
11• mll
11:11:11
11111111
·••I 111 1111

I
Q)
:1
cc
c
Q)
cc
CD
ll
CD
CD
(il
:1
0
CD

SC23-2177-00

First Edition (March 1990)

This edition of the Language Reference for IBM AIX VS COBOL Compiler/6000 applies to Version
Number 1.1 of the IBM AIX VS COBOL Compiler/6000 Licensed Program and to all subsequent
releases of these products until otherwise indicated in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such pro
visions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPO
RATION PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions; therefore, this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are period
ically made to the information herein; these changes will be incorporated in new editions of the pub
lication. IBM may make improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country. Any reference to an IBM licensed program in
this publication is not intended to state or imply that you can use only IBM's licensed programs.
You can use any functionally equivalent program instead.

Requests for copies of this publication and for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed,
address comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin,
Texas 78758-3493. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

IBM is a registered trademark of International Business Machines Corporation.

©Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

©Copyright Micro Focus, Ltd. 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

ii Language Reference

Trademarks

The following trademarks apply to this book.

• IBM is a registered trademark of International Business Machines Corporation.

• AIX PS/2 VS COBOL is a trademark of International Business Machines Corporation.

• AIX VS COBOL Compiler/6000 is a trademark of International Business Machines Cor-
poration.

• AIX/RT VS COBOL is a trademark of International Business Machines Corporation.

• RT is a registered trademark of International Business Machines Corporation.

• AIX is a trademark of International Business Machines Corporation.

• AIX VS COBOL is a trademark of International Business Machines Corporation.

• OS/VS COBOL and VS COBOL II are trademarks of International Business Machines
Corporation.

• VS COBOL is a trademark of Micro Focus.

Trademarks iii

iv Language Reference

About This Book

This book discusses the IBM implementation of the VS COBOL language on the AIX Oper
ating System. The book contains language syntax and semantics representing COBOL at
the ANSI 85 High Level and ANSI 7 4 High Level.

Please note that this book does not teach COBOL language programming. You should use
this book for reference only.

Who Should Read This Book

This book is intended for persons with some knowledge of COBOL programming concepts
and some experience in writing COBOL programs.

This book assumes you know how to use your AIX system. You should be able to log on,
create files, edit files, and use various other operating system commands.

How This Book is Organized

Part 1, Introduction and COBOL Concepts

Chapter 1, "Introduction," provides an introduction to the COBOL language elements,
book notation style, and formats and rules.

Chapter 2, "COBOL Concepts," describes the language concepts and Identification,
Environment, Data, and Procedure Divisions.

Part 2, The Nucleus

Chapter 3, "Introduction to the Nucleus," describes the internal processing of data
within the four divisions of a program.

Chapter 4, "Identification Division in the Nucleus," describes the Identification Divi
sion of the nucleus.

Chapter 5, "Environment Division in the Nucleus," describes the Environment Divi
sion of the nucleus.

Chapter 6, "Data Division," describes the Data Division of the nucleus.

Chapter 7, "Procedure Division in the Nucleus," describes the Procedure Division of
the nucleus.

Part 3, File 1/0, Source Control, and Inter-Program Communication

Chapter 8, "File Input and Output," describes the use of sequential, relative, and
indexed 1/0 with files.

Chapter 9, "COBOL Source Library," describes editing text, copying text from a source
user library file and replacing text in the source program.

Chapter 10, "Listing Control," describes the functions of the list control statement.

Chapter 11, "Interprogram Communication," describes the facility by which a program
can communicate with one or more programs.

Part 4, Advanced Features

Chapter 12, "Table-Handling," describes the capability for defining tables of contig
uous data items and accessing items within the table.

About This Book v

Chapter 13, "Sort-Merge," describes the capability of ordering, sorting and merging
files.

Chapter 14, "Report Writer," describes the Report Writer feature, which emphasizes
the organization, format, and contents of an output report.

Chapter 15, "Communication," describes how to access, process, and create messages,
and how to communicate with local and remote communication devices.

Chapter 16, "Segmentation," describes the capability to specify object program overlay
requirements.

Chapter 17, "Program Debugging," describes the procedures for monitoring execution
of the object program.

Chapter 18, "Screen-Handling," describes the enhanced screen handling facilities.

Appendix A, "Ryan-McFarland Syntax Supplement," provides supplemental syntax
information for when you submit your code to the COBOL system and the RM directive
is set.

Appendix B, "Data General Syntax Supplement," provides supplemental syntax infor
mation for when you submit your code to the COBOL system and the DG directive is
set.

Appendix C, "Microsoft Syntax Supplement," lists AIX VS COBOL syntax that is com
patible with Microsoft COBOL.

Appendix D, "Reserved Word List,'' lists the reserved words.

This book also contains an index and a glossary that defines terms used in this publication.

Highlighting

Text

This book uses two sets of highlighting conventions:

• Highlighting within text
• Highlighting within syntax diagrams.

Type styles appearing within the text show the following:

Type Style Description

Monos pace

Bold

Bold Italic

Examples appear in monospace type.

Commands, messages, and keywords appear in bold type.

New terms appear in bold italic type.

Syntax Diagrams

Throughout this book, syntax is described using the structure defined below:

• Read the syntax diagrams from left to right, from top to bottom, following the path of
the line.

The following symbol indicates the beginning of a statement:

-
vi Language Reference

The following symbol indicates that the statement syntax is continued on the next line:

-
The following symbol indicates that a statement is continued from the previous line:

--
The following symbol indicates the end of a statement:

• Required items appear on the horizontal line (the main path).

~ ST AT EMENT -- required item .,,.

• Optional items appear below the main path.

~STATEMENT -~-------~---11.,.,.,.

Loptional itemJ

• When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

~STATEMENT L required choi eel OJ
required choice2

....

If choosing an item is optional, the entire stack appears below the main path.

~STATEMENT-.----------.--.. ,..,.
[=optional choicelj

optional choice2

• An arrow returning to the left above the main line indicates an item that can be
repeated.

' ..,.__STATEMENT-- repeatable i tern__..

A repeat arrow above a stack indicates that you can make more than one choice from
the stacked items, or repeat a single choice.

• COBOL key words appear on the main path in uppercase letters. They must be spelled
exactly as shown. Optional COBOL words appear below the main path in uppercase
letters and are not required.

• Variables appear in all lowercase letters (for example, parmx). They represent user
supplied names or values.

• Dialects or language extensions appear in italic font with callouts at the right margin
identifying the dialects.

~DIALECT WORD -- dialect-parml osvs

About This Book vii

D

• If a dialect allows the omission of a COBOL word or words, a no word appears under
the COBOL word .

.... [COBOL WO~
NO WORD

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown,
they must be entered as part of the syntax.

The following example shows how the syntax is used:

El
--sTATEMENT-c identifie~

literal-I

..-.. -~L_r_o_~~ ident ifi er-m ~L_R_o_uN_o_E_o _~~~L----------------... i

~d~ifier-n~~~~~~~~~~~--.. 2
L ROUNDED _J

f---~-SIZE ERROR imperative-statement
ON

where item-1 is:

t identifier-2
l itera 1-2 arithmetic-expression-I~

DIALECT WORD

D The STATEMENT key word must be specified and coded as shown.

El This operand is required. Either identifier-1 or literal-1 can be coded.

osvs

II The operand item-1 is optional. It can be coded or not, as required by the appli
cation. If coded, it may be repeated with each entry separated by one or more
blanks. Entry selections allowed for this operand are described at the bottom of
the diagram.

II The operand identifier-n is optional. If specified, it can be repeated with one or
more blanks separating each entry. Each entry can be assigned the key word
ROUNDED.

II In cases where multiple lines must be continued, a number is given at the end of
one line and the beginning of the next to show syntax flow.

D The ON SIZE ERROR key word, with associated imperative statement, can be
coded after the last identifier-n operand. If coded, SIZE ERROR is required, ON
is optional, and it appears below the main path.

fJ The dialect word is a supported non-ANS85 dialect. The word and the callout
both appear in italic font.

viii Language Reference

The following notations are highlighted to indicate features outside ANSI X3.23-1985:

OSVS For IBM OS/VS COBOL Release 2.4 and earlier.

VSC2 For IBM VS COBOL II Release 2.

MF For Micro Focus extensions.

Related Publications

The AIX VS COBOL Compiler/6000 documentation is available in hardcopy publications
only. Softcopy information to support AIX and other licensed programs is provided with
the product. The entire AIX library is available as softcopy on a CD-ROM. Refer to the
operating system documentation for more detailed information on the various features of
AIX. The following hardcopy documentation is also available: User's Guide for IBM AIX
VS COBOL Compiler/6000 describes how to compile and execute AIX VS COBOL programs.

Ordering Additional Copies of This Book

To order additional copies of this publication, use the form number SC23-2177-00.

About This Book ix

x Language Reference

PART 1. Introduction and COBOL Concepts

Chapter 1. Introduction
Contents
About This Chapter
IBM AIX VS COBOL Language .
Program Structure
Manual Format

Chapter 2. COBOL Concepts
Contents
About This Chapter
Language Concepts
Character Set
Language Structure
Concept Of Computer-Independent Data Description
Explicit and Implicit Specifications
Program Structure .
Identification Division
Environment Division
Data Division
Procedure Division
Reference Format
Reserved Words

PART 2. The Nucleus

Chapter 3. Introduction to the Nucleus
Contents
About This Chapter
Function of the Nucleus
Overall Language
A COBOL Source Program

Chapter 4. Identification Division in the Nucleus
Contents
About This Chapter
General Description .
PROGRAM-ID Paragraph
DATE-COMPILED Paragraph
REMARKS Paragraph .

Contents

1-1
1-2
1-3
1-4.
1-7
1-7

2-1
2-2
2-3
2-4
2-4
2-5

2-16
2-34
2-37
2-38
2-39
2-41
2-44
2-52
2-55

3-1
3-2
3-3
3-4
3-4
3-5

4-1
4-2
4-3
4-4
4-6
4-7
4-8

Chapter 5. Environment Division in the Nucleus 5-1
Contents . 5-2
About This Chapter . 5-3
General Description . 5-4
Configuration Section . 5-4
SOURCE-COMPUTER Paragraph . 5-5
OBJECT-COMPUTER Paragraph . 5-6
SPECIAL-NAMES Paragraph . 5-8

Chapter 6. Data Division .
Contents
About This Chapter
WORKING-STORAGE SECTION

6-1
6-2
6-5
6-6

Contents xi

Data Description - Complete Entry Skeleton
BLANK WHEN ZERO Clause
Data-Name or FILLER Clause
JUSTIFIED Clause .

. 6-7
6-11
6-12
6-13

Level Number
PICTURE Clause ..
REDEFINES Clause
RENAMES Clause .. .
SIGN Clause .. .
SYNCHRONIZED Clause .
USAGE Clause
VALUE Clause .. .

6-15
6-18
6-29
6-32
6-35
6-37
6-39
6-41

Chapter 7. Procedure Division in the Nucleus 7-1
Contents . 7-2
About This Chapter . 7-5
Procedure Division in the Nucleus . 7-6
Arithmetic Expressions . 7-7
Conditional Expressions . 7-9
Common Phrases and General Rules for Statement Formats 7-19
ACCEPT Statement . 7-22
ADD Statement . 7-24
ALTER Statement . 7-27
COMPUTE Statement . 7-29
CONTINUE Statement . 7-31
DISPLAY Statement . 7-32
DIVIDE Statement . 7-34
ENTER Statement . 7-38
EVALUATE Statement . 7-39
EXAMINE Statement . 7-43
EXEC(UTE) Statement . 7-45
EXHIBIT Statement . 7-46
EXIT Statement . 7-48
GO TO Statement . 7-50
IF Statement . 7-52
INITIALIZE Statement . 7-54
INSPECT Statement . 7-57
MOVE Statement . 7-65
MULTIPLY Statement . 7-69
ON Statement . 7-71
PERFORM Statement . 7-73
SET Statement . 7-84
STOP Statement . 7-86
STRING Statement . 7-87
SUBTRACT Statement . 7-91
TRANSFORM Statement . 7-94
UNSTRING Statement . 7-96

PART 3. File 1/0, Source Control, and Inter-Program Communication

Chapter 8. File Input and Output . 8-1
Contents . 8-2
About This Chapter . 8-5
Introduction . 8-6
Sharing Files on Multiuser Systems . 8-12
Environment Division for File Input and Output . 8-16
INPUT-OUTPUT SECTION . 8-16
FILE-CONTROL Paragraph . 8-17
FILE-CONTROL Entry . 8-18
I-0 Control Paragraph . 8-29
Data Division for File Input and Output . 8-34
BLOCK CONTAINS Clause . 8-39

xii Language Reference

CODE-SET Clause . 8-40
DATA RECORDS Clause . 8-42
LABEL RECORDS Clause . 8-43
LINAGE Clause . 8-44
RECORD Clause . 8-47
RECORDING MODE Clause . 8-50
VALUE OF Clause . 8-51
Procedure Division for File Input and Output . 8-53
CLOSE Statement . 8-53
COMMIT Statement . 8-58
DELETE Statement . 8-59
OPEN Statement . 8-62
READ Statement . 8-68
REWRITE Statement . 8-75
START Statement , , . , 8-79
UNLOCK Statement . 8-85
USE Statement . 8-86
WRITE Statement . 8-89

Chapter 9. COBOL Source Library . 9-1
Contents . 9-2
About This Chapter . 9-3
Introduction . 9-4
COPY Statement . 9-5
REPLACE Statement . 9-10

Chapter 10. Listing Control . 10-1
Contents . 10-2
About This Chapter . 10-3
SKIPl, SKIP2, and SKIP3 Statements . 10-4
EJECT Statement . 10-5
TITLE Statement . 10-6

Chapter 11. Interprogram Communication . 11-1
Contents . 11-2
About This Chapter . 11-5
Introduction . 11-6
Language Concepts . 11-6
Nested Source Programs . 11-10
END PROGRAM Header . 11-13
Identification Division in the Interprogram Communication Module 11-15
Data Division in the Interprogram Communication Module 11-17
LINKAGE SECTION . 11-17
File Description Entry in the Interprogram Communication Module 11-19
Data Description Entry in the Interprogram Communication Module 11-25
Report Description Entry in the Interprogram Communication Module 11-28
EXTERNAL Clause . 11-30
GLOBAL Clause . 11-31
Procedure Division in the Interprogram Communication Module 11-33
CALL Statement . 11-36
CANCEL Statement . 11-43
CHAIN Statement . 11-45
ENTRY Statement . 11-47
EXIT PROGRAM Statement . 11-50
GOBACK Statement . 11-51
USE Statement . 11-52
USE BEFORE REPORTING Statement . 11-53

PART 4. Advanced Features

Chapter 12. Table-Handling 12-1

Contents xiii

Contents . 12-2
About This Chapter . 12-3
Introduction . 12-4
Data Division in the Table-Handling Module . 12-5
OCCURS Clause . 12-5
USAGE IS INDEX Clause . 12-12
Procedure Division in the Table-Handling Module 12-13
SEARCH Statement . 12-14
SET Statement . 12-19
Table-Handling Sample Program . 12-21

Chapter 13. Sort-Merge . 13-1
Contents . 13-2
About This Chapter . 13-3
Introduction . 13-4
Environment Division in the Sort-Merge Module-Input-Output Section 13-4
FILE-CONTROL Paragraph . 13-5
FILE-CONTROL Entry . 13-6
I-0-CONTROL Paragraph . 13-8
Data Division in the Sort-Merge Module . 13-10
Sort-Merge File Description - Complete Entry Skeleton 13-10
DATA RECORDS Clause . 13-12
RECORD CONTAINS Clause . 13-13
Procedure Division in the Sort-Merge Module 13-14
MERGE Statement . 13-14
RELEASE Statement . 13-18
RETURN Statement . 13-19
SORT Statement . 13-21
Sort-Merge Sample Program . 13-26

Chapter 14. Report Writer . 14-1
Contents . 14-2
About This Chapter . 14-5
Introduction . 14-6
REPORT SECTION . 14-6
Report Structure . 14-6
Environment Division in the Report Writer Module . 14-10
INPUT-OUTPUT Section . 14-10
FILE-CONTROL Paragraph . 14-10
I-0-CONTROL Paragraph . 14-10
Data Division in the Report Writer Module . 14-11
File Description Entry . 14-11
REPORT Clause . 14-14
REPORT SECTION . 14-16
CODE Clause . 14-19
CONTROL Clause . 14-20
PAGE Clause . 14-22
Example 1 . 14-25
Example 2 . 14-26
Example 3 . 14-27
Report Group Description Entry . 14-28
COLUMN NUMBER Clause . 14-45
Data-Name . 14-46
GROUP INDICATE Clause . 14-47
Level-Number . 14-48
LINE NUMBER Clause . 14-49
NEXT GROUP Clause . 14-51
SIGN Clause . 14-53
SOURCE Clause . 14-55
SUM Clause . 14-56
TYPE Clause . 14-59
USAGE Clause . 14-63

xiv Language Reference

VALUE Clause . 14-64
Procedure Division in the Report Writer Module . 14-66
CLOSE Statement . 14-67
GENERATE Statement . 14-68
INITIATE Statement . 14-71
OPEN Statement . 14-72
SUPPRESS Statement . 14-73
TERMINATE Statement . 14-74
USE BEFORE REPORTING Statement . 14-76
Report Writer Sample Program . 14-77

Chapter 15. Communication . 15-1
Contents . 15-2
About This Chapter . 15-3
Introduction . 15-4
Data Division in the Communication Module . 15-4
Procedure Division in the Communication Module 15-19
ACCEPT MESSAGE COUNT Statement . 15-20
DISABLE Statement . 15-21
ENABLE Statement . 15-23
PURGE Statement . 15-25
RECEIVE Statement . 15-26
SEND Statement . 15-29
Communication Sample Program . 15-33

Chapter 16. Segmentation . 16-1
Contents . 16-2
About This Chapter . 16-3
Introduction . 16-4
General Description of Segmentation . 16-4
Structure of Program Segments . 16-6
Restrictions on Program Flow . 16-7

Chapter 17. Program Debugging . 17-1
Contents . 17-2
About This Chapter . 17-3
Introduction . 17-4
Environment Division in COBOL Debug . 17-5
WITH DEBUGGING MODE Clause . 17-5
Procedure Division in COBOL Debug . 17-6
READY TRACE Statement . 17-6
RESET TRACE Statement . 17-7
USE FOR DEBUGGING Statement . 17-8
Debugging Lines . 17-13
Debugging Facilities Sample Program . 17-14

Chapter 18. Screen-Handling . 18-1
Contents . 18-2
About This Chapter . 18-5
Introduction . 18-6
Environment Division in the Screen-Handling Module . 18-8
SPECIAL-NAMES Paragraph . 18-9
CONSOLE IS CRT Clause . 18-10
CURSOR IS Clause . 18-11
CRT STATUS Clause . 18-12
Data Division in the Screen-Handling Module . 18-14
SCREEN SECTION . 18-14
Screen Description - Complete Entry Skeleton . 18-15
AUTO Clause . 18-21
BACKGROUND-COLOR Clause . 18-22
BELL Clause . 18-24
BLANK Clause . 18-25

Contents xv

BLANK WHEN ZERO Clause .
BLINK Clause
COLUMN Clause
FOREGROUND-COLOR Clause
FULL Clause .
GRID Clause
HIGHLIGHT Clause
JUSTIFIED Clause .
LEFTLINE Clause .
LINE Clause
OCCURS Clause .
OVERLINE Clause .
PICTURE Clause .
PROMPT Clause
REQUIRED Clause .
REVERSE-VIDEO Clause
SECURE Clause .. .
SIGN Clause ... -.. .
SIZE Clause
UNDERLINE Clause
VALUE Clause
ZERO-FILL Clause
Procedure Division
ACCEPT Statement
DISPLAY Statement

Appendix A. Ryan-McFarland Syntax Supplement
Introduction
Reserved Words .
Identification Division - The PROGRAM-ID Paragraph
Environment Division
Data Division .
Procedure Division

Appendix B. Data General Syntax Supplement
Introduction .
Long User-Defined Nam es .
Environment Division
Data Division .
Procedure Division

Appendix C. Microsoft Syntax Supplement
Introduction .

18-26
18-27
18-28
18-30
18-32
18-34
18-35
18-36
18-37
18-38
18-40
18-42
18-43
18-45
18-46
18-47
18-48
18-49
18-50
18-51
18-52
18-53
18-54
18-55
18-61

A-1
A-3
A-3
A-3
A-3
A-6
A-8

B-1
B-3
B-3
B-4
B-6
B-7

Compatibility with Microsoft COBOL .
Dialect Controlling Directives .
Summary of Syntactic Differences .
Problem Determination .

C-1
C-3
C-3
C-3
C-3
C-8

Appendix D. Reserved Word List
Introduction

Appendix E. Obsolete Language Elements
Introduction .
List of Obsolete Language Elements

Glossary

Index

xvi Language Reference

D-1
D-3

E-1
E-3
E-3

G-1

X-1

1-1.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
6-1.
7-1.
7-2.
7-3.

7-4.

7-5.

7-6.

8-1.
8-2.

12-1.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
15-1.
15-2.
18-1.

Figures

A Sample COBOL Program Showing Source Format
Example of Level Numbers in Group Descriptions
Example of Level Numbers Representing a Data Hierarchy
Storage Allocation
Sample Computer Storage Allocation
Number Storage
Reference Format for a COBOL Source Line
PICTURE Character Precedence Chart
Relational Operators
INSPECT Statement and the Execution Result . . .
The VARYING Option of a PERFORM Statement with the TEST BEFORE
Phrase Having One Condition
The VARYING Option of a PERFORM Statement with the TEST BEFORE
Phrase Having Two Conditions .
The VARYING Option of a PERFORM Statement with the TEST AFTER
Phrase Having One Condition
The VARYING Option of a PERFORM Statement with a TEST AFTER
Phrase Having Two Conditions .
Valid Combinations of File Status Keys 1 and 2
Relationship of CLOSE Statement with File Category
Flowchart of SEARCH Operation Containing Two WHEN Phrases
Illustration of PAGE Clause Ranges
Values Assumed for Omitted PAGE Clause Options
Report Heading Group Presentation Rules Table
Page Heading Group Presentation Rules Table
Body Group Presentation Rules
Report Footing Presentation Rules . .
Communication Status Key Condition
Error Key Values
Permitted Use Of Options

1-10
2-17
2-17
2-18
2-23
2-27
2-52
6-28
7-11
7-63

7-78

7-79

7-80

7-81
8-12
8-57

12-18
14-24
14-24
14-36
14-37
14-39
14-44

15-8
15-9
18-7

Figures xvii

xviii Language Reference

2-1.
2-2.
2-3.
2-4.
2-5.

2-6.
2-7.
2-8.
2-9.

2-10.
5-1.
6-1.
6-2.
7-1.
7-2.
7-3.
8-1.
8-2.
8-3.
8-4.

12-1.
12-2.
13-1.
14-1.
14-2.
14-3.
18-1.
A-1.
D-1.

Figurative Constant Values and the Reserved Words
Special Registers, Implicit Data Description Picture, and Usage
Data Levels, Classes, and Categories
Incorporation of Sign Data into the Requisite Digit

Tables

2-12
2-13
2-19
2-21

COMP(UTATIONAL) Format Data Item Character-Position (Byte) Storage
Assignment
Change of Results Due to TRUNC Directive
Binary-Coded Decimal Form
COMPUTATIONAL-3 Sign Digit Representation
Numeric Data Storage for the COMP(UTATIONAL)-3 or
PACKED-DECIMAL PICTURE Clause
Explicit Scope Terminators
Function-Name Reference
Editing Types for Data Categories
Editing Symbols in PICTURE Character Strings .
Combination of Symbols in Arithmetic Expressions
Combinations of Conditions, Logical Operators, and Parentheses
MOVE Statement Data Categories
Default Locking for Sequential Files
Default Locking for Relative and Indexed Files
AFTER POSITIONING Phrase with identifier-2
AFTER POSITIONING Phrase with integer-I
Storage Layout for Table-Three
SET Statement Valid Operand Combinations
Status Key Combinations
Page Regions Established by the Page Clause
Permissible Clause Combinations in Format 3 Entries
Page Footing Presentation Rules
Valid Combinations of CRT Status Keys 1 and 2
Mapping of File I-0 Status Codes
Reserved Words .

2-22
2-24
2-25
2-26

2-26
2-36
5-14
6-23
6-24

. 7-8
7-17
7-68
8-14
8-15
8-95
8-95
12-9

12-20
13-7

14-25
14-32
14-41
18-13
A-11
D-4

Tables xix

xx Language Reference

PART 1. Introduction and COBOL Concepts

PART 1. Introduction and COBOL Concepts

Language Reference

Chapter 1. Introduction

Introduction 1-1

Contents

About This Chapter . 1-3
IBM AIX VS COBOL Language . 1-4

Supported Language Elements of IBM OS/VS COBOL 1-4
Supported Elements of IBM VS COBOL II ; 1-4
Supported Micro Focus COBOL Enhancements , 1-5
Supported Double-Byte Character Set Features (DBCS) 1-5

Program Structure . 1-7
Manual Format . 1-7

General Format . 1-7
Syntax Rules . 1-8
General Rules . 1-8
Elements . 1-8
Source Format ... 1-8
Sequence Number ... 1-8
Indicator Area . 1-8
Areas A and B ... 1-9

1-2 Language Reference

About This Chapter

This chapter describes the following:

• The AIX VS COBOL language coverage
• The formats and rules used in this manual
• The source format of COBOL source records.

Introduction 1-3

IBM AIX VS COBOL Language

COmmon Business Oriented Language, COBOL, is the programming language most widely
used in commercial and administrative data processing.

The AIX VS COBOL language is a superset of ANSI COBOL 1985 HIGH as specified in
American National Standard Programming Language COBOL ANSI X3.23-1985. Language
extensions include:

• Some of the more commonly used extensions of IBM OS/VS COBOL (Release 2.4 and
earlier)

• Most of the language constructs of IBM VS COBOL II (Release 2), December, 1986

• Additional extensions unique to this implementation of COBOL such as:

Micro Focus specific extensions
Ryan McFarland syntax
Data General syntax
Microsoft syntax.

Combinations of these extensions are permissible in program source. In addition, a flag
ging option to identify the various language extensions in COBOL source programs
ensures that programs can be verified as being valid for any given one of the language
specifications.

AIX VS COBOL Compiler/6000 allows programmers to write SAA-conforming programs
according to the SAA CPI COBOL Reference, SC26-4354-1.

AIX VS COBOL Compiler/6000 is source code compatible with AIX/RT VS COBOL and
with AIX PS/2 VS COBOL.

AIX VS COBOL fully supports the ANSI optional modules Segmentation, Report Writer,
and Debug. The syntax for the ANSI optional module Communications is accepted, but
Communications is not supported at run time.

Supported Language Elements of IBM OS/VS COBOL

The elements of OS/VS COBOL that are fully supported include:

• The EXAMINE, EXHIBIT, TRANSFORM, ON, and GOBACK procedural statements

• The RETURN-CODE, CURRENT-DATE, TIME-OF-DAY, TALLY, and
WHEN-COMPILED special registers

• Language Level 1 COPY statement and COPY ... SUPPRESS feature

• 2, 4, and 8 byte COMPUTATIONAL and SYNCHRONIZED numeric data memory allo-
cation option

• The ENTRY ... USING statement mechanism

• The REMARKS paragraph and EJECT and SKIP statements.

Many other language features are supported either fully or at the documentary level.

Supported Elements of IBM VS COBOL II

Some supported elements of IBM VS COBOL II not already listed above are:

• Nested COPY statements

• LENGTH special register

• TITLE statement

1-4 Language Reference

• USAGE POINTER

• ADDRESS special register.

Supported Micro Focus COBOL Enhancements

A screen-handling module, comprising a SCREEN SECTION and additional formats of
ACCEPT and DISPLAY statements, which enables the user to specify exact location of
fields on a display screen, accept data entered at specified positions, display literal text at
specified positions, define display screen attributes, and control console features. ·

Enhanced file I-0 with an additional ORGANIZATION to handle text files efficiently and
to handle optional definition of file names either within a program source (data variable or
literal) or at run time from operating system environment variables. File sharing features
and record locking are also provided.

Supported Double-Byte Character Set Features (DBCS)

AIX VS COBOL supports the use of Double-Byte Character Set (DBCS) features as speci
fied in the SAA CPI COBOL Reference. In this manual, references to DBCS supported
features will be enclosed in a framing box, as follows:

DBCS Support

.__ ____________ End of DBCS Support ------------~

Note: To use the DBCS-supporting implementation of AIX VS COBOL, you must have
installed the DBCS version of the AIX VS COBOL compiler, and you must use the DBCS
compiler option on your compilations. See the User's Guide for more information on
installation and options.

Below is a summary of supported DBCS features. These include all DBCS features sup
ported in the SAA CPI COBOL Reference. Features specified in SAA have page references
to the SAA CPI COBOL Reference (SC26-4354-1).

SAA
Page Supported Feature

18 Summary of DBCS elements supported

20 DBCS characters allowed in character strings

22 DBCS character strings allowed in literals and comments

26 There is a DBCS type of literal; mixed strings

26 SBCS and DBCS characters can be mixed in nonnumeric literals

27 Specification for G" " DBCS literal

28 DBCS characters allowed in comments

34 DBCS literals cannot be continued

44 DBCS character strings allowed in comments in ID division

54 CURRENCY SIGN clause cannot use uppercase G

63 RECORD KEY clause in Environment Division may use DBCS data item

78 DBCS class and category added to chart of data categories

93 BLANK WHEN ZERO clause not allowed for DBCS items

Introduction 1-5

94 JUSTIFIED RIGHT may be used for DBCS items

94 OCCURS clause may be specified for a DBCS item

95 ASC/DESC KEY phrase may use DBCS item in OCCURS clause in SEARCH ALL

102 Lowercase g is equivalent to uppercase G for DBCS PIC strings

103 PICTURE clause description for G, DBCS B

106 PICTURE symbol sequence chart

106 G may appear more than once in one PIC character string

106 G may appear alone in the PIC character string

108 DBCS and DBCS-edited are additional data categories

110 PICTURE string description for DBCS and DBCS-edited item

111 Describes insertion symbols allowed for DBCS items

119 RENAMES clause in Data Division may specify DBCS items

122 SYNCHRONIZED clause is ignored for DBCS items

124 DISPLAY-I is added as a USAGE type

126 DISPLAY-I usage phrase defines a DBCS item

.129 VALUE clause associated with a DBCS item must contain a DBCS literal

131 DBCS literals allowed in VALUE clauses

132 Relation tests allowed for DBCS items

134 DBCS items allowed in PROCEDURE DIVISION USING clause

143 Relational operators can be used with DBCS items

147 Rules for comparing DBCS operands are same as nonnumeric operands

180 CALL USING phrase may use DBCS items

201 EVALUATE statement may use DBCS items and literals

211 INITIALIZE ... REPLACING may use DBCS as a category

216 INSPECT statement may use DBCS items and literals

227 MOVE statement may use DBCS items and literals

228 MOVE statement semantics for DBCS items and literals

229 MOVE statement conversion semantics for DBCS items

230 MOVE statement table of sending/receiving categories

253 READ statement: INTO phrase may use DBCS items

254 READ statement: KEY IS phrase may use DBCS items

263 REWRITE statement: FROM identifier may be a DBCS item

267 SEARCH statement: identifier-I may be DBCS item

268 SEARCH statement: WHEN phrase may use DBCS relations, conditional names

270 SEARCH statement may include DBCS items for ASC/DESC KEY items

280 START data-name may be a DBCS item

286 STRING statement may use DBCS items and literals

293 UNSTRING statement can operate on DBCS item

293 UNSTRING statement: DELIMITED BY phrase may use DBCS items

294 UNSTRING statement: INTO phrase may use DBCS items

1-6 Language Reference

295 UNSTRING statement: POINTER phrase may use DBCS items

302 WRITE statement may use DBCS items

317 TITLE statement may use DBCS literals

329 DBCS, DISPLAY-I included in Reserved Word list

341 Glossary defines DBCS

357 Index entry for DBCS

357 Index entry for DISPLAY-I

359 Index entry for G symbol in PICTURE clause

In addition to SAA DBCS support, AIX VS COBOL provides DBCS support for the fol
lowing features:

• Condition tests (level 88 items may be DBCS items)
• ENTRY ... USING may use DBCS items
• COPY ... REPLACING may use DBCS items.

Program Structure

A COBOL program consists of four divisions:

1. Identification Division - An identification of the program

2. Environment Division - A description of the equipment to be used to compile and run
the program

3. Data Division - A description of the data to be processed

4. Procedure Division - A set of procedures to specify the operations to be performed on
the data.

Each division is divided into sections, which are further divided into paragraphs, which in
turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions exist as clauses and
statements. A clause is an ordered set of COBOL elements that specify an attribute of an
entry, and a statement is a combination of elements in the Procedure Division that
includes a COBOL verb and constitutes a program instruction.

Manual Format

This section describes the format of this manual.

General Format

A general format is the specific arrangement of the elements of a clause or a statement.
Throughout this document a format is shown adjacent to information defining the clause
or statement. When more than one specific arrangement is permitted, the general format
is separated into numbered formats. Clauses must be written in the sequence given in the
general formats. (Clauses that are optional must appear in the sequence shown if they are
used.) In certain cases, stated explicitly in the rules associated with a given format, the
clauses may appear in sequences other than those shown. Applications, requirements, or
restrictions are shown as rules.

Introduction 1-7

Syntax Rules

Syntax rules define or clarify the order in which words or elements are arranged to form
larger elements, such as phrases, clauses, or statements. Syntax rules also impose
restrictions on individual words or elements.

These rules are used to define or clarify how the statement must be written. This includes
the order of the elements of the statement and restrictions on what each element may rep
resent.

General Rules

A general rule defines or clarifies the meaning, or relationship of meanings, of an element
or set of elements. It is used to define or clarify the semantics of the statements, and the
effect it has on execution or production of intermediate code.

Elements

Elements which make up a clause or a statement consist of uppercase words, lowercase
words, level numbers, brackets, braces, connectives, and special characters (see Chapter 2,
"COBOL Concepts").

Source Format

The COBOL source format divides each COBOL source record into 72 columns. These
columns are used in the following ways:

Columns 1-6 Sequence number
Column 7 Indicator area
Columns 8-11 Area A
Columns 12-72 Area B

See "Reference Format" on page 2-52 for more details.

Sequence Number

A sequence number of six digits may be used to identify each source program line. If
column 1 contains an asterisk (*), or columns 1 and 2 contain a form feed character fol
lowed by an asterisk, the entire line is ignored by the compiler and does not appear in the
list file. This facility allows list files to be used as source files.

Indicator Area

An asterisk (*) in the indicator area marks the line as documentary comment only. Such a
comment line can appear anywhere in the program after the Identification Division header.
Any characters from the ASCII character set can be included in area A and area B of the
line.

A stroke (/) in the indicator area acts as a comment line above but causes the page to eject
before printing the comment.

A letter D in the indicator area represents a debugging line. Areas A and B may contain
any valid COBOL sentence.

A hyphen (-) in the indicator area represents a continuation of the previous line without
spaces or the continuation of a nonnumeric literal (see Chapter 2, "COBOL Concepts").

1-8 Language Reference

Areas A and B

Section names and paragraph names begin in area A and are followed by a
period and a space. Level indicators FD, SD, CD, and 01, 66, 77, 78, and 88 MF
begin in area A and are followed in area B by the appropriate file and
record description.

No rules regarding area A and area B are enforced except in relation to MF
comment entries in the Identification Division.

Introduction 1-9

More than one sentence is permitted in each source record. The source format of a typical
program is illustrated in Figure 1-l.

1**
2* COBOL INVADERS CALLING PROGRAM *
3* VERSION 1.1 *
4* 2/8/84 *
5* COPYRIGHT (C) MICRO FOCUS 1984 *
6***************************************
7 SPECIAL-NAMES.
8 CONSOLE IS CRT.
9 DATA DIVISION.

10 WORKING-STORAGE SECTION.
11 C:ll GET-CHARACTER PIC X VALUE X"83".
12 01 CHARACTER-FOUND PIC 99 COMP.
13 01 SCAN-KEYBOARD PIC X VALUE X"D9".
14 01 SCAN-RESULT PIC 99 COMP.
15 COPY "READY.DDS".

(COPY FILE INCLUDED HERE.)

35 01 SCREEN-IO-PARAMETERS.
36 03 SCREEN-IO PIC X VALUE X"87".
37 03 WRITE-TEXT PIC 99 COMP VALUE 1.
38 03 READ-TEXT PIC 99 COMP VALUE 0.
39 03 WRITE-ATTRIB PIC 99 COMP VALUE 3.
40 01 FORM-PARAMS.
41 03 IO-LENGTH PIC 9(4) COMP VALUE 1094.
42 03 SCREEN-OFFSET PIC 9(4) COMP VALUE 1.
43 03 BUFFER-OFFSET PIC 9(4) COMP VALUE 1.
44 01 SCORE-PARAMS.
45 03 S-IO-LENGTH PIC 9(4) COMP VALUE 23.
46 03 S-SCREEN-OFFSET PIC 9(4) COMP VALUE 1841.
47 03 S-BUFFER-OFFSET PIC 9(4) COMP VALUE 1.
48 01 SCORE-TEXT.
49 03 S-TEXT-1
50 03 SCORE
51 03 S-TEXT-2
52 01 SCREEN-ATTR-1

PIC X(12)
PIC 9(4).

VALUE "LAST SCORE:".

PIC X(7) VALUE "POINTS".
PIC X(10~4).

53 01 CURSOR-POSITION.
54 03 CURSOR-LINE PIC 99 COMP VALUE 25.
55 03 CURSOR-CHAR PIC 99 COMP VALUE 00.
56 01 DUMMY PIC 99 COMP.
57 01 MOVE-CURSOR-ROUTINE PIC X
58 PROCEDURE DIVISION.
59 START-UP.

VALUE X"E6".

Figure 1-1 (Part 1 of 2). A Sample COBOL Program Showing Source Format

1-10 Language Reference

60 DISPLAY SPACE
61 CALL MOVE-CURSOR-ROUTINE USING DUMMY, CURSOR-POSITION
62 CALL SCREEN-IO USING WRITE-TEXT, FORM-PARAMS, READY-00
63 CALL SCREEN-IO USING WRITE-TEXT, SCORE-PARAMS, SCORE-TEXT.
64 LOOP.
65 MOVE ALL "?" TO SCREEN-ATTR-1
66 CALL SCREEN-IO USING WRITE-ATTRIB, FORM-PARAMS, SCREEN-ATTR-1
67 PERFORM DELAY-LOOP 30 TIMES
68************HAS A KEY BEEN PRESSED?
69 CALL SCAN-KEYBOARD USING SCAN-RESULT
70 IF SCAN-RESULT = 1
71 GO TO CALL-INVADERS.
72 MOVE ALL " " TO SCREEN-ATTR-1
73 CALL SCREEN-IO USING WRITE-ATTRIB, FORM-PARAMS, SCREEN-ATTR-1
74 PERFORM DELAY-LOOP 30 TIMES
75************HAS A KEY BEEN PRESSED?
76 CALL SCAN-KEYBOARD USING SCAN-RESULT
77 IF SCAN-RESULT = 1
78 GO TO CALL-INVADERS.
79 GO TO LOOP.
80 DELAY-LOOP.
81 CALL INVADERS.
82************WHICH KEY WAS PRESSED?
83 CALL GET-CHARACTER USING CHARACTER-FOUND
84 IF CHARACTER-FOUND = 27
85 STOP RUN.
86 IF CHARACTER-FOUND = 32
87 CALL "INV-SUB" USING SCORE
88 GO TO START-UP.
89 GO TO LOOP.

~ '-v-' ~~~~~~~~~~~-~~~~~~~~~~~-

r t Cols. 8-11 Area A

Col. 7 Indicator Area

'------Cols. 1-6 Sequence Number

t___ Cols. 12-72 Area B

Figure 1-1 (Part 2 of 2). A Sample COBOL Program Showing Source Format

Introduction 1-11

1-12 Language Reference

Chapter 2. COBOL Concepts

COBOL Concepts 2-1

Contents

About This Chapter
Language Concepts
Character Set
Language Structure

Separators
Character-Strings
COBOL Words ..
Literals
PICTURE Character-Strings
Comment-Entries

Concept Of Computer-Independent Data Description
Concept Of Levels
Concepts of Classes of Data
Algebraic Signs
Standard Alignment Rules
Item Alignment for Increased Object Code Efficiency ..
Selection of Character Representation and Radix
DISPLAY Format .
COMPUTATIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4 Format
COMPUTATIONAL-3 COMP-3 PACKED-DECIMAL Format
COMPUTATIONAL-5 Or COMP-5 Format
COMPUTATIONAL-X Or COMP-X Format ..
POINTER Format
Uniqueness of Reference

Explicit and Implicit Specifications
Explicit And Implicit Procedure Division References
Explicit and Implicit Transfers of Control
Explicit and Implicit Attributes
Explicit and Implicit Scope Terminators

Program Structure .
Optional Division, Section, and Paragraph Headings

Identification Division
Organization
Structure
General Format

Environment Division
Organization . .
Structure
General Format

Data Division
Data Division Organization
General Format

Procedure Division
Statements and Sentences

Reference Format
Reference Format Representation
Division, Section, and Paragraph Formats
Data Division Entries

Reserved Words .

2-2 Language Reference

2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-9

2-15
2-15
2-16
2-16
2-18
2-19
2-19
2-20
2-20
2-21
2-21
2-25
2-27
2-28
2-28
2-28
2-34
2-34
2-34
2-35
2-36
2-37
2-37
2-38
2-38
2-38
2-38
2-39
2-39
2-39
2-40
2-41
2-41
2-42
2-44
2-46
2-52
2-52
2-54
2-54
2-55

About This Chapter

This chapter describes the basic COBOL concepts. The following aspects are covered:

• Basic language elements, such as character set, language structure, and data
description concepts

• Program structure

• Identification Division

• Environment Division

• Data Division

• Procedure Division .

COBOL Concepts 2-3

Language Concepts

This section describes the following:

• Character Sets
• Language Structures
• Separators
• Characters
• Strings
• COBOL Words
• Literals
• Figurative Constant Values
• Constant Names
• Special Registers
• PICTURE Character-Strings
• Comment Entries .

Character Set

The most basic and indivisible unit of the language is the character. The set of characters
used to form IBM AIX VS COBOL character-strings and separators includes the letters of
the alphabet, digits, and special characters. The character set consists of the following
characters:

0 to 9
AtoZ
a to z
Space
+

*
I

$

II

(
)
>
<

Digits
Uppercase letters
Lowercase letters

Plus sign
Minus sign or hyphen
Asterisk
Oblique stroke/slash
Equal sign
Dollar sign
Period (full stop) or decimal point
Comma or decimal point
Semicolon
Quotation mark
Apostrophe
Left parenthesis
Right parenthesis
Greater than symbol
Less than symbol
Colon

OSVS VSC2

Lowercase letters may be used in character-strings. Each lowercase letter is equivalent to
the corresponding uppercase letter except when used in nonnumeric literals.

The AIX VS COBOL language is restricted to the preceding character set, but the content
of nonnumeric literals, comment lines, comment entries, and data may include any ASCII
characters. For more information refer to Appendix D, "Reserved Word List."

2-4 Language Reference

DBCS Support

Characters from the Double-Byte Character Set (DBCS) are valid characters in certain
COBOL character-strings.

Lowercase g is equivalent to uppercase G in DBCS PICTURE strings.

Language Structure

The individual characters of the language are concatenated to form character-strings and
separators. A separator may be concatenated with another separator or with a character
string. A character-string may only be concatenated with a separator. The concatenation
of character-strings and separators forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for forming sepa
rators are as follows:

1. The space character is a separator. More than one space can be used as a single sepa
rator. All spaces immediately following the comma, semicolon, or period separators
are considered part of that separator and are not considered to be the space separator.

2. Commas and semicolons, when followed immediately by a space are separators that
can be used anywhere the separator space is used. However, the comma is always used
in a PICTURE character-string.

3. The period character, when followed by a space, is a separator. The period character
must be used only to indicate the end of a sentence, or as shown in formats.

4. The right and left parenthetical symbols are separators. Parentheses may appear only
in balanced pairs of left and right parentheses delimiting subscripts, indexes, arith
metic expressions, or conditions.

5. The quotation mark character (") is a separator. An opening quotation mark must be
preceded immediately by a space or left parenthesis. A closing quotation mark must be
followed immediately by a space, comma, semicolon, period, or right parenthesis sepa
rator.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals,
except when the literal is continued. Refer to "Continuation of Lines" on page 2-53.

6. The apostrophe character may replace the quotation mark character in a OSVS VSC2
program.

Both the quotation mark and the apostrophe may appear within the same
program. MF

7. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be pre
ceded immediately by a space. A closing pseudo-text delimiter must be followed imme
diately by a space, comma, semicolon, or period separator.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text. Refer
to Chapter 8, "File Input and Output."

COBOL Concepts 2-5

8. The separator space can immediately precede all separators except the following:

a. As specified by reference format. Refer to "Reference Format" on page 3-4.

b. The separator closing quotation mark. In this case, a preceding space is consid
ered to be part of the nonnumeric literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

9. The comma and semicolon separators may be used anywhere the separator space is
used in the formats. In the source program, comma and semicolon are interchange
able.

10. The separator space may follow immediately any separator except the opening quota
tion mark. In this case, a following space is considered as part of the nonnumeric
literal and not as a separator.

A punctuation character which appears as part of the specification of a PICTURE
character-string (refer to Chapter 3, "Introduction to the Nucleus") or numeric literal
is not considered to be a punctuation character. It is considered to be a symbol used
in the specification of that PICTURE character-string or numeric literal. PICTURE
character-strings are delimited only by the space, comma, semicolon, or period separa
tors.

The rules established for the formation of separators do not apply to the characters
which comprise the contents of nonnumeric literals, comment entries, or comment
lines.

Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a
AIX VS COBOL word, literal, PICTURE character-string, or comment-entry. A character
string is delimited by separators.

DBCS Support

You can use DBCS character-strings to form literals and comments. DBCS character
strings are constructed using characters from the Double-Byte Character Set of the system.
DBCS character-strings can be embedded into nonnumeric strings.

~------------ End of DBCS Support ____________ ___,

COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms a user
defined word, system name, or reserved word. Within a given source program, these
classes of COBOL words form disjoint sets. A COBOL word may belong to one and only
one of these classes.

The same COBOL word may be used as a system name and as a user-defined
word within the source program, provided the system name has not been set
up as a reserved word. The class of a specific occurrence of this COBOL
word is determined by the context of the clause or phrase in which it occurs.

2-6 Language Reference

VSC2

User-Defined Words
A user-defined word is a COBOL word supplied by the user to satisfy the format of a clause
or statement. Each character of a user-defined word is selected from the set of characters
A, B, C, ... Z, a, b, c, ... z (interpreted as equivalent to uppercase), numbers 0, ... 9, and -.
The - may not appear as the first or last character.

Implemented user-defined word types are as follows:

alphabet name
condition name
constant name
data-name
file name
index name
level number
library name
mnemonic name
paragraph name
program name
record name
routine name
section name
segment number
split-key name
text name

MF

MF

Within a given source program, 15 of these 17 types of user-defined words are grouped into
12 disjoint sets. The following are disjoint sets:

alphabet names
cd names
condition names, constant names, data-names,
record names, split-key names
file names
index names
library names
mnemonic names
paragraph names
program names
routine names
section names
text names

MF
MF

All user-defined words, except segment numbers and level numbers, can belong to only one
of these disjoint sets. Further, all user-defined words within a disjoint set must be unique.
Refer to "Uniqueness of Reference" on page 2-28.

With the exception of paragraph name, section name, level number and
segment number, all user-defined words must contain at least one alpha
betic character or one occurrence of the hyphen character. MF

Segment numbers and level numbers need not be unique. Specification of a segment
number or level number may be identical to any other segment number or level number
and may even be identical to a paragraph name or section name.

Condition Name

A condition name is a name which is assigned to a specific value, set of values, or range of
values, within a complete set of values that a data item may assume. The data item itself
is called a conditional variable.

Condition names may be defined in the Data Division or in the SPECIAL-NAMES para
graph within the Environment Division, where a condition name must be assigned to the
ON STATUS or OFF STATUS, or both, of the run-time switches.

COBOL Concepts 2-7

A condition name is used only in the RERUN clause or in conditions as an abbreviation
for the relation condition. This relation condition states that the associated conditional
variable is equal to one of the set of values to which the condition name is assigned.

Constant Name

A constant name is a name which is assigned as the name of a fixed value. MF

Mnemonic Name

A mnemonic name assigns a user-defined word to an implementer name. These associ
ations are established in the SPECIAL-NAMES paragraph of the Environment Division.
Refer to "SPECIAL-NAMES Paragraph" on page 5-8.

Paragraph Name

A paragraph name is a word that names a paragraph in the Procedure Division.

Section Name

A section name is a word that names a section in the Procedure Division.

Other User-Defined Words

Refer to the Glossary for definitions of all other types of user-defined words.

System Names
A system name is a COBOL word used to communicate with the operating environment.
Each character used in the formation of a system name must be selected from the set of
characters A, B, C, ... Z, a, b, ... z, 0, ... 9 and-, except that the - may not appear as the
first or last character.

There are three types of system names:

• computer name
• implementer name
• language name.

Within a given implementation, these three types of system names form disjoint sets. A
given system name may belong to one and only one of them.

Refer to the Glossary for the individually defined system names.

Reserved Words
A reserved word is a COBOL word on a specified list that may be used in COBOL source
programs, but must not appear in the programs as a user-defined word or system name.
Reserved words can only be used as specified in the general formats.

There are six types of reserved words:

• Key words
• Optional words
• Connectives
• Special registers
• Figurative constants
• Special character words.

Key Words

A key word is a word required when the format in which the word appears is used in a
source program. Within each format, key words are uppercase and underlined.

Key words are of three types:

• Verbs such as ADD, READ, and ENTER
• Required words that appear in statement and entry formats

2-8 Language Reference

• Words that have a specific functional meaning, such as NEGATIVE, SECTION, and so
on.

Optional Words

· Within each format, uppercase words not underlined are called optional words and may
appear at your discretion. The presence or absence of an optional word does not alter the
semantics of the COBOL program in which it appears.

Connectives

There are three types of connectives:

• Qualifier connectives used to associate a data-name, condition name, and text name, or
a paragraph name with its qualifier: OF, IN.

• Series connectives that link two or more consecutive operands: , (separator comma) or
; (separator semicolon).

• Logical connectives used in the formation of conditions: AND, OR.

Special Registers

Certain words are used to name and reference special registers. Special registers are
memory areas created by the AIX VS COBOL system. The primary use of special registers
is to store information produced in conjunction with the use of specific COBOL features.
These special registers include LINAGE COUNTER (refer to Chapter 8, "File Input and
Output") and DEBUG-ITEM (refer to Chapter 17, "Program Debugging").

Figurative Constants

Figurative constants are used to name and reference specific constant values. These
reserved words are specified in Appendix D, "Reserved Word List."

Special Character Words

The arithmetic operators and relation characters are reserved words. Refer to the Glos
sary.

Literals

A literal is one of the following:

• A character-string whose value is implied by the ordered set of characters of which it
is composed, or

• A reserved word that references a figurative constant, or

• A user-defined word that references a constant value. MF

Every literal belongs to one of two types: nonnumeric or numeric.

DBCS Support

There is a DBCS type of literal.

~------------ End of DBCS Support ____________ __,

COBOL Concepts 2-9

Nonnumeric Literals

A nonnumeric literal is a character-string delimited at both ends by quota-
tion marks or apostrophes and consisting of any allowable character in the OSVS VSC2
character set. Nonnumeric literals may be of 1 to 160 characters in length.
Whether quotation marks or apostrophes are used as delimiters, the pres-
ence of that delimiter within a nonnumeric literal may be represented by
two contiguous occurrences. The presence of the character not serving as
the delimiter is represented by a single occurrence. The value of a nonnu-
meric literal in the object program is the string of characters itself, except:

• The delimiting quotation marks are excluded.

• Each embedded pair of contiguous delimiter characters represents a single character.

All other punctuation characters are part of the value of the nonnumeric literal rather
than separators. All nonnumeric literals are category alphanumeric. Refer to "PICTURE
Clause" on page 6-18.

In addition, hexadecimal binary values can be attributed to nonnumeric
literals by expressing literals as:

X'nn' or x'nn'

where n is a hexadecimal character in the set 0-9 A-F a-f. nn may be
repeated up to 120 times, but the number of hexadecimal digits must be even.
The X may be uppercase or lowercase.

DBCS Support

MF

In nonnumeric literals, Single-Byte Character Set (SBCS) and DBCS characters can be
mixed within a character-string. AIX VS COBOL statements process mixed strings without
sensitivity to the machine representation. Those statements that operate on a byte-to-byte
basis (for example, STRING and UNSTRING) may result in strings that are not valid mix
tures of SBCS and DBCS. It is the user's responsibility to be certain that the statements
are used correctly.

Nonnumeric literals are specified as PIC X items and are not protected from
mid-DBCS-character splitting. A literal declared as PIC G is a DBCS literal, and must
contain only DBCS characters. The DBCS (PIC G) literals are protected from
mid-DBCS-character splitting.

"------------- End of DBCS Support ____________ ___,

Numeric Literals
Numeric literals are character-strings whose characters are selected from the digits 0
through 9, the plus sign, the minus sign, and/or the decimal point. The implementation
allows for numeric literals of 1 to 18 digits in length. The rules for the formation of
numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, the literal is
positive.

3. A literal must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point, and may appear anywhere within the literal except as the
rightmost character. If the literal contains no decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric literals, but is enclosed
in quotation marks, it is a nonnumeric literal and it is treated as such by the AIX VS
COBOL system.

2-10 Language Reference

4. The value of a numeric literal is the algebraic quality represented by the characters· in
the numeric literal. Every numeric literal is category numeric. Refer to "PICTURE
Clause" on page 6-18.

The size of a numeric literal in standard data format characters is equal to the number
of digits specified by the user.

In addition, hexadecimal binary values can be attributed to numeric literals
by expressing literals as:

H'nn' or h'nn'

where n is a hexadecimal character in the set 0-9 A-F a-f. nn may be
repeated up to 8 times, but the number of hexadecimal digits must be even.
The H may be uppercase or lowercase.

DBCS Support

DBCS Literals
DBCS literals have the following format:

---G"DBCS-string"--------------

G
,,

Is the literal type designator for a DBCS literal

Is the opening and closing delimiter

DBCS-string
Represents DBCS characters.

MF

In general, the rules for forming a nonnumeric literal also apply to DBCS literals. The
maximum length of DBCS literals, however, is 28 double-byte characters, and they may not
be continued across lines.

~----------- End of DBCS Support -----------~

Figurative Constant Values
Figurative constant values are generated by the AIX VS COBOL system and referred to
using the reserved words given below. These words must not be bounded by quotation
marks when used as figurative constants. The singular and plural forms of figurative con
stants are equivalent and may be used interchangeably.

COBOL Concepts 2-11

The figurative constant values and the reserved words used to reference them are shown in
Table 2-1.

Table 2-1. Figurative Constant Values and the Reserved Words
CONSTANT REPRESENTATION

ZERO ZEROS Represents the value 0, or one or more of the character 0
ZEROES depending on context.

SPACE SPACES Represents one or more of the character space from the comput-
er' s character set.

HIGH-VALUE Represents one or more of the character that has the highest
HIGH-VALUES ordinal position in the program collating sequence. (Hex FF for

the ASCII character set.)

LOW-VALUE Represents one or more of the character that has the lowest
LOW-VALUES ordinal position in the program collating sequence. (Hex 00 for

the ASCII character set.)

QUOTE QUOTES Represents one or more of the character". The word QUOTE or
QUOTES cannot be used in place of a quotation mark in a
source program to bound a nonnumeric literal. Thus,
QUOTEABD QUOTE is incorrect as a way of stating the nonnu-
meric literal "ABD".

ALL literal Represents one or more characters of the string of characters
comprising the literal. The literal must be either a nonnumeric
literal or a figurative constant other than ALL literal. When a
figurative constant is used, the word ALL is redundant and is
used for readability only.

NULL NULLS Represents one or more unset pointer values. VSC2
A pointer variable with the NULL value is
guaranteed not to point to any data item.

DBCS Support

The figurative constant values for DBCS programs are:

HIGH-VALUE, HIGH-VALUES

ZERO, ZEROS, ZEROES

LOW-VALUE, LOW-VALUES

QUOTE, QUOTES

SPACE, SPACES

hex FFFF

hex 824F

hex 0000

hex 818D

hex 2020

When a figurative constant represents a string of one or more characters, the length of the
string is determined by the AIX VS COBOL system from context according to the following
rules:

1. When a figurative constant is associated with another data item, as when the figura
tive constant is moved to or compared with another data item, the string of characters
specified by the figurative constant is repeated character by character on the right
until the size of the resulting string is equal to the size, in characters, of the associated
data item. This is done prior to, and independent of, the application of any JUSTIFIED
clause associated with the data item.

2. When a figurative constant is not associated with another data item, as when the figu
rative constant appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the
length of the string is one character.

DISPLAY SPACE in Format 2 of the DISPLAY statement is an exception. MF

2-12 Language Reference

__ /

A figurative constant may be used wherever a literal appears in a format, except that
whenever the literal is restricted to having only numeric characters in it, the only figura
tive constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUES(S) or LOW-VALUE(S) are used in the
source program, the actual character associated with each figurative constant depends
upon the program collating sequence specified. Refer to "OBJECT-COMPUTER
Paragraph" on page 5-6 and "SPECIAL-NAMES Paragraph" on page 5-8.

Constant Names

Constant names are user-defined words described in the Data Division in
l,evel-78 data description entries. A constant name may be used wherever a
literal appears in a format. The effect of a constant name is the same as the
literal assigned in its data description. A constant name with an integer
value can also be used wherever a format requires an integer. For example, a
constant may be used in place of a level number or segment number, or in a
PICTURE character-string.

A constant name can only be used after it has been described. It cannot be
the object of a forward reference.

Special Registers

MF

Special registers are data items generated by the AIX VS COBOL system OSVS VSC2
and referred to by using their associated names (see Table 2-2). These
special registers are subject to special rules of reference and have implicit
data descriptions (PICTURES), as individually described.

Table 2-2 (Page 1 of 3). Special Registers, Implicit Data Description Picture, and Usage

Implicit
Data

Special Description
Register Picture Usage
CURRENT-DATE X(B) The CURRENT-DATE special register osvs

contains the value of the
current date (as supplied by the
COBOL program execution environment)
in the form: MMDDYY
where MM is the month
number, DD is the day of
the month, and YY is the
year number (from 1900). CURRENT-DATE
is valid only as the sending area
of a MOVE statement.

TALLY 9(5) COMP The TALLY special register OSVS VSC2
contains information produced by the
EXAMINE ... TALLYING statement.
It is valid as a data-name in a
Procedure Division statement
wherever an elementary data item
may be referenced.

COBOL Concepts 2-13

Table 2-2 (Page 2 of 3). Special Registers, Implicit Data Description Picture, and Usage

Special
Register

TIME-OF-DAY

RETURN-CODE

Implicit
Data
Description
Picture
9(6) DISPLAY

S9(4) COMP
(This can be
changed by
the
RTNCODE-SIZE
directive.) MF

WHEN-COMPILE£ X(20)

2-14 Language Reference

Usage
The TIME-OF-DAY special register
contains the value of the current
time of day (24-hour clock)
(as supplied by the COBOL program
execution environment) in the
form: hhmmss where hh = hour,
mm = minutes, and ss = seconds.
TIME-OF-DAY is valid only as the
sending area of a MOVE statement.

osvs

The RETURN-CODE special OSVS VSC2
register may:

• Be set by a program, prior to the
execution of a STOP RUN, EXIT
PROGRAM or GOBACK statement,
to pass a value to the invoking
program (or the execution
environment).

• Be read, subsequent to a
CALL to another COBOL program,
to obtain the RETURN-CODE set
by that CALLed program.

A program's RETURN-CODE is set
to 0 when the program is first
entered. The RETURN-CODE is valid
as a data-name in a Procedure Division
statement wherever an elementary
data item may be referenced. If a
program using a 2-byte RETURN-CODE
returns to a program using a 4-byte
RETURN-CODE, the top 2 bytes of the
calling program's RETURN-CODE will be
undefined.
The WHEN-COMPILED special OSVS
register contains the time and
date that the COBOL program was submitted
to the AIX VS COBOL system, in the
form: hh.mm.ssMMM DD, YYYY
where hh = hours (24-hour clock),
mm= minutes, ss =seconds,
MMM = month name (first 3
characters), DD = day of month,
and YYYY = year.

WHEN-COMPILED is valid only as the
sending area of a MOVE statement.

Table 2-2 (Page 3 of 3). Special Registers, Implicit Data Description Picture, and Usage

Implicit
Data

Special Description
Register Picture Usage
WHEN-COMPILE~ X(20) The WHEN-COMPILED special VSC2

register contains the time and
date that the COBOL program was submitted
to the AIX VS COBOL system in the
form: MM/DD/YYhh.mm.ss
where DD, hh, mm and ss are as above.
YY = year in century and
MM = month in year.

WHEN-COMPILED is valid only as
the sending area of a MOVE statement.

SORT-MESSAGE X(8) These items may be referenced OSVS VSC2
SORT-FILE-SIZE S9(8) COMP in the Procedure Division but
SORT-MODE-SIZE S9(5) COMP will contain zero (except SORT-MESSAGE
SORT-CORE-SIZE S9(8) COMP and SORT-CONTROL which
SORT-CONTROL X(8) will contain spaces).
SORT-RETURN S9(4) COMP SORT-RETURN may be used to OSVS VSC2

cause an abnormal termination
of a SORT procedure. If a
value of 16 is moved into this
field, the SORT operation will
be terminated after the next
RELEASE or RETURN.

ADDRESS USAGE IS An ADDRESS special register VSC2
POINTER exists for each 01 and 77 level

item in the LINKAGE and MF
WORKING-STORAGE SECTION.
The value of the special register
is the address of the record.

Each reserved word used to refer to a figurative constant value is a distinct character
string with the exception of the construction ALL literal, which is composed of two dis
tinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in the COBOL
character set used as symbols. Refer to "PICTURE Clause" on page 6-18 for the PICTURE
character-string and the rules that govern its use.

Any punctuation character that appears as part of the specification of a PICTURE
character-string is not considered a punctuation character, but rather a symbol used in the
specification of that PICTURE character-string.

Comment-Entries

A comment-entry in the Identification Division may be any combination of characters from
the character set of the computer.

COBOL Concepts 2-15

DBCS Support

Character-strings that form comments may contain either DBCS characters or a combina
tion of DBCS and SBCS characters. Multiple comment lines containing DBCS strings are
allowed. The embedding of DBCS characters in a comment line must be done on a line-by
line basis. DBCS characters cannot be continued to a following line.

~----------- End of DBCS Support -----------~

Concept Of Computer-Independent Data Description

To make data as computer independent as possible, the characteristics or properties of the
data are described in relation to a standard data format rather than an equipment oriented
format. This standard data format is oriented to general data processing applications, and
uses the decimal system to represent numbers (regardless of the radix used by the com
puter) and the remaining characters in the AIX VS COBOL character set to describe non
numeric data items.

Concept Of Levels

A level concept, or hierarchy, is inherent in the structure of a logical data record. This
concept arises from the need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further subdivided to permit
more detailed data referral.

The most basic subdivisions of a record, those not further subdivided, are called elemen
tary items. Consequently, a record is said to consist of a sequence of elementary items, or
the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into
groups. Each group consists of a named sequence of one or more elementary items.
Groups, in turn, may be combined into groups of two or more groups, etc. Thus, an ele
mentary item may belong to more than one group.

Level Numbers

A system of level numbers shows the organization of elementary items and
group items. Since records are the most inclusive data items, level
numbers for records start at 01. Less inclusive data items are assigned
higher (not necessarily successive) level numbers not greater in value than
49. A maximum of 49 levels in a record is allowed. There are special level
numbers (66, 77, 78, and 88) which are exceptions to this rule (see below). MF
Separate entries are written in the source program for each level number
used.

A group includes all group and elementary items following it until a level
number less than or equal to the level number of that group is encount
ered. All items which are immediately subordinate to a given group item
should be described using identical level numbers greater than the level
number used to describe that group item. This rule is not insisted upon. OSVS VSC2

2-16 Language Reference

Correct
0I A.

