversion program may
be able to determine a type of record in a file with multiple types of records by
examining the value of a particular data item. It can only do this if the value
uniquely determines the record type.

If so, enter the name of the record item on this screen as it appears in the FD entry
in the DG Interactive COBOL source program. Now you must enter a list oflevel
88 conditions and the record numbers that each of these conditions identify. The
record number, as with the value returned by a subroutine, indexes the appropriate
01 level entry in the FD parameter.

Chapter 14. Data General COBOL: Conversion Series 5 14-15

Generate Program

For example, you might make the following entries on this screen:

Identifying Data-Item OR User Subprogram Name
[REC-TYPE-ITEM]

record
number
[1]
[2]
[3]
[4]
[s]
[6]
[J
[J
[J
[J
[J

[1 thru15
[16

value(s)

[17 19 21 24 thru 30
[18 20

[22 23
[OTHERWISE
[
[
[
[
[

J
J
J
J
J
J
J
J
J
J
J

The sequence in which these entries appear is significant. See "Example Parameter
List" on page 14-19 for more information.

Binary Sequential Flies: In a binary sequential file with multiple record types, the
file conversion program can identify a record type by its length as long as no two
record types have the same length. However, if they do, you will have to use either
the subroutine or unique identifier method described in the previous sections to iden
tify the record type.

When you select this function from the main menu, the file conversion program is
generated. You must have previously supplied convert5 with all of the necessary
parameters to enable it to generate this program.

If any errors occur during generation, relevant error messages are displayed on the
screen. If you have specified the name of a print file, these messages are also written
to that file.

When a file conversion program has been successfully generated, the main menu is
displayed.

14-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Escape
Escape leaves the converts utility and returns you to your main system prompt.
You are prompted for a confirmation that this is what you want to do.

Running converts in Batch Mode

Parameter File

If you wish to run convert5 in batch mode, you must first write a parameter file
containing the parameters required by converts. When you run converts, it validates
all of the parameters you have entered. If they are all valid, each invocation of
converts extracts a full set of parameters from this file. If the parameters are not
valid, no conversion takes place.

This is a free-format line-sequential file that contains a parameter on each line. If
you enter any blank lines, these are ignored by converts. The first word on each line
identifies the type of parameter you are specifying. This can be any of the following
(in uppercase or lowercase) and should be followed by its value:

LISTFILE
SOURCEFILE
FD
PROGRAM
SUBROUTINE
IDENTIFIER
RUN

If you enter an asterisk(*) as the first nonspace character on any line, the line is
treated as a comment line.

In addition, a line may start with a record number (see "Record Number
Parameters" on page 14-18) followed by a valid 88-level condition.

LISTFILE Parameter
This parameter specifies the name of a file where any error messages or status values
reported from converts are recorded. When you specify this parameter, it remains
valid until you specify the parameter again, ensuring that all the information
reported during a run can be placed in the same listing file. If you specify the
parameter again with another file name, subsequent messages are sent to this second
file. If you specify the parameter followed only with spaces, subsequent messages
are sent to your screen.

The parameter has the following format:

LISTFILE file-name

If you do not specify either a LISTFILE parameter or a file-name after LISTFILE,
messages are written to stderr.

SOURCEFILE Parameter
This mandatory parameter gives the name of the DG Interactive COBOL source
program that is scanned by converts for information about the files to be converted.
The parameter has the following format:

SOURCEFILE file-name

Chapter 14. Data General COBOL: Conversion Series 5 14-17

FD Parameter
This mandatory parameter gives the internal name of the file as it appears in the FD
entry in the DG Interactive COBOL source program. The parameter has the fol
lowing format:

FD file-name

PROGRAM Parameter
The program parameter is mandatory and gives the name of the source program that
convert5 creates. The parameter has the following format:

PROGRAM program-name

It must not be the same as the source file or the list file name.

SUBROUTINE Parameter
The subroutine parameter gives the name of a user-supplied COBOL subroutine as it
will appear in a CALL statement in the file conversion program. For files that
contain multiple records, this subroutine will identify the correct record definition,
allowing you to convert files of any logical complexity. The parameter has the fol
lowing format:

SUBROUTINE program-name

IDENTIFIER Parameter
The IDENTIFIER parameter specifies the name of an item in the file record whose
value can be used to uniquely determine a type of record in a file with more than
one record type. The parameter has the following format:

IDENTIFIER file-name

Record Number Parameters
If you have specified an IDENTIFIER parameter, you must specify a number of
parameters that indicate which values of the item named in the IDENTIFIER
parameter correspond to which record types. The parameter has the following
format:

record-number condition

where:

record-number indicates a record type (1 means the first 01 level entry in the FD, 2
means the second 01 level entry, and so on). Note that record identification is
carried out in the order in which the record-numbers are specified.

condition is an 88-level record-type which, if true, indicates that the associated
record-number gives the correct record type. The OTHERWISE condition indicates
the correct record type for those values of the item named in the IDENTIFIER
parameter which you have not previously specified in the record number parameter.

All record number parameters must immediately follow the IDENTIFIER param
eter, and must be in the order you want record identification to be carried out.

14-18 User's Guide for IBM AIX VS COBOL Compiler/6000

RUN Parameter
The mandatory RUN parameter invokes convert5 with those parameters that have
already been read. The parameter has the following format:

RUN

Example Parameter List
The parameter list shown in Figure 14-2 is an example of a parameter file that you
could supply to convert5. This file generates file conversion programs for three DG
Interactive COBOL data files.

**
* Parameters for first run *
**
LISTFILE
SOURCEFILE
FD
PROGRAM
IDENTIFIER
2
1
3
2
4
RUN

history.1st
payro 111. cb l
employee-file
progemp
employee-status
99 103 200 201
1 thru 2000
6786 9999
0 thru 9999
OTHERWISE

**
* Parameters for second run *
**
SOURCEFILE
* listing will
FD
PROGRAM
SUBROUTINE
RUN

payroll2.cbl
go to history. lst
branch-file
progbran.cbl
branchek

**
* Last run *
**
LISTFI LE
SOURCEFILE
FD
PROGRAM
RUN

logfile
payroll2.cbl
history-file
history.abc

Figure 14-2. An Example Parameter File

The parameters for the first run are designed to provide for a file comprising four
record types. These records are identified by a data item in one of the records. If
this item has the value 6786 or 9999, it is a record type 3. If the values lie within the
range 1 to 2000 excluding 99, 103, 200, and 201, it is record type 1. Any other
values within the range 0 to 9999 are record type 2, while any values lying outside
this range are record type 4.

The second file to be converted during the run of this parameter file also contains
multiple records. However, record identification in this case is carried out through
the user-supplied subroutine named branchek.

Chapter 14. Data General COBOL: Conversion Series 5 14-19

The third file converted on the final run comprises only one record type, and so
record identification is not necessary.

The above example illustrates that record identification through level 88 data items
is carried out in the order in which the parameters are presented. You should also
note that you can identify the same record type more than once. You may find this
useful if more than one parameter is required to cover all possible combinations of
data value.

Running converts with a Parameter File
To invoke converts in batch mode, type the following command:

converts parameter-filename .-1

where parameter-filename is the name of your parameter file.

converts now runs in batch mode, extracting a full set of parameters from the
parameter file with each invocation.

The parameters supplied in the file are always validated completely. If any errors
are detected during this validation, no conversion takes place.

You can validate the entries in a parameter file by entering:

converts parameter-filename validate -.J
If you enter this command, the contents of the parameter file are validated, but no
conversion takes place, even if all of the parameters are valid.

Using the File Conversion Program
When you have generated the file conversion program for a DG Interactive COBOL
data file, the next steps in converting the data file are:

1. Compile the file conversion program with the AIX VS COBOL compiler to
produce an executable file.

2. Run the file conversion program.

Creating an Executable File Conversion Program
To create an executable file, compile your program with cob -xfile.cbl.

If the file conversion program requires a subroutine to determine a type of record in
a file with different types of records, remember to write and create executable code
for the subroutine before you attempt to run the file conversion program.

Running the File Conversion Program
When you run the file conversion program, it converts those data files that conform
to the description given in the FD and SELECT ... ASSIGN entries in the original
DG Interactive COBOL source program.

The command to run your file conversion program is the same command used to
run any other AIX VS COBOL intermediate code file. See Chapter 7, "Running an
AIX VS COBOL Program" for more information.

14-20 User's Guide for IBM AIX VS COBOL Compiler/6000

When you run the program interactively, the following prompt is displayed:

Please enter the input-data-filename

where input-data-filename is a complete specification (including the file extension) of
the specific data file that you want to convert from DG Interactive COBOL format
to AIX VS COBOL format. This file must comply with the file type as specified in
the FD and SELECT ... ASSIGN entries in your original DG Interactive COBOL
source program. It must be in the standard file format for AIX. If it is in CRT
format, you must supply it to a source file formatter before passing it to the file
conversion program as described in "Reformatting a DG Source File" on page 14-6.

Once you have entered the name of the DG Interactive COBOL data file that you
want to convert, the following prompt appears on the screen:

Please enter the output-data-filename

The name that you enter in response to this message will be the name that the con
verted data file will take. This file name must not be the same as the input data file
name.

The file conversion program now converts the data file from DG Interactive COBOL
to AIX VS COBOL format. If any problems are encountered during this process, an
error message is displayed on the screen. See "Errors Reported by convert5" on
page 14-22 for a list of error messages.

Alternatively, you can run the file conversion program in batch mode. You must
then add to the end of the command line the input-data-file name and the output
da ta-file name.

Chapter 14. Data General COBOL: Conversion Series 5 14-21

Error Messages
Error messages are reported by convert5 and by the conversion program.

Errors Reported by converts
convert5 returns a result code to the calling program once it has finished a run.
Refer to "Running convert5" on page 14-12 for details of the calling program. This
code is in the form of a 3-byte number in ASCII format. If the first byte of this
number is a 0, it denotes that the creation program has completed its run success
fully and has reported no errors. Any other number appearing as the first byte in
the result code indicates that the file conversion utility has detected an error.

If an error is reported, the first byte of the result code indicates the type of that
error. Table 14-1 identifies the convert5 error messages.

Table 14-1. Error Message Identification

1st Byte in Result Value in
Result Code Remaining Bytes Error Type

1 nn Print file error

2 nn Created file error

3 nn Source file error

4 yy File entries (SELECT ... ASSIGN)
error

5 Record description (FD) error

6 Parameter description error

7 nn Dynamic stream error

where nn is the relevant RTE error number (see Chapter 15, "Error Messages"), and
yy is one of the following types of error:

01 Multiple assign clauses found in file control entry.

02 Multiple reserve clauses found in file control entry.

03 Multiple organization clauses found in file control entry.

04 Multiple access clauses found in file control entry.

05 Multiple record clauses found in file control entry.

07 Multiple file status clauses found in file control entry.

08 Keyword expected in file control entry but word found was "xxx" (where xxx is
the actual word found).

10 External file name missing in assign statement.

11 Data-name defined in assign clause is a reserved word.

12 Quote expected at end of external file name.

20 Nonnumeric entry in reserve clause.

30 Organization type not found in organization clause.

32 Inconsistent file control entry.

14 .. 22 User's Guide for IBM AIX VS COBOL Compiler/6000

40 Access mode not specified in access clause.

41 Relative key is a reserved word in a record clause.

50 Record name is a reserved word in a record clause.

60 The word record expected in alternate key clause number.

61 Data-name-3 is a reserved word in alternate record number.

62 The words 'with duplicates' expected in alternate record number.

71 Data-name-4 is a reserved word in file status clause.

90 Continuation found in file control section.

If you receive an error code that starts with the number 5 or 6, it is not followed by
a number to identify a specific error. Instead, these errors are general and indicate
that an error has occurred within the record description or the parameter
description, respectively. If you receive one of these errors, you can detect its spe
cific cause by looking through the parameter list in the print file. If you did not
specify a print file, this parameter list is sent to stderr.

Errors Reported by the Conversion Program
When you attempt to run the file conversion program, you could receive one of the
following unnumbered, self-explanatory messages. In the following messages, i/p
stands for input and o/p stands for output.

• i/p file name invalid
• o/p file name invalid
• The i/p and o/p data files have the same name
• ERROR on opening i/p file
• ERROR on opening o/p file
• ERROR on reading i/p file
• ERROR on writing o/p file
• "record type" record-type "at record-number" is invalid
• Attempt to read beyond end of i/p file.

where i/p file name is the input file name and o/p file name is the output file name.

If you receive any of these errors, the file conversion program terminates imme
diately.

Chapter 14. Data General COBOL: Conversion Series 5 14-23

14-24 User's Guide for IBM AIX VS COBOL Compiler/6000

Chapter 15. Error Messages

Chapter 15. Error Messages 15-1

Contents
About This Chapter
Introduction
Compiler Messages

Severe Compiler Messages
Compiler Error Messages
Compiler Warning Messages
Compiler Information Messages
Compiler Flags

Errors Encountered During Code Generation
Native Code Generator Messages

Run Time Environment Errors
Types of Errors
Run Time Environment Error Messages

cob Command Errors

15-2 User's Guide for IBM AIX VS COBOL Compiler/6000

15-3
15-4
15-4
15-7

15-40
15-43
15-46
15-47
15-54
15-54
15-60
15-60
15-62
15-85

About This Chapter
This chapter describes the messages that you may receive while compiling, gener
ating, or running your COBOL programs.

Chapter 15. Error Messages 15-3

Introduction
There are three types of error messages you might encounter.

• Compiler messages

Describes the messages you can receive from the compiler. Most of these mes
sages indicate that your COBOL syntax is incorrect or that there are inconsisten
cies in your program.

• Native Code Generator messages

Describes the messages you may receive when you are using the native code gen
erator.

• Run Time Environment Error messages

Describes the errors reported by the Run Time Environment and looks at how
you may code your programs both to trap these errors and recover from them
when possible.

Compiler Messages
Compiler messages are produced while you are compiling a COBOL program. They
indicate that your COBOL syntax is incorrect or that inconsistencies exist within
your program.

Compiler messages have the following format:

LINE OF COBOL CODE.
nnn-A******* (mmmm)**
** id# compiler message here

where:

nnn

A

mm mm

id#

A is one of:

Is the message number

Is a one-letter identifier that shows the severity of the message

Is the page on which the previous message occurred.

At the beginning of each message is the AIX VS COBOL component
identifier. This component number is 1103 for compiler messages and
for flagging messages. It is 1203 for RTE messages.

U Unrecoverable

An unrecoverable fault causes the compilation to stop. A message of this
severity is actually produced by the Run Time Environment, not the
compiler.

S Severe

A severe fault means that compilation of some of the syntax failed, and
you will not be able to produce generated code from the intermediate
code. Neither will you be able to run code containing severe faults,
unless you set the E run-time switch on (by default, this switch is off).
You can use the ANIMATOR debugging tool on intermediate code that
contains severe faults.

15-4 User's Guide for IBM AIX VS COBOL Compiler/6000

E Error

When an error occurs in your source code, the compiler attempts to
correct the error and continue compilation. The compiler makes assump
tions about what was intended. If this varies from your expectations,
you should correct the source code that is in error. In any case, you may
wish to correct the source code so that you can compile the code with no
errors.

You can animate intermediate code that contains errors, produce gener
ated code from it, or run it.

W Warning

I

A warning indicates that there may be an error in the source code,
although the statement is syntactically correct.

You can animate intermediate code that contains warnings, produce gen
erated code from it, or run it.

Information

An information message draws your attention to something in the source
code of which you need to be aware. This kind of message does not
imply that there is a fault, nor are you required to take any action.

You can animate intermediate code that contains information messages,
produce generated code from it, or run it.

Error, warning, and information messages may or may not be produced by the com
piler, depending on the setting of the warning compiler option. By default, all mes
sages are produced.

Many of these severe faults and errors have a cumulative effect. Thus, if a fault is
reported at an early stage in your coding, it will probably produce a series of mes
sages as the compiler goes through the rest of your code. Often a simple omission
(such as failing to put a period at an expected place) will cause a series of messages
to be given, all of which originate from the initial fault. In such cases, it is often
true that only one simple correction to your code may be all that is required to
recover from a run of severe faults and errors.

In addition to the various types of messages described here, the compiler may also
produce flags. These are similar in format to the message:

where:

LINE OF COBOL CODE.
-- nnn-level--
-- compiler flag message here

nnn Is the flag number

level Shows the level of syntax as described below.

Chapter 15. Error Messages 15-5

When you use the compiler option flag, those areas of syntax not supported at the
level you choose are highlighted in this way. The flagstd type can be certain combi
nations of the following list of types. See Chapter 5, "Compiler Options" for a full
explanation on how to select certain combinations of the following:

SAA Full implementation of IBM System Application Architecture COBOL Ref
erence

MF Micro Focus extensions to ANSI COBOL Standard X3.23 1974

OSVS IBM OS/VS COBOL

VSC2 IBM VS COBOL II

ANS74 ANSI COBOL Standard X3.23 1974

ANS85 ANSI COBOL Standard X3.23 1985

The compiler produces these flags only when the flag option is on. These flags are
for your information, and indicate those areas of potential incompatibility if you
intend to use your program in a different operating environment. Flags do not
affect the running of your program, nor do they prevent you from producing gener
ated code or from using the ANIMATOR debugging tool.

When you use the compiler option flagstd, those areas not supported at the level you
choose are highlighted in this same way. The flagstd type can be certain combina
tions of the following list of types. See Chapter 5, "Compiler Options" for a full
explanation on how to select certain combinations of the following:

m ANSI 85 defined Minimum COBOL subset

ANSI 85 defined Intermediate COBOL subset

h ANSI 85 defined High COBOL subset

cl Communications optional module level 1

c2 Communications optional module level 2

dl Debug optional module level 1

d2 Debug optional module level 2

sl Segmentation optional module level 1

s2 Segmentation optional module level 2

r Report Writer optional module

o All Obsolete language elements

The flag and flagstd options provide similar function ability and thus only one may
be used at any time.

15-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Error Messages

Severe Compiler Messages
001-S Undefined error

002-S

003-S

004-S

005-S

Cause: Your program contains an error that the compiler failed to rec
ognize.

Action: Follow your local procedures for reporting software problems.
Save a copy of your source code to find the cause of the error.

Data name too long

Cause: A name that you have given to an item of data within your
program does not conform to the rules governing the construction of
such names. A data name may include letters, digits, and hyphens of up
to 30 characters, providing that at least one character is contained within
it and the last character is not a hyphen. Each data name must be
unique, or if not unique, must be qualified.

Action: Change the data name in error according to the a hove rules and
recompile your program.

Illegal format: Literal

Cause: Either you have used the wrong class of literal for the context of
the sentence, or the sequence of characters forming a literal within your
source code does not conform to the rules governing the construction of
such names. A literal can be either nonnumeric or numeric. If numeric,
it can be up to 18 digits in length, but it must not contain more than one
sign character or more than one decimal point. A nonnumeric literal can
include any allowable character in the computer's character setup up to
160 characters in the Procedure Division and 2048 characters in the Data
Division. A nonnumeric literal must be enclosed in quotation marks. If
you have used a figurative constant as the literal, make sure that it is
referenced by an allowable reserved word (such as ZERO) which you
have spelled correctly. A figurative constant and a numeric literal must
not be enclosed within quotation marks. You may also have used the
wrong class of literal for the context of the sentence.

Alternatively, if you have used the figurative constant ALL in your code,
you have not coded it in accordance with the rules governing the use of
this constant. ALL must be followed by a nonnumeric literal and not by
a numeric one.

Action: Correct your code to comply with the above rules and recompile
your program. See the Language Reference for further details on the use
of figurative constants.

Illegal character

Cause: Your program contains a character that is not part of the
COBOL language set.

Action: Replace the illegal character with a valid one and recompile your
code.

User name not unique

Cause: You have given the same user name without qualification to
more than one data-item or procedure name within your source code.

Action: Rename or qualify the duplicated data-items or procedure
names, ensuring their reference uniqueness, and recompile your program.

Chapter 15. Error Messages 15-7

Compiler Error Messages

006-S

007-S

008-S

009-S

011-S

012-S

013-S

Too many data or procedure names declared

Cause: The dictionary space has been exhausted.

Action: Shorten or delete some of the procedure names in your program
and recompile your code. If you are using the EXTERNAL attribute on
some of your data objects, you may be able to eliminate the problem by
increasing the value for the linkcount option.

IDegal character in column 7 or continuation error

Cause: You may have incorrectly typed one of the characters allowed in
column 7. You can use only an*,/, - , SPACE, or D characters in this
column.

Action: Change the character to a permitted character and recompile
your program.

Unknown COPY file specified

Cause: A file-name specified in conjunction with a COPY statement
cannot be found.

Action: Change the file-name and recompile your program, or rename
the COPY file to match your declaration.

'.'missing

Cause: Your code does not contain a period in a place where one is
expected by the rules of COBOL syntax.

Action: Insert a period at the relevant place (usually at the end of a line).

Reserved word missing or incorrectly used

Cause: You have either used a reserved word in a place where a user
defined word is expected, or you have failed to use a reserved word
where one is needed.

Action: Alter the reserved word to a user-defined word or insert a
reserved word according to the context of this message.

Operand is not declared

Cause: You are attempting to use a data name that you have not
declared, or which you have misspelled.

Action: Ensure that the relevant data is declared.

This error may not always occur directly below the data-item that is not
declared. This is because the compiler continues checking through the
source code to find out whether the data-item is qualified. To find the
operand that is in error, work backward through the source to the imme
diately preceding data-item.

User-name required

Cause: You have not supplied a user-defined name at the specified place
in your program.

Action: Insert a name, ensuring that it conforms to the rules of COBOL
syntax and that it is the correct type of name.

15-8 User's Guide for IBM AIX VS COBOL Compiler/6000

014-S

015-S

016-S

017-S

018-S

019-S

020-S

021-S

Compiler Error Messages

Invalid operand

Cause: The operand you have specified is in some way incorrect, and
cannot be processed by the compiler. For example, you may have speci
fied a negative integer where only positive integers are allowed.

Action: See the Language Reference for details of the operands allowed
for this syntax.

Procedure Division too large

Cause: Your program's Procedure Division exceeds the maximum size
allowed.

Action: Redesign your program as a set of smaller independent programs
that call one another.

Data space too large

Cause: Your program's Data Division exceeds the maximum size
allowed.

Action: Redesign your program as· a set of independent programs with
smaller Data Divisions.

DIVISION missing

Cause: You have omitted the word DIVISION from a division header.

Action: Add the word DIVISION to the relevant Identification, Environ
ment, Data, or Procedure Division heading.

SECTION missing

Cause: You have omitted the word SECTION from a section heading.

Action: Add the word SECTION following the name of the section.

BASIS mechanism not supported

Cause: You have attempted to use a feature from the BASIS mechanism,
which is not supported by AIX VS COBOL.

Action: Remove any BASIS mechanism syntax from your code.

Numeric literal expected

Cause: You must specify a numeric literal in this context.

Action: See the Language Reference for details on the format of valid
numeric literals. Ensure that your numeric literal complies with the
rules.

Too many qualifiers

Cause: You have used too many qualifiers when referring to a qualified
data name, procedure name, or text name. See the Language Reference
for details on the number of qualifiers you can specify.

Action: Change the offending reference so that it uses no more than the
permitted number of qualifiers.

Chapter 15. Error Messages 15-9

Compiler Error Messages

022-S

023-S

024-S

025-S

026-S

027-S

028-S

029-S

SKIP 1/2/3, EJECT, and TITLE must be alone on line

Cause: Source program lines containing these words must not contain
any other words.

Action: Correct your program so that these words are on a line of their
own.

Nonnumeric literal expected

Cause: You must specify a nonnumeric literal in this context.

Action: Ensure that the literal you have specified conforms to the rules
for nonnumeric literals.

Illegal qualifier

Cause: You have specified a qualified data name, procedure name, or
text name incorrectly.

Action: See the Language Reference concerning correct syntax for quali
fication and correct the qualified reference.

Qualification not permitted

Cause: You cannot qualify a data name, procedure name, or text name
in this context.

Action: Make the reference an unqualified reference.

Literal too long

Cause: The literal value you have specified is longer than the maximum
literal length permitted.

Action: If your literal is numeric, it can be up to 18 digits in length. If it
is nonnumeric, it can contain up to 160 characters in the Procedure Divi
sion, or 2047 characters in the Data Division. Ensure that the literal
value you have specified in your program is no longer than the maximum
length permitted.

Number too large

Cause: You have specified a numeric value larger than the compiler can
handle.

Action: See the Language Reference for the permitted size of numeric
values and alter the value accordingly.

Data item too long

Cause: You have declared a data item that is too long for the specified
data type.

Action: See the Language Reference for the maximum sizes of data items
of various types.

Not a data name

Cause: You have specified an operand that is not a data item where a
valid data item is expected. For example, you may have specified an FD
name or a condition name instead of a data name.

Action: Ensure that the item that is in error is a data name, and that it is
declared.

15-10 User's Guide for IBM AIX VS COBOL Compiler/6000

030-S

031-S

032-S

033-S

034-S

035-S

036-S

037-S

038-S

Compiler Error Messages

Should· be a group

Cause: You have specified an elementary item as the sending or
receiving field in a MOVE CORRESPONDING statement. Both fields
must be group items.

Action: Ensure that both the sending and receiving fields are group
items.

Should be elementary

Cause: You have specified the name of a group data item in a context in
which an elementary item must be used.

Action: Correct the reference so that it is a reference to an elementary
item.

Should be unitary

Cause: You have specified a subscripted or indexed data item where one
is not allowed.

Action: Correct the reference so that it is a reference to a unitary (that
is, nonsubscripted and nonindexed) data item.

Should be procedure name

Cause: A procedure name (that is, a paragraph or section name) is
expected in this context. You have probably specified a data-item name.

Action: Check and correct the procedure name.

Operand should be numeric

Cause: A numeric value is required in this context, and you have speci
fied a nonnumeric value.

Action: Make the value a numeric value.

Integer required

Cause: An integer value is required in this context, and you have speci
fied a noninteger value.

Action: Make the value an integer value.

Should be alphanumeric

Cause: An alphanumeric value is required in this context, and you have
specified a numeric value.

Action: Make the value an alphanumeric value.

Should have USAGE DISPLAY

Cause: The data item should have USAGE DISPLAY.

Action: Change the data item's USAGE to DISPLAY.

Paragraph or phrase repeated illegally

Cause: You have specified a paragraph or phrase more than once, when
you may only specify it once.

Action: Delete the repeated paragraph or phrase.

Chapter 15. Error Messages 15-11

Compiler Error Messages

039-S

040-S

041~s

042-S

043-S

044-S

045-S

046-S

047-S

Too many COPY ... REPLACING statements

Cause: You have exceeded the maximum number of
COPY ... REPLACING statements (limit is 150).

Action: Delete some of the COPY ... REPLACING statements and
recompile your program.