05 C-1.
18 D PICTURE X.
I0 E PICTURE X.

05 C-2.

Incorrect but Permitted
81 A.

05 C-1.

04 B-1.

I0 D PICTURE X.
I0 E PICTURE X.

Figure 2-1. Example of Level Numbers in Group Descriptions

OSVS VSC2

Three types of entries exist for which there is no true concept of level. These are:

• Entries that specify elementary items or groups introduced by a RENAMES clause

• Entries that specify noncontiguous working storage and linkage data items

• Entries that specify condition names.

Entries describing items by means of RENAMES clauses for the purpose of regrouping
data items have been assigned the special level number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other items,
and are not themselves subdivided, have been assigned the special level number 77.

Entries that specify constant names, to be associated with the value of a par
ticular literal, have been assigned the special level number 78.

MF

Entries that specify condition names, to be associated with particular values of a condi
tional variable, have been assigned the special level number 88.

For an example of level numbers representing a data hierarchy, see Figure 2-2.

0I RECORD-ENTRY-ITEM-I.
02 MAJOR-GROUP-ITEM-I.

03 FILLER PIC .. .
* 03 ELEM-I PIC .. .

02 MAJOR-GROUP-ITEM-2.
03 REGULAR-GROUP-ITEM-I.

* 04 ELEM-2 PIC ...
04 SUB-GROUP-1.

* 05 ELEM-3 PIC .. .
* 05 ELEM-4 PIC .. .
* 05 ELEM-5 PIC .. .
* 04 ELEM-6 PIC ...

04 SUB-GROUP-2.
* 05 ELEM-7 PIC ...
* 05 ELEM-8 PIC .••

03 REGULAR-GROUP-ITEM-2.
* 04 ELEM-9 PIC .. .
* 04 ELEM-I0 PIC .. .
* 02 ELEM-II PIC ...
77 NONCONTIGUOUS-ELEM-I PIC .•.
77 NONCONTIGUOUS-ELEM-2 PIC ...
0I RECORD-ENTRY-ITEM-2.

J This entry

includes

J This entry

includes

This entry

includes

This entry

----~ includes

This entry

includes

This entry

includes

This entry
includes

This entry

includes

etc.

Figure 2-2. Example of Level Numbers Representing a Data Hierarchy

Note that indentation of COBOL source code is only a readability convention and is not
part of the language.

Elementary items are by definition those items with no subordinate entries (entries with no
numerically greater level numbers) following, and must have a storage definition associ-

COBOL Concepts 2-17

ated with them. Refer to "PICTURE Clause" on page 6-18 and "USAGE Clause" on
page 6-39.

Only elementary items (marked with an asterisk,*, above) and FILLER items (marked with
a # sign above) will have storage explicitly reserved for them (in accordance with
"PICTURE Clause" on page 6-18). Nonelementary items have implicit storage associated
with them of size determined by their subordinate items plus any FILLER bytes needed for
synchronization. Refer to "SYNCHRONIZED Clause" on page 6-37.

Level numbers need not be consecutively ascending or descending as shown in Figure 2-2
on page 2-17 for clarity. Thus, the next subordinate level after 01 could be 05, and the next
level 10, and so on.

The data record in Figure 2-2 on page 2-17 would produce storage allocation in the fol
. lowing manner:

data division

RECORD-ENTRY-ITEM-1 R-E-I-2

M-G-I-1 MAJDR-GROUP-ITEM-2
__...
etc.

REGULAR-GROUP-ITEM-1 R-G-I-2

SUB-GROUP-2 S-G-2

FILL E-1 E-2 E-31 E-41 E-5 E-6 E-7 l E-8 E-9 E-10 E-11 N-E-1 N-E-2

Figure 2-3. Storage Allocation

Concepts of Classes of Data

The five categories of data items (refer to "PICTURE Clause" on page 6-18) are grouped
into four classes: alphabetic, numeric, DBCS, and alphanumeric. For alphabetic, DBCS,
and numeric, the classes and categories are synonymous. The alphanumeric class includes
the categories of alphanumeric-edited, numeric-edited, and alphanumeric (without editing).
Every elementary item, except for an index data item, belongs to one of the classes and to
one of the categories. The class of a group item is treated at object time as alphanumeric
regardless of the class of elementary items subordinate to the group item. The relationship
of the class and categories of data items are depicted in Table 2-3 on page 2-19.

2-18 Language Reference

Table 2-3. Data Levels, Classes, and Categories
Level of Item Class Category
Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric-Edited
Alphanumeric-Edited
Alphanumeric

DBCS DBCS

Nonelementary Group Alphanumeric Alphabetic
Numeric
Numeric-Edited
Alphanumeric-Edited
Alphanumeric
DBCS

Algebraic Signs

Algebraic signs fall into two categories: operational signs, for indicating algebraic proper
ties of signed numeric data items and signed numeric literals; and editing signs, for identi
fying the sign of the item in edited reports.

The SIGN clause permits the programmer to explicitly state the location of the operational
sign. The clause is optional. If it is not used, operational signs are defined by setting bit 6
of the trailing digit for ASCII numbers (see Table 2-4).

Editing signs are inserted into a data item by using the sign control symbols of the
PICTURE clause.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category
of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character posi
tions with zero-fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated
as if it had an assumed decimal point immediately following its rightmost character
and is aligned as in item la above.

2. If the receiving data item is a numeric-edited data item, the data moved to the edited
item is aligned by decimal point with zero-fill or truncation at either end, as required
within the receiving character positions of the data item, except where editing require
ments cause replacement of the leading zeros.

3. If th.e receiving data item is alphanumeric (other than a numeric-edited data item),
alphanumeric-edited or alphabetic, the sending data is moved to the receiving char
acter positions and aligned at the leftmost character position in the data item with
space fill or truncation to the right, as required.

DBCS Support

4. For DBCS receiving items, the data is aligned at the leftmost character position, and (if
necessary) truncated or padded with DBCS spaces at the right.

~----------- End of DBCS Support ___________ ___,

COBOL Concepts 2-19

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modi
fied as described in "JUSTIFIED Clause" on page 6-13.

Item Alignment for Increased Object Code Efficiency

Some computer memories are organized to have natural addressing boundaries in the com
puter memory (for example, word boundaries, half-word boundaries, byte boundaries). The
object program determines the way in which data is stored and need not respect these
natural boundaries.

However, certain uses of data (for example, in arithmetic operations or in subscripting)
may be facilitated if the data is stored so as to be aligned on these boundaries. Specif
ically, additional machine operations for accessing and storing data may be repeated if
portions of two or more data items appear between adjacent natural boundaries, or if
certain natural boundaries divide a single data item.

Data items aligned on these natural boundaries to avoid additional machine operations are
defined as synchronized. A synchronized item is assumed to be introduced and carried in
that form. However, conversion to synchronized form occurs only during the execution of
a statement other than READ or WRITE which stores data in the item.

Synchronization can be accomplished in two ways:

• By use of the SYNCHRONIZED clause.

• By organizing the data suitably on the appropriate natural boundaries without using
the SYNCHRONIZED clause.

By using the SYNCHRONIZED clause, special types of alignment within a group may
affect the results of statements in which the group is used as an operand. The effect of the
implicit FILLER and the semantics of any statement referencing these groups are
described in "Implicit FILLER or Padding Bytes" on page 2-22 and "Example of Implicit
FILLER Assignments" on page 2-23.

Selection of Character Representation and Radix

The value of a numeric item, which is defined as numeric by its PICTURE (refer to
"PICTURE Clause" on page 6-18), may be represented in memory in either binary or
decimal form depending on the USAGE clause of the declaration. Refer to "USAGE
Clause" on page 6-39. These numeric formats are:

• DISPLAY

• COMPUTATIONAL, COMP, BINARY

COMPUTATIONAL-4 or COMP-4 VSC20SVS

• COMPUTATIONAL-3, COMP-3 or PACKED-DECIMAL MFOSVS
VSC2

• COMPUTATIONAL-5 or COMP-5 MF

• POINTER VSC2

• COMPUT ATIONAL-X or COMP-X MF

2-20 Language Reference

DISPLAY Format

The numeric digit characters that represent the number value for the display format are
held in radix 10, one digit character per byte of computer memory, in ASCII representation.
This is the standard data format of the COBOL language. If the data item is signed and
the sign is not specified as SEPARATE (refer to "SIGN Clause" on page 6-35) the numeric
sign is incorporated into either the leading or trailing digit, according to the LEADING or
TRAILING phrase in the SIGN clause. Sign data is incorporated into the requisite digit as
shown in Table 2-4 (bit 6 (value 40) of the character is set from zero to one if the whole
number has a negative value). If the data item is signed and the sign is specified as SEPA
RATE, then the sign is held as a separate single character, additional to the digits, either
ASCII character + or - as necessary. This sign character appears as the leading or
trailing byte of the stored numeric data item according to the LEADING or TRAILING
phrase of the sign clause,

Table 2-4. Incorporation of Sign Data into the Requisite Digit

Leading or Sign Digit Character (and hexadecimal value) for:
Trailing Value
Digit Before Sign
Incorporation Positively-Signed Values Negatively-Signed Values

0 0(30) p(70)

1 1(31) q(71)

2 2(32) r(72)

3 3(33) s(73)

4 4(34) t(74)

5 5(35) u(75)

6 6(36) v(76)

7 7(37) w(77)

8 8(38) x(78)

9 9(39) y(79)

Storage character position requirements for DISPLAY data items are equal to the number
of 9s in the PICTURE clause plus one if the sign is specified as SEPARATE. The SYN
CHRONIZED clause has no effect on DISPLAY format data declarations.

COMPUTATIONAL, COMP, BINARY, COMPUTATIONAL-4, or
COMP-4 Format

These numeric data items are held in computer memory in pure binary two's complement
representation. In this format, number values are held in radix of two where each com
puter bit in the representation starting from the right (least significant) and represents the
presence or absence of an increasingly significant power of two in that value. Negative
numbers are represented by complementing (inverting all the bit values of) their positive
counterpart, and then adding one to the whole. Storage requirements depend on the
number of 9s in the PICTURE clause and whether the numeric data item is signed or
unsigned (refer to "PICTURE Clause" on page 6-18, and "SIGN Clause" on page 6-35).
The AIX VS COBOL system assigns storage for COMPUTATIONAL items in one of two
modes: byte storage and word storage. Byte storage is the default storage assignment mode
for the AIX VS COBOL language.

COBOL Concepts 2-21

Computer Memory Natural Boundaries
The fundamental natural boundaries of computer memory are usually based on an 8-bit
character known as a byte. Within this fundamental framework, machines fall into two
broad categories: those with no other natural boundaries (byte storage computers) and
those with other natural boundaries based on multiples of the fundamental boundary of the
byte (word storage computers).

In byte storage mode, AIX VS COBOL assigns numeric storage such that each numeric
item occupies the minimum number of bytes (refer to "Selection of Character Represen
tation and Radix" on page 2-20). The SYNCHRONIZED clause has no meaning in the
context and hence has no effect. Byte storage is the default storage assignment mode for
AIX VS COBOL.

Within word storage computers natural boundaries may occur at 2-byte, 4-byte and/or
8-byte boundaries. Accordingly, the VS COBOL language can provide data item storage
assignment and synchronization when the COMPUTATIONAL clause and possibly the
SYNCHRONIZED clause are used. This word storage assignment of COMPUTATIONAL
format data is controlled by an AIX VS COBOL system directive, IBMCOMP. Refer to the
User's Guide for information on how to invoke this feature.

Table 2-5. COMP(UTATIONAL) Format Data Item Character-Position (Byte) Storage Assign-
ment

Number of Digits (9s) in PICTURE Character-Positions (Bytes) of
Representation Storage Assigned
Signed Unsigned Byte Storage Word Storage

Mode
1-2 1-2 1 2

3-4 3-4 2 2

5-6 5-7 3 4

7-9 8-9 4 4

lQ-11 10-12 5 8

12-14 13-14 6 8

15-16 15-16 7 8

17-18 17-18 8 8

Note: Byte storage is the default storage assignment mode for VS COBOL. For details
of how to enable the word storage feature of the AIX VS COBOL system using the
IBMCOMP system directive, refer to the User's Guide.

Implicit FILLER or Padding Bytes
When the word storage assignment mode is enabled, and a numeric data item is specified
as COMPUTATIONAL, extra character positions or bytes of computer memory may be
assigned to that data item (refer to Figure 2-4 on page 2-23). These bytes are known as
padding, or implicit FILLER bytes, and are not normally accessible to the program.
Similar implicit FILLER bytes can be generated by use of the SYNCHRONIZED clause.

Synchronization
If a data item description contains the SYNCHRONIZED clause, and word storage mode is
enabled, then the position of that item within the computer memory is aligned such that
the right (least significant) end is on a natural boundary of the memory. Extra character
positions (bytes) of computer memory are reserved adjacent to synchronized items to
achieve this alignment. These bytes, known as padding bytes or implicit FILLER bytes,
are normally inaccessible to the computer program.

Each elementary data item described as SYNCHRONIZED is aligned to the natural
memory boundary corresponding to its data item storage assignment (according to
Table 2-5). Thus, in word storage mode, a numeric data item with a PICTURE description

2-22 Language Reference

of S9 (5) is assigned 4 bytes of memory (1 padding byte and 3 data bytes). If SYNCHRO
NIZED was specified, it is aligned to the next nearest 4-byte boundary. The total (4-byte)
memory assignment is aligned so the number of bytes from the beginning of the record con
taining the item to the left (most significant) end of the item was a multiple of four. If the
previous item does not end on a 4-byte boundary, then implicit FILLER assignments are
necessary to achieve this.

Other such implicit FILLER bytes may be generated by using the SYNCHRONIZED items
in nonelementary data descriptions containing an OCCURS clause. Refer to "OCCURS
Clause" on page 12-5. This is because extra bytes may need to be reserved for each group
item occurrence so that the second or subsequent occurrences have the same alignment to
the natural boundaries of the computer memory as did the first occurrence.

Implicit Synchronization
With word storage mode enabled, all record level data descriptions are automatically syn
chronized to a full 8-byte boundary.

Example of Implicit FILLER Assignments
The following COBOL data description produces the computer memory allocation shown in
Figure 2-4. An explanation of the symbols used in the figure is shown below it.

01 UNSYNCHRONIZED-RECORD.
02 UNSYNCHRONIZED-DATA-I PIC 9(3) DISPLAY.
02 UNSYNCHRONIZED-DATA-2 PIC X(2).

0I COMPOUND-REPEATED-RECORD.
02 ELEMENTARY-ITEM-I PIC X(2).
02 GROUP-ITEM OCCURS 3 TIMES.

03 ELEMENTARY-ITEM-2 PIC X.
03 ELEMENTARY-ITEM-3 PIC S9(2) COMP SYNC.
03 ELEMENTARY-ITEM-4 PIC S9{4) V9(2) COMP SYNC.
03 ELEMENTARY-ITEM-5 PIC X (5).

UNSYNCHRONIZED- COMPOUND-REPEATED-RECORD
RECORD

GROUP-ITEM (1)

E E E E u I I I I
UDl D Ell 2 3 El4 EIS 2 3

2

GROUP-ITEM (2)
etc.>

EI4 EIS

9 9 9 x x @ @ @ x x X II c c # II c c c c x x x x x $ x # c c II II c c c c x x x x x
I I I I I I I I I I I I I I I I

2 2 2 2 2 2 2 2 2 2

4 4 4 4 4

8 8 8 8 8 8

Figure 2-4. Sample Computer Storage Allocation

where:

@ indicates implicit FILLER bytes allocated due to automatic synchronization of a
record (01-level) description.

indicates implicit FILLER bytes allocated when following data item is explicitly
synchronized.

$ indicates implicit FILLER bytes allocated when a nonelementary item is subject
to an OCCURS clause.

COBOL Concepts 2-23

9 .indicates bytes allocated for a numeric DISPLAY character.

X indicates bytes allocated for an alphanumeric DISPLAY character.

C indicates bytes allocated for a COMPUTATIONAL data storage.

Truncation
In data items of USAGE COMP, data is held in binary format as described in the previous
sections. The memory allocated for an item may have space for larger numbers than speci
fied by the PICTURE clause. For example, an item described as PIC 99 COMP is normally
assigned one byte, which can hold numbers up to 255.

To conform with the rules of ANSI COBOL, numbers behave as decimal numbers, regard
less of their format. In an arithmetic statement, if the result is bigger than the PICTURE
clause of a receiving item allows, this causes a size error, and if the ON SIZE ERROR
phrase is specified the result is not stored in the receiving item. In a nonarithmetic state
ment, if this situation occurs, the decimal value is truncated on the left to the number of
digits specified in the PICTURE clause.

However, data in USAGE COMP items can be forced to behave as binary
data. Truncation only occurs if it is necessary in order for the data to fit the
space allocated. The behavior of USAGE COMP items is controlled by the
setting of an AIX VS COBOL system directive, TRUNC. Refer to the User's
Guide for details on how to invoke this feature. This directive selects
whether the decimal value is truncated to the picture size, or the binary value
is truncated to the space available. It distinguishes between results of arith
metic statements and data being moved by nonarithmetic statements.

Regardless of the setting of the directive, an arithmetic statement gives the
size error condition if the result has more decimal digits than specified in
the PICTURE clause of a receiving item.

Example of Truncation

The TRUNC directive can change the results of some operations, as demon
strated in the following examples in which item A is described as PIC 99
COMP.

Table 2-6. Change of Results Due to TRUNC Directive
Result

Operation TRUNC NOTRUNC TRUNC "ANSI"

MOVE 163TOA 63 163 63

MOVE 263 TOA 63 7 63

MF

MF

MF

MOVE 13TOA, 63 163 undefined results
ADD 150 TO A

MOVE 13TOA, 63 7 undefined results
ADD 250 TO A

2-24 Language Reference

Notes:

1. This directive has no effect on the truncation of low order digits in non
integer data. This always conforms with the behavior specified in ANSI
COBOL.

2. If the IBMCOMP system directive is set, extra upper bytes may be allo
cated to a COMP item. These are counted in the space allocated. When
IBMCOMP is on, padding bytes may be generated before a COMP item
with a SYNC clause. These are not part of the item, and are never
affected by data stored in the item.

3. When a value being stored into a signed item is limited to the number of
digits allowed by the PICTURE clause, it can never be big enough to
overwrite the sign bit. When NOTRUNC is set, the value, if large
enough, will overwrite the sign bit.

COMPUTATIONAL-3 COMP-3 PACKED-DECIMAL Format

MF

This form, commonly called binary-coded-decimal form, represents numeric data items in
radix 10, but with each digit of the value held in only one-half of one computer character,
as described in Table 2-7. The sign is held in a separate trailing digit (half-character) posi
tion; that is, at the right (least significant) end of the item.

Table 2-7. Binary-Coded Decimal Form

Digit Representation in Hexadecimal

Left Half-Character Right Half-Character
Digit Value (odd-digit) (even-digit)

0 X'OO' X'OO'

1 X'lO' X'Ol'

2 X'20' X'02'

3 X'30' X'03'

4 X'40' X'04'

5 X'50' X'05'

6 X'60' X'06'

7 X'70' X'07'

8 X'80' X'08'

9 X'90' X'09'

Note: Count even and odd starting from the right.

Table 2-8 on page 2-26 shows the sign digits used for COMPUTATIONAL-3; storage
memory requirements for this format depend only on the number of 9s in the PICTURE
clause of the data item (see Table 2-9 on page 2-26).

COBOL Concepts 2-25

Table 2-8. COMPUTATIONAL-3 Sign Digit Represen-
tation

Sign of
Sign Convention Data Sign Half-
in the PICTURE Item Character,
Clause Value in Hexadecimal

Unsigned n/a X'OF'

Signed + X'OC'

Signed - X'OD'

Table 2-9. Numeric Data Storage for the
COMP(UTATIONAL)-3 or
PACKED-DECIMAL PICTURE
Clause

Bytes Required Number of Digits
(Signed or Unsigned)

1 1

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

7 12-13

8 14-15

9 16-17

10 18

2-26 Language Reference

Examples
1. For COMPUTATIONAL-3 and PICTURE 9999, the number+ 1234 would be stored as

follows:

l I

0000 0001 0010 0011 0100 1111

1 byte

Figure 2-5. Number Storage

where F represents the nonprinting plus sign.

2. For COMPUTATIONAL-3 and PICTURE 89999, the number + 1234 is stored as in
number 1 above, except that the least significant digit would be replaced by C(llOO)
representing the plus sign.

3. For COMPUTATIONAL-3 and PICTURE 89999, the number - 1234 is stored as in
number 1 above, except that the least significant byte would be replaced by D(llOl)
representing the minus sign.

The SYNCHRONIZED clause (with or without the LEFT or RIGHT phrase) has no effect
on COMPUTATIONAL-3 data declarations.

COMPUTATIONAL-5 Or COMP-5 Format

This format is the same as COMPUTATIONAL format. Refer to "COMPU
TATIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4
Format" on page 2-21.

It has the following differences from the COMPUTATIONAL format:

• The value that can be stored is not limited to the number of decimal
digits indicated in the PICTURE clause, but to the largest binary
number for which the allocated storage has space.

• The machine code of some processors stores the bytes of numeric fields in
reverse order. That is, low-order bytes are stored at the lowest addresses
and successively higher-order bytes at successively higher addresses.
This is the mirror image of normal order where the high-order bytes are
stored at the lowest addresses and successively lower-order bytes at suc
cessively higher addresses.

On processors where the machine code stores the bytes of numeric
fields in reverse order, COMPUTATIONAL-5 items are stored in
reverse order. For example, hexadecimal 12 34 56 78 9A is stored as
9A 78 56 34 12.

On processors where the machine code stores the bytes of numeric
fields in normal order, COMPUTATIONAL-5 items are stored in
normal order.

MF

COBOL Concepts 2-27

COMPUTATIONAL-X Or COMP-X Format

This format is the same as COMPUTATIONAL format. See "COMPUTA
TIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4 Format" on
page 2-21.

It has the following differences from the COMPUTATIONAL format:

• The PICTURE character string can consist of all Xs. If it does, the
number of Xs gives the length of the item in bytes.

• Whether the PICTURE character string consists of Xs or 9s, the value
that can be stored is limited to the largest binary number for which the
allocated storage has space. The item is not affected by the TRUNC,
COMP, SYNC, ALIGN, or IBMCOMP system directives.

• The use of COMP-X items in arithmetic statements is restricted to ADD,
SUBTRACT, MULTIPLY and DIVIDE statements with two operands
(each either a literal or a COMP-X item) and no ON SIZE ERROR
phrase. Refer to "ON SIZE ERROR Phrase and NOT ON SIZE
ERROR Phrase" on page 7-19, "ADD Statement" on page 7-24,
"DIVIDE Statement" on page 7-34, "MULTIPLY Statement" on
page 7-69, and "SUBTRACT Statement" on page 7-91. Such statements
follow these rules of two's complement ·binary arithmetic:

- If the result is too big for the target item, high-order binary digits are
truncated.

If the result is not an integer, only the integer part is stored.

If the result is less than zero, the two's complement of the absolute
value of the result is stored. This is subsequently interpreted as a
positive (unsigned) integer.

If a negative literal is used in a MULTIPLY or DIVIDE statement,
its sign is ignored and it is treated as positive.

• If a nonarithmetic statement attempts to store a negative value in a
COMP-X item, the absolute value is stored.

POINTER Format

VS COBOL assigns four bytes of storage for POINTER format. The method
of data storage is machine-dependent.

Uniqueness of Reference

Uniqueness of Reference contains the following categories:

• Qualification
• Subscripting
• Indexing
• Reference Modification
• Identifier
• Condition-Name.

2-28 Language Reference

MF

MF

VSC2

Qualification
Every user-specified name in a COBOL source program must be unique, either because no
other name has the identical spelling and hyphenation, or because the name exists within
a hierarchy of names such that references to the name can be made unique by mentioning
one or more of the higher levels of the hierarchy. The higher levels are called qualifiers
and the process that specifies uniqueness is called qualification. Enough qualification
must be mentioned to make the name unique. However, it may not be necessary to
mention all levels of the hierarchy.

Within the Data Division, all data-names used for qualification must be associated with a
level indicator or a level number. Therefore, two identical data-names must not appear as
entries subordinate to a group item unless they are capable of being made unique through
qualification.

In the Procedure Division, two identical paragraph names must not appear in the same
section.

In the hierarchy of qualification, names for level indicators are the most significant, fol
lowed by the names for level-number 01, followed by names for level-number 02 through 49.
A section name is the only qualifier available for a paragraph name. Thus, the most signif
icant name in the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as procedure names and data-names,
may be made unique by qualification. The name of a conditional variable can be used as a
qualifier for any of its condition names. Regardless of the available qualification, no name
can be both a data-name and procedure name.

Qualification is performed by following a data-name, a condition name, a paragraph name,
or a text name with one or more phrases composed of a qualifier preceded by IN or OF. IN
and OF are logically equivalent.

The following figure shows the general formats for qualification:

Format 1

Ldata-name-1 ~ L ~
condition-name L OF _=r- data-name-2

IN

Format 2

~paragraph-name ---r------------.-__,.,_,. C OF I section-name _J
IN

Format 3

~text-name --,-------------r----1"""'" C OF I library-name _J
IN

COBOL Concepts 2-29

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same hierarchy as
the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition name is assigned to more than one data item in a source
program, the data-name or condition name must be qualified each time it is referred to
in the Procedure, Environment, and Data Divisions (except in the REDEFINES clause,
where qualification is unnecessary and must not be used).

4. A paragraph name must not be duplicated within a section. When a paragraph name is
qualified by a section name, the word SECTION must not appear. A paragraph name
need not be qualified when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications. If there is more
than one combination of qualifiers that ensures uniqueness, then any such set can be
used.

Qualified names may have up to 50 qualifiers.

7. If more than one COBOL library is available to the AIX VS COBOL system, text name
must be qualified each time it is referenced.

Subscripting
Subscripts can be used only when reference is made to an individual element within a list
or table of like elements that have not been assigned individual data-names. Refer to
"OCCURS Clause" on page 12-5.

The subscript can be represented either by a numeric literal that is an integer, by a data
name, or by a data-name followed by the operator+ or-, followed by an unsigned integer
numeric literal. The data-name must be a numeric elementary item that represents an
integer, and the whole subscript must be delimited by the balanced pair of separators left
parenthesis and right parenthesis.

The subscript data-name may be signed. If it is signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are 2, 3, and so
on. The highest permissible subscript value, in any particular case, is the maximum
number of occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is delimited by the bal
anced pair of separators, left parenthesis and right parenthesis, following the table element
data-name. The table element data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is required, they are written in
the order of successively less inclusive dimensions of the data organization. Up to 16 sub
scripts are permitted.

2-30 Language Reference

The following figure shows the general format for subscripting:

.... Ldata~n~me-1 ~ (1data-name-2-~L-------~~~)-M
cond1t1on-name ~Tl iteral-2

litera1-1~~~~~~~~~~~~

where:

Indexing

literal-I must be a positive integer literal.

literal-2 must be an unsigned numeric integer.

data-name-2 may not be subscripted or indexed.

References can be made to individual elements within a table of like elements by specifying
indexing for that reference. An index is assigned to that level of the table using the
INDEXED BY phrase in the definition of a table. A name specified in the INDEXED BY
phrase is known as an index name and is used to refer to the assigned index. The value of
an index corresponds to the occurrence number of an element in any table. An index name
must be initialized before it is used as a table reference. An index name can be given an
initial value by a SET statement.

Direct indexing is specified using an index name in the form of a subscript. Relative
indexing is specified when the index name is followed by the operators + or -, followed by
an unsigned integer numeric literal, all delimited by the balanced pair of separators, left
parenthesis and right parenthesis, following the table element data-name. The occurrence
number resulting from relative indexing is determined by incrementing (where the operator
+ is used) or decrementing (where the operator - is used), by the literal value, or the
occurrence number represented by the index value. When more than one index name is
required, the names are written in the order of successively less inclusive dimensions of
the data organization.

When a statement which refers to an indexed table element is executed, the value con
tained in the index referenced by the index name for the table element must neither corre
spond to a value less than one nor to a value greater than the highest permissible
occurrence number of an element of the associated table. This restriction also applies to
the value resulting from relative indexing. Up to 16 index names can be used with a data
name.

The following figure shows the general format for indexing:

.... L data-name _J
condition-nam~

(--r-index-name-1-~ l~[------_J~-)----M

L l iteral-1 __J L: Tl iteral-2

where:

literal-I must be a positive numeric integer.

literal-2 must be an unsigned numeric integer.

COBOL Concepts 2-31

Reference Modification
Reference modification defines a data item by specifying a leftmost character and length
for the data item. Unless otherwise specified, it is allowed anywhere an identifier refer
encing an alphanumeric data item is permitted. The general format for reference modifica
tion is:

data-name (leftmost-character-position: [length])

where:

Data-name may be qualified or subscripted and must reference a data item whose usage
is DISPLAY.

leftmost-character-position and length must be arithmetic expressions.

The rules for reference modification are as follows:

1. Each character of a data item referenced by data-name is assigned an ordinal number,
incrementing by one, from the leftmost position to the rightmost position. The leftmost
position is assigned the ordinal number one. If the data description entry for data
name contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

2. If the data item referenced by data-name is described as numeric, numeric-edited,
alphabetic, or alphanumeric-edited, it is operated upon for reference modification as if
it were redefined as an alphanumeric data item of the same size as the data item refer
enced by data-name.

3. Reference modification for an operand is evaluated as follows:

a. If subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscripts.

b. If subscripting is not specified for the operand, the reference modification is evalu
ated at the time subscripting would have been evaluated if subscripts had been
specified.

4. Reference modification creates a unique data item which is a subset of the data item
referenced by data-name. This unique data item is defined as follows:

a. The evaluation of leftmost-character-position specifies the ordinal position of the
leftmost character of the unique data item in relation to the leftmost character of
the data item referenced by data-name. Evaluation of leftmost-character-position
must result in a positive nonzero integer less than or equal to the number of char
acters in the data item referenced by data-name.

b. The evaluation of length specifies the size of the data item to be used in the opera
tion, in bytes. The evaluation of length must result in a positive nonzero integer.
The sum of leftmost-character-position and length minus the value one, must be
less than, or equal to, the number of characters in the data item referenced by data
name. If length is not specified, the unique data item extends from and includes
the character identified by leftmost-character-position, up to and including the
rightmost character of the data item referenced by data-name.

5. The unique data item is considered an elementary data item without the JUSTIFIED
clause. It has the same class and category defined for the data item referenced by data
name except that the categories numeric, numeric-edited, and alphanumeric-edited are
considered class and category alphanumeric.

2-32 Language Reference

Identifier
An identifier is a term used to show that a data-name, if not unique in a program, must be
followed by a syntactically correct combination of qualifiers, subscripts, or indexes neces
sary to ensure uniqueness.

The following figure shows the general format for identifiers:

--- data-name-1 ' LOFT data-name-2 J
LIN [~~)J (1• data-name-3 -:::J L ~

i ndex-name-1 [:Tl i tera 1-2
1

l iteral-1------------'

.. l(leftmost-char-pos:-----)J
L length _J

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is being
used as an index or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements.
Data items described by the USAGE IS INDEX clause permit storage of the values for
index names as data. The form in which these values are stored is dependent on a
system-controlling directive. Refer to the User's Guide for details. Such data items are
called index data items.

4. In the format above, literal-I must be a positive numeric integer. Literal-2 must be an
unsigned numeric integer.

Condition Name
Each condition name must be unique, or be made unique through qualification, indexing,
or subscripting. If qualification is used to make a condition name unique, the associated
conditional variable may be used as the first qualifier. If qualification is used, the hier
archy of names associated with the conditional variable or the conditional variable itself
must be used to make the condition name unique.

If references to a conditional variable require indexing or subscripting, then references to
any of its condition names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition names are exactly those of identifier, except that data-name-1 is
replaced by condition-name-1.

In the general formats, condition name refers to a condition name qualified, indexed, or
subscripted, as necessary.

COBOL Concepts 2-33

Explicit and Implicit Specifications

Four types of explicit and implicit specifications occur in COBOL source programs:

1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes

4. Explicit and implicit scope terminators.

Explicit And Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in Proce
dure Division statements. An explicit reference occurs when the name of the referenced
item is written in a Procedure Division statement or when the name of the referenced item
is copied into the Procedure Division by the processing of a COPY statement. An implicit
reference occurs when the item is referenced by a Procedure Division statement without
the name of the referenced item being written in the source statement.

An implicit reference also occurs during the execution of a PERFORM statement, when
the index or data item referenced by the index name or identifier specified in the
VARYING, AFTER or UNTIL phrase is initialized, modified, or evaluated by the control
mechanism for the PERFORM statement. Such an implicit reference occurs only if the
data item contributes to the execution of the statement.

Explicit and Implicit Transfers of Control

The mechanism controlling program flow transfers control from statement to statement in
the sequence in which they were written in the source program, unless an explicit transfer
of control overrides this sequence or there is no next executable statement to which
control can be passed. The transfer of control from statement to statement occurs without
writing an explicit Procedure Division statement and, therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering the implicit control transfer
mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of a
procedure branching statement. COBOL provides the following types of implicit control
flow alterations which override the statement-to-statement transfers of control:

1. When a paragraph is executed under control of another COBOL statement (for
example, PERFORM, USE, SORT, and MERGE) control is passed from the last state
ment of the paragraph, to the control mechanism of the last executed controlling state
ment. When a paragraph is executed under the control of a PERFORM statement
which executes iteratively, and the paragraph is the first paragraph in the range of
that PERFORM statement, an implicit transfer of control occurs between the control
mechanism for that PERFORM statement and the first statement in the paragraph for
each iterative execution of the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control occurs
to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of a declar
ative section, an implicit transfer of control to the declarative section occurs. Note
that another implicit transfer of control occurs after execution of the declarative
section, as described in 1.

2-34 Language Reference

4. In any file operation (including OPEN and CLOSE), if a file does not
have a FILE STATUS data item declared for it and the file is not explic
itly covered by a USE statement, then it is covered by an implicit USE
statement. The implied USE procedure is equivalent to:

USE AFTER ERROR PROCEDURE ON filename

IF status-key-I = 9
DISPLAY error-message UPON CONSOLE
STOP RUN.

Refer to the User's Guide for the definition of error messages

MF

An explicit transfer of control alters the implicit control transfer mechanism by the exe
cution of a procedure branching or conditional statement. Refer to "Statements and
Sentences" on page 2-46. An explicit transfer of control can be caused only by the exe
cution of a procedure branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an explicit transfer of control,
but affects the explicit transfer of control that occurs when the associated GO TO state
ment is executed. The procedure branching statement EXIT PROGRAM causes an explicit
transfer of control when the statement is executed in a called program.

In this document, next executable statement is used to refer to the next COBOL state
ment to which control is transferred according to the rules above and the rules for each
language element in the Procedure Division.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which it appears is
not being executed under the control of some other COBOL statement.

2. The last statement in a program when the paragraph in which it appears is not being
executed under the control of some other COBOL statement.

Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which has been explic
itly specified is called an explicit attribute. If an attribute has not been specified explic
itly, then the attribute takes on the default specification. Such an attribute is known as
an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item's
usage is DISPLAY.

COBOL Concepts 2-35

Explicit and Implicit Scope Terminators

Scope terminators delimit the scope of certain Procedure Division statements (delimited
scope statements) and are of two types: explicit and implicit.

The explicit scope terminators are listed below in Table 2-10 with their matching delimited
scope statements. In some cases, the delimited scope statement with which an explicit
scope delimiter is paired is determined differently for different COBOL language specifica
tions.

Table 2-10. Explicit Scope Terminators
Explicit Scope Delimited Scope Statement
Terminator

ANS85 VSC2
END-ADD ADD (ADD ...) ON SIZE ERROR

END-CALL CALL (CALL ...) ON OVERFLOW
END-COMPUTE COMPUTE (COMPUTE ...) ON SIZE ERROR
END-DELETE DELETE (DELETE ...) INVALID KEY
END-DIVIDE DIVIDE (DIVIDE ...) ON SIZE ERROR

END-EV ALU ATE EVALUATE EVALUATE
END-IF IF IF
END-MULTIPLY MULTIPLY (MULTIPLY ...) ON SIZE ERROR
END-PERFORM in-line in-line PERFORM

PERFORM
END-READ READ (READ ...) AT END and (READ ...) INVALID KEY
END-RECEIVE RECEIVE
END-RETURN RETURN RETURN
END-REWRITE REWRITE (REWRITE ...) INVALID KEY
END-SEARCH SEARCH SEARCH
END-START START (START ...) INVALID KEY
END-STRING STRING (STRING ...) ON OVERFLOW
END-SUBTRACT SUBTRACT (SUBTRACT ...) ON SIZE ERROR
END-UNSTRING UNSTRING (UNSTRING ...) ON OVERFLOW
END-WRITE WRITE (WRITE ...) INVALID KEY

Implicit scope termination occurs:

• At the end of any sentence where the separator period terminates the scope of all pre
vious statements not yet terminated.

• Within any statement containing another statement. The next phrase of the con
taining statement following the contained statement (for example, ELSE, WHEN, AT
END, and so on) terminates the scope of any unterminated contained statement.

2-36 Language Reference

Program Structure

An AIX VS COBOL program consists of four divisions:

• Identification Division - An identification of the program.

• Environment Division - A description of the equipment to be used to compile and run
the program.

• Data Division - A description of the data to be processed.

• Procedure Division - A set of procedures to specify the operations to be performed on
the data.

Each division: is divided into sections that are further divided into paragraphs, that in turn
are made up of sentences.

Any division may be optionally omitted. MF

Optional Division, Section, and Paragraph Headings

Some of the red tape statements required by the ANSI Standard COBOL Specifications are
optional when using AIX VS COBOL. However, it is possible to have AIX VS COBOL
system output warning messages when such statements are found to be missing by use of
the FLAG directive. Refer to the User's Guide. Such statements are identified as optional
in this manual by enclosing them between brackets and highlighting them. The symbols
next to the highlighted areas indicate the dialect in which these features are optional.

COBOL Concepts 2-37

Identification Division

This section describes the organization, structure, and general format of the Identification
Division.

The Identification Division must be included in every COBOL source program except ANSI
85, where it is optional. This division identifies both the source program and the resultant
output listing. In addition, the user may include the date the program is written, the date
of the compilation of the source program, and other information as desired under the para
graphs in the general format shown in "General Format."

Organization

Paragraph headers identify the type of information contained in the paragraph. The name
of the program must be specified in the first paragraph, which is the PROGRAM-ID para
graph. The other paragraphs are optional and may be included in this division at the
user's discretion, in the order of presentation shown by the format in "General Format."

Structure

The general format of the paragraphs in the Identification Division defines the order of
presentation in the source program.

General Format

The following figure shows the general format of the paragraphs in the Identification Divi
sion:

... tIDENTIFICATIO_N_o_rv_r_s_ro_N_.---11 l PROGRAM-ID. program-name.
ID DIVISION. ·
NO WORDS NO WORDS------~

• [AUTHOR.-'-----~
L comment-entry J

[INSTALLATION. '
L comment-entry J

• L OATE-WRITTEN. -'~------.---"I L OATE-COMPILEO. '
L comment-entry J L comment-entry J

• LSECURJTY.-'~-----,---'I [REMARKS.-'~----~~
[comment-entry J [comment-entry J

....

2-38 Language Reference

..

..

OSVS VSC2
MF

osvs

Environment Division

This section describes the organization, structure, and general format of the Environment
Division.

The Environment Division specifies a standard method of expressing those aspects of a
data processing problem dependent upon the physical characteristics of a specific com
puter. This division allows specification of the configuration of the source computer and
the object computer. In addition, information relating to input-output control, special
hardware characteristics, and control techniques can be specified in this division.

The Environment Division must be included in every COBOL source program.

Organization

Two sections make up the Environment Division:

• The Configuration Section deals with the characteristics of the source computer and
the object computer. This section is divided into three paragraphs:

The SOURCE-COMPUTER paragraph, describing the computer configuration on
which the intermediate code is produced

The OBJECT-COMPUTER paragraph, describing the computer configuration on
which the object (intermediate code) program is to be run

The SPECIAL-NAMES paragraph, that relates the implementation names used by
the AIX VS COBOL system to the mnemonic names used in the source program.

• The INPUT-OUTPUT SECTION deals with the information needed to control trans
mission and handling of data between external media and the object program. This
section is divided into two paragraphs:

Structure

The FILE-CONTROL paragraph, which names and associates the files with
external media

The I-0-CONTROL paragraph, which defines special control techniques to be used
in the object program.

The general format of the sections and paragraphs in the Environment Division defines the
order of presentation in the source program.

COBOL Concepts 2-39

General Format

The following figure shows the general format of the sections and paragraphs in the Envi
ronment Division:

....
.. E ENVIRONMENT DIVISION.--,-----------------------

NO WORDS----~

.. 1

.. 2 .. E CONFIGURATION SECTION. --r--r-------------------,-----·
No woRDs ----~ L souRcE-coMPUTER. -c---------J-r--'

source-computer-entry

~:--r--~~~~~~~~~--r-r-~~~~~~~~~~I"'
L OBJECT-COMPUTER. I L SPECIAL-NAMES. I

L object-computer-entry J L special -names-entry J

t
INPUT -OUTPUT -SECTION. ~~L-FI LE-CONT~ fi l e-contro 1-entry ---------. 4
NO WORDS NO WORDS

.... 3:
4.,.._.,L_I_--0--C-ON-T-RO_L_._[__________ :J_,

input-output-control-entry

2-40 Language Reference

MF

MF

MF

Data Division

This section defines the physical and logical aspects of data description.

The Data Division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output.

Data Division Organization

The Data Division is divided into sections. These are the FILE,
WORKING-STORAGE, LINKAGE, COMMUNICATION, REPORT and
SCREEN SECTIONS. MF

The FILE SECTION defines the structure of data files. Each file is defined by a file
description entry and one or more record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and noncontiguous data items that
are not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not change
during the execution of the object program.

The LINKAGE SECTION appears in the called program and describes data items to be
referred to by the calling and the called program. Its structure is the same as the
WORKING-STORAGE SECTION.

The COMMUNICATION SECTION describes the data item in the source program that
serves as the interface between the MCS and the program.

The REPORT SECTION contains one or more report description entries (RD entries), each
of which forms the complete description of a report.

The SCREEN SECTION defines the attributes of the display screens. It MF
specifies the exact location of fields when they are displayed on the screen
and controls certain console features during an ACCEPT or DISPLAY oper-
ation.

COBOL Concepts 2-41

General Format

The following figure shows the general format of the sections in the Data Division and
defines the order of their presentation in the source program:

E DATA DIVISION-..----------------------------" ..
NO WORDS--~

f l
FI LE SECTION. --r------------------------,,--'

f I
r- fi l e-descri pt ion-entry - record-description-entry --------i

f I
1- sort-merge-fi l e-descri pt ion-entry - record-description-entry -
'-- report-file-description-entry--------------'

WORKING-STORAGE SECTION.---.---------------.-~
77-level-description-entry
record-description-entry

LINKAGE SECTION.----------------.----'

"--COMMUNICATION SECTION.

2~42 Language Reference

77-level-description-entry
record-description-entry

~communication-description-entry l j
record-description-entry

I

MF

..

..

[REPORT SECTION. ~--------------------------r--'
t I

report-description-entry -- report-group-description-entry

L SCREEN SECTION.~[---------]~~

!creen-description-entrl

....
MF

COBOL Concepts 2-43

Procedure Division

This section describes the statements and sentences components of the Procedure Division.

The Procedure Division may contain declarative and nondeclarative procedures.

Declaratives
Declarative sections must be grouped at the beginning of the Procedure Division preceded
by the key word DECLARATIVES and followed by the key words END DECLARATIVES
(refer to "USE Statement" on page 8-86).

Procedures
A procedure is composed of a paragraph, a group of successive paragraphs, a section, or a
group of successive sections within the Procedure Division. A procedure name is a word
used to refer to a paragraph or section in the source program in which it occurs. It con
sists of a paragraph name (which may be qualified) or a section name.

The end of the Procedure Division and the physical end of the program is either the phys
ical position in a COBOL source program after which no further procedures appear, or the
occurrence of the END PROGRAM header.

A section consists of a section header followed by zero, one, or more successive para
graphs. A section ends immediately before the next section, at the end of the Procedure
Division, or at the key words END DECLARATIVES in the declaratives portion of the Pro
cedure Division.

A paragraph consists of a paragraph name followed by a period and a space, and by zero,
one, or more successive sentences. A paragraph ends immediately before the next para
graph name or section name, at the end of the Procedure Division, or at the key words
END DECLARATIVES in the declaratives portion of the Procedure Division.

A sentence consists of one or more statements and is terminated by a period followed by a
space.

A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb.

The term identifier is defined as the word or words necessary to make unique reference to
a data item.

Execution
Execution begins with the first statement of the Procedure Division, excluding declar
atives. Statements are then executed in the order in which they occur in the source
program, except where the rules indicate some other order.

2-44 Language Reference

General Format
The following figures show the general format for the Procedure Division:

PROCEDURE DIVISION Header

The Procedure Division is identified by and must begin with the following header:

--PROCEDURE DIVISION -.------------,c--

' USING _J data-name-1
CHAINING

PROCEDURE DIVISION Body

The body of the Procedure Division must conform to one of the following formats:

Format 1

DECLARATIVES.-------------------------------- 2

.._--------------------------------------+3

2 .,...._section-name SECTION-~L------~~~ · - declarative-sentence
segment-number

3 ~ :=J section-name SECTION L ~
4 .,...._END DECLARATIVES. segment-number

Format 2

...... 4

f
paragraph-name.-----..--'

n
.__sentence -

f
''''''''"-"'~-~ I

sentence

MF

..,.,.,.,..__--,--L _____ ~---.--- paragraph-name. ----~L-----J---.-----1•~ ..
sentence f I osvs

sentence

COBOL Concepts 2-45

Statements and Sentences

There are four types of statements:

• Conditional statements
• AIX VS COBOL system directing statements
• Imperative statements
• Delimited scope statements.

There are three types of sentences:

• Conditional sentences
• AIX VS COBOL system directing sentences
• Imperative sentences.

Conditional Statement
A conditional statement specifies that the truth value of a condition is to be determined
and that the subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

• An EVALUATE, IF, SEARCH, or RETURN statement
• A READ statement specifying the AT END or INVALID KEY phrase
• An ON statement osvs
• A WRITE statement specifying the INVALID KEY or END-OF-PAGE phrase
• A START, REWRITE, or DELETE statement specifying the INVALID KEY PHRASE
• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) speci-

fying the SIZE ERROR phrase
• A RECEIVE statement specifying a NO DATA phrase
• A STRING or UNSTRING statement specifying the ON OVERFLOW phrase
• A CALL statement specifying the ON OVERFLOW or ON EXCEPTION phrase.

Conditional Sentence
A conditional sentence is a conditional statement, optionally preceded by an imperative
statement, terminated by a period followed by a space.

2-46 Language Reference

AIX VS COBOL Directing Statement
An AIX VS COBOL system directing statement consists of a directing verb and its oper
ands. The directing verbs are:

COPY
ENTER
USE
EJECT
SKIP I
SKIP2
SKIP3
TITLE

OSVS VSC2

VSC2

An AIX VS COBOL system directing statement causes the AIX VS COBOL system to take
a specified action during creation of the object code.

AIX VS COBOL System Directing Sentence
An AIX VS COBOL system directing sentence is a single directing statement, terminated
by a period, followed by a space.

Imperative Statement
An imperative statement indicates a specific unconditional action to be taken by the object
program. An imperative statement is any statement that is neither a conditional statement
nor an AIX VS COBOL system directing statement. An imperative statement may consist
of a sequence of imperative statements, each possibly separated from the next by a sepa
rator.

The imperative verbs are:

ACCEPT
ADDI
ALTER
CALLS
CANCEL
CLOSE
COMPUTE I
CONTINUE
DELETE2
DISABLE
DISPLAY
DIVIDEl

Notes:

ENABLE
EXIT
GOTO
INITIALIZE
INSPECT
MERGE
MOVE
MULTIPLYl
OPEN
PERFORM
PURGE
READ5

1. Without the optional SIZE ERROR phrase.

2. Without the optional INVALID KEY phrase.

3. Without the optional ON OVERFLOW phrase.

4. Without the optional NO DATA phrase.

RECEIVE4
RELEASE
REWRITE2
SEND
SET
SORT
START2
STOP
STRINGS
SUBTRACTl
UN STRINGS
WRITE6

5. Without the optional AT END phrase or INVALID KEY phrase.

6. Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

COBOL Concepts 2-47

The OSVS imperative verbs are:

• EXAMINE osvs
• EXHIBIT
• GOBACK
• TRANSFORM

The VSC2 imperative verb is:

• GOBACK VSC2

The Micro Focus imperative verb is:

• EXEC(UTE) MF

The term "imperative statement" in the general format of statements, refers to the
sequence of imperative statements that must end with a period or an ELSE phrase for a
previous IF statement.

Delimited Scope Statements
A delimited scope statement is a statement (for example, an IF statement) which is termi
nated by a matching explicit scope terminator (in this case, END-IF). Thus, all the state
ments between a delimited scope statement and its paired explicit scope terminator are
deemed to be contained within that delimited scope statement.

Delimited scope statements may be nested, in which case each explicit scope terminator
encountered in the program is considered to pair with the nearest preceding unpaired
matching delimited scope statement.

Delimited scope statements may also be implicitly terminated. They may be terminated at
the end of a procedural sentence (where all nonterminated statements are terminated by
the separator period). Scope delimited statements may also be terminated by the tet:mi
nation of any containing delimited scope statement. For example, an ELSE phrase of a
containing IF statement terminating a contained in-line PERFORM statement without the
presence of an END-PERFORM phrase.

Note that not all statements are scope-delimitable in this fashion. Statements that are
scope-delimitable are only termed delimited scope statements if they are explicitly termi
nated by an explicit scope delimiter.

See "Explicit and Implicit Scope Terminators" on page 2-36 for more information.

Imperative Sentence
An imperative sentence is an imperative statement terminated by a period followed by a
space.

2-48 Language Reference

Categories of Statements
The following figures list categories and verbs:

Category

Arithmetic

Conditional

Verbs

ADD
COMPUTE
DIVIDE
EXAMINE (TALLYING)
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

ADD (SIZE ERROR)
CALL (OVERFLOW)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
EVALUATE
GO TO (DEPENDING)
IF
MULTIPLY (SIZE ERROR)
ON
READ (END or INVALID KEY)
RECEIVE (NO DATA)
RETURN (END)
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE)

osvs

osvs

COBOL Concepts 2-49

Category Verbs

ACCEPT (DATE, DAY or TIME)
ACCEPT MESSAGE COUNT
EXAMINE osvs
INITIALIZE

Data Movement INSPECT (CONVERTING)
INSPECT (REPLACING)
MOVE
STRING
TRANSFORM osvs
UNSTRING

Ending { GOBACK OSVS VSC2
STOP

ACCEPT (identifier)
CLOSE
DELETE
DISABLE
DISPLAY
ENABLE
EXHIBIT osvs
OPEN

Input-Output PURGE
READ
RECEIVE
REWRITE
SEND
SET(TO ON or TO OFF)
START
STOP (li tera 1)
WRITE

2 .. 50 Language Reference

Category Verbs

Inter-Program {CALL
Communication CANCEL

Null Operation { CONTINUE
EXIT

{ HE~E
Ordering RELEASE

RETURN
SORT

{ ALTER CALL
Procedure Branching EXIT

GO TO
PERFORM

END-ADD
END-CALL
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-PERFORM

Scope Delimiting END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE

COPY
EJECT OSVS VSC2
ENTER
ENTRY OSVS VSC2

VS COBOL system EXECUTE MF
Directing SKI Pl OSVS VSC2

SKIP2
SKIP3
TITLE VSC2
USE

Table Handling { SEARCH
SET

COBOL Concepts 2-51

Reference Format

The reference format provides a standard method for describing COBOL source programs.

The Reference format is described in terms of character positions in a line on an input
output medium. The AIX VS COBOL system accepts source programs written in reference
format and produces an output listing of the source program input in reference format.
See Chapter 1, "Introduction" for a sample source program. ·

The rules for spacing given in the discussion of the reference format take precedence over
all other rules for spacing.

The divisions of a source program must be ordered as follows:

1. Identification Division
2. Environment Division
3. Data Division
4. Procedure Division.

Each division must be written according to the rules for the reference format.

Reference Format Representation

The reference format for a line is represented as in Figure 2-6.

Margin
L

Margin Margin
C A

1 2 3 4 5 6 7 8
'-----v---1

I Sequence
Number Area

Indicator Area

1
9 e

Area A

Margin
B

1
1

1
2

1
3

Margin
R

7
2

Area B

Figure 2-6. Reference Format for a COBOL Source Line

• Margin L is immediately to the left of the leftmost character position of a line.
• Margin C is between the 6th and 7th character positions of a line.
• Margin A is between the 7th and 8th character positions of a line.
• Margin Bis between the 11th and 12th character positions of a line.
• Margin R is immediately to the right of the 72nd character position of a line.

The sequence number area occupies six character positions (1-6) and is between Margin L
and Margin C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11 and is between Margin A and
Margin B.

Area B occupies character positions 12 through 72 inclusive; it begins immediately to the
right of Margin B and terminates immediately to the left of Margin R.

2-52 Language Reference

Sequence Numbers
A sequence number, normally consisting of six digits, may be placed in the sequence area
and may be used to label a source program line. This sequence number is usually in
ascending numeric order for each successive source statement line of the program.

The ascending order of sequence numbers may be optionally verified by the AIX VS
COBOL system. Refer to the User's Guide for details of the directive that enables this.

There is no requirement for the content of this area to be numeric, or even unique.

If the first character position of the sequence number field contains an
asterisk, or any unprintable control character (less than character SPACE in
the ASCII collating sequence), the line is treated as source-comment and is
ignored and not output to the listing file or device.

Continuation of Lines

MF

Whenever a sentence, entry, phrase, or clause requires more than one line, it may be con
tinued by starting subsequent line(s) in area B. These subsequent lines are called contin
uation lines. The line being continued is called the continued line. Any word or literal
may be broken in such a way that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank character in area
B of the current line is the successor of the last nonblank character of the preceding line
without any intervening space. However, if the continued line contains a nonnumeric
literal without a closing quotation mark, the first nonblank character in area B on the
continuation line must be a quotation mark. The continuation starts with the character
immediately after that quotation mark. All spaces at the end of the continued line are
considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that a space follows the
last character in the preceding line. Both characters composing the separator = = must
be on the same line.

DBCS Support

DBCS literals and mixed literals may not be continued .

.____ ____________ End of DBCS Support ------------~

Blank Lines
A blank line is one that is blank from Margin C to Margin R, inclusive. A blank line can
appear anywhere in the source program, except immediately preceding a continuation line.

Pseudo-Text
The character strings and separators comprising pseudo-text may start in either area A or
area B. However, if there is a hyphen in the indicator area of a line which follows the
opening pseudo-text delimiter, area A of the line must be blank. The normal rules for con
tinuation of lines apply to the formation of text words. (See Chapter 8, "File Input and
Output.") ·

COBOL Concepts 2-53

Division, Section, and Paragraph Formats

The following are the Division, Section, and Paragraph formats.

Division Header
The division header must start in area A.

Section Header
The section header must start in area A.

A section consists of zero or more paragraphs in the Environment and Procedure Division
and zero or more Data Division entries in the Data Division.

Paragraph Header, Paragraph Name, and Paragraph
A paragraph consists of a paragraph name followed by a period and a space, and by zero,
one or more sentences, or a paragraph header followed by one or more entries. Comment
entries may be included within a paragraph. The paragraph header or paragraph name
starts in area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph
header or paragraph name, or in area B of the next nonblank line that is not a comment
line. Successive sentences or entries begin either in area B of the same line as the pre
ceding sentence or entry, or in area B of the next nonblank line that is not a comment line.

Note: In AIX VS COBOL programs, sentences may begin anywhere in area
A or area B.

MF

When sentences or entries of a paragraph require more than one line, they may be con
tinued as described in "Continuation of Lines" on page 2-53 in this chapter.

Data Division Entries

Each Data Division entry begins with a level indicator or a level number, followed by a
space, followed by its associated name (except in the REPORT SECTION), followed by a
sequence of independent descriptive clauses. Each clause, except the last clause of an
entry, may be terminated by either the separator semicolon or the separator comma. The
last clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with a level indicator and
those which begin with a level number.

A level indicator is any of the following:

• FD (see "File Description - Complete Entry Skeleton" on page 8-35)
• SD (see "Screen Description - Complete Entry Skeleton" on page 18-15)
• CD (see "Communication Description - Complete Entry Skeleton" on page 15-4)
• RD (see "Data Division in the Report Writer Module" on page 14-11).

In those Data Division entries that begin with a level indicator, the level indicator begins
in area A followed by a space and followed with its associated name and appropriate
descriptive information in area B.

Those Data Division entries that begin with level-numbers are called data description
entries.

A level number has a value taken from the set of values 1 through 49, 66,
77, 78, and 88. MF

Level numbers in the range 1 through 9 may be written either as a single digit or as a zero
followed by a significant digit. At least one space must separate a level number from the
word following the level-number.

2-54 Language Reference

In those Data description entries that begin with level-number 01 or 66, 77,
78, and 88, the level-number begins in area A. It is followed by a space,
which is followed by its associated record name or item name and appro
priate descriptive information in area B.

MF

Successive data description entries may have the same format as the first or may be
indented according to level number. The entries in the output listing require indentation
only if the input is indented. Indentation does not affect the magnitude of a level number.

When level numbers are to be indented, each new level number may begin any number of
spaces to the right of margin A. The extent of indentation to the right is determined only
by the width of the physical medium.

Declaratives
The key word DECLARATIVES and the key words END DECLARATIVES indicate the
beginning and end of the declaratives portion of the Procedure Division. The key word
DECLARATIVES and the key words END DECLARATIVES must each appear on a line by
themselves. Each must begin in area A and be followed by a period and a space.

Comment Lines

A comment line is any line with an asterisk (*) in the continuation indi
cator area of the line. A comment line can appear as any line in a source
program after the Identification Division header. Any combination of char
acters from the character set may be included in area A and area B of that
line. The asterisk and the characters in area A and area B will be
produced on the listing but serve as documentation only.

MF

A second form of comment line represented as above but with a slash (/) (instead of an
asterisk) in the indicator area of the line causes page ejection prior to printing the
comment.

Successive comment lines are allowed. Continuation of comment lines is permitted, except
that each continuation line must contain an * in the indicator area.

Reserved Words

A full list of reserved words is given in Appendix D, "Reserved Word List."

COBOL Concepts 2-55

2-56 Language Reference

PART 2. The Nucleus

PART 2. The Nucleus

·Language Reference

Chapter 3. Introduction to the Nucleus

Introduction to the Nucleus 3-1

Contents

About This Chapter . 3-3
Function of the Nucleus . 3-4
Overall Language . 3-4

Name Characteristics . 3-4
Figurative Constants . 3-4
Reference Format . 3-4
Subscripting . 3-4

A COBOL Source Program . 3-5
Organization . 3-5
Structure . 3-5
End Program Header . 3-6

3-2 Language Reference

About This Chapter

The nucleus module provides a basic language capability for the internal processing of
data within the structure of the four divisions of a COBOL program. The nucleus also
provides table defining and accessing capabilities and a debugging capability.

Introduction to the Nucleus 3-3

Function of the Nucleus

The nucleus provides a basic language capability for the internal processing of data within
the basic structure of the four divisions of a program.

Overall Language

This section describes elements that are common to the entire language such as the name
characteristics, figurative constants, reference format, and subscripting levels of the
nucleus.

Name Characteristics

IBM AIX VS COBOL data-names need not begin with an alphabetic character. Alphabetic
characters may be positioned anywhere within the data-name. Qualification is permitted
and all data-names, condition names, paragraph names, and text names need not be unique,
provided that all references are sufficiently qualified to be unambiguous.

Figurative Constants

The following figurative constants may be used: ZERO, ZEROS, ZEROES,
SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE,
LOW-VALUES, NULL, NULLS, QUOTE, QUOTES, ALL literal, and ALL
figurative constant.

Reference Format

VSC2

A word, numeric literal, or PICTURE character string can be broken in such a way that
part of it appears on a continuation line.

Subscripting

Up to 16 levels of subscriptions are permitted.

3-4 Language Reference

A COBOL Source Program

This section describes the organization and structure of a COBOL source program. A
COBOL source program is a syntactically correct set of COBOL statements.

Organization

With the exception of COPY and REPLACE statements and the end program header, the
statements, entries, paragraphs, and sections of a COBOL source program are grouped into
four divisions which occur in the following order:

1. Identification Division
2. Environment Division
3. Data Division
4. Procedure Division.

The end of a COBOL source program is indicated by either the End Program header, if
specified, or by the absence of further source program lines.

Structure

The following section gives the general format and order of presentation of the entries and
statements which constitute a COBOL source program.

General Format
The following figure shows the format of a COBOL source program:

[Identification Division I L J [J
NO WORDS Environment Division Data Division

..
OSVS VSC2

..
LProcedure Division] [End Program Header]

...

Syntax Rule
The generic terms Identification Division, Environment Division, Data Division, Procedure
Division, and End Program Header represent a COBOL Identification Division, a COBOL
Environment Division, a COBOL Data Division, a COBOL Procedure Division, and a
COBOL End Program Header, respectively.

General Rule
The beginning of a division in a program is indicated by the appropriate division header.
The end of a division is indicated by one of the following:

• The division header of a succeeding division in that program
• The physical position after which no more source program lines occur
• The End Program Header.

Introduction to the Nucleus 3-5

End Program Header

This section describes the function, general format, syntax, and general rules of the End
Program Header.

Function
The End Program Header indicates the end of the named COBOL source program.

General Format
The following figure shows the format of the End Program Header:

.,...__END PROGRAM program-name,____...

Syntax Rules
The following syntax rules apply to the End Program Header:

1. The program name must conform to the rules for forming a user-defined word.

2. The program name must be identical to the program name declared m the
PROGRAM-ID paragraph. Refer to "PROGRAM-ID Paragraph" on page 4-6.

General Rules
The following general rules apply to the End Program Header:

1. The End Program Header indicates the end of the specified COBOL source program.

2. If the next source statement after the program terminated by the End Program Header
is a COBOL statement, it must be the Identification Division header of a program to be
compiled separately from that program terminated by the End Program Header. Refer
to "END PROGRAM Header" on page 11-13.

3-6 Language Reference

Chapter 4. Identification Division in the Nucleus

Identification Division in the Nucleus 4-1

Contents

About This Chapter ... 4-3
General Description . 4-4

Organization . 4-4
Structure . 4-4
General Format . 4-4
Syntax Rules . 4-5

PROGRAM-ID Paragraph 4-6
Function . 4-6
General Format . 4-6
Syntax Rules . 4-6
General Rules . 4-6

DATE-COMPILED Paragraph 4-7
Function . 4-7
General Format . 4-7
Syntax Rule . 4-7
General Rule . 4-7

REMARKS Paragraph . 4-8

4...,2 Language Reference

About This Chapter

This chapter describes the Identification Division of a COBOL program.

The Identification Division identifies the program. It must be the first division in a
COBOL source program, if specified. It names the program, and it may include the date
the program was written, the date of compilation, the author, and other documentary infor
mation.

Identification Division in the Nucleus 4-3

General Description

The Identification Division identifies the source program and its output listing. In addi
tion, you may include the date the program is written and other information under the
paragraphs in the general format shown below. This division (including the division
header) is optional.

Organization

Paragraph headers identify the type of information contained in the paragraph. The name
of the program must be given in the PROGRAM-ID paragraph. The other paragraphs are
optional and may be included in this division at your discretion, in the order of presenta
tion shown by the general format below.

Structure

The general format of the paragraphs in the Identification Division is given
below. Paragraphs may appear in any order. OSVS VSC2

General Format

The following figure shows the format of the Identification Division:

t ID DIVISION. LPROGRAM-ID. program-name.---,----------•" OSVS VSC2
IDENTIFICATION DIVISION. =1
NO WORDS - NO WORDS-----~ MF

"' L I "'
AUTHOR.-----,.------......--~

l t,_nt-entrd

"' [INSTALLATION. L DATE-WRITTEN. I
..

[Lent-entrd [Lent-entrd

"' [DATE-COMPILED.

..
L SECURITY. I

[L~ent-entrt] ltmEnt-entrd

"' [REMARKS.
.. ..

[f~nt-entJ J
osvs

4-4 Language Reference

Syntax Rules

The following syntax rules apply to the Identification Division:

1. Paragraphs may appear in any order. OSVS VSC2

2. Periods following the paragraph names within the Identif'ication Divi- OSVS VSC2
sion are optional.

3. The comment-entry may be any combination of characters from the
character set. The continuation of the comment-entry by the use of a
hyphen in the continuation area is not permitted; however, the
comment-entry may be contained on one or more lines but is restricted
to area B of those lines. The next line beginning in area A begins the
next noncomment paragraph.

The comment-entry may contain the SKIPl, SKIP2, SKIP3, EJECT, or
TITLE statements anywhere on the line. If any of these statements
appears alone on a line within the comment-entry, the statement performs
its function and does not terminate the comment-entry.

The comment-entry may be contained in either area A or area B of the
comment-entry lines. However, the next occurrence within area A of any
one of the following COBOL words or phrases terminates the comment-
entry and begins the next paragraph or division:

PROGRAM-ID
AUTHOR
INSTALLATION
DATE-WRITTEN
DATE-COMPILED
SECURITY
ENVIRONMENT
DATA
PROCEDURE

DBCS Support

OSVS VSC2
VSC2

osvs

4. Comments may combine Double-Byte Character Set (DBCS) and Single-Byte Character
Set (SBCS) character-strings.

Comment-entries may have DBCS strings in the Identification Division.

Multiple lines are allowed in a comment-entry containing DBCS strings.

~------------ End of DBCS Support ____________ __,

Identification Division in the Nucleus 4-5

PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

General Format

The following shows the general format of the PROGRAM-ID paragraph:

.,..___PROGRAM-ID. program-name.___....

Syntax Rules

The following syntax rules apply to the PROGRAM-ID paragraph:

1. The program name must conform to the rules for formation of a user-defined word.

2. The program name may be a nonnumeric literal. OSVS VSC2

General Rules

The following general rules apply to the PROGRAM-ID paragraph:

1. The program name is associated with the object code file pertaining to
this COBOL program.

2. The PROGRAM-ID paragraph is optional.

4-6 Language Reference

MF

DATE-COMPILED Paragraph

Function

The DATE-COMPILED paragraph provides the date the intermediate code was produced in
the Identification Division source program listing.

General Format

The following shows the general format of the DATE-COMPILED paragraph:

t
.,._ DATE-COMP I LED. --.[------.------1•

comment-entry J

Syntax Rule

The comment-entry may be any combination of the characters from the character set. The
continuation of the comment-entry by use of the hyphen is not permitted; however, the
comment-entry may be contained on one or more lines. The comment-entry lines must be
contained within area B. The next line beginning in area A begins the next noncomment
paragraph.

General Rule

The paragraph name DATE COMPILED causes the IBM AIX VS COBOL system to insert a
date comment-entry as the intermediate code is created. If a DATE-COMPTLED paragraph
is present (with or without a comment-entry), the paragraph is replaced in the program
listing with one of the form:

----- DATE COMPILED. - current date and time. ---M

where the date and time format is DD-MM-YYhh:mm.

Refer to the User's Guide for details of the derivqtion of the comment-entry replacement
string for your COBOL implementation at the time the intermediate code is produced.

Identification Division in the Nucleus 4-7

REMARKS Paragraph

The REMARKS paragraph allows a comment-entry to be specified. See
syntax rule 3 on page 4-5.

4~8 Language Reference

osvs

Chapter 5. Environment Division in the Nucleus

Environment Division in the Nucleus 5-1

Contents

About This Chapter ... 5-3
General Description . 5-4
Configuration Section . 5-4
SOURCE-COMPUTER Paragraph . 5-5

Function . 5-5
General Format . 5-5
Syntax Rules . 5-5
General Rules . 5-5

OBJECT-COMPUTER Paragraph 5-6
Function . 5-6
General Format . 5-6
Syntax Rule . 5-6
General Rules . 5-6

SPECIAL-NAMES Paragraph 5-8
Function . 5-8
General Format . 5-9
Syntax Rules . 5-10
General Rules . 5-11
Example . 5-14

5-2 Language Reference

About This Chapter

The Environment Division has two sections: the Configuration Section and the lnput
Output Section. This chapter addresses the Configuration Section.

The Configuration Section optionally does one or more of the following:

• Specifies the computer on which the source program is compiled

• Specifies the computer on which the object program is executed

• Relates IBM-defined environment names to user-defined mnemonic names

• Specifies a substitution for the currency sign

• Interchanges the functions of the comma and the period in numeric PICTUREs and
numeric literals

• Relates alphabet names to character sets or collating sequences

• Relates class names to sets of characters.

Environment Division in the Nucleus 5.;3

General Description

The Environment Division specifies a standard method of expressing those aspects of a
data processing problem that are dependent upon the physical characteristics of a specific
computer.

The Environment Division is optional in a COBOL source program.

Configuration Section

The Configuration Section is located in the Environment Division of a source program.
The Configuration Section deals with the characteristics of the source computer and the
object computer. This section also provides a means for specifying the currency sign,
choosing the decimal point, relating implementer names to user-specified mnemonic names,
relating alphabet names to character sets or collating sequences, and relating class names
to sets of characters.

The Configuration Section is optional in the Environment Division of a
COBOL source program.

The following figure shows the general format of the Configuration Section:

_.,.~~t-C-ON_F_IG_U_R-AT_I_ON~SE_C_T_IO-N-.-l~[~~~~~~~~~~~~~~~j~~~--.:~

NO WORDS SOURCE-COMPUTER. L J
source-computer-entry

~·=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! •4

[OBJECT-COMPUTER. [SPECIAL-NAMES. J
L object-computer-entry J L speci a 1-names-entry

5-4 Language Reference

VSC2

MF

SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled. It is optional. OSVS VSC2

General Format

The following figure shows the general format for the SOURCE-COMPUTER paragraph:

....... SOURCE-COMPUTER. L J
source-computer-name E J ·

WITH
_J DEBUGGING MODE

Syntax Rules

The following syntax rules apply to the SOURCE-COMPUTER paragraph:

1. source-computer-name must be one COBOL word defined by the user.

2. The SOURCE-COMPUTER paragraph may consist of only the SOURCE-COMPUTER
header.

General Rules

The following general rules apply to the SOURCE-COMPUTER paragraph:

1. The source-computer-name provides a means for identifying equipment configuration,
in which case you specify the computer name and its implied configuration. The
SOURCE-COMPUTER paragraph is used for documentary purposes only.

2. The WITH DEBUGGING MODE phrase is used to enable debugging code in accord
ance with Standard ANSI COBOL Debug. Refer to "Environment Division in COBOL
Debug" on page 17-5.

Environment Division in the Nucleus 5-5

OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed. It is optional. OSVS VSC2

General Format

The following figure shows the general format of the OBJECT-COMPUTER paragraph:

--OBJECT-COMPUTER.---.--------------------------"' 1
L object-computer-name 2

MEMORY integer l WORDS.
L SIZE J [CHARACTERS

MODULES

1 --------------------------------------3

2
"' [_J SEQUENCE L _J a 1 phabet-name ~ "'

4

L PROGRAM COLLATING IS

3~-------------------,-_.,...

4 ..
L SEGMENT-LIMIT LIS~ segment-number _J

Syntax Rule

object-computer-name must be one COBOL word defined by the user.

General Rules

The following general rules apply to the OBJECT-COMPUTER paragraph:

1. The computer name provides a means for identifying equipment configuration, in
which case you specify the computer name and its implied configurations. The config
uration definition contains specific information concerning memory size. The com
puter name and the MEMORY SIZE clause are used for documentary purposes only.

2. If the PROGRAM COLLATING SEQUENCE clause is not specified, the NATIVE col
lating sequence is used. Refer to the User's Guide.

3. If the PROGRAM COLLATING SEQUENCE clause is specified, the program collating
sequence is the collating sequence associated with the alphabet name specified in that
clause.

5-6 Language Reference

4. The program collating sequence established in the OBJECT-COMPUTER paragraph is
used to determine the truth value of nonnumeric comparisons such as those:

a. Explicitly specified in relation conditions (refer to "Relation Condition" on
page 7-9)

b. Explicitly specified in condition-name conditions. Refer to "Condition-Name Condi
tion (Conditional Variable)" on page 7-14.

5. The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric
merge or sort keys unless the COLLATING SEQUENCE phrase of the respective SORT
or MERGE statement is specified. Refer to "SORT Statement" on page 13-21.

6. The PROGRAM COLLATING SEQUENCE clause applies only to the program in which
it is specified.

7. The SEGMENT-LIMIT clause is documentary only. Refer to "SEGMENT-LIMIT" on
page 16-7.

Environment Division in the Nucleus 5-7

SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means for specifying the currency sign,
choosing the decimal point, specifying symbolic character, relating implementer names to
user-specified mnemonic names, relating alphabet names to character sets or collating
sequences, and relating class names to sets of characters.

5-8 Language Reference

General Format

The following figure shows the general format of the SPECIAL-NAMES paragraph:

- SPECIAL-NAMES.------------------------~--l SWITCH L ~ ~-----~mnemonic-name ~-----r---1
IS phrase-1

8 phrase-2
function-name phrase-l-------------1

phrase-2-----------~

ALPHABET J alphabet-name-I ~--,----,--STANDA
NO WORDS IS STANDA

NATIV
ASCII
EBCDIC

E

' '

RD-1
RD-2

liter a 1-I

where phrase-I is:

""----- -

1

I I
r--thro~ l i tera 1-2 -
1-- thru

' I
~ -also literal 3

.....

- ON-c-----=i~- conditi on-name-1-[---------------j-r-•.,
STATUS IS OFF _,l----J--,--- condi ti on-name-2

phrase-2 is:

- OFF L STATUS IS :=J

STATUS IS

condi ti on-name-2 -c---------------J-r-• ..
ON-L-----J-condition-name-I

STATUS IS

MF

MF

MF

Environment Division in the Nucleus 5-9

-

._symbol ic-character-1 LIS~ integer-1 L
ARE IN alphabet-name-2~

' CLASS cl ass-name-1-,..--~-l iteral-4-.,--------------,~
Lis_J THROUGH~ 1 i tera 1-5

THRU-

.. [CURRENCY [~ 1 iteral-6 o=J L DECIMAL-POINT IS COMMA _J
SIGN IS

..

.. [NUMERIC SIGN~L--_J~TRAILING SEPARATE:J L.J
IS

....
MF

Note: The optional separator period at the end of the format must be used if any of the
optional clauses are selected.

Syntax Rules

The following syntax rules apply to the SPECIAL-NAMES paragraph:

1. Mnemonic names can be any COBOL user-defined word and at least one constituent
character must be alphabetic.

2. function-name refers to a system device or function used by the AIX VS
COBOL system. function-name refers to an external switch if, and only OSVS
if, its name is one of UPSI-0 through UPSI-8.

3. If function-name refers to an external switch or the SWITCH option is MF
used, the associated mnemonic name may not be specified anywhere
except in the SET statement. It is recommended that at least one con-
dition name be associated with it, but no condition name is required.

4. If function-name does not refer to an external switch, the associated mnemonic name
may be specified only in the ACCEPT, DISPLAY, SEND, or WRITE statements. A
condition name cannot be associated with such an implementer name.

5. If the literals specified in the literal phrase of the alphabet-name-1 clause are numeric,
each must be an unsigned integer and have a value within the range of one through
the maximum number of characters in the native character set.

6. If the literals specified in the literal phrase of the alphabet-name-1 clause are nonnu
meric and associated with a THROUGH or ALSO phrase, each must be one character
in length.

5-10 Language Reference

7. If the literal phrase of the alphabet-name-! clause is specified, do not specify a given
character more than once in an alphabet-name clause.

8. The words THRU and THROUGH are equivalent.

9. The words STANDARD-1 and ASCII are synonymous. MF

10. The reserved word IS is never required in the SPECIAL-NAMES paragraph.

11. If the literals specified in the literal-4 phrase are numeric, each must be unsigned inte
gers and have a value within the range of one through the maximum number of char
acters in the native character set.

12. If the literals specified in the literal-4 phrase are nonnumeric and associated with a
THROUGH phrase, each must be one character in length.

13. literal-!, ... literal-5 must not specify a symbolic character figurative constant.

14. The same symbolic-character-1 must appear only once in a SYMBOLIC CHARACTERS
clause.

15. The relationship between each symbolic-character-1 and the corresponding integer-1 is
determined by position in the SYMBOLIC CHARACTERS clause. The first
symbolic-character-1 is paired with the first integer-1, the second symbolic-character-1
is paired with the second integer-!, and so on.

16. There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1.

17. literal-6 must not be a figurative constant.

18. Items defined in the SPECIAL-NAMES paragraph do not have the GLOBAL attribute.

DBCS Support

19. literal-6 must not be the uppercase alphabetic character G, for programs that use
Double-Byte Character Set (DBCS) data items.

~------------ End of DBCS Support ------------~

General Rules

The following general rules apply to the SPECIAL-NAMES paragraph:

1. External switches are set at run time by the operator. The setting may be determined
in the program by testing the associated condition names.

2. If mnemonic name is associated with an external switch, the status of that switch may
be altered by execution of a Format 1 SET statement. Refer to "SET Statement" on
page 7-84.

3. The alphabet-name-! clause provides a means for relating a name to a specified char
acter code set and/or collating sequence. When alphabet-name-1 is referenced in the
PROGRAM COLLATING SEQUENCE clause (refer to "OBJECT-COMPUTER
Paragraph" on page 5-6) or the COLLATING SEQUENCE phrase of a SORT 01

MERGE statement (refer to "SORT Statement" on page 13-21 and "MERGE
Statement" on page 13-14), the alphabet-name-1 clause specifies a collating sequence.
When alphabet-name-1 is referenced in a CODE-SET clause in a file description entry
(refer to "File Description - Complete Entry Skeleton" on page 8-35), the alphabet
name clause specifies a character code set.

Environment Division in the Nucleus 5-11

a. If the STANDARD-I, or ASCII phrase is specified, the character code
set or collating sequence identified is the American Standard Code for
Information Interchange, as defined in American National Standard
X3.4-1968. If the STANDARD-2 phrase is specified, the character code
set identified is the International Reference Version of the ISO 7-bit
code, as defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange.

MF

b. If the NATIVE phrase is specified, the native character code set or native collating
sequence is used. The native code set is ASCII, as defined in ANSI publication
X3.4-I968. The native collating sequence is either ASCII or EBCDIC, as specified by
the AIX VS COBOL system directive. Refer to the User's Guide for details of the
ASCII code set and the ASCII and EBCDIC collating sequences and their correspond-
ence.

c. If the EBCDIC phrase is specified, the character code set or collating
sequence identified is EBCDIC.

MF

d. If the literal phrase is specified, the alphabet-name-I may not be referenced in a
CODE-SET clause. Refer to "CODE-SET Clause" on page 8-40. The collating
sequence identified is that defined according to the following rules:

I) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal
is numeric. This value must not exceed the value which represents the number
of characters in the native character set.

b) The actual character within the native character set, if the literal is nonnu
meric. If the value of the nonnumeric literal contains multiple characters,
each character in the literal, starting with the leftmost character, is assigned
successive ascending positions in the collating sequence being specified.

2) The order in which the literals appear in the ALPHABET clause specifies, in
ascending sequence, the ordinal number of the character within the collating
sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly spec
ified in the literal phrase, assume a position, in the collating sequence being speci
fied, greater than any of the explicitly specified characters. The relative order
within the set of these unspecified characters is unchanged from the native col
lating sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native
character set beginning with the character specified by the value of literal-I, and
ending with the character specified by the value of literal-2, is assigned a succes
sive ascending position in the collating sequence being specified. In addition, the
set of contiguous characters specified by a given THROUGH phrase may specify
characters of the native character set in either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified
by the value of literal-I and literal-3 are assigned to the same position in the col
lating sequence being specified, or in the character code set that is used to repre
sent the data.

4. The character that has the highest ordinal position in the program collating sequence
specified is associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position in the program collating sequence, the last char
acter specified is associated with the figurative constant HIGH-VALUE.

5. The character that has the lowest ordinal position in the program collating sequence
specified is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position in the program collating sequence, the first char
acter specified is associated with the figurative constant LOW-VALUE.

5-12 Language Reference

6. literal-6 that appears in the CURRENCY SIGN IS literal clause is used in the
PICTURE clause to represent the currency symbol. The literal is limited to a single
character and must not be one of the following characters.

• Digits 0 through 9

• Uppercase alphabetic characters A, B, C, D, P, R, S, V, X, Z, or the
space; lowercase alphabetic characters a through z, (except e, f, g,
h, i, j, k, m, n, o, q, t, u, w, y)

• Special characters * + - , . ; () " / or = .

MF

If the literal clause is not present, only the currency sign defined in the COBOL char
acter set is used in the PICTURE clause.

7. The DECIMAL-POINT IS COMMA clause means that the function of comma and
period are exchanged in the character string of the PICTURE clause and in numeric
literals.

8. If the NUMERIC SIGN clause is specified, the default for signed
numeric items is for the sign to be stored as a trailing separate character.

MF

9. If function-name does not reference an external switch, it may be selected from Table 5-1
on page 5-14.

10. The CLASS clause provides a means for relating a name to the specified set of charac
ters listed in that clause. class-name-1 can be referenced only in a class condition.
The characters specified by the values of the literals in this clause define the exclusive
set of characters which constitute class-name-1.

The value of each literal specifies:

a. The ordinal number of a character within the native character set (if the literal is
numeric). This value must not exceed the value that represents the number of
characters in the native character set.

b. The actual character within the native character set (if the literal is nonnumeric).
If the value of the nonnumeric literal contains multiple characters, each character
in the literal is included in the set of characters identified by class-name-1.

c. If the THROUGH phrase is specified, the contiguous characters in the native char
acter set (beginning with the character specified by the value of literal-4 and
ending with the character specified by the value of literal-5) are included in the set
of characters identified by class-name-1. In addition, the contiguous characters
specified by a given THROUGH phrase may specify characters of the native char
acter set in ascending or descending sequence.

Environment Division in the Nucleus 5-13

Table 5-1. Function-Name Reference
Function-name Meaning Used in
COl through C12 Skip to channel 1through12, WRITE OSVS VSC2

respectively ADVANCING
statement

CONSOLE Console device ACCEPT and
DISPLAY
statements

CSP Suppress space WRITE
ADVANCING
statement

SOl, S02 Bin select 1 or 2 on card-punch WRITE
devices statement ADVANCING

SYSIN SYSIPT System input ACCEPT
statement

SYS OUT System output DISPLAY

SYSLIST
statement

SYSLST

SYSPUNCH

SYSPNCH
COMMAND-LINE Command transfer ACCEPT and MF

DISPLAY
statements

TAB Skip to Vertical Tabulation WRITE
Position (inserts ASCII X' OB' ADVANCING
in the output record as appro- statement
priate)

FORMFEED Skip to a new page (inserts WRITE
ASCII X' OC' in the output ADVANCING
record as appropriate) statement

Example

The following example shows the object computer and special names for the
SPECIAL-NAMES paragraph:

OBJECT-COMPUTER.
IBM-RISC-6000
MEMORY SIZE 4000000 characters
PROGRAM COLLATING SEQUENCE IS INFO-CODE.

SPECIAL-NAMES.
SWITCH 0 ON STATUS IS TESTRUN
SWITCH 0 OFF STATUS IS PRODRUN
CURRENCY SIGN IS Y
DECIMAL-POINT IS COMMA
ALPHABET INFO-CODE IS ASCII.

5-14 Language Reference

Chapter 6. Data Division

Data Division 6-1

Contents

About This Chapter . 6-5
WORKING-STORAGE SECTION . 6-6

General Format . 6-6
Noncontiguous Working Storage (77-Level-Description-Entry) 6-6
Working-Storage Records (Record-Description-Entry) . 6-6
Record Description Structure . 6-7
Initial Value .. 6-7

Data Description - Complete Entry Skeleton . 6-7
Function . 6-7
General Format .. 6-7
Syntax Rules . 6-9
General Rules . 6-9

BLANK WHEN ZERO Clause 6-11
Function . 6-11
General Format . 6-11
Syntax Rule . 6-11
General Rules . 6-11

Data-Name or FILLER Clause . 6-12
Function . 6-12
General Format . 6-12
Syntax Rule . 6-12
General Rules . 6-12

JUSTIFIED Clause . 6-13
Function . 6-13
General Format . 6-13
Syntax Rules . 6-13
General Rules . 6-13

Level Number . 6-15
Function . 6-15
General Format . 6-15
Syntax Rules . 6-15
General Rules . 6-16
Example . 6-17

PICTURE Clause . 6-18
Function . 6-18
General Format . 6-18
Syntax Rules . 6-18
General Rule . 6-19
Elementary Item Size . 6-20
Symbols Used . 6-21
Editing Rules . 6-22
Precedence Rules . 6-27

REDEFINES Clause . 6-29
Function . 6-29
General Format . 6-29
Syntax Rules . 6-29
General Rules . 6-30
Example . 6-30

RENAMES Clause . 6-32
Function . 6-32
General Format . 6-32
Syntax Rules . 6-32
General Rules . 6-33
Example . 6-34

SIGN Clause . 6-35
Function . 6-35
General Format . 6-35
Syntax Rules . 6-35
General Rules . 6-35

6•2 Language Reference

SYNCHRONIZED Clause . 6-37
Function . 6-37
General Format . 6-37
Syntax Rules . 6-37
General Rules . 6-37

USAGE Clause . 6-39
Function . 6-39
General Format . 6-39
Syntax Rules . 6-39
General Rules . 6-40

VALUE Clause . 6-41
Function . 6-41
General Format . 6-41
Syntax Rules . 6-41
General Rules . 6-42
Condition-Name Rules . 6-43
Constant-Name Rules . 6-43
Data Description Entries Other Than CONDITION-NAMES and

CONSTANT-NAMES . 6-44

Data Division 6-3

6-4 Li:>nguage Reference

About This Chapter

This chapter describes the Data Division in the Nucleus of a COBOL source program.

The Data Division specifies all the data to be processed by the executable program. Dif·
ferent types of data are described by different sections:

• WORKING-STORAGE SECTION - For internal data

• FILE SECTION FD - For externally stored data

• FILE SECTION SD - For sort-merge files

• LINKAGE SECTION - For inter-program communication arguments

• COMMUNICATION SECTION - For messages between program and local or remote
communication devices

• SCREEN SECTION - For information flow between program and console.

The WORKING-STORAGE SECTION is discussed in this chapter. Other sections will be
covered in later chapters.

Data Division 6-5

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is composed of the section header, followed by data
description entries for noncontiguous data items and/or record description entries. Each
WORKING-STORAGE SECTION record name and noncontiguous item name should be
unique since it cannot be qualified. Subordinate data-names need not be unique if they
can be made unique by qualification.

If no reference is made to a given data-name or record name, it is not OSVS VSC2
required that the data or record name should be unique by qualification.

General Format

The following figure shows the general format for the WORKING-STORAGE SECTION:

..,._WORKING-STORAGE SECTION.-..,-[-----------~-.--------------•"'
record-description-entry .. ,_J
??-level-description-entry

Noncontiguous Working Storage (77-Level-Description-Entry)

Items and constants in the WORKING-STORAGE SECTION that bear no hierarchical
relationship to one another need not be grouped into records, if they do not need to he
further subdivided. Instead, they are classified as noncontiguous elementary items and are
defined in a separate data description entry that begins with the special level number 77.

The following data clauses are required in each data description entry:

• Level number 77

• Data-name

• The PICTURE clause, the USAGE IS INDEX clause, or the USAGE IS
POINTER clause.

VSC2

Other data description clauses are optional and can he used to complete the description of
the item.

Working-Storage Records (Record-Description-Entry)

Data elements in the WORKING-STORAGE SECTION that bear a definite hierarchical
relationship to one another must be grouped into records according to the rules for forma
tion of record descriptions. All clauses that are used in record descriptions in the FILE
SECTION can be used in record descriptions in the WORKING-STORAGE SECTION.

6-6 Language Reference

Record Description Structure

A record description consists of a set of data description entries that describe the charac
teristics of a particular record. Each data description entry consists of a level number fol
lowed by the data-name or FILLER clause, if specified, followed by a series of independent
clauses as required. A record description may have a hierarchical structure. Therefore,
the clauses used in an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the elements
allowed in a record description entry are explained in "Concept Of Levels" on page 2-16
and in "Data Description - Complete Entry Skeleton" in this section.

Initial Value

The initial value of an item in the WORKING-STORAGE SECTION, except an index data
item, may be specified by using the VALUE clause with the data item. The item value of
an index data item or any data item not associated with a VALUE clause is undefined.

Data Description - Complete Entry Skeleton

This section describes the function, general format, syntax and general rules for the Data
Description - complete entry skeleton.

Function

A data description entry specifies the characteristics of a particular item of data.

General Format

The following figure shows the formats of the data description complete entry skeleton:

Data Division 6-7

Format 1

.,._level-number L :J L _J
L data-name-1 __J REDEFINES~- data-name-2

FILLER---'

L PICTURE~ character-string
LPIC__J Lis_J

1----------,r--T-BINARY ___ __,

IS

lSIGN L J
IS

L LEADING J L d
TRAILING SEPARATE L

CHARACTER

.. L SYNCHRONIZED~ L LEFT~
L SYNC - L RIGHT _J

.. L JUSTIFIED
LJUST----'

L J L BLANK ZERO =oJ
RIGHT L WHEN _J

"' L VALUE [IS =oJ literal =:J
....

Format 2

COMPUTATIONAL
COMP-----1
COMPUTATIONAL-3
COMP-3 -----1

COMPUTATIONAL-4
COMP-4 ___ _,

COMPUTATIONAL-5
COMP-5 ___ _,

PACKED-DECIMAL
INDEX -------<
DISPLAY -----1

POINTER -----1

COMPUTAT IONAL-X
COMP-X -----1

DISPLAY-1--~

-- 66 data-name-1 RENAMES data-name-2
L THROUGH ---r- data-name-3 J
LTHRU__J

6-8 Language Reference

..

OSVS VSC2 MF

OSVS VSC2

MF

VSC2
MF

Format 3

' --88 condition-name 1 VALUE~ l iteral-1

VALUESci

E THROUGH ~ l i tera 1-2 ~
THRU___J

ARE

Format 4

-- 78 constont-nome-VALUE-~L-~J-~L-literol I
IS NEXT ~--------1·

t:Tinteger_J

Syntax Rules

The syntax rules for the data description are as follows:

....

...

1. The level-number in Format 1 may be any number from 01through49 or 77.

MF

2. The clauses may be written in any order with the two following exceptions. The
data-name-1 or FILLER clause must immediately follow the level-number. The REDE
FINES clause must immediately follow the data-name-1 clause or FILLER clause. Oth
erwise, the REDEFINES clause must immediately follow the level-number.

3. The PICTURE clause must be specified for all elementary items other than an index
data item. Specification of the PICTURE clause is prohibited with an index data item.

4. The words THRU and THROUGH are equivalent.

General Rules

The following general rules apply to the data description:

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK
WHEN ZERO, must not be specified except for an elementary data
item. The SYNCHRONIZED clause may be specified for a group item. osvs

2. Format 3 is used for each condition-name. Each condition-name requires a separate
entry with level-number 88. Format 3 contains the name of the condition and the
value, values, or range of values associated with the condition-name. The condition
name entries for a particular conditional variable must immediately follow the entry
describing the item with which the condition-name is associated. A condition-name
cannot be associated with any of the following data description entries that contain a
level-number:

a. Another condition-name

b. A level 77 item

c. A group containing items with descriptions including JUSTIFIED, SYNCHRO
NIZED, or USAGE (other than USAGE IS DISPLAY)

d. An index data item (refer to "USAGE IS INDEX Clause" on page 12-12)

e. A constant-name. MF

Data Division 6-9

3. Format 4 defines a constant-name that is a symbolic name representing a
constant value assigned to it when the source code is passed through
IBM AIX VS COBOL system. The AIX VS COBOL system replaces
each reference to a constant-name by its value.

6-10 Language Reference

MF

BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

General Format

The following figure shows the general format of the BLANK WHEN ZERO clause:

--BLANK-..---------.-- ZERO -
LwHEN~

Syntax Rule

The following syntax rule applies to the BLANK WHEN ZERO clause:

1. The BLANK WHEN ZERO clause can be used only for an elementary item whose
PICTURE is specified as numeric (with implicit or explicit USAGE IS DISPLAY) or
numeric-edited. Refer to "PICTURE Clause" on page 6-18.

General Rules

The following general rules apply to the BLANK WHEN ZERO clause:

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing but
spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric-edited.

3. If the BLANK WHEN ZERO clause is specified for an elementary item OSVS VSC2
whose PICTURE clause includes a zero suppression symbol Z or *, zero
suppression overrides BLANK WHEN ZERO.

Data Division 6-11

Data-Name or FILLER Clause

Function

The data-name specifies the name of the data being described. The word FILLER may be
used to specify an elementary item of the logical record that cannot be referred to explic
itly.

General Format

The following figure shows the general format for the data-name or FILLER clause:

Edata-n~
FILLER

Syntax Rule

....

In the FILE, WORKING-STORAGE, COMMUNICATION, and LINKAGE SECTIONS, a
data-name or the key word FILLER, if either is specified, must be the first word following
the level number in each data description entry.

General Rules

The following general rules apply to the data-name or FILLER clause:

1. The key word FILLER may be used to name an elementary item or group in a record.
Under no circumstances can a FILLER item be referred to explicitly. However, the
key word FILLER may be used as a conditional variable because such use does not
require explicit reference to the FILLER item but only to the value contained therein.

2. If the data-name or FILLER clause is omitted, the data item being described is treated
as though FILLER had been specified.

6-12 Language Reference

JUSTIFIED Clause

Function

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data
item.

General Format

The following figure shows the general format for the JUSTIFIED clause:

L JUSTIFIED I L _J
JUST-~ RIGHT

....

Syntax Rules

The following syntax rules apply to the JUSTIFIED clause:

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for a data item described as numeric or for
which editing is specified.

4. The JUSTIFIED clause cannot be specified for an index (refer to
"USAGE IS INDEX Clause" on page 12-12) or a pointer data item. VSC2

General Rules

The following general rules apply to the JUSTIFIED clause:

1. When a receiving data item is described with the JUSTIFIED clause and the sending
data item is larger than the receiving data item, the leftmost characters are truncated.
When the receiving data item is described with the JUSTIFIED clause and it is larger
than the sending data item, the data is aligned at the rightmost character position in
the data item with space fill for the leftmost character positions.

The contents of the sending data items are not taken into account (trailing spaces
within the sending data item are not suppressed).

For example, if a data item PIC X(4) whose value is 'A ___ ' (that is, A followed by
three spaces), is moved into a data item PIC X(6) JUSTIFIED the result will be
' __ A ___ '. If the same data item is moved to one with PIC X(3) JUSTIFIED, the
result will be ' ___ ' (that is, the leftmost character is truncated).

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within an
elementary item apply. Refer to "Standard Alignment Rules" on page 2-19.

Data Division 6-13

DBCS Support

3. The JUSTIFIED RIGHT clause may be specified for a DBCS item. When JUSTIFIED
RIGHT is specified for a receiving item, the data is aligned on the rightmost character
position. If the sending item is larger than the receiving item, extra characters are
truncated on the left. If the sending item is smaller than the receiving item, any
unused positions on the left are filled with DBCS blanks.

~----------- End of DBCS Support -----------~

6-14 Language Reference

Level Number

Function

The level number shows the hierarchy of data within a logical record. In
addition, it is used to identify entries for working storage items, linkage
items, condition names, constant names, and the RENAMES clause.

General Format

The following figure shows the general format for the level number:

-level-number__..,.

Syntax Rules

The following syntax rules apply to the level number:

1. A level number is required as the first element in each data description entry.

MF

2. Data description entries subordinate to an FD, CD, or SD entry must MF
have level numbers with the values 01 through 49, 66, 78, or 88.

Refer to "File Description - Complete Entry Skeleton" on page 8-35.

3. Data description entries in the REPORT and SCREEN SECTIONS MF
must have level numbers with the values 01 through 49, or 78.

4. Data description entries in the WORKING-STORAGE and LINKAGE
SECTIONS must have level numbers with the values 01 through 49, 66, MF
77, 78, or 88.

5. A level number may be a one- or two-digit number.

Data Division 6-15

General Rules

The following general rules apply to the level number:

1. The level number 01 identifies the first entry l.n each record description.

2. The following special level numbers have been assigned to entries where there is no
concept of level hierarchy:

a. Level number 77 is assigned to identify noncontiguous working-storage data items,
and noncontiguous linkage data items. It can be used only as described by Format
1 of the data description skeleton.

b. Level number 66 is assigned to identify RENAMES entries. It can be used only as
described in Format 2 of the data description skeleton.

c. Level number 88 is assigned to entries that define condition-names associated with
a conditional variable. It can be used only as described in Format 3 of the data
description skeleton.

d. Level number 78 is assigned to entries that define constant-names. It
can be used only as described in Format 4 of the data description
skeleton.

MF

3. Multiple level 01 entries subordinate to a CD, FD, or SD entry represent implicit redef
initions of the same area.

6-16 Language Reference

Example

The following is an example of level-number concepts:

The COBOL record-description entry Is subdivided as
written as follows: indicated below:

01 RECORD-ENTRY. ~this entry includes

05 GROUP-1. ~this entry includes

10 SUBGROUP-1.
- '"" ~"' i "l "'" 1

15 ELEM-1 PIC

15 ELEM-2 PIC

10 SUBGROUP-2.
- thi• ,,,,., '"''"''' 1

15 ELEM-3 PIC

15 ELEM-4 PIC

05 GROUP-2. ~ this entry includes

15 SUBGROUP-3.
- thi• ,,,,, '"''"''' 1

25 ELEM-5 PIC

25 ELEM-6 PIC

15 SUBGROUP-4 P!C this entry includes itself

05 GROUP-3 PIC this entry includes itself

Its storage arrangement is illustrated below:

GROUP-1 ~ GROUP-2~
RECORD-ENTRY "'I

SUBGROUP-1 -+j+- SUBGROUP-2 ~ SUBGROUP-3 --+j I
ELEM-2 ELEM-3 ELEM-4 ELEM-5 ELEM-6 SUBGROUP-4 GROUP-3

Data Division 6-17

PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing requirements of an
elementary item.

General Format

The following figure shows the general format for the PICTURE clause:

L PICTURE -~~L--_J~-character-stri ng -
Pic--~ IS

Syntax Rules

The following syntax rules apply to the PICTURE clause:

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of characters in the
COBOL character set. The characters are used as symbols. The allowable combina
tions determine the category of the elementary item.

3. The maximum number of characters allowed in the character string is 30.

4. The PICTURE clause must be specified for all elementary items except an index data
item or the subject of a RENAMES clause. Other use of this clause is prohibited.

5. PIC is an abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO should not appear in the same entry. However,
this construct is permitted.

osvs

7. An integer in parentheses following a character indicates that the character is
repeated the number of times shown by the integer.

6-18 Language Reference

General Rule

The following seven categories of data can be described with a PICTURE clause:

• Alphabetic
• Numeric
• Alphanumeric
• Alphanumeric-edited
• Numeric-edited

DBCS Support

• DBCS
• DBCS-edited.

~----------- End of DBCS Support -----------~

General rules within these categories follow.

Alphabetic Data Rules
The following alphabetic data rules apply to the PICTURE clause:

1. The PICTURE character string can only contain the symbols A and B.

2. Its contents when represented in standard data format must be one or more alphabetic
characters.

Numeric Data Rules
The following numeric data rules apply to the PICTURE clause:

1. The PICTURE character string can only contain the symbols 9, P, S, and V. The
number of digit positions that can be described by the PICTURE character string must
range from 1to18 inclusive.

2. If unsigned, the data in standard data format must be a combination of the Arabic
numerals 0 through 9. If signed, the item may also contain a +, -, or other represen
tation of an operational sign. Refer to "SIGN Clause" on page 6-35.

Numeric data may also be held in formats other than standard data formats. Refer to
"USAGE Clause" on page 6-39, and "Selection of Character Representation and Radix"
on page 2-20.

Alphanumeric Data Rules
The following alphanumeric data rules apply to the PICTURE clause:

1. The PICTURE character string is restricted to certain combinations of the symbols A,
X, 9, and the item is treated as if the character string contained all Xs. A PICTURE
character string that contains all A's or all 9s does not define an alphanumeric item.

2. The contents, when represented in standard data format, may consist of any characters
in the character set.

Alphanumeric-Edited Data Rules
The following alphanumeric-edited data rules apply to the PICTURE clause:

1. The PICTURE character string is restricted to certain combinations of the symbols A,
X, 9, B, 0, and / as follows:

a. A character string must contain at least one Band one X, one 0 (zero) and one X,
or at least one/ (stroke) and one X, or

Data Division 6-19

b. The character string must contain at least one 0 (zero) and one A or at least one /
(stroke) and one A.

2. The contents when represented in standard data format are allowable characters in the
set of the computer.

Numeric-Edited Data Rules
The following numeric-edited data rules apply to the PICTURE clause:

1. The PICTURE character string is restricted to certain combinations of the symbols B /
P V Z 0 9 , . * + - CR DB and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and the editing rules as follows:

a. The number of digit positions that can be represented in the PICTURE character
string must range from 1 to 18 inclusive.

b. The character string must contain at least one 0 B / Z * + , . - CR DB or the
currency symbol.

c. The maximum storage represented by the PICTURE character string is 512 bytes.

2. The contents of the character positions of these symbols that are allowed to represent a
digit in standard data format must be one of the numerals.

DBCS Support

DBCS Data Rules
The following DBCS data rules apply to the PICTURE clause:

1. The PICTURE character-string can contain only the symbol G.

2. Each G represents a single DBCS character position (2 bytes).

3. USAGE DISPLAY-1 must be specified.

4. Any associated VALUE clause must specify a DBCS literal or the figurative constant
SPACE/SPACES.

DBCS-Edited Data Rules
The following DBCS-edited data rules apply to the PICTURE clause:

1. The PICTURE character-string can contain the symbols G and B.

2. Each G represents a single DBCS character position (2 bytes).

3. USAGE DISPLAY-1 must be specified.

4. Any associated VALUE clause must specify a DBCS literal or the figurative constant
SPACE/SPACES .

.._ ____________ End of DBCS Support ____________ ___,

Elementary Item Size

The size of an elementary item, where size means the number of character positions occu
pied by the elementary item in standard data format, is determined by the number of allow
able symbols that represent character positions. An integer that is enclosed in parentheses
following the symbols A X 9 P Z , * B / 0 + - or the currency symbol indicates the number
of consecutive occurrences of the symbol. The S V . CR and DB symbols may appear only
once in a given PICTURE.

6-20 Language Reference

Symbols Used

The functions of the symbols used to describe an elementary item are as follows:

A Each A in the character string represents a character position that can contain
only a letter of the alphabet or a space.

B Each B in the character string represents a character position into which the
space character will be inserted.

DBCS Support

For a DBCS item, each picture symbol B represents a single DBCS character
position containing a DBCS space.

Each B counts as one character.

G Each Gin the character string represents a DBCS character position, occupying
2 bytes of storage. The PICTURE symbol G cannot be specified for a non-DBCS
item.

Each G counts as one character.

~------------ End of DBCS Support ------------~

P Each P indicates an assumed decimal scaling position and is used to specify the
location of an assumed decimal point when the point is not within the number
that appears in the data item. The scaling position character P is not counted
in the size of the data item. Scaling position characters are counted in deter
mining the maximum number of digit positions (18) in numeric-edited items or
numeric items.

The scaling position character P can appear only to the left or right as a contin
uous string of Ps within a PICTURE description. The scaling position character
P implies an assumed decimal point (to the left of Ps if Ps are leftmost PICTURE
characters and to the right if Ps are rightmost PICTURE characters). The
assumed decimal point symbol Vis redundant as either the leftmost or rightmost
character within such a PICTURE description.

The character P and the insertion character . (period) cannot both occur in the
same PICTURE character string. If, in any operation involving conversion of
data from one form of internal representation to another, the data item being
converted is described with the PICTURE character P, each digit position
described by a P is considered to contain the value zero. The size of the data
item is considered to include the digit positions so described.

S The letter S is used in a character string to indicate the presence (but neither
the representation nor, necessarily, the position) of an operational sign and it
must be written as the leftmost character in the PICTURE. The S is not
counted in determining the size (in terms of standard data format characters) of
the elementary item unless the entry is subject to a SIGN clause that specifies
the optional SEPARATE CHARACTER phrase. Refer to "SIGN Clause" on
page 6-35.

V The V is used in a character string to indicate the location of the assumed
decimal point and may only appear once in a character string. The V does not
represent a character position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the right of the right
most symbol in the string the V is redundant.

X Each X in the character string is used to represent a character position that
contains any allowable character from the character set.

Z Each Z in a character string may only be used to represent the leftmost numeric
character positions that will be replaced by a space character when the contents
of that character position is zero. Each Z is counted in the size of the item.

Data Division 6-21

9 Each 9 in the character string represents a character position that contains a
numeral and is counted in the size of the item.

0 Each 0 (zero) in the character string represents a character position into which
the numeral 0 will be inserted. The 0 is counted in the size of the item.

/ Each / (stroke) in the character string represents a character position into
which the stroke character will be inserted. The / is counted in the size of the
item.

Each , (comma) in the character string represents a character position into
which the character, will be inserted. This character position is counted in the
size of the item. The insertion character , must not be the last character in the
PICTURE character string.

When the character . (period) appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes. It also repres
ents a character position into which the character. will be inserted. The char
acter . is counted in the size of the item. For a given program, the functions of
the period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the comma apply to
the period wherever they appear in the PICTURE clause. The insertion char
acter , must not be the last character in the PICTURE character string.

+,-,DB, CR
These symbols are used as editing sign control symbols. When used, they repre
sent the character position into which the editing sign control symbol will be
placed. The symbols are mutually exclusive in any one character string and
each character used in the symbol is counted in determining the size of the data
item.

* Each * (asterisk) in the character string represents a leading numeric character
position into which an asterisk will be placed when the contents of that position
is zero. Each * is counted in the size of the item.

$ The currency symbol in the character string represents a character position into
which a currency symbol is to be placed. The currency symbol in a character
string is represented by either the currency sign or by the single character spec
ified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The
currency symbol is counted in the size of the item.

Editing Rules

There are two general methods of performing editing in the PICTURE clause. Editing can
be done either by insertion or by suppression and replacement. There are four types of
insertion editing available:

• Simple insertion
• Special insertion
• Fixed insertion
• Floating insertion.

There are two types of suppression and replacement editing:

• Zero suppression and replacement with spaces
• Zero suppression and replacement with asterisks.

The type of editing that may be performed on an item is dependent upon the category to
which the item belongs. Table 6-1 on page 6-23 specifies the type of editing that may be
performed on a given category.

6-22 Language Reference

Table 6-1. Editing Types for Data Categories

Category Type of Editing

Alphabetic Simple insertion B only

Numeric None

Alphanumeric None

Alphanumeric-Edited Simple insertion 0, B, and /

Numeric-Edit~d All (see note)

DBCS None

DBCS-edited Simple insertion

Note: Floating insertion editing and editing by zero suppression and replacement are
mutually exclusive in a PICTURE clause. Only one type of replacement may be used
with zero suppression in a PICTURE clause.

Simple Insertion Editing
Simple insertion editing is valid for alphabetic, alphanumeric-edited, and numeric-edited
items. The , (comma), B (space), 0 (zero), and / (stroke) are used as the insertion charac
ters. The insertion characters are counted in the size of the item and represent the posi
tion in the item into which the character will be inserted.

DBCS Support

This type of editing is valid for DBCS-edited items.

~------------ End of DBCS Support ------------~

Category

Alphabetic
Alphanumeric-edited
Numeric-edited

DBCS-edited

Valid Insertion Symbols

B
B 0 I
B 0 I '

DBCS Support

B

'---------------- End of DBCS Support -------------~

The following example shows simple insertion editing.

PICTURE

X(10)/XX
X (5) BX(7)
A(5)BA(5)
99,B999,B000
99,999

Value of Data

ALPHANUMER01
ALPHANUMERIC
ALPHABETIC
1234
12345

Edited Result

ALPHANUMER/01
ALPHA NUMERIC
ALPHA BETIC
01, 234, 000
12,345

DBCS Support

For DBCS-edited items, each insertion symbol (B) is counted in the size of the item, and
represents the position within the item where the DBCS space is to be inserted.

~------------ EndofDBCSSupport ____________ ____,

Data Division 6-23

Special Insertion Editing
Special insertion editing is valid only for numeric-edited items. The . (period) is used as
the insertion character and also represents the decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted in the size of the item.

The use of the assumed decimal point, represented by the symbol V and the actual decimal
point, represented by the insertion character, in the same PICTURE character string is
disallowed.

The following example shows special insertion editing:

PICTURE Value of Data Edited Results

999.99 1.234 0Ell.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50

Fixed Insertion Editing
Fixed insertion editing is valid only for numeric-edited items. The currency symbol and
the editing sign control symbols +, -, CR, DB are the insertion characters.

Consider the following conditions about fixed insertion editing:

• In fixed insertion editing, only one currency symbol and one editing sign control
symbol can be specified in a PICTURE character string.

• Unless it is preceded by a + or - symbol, the currency symbol ($) must be the leftmost
character position in the character string.

• When either + or - is used as a symbol, it must represent either the leftmost or right
most character position in the character string.

• When CR or DB is used as a symbol, it must represent the two rightmost character
positions in the character string.

• Editing sign control symbols produce results depending on the value of the data item,
as shown in Table 6-2.

Table 6-2. Editing Symbols in PICTURE Character Strings
Editing Symbol Result Result
In PICTURE Data Item Data Item
Character String Positive or Zero Negative

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

6-24 Language Reference

The following example shows fixed insertion editing:

PICTURE Value of Data Edited Result

999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99- +1234.56 1234.56
$999.99 -123.45 $123.45

-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

Floating Insertion Editing
Floating insertion editing is valid only for numeric-edited items. The currency symbol and
editing sign control symbols + or - are the floating insertion characters and as such are
mutually exclusive in a given PICTURE character string.

Floating insertion editing is indicated in a PICTURE character string by using a string of
at least two of the floating insertion characters. This string of floating insertion charac
ters may contain any of the fixed insertion symbols or have fixed insertion characters
immediately to the right of this string. These simple insertion characters are part of the
floating string.

The leftmost character of the floating insertion string represents the leftmost limit of the
floating symbol in the data item. The rightmost character of the floating string represents
the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric
data that can be stored in the data item. Nonzero numeric data may replace all the char
acters at or to the right of this limit.

In a PICTURE character string, there are only two ways of representing floating insertion
editing:

• Any or all of the leading numeric character positions on the left of the decimal point
are represented by the insertion character.

• All of the numeric character positions in the PICTURE character string are repres-
ented by the insertion character.

If the insertion characters are only to the left of the decimal point in the PICTURE char
acter string, a single floating insertion character will be placed in the character position
immediately preceding either the decimal point or the first nonzero digit in the data repres
ented by the insertion symbol string, whichever is farther to the left in the PICTURE char
acter string. The character positions preceding the insertion character are replaced with
spaces.

If all numeric character positions in the PICTURE character string are represented by the
insertion character, the result depends on the value of the data. If the value is zero, the
entire data item will contain spaces. If the value is not zero, the result is the same as
when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character string for the receiving
data item must be the number of characters in the sending data item, plus the number of
nonfloating insertion characters being edited into the receiving data item, plus one for the
floating insertion character.

Data Division 6-25

The following example shows floating insertion editing:

PICTURE

$$$$.99
$$$9.99

$$,$$$,999.99
++,+++,999.99
$$,$$$,$$$.99CR
++,+++,+++.+++

Value of Data

.123

.12
-1234.56

-123456.789
-1234567

0000.00

Zero Suppression Editing

Edited Result

$.12
$0.12

$1,234.56
-123,456.78

$1,234,567.00CR

The suppression of leading zeros in numeric character positions is indicated by the use of
the alphabetic character Z or the character * (asterisk) as suppression symbols in a
PICTURE character string. These symbols are mutually exclusive in a given PICTURE
character string. Each suppression symbol is counted in determining the size of the item.
If Z is used, the replacement character will be the space and if the asterisk is used, the
replacement character will be *.
Zero suppression and replacement is indicated in a PICTURE character string by using a
string of one or more of the allowable symbols to represent leading numeric character posi
tions. The numeric character positions are to be replaced when the associated character
position in the data contains a zero. Any of the simple insertion characters embedded in
the string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character string, there are only two ways of representing zero suppression.
One way is to represent any or all of the leading numeric character positions to the left of
the decimal point by suppression symbols. The other way is to represent all of the numeric
character positions in the PICTURE character string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in
the data that corresponds to a symbol in the string is replaced by the replacement char
acter. Suppression terminates at the first nonzero digit in the data represented by the sup
pression symbol string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character string are represented by sup
pression symbols and the value of the data is not zero, the result is the same as if the sup
pression characters were only to the left of the decimal point. If the value is zero and the
suppression symbol is Z, the entire data item will be spaces. If the value is zero and the
suppression symbol is *, the data item will be all * except for the actual decimal point.

The symbols +, -, *, Z, and the currency symbol, when used as floating replacement char
acters, are mutually exclusive within a given character string.

The following is an example of zero suppression editing:

PICTURE Value of Data Edited Result

**** ** 0000.00 **** **
zzzz.zz 0000.00
ZZZZ.99 0000.00 .00
****.99 0000.00 ****.00
ZZ99.99 0000.00 00.00

Z,ZZZ.ZZ+ +123.456 123.45+
*,***.**+ -123.45 **123.45-

,*,***.**+ +12345678.9 12,345,678.90+
$Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67

$8*,***,***.**BBDB -12345.67 $ ***12,345.67 DB

6-26 Language Reference

Precedence Rules

Figure 6-1 on page 6-28 shows the order of precedence when using characters as symbols
in a character string. An X at an intersection indicates that the symbol(s) at the top of the
column may precede, in a given character string, the symbol(s) at the left of the row.
Arguments appearing in braces indicate that the symbols are mutually exclusive. The cur
rency symbol is indicated by the symbol cs.

At least one of the symbols A, X, Z, 9, or*, or at least two of the symbols +, -, or cs must
be present in a PICTURE string.

DBCS Support

The symbol G may appear alone in a PICTURE character string. The symbol G may
appear more than once in a PICTURE character string.

~-----------End ofDBCS Support-----------~

In Figure 6-1 on page 6-28, nonfloating insertion symbols + and -, floating insertion
symbols Z, *, +, -, and cs, and other symbol P appear twice in the PICTURE character
precedence chart. The leftmost column and uppermost row for each symbol represents its
use to the left of the decimal point position. The second appearance of symbol in the row
and column represents its use to the right of the decimal point position.

Data Division 6-27

First Non-Floating Floating Other Symbols
Symbol Insertion Symbols Insertion Symbols

Second B 0 I {±} {±} {~:} cs {n {;} {±} {'.!:} cs cs 9 {~} s v p p G Symbol .
B x x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

I x x x x x x x x x x x x x x x x x

. x x x x x x x x x x x x x x x x
Non
Floating X· x x x x x x x x x
Insertion {±} Symbols

{±} x x x x x x x x x x x x x x

{ ~:} x x x x x x x x x x x x x x

cs x

{;} x x x x x x x

Floating { ;} x x x x x x x x x x x
Insertion
Symbols {±} x x x x x x

{±} x x x x x x x x x x

cs x x x x x x

cs x x x x x x x x x x

9 x x x x x x x x x x x x x x x

{~} x x x x x

Other s
Symbols v x x x x x x x x x x x x

p x x x x x x x x x x x x
p x x x x x

G x x

Figure 6-1. PICTURE Character Precedence Chart

6-28 Language Reference

REDEFINES Clause

Function

The REDEFINES clause allows the same computer memory area to be described by dif
ferent data description entries.

General Format

The following figure shows the general format of the REDEFINES clause:

---1 evel-number ~t=------~~- REDEFINES data-name-2 ~
data-name-1 I
FILLER--~

Note: level-number, data-name-1, and FILLER are shown in the above format to
improve clarity. level-number, data-name-1, and FILLER are not part of the REDE
FINES clause.

Syntax Rules

The following syntax rules apply to the REDEFINES clause:

1. When specified, the REDEFINES clause must immediately follow
data-name-1 or it may follow the PICTURE or USAGE clause. osvs

2. The level-numbers of data-name-1 and data-name-2 must be identical but must not be 66
or 88.

3. This clause must not be used in level 01 entries in the FILE SECTION, because mul
tiple level 01 entries subordinate to an FD or SD indicator represent implicit redefi
nitions of the same areas. Refer to "DATA RECORDS Clause" on page 8-42.

4. This clause must not be used in level 01 entries in the COMMUNICATION SECTION
because multiple level 01 entries subordinate to a CD indicator represent implicit
redefinition of the same area.

5. The data description for data-name-2 may contain a REDEFINES clause OSVS VSC2
and data-name-2 may be subordinate to an entry that contains a REDE-
FINES clause. Its data description cannot contain an OCCURS clause.
However, data-name-2 may be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the refer-
ence to data-name-2 in the REDEFINES clause may not be subscripted
or indexed. Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS
clause. Refer to "OCCURS Clause" on page 12-5.

6. No entry having a level-number numerically lower than the level-number of
data-name-2 and data-name-1 may occur between the data description entries of
data-name-2 and data-name-1.

Data Division 6-29

General Rules

The following general rules apply to the REDEFINES clause.

1. Redefinition starts at data-name-2 and ends when a level-number less than or equal to
that of data-name-2 is encountered.

2. When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions that the data item referenced
by data-name-2 contains except that the data-name-1 area may be either
smaller than the data-name-2 area or larger than the data-name-2
area. In this case, extra memory is reserved to provide sufricient
memory for the number of character positions in the largest of the
redefining or redefined items.

Note: The REDEFINES clause specifies the redefinition of a storage
area, not the redefinition of the data items occupying the area.

3. Multiple redefinitions of a character position are permitted. The
entries giving the new descriptions of the character positions must
follow the defining entries without intervening entries that define new
character positions. Multiple redefinitions of the same character posi
tions must all use the data-name of the entry that originally defined the
area or the data-name of another preceding redefinition of that entry.

OSVS VSC2
MF

osvs
4. The entries giving the new description of the character positions must not contain any

VALUE clauses except in condition-name entries.

5. Multiple level 01 entries subordinate to any given level indicator (FD, CD, or SD) rep
resent implicit redefinitions of the same area.

Example

The following is an example of the REDEFINES clause:

05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).

05 C PICTURE 99V99.

In the foregoing example, A is the redefined item, and B is the redefining item. Redefi
nition begins with B and includes the two subordinate items B-1 and B-2. Redefinition
ends when the level-05 item, C, is encountered.

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data items within an area can be redefined without their lengths being changed.

6-30 Language Reference

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 EMP-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

Data items can also be rearranged within an area.

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL.
05 A PICTURE S99 USAGE COMPUTATIONAL.

Use of a redefining data item need not be the same as that of a redefined item. However,
this does not change existing data.

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.
10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY

PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may be specified for an item within the scope of an area being
redefined (that is, an item subordinate to a redefined item).

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

The REDEFINES clause may also be specified for an item subordinate to a redefining item.

Data Division 6-31

RENAMES Clause

Function

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary
items.

General Format

The following figure shows the general format for the RENAMES clause:

--- 66 data-name-1 RENAMES data-name-2 E J ·
THROUGH ----r data-name-3
THRU__J

Note: level-number 66 and data-name-1 are shown in the above format to improve
clarity. level-number and data-name-1 are not part of the RENAMES clause.

Syntax Rules

The following syntax rules apply to the RENAMES clause:

1. Any number of RENAMES entries may be written for a logical record.

2. All RENAMES entries referring to data items in a logical record must immediately
follow the last data description entry of the associated record description entry.

3. data-name-2 and data-name-3 must be names of elementary items or groups of elemen
tary items in the same logical record. They cannot be the same data-name. A 66 level
entry cannot rename another 66 level entry nor can it rename a 77, 88, or 01 entry.

4. data-name-1 cannot be used as a qualifier and can only be qualified by the names of the
associated level 01, FD, CD, or SD entries. Neither data-name-2 nor data-name-3 may
have an OCCURS clause in its data description entry or be subordinate to an item that
has an OCCURS clause in its data description entry. Refer to "OCCURS Clause" on
page 12-5.

5. The beginning of the area described by data-name-3 must not be to the left of the begin
ning of the area described by data-name-2. The end of the area described by
data-name-3 must be to the right of the end of the area described by data-name-2.
data-name-3, therefore, cannot be subordinate to data-name-2.

6. data-name-2 and data-name-3 may be qualified.

7. The words THRU and THROUGH are equivalent.

8. None of the items within the range, including data-name-2 and data-name-3, if specified,
can be an item whose size is variable as defined in "OCCURS Clause" on page 12-5.

6-32 Language Reference

DBCS Support

9. data-name-1 may specify a USAGE DISPLA Y-1 (DBCS) item if data-name-2 specifies a
DBCS item and the THROUGH phrase is not specified.

~------------ End of DBCS Support ------------~

General Rules

The following general rules apply to the RENAMES clause:

1. When data-name-3 is specified, data-name-1 is a group item that includes all elementary
items starting with data-name-2 (if data-name-2 is an elementary item) or the first ele
mentary item in data-name-2 (if data-name-2 is a group item). It concludes with
data-name-3 (if data-name-3 is an elementary item) or the last elementary item in
data-name-3 (if data-name-3 is a group item).

2. When data-name-3 is not specified, all attributes of data-name-2 become the data attri
butes for data-name-1.

Data Division 6-33

Example

The following is an example of valid and invalid RENAMES specification:

COBOL Specifications Storage Layouts

Example 1 (Valid)

01 RECORD-I.
05 DN-1. •• RECORD-I
05 DN-2 .••
05 DN-3 ••• DN-1 DN-2 DN-3 DN-4
05 DN-4 •..

66 DN-6 RENAMES DN-1 THROUGH DN-3. DN-6

Example 2 (Valid)

~
RECORD-II .,

01 RECORD-II. DN-1
05 DN-1.

10 DN-2 •.• I DN-2 DN-2A I DN-5 I 10 DN-2A ••••
05 DN-lA REDEFINES DN-1. 1~ DN-lA ·I 10 DN-3A... •

10 DN-3 ••.•

I I 10 DN-38 •.•• DN-3A DN-3 DN-38
05 DN-5 ••.•

66 DN-6 RENAMES DN-2 THROUGH DN-3. 1~ DN-6 •I
Example 3 (Invalid)

01 RECORD-III.

~
RECORD-III .,

05 DN-2. DN-2 •1 10 DN-3 •••
10 DN-4 ••. I DN-3 DN-4 I DN-5 I 05 DN-5 .•••

66 DN-6 RENAMES DN-2 THROUGH DN-3. DN-6 is indeterminate

Example 4 (Invalid)

01 RECORD-IV.

~
RECORD-IV ·1 05 DN-1. DN-1 •1 10 DN-2A .••

10 DN-28 ••• I DN-2A DN-28 I DN-3 I 10 DN-2C REDEFINES DN-28.
15 DN-2 •••.

I 15 DN-20 •••. DN-2 DN-2D
05 DN-3 ••.•

66 DN-4 RENAMES DN-1 THROUGH DN-2. DN-4 is indeterminate

6-34 Language Reference

SIGN Clause

Function

The SIGN clause specifies the position and mode of representation of the operational sign
when it is necessary to describe them explicitly.

General Format

The following figure shows the general format for the SIGN clause:

.... L J [LEADING J L j
SIGN~L----l TRAILING SEPARATE L

IS CHARACTER

.. ..

Syntax Rules

The following syntax rules apply to the SIGN clause:

1. The SIGN clause may be specified only for a numeric data description entry whose
PICTURE contains the character S or a group item containing at least one such
numeric data description entry.

2. The numeric data description entries to which the SIGN clause applies must be
described as USAGE IS DISPLAY.

3. If the CODE-SET clause is specified, signed numeric data description
entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause. This restriction does not apply.
Refer to "CODE-SET Clause" on page 8-40.

General Rules

The following general rules apply to the SIGN clause:

MF

1. The optional SIGN clause specifies the position and the mode of representation of the
operational sign for either the numeric data description entry to which it applies or for
each numeric data description entry subordinate to the group to which it applies. The
SIGN clause applies only to numeric data description entries whose PICTURE contains
the character S; the S indicates the presence of, but neither the representation nor,
necessarily, the position of the operational sign.

Data Division 6-35

2. A numeric data description entry whose PICTURE contains the character S, but to
which no optional SIGN clause applies, has an operational sign. Neither the represen
tation nor, necessarily, the position of the operational sign is specified by the character
S. In the default case, general rules 3 through 5 do not apply to such signed numeric
data items. The representation of the default operational sign is defined in "Selection
of Character Representation and Radix" on page 2-20.

3. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or, respec
tively, trailing) digit position of the elementary numeric data item in a manner
defined in "Selection of Character Representation and Radix" on page 2-20.

b. The letter S in a PICTURE character string is not counted in determining the size
of the item (in terms of standard data format characters).

4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively, trailing)
character position of the elementary numeric data item; this character position is
not a digit position.

b. The letter S in a PICTURE character string is counted in determining the size of
the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data format char
acters + and-, respectively.

5. Every numeric data description entry whose PICTURE contains the character S is a
signed numeric data description entry. If a SIGN clause applies to such an entry and
conversion is necessary for purposes of computation or comparisons, conversion takes
place automatically.

6. If a SIGN clause is specified for an item (either an elementary numeric data description
entry or a group item) that is subordinate to a group item for which a SIGN clause is
also specified, then the SIGN clause specified in the subordinate item takes precedence.

6-36 Language Reference

SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural
boundaries of the computer memory.

General Format

The following figure shows the general format of the SYNCHRONIZED clause:

~~ L SYNCHRONIZED
svNc--~I L LEFT _J

LRIGHTJ

Syntax Rules

~ ..

The following syntax rules apply to the SYNCHRONIZED clause:

1. This clause should only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

3. The SYNCHRONIZED clause may appear with a nonelementary item. OSVS VSC2

DBCS Support

4. The synchronized clause is ignored for a DBCS item.

~----------- End of DBCS Support ___________ ___,

General Rules

The following general rules apply to the SYNCHRONIZED clause:

Data Division 6-37

1. The effect of the SYNCHRONIZED clause is, by definition, implementation dependent.

2. This clause specifies that the subject data item is to be aligned in the computer such
that no other data item occupies any of the character positions between the leftmost
and rightmost natural boundaries of the computer memory which delimits this data
item. If the number of character positions required to store this data item is less than
the number of character positions between those natural boundaries, the unused char
acter positions (or portions thereof) must not be used for any other data item.
However, such unused character positions are included in:

a. The size of any group item(s) to which the elementary item belongs

b. The character positions redefined when this data item is the object of a REDE
FINES clause.

Thus, the size of an elementary item is unchanged by the SYNCHRONIZED clause, but
extra character positions are assigned by the use of the clause.

3. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the elementary
item is to be positioned between natural boundaries for efficient utilization of the ele
mentary data item.

4. SYNCHRONIZED RIGHT specifies that the elementary item be posi-
tioned to terminate on the right character position of the natural
boundary in which the elementary item is placed. It only takes effect if
the IBMCOMP system directive is set.

MF

5. Whenever a SYNCHRONIZED item is referenced in the source program, the original
size of the item, as shown in the PICTURE clause, is used in determining an action
that depends on size, such as justification, truncation, or overflow.

6. If the data description of an item contains the SYNCHRONIZED clause and an opera
tional sign, the sign of the item appears in the normal operational sign position,
regardless of whether the item is SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT.

7. When the SYNCHRONIZED clause is specified in a data description entry of a data
item that also contains an OCCURS clause, or in a data description entry of a data
item subordinate to a data description entry that contains an OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED

b. An implicit FILLER generated for other data items within that same table is gener
ated for each occurrence of those data items.

8. If the SYNCHRONIZED clause is specified with a nonelementary item, OSVS VSC2
the clause applies to all items subordinate to that nonelementary item.

9. Specification of the LEFT phrase in the SYNCHRONIZED clause will
have no effect. Specification of the RIGHT phrase in the SYNCHRO- MF
NIZED clause has an effect only if the IBMCOMP system directive is set.