Missing or illegal file name

Cause: The file name you have specified does not conform to COBOL
rules for file names, or it has not been declared in the file control para
graph. This may be due to a misspelled valid file name.

Action: Correct the file name (or, if necessary, add a file description
entry to the file control paragraph).

Fileshare syntax error

Cause: You have incorrectly specified the syntax for a file input-output
operation involving file or record locking.

Action: See the Language Reference for the correct file and record
locking syntax.

Must be non-zero

Cause: The numeric value you specify here must not be zero.

Action: Specify a nonzero value.

Literal or figurative constant expected

Cause: You must specify a literal value or a figurative constant here.

Action: Alter the value you have specified to be a literal or a figurative
constant.

Literal expected

Cause: You must specify a literal value here.

Action: Alter the value you have specified to be a literal value.

Operand has wrong size

Cause: The operand in this statement is the wrong length (for example,
you may have specified a prompt character more than one character
long).

Action: See the Language Reference for the correct length of the operand
and correct your program.

Alphabet name required

Cause: You must specify the name of a user-defined collating sequence
here.

Action: Specify the name of an alphabet that you have defined in the
SPECIAL-NAMES paragraph.

Numeric literal or ZERO expected

Cause: You must specify a numeric literal or the figurative constant
ZERO.

Action: Specify a numeric literal or ZERO.

15-12 User's Guide for IBM AIX VS COBOL Compiler/6000

048-S

049-S

050-S

051-S

052-S

053-S

054-S

Compiler Error Messages

Missing or extra right parenthesis

Cause: The numbers of left and right parentheses in an arithmetic
expression are not equal.

Action: Check the format of the arithmetic expression and ensure that
there is a matching right parenthesis for each left parenthesis.

Illegal use of Index-name or Index Data-item

Cause: You have used an item with USAGE INDEX in a context where
it is not allowed. See the Language Reference for details of where you
can use such i terns.

Action: Change the USAGE of the item, or use an item that does not
have USAGE INDEX.

Illegal use of Pointer Data-item or ADDRESS OF

Cause: You have tried to perform an illegal operation on a data item
with USAGE POINTER. Alternatively, you have tried to apply the
ADDRESS OF phrase to an item that is not a 01 or 77 level item in the
WORKING-STORAGE or LINKAGE SECTIONs.

Action: See the Language Reference for details of what operations you
can perform on pointer items and correct your program accordingly.

Not a report-name

Cause: You must use a report name in this context. You have probably
misspelled a valid report name.

Action: Correct the reference.

Only allowed with SEQUENTIAL files

Cause: You have performed an operation that is only permitted if the
file has SEQUENTIAL organization (for example, CLOSE
REEL/UNIT).

Action: Change the file organization to SEQUENTIAL and recompile
the code.

Invalid directive

Cause: You have specified an invalid compiler option in a $SET state
ment within your program.

Action: Correct the compiler option and recompile the code. See
Chapter 5, "Compiler Options" for the correct form of compiler options.

Class name required

Cause: You have failed to define the class name in the
SPECIAL-NAMES paragraph, or you have misspelled a COBOL class
name.

Action: Either define the condition name in the SPECIAL-NAMES par
agraph, or use one of the COBOL class names as specified in the
Language Reference.

Chapter 15. Error Messages 15-13

Compiler Error Messages

055-S

056-S

057-S

058-S

059-S

060-S

061-S

Word COPY may not be continued when in library text

Cause: You have allowed the word COPY to be split over two lines in
your COBOL code.

Action: Ensure that the entire word COPY is put on the second line.

COPY is recursive

Cause: You have attempted to COPY a file that you had already started
copying.

Alternatively, you may have incorrectly spelled the name of either the file
you have previously started to COPY, or the file you currently wish to
copy.

Action: Correct your program so the file you have already started to
COPY is copied completely before you attempt to copy the same file
again.

Correct the spelling error and recompile your code.

Not a report group

Cause: You must use a report group in this context. You have probably
misspelled a valid report group name.

Action: Correct the reference.

Not a report name or a report group

Cause: You have specified neither a valid report name nor a valid report
group in a GENERATE statement. You have probably misspelled the
report name or the report group.

Action: Check your Language Reference for details of the syntax allowed
for the GENERATE statement. Correct your reference to the report
name or the report group.

Cannot GENERATE this report name

Cause: The report name that you have specified does not contain all of
the following:

• A CONTROL clause

• Only one DETAIL report group

• At least one body group.

Action: Check your Language Reference for details of the contents you
require for a report name when it is used in a GENERATE statement.

Not a detail group

Cause: You have specified a report group that is not of TYPE DETAIL.

Action: Correct your program so that the report group is of TYPE
DETAIL.

Pseudo-text incorrectly specified

Cause: A two-character delimiter for pseudo-text is missing from either a
REPLACE or COPY REPLACING statement.

Action: Insert the missing pseudo-text delimiter (that is, /1 = =")at the
appropriate point in your program.

15-14 User's Guide for IBM AIX VS COBOL Compiler/6000

062-S

063-S

064-S

065-S

066-S

067-S

070-S

093-S

Compiler Error Messages

Cannot have COPY REPLACING within REPLACE or vice versa

Cause: It is not possible to specify text replacement when text replace-
ment is already active. ·

Action: Modify the syntax so that only one of the statements
(REPLACE or COPY REPLACING) will be active at a time, but not
both.

Cannot be used in nested program

Cause: An entry-point is not valid in a nested program.

Action: Remove the entry-point from this code, or do not use nested
programs.

If file is EXTERNAL, then PADDING CHARACTER must be also

Cause: If a file is defined as EXTERNAL, then the data item specified
in the associated PADDING CHARACTER clause must also be defined
as EXTERNAL.

Action: Add the EXTERNAL phrase to the declaration of the
PADDING CHARACTER clause. .

Unsigned positive integer required

Cause: An unsigned integer was expected but not supplied.

Action: Be sure you have coded an integer that has no sign in this
context.

Data item must have fixed location

Cause: An item which is part of an OCCURS ... DEPENDING ON
(ODO) table entry is being used as a subscript to the table, or another
ODO table earlier in the group. This is not allowed.

Action: Move the item to a location outside the ODO and use that item
in this statement.

Please recompile using a larger value for the LINKCOUNT directive

Cause: The number of linkage section items required by your program
exceed the de fa ult limit.

Action: Use the linkcount directive to increase this limit.

Invalid argument

Cause: You have specified a COBOL system directive with an invalid
argument in a $SET statement within your program. Refer to Chapter 5,
"Compiler Options" for the valid arguments for this directive.

Action: Correct the argument for the COBOL system directive and
recompile your program.

User-name not unique. Assumed qualified by current 01 level record

Cause: The specified user-name is not unique but has been assumed to
be qualified by the current 01 level item.

Action: You should make the user-name unique or explicitly qualify it.

Chapter 15. Error Messages 15-15

Compiler Error Messages

105-S PROGRAM-ID missing

106-S

109-S

113-S

115-S

116-S

117-S

Cause: You have omitted the word PROGRAM-ID from the
PROGRAM-ID paragraph.

Action: Add the word PROGRAM-ID to the PROGRAM-ID para
graph.

PROGRAM-ID has illegal format

Cause: You have specified an invalid program name in the
PROGRAM-ID paragraph.

Action: See the Language Reference for the correct form of program
names.

Paragraphs or phrases in non-standard order or repeated

Cause: You have specified paragraphs or phrases in the wrong order, or
you have specified them twice.

Action: See the Language Reference for the correct order of paragraphs.
If you have repeated a paragraph, delete the repetition.

SPECIAL-NAMES clause error

Cause: You have not specified the SPECIAL-NAMES paragraph cor
rectly.

Action: See the Language Reference for the correct format of the
SPECIAL-NAMES paragraph.

OBJECT-COMPUTER clause not recognized

Cause: You have specified the OBJECT-COMPUTER paragraph incor
rectly.

Action: See the Language Reference for the correct format of the
OBJECT-COMPUTER paragraph.

Character specified twice in alphabet

Cause: You have specified at least one character twice in the
ALPHABET clause. For example, you may have included a character
within a range and also specified it as a literal.

Action: Edit your source code so that the characters specified in the
ALPHABET clause are referenced only once, and then recompile your
code.

SWITCH clause error or system-name/mnemonic name error

Cause: There is an error in the coding of the SWITCH clause of the
SPECIAL-NAMES paragraph within the Environment Division of your
program.

Action: See the Language Reference for the details of the correct syntax
for this clause and correct your program. Ensure that each condition
named within this clause is declared in the Data Division.

15-16 User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Error Messages

118-S COMMA expected

119-S

120-S

121-S

122-S

Cause: You have omitted the word COMMA from the
DECIMAL-POINT clause.

Action: Add the word COMMA.

CRT expected

Cause: You have used a COBOL word or user-defined word where the
compiler expected the reserved word CRT.

Action: Edit your code so that the reserved word CRT is used.

Illegal currency symbol

Cause: The literal which you have specified in the CURRENCY SIGN
IS clause in the SPECIAL-NAMES paragraph of your program is not
one of those permitted under the rules of COBOL syntax, or if it is, it is
not enclosed within quotation marks. The literal must be a single char
acter, not a digit, and cannot be any of the following: ABC DP RSV
X Z * + - , . ; () 11

/ = or SP ACE.

Action: Change the literal to a permitted character or digit, ensure that
it is enclosed by quotation marks, and recompile your program.

Cannot specify DYNAMIC or EXTERNAL with literal file-name

Cause: You can only specify DYNAMIC or EXTERNAL in the
ASSIGN clause of a file description entry if the file name is contained in
a data item rather than given as a literal file name.

Action: Redesign your program so that the file name is contained in a
data item.

Cannot use Double-Byte characters in alphabet definition

Cause: You have used DBCS characters in an alphabet definition.

Action: When you define an ALPHABET, you must not use Double
Byte characters.

126-S ASSIGN missing

127-S

Cause: You have used a SELECT clause to give a file a file name by
which the program will recognize it, but you have failed to use a corre
sponding ASSIGN clause to give the file an implementer name (the name
by which the system will recognize the file).

Action: Insert the relevant ASSIGN clause after the SELECT clause.

[LINE] SEQUENTIAL, RELATIVE or INDEXED missing

Cause: In the ORGANIZATION IS clause of the FILE-CONTROL
paragraph, you have failed to specify the logical structure your file is to
take.

Action: Insert [LINE] SEQUENTIAL, INDEXED, or RELATIVE into
this clause, depending on how you wish records to be stored and accessed
within your file.

Chapter 15. Error Messages 15-17

Compiler Error Messages

128-S ACCESS missing on indexed/relative file

Cause: The form of this clause depends on the organization of the data
file. If you have specified the ORGANIZATION clause for a file as
either INDEXED or RELATIVE, you must specify an ACCESS MODE
clause for it indicating which mode you will use to access that file. If no
mode is specified, sequential access mode is assumed.

Action: See the Language Reference for details on the use of this clause.

129-S Too many keys or key components

Cause: If you have defined the logical structure of your file to be
INDEXED, you have then defined more than 64 keys (1 primary plus 63
alternate), which is the maximum permitted.

Action: Delete some of the alternate keys within your program so that
the number remaining is less than 64 and recompile your program.

130-S Illegal ORGANIZATION/ACCESS/KEY combination

Cause: If you have specified the ORGANIZATION/ACCESS/KEY
clauses in your program, they must be compatible, but in your program
they are incompatible. See the Language Reference for details on per
mitted combinations.

Action: Ensure that these clauses are compatible.

131-S Unrecognized phrase in SELECT clause

Cause: The compiler has failed to accept part of your SELECT clause.
This message could be given, for example, if the file name which you
have given in the SELECT clause does not conform to the rules for
naming COBOL files. See the Language Reference for details of these
and a description of correct coding for the SELECT clause.

Action: Correct your code.

133-S SAME AREA clause syntax error

136-S

Cause: The optional clause, SAME AREA, by which you allow two or
more files to access the same central storage space, does not conform to
the relevant syntax rules.

Action: See the Language Reference for the description of the correct
format for this clause and correct your code.

Illegal use of phrase for National Language operation

Cause: You have included one or more of the following COBOL clauses
in your program:

PROGRAM COLLATING SEQUENCE IS
ALPHABET IS
CURRENCY SIGN IS
DECIMAL-POINT IS COMMA
COLLATING SEQUENCE IS

and you have compiled the program with the National Language Support
(nls) option on, which is not allowed.

Action: You should either recompile your program with the nls compiler
option turned off, or edit your source code to ensure none of the above
clauses appear in the program.

15-18 User's_Guide-forIBMAI:X-VS COBOL Cprp.piler/6000

Compiler Error Messages

137-S Program collating sequence not defined

Cause: You have included the PROGRAM COLLATING SEQUENCE
clause in the OBJECT-COMPUTER paragraph of your code but have
failed to code a corresponding ALPHABET-NAME clause in the
SPECIAL-NAMES paragraph. Your code must contain an
ALPHABET-NAME clause if it has a PROGRAM COLLATING
SEQUENCE clause within it.

Action: Insert the necessary ALPHABET-NAME clause, ensuring it has
the same user-defined name as that used within the COLLATING
SEQUENCE clause. If you have specified both of these clauses within
your code and have still received this message, then ensure that you have
used the same user-defined name and that it is spelled the same in each
clause. Correct any spelling error your code may contain.

138-S "EXCLUSIVE"," AUTOMATIC", OR "MANUAL" missing

Cause: The LOCK MODE IS clause within the FILE-CONTROL para
graph of the Environment Division does not contain one of the words
EXCLUSIVE, AUTOMATIC, or MANUAL, or ifit does, the compiler
has failed to recognize the word, possibly due to a spelling mistake. The
LOCK MODE clause controls access to files shared between a number of
users within a multiple-user environment. Its form is determined by the
file type with which it is used.

Action: See the Language Reference for further details on its use.

139-S Illegal LOCK MODE/file type combination

Cause: The form of the LOCK MODE clause depends on the file type.
You have specified a LOCK MODE clause that is incompatible with the
type of the specified file. Nonshareable files must have lock mode
EXCLUSIVE while shareable files may have lock mode AUTOMATIC
or MANUAL.

Action: See the Language Reference for further details on the use of this
clause.

140-S For indexed file, PASS WORD phrase must follow KEY

Cause: For an indexed sequential file description entry, the PASSWORD
phrase, if any, must immediately follow the KEY phrase.

Action: Correct your program so the PASSWORD phrase immediately
follows the KEY phrase.

141-S File name appears in more than one SAME clause of same type

Cause: A file may only appear in one SAME AREA or SAME
RECORD AREA clause.

Action: Correct your source code and recompile your program.

142-S Can only be used in nested program

Cause: The COMMON clause, for example, as defined by ANSI, is only
in a nested program.

Action: Correct your source code and recompile your program.

Chapter 15. Error Messages 15-19

_;Ompuer Error Messages

143-S

199-S

201-S

202-S

203-S

204-S

205-S

Unknown IDENTIFICATION DIVISION paragraph

Cause: The paragraph label specified is invalid (or invalid for the
selected COBOL dialect).

Action: Correct your program (or select another COBOL dialect) and
recompile your program.

LINE clause also specified in containing group

Cause: The LINE clause cannot appear in an elementary data item when
the containing group contains a LINE clause.

Action: Revise the declaration of the item to specify the LINE clause
either in the group item or in the elementary data item, but not both,
and recompile.

Sort file cannot have ACCESS or ORGANIZATION clauses

Cause: A screen description (SD) file description entry cannot have these
clauses, because the access mode and organization of such files are fixed.

Action: Delete the offending clauses.

Too many levels of OCCURS

Cause: You have specified more than the permitted number of
OCCURS clauses in the definition of a table item. See the Language
Reference for details of how many levels of OCCURS you can specify.

Action: Delete the excess OCCURS clauses.

CODE must be specified for all reports or no report

Cause: You have specified the CODE clause in the definition of a
report. If you are defining more than one report for the specified file,
you must specify the CODE clause either for all reports or for none of
them for that file.

Action: Add CODE clauses to the other reports you have defined, or
ensure that no report definition contains a CODE clause for that file.

REDEFINES on incorrect field

Cause: A REDEFINES clause must have the same level number as the
item it redefines.

Action: Change the level number.

RECORD missing or has zero size

Cause: This message is given if you declare a file using the SELECT
statement within the Environment Division of your program, and then
either fail to define it in a corresponding file description (FD) entry in
the Data Division or use a different file name in the FD entry, perhaps
the result of a spelling mistake. If a mismatch of the two occurs, then
the record associated with the file does not exist, although the necessary
space has been created for it.

Action: Add or correct the FD entry.

15-20 User's Guide for IBM AIX VS COBOL Compiler/6000

206-S

207-S

208-S

209-S

210-S

211-S

Compiler Error Messages

01 or 77 level required

Cause: This data item must have level number 01 or 77.

Action: Change the level number of the item to 01 or 77.

FD, CD, or SD qualification syntax error

Cause: These entries describe the structure of a specified file and take
the form FD, CD, or SD, followed by a file name and a description of
the records within that file. The file name must be the name of a file
defined in the FILE-CONTROL paragraph of your program. An FD,
CD, or SD entry in your source code has an error in its syntax.

Action: Refer to your Language Reference for syntax details.

WORKING-STORAGE missing

Cause: The words WORKING-STORAGE are missing from the rele
vant section heading within the Data Division, or if present, have not
been recognized by the compiler, perhaps as a result of a spelling mistake
or their position within your code.

Action: See the Language Reference for details of how the Data Division
should be structured.

Procedure Division missing or unknown statement

Cause: The Procedure Division header is missing from your program, or
if present, the compiler has failed to recognize it. This could be due to a
spelling error or incorrect placement of this header.

Alternatively, your code could contain a statement within the Procedure
Division that the compiler has failed to recognize. This is probably
because you have used a reserved word, but have spelled it incorrectly.

Action: Insert the Procedure Division header immediately after the last
entry in the Data Division. Alternatively, if you have misspelled a
reserved word, correct your spelling error.

Unrecognized data description qualifier or '.' missing

Cause: A qualifier (for example, JUST or COMP) is missing or mis
spelled in the description of a data item.

This message is also given if you have not placed the necessary period at
the end of a PICTURE clause.

Action: Add the necessary qualifier to your code. Alternatively, if you
have omitted the necessary period, add the period.

PICTURE clause not compatible with qualifiers

Cause: Your code contains a PICTURE clause that is qualified by the
wrong type of qualifier. For example, a data item may be defined as PIC
XX USAGE COMP. You will get this message if an alphanumeric
PICTURE clause is specified with a numeric qualifier.

Action: Correct your code so that the PICTURE clause and its qualifiers
are of the same type.

Chapter 15. Error Messages 15-21

\..-ompuer Error Messages

212-S

213-S

214-S

215-S

216-S

Illegal data item used with BLANK clause

Cause: The BLANK WHEN ZERO clause can be used only as part of
the data description entry for data items that are numeric (those that
contain a 9 in the PICTURE clause) or numeric-edited (ordinary edited
data items with special characters added to allow the data items to be
presented in a form which can be easily understood). You have used this
clause with a nonnumeric data item in your source code or with a
numeric data item that contains a 'P', 'S', or 'V'.

Action: Delete this clause or redefine the data item to be either numeric
or numeric-edited, or remove the 'P', 'S', or 'V' characters.

Item is longer than this USAGE allows

Cause: A PICTURE clause within your Data Division exceeds the
maximum permitted by the compiler. Numeric data items can be up to
18 characters in length, numeric-edited up to 512 characters, and alpha
numeric up to eight megabytes.

Action: Alter the clause in error to lie within the relevant range.

VALUE too long for data item

Cause: A data item that you have used with a VALUE clause is bigger
than its declared field. A declaration such as ... PIC 99 Value 123 would
cause this message, because 123 is too large to fit into the receiving field
without truncation.

Action: Alter your code so the data item is large enough to receive the
value that is to be placed within it.

VALUE in error or illegal for PICTURE type

Cause: You have made a mistake in the coding of a VALUE clause
within your program. You may, for example, have used a numeric data
item with a nonnumeric VALUE clause, or you may have used the
VALUE clause in conjunction with a nonelementary data item. Alterna
tively, you may have used it in conjunction with a data item that has
been redefined.

Action: Correct the code as necessary so that it does not violate the rules
governing the use of the VALUE clause. See the Language Reference for
a full description of these rules.

Non-elementary item has JUSTIFIED or BLANK clause

Cause: JUSTIFIED or BLANK clauses can be used within the data
description entry of the Data Division but must be used only with ele
mentary data items. Elementary data items are the most basic subd
ivisions of a record, as they are not subdivided into higher level data
items. You have used one of these clauses in conjunction with a nonele
mentary data item, that is, one that is redefined by higher level data
items.

Action: Correct your program to ensure that these clauses appear only
with elementary data items.

15-22 User's Guide for IBM AIX VS COBOL Compiler/6000

217-S

218-S

219-S

220-S

221-S

222-S

Compiler Error Messages

Preceding item at this level bas zero length

Cause: You have defined a data item but have failed to give it a size,
either by using a PICTURE clause in conjunction with it, or if it is a
group item, by failing to define any elementary items to go with it. For
example, if the code is something similar to:

01 b.
01 m Pie X.

you will receive this message after m, because although it is b that is in
error, the error is only detected once the next item at the same level as
the offending data item is encountered.

Action: Add the necessary PICTURE clause or elementary items to the
level hierarchy.

Illegal arithmetic operator

Cause: You have specified an invalid operator in an arithmetic
expression.

Action: See the Language Reference for details of valid arithmetic opera
tors.

Illegal level number

Cause: You have specified an illegal level number in a data description
entry.

Action: See the Language Reference for details on how to specify level
numbers.

Literal type does not match data type

Cause: You have specified a literal value that is incompatible with the
PICTURE clause of the associated data item, for example, PIC 999
VALUE 11 123 11

•

Action: Make the literal value compatible with the data item.

Data description qualifier inappropriate or repeated

Cause: You have used a data description qualifier that is incompatible
with the associated PICTURE clause. For example, you may have used
a BLANK WHEN ZERO clause for a PIC XX data item. This is illegal,
because the data item is alphanumeric and the associated qualifier refers
only to numeric items. Alternatively, you have used more than one
PICTURE clause to define a single data item.

Action: Correct the qualifier or the data type to ensure that they are
compatible. Alternatively, delete the superfluous PICTURE clauses to
leave only one for that data item, since each data item should only have
one PICTURE clause associated with it.

REDEFINES data name not declared

Cause: You have not declared the data name that you have used in con
junction with a REDEFINES clause.

Action: Ensure that the data name is declared in your data description
entry and that the relevant REDEFINES clause is placed immediately
after the data name that it describes.

Chapter 15. Error Messages 15-23

Compiler Error Messages

223-S

224-S

225-S

226-S

227-S

228-S

229-S

230-S

Unknown USAGE

Cause: You have specified an invalid USAGE qualifier in a data
description entry.

Action: See the Language Reference for details of USAGE qualifiers.

SIGN must be LEADING or TRAILING

Cause: This optional clause can be specified only for numeric description
entries that contain the character Sin the PICTURE clause. The key
word SIGN must be followed by either LEADING or TRAILING,
depending on the position you wish the operational sign to take.

Action: Add either LEADING or TRAILING.

Level hierarchy wrong

Cause: The structure of level numbers in a group data item is incorrect.

Action: Check the hierarchy of the level numbers and correct it.

Variable-length group not unitary

Cause: You cannot declare a variable-length group item within an
OCCURS clause.

Action: Give the group item a fixed length.

ZERO missing

Cause: The BLANK clause must be followed by the word ZERO.

Action: Delete any other word you may have used in place of ZERO.
Ensure that the clause contains no spelling errors.

Group VALUE truncated

Cause: The value you have specified for a group item is longer than the
defined length of the group item.

Action: Redefine the length of the group item or the value.

Incompatible qualifiers

Cause: You have specified qualifiers in the description of a data item
that are not compatible with one another.

Action: See the Language Reference for the rules governing qualifiers in
data descriptions. Correct the data description.

PICTURE string has illegal precedence or illegal character

Cause: You have used a character within a PICTURE clause that the
compiler does not recognize or which is illegal for that particular type of
PICTURE string.

Action: See the Language Reference for a full list of permitted charac
ters. Alter the relevant PICTURE clause.

15-24 User's Guide for IBM AIX VS COBOL Compiler/6000

231-S

232-S

233-S

234-S

237-S

238-S

239-S

240-S

Compiler Error Messages

INDEXED data-name missing or already declared

Cause: The INDEXED phrase found within an OCCURS clause is fol
lowed by a data-name that you have used elsewhere in the program.
This violates the rules of COBOL syntax, which state that each data
name must be uniquely identified. Alternatively, the clause is not fol
lowed by any data-name.

Action: Either alter or add a data-name, depending on the context in
which this message was given.

Numeric-edited PICTURE string is too large

Cause: A PICTURE string that you have defined for a numeric-edited
data-item (one that presents numeric data-items in a more readable form;
for example, with leading zeros removed or with currency signs inserted)
exceeds the maximum permitted for your compiler.

Action: Alter the string to be less than 512 characters in length.

Unknown data description qualifier

Cause: You used an invalid qualifier in a data description. You prob
ably misspelled a valid qualifier.

Action: Correct the data description.

DEPENDING missing

Cause: You have defined a variable-length table without specifying the
DEPENDING phrase that at run time allows the compiler to determine
the actual table size.

Action: Specify the DEPENDING phrase.

Cannot have more than one initial CD

Cause: Only one of the communication description (CD) entries in the
Communications section can have the INITIAL clause specified.

Action: Delete the INITIAL clauses from all but one of the CD entries.

RENAMES missing

Cause: You have omitted the word RENAMES in the definition of a
level 66 data item.

Action: Add the word RENAMES.

First data-name does not precede second

Cause: You have included the syntax data-name RENAMES
data-name-2 THRU data-name-3 in your program, but the data item you
have specified for data-name-2 is declared after the data item for
data-name-3. This is not valid COBOL syntax, and the first data item in
a THRU clause must be declared before the second.

Action: Correct the THRU phrase.

Only allowed at 01 level

Cause: You have used the NEXT or TYPE clauses in a report
description entry, or the GLOBAL or EXTERNAL clauses in a report
file description entry that is not a 01 level item.

Action: Edit your source code to ensure that everywhere you use NEXT,
TYPE, GLOBAL, or EXTERNAL, the clause applies to a 01 level item.

Chapter 15. Error Messages 15-25

Compiler Error Messages

241-S

242-S

243-S

244-S

245-S

246-S

247-S

248-S

Only allowed in WORKING-STORAGE SECTION

Cause: You have used the EXTERNAL clause in a record description
entry in a section other than the WORKING-STORAGE SECTION,
which does not follow the rules of COBOL syntax.

Action: Edit your source code so that EXTERNAL is used as a clause
within the record description only in the WORKING-STORAGE
SECTION.