The effect of the use of the SYNCHRONIZED clause is discussed in "Selection of Char
acter Representation and Radix" on page 2-20.

6-38 Language Reference

USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer memory.

General Format

The following figure shows the general format of the USAGE clause:

--~------~~BINARY~---.----------------1-

IS

Syntax Rules

COMPUTATIONAL-----1
COMP ------1

DISPLAY------1
COMPUTATIONAL-3--i
COMP-3------1
COMPUTATIONAL-4----1
COMP-4 -------<

PACKED-DECIMAL---i
POINTER ------<

COMPUTATIONAL-5--i
COMP-5
COMPUTATIONAL-X----1
COMP-X
DISPLAY-1--~

The following syntax rules apply to the USAGE clause:

MF OSVS VSC2

OSVS VSC2

VSC2
MF

1. The PICTURE character string of a COMPUTATIONAL,
COMPUTATIONAL-3, or COMPUTATIONAL-5 item can contain only VSC2 OSVS
9s, the operational sign character S, the implied decimal point char- MF
acter V, or one or more Ps. Refer to "PICTURE Clause" on page 6-18.

2. COMP is an abbreviation for COMPUTATIONAL.

3. BINARY is synonymous with COMPUTATIONAL.

4. COMP-4 is an abbreviation for COMPUTATIONAL-4 and is synony- VSC2 OSVS
mous with COMPUTATIONAL.

5. COMP-3 is an abbreviation for COMPUTATIONAL-3. MF
OSVS VSC2

6. PACKED-DECIMAL is synonymous with COMPUTATIONAL-3.

7. COMP-5 is an abbreviation for COMPUTATIONAL-5. MF

8. The USAGE clause cannot be specified for level 66 or 88 data description entries.

Data Division 6-39

9. The PICTURE character string of a COMPUTATIONAL-X item must
consist either of all 9s or of all Xs. Either gives an item whose category
is numeric.

10. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, SIGN, and
BLANK WHEN ZERO clauses cannot be used to describe group or ele
mentary items described with the USAGE IS POINTER clause.

DBCS Support

11. The DISPLAY-1 phrase defines an item as DBCS .

MF

VSC2

.___ ____________ End of DBCS Support ____________ __,

General Rules

The following general rules apply to the USAGE clause:

1. The USAGE clause can be written at any level. If the USAGE clause is written at
group level, it applies to each elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to which the item
belongs.

2. This clause specifies the manner in which a data item is represented in the memory of
a computer. It does not affect the use of the data item, although the specifications for
some statements in the Procedure Division may restrict the USAGE clause of the oper
ands referred to. The USAGE clause may affect the radix or type of character repre
sentation of the item.

3. A COMPUTATIONAL, COMPUTATIONAL-3, COMPUTATIONAL-5, OSVS VSC2
or COMPUTATIONAL-X item is capable of representing a value to be MF
used in computations and must be numeric. If a group item is described
with one of these clauses, the clause applies to the elementary items in
the group, not to the group item itself. The group item cannot be used
in computations. The effect of these clauses is discussed in "Selection
of Character Representation and Radix" on page 2-20.

4. The USAGE IS DISPLAY clause indicates that the format of the data is a standard
data format.

5. If the USAGE clause is not specified for an elementary item, or for any group to which
the item belongs, the usage is implicitly DISPLAY.

6. Space requirements and storage definitions for the various USAGE storage options are
given under "Selection of Character Representation and Radix" on page 2-20.

7. The USAGE IS POINTER clause identifies a data item in which you VSC2
can store the address of a data item (refer to "SET Statement" on
page 7-84). USAGE IS POINTER can be specified for group items as
well as for elementary items. However, only the elementary items within
the group are regarded as pointer items; the group name cannot be used
where a pointer name is expected. All of the elementary items in a group
item with USAGE IS POINTER are treated as if they had the USAGE
IS POINTER clause.

6-40 Language Reference

VALUE Clause

Function

The VALUE clause defines the value of constants, the initial value of working storage
items, and the values associated with a condition name.

General Format

The following figures show the general format of the VALUE clause:

Format 1

-VALUE --,-L--_J-.,--1itera1 ~
IS

Format 2

LVALUE~literal-1

VALUES~
ARE

Format 3

E THRO~ 1itera1-2 :=J
THRU

--vAWE~L--_J~~L-literal 1 L _J
IS NEXT __J L ~~integer

Syntax Rules

The following syntax rules apply to the VALUE clause:

....

MF

1. A signed numeric literal must have associated with it a signed numeric PICTURE char
acter string.

2. All numeric literals in a VALUE clause of an item must have values which are within
the range of values indicated by the PICTURE clause, and must not have a value that
would require truncation of nonzero digits. Nonnumeric literals in a VALUE clause of
an item must not exceed the size indicated by the PICTURE clause.

3. The words THRU and THROUGH are equivalent.

Data Division 6-41

DBCS Support

4. A VALUE clause associated with a DBCS item must contain a DBCS literal.

General Rules

The following general rules apply to the VALUE clause:

1. The VALUE clause must not conflict with other clauses in the data description of the
item or the data description within the hierarchy of the item. The following rules
apply:

a. If the category of the item is a numeric, all literals in the VALUE clause must be
numeric. If the literal defines the value of a working storage item, the literal is
aligned in the data item according to the standard alignment rules. Refer to
"Standard Alignment Rules" on page 2-19.

b. If the category of the item is alphabetic, alphanumeric, or alphanumeric-edited, all
literals in the VALUE clause must be nonnumeric. The literal is aligned in the
data item as if the data item had been described as alphanumeric. Refer to
"Standard Alignment Rules" on page 2-19. Editing characters in the PICTURE
clause are included in determining the size of the data item (refer to "PICTURE
Clause" on page 6-18) but have no effect on initialization of the data item. There
fore, the VALUE for an edited item is presented in an edited form.

c. If the item is numeric-edited, the value can be a numeric literal or a
nonnumeric literal. If the value is a numeric literal, the value con
tained in the item will be the same as if the numeric literal were
moved to the numeric-edited item.

MF

d. Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED
clause that may be specified.

2. A figurative constant may be substituted in both Format 1 and Format 2 wherever a
literal is specified.

DBCS Support

3. In the VALUE clause of a data description entry (Format 2), all the literals specified
for the THROUGH phrase must be DBCS literals if the associated conditional variable
is a DBCS data item. The figurative constants SPACE and SPACES may be used as
DBCS literals.

The range of DBCS literals specified for the THROUGH phrase is based on the
hexadecimal collating sequence.

~----------- End of DBCS Support -----------~

6-42 Language Reference

Condition-Name Rules

The following condition-name rules apply to the VALUE clause:

1. In a condition-name entry, the VALUE clause is required. The VALUE clause and the
condition name itself are the only two clauses permitted in the entry. The character
istics of a condition name are implicitly those of its conditional variable.

2. Format 2 can be used only in connection with condition names. Wherever the THRU
phrase is used, literal-1 must be less than literal-2, literal-3 less than literal-4, and so
on.

DBCS Support

3. Relation tests for DBCS items are performed according to the rules for comparison of
DBCS items. These rules can be found in "Comparison of DBCS Operands" on
page 7-11.

~------------ End of DBCS Support ------------~

Constant-Name Rules

The following is a list of constant-name rules:

1. The VALUE clause is required in a constant-name entry. The VALUE
clause and the constant name itself are the only two clauses permitted in
the entry. When the VALUE clause contains a literal, the characteristics
of the constant name are implicitly those of the literal. When the
VALUE clause contains NEXT, the constant name implicitly has the
characteristics of an integer.

2. A constant name can be used in place of the literal or integer in a
constant-name entry. Literal can be any kind of literal.

3. NEXT is a special register used by AIX VS COBOL system containing
the address, relative to the start of the program, at which the next data
item will start. NEXT can only be used in constant-name entries.

4. When used immediately before a data description entry that is preceded
by slack bytes, or by bytes unused when a data area is redefined by a
shorter area, NEXT contains the address where those bytes start. When
used immediately after a description of a group item, NEXT contains the
address where that item starts.

5. In the SCREEN SEOTION, NEXT reflects implicit allocation of memory
by the AIX VS COBOL system to handle the screen items described. The
amount of memory allocated is the amount that would be allocated for
data items with the same PICTURE string and USAGE DISPLAY.
Because data descriptions in the LINKAGE SECTION do not cause
memory to be allocated, NEXT is meaningless in the LINKAGE
SECTION.

MF

Data Division 6-43

Data Description Entries Other Than CONDITION-NAMES and
CONST ANT-NAMES

The following data description entries apply to the VALUE clause:

1. Rules governing the use of the VALUE clause differ with the respective sections of the
Data Division:

a. In the FILE SECTION, the VALUE clause must be used only in condition-name
entries.

b. In the WORKING-STORAGE SECTION and the COMMUNICATION SECTION,
the VALUE clause must be used in condition-name entries. The VALUE clause
may also be used to specify the initial value of a data item. If it is, the clause
causes the item to assume the specified value at the start of the object program. If
the VALUE clause is not used in an item's description, the initial value of that
data item is undefined.

c. In the LINKAGE SECTION, the value clause must be used in condition-name
entries only.

2. In the FILE SECTION and the LINKAGE SECTION, the VALUE VSC2
clause may be used in data items entries, but is documentary only.

3. The VALUE clause must not be stated in a data description entry that contains a
REDEFINES clause or that is subordinate to an entry containing a REDEFINES
clause. This rule does not apply to condition-name entries.

4. If the VALUE clause is used in an entry at the group level, the literal must be a figu
rative constant or a nonnumeric literal, and the group area is initialized without con
sideration for the individual elementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within this group.

5. The VALUE clause must not be written for a group containing items with descriptions,
including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS
DISPLAY).

6. The figurative constant NULL may be specified in the VALUE clause
only if the data item is defined with USAGE POINTER. NULL is the
only value you can specify in the VALUE clause for such an item. The
effect is to set the pointer in such a way that it is guaranteed not to point
to any data item.

VSC2

7. A Format 1 VALUE clause specified in a data description entry that contains an
OCCURS clause, or in an entry that is subordinate to an OCCURS clause, causes
every occurrence of the associated data item to be assigned the specified value.

6-44 Language Reference

Chapter 7. Procedure Division in the Nucleus

Procedure Division in the Nucleus 7-1

Contents

About This Chapter
Procedure Division in the Nucleus

General Format
Arithmetic Expressions

Definition of an Arithmetic Expression
Arithmetic Operators
Formation and Evaluation Rules

Conditional Expressions
Simple Conditions
Complex Conditions
Negated Simple Condition
Combined and Negated Combined Condition
Abbreviated Combined Relation Conditions
Condition Evaluation Rules

Common Phrases and General Rules for Statement Formats
ROUNDED Phrase .
ON SIZE ERROR Phrase and NOT ON SIZE ERROR Phrase
CORRESPONDING Phrase
Arithmetic Statement Rules
Overlapping Operand Rules
Multiple Results in Arithmetic Statement Rules
Incompatible Data Rule . .
Signed Receiving Item Rule

ACCEPT Statement
Function
General Format
Syntax Rules .
General Rules
Example

ADD Statement .
Function
General Format
Syntax Rules ..
General Rules
Example

ALTER Statement
Function
General Format
Syntax Rules . .
General Rules
Example

COMPUTE Statement
Function
General Format
Syntax Rule
General Rules
Example

CONTINUE Statement
Function
General Format
Syntax Rule
General Rule . . .
Example

DISPLAY Statement
Function
General Format
Syntax Rules ..
General Rules
Example

7-2 Language Reference

7-5
7-6
7-6
7-7
7-7
7-8
7-8
7-9
7-9

7-15
7-16
7-16
7-17
7-18
7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-21
7-21
7-22
7-22
7-22
7-22
7-23
7-23
7-24
7-24
7-24
7-25
7-25
7-26
7-27
7-27
7-27
7-27
7-27
7-28
7-29
7-29
7-29
7-29
7-29
7-30
7-31
7-31
7-31
7-31
7-31
7-31
7-32
7-32
7-32
7-32
7-33
7-33

DIVIDE Statement 7-34
Function 7-34
General Format 7-34
Syntax Rules . . 7-36
General Rules 7-36
Example 7-37

ENTER Statement 7-38
Function 7-38
General Format 7-38
Syntax Rule 7-38
General Rule . . 7-38

EVALUATE Statement 7-39
Function 7-39
General Format 7-39
Syntax Rules . . 7-40
General Rules 7-40
Example 7-42

EXAMINE Statement 7-43
Function 7-43
General Format 7-43
Syntax Rules . . 7-43
General Rules 7-44
Example 7-44

EXEC(UTE) Statement 7-45
Function 7-45
General Format 7-45
Syntax Rule 7-45
General Rule . . 7-45

EXHIBIT Statement 7-46
Function 7-46
General Format 7-46
Syntax Rules 7-46
General Rules 7-47
Example . . . 7-47

EXIT Statement 7-48
Function 7-48
General Format 7-48
Syntax Rules . 7-48
General Rule . 7-48
Example 7-49

GO TO Statement 7-50
Function 7-50
General Format 7-50
Syntax Rules 7-50
General Rules 7-51

IF Statement . . 7-52
Function 7-52
General Format 7-52
Syntax Rules . . 7-52
General Rules 7-52

INITIALIZE Statement 7-54
Function 7-54
General Format 7-54
Syntax Rules . . 7-54
General Rules 7-55
Example 7-56

INSPECT Statement 7-57
Function 7-57
General Format 7-57
Syntax Rules 7-59
General Rules 7-60
Examples 7-64

Procedure Division in the Nucleus 7-3

MOVE Statement
Function
General Format
Syntax Rules . .
General Rules
Example

MULTIPLY Statement
Function
General Format
Syntax Rules ..
General Rules

ON Statement ...
Function
General Format
Syntax Rules . .
General Rules
Example

PERFORM Statement
Function
General Format
Syntax Rules
General Rules

SET Statement
Function
General Format
Syntax Rules
General Rules

STOP Statement
Function
General Format
Syntax Rules . .
General Rules

STRING Statement
Function
General Format
Syntax Rules . .
General Rules
Example

SUBTRACT Statement
Function
General Format
Syntax Rules
General Rules

TRANSFORM Statement .
Function
General Format
Syntax Rules . .
General Rules
Example

UNSTRING Statement
Function
General Format
Syntax Rules . .
General Rules
Example

7-4 Language Reference

7-65
7-65
7-65
7-65
7-66
7-68
7-69
7-69
7-69
7-70
7-70
7-71
7-71
7-71
7-71
7-71
7-72
7-73
7-73
7-73
7-74
7-75
7-84
7-84
7-84
7-84
7-85
7-86
7-86
7-86
7-86
7-86
7-87
7-87
7-87
7-87
7-88
7-90
7-91
7-91
7-91
7-92
7-92
7-94
7-94
7-94
7-94
7-95
7-95
7-96
7-96
7-96
7-96
7-97

7-101

About This Chapter

This chapter describes the Procedure Division in the nucleus. It explains the format,
syntax, and general rules of Procedure Division statements and phrases. Arithmetic
expressions, conditional expressions, and statement format rules also are covered.

Procedure Division in the Nucleus 7-5

Procedure Division in the Nucleus

This section describes the Procedure Division in the nucleus.

General Format

The following figures show examples of the two general formats of the Procedure Division:

Format 1

--- PROCEDURE DIVISION~---------~· ., 1
L DECLARATIVES.------+ 2

USING-----,-- data-name-1
CHAINING _J

' 2-section-name SECTION · ., 4
L segment-number J L declarative-sentence _J L phrase-1 J

4 ~ END DECLARATIVES. J I i
[sentence J [phrase-1 J

I i
-- section-name SECTION

L segment-number _J L sentence _J L phrase-1 J

where phrase-1 is:

.,..__paragraph-name. ~[----MJ~-•
sentence

7-6 Language Reference

..

....

MF

VSC2

VSC2

Format 2

' ~ fl --PROCEDURE DIVISION. -,------~-paragraph-name. --sentence__......
L sentence _J

The USING phrase of the Procedure Division header is specified only in
programs that are to be CALLed or CHAINed.

Refer to Chapter 11, "Interprogram Communication." The declarative sen
tence shown in "General Format" on page 7-6 is a USE statement (refer to
Chapter 5, "Environment Division in the Nucleus," Chapter 9, "COBOL
Source Library," and Chapter 14, "Report Writer"). It specifies when the
section is to be executed. However, a section in the declarative section need
not have a declarative sentence: it can be invoked by a PERFORM statement
(refer to "PERFORM Statement" on page 7-73, and "PERFORM Statement"
on page A-9, for details of the PERFORM statement).

Arithmetic Expressions

VSC2

MF

MF

This section describes the arithmetic expressions associated with the Procedure Division.

Definition of an Arithmetic Expression

An arithmetic expression can be:

• an identifier of a numeric elementary item

• a numeric literal

• identifiers and literals separated by arithmetic operators

• two arithmetic expressions separated by an arithmetic operator, or

• an arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by an unary operator. The permissible combi
nations of variables, numeric literals, arithmetic operator, and parentheses are given in
Table 7-1 on page 7-8.

Those identifiers and literals appearing in an arithmetic expression must represent either
numeric elementary items or numeric literals on which arithmetic may be performed.

Procedure Division in the Nucleus 7-7

Table 7-1. Combination of Symbols in Arithmetic Expressions
SECOND SYMBOL

FIRST SYMBOL Variable * I ** + - Unary + ' - ()

Variable - p - p

* I ** + - p - p -
Unary+

'
- p - - -

(p - p -
) - p - p

Note:
p indicates a permissible pair of symbols.

- indicates an invalid pair.

Variable indicates an identifier or literal.

Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that may be
used in arithmetic expressions. They are represented by specific characters that may be
preceded by a space and followed by a space. The arithmetic operators are defined as
follows:

Binary Arithmetic
Operators

+

*
I
**

Unary Arithmetic
Operators

+

Meaning
Addition
Subtraction
Multiplication
Division
Exponentiation

Meaning
The effect of multiplication by numeric literal +1
The effect of multiplication by numeric literal -1

Formation and Evaluation Rules

The following formation and evaluation rules apply to arithmetic expressions:

1. Parentheses may be used in arithmetic expressions to specify the order in which ele
ments are to be evaluated. Expressions within parentheses are evaluated first. Within
nested parentheses, evaluation proceeds from the least inclusive set to the most inclu
sive set. When parentheses are not used, or parenthesized expressions are at the same
level of inclusiveness, the following hierarchical order of execution is implied:

1st Unary plus and minus
2nd Exponentiation
3rd Multiplication and division
4th Addition and subtraction

7-8 Language Reference

2. Parentheses are used either to eliminate ambiguities in logic where consecutive oper
ations of the same hierarchical level appear, or to modify the normal hierarchical
sequence of execution in expressions where it is necessary to have some deviation from
the normal precedence. When the sequence of execution is not specified by paren
theses, the order of execution of consecutive operations of the same hierarchical level
is from left to right.

3. An arithmetic expression may only begin with the symbol left parentheses, plus, or
minus, or a variable. It may only end with a right parentheses or a variable. There
must be a one-to-one correspondence between left and right parenthesis of an arith
metic expression so that each left parenthesis is to the left of its corresponding right
parenthesis.

4. Arithmetic expressions allow the user to combine arithmetic operations without the
restrictions on composite operands or receiving data items. Refer to syntax rule 3 of
"ADD Statement" on page 7-24.

Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object program to
select between alternate paths of control depending upon the truth value of the condition.
Conditional expressions are specified in the EVALUATE, IF, PERFORM, and SEARCH
statements. There are two categories of conditions associated with conditional
expressions:

• simple conditions
• complex conditions.

Each may be enclosed within any number of paired parentheses. If it is, its category is not
changed.

Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and sign condi
tions. A simple condition has a truth value of true or false. The inclusion in parentheses
of simple conditions does not change the simple truth value.

Relation Condition
A relation condition causes a comparison of two operands, each of which may be the data
item referred to by an identifier, a literal, or the value resulting from an arithmetic
expression. A relation condition has a truth value of true if the relation exists between the
operands. Comparison of two numeric operands is permitted regardless of the formats spec
ified in their respective USAGE clauses. However, for all other comparisons the operands
must have the same usage. If either of the operands is a group item, the nonnumeric com
parison rules apply.

The following figure shows the general format of a relation condition.

Procedure Division in the Nucleus 7-9

l
identifier-1----~---~~-~~GREATER ~--~-------.--..

literal-l------1 -IS NOT THAN
arithmetic-expression-1 ARE
i ndex-name-1------' LESS --..---....---------1

1 i dent i fi er-2
1itera1-2 -------<
arithmetic-expression-2
index-name-2------'

IS
GREATER

>=

LESS

<=

LTHANJ
OR EQUAL

TO

OR EQUAL
[THAN] TO

osvs

osvs

The first operand (identifier-!, literal-!, index-name-1, or arithmetic-expression-1) is called
the subject of the condition; the second operand (identifier-2, literal-2, index-name-2, or
arithmetic-expression-2) is called the object of the condition. The relation condition must
contain at least one reference to a variable.

The relational operator specifies the type of comparison to be made in a relation condition.
A space must precede and follow each reserved word comprising the relational operator.
When used, NOT and the next key word or relation character are one relational operator
that defines the comparison to be executed for truth value. For example:

• NOT EQUAL is a truth test for an unequal comparison

• NOT GREATER is a truth test for an equal or less comparison.

7-10 Language Reference

The meaning of the relational operators is as shown in Figure 7-1.

DBCS Support

Comparison of DBCS Operands

Double-Byte Character Set (DBCS) data items and literals can be used with all relational
operators. Comparisons are based on the hexadecimal representations of the DBCS charac
ters. The rules for comparing DBCS operands are the same as those for comparing nonnu
meric operands. (The PROGRAM COLLATING SEQUENCE clause will not be applied in
comparisons of DBCS data items and literals.) If the DBCS items are not the same length,
the smaller item is padded on the right with DBCS spaces .

.__ ____________ End of DBCS Support ____________ __,

Meaning Relational Operator

.... GREATER

t!~j LNOTJ [THAN]

Greater than or not greater than osvs
....
t!~j LNOTJ

>

osvs
.... LESS

t~~;j LNOTJ [THAN]

Less than or not less than
osvs

....
t!~j LNOTJ

< -
osvs

.... EQUAL
E!~;3 LNOTJ Lrn=:J

osvs
Equal or not equal to

t!!;j LNOTJ
=

osvs
.... GREATER OR EQUAL

E!~;3 [THAN] LTO=:J
osvs

Greater than or equal to > =

t!~;j osvs
.... LESS OR EQUAL

t!~;j [THAN] LTO=:J
osvs

Less than or equal to
t!~;j

< =

osvs

Figure 7-1. Relational Operators

Procedure Division in the Nucleus 7-11

Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the algebraic
value of the operands. The length of the literal or arithmetic expression operands, in
terms of number of digits represented, is not significant. Zero is considered a unique
value, regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is
described. Unsigned numeric operands are considered positive for purposes of comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands or one numeric and one nonnumeric operand, a comparison is
made with respect to a specified collating sequence of characters. Refer to
"OBJECT-COMPUTER Paragraph" on page 5-6. If one of the operands is specified as
numeric, it must be an integer data item or an integer literal and:

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal, the
numeric operand is treated as though it were moved to an elementary alphanumeric
data item of the same size as the numeric-data item (in terms of standard data format
characters). The contents of this alphanumeric data item were then compared to the
nonnumeric operand. Refer to "MOVE Statement" on page 7-65 and "Symbols Used"
on page 6-21.

2. If the nonnumeric operand is a group item, the numeric operand is treated as though it
was moved to a group item of the same size as the the numeric data item (in terms of
standard data format characters). The contents of this group item were then compared
to the nonnumeric operand. Refer to "MOVE Statement" on page 7-65 and "Symbols
Used" on page 6-21.

3. A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters m the
operand.

Numeric and nonnumeric operands may be compared when their usage is not MF
the same.

• If the operands are of equal size, comparison effectively proceeds by comparing charac
ters in corresponding character positions starting from the high order end and contin
uing until either a pair of unequal characters is encountered or the low order end of
the operand is reached, whichever comes first. The operands are determined to be
equal if all pairs of characters compare equally through the last pair, when the low
order end is reached.

The first encountered pair of unequal characters is compared to determine their rela
tive position in the collating sequence. The operand that contains the character that is
positioned higher in the collating sequence is considered to be the greater operand.

• If the operands are of unequal size, comparison proceeds as though the shorter operand
were extended on the right a sufficient number of spaces to make the operands of equal
size.

Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made only between the following:

1. Two index-names. The result is the same as if the corresponding occurrence numbers
were compared.

2. An index-name and a numeric data item (other than an index data item) or numeric
literal. The occurrence number that corresponds to the value of the index-name is
compared to the data item or literal.

7-12 Language Reference

3. An index data item and an index-name or another index data item. The actual values
are compared without conversion.

Comparisons Involving Data Items with USAGE POINTER

Two items whose USAGE is either implicitly or explicitly POINTER can be
compared. Only the relational operators EQUAL and NOT EQUAL are per
mitted in pointer comparisons.

The format of a pointer comparison is as follows:

VSC2

t ADDRESS OF identifier-1
1

[J [J EQUAL ~ADDRESS OF identifier-3 =!
- identifier-2 IS NOT TO identifier-4 -----1-1

NULL NULL------~

VSC2

where:

identifier-1 and identifier-3 refer to 01 or 77 level items in the LINKAGE
or WORKING-STORAGE SECTION.

identifier-2 and identifier-4 refer to items with USAGE IS POINTER.

Note: Comparison is not allowed in which both operands are the figura
tive constant NULL.

The operands are equal if the two addresses are the same. Otherwise, they
are unequal.

This type of relation condition is allowed in IF, PERFORM, EVALUATE,
and SEARCH (Format 1) statements. It is not allowed in SEARCH (Format
2) statements (SEARCH ALL) because no meaningful ordering can be
applied to pointer data items.

Class Condition

MF

The class condition determines whether the operand is numeric (consisting entirely of the
characters 0 through 9), with or without the operational sign, or alphabetic (consisting
entirely of the characters A, B, C, ... Z, space (uppercase alphabetic letters only)). Fol
lowing is the general format for the class condition:

...._identifier ~-~~--~~-NUMERIC-------,-------""
LIS NOT ALPHABETIC------1

ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name-1--~

The usage of the operand being tested must be described either as
DISPLAY or, in the case of the NUMERIC test, as DISPLAY, COMPUTA
TIONAL, COMPUTATIONAL-3, COMPUTATIONAL-5, or
COMPUT ATIONAL-X.

OSVS VSC2
MF

When used, NOT and the next key word specify one class condition that defines the class
test to be executed for truth value; for example, NOT NUMERIC is a truth test for deter
mining that an operand is nonnumeric.

Procedure Division in the Nucleus 7-13

The NUMERIC test cannot be used with an item whose data description describes the item
as alphabetic or as a group item composed of elementary items whose data description indi
cates the presence of operation sign(s). If the data description of the item being tested does
not indicate the presence of an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and an operational sign is not present. If the
data description of an elementary item being tested does indicate the presence of an opera
tional sign, the item being tested is determined to be numeric only if the contents are
numeric and a valid operational sign is present.

Valid operational signs for data items described with the SIGN IS SEPARATE clause are
the standard data format characters + and -. Valid operational signs for data items not
described with the SIGN IS SEPARATE clause are described in "Selection of Character
Representation and Radix" on page 2-20.

The ALPHABETIC test cannot be used with an item whose data description describes the
item as numeric. The item being tested is determined to be alphabetic only if the contents
consist of any combination of the uppercase alphabetic ch~racters A through Z and the
space, or any combination of the lowercase alphabetic characters a through z and the
space.

The ALPHABETIC-LOWER test cannot be used with an item whose data description
describes the item as numeric. The result of the test is true if the content of the data item
referenced by identifier-1 consists entirely of the lowercase alphabetic characters a
through z and space.

The ALPHABETIC-UPPER test cannot be used with an item whose data description
describes the item as numeric. The result of the test is true if the content of the data item
referenced by identifier-1 consists entirely of the uppercase alphabetic characters A
through Z and space.

The class-name-1 test must not be used with an item whose data description describes the
item as numeric.

Condition-Name Condition (Conditional Variable)
In a condition-name condition, a conditional variable is tested to determine whether or not
its value is equal to one of the values associated with a condition-name. The general
format for the condition-name condition is shown in the following example:

condition-name

If the condition-name is associated with a range or ranges of values, then the conditional
variable is tested to determine whether or not its value falls in this range, including the
end values.

The rules for comparing a conditional variable with a condition-name value are the same
as those specified for relation conditions;

The result of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

DBCS Support

Condition-names with DBCS values are allowed.

7-14 Language Reference

Switch-Status Condition
A switch-status condition determines the on or off status of one of the nine COBOL
switches named, respectively, SWITCH 0 through SWITCH 8. The value of each of these
switches (on or off) is determined by the operator at the beginning of execution of the
COBOL object program. Refer to the User's Guide. The switch and the on or off value
associated with the condition must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The general format for the switch-status condition is as follows:

condition-name

The result of the test is true if the switch is set to the specified position corresponding to
the condition-name.

Sign Condition
The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than, or equal to zero. The general format for a sign condi
tion is as follows:

----arithmetic-expression--L---_J--L--J--t-POSI~~~~~
IS NOT NEGA~

ZERO

When used, NOT and the next key word specify one sign condition that defines the alge
braic test to be executed for truth value. For example, NOT ZERO is a truth test for a
nonzero (positive or negative) value. An operand is positive if its value is greater than
zero, negative if its value is less than zero, and zero if its value is equal to zero. The arith
metic expression must contain at least one reference to a variable.

Complex Conditions

A complex condition is formed by combining simple conditions, combined conditions,
and/or complex conditions with logical connectors (logical operators AND and OR), or
negating these conditions with logical negation (the logical operator NOT). The truth
value of a complex condition, whether parenthesized or not, is the result of the interaction
of all the stated logical operators on the individual truth values of simple conditions, or
the intermediate truth values of conditions logically connected or logically negated.

The following list shows the logical operators and their meanings:

Logical Operator Meaning

AND

OR

Logical conjunction; the truth value is true if both of the conjoined
conditions are true; false if one or both of the conjoined conditions
is false.

Logical inclusive OR; the truth value is true if one or both of the
included conditions is true; false if both included conditions are
false.

NOT Logical negation or reversal of truth value; the truth value is true if
the condition if false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

Procedure Division in the Nucleus 7-15

Negated Simple Condition

A simple condition is negated using the logical operator NOT. The negated simple condi
tion effects the opposite truth value for a simple condition. Thus, the truth value of a
negated simple condition is true if and only if the truth value of the simple condition is
false; the truth value of a negated simple condition is false if and only if the truth value of
the simple condition is true. The inclusion in parentheses of a negated simple condition
does not change the truth value.

Following is the general format for a negated simple condition:

.,.___NOT simple-condition___...,.

Combined and Negated Combined Condition

A combined condition results from connecting conditions with one of the logical operators
AND or OR. The following figure shows the general format for a combined condition.

l
.,...___ condition L AND--=r- condition __...

OR

where condition may be:

• A simple condition

• A negated simple condition

• A combined condition

• A negated combined condition (the NOT logical operator followed by a combined condi
tion enclosed within parentheses)

• Combinations of the preceding conditions, specified according to the rules summarized
in Table 7-2 on page 7-17.

Although parentheses need never be used when either AND or OR (but not both) is used
exclusively in a combined condition, parentheses may be used to effect a final truth value
when a mixture of AND, OR and NOT is used.

In the absence of the relevant parenthesis in a complex condition, the precedence (binding
power) of the logical operators determines the conditions to which the specified logical
operators apply and implies the equivalent parenthesis. The order of precedence is NOT,
AND, OR. By specifying condition-I OR NOT condition-2 AND condition-3 it implies and is
equivalent to specifying condition-! OR ((NOT condition-2) AND condition-3).

Where parentheses are used in a complex condition, precedence is used to determine the
binding of conditions to logical operator. Therefore, parenthesis can be used to depart
from the normal precedence of logical operators as specified above. Thus, the example
complex condition above can be given a different meaning by specifying it as (condition-I
OR (NOT condit i on-2)) AND condi ti on-3. Refer to "Condition Evaluation Rules" on
page 7-18.

Table 7-2 on page 7-17 shows the ways in which conditions and logical operators may be
combined and parenthesized. There must be a one-to-one correspondence between left and
right parentheses so that each left parenthesis is to the left of its corresponding right
parenthesis.

7-16 Language Reference

Table 7-2. Combinations of Conditions, Logical Operators, and Parentheses
Element Permitted Element Can Be Element Can Be

Location in Preceded by Only: Followed by Only:
Conditional
Expression

simple-condition Any OR, NOT, AND, (OR, AND,)
OR, or AND Not first or last simple-condition,) simple-condition, NOT, (
NOT
(

)

Not last OR, AND, (simple-condition, (

Not last OR, NOT, AND, (simple-condition,NOT, (

Not first simple-condition,) OR, AND,)

The element pair OR NOT is permissible while the pair NOT OR is not permissible. NOT (
is permissible while NOT NOT is not permissible.

Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical connectives
in a consecutive sequence so that a succeeding relation condition contains a subject or a
subject and a relational operator that is common with the preceding relation condition,
and no parentheses are used within such a consecutive sequence, any relation condition
except the first may be abbreviated by the following:

• The omission of the subject of the relation condition

• The omission of the subject and the relational operator of the relation condition.

The format for an abbreviated combined relation condition is:

~relation-conditionLAND_J [J L :J object--M
OR NOT relational-operator

Within a sequence of relation conditions both of the above forms of abbreviation may be
used. The effect of using such abbreviations is as if the last preceding stated subject were
inserted in place of the omitted subject, and the last stated relational operator were
inserted in place of the omitted relational operator. The result of such implied insertion
must comply with the rules of Table 7-2. This insertion of an omitted subject and/or rela
tional operator terminates once a complete simple condition is encountered within a
complex condition.

The order of evaluation of the conditions can be prioritized by using paren
theses (see example below).

osvs

The interpretation applied to the use of the word NOT in an abbreviated combined relation
condition is as follows:

1. If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, or =, then
the NOT participates as part of the relational operator.

2. Otherwise, the NOT is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation condition.

Procedure Division in the Nucleus 7-17

Following are some examples of abbreviated-combined and negated-combined relation con
ditions and expanded equivalents:

Abbreviated Combined
Rellition Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a= b OR c

NOT(a GREATER b OR < c)

NOT(a NOT > b AND c AND
NOT d)

x > a OR y AND z

x > a OR (y AND z)

x >(a OR y) AND z

x (=a OR> b)

x = a AND (> b OR < z)

Condition Evaluation Rules

Expanded Equivalent

((a > b) AND (a NOT < c)) OR (a NOT < d)

(a NOT EQUAL b) OR (a NOT EQUAL c)

(NOT(a = b)) OR (a = c)

NOT((a GREATER b) OR (a < c))

NOT((((a NOT > b) AND (a NOT > c)) AND (NOT(a
NOT> d))))

x > a OR (x > y AND x > z)

x > a OR (x > y AND x > z)

(x > a OR x > y) AND x > z

x =a OR x > b

x =a AND (x > b OR x < z)

osvs

Parentheses may be used to specify the order in which individual conditions of complex
conditions are to be evaluated when it is necessary to depart from the implied evaluation
precedence.

Conditions within parentheses are evaluated first. Within nested parentheses, evaluation
proceeds from the least inclusive condition to the most inclusive condition. When paren
theses are not used, or parenthesized conditions are at the same level of inclusiveness, the
following hierarchical order of logical evaluation is implied until the final truth value is
determined:

1. Values are established for arithmetic expressions. Refer to "Arithmetic Expressions"
on page 7-7.

2. Truth values for simple conditions are established in the following order:

• relation (following the expansion of any abbreviated relation condition)
• class
• condition-name
• switch-status
• sign.

3. Truth values for negated conditions are established.

4. Truth values for combined conditions are established: AND logical operators, followed
by OR logical operators.

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parentheses, the order
of evaluation of consecutive operations of the same hierarchical level is from left to
right.

7-18 Language Reference

Common Phrases and General Rules for Statement
Formats

In the statement descriptions that follow, several phrases appear frequently:

• ROUNDED phrase

• ON SIZE ERROR phrase

• NOT ON SIZE ERROR phrase

• CORRESPONDING phrase.

These phrases are described in the following sections:

ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the result of an
arithmetic operation is greater than the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided for the resultant-identifier.
A resultant-identifier is that identifier associated with the result of an arithmetic opera
tion. When rounding is requested, the absolute value of the resultant-identifier is
increased by one whenever the most significant digit of the excess is greater than or equal
to five.

When the low-order integer positions in a resultant-identifier are represented by the char
acter Pin the PICTURE for the resultant-identifier, rounding or truncation occurs relative
to the rightmost integer position for which memory is allocated.

ON SIZE ERROR Phrase and NOT ON SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result of an arithmetic operation
exceeds the largest value that can be contained in the associated resultant-identifier, a size
error condition exists. Division by zero always causes a size error condition. The size
error condition applies only to the final results, except in MULTIPLY and DIVIDE state
ments. In this case the size error condition applies to the intermediate results as well. If
the ROUNDED phrase is specified, rounding takes place before checking for size error.
When such a size error condition occurs, the subsequent action depends on whether or not
the SIZE ERROR phrase is specified.

ON SIZE ERROR Phrase Not Specified
When a size error condition occurs, the value of the resultant-identifier(s) affected is unde
fined. Values of resultant-identifier(s) for which no size error condition occurs are unaf
fected by size errors that occur for other resultant-identifier(s) during execution of this
operation.

The NOT ON SIZE ERROR phrase, if specified, is ignored, and the imperative statement
associated with it is not executed.

ON SIZE ERROR Phrase Specified
When a size error condition occurs, then the values of resultant-identifier(s) affected by the
size errors are not altered. Values of resultant-identifier(s) for which no size error condi
tion occurs are unaffected by size errors that occur for other resultant-identifier(s) during
execution of this operation. After completion of the execution of this operation, the imper
ative statement in the SIZE ERROR phrase is executed.

The NOT ON SIZE ERROR phrase, if specified, is ignored, and the imperative statement
associated with it is not executed.

Procedure Division in the Nucleus 7-19

NOT ON SIZE ERROR Phrase
If the NOT ON SIZE ERROR phrase is specified for an arithmetic operation statement, and
after execution of that statement a size error condition (as defined above) does not exist,
then the NOT ON SIZE ERROR phrase, if specified, is executed. The ON SIZE ERROR
phrase, if specified, is ignored, and the imperative statement associated with it is not exe
cuted.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT statement
with the CORRESPONDING phrase, if any of the individual operations produces a size
error condition, the imperative statement in the ON SIZE ERROR phrase is not executed
until all of the individual additions or subtractions are completed.

When both ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified, and the
statement in the phrase that is executed does not contain any explicit transfer of control,
an implicit transfer or control is made after execution of the phrase to the end of the arith
metic statement.

CORRESPONDING Phrase

In the following list dl and d2 must each be identifiers that refer to group items. A pair of
data items, one from dl and one from d2, correspond if the following conditions exist:

1. A data item in dl and a data item in d2 are not designated by the key word FILLER
and have the same data-name and the same qualifiers up to, but not including, dl and
d2.

2. At least one of the data items is an elementary data item in the case of a MOVE state
ment with the CORRESPONDING phrase; and both of the data items are elementary
numeric data items in the case of the ADD statement with the CORRESPONDING
phrase or the SUBTRACT statement with the CORRESPONDING phrase.

3. The description of dl and d2 must not contain level-number 66, 77, 78,
or 88 or the USAGE IS INDEX clause.

4. A data item that is subordinate to dl or d2 and contains a REDE
FINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause
is ignored, as well as those data items subordinate to the data item that
contains the REDEFINES, OCCURS, USAGE IS INDEX or USAGE IS
POINTER clause. However, dl and d2 may have REDEFINES or
OCCURS clauses or be subordinate to data items with REDEFINES or
OCCURS clauses.

Arithmetic Statement Rules

MF

VSC2

VSC2

ADD, COMPUTE, DIVIDE, -MULTIPLY, and S:UBTRACT are arithmetic statements.
Common features are as follows:

• The data descriptions of the operands need not be the same because any necessary con
versions and decimal point alignments are supplied throughout the calculation.

• The maximum size of each operand is 18 decimal digits. The composite of operands,
which is a hypothetical data item resulting from the superimposition of specified oper
ands in a statement aligned on their decimal points must not contain more than 18
decimal digits. Refer to "ADD Statement" on page 7-24, "DIVIDE Statement" on
page 7-34, "MULTIPLY Statement" on page 7-69, and "SUBTRACT Statement" on
page 7-91.

7-20 ·Language Reference

Overlapping Operand Rules

When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE,
SET, STRING, or UNSTRING statement share a part of their memory areas, the result of
the execution of the statement is undefined.

Multiple Results in Arithmetic Statement Rules

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have mul
tiple results. Such statements respond as though they had been written in the following
way:

1. A statement that accesses all data items which are part of the initial evaluation of the
statement performs all arithmetic necessary to arrive at the result to be stored in the
receiving items and stores that result in a temporary memory location.

2. A sequence of statements that transfer or combine the value of a temporary memory
location with each single resultant data item are considered to be written in the same
left-to-right sequence in which the multiple results are listed.

The result of the statement:

ADD a, b, c TO c, d (c), e

is equivalent to:

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

and the result of the statement:

MULTIPLY a(i) BY i,a(i)

is equivalent to:

MOVE a(i) to temp
MULTIPLY temp by i
MULTIPLY temp by a(i)

where temp is an intermediate result item provided by the AIX VS COBOL system.

Incompatible Data Rule

Except for the class condition (refer to "Class Condition" on page 7-13), when the contents
of a data item are referred to in the Procedure Division and the contents of that data item
are not compatible with the class specified for that data item by its PICTURE clause, the
result of such a reference is undefined.

Signed Receiving Item Rule

When the receiving item in an arithmetic statement or a MOVE statement is a signed
numeric or a signed numeric-edited item, the sign is moved into the receiving item inde
pendently of any truncation of the absolute numeric data. It is possible, therefore, for the
numeric value to be zero but for the sign to be negative.

Procedure Division in the Nucleus 7-21

ACCEPT Statement

Function

The ACCEPT statement causes data keyed at the console or supplied by the operating
system to be made available to the program in a specified data item. Refer to Chapter 18,
"Screen-Handling" for additional formats of the ACCEPT statement.

General Format

The following figure shows the general format of the ACCEPT statement:

Format 1

.,._ACCEPT i dent i fi er -,L----------~--r--.,-L------J....,--........
FROM L mnemonic-name _J END-ACCEPT

function-name

Format 2

11+-ACCEPT identifier FROM1DATE
DAY --------1

TIME -------1

DAY-OF-WEEK--~

Syntax Rules

L END-ACCEPT J

The following syntax rules apply to the ACCEPT statement:

Format 1

....

MF
OSVS VSC2

MF

1. The mnemonic-name in Format 1 must be associated with a function name in the
SPECIAL NAMES paragraph in the Environment Division. Refer to rule 9 on
page 5-13 under "SPECIAL-NAMES Paragraph" on page 5-8 for a list of valid
function-names.

2. Alternatively, function-name can itself be used instead of an associated
mnemonic-name.

3. Each literal may be any figurative constant, except ALL.

Format 2

osvs

4. The ACCEPT statement causes the information requested to be transferred to the data
item specified by identifier according to the rules of the MOVE statement. DATE,
DAY, and TIME are conceptual data items and, therefore, are not described in the
COBOL program.

7-22 Language Reference

General Rules

The following general rules apply to the ACCEPT statement:

Format 1

1. When the operand of an ACCEPT statement has USAGE other than DISPLAY or an
individual sign, conversion to the correct format takes place after data has been trans
ferred into a temporary area according to 2.

2. If the function-name COMMAND-LINE or a mnemonic name associated MF
with the function-name COMMAND-LINE is specified, data is over-
written by the contents of a system-dependent command-line buffer. All
other permissible function-names are treated as equivalent to
CONSOLE. Refer to "SPECIAL-NAMES Paragraph" on page 18-9.

Format 2

3. The ACCEPT statement causes the information requested to be transferred to the data
item specified by identifier according to the rules of the MOVE statement. DATE,
DAY, and TIME are conceptual data items and, therefore, are not described in the
COBOL program.

4. DATE is composed of the data elements year of century, month of year, and day of
month. The sequence of the data element codes shall be from high to low order (left to
right), year of century, month of year, and day of month. Date, when accessed by a
COBOL program, responds as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in length.

5. DAY is composed of the data elements year of century and day of year. The sequence
of the data element codes shall be from high order to low order (left to right), year of
century, day of year. Therefore, July 1, 1968, would be expressed as 68183. DAY, when
accessed by a COBOL program, responds as if it had been described in a COBOL
program as an unsigned elementary numeric integer data item five digits in length.

6. TIME is composed of the data elements hours, minutes, seconds, and hundredths of a
second. TIME is based on elapsed time after midnight on a 24-hour clock basis (2:41
P.M. would be expressed as 14410000). TIME, when accessed by a COBOL program,
responds as if it had been described in a COBOL program as an unsigned elementary
numeric integer data item eight digits in length. The minimum value of TIME is
00000000; the maximum value of TIME is 23595999. If the hardware does not have the
facility to provide fractional parts of TIME, the value is converted to the closest
decimal approximation.

7. DAY-OF-WEEK is composed of a single data element whose content represents the day
of the week. DAY-OF-WEEK behaves as an unsigned elementary numeric integer data
item, 1 digit in length. In DAY-OF-WEEK, the value 1 represents Monday, 2 repres
ents Tuesday, ... 7 represents Sunday.

Example

The following example shows the ACCEPT statement:

ACCEPT myval FROM COMMAND-LINE.
ACCEPT CURRENT-DATE FROM DATE.

Procedure Division in the Nucleus 7-23

ADD Statement

Function

The ADD statement causes two or more numeric operands to be summed and the result to
be stored.

General Format

The following figures show the general format for the ADD statement:

Format 1

---ADD-i--identifier-1-r-TO-identifier-2 L _J
L l itera 1-1 __J ROUNDED

..

..

[~ SIZE ERROR imperative-statement-1 J
ON

[NOT LON~ SIZE ERROR imperative-statement-2 J LEND-ADD~

Format 2

' -ADD-----r-identifier-1 1 L _J Lidentifier-2 1

Lliteral-l__J TO literal-2_____J

'

.. ..

..

..

..

- GIVING- identi fier-3 ~----~~--------------~--
ROUNDED SIZE ERROR imperative-statement-1

ON

., l_NOT [J SIZE ERROR imperative-statement-2] LEND-ADD~
ON

7-24 Language Reference

....

Format 3

.,.._ADD-i-CORRESPONDINGTidentifier-1 TO identifier-2 L _J
L_CORR ~ ROUNDED

.. [:=J SIZE ERROR imperative-statement-I~
ON

.. [NOT SIZE ERROR imperative-statement-2 :=J LEND-ADD~
LoN_J

Syntax Rules

The following syntax rules apply to the ADD statement:

..

..

....

1. In Formats 1 and 2, each identifier must refer to an elementary numeric item, except
that in Format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric-edited item. In Format 3, each
identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. Refer to "Arithmetic
Statement Rules" on page 7-20.

a. In Format 1 the composite of operands is determined by using all of the operands in
a given statement.

b. In Format 2 the composite of operands is determined by using all of the operands in
a given statement excluding the data items that follow the word GIVING.

c. In Format 3 the composite of operands is determined separately for each corre
sponding pair of data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

The following general rules apply to the ADD statement:

1. Refer to "ROUNDED Phrase" on page 7-19, "ON SIZE ERROR Phrase and NOT ON
SIZE ERROR Phrase" on page 7-19, "CORRESPONDING Phrase" on page 7-20, "Arith
metic Statement Rules" on page 7-20, "Overlapping Operand Rules" on page 7-21,
"Multiple Results in Arithmetic Statement Rules" on page 7-21, "Explicit and Implicit
Scope Terminators" on page 2-36, and "Delimited Scope Statements" on page 2-48.

2. If Format 1 is used, the values of the operands preceding the word TO are added
together. The sum is added to the current value of identifier-2 and the result is stored
immediately into identifier-2. This process is repeated respectively for each successive
operand following the word TO in left-to-right order.

3. If Format 2 is used, the value of the operands preceding the word GIVING are added
together. The sum is stored as the new value of each data item referenced by
identifier-3, the resultant identifier.

Procedure Division in the Nucleus 7-25

4. If Format 3 is used, data items in identifier-1 are added to and stored in corresponding
data items in identifier-2.

5. The AIX VS COBOL system ensures that enough places are carried so as not to lose
any significant digits during execution.

Example

The following example shows the ADD statement:

ADD TRAN-AMT TO TOTAL-AMT.
ADD TRAN-AMT TO TOTAL-AMT

ON SIZE ERROR GO TO OVERFLOW-ERROR
END-ADD.

7-26 Language Reference

ALTER Statement

The ALTER statement is considered an obsolete COBOL language element although it is
still supported.

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

The following figure shows the general format of the ALTER statement:

~ALTER procedure-name-I TO -.,-L-----~-,..- procedure-name-2 ---11~
PROCEED TO

Syntax Rules

The following syntax rules apply to the ALTER statement:

1. Each procedure-name-I is the name of a paragraph that contains a single sentence con
sisting of a GO TO statement without the DEPENDING phrase.

2. ~ach procedure-name-2 is the name of a paragraph or section in the Procedure Divi
sion.

General Rules

The following general rules apply to the ALTER statement:

1. Execution of the ALTER statement modifies the GO TO statement in the paragraph
named procedure-name-I so that subsequent executions of the modified GO TO state
ments cause transfer of control to procedure-name-2. Modified GO TO statements in
independent segments may, under some circumstances, be returned to their initial
states. Refer to "Independent Segments" on page 16-5.

2. A GO TO statement in a section whose segment-number is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different segment
number.

All other uses of the ALTER statement are valid and are performed even if
procedure-name-I is in an overlayable fixed segment.

Procedure Division in the Nucleus 7-27

Example

The following example shows the ALTER statement:

PROCEDURE DIVISION.

CHANGE-PATH.
GO TO INITIALIZE-RTN.

INITIALIZE-RTN.
DISPLAY "START PROGRAM".

ALTER CHANGE-PATH TO REGULAR-PROCESS.

REGULAR-PROCESS.

7-28 Language Reference

COMPUTE Statement

Function

The COMPUTE statement assigns to one or more data items the value of an arithmetic
expression.

General Format

The following figure shows the general format of the COMPUTE statement:

' .,.__COMPUTE - i dent i fi er-1 -L----_J~-L- E=QUAL -r arithmetic-expression---- OSVS VSC2
ROUNDED __J

., [~ SIZE ERROR imperative-statement-I~
ON

..

., [NOT L ~ SIZE ERROR imperative-statement-2~ LEND-COMPUTE~
ON

Syntax Rule

Identifiers that appear only to the left of = must refer to either an elementary numeric
item or an elementary numeric-edited item.

General Rules

The following syntax rules apply to the COMPUTE statement:

1. Refer to "ROUNDED Phrase" on page 7-19, "ON SIZE ERROR Phrase and NOT ON
SIZE ERROR Phrase" on page 7-19, "Arithmetic Statement Rules" on page 7-20, "Over
lapping Operand Rules" on page 7-21, "Multiple Results in Arithmetic Statement
Rules" on page 7-21, "Explicit and Implicit Scope Terminators" on page 2-36, and
"Delimited Scope Statements" on page 2-48.

2. An arithmetic expression consisting of a single identifier or literal provides a method
of setting the value of identifier-I equal to the value of the single identifier or literal.

Procedure Division in the Nucleus 7-29

3. If more than one identifier is specified for the result of the operation, that is preceding
=, the value of the arithmetic expression is computed, and then this value is stored as
the new value of each identifier-I in turn.

4. The COMPUTE statement allows the user to combine arithmetic operations with~ut
restrictions on the composite of operands and/or receiving data items imposed by the
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Example

The following example shows the COMPUTE statement:

COMPUTE TOTAL = PRICE * UNITS * (1 + TAX-RATE)
ON SIZE ERROR PERFORM SIZE-ERROR-RTN
NOT ON SIZE ERROR PERFORM WRITE-LOG-FILE

END-COMPUTE.

7-30 Language Reference ·

CONTINUE Statement

Function

The CONTINUE statement is a no operation statement. It indicates that no executable
statement is present.

General Format

The following example shows the general format of the CONTINUE statement:

.,.____ CONTINUE---M

Syntax Rule

The CONTINUE statement may be used anywhere a conditional or an imperative state
ment may be used.

General Rule

The CONTINUE statement has no effect on the execution of the program.

Example

The following example shows the CONTINUE statement:

IF TOTAL-AMT < 1000
CONTINUE

ELSE
COMPUTE REBATE = TOTAL-AMT * 0.1

END-IF.

Procedure Division in the Nucleus 7-31

DISPLAY Statement

Function

The DISPLAY statement causes data to be transferred from specified data items to the
console display screen. (See Chapter 18, "Screen-Handling" for additional formats of the
DISPLAY statement.)

General Format

The following figure shows the general format of the DISPLAY statement:

' .,.__DISPLAY~identifier-1 1 L J
Lliteral-l___J UPONLmnemonic-name _J

function-name

..
OSVS VSC2

.. E NO ADVANCING~
WITH_J

...

Syntax Rules

The following syntax rules apply to the DISPLAY statement:

1. The mnemonic-name must be associated with a function-name in the
SPECIAL-NAMES paragraph in the Environment Division. Refer to General Rule 9
on page 5-13 under "SPECIAL-NAMES Paragraph" for a list of valid function-names.

2. Al'ternatively, function-name can itself be used instead of an associated OSVS VSC2
mnemonic name.

3. Each literal may be any figurative constant, except ALL.

4. If the literal is numeric, it must be an unsigned integer .

. · .. 7..;32 Language Reference

General Rules

The following general rules apply to the DISPLAY statement:

1. When operands in a DISPLAY statement have USAGE other than DISPLAY, or have
included signs, they are converted to USAGE DISPLAY with a separate sign. The size
of the operand is taken as the size after conversion.

2. If a figurative constant is specified as one of the operands, only a single occurrence of
the figurative constant is displayed.

3. If the function-name COMMAND-LINE, or a mnemonic name associated MF

Example

with the function-name COMMAND LINE, is specified, then data over-
writes the contents of a system-dependent command-line buffer. The con-
tents may be retrieved by subsequent use of ACCEPT FROM
COMMAND-LINE. Only one operand is allowed in this case.

All other permissible function-names are treated as equivalent to
CONSOLE and each operand is transferred to the console device in the
order listed. The total size of data displayed is equal to the sum of the
sizes of each operand minus the length of any trailing spaces in the last
operand. The display starts from the current cursor position, over
flowing onto the following line(s) if necessary. If the NO ADVANCING
phrase is specified, the cursor is then left at the space following the
last character displayed; otherwise it is positioned at the start of the
next line. Scrolling may take place whenever the cursor is moved to a
new line.

The following example shows the DISPLAY statement:

DISPLAY ERROR-MSG UPON CONSOLE.
DISPLAY "TOTAL AMOUNT: ", TOTAL-AMT.

Procedure Division in the Nucleus 7-33

DIVIDE Statement

Function

The DIVIDE statement divides one numeric data item into others and sets the values of
data items equal to the quotient and remainder.

General Format

The following figures show the general format of the DIVIDE statement:

Format 1

t
--DIVIDE-r-identifier-I---r-INTO-identifier-2 L _J

L_literal-I______J ROUNDED

• [:J SIZE ERROR imperative-statement-I J
ON

• [NOT LON OJ SIZE ERROR imperative-statement-2 J [END-DIVIDE J

Format 2

--DIVIDELidentifie~INTOLidentifie~GIVING
literal-I literal-2

t
.,.____ identifier-3--,----~~---------------~--_.

ROUNDED SIZE ERROR imperative-statement-I
ON

• [NOT LON OJ SIZE ERROR imperative-statement-2 J LEND-DIVIDE J

7-34 Language Reference

Format 3

--DIVIDE L identifie~ BY L identifie~ GIVING
literal-1 literal-2

' - identifier-3 -----~----------------~-----
ROUNDED 1----.--SIZE ERROR imperative-statement-!

ON

..
L NOT L ON-.J SIZE ERROR imperative-statement-2 J LEND-DIVIDE J

Format 4

---DIVIDELidentifie~INTOLidentifie~GIVING
literal-1 literal-2

' - identifier-3 ~------REMAINDER identifier-4------------
L ROUNDED _J

..

..

[J SIZE ERROR imperative-statement-! J
ON

L NOT LON J SIZE ERROR imperative-statement-2 J LEND-DIVIDE J

..

Procedure Division in the Nucleus 7-35

Format 5

.--DIVIDELidentifie~BYLidentifie~GIVING
literal-I literal-2

' .,.___ identi fier-3 ~~---~-REMAINDER i dentifier-4 -------------
L ROUNDED _J

[=:J SIZE ERROR imperative-statement-I J
ON

[NOT LON =:J SIZE ERROR imperative-statement-2 J LEND-DIVIDE J

Syntax Rules

The following syntax rules apply to the DIVIDE statement:

1. Each identifier must refer to an elementary numeric item, except that any identifier
associated with the GIVING or REMAINDER phrase must refer to either an elemen
tary numeric item or an elementary numeric-edited item.

2. Each literal must be a numeric literal.

3. The composite of operands (the hypothetical data item resulting from the superimposi
tion of all receiving data items, except the REMAINDER data item, of a given state
ment aligned on their decimal points) must not contain more than eighteen digits.

General Rules

The following general rules apply to the DIVIDE statement:

1. Refer to "ROUNDED Phrase" on page 7-19, "ON SIZE ERROR Phrase and NOT ON
SIZE ERROR Phrase" on page 7-19, "Arithmetic Statement Rules" on page 7-20, "Over
lapping Operand Rules" on page 7-21, "Multiple Results in Arithmetic Statement
Rules" on page 7-21, "Explicit and Implicit Scope Terminators" on page 2-36, and
"Delimited Scope Statements" on page 2-48. Also refer to general rules 5, 6, and 7 for a
presentation of "ROUNDED Phrase" on page 7-19 and "ON SIZE ERROR Phrase and
NOT ON SIZE ERROR Phrase" on page 7-19 as they pertain to Formats 4 and 5.

2. When Format 1 is used, the value of identifier-1 or literal-I is divided into the value of
identifier-2. The value of.the dividend (identifier-2) is replaced by this quotient. The
same holds true for any additional dividends.

3. When Format 2 is used, the value of identifier-1 or literal-1 is divided into identifier-2
or literal-2 and the result is stored in identifier-3.

4. When Format 3 is used, the value of identifier-1 or literal-1 is divided by the value of
identifier-2 or literal-2 and the result is stored in each data item referenced by
identifier-3.

7-36 Language Reference

5. Formats 4 and 5 are used when a remainder from the division operation is desired,
namely identifier-4. The remainder in COBOL is defined as the result of subtracting
the product of the quotient (identifier-3) and the divisor from the dividend. If
identifier-3 is defined as a numeric-edited item, the quotient used to calculate the
remainder is an intermediate field which contains the unedited quotient. If ROUNDED
is used, the quotient used to calculate the remainder is an intermediate field that con
tains the quotient of the DIVIDE statement, truncated rather than rounded.

6. In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined
by the calculation described above. Appropriate decimal alignment truncation (not
rounding) will be performed for the content of the data item referenced by identifier-4,
as needed.

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules
apply:

Example

a. If the size error occurs on the quotient, no remainder calculation is meaningful.
Thus, the contents of the data items referenced by both identifier-3 and identifier-4
will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item referenced
by identifier-4 remain unchanged. However, as with other instances of multiple
results of arithmetic statements, the user will have to do his own analysis to recog
nize which situation has actually occurred.

The following example shows the DIVIDE statement:

DIVIDE INCHES BY 12 GIVING FEET ROUNDED.

Procedure Division in the Nucleus 7-37

ENTER Statement

Function

The ENTER statement provides a means of allowing the use of more than one language in
the same program.

General Format

The following figure shows the general format of the ENTER statement:

.,.____ENTER 1 anguage-name-~L------_J~- · -M

routine-name

Syntax Rule

language-name and routine-name can be any user-defined word or alphanumeric literal.

General Rule

This statement is treated as if it were for documentation purposes only. Access to other
languages can be achieved by means of CALL.

7-38 Language Reference

EVALUATE Statement

Function

The EVALUATE statement describes a multi-branch, multi-join structure. It can cause
multiple conditions to be evaluated. The subsequent action of the object program depends
on the results of these evaluations.

General Format

The following figure shows the general format of the EVALUATE statement:

.,..__EVALUATE] identifier-1
literal-1
expression-1
TRUE----1
FALSE----'

t

t
ALSO 1 identi fier-2

literal-2
expression-2
TRUE----1
FALSE--~

-WHEN phrase-1 L _J imperative-statement-1
ALSO phrase-2

[WHEN OTHER imperative-statement-2 J LEND-EVALUATE~
....

where phrase-1 is:

ANY
condition-1
TRUE
FALSE

NOT

phrase-2 ;s:

ANY
condition-2
TRUE
FALSE

NOT

identifier-3
literal-3

identifier-5
l iteral-5
arith-exp-3

THROU~~identifier-4
THRu~ [_ literal-4

arith-exp-2

THROUGH---r-c=identifier-6
THRU~ c:_literal-6

arith-exp-4

Procedure Division in the Nucleus 7-39

Syntax Rules

The following syntax rules apply to the EVALUATE statement:

1. The operands or the words TRUE and FALSE (which appear before the first WHEN
phrase of the EVALUATE statement) are referred to individually as selection subjects
and collectively (for all those specified) as the set of selection subjects.

2. The operands or the words TRUE, FALSE, and ANY (which appear in a WHEN phrase
of an EV ALU ATE statement) are referred to individually as selection objects and col
lectively (for all those specified in a single WHEN phrase) as the set of selection
objects.

3. The words THROUGH and THRU are equivalent.

4. Two operands connected by a THROUGH phrase must be of the same class. The two
operands thus connected constitute a single selection object.

5. The number of selection objects within each set of selection objects must be equal to
the number of selection subjects.

6. Each selection object within a set of selection objects must correspond to the selection
subject having the same ordinal position within the set of selection subjects according
to the following rules:

a. Identifiers, literals, or arithmetic expressions appearing within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects. Refer to "Relation Condition" on page 7-9.

b. condition-1, condition-2, or the words TRUE or FALSE appearing as a selection
object must correspond to a conditional expression or the words TRUE or FALSE
in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.

7. A COBOL system directive (refer to the User's Guide) can be set to allow
omission of the word ALSO. When this word is omitted, an operand
starting with a unary sign must not immediately follow another operand
in such a way that both operands, when considered together, form a
single expression.

DBCS Support

MF

8. Where identifiers are permitted, they may reference DBCS data items. Where nonnu
meric literals are permitted, DBCS literals are permitted .

..._~~~~~~~~~~~-EndofDBCSSupport~~~~~~~~~~~~-'

General Rules

The following general rules apply to the EV ALU ATE statement:

1. The execution of the EVALUATE statement operates as if each selection subject and
selection object were evaluated and assigned a numeric or nonnumeric value, a range
of numeric or nonnumeric values, or a truth value. These values are determined as
follows:

a. Any selection subject specified by identifier-I, identifier"2, and any selection object
specified by identifier-3, identifier-5, without either the NOT or the THROUGH
phrases, are assigned the value and class of the data item referenced by the identi"
fier.

7~40 Language Reference

b. Any selection subject specified by literal-I, literal-2, and any selection object speci
fied by literal-3, literal-5, without either the NOT or the THROUGH phrases, are
assigned the value and class of the specified literal. If literal-3, literal-5, is the figu
rative constant ZERO, it is assigned the class of the corresponding selection
subject.

c. Any selection subject in which expression-I, expression-2, is specified as an arith
metic expression and any selection object, without either the NOT or the
THROUGH phrases, in which arithmetic-expression-I, arithmetic-expression-3, is
specified are assigned a numeric value according to the rules for evaluating an
arithmetic expression. Refer to "Arithmetic Expressions" on page 7-7.

d. Any selection subject in which expression-I, expression-2 is specified as a condi
tional expression and any selection object in which condition-I, condition-2, is spec
ified are assigned a truth value according to the rules for evaluating conditional
expressions. Refer to "Conditional Expressions" on page 7-9.

e. Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value. The truth value truth is assigned to those items
specified with the word TRUE, and the truth value false is assigned to those items
specified with the word FALSE.

f. Any selection object specified by the word ANY is not further evaluated.

g. If the THROUGH phrase is specified for a selection object, without the NOT
phrase, the range of values is all values which, when compared to the selection
subject, are greater than or equal to the first operand and less than or equal to the
second operand according to the rules for comparison. Refer to "Relation
Condition" on page 7-9. If the first operand is greater than the second operand,
there are no values in the range.

h. If the NOT phrase is specified for a selection object, the values assigned to that
item are not equal to the value, or range of values, which would have been
assigned to the item had the NOT phrase not been specified.