Only allowed in WORKING-STORAGE and FILE SECTIONs

Cause: You have used the GLOBAL clause in a file or report
description entry that is not in the WORKING-STORAGE SECTION
or the FILE SECTION. This does not follow the rules of COBOL
syntax.

Action: Edit your source code to ensure that GLOBAL is used as a
clause to the file or report description only within the
WORKING-STORAGE SECTION and/or the FILE SECTION.

VALUE of group item must be nonnumeric or figurative constant

Cause: If you specify a VALUE clause for a group item, the value in the
clause must be either a nonnumeric literal or a figurative constant.

Action: Correct the value in the VALUE clause.

FD missing for file

Cause: You have not made an FD entry for all the files named in the
file control paragraph.

Action: Ensure that there is an FD entry for each file named in a
SELECT clause in the file control paragraph.

DEPENDING ON item missing or illegal

Cause: You have not declared a data item named in the DEPENDING
phrase in an OCCURS clause.

Action: Add a declaration of the missing data item.

KEY missing or illegal

Cause: You have not specified the RECORD KEY clause in the file
description of an indexed sequential file.

Action: Add the RECORD KEY clause to the file description.

Index-name has been declared explicitly

Cause: You have declared an index data item explicitly. The item is
declared implicitly by its appearance in an INDEX phrase, so you have
in effect declared the same item twice.

Action: Delete the explicit declaration of the index data item.

ISAM key too long

Cause: A data item that is to be used as an indexed sequential file key is
longer than the maximum length allowed for such keys.

Action: Redefine the key length.

15-26 User's Guide for IBM AIX VS COBOL Compiler/6000

249-S

250-S

251-S

252-S

254-S

255-S

256-S

Compiler Error Messages

Alternate keys have same reference

Cause: You have defined two alternate, overlapping keys for an indexed
sequential file. Alternate keys must be completely distinct from one
another.

Action: Redefine the alternate keys so that they do not overlap.

STATUS field missing or illegal

Cause: You have not declared the data item specified in the FILE
STATUS clause of a file control entry, or you have declared it incor
rectly.

Action: Refer to the Language Reference for details of the correct form
of the FILE STATUS data item. Add or correct the definition of the
FILE STATUS data item.

CURSOR field missing or illegal

Cause: You have not declared the data item specified in the CURSOR
IS clause in the SPECIAL-NAMES paragraph. Alternatively, you have
declared the item incorrectly.

Action: Ref er to the Language Reference for the correct form of the
cursor data item. Add or correct the declaration of the data item in the
CURSOR IS clause.

PASSWORD field missing or illegal

Cause: You have not declared the data item specified in the PASS
WORD clause in a file description entry. Alternatively, you have
declared the item incorrectly.

Action: Refer to the Language Reference for the correct form of the
password data item. Add or correct the declaration of the data item in
the PASSWORD clause.

'VALUE OF' field missing or illegal

Cause: You have not declared one or more of the data items named in
the VALUE OF clause of an FD entry in the file section. Alternatively,
you have declared such an item incorrectly.

Action: Refer to the Language Reference for the correct form of these
data items. Add or correct the declaration of the data.item(s) in the
VALUE OF clause.

User name same as special register

Cause: You have declared a data item with the same name as one of the
special registers, which are data items that are automatically declared by
the compiler.

Action: Refer to the Language Reference for a list of the names of these
special registers. Alter the name of the data item in error.

Preceding record has zero length

Cause: You have defined a data item with zero length. This is probably
due to errors in the elementary item descriptions in the record definition.

Action: Correct the record description.

Chapter 15. Error Messages 15-27

Compiler Error Messages

257-S

258-S

259-S

260-S

261-S

262-S

263-S

KEY data-name missing or already declared

Cause: You have not declared a data item specified in the KEY phrase
of an OCCURS clause, or you have declared it twice.

Action: Declare the data item or remove the extra declaration.

ASSIGN data-name illegal

Cause: You have specified an ASSIGN data-name in a
SELECT ... ASSIGN statement that is not unitary; that is, the data defi
nition contains an OCCURS clause.

Action: Edit your source code to ensure that the ASSIGN data item
does not include an OCCURS clause.

Illegal report-name or bad RD clause

Cause: You have defined a report name that is not unique or does not
conform to the rules for user-defined words. Alternatively, you have
specified a clause in a record description (RD) entry incorrectly.

Action: Refer to the Language Reference for the correct syntax of an RD
entry, and correct your program accordingly.

Inconsistent page specification

Cause: The values you have specified in the PAGE LIMIT clause are
not consistent. For example, the integer in the LAST DETAIL phrase is
smaller than the integer in the FIRST DETAIL phrase.

Action: Refer to the Language Reference for the rules governing the
PAGE LIMIT clause, and correct your program accordingly.

Only allowed in REPORT SECTION

Cause: You have tried to specify syntax for a report outside the
REPORT SECTION of the Data Division.

Action: Refer to the Language Reference to see what syntax is allowed in
the REPORT SECTION. Delete the syntax or relocate it in the
REPORT SECTION.

Not a CONTROL for this report

Cause: The data-name in a TYPE CH or TYPE CF clause does not
appear in the CONTROL clause of the associated RD entry. This may
be due to misspelling the data-name.

Action: Ensure that the correct data-name appears in both the TYPE
CF /CH and CONTROL clauses.

Not allowed when PAGE not specified in RD

Cause: You have specified a TYPE PH or TYPE PF clause without
specifying a PAGE clause in the associated RD entry. Alternatively, you
have specified an absolute line number in the LINE NUMBER clause
without specifying a PAGE clause in the associated RD entry.

Action: Add a PAGE clause to the RD entry.

15-28 User's Guide for IBM AIX VS COBOL Compiler/6000

264-S

265-S

266-S

267-S

268-S

269-S

271-S

Compiler Error Messages

Only one report group with this TYPE allowed per RD

Cause: You have specified a duplicate of one of the TYPE clauses (for
example, you have specified two TYPE PF clauses). At most, one clause
of each type is allowed in a particular RD entry.

Action: Delete the duplicate TYPE clause.

Not allowed with this TYPE

Cause: You are using a qualifier in a statement that does not allow any
qualifiers, or that does not allow this particular qualifier.

Action: Refer to the Language Reference for details of the qualifiers
allowed with this statement.

No TYPE specified

Cause: All level 01 entries in the REPORT SECTION must have a
TYPE clause.

Action: Add a TYPE clause.

LINE specification missing or inconsistent

Cause: There are three possible causes of this message:

• You specified a NEXT PAGE clause that was not in the first LINE
clause of a report group description entry.

• The absolute line numbers in the LINE clauses of a report group
description entry are not in ascending order.

• You have not specified a LINE clause in a particular report group
description entry.

Action: To correct the fault:

• Delete the NEXT PAGE clause from all but the first LINE clause.

• Rearrange the LINE clauses so that absolute line numbers are in
ascending order.

• Add a LINE clause.

REPORT specified in more than one FD

Cause: You have specified the same report name in more than one FD.

Action: Delete the duplicate report name.

Duplicate CONTROL field

Cause: You have specified the same CONTROL field value in more than
one RD entry.

Action: Delete the duplicate CONTROL field value.

Only allowed with DETAIL groups

Cause: You can specify a GROUP INDICATE clause only with
DETAIL report groups.

Action: Delete the GROUP INDICATE clause.

Chapter 15. Error Messages 15-29

Compiler Error Messages

272-S

273-S

274-S

275-S

276-S

277-S

278-S

279-S

282-S

Only allowed with CONTROL FOOTING groups

Cause: You can specify a SUM clause only in a control footing report
group.

Action: Delete the SUM clause.

Non-elementary item has invalid qualifier, or PICTURE missing

Cause: You have specified at a group level a qualifier that can only be
used at an elementary level.

Action: Delete the clause that is in error and recompile your program.

GROUP INDICATE without COLUMN

Cause: You have specified the GROUP INDICATE clause, but no
COLUMN clause is in the same report group description.

Action: Include the COLUMN qualifier.

NEXT GROUP not allowed with this group TYPE

Cause: You have specified NEXT GROUP in a group with TYPE RF
or PH.

Action: Delete the NEXT GROUP clause.

NEXT GROUP NEXT PAGE not allowed with this group TYPE

Cause: You have specified NEXT GROUP or NEXT PAGE in a group
with TYPE PF.

Action: Delete the clause.

LINE NEXT PAGE not allowed with this group TYPE

Cause: You may specify the LINE NEXT PAGE clause only with a
group of TYPE CH, CF, or DE.

Action: Delete the LINE NEXT PAGE clause.

RESET item is lower CONTROL level than group

Cause: The control group on which a sum is reset must be at the same
level as or a lower level than the sum.

Action: Refer to the Language Reference for the rules governing the
resetting of sums, and change your code accordingly.

Report line too long

Cause: You have written a report line which exceeds the maximum per
mitted length.

Action: Correct your source code to ensure that the report line in ques
tion does not exceed the maximum permitted length.

CICS facility not supported

Cause: You have compiled your program with the CICS option, which is
not supported by AIX VS COBOL.

Action:. Do not use the CICS option when you compile. Also, remove
any code that served an as interface to CICS.

15-30 User's Guide for IBM AIX VS COBOL Compiler/6000

283-S

284-S

301-S

302-S

303-S

304-S

305-S

Compiler Error Messages

An EXTERNAL file cannot be subject of SAME RECORD AREA clause

Cause: You have specified a file in a SAME RECORD AREA clause in
your program that is specified as an EXTERNAL file in an FD entry.

Action: Delete the EXTERNAL file from the SAME RECORD AREA
clause in your program.

Not allowed in REPORT SECTION

Cause: The syntax you have used should not appear within the
REPORT SECTION.

Action: Remove the syntax in question from the REPORT SECTION.

Unrecognized verb

Cause: You have used a verb in the Procedure Division of your program
that the compiler does not recognize as a valid COBOL verb. Alterna
tively, you may have misspelled a COBOL verb.

Action: Refer to the Language Reference to see which verbs are per
mitted within the COBOL language. Ensure that you have spelled them
correctly.

IF ... ELSE or scope-delimiter mismatch

Cause: There is an error in your coding of the IF statement within the
Procedure Division of your program. The two halves. of one IF state
ment do not match. You may have more ELSE phrases than IF phrases.

Alternatively, you have made an error in coding a construct that uses one
of the scope delimiters (for example, END-ADD). There is a mismatch
between the number of scope delimiters and the statement whose scope
they delimit.

Action: Correct your program accordingly.

Operand has wrong data-type

Cause: You have used a data item with the wrong data-type in one of
your statements. For example, this message would be displayed if you ·
used a file name in a WRITE statement instead of a record name.

Action: Correct the data item.

Procedure name not unique

Cause: Two or more sections within the Procedure Division or two or
more paragraphs within a section of your program have the same title.
COBOL rules state that each section or paragraph name must be unique.

Action: Rename or qualify the sections or paragraphs to ensure unique
ness of reference.

Procedure name same as data-name

Cause: A paragraph within the Procedure Division of your program has
the same title as a data item declared within the Data Division.

Action: Retitle either the paragraph or the relevant data item to ensure
uniqueness of reference. ·

Chapter 15. Error Messages 15-31

Compiler Error Messages

306-S

307-S

308-S

309-S

310-S

311-S

312-S

Entry name not unique

Cause: You have used the same entry-point name more than once in
your program.

Action: Alter the entry name or qualify it.

Wrong combination of data types

Cause: You are trying to manipulate data items that are not compatible.

Action: Ensure that the data items are of the same type.

Conditional statement not allowed in this context

Cause: You have used a conditional statement (one which specifies that
the truth value of a condition is to be determined at run time) in the
Procedure Division of your program where an imperative statement is
expected.

Action: Replace the statement with one that begins with an imperative
verb and is followed by a specification of an unconditional action that is
to be taken at run time.

Malformed subscript

Cause: The most common cause of this message is that you have speci
fied two subscripts for a one-dimensional table item.

Action: Correct your code to ensure that you do not specify more than
one subscript for a one-dimensional table item.

ACCEPT/DISPLAY wrong or Communications syntax incorrect

Cause: You have used an invalid piece of syntax with an ACCEPT or
DISPLAY statement. Alternatively, you have coded the Communi
cations syntax incorrectly. The most likely cause of this message is that
you have a spelling error in your code.

Action: Correct the spelling error.

Illegal syntax used with 1-0 verb

Cause: The code following an I-0 verb (for example, READ or WRITE)
violates the rules of COBOL syntax.

Action: Refer to the Language Reference for details on the usage of the
particular verb in your code that has caused this message.

Invalid arithmetic statement

Cause: An arithmetic statement used in the Procedure Division of your
code does not conform to the rules of COBOL syntax. These statements
must begin with an arithmetic verb (for example, SUBTRACT or
DIVIDE) and should be followed by the relevant numeric literals or
identifiers which the verb will act upon when the program is executed.
The statement that you have specified is not a valid one.

Action: Refer to the Language Reference for details of arithmetic state
ments and ensure that the one you wish to use conforms to the relevant
rules.

15-32 User's Guide for IBM AIX VS COBOL Compiler/6000

313-S

314-S

315-S

316-S

317-S

318-S

319-S

Compiler Error Messages

Invalid arithmetic expression

Cause: You have used an invalid arithmetic expression in the Procedure
Division.

Action: Refer to the Language Reference for details on the more compli
cated coding that COBOL allows you to write to carry out complicated
mathematical tasks.

Illegal key

Cause: The key value in a file operation or in a SEARCH statement is
the wrong size.

Action: Check the key definition and correct the key value.

Invalid conditional expression

Cause: A conditional expression that you have specified in the Procedure
Division of your program does not conform to the rules of COBOL
syntax. These expressions, an example of which is the statement imme
diately following an IF, allow one of two following statements to be exe
cuted at run time depending on the truth value.

Action: Refer to the Language Reference for details on the coding of the
particular statement which you have used.

Too many AFTERs in PERFORM statement

Cause: A PERFORM statement may only be followed by six AFTER
phrases. Your code exceeds this limit.

Action: Rewrite your code ensuring that no PERFORM statement has
more than six associated AFTER phrases.

Incorrect structure of Procedure Division

Cause: This message is displayed if you have made a mistake in the
coding of the Procedure Division. For example, you will receive this
message if you have forgotten one of the section headings in this division.

Action: Ensure that the Procedure Division follows a logical order and
that each section within it has its own heading. You may also need to
use the nestcall option if your program is nested.

File must have ACCESS SEQUENTIAL

Cause: The file named in the GIVING phrase of a SORT or MERGE
statement must be sequential.

Action: Change the organization of the file to SEQUENTIAL.

Only index names allowed with this format

Cause: With the operation you are attempting, an index name is
required at this point.

Action: Correct your source code to ensure that the name you have spec
ified is an index name.

Chapter 15. Error Messages 15-33

Compiler Error Messages

320-S

321-S

322-S

323-S

324-S

325-S

326-S

327-S

Too many operands in one statement

Cause: A statement in the Procedure Division of your program contains
too many operands, or the individual operands are too long.

Action: Refer to the Language Reference for details of the correct
number of operands for this statement, and amend it accordingly, or
shorten those operands that are too long.

Only one GIVING file allowed

Cause: You have specified more than one file name in the GIVING
phrase of a SORT or MERGE statement, where only one file name is
allowed.

Action: Delete any additional file names from the GIVING phrase.

Cannot reference DEBUG-ITEM outside declaratives

Cause: You have referred to the compiler-generated data item
DEBUG-ITEM in a procedure that is not in the declarative section of
your program's Procedure Division. References to DEBUG-ITEM are
only pennitted in the declarative section.

Action: Delete the reference to DEBUG-ITEM, or relocate it within the
declarative section.

More than one USE procedure on same file

Cause: You have associated two or more USE procedures with the same
file. You can associate, at most, one USE procedure with a file.

Action: Delete the additional USE references.

More than one USE procedure for same open mode

Cause: You have associated two or more USE procedures with the same
file that is in the open mode. You can associate, at most, one USE pro
cedure with a file in the open mode.

Action: Delete the additional USE references.

Illegal combination of debugging procedures

Cause: You have specified an invalid combination of USE FOR
DEBUGGING procedures in the declarative section.

Action: Refer to the Language Reference for details of debugging proce
dures. Correct the declarative section.

Literal cannot be receiving field

Cause: You have specified a literal value as the receiving field in an
operation involving an implicit or explicit move. A receiving field must
be a data item.

Action: Change the literal value of the receiving field to a data item.

Index item not permitted

Cause: You have named an index data item as the sending or receiving
field in a MOVE statement. This is not permitted.

Action: Move the value into a nonindex data item, and use this data
item in the MOVE statement.

15-34 User's Guide for IBM AIX VS COBOL Compiler/6000

329-S

330-S

331-S

332-S

333-S

334-S

335-S

336-S

Compiler Error Messages

WHEN phrase missing from SEARCH statement

Cause: You have specified a SEARCH statement with no WHEN
phrase. You must specify at least one WHEN phrase in a SEARCH
statement.

Action: Add a WHEN phrase to the SEARCH statement.

Not a record name

Cause: You must specify the name of a file record in this context (as
defined in an FD entry in the file section). You have probably mis
spelled a valid record name.

Action: Correct the reference to the file record.

Program is nested. Must compile with nestcall option

Cause: You are trying to compile a program that has nested COBOL
source code without using the nestcall option.

Action: Recompile using the nestcall compiler option.

AFTER phrase not allowed with in-line perform

Cause: You cannot specify an AFTER phrase in an in-line PERFORM
statement.

Action: Delete the AFTER phrase.

Not an ALTERable paragraph

Cause: The paragraph you have named in an ALTER statement is not
an ALTERable paragraph. An ALTERable paragraph must consist of a
single sentence containing only a single GO TO statement without a
DEPENDING phrase.

Action: Change the reference in the ALTER statement to refer to a par
agraph that is AL TERable, or edit the named paragraph so that it is an
AL TERable paragraph.

Cannot follow WHEN OTHER

Cause: The WHEN OTHER phrase, if specified, must be the last phrase
in an EVALUATE statement.

Action: Move any WHEN phrases that come after the WHEN OTHER
phrase so that they are then in front of the WHEN OTHER phrase.

Selection object does not match selection subject

Cause: There is a type mismatch between one of the selection subjects in
an EVALUATE statement and the corresponding selection object.

Action: Refer to the Language Reference for the correct syntax of
EVALUATE. Correct the EVALUATE statement.

Variable-length group not allowed

Cause: You cannot INITIALIZE a variable-length item.

Action: Delete the item name from the INITIALIZE statement.

Chapter 15. Error Messages 15-35

Compiler Error Messages

337-S

338-S

339-S

340-S

341-S

342-S

343-S

344-S

Cannot repeat same category

Cause: You have repeated the same data class in the REPLACING
phrase of an INITIALIZE statement.

Action: Delete the repeated class from the INITIALIZE statement.

REPORT not specified in an FD

Cause: You have referred to a report for which there is no FD entry in
the REPORT SECTION. You may have forgotten to specify the report
entry, or you may have misspelled a correct report name.

Action: Correct the report name, or add the necessary report definition
to the REPORT SECTION.

Not allowed with SEQUENTIAL files

Cause: You have specified an operation that cannot be performed on a
file opened in the sequential access mode.

Action: Refer to the Language Reference for the details of what oper
ations you can perform on SEQUENTIAL files.

Not allowed with RANDOM ACCESS files

Cause: You have specified an operation that cannot be performed on a
file opened in the RANDOM ACCESS mode.

Action: Refer to the Language Reference for the details of what oper
ations you can perform on RANDOM ACCESS (relative or indexed
sequential) files.

Not allowed with LINE SEQUENTIAL files

Cause: You have specified an operation that cannot be performed on a
LINE SEQUENTIAL file.

Action: Refer to the Language Reference for the details of what oper
ations you can perform on LINE SEQUENTIAL files.

Not allowed with LINAGE files

Cause: You have performed an illegal operation on a file defined with a
LINAGE clause, for example, WRITE AFTER COl.

Action: Delete the illegal operation, or redefine the file without a
LINAGE clause.

Should be declared in LINKAGE SECTION

Cause: You have included a data reference that is not declared in the
LINKAGE SECTION of the Data Division.

Action: Ensure that the item is declared in the LINKAGE SECTION.

Should be level 01 or 77

Cause: You have specified a data item that is not a level 01 or level 77
data item where the compiler requires a data item to be one of these
levels.

Action: Redefine the data item to be level 01 or level 77.

15-36 User's Guide for IBM AIX VS COBOL Compiler/6000

345-S

346-S

347-S

348-S

349-S

350-S

351-S

Compiler Error Messages

USING parameter used twice in parameter list

Cause: You have specified the same data item name twice in the USING
phrase of the Procedure Division header. All the names in the USING
phrase must be different.

Action: Delete the extra reference.

Only one WHEN phrase allowed with SEARCH ALL

Cause: You have specified two WHEN phrases in a SEARCH statement
using the ALL option. You can specify only one WHEN phrase in this
context.

Action: Delete the extra WHEN phrase.

MERGE needs at least two USING files

Cause: You have specified less than two file names in the USING phrase
of a MERGE statement. You must enter at least two files for a merge
operation.

Action: Ensure that there are at least two file names in the USING
phrase of the MERGE statement.

Procedure name undeclared

Cause: You have referred to a nonexistent paragraph or section. You
have probably misspelled a valid procedure name.

Action: Ensure that the procedure to which you referred exists, and that
you have spelled it correctly.

'LOCK' clause expected

Cause: You have used a READ statement with no LOCK phrase on a
file that requires you to specify one.

Action: Insert a LOCK phrase in the READ statement.

Illegal use of 'NO LOCK'

Cause: You have used a READ statement with the NO LOCK phrase
on a file for which no record locking is required.

Action: Delete the NO LOCK phrase.

'LOCK' clause specified for 'EXCLUSIVE' file

Cause: You have specified a LOCK clause in a READ statement for a
file that you have already locked with an EXCLUSIVE lock, in the FILE
CONTROL paragraph of your code.

Action: Record locking is impossible on a file that your run-unit has
already locked with an EXCLUSIVE lock. To ensure that the two
LOCK entries are compatible, you will have to either delete the LOCK
entry in the relevant READ statement, or alter the LOCK MODE IS
entry in the FILE-CONTROL paragraph.

Chapter 15. Error Messages 15-37

Compiler Error Messages

352-S

353-S

355-S

356-S

357-S

358-S

359-S

360-S

'KEPT' specified for file with single record locking

Cause: This message applies only to multiuser syntax. You have speci
fied a WITH KEPT LOCK phrase in a READ statement which uses a
file that does not support multiple record locking.

Action: Either change the file type or delete the WITH KEPT LOCK
phrase to ensure compatibility between the two entries.

'KEPT' omitted for file with multiple record locking

Cause: This message applies only to multiuser syntax. In the context of
your program the READ statement for this specific file requires a WITH
KEPT LOCK phrase to allow it to control access to that file.

Action: Insert the WITH KEPT LOCK phrase.

Only '=' and 'NOT =' allowed for pointer data items

Cause: You can only use the operators = and NOT = in comparisons
involving pointer data items.

Action: Correct the comparison.

Not allowed with REPORT files

Cause: You have attempted to perform a file operation (READ,
WRITE, REWRITE) on a file whose FD entry indicates that it is a
report.

Action: Delete the input-output statement.

Screen is display-only

Cause: You have named a display screen in an ACCEPT statement that
contains only display fields.

Action: Make sure that you have named the correct display screen.

Missing comma

Cause: AIX VS COBOL syntax requires a comma at this point.

Action: Refer to the Language Reference for the correct syntax. Add the
missing comma.

Mismatch of table dimensions

Cause: There is a mismatch between the number of dimensions in a data
item in an ACCEPT/DISPLAY statement and the corresponding screen
section item.

Action: Make the two item definitions consistent.

File must have ACCESS DYNAMIC

Cause: You have specified an operation on a file that can be performed
only if the file has access mode DYNAMIC.

Action: Change the file control entry for the file so that it has access
mode DYNAMIC.

15-38 User's Guide for IBM AIX VS COBOL Compiler/6000

362-S

363-S

364-S

365-S

366-S

367-S

368-S

369-S

Compiler Error Messages

Data name not declared for file or of wrong type for CODE-SET

Cause: The data-names you have specified in the CODE-SET clause do
not belong to a record in the file.

Action: Edit your source code so the data-names in the CODE-SET
clause refer to a record in the file.

Data name not in the same record as first item in CODE-SET clause

Cause: You have specified data-names in the CODE-SET clause that
belong to more than one record. All data-names specified in this clause
must belong to a single record in the file.

Action: Edit your source code to delete one or more of the CODE-SET
data-names to ensure that all data-names belong to only one record.

Data name overlaps another item in CODE-SET clause

Cause: One or more of the data-names specified in the CODE-SET
clause is redefined, or you may have specified the whole record rather
than individual data-names contained in that record.

Action: Edit your source code so that the data names within the record
are specified only once.

Variable size table not last in group or subsidiary to OCCURS

Cause: OCCURS DEPENDING ON item must be the last item in a
group.

Action: Revise your code to make the OCCURS DEPENDING ON
item last in the group.

Variable length delimiter not allowed

Cause: You cannot use a reference modified item or a group containing
an OCCURS ... DEPENDING ON clause in this context.

Action: Change the indicated item to reference a fixed-length object and
recompile.

Description of operand does not contain the INDEXED BY clause

Cause: A SEARCH is not possible because the description of the
operand does not contain the INDEXED BY clause.

Action: Add the INDEXED BY clause to enable the SEARCH action.

Exception phrase inappropriate

Cause: The specified exception is not appropriate with this statement in
the specified access mode. For example, an AT END has been specified
with random access, or INVALID KEY with sequential access.

Action: Correct your code to use the correct exception syntax for the
access mode you are using.

OPEN EXTEND on file with LINAGE clause

Cause: OPEN EXTEND is not allowed on a file defined with a
LINAGE clause.

Action: Remove the LINAGE clause specification, or OPEN the file in
another mode.

Chapter 15. Error Messages 15-39

Compiler Error Messages

370-S

384-S

Operand must be a table

Cause: The operand used in this context can only be a table.

Action: Change your code to reference a table here.

NEXT SENTENCE does not follow IF, ELSE, or SEARCH WHEN

Cause: The NEXT SENTENCE syntax has been used incorrectly, or an
IF or ELSE statement is missing.

Action: Refer to the Language Reference to correct your syntax.

Compiler Error Messages
001-E Character other than *, D, /, -, $,or£ found in col 7. Blank assumed.

002-E

003-E

004-E

005-E

006-E

007-E

008-E

You may have mistyped one of the characters allowed in column 7. The
compiler cannot interpret the character in column 7 and has treated it as
a space.

Continuation character invalid at this point. Blank assumed.

You have placed a hyphen in column 7, though the compiler is not
expecting the syntax to be continued at this point. The continuation
character is ignored.

First character of a continued literal not a quote. Quote assumed.

You have included a continuation character in column 7, but have for
gotten to start the continuation of the literal with a quote. The compiler
assumes that the quote is included.

Continuation character expected. End of literal assumed.

The literal in the previous line of source code is not delimited by quotes,
so the compiler is expecting a continuation character in column 7, and a
continuation of the literal. The compiler has assumed that you meant to
end the literal on the previous line.

Name ends in hyphen. Processed as written.

You have used a hyphen as the last character in a user-defined name,
which is against the rules of COBOL syntax. The compiler has accepted
this as a valid name, however, and has not changed the name in any way.

COBOL word contains more than 30 characters. Word truncated.

The name you have specified is longer than 30 characters. The compiler
treats this as a name consisting of the first 30 characters of the original
name.

VALUE literal too large. Literal truncated.

The literal you have specified in the VALUE clause is too long to fit into
the data item. The compiler inserts characters from the literal into the
data item, until the data item is full.

DBCS literal needs an even number of characters. Literal truncated.

All DBCS (Double Byte Character Set) symbols are two bytes long. You
have specified a literal that consists of an odd number of characters. The
AIX VS COBOL system ignores the last, single character of the literal.

15-40 User's Guide for IBM AIX VS COBOL Compiler/6000

009-E

010-E

011-E

012-E

013-E

014-E

015-E

016-E

017-E

Compiler Error Messages

Closing delimiter for DBCS literal not found. Delimiter assumed.

You have not included the quote to show the end of the DBCS (Double
Byte Character Set) literal. The AIX VS COBOL system has assumed
that you intended to end the literal at this point.

Nonnumeric literal has length of zero. One SP ACE assumed.

You have defined an alphabetic or alphanumeric literal in your source
code that is empty; that is, you have a pair of quotes with no character
between them. The compiler has assumed that the literal contains one
space character.

DBCS literal length zero. Length of one DBCS character assumed.

You have defined a DBCS (Double Byte Character Set) literal in your
source code which is empty, that is, you have a pair of quotes with no
DBCS character between them. The AIX VS COBOL system has
assumed that the literal is two characters long, and that it has a value of
spaces.

DIVISION missing or misspelled. DIVISION assumed.

You have omitted the word DIVISION from a division header, or you
have spelled it incorrectly. The compiler has assumed that DIVISION
was intended.

SECTION missing or misspelled. SECTION assumed.

You have omitted the word SECTION from a section header, or you
have spelled it incorrectly. The compiler has assumed that SECTION
was intended.

Period missing. Period assumed.

You have omitted a period in a place where one was expected by the
rules of COBOL syntax. The compiler has assumed the period is present.

OCCURS integer-1 exceeds OCCURS integer-2. 0 assumed for integer-1.

You have included the OCCURS integer-1 TO integer-2 DEPENDING
clause in your source code, but the value given for integer-I is greater
than that for integer-2, which does not follow the rules of COBOL
syntax. The compiler has effectively changed the value of integer-I to 0.

Expected SEPARATE before CHARACTER in SIGN clause. SEP A-
RA TE assumed.

You have wrongly coded the SIGN clause because you have included the
word CHARACTER, which is not required, but you have omitted the
required word SEPARATE. The compiler has assumed that you
intended the clause to be SIGN IS LEADING (or TRAILING) SEPA
RATE CHARACTER.

REDEFINES ignored for 01 level item in FILE or COMMUNICATION
SECTION.

You have tried to REDEFINE a data-item in the FILE SECTION, but
the data-item is an 01 level item. This is not valid COBOL syntax. The
REDEFINES clause is ignored.

Chapter 15. Error Messages 15-41

Compiler Error Messages

018-E

019-E

020-E

021-E

023-E

024-E

025-E

026-E

027-E

028-E

VALUE clause not allowed here. Clause processed as comment.

You have tried to assign a value to a data item defined in the FILE
SECTION or the LINKAGE SECTION. The VALUE clause is ignored
for compilation purposes.

Unsigned numeric literal expected. Sign ignored.

You have specified a sign where one was not expected. For example,
you may have used the AFTER ADVANCING + 1 or BEFORE
ADVANCING -2 clause to the WRITE statement. The compiler has
ignored the sign, and has treated the digits as a positive value.

Unsigned numeric field. Sign in VALUE clause ignored.

You have defined a numeric data item, PIC 9, and have tried to assign a
signed number as its value. The compiler ignored the sign you have
specified. Where you are attempting to move a number with a negative
sign into a numeric field, the result will not be as expected.

Slack bytes added in conversion of COMP-6 to COMP.

You are using a program converted from RM/COBOL to AIX VS
COBOL that contains a COMP-6 numeric data item (which has been
converted to a COMP numeric data item). As a result of this conver
sion, less data space may have been allocated to the numeric data item
and, therefore, the AIX VS COBOL system adds leading binary zeros to
pad the space if required.

WORKING-STORAGE SECTION expected. Start of
WORKING-STORAGE assumed.

Your program begins with a Level 01 entry. It is assumed that this is the
first item of WORKING-STORAGE.

VALUE clause literal does not conform to PICTURE. Changed to blanks.

A numeric value has been specified for a non-numeric data item. The
data item will be filled with spaces.

Move edited field to edited field - treated as alphanumeric move.

A move from one edited field to another is treated as an alphanumeric
move.

Source literal is non-numeric - substituting zero.

A MOVE statement is trying to MOVE a non-numeric literal to a
numeric data item. This cannot be done. To avoid undefined results,
zero will be moved to the data item.

Literal is numeric - treated as non-numeric.

A numeric literal is being used in relation to a non-numeric data item;
for example, as the VALUE of a level 88 entry attached to a non
numeric data item. The literal will be converted to an alphanumeric
literal.

Statement should not reference an alphabetic data item.

A statement would cause invalid data to be contained in an alphabetic
data item. To prevent this situation change your source program to ref- ~
erence a numeric or alphanumeric data item and resubmit it to your
COBOL system.

15-42 User's Guide for IBM AIX VS COBOL Compiler/6000

029-E

030-E

031-E

032-E

033-E

034-E

Compiler Error Messages

A non-integer is being moved to an alphanumeric data item.

A MOVE statement is trying to MOVE a non-integer item to an alpha
numeric data item. This cannot be done. To avoid undefined results,
correct your source code and recompile your program.

Cannot SORT or MERGE USING or GIVING two files with SAME
AREA.

Two files specified in a SORT or MERGE statement are defined as
sharing the SAME AREA. This is invalid. Change your source code so
that the files use different AREAs and recompile your program.

SORT file appears in more than one SAME SORT(-MERGE) AREA
clause.

A SORT file has been defined in conjunction with more than one SAME
SORT (-MERGE) AREA clause. This is invalid. Change your source
code so that the files use different AREAs and recompile your program.

File-names illegally specified in same SAME RECORD AREA clause.

Two files specified in a SORT or MERGE statement are defined as
sharing the SAME AREA. This is invalid. Change your source code so
that the files use different AREAs and recompile your program.

File-names illegally specified in same SAME SORT(-MERGE) AREA
clause.

A SORT file has been defined in conjunction with more than one SAME
SORT(-MERGE) AREA clause. This is invalid. Change your source
code so that the files use different AREAs and recompile your program.

Source item is ALPHABETIC - treated as alphanumeric.

Compiler Warning Messages
101-W No COBOL statement between periods.

102-W

103-W

104-W

You have placed one period immediately following another period. This
is not against the rules of COBOL syntax, but it may indicate a fault in
your program. For example, you may have wanted to include a line of
source code here.

Blank continuation source line. Line ignored.

You have placed a hyphen in column 7, but the rest of the line contains
no other code. The next line should also contain a hyphen in column 7
to continue correctly.

Sequence number out of order or missing.

You have compiled your program with the seqchk directive on, and the
compiler is indicating an error in the sequence numbers.

77 level item in FILE SECTION processed as 01 level.

You have assigned a level of 77 to a data item in the FILE SECTION,
which is against the rules of COBOL syntax. The compiler assumes that
you had intended to code this as an 01 level item, and processes it as
such.

Chapter 15. Error Messages 15-43

Compiler Error Messages

105-W

106-W

107-W

108-W

109-W

110-W

111-W

112-W

113-W

114-W

No CORRESPONDING items were found. Statement has no effect.

The compiler found no matching data items for the CORRESPONDING
clause, so no intermediate code was produced for this statement.

ZERO value for BY operand. Statement processed as written.

You have used the BY operand to the verb PERFORM, but the value
you have specified for the increment is zero. The compiler can produce
code to execute this statement, but the value is never incremented.

Statement exceeds COMP subset.

The COMP subset code you have written could be rewritten to execute
more efficiently.

Signed numeric compared with group. Processed as alphanumeric compare.

You have written your code so that a signed numeric field is compared
with a group item. The compiler has treated the signed numeric field as
an alphanumeric field for the comparison. There are no problems with
comparing a signed numeric field to an elementary item.

WITH DEBUGGING MODE not specified. Section ignored.

Your program includes the USE FOR DEBUGGING statement in the
declarative section of your Procedure Division, but the WITH DEBUG
GING MODE clause in the SOURCE-COMPUTER paragraph is
omitted. The compiler ignores all code within this declarative section.

First literal is greater than second. Processed as written.

In the ALPHABET clause, the first literal specified has a value greater
than that of the second; for example, P THRU D. The compiler accepts
this as written; that is, the characters are processed in reverse order.

Boundary violation. Processed as written.

You have attempted to access an item beyond the end of a table. The
compiler will generate code to access the appropriate line of code beyond
the end of the table, but the result of this is undefined.

Compatibility directive forcing non-standard behavior.

When the RM option is set and an alphanumeric data item is MOVEd to
a numeric data item that is defined as larger, the compiler adds space
characters to the front of the MOVEd data item. However, under the
RM/COBOL system, leading zeros are added to the front of the alphanu
meric data item when it is MOVEd to a numeric data item that is defined
as larger.

Imperative statement missing.

Your program contains a conditional statement that has not been fol
lowed by an imperative statement. The compiler will execute the code,
but the result of this may be undefined.

Clause treated as documentary.

You have assigned more than one external file reference to a SELECT ...
ASSIGN clause. The compiler will accept the first external file reference,
but will treat all remaining external file references in that clause as docu
mentary.

15-44 User's Guide for IBM AIX VS COBOL Compiler/6000

115-W

116-W

117-W

118-W

119-W

120-W

121-W

122-W

123-W

124-W

125-W

Compiler Error Messages

SAME AREA treated as SAME RECORD AREA.

You are using a program converted from DG Interactive COBOL to
AIX VS COBOL that contains a SAME AREA clause. The compiler
has assumed that the SAME RECORD AREA clause is what was
intended.

Accept qualifier used with display-only field - qualifier ignored.

The qualifier you used with a DISPLAY-only field, or in a DISPLAY
statement, can only be used with an ACCEPT. It is ignored.

Zero suppression after floating insertion - treated as floating ins.

As an example:

PIC ++z.zz

is treated as

PIC +++.++.

Indexed-name belongs to a different table.

The index used to subscript a table item is not one used in the
INDEXED BY clause for this table. The results will be unpredictable.

Record < minimum size given in FD statement.

The definition of a record following an FD clause is smaller than the
minimum size specified in the RECORD CONTAINS phrase of that FD
clause.

Record > maximum size given in FD statement.

The definition of a record following an FD clause is larger than the
maximum size specified in the RECORD CONTAINS phrase of that FD
clause.

VALUE clause in FILE or LINKAGE SECTION. Processed as comment.

A data item in the FILE or LINKAGE SECTION cannot be given a
value. The VALUE clause specified will be ignored.

Period must be followed by a space.

In all cases, a period must be followed by a space.

Neither NAMED nor CHANGED specified. Treated as formatted
DISPLAY.

An EXHIBIT statement has been used without the NAMED or
CHANGED phrase. The resulting DISPLAY will be formatted by sepa
rating each item with a space.

CALL parameter is literal (or LENGTH OF). BY CONTENT assumed.

You are using a program converted from RM/COBOL to AIX VS
COBOL that contains a CALL. .. USING literal statement. The compiler
has assumed that CALL ... USING BY CONTENT literal is what was
meant.

Punctuation character not followed by a space. Assume space.

You have used a punctuation character that is not followed by a space.
The compiler will assume that a space is present.

Chapter 15. Error Messages 15-45

Compiler Error Messages

126-W

127-W

128-W

129-W

130-W

132-W

134-W

Punctuation character not preceded by a space. Assume space.

You have used a punctuation character that is not preceded by a space.
The compiler will assume that a space is present.

Double-Byte character(s) may be corrupted by use of this move.

This message is issued when a MOVE is done from a PIC G to a PIC X
data item, where the source is longer than the target, and the target has
an odd number of bytes. You can prevent the possible corruption by
making the PIC X data item an even number of bytes. Truncation will
still occur.

No STOP RUN, GOBACK, or EXIT PROGRAM statements found in
source.

No explicit syntax was found to terminate the execution of this code.
The end of the source file will be used as the end of code to execute.

Statement cannot be reached.

The compiler has determined that the marked statement in your source
file cannot be reached during execution due to the structure of your code
or the flow of control in it.

Prefix of filename treated as documentary.

In an external assignment-name, only that portion of the name to the
right of the right-most '-' character is treated as significant.

Unable to validate contents of DBCS literals.

AIX VS COBOL is unable to check that the contents of a DBCS literal
are valid. If the contents are invalid the results will be unpredictable.

Entry name would be changed by OS/VS COBOL and VS COBOL II.

The name you specified for an ENTRY statement would be altered if
your source program were processed by an OSVS or VSC2 compiler.

Compiler Information Messages
201-I Zero suppression PICTURE string overrides BLANK WHEN ZERO

clause

202-1 Original item is larger than redefinition

203-1 LABEL clause processed as comment

204-1 BLOCK CONTAINS clause processed as comment

205-I Previous paragraph or SECTION contains no statements

206-1 Procedure Division does not start with a SECTION

207-I Original item is smaller than redefinition

208-I USE clause omitted

209-1 COMP-5 is machine specific format. (Future occurrences not indicated)

210-1 COMP processed as DISPLAY (future occurrences not indicated)

211-1 COMP-6 processed as COMP (future occurrences not indicated)

212-1 COMP-1 processed as PIC S9(4) COMP (future occurrences not indi
cat~d)

15-46- User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Flags

Compiler Error Messages

213-I COMP-0 field exceeds S9(5), converted to USAGE DISPLAY

214-I COMP-0 processed as PIC S9(4) COMP (future occurrences not indi
cated)

215-I UNIT phrase processed as comment

216-I Literal exceeds 160 characters

217-I Procedure name same as data-name

218-1 RERUN clause processed as comment

219-I No REPLACE currently in effect

220-I COMP-4 processed as PIC S9(9) COMP (future occurrences not indi-
cated)

221-I COMP-4 field exceeds S9(10), converted to USAGE DISPLAY

222-I COMP-3 unsigned, converted to signed COMP-3

223-I BLANK WHEN ZERO clause overrides zero suppression PICTURE
string

224-1 MEMORY SIZE clause processed as comment

225-I MULTIPLE FILE TAPE clause processed as comment

226-I COMMON can only be used in nested program - processed as comment

If the compiler produces any of the flags listed below, you need take no action unless
you intend to compile and/or run your program in a different operating environ
ment. If you want to change your source code, refer to the Language Reference for
information on the various levels of COBOL.

005 User name not unique

009 '.' missing

010 Word starts or is continued in wrong area of source line

011 Reserved word missing or incorrectly used

026 Literal too long

042 Must be non-zero

055 Word COPY may not be continued when in library text

056 COPY is recursive

057 Not a report group

058 Not a report name or a report group

059 Cannot GENERATE this report name

060 Not a detail group

061 Pseudo-text incorrectly specified

094 Name is not a COBOL word

095 Literal used as COPY name

096 Lowercase used (future occurrences not flagged)

Chapter 15. Error Messages 15-47

Compiler Error Messages

097 Both single and double quotes used (future occurrences not flagged)

098 Single quotes (apostrophe) used (future occurrences not flagged)

099 Nested COPY file

100 Sequence number out of order

101 Assignment-name is data-name

102 RELATIVE KEY clause should immediately follow ACCESS clause

103 RECORD missing

104 IDENTIFICATION missing

105 PROGRAM-ID missing

106 PROGRAM-ID has illegal format

107 Second status area

108 OPTIONAL not permitted on non-sequential file

109 Paragraphs or phrases in non-standard order or repeated

110 ENVIRONMENT missing

111 CONFIGURATION missing

112 SOURCE-COMPUTER missing

114 OBJECT-COMPUTER missing

123 1-0 CONTROL missing

124 INPUT-OUTPUT missing

125 FILE-CONTROL missing

134 FILE SECTION missing

135 DATA DIVISION missing

200 Empty paragraph

202 Too many levels of OCCURS

204 REDEFINES on incorrect field

211 PICTURE clause not compatible with qualifiers

213 Item is longer than this USAGE allows

215 Value in error or illegal for PICTURE type

220 Literal type does not match data type

225 Level hierarchy wrong

230 PICTURE string has illegal precedence or illegal character

235 Record < minimum size given in FD statement

236 Record > maximum size given in FD statement

246 KEY missing or illegal

253 LABEL RECORD or DATA RECORD missing or illegal

265 Not allowed with this type

15-48 User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Error Messages

270 COLUMN specification overlapping or not left to right

280 THRU phrase not allowed with DBCS field (DBCS is Double Byte Char-
acter Set)

281 Illegal use of DBCS field (DBCS is Double Byte Character Set)

285 First LINE NUMBER clause in PAGE FOOTING group is relative

286 Not specified in CONTROL clause of RD

287 Data record specified for Report file

288 SYNC with USAGE IS INDEX

289 SYNC at group level

290 Index key not alphanumeric

291 Group FILLER

292 SIGN different from that at group level

293 REDEFINES of smaller item

294 REDEFINES of larger item

295 VALUE clause in FILE or LINKAGE SECTION, processed as comment

296 BLANK WHEN ZERO with zero suppression

297 OCCURS ... DEPENDING clause without "integer TO". "1 TO"
assumed

298 OCCURS at level 01 or 77

299 FILLER omitted

300 LABEL RECORDS clause omitted

303 Operand has wrong data-type

315 Invalid conditional expression

328 Not allowed with OPTIONAL file

343 Should be declared in LINKAGE SECTION

344 Should be level 01 or 77

354 Multiple receiving fields in MOVE CORRESPONDING

361 Operation exceeds COMP subset

365 Variable size table not last in group-item

378 More than seven AFTER phrases

379 Non-DISPLAY numeric data cannot be compared with alphanumeric literal

380 Parameter count in CALL different from that in PROCEDURE DIVI-
SION header

381 TALLYING option has ALL etc. distributed over multiple identifiers

382 Only one Procedure-name in GO TO ... DEPENDING

383 Missing ALSO

385 Order of initialization changed

386 No SECTION or paragraph at start of PROCEDURE DIVISION

Chapter 15. Error Messages 15-49

Compiler Error Messages

387 AFTER and BEFORE options used together

388 Key is right-hand side of condition

389 EXIT or EXIT PROGRAM not in separate paragraph

390 OPEN EXTEND on non-sequential file

391 MF format ACCEPT /DISPLAY

392 More than two AFTER phrases

393 In-line PERFORM

394 No SECTION header after END DECLARATIVES

395 FROM literal

396 No suitable conditional phrase and no applicable declarative

397 No preceding SECTION

398 Offset only allowed with index-names

399 Index-name belongs to different table

400 Cannot use index data item as subscript

401 Limit exceeded - number of source statements

402 Limit exceeded - number of files > 25

404 Limit exceeded - number of pairs of REPLACING operands > 150

406 Limit exceeded - length of file/copy/library name

409 Limit exceeded - number of SELECT file names > 25

410 Limit exceeded - number of SAME RECORD AREA clauses

411 Limit exceeded - number of MULTIPLE FILE filenames

412 Limit exceeded - number of ALTERNATE RECORD KEY clauses in a
file > 63

413 Limit exceeded - length of RECORD KEY > 120 characters

414 Limit exceeded - length of DATA DIVISION

415 Limit exceeded - length of data SECTION

419 Limit exceeded - BLOCK size> 32759 characters

420 Limit exceeded - RECORD length> 32759 characters

421 Limit exceeded - number of FD/SD filenames > 25

424 Limit exceeded - number of 01 & 77 in LINKAGE SECTION

425 Limit exceeded - length of FILE SECTION group item

426 Limit exceeded - length of group item exceeds 32768

427 Limit exceeded - length of data item exceeds 32767 characters

428 Limit exceeded - length of numeric edited item > 30

430 Limit exceeded - total length of VALUE literals

431 Limit exceeded - length of PICTURE string > 30 characters

432 Limit exceeded - length of PICTURE replication > 32768 characters

15-50 User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Error Messages

433 Limit exceeded - length of sort record > 32767 characters

434 Limit exceeded - length of table > 32767 characters

436 Limit exceeded - number of ASC/DESC KEY clauses > 12

437 Limit exceeded at data-name - length of ASC/DESC KEYs > 256 char
acters

438 Limit exceeded - number of INDEXED BY clauses > 12

440 Limit exceeded - number of paragraph labels

441 Limit exceeded - number of PERFORMs

443 Limit exceeded - number of GO TO DEPENDING ON names > 255

444 Limit exceeded - number of IF nesting levels > 30

445 Limit exceeded - number of CALL parameters > 30

446 Limit exceeded - number of SORT /MERGE input files > 8

447 Limit exceeded - number of SORT /MERGE keys > 12

448 Limit exceeded - number of conditions in a SEARCH ALL > 12

449 Limit exceeded - number of UNSTRING delimiters > 30

450 Limit exceeded - number of identifiers in INSPECT/
TALLYING/REPLACING > 15

451 Limit exceeded - length of SORT /MERGE keys > 256 characters

501 Feature is part of an optional module

502 This entire section is part of an optional module

503 USAGE COMP used at other than 01 level

504 ORGANIZATION clause in SELECT statement of sort file

505 VALUE O:F clause in SD or CD

506 REDEFINES does not immediately follow data-name

507 Numeric literal VALUE on edited item

508 NEXT used in READ of sequential file

509 SET operation on non-index data item

510 ZEROS or ZEROES in BLANK WHEN clause. Treated as ZERO

511 FILE STATUS is not alphanumeric

512 data-name is qualified

513 Flag refers to entire section

514 "CHANGED" and/or '~NAMED" missing

515 Phrases repeated

516 Only 1 file specified in SAME AREA clause

517 Jump out ofinline PERFORM

518 > or < followed by THAN, or = followed by TO

519 More than 5 levels of qualification

Chapter 15. Error Messages 15-51

Compiler Error Messages

520 "INVALID KEY" phrase used with sequential file

521 USING literal/LENGTH OF identifier (BY CONTENT implied)

522 BY CONTENT literal/LENGTH OF identifier

523 DECLARATIVE SECTION without USE statement

524 ALPHABET IS ASCII

525 EOP or END-OF-PAGE used on file that has no LINAGE

526 Phrases are not in the correct order

527 REDEFINES at 01 in FILE SECTION

528 Data-name in ASC/DESC key is not uniquely identified

529 Clause treated as documentary

530 Data item used as index file key is not alphanumeric

531 Too many subscripts

532 INTO data-name is group item

533 START ... LESS/NOT GREATER THAN ..•

534 Entry treated as documentary

535 ALPHABET IS EBCDIC

536 CICS facility not supported

537 BASIS mechanism not supported

538 PICTURE string is continued

539 This item is obsolete in 1985 standard

540 Source field is edited

541 Comparison between edited field and COMP field

542 VALUE clause on group COMP

543 VALUE clause on variable-length group

544 VALUE clause with OCCURS or subsidiary to group OCCURS

545 ALTERNATE RECORD KEY is not in SAA

546 PICTURE symbol P not allowed in RELATIVE KEY

547 END-IF used with NEXT SENTENCE

548 Program is nested

549 USING identifier must not be a redefinition

550 Pseudo-text consists entirely of a separator comma or semicolon

551 Second status field does not comply with VSC2 specifications

552 Comment lines precede IDENTIFICATION DIVISION

553 Syntax is non-conforming standard ANS85

The language element is part of the ANSI 85 standard but· above the flag
ging level selected.

15-52 User's Guide for IBM AIX VS COBOL Compiler/6000

Compiler Error Messages

554 Syntax is non-conforming non-standard ANS85

The language element is not part of the ANSI 85 standard. It is an OSVS,
VSC2, MF, and so on, extension.

555 Syntax is marked as obsolete in the ANS85 standard

The ANSI standard has defined this language element as obsolete. It will
be removed from the next ANSI standard.

556 Multiple program source

The source file contains more than one source program. In this situation
there is more than one separate, not nested, program.

557 Multiple GIVING files

A SORT or MERGE statement contains multiple files in the GIVING
clause.

558 Comparison between index-name and arithmetic expression

559 Statement cannot be reached

560 Alphabet declared without ALPHABET keyword

561 A "NOT" phrase did not .have a matching verb and was discarded.

562 An "ELSE" phrase did not have a matching IF and was discarded.

563 A "WHEN" phrase did not have a matching verb and was discarded.

564 A scope-delimiter did not have a matching verb and was discarded.

565 RECORDING MODE used with INDEXED or RELATIVE file

566 Floating point not supported

567 USAGE DISPLAY-1 missing.

568 Sign condition in EVALUATE statement.

569 Data-item does not have fixed location.

570 Insufficient space in area B for SO /SI insertion.

571 1103 Mixed literal is continued.

572 INITIALIZE operand does not have fixed location.

573 More than one REPLACING phrase.

574 Conditional statement not terminated by its scope-delimiter.

583 EXIT PROGRAM within GLOBAL declarative.

Chapter 15. Error Messages 15-53

Errors Encountered During Code Generation
Error messages are output when you are compiling intermediate code (code
produced by the compiler) into generated code and one of the following situations
occur. After issuing any of these messages, the generation of native code stops.

Native Code Generator Messages
002 Open failure on intermediate code file

Cause: The specified intermediate code file is unavailable. This error
may occur because you have specified the intermediate code filename
incorrectly.

Action: Ensure that you have specified the intermediate code filename
correctly. Resubmit your program to the AIX VS COBOL system to
produce generated code.

003 Open failure on generated code file

Cause: The output file cannot be opened; the disk or directory may be
full, or a read-only generated code file with the same name may already
exist.

Action: If your disk or directory is full, you must delete any files you no
longer need. If a read-only generated code file with the same name
already exists, you must delete this file and resubmit your program to the
AIX VS COBOL system to produce generated code.

004 Open failure on list file

Cause: The output file cannot be opened; the disk or directory may be
full, or a read-only list file with the same name may already exist.