2. The execution of the EVALUATE statement then proceeds as if the values assigned to
the selection subjects and selection objects were compared to determine if any WHEN
phrases satisfy the set of selection subjects. This comparison proceeds as follows:

a. Each selection object within the set of selection objects for the first WHEN phrase
is compared to the selection subject with the same ordinal position within the set of
selection subjects.

I) If the items being compared are assigned numeric or nonnumeric values, or a
range of numeric or nonnumeric values, the comparison is satisfied if the value,
or one of the range of values, assigned to the selection object is equal to the
value assigned to the selection subject according to the rules for comparison.
Refer to "Relation Condition" on page 7-9.

2) If the items being compared are assigned truth values, the comparison is satis
fied if the items are assigned the identical truth value.

3) If the selection object being compared is specified by the word ANY, the com
parison is satisfied, regardless of the value of the selection subject.

b. If the comparison is satisfied for every selection object in the set of selection
objects being compared, the WHEN phrase containing that set of selection objects
is selected as the one satisfying the set of selection subjects.

c. If the above comparison is not satisfied for one or more selection objects within the
set of selection objects being compared, that set of selection objects does not satisfy
the set of selection subjects.

d. The comparison is repeated for subsequent sets of selection objects in the order of
their appearance in the source program until either a WHEN phrase satisfying the
set of selection subjects is selected, or until all sets of selection objects are
exhausted.

Procedure Division in the Nucleus 7-41

3. After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

Example

a. If a WHEN phrase is selected, execution continues with the first
imperative-statement-I following the selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution
continues with imperative-statement-2.

c. The execution of the EV ALU ATE statement is terminated when execution reaches
the end of the scope of the selected WHEN or WHEN OTHER phrase or when no
WHEN phrase is selected and no WHEN OTHER phrase is specified. Refer to
"Explicit and Implicit Scope Terminators" on page 2-36.

The following example shows the EVALUATE statement:

EVALUATE GROSS > COST-1 + COST-2 + OVERHEAD
WHEN TRUE PERFORM PROCESS-PROFIT
WHEN FALSE PERFORM PROCESS-LOSS

END-EVALUATE.

7-42 Language Reference

EXAMINE Statement

Function

The EXAMINE statement replaces or counts the number of occurrences of a
given character in a data item.

General Format

The following figures show the general format of the EXAMINE statement:

Format 1

......__EXAMINE identifier TALLYING 1 UNTIL FIRST T literal-1 [J ..,.
ALL _j REPLACING BY literal-2
LEADING

Format 2

~EXAMINE identifier REPLACING1ALL§literal-1 BY literal-2-+4
LEADING
FIRST
UNTIL FIRST

Syntax Rules

The following syntax rules apply to the EXAMINE statement:

1. The identifier must be described explicitly or implicitly as USAGE IS
DISPLAY.

2. Each literal must consist of a single character. If identifier is a numeric
item, the literals must be either numeric literals, nonnumeric literals
whose value is a single numeric digit, or the figurative constant ZERO.
If identifier belongs to any other class, the literals may be numeric, non
numeric, or any figurative constant without the word ALL.

osvs

osvs

osvs

Procedure Division in the Nucleus 7-43

General Rules

The following general rules apply to the EXAMINE statement:

1. Examination proceeds as follows:

a. For nonnumeric data items, examination starts at the leftmost char
acter and proceeds to the right. Each character in the data item spec
ified by the identifier is examined in turn.

b. If a data item referred to by the EXAMINE statement is numeric, it
must consist of numeric characters and may possess an operational
sign. Examination starts at the leftmost character (excluding the
sign) and proceeds to the right. Each character except the sign is
examined in turn. Regardless of where the sign is physically located,
it is completely ignored by the EXAMINE statement.

2. The TALL YING option creates an integral count which replaces the
value of a special register called TALLY. The count represents the
number of:

a. Characters not equal to literal-1 encountered before the first occur
rence of literal-I when the UNTIL FIRST option is used.

b. Occurrences of literal-I when the ALL option is used.

c. Occurrences of literal-I prior to encountering a character other than
literal-I when the LEADING option is used.

3. When either of the REPLACING options is used, the replacement rules
are as follows:

Example

a. When the ALL option is used, literal-2 is substituted for each occur
rence of literal-I.

b. When the LEADING option is used, the substitution of literal-2 ter
minates as soon as a character other than literal-I is encountered.
The substitution of literal-2 also terminates when the right-hand
boundary of the data item is encountered.

c. When the FIRST option is used, the first occurrence of literal-I is
replaced by literal-2.

d. When the UNTIL FIRST option is used, the substitution of literal-2
terminates as soon as literal-I or the right-hand boundary of the data
item is encountered.

osvs

The following example shows the EXAMINE statement changing the CURR-DATE format
from mm/dd/yy to mm-dd-yy.

EXAMINE CURR-DATE REPLACING ALL '/' BY 1 - 1 •

7-44 Language Reference

EXEC(UTE) Statement

Function

The EXEC(UTE) statement is provided as a linkage mechanism to allow
control to be passed to non-COBOL subsystems.

General Format

The following figure shows the general format of the EXEC(UTE) statement:

.,..._EXEC - text-name - text-data END-EXEC____...

Syntax Rule

text-data may be any textual data not containing the string END-EXEC
imbedded within it.

General Rule

The statement is compiled as a CALL text-name USING text-data-buffer
statement (refer to "CALL Statement" on page 11-36) where text-data-buffer
contains all the text-data from the EXEC statement (space compressed) for
further parsing by the CALLed program text-name.

MF

MF

MF

MF

Procedure Division in the Nucleus 7-45

EXHIBIT Statement

Function

The EXHIBIT statement causes a display (optionally conditional) of the
literals, and/or identifiers (optionally preceded by the identifier name) speci
fied in the statement.

General Format

The following figure shows the general format of the EXHIBIT statement:

.,..___EXHIBIT

Syntax Rules

NAMED---~~ identifier-1-,--....i
CHANGED NAMED literal-l____J
CHANGED ---i

The following syntax rules apply to the EXHIBIT statement:

1. Identifiers specified in the EXHIBIT statement may be of any class of
data. TALLY and RETURN-CODE are the only special registers that
can be used as identifiers.

2. CHANGED and NAMED may both be omitted. The effect is as if
CHANGED were specified. If the IBM-MS option is given, then the
effect is as if NAMED were specified.

7-46 Language Reference

OSVSMF

OSVSMF

OSVSMF

IBM-MS

General Rules

The following general rules apply to the EXHIBIT statement:

1. Literals and identifiers displayed by the EXHIBIT statement are sepa-
rated by a space on the displayed line.

2. Each literal may be any figurative constant other than ALL.

3. If the literal is numeric, it must be an unsigned integer.

4. Each execution of an EXHIBIT NAMED statement displays each identi
fier or literal specified, with each identifier (including any qualifiers and
subscripts) followed by an = (equal sign) and its current value. They all
appear on a single line in the order in which they appear in the state
ment.

5. Each execution of an EXHIBIT CHANGED NAMED statement displays
each identifier or literal specified with each identifier (including any
qualifiers and subscripts) followed by an = and its current value. They
all appear on a single line in the order in which they appear in the state
ment. However, the display for each identifier (name and value) is condi
tional on the value of that identifier having changed since the last
execution of the current EXHIBIT statement. If one or more of the iden
tifier values have not changed, neither the name nor the value is printed
for those identifiers. If none of the identifier values have changed, and
there are no literals specified, there is no display (display of a blank line
is suppressed).

6. Each execution of an EXHIBIT CHANGED statement displays the
current value of each identifier or literal. They all appear on a single
line in the order in which they appear in the statement. However, the
value display for each identifier is conditional on the value of that identi
fier having changed since the last execution of the current EXHIBIT
statement. If one or more of the identifier values have not changed, the
value for those identifiers is not printed; spaces are inserted instead. If
none of the identifier values have changed, and no literals are specified,
a blank line is displayed (display of a blank line is not suppressed).

Example

The following example shows the EXHIBIT statement:

EXHIBIT NAMED P-10 P-PHONE P-COUNT.

osvs

Procedure Division in the Nucleus 7-47

EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures. Refer to
Chapter 11, "Interprogram Communication" for an additional format of this statement.

General Format

The following figure shows the general format of the EXIT statement:

.,.__ EXIT ---M

Syntax Rules

The following syntax rules apply to the EXIT statement:

1. The EXIT statement should appear in a sentence by itself. This rule is
not enforced.

2. The EXIT sentence should be the only sentence in the paragraph. This
rule is not enforced.

General Rule

MF

MF

An EXIT statement serves only to enable the user to assign a procedure-name to a given
point in a program. Such an EXIT statement has no other effect on the compilation or
execution of the program.

7-48 Language Reference

Example

The following example shows the EXIT statement:

MAIN-PROG.

PERFORM INVENTORY THRU INV-EXIT.

INVENTORY.

INV-1.

INV-2.

INV-EXIT.
EXIT.

Procedure Division in the Nucleus 7-49

GO TO Statement

Function

The GO TO statement causes control to be transferred from one part of the Procedure Divi
sion to another.

General Format

The following figures show the general format for the GO TO statement:

Format 1

~GO --...L--_J-..,....- procedure-name-1-----1
TO

Format 2

f
~GO ~L--_J--...- procedure-name-1- DEPENDING-~L--_J~- identifier_...

TO ~

Syntax Rules

The following syntax rules apply to the GO TO statement:

1. Identifier is the name of a numeric elementary item described without any positions to
the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph can consist
only of a paragraph header followed by a Format 1 GO TO statement.

3. A Format 1 GO TO statement, without procedure-name-1, can only appear in a single
statement paragraph.

4. If a GO TO statement represented by Format 1 appears in a consecutive sequence of
imperative statements without a sentence, it appears as the last statement in that
sequence.

5. In Format 2, it is recommended that at least two procedure names should be specified.
However, a Format 2 statement may be written with only one procedure name.

7-50 Language Reference

General Rules

The following general rules apply to the GO TO statement:

1. When a GO TO statement represented by Format 1 is executed, control is transferred to
procedure-name-1 or to another procedure-name if the GO TO statement has been modi
fied by an ALTER statement.

2. If procedure-name-1 is not specified in Format 1, an ALTER statement referring to this
GO TO statement must be executed prior to the execution of this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed, control is transferred to
the corresponding procedure-name-1 depending on the value of the identifier being 1, 2,
.. ., n. If the value of the identifier is anything other than the positive or unsigned inte
gers 1, 2, .. ., n, then no transfer occurs and control passes to the next statement in the
normal sequence for execution.

Procedure Division in the Nucleus 7-51

IF Statement

Function

The IF statement causes a condition to be evaluated (refer to "Conditional Expressions" on
page 7-9). The subsequent action of the object program depends on whether the value of
the condition is true or false.

General Format

The following figure shows the general format of the IF statement:

' -IF condition~L~--_J~~L-statement-1
THEN NEXT SENTENCE

' OTHERWISE END-IF t ELSE ::J L statement-2

NEXT SENTENCE----~
END-IF-----------------'

Syntax Rules

The following syntax rules apply to the IF statement:

osvs

1. statement-I and statement-2 represent either an imperative statement or a conditional
statement and either may be followed by a conditional statement.

2. If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be specified.

General Rules

The following general rules apply to the IF statement:

1. The scope of an IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period. ·

c. If nested, by an ELSE phrase associated with an IF statement at a higher level of
nesting.

2. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-I is executed if specified. If statement-I contains
a procedure branching or conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-I does not contain a pro
cedure branching or conditional statement, the ELSE phrase, if specified, is
ignored and control passes to the end of the IF statement.

7-52 Language Reference

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of
statement-1, the ELSE phrase, if specified, is ignored and control passes to the next
executable sentence.

c. If the condition is false, statement-! or its surrogate NEXT SENTENCE is ignored,
and statement-2, if specified, is executed. If statement-2 contains a procedure
branching or conditional statement, control is explicitly transferred in accordance
with the rules of that statement. If statement-2 does not contain a procedure
branching or conditional statement, control passes to the end of the IF statement.
If the ELSE statement-2 phrase is not specified, statement-! is ignored and control
passes to the end of the IF statement.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is specified,
statement-! is ignored, if specified, and control passes to the next executable sen·
tence.

3. statement-! and/or statement-2 may contain an IF statement. In this case the IF state·
ment is said to be nested.

IF statements within IF statements may be considered as paired IF ELSE and END-IF
combinations, proceeding from left to right. Any END-IF encountered is considered to
apply to the immediately preceding IF that has not been already paired with an
END-IF. Any ELSE encountered is considered to apply to the immediately preceding
IF that has not been already paired with an ELSE or END-IF.

Procedure Division in the Nucleus 7-53

INITIALIZE Statement

Function

The INITIALIZE statement provides the ability to set selected types of data fields to prede
termined values; for example, numeric data to zeros or alphanumeric data to spaces.

General Format

The following figure shows the general format of the INITIALIZE statement:

' - INITIALIZE - identi fier-1-----------------------

REPLACING ALPHABETIC ----~~--~-BY L identi fier-2
ALPHANUMERIC DATA literal-1
NUMERIC ------i
ALPHANUMERIC-EDITED
NUMERIC-EDITED ---i
DBCS -------i
EGCS ·~----~

Syntax Rules

The following syntax rules apply to the INITIALIZE statement:

1. literal-1 and the data item referenced by identifier-2 represent the sending area; the
data item referenced by identifier-1 represents the receiving area.

2. Each category stated in the REPLACING phrase must be a permissible category as a
receiving operand in a MOVE statement, where the corresponding data item referenced
by identifier-2 or literal-1 is used as the sending operand. Refer to "MOVE Statement"
on page 7-65.

3. The same category cannot be repeated in a REPLACING phrase.

4. The description of the data item referenced by identifier-1 or any items subordinate to
identifier-1 may not contain the DEPENDING phrase of the OCCURS clause.

5. An index data item may not appear as an operand of an INITIALIZE statement.

6. The data description entry for the data item referenced by identifier-1 must not contain
a RENAMES clause.

7-54 Language Reference

General Rules

The following general rules apply to the INITIALIZE statement:

1. The key word following the word REPLACING corresponds to a category of data
defined in "Class Condition" on page 7-13.

2. Whether identifier-I references an elementary item or a group item, all operations are
performed as if a series of MOVE statements had been written, each of which has an
elementary item as its receiving field, subject to the following rules:

If the REPLACING phrase is specified:

a. If identifier-I references a group item, any elementary item within the data item
referenced by identifier-I is initialized only if it belongs to the category specified in
the REPLACING phrase.

b. If identifier-I references an elementary item, that item is initialized only if it
belongs to the category specified in the REPLACING phrase.

This initialization takes place as follows: The data item referenced by identifier-2 or
literal-I acts as the sending operand in an implicit MOVE statement to the identified
item.

All such elementary receiving fields, including all occurrences of table items within
the group, are affected; the only exceptions are those fields specified in 3.

3. Index data items and elementary FILLER data items are not affected by the execution
of an INITIALIZE statement.

4. Any item that is subordinate to a receiving area identifier and contains the REDE
FINES clause or any item that is subordinate to such an item is excluded from ,this
operation. However, a receiving area identifier may itself have a REDEFINES clause
or be subordinate to a data item with a REDEFINES clause.

5. When the statement is written without the REPLACING phrase, data items of the cate
gories alphabetic, alphanumeric, and alphanumeric-edited are set to spaces; data items
of the categories numeric and numeric-edited are set to zeros. In this case, the opera
tion is as if each affected data item is the receiving area in an elementary MOVE state
ment with the indicated source literal (that is, spaces or zeros).

6. In all cases, the content of the data item referenced by identifier-I is set to the indi
cated value in the order (left to right) of the appearance of identifier-I in the INI
TIALIZE statement. Within this sequence, where identifier-I references a group item,
affected elementary items are initialized in the sequence of their definition within the
group.

7. If identifier-I occupies the same storage area as identifier-2, the result of the execution
of this statement is undefined even if they are defined by the same description entry.
Refer to "Overlapping Operand Rules" on page 7-21.

DBCS Support

8. A DBCS data item (USAGE DISPLAY-I) or literal (PIC G) may be used anywhere an
identifier or literal is specified. The category stated in the REPLACING phrase may be
DBCS or EGCS •

.___ ____________ End of DBCS Support ____________ __,

Procedure Division in the Nucleus 7-55

Example

The following example shows the INITIALIZE statement:

INITIALIZE INVENTORY-RECORD
SALES-RECORD
TOTAL-UNITS
UNIT-PRICE
TOTAL-AMOUNT

REPLACING ALPHABETIC DATA BY SPACES
ALPHANUMERIC DATA BY SPACES
NUMERIC DATA BY ZEROS.

7-56 Language Reference

INSPECT Statement

Function

The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), tally
and replace (Format 3), or convert (Format 4) occurrences of single characters or group of
characters in a data item.

General Format

The following figures show the general format of the INSPECT statement:

Format 1

~INSPECT identifier-I TALLYING identifier-2-FOR-~-cHARACTERs~---~--------~-

where phrase-I is:

c=Midentifie~
l iteral-2

phrase-I

ALL J Lidentifier-3
LEADING literal-I phrase-I

Procedure Division in the Nucleus 7-57

Format 2

--- INSPECT identifier-1 REPLACING---------------------

CHARACTERS BY-c:=identifier-5
literal-3 phrase-1

ALL ~c _J Li dent i fi er-3 ~BY --r- i dent i fi er-5
LEAD I~ l iteral-1 __J L literal-3
FIRST

where phrase-1 is:

., LBEFORE1 L _J Lidentifier-4-r-+
AFTER__j INITIAL literal-2___j

Format 3

phrase-1

.,._INSPECT identifier-1 TALLYING----------------------

~
-identifier-2-FOR CHARACTERS~----~-------~------

.,_REPLACING

phrase-1

ALL
LEADING _j

[i denti fi er-3
l iteral-1

CHARACTERS BY Li dent i fi er-5
l iteral-3 phrase-1

phrase-1

ALL ,,._J [identifie~BYLidentifier-5
LEADI~ literal-1 literal-3
FIRST

where phrase-1 is:

-r BEFORE I L _J Li dent i fi er-4--,-.
L.AFTER__J INITIAL literal-2___:___j

7~58 Language Reference

phrase-1

Format 4

L J identifier-I CONVERTING-i-identifier-6-i-TO---r- identifier-7 ~
INSPECT ~literal-4~ ~literal-5~

..

Syntax Rules

[identifier~ _J
L INITIAL _J l itera 1-5 -=-=:J

....

The following syntax rules apply to the INSPECT statement:

All Formats

1. identifier-1 must reference either a group item or any category of elementary item,
described (either implicitly or explicitly) as USAGE IS DISPLAY.

2. identifier-3 ... identifier-n must reference either an elementary alphabetic, alphanu
meric or numeric item described (either implicitly or explicitly) as USAGE IS
DISPLAY.

3. Each literal must be nonnumeric and may be any figurative constant, except ALL. If
literal-1, literal-2, or literal-4 is a figurative constant, it refers to an implicit one char
acter data item.

4. No more than one BEFORE phrase and/or one AFTER phrase can be specified for any
one ALL, LEADING, CHARACTERS, FIRST, or CONVERTING phrase.

5. literal-1, literal-2, literal-3, literal-4, and literal-5, and the data items referenced by
identifier-3, identifier-4, identifier-5, identifier-6, and identifier-7, can be any number of
characters in length up to the limit allowed for literals or data items.

DBCS Support

6. All identifiers and literals except the count field (identifier-2) must be DBCS items,
either USAGE DISPLA Y-1 or DBCS literals, if any are DBCS items. identifier-2 cannot
be a DBCS item. DBCS characters, not bytes of data, are tallied in identifier-2.

,___ ____________ End of DBCS Support ____________ __,

Formats 1 and 3 Only

7. identifier-2 must reference an elementary numeric data item.

Formats 2 and 3 Only

8. The size of the data referenced by literal-3 or identifier-5 must be equal to the size of
the data referenced by literal-1 or identifier-3. When a figurative constant is used as
literal-3, the size of the figurative constant is equal to the size of literal-1 or the size of
the data item referenced by identifier-3.

9. When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the data item
referenced by identifier-4, identifier-5 must be one character in length.

Format 4 Only

10. The size of literal-5 or the data item referenced by identifier-7 must be equal to the size
of literal-4 or the data item referenced by identifier-6. When a figurative constant is

Procedure Division in the Nucleus 7-59

used as Iiteral-5, the size of the figurative constant is equal to the size of literal-4 or the
size of the data item referenced by identifier-6.

11. The same character must not appear more than once either in literal-4 or in the data
item referenced by identifier-6.

General Rules

The following general rules apply to the INSPECT statement:

All Formats

1. Inspection (which includes the comparison cycle, the establishment of boundaries for
the BEFORE or AFTER phrase, and the mechanism for tallying and/or replacing)
begins at the leftmost character position of the data item referenced by identifier-!,
regardless of its class, and proceeds from left to right to the rightmost character posi
tion as described in general rules 5, 6, and 7.

2. For use in the INSPECT statement, the contents of the data item referenced by
identifier-!, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 will be
treated as follows:

a. If any of identifier-!, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7
is described as alphanumeric, the INSPECT statement treats the contents of each
such identifier as a character string.

b. If any of identifier-!, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7
is described as alphanumeric-edited, numeric-edited or unsigned numeric, the data
item is inspected as though it had been redefined as alphanumeric (see 2a) and the
INSPECT statement had been written to reference the redefined data item.

c. If any of identifier-!, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7
is described as signed numeric, the data item is inspected as though it had been
moved to an unsigned numeric data item with length equal to the length of the
signed item excluding any separate sign position and the rules in 2b applied. Refer
to "MOVE Statement" on page 7-65.

3. In general rules 4 through 11 on page 7-62, all references to literal-1, literal-2, literal-3,
literal-4, and literal-5 apply equally to the contents of the data item referenced by
identifier-3, identifier-4, identifier-5, identifier-6, and identifier-7, respectively.

Formats l and 2

4. During inspection of the contents of the data item referenced by identifier-!, each prop
erly matched occurrence of literal-1 is tallied (Format 1) or replaced by literal-3
(Format 2).

5. The comparison operation to determine the occurrences of literal-1 to be tallied or to
be replaced, occurs as follows:

a. The operands of the TALL YING or REPLACING phrases are considered in the
order they are specified in the INSPECT statement from left to right. The first
literal-1 is compared to an equal number of contiguous characters, starting with
the leftmost character position in the data item referenced by identifier-I. literal-1
matches that portion of the contents of the data item referenced by identifier-! if,
they are equal, character for character, and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-1 and literal-1 is a leading occur
rence as defined in rule 9 on page 7-62 and rule 12 on page 7-62; or

3) If the FIRST adjective applies to literal-1 and literal-1 is the first occurrence as
defined in rule 8 on page 7-61 and rule 11 on page 7-62.

b. If no match occurs in the comparison of the first literal-1, the comparison is
repeated with each successive literal-1, until either a match is found or there is no
successive literal-1. When there is no successive literal-1, the character position in

7-60 Language Reference

the data item referenced by identifier-I immediately to the right of the leftmost
character position considered in the last comparison cycle is considered as the left
most character position, and the comparison cycle begins again with the first
literal-1.

c. Whenever a match occurs, tallying and/or replacing takes place as described in
rule 8 through rule 10 on page 7-62. The character position in the data item refer
enced by identifier-I immediately to the right of the rightmost character position
that participated in the match is now considered to be the leftmost character posi
tion of the data item referenced by identifier-I, and the comparison cycle starts
again with the first literal-1.

d. The comparison operation continues until the rightmost character position of the
data item referenced by identifier-I has participated in a match or has been consid
ered as the leftmost character position. When this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one-character operand partic
ipates in the cycle described in rule 5a on page 7-60 through rule 5d, except that no
comparison to the contents of the data item referenced by identifier-I takes place.
This implied character is considered always to match the leftmost character of the
contents of the data item referenced by identifier-I participating in the current
comparison cycle.

6. The comparison operation defined in rule 5 on page 7-60 is affected by the BEFORE
and AFTER phrases as follows:

a. If neither the BEFORE nor the AFTER phrase is specified, literal-I or the implied
operand of the CHARACTERS phrase is first eligible to participate in matching at
the leftmost character position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-I, or the implied operand
of the CHARACTERS phrase participates only in those comparison cycles that
involve that portion of the data item content referenced by identifier-I from its left
most character position up to, but not including, the first occurrence of literal-2
within the contents of the data item referenced by literal-1. The position of this
first occurrence is determined before the first cycle of the comparison operation
described in rule 5 on page 7-60 is begun. If, on any comparison cycle, literal-I, or
the implied operand of the CHARACTERS phrase, is not eligible to participate, it is
considered not to match the contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, within the contents of the data item referenced
by identifier-I, its associated literal-I, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the BEFORE phrase had
not been specified.

c. If the AFTER phrase is specified, the associated literal-I, or the implied operand of
the CHARACTERS phrase, may participate only in those comparison cycles which
involve that portion of the contents of the data item referenced by identifier-1. The
area affected is from the character position immediately to the right of the right
most character position of the first occurrence of literal-2, within the contents of
the data item referenced by identifier-I, to the rightmost character position of the
data item referenced by identifier-1. The position of this first occurrence is deter
mined before the first cycle of the comparison operation described in rule 5 on
page 7-60 is begun.

If, on any comparison cycle, literal-I, or the implied operand of the CHARACTERS
phrase, is not eligible to participate, it is considered not to match the contents of
the data item referenced by identifier-1. If there is no occurrence of literal-2 within
the contents of the data item referenced by identifier-I, its associated literal-I, or
the implied operand of the CHARACTERS phrase, is never eligible to participate in
the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 is not initialized by the exe
cution of the INSPECT statement.

8. The rules for tallying are as follows:

Procedure Division in the Nucleus 7-61

a. If the ALL phrase is specified, the contents of the data item referenced by
identifier-2 are incremented by one for each occurrence of literal-I matched within
the contents of the data item referenced by identifier-I.

b. If the LEADING phrase is specified, the contents of the data item referenced by
identifier-2 are incremented by one for the first and each subsequent contiguous
occurrence of literal-1. This is matched within the contents of the data item refer
enced by identifier-I, provided that the leftmost such occurrence is at the point
where comparison began in the first comparison cycle in which literal-I was eli
gible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item referenced
by identifier-2 are incremented by one for each character matched, in respect to
Formats I and 2, rule 5e on page 7-6I, within the contents of the data item refer
enced by identifier-I.

9. If identifier-I, identifier-3, or identifier-4 occupies the same storage area as identifier-2,
the result of the execution of this statement is undefined, even if the identifiers are
defined by the same data description entry. Refer to "Overlapping Operand Rules" on
page 7-21.

Format 2

10. The required words ALL, LEADING, and FIRST are adjectives that apply to each suc
ceeding BY phrase until the next adjective appears.

Il. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched in respect to
Format I and 2 item 5e on page 7-6I in the contents of the data item referenced by
identifier-I, is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-I matched in the
contents of the data item referenced by identifier-I is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each subsequent contig
uous occurrence of literal-I matched in the contents of the data item referenced by
identifier-I is replaced by literal-3. This replacement transpires provided that the
leftmost occurrence is at the point where comparison began in the first comparison
cycle in which literal-I was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of literal-I matched
within the contents of the data item referenced by identifier-I is replaced by
literal-3.

I2. If identifier-3, identifier-4, or identifier-5 occupies the same storage area as identifier-I,
the result of the execution of this statement is undefined, even if they are defined by
the same data description entry. Refer to "Overlapping Operand Rules" on page 7-21.

Format 3

13. A Format 3 INSPECT statement is interpreted and executed as though two successive
INSPECT statements specifying the same identifier-I had been written with one state
ment being a Format I statement with TALLYING phrases identical to those specified
in the Format 3 statement. The other statement is interpreted as being a Format 2
statement with REPLACING phrases identical to those specified in the Format 3 state
ment. The general rules given for matching and counting apply to the Format I state
ment and the general rules given for matching and replacing apply to the Format 2
statement. Refer to Figure 7-2 on page 7-63.

Format 4

I4. A Format 4 INSPECT statement is interpreted and executed as though a Format 2
INSPECT statement specifying the same identifier-I had been written with a series of
ALL phrases, one for each character of literal-4. The effect is as if each of these ALL
phrases referenced, as literal-I, a single character of literal-4 and referenced, as
literal-3, the corresponding single character of literal-5. Correspondence between the
characters of literal-4 and the characters of literal-5 is by ordinal position within the
data item.

7-62 Language Reference

15. If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1,
the result of the execution of this statement is undefined, even if they are defined by
the same data description entry.

INSPECT ID-1 TALLYING ID-2 FOR ALL "**" REPLACING ALL "**" BY ZEROS.

ID-1 before
execution

[*I*

Execution for
TALLYING phras e:
1st
comparison [*I*
2nd
comparison

3rd
comparison

4th
comparison

Execution for
REPLACING phra se:
5th
comparison l * l *

0 0

6th
comparison

7th
comparison

8th
comparison

*

*

*

*

At the end of inspection:

ID-1
contains:

0 * I*

0

0 * J

* l *

0 * *

0

0 *

* *

TALLYING
comparand:

rn
rn
rn
rn

ID-2 before
execution
(initialized by
programmer)

ID-2
contains:

(true) 0
(false) Q

(false) 0
(true) 0

rn (true)
ID-1 changed

to

rn
rn
rn

ID-1
(false) unchanged

ID-1
(false) unchanged

ID-1 changed
(true) to

ID-2
contains:

Figure 7-2. INSPECT Statement and the Execution Result

Procedure Division in the Nucleus 7-63

Examples

Six examples of the use of the INSPECT statement follow. In each case, it is assumed that
the count fields have value zero before the statement is executed.

1. INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A" count-1 FOR LEADING
"A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = 0.
Where word = ANALYST, count = 0, count-1 = 1.

2. INSPECT word TALLYING count FOR ALL "L" REPLACING LEADING "A" BY "E" AFTER INITIAL
"L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count= 1, word =LETTER.

3. INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

4. INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL "A" BY "B".

Where word= ADJECTIVE, count= 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word= JUJMAB, count= 5, word= JUJMBB.

5. INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL "R".

Where word= RXXBQWY, word= RYYZQQY.
Where word = YZACDWBR, word = YZACDWZR.
Where word = RAWRXEB, word = RAQRYEZ.

6. INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 1 2 X Z A B C D
word after: B B B B B A B C D

7-64 Language Reference

MOVE Statement

Function

The MOVE statement transfers data, in accordance with the rules of editing, to one or
more data areas.

General Format

The following figures show the general format of the MOVE statement:

Format 1

Fl
.,._MOVE L identifier-1 T TO identifier-2---M

literal--~

Format 2

Fl
1+-MOVE L CORRESPONDING Tidentifier-1 TO identifier-2

CORR-----'

Syntax Rules

The following syntax rules apply to the MOVE statement:

osvs

1. identifier-I and literal represent the sending area; identifier-2 represents the receiving
area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, all identifiers must be group items.

4. An index data item cannot appear as an operand of a MOVE statement. Refer to
"USAGE Clause" on page 6-39.

Procedure Division in the Nucleus 7-65

General Rules

The following general rules apply to the MOVE statement:

1. If the CORRESPONDING phrase is used, selected items within
identifier-1 are moved to selected items within identifier-2, according to
the rules given in "CORRESPONDING Phrase" on page 7-20. The
results are the same as if the user had referred to each pair of corre
sponding identifiers in separate MOVE statements. The process is
repeated for each destination group.

osvs

2. The data designated by the literal or identifier-1 is moved first to identifier-2, then to
identifier-3, The rules referring to identifier-2 also apply to the other receiving
areas. Any subscripting or indexing associated with identifier-2, ... , is evaluated imme
diately before the data is moved to the respective data item.

Any subscripting or indexing associated with identifier-1 is evaluated only once, which
is immediately before data is moved to the first of the receiving operands. The result
of the statement:

MOVE a(b) TO b, c(b)

is equivalent to:

MOVE a(b) TO temp
MOVE temp TO b
MOVE temp TO c(b)

where temp is an intermediate result item provided by the AIX VS COBOL system.

3. Any MOVE in which the sending and receiving items are both elementary items is an
elementary move. Every elementary item belongs to one of the following categories:
numeric, alphabetic, alphanumeric, numeric-edited, alphanumeric-edited. These cate
gories are described in "PICTURE Clause" on page 6-18. Numeric literals belong to
the category numeric, and nonnumeric literals belong to the category alphanumeric.
The figurative constant ZERO belongs to the category numeric. The figurative con
stant SPACE belongs to the category alphabetic. All other figurative constants belong
to the category alphanumeric.

The following rules apply to an elementary move to these data items.:

a. The figurative constant SPACE, or an alphanumeric-edited, or alphabetic data item
must not be moved to a numeric or numeric-edited data item.

b. A numeric-edited data item must not be moved to a numeric-edited data item.

c. A numeric literal, the figurative constant ZERO, a numeric data item, or a
numeric-edited data item must not be moved to an alphabetic data item.

d. All other elementary moves are legal and are performed according to the rules
given in rule 4.

4. Any necessary conversion of data from one form of internal representation to another
takes place during legal elementary moves, along with any editing specified for the
receiving data item:

a. When an alphanumeric-edited or alphanumeric item is a receiving item, alignment
and any necessary space filling takes place as defined in "Standard Alignment
Rules" on page 2-19. If the size of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the right after the receiving
item is filled. If the sending item is described as being signed numeric, the opera
tional sign will not be moved; if the operational sign occupies a separate character
position (refer to "SIGN Clause" on page 6-35), that character will not be moved
and the size of the sending item will be considered to be one less than its actual
size (in terms of standard format characters).

7-66 Language Reference

b. When a numeric or numeric-edited item is the receiving item, alignment by decimal
point and any necessary zero-filling takes place as defined in "Standard Alignment
Rules" on page 2-19, except where zeros are replaced because of editing require
ments.

When a signed numeric item is the receiving item, the sign of the sending item is
placed in the receiving item. Refer to "SIGN Clause" on page 6-35. Conversion of
the representation of the sign takes place as necessary. If the sending item is
unsigned, a positive sign is generated for the receiving item.

When an unsigned numeric item is the receiving item, the absolute value of the
sending item is moved and no operational sign is generated for the receiving item.

When a data item described as alphanumeric is the sending item, data is moved as
if the sending item were described as an unsigned numeric integer.

When a numeric-edited item is the sending item, and the receiving item is numeric,
the sending item has any nonnumeric characters removed; any sign or decimal
point is moved, along with the digits, to form a true numeric item. All other char
acters are discarded.

c. When a receiving field is described as alphabetic, justification and any necessary
space-filling takes place as defined in "Standard Alignment Rules" on page 2-19. If
the size of the sending item is greater than the size of the receiving item, the
excess characters are truncated on the right after the receiving item is filled.

d. If the sending item is a pointer item, no conversion takes place. The
receiving item must also be a pointer item.

e. When a noninteger numeric item is moved to an alphanumeric item:

1) The move is alphanumeric, that is, it is performed from left to
right with any necessary space-filling or truncation taking place
on the right.

2) Any decimal point position is ignored. Decimal point character
or position is not needed for it appears in the receiving item.

3) Digit positions represented in the source item by Ps are ignored.
No characters or character positions representing them appear in
the receiving item.

4) Zeros appearing explicitly in the same item are treated as nonzero
digits.

DBCS Support

VSC2

MF

f. DBCS moves include DBCS data items (defined as USAGE DISPLA Y-1) and DBCS
literals. No conversion takes place. If the sending and receiving items are not the
same size, the data item will be either truncated or padded with DBCS spaces on
the right .

...__ ____________ End of DBCS Support ____________ __,

5. Any move that is not an elementary move is treated exactly as if it were an
alphanumeric-to-alphanumeric elementary move, except that there is no conversion of
data from one form of internal representation to another. In such a move, the
receiving area will be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area, except as noted in 4
on page 12-8.

Procedure Division in the Nucleus 7-67

6. Table 7-3 on page 7-68 summarizes the legality of the various types of MOVE state
ments. The general rule reference indicates the rule that prohibits the move or the
behavior of a legal move.

DBCS Support

7. If either the sending or receiving item is a DBCS (USAGE DISPLA Y-1) item, then both
must be DBCS items. No data conversion is done; however, the data will be either
truncated or padded with DBCS spaces on the right, as necessary. The figurative con
stant SPACE/SPACES can be the DBCS sending item.

8. No conversion of characters moved to or from a PIC G data item occurs, which means
that the field may become corrupted. We recommend that you avoid MOVE statements
involving PIC G fields, unless both source and target are defined as PIC G. If you
move data from a PIC G data item to a PIC G EDITED data item, the relevant space
characters are inserted into the target item .

.__ ____________ End of DBCS Support ____________ ___,

Table 7-3. MOVE Statement Data Categories
Category of Category of Receiving Data Item*
Sending Item

Alpha Numeric
numeric- integer
Edited Numeric

Alpha- Alpha- Non- Numeric-
be tic numeric Integer Edited Pointer DBCS 1

Alphabetic Yes/4c Yes/4a No/3a No/3a No/4d No/4f
Alphanumeric Yes/4c Yes/4a Yes/4b Yes/4b No/4d No/4f
Alphanumeric-
Edited Yes/4c Yes/4a No/3a No/3a No/4d No/4f
Numeric

Integer No/2b Yes/4a Yes/4b Yes/4b No/4d No/4f
Noninteger No/3b Yes/4e MF Yes/4b Yes/4b No/4d No/4f

Yes/4b
Numeric-Edited No/3b Yes/4a MF No/3b No/4d No/4f
Pointer No/4d No/4d No/4d No/4d Yes/4d No/4f
DBCS2 No/4f No/4f No/4f No/4f No/4f Yes/4f
Note:

* The relevant rule number is quoted in these columns.
1 Includes DBCS data items (USAGE DISPLA Y-1).
2 Includes both DBCS data items (USAGE DISPLAY-1) and DBCS literals.

Example

The following example shows the MOVE statement:

MOVE 0 TO COUNT.
MOVE CORR IN-REC TO OUT-REC.

7-68 Language Reference

MULTIPLY Statement

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values
of data items equal to the results.

General Format

The following figures show the general format of the MULTIPLY statement:

Format 1

' -MULTIPLY-r identifier-I ---i-- BY-identifier-2 L _J
L_literal-I_____J ROUNDED

., [:=J SIZE ERROR imperative-statement-I J
ON

.. L J L J
NOT LON :=J SIZE ERROR imperative-statement-2 END-MULTIPLY

Format 2

---MULTIPLY L identifie~ BY L identifie~
literal-I literal-2

'

...

..

....

..

- GIVING identifier-3-~L----_J~------------------.,
ROUNDED

., [:=J SIZE ERROR imperative-statement-I J
ON

.. L J L J
NOT L ~ SIZE ERROR imperative-statement-2 END-MULTIPLY

ON

..

....

Procedure Division in the Nucleus 7-69

Syntax Rules

The following syntax rules apply to the MULTIPLY statement:

1. Each identifier must refer to a numeric elementary item, except that in Format 2 each
identifier following the word GIVING must refer to either an elementary numeric item
or an elementary numeric-edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data item resulting from the
superimposition of all receiving data items aligned on their decimal points, must not
contain more than 18 digits.

General Rules

The following general rules apply to the MULTIPLY statement:

1. Refer to "ROUNDED Phrase" on page 7-19, "ON SIZE ERROR Phrase and NOT ON
SIZE ERROR Phrase" on page 7-19, "Arithmetic Statement Rules" on page 7-20, "Over
lapping Operand Rules" on page 7-21, and "Multiple Results in Arithmetic Statement
Rules" on page 7-21.

2. When Format 1 is used, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2. The value of the multiplier (identifier-2) is replaced by this product (simi
larly for each successive occurrence of identifier-2 in the left-to-right order in which
identifier-2 is specified).

3. When Format 2 is used, the value of identifier-1 or literal-1 is multiplied by identifier-2
or literal-2, and the result is stored in the data item referenced by each identifier-3.

7-70 Language Reference

ON Statement

Function

The ON statement allows selective execution of procedural statements on a
periodic basis.

General Format

The following figure shows the general format of the ON statement:

..._ONLliteral-1 o=J [~
identifier-1 AND EVERY L l iteral-2 _ ., =-_J

identifier-2

., L =-::J L imperative-statement-1
UNTIL Lliteral-3 _ ,,_J NEXT SENTENCE---~

identifier-3

L ELSE =:J [imperative-statement-2
OTHERWISE NEXT SENTENCE

....

Syntax Rules

The following syntax rules apply to the ON statement:

I. identifier-I, identifier-2, and identifier-a must describe unsigned integer
numeric elementary items.

2. literal-I, literal-2, and literal-a must be unsigned numeric literals.

General Rules

osvs

osvs

osvs

The following general rules apply to the ON statement: OSVS

I. Prior to the first execution of each ON statement in the program, a
counter, implicitly defined for that ON statement (the
implicit-ON-counter), is initialized to be zero.

2. identifier-I, identifier-2, and identifier-a should, if specified, contain posi
tive integer values at the time of execution of the ON statement. Varying
these values between executions of the ON statement will affect subse
quent executions of the ON statements.

Procedure Division in the Nucleus 7-71

3. The implicit ON counter cannot be affected in any way other than by
transfer of program execution flow to that ON statement. (The ON
counter of a CALLed program may only be reset by the CANCELing of
that program; execution of the EXIT PROGRAM statement and subse
quent CALL of the program without intervening CANCEL has no effect
upon the implicit ON counter value.)

4. The following value list is then evaluated:

Example

a. The current value of identifier-I or literal-I,

b. A sequence of values being the results of repeatedly adding the
current value of identifier-2 or literal-2 to the current value of
identifier-I or literal-I until the value of identifier-3 or literal-3 is
reached.

The implicit-ON-counter is then compared with each of this list of values.
If an equality is found, then imperative-statement-I is executed. If no
equality is found, then imperative-statement-2 is executed.

The following example shows the ON statement:

ON 1 AND EVERY 10 UNTIL 200
DISPLAY "TRACE INFO:"
EXHIBIT NAMED TRAN-COUNT

TRAN-AMT.

7-72 Language Reference

PERFORM Statement

Function

The PERFORM statement is used to transfer control explicitly to one or more procedures
and to return control implicitly whenever execution of the specified procedure is complete.

The PERFORM statement is also used to control execution of one or more imperative
statements that are within the scope of that PERFORM statement.

General Format

The following figures show the general format for the PERFORM statement:

Format 1

THRO~ procedure-name-2
THRU

--- PERFORM 1 procedure-name-1

imperat i ve-statement-1 END-PERFORM---------'

Format 2

.,..__PERFORM-.-----------------------------.---1....i
procedure-name-1-~-------------_J~- phrase-1

L THROUGH --r procedure-name-2
LTHRU__J

phrase-l-------------------------1

where phrase-I is:

-i-identifier~ TIMES---*
Linteger-1

imperat i ve-statement-1 END-PERFORM---~

Procedure Division in the Nucleus 7-73

Format 3

procedure-name-1-~L------------_J~- phrase-1
L THRO~ procedure-name-2

THRU
phrase-1- imperative-statement-1 END-PERFORM---------'

where phrase-1 is:
••-.-------------.--UNTIL condit ion-1--+

L TEST -r BEFORE _J
L WITH _J L AFTER~

Format 4

.,.._ PERFORM--.----------------------.--phrase-1-+4
procedure-name-1 ~------------...,__....,

THRO~ procedure-name-2
THRU

phrase-1--.---------------..--~

imperative-statement-1 END-PERFORM

where phrase-1 is:

EWITH.-J
J VARYING Li denti fi er-2 ~FROM L identi fie~

TESTLBEFORE index-name-1 cindex-name-2
AFTER literal-1

-sYLidentifie~UNTIL condition-1
literal-2

" [AFTER L i dent i fi er-5TFROM1 i dent i fie~-~ ==1 BY Li dent i fi er~ UNTIL condi ti on-2 -.OJ .,
index-name-3 index-nam~ literal-4

literal -3

Syntax Rules

The following syntax rules apply to the PERFORM statement:

1. If procedure-name-1 if omitted, imperative-statement-1 and the END-PERFORM phrase
must be specified; if procedure-name-1 is specified, imperative-statement-1 and the
END-PERFORM phrase must not be specified.

2. In Format 4, if procedure-name-1 is omitted, the AFTER phrase must not be specified.

3. If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

4. Each identifier represents a numeric elementary item described in the Data Division.
In Format 2, identifier-1 must be described as a numeric integer.

5. Each literal represents a numeric literal.

7-74 Language Reference

6. The words THROUGH and THRU are equivalent.

7. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must reference an integer
data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a nonzero integer.

8. If an index name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must reference an
integer data item.

b. The identifier in the associated BY phrase must reference an integer data item.

c. The literal in the associated BY phrase must be an integer.

9. Literal in the BY phrase must not be zero.

10. condition-1, condition-2, ... , may be any conditional expression. Refer to "Conditional
Expressions" on page 7-9.

11. Where procedure-name-1 and procedure-name-2 are both specified and either is the
name of a procedure in the declaratives portion of the Procedure Division, both must
be procedure names in the same declarative section.

12. Six AFTER phrases are permitted in Format 4 of the PERFORM statement.

General Rules

The following general rules apply to the PERFORM statement:

1. The data items referenced by identifier-4 and identifier-7 must not have a zero value.

2. If an index-name is specified in the VARYING or AFTER phrase, and an identifier is
specified in the associated FROM phrase, the data item referenced by the identifier
must have a positive value.

3. When procedure-name-1 is specified, the PERFORM statement is referred to as an out
of-line PERFORM statement; when procedure-name-1 is omitted, the PERFORM state
ment is referred to as an in-line PERFORM statement.

4. The statements contained within the range of procedure-name-1 (through
procedure-name-2 if specified) for an out-of-line PERFORM statement, or contained
within the PERFORM statement itself for an in-line PERFORM statement are referred
to as the specified set of statements.

5. The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.
Refer to "Explicit and Implicit Scope Terminators" on page 2-36.

6. An in-line PERFORM statement functions according to the following general rules for
an otherwise identical out-of-line PERFORM statement, with the exception that the
statements contained within the in-line PERFORM statement are executed in place of
the statements contained within the range of procedure-name-1 (through
procedure-name-2 if specified). Unless specifically qualified by the word in-line or out
of-line, all the general rules that apply to the out-of-line PERFORM statement also
apply to the in-line PERFORM statement.

7. When the PERFORM statement is executed, control is transferred to the first state
ment of the specified set of statements (except as indicated in !Ob on page 7-76, lOc on
page 7-76, and lOd on page 7-77). This transfer of control occurs only once for each
execution of a PERFORM statement. For those cases where a transfer of control to
the specified set of statements does take place, an implicit transfer of control to the
end of the PERFORM statement is established as follows:

Procedure Division in the Nucleus 7-75

a. If procedure-name-1 is a paragraph name and procedure-name-2 is not specified, the
return is after the last statement of procedure-name-1.

b. If procedure-name-1 is a section name and procedure-name-2 is not specified, the return
is after the last statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph name, the return is after the last
statement of the paragraph.

d. If procedure-name-2 is specified and it is a section name, the return is after the last
statement of the last paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the PERFORM state
ment is completed after the last statement contained with it has been executed.

8. There is no necessary relationship between procedure-name-1 and procedure-name-2
except that a consecutive sequence of operations is to be executed beginning at the
procedure named procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, GO and PERFORM statements may occur
between procedure-name-1 and the end of procedure-name-2. If there are two or more
logical paths to the return point, then procedure-name-2 may be the name of a para
graph consisting of the EXIT statement, to which all of these paths must lead.

9. If control passes to the specified set of statements by means other than a PERFORM
statement, control will pass through the last statement of the set to the next execut
able statement as if no PERFORM statement referenced the set.

10. The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement. The specified set of statements refer
enced by this type of PERFORM statement is executed once and then control
passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The specified set of statements is performed
the number of times specified by integer-1 or by the initial value of the data item
referenced by identifier-1 for that execution. If at the time of the execution of a
PERFORM statement, the value of the data item referenced by identifier-1 is equal
to zero or is negative, control passes to the end of the PERFORM statement. Fol
lowing the execution of the specified set of statements the specified number of
times, control is transferred to the end of the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 cannot
alter the number of times the specified set of statements is to be executed from that
which was indicated by the initial value of the data item referenced by identifier-1.

c. Format 3 is the PERFORM ... UNTIL. The specified set of statements is performed
until the condition specified by the UNTIL phrase is true. When the condition is
true, control is transferred to the end of the PERFORM statement. If the condition
is true when the PERFORM statement is entered, the TEST BEFORE phrase is
specified or implied, no transfer to procedure-name-1 takes place, and control is
passed to the end of the PERFORM statement.

If the TEST AFTER phrase is specified, the PERFORM statement functions as if
the TEST BEFORE phrase were specified, except that the condition is tested after
the specified set of statements has been executed. Any subscripting or reference
modification associated with the operands specified in condition-1 is evaluated
each time the condition is tested.

7-76 Language Reference

d. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM state
ment is used to augment the values referenced by one or more identifiers or index
names in an orderly fashion during the execution of a PERFORM statement. In
the following discussion, every reference to identifier as the object of the
VARYING, AFTER, and FROM (current value) phrases also refers to index-names.
If index-name-1 or index-name-3 is specified, the value of the associated index at
the beginning of the PERFORM statement must be set to an occurrence number of
an element in the table. If index-name-2 or index-name-4 is specified, the value of
the data item referenced by identifier-2 or identifier-5 at the beginning of the
PERFORM statement must be equal to an occurrence number of an element in a
table associated with index-name-2 or index-name-4.

Subsequent augmentation, as described below, of index-name-1 or index-name-3
must not result in the associated index being set to a value outside the range of the
table associated with index-name-1 or index-name-3. At the completion of the
PERFORM statement, the index associated with index-name-1 may contain a value
that is outside the range of the associated table by one increment or decrement
value. If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated
each time the content of the data item referenced by the identifier is set or aug
mented. If identifier-3, identifier-4, identifier-6, or identifier-7 is subscripted, the
subscripts are evaluated each time the content of the data item referenced by the
identifier is used in a setting or augmenting operation. Any subscripting or refer
ence modification associated with the operands specified in condition-I or
condition-2 is evaluated each time the condition is tested.

Representations of the actions of several types of Format 4 PERFORM statements
are given on the following pages.

Procedure Division in the Nucleus 7-77

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the content of the data item
referenced by identifier-2 is set to literal-1 or the current value of the data item refer
enced by identifier-3 at the point of initial execution of the PERFORM statement.
Then, if the condition of the UNTIL phrase is false, the specified set of statements is
executed once. The value of the data item referenced by identifier-2 is augmented by
the specified increment or decrement value (literal-2 or the value of the data item ref
erenced by identifier-4) and condition-1 is evaluated again. The cycle continues until
this condition is true, at which point control is transferred to the end of the
PERFORM statement. If condition-1 is true at the beginning of execution of the
PERFORM statement, control is transferred to the end of the PERFORM statement as
shown in Figure 7-3.

Entrance

Set identifier-2 equal
to current FROM value

Condition-1

False

Execute specified set
of statements

Augment identifier-2
with current BY value

True ___ .., Exit

Figure 7-3. The VARYING Option of a PERFORM Statement with the TEST BEFORE
Phrase Having One Condition

When the data items referenced by two identifiers are varied, the content of the data
item referenced by identifier-2 is set to literal-1, or the current value of the data item
referenced by identifier-3, and then the content of the data item referenced by
identifier-5 is set to literal-3, or the current value of the data item referenced by
identifier-6. After the contents of the data items referenced by the identifiers have
been set, condition-1 is evaluated; if true, control is transferred to the end of the
PERFORM statement; if false, condition-2 is evaluated. If condition-2 is false, the
specified set of statements is executed once, and the content of the data item refer
enced by identifier-5 is then augmented by literal-4 or the content of the data item ref
erenced by identifier-7, and condition-2 is evaluated again.

This cycle of evaluation and augmentation continues until the condition is true.
When condition-2 is true, the content of the data item referenced by identifier-2 is aug
mented by literal-2 or the content of the data item referenced by identifier-4. The
content of the data item referenced by identifier-5 is set to literal-3, or the current
value of the data item referenced by identifier-6, and condition-1 is reevaluated. The
PERFORM statement is completed if condition-1 is true; if not, the cycle continues
until condition-1 is true.

7-78 Language Reference

Entrance

Set identifier-2 to
current FROM value

Set identifier-5 to
current FROM value

Condition-1

False

Condition-2

False

Execute specified set
of statements

Augment identifier-5
with current BY value

True---• Exit

True----~

Augment identifier-2
with current BY value

Set identifier-5 to its
current FROM value

Figure 7-4. The VARYING Option of a PERFORM Statement with the TEST BEFORE
Phrase Having Two Conditions

At the termination of the PERFORM statement, the data item referenced by identifier-5
contains literal-3 or the current value of the data item referenced by identifier-6. The data
item referenced by identifier-2 contains a value that exceeds the last used setting by one
increment or decrement value, unless condition-1 was true when the PERFORM statement
was entered, in which case the data item referenced by identifier-2 contains literal-1 or the
current value of the data item referenced by identifier-3.

Procedure Division in the Nucleus 7-79

2) If the TEST AFTER phrase is specified:

When the data item referenced by one identifier is varied, the content of the data item
referenced by identifier-2 is set to literal-I or the current value of the data item refer
enced by identifier-3 at the point of execution of the PERFORM statement; then the
specified set of statements is executed once and condition-I of the UNTIL phrase is
tested. If the condition is false, the value of the data item referenced by identifier-2 is
augmented by the specified increment or decrement value (literal-2 or the value of the
data item referenced by identifier-4) and the specified set of statements is executed
again. The cycle continues until condition-I is tested and found to be true, at which
point control is transferred to the end of the PERFORM statement.

Entrance

Set identifier-2 equal
to current FROM value

Execute specified set
of statements

Condition-1

False

Augment identifier-2
with current BY value

True---.. Exit

Figure 7-5. The VARYING Option of a PERFORM Statement with the TEST AFTER
Phrase Having One Condition

When the data items referenced by two identifiers are varied, the content of the data
item referenced by identifier-2 is set to literal-I or the current value of the data item
referenced by identifier-3. The current value of the data item referenced by identifier-5
is then set to literal-3 or the current value of the data item referenced by identifier-6
and the specified set of statements is then executed. condition-2 is then evaluated. If
false, the content of the data item referenced by identifier-5 is augmented by literal-4
or the content of the data item referenced by identifier-7, and the specified set of state
ments is again executed.

The cycle continues until condition-2 is again evaluated and found to be true, at which
time condition-I is evaluated. If false, the content of the data item referenced by
identifier-2 is augmented by literal-2 or the content of data item referenced by
identifier-4. The content of the data item referenced by identifier-5 is set to literal-3, or
the current value of the data item referenced by identifier-6, and the specified set of
statements is again executed. This cycle continues until condition-I is again evaluated
and found to be true, at which time control is transferred to the end of the PERFORM
statement.

After completion of the PERFORM statement, each data item varied by an AFTER or
VARYING phrase contains the same value it contained at the end of the most recent
execution of the specified set of statements.

7-80 Language Reference

Entrance

Set identifier-2 to
current FROM value

Set identifier-5 to
current FROM value

Execute specified set
of statements

Condition-2

False

Augment identifier-5
with current BY value

Condition-1

False

Augment identifier-2
with current BY value

True-----.

True---•• Exit

Figure 7-6. The VARYING Option of a PERFORM Statement with a TEST AFTER Phrase
Having Two Conditions

During the execution of the specified set of statements associated with the PERFORM
statement, any change to the VARYING variable (the data item referenced by identifier-2
and index-name-1), the BY variable (the data item referenced by identifier-4), the AFTER
variable (the data item referenced by identifier-5 and index-name-3), or the FROM variable
(the data item referenced by identifier-3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the data item referenced by
identifier-5 goes through a complete cycle (FROM, BY, UNTIL) each time the content of
the data item referenced by identifier-2 is varied. When the contents of three or more data
items referenced by identifiers are varied, the mechanism is the same as for two identifiers
except that the data item being varied by each AFTER phrase goes through a complete
cycle each time the data item being varied by the preceding AFTER phrase is augmented.

Procedure Division in the Nucleus 7·81

11. The range of a PERFORM statement consists logically of all those statements that are
executed as a result of executing the PERFORM statement through execution of the
explicit transfer of control to the end of the PERFORM statement. The range includes
all statements that are executed as the result of a transfer of control by CALL, EXIT,
GO TO, and PERFORM statements in the range of the PERFORM statement, as well
as all statements in declarative procedures that are executed as a result of the exe
cution of statements in the range of the PERFORM statement. The statements in the
range of a PERFORM statement need not appear consecutively in the source program.

12. Statements executed as the result of a transfer of control caused by executing an EXIT
PROGRAM statement within the range of a PERFORM statement are not considered
to be part of that range.

13. If the range of a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included
PERFORM should itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM.
Thus, an active PERFORM statement, whose execution point begins
within the range of another active PERFORM statement, should not
allow control to pass to the exit of the other active PERFORM state
ment; furthermore, two or more such active PERFORM statements
should not have a common exit.

These restrictions are not enforced. PERFORM statements can be freely
nested, and recursion (a PERFORM statement performing a procedure
containing it) is allowed. Only the exit-point of the innermost
PERFORM statement currently being executed is recognized. These
rules can be changed by use of a COBOL system directive. Refer to the
User's Guide.

The following illustrations show examples of legal PERFORM con
structs:

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j d PERFORM f THRU j

f h

j m

m f

j

x PERFORM a THRU m

a

f

m

j

d PERFORM f THRU j

7-82 Language Reference

MF

14. A PERFORM statement that appears in a section which is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range, one
of the following:

a. Sections and/or paragraphs wholly contained in one or more
nonindependent segments.

b. Sections and/or paragraphs wholly contained in a single inde
pendent segment.

These restrictions do not apply.

15. A PERFORM statement that appears in an independent segment can
have within its range, in addition to any declarative sections whose
execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
nonindependent segments.

b. Sections and/or paragraphs wholly contained in the same inde
pendent segment as that PERFORM statement.

These restrictions do not apply.

OSVS VSC2

OSVS VSC2

Procedure Division in the Nucleus 7-83

SET Statement

Function

The SET statement performs the following functions:

1. The SET statement is used to alter the status of external switches.

2. The SET statement is used to alter the value of conditional variables.

3. The SET statement is used to assign the address of a data item to a VSC2
pointer variable.

4. The SET statement also establishes reference points for table-handling operations by
setting indices associated with table elements. Refer to "SET Statement" on
page I2-I9.

General Format

The following figures show the general format of the SET statement:

Format 1

~SET - mnemoni c-name-1 - TO -r ON J
LoFF

Format 2

• ~SET-condition-name-I-TO TRUE__..,..

Format 3

....

.,..__SET L ADDRESS OF identifier-IT TOT ADDRESS OF identifier-3
identifier-2 L identifier-4 ____ ____,

NULL------~

Syntax Rules

The following syntax rules apply to the SET statement:

.... VSC2

1. mnemonic-name-I must be associated with an external switch, the status of which can
be altered.

2. condition-name-I must be associated with a conditional variable.

7-84 Language Reference

3. identifier-1 must refer to the 01 to 77 level item in the LINKAGE
SECTION. identifier-3 must refer to the 01 or 77 level item in the
LINKAGE or WORKING-STORAGE SECTION. identifier-2 and
identifier-4 must refer to an item with USAGE IS POINTER.

General Rules

The following general rules apply to the SET statement:

Format 1

VSC2

MF

1. The status of each external switch associated with the specified mnemonic-name-1 is
modified such that the truth value resulting from evaluation of a condition-name asso
ciated with that switch will reflect an on status if the ON phrase is specified, or an off
status if the OFF phrase is specified. Refer to "Switch-Status Condition" on page 7-15.

Format 2

2. The literal in the VALUE clause associated with condition-name-1 is placed in the con
ditional variable according to the rules of the VALUE clause. Refer to "VALUE
Clause" on page 6-41. If more than one literal is specified in the VALUE clause, the
conditional variable is set to the value of the first literal that appears in the VALUE
clause.

3. If multiple condition-names are specified, the results are the same as if a separate SET
statement had been written for each condition-name-1 in the same order as specified in
the SET statement.

Format 3

4. If identifier-2 is specified, the address given by the TO phrase is moved vsc2
into identifier-2. If identifier-1 is specified, identifier-1 is relinked so that
any subsequent reference to it references the item whose address is given
by the TO phrase. The address given by the TO phrase is the address
contained in identifier-4, or the address of identifier-3, or, if NULL is
specified, a null address guaranteed to point to no data item. Refer to
"USAGE Clause" on page 6-39.

Procedure Division in the Nucleus 7-85

STOP Statement

Function

The STOP statement causes a permanent or temporary suspension of the execution of the
object program.

General Format

The following figure shows the general format for the STOP statement:

.,.__STOP L RUN :J
literal

Syntax Rules

....

I
The following syntax rules apply to the STOP statement:

1. The literal may be numeric, nonnumeric, or any figurative constant except ALL.

2. If the literal is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

General Rules

The following general rules apply to the STOP statement:

1. If the RUN phrase is used, then the operating system ending procedure is instituted.

2. If STOP literal is specified, the literal is communicated to the operator. Continuation
of the object program begins with the execution of the next executable statement in
sequence. Pressing the RETURN key or equivalent continues execution.

7-86 Language Reference

STRING Statement

Function

The STRING statement provides juxtaposition of the partial or complete contents of two or
more data items into a single data item.

General Format

The following figure shows the general format of the STRING statement:

•

-- STRING~ identifier-1---r- DELIMITED
L 1 iteral-1 __J t identifier--t:2 TINTO identifier-3-

1 iteral-21

..

SIZE----'

1------..--POINTER identifier-4 1-------0VERFLOW imperative-statement-I
WITH ON

[NOT __,L..---:J-..-- OVERFLOW imperati ve-statement-2 ~ LEND-STRING J
ON

Syntax Rules

The following syntax rules apply to the STRING statement:

1. Each literal may be any figurative constant without the optional word ALL.

2. All literals must be described as nonnumeric literals, and all identifiers, except
identifier-4, must be described implicitly or explicitly as usage is DISPLAY.

3. identifier-3 must represent an elementary alphanumeric data item without editing
symbols or the JUSTIFIED clause.

4. identifier-4 must represent an elementary numeric integer data item of sufficient size to
contain a value equal to the size plus one of the area referred to by identifier-3. The P
may not be used in the PICTURE character-string of identifier-4.

5. Where identifier-! or identifier-2 is an elementary numeric data item, it must be
described as an integer without the symbol P in its PICTURE character-string.

6. identifier-3 must not be reference modified.

Procedure Division in the Nucleus 7-87

DBCS Support

7. identifier-I through identifier-3 may be DBCS (USAGE DISPLAY-I) items. If one of
these identifiers is a DBCS item, then all of them must be DBCS items.

8. literal-I through literal-2 may be DBCS literals. If any one is a DBCS literal, then all
of them must be DBCS literals.

9. SPACE and SPACES are the only figurative constants allowed for DBCS items.

10. When identifi.er-3 (the receiving field) is a DBCS data item, identifier-4 indicates the
relative DBCS character position in the receiving field .

.__ ____________ End of DBCS Support ____________ __.

General Rules

The following general rules apply to the STRING statement:

1. identifier-I, or literal-I, represents the sending item. identifi.er-3 represents the
receiving item.

2. literal-2, or identifier-2, indicate the character(s) delimiting the move. If the SIZE
phrase is used, the complete data item defined by identifier-I, or literal-I, is moved.
When a figurative constant is used as the delimiter, it stands for a single character
nonnumeric literal.

3. When a figurative constant is specified as literal-I, or literal-2, it refers to an implicit
one-character data item whose usage is DISPLAY.