Action: If your disk or directory is full, you must delete any files you no
longer need. If a read-only list file with the same name already exists,
you must delete this file and resubmit your program to the AIX VS
COBOL system to produce generated code.

006 Input file not intermediate code or wrong version

Cause: You may receive this error for any of the following:

• The input file you have specified is not an intermediate code file

• The intermediate code file you are using was produced under a
version of the AIX VS COBOL system that is not compatible with
the current version of the system which you are attempting to gen
erate code

• Your input file is corrupt.

Action: If your input file is not an intermediate code file, you must
ensure that an intermediate code file is specified. If your intermediate
code file was produced under a previous version of the AIX VS COBOL
system which is not compatible with your current version, or your input
file is corrupt, you must resubmit your source code to the AIX VS
COBOL system.

15-54 User's Guide for IBM AIX VS COBOL Compiler/6000

007 Write failure on generated code file

Cause: An error occurred while wiiting the output file; the disk or direc
tory may be full.

Action: If your disk or directory is full, you must delete any files you no
longer need.

008 Write failure on list file

Cause: An error occurred while writing the list file; the disk or directory
may be full.

Action: If your disk or directory is full, you must delete any files you no
longer need.

010 Read failure on generated code file

Cause: The output file was successfully created but cannot be read. The
AIX VS COBOL system must read this file to complete the code gener
ation process.

Action: You must re-create the output file by restarting the production
of the generated code.

012 Dynamic paging error

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

013 Illegal intermediate code (at nnnnnn in seg mm)

Cause: You are attempting to create generated code from intermediate
code that has been corrupted in some way.

Action: Recompile your source code to try to obtain valid intermediate
code. If the same error occurs, follow your local procedures for
reporting software problems.

Note: nnnnnn is an intermediate address; mm is an intermediate code
segment number.

014 Too many IF levels

Cause: The IF statements are nested too deeply in your COBOL
program.

Action: You will have to recode your source program to ensure that you
do not have a nest of more than 64 conditions.

018 n2 stack overflow - max size 10

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

019 Invalid condition code for branch

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

Chapter 15. Error Messages 15-55

020 cpst table overflow

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

037 Generated Code Module too large

Cause: You have attempted to generate a program that is too large for
the Native Code Generator to handle.

Action: This should not occur for this compiler. Follow your local pro
cedures for reporting software problems.

038 Unprocessed transient code (Code nnnnnnnn)

Cause: Either you are attempting to create generated code from a
corrupt intermediate code file, or there is an internal error in the Native
Code Generator.

Action: Recompile your source code, and try to create generated code
again. If the same error occurs, follow your local procedures for
reporting software problems.

Note: nnnnnnnn is an intermediate code address.

039 Errors detected during creation of intermediate code

Cause: You have tried to generate native code from intermediate code
that produced severe faults at compile time.

Action: Correct all of the severe faults in your source code, then recom
pile the code. Only when the code is compiled with no severe faults can
you successfully generate native code from it.

040 NCG Error. Bad PROGRAM-ID or Entry name: xxxxxxxx

Cause: The name you have specified in the PROGRAM-ID clause or in
the ENTRY USING phrase cannot be correctly handled by your system
assembler.

Action: Edit your source code to ensure that the name you specify com
plies with the rules for a valid function name. Then recompile your
program.

Note: xxxxxxxx is a PROGRAM-ID or Entry name.

041 Bad optimiser table code

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

042 Optimiser stack overflow

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

15-56 User's Guide for IBM AIX VS COBOL Compiler/6000

043 Optimiser buffer overflow

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

044 Optimiser temp overflow

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

045 Optimiser hold overflow

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

046 Instruction disassembly failure

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

047 Action routine failure

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

048 E4 sequence error

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

049 Expected Symbol Not Found (Key nnnnnnnn)

Cause: A directory (dynamic memory) search has failed to find an item
that should be present.

Action: Follow your local procedures for reporting software problems.

Note: nnnnnnnn is an intermediate address.

050 Pass 2 address mismatch

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

053 Object module creation failure

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

Chapter 15. Error Messages 15-57

058 NCG Error: Error opening object file in function-name

Cause: There has been an error in opening the object file when initial
izing the native code object module.

Action: Follow your local procedures for reporting software problems.

059 NCG Error: Write to object file failed; out of space? Functionfunction
name

Cause: An error occurred while writing some information to the native
code object module. The error may have occurred if there is no more
space in the filesystem.

Action: If there is no space for the file to be written, you must clear
some space or enlarge the filesystem. If that does not seem to be the
problem, follow your local procedures for reporting software problems.

060 NCG Error: Memory allocation failed in function-name

Cause: The compiler tried to allocate more space for the native code
object module, and the allocation failed.

Action: Follow your local procedures for reporting software problems.

061 NCG Error: Memory reallocation failed in function-name

Cause: The compiler tried to reallocate space for the native code object
module, and the reallocation failed.

Action: Follow your local procedures for reporting software problems.

062 NCG Error: Error accessing Animator (.idy) file in function-name

Cause: The compilation is attempting to provide debugging information
by reading and processing the .idy file. There has been an error in
opening or reading that .idy file.

Action: Make sure that an .idy file exists. For example, if you compiled
using cob -i and then tried to complete the compilation using cob -gx,
then only an .int file will exist from the first cob processing, and there
will be no .idy file for the cob -g to use.

If the .idy file does exist, you may be able to get around the problem by
not requesting debugging as a compilation option (that is, omit the -g
option on the cob command.) To solve the problem, however, follow
your local procedures for reporting software problems.

063 NCG Error: CDI routine error injunction-name

Cause: There has been an error detected in one of the Symbolic Debug
ging Interface routines. These routines are used to read the .idy file in
order to create debugging information in the native object code modules.

Action: You may be able to get around the problem by not requesting
debugging as a compilation option (that is, omit the -g option on the cob
command). To solve the problem, however, follow your local procedures
for reporting software problems.

15-58 User's Guide for IBM AIX VS COBOL Compiler/6000

064 NCG Error: Duplicate relocation address in function-name

Cause: An error has occurred in the generation of the native object code
module.

Action: Follow your local procedures for reporting software problems.

065 NCG Error: CDI call failed - Is the '.idy' file current? Function function
name

Cause: There has been an error detected in one of the Symbolic Debug
ging Interface routines. These routines are used to read the .idy file in
order to create debugging information in the native object code modules.
The .int code file and the .idy file must have been produced by the same
compilation. Otherwise, they may be mismatched.

Action: Recompile the COBOL source with the -g option to make sure
that the .idy and the .int files are produced together and are therefore a
matched set.

If that does not solve the problem, you may be able to get around the
problem by not requesting debugging as a compilation option (that is,
omit the -g option on the cob command). To solve the problem,
however, follow your local procedures for reporting software problems.

066 NCG Error: Invalid object file name in function-name

Cause: An error has occurred while processing the name to be used for
the native object code file.

Action: Follow your local procedures for reporting software problems.

067 Error number: Index into raw wrong for format format-code.
Value is number should be number
First 3 elements of raw are: data data data

Cause: There is a compiler error in generating native object code. The
number of operands provided for this native code instruction is not
appropriate for this instruction format.

Action: Follow your local procedures for reporting software problems.

068 Error number: Unknown format in object code instruction processing.
Format is format

Cause: This is a compiler error in generating native object code. The
instruction format indicated for this object code instruction is unknown.

Action: Follow your local procedures for reporting software problems.

069 NCG Error: Error opening assembler file in function-name

Cause: An error has occurred while processing the name to be used for
the assembler source file.

Action: Follow your local procedures for reporting software problems.

086 File open failure

Cause: Indicates that the intermediate code file cannot be opened for
some reason.

Action: Check that you have specified the file name correctly.

Chapter 15. Error Messages 15-59

087 File 1-0 error

Cause: Indicates an error while reading the intermediate code file.

Action: This may be due to a fixed-disk fault, otherwise follow your
local procedure for reporting software problems.

088 Internal error

Cause: Indicates an internal error while executing the Native Code Gen
erator.

Action: Follow your local procedure for reporting software problems.

Run Time Environment Errors

Types of Errors

Recoverable Errors

Errors reported by the Run Time Environment (RTE) may occur when you are
running the compiler, ANIMATOR, the Native Code Generator, or one of your
own COBOL programs.

An RTE error is returned on a program that is syntactically correct and occurs when
problems are encountered during the actual running of the code. You could receive
such an error if you attempt to access a file in the wrong mode, or if you use a
corrupt file. RTE errors are thus environment dependent, and their handling is very
much dependent upon the situation in which they occur.

There are two types of run-time errors:

• Recoverable errors are reported by the operating system so that you can trap
them and take steps to recover from them if at all possible.

• Fatal errors are not reported and so cannot be trapped.

Recoverable errors can be caught by your program, but the responsibility to take
action when one of these errors is received is yours.

File Operation Errors: When an RTE error occurs during a file operation, one of
the following occurs:

• If you did not specify a STATUS clause for the file on which the error occurred,
the error is treated as though it were a fatal one. That is, the program termi
nates immediately with the RTE displaying its message on the console.

• If you specified a STATUS clause for the relevant file, the value 9 (which indi
cates that an operating system error message has been received) is placed into
status key 1, and the operating system or RTE error number is placed into status
key 2. You must examine status key 1 after each file operation to ensure that
the operation has been carried out successfully. A value other than 0 in status
key 1 indicates an error condition of some type. If an error condition is
reported, the action that your program then takes is entirely your responsibility.
If you do not include the STATUS clause and fail to check the condition of the
STATUS byte after each file operation, and an error is reported, the program
will not necessarily terminate, but its action will almost certainly not be that
which you expect.

15-60 User's Guide for IBM AIX VS COBOL Compiler/6000

Fatal Errors

Having received a file error, you may choose to handle it in any way you like. You
may want your program to display its own general error message before closing any
open files (if this is possible) and then terminating. This should enable you to save
any data which you have already written to the files. This data could be lost if you
do not trap the error. Should you wish to recover from an error and continue the
program run, you can code your program in such a way as to take certain actions
should a particular error be reported. For example, if you receive a "File not found
error", your program could prompt you to insert a diskette containing the required
file into a specified drive. Hints on how to recover from specific errors are given
later, but you will be able to follow these hints only if you have coded your program
in such a way as to be able to take advantage of them. In some cases, you may need
to recode your program.

The following four points suggest ways in which you may wish to code your
program to handle the possible occurrence of recoverable errors:

• Use AT END (which checks for a value of 1 in status key 1), or INVALID
KEY (which checks for a value of 2 in status key 1) where appropriate. You do
not need to declare STATUS items in this case.

• Use declaratives that check that status key 1 is not equal to 0 (that is, the opera
tion was not completed successfully) for all file operations that have no AT
END or INVALID KEY clauses. You will need to declare STATUS items in
this case.

• Declare STATUS items and either check for a value of 9 in status key 1, which
indicates an RTE error, or check that status key 1 is not equal to 0, which shows
that the file operation has not been successfully completed. You should explic
itly check the STATUS byte after each file operation.

• Do not use the STATUS clause or AT END or INVALID. The RTE will ter
minate immediately if a file error is received. In this situation all error messages
are treated as though they were fatal and the relevant RTE error message is
output to the console. Your program will terminate immediately.

Fatal errors output an error message to the console; once this error message has
been displayed, your program terminates immediately.

Although you will not be able to recover from such an error during the run of your
program, once it has terminated you may be able to take steps to rectify the condi
tions that caused the error to occur. The list of Run Time Environment errors given
later in this section indicates how this may be achieved for individual errors. There
are two types of fatal errors: exceptions, and input-output errors.

Exceptions: These errors cover conditions such as arithmetic overflow, too many
levels of PERFORM nesting, subscript out of range, and similar errors.

Input-Output Errors: These are recoverable errors occurring on files that have no
STATUS items set.

Chapter 15. Error Messages 15-61

Run-Time Error Messages

Run Time Environment Error Messages
The following is a complete list of RTE error messages. Each error is followed by
an explanation of the most likely cause of that error and, where possible, by hints on
how you can recover. You should be able to eliminate the cause of fatal errors if
you follow the recovery hints once the program has terminated. Sometimes this will
mean you will have to recode your program. For recoverable errors, although
recovery hints are given, your actual handling of the error will depend upon the
coding of each individual program.

All of the following assume that there are FILE STATUS items set for each file. If
these are not set, all errors are treated as though they were fatal. Following is a list
of RTE messages marked as fatal or recoverable. Those shown as fatal cannot be
trapped; those shown as recoverable can be trapped if your program includes FILE
STATUS items.

001 Insufficient buffer space (recoverable)

Cause: You have tried to OPEN a file and, while you have not exceeded
your system's file limit, something within your system is unable to allo
cate sufficient memory space for this operation to be carried out success
fully.

Action: Although you can trap this error you must issue a STOP RUN
as soon as it is reported.

002 File not open when access attempted (recoverable)

Cause: You have tried to access a file without OPENing it first.

Action: OPEN the file with the open mode that you require and try the
file operation again. Since this error implies that there is an error in
your program's logic, you may decide to terminate the run and recode
your program.

003 Serial mode error (recoverable)

Cause: The program that you are trying to execute is a device, not a
program.

Action: OPEN the device in the correct mode, or CLOSE any files which
you have OPEN, issue a STOP RUN, and recode your program.

004 Illegal file name (recoverable)

Cause: A file name that you have supplied contains an illegal character.
This could be any character that is not part. of the permitted character
set, or a system-dependent delimiter.

Action: Attempt the file operation again, ensuring that you use the
correct file name.

005 Illegal device specification (recoverable)

Cause: Devices to which your COBOL program can WRITE are defined
by the operating system. You have attempted to access a device that is
not defined by your system.

Action: Attempt the operation agairi using a device name that your
system recognizes.

15-62 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

006 Attempt to WRITE to a file opened for INPUT (recoverable)

Cause: You have tried to WRITE to a file that is opened for INPUT
only.

Action: CLOSE the file and reOPEN it with a mode such as I-0, which
will allow you to WRITE to the file. Since this error implies that your
program contains a mistake in its logic, you may want to CLOSE any
OPEN file(s) and issue a STOP RUN. Recode your program to elimi
nate the logic error.

007 Disk space exhausted (fatal)

Cause: There is no room available on your current disk for file oper
ations. This error can be trapped, but once it has been reported you
must issue a STOP RUN immediately to terminate your program's run.

Action: When your program has terminated, delete any files that you no
longer need on your current disk, or insert a new disk in one of your disk
drives and redirect your program's file operations to this disk.

008 Attempt to READ from a file opened for OUTPUT (recoverable)

Cause: You have attempted to READ from a file that you opened for
OUTPUT only. This violates one of the general rules of COBOL pro
gramming.

Action: CLOSE and re-OPEN the file with a mode that permits you to
carry out input operations such as 1-0. You should then be able to carry
out the READ successfully, although this error suggests that your ·
program contains an error in its logic, so you may want to CLOSE all of
the OPEN files and issue a STOP RUN. You can then recode your
program to eliminate the logic error.

009 No room in directory (recoverable)

Cause: There is no room available for further file operations in the
directory that you have specified, or the specified directory cannot be
found by your program.

Action: Insert a new diskette and redirect your program's output to this.
Alternatively, you could specify a different directory for your file oper
ations.

012 Attempt to open a file which is already open (recoverable)

Cause: You have tried to OPEN a file that is already OPEN and so
cannot be OPENed again.

Action: Cancel your second attempt to OPEN the file. If the fact that
the file is already OPEN is acceptable to you, continue to run your
program.

013 File not found (recoverable)

Cause: The operating system has been unable to find a file that you have
attempted to access in your program.

Action: Insert the correct diskette (the one that contains the required
file), provided that no files are currently OPEN on the present diskette.
If the error is the result of a spelling mistake, then ask for the correct
file. Alternatively, the file could be on a different directory.

Chapter 15. Error Messages 15-63

Run-Time Error Messages

014 Too many files open simultaneously (recoverable)

Cause: You have exceeded the maximum number of files that can be
OPEN at any one time. You must not violate this restraint.

Action: CLOSE some of the OPEN files that you are not currently
accessing, and then try to OPEN the relevant file again.

015 Too many indexed files open (recoverable)

Cause: You have tried to exceed the maximum number of ISAM files
that can be OPEN at any one time. You must not violate this restraint.

Action: CLOSE some of the OPEN ISAM files that you are not cur
rently accessing, and then try to OPEN the relevant file again. You
should be able to continue to run your program. Note that ISAM files
count as two files; one for data and one for the index.

016 Too many device files open (recoverable)

Cause: You have tried to exceed the maximum number of device files
which you can have OPEN at any one time. You must not violate this
restraint.

Action: CLOSE some of the OPEN device files that you are not cur
rently accessing, and then try to OPEN the relevant file again.

017 Record error: probably zero length (recoverable)

Cause: You have probably tried to access a record that has had no value
moved into it.

Action: Although this error is recoverable in the sense that it can be
caught, once it has been reported you must issue a STOP RUN imme
diately, and then recode your program to ensure that the COBOL record
length is not zero.

018 Read part record error: EOF before EOR or file open in wrong mode
(recoverable)

Cause: A part record has been found at the end of a file. Consequently
your RTE treats the data file as a record, and not finding a full record,
reports this error.

Action: Ensure that the record size you give when you READ from or
WRITE to a file is consistent.

019 Rewrite error: open mode or access mode wrong (recoverable)

Cause: You are attempting to do a REWRITE to a file that has not
been opened with the correct access mode for this operation.

Action: CLOSE the file and reOPEN it in a mode such as I-0 that
allows you to do REWRITE operations on that file. Because this error
implies that there is a mistake in your code logic, you may decide to
recode your program, after CLOSEing any OPEN files and then issuing a
STOP RUN.

020 Device or resource busy (recoverable)

Cause: You have attempted to OPEN a file that is assigned to a device
or resource (for example, a line printer) that is not available at this time.

Action: You can trap the error status returned by OPEN and retry the
OPEN at regular intervals until it succeeds.

15-64 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

021 File is a directory (fatal)

Cause: You have tried to WRITE to a directory instead of to a file.

Action: You will have to recode your program so that it WRITEs to a
file and not to a directory.

022 Illegal or impossible access mode for OPEN (recoverable)

Cause: The mode in which you are attempting to OPEN a file violates
the general rule of COBOL programming for that type of file. For
example, you may have OPENed a line-sequential file in the I-0 mode.

Action: OPEN the file with a mode that is compatible with that type of
file.

023 Illegal or impossible access mode for CLOSE (recoverable)

Cause: The mode in which you are attempting to CLOSE a file is not
possible for that type of file.

Action: CLOSE the file with a new access mode that is compatible with
the type of file, or issue a STOP RUN and recode your program.

024 Disk input-output error (recoverable)

Cause: This error would be given if you do a READ after a WRITE, or
if there is a verification error or a parity error.

Action: In some circumstances this error will be fatal, but if it occurs
during a READ you can trap it and then issue a CLOSE on the file
before issuing a STOP RUN.

025 Operating system data error (fatal)

Cause: You are trying to set up terminal characteristics for a device that
is not a terminal.

Action: Recode your program.

026 Block 1-0 error (fatal)

Cause: An error occurred while you were attempting to access a disk.
This could be the result of a corrupt disk.

Action: If you have a corrupt disk, try to run your program again using
your backup copy of that disk.

027 Device not available (recoverable)

Cause: You are attempting to access a device that is not attached to
your machine or, if attached, is not online.

Action: Attach the device to your machine, and ensure that it is online.

028 No space on device (fatal)

Cause: You have attempted to do a file operation such as WRITE for
which there is not sufficient space available.

Action: You will have to delete some of the files or directories to make
enough room for file operations.

Chapter 15. Error Messages 15-65

Run-Time Error Messages

029 Attempt to delete open file (recoverable)

Cause: You have attempted to perform a DELETE FD operation on an
open file.

Action: Close the file before performing the DELETE FD operation.

030 File system is read-only (recoverable)

Cause: The file system that you are using is READ only, which effec
tively means that it is WRITE protected. You have tried to update the
information found within a file in some way. For example, you may
have tried to WRITE to a file or to DELETE information found within
it. Since the file system you are using is READ only, you can only
READ the contents of its files; you cannot alter them in any way.

Action: Abandon your attempt to alter the information within the file
unless you can take another copy of that file. In this case you should be
able to alter the contents of your copy, but not of the original source.

031 Not owner of file (recoverable)

Cause: You are attempting to do an operation on a file, but the file's
owner has not given you the necessary permission for that operation.
You could, for example, be attempting to alter the access mode for a file,
which only the file's owner can do.

Action: Abandon your attempted file operation or have the file's owner
alter the file's permission attributes to allow you to perform the intended
operation.

032 Too many indexed files, or no such process (recoverable)

Cause: You have tried to OPEN an indexed file, but the number that
you currently have open is the system limit. Alternatively, you could be
trying to use a process ID that does not exist, or which the operating
system does not recognize.

Action: CLOSE some of the indexed files that you are no longer
accessing. You should then be able to OPEN the file you require.

If you are trying to use a nonexistent process ID, rewrite your code so it
uses a valid process ID.

033 Physical 1-0 error (fatal)

Cause: You have a hardware error of some kind. Perhaps you have
failed to place a disk in the relevant drive, or you may have tried to
WRITE to a disk but the hardware interface has failed.

Action: You will have to try to correct the fault. For example, try
placing a disk in the necessary drive.

034 Incorrect mode or file descriptor (recoverable)

Cause: You are either trying to WRITE to a file that is open for READ
purposes only, or READ to a file that is open for WRITE purposes only.

Action: CLOSE the file and reopen using the correct access mode.
Because this error implies that there is a mistake in the logic of your
program, you may want to CLOSE any OPEN files, issue a STOP RUN,
and then recode your program to eliminate the logic error.

15-66 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

035 Attempt to access a file with incorrect permission (recoverable)

Cause: You are attempting to do a file operation that you do not have
sufficient permission to achieve. For example, you could be trying to
WRITE data to a file that has been set up with READ permission only.

Action: If you are the owner of the file, you can alter the attributes of
the file so you have the permission needed to effect the particular file
operation. If you are not the owner of the file, you cannot carry out that
operation successfully unless you copy the file and make the changes to
the copy only. You cannot alter the original source file.

036 File already exists (recoverable)

Cause: You are attempting an inappropriate operation on an already
existing file.

Action: This error implies a fault in your program's logic. You may
want to recode your program to eliminate this.

037 File access denied (fatal)

Cause: Your attempt to access a file has been denied by the operating
system. You may have tried to WRITE to a WRITE protected file, or
you could have attempted to READ from an OUTPUT device.

Action: Alter the access permission on the relevant file. Access can be
READ only if you just want to read the contents of the file without
making any changes, or it can be READ and WRITE, in which case you
can alter its contents.

038 Disk not compatible (fatal)

Cause: You have tried to load a disk that is incompatible with the
current version of your operating system. This could be because it was
created under a completely different operating system. You would also
receive this error if you tried to load a disk with the same name as a disk
that was already loaded.

Action: If the error is a result of duplicate disk names, you can rename
one of the disks. Then you can load both disks together.

039 File not compatible (fatal)

Cause: You are trying to load a file that is not compatible with the
structure of AIX VS COBOL files. This could be because the file was
created under a different operating system or under a different COBOL
product.

Action: Create a new copy of the file that has the correct structure.

040 Language initialization not set up correctly (fatal)

Cause: You have attempted to use the additional language variants at
run time, but the environment or side file that is required to set up the
language has not been set up correctly, does not exist, or is invalid.

Action: Set up the required environment or side file.

Chapter 15. Error Messages 15-67

Run-Time Error Messages

041 Corrupt indexed file (recoverable)

Cause: Your Run Time Environment does not recognize the control
information for an indexed file. Since the index has been corrupted in
some way, the data in the file is no longer accessible by your system.
This error is recoverable in the sense that it can be trapped, but should
you receive it, there is little you can do except to CLOSE any OPEN files
and STOP your program's RUN.

Action: Rerun your program using the backup copy of that file. If you
have added a great deal of information to the file since you last made a
backup, you may want to rebuild the file using a utility that is capable of
reading the data (if this has not been corrupted) and build a new index
for it (bcheck).

042 Attempt to write on broken pipe (recoverable)

Cause: Your program has created a process as a result of a dd_xxx
logical file name mapping assignment (for example, the process may be a
line printer spooler). The process was not created properly, or has died
prematurely. This error occurs when your program attempts to write to
the process.

Action: You can trap the error status returned by the write operation,
then open the file again.

043 File information missing for indexed file (fatal)

Cause: You normally receive this message if the system crashed on the
program's previous run while the file was OPEN. Information was prob
ably added to the end of the file, but the directory information was not
updated and so that data cannot be accessed by your system. You can
also receive this message if you copied the ISAM file from one disk to
another but only copied either the data part of the file or the index.

Action: If the error is the result of a crash, whether you can access the
necessary data or not is entirely dependent on the state of the system at
the time of the crash. However, if it is the result of a faulty copy, you
should be able to restore the missing part of the file from the .dat or .idx
file.

044 Attempt to OPEN an NLS file in a non-NLS program

Cause: You have attempted to open a file created as an NLS file from a
program that was not compiled with the NLS option.

Action: You must either not access NLS files from this program, or
compile it with the nls option.

045 Attempt to OPEN a file using incompatible NLS attribute

Cause: All operations on NLS files must be done using the same lan
guage selection as the one used when the NLS file was created. You are
attempting to OPEN a file using a different language setting than the one
used to ere ate it.

Action: You must create and use NLS files using the same language
selection. Change the language selection to the one used to create the file
and re-run your program.

15-68 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

047 Indexed structure overflow (fatal)

Cause: There is some fault in the structure of your ISAM file. You have
probably tried to put another entry in the index when there is no room
for it. This error could also be given if you have tried to access an old
ISAM file, perhaps created using another COBOL version.

Action: If there is no room in your index for further entries, reorganize
your file. If you have attempted to access an old ISAM file, you can run
the bcheck utility to check the consistency of this ISAM file and to con
struct a new ISAM file if the old one was found to be corrupt.

065 File locked (recoverable)

Cause: You have tried to OPEN a file that has already been locked or
opened for output by another user. Alternatively you have tried to
OPEN a file for output that another user already has open.

Action: Your program can inform the system operator that it is unable
to access this file and should wait until the other user finishes using the
file and closes it.

066 Attempt to add duplicate record key to indexed file (fatal)

Cause: You have tried to add a duplicate key for a key that you have
not defined as being able to have duplicates.

Action: This error implies that there is a fault in your program logic
which you need to correct.

067 Indexed file not open (recoverable)

Cause: You are attempting to access an indexed file that you have not
OPEN ed.

Action: OPEN the file in the relevant access mode, and then retry the
unsuccessful file operation.

068 Record locked (recoverable)

Cause: You have tried to access a record that is currently locked by
another user.