4. When the STRING statement is executed, the transfer of data is governed by the fol
lowing rules:

a. Those characters from literal-I, or from the contents of the data item referred to by
identifier-I, are transferred to the contents of identifier-3 in accordance with the
rules for alphanumeric to alphanumeric moves, except that no space filling will be
provided. Refer to "MOVE Statement" on page 7-65.

b. If the DELIMITED phrase is specified without the SIZE phrase, the contents of the
data item referred to by identifier-I, or the value of literal-I, are transferred to the
receiving data item in the sequence specified in the STRING statement. Transfer
begins with the leftmost character and continues from left to right until the end of
the data item is reached or until the character(s) specified by literal-2 or by the
contents of identifier-2 are encountered. The character(s) specified by literal-2, or
by the data item referred to by identifier-2, are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire contents of
literal-I, or the contents of the data item referred to by identifier-I, are transferred,
in the sequence specified in the STRING statement, to the data item referred to by
identifier-3 until all data has been transferred or the end of the data item referred
to by identifier-3 has been reached.

5. If the POINTER phrase is specified, identifier-4 is explicitly available to the pro
grammer, who is then responsible for setting its initial value. The initial value must
not be less than one.

6. If the POINTER phrase is not specified, the following general rules apply as if the user
had specified identifier-4 with an initial value of one.

7. When characters are transferred to the data item referred to by identifier-3, it is as if
the characters are moved one at a time from the source into the character position of
the data item referred to by identifier-3 (designated by the value associated with
identifier-4). By this means identifier-4 is increased by one prior to the move of the
next character. The value associated with identifier-4 is changed during execution of
the STRING statement only in the manner specified above.

7-88 Language Reference

8. Only the portion of the data item referred to by identifier-3 during the execution of the
STRING statement is changed at the end of the execution of the STRING statement.
All other portions of the data item referred to by identifier-3 will contain data that was
present before this execution of the STRING statement.

9. If, prior to each move of a character to the data item referred to by identifier-3, the
value associated with the data item referred to by identifier-4 is either less than one or
exceeds the number of character positions in the data item referred to by identifier-3,
no further data is transferred to the data item referred to by identifier-3. The NOT ON
OVERFLOW phrase, if specified, is ignored and control is transferred to the end of the
STRING statement. If the ON OVERFLOW phrase is specified, control is transferred
to imperative-statement-I.

If control is transferred to imperative-statement-I, execution continues according to the
rules for each statement specified in imperative-statement-I. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon com
pletion of the execution of imperative-statement-I, control is transferred to the end of
the STRING statement.

10. If, at the time of execution of a STRING statement with the NOT ON OVERFLOW
phrase, the conditions described in this step are not encountered, after completion of
the transfer of data according to the other general rules, the ON OVERFLOW phrase,
if specified, is ignored and control is transferred to the end of the STRING statement
or, if the NOT ON OVERFLOW phrase is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues according to the
rules for each statement specified in imperative-statement-2. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon com
pletion of the execution of imperative-statement-2, control is transferred to the end of
the STRING statement.

11. The END-STRING phrase delimits the scope of the STRING statement. Refer to
"Explicit and Implicit Scope Terminators" on page 2-36.

Procedure Division in the Nucleus 7-89

Example

The following example shows the execution of a STRING statement and its result:

STRING ID-1 ID-2 DELIMITED BY ID-3
ID-4 ID-5 DELIMITED BY SIZE

INTO ID-7 WITH POINTER ID-8
END-STRING.

ID-4 at execution ID-1 at execution ID-2 at execution ID-5 at execution

1 6 1 7 18 19 1*1°1 i 1 l 2 1 3 i*i 4 l 5 l IAl*IBlcl

Third group of
characters moved

ID-3
(delimiter)
at execution

I y
I

First group of Second group of
characters moved characters moved

Fourth group of
characters moved

ID-7 after execution (initialized to ALL Z before execution)

ID-8
(pointer)
after execution

(initialized to 01 before execution)

7-90 Language Reference

SUBTRACT Statement

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric
data items from one or more items, and set the values of one or more items equal to the
results.

General Format

The following figures show the general format of the SUBTRACT statement:

Format 1

-suBTRACT-,-identifier-1 ~FROM- identifier-2
L 1 i tera 1-1 __J L ROUNDED _J

.. [SIZE ERROR imperative-statement-I mJ
ON_J

.. [NOT L ~ SIZE ERROR imperative-statement-2 :=J LEND-SUBTRACT :J
ON

Format 2

t I
- SUBTRACT -,- i dent if i er-1 -i-- FROM --r- i dent if i er-2 1

L1iteral-l__J L_literal-2____J

' - GIVING - i dentifi er-3 --r---------,,------------------..
LROUNDED_J

.. [mJ SIZE ERROR imperative-statement-l:=J
ON

.. [NOT L ~ SIZE ERROR imperative-statement-2 :=J LEND-SUBTRACT :J
ON

..

.....

Procedure Division in the Nucleus 7-91

Format 3

- SUBTRACT-r CORRESPONDING T identifier-! FROM identifier-2 L _J
L_CORR ~ ROUNDED

., [:=J SIZE ERROR imperative-statement-! J
ON

., [NOT L ~ SIZE ERROR imperative-statement-2 J LEND-SUBTRACT J
ON

Syntax Rules

The following syntax rules apply to the SUBTRACT statement:

....

..

..

1. Each identifier must refer to a numeric elementary item, except that in Format 2 each
identifier following the word GIVING must refer to either an elementary numeric item
or an elementary numeric-edited item, and in Format 3 each identifier must refer to a
group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. Refer to "Arithmetic
Statement Rules" on page 7-20.

a. In Format 1, the composite of operands is determined by using all of the operands
in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands
in a given statement excluding the data items that follow the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of
corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

The following general rules apply to the SUBTRACT statement:

1. Refer to "ROUNDED Phrase" on page 7-19, "ON SIZE ERROR Phrase and NOT ON
SIZE ERROR Phrase" on page 7-19, "Arithmetic Statement Rules" on page 7-20, "Over
lapping Operand Rules" on page 7-21, and "Multiple Results in Arithmetic Statement
Rules" on page 7-21.

2. In Format 1, all literals or identifiers preceding the word FROM are added together
and this total is subtracted from the current value of identifier-2 storing the result
immediately into identifier-2, and repeating this process respectively for each operand
following the word FROM.

3. In Format 2, all literals or identifiers preceding the word FROM are added together,
the sum is subtracted from literal-2 or identifier-2, and the result of the subtraction is
stored as the new value of each. data item referred to by identifier-3.

7-92 Language Reference

4. If Format 3 is used, data items in identifier-1 are subtracted from and stored into corre
sponding data items in identifier-2.

5. AIX VS COBOL system ensures enough places are carried so as not to lose significant
digits during execution.

Procedure Division in the Nucleus 7-93

TRANSFORM Statement

Function

The TRANSFORM statement is used to alter characters according to a
transformation rule.

General Format

The following figure shows the general format of the TRANSFORM state
ment:

osvs

osvs

~TRANSFORM identifier-3-~----~-----------------.,

L CHARACTERS _J

.,_FROM 1figurative-constant-1~ TO tfigurative-constant-2 I
nonnumeric-literal-1 nonnumeric-literal-2~

identifier-1 identifier-2 ---~

Syntax Rules

The following syntax rules apply to the TRANSFORM statement:

1. identifier-3 may be any elementary item except a numeric item with
USAGE other than DISPLAY, or a group item.

2. identifier-I and identifier-2 should be elementary alphabetic or alphanu
meric items.

3. nonnumeric-literal-2 or identifier-2 must be either one character long or
the same length as nonnumeric-literal-I or identifier-I.

7 •94 Language Reference

osvs

General Rules

The following general rules apply to the TRANSFORM statement:

1. The use of figurative-constant-1 and/or figurative-constant-2 is equivalent
to the use of a single-character nonnumeric-literal with the same value.

2. If either identifier-1 or identifier-2 refers to the same computer storage
area as identifier-3, the result of the TRANSFORM statement will be
undefined. Refer to "REDEFINES Clause" on page 6-29.

3. If characters are repeated in nonnumeric-literal-1 or identifier-1, then the
result of the TRANSFORM operation is undefined.

4. Execution of the TRANSFORM statement scans identifier-3 for occur
rences of individual characters from identifier-1 or nonnumeric-literal-1.
When a match is found, the corresponding character (or the single char
acter of a one-character field) from identifier-2 or nonnumeric-literal-2 is
substituted into that character position in identifier-3. The correspond
ence between identifier-I or nonnumeric-literal-1 and identifier-2 or
nonnumeric-literal-2 is by occurrence number of the character within the
data item (starting from the left).

Example

The following example shows the TRANSFORM statement:

TRANSFORM LETTER-ITEM CHARACTERS
FROM "ABCDEF" TO "123456".

LETTER-ITEM

before execution I FI XI VI EI DI CI BI A I FI BI

after execution 161 XI V 15141312 I 1 16121

osvs

Procedure Division in the Nucleus 7-95

UNSTRING Statement

Function

The UNSTRING statement causes contiguous data in a sending field to be separated and
placed into multiple receiving fields.

General Format

The following figure shows the general format for the UNSTRING statement:

--uNSTRING identifier-I------------------------

DELIMITED L J L J L l itera 1-I
BY ALL identifier-2 OR L J Lidentifier-3

ALL literal-2

--INTO-identifier-4 "
[DELIMITER lrnJ identifier-5] lcoUNT lrnJ identifier-6J

..

..

>----~POINTER identifier-? TALLYING identifier-8
LrnJ WITH

[J OVERFLOW imperative-statement-IO]
ON

[NOT OVERFLOW imperat i ve-statement-2 J L END-UNSTRING :J
loNJ

Syntax Rules

The following syntax rules apply to the UNSTRING statement:

..

....

1. Each literal must be a nonnumeric literal. In addition, each literal may be any figura
tive constant without the optional word ALL.

2. identifier-I, identifier-2, identifier-3, and identifier-5 must be described, implicitly or
explicitly, as an alphanumeric data item.

7-96 Language Reference

3. identifier-4 may be described as either alphabetic (except that the symbol B may not be
used in the PICTURE character-string), alphanumeric, or numeric (except that the
symbol P may not be used in the PICTURE character-string), and must be described as
USAGE IS DISPLAY.

4. identifier-6, identifier-7, and identifier-8 must be described as elementary numeric
integer data items, except that the symbol P may not be used in the PICTURE
character-string.

5. No identifier may name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the
DELIMITED BY phrase is specified.

DBCS Support

7. identifier-I can be a DBCS data item.

8. identifier-2 and identifier-3 can be DBCS data items. If any are DBCS items, then all
must be DBCS items. Figurative constants SPACE and SP ACES are allowed for DBCS
items.

9. literal-I and literal-2 can be DBCS literals. If any are DBCS literals, then all must be
DBCS literals. Figurative constants SPACE and SPACES are allowed for DBCS
literals.

10. identifier-4 can be a DBCS data item.

IL identifier-5 can be a DBCS data item .

.__ ____________ End of DBCS Support ------------~

General Rules

The following general rules apply to the UNSTRING statement:

1. All references to identifier-2, literal-I, apply equally to identifier-3, literal-2, respec
tively, and to all repetitions of these items.

2. identifier-I represents the sending area.

3. identifier-4 represents the data receiving area. identifier-5 represents the receiving
area for delimiters.

4. literal-I or the data item referred to by identifier-2 specifies a delimiter.

5. The data item referred to by identifier-6 represents the count of the number of charac
ters within the data item referred to by identifier-I isolated by the delimiters for the
move to the data item referred to by identifier-4. This value does not include a count
of the delimiter character(s).

6. The data item referred to by identifier-7 contains a value that indicates a relative char
acter position within the area defined by identifier-I.

7. The data item referred to by identifier-8 is a counter that records the number of data
items acted upon during the execution of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it stands for a single character
nonnumeric literal.

When the ALL phrase is specified, one occurrence, or two or more contiguous occur
rences of literal-I (figurative constant or not), or the contents of the data item referred
to by identifier-2 are treated as if it were only one occurrence. This occurrence is
moved to the receiving data item according to the rules in I3d on page 7-98.

9. When any examination encounters two contiguous delimiters, the current receiving
area is either space or zero-filled according to the description of the receiving area.

Procedure Division in the Nucleus 7-97

10. literal-1 or the contents of the data item referred to by identifier-2 can contain any
character in the character set.

11. Each literal-1 or the data item referred to by identifier-2 represents one delimiter.
When a delimiter contains two or more characters, all of the characters must be
present in contiguous positions of the sending item and in the order given, to be recog
nized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY phrase, an OR con
dition exists between them. Each delimiter is compared to the sending field. If a
match occurs, the character(s) in the sending field is considered to be a single delim
iter. No character(s) in the sending field can be considered a part of more than one
delimiter.

Each delimiter is applied to the sending field in the sequence specified in the
UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving area is the data
item referred to by identifier-4. Data is transferred from the data item referred to by
identifier-1 to the data item referred to by identifier-4 according to the following rules:

a. If the POINTER phrase is specified, the string of characters referred to by
identifier-1 is examined beginning with the relative character position indicated by
the contents of the data item referred to by identifier-7. If the POINTER phrase is
not specified, the string of characters is examined beginning with the leftmost char
acter position.

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right
until either a delimiter specified by the value of literal-1 or the data item referred
to by identifier-2 is encountered. Refer to rule 11 in this list. If the DELIMITED
BY phrase is not specified, the number of characters examined is equal to the size
of the current receiving area. However, if the sign of the receiving item is defined
as occupying a separate character position, the number of characters examined is
one less than the size of the current receiving area.

If the end of the data item referred to by identifier-1 is encountered before the
delimiting condition is met, the examination terminates with the last character
examined.

c. The characters thus examined (excluding the delimiting characters, if any) are
treated as an elementary alphanumeric data item and are moved into the current
receiving area according to the rules for the MOVE statement. Refer to "MOVE
Statement" on page 7-65.

d. If the DELIMITER IN phrase is specified, the delimiting characters are treated as
an elementary alphanumeric data item and are moved into the data item referred to
by identifier-5 according to the rules of the MOVE statement. Refer to "MOVE
Statement" on page 7-65. If the delimiting condition is the end of the data item
referred to by identifier-1, the data item referred to by identifier-5 is space-filled.

e. If the COUNT IN phrase is specified, a value equal to the number of characters
thus examined (excluding the delimiter characters if any) is moved into the area
referred to by identifier-6 according to the rules for an elementary move.

f. If the DELIMITED BY phrase is specified, the string of characters is further exam
ined beginning with the first character to the right of the delimiter. If the DELIM
ITED BY phrase is not specified, the string of characters is further examined
beginning with the character to the right of the last character transferred.

g. After data is transferred to the data item referred to by identifier-4, the current
receiving area is the data item referred to by the next recurrence of identifier-4.
The steps described in rules 13b through 13f are repeated until either all the char
acters are exhausted in the data item referred to by identifier-1, or until there are
no more receiving areas.

14. The initialization of the contents of the data items associated with the POINTER
phrase or the TALLYING phrase is the responsibility of the user.

7-98 Language Reference

15. The contents of the data item referred to by identifier-7 will be incremented by one for
each character examined in the data item referred to by identifier-!. When the exe
cution of an UNSTRING statement with a POINTER phrase is complete, the contents
of the data item referred to by identifier-7 will contain a value equal to the initial
value plus the number of characters examined in the data item referred to by
identifier-!.

16. When the execution of an UNSTRING statement with a TALLYING phrase is com
pleted, the contents of the data item referred to by identifier-8 contains a value equal
to its initial value plus the number of data receiving items acted upon.

17. Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referred to by
identifier-7 is less than one or greater than the size of the data item referred to by
identifier-I.

b. If, during execution of an UNSTRING statement, all data receiving areas have
been acted upon, and the data item referred to by identifier-! contains characters
that have not been examined.

18. When an overflow condition exists, the UNSTRING operation is terminated, the NOT
ON OVERFLOW phrase, if specified, is ignored and control is transferred to the end of
the UNSTRING statement or if the ON OVERFLOW phrase is specified, to
imperative-statement-I. If control is transferred to imperative-statement-!, execution
continues according to the rules for each statement specified in imperative-statement-!.

If a procedure branching or conditional statement that causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that state
ment; otherwise, upon completion of the execution of imperative-statement-!, control is
transferred to the end of the UNSTRING statement.

19. The END-UNSTRING phrase delimits the scope of the UNSTRING statement. Refer to
"Explicit and Implicit Scope Terminators" on page 2-36.

20. If, at the time of execution of an UNSTRING statement, the conditions described in 17
are not encountered (after completion of the transfer of data according to the other
general rules), the ON OVERFLOW phrase, if specified, is ignored and control is trans
ferred to the end of the UNSTRING statement, or, if the NOT ON OVERFLOW phrase
is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues according to the
rules for each statement specified in imperative-statement-2. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon com
pletion of the execution of imperative-statement-2, control is transferred to the end of
the UNSTRING statement.

21. The evaluation of subscripting and indexing for the identifiers is as follows:

a. Any subscripting or indexing associated with identifier-1, identifier-7, or identifier-8
is evaluated only once, immediately before any data is transferred as the result of
the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identifier-2, identifier-3, identifier-4,
identifier-5, or identifier-6 is evaluated immediately before the transfer of data into
the respective data item.

22. Any subscripting associated with the DELIMITED BY identifier, the INTO identifier,
the DELIMITER IN identifier, or the COUNT IN identifier is evaluated once, imme
diately before the examination of the sending fields for the delimiter.

Procedure Division in the Nucleus 7-99

DBCS Support

23. When identifier-1 (the sending field) is a DBCS data item, identifier-6 indicates the
number of DBCS characters (not the number of bytes) examined in the sending field.

24. When identifier-1 (the sending field) is a DBCS data item, identifier-7 indicates the rela
tive DBCS character position in the sending field .

.__ ____________ End ofDBCS Support ____________ __,

7;.100 Language Reference

Example

The following example shows the UNSTRING statement and the execution results:

UNSTRING ID-SEND DELIMITED BY DEL-ID OR ALL "*"
INTO ID-Rl DELIMITER IN ID-Dl COUNT IN ID-Cl

ID-R2 DELIMITER IN ID-D2
(All the data
receiving fields
are defined as
alphanumeric)

ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3
ID-R4 COUNT IN ID-C4

WITH POINTER ID-P
TALLYING IN ID-T
ON OVERFLOW GO TO OFLOW-EXIT.

DEL-ID
ID-SEND at execution at execution

l 1 l 2 131*1*1 4 15161 7 lsl1l1lglelAIBlclDIEIFI 0
·1 • • • •

ID-Rl after
execution

ID-Dl ID-Cl

ID-R2 after
execution

ID-D2

ID-R3 after ID-R4 after
execution execution

ID-D3 ID-C3 ID-C4

(after execution) (after execution) (after execution)

ID-P ID-T The order of execution is:
(pointer) (tallying

field) II 3 characters are placed in ID-Rl.

~ ~ II Because ALL * is specified, one * is placed in ID-Dl.

(after execution
both initialized to
01 before execution)

II 5 characters are placed in ID-R2.

II A ? is placed in ID-D2. The current receiving field
is now ID-R3.

Ill A ? is placed in ID-D3; ID-R3 is filled with spaces;
no characters are transferred, so 0 is placed in ID-C3.

Ill No delimiter is encountered before 5 characters fill
ID-R4; 8 is placed in ID-C4, representing the number
of characters examined since the last delimiter.

II ID-P is updated to 21, the total length of the sending
field + l; ID-T is updated to 5, the number of fields
acted upon. Since there are no unexamined characters
in the ID-SEND, the OVERFLOW EXIT is not taken.

Procedure Division in the Nucleus 7-101

7-102 Language Reference

PART 3. File 1/0, Source Control, and
Inter-Program Communication

PART 3. File 1/0, Source Control, and Inter-Program Communication

Language Reference

Chapter 8. File Input and Output

File Input and Output 8-1

Contents

About This Chapter . 8-5
Introduction . 8-6

Sequential Input-Output . 8-6
Relative Input-Output . 8-6
Indexed Input-Output . 8-7
File Position Indicator . 8-7
I-0 Status . 8-8
AT END Condition . 8-11
INVALID KEY Condition . 8-11
LINAGE-COUNTER . 8-12

Sharing Files on Multiuser Systems . 8-12
Exclusive Mode . 8-13
Shareable Mode . 8-13

Environment Division for File Input and Output . 8-16
INPUT-OUTPUT SECTION . 8-16

General Format . 8-16
FILE-CONTROL Paragraph . 8-17

Function . 8-17
General Format . 8-17

FILE-CONTROL Entry . 8-18
Function . 8-18
General Formats . 8-18
Syntax Rules . 8-22
General Rules . 8-24
Examples . 8-27

I-0 Control Paragraph . 8-29
Function . 8-29
General Format . 8-29
Syntax Rules . 8-32
General Rules . 8-33

Data Division for File Input and Output . 8-34
FILE SECTION . 8-34
Record Description Structure . 8-34
File Description - Complete Entry Skeleton . 8-35

BLOCK CONTAINS Clause . 8-39
Function . 8-39
General Format . 8-39
General Rule . 8-39

CODE-SET Clause . 8-40
Function . 8-40
General Format . 8-40
Syntax Rules . 8-40

DATA RECORDS Clause . 8-42
Function . 8-42
General Format . 8-42
Syntax Rule . 8-42
General Rules . 8-42

LABEL RECORDS Clause . 8-43
Function . 8-43
General Format . 8-43
Syntax Rules . 8-43
General Rule . 8-43

LINAGE Clause . 8-44
Function . 8-44
General Format . 8-44
Syntax Rules . 8-44
General Rules . 8-44

RECORD Clause . 8-47
Function . 8-4 7

8-2 Language Reference

General Format . 8-47
Syntax Rules . 8-47
General Rules . 8-48

RECORDING MODE Clause . 8-50
Function . 8-50
General Format . 8-50
General Rules . 8-50

VALUE OF Clause . 8-51
Function . 8-51
General Format . 8-51
Syntax Rules . 8-51
General Rules . 8-52

Procedure Division for File Input and Output . 8-53
CLOSE Statement . 8-53

Function . 8-53
General Format . 8-53
Syntax Rules . 8-54
General Rules . 8-54

COMMIT Statement . 8-58
Function . 8-58
General Format . 8-58
General Rules . 8-58

DELETE Statement . 8-59
Function . 8-59
General Format . 8-59
Syntax Rules . 8-59
General Rules . 8-60
Example . 8-61

OPEN Statement . 8-62
Function . 8-62
General Format . 8-62
Syntax Rules . 8-63
General Rules . 8-64
Example . 8-67

READ Statement . 8-68
Function . 8-68
General Format . 8-68
Syntax Rules . 8-69
General Rules . 8-71
Examples . 8-74

REWRITE Statement . 8-75
Function . 8-75
General Format . 8-75
Syntax Rules . 8-75
General Rules . 8-76
Example . 8-78

ST ART Statement . 8-79
Function . 8-79
General Format . 8-79
Syntax Rules . 8-82
General Rules . 8-82
Examples . 8-84

UNLOCK Statement . 8-85
Function . 8-85
General Format . 8-85
General Rules . 8-85

USE Statement . 8-86
Function . 8-86
General Format . 8-86
Syntax Rules . 8-87
General Rules . 8-88
Example . 8-88

File Input and Output 8-3

WRITE Statement . 8-89
Function . 8-89
General Format . 8-89
Syntax Rules . 8-90
General Rules . 8-91
Example . 8-96

8-4 Language Reference

About This Chapter

This chapter describes the COBOL Input and Output module and its capability to transfer
data to and from files stored on external media, and to control low-volume data that is
obtained from or sent to an input-output device.

File Input and Output 8-5

Introduction

IBM AIX VS COBOL allows for three distinct kinds of input-output (I-0):

1. Sequential
2. Relative
3. Indexed.

IBM AIX VS COBOL accepts the clause that refers to reel and tape devices for compat
ibility. It is accepted syntactically but has no effect at run time.

Sequential Input-Output

Sequential 1-0 provides a capability to access records of a file in an established sequence.
The sequence is established by writing the records to the file. Sequential 1-0 also provides
for the specification of rerun points and the sharing of memory areas among files.

Organization Of Sequential Files
Sequential files are organized so that each record in the file except the first has a unique
predecessor record, and each record except the last has a unique successor record. These
predecessor-successor relationships are established by the order of WRITE statements
when the file is created. Once established, the predecessor-successor relationships do not
change except when records are added -to the end of the file.

Sequential files are further divided into two subclasses: record-sequential
and line-sequential. Record-sequential files have fixed-length records,
whereas line-sequential records are stored with trailing spaces removed and
are thus variable in length. If the words sequential file or sequential organ
ization are used in this chapter without specifying LINE or RECORD, the
sentence in which they are used applies to both forms.

Access Mode

MF

The only access available for sequential files is sequential access mode. The sequence in
which records are accessed is the order in which the records were originally written.

Relative Input-Output

Relative 1-0 provides a capability to access records of a mass storage file in either a
random or sequential manner. Each record in a relative file is uniquely identified by an
integer value greater than zero which specifies the record's ordinal position in the file.

Organization Of Relative Files
Relative file organization is permitted only on fixed-disk devices. A relative file consists of
records identified by relative record numbers. The file may be thought of ·as composed of a
serial string of areas, each capable of holding a logical record. Each of these areas is iden
tified by a relative record number. Records are stored and retrieved based on this number.
For example, you may retrieve or store the tenth record area, whether or not records have
been written in the first through the ninth record areas.

8-6 Language Reference

Access Mode
In the sequential access mode, records are accessed in the ascending order of the relative
record numbers of all records that currently exist within a file.

In the random access mode, the programmer controls the sequence in which records are
accessed. The desired record is accessed by placing its relative record number in a relative
key data item.

In the dynamic access mode, the programmer may change at will from sequential access to
random access using the appropriate forms of input-output statements.

Indexed Input-Output

Indexed I-0 provides a capability to access records of a mass storage file in either a
random or sequential manner. Each record in an indexed file is uniquely identified by the
value of one or more keys within that record.

Organization of Indexed Files
A file whose organization is indexed is a mass storage file in which data records may be
accessed by the value of a key. A record description may include one or more key data
items, each of which is associated with an index. Each index provides a logical path to the
data records according to the contents of a data item within each record which is the
record key for that index.

The data item named in the RECORD KEY clause of the file control entry for a file is the
prime record key for that file. For purposes of inserting, updating, and deleting records in
a file, each record is identified solely by the value of its prime record key. This value,
therefore, must be unique and must not be changed when updating the record. Key lengths
must not exceed 127 bytes, and this may be further restricted depending on your indexed
sequential file run-time module. Refer to the User's Guide.

A data item named in the ALTERNATE RECORD KEY clause of the file control entry for
a file is an alternative record key for that file. The value of an alternative record key may
not be unique if the DUPLICATES phrase is specified for it. These keys provide alterna
tive access paths for retrieval of records from the file. A maximum number of 63 alternate
keys can be specified.

Access Mode
In the sequential access mode, records are accessed in the ascending order of the record
key values. The order of retrieval of records within a set of records having duplicate
record key values is based on the order in which the records were written into the set.

In the random access mode, the programmer controls the sequence in which records are
accessed. The desired record is accessed by placing the value of its record key in the
record key data item.

In the dynamic access mode, the programmer may change at will from sequential access to
random access using appropriate forms of input-output statements.

File Position Indicator

The file position indicator is a conceptual entity used in this document to specify exactly
the next record to be accessed within a file during certain sequences of input-output oper
ations. The setting of the file position indicator is affected only by the OPEN, START, and
READ statements. The concept of a file position indicator has no meaning for a file
opened in the output or extend mode.

File Input and Output 8-7

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the
specified two-character data item to indicate to the COBOL program the status of that
input-output operation. The value is placed into the two-character data item during the
execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START state
ment, before any applicable USE procedure is executed.

Status Key 1
The leftmost character position of the FILE STATUS data item is known as status key 1.
Status key 1 is set to indicate one of the following conditions upon completion of the input
output operation on a file of any organization.

A list of indications and their meanings are listed below:

0 Successful completion.

Indicates that the input-output statement was successfully executed.

1 AT END

Indicates that the sequential READ statement was unsuccessfully executed. This
may be a result of an attempt to read a record when no next logical record exists in
the file. It may also be a result of the first READ statement being executed for a file
described with the OPTIONAL clause and that file was not available to the program
at the time its associated OPEN statement was executed.

2 Invalid key

Indicates that the input-output statement on a nonsequential file was unsuccessfully
executed as a result of one of the following:

Sequence error
Duplicate key
No record found
Boundary violation.

3 Permanent error

Indicates that the input-output statement was unsuccessfully executed. This may be
the result of a boundary violation for a sequential file or the result of an input
output error, such as a data check parity error or a transmission error.

4 Logic error

Indicates that the input-output statement was unsuccessfully executed. This may be
a result of an improper sequence of input-output operations performed on the file or
a result of violating a limit defined by the user.

9 Run-time environment error message.

Indicates that the input-output statement was unsuccessfully executed as a result of
a condition specified by the run time environment error message number. This value
is used only to indicate a condition not indicated by other defined values of status
key 1 or by specified combinations of the values of status key 1 and status key 2.

8-8 Language Reference

Status Key 2
The rightmost character position of the FILE STATUS data item is known as status key 2
and is used to further describe the results of the input-output operation.

The combination of status key 1 and status key 2 defines the result of the input-output
operation as detailed below.

Successful Completion

If status key 1 contains 0 to indicate the successful completion of the input-output opera
tion, status key 2 may contain one of the following values:

0 (All files.) No further information is available.

2 (Indexed files only.) Indicates one of two possibilities:

• For a READ statement, the key value for the current key of reference is equal to
the value of the same key in the next record within the current key of reference.

• For a WRITE or REWRITE statement, the record just written created a dupli
cate key value for at least one alternate record key for which duplicates are
allowed.

4 (All files.) Indicates that the length of the record being processed does not conform
to the fixed file attributes for that file.

5 (All files.) Indicates that the referenced optional file is not present at the time the
OPEN statement is executed. The OPEN statement was successful. If the OPEN
mode is 1-0 or extend, the file has been created.

7 (Sequential files only.) Indicates that the referenced file is a nonreel/unit medium
for a CLOSE statement with the NO REWIND, REEL/UNIT or FOR REMOVAL
phrase, or for an OPEN statement with the NO REWIND phrase.

AT END Condition with Unsuccessful Completion

If status key 1 contains 1 to indicate the AT END condition, status key 2 can contain one
of the following values:

0 (All files.) Indicates there is no next logical record. This can be caused by two
conditions:

• The end of the file has been reached.

• A sequential READ statement is attempted for the first time on an optional input
file that is not present.

4 (Relative files only.) Indicates the number of significant digits in the relative record
number is larger than the size of the relative key data item described for the file.

INVALID KEY Condition with Unsuccessful Completion

If status key 1 contains 2 to indicate INVALID KEY condition, status key 2 indicates the
cause of the condition by one of the following values:

1 (Sequentially accessed indexed files.) Indicates a sequence error. The ascending
sequence requirements of successive record key values were violated (see "WRITE
Statement" on page 8-89), or the prime record key value was changed by the COBOL
program between the successful execution of a READ statement and the execution of
the next REWRITE statement for the file.

2 (Relative and indexed files only.) Indicates a duplicate key value. An attempt is
made to either WRITE a record that would create a duplicate prime record key or to
WRITE or REWRITE a record that would create a duplicate alternate record key
without the DUPLICATES phrase.

File Input and Output 8-9

3 Indicates no record found. It may be an attempt was made to access a record, identi
fied by a key, and that record does not exist in the file. It may also be that a START
or READ statement was attempted on an optional input file that is not present.

4 (Relative and indexed files only.) Indicates a boundary violation arising from one of
the following conditions:

• An attempt is made to write beyond the externally defined boundaries of a file.

• A sequential WRITE statement is attempted for a relative file, but the number of
significant digits in the relative record number is larger than the size of the rela
tive key data item described for the file.

Permanent Error Condition with Unsuccessful Completion

If status key 1 contains 3 to indicate a permanent error condition, status key 2 can contain
one of the following values to indicate the cause of the error:

0 (All files.) Indicates that no further information is available concerning the cause of
the error.

4 (Sequential files only.) Indicates a boundary violation. An attempt was made to
write beyond the externally defined boundaries of a file.

5 (All files.) Indicates that an OPEN statement with the INPUT, I-0, or EXTEND
phrase was attempted on a required file that is not present.

7 (All files.) Indicates that an OPEN statement was attempted on a file which will not
support the open mode specified in the OPEN statement. The possible violations
are:

• The EXTEND or OUTPUT phrase is specified but the file does not support write
operations.

• The I-0 phrase is specified but the file does not support the input and output
operations permitted for a relative file when opened in the I-0 mode.

• The INPUT phrase was specified but the file does not support read operations.

8 (All files.) Indicates that an OPEN statement was attempted on a file previously
closed with lock.

9 (All files.) Indicates that an OPEN statement was unsuccessful because a conflict
was detected between the fixed file attributes and the attributes specified for that
file in the program.

Logic Error Condition with Unsuccessful Completion

If status key 1 contains 4 to indicate a logic error condition, status key 2 can contain one
of the following values to indicate the cause of the error:

1 (All files.) Indicates that an OPEN statement was attempted for a file already in the
open mode.

2 (All files.) Indicates that a CLOSE statement was attempted for a file not in the
open mode.

3 (All files, sequential access mode only.) Indicates that the last input-output state
ment executed for the associated file, prior to the execution of a DELETE or
REWRITE statement, was not a successfully executed READ statement.

8-10 Language Reference

4 (All files.) Indicates that a boundary violation exists. Possible violations are:

• An attempt was made to WRITE or REWRITE a record larger than the largest
record allowed or smaller than the smallest record allowed. The largest and
smallest records allowed are specified in the RECORD IS VARYING clause of
the associated file.

• An attempt was made to REWRITE a record to a file, and the record is not the
same size as the record being replaced.

6 (All files.) Indicates that a sequential READ statement was attempted on a file open
in the input or I-0 mode but no valid next record was established. This can be
caused by the following conditions:

• The preceding ST ART statement was unsuccessful.

• The preceding READ statement was unsuccessful but did not cause an END con
dition.

• The preceding READ statement caused an AT END condition.

7 (All files.) Indicates that the execution of a READ or START statement was
attempted on a file not open in the input or I-0 mode.

8 (All files.) Indicates that the execution of a WRITE statement was attempted on a
file not open in the I-0, output, or extend mode.

9 (All files.) Indicates that the executior.. of a DELETE or REWRITE statement was
attempted on a file not open in the I-0 mode.

Run Time Environment Error Message

If status key 1 contains 9 to indicate a run time environment error message, status key 2
contains the run time environment error message number. Refer to the User's Guide.

AT END Condition

The AT END condition can occur as a result of the execution of a READ statement. Refer
to "READ Statement" on page 8-68 for details of the causes of the condition.

INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START, READ,
WRITE, REWRITE, or DELETE statement. Refer to "START Statement" on page 8-79,
"READ Statement" on page 8-68, "WRITE Statement" on page 8-89, "REWRITE
Statement" on page 8-75, and "DELETE Statement" on page 8-59 for details on the causes
of the condition.

When the INVALID KEY condition is recognized, the run time environment takes these
actions in the following order: '

1. A value is placed in the FILE STATUS data item, if specified for this file, to indicate
an INVALID KEY condition. Refer to "I-0 Status" on page 8-8.

2. If the INVALID KEY phrase is specified in the statement causing the condition,
control is passed to the INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this
file, either explicitly or implicitly, the procedure is executed.

File Input and Output 8-11

When the INVALID KEY condition occurs, execution of the input-output statement which
recognized the condition is unsuccessful and the file is not affected.

Note: INVALID KEY does not trap errors when status key 1 is set to 9. Such errors
must be trapped either by explicitly testing the status key or by using declaratives
instead of the INVALID KEY clause.

Valid Combinations of Status Keys 1 and 2
In Figure 8-1, S indicates a sequential file, R indicates a relative file, and I indicates an
indexed file.

A particular combination of status key 1 and status key 2 is valid for a given file organiza
tion if the letter for the organization is found at the corresponding intersection in the
table.

Status Status Key 2

Key 1 0 1 2 3 4 5 6 7 8 9

Successful SRI I SRI SRI s
Completion,
0

At End, SRI R
1

Invalid I RI RI RI
Key,
2

Permanent SRI s s SRI SRI SRI
Error,
3

Logic SRI SRI SRI SRI SR.I SRI SRI SRI
Error,
4

Implementor Run Time Environment Error Message (SRI)
Defined,
9

Figure 8-1. Valid Combinations of File Status Keys 1 and 2

LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a special register generated by the
presence of a LINAGE clause in a file description entry for a sequential file. The implicit
description is that of an unsigned integer whose size is equal to integer-1 or the data item
referenced by data-name-1 in the LINAGE clause. Refer to "LINAGE Clause" on
page 8-44.

Sharing Files on Multiuser Systems

The Run Time Environment (RTE) supports the AIX VS COBOL multiuser facilities. The
multiuser facilities allow files to be shared between users in a multiuser environment and
allow programs accessing those files to prevent access to records or entire files while data
is being updated.

Files are either active or inactive. An active file is open to one or more run-units. An
inactive file is not open to any run-unit.

8-12 Language Reference

Active files may be in one of two modes:

• exclusive
• shareable.

Exclusive Mode

A file in exclusive mode is open to one run-unit only, and any other run-unit which
attempts to access it receives a file locked error and is denied access. Exclusive mode
implies that a file lock is held by the one run-unit which is able to access the file; the file
lock is released by the run-unit closing the file.

Shareable Mode

A file in shareable mode is available to any number of run-units, each of which may
protect data while using the file by locking one or more records in the file. This prevents
other run-units accessing the individual locked records, but does not prevent access to the
file otherwise. The organization of the file affects the way the file can be shared.

Sequential Files
Line-sequential files opened in OUTPUT or EXTEND mode can explicitly or implicitly be
made shareable, but records cannot be locked in the file. A run-unit cannot lock multiple
records in a file whose organization is sequential. Each run-unit sharing access to a
sequential file may be locking a single record in that file.

Relative and Indexed Files
Files opened in INPUT mode are shareable, but records cannot be locked in the file. Each
run-unit sharing access to a file may be locking either a single record or multiple records
in that file. A run-unit cannot select single record locking and multiple record locking for
the same file.

Single Record Lock
A run-unit that has specified single record locking for a file (either explicitly or implicitly)
can hold only one record lock in that file at any time. There are two ways for a run-unit
to acquire a record lock:

• Manually
• Automatically.

Manual Record Locking

The run-unit acquires a lock only if it accesses a record with a READ WITH LOCK state
ment.

For sequential files, the lock is released by the same run-unit:

• Accessing any record in the file with any file operation
• Executing an UNLOCK statement on that file
• Executing a COMMIT statement
• Closing the file.

For relative and indexed files, the lock is released by the same run-unit:

• Accessing any record in the file with any file operation except START
• Executing an UNLOCK statement on the file
• Executing a COMMIT statement on the file
• Closing the file.

File Input and Output 8-13

Automatic Record Locking

The run-unit acquires a lock whenever it reads a record in the file. The lock is released as
for manual record locking. Refer to the previous section.

Multiple Record Locks
Locking of multiple records in a file is available only when the organization of that file is
relative or indexed.

A run-unit that has specified multiple record locking for a file may hold a number of
record locks in one file simultaneously. This prevents other run-units accessing those
locked records but does not deny them access to any records that are not locked. There
are two ways record locks can be acquired: manually or automatically.

Manual Record Locking

The run-unit acquires a lock only if it accesses a record with a READ WITH KEPT LOCK
statement. If the WRITELOCK directive was specified at the time the program was com
piled, then a lock is acquired if the run-unit accesses the file with a WRITE or REWRITE
statement. The locks are released by the same run-unit:

• Executing an UNLOCK statement for that file
• Executing a COMMIT statement
• Closing the file.

Automatic Record Locking

The run-unit acquires a lock whenever it reads a record in the file. If the WRITELOCK
directive is specified at the time the program is compiled, then a lock is acquired if the
run-unit accesses the file with a WRITE or REWRITE statement. The locks are released
by the same run-unit:

• Executing an UNLOCK statement for that file
• Executing a COMMIT statement
• Closing the file.

Table 8-1 and Table 8-2 show the default type of locking used when files are opened in a
particular open mode. The default locking can be modified if the AUTOLOCK directive is
specified at the time the program is compiled. The table also indicates whether the default
type of locking may be overridden for individual files. This is done by inserting a suitable
clause in the SELECT statement for the file.

Table 8-1. Default Locking for Sequential Files
AUTO LOCK

OPEN No Directive Directive Override in SELECT State-
Mode ment
INPUT No lock No lock Yes, but only to EXCLUSIVE.
I-0 Exclusive Automatic Yes, lock on single record.
OUTPUT Exclusive Exclusive No.
EXTEND Exclusive No lock Yes, the file can be made

shareable but no records are
locked.

8-14 Language Reference

Table 8-2. Default Locking for Relative and Indexed Files
AUTO LOCK

OPEN No Directive Directive Override in SELECT State-
Mode ment

INPUT No lock No lock Yes, but only to EXCLUSIVE.

I-0 Exclusive Automatic Yes.
lock on single
record

OUTPUT Exclusive Exclusive No.

Notes:

1. A file opened for OUTPUT causes the file to become exclusive, regardless of the speci
fied lock mode.

2. Explicitly or implicitly specifying automatic or manual record locking for a file causes
the file to become shareable. A file opened for I-0 acquires record locks. A file opened
for INPUT or EXTEND never acquires record locks.

3. A programmer can select the type of locking for individual files by accepting the
default locking or by including a LOCK MODE clause in the file control entry. Refer
to "FILE-CONTROL Entry" on page 8-18.

In single user environments the multiuser syntax has no effect on run time, but programs
can be developed for use in both single and multiuser environments.

File Input and Output 8-15

Environment Division for File Input and Output

File input and output for the Environment Division of the program is described in the fol
lowing sections.

INPUT-OUTPUT SECTION

File input and output for the Environment Division is controlled by the INPUT-OUTPUT
SECTION of the program.

General Format

The following figure shows the general format of the Input-Output Section:

INPUT-OUTPUT SECTION.~~-----~~--------.-----'
NO WORDS----~ FILE-CONTROL.

' file-control-entry

.. I
..._,_[_I--0--C-ON-T-RO-L-.------------....--'

Li nput-output-control-entry _J

s:.16 Language Reference

MF

FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other file
related information.

General Format

The following figure shows the general format of the FILE-CONTROL paragraph:

' .. .,., _ _,.L------J-,-- fi l e-contro 1-entry ___.,...
FILE-CONTROL.

MF

The FILE-CONTROL reserved word is optional when the MF option is used.

File Input and Output 8-17

FILE-CONTROL Entry

Function

The FILE-CONTROL entry names a file and may specify other file-related information.

General Formats

The following figures show the general formats of the FILE-CONTROL entry:

8-18 Language Reference

Format 1 (Sequential Files)

--SELECT t ~ file-name-1 ASSIGN
OPTIONAL-----1
NOT OPTIONAL

TO

11>---.---,-----,..--,--------------.-.-externa 1-f i 1 e-reference -~-

..

..

..

..

..

..

..

DYNAMIC

LINE ADVANCING _____ ____,

MULTIPLE--,- REEL
LuNIT

DISK

FILE
data-name-1-----<
l itera 1-1-----~

l----,;------,--,-DJSK----------------,-------1

EXTERNAL
DYNAMIC

KEYBOARD
DISPLAY
PRINTER
PRINTER-1

external-file-reference
data-name-1-------1
l i teral-1------~

DISK FROM data-name-1--------------------~

L RESERVE -r i nteger-1--,---r-------,--.----r-"
L NO------' LAL TERNATE _J t AREA~

AREAS

E ORGANIZATION
E d SEQUENTIAL :J

RECORD
LINE

L PADDING L -.J L data-namei03
CHARACTER IS literal-2

L RECORD DELIMITER-~--~~- STANDARD-1 ~
LIS __J L character-string __J

L ACCESS L =:J SEQUENTIAL :J
MODE IS

LOCK L MODE IS :J IL MANUAL L AUTOMATIC WITH - LOCK ON L J L RECORD
MULTIPLE RECORDS

EXCLUSIVE--------------------'

STATUS -~L--_J~-ctata-name-2
IS

L PASSWORD L JS OJ data-name-4 =1 ""'

[_ data-name-3 3

..

..

..

..

..

..

MF

MF

MF

VSC2

osvs

MF

MF

VSC2

OSVS VSC2

Fffe Input and Output 8-19

Format 2 (Relative Files)

--SELECT t ~ file-name-1 ASSIGN L _J
OPTIONAL - TO
NOT OPTIONAL

..

---..---,--.-----,---..---.....--,-- externa 1-fi le-reference--,--.~--------•

..

EXTERNAL
DYNAMIC

DISK data-name-1------1
literal-1----~

. DISK FROM data-name-1-------------'

L RESERVE Li nteger-1-,.--.-----....--.-------.-~
No--~ LALTERNATEJ LAREA_J

LAREAS_J

..

...... -....-[--------j-...--RELATIVE----------------

ORGANIZATION L
IS

..
[ACCESS L OJ

MODE IS
~SEQUENTIAL L ~

phrase-1
RANDOii =:J phrase-!
DYNAMIC

LOCK L J r= MANUAL
WITH - LOCK ON [J L RECORD

MULTIPLE RECORDS
MODE IS L AUTOMATIC

EXCLUSIVE------------------'

..

..

STATUS---.--.....-- data-name-2
L1s_J

[PASSWORD LIS :J data-name-4 OJ

where phrase-1 is:

.,._ RELATIVE_-~L------..-- data-name-7--+
KEY IS_j

8-20 Language Reference

L data-name-3 J

..

..

MF

MF

MF

VSC2

osvs

MF

VSC2

OSVS VSC2

Format 3 (Indexed Files)

- SELECT-~c---------file-name-1 ASSIGN----~-------------·

L OPTIONAL =J TO
NOT OPTIONAL

-----------------external-file-reference---------------•

EXTERNAL

DYNAMIC

DISK data-name-1-----__,

1 iteral -1------~

DISK FROM data-name-1-----------------

RESERVE~ i nteger-1
L_NO----'

ORGANIZATION ---,..-------1

ALTERNATE AREA

AREAS
IS

--INDEXED-~L-------------------------,..-----------.~

ACCESS-~L----_j-~.,...c=--SEQUENTIAL
MODE IS l____ RANDOM _______ _,

DYNAMIC---------

WITH -- LOCK ON -.,..-c----MJ---r--,-L- RECORD

MULTIPLE RECORDS

LOCK ~L----_j-~r=~- MANUAL

MODE IS L AUTOMATIC

EXCLUSIVE------------------------

--RECORD-~L---_J-~L-data-name-7: 1 L _J
KEY IS phrase-1 ____J PASSWORD~--~- data-name-4 L1s_J

ALTERNATE RECORD ~-----data-name-8-------------~-,..----------t
L KEY IS _J L phrase-2 PASSWORD--~-data-name-11

l1sJ
1----.-- DUPLICATES

WITH

....
STATUS-~--~-data-name-2

Lis_J L data-name-3 =3
where phrase-1 h: phrase-2 h:

'

..

-- spl i t-key-name-1
L data-name-6 ~

.. - split-key-name-2 =-·c------:J-r-+ ..
data-name-9

MF

MF

MF

VSC2

osvs

HF

OSVS VSC2

OSVS VSC2

VSC2

HF

File Input and Output 8-21

Syntax Rules

The following rules apply to the FILE-CONTROL entry:

All Formats (All Files)

1. The SELECT clause must be specified first in the file control entry. The clauses fol
lowing the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once, and only once, as file
name in the FILE-CONTROL paragraph. Each file specified in the file control entry
must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL
clause is implied.

4. data-name-2 must be defined in the Data Division as a two-character
alphanumeric data item, or as a two-character numeric data item with OSVS VSC2
USAGE DISPLAY. data-name-2 must not be defined in the FILE
SECTION, the REPORT SECTION, or the COMMUNICATION
SECTION.

5. data-name-3 must be defined as a group item of 6 bytes in the VSC2
WORKING-STORAGE or LINKAGE SECTION of the Data Division.

6. All data-names may be qualified.

7. data-name-I may be declared in the Data Division as an alphanumeric or
group data item long enough to hold the external name of the file. If it is
not explicitly declared within the program, the AIX VS COBOL system
will declare it implicitly as an alphanumeric data item long enough to
hold the maximum permissible size of program name.

If data-name-I occurs in the FROM option, the data item must be explic
itly declared in the Data Division.

8. The NOT OPTIONAL phrase may be specified only for files to be opened
input-output.

9. If both EXTERNAL and DYNAMIC are omitted from the ASSIGN
clause, one of these options is assumed according to the setting of a
COBOL system directive. Refer to the User's Guide.

If the EXTERNAL option is used, then an external-file reference must be
specified.

If the DYNAMIC option is used, then data-name-I or literal-I must be
specified.

MF

VSC2

MF

MF

10. data-name-4 and data-name-11 must be defined in the OSVS VSC2
WORKING-STORAGE SECTION as an alphanumeric data item.

11. The OPTIONAL phrase may only be specified for files opened in the INPUT, I-0, or
EXTEND mode. Its specification is required for files that are not always present each
time the object program is executed.

Format 1 (Sequential Files)

12. KEYBOARD means console input. MF

13. DISPLAY means console output. MF

14. PRINTER specifies the main printer on the system.

15. PRINTER-I specifies the second printer on the system.

16. If both RECORD and LINE are omitted from the ORGANIZATION
phrase, one of these options is assumed according to the setting of the
COBOL system directive SEQUENTIAL. Refer to the User's Guide.

8-22 Language Reference

MF

MF

MF

17. When the ORGANIZATION clause is not specified, sequential organization is assumed.
The exact format (LINE-SEQUENTIAL or RECORD-SEQUENTIAL) depends on the
setting of the AIX VS COBOL system directive SEQUENTIAL. Refer to the User's
Guide.

18. literal-2 must be a one character nonnumeric literal.

19. data-name-5 may be qualified. It must be defined in the Data Division as a one char
acter data item of the alphanumeric category. data-name-5 cannot be defined in the
COMMUNICATION, FILE, or REPORT SECTIONS of the Data Division.

20. Character string must not be a reserved word, a user name or a literal.

Format 2 (Relative Files)

21. If a relative file is to be referenced by a START statement, the RELATIVE KEY
phrase must be specified for that file.

22. data-name-7 must not be defined in a record description entry associated with that file
name.

23. The data item referenced by data-name-7 must be defined as an unsigned integer.

Format 3 (Indexed Files)

24. split-key is a concatenation of one or more data items within a record
associated with the file name. It can be referenced only in ST ART and
READ statements.

25. The data items referenced by data-name-7 and data-name-8 and any
data-names referenced by split-key-name-1 and split-key-name-2 must be
defined as alphanumeric data items within a record description entry
associated with the file name.

26. data-name-7, data-name-8, and any data-names referenced by
split-key-name-1 and split-key-name-2 cannot describe an item whose size
is variable. Refer to "OCCURS Clause" on page 12-5.

MF

MF

MF

27. data-name-8 cannot reference an item whose leftmost character position corresponds to
the leftmost character position of an item referenced by data-name-7 or by any other
data-name associated with this file.

28. If the PASSWORD clause is specified, it must immediately follow its OSVS VSC2
associated RECORD KEY or ALTERNATE RECORD KEY clause.

DBCS Support

29. data-name-7 and data-name-8 can be DBCS data items. The key is treated as an alpha
numeric item for the input and output statements for the file names in the SELECT
clause. When you specify data-name-7 or data-name-8 as a DBCS data item, a KEY
specified on the READ statement must also be a DBCS data item .

.____ ___________ End of DBCS Support -----------~

File Input and Output 8-23

General Rules

The following rules apply to the file-control entry:

All Formats (All Files)

1. The ASSIGN clause specifies the association of the file referenced by file name to a
storage medium. Refer to the User's Guide. The first assignment takes effect. Subse
quent assignments within any one ASSIGN clause are for documentation purposes
only.

2. The RESERVE clause allows the user to specify the number of input-output areas allo
cated. The RESERVE clause is for documentation purposes only. However, it does
have the effect of implicitly declaring a data item AREA-VALUE, which is PIC 9(2)
COMP and contains the number of areas reserved.

3. The ORGANIZATION clause specifies the logical structure of a file. The file organiza
tion is established at the time a file is created and cannot be changed.

4. When the FILE STATUS clause is specified, a value is moved by the Run Time Envi
ronment into the data item specified by data-name-2 after the execution of every state
ment that references the file either explicitly or implicitly. This value indicates the
status of execution of the statement. Refer to "I-0 Status" on page 8-8.

5. Data-name-3, if specified, is documentary only.

6. The PASSWORD clause is documentary only.

7. The use of the reserved word DYNAMIC in an ASSIGN clause indicates
that the value of the literal-1 or data-name-1 in the ASSIGN clause is the
name of the specified file in the external file storage environment.

8. The use of the reserved word EXTERNAL in an ASSIGN clause indi
cates that external-file-reference identifies the specified file to the external
environment for possible further mapping to an external file storage envi
ronment name. Refer to the User's Guide for details on setting up the
external file name for your particular operating environment.

If the external-file-reference contains the character -, then only the part
of the name following the last - is used to identify the file to the external
environment.

9. The DISK option without external file reference, data-name-1, or literal-1
specifies a disk file whose name on the fixed-disk will be given in a
VALUE OF FILE-ID clause in the file description of the file. If the file
description contains no VALUE OF FILE-ID clause, the name of the
disk file is assumed to be the same as the internal file name.

10. If any of the keywords DISK, KEYBOARD, DISPLAY, PRINTER, or
PRINTER-1 is followed by external-file-reference, data-name-1, or
literal-1, the keyword is ignored.

Otherwise the defaults used are:

KEYBOARD "stdin"

DISPLAY "stdout"

PRINTER "/dev/lpO"

PRINTER-1 "/dev/lpl"

DISK file-name-1

11. The DISK option with the FROM option specifies a disk file whose name
on the fixed-disk is the value of data-name-1. However, if an OPEN
statement is executed for that file, and data-name-1 contains all spaces,
the name of the disk file is assumed to be the same as the internal file
name.

8-24 Language Reference

VSC2

OSVS VSC2

MF

MF

MF

MF

VSC2

12. The LOCK MODE clause is an optional clause of the file control entry
and is used to specify the locking technique used for the file.

If the LOCK MODE clause is omitted, opening the file causes it to
become exclusive, unless the file is opened for INPUT. In that case, the
file becomes shareable.

When LOCK MODE IS EXCLUSIVE is specified, the run-unit acquires
a lock on the whole file when it opens the file.

When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL
is specified, the file the run-unit opens is shareable.

The LOCK MODE clause is documentary for line sequential files.

Format 1 (Sequential Files)

MF

13. The MULTIPLE REEL or MULTIPLE UNIT phrase should be specified if it is possible
or intended for the file to be closed by use of the CLOSE REEL or CLOSE UNIT state
ment. Use of the MULTIPLE REEL or MULTIPLE UNIT phrase causes an error if
the FILESHARE directive was specified on the AIX VS COBOL command line.

Magnetic tape access is allowed to blocked devices only. Multiple reel and rewind
syntax is accepted by the compiler, but has no effect at run time.

14. When LINE-SEQUENTIAL ORGANIZATION is specified, either implicitly or explic
itly, the file is treated as though it had variable-length records. Each record contains
one line of data. The definition of a line of data varies with different operating
systems. Some terminate line records with the Carriage Return and Line Feed charac
ters, or one of them, and some pad the records out as fixed-length records. Therefore,
AIX VS COBOL is always compatible with the editor software in any operating system
in this respect.

15. Records in the file are accessed in the sequence specified by predecessor-successor
record relationships. Predecessor-successor record relationships are established by the
execution of WRITE statements when the file is created or extended.

16. Using the LINE ADVANCING FILE phrase causes a file suitable for a printer to be
produced. This file will have no space compression for tab characters. The file will
have an initial carriage-return (OD hexadecimal) character. Each record in the file is
written with AFTER ADVANCING 1 LINE as the default advancing phrase.

17. The WITH LOCK ON RECORD clause is for documentary purposes
only. LOCK MODE IS MANUAL and LOCK MODE IS AUTOMATIC
imply single record locking.

Line-sequential files cannot be opened for I-0 and so cannot acquire a
record lock.

18. The PADDING CHARACTER clause is for documentary purposes only.

19. The RECORD DELIMITER clause is for documentary purposes only.

Format 2 (Relative Files)

MF

MF

MF

20. When the access mode is sequential, records in the file are accessed in order of
ascending relative record numbers of existing records in the file.

21. If the access mode is random, the value of the RELATIVE KEY data item indicates the
record to be accessed.

22. When the access mode is dynamic, records in the file may be accessed sequentially
and/or randomly. Refer to general rules 20 and 21 in this list.

23. All records stored in a relative file are uniquely identified by relative record numbers.
The relative record number of a given record specifies the logical ordinal position of
the record in the file. The first logical record has a relative record number of 1, and
subsequent logical records have relative record numbers of 2, 3, 4,

24. The data item specified by data-name-7 is used to communicate a relative record
number between the user and the operating system.

File Input and Output 8-25

25. The WITH LOCK ON RECORD clause specifies single record locking
for the file.

The WITH LOCK ON MULTIPLE RECORDS clause specifies multiple
record locking for the file. This clause must be present if multiple record
locking is required.

If LOCK MODE IS AUTOMATIC WITH LOCK ON RECORD is speci
fied for a file, a record lock is acquired by the execution of the READ
statement and released on the execution of a subsequent I-0 operation,
with the exception of a ST ART statement.

If LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE
RECORDS is specified for a file, a record lock is acquired by the exe
cution of the READ statement and is not released until a CLOSE,
COMMIT, or UNLOCK statement is executed. Refer to the User's Guide.

If the LOCK MODE IS MANUAL WITH LOCK ON RECORD is speci
fied, a lock is acquired by a READ statement only when the READ state
ment includes the WITH LOCK phrase.

If LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE
RECORDS is specified, a record lock is acquired by the READ WITH
KEPT LOCK statement.

When the lock mode is MANUAL or AUTOMATIC, single record
locking is assumed unless the WITH LOCK ON MULTIPLE RECORDS
phrase is included.

Format 3 (Indexed Files)

MF

26. When access mode is sequential, records in the file are accessed in order of ascending
record key values within a given key of reference.

27. If the access mode is random, the value of the record key data item indicates the
record to be accessed.

28. When the access mode is dynamic, records in the file may be accessed sequentially
and/or randomly. Refer to rules 26 and 27 in this list.

29. The RECORD KEY clause specifies the prime record key for the file. The values of
the prime record key must be unique among records of the file. This prime record key
provides an access path to records in an indexed file.

30. An ALTERNATE RECORD KEY clause specifies a record key that is an alternative
record key for the file. This alternate record key provides an alternate access path to
records in an indexed file.

31. The data description of data-name-7 and data-name-8, as well as relative locations
within a record, must be the same as that used when the file was created. The number
of alternate keys for the file must also be the same as that used when the file was
created.

32. The DUPLICATES phrase specifies that the value of the associated alternate record
key may be duplicated within any of the records in the file. If the DUPLICATES
phrase is not specified, the value of the associated alternate record key must not be
duplicated among any of the records in the file.

8-26 Language Reference

33. The WITH LOCK ON RECORD clause specifies single record locking
for the file.

The WITH LOCK ON MULTIPLE RECORDS clause specifies multiple
record locking for the file. This clause must be present if multiple record
locking is required.

If LOCK MODE IS AUTOMATIC WITH LOCK ON RECORD is speci
fied for a file, a record lock is acquired by the execution of the READ
statement.

If LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE
RECORDS is specified for a file, a record lock is acquired by the READ
statement.

If the LOCK MODE IS MANUAL WITH LOCK ON RECORD is speci
fied, a lock is acquired by a READ statement only if the READ statement
includes the WITH LOCK phrase.

If LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE
RECORDS is specified, a record lock is acquired by the READ WITH
KEPT LOCK statement.

When the lock mode is MANUAL or AUTOMATIC, single record
locking is assumed unless the WITH LOCK ON MULTIPLE RECORDS
phrase is included.

Examples

The following examples show the FILE-CONTROL paragraph:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT ACCT-TRANS ASSIGN TO "ACCTPAY. TRN''
RESERVE 2 AREAS
ORGANIZATION IS SEQUENTIAL
RECORD DELIMITER IS STANDARD
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS FILE-STATUS.

ENVIRONMENT DIVISION.

INPUT~OUTPUT SECTION.
FI LE-CONTROL.

SELECT ACCT-PAYABLE ASSIGN TO "ACCTPAY.MAS"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS ACCT-NO
FILE STATUS IS FILE-STATUS.

MF

File Input and Output 8-27

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT ACCT-HIST ASSIGN TO "ACCTPAY.HIS"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ACCT-NO
ALTERNATE RECORD KEY IS ACCT-DATE WITH DUPLICATES
FILE STATUS IS FILE-STATUS.

8-28 Language Reference

1-0 Control Paragraph

Function

The 1-0 control paragraph specifies the points at which rerun is established, the memory
area shared by different files, and for files with sequential organization, the location of
files on a multiple file reel. Multiple file and tape syntax is accepted by the compiler, but
has no effect at run time.

General Format

The following figures show the general format of 1-0 control:

File Input and Output 8-29

Format 1 (Sequential Files)

~ I-0 CONTROL.---------------------------

•

•

•

RERUN.....---------.,.--....----.----.-- END L J [REEL~ fi 1 e-name-2
ONT file-name-1 EVERY OF UNIT J -OF -

character-string integer-1 RECORDS
integer-2 CLOCK-UNITS--------1
condition-name--------~

[SAME -.L------,-J~L--J-.---.L--_J-.--- fil e-name-3 -L_, _ _l J
RECORD AREA FOR

[MULTIPLE FILE~L--J~L----J~!ne-name-5 L _J
TAPE CONTAINS POSITION integer-3

L ' 1J APPLY 1 WRITE-ONLY-=:J--r--...-L--J--,.-fi le-name-6
CORE-INDEX 1;~~.,J ON
RECORD-OVERFLOW

... --.-c-A-PP_L_Y_R_E_OR_G ___ CR-1-TE_R_IA--~-L===-=-_J-=--=--d-a-ta---na_m_e __ L_o_N _ _J __ f_i l-e--n-a_me ___ B_:J-r--. -
TO

8-30 Language Reference

•

..

..

osvs

osvs

Format 2 (Relative and Indexed Files)

-I-0-CONTROL. --------------------------

RERUN ON1file-name-l J L J
L_character-string EVERY ~

i nteger-1 RECORDS [OF J file-name-2

i nteger-2 CLOCK-UNITS ------1

conditi on-name-------~

. L SAME~--~--~L-J~L_, • ..J]
L RECORD ::=J L AREA :=J FOR

• [APPLY T WRITE-ONLY-. -J-.--,-L--_J-r-t-n™-J J
L CORE-INDEX--j--1 ON

RECORD-OVERFLOW

...... ~[-A-P-PL_Y_R_E_O_RG---CR_I_T_ER_I_A_L_T_O_~--da_t_a--n-am_e __ L_o_N_~--f-i-le---na_m_e--8-~-,--. ---

..

..

osvs

osvs

File Input and Output 8-31

Syntax Rules

This following syntax rules apply to I"O control:

All Formats (All Files)

1. The I-0 CONTROL paragraph is optional.

2. file-name-1 must be a sequentially organized file.

3. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is
specified, a character-string must be given in the RERUN clause.

4. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are consid
ered separately in the following.

More than one SAME clause may be included in a program, subject to the following
restrictions:

a. A file name must not appear in more than one SAME AREA clause.

b. A file name must not appear in more than one SAME RECORD AREA clause.

c. If one or more file names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all of the file names in that SAME AREA clause must appear in the
SAME RECORD AREA clause. However, additional file names not appearing in
that SAME AREA clause may also appear in that SAME RECORD AREA clause.
The rule that only one of the files mentioned in a SAME AREA clause can be open
at any given time takes precedence over the rule that all files mentioned in a
SAME RECORD AREA clause can be open at any given time.

5. Character-string must not be a reserved word, a literal, or a user name. MF

6. The files referenced in the SAME AREA or SAME RECORD AREA clause need not all
have the same organization or access.

Format 1 (Sequential Files)

7. The END OF REEL/UNIT clause may only be used if file-name-2 is a sequentially
organized file.

8. More than one RERUN clause may be specified for a given file-name-2 subject to the
following restrictions:

a. When multiple integer-1 RECORD clauses are specified, no two of them can specify
the same file-name-2.

b. When multiple END OF REEL or END OF UNIT clauses are specified, no two of
them may specify the same file-name-2.

Format 2 (Relative And Indexed Files)

9. When multiple integer-1 RECORDS clauses are specified, no two of them may specify
the same file-name-2.

10. Only one RERUN clause containing the CLOCK-UNITS clause may be specified.

S-32 Language Reference

General Rules

The following general rules apply to I-0 control:

All Formats (All Files)

1. The RERUN clause is treated as for documentation purposes only.

2. The SAME AREA clause specifies that two or more files that do not represent sort or
merge files are to use the same memory area during processing. The area being shared
includes all memory area assigned to the files specified. Therefore, it is not valid to
have more than one of the files open at the same time. Refer to syntax rule 4c on
page 8-32.

3. The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing of the current logical record. All of the files may be open
at the same time. A logical record in the SAME RECORD AREA is considered as a
logical record of each opened output file listed in this SAME RECORD AREA clause
and of the most recently read input file listed in this SAME RECORD AREA clause.
This is equivalent to an implicit redefinition of the area; records are aligned on the
leftmost character position.

4. The APPLY clause is for documentation purposes only. OSVS

Format 1 (Sequential Files)

5. The MULTIPLE FILE clause is for documentation purposes only.

File Input and Output 8-33

Data Division for File Input and Output

This section describes file input and output for the Data Division of an AIX VS COBOL
program.

FILE SECTION

In an AIX VS COBOL program, the file description entry (FD) represents the highest level
of organization in the FILE SECTION. The FILE SECTION header is followed by a file
description entry consisting of a level indication (FD), a file name, and a series of inde
pendent clauses. The FD clauses specify the size of the logical and physical records, the
presence or absence of label records, the value of implementer-defined label items, and the
names of the data records which comprise the file. The entry itself is terminated by a
period.

Record Description Structure

A record description consists of a set of data description entries which describe the charac
teristics of a particular record. Each data description entry consists of a level number fol
lowed by a data-name, if required, followed by a series of independent clauses as required.
A record description has a hierarchical structure. Therefore, the clauses used with an
entry may vary considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in "Concept Of Levels" on
page 2-16, while the elements allowed in a record description are shown in "Data
Description - Complete Entry Skeleton" on page 6-7.

8-34 Language Reference

File Description - Complete Entry Skeleton

The file description furnishes information concerning the physical structure, identification,
and record names pertaining to a given file.

General Formats
The following figures show the general formats of file description:

Format 1 (Sequential Files)

- FD file-name~------------------------.---..
BLOCK i nteger-2 ------<

L CONTAINS J Li nteger-I TO J CHARACTERS
RECORDS

~ L RECORD t~P_h_ra_s_e_-I___,---.-------.-- ~
~ integer-7

CONTAINS J L integer-6 TO _J L CHARACTERS

LABEL T RECORD~ STANDARD
L IS OMITTED---;

RECORDS ~ I
ARE f

data-name-2

VALUE OF ldata-name-3 L _J L data-name-4
IS literal-I

FILE-ID L _J Ldata-name-7
IS literal-3

RECORDING----- F -----1
MODE IS ' v-----1

u-----1
s-----1

VARIABLE
FIXED

DATA 1 RECORD~ data-name-8

RECORDS -c::j

where phrase-I is:

.. LIS J VARYING
IN SIZE

.. [DEPENDING [J data-name-I J
ON

ARE

TO integer-5 CHARACTERS

OSVS VSC2

MF

OSVS VSC2 MF

MF

File Input and Output 8-35

~1

L LINAGE L J Ldata-name-Hl 1 L J C ~ ~ 2
IS i nteger-8 _J LINES J FOOTING ~--~~ldata-name-11

WITH LAT J integer-9

~-:~~~~~~~~~~~~~~~~~~~
[J TOP -r data-name-12 J L ~OTTOM-i- data-name-lJ
LLINES AT Linteger-Hl~ LLINES ATJ Linteger-11

CODE-SET [IS J a 1 phabet-name record-description-entry

t
FOR identifier-1 MF

8-36 Language Reference

Format 2 (Relative and Indexed Files)

---FD file-name--,.-------------------------,.-•
BLOCK L J L J i nteger-2

CONTAINS integer-1 TO

~ L RECORD l,__P_h_ra_s_e-_1~~-----~ l
[integer-7 j

CONT AI NS J L i nteger-6 TO _J L CHARACTERS

L IS OMITTED---l
- LABEL T RECORD~ STANDARD

RECORDS ~ I
ARE T

data-name-2

VALUE OF 1data-name-3 L
IS_J

FILE-ID
Lis_J

L data-name-4
literal-1

L data-name-7
literal-3

RECORDING~--~~- F
MODE IS v------1

u------1
s------1
VARIABLE
FIXED---'

t

CHARACTERS
RECORDS

L record-description-entry J

where phrase-1 is:

.. L J VARYING
IS IN SIZE 1----,- i nteger-4 TO integer-5 CHARACTERS

FROM

" L DEPENDING LON OJ data-name-1 J

OSVS VSC2

MF

OSVS VSC2 MF

NF

File Input and Output 8-37

Syntax Rules
The following syntax rules apply to file description:

All Formats (All Files)

1. The level indicator FD identifies the beginning of a file description and must precede
the file name.

2. The clauses which follow the name of the file are optional in many cases, and their
order of appearance is immaterial. All clauses are optional.

3. One or more record description entries must follow the file description entry.

4. If the VALUE OF FILE-ID clause is specified, literal-3 must be a nonnu- MF
meric literal and cannot be a figurative constant.

8'.'"38 Language Reference

BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

The following figure shows the general format of the BLOCK CONTAINS clause:

..__BLOCK ~[-C-O-NT_A_IN_S_J~~L-i-nt-e-ge-r--1-TO-OJ~- i nteger-2 ~E-C-HA-R-AC-T-~-S~--1.,_4

RECORDS

General Rule

This clause is required for documentation purposes only.

File Input and Output 8•39

CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to represent data on the
external media.

It may only be specified for files with sequential organization.

General Format

The following figure shows the general format of the CODE-SET clause:

--cooE-SET L ~ alphabet-none [J
IS ' I

FOR identifier-I

Syntax Rules

The following syntax rules apply to the CODE-SET clause:

1. When the CODE-SET clause is specified for a file, all data in the file
must be described as USAGE IS DISPLAY and any signed numeric data
must be described with the SIGN IS SEPARATE clause.

This restriction does not apply.

2. The alphabet-name clause referenced by the CODE-SET clause must
not specify the literal phrase.

This restriction does not apply.

3. The CODE-SET clause may only be specified for nondisk files.

4. identifier-1 can be qualified, but must not be subscripted.

5. Each identifier-1 must be a data item described in a record description
for the file and must not be a record description. All identifier-ls must
be described in the same record description.

6. If the optional FOR phrase is specified, the CODE-SET clause specifies
the character code to be used for the data items named. If the FOR
phrase is not specified, the CODE-SET clause specifies the character code
to be used for the whole file.

7. The native character set is assumed to be used for any file, or data item
in a file, to which no CODE-SET clause applies. The native character
set is ASCII by default but can be changed by an AIX VS COBOL
system directive as described in the User's Guide.

g..:40 Language Reference

MF

MF

MF

MF

8. The data in the record area is always in ASCII. If alphabet-name-I has
been equated in the SPECIAL NAMES to EBCDIC, then data affected
by the CODE-SET clause is translated from ASCII to EBCDIC as it is
written to the file, or from EBCDIC to ASCII as it is read from the file.
If alphabet-name-I has been equated in the SPECIAL NAMES to
STANDARD-I, STANDARD-2, NATIVE, or ASCII, no translation is
necessary.

9. For the purposes of this translation, any data item to which a
CODE-SET applies is treated as alphanumeric. No account is taken of
the class and category of the item as described in its data description.

10. If identifier-I has an OCCURS clause, the CODE-SET clause applies to
only the first occurrence of it. If identifier-I has a subordinate item with
an OCCURS clause, the CODE-SET clause applies to the whole of
identifier-I.

MF

File Input and Output 8-41

DATA RECORDS Clause

Function

The DATA RECORDS clause serves only as documentation for the names of data records
with their associated file.

General Format

The following figure shows the general format of the DATA RECORDS clause.

' ...__DATA L RECORD~IS data-name-1-----M

RECORDS
ARE

Syntax Rule

Each data-name-1 is the name of a data record and should have the 01 level number record
description, with the same name, associated with it.

General Rules

The following general rules apply to the DAT A RECORDS clause:

1. The presence of more than one data-name indicates that the file contains more than
one type of data record. These records may be of differing sizes, different formats, etc.
The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no way
altered by the presence of more than one type of data record within the file.

8-42 Language Reference

LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

The following figure shows the general format of the LABEL RECORDS clause:

.,..___LABEL 1 RECORD~ STANDART
IS OMITTED

RECORDS ' I ARE
data-name-I OSVS VSC2

Syntax Rules

The following syntax rules apply to the LABEL RECORDS clause:

1. This clause is not required in every file description entry.

2. data-name-1 is the name of a label record and should have the 01 level OSVS VSC2
number record description with the same name associated with it.

3. data-name-1 must not appear in the DATA RECORDS clause for the file. OSVS VSC2

General Rule

This clause is used for documentation purposes only.

File Input and Output 8-43

LINAGE Clause

Function

The LINAGE clause provides a means for specifying the depth of a logical page in number
of lines. It also provides a means for specifying the size of the top and bottom margins on
the logical page and the line number within the page body at which the footing area
begins.

The LINAGE clause may only be specified for files with sequential organization.

General Format

The following figure shows the general format for the LINAGE clause:

.,...___LINAGE l J Ldata-name-1 1 L J t ~ •
IS integer-1 _J LINES - J FOOTING --~~ldata-name-2

WITH [AT J integer-2

[TOP!"- data-name-3J [BOTTOM -r data-name-4 _J
LINES ATJ L;nteger-3:.::_j LINES AT_J L;nteger-4=-=:J

...

Syntax Rules

The following syntax rules apply to the LINAGE clause:

1. data-name-1, data-name-2, data-name-3, and data-name-4 must reference elementary
unsigne~ numeric integer data items.

2. The value of integer-1 must be greater than zero.

3. The value of integer-2 must not be greater than integer-1.

4. The value of integer-3 and integer-4 may be zero.

General Rules

The following general rules apply to the LINAGE clause:

1. The LINAGE clause provides a means for specifying the size of a logical page in
number of lines. The logical page size is the sum of the values referenced by each
phrase except the FOOTING phrase. If the LINES AT TOP or LINES AT BOTTOM
phrases are not specified, the values of these items are zero. If the FOOTING phrase is
not specified, the assumed value is equal to integer-1, or the contents of the data item
referenced by data-name-1, whichever is specified.

There is not necessarily any relationship between the size of the logical page and the
size of a physical page.

8-44. Language Reference

2. The value of integer-I, or the data item referenced by data-name-I, specifies the number
of lines that can be written and/or spaced on the logical page. The value must be
greater than zero. The part of the logical page in which these lines can be written
and/or spaced is called the page body.

3. The value of integer-3, or the data item referenced by data-name-3, specifies the number
of lines that comprise the top margin on the logical page. The value may be zero.

4. The value of integer-4, or the data item referenced by data-name-4, specifies the number
of lines that comprise the bottom margin on the logical page. The value may be zero.

5. The value of integer-2, or the data item referenced by data-name-2, specifies the line
number within the page body at which the footing area begins. The value must be
greater than zero and not greater than the value of integer-I or the data item refer
enced by data-name-1.

The footing area comprises the area of the logical page between the line represented by
the value of integer-2 or the data item referenced by data-name-2, and the line repres
ented by the value of integer-I or the data item referenced by data-name-I, inclusive.

6. The value of integer-I, integer-3, and integer-4, if specified, will be used, at the time the
file is opened by the execution of an OPEN statement with the OUTPUT phrase, to
specify the number of lines that comprise each of the indicated sections of a logical
page. The value of integer-2, if specified, will be used at that time to define the footing
area. These values are used for all logical pages written for the file during a given
execution of the program.

7. The values of the data items referenced by data-name-I, data-name-3, and data-name-4,
if specified, will be used as follows:

a. The values of the data items, at the time an open statement with the OUTPUT
phrase is executed for the file, will be used to specify the number of lines to com
prise each of the indicated sections for the first logical page.

b. The values of the data items, at the time a WRITE statement with the
ADVANCING PAGE phrase is executed or page overflow condition occurs (see
"WRITE Statement" on page 8-89), will be used to specify the number of lines to
comprise each of the indicated sections for the next logical page.

8. The value of the data item referenced by data-name-2, if specified, at the time an OPEN
statement with the OUTPUT phrase is executed, will be used to define the footing area
for the first logical page. At the time a WRITE statement with the ADVANCING
PAGE phrase is executed or a page overflow condition occurs, it will be used to define
the footing area for the next logical page.

9. A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in
the LINAGE-COUNTER at any given time represents the line number at which the
device is positioned within the current page body. The rules governing the
LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the FILE
SECTION whose file description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced, but may not be modified, by Procedure
Division statements. Since more than one LINAGE-COUNTER may exist in a
program, the user must qualify LINAGE-COUNTER by file name when necessary.

File Input and Output 8-45

c. LINAGE-COUNTER is automatically modified, according to the following rules,
during the execution of a WRITE statement to an associated file:

• When the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER is automatically reset to one.

• When the ADVANCING.identifier-2 or integer phrase of the WRITE statement
is specified, the LINAGE-COUNTER is incremented by integer or the value of
the data item referenced by identifier-2.

• When the ADVANCING phrase of the WRITE statement is not specified, the
LINAGE-COUNTER is incremented by the value one. Refer to "WRITE
Statement" on page 8-89.

• The value of LINAGE-COUNTER is automatically reset to one when the device
is repositioned to the first line that can be written on for each of the suc
ceeding logical pages. Refer to "WRITE Statement" on page 8-89.

d. The value of LINAGE-COUNTER is automatically set to one at the time an OPEN
statement is executed for the associated file.

10. Each logical page is contiguous to the next with no additional spacing provided.

g.;4s Language Reference

RECORD Clause

Function

The RECORD clause specifies either the number of character positions in a fixed-length
record or the range of character positions in a variable-length record. If the number of
character positions does vary, the clause specifies the minimum and maximum number of
character positions.

General Format

The following figures show the general format of the RECORD clause:

Format 1

.,___RECORD-~----~ i nteger-1 ~-----~---1•...,.,.
L CONTAINS _J L CHARACTERS _J

Format 2

--RECORD~L--_J~VARYING L _J
IS IN SIZE

• [FROM~ i nteger-2 :=J L TO i nteger-3 :J L CHARACTERS :=J

• L DEPENDING [ON ::J data-name-I~ "

Format 3

..,..._RECORD i nteger-5 •""
L CONTAINS J L integer-4 TO J L CHARACTERS J

Syntax Rules

The following syntax rules apply to the RECORD clause:

Format 1

1. No record description entry for the file may specify a number of character positions
greater than integer-I.

File Input and Output 8-47

Format 2

2. Record descriptions for the file must not describe records containing a lesser number of
character positions than specified by integer-2 or records containing a greater number
of character positions than specified by integer-3.

3. integer-3 must be greater than integer-2.

4. data-name-I must describe an elementary unsigned integer m the
WORKING-STORAGE or LINKAGE SECTION.

General Rules

The following general rules apply to the RECORD clause:

All Formats

1. If the RECORD clause is not specified, the size of each data record is completely deter
mined by the record description entry.

2. If the associated file connector is an external file connector, all file description entries
in the run-unit which are associated with that file connector must specify the same
values for integer-I, integer-2, and integer-3. If the RECORD clause is not specified, all
record description entries associated with this file connector must be the same length.

Format I

3. Format I is used to specify fixed-length records. integer-I specifies the number of char
acter positions contained in each record in the file.

Format 2

4. Format 2 is used to specify variable-length records. integer-2 specifies the minimum
number of character positions to be contained in any record of the file. integer-3 speci
fies the maximum number of character positions in any record of the file.

5. The number of character positions associated with a record description is determined
by the sum of the number of character positions in all elementary data items excluding
redefinitions and renamings, plus any implicit FILLER due to synchronization. If a
table is specified:

a. The minimum number of table elements described in the record is used in the sum
mation above to determine the minimum number of character positions associated
with the record description.

b. The maximum number of table elements described in the record is used in the sum
mation above to determine the maximum number of character positions associated
with the record description.

6. If integer-2 is not specified, the minimum number of character positions to be contained
in any record of the file is equal to the least number of character positions described
for a record in that file.

7. If integer-3 is not specified, the maximum number of character positions to be con
tained in any record of the file is equal to the greatest number of character positions
described for a record in that file.

8. If data-name-I is specified, the number of character positions in the record must be
placed into the data item referenced by data-name-I before any RELEASE, REWRITE,
or WRITE statement is executed for the file.

9. If data-name-I is specified, the execution of a DELETE, RELEASE, REWRITE, START,
or WRITE statement or the unsuccessful execution of a READ or RETURN statement
does not alter the content of the data item referenced by data-name-1.

8-48 Language Reference

10. During the execution of a RELEASE, REWRITE, or WRITE statement, the number of
character positions in the record is determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

b. If data-name-1 is not specified and the record does not contain a variable occur
rence data item, by the number of character positions in the record.

c. If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed portion and the portion of the table described by the
number of occurrences at the time of execution of the output statement.

11. If data-name-1 is specified, after the successful execution of a READ or RETURN state
ment, the contents of the data item referenced by data-name-1 indicate the number of
character positions in the record just read.

12. If the INTO phrase is specified in the READ or RETURN statement, the number of
character positions in the current record treated as the sending data items in the
implicit MOVE statement is determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

b. If data-name-1 is not specified, by the value that would have been moved into the
data item referenced by data-name-1 had data-name-1 been specified.

Format 3

13. When Format 3 of the RECORD clause is used, integer-4 refers to the minimum number
of characters in the smallest size data record and integer-5 refers to the maximum
number of characters in the largest size data record. However, in this case, the size of
each data record is completely defined in the record description entry.

14. The size of each data record is specified in terms of the number of character positions
required to store the logical record, regardless of the types of characters used to repre
sent the items within the logical record. The size of a record is determined by the total
number of characters in all fixed-length elementary items, plus the sum of the
maximum number of characters in any variable-length item subordinate to the record.
This sum may be different from the actual size of the record. Refer to "Selection of
Character Representation and Radix" on page 2-20, "SYNCHRONIZED Clause" on
page 6-37, and "USAGE Clause" on page 6-39.

File Input and Output 8-49

RECORDING MODE Clause

Function

The RECORDING MODE clause specifies the format of the logical records OSVS VSC2
in the file. MF

General Format

The following figure shows the general format of the RECORDING MODE OSVS VSC2
clause. MF

..-- RECORDING----.-----.---~ F ---~--llMll
MODE IS

General Rules

v----1
u----1
s----1
FIXED
VARIABLE

NF

The following general rules apply to the RECORDING MODE clause: OSVS VSC2

1. Specifying RECORDING MODE IS F(ixed) causes all the records in the
file to be the same length.

2. If RECORDING MODE IS V(ariable) is specified, the records in the file
may be either fixed or variable in length. Each data record includes a
record length field. These fields are not part of the record description.

3. The U (undefined) and S (spanned) options are used for documentation
purposes only.

8-50 Language Reference

VALUE OF Clause

Function

The VALUE OF clause specifies the description of an item in the label records associated
with a file.

General Format

The following figures show the general format of the VALUE OF clause:

Format 1 (All Files)

--- VALUE OF data-name-1 ~L--_J~~L- data-name-21
IS literal-l__J

....

Format 2 (All Files)

--- VALUE OF FILE-ID -L~-_J~~ldata-name-3 1

IS literal-2___J
.... MF

Syntax Rules

The following syntax rules apply to the VALUE OF clause:

Format 1 (All Files)

1. data-name-2 should be qualified when necessary but cannot be subscripted or indexed,
nor can it be an item described with the USAGE IS INDEX clause.

2. data-name-2 must be in the WORKING-STORAGE SECTION.

Format 2 (All Files)

3. literal-2 must be a nonnumeric literal and cannot be a figurative con- MF
stant.

4. The VALUE OF FILE-ID clause cannot be used if external file refer- MF
ence, data-name-3, or literal-2 has been specified in the ASSIGN clause
in the FILE-CONTROL entry. Refer to "FILE-CONTROL Entry" on
page 8-18.

File Input and Output 8-51

General Rules

The following general rules apply to the VALUE OF clause:

Format 1 (All Files)

1. This clause is used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever a literal is
specified.

Format 2 (All Files)

3. The character-string specified in literal-2 or data-name-3 is taken as the
external file name.

8-52 Language Reference

MF

Procedure Division for File Input and Output

CLOSE Statement

Function

The CLOSE statement terminates the processing of reels or units and files, with optional
rewind and/or lock or lock removal where applicable.

General Format

The following figures show the general format of the CLOSE statement:

Format 1 (Sequential Files)

.,..._CLOSE file-name-1
REEL j

lwITH]
LOCK

UNIT
osvs

REEL
UNIT NO REWIND

WITH
REMOVAL

FOR
NO REWIND

WITH LOCK
DISP osvs

Format 2 (Relative And Indexed Files)

' .,..._CLOSE file-name-1~------~--•4
L LOCKJ
LwITH_J

File Input and Output 8-53

Syntax Rules

The following syntax rules apply to the CLOSE statement:

All Formats (All Files)

1. The files referenced in the CLOSE statement need not all have the same organization
or access.

Format I (Sequential Files)

2. The REEL and UNIT phrases should be specified only for files with
MULTIPLE REEL or MULTIPLE UNIT specified in their SELECT
clause, except when used with the FOR REMOVAL option. The state
ments CLOSE REEL and CLOSE UNIT are null statements. They are
for documentary purposes only. It is important that no other files are
open on the device(s) closed by a CLOSE REEL or CLOSE UNIT state
ment.

The statements CLOSE REEL WITH LOCK and CLOSE UNIT WITH
LOCK are treated as equivalent to CLOSE REEL FOR REMOVAL.

3. The DISP option is only applicable to tape files. It is for documentation
only.

General Rules

The following general rules apply to the CLOSE statement:

All Formats (All Files)

1. A CLOSE statement may only be executed for a file in an open mode.

MF

osvs

osvs

2. Following the successful execution of a CLOSE statement, the record area associated
with file name is no longer available. The unsuccessful execution of such a CLOSE
statement leaves the availability of the record area undefined.

3. The action taken if a file is in the open mode when a STOP RUN statement is executed
is to close the file. The action taken for a file opened in a called program and not
closed prior to the execution of a CANCEL statement for the program is to close the
file.

4. Following the successful execution of a CLOSE statement, all record or
file locks held by the run-units on the closed file are released.

MF

5. The execution of the CLOSE statement causes the value of the I-0 status associated
with file-name-1 to be updated. Refer to "I-0 Status" on page 8-8.

6. The results of executing each type of CLOSE statement for each category of file are
summarized in Figure 8-2 on page 8-57.

The following definitions explain the symbols you will find in the table. Where the defi
nition depends on whether the file is an input, output, or input-output file, alternate defi
nitions are given; otherwise, a definition applies to input, output, and input-output files.

·•·8-54 Language Reference

A Previous Reels or Units Unaffected

Input Files and Input-Output Files:

All reels or units in the file prior to the current reel or unit are processed except
those reels or units controlled by a prior CLOSE REEL or UNIT statement. If the
current reel or unit is not the last in the file, the reels or units in the file following
the current one are not processed.

Output Files:

All reels or units in the file prior to the current reel or unit are processed except
those reels or units controlled by a prior CLOSE REEL or UNIT statement.

B No Rewind of Current Reel

The current reel or unit is left in its current position.

C Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified for the file, the
labels are processed according to the operating system label convention. The
result of the CLOSE statement is undefined when label records are specified but
not present, or when label records are not specified but are present. If the file is
positioned at its end and label records are not specified for the file, label proc
essing does not take place, but other closing operations dependent on the Run
Time Environment are executed. Refer to the User's Guide. If the file is posi
tioned other than at its end, the closing operations dependent on the RTE are exe
cuted but there is no end label processing.

Input Files and Input-Output Files (Random or Dynamic Access Mode); Output
Files (Random, Dynamic or Sequential Access Mode):

If label records are specified for the file, the labels are processed according to the
operating system standard label convention. The result of the CLOSE statement is
undefined when label records are specified but not present, or when label records
are not specified but are present. If label records are not specified for the file,
label processing does not take place but other closing operations dependent on the
RTE are executed.

D Reel or Unit Removal

The reel or unit may be accessed again, in its proper order of reels or units within
the file, if a CLOSE statement without the REEL or UNIT phrase is executed for
this file followed by an OPEN statement for the file.

E File Lock

This file cannot be opened again during this execution of this run-unit.

F Close Reel or Unit

Input Files and Input-Output Files:

The following operations take place:

a. If the current reel or unit is the last or only reel or unit for the file, or the reel
is on a nonreel or unit medium, there is no reel or unit swap.

b. If another reel or unit exists for the file, a reel or unit swap occurs and the
standard beginning reel or unit label procedure is executed. If no data records
exist for the current volume, another reel or unit swap occurs.

Output Files (Reel or Unit Media):

The following operations take place:

a. The standard ending reel or unit label procedure is executed.

b. A reel or unit swap.
'\

c. The standard beginning reel or unit label proced~re is executed.

File lnp_ut and Output 8-55

d. The next executed WRITE statement that references the file directs the next
logical data record to the next reel or unit of the file.

Output Files (Nonreel or Unit Media):

Execution of this statement is considered successful. The file remains in the open
mode, and no action takes place except as specified in general rule 5.

G Rewind

The current reel or analogous device is positioned at its physical beginning.

H Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases is present.

X Illegal

This is an illegal combination of a CLOSE option and a file category. The results
at object time are undefined.

Format 1 (Sequential Files)

Except where otherwise stated in the general rules below, the terms reel and unit are syn
onymous and completely interchangeable in the CLOSE statement. Treatment of sequen
tial mass storage files is logically equivalent to the treatment of a file on tape or
analogous sequential media.

7. For the purpose of showing the effect of various types of CLOSE statements as applied
to various storage media, all files are divided into the following categories:

a. Nonreel or unit. A file with input or output medium such that the concepts of
rewind and reels or units have no meaning.

b. Sequential single reel or unit. A sequential file entirely contained on one reel or
unit.

c. Sequential multiple reels or units. A sequential file contained on more than one
reel or unit.

8. If the OPTIONAL phrase was specified in the FILE-CONTROL paragraph of the Envi
ronment Division and the file is not present, standard end-of-file processing is not per
formed for that file.

9. When a CLOSE statement without the REEL or UNIT phrase is executed for a file, no
other statement can be executed referencing that file, explicitly or implicitly, unless an
intervening OPEN statement for the file is executed. (The SORT or MERGE state
ments with the USING or GIVING phrases are exceptions.)

10. The WITH NO REWIND and FOR REMOVAL phrases have no effect at object time if
they do not apply to the storage media on which the file resides.

11. If WITH LOCK is specified, the file cannot be reopened in the current
execution of the run-unit, provided that your run time environment
supports this option. Otherwise a normal CLOSE takes effect. (This
option has no connection with the record or file locking used when
sharing files.)

Format 2 (Relative And Indexed Files)

MF

12. Relative and indexed files are classified as belonging to the category of nonsequential
single or multiple reels or units.

13. If a CLOSE statement was executed for a file, no other statement can be executed ref
erencing that file, either explicitly or implicitly, unless an intervening OPEN state
ment is executed.

14. If WITH LOCK is specified, the file cannot be reopened in the current execution of the
run-unit .

. 8•56 Language Reference

Fiie Category

CLOSE Sequential Sequential Non-Sequential
Statement Non reel Single Reel Multiple Reel Single or Multiple
Format or Unit or Unit or Unit Reels or Units

CLOSE c C,G A,C,G c
CLOSE C,E C,E,G A,C,E,G C,E
WITH
LOCK
CLOSE C,H 8,C A,8,C x
WITH NO
REWIND
CLOSE REEL F F, G F, G x
OR UNIT
CLOSE REEL F D, F,G D, F,G x
OR UNIT
FOR
REMOVAL
CLOSE REEL x x F,8 x
OR UNIT
WITH NO
REWIND

Figure 8-2. Relationship of CLOSE Statement with File Category

File Input and Output 8-57

COMMIT Statement

Function

The COMMIT statement releases record locks.

General Format

The following figure shows the general format of the COMMIT statement:

.,...._COMMIT__..,.

General Rules

The following general rules apply to the COMMIT statement:

1. Execution of the COMMIT statement causes all record locks in all files
held by the run-unit to be released.

2. The file lock on an exclusive file is not affected by the COMMIT state
ment.

8-58 Language Reference

MF

MF

MF

DELETE Statement

Function

The DELETE statement logically removes a record from a mass storage file. It may only
be specified for files with relative or indexed organization.

The DELETE FILE statement physically removes the specified files from the
physical devices on which they reside.

General Format

The following figures show the general format of the DELETE statement:

Format 1

MF

...__DELETE fil e-name-1 ..
[RECORD J L INVALID imperative-statement-I _J

[KEY]

..
[NOT INVALID imperative-statement-2 :::J LEND-DELETE :::J

[KEY]

Format 2

t
.,._DELETE FILE file-name _ ____.., ... ,. MF

Syntax Rules

The following syntax rules apply to the DELETE statement:

1. The INVALID KEY phrase must not be specified for a DELETE statement referencing
a file in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement referencing a
file which is not in sequential access mode and for which an applicable USE AFTER
STANDARD EXCEPTION PROCEDURE is not specified.

File Input and Output 8-59

General Rules

The following general rules apply to the DELETE statement:

Format 1

1. The associated file must be open in the I-0 mode at the time this statement is executed.
Refer to "OPEN Statement" on page 8-62.

2. For files in sequential access mode, the last input-output statement executed for the
file name prior to the execution of the DELETE statement must have been a success
fully executed READ statement. The operating system logically removes the record
accessed by that READ statement from the file.

3. For a file in random or dynamic access mode, the operating system logically removes
the record identified by the contents of a KEY data item associated with the file name
from the file. For a relative file, this KEY data item is the RELATIVE KEY, and for
an indexed file, it is the prime RECORD KEY. If the file does not contain the record
specified by the key, an INVALID key condition exists. Refer to "INVALID KEY
Condition" on page 8-11.

4. After the successful execution of a DELETE statement, the identified record has been
logically removed from the file and can no longer be accessed.

5. The execution ofa DELETE statement does not affect the contents of the record area
associated with the file name.

6. The file position indicator is not affected by the execution of a DELETE statement.

7. The execution of the DELETE statement causes the value of the specified FILE
STATUS data item associated with the file name to be updated. Refer to "I-0 Status"
on page 8-8.

8. Transfer of control following the successful or unsuccessful execution of the DELETE
operation depends on the presence or absence of the INVALID KEY phrase and NOT
INVALID KEY phrase in the DELETE statement. Refer to "INVALID KEY
Condition" on page 8-11.

9. The END-DELETE phrase delimits the scope of the DELETE statement. Refer to
"Explicit and Implicit Scope Terminators" on page 2-36.

10. When using DELETE, the record to be deleted must not be locked by MF
another run-unit.

11. Following the successful execution of a DELETE statement, any record MF
lock held by the run-unit on the deleted record is released.

12. The execution of the DELETE statement causes the value of the I-0 status associated
with file name 1 to be updated. Refer to "I-0 Status" on page 8-8.

Format 2

13. The specified files must be closed when the statement is executed. MF

8-60 Language Reference

Example

The following example shows the DELETE statement:

OPEN I-0 ACCT-PAYABLE.

READ ACCT-PAYABLE RECORD INTO ACCT-PAY-RECORD.
IF ACCT-PAY-STATUS OF ACCT-PAY-RECORD = "PAID"

DELETE ACCT-PAYABLE RECORD.

To delete a record, the associated file must be opened in I-0 mode, and a successful READ
must precede the DELETE statement.

File Input and Output 8-61

OPEN Statement

Function

The OPEN statement initiates the processing of files. It also performs checking and/or
writing of labels and other input-output operations.

General Format

The following figures show the general format of the OPEN statement:

Format 1 (Sequential Files)

MF

MF

MF

MF

8-62 Language Reference

Syntax Rules

The following syntax rules apply to the OPEN statement:

All Formats (All Files)

1. The files referenced in the OPEN statement need not all have the same organization or
access.

Format 1 (Sequential Files)

2. The REVERSED and NO REWIND phrases can only be used with record-sequential
files. NO REWIND is used for documentation purposes only.

3. The I-0 phrase can be used only for disk files. The I-0 phrase cannot be used for files
in line-sequential organization.

4. The EXTEND phrase must be used only for files for which the LINAGE clause has not
been specified.

5. The EXTEND phrase must not be specified with multiple file reels.

Format 2 (Relative and Indexed Files)

6. The EXTEND phrase must only be used for files in the sequential access mode.

File Input and Output 8-63

General Rules

The following general rules apply to the OPEN statement:

All Formats (All Files)

1. The successful execution of an OPEN statement determines the availability of the file
and results in the file being in an open mode.

2. The successful execution of an OPEN statement makes the associated record area
available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no statement
(except for a SORT or MERGE statement with the USING or GIVING phrases) can be
executed that references that file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution of any of the
permissible input/output statements. In the table on page 8-66, X at an intersection
indicates that the specified statement used in the access mode given for that row may
be used with the file organization and open mode given at the top of the column.

5. If the WITH LOCK phrase is specified, the OPEN statement acquires a MF
lock on the whole file. (This is equivalent to specifying LOCK MODE IS
EXCLUSIVE in the SELECT statement for the file.)

6. A file may be opened with the INPUT, OUTPUT, EXTEND, and I/0 phrases in the
same program. Following the initial execution of an OPEN statement for a file, each
subsequent OPEN statement execution for the same file must be preceded by a CLOSE
statement for that file.

7. Execution of the OPEN statement does not obtain or release the first data record.

8. The ASSIGNed name in the SELECT statement for a file is processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN statement causes
the ASSIGNed name to be checked in accordance with the operating system con
ventions for opening files for input.

b. When the OUTPUT phrase is specified, the execution of the OPEN statement
causes the ASSIGNed name to be written in accordance with the operating system
conventions for opening files for output.

9. The file description entry for file-name-1, file-name-2, file-name-3, and file-name-4 must
be equivalent to that used when the file was created.

10. For files being opened with the INPUT or I-0 phrase, the OPEN statement sets the file
position indicator to the first record currently existing within the file. If no records
exist in the file, the file position indicator will indicate the AT END condition for the
next executed READ statement. If the file does not exist, OPEN INPUT causes an
error status.

11. When the I-0 phrase is specified and the LABEL RECORDS clause indicates label
records are present, the execution of the OPEN statement includes the following steps:

a. The labels are checked for accordance with the operating system specified con
ventions for input/output label checking.

b. The new labels are written in accordance with the operating system specified con
ventions for input/output label writing.

12. Upon successful execution of an OPEN statement with the OUTPUT phrase specified,
a file is created. At that time, the associated file contains no data records. If a file of
the same name exists, it is deleted. If it is write protected, an error occurs.

8-64 Language Reference

13. When the EXTEND phrase is specified, the OPEN statement positions the file pointer
immediately after the last logical record for the file. The last logical record for a
sequential file is the last record written in the file. The last logical record in a relative
file is the currently existing record with the highest relative record number. The last
logical record in an indexed file is the currently existing record with the highest prime
key value.

14. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the following
steps:

a. The beginning file labels are processed only in the case of a single reel or unit file.

b. The beginning reel or unit labels on the last existing reel or unit are processed as
though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being opened
with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the OUTPUT
phrase.

15. The execution of the OPEN statement causes the value of the FILE STATUS data item
to be updated. Refer to "I-0 Status" on page 8-8.

16. When LOCK MODE IS EXCLUSIVE is specified, successful execution MF
of an OPEN statement locks the file exclusively to that run-unit.

17. When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL MF
is specified, the file referred to is shareable. More than one run-unit may
successfully open such a file.

18. A file opened for OUTPUT is implicitly defined as a file with an exclu- MF
sive lock, meaning it is not shareable.

19. Only shareable files opened for I-0 can acquire record locks. MF

Format 1 (Sequential Files)

20. If an input file is designated with the OPTIONAL phrase in its SELECT clause, the
object program causes an interrogation for the presence or absence of this file. If the
file is not present, the first READ statement for this file causes the AT END condition
to occur.

21. If the storage medium for the file permits rewinding, the following rules apply:

a. Execution of the OPEN statement causes the file to be positioned at its beginning.

b. When the REVERSED phrase is specified, the file is positioned at its end by exe
cution of the OPEN statement.

22. When the REVERSED phrase is specified, the following READ statements for the file
make the data available in reversed order. In this case, the data would be read from
the last record first.

23. When the EXTEND phrase is specified, the OPEN statement positions the file pointer
immediately following the last logical record of that file. Subsequent WRITE state
ments referencing the file add records to the file as though the file had been opened
with the OUTPUT phrase. If the file does not exist it is created.

File Input and Output 8-65

24. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the following
steps:

a. The beginning file labels are processed only in the case of a single reel or unit file.

b. The beginning reel or unit labels on the last existing reel or unit are processed as
though the file is opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being opened
with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the OUTPUT
phrase.

25. The I-0 phrase permits the opening of a file for both input and output
operations, except for files with ORGANIZATION
LINE-SEQUENTIAL. If the file does not exist it is created and used as
an empty file for input unless NOT OPTIONAL was ·specified in the
SELECT statement. An attempt to WRITE it causes an error.

MF

The following table shows examples of permissible combinations of statements and OPEN
modes:

Open Modes

Fiie Access Extend
Mode Statement Input Output 1-0 (Sequential Flies)

Sequential READ x x
WRITE x x
REWRITE x
START x x
DELETE x

Random READ x x
(Nonsequential WRITE x x
Files) REWRITE x

START
DELETE x

Dynamic READ x x
(Nonsequential WRITE x x
Files) REWRITE x

START x x
DELETE x

Notes:

1. The START and DELETE statements may not be used for files with sequential organ
ization.

2. I-0 mode is not supported for line-sequential files.

8-66 Language Reference

Example

The following is an example of OPEN statements in the Procedure Division.

OPEN INPUT PAYROLL-FILE, BENEFIT-FILE,
OUTPUT REPORT-FILE.

OPEN 1-0 INVENTORY-FILE, SUPPLIER-FILE,
EXTEND TRANS-HISTORY.

File Input and Output 8-67

READ Statement

Function

For sequential access, the READ statement makes available the next or
previous logical record from a file. For random access, the READ state
ment makes available a specified record from a mass storage file.

General Format

The following figures show the general format for the READ statement:

Format 1 (Sequential Files)

-READ file-name-.,------.--,------,---,---------,----------..
LNEXT J [RECORD OJ LrNTO identifier OJ

Format 2 (Relative and Indexed Files)

-READ file-name C NEXT J L RECORD _J L INTO i dent i fi er _J
PREVIOUS

1-----,--END imperat i ve-statement-1
AT

'" L NOT END imperative-statement-2 J [END-READ J
LAT]

8-68 Language Reference

..

..

MF

MF

MF

MF

Format 3 (Relative Files)

- READ file-name---..-----.--.---------..--,----~-------,--..

LRECORD_J L1NTO identifier_J f--L-W-I-TH-J~· -..-E-KE-PiJ-r~LOCK_J

., [INVALID imperative-statement-3 J
LKEYJ

., LNOT INVALID--,---...---irnperative-statement-4] LEND-READ:J
LKEYJ

Format 4 (Indexed Files)

NO ..

....

- READ file-name~-----.---.---------..---.------------.--..
LRECORD_J LINTO identifier_J L LOCKJ

KEv--.-----.---..-L- data-name
LrsJ split-key-name

LwITHJ L~~P~

INVALID --.----...---imperative-statement-3 __J

LKEYJ

., L NOT INVALID--,---...---imperative-statement-4 J LEND-READ :oJ
[KEY]

....

Syntax Rules

The following syntax rules apply to the READ statement:

All Formats (All Files)

MF

MF

MF

1. The INTO phrase must not be used when the input file contains logical records of
various sizes as indicated by their record descriptions. The memory area associated
with identifier and the memory area which is the record area associated with file name
must not be the same memory area.

2. The INVALID KEY phrase or the AT END phrase must be specified if no applicable
USE procedure is specified for file name.

3. The WITH LOCK phrase must be included when singk records are MF
being locked manually in a shareabk file.

4. The NO LOCK phrase is only allowed when records are being locked
manually or automatically in a shareable fik.

DBCS Support

MF

5. With the READ INTO phrase, the identifier (record area) may be a USAGE
DISPLAY-1 item.

~------------ End of DBCS Support ------------~

File Input and Output 8-69

Formats 1 and 2 (All Files)

6. The NEXT phrase can be specified for sequential files or files in
sequential access mode. The PREVIOUS phrase cannot be specified for
sequential files.

7. The NEXT or PREVIOUS phrases must be specified for files m
dynamic access mode when records are to be retrieved sequentially.

Formats 3 and 4 (Relative And Indexed Files)

MF

MF

8. Format 3 or 4 is used for files in random access mode or in dynamic access mode when
records are to be retrieved randomly.

Format 4 (Indexed Files)

9. Data-name must be the name of a data item specified as a record key associated with
file name.

10. Data-name may be qualified.

11. split-key-name-1 is a concatenation of one or more data items specified as
a record key associated with file name.

DBCS Support

MF

12. Data-name (the KEY IS clause) may be defined as a USAGE DISPLAY-I (DBCS) item.

13. When the RECORD KEY clause specifies a DBCS item, a KEY specified on the READ
statement must be a DBCS item.

~-----------End of DBCS Support-----------~

Formats 2, 3, and 4 (Relative And Indexed Files)

14. The WITH KEPT LOCK phrase must be included when multiple records
are being locked manually in a shareablefile.

8-70 Language Reference

MF

General Rules

The following general rules apply to the READ statement:

All Formats (All Files)

1. The associated file must be open in the INPUT or 1-0 mode at the time this statement
is executed. Refer to "OPEN Statement" on page 8-62.

2. For sequential files or files in sequential access mode, the NEXT phrase is optional
and has no effect on the execution of the READ statement.

3. The execution of the READ statement causes the value of the FILE STATUS data
item, associated with the file name to be updated. Refer to "I-0 Status" on page 8-8.

4. Regardless of the method used to overlap access time with processing time, the concept
of the READ statement continues to make a record available to the object program
prior to the execution of any statement following the READ statement.

5. When the logical records of a file are described with more than one record description,
these records automatically share the same memory area. This is equivalent to an
implicit redefinition of the area. The contents of any data items lying beyond the
range of the current data record are undefined at the completion of the READ state
ment execution.

6. If the INTO phrase is specified, the record being read is moved from the record area to
the area specified by identifier according to the rules specified for the MOVE state
ment without the CORRESPONDING phrase. The implied MOVE does not occur if the
execution of the READ statement was unsuccessful. Any subscripting or indexing
associated with identifiers is evaluated after the record has been read and immediately
before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the input
record area and the data area associated with identifier.

8. When the AT END condition is recognized, the following actions are taken in the spec
ified order:

a. A value is placed into the FILE STATUS data item, if specified for this file, to indi
cate an AT END condition. Refer to "I-0 Status" on page 8-8.

b. If the AT END phrase is specified in the statement causing the condition, control
is transferred to the AT END imperative statement. Any USE procedure specified
for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be specified,
either explicitly or implicitly, for this file. That procedure is then executed.

When the AT END condition occurs, execution of the input/output statement which
caused the condition is unsuccessful.

9. If an AT END condition does not occur during the execution of a READ statement and
if a NOT AT END phrase is specified, control is transferred to imperative-statement-2
at the following appropriate time:

a. After the record is made available, after setting the file position indicator, after
updating the value of the 1-0 status associated with file-name-1, and after exe
cuting any implicit move resulting from the presence of an INTO phrase.

b. If the record is not made available for a reason other than an AT END condition,
after updating the value of the 1-0 status associated with file name, and after exe
cuting the procedure, if any, specified by a USE AFTER STANDARD EXCEPTION
PROCEDURE statement applicable to file-name-1.

10. Following the unsuccessful execution of any READ statement, the content of the asso
ciated record area is undefined and the file position indicator is set to indicate that no
next record has been established.

File Input and Output 8-71

11. Execution of a READ NEXT or READ PREVIOUS statement does not
update the file position indicator if a locked record is found. A subse
quent READ statement will attempt to read the same record. See the
User's Guide for compiler options and switches to override this behavior.

Format 1 (Sequential Files)

12. The record to be made available by the READ statement is determined as follows:

a. If the file position indicator was positioned by the execution of the
OPEN statement, the record pointed to is made available unless the
PREVIOUS option is specified. In this case the AT END condition
occurs as in general rule 20 .

b. If the file position indicator was positioned by the execution of a pre
vious READ statement, the file position indicator points to the next or,
if the PREVIOUS option was specified, the previous existing record in
the file. That record is made available.

MF

MF

MF

13. If the end of a reel or unit is recognized during the execution of a READ statement,
and end-of-file has not been reached, the following procedures are executed:

a. The standard ending reel or unit label procedure
b. A reel or unit swap
c. The st,ndard beginning reel or unit label procedure
d. The first data record of the new reel or unit is made available.

14. If a file described with the OPTIONAL clause is not present at the time the file is
opened, then at the time of the execution of the first READ statement for the file, the
AT END condition occurs and the execution of the READ statement is unsuccessful.
The standard end-of-file procedures are not performed. Refer to "FILE-CONTROL
Paragraph" on page 8-17, "OPEN Statement" on page 8-62, and "USE Statement" on
page 8-86. Execution of the program then proceeds as in general rule 8.

15. For sequential files opened for INPUT, READ, or READ WITH LOCK MF
statements do not acquire a record lock.

16. Two or more run-units can share a sequential output file by opening it MF
EXTEND with AUTOMATIC or MANUAL record locking. Records
appended to the file are in unspecified order.

17. For files opened for I-0: MF

a. With LOCK MODE AUTOMATIC, unless the WITH NO LOCK
phrase is specified, each record is locked as it is read and released
again when the run-unit next accesses the file.

b. With LOCK MODE MANUAL, a simple READ statement does not
acquire a lock on the record. The READ WITH LOCK statement
must be used to acquire a record lock.· The WITH NO LOCK phrase,
if specified, is documentary.

18. If an end-of-file status occurs on a READ statement in a file opened for I-0 or INPUT
by one run-unit and opened EXTEND by another run-unit, the run-unit that attempted
the READ must close the file. This run-unit has no access to the appended records
because the status remains end-of-file.

Formats 1 and 2 (All Files)

19. If a READ statement with the NEXT option is executed, and no next logical record
exists. in the file, then the AT END condition occurs and the execution of the READ
statement is considered unsuccessful. Refer to "I-0 Status" on page 8-8.

20. If a READ statement with the PREVIOUS option is executed and no MF
previous logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement is considered unsuccessful.

8~7.2 Language Reference

21. When the AT END condition has been recognized, the next Format 1 or
2 READ statement executed for that file must be one of the following:

a. A READ NEXT statement, if AT END occurred because no previous
logical record existed

b. A READ PREVIOUS statement, if AT END occurred because no
next logical record existed.

Otherwise, the AT END condition must be preceded by:

a. A successful CLOSE statement followed by the execution of a suc
cessful OPEN statement for that file

b. A successful ST ART statement for that file

c. A successful Format 3 (or Format 4 for indexed files) READ state
ment for that file.

MF

22. For a file for which dynamic access mode is specified, a READ statement with the
NEXT phrase specified causes the next logical record to be retrieved from the file.

23. For a fi'le for which dynamic access mode is specified, a READ statement MF
with the PREVIOUS phrase specified causes the previous logical record
to be retrieved from the fi'le as described in ru'le 12 on page 8-72 for
sequential fi'les or ru'le 25 for all other file types.

24. If, at the time of execution of a READ statement, the position of file position indicator
for that file is undefined, the execution of that READ is unsuccessful.

Formats 2, 3, and 4 (Relative and Indexed Files)

25. The record to be made available by the READ statement is determined
as follows:

a. If the file position indicator was positioned by the execution of an MF
OPEN statement, and the PREVIOUS option is specified, the AT
END condition occurs. Otherwise, if the file position indicator was
positioned by the execution of the START or OPEN statement and
the record is still accessible through the path indicated by the file
position indicator, the record pointed to by the file position indi-
cator is made available. If the record is no longer accessible, pos-
sibly caused by deletion of the record for a relative file or by a
change in an alternate key for an indexed file, the file position indi- MF
cator is updated to point to the next record. If the PREVIOUS
option is specified, the file position indicator points to the previous
existing record within the established key of reference.

b. If the file position indicator was positioned by the execution of a
previous READ statement, the file position indicator is updated to
point to the next or the previous existing record in the fi'le, if the MF
PREVIOUS option is specified.

26. If the lock mode is AUTOMATIC with either sing'le or multiple record MF
locking and the referenced fi'le is opened I-0, then un'less the WITH NO
LOCK phrase is specified, the run-unit acquires a record lock for the
record retrieved by the successful execution of the READ statement. To
read past a locked record, the file position indicator should be updated
using the ST ART statement.

27. If the lock mode is MANUAL with sing'le record locking and the refer- MF
enced fi'le is opened I-0, the run-unit acquires a record lock on the record
only if the WITH LOCK phrase is specified. A simp'le READ statement
does not acquire a record lock. To read past a locked record, the fi'le
position indicator should be updated using the START statement.

File Input and Output 8-73

28. If the lock mode is MANUAL with multiple record locking and the refer
enced file is opened I-0, the run-unit acquires a lock on the record only if
the WITH KEPT LOCK phrase is specified. A simple READ statement
does not acquire a record lock. To read past a locked record, the file
position indicator should be updated using the START statement.

Formats 2 and 3 (Relative Files)

MF

29. If the RELATIVE KEY phrase is specified, the execution of a READ statement updates
the contents of the RELATIVE KEY data item so it contains the relative record
number of the record made available.

30. The execution of a READ statement sets the file position indicator to the record whose
relative record number is contained in the data item named in the RELATIVE KEY
phrase. If the file does not contain such a record, the INVALID KEY condition exists
and execution of the READ statement is unsuccessful. Refer to "INVALID KEY
Condition" on page 8-11.

Format 4 (Indexed Files)

31. For an indexed file being sequentially accessed, records having the same duplicate
value in an alternate record key which is the key of reference are made available in
the same order in which they are released by execution of WRITE statements, or by
execution of REWRITE statements which create such duplicate values.

32. If the KEY phrase is not specified, the prime record key is established as the key of
reference for this retrieval. If the dynamic access mode is specified, this key of refer
ence is also used for retrievals by any subsequent executions of Format 1 or Format 2
READ statements for the file.

33. For an indexed file, if the KEY phrase is specified, data-name-1 or
split-key-name-1 is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also
used for retrievals by any subsequent executions of Format 1 or Format
2 READ statements until a different key of reference is established.

MF

34. Execution of a Format 4 READ statement causes the value of the key of reference to
be compared with the value contained in the corresponding data item of the stored
records in the file, until the first record having an equal value is found. The file posi
tion indicator points to this record which is then made available. If no record can be
so identified, the INVALID KEY condition exists and execution of the READ state
ment is unsuccessful. Refer to "INVALID KEY Condition" on page 8-11.

Examples

The following examples show the READ statement:

READ PAYROLL-FILE INTO PAYROLL-WORK-AREA.

READ PAYROLL-FILE
AT END PERFORM CALCULATE-TOTAL

CLOSE PAYROLL-FILE.

READ PAYROLL-FILE
KEY IS EMPLOYEE-ID
INVALID KEY PERFORM ERROR-ID-ROUTINE
NOT INVALID KEY PERFORM UPDATE-PAYROLL-FILE

END-READ.

8-7 4 Language Reference

REWRITE Statement

Function

The REWRITE statement logically replaces a record existing in a disk file.

General Format

The following figures show the general format of the REWRITE statement:

Format 1 (Sequential Files)

..__REWRITE record-name -.---------.---,.---------r-........
L FROM i dent i fi er _J LEND-REWRITE _J

Format 2 (Relative and Indexed Files)

--- REWRITE record-name~-------~-----------------•
L FROM identifier J

• [INVALID KEY imperative-statement-I~

• L NOT INVALID ~L-~-_J~ imperative-statement-2 ~
KEY

Syntax Rules

LEND-REWRITE J

The following syntax rules apply to the REWRITE statement:

All Formats (All Files)

1. Record name and identifier must not refer to the same memory area.

2. Record name is the name of a logical record in the FILE SECTION of the Data Divi
sion and may be qualified.

DBCS Support

3. FROM identifier may be a USAGE DISPLA Y-1 (DBCS) item.

~----------- End of DBCS Support ___________ _____.

Format 2 (Relative And Indexed Files)

4. The INVALID KEY phrase must not be specified for a REWRITE state
ment which references a sequential file or a file in sequential access
mode. However, it can be specified for an indexed file in sequential OSVS VSC2
access mode.

File Input and Output 8-75

5. The INVALID KEY phrase must be specified in the REWRITE statement for files in
the random or dynamic access mode for which an appropriate USE procedure is not
specified.

General Rules

The following general rules apply to the REWRITE statement:

All Formats (All Files)

1. The file associated with record name must be a disk file and must be open in the I-0
mode at the time of execution of this statement. Refer to "OPEN Statement" on
page 8-62.

2. For files in the sequential access mode, the last input/output statement executed for
the associated file prior to the execution of the REWRITE statement must have been a
successfully executed READ statement. The operating system logically replaces the
record accessed by the READ statement.

3. The number of character positions in the record referenced by record name must be
equal to the number of character positions in the record being replaced.

4. The execution of a REWRITE statement with the FROM phrase is equivalent to the
execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM phrase.
The contents of the record area prior to the execution of the implicit MOVE statement
have no effect on the execution of the REWRITE statement.

5. The file position indicator is not affected by the execution of a REWRITE statement.

6. The execution of the REWRITE statement causes the value of the FILE STATUS data
item associated with the file to be updated. Refer to "I-0 Status" on page 8-8.

7. The END-REWRITE phrase delimits the scope of the REWRITE statement.

8. A REWRITE will not be successful if any other run-unit holds a lock on MF
the record to be rewritten.

Format 1 (Sequential Files)

9. The logical record released by a successful execution of the REWRITE statement is no
longer available in the record area unless the associated file is named in a SAME
RECORD AREA clause. In this case, the record is still available to the program in the
record area as a record of this file, and also as a record of other files named in the
SAME RECORD AREA clause.

10. The REWRITE statement cannot be used with line-sequential files. The
REWRITE statement can be used with line-sequential files only if the
rewritten record is the same length as the record that is read. When a
record is read, null and tab characters in the record may be expanded
and this makes the record longer.

Format 2 (Relative And Indexed Files)

MF

11. The logical record released by a successful execution of the REWRITE statement is no
longer available in the record area unless the associated file is saved in a SAME
RECORD AREA clause. If so, the logical record is available to the program as a
record of other files appearing in the same SAME RECORD AREA clause as the asso
ciated I-0 file, as well as to the file associated with record name.

8-76 Language Reference

12. If a file has multiple record locking, the REWRITE statement can be
made to acquire a record lock by use of an AIX VS COBOL system direc
tive. Refer to the User's Guide for details of these directives.

Format 2 (Relative Files)

MF

13. For a file accessed in either random or dynamic access mode, the operating system log
ically replaces the record specified by the contents of the RELATIVE KEY data item
associated with the file. If the file does not contain the record specified by the key, the
INVALID KEY condition exists. Refer to "INVALID KEY Condition" on page 8-11. If
the INVALID KEY condition exists, the updating operation does not take place and
the data in the record area is unaffected.

Format 2 (Indexed Files)

14. For a file in the sequential access mode, the record to be replaced is specified by the
value contained in the prime record key. When the REWRITE statement is executed,
the value contained in the prime record data item of the record to be replaced must be
equal to the value of the prime record key of the last record read from this file.

15. For a file in the random or dynamic access mode, the record to be replaced is specified
by the prime record key data item.

16. The contents of alternative record key data items of the record being rewritten may
differ from those in the record being replaced. The operating system utilizes the
content of the record key data items during the execution of the REWRITE statement
in such a way that subsequent access of the record may be made based upon any of
those specified record keys.

17. The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the prime OSVS VSC2
record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file.

b. The value contained in the prime record key data item does not equal that of any
record stored in the file.

c. The value contained in an alternate record key data item for which a DUPLI
CATES clause has not been specified is equal to that of a record already stored in
the file.

When the INVALID KEY condition exists, the updating operation does not take
place and the data in the record area is unaffected. Refer to "INVALID KEY
Condition" on page 8-11.

File Input and Output 8-77

•

Example

The following example shows the REWRITE statement:

OPEN I-0 ACCT-PAYABLE.

READ ACCT-PAYABLE RECORD INTO ACCT-WORK.

(Change contents of ACCT-WORK if needed.)

REWRITE ACCT-PAYABLE-RECORD FROM ACCT-WORK.

The last INPUT-OUTPUT statement executed for the associated file prior to the execution
of the REWRITE must have been a successfully executed READ statement .

8-78 Language Reference

START Statement

Function

The ST ART statement provides a basis for logical positioning within a relative or indexed
file for subsequent retrieval of records. This statement is not available for files with
sequential organization.

General Format

The following figures show the general formats of the ST ART statement:

File Input and Output 8-79

•

Format 1 (Relative Files)

IS

........ START fi le-name-1 L
KEY --.----.-- EQUAL

Lrn

IS
i--~-GR

IS
EATER L

THAN
!----.-->

IS
i--~-NO

IS
T LESS L

THAN
1----.--NO T <

IS
i--~-GR

IS
EATER OR EQUAL L

[THAN] T0-1
=

IS
1----.--LE

IS
SS

LTHAN
!----.--<

IS
1--~-NO

IS
T GREATER

LrHAN
1----.--NO T >

IS
1----.--LE

IS
SS OR EQUAL L

[THAN] TO --l

I----.--< =
IS

., L INVALID [J imperative-statement-! o:J
KEY

.. L NOT INVALID [J imperative-statement-2 o:J LEND-START J
KEY

·S-80 Language Reference

data-name-1 J

MF

..

....

Format 2 (Indexed Files)

-- START file-name-1-il.---------------------------• 1
KEY --.------r-- EQ 2 UAL _.

IS LTo

IS

EATER L
THAN

.__--GR
IS

I----,-->

IS
T LESS L

THAN
.__--NO

IS
.__-~NO T <

IS
EATER OR EQUAL L

[THAN] TO-
.__-~GR

IS
I---.....--> =

IS
SS

LTHAN
1---.....--- LE

IS
I----,--<

IS
T GREATER

LrHAN
>---~-NO

IS
1---.....--- NO T >

IS
SS OR EQUAL L

[THAN] ro-
.__--,--LE

IS
1---.....--- < =

IS

1.,.__---------------------..--------------+
2 L data-name-1

split-key-name-1
WITH

SIZE L identifier-I
literal-1

.. LINVALID-~L--_J~;mperative-statement-1 ~
KEY

.. L NOT INVALID [J imperative-statement-2 ~ LEND-START J
KEY

MF

MF

File Input and Output 8-81

Syntax Rules

The following syntax rules apply to the START statement:

All Formats (Relative and Indexed Files)

1. The file name must be the name of a relative or indexed file.

2. The file name must be the name of a file with sequential or dynamic access.

3. Data-name-1 may be qualified.

4. The INVALID KEY phrase must be specified if no applicable USE procedure is speci
fied for file name.

Format 1 (Relative Files)

5. If the KEY phrase is specified, data-name-1 must be the data item specified in the REL
ATIVE KEY phrase of the associated file control entry.

Format 2 (Indexed Files)

6. If the KEY phrase is specified, data-name-1 may reference a data item specified as a
record key associated with the file name. Data-name-1 may also reference any data
item of category alphanumeric, subordinate to the data item specified as a record key,
associated with file name in which the leftmost character position corresponds to the
leftmost character position of that record key data item.

7. split-key-name-1 may reference one or more data items and is specified as
a record key associated with fik name.

8. WITH SIZE specifies the number of characters in the key to be used in
the positioning process.

9. identifier-I must be the name of an elementary integer data item when
used with the WITH SIZE phrase.

General Rules

The following general rules apply to the ST ART statement:

All Formats (Relative and Indexed Files)

MF

MF

MF

1. The file name must be open in the INPUT or I-0 mode at the time that the START
statement is executed. Refer to "OPEN Statement" on page 8-62.

2. If the KEY phrase is not specified, the relational operation IS EQUAL TO is implied.

3. The execution of the ST ART statement causes the value of any FILE STATUS data
item associated with file name to be updated. Refer to "I-0 Status" on page 8-8.

4. The ST ART statement neither acquires nor detects a record lock. MF

Format 1 (Relative Files)

5. The type of comparison specified by the relational operator in the KEY phrase occurs
between a key associated with a record in the file referenced by file name and a data
item as specified in general rule 6 on page 8-83.

a. If the relational operation specifies that the key must be greater than, MF
or greater than or equal to the data item, then the file position indi-
cator points to the first logical record existing in the file containing
the key satisfying the comparison.

8-82 Language Reference

b. If the relational operator specifies that the key must be less than, or
less than or equal to the data item, then the file position indicator
points to the last logical record existing in the file containing the key
satisfying the comparison.

c. If the comparison is not satisfied by any record in the file, an
INVALID KEY exists, the execution of the START statement is
unsuccessful, and the position of the file position indicator is unde
fined. Refer to "INVALID KEY Condition" on page 8-11.

MF

6. The comparison described in 5 on page 8-82 uses the data item referenced by the REL
ATIVE KEY clause associated with file name. A RELATIVE KEY clause must be
associated with a file name.

Format 2 (Indexed Files)

7. The type of comparison specified by the relational operator in the KEY phrase occurs
between a key associated with a record in the file referenced by file name and a data
item as specified in general rule 8. If a file name references an indexed file and the
operands are of unequal size, comparison proceeds as though the longer one were trun
cated on the right, making its length equal to that of the shorter. All other nonnu
meric comparison rules apply, except that the presence of the PROGRAM
COLLATING SEQUENCE clause has no effect on the comparison. Refer to "Compar
ison of Nonnumeric Operands" on page 7-12.

a. If the relational operator specifies that the key must be greater than MF
or equal to the data item, then the file position indicator points to
the first logical record currently existing in the file whose key sat-
isfies the comparison.

b. If the relational operator specifies that the key must be less than, or MF
less than or equal to the data item, then the file position indicator
points to the last logical record currently existing in the file whose
key satisfies the comparison.

c. If the comparison is not satisfied by any record in the file, an INVALID KEY
exists, the execution of the START statement is unsuccessful, and the position of
the file position indicator is undefined. Refer to "INVALID KEY Condition" on
page 8-11.

8. If the KEY phrase is specified, the comparison described in general rule 7 uses the
data item referenced by data- name-1.

9. If the operands are of unequal size, comparison proceeds as though the longer one
were truncated on the right, making its length equal to that of the shorter. All other
nonnumeric comparison rules apply except that the presence of the PROGRAM COL
LATING SEQUENCE clause has no effect on the comparison. Refer to "Comparison
of Nonnumeric Operands" on page 7-12.

10. If the WITH SIZE phrase is specified, the relational operator in the KEY MF
phrase is ignored.

11. If the KEY phrase is not specified, the comparison described in general rule 7 uses the
data item referenced in the RECORD KEY clause associated with file name.

12. Upon the successful execution of the START statement, a key of reference is estab
lished and used in subsequent Format 1 or Format 3 READ statements as follows (refer
to "READ Statement" on page 8-68):

a. If the KEY phrase is not specified, the prime record key specified for file name
becomes the key of reference.

b. If the KEY phrase is specified, and data-name-1 or split-key-name-1 MF
is specified as a record key for file name, that record key becomes
the key of reference.

File Input and Output 8-83

c. If the KEY phrase is specified, and data-name-1 or split-key-name-1
is not specified as a record key for file name, the record key with a
leftmost character position corresponding to the leftmost character
position of the data item specified by data-name-1 or split-key-name-1
becomes the key of reference.

MF

MF

13. If the execution of the ST ART statement is not successful, the key of reference is unde
fined.

Examples

The following examples show the START statement.