Action: Your program should display a message to the system operator
that the record is currently locked. Wait until the other user has released
the lock on that record. Then you can access the relevant record. Do
not continually retry to gain access to the record without operator inter
vention. This could result in your application hanging up.

069 Illegal argument to ISAM module (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

070 Too many indexed files open (recoverable)

Cause: You are attempting to OPEN an indexed file but you have
already exhausted the system limit that specifies how many of these files
can be OPENed at any one time.

Action: CLOSE some of the open indexed files that you are not cur
rently accessing. Then you can OPEN the indexed file that you require.

Chapter 15. Error Messages 15-69

Run-Time Error Messages

071 Bad indexed file format (fatal)

Cause: This error could be given if you are using a file that has been
corrupted. Otherwise, it is the result of an internal system error.

Action: If the file you are using is corrupt, rerun your program using
your backup copy of the file. If a corrupt file is not the cause of the
error, follow your local procedures for reporting software problems.

072 End of indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

073 No record found in indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

074 No current record in indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

075 Indexed data file name too long (fatal)

Cause: The maximum number of characters that the AIX VS COBOL
system allows a file name to have is 14. However, when using ISAM the
extension .idx is added to the end of the user-defined file name. There
fore, if your file name exceeds 10 characters in length, you will receive
this error message.

Action: Rename the file with a file name that is less than 10 characters
in length.

076 Cannot create lock file in /isam directory (fatal)

Cause: Your system is unable to create a lock file in the ISAM directory.
It could be that in a previous run your program terminated abnormally,
leaving some files locked. If you try to run a program following an
abnormal termination, you will receive this error.

Action: Manually remove from the ISAM directory all files still locked.

077 Internal ISAM module error (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

078 Illegal key description in indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

081 Key already exists in indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

15-70 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

100 Invalid file operation (fatal)

Cause: You have attempted a file operation that violates a general rule
of COBOL in some way. You may have attempted a REWRITE on a
sequential file opened I-0, or on a relative file with access mode sequen
tial also opened I-0, without preceding it with a successful READ
NEXT.

Action: Recode your program to ensure that the REWRITE statement is
preceded by a READ NEXT.

101 Illegal operation on indexed file (fatal)

Cause: This is the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

102 Sequential file with non-integral number of records (fatal)

Cause: This error could be given if you have specified an incorrect
record length for a sequential file, if the sequential file you are
attempting to access is corrupt in some way, or if the file that you have
specified is not a sequential file.

Action: Recode your program to specify the correct type of file, or if the
error is a result of a corrupt file, attempt to run the program again using
a backup copy of that file.

104 Null file name used in file operation (fatal)

Cause: You have specified a variable name for a file name instead of a
literal, so on attempting to OPEN that file, only spaces are found.

Action: Recode your program specifying the correct file name.

105 Memory allocation error (fatal)

Cause: The Run Time Environment is unable to allocate sufficient
memory space to carry out the attempted operation successfully. This
error implies that there is no memory space left on your system.

Action: You need to increase the size of the data area allowed for your
process. In the sh shell, give the "ulimit -b newsize" command. In the
csh shell, give the "limit datasize newsize" command. See the AIX Oper
ating System commands documentation for the sh and csh commands for
a description of the ulimit and limit features, and the units used for the
newsize values. If this does not solve the memory problem, you may
need to acquire more memory on your system.

106 Dictionary error (fatal)

Cause: This could be the result of a READ or WRITE error to file or
disk, but it is more likely to be the result of an internal system error.

Action: Follow your local procedures for reporting software problems.

107 Operation not implemented in this Run Time Environment (fatal)

Cause: You are attempting to do a file operation that the RTE does not
support.

Action: Recode your program so it does not attempt such operations, or
supply a user-written program to support this facility.

Chapter 15. Error Messages 15-71

Run-Time Error Messages

108 Failure to initialize Data Division (fatal)

Cause: The RTE cannot load your program correctly because the data
needed to initialize the Data Division correctly has become corrupted.

Action: Recompile your program to obtain a good piece of intermediate
code.

109 Invalid checksum in Run Time Environment (recoverable)

Cause: The internal information within the RTE has been altered. This
error may be caused by a corrupted RTE, or you may have illegally
attempted to change the internal RTE information.

Action: Follow your local procedures for reporting software problems.

116 Cannot allocate memory (CISAM) (fatal)

Cause: A part of your RTE is unable to allocate sufficient memory to
enable the execution of your code.

Action: Reduce memory usage by cancelling programs not in use, then
attempt again the operation that caused this message.

117 Bad collating sequence (CISAM) (recoverable)

Cause: This is an internal system error.

Action: Follow your local procedures for reporting software problems.

118 Symbol not found (fatal)

Cause: You are unable to load your object file. You receive this
message if you attempt to call a program that has not been specified in
the COBP ATH environment variable.

Action: Check that your COBPATH has been set up correctly. If not,
correct your COBPATH to include the program being called.

119 Symbol redefined (fatal)

Cause: You are unable to load your object file because it has an entry
point with the same name as a module already loaded.

Action: Once your program has ended, recode it to remove the naming
duplication, then recompile the code.

120 Symbol string table of zero size (fatal)

Cause: You probably have a malformed object file.

Action: Once your program has ended, correct the object file. If this
does not work, follow your local procedures for reporting software prob
lems.

121 Symbol is not in text section (fatal)

Cause: You have attempted to CALL a subprogram that is not execut
able. Alternatively, you have used the same name for a called program
as a previously defined data item.

Action: Check that the subprogram being called is executable. Correct
the subprogram's name in the CALLing program or recode it to remove
the naming duplication, then recompile the code.

15-72 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

122 Coblongjmp() called below level of cobsetjmp (fatal)

Cause: You have returned control to a higher level in the
CALL/PERFORM hierarchy than the level at which cobsetjmp was
called. coblongjmp must only be called from the same or from a lower
level in the CALL/PERFORM hierarchy, as cobsetjmp was.

Action: Check and correct the logic of your program.

123 Unknown relocation type (fatal)

Cause: You are using incompatible versions of the object file and the
COBOL Run Time Environment.

Action: Once the program has ended, recompile your object file with the
AIX VS COBOL Run Time Environment/6000.

129 Attempt to access record zero of relative file (recoverable)

Cause: The value specified in the RELATIVE KEY data item contains
the value zero.

Action: Ensure that the value in the RELATIVE KEY data item is
greater than zero.

135 File must not exist (recoverable)

Cause: You have attempted to OPEN for OUTPUT a file that already
exists.

Action: Either open the existing file for I-0, or supply a unique file
name for the file to be opened for OUTPUT. This error implies that an
error exists in your program logic. CLOSE any OPEN files, issue a
STOP RUN, and edit your code to correct the logic error.

138 File closed with lock -- cannot be opened (recoverable)

Cause: You are attempting to OPEN a file that you previously CLOSEd
with a lock. Because such an operation violates COBOL programming
rules, you are given this error message.

Action: You cannot OPEN the relevant file. This message indicates an
error in the logic of your program. CLOSE any OPEN files, issue a
STOP RUN, and correct the logic error in your code.

139 Record length or key data inconsistency (recoverable)

Cause: There is a discrepancy between the length of a record, or the keys
that you specified in your current program and their definition in the
program in which they were first OPENed.

Action: This message indicates an error in your program, so you need to
correct your code and recompile.

141 File already open -- cannot be opened (recoverable)

Cause: You have tried to OPEN a file that is already OPEN and so
cannot be OPENed again.

Action: Cancel your second attempt to open the file and continue to run
your program if it is acceptable to you that the file is OPEN. This
message implies that an error exists in your program logic. CLOSE any
OPEN files, issue a STOP RUN, and edit your code to correct the logic
error.

Chapter 15. Error Messages 15-73

Run-Time Error Messages

142 File not open -- cannot be closed (recoverable)

Cause: You have tried to CLOSE a file that is not OPEN, which is
impossible.

Action: Abandon the attempt to CLOSE the file. Do not continue to
run your program. This message implies that an error exists in your
program logic. CLOSE any OPEN files, issue a STOP RUN, and edit
your code to correct the logic error.

143 Rewrite/delete in sequential mode not preceded by successful read (recover
able)

Cause: You have violated one of the COBOL programming rules. You
failed to do a successful READ on a sequential file before attempting a
REWRITE or DELETE on some of the information contained within
that file.

Action: If the previous READ was successful, then perform a READ on
the relevant file before you retry the unsuccessful REWRITE or
DELETE operation. If the previous READ was also unsuccessful,
CLOSE the file, issue a STOP RUN, and edit your code to correct the
logic error.

146 No current record defined for sequential read (recoverable)

Cause: The file position indicator in your file is undefined due to a failed
READ/START or INVALID KEY condition. You have tried to read
another record in the file but because the current record is undefined the
system cannot find the start of the record for which you have asked.

Action: Attempt a START operation, and continue to do so until the file
position indicator is updated successfully.

147 Wrong open mode or access mode for read/start (recoverable)

Cause: You violated a COBOL general rule for programming when you
tried to carry out a READ or START operation on a file that has not
been OPENed for INPUT or I-0, or is not OPEN at all.

Action: OPEN the file for I-0 or for INPUT. You should then be able
to continue running your program. This error implies that an error exists
in your program logic. CLOSE any OPEN files, issue a STOP RUN,
and edit your code to correct the logic error.

148 Wrong open mode or access mode for write (recoverable)

Cause: You tried to WRITE to a file in sequential access mode that you
have not OPENed for OUTPUT or EXTEND, or you tried to WRITE
to a file in random or dynamic access mode that has not been OPENed
for INPUT or I-0.

Action: CLOSE the file and reOPEN it with the correct open mode for
the file type. This error implies that an error exists in your program
logic. CLOSE any OPEN files, issue a STOP RUN, and edit your code
to correct the logic error.

15-74 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

149 Wrong open mode or access mode for rewrite/delete (recoverable)

Cause: You violated a COBOL general rule for syntax, when you tried
to do a REWRITE or a DELETE on a file that you had not OPENed
for I-0.

Action: CLOSE the file and reOPEN it for I-0. This error message
implies that an error exists in your program logic. CLOSE any OPEN
files, issue a STOP RUN, and edit your code to correct the logic error.

150 Program abandoned at user request (fatal)

Cause: You have interrupted the program by means of a keyboard inter
rupt. Any open files are closed by the RTE.

151 Random read on sequential file (recoverable)

Cause: You violated a COBOL syntax rule by trying to do a random
READ on a file that has sequential organization.

Action: READ the file with the correct access mode. This error implies
that an error exists in your program logic. CLOSE any OPEN files,
issue a STOP RUN, and edit your code to correct the logic error.

152 REWRITE on file not opened for 1-0 (recoverable)

Cause: You violated a COBOL syntax rule by attempting a REWRITE
on a file that has been OPENed for I-0.

Action: CLOSE the relevant file and reOPEN it for I-0 operations. You
should then be able to carry out the REWRITE operation successfully.
However, this implies that an error message exists in your program logic.
CLOSE any OPEN files, issue a STOP RUN, and edit your code to
correct the logic error.

153 Subscript out of range (fatal)

Cause: A subscript that you have used in your program is out of the
defined range; that is, it is less than one or it is greater than the number
of occurrences of the item.

Action: Recode your program.

154 PERFORM nested too deeply (fatal)

Cause: This error usually results if you have used GO TO to jump out of
the range of a PERFORM rather than to jump to an EXIT statement at
the end of its range.

Action: When your program has ended, recode your program to ensure
that the GO TO in question jumps to an EXIT statement at the end of
the PERFORM's range.

155 Illegal command line (fatal)

Cause: The general command line interpreter cannot be found. It must
be present if your program is to be run successfully.

Action: Ensure that the interpreter is present to enable your system to
pick up the commands correctly.

Chapter 15. Error Messages 15-75

Run-Time Error Messages

156 Too many parentheses in compute statement (fatal)

Cause: You have coded a compute statement that is too complex for
your system to handle successfully.

Action: Recode your program. You are advised to break the relevant
compute statement into a number of simpler statements.

157 Not enough program memory: object file too large to load (recoverable)

Cause: Your program is too large for the available memory space.

Action: If you have specified the ON OVERFLOW clause in the relevant
CALL statement, the error is recoverable. The associated imperative
statement will be executed before the next instruction.

158 Attempt to REWRITE to a line-sequential file (recoverable)

Cause: You have used the REWRITE statement in conjunction with a
file whose organization is line-sequential. The REWRITE statement
cannot be used with line-sequential files.

Action: Close the offending file before issuing STOP RUN to ensure that
you do not lose any data from it. Recode your program to make the
organization of the file to which you want to do a REWRITE either
sequential, indexed sequential, or relative.

159 Malformed line-sequential file (recoverable)

Cause: A line-sequential file that you are trying to access is corrupt in
some way.

Action: Rerun your program using the backup copy of that file.

160 Overlay loading error (recoverable)

Cause: An error occurred while the system was loading the intermediate
code for an independent segment. The segment is either missing or cor
rupted in some way.

Action: If the segment is missing, locate it. If you cannot find it, or if it
is present and corrupt, recompile your program.

161 Illegal intermediate code (fatal)

Cause: The code that is currently being processed is not valid. You are
probably trying to execute a corrupted file or one that has not been com
piled successfully.

Action: You will have to recompile your source program to obtain
uncorrupted code.

162 Arithmetic overflow or underflow (fatal)

Cause: You have attempted to divide a data item by zero.

Action: Recode your source program to avoid this illegal operation.

15-76 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

163 Illegal character in numeric field (fatal)

Cause: The value that you enter into a numeric field is checked by
default to ensure that it is numeric. If any of the characters are found to
be nonnumeric, you get this message. The message is also given if you
have entered numerics that are not initialized into numeric fields, because
these are automatically space-filled and are thus classified as nonnumeric
items.

Action: If you unset the numeric field check switch (-F) on the run
command line, the RTE will not check that all values in a numeric field
are numeric, and you should be able to run your program successfully.
Alternatively, you can make sure that you initialize numeric items with
numeric values. This should enable your program to run successfully
regardless of the numeric field check-switch setting.

164 Run Time subprogram not found (fatal)

Cause: You have attempted to call a subroutine whose entry address has
not been set up in your RTE.

Action: Check to see that you used a valid call number in the unsuc
cessful subroutine call. If not, correct your code to contain a call
number that your system recognizes.

165 Version number incompatibility (fatal)

Cause: You are using intermediate code which has been produced on a
version of the AIX VS COBOL system that is incompatible with the Run
Time Environment you are currently using. The RTE will not, therefore,
be able to execute correctly any generated code you are producing or
have already produced from this intermediate code. Alternatively, you
may have attempted to execute a file which is not AIX VS COBOL inter
mediate or generated code.

Action: Recompile your source programs using the current version of the
AIX VS COBOL Compiler.

166 Recursive COBOL CALL is illegal (fatal)

Cause: You have tried to CALL a COBOL module that is already
active.

Action: You will need to recode your program.

167 Too many USING items (fatal)

Cause: The list of items that you have supplied in a CALL ... USING
statement is longer than the RTE can handle.

Action: Once your program has ended, recode it with group items rather
than elementary items before rerunning it.

168 Stack overflow (fatal)

Cause: You have nested a PERFORM statement or a series of CALL
statements too deeply.

Action: Edit your program to reduce the number of levels within a
nested PERFORM or CALL statement, then recompile.

Chapter 15. Error Messages 15-77

Run-Time Error Messages

169 Illegal configuration information (fatal)

Cause: You have attempted an operation for which your machine is not
configured; the most likely cause is that ADIS is not configured cor
rectly.

Action: Check that ADIS is configured correctly. See Chapter 10,
"Configuring Your AIX VS COBOL System."

170 System program not found (fatal)

Cause: A system program (for example, ADIS) is not found.

Action: Ensure that all the system programs are available and COBDIR
is set to the correct path. Copy those that are not currently present using
your backup system disk.

171 Japanese operations illegal with this RTE (fatal)

Cause: You are attempting to do Japanese operations with a non
Japanese RTE, or you have used a Japanese compiler to compile your
program and now are trying to run your code using a non-Japanese
RTE.

Action: Recompile your program using the Japanese version of the AIX
VS COBOL Compiler. Also check your environment to make sure that
you are using the Japanese RTE (that is, the DBCS-variety of the com
piler and environment).

172 Recursive OS/VS PERFORM is illegal (fatal)

Cause: You have tried full recursion of a PERFORM statement in a
program that was compiled with the perform-type= osvs option set. That
is, you attempted to end two PERFORMs with the same return address.

Action: Recompile your program with the perform-type= osvs option off,
or recode your program so each PERFORM has its own unique return
address before you recompile it with the perform-type= osvs option on.

173 Called program file not found in drive/directory (fatal)

Cause: You have tried to call a file that is not present on your current
directory, drive, or in a directory pointed to by the COBPATH environ
ment variable.

Action: Once your program ends, copy the relevant file into your current
drive or directory. Then you will have to set the COBPATH environ
ment variable to search the directory or drive on which the file is present
when your program calls it.

174 1-0 Error: .idy file (fatal)

Cause: The system is unable to write to the .idy file.

Action: Correct the permissions on the file or directory to allow write
access, then recompile your program.

15-78 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

175 Attempt to run intermediate code program which had severe errors (fatal)

Cause: You are attempting to run a program that produced severe errors
during compilation with the run-time switch E turned off.

Action: Edit your source code to correct all the severe errors, recompile,
then run the intermediate code that is produced. Alternatively, you
could attempt to run the program with the E run-time switch set, though
this may not give the desired results. Refer to Chapter 7, "Running an
AIX VS COBOL Program."

176 Illegal intersegment reference (fatal)

Cause: Your code contains a segment reference for the Forward Refer
ence Table. This is illegal.

Action: Follow your local procedures for reporting software problems.

177 Attempt to cancel active program (fatal)

Cause: You have tried to remove a currently executing program, or its
next levels, from memory.

Action: Once your program has ended, recode your program to ensure
that you do not attempt to cancel a program or its next levels while it is
still being executed.

178 Error during save (fatal)

Cause: You cannot save the information that your program has gener
ated. One of the most common reasons for this is the attempt to build a
module that is too large for the available memory space.

Action: If the error is caused by a lack of space, you can either delete
some of the files that you no longer need on your current disk, or insert
a new diskette to take the output from your program. Rerun your
program, and save the information given by it.

179 Error during chain (program not found) (fatal)

Cause: You have tried to chain to another program that your system is
unable to find.

Action: Ensure that your spelling is correct, and if not, correct it before
rerunning your program. If you have used the correct spelling, then
check that the program is available on your disk. If necessary, copy the
backup copy of your program onto your disk. When your program is
being animated, ANIMATOR will report this error and will allow you to
continue to run the program. If there is not sufficient space available to
allow you to do this, then you will have to set the COBPATH environ
ment variable to search the directory or drive on which the file is present
when your program calls it.

180 End-of-file marker error (fatal)

Cause: A file marker used to indicate that the end-of-file has been
reached is missing from one of your files.

Action: Recompile your code, or use a debugger to place the end-of-file
marker at the end of the file.

Chapter 15. Error Messages 15-79

Run-Time Error Messages

181 Invalid parameter error (fatal)

Cause: You used a parameter that is not recognized by your system.

Action: Correct your code to contain a parameter that is known by your
system.

182 Console Input or Console Output open with incorrect mode (fatal)

Cause: You are either trying to READ input from the display screen or
WRITE to the keyboard.

Action: Recode your program.

183 Attempt to open line-sequential file for 1-0 (fatal)

Cause: You tried to open a line-sequential file in the input-output open
mode, but this mode is not supported for files with this organization.

Action: When your program has ended, recode your program to ensure
that the file with organization line-sequential is opened for input, output,
or extend. Rerun your code.

184 ACCEPT/DISPLAY 1-0 error (fatal)

Cause: You have either tried to READ input from the display screen or
WRITE to the keyboard, or the ADIS module has not been able to open
your terminal's channels for I-0.

Action: Recode your program to correct the error.

185 Fatal File Malformation (fatal)

Cause: The RTE detects that a file is corrupt when opening the file. For
example, only part of a record is there.

Action: Use a backup version of that file if one is available, or open the
original with the correct record size.

186 Attempt to open stdio, stdout or stderr with incorrect mode (fatal)

Cause: You have tried to open stdin for output, or stdout or stderr for
input.

Action: Open these files with the correct mode.

187 Run Time Environment not found on $COBDIR path (fatal)

Cause: The RTE cannot be found on the path you have set up in the
COBDIR environment variable.

Action: Correct your $COBDIR environment variable to include the
path that your RTE is on.

188 File name too large (fatal)

Cause: A file name that you have used has more characters than the
maximum number allowed by the AIX VS COBOL system (fourteen).

Action: Once your program has ended, recode your program, renaming
the offending file with a file name of acceptable length.

15-80 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

189 Intermediate code load error (fatal)

Cause: You are unable to load your intermediate code. You could
receive this error if you attempt to load a piece of code that has not been
successfully compiled, or if you try to load a piece of intermediate code
that has been corrupted in some way.

Action: Obtain uncorrupted intermediate code by recompiling your
source code.

190 Too many arguments to CALL (fatal)

Cause: A CALL within your program cannot be successfully executed
because of the number of arguments used with it.

Action: When your program has ended, recode it using group items
rather than elementary ones.

191 Terminal type not defined (fatal)

Cause: Your terminal is not defined in the terminfo database.

The operating system is unable to drive your terminal because it has no
environment specification for it.

Action: Set up the necessary environment for your terminal. Until this is
done you cannot run your programs.

192 Required terminal capability description missing (fatal)

Cause: A compulsory entry (for example, cursor movement or clear
display screen) is missing from your termdesc file.

Action: Add the missing entry to your termdesc file.

193 Error in variable length count (fatal)

Cause: The piece of intermediate code that is currently being processed
is not a valid operation. You are probably trying to execute a corrupt
file or one that has not been compiled.

Action: Recompile your source program.

194 File size too large (fatal)

Cause: A file that your program is accessing is too large for successful
execution to continue.

Action: When your program has ended, recode your program spreading
the data over more than one file to ensure that no file becomes too large
for your operating system to handle. You can also try to increase your
ulimit.

195 DELETE/REWRITE not preceded by a read (fatal)

Cause: Before a DELETE or a REWRITE statement can be successfully
executed in sequential access mode, the last input-output statement exe
cuted for the associated file must have been a successful READ. In your
code no READ statement precedes your attempted DELETE or
REWRITE statements.

Action: When your program has ended, recode your program, making
sure the last input-output statement to be executed before the DELETE
or REWRITE is a READ statement.

Chapter 15. Error Messages 15-81

Run-Time Error Messages

196 Record number too large in relative or indexed file (fatal)

Cause: The relative record key has exceeded the system limit; that is, the
file is too large for the system to handle.

Action: The record key that you have specified is too large for the
system to deal with, or the pointer to the record has·been corrupted in
some way so that it is either too large, or it is not a multiple of the
record length.

197 Screen-handling system initialization error (fatal)

Cause: The display screen-handling interface has not been correctly ini
tialized because your terminal does not have the required capabilities, or
your terminfo file is corrupted, or memory has been incorrectly allocated.

Action: Check that the terminfo file contains the correct entry for your
terminal.

198 Load failure (fatal)

Cause: You have not been able to load the file that you requested
because it is corrupt.

Action: If the file failed to load because it is corrupt, then rerun your
program, loading your backup copy of the file.

199 Operating system error code lies outside defined range (fatal)

Cause: A system call has returned an unexpected error number that is
not documented.

Action: Follow your local procedures for reporting software problems.

200 Run Time Environment internal logic error (fatal)

Cause: You can receive this message if the amount of memory available
on your machine is so low that not even the RTE can be loaded cor
rectly.

Action: Free some memory. Then you should be able to run your
program. If the RTE has halted as a result of an internal error from
which you cannot recover, follow your local procedure for reporting soft
ware problems.

201 1-0 error in paging system (fatal)

Cause: There is no room available in your current directory or on the
directory you are using for the paging file.

Action: When your program ends, increase the size of your page space
mini disk.

202 Exported functionality error (fatal)

Cause: You have either caused an internal RTE error by invalid use of
an exported function, or the code produced by a preprocessor within the
compiler contains errors.

Action: Ensure that all your external assembler applications call and use
RTE functions correctly before you attempt to run your program again.
If you are using a preprocessor as part of the compiler, use the software
as a stand-alone preprocessor to isolate the problem areas.

15-82 User's Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Error Messages

203 CALL parameter not supplied (fatal)

Cause: You have not supplied your currently executing program with all
of the parameters mentioned in the LINKAGE SECTION of your main
program.

Action: Recode your program to ensure that it contains all of the neces
sary parameters, or check that it is a valid caller.

206 Reading unwritten data from memory (fatal)

Cause: You are attempting to read data that has not been written.

207 Machine does not exist (recoverable)

Cause: You have tried to access a machine that is not connected to your
network, or if the machine is part of your network, it is not online.

Action: Ensure that the machine is connected to the network and online.

208 Error in multi-user system (recoverable)

Cause: This is normally caused by an unexpected error occurring within
the network or file-sharing facilities. A corrupted network message will
also return this error.

Action: You may be able to recover from this error by executing a
COMMIT statement.

209 Network communication error (recoverable)

Cause: This message is normally given if an incorrect checksum has been
received in a communications packet.

Action: Your program should continue to execute after you have
received this error, but the effect of the error is undefined.

210 File is closed with lock (fatal)

Cause: You have tried to open a file that you previously closed with a
lock.

Action: Recode your program to avoid opening a file previously closed
with a lock.

211 Program linked with wrong library (fatal)

Cause: You have tried to link a program that is incompatible with the
current version of your RTE, your object file, or your COBOL run-time
library. For example, your RTE will not run a program linked using a
different object file format or COBOL run-time library.

Action: If your object file is incompatible with the current version of
either your COBOL run-time library or your RTE, recompile your object
file and then relink with the current version of your COBOL run-time
library. Otherwise, relink your program.

212 Malformed assembler subroutine file (fatal)

Cause: You are attempting to access an assembler routine that is not in
the specific format for such a file.

Action: Examine the assembler routine and alter the structure of your
routine if necessary. Ensure that it is linked correctly, that it has the
correct structure, and that you used the right assembler.

Chapter 15. Error Messages 15-83

Run-Time Error Messages

213 Too many locks (recoverable)

Cause: You have either tried to exceed the maximum number of record
locks allowed per file, or you have exhausted an operating system or
network resource (for example, dynamic memory).

Action: Execute a COMMIT or an UNLOCK operation on the relevant
file. You should then be able to continue running your program.. Do
not try to retain a record lock for longer than is necessary. This should
prevent the occurrence of this error.

214 GO TO has not been altered (fatal)

Cause: You violated a COBOL programming rule.

Action: CLOSE any files that may be OPEN, and issue a STOP RUN.
Edit your program to avoid such illegal operations.

215 Cannot animate a program running COMMUNICATIONS (fatal)

Cause: The communications module is not supported at run time.

Action: In order to run your program on AIX VS COBOL, you must
recode your program so that it does not use communications.

216 Cannot initialize named communications device (fatal)

Cause: The communications module is not supported at run time.

Action: In order to run your program on AIX VS COBOL, you must
recode your program so that it does not use communications.

217 Incompatible host for generated code file (fatal)

Cause: The .gnt file is not valid for the host processor.

Action: Recompile your program.

218 Malformed MULTIPLE REEL/UNIT file (fatal)

Cause: Your file header is not correctly formatted, or you are not using
a MULTIPLE REEL/UNIT file.

Action: Attempt to run your program again using a backup copy of the
relevant file.

219 Operating system shared file limit exceeded (recoverable)

Cause: You have tried to exceed your operating system limit on the
number of shared files that you can have OPEN simultaneously.

Action: CLOSE some of the open shared files you are no longer
accessing and retry the file operation.

220 Attempt to execute more than one SORT or MERGE simultaneously
(fatal)

Cause: You have coded your program in such a way that it is attempting
to execute more than one SORT or MERGE at the same time. For
example, you may have coded a SORT statement in the input or output
procedure of another SORT statement, an operation that is prohibited
under ANSI COBOL rules.

Action: Recode your program to ensure that it does not execute more
than one SORT or MERGE at any one time.

15-84 User's Guide for IBM AIX VS COBOL Compiler/6000

221, 222, 223 SORT /MERGE error: see status key (fatal)

Cause: You receive one of these three messages if you attempt to do a
SORT/MERGE operation that is unsuccessful. These errors can result
from a number of causes. For example, you may have too many files
OPEN when you attempt a SORT/MERGE, or the file that you are
trying to access may be locked.

Action: The action you take is situation-dependent.

254 Keyboard interrupt to ANIMATOR during ACCEPT (fatal)

cob Command Errors

Cause: While using ANIMATOR, you have ended your program with a
keyboard interrupt.

017 COBOL compiler argument exceeds 128 byte limit

You must shorten the long argument to fall within this limit.

020 I see no use for ...

cob is unable to process the files you have specified because they have
already been processed as far as possible for the cob command, or the
specified options are not recognized.

022 I see no work

You have specified inappropriate parameters which do not match the
options you have used.

034 Argument expected: optioname

The specified option requires an argument.

052 cobol version number invalid - Call Technical Support

The contents of the cobver file are incorrect.

053 Entry defined: entryname-1 conflicting "main" found in entrypoint-2

You have defined the symbol "main" in a module other than the speci
fied entry-point module.

055 Entry: entryname does not have "main" defined

The specified entry-point module (which is a non-COBOL module)
does not define the symbol "main". The entry-point "main" must exist
for any non-COBOL modules that will be the main program for your
code.

056 Entry: entryname not found

You need to specify an entry-point in at least one module.

071 Invalid entry-point name: entryname

The specified entry-point symbol is not a valid symbol name. Valid
symbol names may consist of any of the characters a through z, A
through Z, 0 through 9, the underscore(__), or the period(.). A name
cannot begin with a digit.

Chapter 15. Error Messages 15-85

15-86 User's Guide for IBM AIX VS COBOL Compiler/6000

Appendix A. Environment Variables

Appendix A. Environment Variables A-1

Introduction . A-3
COBATTR . A-3
COBCPY . A-4.
COBCTRLCHAR . A-4
COBDIR .. A-4
COBHELP . A-5
COBIDY .. A-5
COBLPFORM . A-5
COBOPT .. A-6
COBPATH . A-6
COBPRINTER A-7
COBSW .. A-7
TMPDIR A-8

A-2 User's Guide for IBM AIX VS COBOL Compiler/6000

Introduction

COBATTR

Format

The following environment variables can all be set using the AIX VS COBOL
system:

• COBATTR
• COBCPY
• COBCTRLCHAR
• COBDIR
• COBHELP
• COBIDY
• COBLPFORM
• COBOPT
• COBPATH
• COBPRINTER
• COBSW
• TMPDIR

Note: If you are using the ksh shell, you must export any environment variables
you set before you can use them.

Full details on all these environment variables can be found throughout this manual.
However, the following sections give a brief summary of each environment variable.

COBATTR changes the behavior of the high- and low-intensity attributes to deter
mine whether text appears highlighted on your screen.

The format of COBATTR is as follows:

COBATTR=n

where n can be any of the following values:

0 0 is the default. Highlighted text appears in the high-intensity mode for termi
nals that support a high-intensity attribute but no low-intensity attribute. High
lighted text appears in normal mode for terminals that support low-intensity
mode as the default mode for text that is not highlighted.

1 Highlighted text always appears in high-intensity mode. Low-intensity mode is
never used.

2 High- and low-intensity space characters are not assumed to be the same as
normal mode space characters.

3 Same as for 1 and 2 above.

High- and low-intensity modes are as described in terminfo. See Chapter 10, "Con
figuring Your AIX VS COBOL System," for details.

Appendix A. Environment Variables A-3

Example

COBCPY

Format

Example

COBCTRLCHAR

Example

COB DIR

Format

The following is an example of the COBATTR variable:

COBATTR=l

COBCPY specifies the directory that the compiler and ANIMATOR are to use to
search for COPY files.

The following example shows the format of the COBCPY variable:

COBCPY=path-name

where path•name specifies the path that the compiler and ANIMATOR are to
search.

The following is an example of the COBCPY variable:

COBCPY=:srclib/mylib:$HOME/mylib

If multiple directories are specified, the first character must be a colon(:).

When COBCTRLCHAR is set, the AIX VS COBOL system will allow the use of
raw escape sequences. See the full description of this functionality in "Using Escape
Sequences to Send Attribute Information to the Screen" on page 9-19.

Support for this feature is provided for compatibility with older code. It is not
recommended for use in new code.

To set the COBCTRLCHAR variable to allow the use of raw escape sequences, use
the format:

COBCTRLCHAR=y

By default, the AIX VS COBOL system software is located in the file
/usr/lpp/COBOL/lib (for the non-DBCS variety of COBOL) or in
/usr/lpp/COBOL/dblib (for the DBCS variety of the system). That is where cob
normally expects to find it. If you install this system in a different directory,
COBDIR allows you to specify the name of the directory in which you installed it.
Then, cob will search the specified directory for the system software instead of the
de fa ult directory.

The maximum length of the COBDIR string is 40 characters.

The format of the COBDIR variable is as follows:

COBDIR=directory

where directory is the directory that contains the AIX VS COBOL system software.

A-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Example

COBHELP

Format

Example

COBIDY

Format

Example

COBLPFORM

Format

The following is an example of the COBDIR variable:

COBDIR=/cob32ul

This causes cob to search directory /cob32ul for the AIX VS COBOL system soft
ware.

COBHELP specifies the path to search to find help files to be displayed to the user
upon request.

The following example shows the format of the COBHELP variable:

COBHELP=path-name

The following is an example of the COBHELP variable:

COBHELP="/usr/LPP/COBOL/lib/help"

COBIDY specifies the path(s) that ANIMATOR will search for .idy files if the
required files are not found in the current directory nor in the directory specified on
the command line.

The following example shows the format of the COBIDY variable:

COBIDY=path-name

where path-name specifies the path that the ANIMATOR is to search.

The following is an example of the COBIDY variable:

COBIDY="/usr/LPP/COBOL/lib/usr/myfile 11

The AIX VS COBOL system emulates printer channels COl through Cl2 by line
feeds and form feeds. COBLPFORM allows you to define the line numbers on the
form so you can write to these printer channels.

The following example shows the format of the COBLPFORM variable:

COBLPFORM= 11 n::: :n:: :n:: :n"

where n are digits that specify the line number you require for the relevant channel.

Note: Any channels that have line number O; mnemonics SOI, S02, or CSP; or are
undefined are set to line 1, which is the beginning of the page.

Appendix A. Environment Variables A-5

Example

COBO PT

Format

Example

COBPATH

The following is an example of the COBLPFORM variable:

COBLPFORM="1:::::::::::60"

This sets channel 1 to line I and channel -12 to line 60.

COBOPT can do either of the following:

• Contain options that supplement or override the system-wide default compiler
and Native Code Generator options as defined in the file $COBDIR/cobopt

• Specify the path of a file which contains such options.

If you use COBOPT to point to such a file, this file must be in the same format as
$COBDIR/cobopt. See Chapter 5, "Compiler Options," for details.

The following example shows the format of the COBOPT variable:

COBOPT="compil er: [[COBOL-COMPILER-OPTION] •••]
neg: [[NCG-OPTION] • • •]

where:

[SET environment-variable=value •••]
[;comment-entry •••] 11

COBOL-COMPILER-OPTION is one or more of the compiler options listed in
Chapter 5, "Compiler Options."

NCG-OPTION is one or more of the native code generator options listed in
Chapter 6, "Native Code Generator Options."

environment-variable can be any environment variable supported by the AIX VS
COBOL system.

value is the value to which you want to set the specified environment variable.

comment-entry can be any statements you wish cob to treat as comment lines.

The following is an example of the COBOPT variable:

COBOPT= 11 compiler:ANS85
SET COBCPY=$COBDIR/srclib:$HOME/mylib:: 11

This enables ANS85 standard COBOL syntax and sets COBCPY to the specified
path.

COBPATH specifies which directories the Run Time Environment (RTE) is to
search for a specified file. This variable is also used to specify CALL paths. (It is
not used to locate data files.)

A-6 User's Guide for IBM AIX VS COBOL Compiler/6000

Format

Example

COB PRINTER

Format

Example

COB SW

Format

The following example shows the format of the COBPATH variable:

COBPATH=(:] path-name [:path-name] •••

where:

the initial ":"indicates that the current directory is to be searched first.

path-name specifies the directories and their paths that the RTE is to search.

The following is an example of the COBPATH variable:

COBPATH=/u:/v:/qa/srclib:qa/otherlib

COBPRINTER specifies the name of the printer to which the output from a
DISPLAY UPON PRINTER statement is directed.

The following example shows the format of the COBPRINTER variable:

COBPRINTER=print-command

where print-command can be the name of any print command supported by your
system, for example, /bin/print.

COBPRINTER="/bin/print rp2"
export COBPRINTER

This example shows that you can name alternate printers on your system. If no
printer is named, the default printer on the system will be used.

COBSW sets various switches when you execute files output by cob.

The foilowing example shows the format of the COBSW variable:

COBSW=[±switch]

where:

± enables or disables the specified switches. Switches can have one of the following
values:

0 to 8 run-time switches

A ANIMATOR switch

B Skip locked record switch

D ANSI COBOL debug switch

e COBOL symbol switch

E Error switch

Appendix A. Environment Variables A-7

Example

TMPDIR

Format

Example

F Compatibility check switch

Keyboard interrupt switch·

K ISAM files sequence check switch

Memory switch

N Null switch

p Dynamic linkage setup switch

Q Ryan - McFarland (RM) file status error switch

R Reread locked record switch

S SORT switch

T TAB switch

All of these switches are described in detail in Chapter 7, "Running an AIX VS
COBOL Program."

The following is an example of the COBSW variable:

COBSW=+O+D

This starts run-time switch 0 and the ANSI COBOL debug switch.

TMPDIR specifies an alternate directory to use for temporary files, rather than the
de fa ult /tmp directory.

The following example shows the format of the TMPDIR variable:

TMPDIR=path-name

where the path-name specifies the directory name for temporary files.

The following is an example of the TMPDIR variable:

TMPDIR=/usr/alternate/tmp

A'.'"8 User's Guide for IBM AIX VS COBOL Compiler/6000

Appendix B. National Language Support

Appendix B. National Language Support B-1

Introduction .
Features Provided by National Language Support
Compiling Programs with National Language Support
Running Programs with National Language Support
Running Your Program
RTE NLS Initialization
String Comparisons
Class Condition Tests
Indexed Sequential File Operations
Comparisons Performed as Part of SORT or MERGE Statements
The NLS Support Routines .
Mixing Programs with and without National Language Support .

B-2 User's Guide for IBM AIX VS COBOL Compiler/6000

B-3
B-3
B-4
B-5
B-5
B-6
B-6
B-6
B-7
B-7
B-7
B-8

Introduction
AIX VS COBOL has two facilities that allow an application to take advantage of
many of the features provided by the NLS component of the AIX operating system.
West European languages are supported by the NLS facility of AIX VS COBOL
while Japanese and Asian languages are supported by the DBCS facility of AIX VS
COBOL. An application cannot be compiled to support both NLS and DBCS at
the same time. This section describes the NLS facility of AIX VS COBOL.

To handle 8-bit character sets, you must configure your terminal to support this.
See your operating system documentation for details on how to configure your ter
minal (for example, the stty command).

Features Provided by National Language Support
The NLS facility makes it unnecessary for you to specify the following clauses in
your program:

• ALPHABET
• PROGRAM COLLATING SEQUENCE
• COLLATING SEQUENCE for sort-merge files
• CURRENCY SIGN
• DECIMAL POINT IS COMMA

In addition, new facilities are provided as follows:

• Class condition tests (ALPHABETIC and NUMERIC) appropriate to national
and multinational character sets.

• Linguistic collating sequences appropriate for West European languages as pro
vided by the AIX system.

• Linguistic collating sequences applied to indexed files.

• Linguistic collating sequences applied to sort-merge files.

You can use the NLS facility by specifying the compiler option nls. See "Compiling
Programs with National Language Support" on page B-4 for information on using
the nls option.

Appendix B. National Language Support B-3

Compiling Programs with National Language Support
To use the NLS facility in your program, you must compile the program with the
compiler option nls on the command line. The option has the following two forms:

• nonls

This is the default value of the directive. If you compile a program with nonls,
the program will run exactly as described in the Language Reference.

• nls

Your program will use the NLS facility for the following:

Explicit string comparisons, class condition tests, and numeric editing
- Key comparisons in indexed sequential file operations
- Comparisons performed as part of a SORT or MERGE operation.

When you compile a program with the nls option, the compiler will not accept the
following elements of syntax in your program:

• The following phrase in the OBJECT-COMPUTER paragraph:

PROGRAM COLLATING SEQUENCE IS alphabet-name

• The following phrases in the SPECIAL-NAMES paragraph:

{
STANDARD-1 }

- alphabet-name IS NATIVE
literal-1 THRU literal-2 etc.

- CURRENCY SIGN IS literal

- DECIMAL-POINT IS COMMA

• The following phrase in MERGE or SORT statements:

- COLLATING SEQUENCE IS alphabet-name

If your program contains any of this syntax, the program will fail compilation with
the following error:

136 Illegal use of phrase for National Language operation

You must remove this syntax (or mark it as a comment line) and recompile your
program before you can successfully run your program.

B•4 User's Guide for IBM AIX VS COBOL Compiler/6000

Running Programs with National Language Support
Before you run a program with National Language Support (NLS), you must set up
the environment. Use the LANG environment variable to do this. For example:

LANG=Sp_SP
export LANG

AIX uses the value of LANG to specify the language environment to be used by a
process. The collating table for a particular language is located in the file:
/usr/lib/nls/$LANG. The file /usr/lib/nls/$LANG.en contains a number of
"name=value" pairs that specify characteristics of a language environment. In par
ticular, AIX VS COBOL uses the value of NLCURSYM for the value of the cur
rency symbol, while the comma and decimal point become the values of the triad
and decimal punctuation symbols contained in NLNUMSEP. Because COBOL
requires the values for all of these symbols to be a single character, only the first
character is used. Further, the currency symbol is always printed to the left of a
numeric value even if the language specifies that it should be printed on the right.
For more information about National Language Support provided by the AIX
system, see the AIX system documentation.

If the language specified in the LANG environment variable is not available, the
RTE gives the following error message:

40 Language Initialization not set up correctly

and the program will terminate.

Running Your Program
You can run programs with National Language Support the same way that you run
programs without this facility. See Chapter 7, "Running an AIX VS COBOL
Program" for more information.

When you run a program compiled with the nls option, the following operations will
use the facilities provided by the operating system for the language specified in the
LANG environment variable:

• String comparisons
• Class condition tests
• Key comparisons in indexed sequential files
• Comparisons performed as part of a SORT or MERGE statement.

If you have specified the use of decimal points, commas, or currency symbols in your
program, these constants contain the symbols required for the language specified.
However, although it is possible to specify the currency symbol as trailing to the
AIX operating system, AIX VS COBOL always displays the currency symbol as
leading.

Appendix B. National Language Support B-5

/

Certain NLS definitions have characters other than the ASCII characters 0-9 defined
as numerics. Although such characters are identified as numeric by the operating
system, they cannot be ACCEPTed into numeric picture strings, nor can they be
used in numeric operations. In all NLS operations in the COBOL environment, a
numeric item must be formed only from the ASCII digits 0-9, with or without the
ASCII operational signs "+" or "-". There is no means of automatically converting
the NLS representation to the ASCII equivalent.

It is possible to enter European modifying characters into numeric ACCEPT fields.
These are accepted as zero.

The values assigned to figurative constants, for example LOW-VALUES, are not
changed by using NLS features.

You can also use the ADIS Flip Case Control key when using NLS characters.
However, if you attempt to convert a European character to uppercase using this
key, the character will not be replaced if it has no uppercase equivalent.

RTE NLS Initialization
The RTE initializes the NLS facility only once during an application's run. It does
this when it encounters the first program within the suite which was compiled with
the nls option set. It uses the LANG environment variable to determine which lan
guage environment to set up for the application. The RTE uses the same language
environment for any subsequent programs within the suite which are compiled for
NLS. See "Mixing Programs with and without National Language Support" on
page B-8 for details. If an error occurs during this initialization process, for
example the language specified in the LANG environment variable is not supported,
the RTE returns the error:

40 Language Initialization not set up correctly

and terminates its run.

String Comparisons
For programs that have been compiled with the nls option, the RTE invokes one of
the routines: nl_cobcmp() (for comparisons of two regular strings) or nl_coball() (for
comparisons that use the ALL phrase). For details of how these two routines
operate, see "The NLS Support Routines" on page B-7.

During a MOVE operation of one alphanumeric item to another which is longer,
padding with spaces occurs. Similar padding is also implied before the comparison
of two such items. In both cases, an ASCII space is assumed.

The logical length of a string may be different from its physical length. For
example, the spanish "LL" character is considered a single character during compar
isons. Also, the german "/3" character is considered equivalent to the two characters
"ss." So in german, "/3" = "ss" even though their physical lengths are different.

Class Condition Tests
For programs which have been compiled with the nls option set, the RTE invokes
operating system routines when it needs to carry out class condition tests. These
tests determine if a string of information is in ALPHABETIC,
ALPHABETIC-UPPER, ALPHABETIC-LOWER, NUMERIC, or user-defined
CLASS condition format. The class conditions are performed on a character by

B-6 User's Guide for IBM AIX VS COBOL Compiler/6000

character basis on a string so that the results may sometimes be unexpected. For
example, in spanish the string "Ch" is considered uppercase, but AIX VS COBOL
considers it mixed case. The numeric test always tests that all characters are in the
range of ASCII 0-9.

Indexed Sequential File Operations
If the logical filename of an indexed sequential file is preceded by the five characters
%NLS%, the file is treated as an NLS file. This is true either before or after it has
been resolved by use of environment variables, as described in Chapter 3, "Device
and File-Handling." In the following example, file! is the name of the NLS file:

SELECT fi 1 ename ASSIGN TO 11 %NLS%fiZeZ 11

When redirectingfilel using environment variables, use the name ddJilel. Do not
include the %NLS% in the environment variable's name.

A program compiled with the nls option may open both NLS and non-NLS indexed
files, but a program that has not been compiled with the nls option may not open an
NLS file. If a non-NLS program attempts to open an NLS file and there is no file
status specified for the file the program terminates with the following error:

44 Attempt to OPEN an NLS file in a non-NLS program.

A file created as an NLS file must be opened as an NLS file and vice-versa; if not,
the OPEN fails and the RTE returns an error. If there is no file status specified for
the file, the program terminates with the following error:

45 Attempt to OPEN a file with an incompatible NLS attribute.

It is an error to take an indexed file created for use with one language and then use
it with another language. The RTE cannot detect when a file has been created with
one language and then used in a different language. If an application attempts to do
this, unexpected results occur and the file may become unusable.

The indexes of an NLS file are compared using the function nl_cobsort().

See "The NLS Support Routines" for more details.

Comparisons Performed as Part of SORT or MERGE Statements
All files sorted in a program compiled with the nls option are sorted according to the
collating sequence for the language specified. The RTE routine nl_cobsort() is used
for the comparisons. See "The NLS Support Routines" for more details.

The NLS Support Routines
The NLS string comparison routines provided by AIX follow the C programming
language rules. This means that strings are terminated by a null (LOW-VALUE)
character. In COBOL, a null character is not a terminator, it is a valid character.
Further, COBOL requires that when two strings of different length are compared,
the shorter one is to be considered extended with blanks so that it matches the length
of the other string. Finally, COBOL allows a string to be compared with another
using the ALL phrase. For example, the following condition is TRUE in AIX VS
COBOL:

if 11 ababab 11 = all 11 ab 11

Appendix B. National Language Support B-7

Because of these requirements, the NLS routines in the C library were modified to
fulfill the requirements ofCOBOL. The following routines are written in C. To
access them you need to follow the guidelines for calling a C program from COBOL
outlined in Chapter 2, "Advice on Writing COBOL Programs."

The definition of nl_cobcmp() is:

nl_cobcmp (stringl, string2, lengthl, length2)
char * stringl, string2;
size t lengthl, length2;

This function takes two strings of given lengths and compares them using NLS col
lation rules. The shorter string is logically extended by blanks and nulls are allowed.

Return Value: Returns a negative value if stringl < string2
Returns a zero value if stringl = string2
Returns a positive value if string! > string2

The definition of nl_coball() is:

nl_coball (string, all_string, length, all_length
char * string, all_string;
size t length, all_length;

Return Value: Returns a negative value if string < all_string
Returns a zero value if string = all_string
Returns a positive value if string > all_string

This function is similar to nl_cobcmp, except that the all_string is repeated until the
comparison with string is done.

nl_cobsort (stringl, string2, lengthl, length2)
char * stringl, string2;
size t lengthl, length2;

This function is identical to nl_cobcmp except that ties are broken. Since compar
isons are based upon the collating sequence of a character set it is possible for two
different characters to collate the same. For example, "A" may collate the same as
"a". In regular COBOL comparisons, only the result from the collation is used
("A" = "a" in this example). But for a sort it is desirable for strings that are equal
in collation but different in actual characters to be grouped in a predictable manner.
For example, consider the strings:

11 A11 11 a 11 11 A11 "a"

The function nl_cobcmp would consider all of these characters equal in value for lan
guages where "A" is equivalent to "a". Therefore, a sort based on nl_cobcmp would
be inadequate. nl_cobsort() would not consider "A" as equal to "a".

Mixing Programs with and without National Language Support
You can call a program with National Language Support from a program without
NLS and can also call programs without NLS from a program with it. When you
enter a program with NLS from a program without NLS, or vice versa, the language
environment will automatically change.

Data may be shared between the NLS and non-NLS programs, however, one must
be aware that the non-NLS program obeys the standard AIX VS COBOL rules

B-8 User's Guide for IBM AIX VS COBOL Compiler/6000

when operating on such data. For example, a string may sort differently in the NLS
routine than it would in the non-NLS routine.

Also note the restrictions placed on NLS indexed files. See "Indexed Sequential File
Operations" on page B-7.

Appendix B. National Language Support B-9

B-10 User's Guide for IBM AIX VS COBOL Compiler/6000

Appendix C. Character Sets and Collating Sequence

The following table shows the COBOL collating sequence. An X in the third
column indicates that that symbol is not part of COBOL syntax.

Table C-1 (Page 1 of 4). Character Set and Col-
lating Sequence

ASCII HEX COBOL

NUL 00 x
SOH 01 x
STX 02 x
ETX 03 x
BOT 04 x
ENQ 05 x
ACK 06 x
BEL 07 x
BS 08 x
HT 09 x
LF OA x
VT OB x
FF oc x
CR OD x
so OE x
SI OF x

DLE 10 x
DCl 11 x
DC2 12 x
DC3 13 x
DC4 14 x
NAK 15 x
SYN 16 x
ETB 17 x
CAN 18 x I
EM 19 x
SUB lA x
ESC 1B x
FS lC x
GS lD x

Appendix C. Character Sets and Collating Sequence C-1

Table C-1 (Page 2 of 4). Character Set and Col-
lating Sequence

ASCII HEX COBOL

RS IE x
us IF x

space 20

! 21 x
II 22

23 x
$ 24

% 25 x
& 26 x

I 27

(28

) 29

* 2A

+ 2B

' 2C

- 2D

2E

I 2F

0 30

1 31

2 32

3 33

4 34

5 34

6 36

7 37

8 38

9 39

3A

'
3B

< 3C

= 3D

> 3E

? 3F x

C-2 User's Guide for IBM AIX VS COBOL Compiler/6000

Table C-1 (Page 3 of 4). Character Set and Col-
lating Sequence

ASCII HEX COBOL

@ 40 x
A 41

B 42

c 43

D 44

E 45

F 46

G 47

H 48

I 49

J 4A

K 4B

L 4C

M 40

N 4E

0 4F

p 50

Q Sl

R S2

s S3

T S4

u SS

v S6

w 57

x 58
y 59

z SA

[SB x

\ 5C x
] SD x
A 5E x
- SF x
' 60 x
a 61

Appendix C. Character Sets and Collating Sequence C-3

Table C-1 (Page 4 of 4). Character Set and Col-
lating Sequence

ASCII HEX COBOL

b 62

c 63

d 64

e 65

f 66

g 67

h 68

i 69

j 6A

k 6B

1 6C

m 6D

n 6E

0 6F

p 70

q 71

r 72

s 73

t 74

u 75

v 76

w 77

x 78

y 79

z 7A

{ 7B x
I 7C x I

} 7D x
,...,, 7E x

DEL 7F x

C-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Appendix D. Packaging Application Programs

Appendix D. Packaging Application Programs D-1

Introduction
The Run Time Package
Preparing Application Packages . . .

Statically Linkable Native Code (.o)
Dynamically Loadable Native Code (.gnt)
Intermediate Code (.int)

D-2 User's Guide for IBM AIX VS COBOL Compiler/6000

D-3
D-3
D-3
D-3
D-4
D-4

Introduction
There are several ways an application program can be packaged for distribution to
an end user. The run-time routines are available as an IBM product for an applica
tion customer to purchase as a prerequisite for the application package. All code
developed with the AIX VS COBOL Compiler/6000 will need the AIX VS COBOL
Run Time Environment/6000 Version 1.1 in order to execute.

This chapter explains how to compile application programs that will be distributed
and explains the procedures that the end customer must follow to run the applica
tion package. Application developers should document the final installation proce
dures for their end customers based on these guidelines.

The Run Time Package
The Run Time package, available through your IBM representative, your IBM
Authorized Dealer, or your IBM Authorized Remarketer will contain the functions
needed to run a COBOL program developed with AIX VS COBOL Oibraries, file
handler routines, screen input and output functions, error messages). The cob and
cobrun commands will also be included, to allow the application customer to bind
the application programs with the RTE, if necessary.

Preparing Application Packages
The programs that comprise the application package can be distributed when com
piled to .int, .o, or .gnt code. The procedures that an application customer needs to
execute vary according to the type of code used. These procedures can be explained
as part of the installation process or provided in a shell script which would facilitate
the end user's install procedures. Compiler options may be included on the
command lines, although these options are omitted from the examples here. The
application program will be referred to as application in the following examples.

Statically Linkable Native Code (.o)
The application programs can be compiled to object code, using the following
command:

cob -x application.cbl

This produces an executable module, application, that the application customer
would enter to invoke the application. This will be the preferred packaging for most
application programs.

Appendix D. Packaging Application Programs D-3

Dynamically Loadable Native Code (.gnt)
The application programs can be compiled to dynamically linked code using the fol
lowing command:

cob -u application.cbl

The application buyer could be instructed to run the application by entering the fol
lowing command:

cobrun application.gnt

A shell script containing this command could be provided, allowing the application
buyer access to the application by using a single executable module name.

Intermediate Code (.int)
Intermediate code can be run on any system that supports any of the following:

• IBM COBOL/2
• AIX VS COBOL

The application programs can be compiled to intermediate code using the following
command:

cob -i application.cbl

The application customer would invoke the application using the following
command:

cobrun application.int

A shell script containing this command could be provided allowing the application
customer to access the application by using a single executable module name.

D-4 User's Guide for IBM AIX VS COBOL Compiler/6000

Glossary

adiscf. A utility for setting up the ADISCTRL data
base.

ADISCTRL database. The configuration file for the
AIX VS COBOL ADIS Accept/Display module. Use
the adiscf utility to alter entries in this database.

ANIMATOR. An interactive program debugging tool
for use with AIX VS COBOL programs.

automatic locking. A type of data locking, in which a
single record or multiple records are locked by accessing
them.

batch mode. A method for passing parameters to a
module by specifying them on the command line or in a
file instead of giving them interactively.

binary sequential file. A sequential file that contains
binary records.

cob command. The command used to access the various
components of the AIX VS COBOL system: the com
piler, code generator, and linker.

cobkeymp database. A file that contains a mapping of
control characters and terminfo codes onto a standard
set of function keys that the ADIS ACCEPT/DISPLAY
module can recognize. Set up this file with the keybcf
utility.

cobrun. The command used to execute an intermediate
code or dynamically loadable native code program.

COBSW. The environment variable that controls the
settings of the switch parameters.

collating sequence. The sequence in which characters
are ordered within the computer for sorting, combining,
or comparing.

compiler. A program that converts a high-level lan
guage (such as CO BO L) source program to a module
that can be executed on some machine (such as the RT).

computational data. A type of COBOL data designed
specifically for numeric computations.

convert3. A program to convert RM/COBOL data files
to AIX VS COBOL data files.

converts. A program to convert DGCOBOL data files
to AIX VS COBOL data files.

data locking. A mechanism by which a program may
lock certain file records, preventing other programs
from modifying the file records.

DGCOBOL. Data General Interactive COBOL Rev
1.30.

dynamically loaded executable module. An executable
AIX VS COBOL module that loads its overlays or other
procedures as needed.

environment. The settings for shell variables and paths
associated with each process.

environment variable. A variable defined in the AIX
shell that, if exported, is global to all processes run
under that shell.

exclusive locking. A type of data locking in which
entire files are locked as soon as they are opened by a
program.

file conversion program. A program created by
convert3 that will convert RM/COBOL type files to
AIX VS COBOL type files.

flag. A modifier preceded by a dash that appears on a
command line as an option to a command.

FORMS-2, A tool that can be used to interactively
create and edit display screens for use in AIX VS
COBOL programs.

hexadecimal value. The base 16 representation of a
number.

index program. A program generated by the FORMS-2
package for creating and maintaining an indexed
sequential file.

indexed sequential files. A type of file organization
implemented as a pair of files, with a key or index file
that controls access to data records in the data file.

information line. A line at the bottom of the
ANIMATOR screen that describes the current state of
the program being animated.

interactive mode. A method for giving parameters to a
module by responding to prompting from the module.

intermediate code. Code that is in a format acceptable
for running using the cobrun command.

ISAM. Indexed Sequential Access Method.

keybcf. A utility for setting up the cobkeymp database.

Glossary G-1

line-sequential files. Files that consist of a series of
variable-length records, each of which is terminated by
the character hex OA.

linker. A program that takes unlinked a.out format
files and resolves all external references to produce an
executable module.

literal. A group of characters enclosed in quotation
marks.

manual locking. A type of data locking in which a
single record or multiple records are locked by issuing
statements that explicitly lock them.

National Language Support (NLS). A facility that pro
vides a means of adapting your program to the char
acter set used by a non-English-speaking country.

native code. Code that is in a form that can be exe
cuted directly on the machine hardware. (On AIX this
is in the a.out object module format.)

Native Code Generator. The pass of the COBOL com
piler that takes an input intermediate code file and gen
erates an AIX a.out format file.

numeric editing. A COBOL data field description for
representing numeric data that contains a decimal point.

octal value. The base 8 representation of a number.

paging. The action of transferring instructions, data, or
both between real memory and external page storage.

parameter. Information that a user supplies to a
command.

profiler. A tool that can be used to obtain detailed sta
tistics on the run-time performance of your program.

random access mode. A mode for accessing data in a
nonsequential manner.

record-sequential files. Files consisting of a series of
fixed-length records. The length of a record is the
length of the longest FD entry for the file in the FILE
section of the program.

relative files. Files that allow you to access data ran
domly by specifying its position within the file. These
files consist of fixed-length records, each of which is
uniquely identified by a record number.

RM/COBOL. The Ryan McFarland 2.0 dialect of
COBOL.

Run-Time Environment (RTE). A module that inter
prets intermediate code and provides various support
services to native code.

Run-Time System (RTS). See Run-Time Environment

statement. An instruction in a program or procedure.

statically linked executable module. A module in the
form of a standard AIX a.out executable object module
that has all of its overlays and procedures linked i!J.tO
memory.

switch parameters. The switches that affect the way
your AIX VS COBOL program is run.

terminfo database.' A database containing terminal
descriptions.

G-2 User's Gmde for IBM AIX VS COBOL Compiler/6000

Index

-A flag 4-12
-C option flag 4-12
-CC option flag 4-12
-D option flag 4-12
-d symb flag 4-10
-e epsym flag 4-10
-F option flag 4-13
-g flag 4-10
-i flag 4-10
-k ext flag 4-10
-L dir flag 4-13
-1 key flag 4-11
-m symb =newsym flag 4-11
-N option flag 4-13
-o filename flag 4-11
-0 flag 4-13
-p flag 4-11, 4-13
-pg flag 4-11
-S flag 4-14
-T option flag 4-14
-u flag 4-12, 4-14
-v flag 4-12, 4-14
-W err-lever flag 4-14
-x flag 4-12
-X symb flag 4-15

A
A flag 4-12
ACCEPT statement 7-4
ACCEPT/DISPLAY 9-9, 9-14, 10-16
ADIS key control 10-25
adiscf utility 10-14
ADISCTRL 10-5
AIX VS COBOL

calling non-COBOL programs 2-15
calling subprograms 2-11
compiler flags 15-47
converting applications 13-6
converting DG Interactive COBOL

applications 14-4
data descriptions 12-29
debug switch (D) 7-8
development cycle 4-5
devices 3-4
DG data types 14-10
disk file structure under AIX 3-12
enhancing converted applications 14-4
facilities within multi-user 8-4

AIX VS COBOL (continued)
file assignment 3-4
file details 14-13
installation 1-8
interface command 4-4
introduction 1-4
migrating 13-7
optimizing programs 2-4
option specification 4-7
permitted options 6-4
program development cycle 1-6
program source conventions 1-7
programming restrictions 2-5
search sequence 2-11
source compatibility 13-9
submitting an application 13-7
submitting source programs 13-6
symbol switch (-e) 7-8
syntax checking errors 15-4
system components

ANIMATOR 1-5
compiler 1-5
dynamically loaded code 1-6
FORMS-2 1-5
linker 1-5
Native Code Generator 1-5
Run Time Environment 1-5
static linking and dynamic loading 1-6
statically linked code 1-6

work phase 12-18
alter option 10-16
altering

ACCEPT-DISPLAY options 10-16
ADIS key control 10-25
CRT-UNDER-HIGHLIGHTING

options 10-16
indicators 10-23
message and indicator positions 10-24
messages 10-23
tab stop options 10-22

alternate file status table 3-18
ANIMATOR

break points
setting 11-11
unsetting 11-12
using 11-11

CALLed programs 11-17
command line switches 11-16

Index X-1

ANIMATOR (continued)
commands 11-8

align 11-20
ANIMATOR 11-19
exchange 11-20
go 11-10
help 11-19
lookup 11-21
step 11-9
summary 11-41
view 11-20
where 11-20
word-left 11-21
word-right 11-21
zoom 11-11

cursor control keys 11-18
data item commands

add 11-36
before 11-36
brother 11-35
clear 11-34
cursor-name 11-38
delete 11-36
do 11-40
down-table 11-35
enter-name 11-39
find 11-37
following 11-37
hex and text 11-34
heX/ASCII 11-35
join 11-40
locate 11-37, 11-38
monitor 11-34
next 11-36
other menu 11-36
parent 11-35
previous 11-36
refresh 11-40
son 11-35
split 11-39
text 11-39
up-table 11-35
update 11-36

description 1-5
directives 11-6
display screen 11-7
ending 11-14
escape key 11-21
facilities not supported 11-5
file searches 11-16
getting started 11-5
help display screens 11-9

ANIMATOR (continued)
letter commands

animation speed 11-22
back track 11-31
break 11-24
cancel-all 11-25
cursor name 11-32
cursor position 11-24
do 11-26
dump-list 11-33
enter-name 11-32
env 11-27
examine 11-25, 11-31
exit 11-23
go 11-22
if 11-25
monitor-off 11-33
next 11-24
next-if 11-22
on-count 11-27
perform 11-23
program-break 11-27
query 11-32
quit-perform 11-24
repeat 11-33
reset 11-23
set 11-24
start 11-24
step 11-21, 11-23
threshold-level 11-28
unset 11-25
until 11-30
zoom 11-22

programs 11-15
running 11-6
stockl demo program 11-9
switch 7-7, 11-15

animator switch A-7
ANSI COBOL debug switch 7-8
ANS85 options 5-24
arithmetic of group level items 14-6
ASCII 5-6, 5-14, 5-21
assigning files 3-4
audible alarm 9-13
automatic locking 8-5

B
background/foreground 12-19
bcheck utility 3-14
binary sequential files 13-28

X-2 User's Guide for IBM AIX VS COBOL Compiler/6000

break points 11-11

c
C option flag 4-12
CALLed programs 11-17
CANCEL statement 2-9
cancelling non-COBOL subprograms 2-18
CC option flag 4-12
character sets B-3, C-1
choose option 10-29
CISAM file handler 9-26
cob command 4-4
COBATTR A-3
COBCPY 3-16, A-4
COBCTRLCHAR A-4
COBDIR 2-12, A-4
COBHELP A-5
COBIDY A-5
cobkeymp 10-5
coblongjmp library routine 9-4
COBLPFORM 3-4, A-5
COBOL interface command 4-4
COBOL profiler

description 7-14
directives 7-14
output 7-15

COBOL symbol switch 7-8
COBOPT 4-7, A-6
COBPATH 2-12, A-6
COBPRINTER A-7
cobprof 7-14
cobrun 7-4
cobsetjmp library routine 9-4
COBSW 7-6, A-7
cobtidy 2-17, 9-5
code problems, executable 13-14
collating sequence C-1
column number specification 13-13
command line

conventions 4-16
examples 4-17
options 4-8
passing 2-21
switches 11-16
syntax 7-4

command mode 12-21
commands

align 11-20
ANIMATOR 11-19
eXchange 11-20
go 11-22

commands (continued)
help 11-19
letter

See letter commands
lookup 11-21
selected data item

See selected data item commands
COMP-3/COMPUTATIONAL-3 data 13-21
COMP-6/COMPUTA TIONAL-6 data 13-22
compatibility check switch 7-8
compile for animation flag (-a) 4-9
compile to statically linkable object module flag

(-c) 4-9
compiler flags 15-4 7
compiler messages 5-29
component definitions 9-26
COMPUTATIONAL data types 13-10
COMPUTATIONAL-I data types 13-10
COMPUTATIONAL-6 data types 13-10
COMP/COMPUTATIONAL data 13-20
console display screen 12-16
conversion problem solving 13-11
converting data files 13-6
convert3

converting data files 13-6, 13-20
error messages 13-35
escape 13-29
generate program 13-28
parameter file 13-29
program modifications 13-23
running 13-24
running in batch mode 13-29
running with a parameter file 13-33
tabx program 13-8

convert5
error messages 14-22
escape 14-17
FD parameter 14-18
file conversion process 14-12
file conversion program 14-20
generate program 14-16
help 14-13
IDENTIFIER parameter 14-18
indexed files 14-1 O
LISTFILE parameter 14-17
PARAMETER file 14-17
printfile name 14-14
PROGRAM parameter 14-18
record number parameters 14-18
reformatting a DG source file 14-6
relative files 14-8
running 14-12

Index X-3

convert5 (continued)
sequential files 14-8
source file restrictions 14-11
SOURCEFILE parameter 14-17
SUBROUTINE parameter 14-18
supported data file types 14-8

COPY files 3-16, 5-16, A-4
CRT Screen handling 9-14
currency sign 12-16
currency symbol B-3
cursor control keys 11-18

D
D option flag 4-12
d symb flag 4-10
data

descriptions 12-29
locking 8-5
name base 12-16
names and program identification 13-13
naming 12-29

data i tern commands for ANIMATOR
add 11-36
before 11-36
brother 11-35
clear 11-34
cursor-name 11-38
delete 11-36
do 11-40
down-table 11-35
enter-name 11-39
find 11-37
following 11-37
hex and text 11-34
heX/ASCII 11-35
join 11-40
locate 11-37, 11-38
monitor 11-34
next 11-36
other menu 11-36
parent 11-35
previous 11-36
refresh 11-40
son 11-35
split 11-39
text 11-39
up-table 11-35
update 11-36

DBCS support 5-8, 10-22
dbx 4-10

DDS file 12-30
debug switch 7-8
debugging 4-10, 11-4
decimal point 12-16
DECIMAL-POINT IS COMMA clause 13-24
default options 5-24, 6-5
delete option 10-28
demonstration programs 8-13
DEPENDING names 13-24
devices 3-4
DGCOBOL

arithmetic of group level items 14-6
calls 14-6
converting applications to AIX VS

COBOL 14-4
converting data files 14-7
convert5 14-7
data types 14-10
directive 14-5
enhancing converted applications 14-4
exception values 14-6
file status 14-6
indexed files 14-10
international character set 14-5
linkage section access 14-6
program identification and data-names 14-6
reformatting a source file 14-6
reform5 14-7
reserved words 14-5
run-time switches 14-6
source compatibility 14-5

directives
See options

display attributes 9-15
display data 13-22
display raw data to screen 9-11., 9-19
display screen 12-18
display screen image file 12-33
display screen input and output 9-11
dynamic linkage setup switch 7-10
dynamically loadable native code D-4
dynamically loaded code 1-6
dynamically loaded programs 2-13

E
e epsym flag 4-10
EBCDIC 5-6, 5-14, 5-21
edit mode 12-20
embedded source file options 4-15
end-of-file notification 13-13

X-4 User's Guide for IBM AIX VS COBOL Compiler/6000

environment variables
COBATTR A-3
COBCPY A-4
COBCTRLCHAR A-4
COBDIR 2-12, A-4
COBHELP A-5
COBIDY A-5
COBLPFORM 3-4, A-5
COBOPT A-6
COBPATH 2-12, A-6
COBPRINTER A-7
COBSW 7-7, 7-8, 7-9, 7-10, 7-11, 7-12, A-7
TMPDIR 4-4, A-8
ulimit 3-17

error messages
compiler flags 15-47
converts 14-22
during code generation 15-54
Native Code Generator 15-54
Run Time Environment 15-60
severe compiler 15-7
syntax checking 15-4
types

exceptions 15-61
fatal 15-61
file operation 15-60
input-output 15-61
recoverable 15-60

error switch 7-8
error-handling 3-17
escape 14-17
escape key 11-21
exclusive locking 8-5

F
F option flag 4-13
fatal errors 15-61
FCD information format 9-23
FD parameter 13-30, 14-18
field wrap-around 13-17
file and record locking 13-19
file assignment

dynamic 3-5
file name mapping 3-7
fixed 3-5

file conversion program
creating 13-34
error messages 13-36
running 13-34
using 13-33

file handler
CISAM 9-26
description 9-20

file name base 12-16
file name mapping 3-7
file operation errors 15-60
file searches 11-16
file status 3-17, 8-11
file-related operations 9-8
files

indexed sequential 3-13
library 3-16
line-sequential 3-12
record-sequential 3-12
relative 3-12
restrictions 3-17

fixed text 12-30
fixed text display screens 12-32
flagging COBOL dialects 2-24, 5-32, 15-5
flags

-a 4-9, 4-12
-c 4-9
-C option 4-12
-CC option 4-12
-D option 4-12
-d symb 4-10
-e epsym 4-10
-F option 4-13
-g 4-10
-i 4-10
-k ext 4-10
-L dir 4-13
-1 key 4-11
-m symb = newsym 4-11
-N option 4-13
-0 4-13
-o filename 4-11
-p 4-11, 4-13
-pg 4-11
-S 4-14
-T option 4-14
-u 4-12, 4-14
-v 4-12, 4-14
-W err-level 4-14
-x 4-12
-X symb 4-15
+ F option 4-13

format of compiler options 5-4
FORMS-2 1-5

checkout program 12-31
display screen generation example 12-35
display screen image file 12-33

Index X-5

FORMS-2 (continued)
index program 12-39
index program example 12-43
initialization phase 12-5
maintenance 12-33
operator interface 12-6
outputs 12-5
validation 12-7
work phase 12-5
work phase completion 12-28

function key definition
alter 10-10

G

review existing 10-9
save 10-13

g flag 4-10
global information 9-25
go command 11-10

i flag 4-10
IDENTIFIER parameter 13-30, 14-18

run parameter 14-19
index program 12-39
indexed sequential file format 3-14
indexed sequential files 3-13, 8-9
information format, FCD 9-23
initialization display screen 12-16 12-17
initialization files '
initialization of WORKING-STORAGE 13-19
initialization phase 12-16
input-output error-handling 3-17
input-output errors 15-61
installation 1-8
intermediate code 2-7, D-4
interprogram communication 2-9
ISAM files sequence check switch 7-10

J
join a file name 9-7

K
k ext flag 4-10
key definitions for indexed flies 9-25
keybcf utility

description 10-6
invoking 10-8
using 10-9

keyboard conversion process 10-5
keyboard interrupt switch 7-9
keyboard status 9-13

L
L dir flag 4-13
I flag 4-11
1 key flag 4-11
letter commands

animation speed 11-22
back track ll-31
break 11-24
cancel-all 11-25
cursor name 11-32
cursor position 11-24
do 11-26
dump-list 11-33
enter-name 11-32
env 11-27
examine 11-25, 11-31
exit 11-23
go 11-22
if 11-25
monitor-off 11-33
next 11-24
next-if 11-22
on-count 11-27
perform 11-23
program-break 11-27
query 11-32
quit-perform 11-24
repeat 11-33
reset 11-23
set 11-24
start 11-24
step 11-21, 11-23
threshold-level 11-28
unset 11-25
until 11-30
zoom 11-22

library
files 3-16
subroutines

coblongjmp 9-4
cobsetjmp 9-4
cobtidy 9-5

limits in AIX VS COBOL system 2-5
line-sequential files 3-12, 8-6
LINKAGE SECTION access 14-6
linker 1-5

X-6 User's Guide for IBM AIX VS COBOL Compiler/6000

LISTFILE parameter 13-29, 14-17
listing format 5-30
load option 10-27

M
m symb = newsymb flag 4-11
mainframe options 5-27
manual locking 8-5
MCS

See message control system
memory switch 7-10
move the cursor 9-13
mudemo 8-13
multi-user environment 8-4
multi-user syntax 8-4

N
N option flag 4-13
National Language Support (NLS)

compiling programs B-4
features provided B-3
introduction B-3
mixing programs B-8
running programs B-5
specifying 5-14

native code
generator 1-5
generator messages 6-6, 15-54
using 2-7

non-COBOL subprograms 2-15
null switch 7-10
number specification 13-13
numbering segments 13-12

0
o file flag 4-11
0 flag 4-13
ON SIZE ERROR clause 13-17
operating system functions 2-23
operation codes 9-21
optimizing native code 2-8
options

alter 10-16
altering ACCEPT-DISPLAY 10-16
altering

CRT-UNDER-HIGHLIGHTING 10-16
altering tab stop 10-22
ANS85 5-24
choose 10-29
command line 4-8

options (continued)
default 5-24, 6-5
delete 10-28
embedded source file 4-15, 5-28
excluded combinations 5-23
format of compiler 5-4
load 10-27
mainframe 5-27
optional user default options 4-7
permitted 5-5, 6-4
save 10-28
specifications 4-7
system-wide default options 4-7

osext compiler option 3-16
overlaying 2-9

p
P flag 4-13
pack byte 9-14
packaging application programs D-3
parameter file 14-17
parameters

example file 13-32
FD 13-30, 14-18
IDENTIFIER 13-30, 14-18
LISTFILE 13-29, 14-17
PROGRAM 13-30, 14-18
record number 13-31, 14-18
RUN 13-31
SIGN 13-30
SOURCEFILE 13-29, 14-17
SUBROUTINE 13-30, 14-18
switch 7-6

PERFORM statement behavior 5-16, 13-9
picture generation 12-30
PICTURE strings 13-24
pipes 3-10
pi.cbl 1-9
portability of COBOL syntax 5-32
preparing application packages D-3
printing file using print spooler 3-20
procedure division 8-11
profiler 7-14
program identification and data-names 13-13
PROGRAM parameter 13-30, 14-18
programming restrictions 2-5
programs

call and cancel 2-9
cancelling non-COBOL subprograms 2-18
demonstration 8-13
development cycle 1-6

Index X-7

programs (continued)
dynamically loaded 2-13
large 2-8
mixing C and COBOL 2-18
mudemo.cbl 1-8
optimizing COBOL 2-4
pi.cbl 1-8
source conventions 1-7
stockin.cbl 1-8
stockioa.cbl 1-8
stockiom.cbl 1-8
stockout.cbl 1-8
stockl.cbl 1-8
tabx 13-8

put a character to the screen 9-6

R
read a character from the keyboard 9-7
READ statement 7-4
record

naming 12-29
number parameters 13-31, 14-18
sequential files 3-12, 8-6

REDEFINES clause 13-23
reformatting a DG source file 14-6
reforms 14-7
relative files 3-12, 8-7
reread locked record switch 7-11
reserved words 13-12, 14-5
restrictions

ANSI COBOL standard X3.23 3-17
programming 2-5
SAA 2-6

RM directive 13-9
RM file status error switch 7-11
RTE subprograms 9-5
RUN parameter 13-31
run time

environment 1-5
switches 7-7, 14-6
system error messages 7-13
system errors 15-60

Run Time package D-3

s
S flag 4-14
SAA COBOL compatibility 5-27
SAA compatibility 2-6
save option 10-28

screen handling from C 9-16
segmentation 2-9
segments 13-12
sharing files on multi-user systems 8-12
SIGN parameter 13-30
skip locked record switch 7-7
Sort memory switch 7-6
sort switch 7-12
SOURCEFILE parameter 13-29, 14-17
split/join a file name 9-7
static linking and dynamic loading 1-6
statically linkable native code D-3
statically linked code 1-6
stdin 7-4
step command 11-9
stockl demo program 11-9
stock.cbl 1-10
STOCK.IT 1-11
STOCK.IT.idx 1-11
SUBROUTINE parameter 13-30, 14-18
switch parameters

ANIMATOR (A) 7-7
ANSI COBOL debug 7-8
COBOL symbol 7-8
compatibility check (F) 7-.8
description 7-6
dynamic linkage setup (p) 7-10
error (E) 7-8
examples 7-13
ISAM files sequence check (K) 7-10
keyboard interrupt (i) 7-9
memory (1) 7-10
null (N) 7-10
reread locked record (R) 7-11
RM file status error (Q) 7-11
run-time 7-7
skip locked record (B) 7-7
sort (S) 7-12
tab (T) 7-12

symbol switch 7-8
system-wide default options 4-7

T
T op ti on flag 4-14
tab switch 7-12
tabx program 13-8
terminfo 10-5
test keyboard status 9-13
TMPDIR 4-4, A-8
trailing blanks 13-15

X-8 User's Guide for IBM AIX VS COBOL Compiler/6000

u
u flag 4-12, 4-14
ulimit 3-17
unpack byte 9-14
USAGE IS INDEX clause 13-23
USE procedures 3-18
user attributes 9-9
user default options 4-7

v
v flag 4-12
variable data display screens 12-32
variable data fields 12-30
verbose flag 5-29

w
W err-level flag 4-14
work display screen 12-19
work phase 12-18
work phase completion 12-28
WRITE output directly to a printer 3-20

x
x flag 4-12
X symb flag 4-15

z
zoom command 11-11

Numerics
8-bit character sets B-3

Special Characters
+ F option flag 4-13
$SET option specification 4-15, 5-28

Index X-9

Reader's Comment Form

User's Guide for IBM AIX VS COBOL Compiler/6000
SC23-2178-00

Please use this form only to identify publication errors or to request changes in publications. Your
comments assist us in improving our publications. Direct any requests for additional publications, technical
questions about IBM systems, changes in IBM programming support, and so on, to your IBM representative
or to your IBM-approved remarketer. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this box and do
not include your name and address below. If your comment is applicable, we will include it in the next
revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request additional
publications.

Please print

Date-----

Your Name--
Company Name--------------------------------------

Mailing Address -----------------------------

Area Code

No postage necessary if mailed in the U.S.A

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-1---
1 PIO::I PIO::I

I
I
I
I
b
c:
:.J
C>
c:
0
<(
"'O

~
0
"5
(.)

I
I
I
I
I
I
I
I
I
I
I
I
r---
1 ade1 pue p10::1 a1deis lON oa asea1d ade1 pue p10::1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---------= =-= == - - ---- - - ----------- ·-
© IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2178-00

SC23-217B-00