MOVE "DOE" TO START-NAME.
START AUTHOR-FILE KEY >= START-NAME

NOT INVALID KEY
PERFORM PRINT-AUTHORS

END-START.

START TRANS-HISTORY KEY >= START-DATE.

8-84 Language Reference

I
I
I

UNLOCK Statement

Function

The UNLOCK statement releases all record locks acquired by the run-unit on
a named file.

General Format

The following figure shows the general format of the UNLOCK statement:

~UNLOCK file-name -...-t---~-~-...........
RECORD
RECORDS

General Rules

The following general rules apply to the UNLOCK statement:

1. File name must occur in the SELECT statement of the FILE CONTROL entry.

2. The file referenced by file name must already be opened with the OPEN statement.

MF

MF

MF

File Input and Output 8-85

USE Statement

Function

The USE statement specifies procedures for input-output error handling in addition to the
standard procedures provided by the input-output control system. An input-output error
on a file invokes the USE procedure only if the file has a file status item.

General Format

The following figures show the general format of the USE statement:

Format 1 (Sequential Files)

..,.__USE AFTER L J
STANDARD

Format 2 (Sequential Files)

' [EXCEPT~ PROCEDURE~ file-name-1
ERROR ON INPUT

OUTPUT----1
I-0----1
EXTEND---'

..,.__USE AFTER L J L BEGINNI!!!_J-...,.-,~---~.....------------~ osvs VSC2
STANDARD ENDING FILE

REEL
UNIT

' - LABEL PROCEDURE ~fi le-name-1
ON INPUT----;

OUTPUT---1
I-0----'

Format 3 (Relative and Indexed Files)

..,.__USE AFTER L J
STANDARD

8-86 Language Reference

' [EXCEP~ PROCEDURE tfile-name-1
ERROR ON IN PUT

OUTPUT---1
I-0-----1
EXTEND---'

Format 4 (Relative and Indexed Files)

.,._USE AFTER L _J L BEGINNING-~ ,~L--~------------.. osvs VSC2
STANDARD ENDING __J FILE _J

' ..,...__LABEL PROCEDURE ~fi le-name-1
ON INPUT-----<

OUTPUT---i
I-0---~

Syntax Rules

....

The following syntax rules apply to the USE statement:

All Formats (All Files)

1. Formats 1 and 3 are the ERROR declarative, and Formats 2 and 4 are OSVS VSC2
the LABEL declarative.

2. A USE statement, when present, must immediately follow a section header in the
declaratives section and must be followed by a period, followed by a space. The
remainder of the section must consist of zero, one, or more procedural paragraphs
defining the procedure to be used.

3. The USE statement itself is never executed; it merely defines the conditions calling for
the execution of the USE procedures.

4. The same file name can appear in a different specific arrangement of the format.
Appearance of a file name in a USE statement must not cause the simultaneous
request for execution of more than one USE procedure.

5. The words ERROR and EXCEPTION are synonymous and may be used interchange
ably.

6. The files implicitly or explicitly referenced in a USE statement need not all have the
same organization or access.

Formats 2 And 4 (All Files)

7. If both BEGINNING and ENDING are omitted, the effect is as though OSVS VSC2
both BEGINNING and ENDING had been specified.

Format 2 (Sequential Files)

8. REEL and UNIT are treated as equivalent. OSVS VSC2

9. If both FILE and REEL or UNIT are omitted, the effect is as though OSVS VSC2
both had been specified.

10. Any file name and any one OPEN mode may appear in, at most, one OSVS VSC2
declarative for each of the possible combinations of
BEGINNING/ENDING and FILE/REEL as shown below:

BEGINNING FILE
BEGINNING REEL OR UNIT
ENDING FILE
ENDING REEL OR UNIT

File Input and Output 8-87

General Rules

The following general rules apply to the USE statement:

All Formats (All Files)

1. After execution of a USE procedure, control is returned to the invoking routine.

2. Within a USE procedure, there must not be any reference to any nondeclarative proce
dures. Conversely, in the nondeclarative portion there must be no reference to proce
dure names that appear in the declarative portion, except that PERFORM statements
may refer to a USE statement.

3. The execution of any statement causing the execution of a USE procedure previously
invoked, but with control not yet returned to the invoking routine, is not allowed
within a USE procedure.

Formats 1 And 3 (All Files)

4. The designated procedures are executed by the input-output system after completing
the standard input-output error routine. The procedures are also executed upon recog
nition of the AT END condition, when the AT END phrase has not been specified in
the input-output statement.

5. When file-name-1 is specified explicitly, no other USE statement applies to file-name-1.

Formats 2 And 4 (All Files)

6. This declarative is never executed unless by an explicit PERFORM state- OSVS VSC2
ment in the nondeclarative portion of the Procedure Division.

7. The statement GO TO MORE LABELS is used as a simple jump to the
start of the declarative procedure in which it appears .

. Example

The following example shows the USE statement:

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-HANDLING SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT.

END DECLARATIVES.

· 8-88 Language Reference

WRITE Statement

Function

The WRITE statement releases a logical record for an output or input-output file. For
sequential files it can also be used for vertical positioning of lines within a logical page.

General Format

The following figures show the general format of the WRITE statement:

Format 1 (Sequential Files)

---WRITE record-name~------------------------..
L_ FROM identifier-I _J

BEFORE_J-~~[----j-~- i dentfi er-2 --.--.-------t

AFTER ADVANCING ti nteger-1 LINE
LINES

mnemoni c-name-1-----<
PAGE--------'

.. L L END-OF-PAGE---i-imperative-statement-1 ::J
LAT_J EOP---_J-'

., [NOT LEND-OF-PAGET imperative-statement-2 J [END-WRITE J
LAT_J EOP-----'

Format 2 (Sequential Files)

..

---WRITE record-name~--------~---------------..
L FROM identifier-1 _J

-- AFTER POSITIONING -r- identifier-2 1 L _J
L_integer-l___J LINES

..

..
L LEND-OF-PAGE-,- imperative-statement :=J
LAT_J EOP ___ _J_,

....

osvs

File Input and Output 8-89

Format 3 (Sequential Files)

.,.__WRITE record-name-1-.,...L----------..---------------•
FROM identifier-l_J

• [INVALID [J imperative-statement-1~
KEY

• [NOT INVALID -"T'"'"L--J-.--imperati ve-statement-2 =:J LEND-WRITE =:J
KEY

Format 4 (Relative and Indexed Files)

..

.....

.,.__WRITE record-name-1-~L--------=:J--..---------------•
FROM identifier-1

• [INVALID--.-L---J-.--;mperative-statement-1 =:J
KEY

• [NOT INVALID-~L--J~imperative-statement-2 =:J LEND-WRITE =:J
KEY

Syntax Rules

The following syntax rules apply to the WRITE statement:

All Formats (All Files)

...

1. Record name and identifier-I must not reference the same memory area.

•

MF

2. The record name is the name of a logical record in the FILE SECTION of the Data
Division and may be qualified.

DBCS Support

3. identifier-I may be a USAGE DISPLAY-I (DBCS) item.

~----------- End of DBCS Support ___________ ___.

Format 1 (Sequential Files)

4. When the mnemonic name associated with TAB is specified, the result is to cause the
paper to throw to the standard vertical tabulation position. A user-defined mnemonic
name can be used instead of TAB or FORMFEED if they are associated in the
SPECIAL-NAMES paragraph. Refer to "SPECIAL-NAMES Paragraph" on page 5-8.

5. When identifier-2 is used in the ADVANCING phrase, it must be the name of an ele
mentary integer data item.

6. Integer-I, or the value of the data item referenced by identifier-2, may be zero.

8-90 Language Reference

7. If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified in the
file description entry for the associated file.

8. The words END-OF-PAGE and EOP are equivalent.

9. The ADVANCING mnemonic name phrase cannot be specified when writing a record
to a file whose file description entry contains the LINAGE clause.

Format 2 (Sequential Files)

10. This format cannot be specified when writing a record to a file whose file
description entry contains the LINAGE clause.

11. If this format of the WRITE statement is used for writing to a given file,
then every WRITE statement used for that file should be in this format.

12. In the AFTER POSITIONING phrase, identifier-2 must be defined as a
single character alphanumeric item. Refer to general rule 14 on
page 8-93 for its possible values.

Format 4 (Relative and Indexed Files)

osvs

osvs

osvs

13. The INVALID KEY phrase must be specified if an applicable USE procedure is not
specified for the associated file.

General Rules

The following general rules apply to the WRITE statement:

All Formats (All Files)

1. The results of the execution of the WRITE statement with the FROM phrase is equiv
alent to the execution of:

a. The statement:

MOVE identifier-1 TO record name

according to the rules specified for the MOVE statement, followed by

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE statement
have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area refer
enced by identifier-! is available, even though the information in the area referenced
by record name may not be. Refer to general rules 8 and 17.

2. The file position indicator is unaffected by the execution of a WRITE statement.

3. The execution of the WRITE statement causes the value of the FILE STATUS data
item associated with the file to be updated. Refer to "I-0 Status" on page 8-8.

4. The maximum record size for a file is established at the time the file is created and
cannot be changed.

5. The number of character positions on a mass storage device to store a logical record
may or may not be equal to the number of character positions defined by the logical
description of that record in the program.

6. The execution of the WRITE statement releases a logical record to the operating
system.

File Input and Output 8-91

Formats 1, 2, And 3 (Sequential Files)

7. The associated file must be open in the OUTPUT or EXTEND mode at the time of the
execution of this statement. Refer to "OPEN Statement" on page 8-62.

8. The logical record released by the execution of the WRITE statement is no longer
available in the record area unless the associated file is named in a SAME RECORD
AREA clause or the execution of the WRITE statement was unsuccessful due to a
boundary violation.

The logical record is also available to the program as a record of other files referenced
in the SAME RECORD AREA clause as the associated output file, as well as to the file
associated with record name.

Format 1 (Sequential Files)

9. When an attempt is made to write beyond the externally defined boundaries of a
sequential file, an exception condition exists and the contents of the record area are
unaffected. The following action takes place:

a. The value of the FILE STATUS data item of the associated file is set to a value
indicating a boundary violation. Refer to "I-0 Status" on page 8-8.

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly
specified for the file, that declarative procedure is then executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implic
itly specified for the file, the result is undefined.

10. After the recognition of an end of unit of an output file contained on more than one
physical reel or unit, the WRITE statement performs the following operations:

a. The standard ending reel or unit procedure
b. The reel or unit swap
c. The standard beginning of reel or unit label procedure.

11. Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the ver
tical positioning of each line on a representation of a printed page.

a. With ORGANIZATION RECORD-SEQUENTIAL, if the ADVANCING phrase is not
used, automatic advancing is provided when output is directed to a list device to
act as if the user had specified AFTER ADVANCING 1 LINE. One exception to
this is if you WRITE a sequential file to a list device via a pipe, automatic line
advancing is not provided. Instead, the file behaves as if you had specified a
WRITE statement only. Therefore, you must either explicitly WRITE AFTER
ADVANCING 1 LINE, or specify the printer in a SELECT ASSIGN statement. If
the ADVANCING phrase is used, advancing is provided as follows:

1) If identifier-2 if specified, the representation of the printed page is advanced
the number of lines equal to the current value associated with identifier-2.

2) If integer is specified, the representation of the printed page is advanced in the
number of lines equal to the value of integer.

3) If mnemonic-name is specified, the representation of the printed page is
advanced according to the rules specified by the implementer for the hardware
device.

4) If the BEFORE phrase is used, the line is presented before the representation
of the printed page is advanced according to general rules llal, lla2, and lla3.

5) If the AFTER phrase is used, the line is presented after the representation of
the printed page is advanced according to general rules llal, lla2, and lla3.

6) If PAGE is specified, the record is presented on the logical page before or after
the device (depending on the phrase used) is repositioned to the next logical
page. If the record to be written is associated with a file containing a LINAGE
clause in the file description entry, the repositioning is to the first line that
can be written on the next logical page as specified in the LINAGE clause.

8-92 Language Reference

b. With ORGANIZATION LINE-SEQUENTIAL, if the ADVANCING phrase is not
used, automatic advancing of one line is provided to act in accordance with the
convention of your operating system text editor (usually as if the user had speci
fied BEFORE ADVANCING 1 LINE).

If the ADVANCING phrase is used, advancing is provided according to general
rule lla.

12. If the logical end of the representation of the printed page is reached during the exe
cution of a WRITE statement with the END-OF-PAGE phrase, the imperative state
ment specified in the END-OF-PAGE phrase is executed. The logical end is specified
in the LINAGE clause associated with record name.

13. An end-of-page condition occurs whenever a given WRITE statement with the
END-OF-PAGE phrase is executed and the execution of such a WRITE statement
causes the LINAGE-COUNTER to equal or exceed the value specified by integer-2 or
the data item referenced by data-name-2 of the LINAGE clause. In this case, the
WRITE statement is executed and then the imperative statement in the END-OF-PAGE
phrase is executed.

An automatic page overflow condition occurs whenever the execution of a given
WRITE statement (with or without an END-OF-PAGE phrase) cannot be fully accom
modated within the current page body. This occurs when the execution of a WRITE
statement causes the LINAGE-COUNTER to exceed the value specified by integer-1 or
the data item referenced by data-name-1 of the LINAGE clause. In this case, the
record is presented on the logical page before or after (depending on the phrase used)
the device is repositioned to the first line that can be written on the next logical page
as specified in the LINAGE clause. The imperative statement in the END-OF-PAGE
clause, if specified, is executed after the record is written and the device has been repo
sitioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end-of-page condi
tion distinct from the page overflow condition is detected. In this case, the end-of-page
condition and page overflow condition occur simultaneously.

If integer-2 or data-name-2 of the LINAGE clause is specified, but the execution of a
given WRITE statement would cause LINAGE-COUNTER to simultaneously exceed
the value of both integer-2 or the data item referenced by data-name-2 and integer-1 or
the data item referenced by data-name-1, then the operation proceeds as if integer-2 or
data-name-2 had not been specified.

Format 2 (Sequential Files)

14. When the AFTER POSITIONING phrase is used in a WRITE state- OSVS
ment, the system moves a suitable character into the first position of the
record before it is written to the file. This first character position must be
reserved by the user for this purpose. If the identifier-2 option is used,
then the character moved into the output record is simply the value held
by identifier-2 and should be one of the values in Table 8-3 on page 8-95.

If the integer-I option is used, then the character placed in the output
record is determined by the values in Table 8-4 on page 8-95.

The implicit move always takes place according to the above rules, but
actions based on the given interpretations are system-dependent. Ref er to
the User's Guide.

15. The END-OF-PAGE phrase, if specified, is treated as documentary and is never exe
cuted.

File Input and Output 8-93

Format 3 (Sequential Files)

16. When an attempt is made to write beyond the externally defined bounda
ries of a sequential file, an INVALID KEY condition occurs. When the
INVALID KEY condition is recognized, the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected,
and the FILE STATUS data item, if any, of the associated file is set to a
value indicating the cause of the condition. Execution of the program
proceeds according to the rules stated in "INVALID KEY Condition" on
page 8-11. Refer also to "I-0 Status" on page 8-8.

Format 4 (Relative And Indexed Files)

MF

17. The associated file must be open in the OUTPUT or I-0 mode at the time this state
ment is executed. Refer to "OPEN Statement" on page 8-62.

18. The logical record released by the execution of the WRITE statement is no longer
available in the record area unless the associated file is named in a SAME RECORD
AREA clause or the execution of the WRITE statement is unsuccessful due to an
INVALID KEY condition.

The logical record is available to the program and file associated with record name, as
a record of other files referenced in the same SAME RECORD AREA clause as the
associated output file.

19. When the INVALID KEY condition is recognized, the execution of the WRITE state
ment is unsuccessful, the contents of the record area are unaffected, and the FILE
STATUS data item of the associated file, if any, is set to a value indicating the cause
of the condition. Execution of the program proceeds according to the rules stated in
"INVALID KEY Condition" on page 8-11. Refer also to "I-0 Status" on page 8-8.

20. If the file has multiple record locking, the WRITE statement can be made MF
to acquire a record lock by use of an AIX VS COBOL system directive.
Refer to the User's Guide for details of directives.

Format 4 (Relative Files)

21. When a file is opened in the output mode, records may be placed into the file by one of
the following:

a. If the access mode is sequential, the WRITE statement causes a record to be
released to the operating system. The first record has a relative record number of
one and subsequent records released have relative record numbers of 2, 3, 4, If
the RELATIVE KEY data item has been specified in the file control entry for the
associated file, the relative record number of the record just released is placed into
the RELATIVE KEY data item by the operating system during execution of the
WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of the WRITE
statement, the value of the RELATIVE KEY data item must be initialized in the
program with the relative record number or be associated. with the record in the
record area. The record is then released to the operating system by execution of
the WRITE statement.

22. When a file is opened in the I-0 mode and the access mode is random or dynamic,
records are to be inserted in the associated file. The value of the RELATIVE KEY
data item must be initialized by the program with the relative record number to be
associated with the record in the record area. Execution of a WRITE statement then
causes the contents of the record area to be released by the operating system.

23. The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY data item
specifies a record that already exists in the file.

b. When an attempt is made to write beyond the externally defined boundaries of the
file.

8-94 Language Reference

Format 4 (Indexed Files)

24. Execution of the WRITE statement causes the contents of the record area to be
released. The operating system utilizes the contents of the record keys so the user can
access the record using any of the specified record keys.

25. The value of the prime record key must be unique within the records in the file.

26. The data item specified as the prime record key must be set by the program to the
desired value prior to the execution of the WRITE statement.

27. If sequential access mode is specified for the file, records must be released to the oper
ating system in ascending order of prime record key values.

28. If random or dynamic access mode is specified, records may be released to the oper
ating system in any program specified order.

29. When the ALTERNATE RECORD KEY clause is specified in the file control entry for
an indexed file, the value of the alternate record key may be nonunique only if the
DUPLICATES phrase is specified for that data item. In this case, the operating system
provides storage of records such that when records are accessed sequentially, the order
of retrieval is the order in which they are released to the operating system.

30. The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the output mode, and
for the value of the prime record key of the previous record.

b. When the file is opened in the output or I-0 mode, and the value of the prime
record key is equal to the value of a prime record key of a record already existing
in the file.

c. When the file is opened in the output or I-0 mode, and the value of an alternate
record key for which duplicates are not allowed equals the corresponding data item
of a record already existing in the file.

d. When an attempt is made to write beyond the externally defined boundaries of the
file.

Table 8-3. AFTER POSITIONING Phrase with identifier-2

Identifier-2 Interpretation

(space) Single spacing

0 Double spacing
- Triple spacing

+ Suppress spacing

1-9 Skip to channel 1-9, respectively

A,B,C Skip to channel 10, 11, 12, respectively

v,w Pocket select 1 or 2

Table 8-4. AFTER POSITIONING Phrase with integer-1

Integer-1 Output Character Interpretation

0 1 Skip to channel 1

1 (space) Single space

2 0 Double spacing

3 - Triple spacing

File Input and Output 8-95

Example

The following example shows the WRITE statement:

WRITE EMPL-RECORD.

WRITE EMPL-RtCORD FROM EMPL-WORK
INVALID KEY PERFORM ERROR-WRITE.

WRITE OUTPUT-LINE-REC AFTER ADVANCING 2 LINES.

WRITE ACCT-PAYABLE-REC
INVALID KEY DISPLAY "BAD RECORD KEY"

NOT INVALID KEY

END-WRITE.

8-96 Language Reference

Chapter 9. COBOL Source Library

COBOL Source Library 9-1

Contents

About This Chapter ... 9-3
Introduction . 9-4
COPY Statement . 9-5

Function . 9-5
General Format . 9-5
Syntax Rules . 9-5
General Rules . 9-6
Example 1 .. 9-8
Example 2 . 9-8

REPLACE Statement . 9-10
Function . 9-10
General Format . 9-10
Syntax Rules . 9-10
General Rules . 9-10

9-2 Language Reference

About This Chapter

This chapter describes a facility in COBOL which may be used to ease coding and to
support standardized coding. This facility is in the Source Library Module, which provides
two compiler-directing statements, COPY and REPLACE, to copy prewritten text from a
source user-library to a COBOL program or to globally replace source program text in the
program.

COBOL Source Library 9-3

Introduction

The library module provides a capability for specifying text to be copied from a source user
library file. This is usually created using any suitable source text editor. It also provides
a capability for replacing text in the source program.

IBM AIX VS COBOL libraries consist of fixed-disk files containing source material to be
made available to the COBOL system. The effect of the interpretation of the COPY state
ment is to insert text into the source program, where it is treated by the COBOL system as
part of the source program. All occurrences of a given literal, identifier, word, or group of
words in the library text can be replaced with alternate text during the copy process. The
library module also makes more than one COBOL library available at the time the object
code is created.

The effect of the REPLACE statement is to substitute new text for text appearing in the
source program and have the new text treated by the AIX VS COBOL system as part of the
source program.

9-4 Language Reference

COPY Statement

Function

The COPY statement incorporates text into an AIX VS COBOL source program.

General Format

The following figure shows the general format of the COPY statement:

- COPY L text-name ~ L j
external-Ji le-name-literal L o1NF OJ L library-name

library-name-literal

.. L SUPPRESS J L REPLACING 1 =pseudo-text-1== r BY 1==pseudo-text-2==
identifier-1 - identifier-2--....,
literal-1 literal-2-----1
word-1 word-2 ----~

Syntax Rules

The following syntax rules apply to the COPY statement:

..

....

MF
MF

OSVS VSC2

1. If more than one COBOL library is available while the source is passed through the
COBOL system, text name must be qualified by the library name identifying the
COBOL library in which the text associated with text name resides. Refer to the
User's Guide.

2. The COPY statement must be preceded by a space and terminated by the separator
period.

3. pseudo-text-1 must not be null, nor may it consist solely of the character space(s), nor
may it consist solely of comment lines.

4. pseudo-text-2 may be null.

5. Character strings within pseudo-text-1 and pseudo-text-2 may be continued. However,
both characters of a pseudo-text delimiter must be on the same line.

6. word-1 or word-2 may be any single COBOL word.

7. A COPY statement may occur in the source program anywhere a char
acter string or a separator may occur except that a COPY statement
may not occur within a COPY statement. A COPY statement in a
library text must not specify the same library text.

Nested copy statements are allowed. However, recursive COPY state
ments (where a library-text is referred to by a COPY statement within it)
are not permitted.

OSVS VSC2

COBOL Source Library 9-5

8. text-name defines a unique external file name which conforms to the
rules for user-defined words (lowercase is converted to uppercase). The
external-file-name-literal is an alphanumeric literal that conforms to the
operating system rules for file names. It must be specified within
enclosing quotes.

MF

9. The library-name-literal is an alphanumeric literal that conforms either MF
to the operating system rules for fik names or to the operating system
rules for device identifiers. It may be specified with or without enclosing
quotes.

10. The SUPPRESS phrase is used to suppress printing the contents of the OSVS VSC2
copy member on the source listing but is documentary only.

11. If the word COPY appears in a comment-entry or in the place where a comment-entry
may appear, it is considered part of the comment-entry.

12. It is not permitted for the word COPY in a COPY statement appearing in OSVS VSC2
a library text to be continued onto a new line.

DBCS Support

I3. The REPLACING operands may be USAGE DISPLAY-I items, which are Double-Byte
Character Set (DBCS) items .

.___ ___________ End of DBCS Support -----------~

General Rules

The following rules apply to the COPY statement:

1. The compilation of a source program containing COPY statement is logically equiv
alent to processing all COPY statements prior to the processing of the resulting source
program.

2. The effect of processing a COPY statement is that the library text asso
ciated with text-name is copied into the source program, logically
replacing the entire COPY statement, beginning with the reserved word
COPY and ending with the punctuation character period. Refer to rule OSVS
13 on page 9-8 for OLDCOPY alternative processing.

3. If the REPLACING phrase is not specified, the library text is copied unchanged.

If the REPLACING phrase is specified, the library text is copied and each properly
matched occurrence of pseudo-text-I, identifier-I, literal-I, and word-I in the library
te:?Ct is replaced by the corresponding pseudo-text-2, identifier-2, literal-2, or word-2.

4. For purposes of matching, identifier-I, literal-I, and word-I are treated as pseudo-text
containing only identifier-I, literal-I, or word-I, respectively.

9-6 Language Reference

5. The comparison operation to determine text replacement occurs in the following
manner:

Any separator comma, semicolon, and/or space(s) preceding the leftmost library text
word is copied into the source program. Starting with the leftmost library text word
and the first pseudo-text-1, the entire REPLACING phrase operand preceding the
reserved word BY is compared to an equivalent number of contiguous library text
words. pseudo-text-1, identifier-1, literal-1, or word-1 match the library text if the
ordered sequence of text words forming pseudo-text-1, identifier-1, literal-1, or word-1 is
equal, character for character, to the ordered sequence of library text words. For pur
poses of matching, each occurrence of a separator comma or semicolon in pseudo-text-1
or in the library text is considered to be a single space except when pseudo-text-1 con
sists solely of either a separator comma or semicolon. In this case, it is considered to
be a text word. Each sequence of one or more space separators is considered to be a
single space.

If no match occurs, the comparison is repeated with each successive pseudo-text-1,
identifier-1, literal-1, or word-1 in the REPLACING phrase until either a match is
found or there is no next REPLACING operand.

When all the REPLACING phrase operands have been compared and no match has
occurred, the leftmost library text word is copied into the source program. The next
successive library text word is then considered as the leftmost library text word, and
the comparison cycle starts again with the first pseudo-text-1, identifier-1, literal-1, or
word-1 specified in the REPLACING phrase.

Whenever a match occurs between pseudo-text-1, identifier-1, literal-1, or word-1 and
the library text, the corresponding pseudo-text-2, identifier-2, literal-2, or word-2 is
placed into the source program. The library text word immediately following the right
most text word being compared is then considered the leftmost library text word. The
comparison cycle starts again with the first pseudo-text-1, identifier-1, literal-1, or
word-1 specified in the REPLACING phrase.

The comparison operation continues until the rightmost text word in the library text
has either been matched or has been a leftmost library text word and compared
through a complete cycle.

6. A comment line occurring in the library text and pseudo-text-1 is interpreted, for pur
poses of matching, as a single space. Comment lines appearing in pseudo-text-2 and
library text are copied into the source program unchanged.

7. Debugging lines are permitted within library text and pseudo-text-2. Debugging lines
are not permitted within pseudo-text-1. Text words within a debugging line are treated
as if the D did not appear in the indicator area. A debugging line is specified within
pseudo-text if the debugging line begins in the source program after the opening
pseudo-text delimiter but before the matching closing pseudo-text delimiter.

8. The text produced as a result of the complete processing of a COPY
statement must not contain a COPY statement. This text may contain a
COPY statement provided neither this contained COPY nor the already
expanded COPY includes the REPLACING phrase.

VSC2

9. The syntactic correctness of the library text cannot be independently determined.
Except for COPY statements, the syntactic correctness of the entire COBOL source
program cannot be determined until all COPY statements have been completely proc
essed.

10. Each text word copied from the library is copied so it starts in the same area of the
line in the resultant program as it begins in the library. Library text must conform to
the rules for COBOL reference format. If additional lines are introduced into the same
program as a result of a COPY statement, each text word introduced appears on a
debugging line if the COPY statement begins on a debugging line, or if the text word
being introduced appears on a debugging line in library text.

11. For purposes of compilation, text words after replacement are placed in the source
program according to the rules for reference format as described in Chapter 1,
"Introduction."

COBOL Source Library 9-7

12. If the unit identifier is not explicitly specified, the default drive is used. The default is
operating system-dependent and is described in the User's Guide.

13. The COBOL system directive OLDCOPY can be set to cause the entire
entry to be replaced by the information identified by text name, except
that the data-name preceding the COPY statement replaces the corre
sponding data-name in the text name. See the following examples.

Example 1

The following example is performed with the OLDCOPY directive set:

Source-file Code

01 PRODUCT-CODE COPY COPYPROD.

Copy-file "COPYPROD"

01 PROD-CD.
05 ITEM-NAME PIC X(30).
05 ITEM-NUMBER PIC X(5).

Resulting COBOL Code

01 PRODUCT-CODE.

Example 2

05 ITEM-NAME PIC X(30).
05 ITEM-NUMBER PIC X(5).

osvs

In the following example, the library entry PA YLIB consists of these Data Division entries:

02 B PIC S99.
02 C PIC S9(5)V99.
02 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

You can use the COPY statement in the Data Division of a program as follows:

01 PAYROLL. COPY PAYLIB.

In this program, the library entry is then copied. The resulting entry is treated as if it
were written as follows:

01 PAYROLL.
02 B
02 c
02 D

PIC S99.
PIC S9(5)V99.
PIC S9999 OCCURS 1 TO 52 TIMES
DEPENDING ON B OF A.

To change names within the library entry, use the REPLACING option:

01 PAYROLL. COPY PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE C BY GROSS-PAY.

9-8 Language Reference

In this program, the library entry is copied. The resulting entry is treated as if it were
written as follows:

Gl PAYROLL.
02 PAY-CODE
02 GROSS-PAY
02 D

PIC S99.
PIC S9(5}V99.
PIC S9999 OCCURS 1 TO 52 TIMES
DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown in the foregoing examples are made for this program only. The entry
as it appears in the library remains unchanged.

COBOL Source Library 9-9

REPLACE Statement

Function

The REPLACE statement is used to replace source program text.

General Format

The following figures show the format of the REPLACE statement:

Format 1

t
~REPLACE - ==pseudo-text-1== BY ==pseudo-text-2== _____...,.

Format 2

.,..._REPLACE OFF_...,.

Syntax Rules

The following syntax rules apply to the REPLACE statement:

1. A REPLACE statement may occur anywhere in the source program where a character
string may occur. It must be preceded by a separator period except when it is the first
statement in a separate program.

2. A REPLACE statement must be terminated by a separator period.

3. pseudo-text-I must contain one or more text words.

4. pseudo-text-2 may contain zero, one, or more text words.

5. Character strings within pseudo-text-I and pseudo-text-2 may be continued.

6. A text word within pseudo-text must be between I and 322 characters long.

7. pseudo-text-I must not consist entirely of a separator comma or a separator semicolon.

8. If the word REPLACE appears in a comment-entry or in the place where a comment·
entry may appear, it is considered part of the comment-entry.

General Rules

The following general rules apply to the REPLACE statement:

1. The Format I REPLACE statement specifies the text of the source program to be
replaced by the corresponding text. Each matched occurrence of pseudo-text-I in the
source program is replaced by the corresponding pseudo-text-2.

2. The Format 2 REPLACE statement discontinues any text replacement currently in
effect.

9-10 Language Reference

3. Each occurrence of the REPLACE statement is in effect from the point at which it is
specified until the next occurrence of the statement or until the end of the separate
program.

4. Any REPLACE statements contained in a source program are processed after any
COPY statements contained in a source program.

5. The text produced as a result of processing a REPLACE statement must not contain a
REPLACE statement.

6. The comparison operation to determine text replacement occurs in the following
manner:

a. Starting with the leftmost source program text word and the first pseudo-text-1,
pseudo-text-1 is compared to an equivalent number of contiguous source program
text words.

b. pseudo-text-1 matches the source program text if the order sequence of text words
forming pseudo-text-1 is equal, character for character, to the ordered sequence of
source program text words. For purposes of matching, each occurrence of a sepa
rator comma, semicolon, or space in pseudo-text-1 or in the source program text is
considered to be a single space. Each sequence of one or more space separators is
considered to be a single space.

c. If no match occurs, the comparison is repeated with each next successive occur
rence of pseudo-text-1, until either a match is found or there is no next successive
occurrence of pseudo-text-1.

d. Whenever a match occurs between pseudo-text-1 and the source program text, the
corresponding pseudo-text-2 replaces the matched text in the source program. The
source program text word immediately following the rightmost text word that par
ticipated in the match is then considered as the leftmost source program text word.
The comparison cycle starts again with the first occurrence of pseudo-text-1.

e. The comparison operation continues until the rightmost text word in the source
program text which is within the scope of the REPLACE statement has either been
matched or been considered as a leftmost source program text word and completed
the comparison cycle.

7. Comment lines or blank lines occurring in the source program text and in pseudo-text-1
are ignored for purposes of matching. The sequence of text words in the source
program text and in pseudo-text-1 is determined by the rules for reference format.
Refer to "Reference Format" on page 3-4. Comment lines or blank lines in
pseudo-text-2 are placed into the resultant program unchanged whenever pseudo-text-2
is placed into the source program as a result of text replacement. A comment line or
blank line in source program text is not replaced if the line appears within the
sequence of text words matching pseudo-text-1.

8. Debugging lines are permitted in pseudo-text. Text words within a debugging line are
treated as if the D did not appear in the indicator area.

9. Except for COPY and REPLACE statements, the syntactic correctness of the source
program text cannot be determined until after all COPY and REPLACE statements
have been completely processed.

10. Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for reference format.
Refer to "Reference Format" on page 3-4. When inserting text words of pseudo-text-2
into the source program, additional spaces may be introduced only between text words
where there already exists a space (including the assumed space between source lines).

COBOL Source Library 9-11

11. If additional lines are introduced into the source program as a result of processing
REPLACE statements, the indicator area of the introduced lines contains the same
character as the first line of the replaced text, unless the line contains a hyphen, in
which case the introduced line contains a space.

12. If any literal within pseudo-text-2 is too long to be accommodated on a single line
without continuation, and the literal is not being placed on a debugging line, addi
tional continuation lines are introduced which contain the remainder of the literal. If
replacement requires the literal to be continued on a debugging line, the program is in
error.

9-12 Language Reference

Chapter 10. Listing Control

Listing Control 10-1

Contents

About This Chapter . 10-3
SKIPl, SKIP2, and SKIP3 Statements . 10-4

Function . 10-4
General Format . 10-4
Syntax Rule . 10-4
General Rules . 10-4

EJECT Statement . 10-5
Function . 10-5
General Format . 10-5
Syntax Rule . 10-5
General Rule . 10-5

TITLE Statement . 10-6
Function . 10-6
General Format . 10-6
Syntax Rules . 10-6
General Rules . 10-7

10-2 Language Reference

About This Chapter

This chapter describes five compiler-directed listing control statements. It also describes
how the statements improve the readability of a program listing by the vertical spacing,
ejection, and page title of the listing produced by the COBOL compiler.

Listing Control 10-3

SKIPl, SKIP2, and SKIP3 Statements

Function

The SKIPl, SKIP2, and SKIP3 statements control the vertical spacing of the OSVS VSC2
source code listing produced by the AIX VS COBOL system. They specify
the lines to be skipped in the source code listing.

General Format

The following figures show the format of the SKIP statement:

..,.__SKI Pl L.J
....

VSC2

..,.___ SKIP2 L.J
....

VSC2

..,.___ SKIP3 L.J
....

VSC2

Syntax Rule

These statements may begin either in area A or in area B, and must be the OSVS VSC2
only statement on the line. It may be followed by a period.

General Rules

The following general rules apply to the SKIP statements:

1. SKIPl tells AIX VS COBOL system to skip one line (double spacing).

SKIP2 tells AIX VS COBOL system to skip two lines (triple spacing).

SKIP3 tells AIX VS COBOL system to skip three lines (quadruple
spacing).

2. The SKIP statement itself is not printed.

10-4 Language Reference

OSVS VSC2

EJECT Statement

Function

The EJECT statement tells the AIX VS COBOL system to print the next line OSVS VSC2
of source code at the top of the next page.

General Format

The following figure shows the format of the EJECT statement: OSVS VSC2

~EJECT L.J

Syntax Rule

EJECT may begin either in area A or in area Band must be the only state- OSVS VSC2
ment on the line. It may be followed by a period.

General Rule

The EJECT statement itself is not printed. OSVS VSC2

Listing Control 10~5

TITLE Statement

Function

The TITLE statement tells the AIX VS COBOL system what title to print on
the first line of all following pages of the program listing.

General Format

The following figure shows the format of the TITLE statement:

.,.._TITLE literal-I [. J

Syntax Rules

The following syntax rules apply to the TITLE statement:

I. literal-I must be nonnumeric and may be followed by a period.

2. The word TITLE may begin either in area A or area B and must be the
only statement on the line.

3. The TITLE statement may appear anywhere in the source program.

DBCS Support

VSC2

VSC2

VSC2

4. literal-I may be a Double-Byte Character Set (DBCS) literal.

~------------ End of DBCS Support ------------~

10-6 Language Reference

General Rules

The following general rules apply to the TITLE statement:

1. literal-1 is used as a title on all following pages of the program listing.
The default title, used until a TITLE directive is encountered, identifies
the AIX VS COBOL system and its current release level.

2. The chosen or default title occupies the left side of the first line of each
page. The remainder of the line gives the date and time the intermediate
code is produced and the page number.

3. A second title line is output containing the name of the main source file
and of the current COPY file.

4. The TITLE statement causes an immediate new page.

5. The TITLE statement itself is not printed.

VSC2

Listing Control 10-7

10-8 Language Reference

Chapter 11. Interprogram Communication

Interprogram Communication 11-1

Contents

About This Chapter
Introduction
Language Concepts

Nested Source Programs
File Connector
Global Names and Local Names
External Objects and Internal Objects
Common Programs and Initial Programs
Sharing Data
Sharing Files
Scope of Nam es

Nested Source Programs
General Description .
Organization
Structure
Initial State of a Program

END PROGRAM Header .
Function
General Format
Syntax Rules
General Rules
Example

Identification Division in the Interprogram Communication Module .
PROGRAM-ID Paragraph and Nested Source Programs
Example

Data Division in the Interprogram Communication Module
LINKAGE SECTION

Non contiguous Linkage Storage
Linkage Records .
Initial Values .

File Description Entry in the Interprogram Communication Module
Function
General Format
Syntax Rules .
General Rules .

Data Description Entry in the Interprogram Communication Module
Function
General Format
Syntax Rules
General Rule .

Report Description Entry in the Interprogram Communication Module
Function
General Format
Syntax Rule
General Rules .

EXTERNAL Clause
Function
General Format
Syntax Rules
General Rules

GLOBAL Clause
Function
General Format
Syntax Rules
General Rules
Example

Procedure Division in the Interprogram Communication Module
Procedure Division Header
Example

11-2 Language Reference

11-5
11-6
11-6
11-6
11-6
11-6
11-7
11-7
11-8
11-8
11-8

11-10
11-10
11-11
11-11
11-12
11-13
11-13
11-13
11-13
11-13
11-14
11-15
11-15
11-16
11-17
11-17
11-18
11-18
11-18
11-19
11-19
11-19
11-24
11-24
11-25
11-25
11-25
11-26
11-27
11-28
11-28
11-28
11-28
11-29
11-30
11-30
11-30
11-30
11-30
11-31
11-31
11-31
11-31
11-31
11-32
11-33
11-33
11-34

CALL Statement . 11-36
Function . 11-36
General Format 11-36
Syntax Rules . 11-37
General Rules . 11-38
Example 1 . 11-41
Example 2 . 11-42

CANCEL Statement . 11-43
Function . 11-43
General Format . 11-43
Syntax Rules . 11-43
General Rules . 11-43

CHAIN Statement . 11-45
Function . 11-45
General Format . 11-45
Syntax Rules . 11-46
General Rules . 11-46

ENTRY Statement . 11-47
Function . 11-47
General Format . 11-47
Syntax Rules . 11-47
General Rules . 11-48
Example . 11-48

EXIT PROGRAM Statement . 11-50
Function . 11-50
General Format . 11-50
Syntax Rules . 11-50
General Rules . 11-50

GOBACK Statement . 11-51
Function . 11-51
General Format . 11-51
Syntax Rule . 11-51
General Rules . 11-51

USE Statement . 11-52
Function . 11-52
General Format . 11-52
Syntax Rule . 11-52
General Rules . 11-52

USE BEFORE REPORTING Statement . 11-53
Function . 11-53
General Format . 11-53
General Rules . 11-53

Interprogram Communication 11-3

11-4 Language Reference

About This Chapter

This chapter describes the Interprogram Communication module and how it supports the
following control and information transfer between programs:

• Transferring control from one program to another
• Passing parameters between calling and called programs
• Sharing data and/or files between several programs.

Interprogram Communication 11-5

Introduction

The interprogram communication module provides a facility by which a program can com
municate with one or more programs. This provides the programmer with a modular pro
gramming capability and the ability to load modules dynamically. Interprogram
communication is provided by:

• The ability to transfer control from one program to another within a run-unit
• The ability for both programs to have access to the same data-items
• The ability for multiple programs to share data and files.

Language Concepts

This section describes language concepts regarding interprogram communication.

Nested Source Programs

A COBOL source program may contain other COBOL source programs, and these con
tained programs may reference some of the resources of the program in which they are
contained.

When a program, program B, is contained in another program, program A, it may be
directly contained or indirectly contained. Program B is directly contained in program A
if there is no program contained in program A that also contains program B. Program B is
indirectly contained in program A if a program contained in program A also contains
program B.

File Connector

A file connector is a storage area containing information about a file. File connectors are
used as the linkage between a file name and a physical file and between a file name and its
associated record area.

Global Names and Local Names

A data name names a data-item. A file name names a file connector. These names are clas
sified as either global or local.

A global name may be used to refer to the object either from within the program which
declares the global name, or from within any program contained in the program which
declares the global name. However, a local name may be used only to refer to the object
from within the program which declares the local name.

Some names are always global. Other names are always local. Yet other names are local
or global depending upon specifications in the program declaring the names.

A record name is global if the GLOBAL clause is specified in its record description entry.
When the record description entries are in the FILE SECTION, the GLOBAL clause is
specified in the file description entry for the file name associated with the record
description entry.

A data name is global if the GLOBAL clause is specified either in the data description
entry which declares the data name or in another entry to which that data description
entry is subordinate.

11-6 Language Reference

A condition name declared in a data description entry is global if that entry is subordinate
to another entry in which the GLOBAL clause is specified. However, specific rules some
times prohibit specification of the GLOBAL clause for certain data description, file
description, or record description entries.

A file name is global if the GLOBAL clause is specified in the file description entry for
that file name.

If a data name, a file name, or a condition name declared in a data description entry is not
global, the name is local.

Global names are transitive across programs contained within other programs.

External Objects and Internal Objects

Accessible data-items usually require that certain representations of data be stored. File
connectors usually require that certain information concerning files be stored. The
storage associated with a data-item or a file connector may be external or internal to the
program in which the object is declared.

A data-item or file connector is external if the object's storage is associated with the run
unit rather than with any particular program within the run-unit. An external object may
be referenced by any program in the run-unit which describes the object. References to an
external object from different programs using separate descriptions of the objects are
always to the same object. In a run-unit, there is only one representative of an external
object.

An object is internal if the storage associated with the object is associated only with the
program describing the object.

External and internal objects may have either global or local names.

A data record described in the WORKING-STORAGE SECTION is given the external attri
bute by the presence of the EXTERNAL clause in its data description entry. Any data-item
described by a data description entry subordinate to an entry describing an external record
also attains the external attribute. If a record or data-item does not have the external
attribute, it is part of the internal data of the program in which it is described.

A file connector is given the external attribute by the presence of the EXTERNAL clause
in the associated file description entry. If the file connector does not have the external
attribute, it is internal to the program in which the associated file name is described.

The data record described as subordinate to a file description entry not containing the
EXTERNAL clause or a sort-merge file description entry, and any data-items described as
subordinate to the data description entries for such records, are always internal to the
program describing the file name. If the EXTERNAL clause is included in the file
description entry, the data records and the data-items attain the external attribute.

Data records, subordinate data-items, and various associated control information described
in the LINKAGE, COMMUNICATION, and REPORT SECTIONS of a program are always
considered to be internal to the program describing that data. Special considerations apply
to data described in the LINKAGE SECTION, whereby an association is made between the
data records described and other data-items accessible to other programs.

Common Programs and Initial Programs

All programs forming part of a run-unit may possess none, one, or both of the following
attributes: common and initial.

A common program is one which, despite being directly contained within another program,
may be called by any program directly or indirectly contained in that other program. The
common attribute is attained by specifying the COMMON clause in a program's Identifica
tion Division. The COMMON clause allows subprograms to be used by all the programs
contained within a program.

Interprogram Communication 11-7

An initial program is one whose program state is initialized when the program is called.
Thus, whenever an initial program is called, its program state is the same as when the
program was first called in that run-unit. The process of initializing an initial program,
initializes the program's internal data. Therefore, an item of the program's internal data
whose description contains a VALUE clause is initialized to that defined value, but an
item whose description does not contain a VALUE clause is initialized to a value
depending on the DEFAULTBYTE directive. Refer to the User's Guide. Files with
internal file connectors associated with the program are not in the open mode. The
control mechanisms for all PERFORM statements contained in the program are set to their
initial states. The initial attribute is attained by specifying the INITIAL clause in the pro
gram's Identification Division.

Sharing Data

Two programs in a run-unit may reference common data in the following circumstances:

• The data content of an external data record may be referenced from any program pro
vided that program has described that data record.

• If a program is contained within another program, both programs may refer to data
possessing the global attribute either in the containing program or in any program
which directly or indirectly contains the containing program.

• The mechanism whereby a parameter value is passed by reference from a calling
program to a called program establishes a common data item. The called program,
which may use a different identifier, may refer to a data-item in the calling program.

Sharing Files

Two programs m a run-unit may reference common file connectors in the following
circumstances:

1. An external file connector may be referenced from any program that describes that file
connector.

2. If a program is contained within another program, both programs may refer to a
common file connector by referring to an associated global file name either in the con
taining program or in any program which directly or indirectly contains the containing
program.

Scope of Names

When programs are directly or indirectly contained within other programs, each program
may use identical user-defined words to name objects, independent of the use of these user
defined words by other programs. Refer to "User-Defined Words" on page 2-7. When iden
tically named objects exist, a program's reference to such a name, even when it is a
different type of user-defined word, is to the object which the program describes rather
than to the object possessing the same name, described in another program.

The following types of user-defined words may be referenced only by statements and entries
in that program in which the user defined word is declared:

• cd-name
• paragraph-name
• section-name

The following types of user-defined words may be referenced by any COBOL program:

• library-name
• text-name

11-8 Language Reference

The following types of user-defined words, when they are declared in a COMMUNI
CATION SECTION, may be referenced only by statements and entries in that program
which contains the section:

• condition-name
• data-name
• record-name

The following types of names, when declared within a CONFIGURATION SECTION, may
be referenced only by statements and entries either in the program containing the CON
FIGURATION SECTION or in any program contained within that program:

• alphabet-name
• class-name
• condition-name
• mnemonic-name
• symbolic-character

Specific conventions, for declarations and references, apply to the following types of user
defined words when the conditions listed above do not apply:

• condition-name
• data-name
• file-name
• index-name
• program-name
• record-name
• report-name

Conventions for Program Names
The name of a program is declared in the PROGRAM-ID paragraph of the Identification
Division. A program name may be referenced only by the CALL statement, the CHAIN
statement, the CANCEL statement, and the END PROGRAM header. The program names
allocated to programs in a run-unit are not necessarily unique but, when two of the pro
grams are identically named, at least one of those programs must be directly or indirectly
contained within another program which does not contain the other of those two programs.

The following rules regulate the scope of a program name:

1. If the program does not possess the COMMON attribute and is directly contained
within another program, the program's name may be referenced only by statements
included in the containing program.

2. If the program does possess the COMMON attribute and is directly contained within
another program, the program's name may be referenced only by statements included
in the containing program and any programs directly or indirectly contained, except
programs possessing the COMMON attribute and any programs contained within it.

3. If the named program is separately compiled, the program's name may be referenced by
statements included in any other program in the run-unit, except programs it directly
or indirectly contains.

Conventions for Condition Names, Data Names, File Names, Record Names
and Report Names

When condition names, data names, file names, record names, and report names are
declared in a source program, these names may be referenced only by that program, except
when one or more of the names is global and the program contains other programs.

The requirements governing the uniqueness of the names allocated by a single program to
be condition names, data names, file names, record names, and report names are explained
in "User-Defined Words" on page 2-7.

Interprogram Communication 11-9

A program cannot reference any condition name, data name, file name, record name, or
report name declared in any program it contains.

A global name may be referenced in the program in which it is declared or in any programs
directly or indirectly contained within that program.

When a program, program B, is directly contained within another program, program A,
both programs may define a condition name, a data name, a file name, a record name, or a
report name using the same user-defined word. When such a duplicate name is referenced
in program B, the following rules are used to determine the referenced object:

1. The set of names to be used for determination of a referenced object consists of all
names defined in program B and all global names that are defined in program A, and in
any programs that directly or indirectly contain program A. Using this set of names,
the normal rules for qualification and any other rules for uniqueness of reference are
applied until one or more objects is identified.

2. If only one object is identified, it is the referenced object.

3. If more than one object is identified, no more than one of them can have a name local
to program B. If zero or one of the objects has a name local to program B, the fol
lowing rules apply:

a. If the name is declared in program B, the object in program B is the referenced
object.

b. ~therwise, if program A is contained within another program, the referenced object
is:

1) The object in program A, if the name is declared in program A.

2) The object in the containing program, if the name is not declared in program A
and is declared in the program containing program A. This rule is applied to
further containing programs until a single valid name is found.

Conventions for Index Names
If a data-item possessing the GLOBAL attribute includes a table accessed with an index,
that index also possesses the GLOBAL attribute. Therefore, the scope of an index name is
identical to the scope of the data name specifying the table with the named index. The
scope of the name rules for data names also apply to index names. Index names cannot be
qualified.

If a data-item possessing the EXTERNAL attribute includes a table accessed with an index,
that index does not automatically possess the EXTERNAL attribute.

Nested Source Programs

This section describes the organization, structure, format, syntax and general rules of
nested source programs.

General Description

A COBOL source program may contain other COBOL source programs. The contained pro
grams may reference· some of the resources of the programs in which they are contained.

11-10 Language Reference

Organization

With the exception of COPY and REPLACE statements and the END PROGRAM header,
the statements, entries, paragraphs, and sections of a COBOL source program are grouped
into four divisions which are sequenced in the following order:

1. The Identification Division
2. The Environment Division
3. The Data Division
4. The Procedure Division

The end of a COBOL source program is indicated by either the END PROGRAM header or
by the absence of additional source program lines.

Structure

This section describes the general format and order of presentation of the entries and state
ments which constitute a COBOL source program. The generic terms identification divi
sion, environment division, data division, procedure division, nested source program, and
end program header represent a COBOL Identification Division, a COBOL Environment
Division, a COBOL Data Division, a nested COBOL Procedure Division, a nested COBOL
source program, and a COBOL END PROGRAM header, respectively.

General Format
The following figure shows the general format of a COBOL source program:

-identification-division
L environment-division _J L data-division J

'" L procedure-division J [nested-source-program J [end-program-header J

Syntax Rules
END PROGRAM header must be present if:

....

1. The COBOL source program contains one or more nested COBOL source programs, or

2. The COBOL source program is contained within another COBOL source program.

General Rules
The following general rules apply:

...

1. The beginning of a division in a program is indicated by the appropriate division
header. The end of a division is indicated by one of the following:

a. The next division header in the program

b. An Identification Division header indicating the start of another source program

c. The END PROGRAM header

d. The physical position after which no more source program lines occur.

2. A COBOL source program directly or indirectly contained in another program may ref
erence certain resources defined in the containing program.

Interprogram Communication 11-11

3. The object code produced from passing a source program contained in another program
through the AIX VS COBOL compiler is inseparable from the object code produced
from the containing program.

Initial State of a Program

The initial state of a program is the state of a program the first time it is called in a run
unit.

Characteristics of a Program
The following are characteristics of a program:

1. The internal data contained in the WORKING-STORAGE SECTION and the COMMU
NICATION SECTION of the program are initialized. If a VALUE clause is used in the
description of the data-item, the data item is initialized to the specified value. If a
VALUE clause is not associated with a data-item, the initial value of the data-item is
undefined.

2. Files with internal file connectors associated with the program are not in the open
mode.

3. The control mechanisms for all PERFORM statements contained in the program are set
to their initial states.

4. Any GO TO statement referred to by an ALTER statement contained in the same
program is set to its initial state.

Programs in the Initial State
A program is in the initial state:

1. The first time the program is called in a run-unit.

2. The first time the program is called after the execution of a CANCEL statement refer
encing the program or a CANCEL statement referencing a program that directly con
tains the program.

3. Every time the program is called, if it possesses the INITIAL attribute.

4. The first time the program is called after the execution of a CALL statement refer
encing a program that possesses the INITIAL attribute, and directly or indirectly con
tains the program.

11-12 Language Reference

END PROGRAM Header

Function

The END PROGRAM header indicates the end of the named COBOL source program.

General Format

The following figure shows the format of the END PROGRAM header:

~END PROGRAM program-name ----M

Syntax Rules

The following syntax rules apply for the END PROGRAM header:

1. The program name must conform to the rules for forming a user-defined word.

2. The program name must be identical to a program name declared in a preceding
PROGRAM-ID paragraph. Refer to "PROGRAM-ID Paragraph and Nested Source
Programs" on page 11-15.

3. If a PROGRAM-ID paragraph declaring a specific program name is stated between the
PROGRAM-ID paragraph and the END PROGRAM header for another program name,
the END PROGRAM header for the former program must precede the END PROGRAM
header referencing the latter program name.

General Rules

The following rules apply to the END PROGRAM header:

1. The END PROGRAM header must be present in every program that contains or is con
tained in another program.

2. The END PROGRAM header indicates the end of the specified COBOL source program.

3. When the program terminated by the END PROGRAM header is contained in another
program, the next statement must either be an Identification Division header or
another END PROGRAM header which terminates the containing program.

4. If the program terminated by the END PROGRAM header is not a contained program,
the next COBOL statement, if any, must be the Identification Division header of the
next program in the source file.

Interprogram Communication 11-13

Example

The following example shows nested COBOL programs:

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROLL.

IDENTIFICATION DIVISION.
PROGRAM-ID. POSTING.

END PROGRAM POSTING.

IDENTIFICATION DIVISION.
PROGRAM-ID. WEEKLY.

END PROGRAM WEEKLY.

END PROGRAM PAYROLL.

IDENTIFICATION DIVISION.
PROGRAM-ID. INVENTORY.

END PROGRAM INVENTORY.

J
J

In the above example, the program PAYROLL contains the nested programs POSTING and
WEEKLY. The END PROGRAM headers referring to POSTING and WEEKLY must
precede the header referring to PAYROLL. INVENTORY is in the same source file but is
not contained in another program.

11-14 Language Reference

Identification Division in the Interprogram
Communication Module

This section describes the Identification Division m the interprogram communication
module.

PROGRAM-ID Paragraph and Nested Source Programs

Function
The PROGRAM-ID paragraph specifies the name by which a program is identified and
assigns selected program attributes to that program.

General Format
The following figure shows the format of the PROGRAM ID paragraph:

..,.__PROGRAM-ID. - program-name ~L--=:J~~[---J~L~---=:J~~L---~~· __...,.
IS COMMON INITIAL PROGRAM

Syntax Rules
The following syntax rules apply to the PROGRAM-ID paragraph:

1. The program name must conform to the rules for formation of a user-defined word.

2. A program contained within another program may not be assigned the same name as
any other program in the containing program.

3. The optional COMMON clause may be used only if the program is contained within
another program.

4. If the IS PROGRAM phrase is present, either COMMON or INITIAL or both must be
specified. When both are specified, the order is irrelevant.

General Rules
The following rules apply to the PROGRAM-ID paragraph:

1. The COMMON clause specifies that the program is a common program. A common
program is contained in another program but may be called from programs other than
the containing program.

2. The INITIAL clause specifies that the program is an initial program. When an initial
program is called, it and any programs contained in it are returned to their initial
state. Refer to "Initial State of a Program" on page 11-12.

Interprogram Communication 11-15

Example

The following program skeleton shows program structure and legal and illegal calls:

[
[

IDENTIFICATION DIVISION.
PROGRAM-ID. A.

PROCEDURE DIVISION.

CALL 11 811 USING

CALL "C" USING

IDENTIFICATION DIVISION.
PROGRAM-ID. B.

END PROGRAM B.

(legal)

(legal)

IDENTIFICATION DIVISION.
PROGRAM-ID. C IS COMMON PROGRAM.

END PROGRAM C.

IDENTIFICATION DIVISION.
PROGRAM- ID. D.

PROCEDURE DIVISION.

CALL 11 811 USING ...

CALL "C" USING

END PROGRAM D.

END PROGRAM A.

(illegal, Bis not COMMON)

(legal)

11-16 Language Reference

Data Division in the Interprogram Communication
Module

This section describes Data Division in the interprogram communication module.

LINKAGE SECTION

Except as described in "SET Statement" on page 7-84, the LINKAGE
SECTION in a program is meaningful only if the object program functions
under the control of a CALL statement containing a USING phrase.

The LINKAGE SECTION is used in the invoked program for describing
data available through the invoking program, but the LINKAGE SECTION
is referred to in both the invoking and the invoked program. (Such data
also may be described in the FILE and WORKING-STORAGE SECTIONS
of the program.)

VSC2

MF

No space is allocated in the program for data items referenced by data-names in the
LINKAGE SECTION. Procedure Division references to these data items are resolved at
run time by equating the reference in the invoked program to the location used in the
invoking program. In the case of index names, no such correspondence is established.
Index names in the invoked and invoking program always refer to separate indices.

Data items defined in the LINKAGE SECTION of the invoked program may be referenced
with the Procedure Division of the invoked program only if both of these statements are
true:

1. The data items are specified as operands of the USING phrase of the Procedure Divi
sion header or are subordinate to such operands.

2. The object program is under the control of a CALL statement specifying a USING
phrase.

The structure of the LINKAGE SECTION is the same as the structure for the
WORKING-STORAGE SECTION. The LINKAGE SECTION begins with a section header,
followed by data description entries for noncontiguous data items, and/or record
description entries.

Each LINKAGE SECTION record name and noncontiguous item name must be unique in
the invoked program since it cannot be qualified. Of those items defined in the LINKAGE
SECTION, only the following data items may be referenced in the Procedure Division:

• Data-names in the USING phrase of the Procedure Division header

• Data items subordinate to the data-names

• Condition names and/or index names associated with the data-names and/or subordi
nate data items.

An ADDRESS special register is maintained for each record (01 or 77 level
item) in the LINKAGE and WORKING-STORAGE SECTION. These
special registers can be specified in the USING phrase, allowing the address
of a record to be passed or received.

Interprogram Communication

VSC2
MF

11-17

Noncontiguous Linkage Storage

Items in the LINKAGE SECTION with no hierarchic relationship to one another need not
be grouped into records. They are defined as noncontiguous elementary items. Each of
the data items is defined in a separate data description entry beginning with the special
level number 77.

The following data clauses are required in each data description entry:

• Level-number 77

• Data-name

• The PICTURE clause or the USAGE IS INDEX clause or the USAGE
IS POINTER clause.

VSC2

Other data description clauses are optional and can be used to complete the description of
the item if necessary.

Linkage Records

Data elements in the LINKAGE SECTION with a definite hierarchic relationship to one
another must be grouped into records according to the rules for forming record
descriptions. Any clause used in an input or output record description can be used in a
LINKAGE SECTION.

Initial Values

The VALUE clause must not be specified in the LINKAGE SECTION except in condition
name entries (level 88).

The VALUE clause is allowed, and is documentary. OSVS VSC2

11-18 Language Reference

File Description Entry in the Interprogram
Communication Module

Function

In the Interprogram Communication module, the file description entry in the FILE
SECTION determines the internal or external attributes of a file connector, of the associ
ated data records, and of the associated data items. The file description entry also deter
mines whether a file name is a local name or a global name.

General Format

The following figures show the field description entry formats:

Interprogram Communication 11-19

Format 1

..,__FD fi l e-name-1-r----------,-~----------------• ..
L J EXTERNAL _J L GLOBAL _J
Lis L1sJ

BLOCK i nteger-2 ~------1
L CONTAINS _J L integer-I TO _J CHARACTERS

RECORDS

RECORD -.------,.-i nteger-3 --,.------------1

CONTAINS CHARACTERS ------1

phrase-I ----------------t
r------.- i nteger-6 TO i nteger-7 --,------1

CONTAINS CHARACTERS

.. LLABELLRECORD~STANDAR~
IS OMITTED

RECORDS
ARE

VALUE OF implementer-name-I L J L.data-name-2
IS literal-I

..

I

'
LINAGE L J Ldata-name-41 L J .. 2

IS integer-8~ LINES

DATA 1 RECORD~ data-name-3

RECORDSci
ARE

I--------------------------------_.3

2
.. [J FOO TI NG L J L data-name-~ [J TOP -r data-name-6J .,

4

LWITH AT integer-9~ LLINES AT Linteger-I0:.J

3------------------------------ ---tM~

4.. L J BOTTOM -r data-name-6
LINES AT Linteger-I0

CODE-SET [IS] alphabet-name-I

11-20 Language Reference

where phrase-1 is:

~ L J VARYING
IS IN SIZE integer-4 TO integer-5 CHARACTERS

FROM

"' L DEPENDING [ON J data-name-1 J "'

Interprogram Communication 11-21

Format 2

- FD fil e-name-1-.----------,--.--------..,-----------..

I EXTERNAL _J L GLOBAL _J
-IsJ LisJ

BLOCK i nteger-2 _____ __,
L CONTAINS _J Li nteger-1 TO _J CHARACTERS

RECORDS

RECORD~----- i nteger-3 ~------------;
CONTAINS CHARACTERS ------1

phrase-1-----------------<
1-----~integer-6 TO integer-7-------i

CONTAINS CHARACTERS

.. LLABELIRECORD~STANDAR~
l_ IS OMITTED

RECORDS
ARE

..

[VALLIE 0 F 1mp1 ementer-name-1 -L--J..---.L-data-name-'l
1

IS literal-1:=_]--J

where phrase-1 is:

.. L J VARYING
IS IN SIZE

FROM

.. L DEPENDING [J data-name-1 J
ON

11-22 Language Reference

integer-4 TO integer-5

..

..

CHARACTERS

Format 3

- FD fil e-name-1-,---------.--.--------.-----------..
L EXTERNAL _J L GLOBAL _J
LisJ LisJ

BLOCK i nteger-2 --,----------i
lcoNTAINS=:J Linteger-1 rn=:J CHARACTERS

RECORDS

RECORD~----- i nteger-3 -------------<
CHARACTERS --------j CONTAINS

phrase-1------------------<
>-----~i nteger-6 TO i nteger-7 ~-------<

CONTAINS CHARACTERS

.. LLABEL,RECORD~STANDAR~
l__ IS OMITTED

RECORDS
ARE

"' [CODE-SET [J alphabet-name-I]
IS

[REPORT~ report-name-1- ·

REPORTScj
ARE

where phrase-I is:

.. L J VARYING
IS IN SIZE

.. L DEPENDING

FROM

[J data-name-1 _]
ON

integer-4 TO integer-5 CHARACTERS

..

..

Interprogram Communication 11-23

Syntax Rules

The following syntax rules apply to the file description entry:

1. Format 1 is the file description entry for a sequential file. Refer to "I-0 Status" on
page 8-8.

2. Format 2 is the file description entry for a relative file or an indexed file. Refer to "I-0
Status" on page 8-8.

3. Format 3 is the file description entry for a report file. Refer to Chapter 14, "Report
Writer."

General Rules

The following rules apply to the file description entry:

1. If the file description entry for a sequential file contains the LINAGE and EXTERNAL
clauses, the LINAGE-COUNTER data item is an external data item. If the file
description entry for a sequential file contains the LINAGE and GLOBAL clauses, the
special register LINAGE-COUNTER is a global name.

2. All other clauses in the file description entry are presented in the appropriate module
within these specifications.

11-24 Language Reference

Data Description Entry in the Interprogram
Communication Module

Function

In the Interprogram Communication module, a level 01 data description entry in the
WORKING-STORAGE SECTION or FILE SECTION determines whether the data record
and its subordinate data items have local names or global names.

In the Interprogram Communication module, a level 01 data description entry in the
WORKING-STORAGE SECTION determines the internal or external attribute of the data
record and its subordinate data items.

General Format

The following figure shows the format of the data description entry:

USAGE

.. E SIGN

data-name-1
FILLER--~

REDEFINES data-name-2 i-----r-- EXTERNAL
IS

GLOBAL~ L PICTURE~~----.-- character-string :=J
LPIC------" Lis_J

BINARY
COMPUTATIONAL

IS COMP
COMPUTATJONAL-3
COMP-3
COMPUTATJONAL-4
COMP-4
COMPUTATJONAL-5
COMP-5
COMPUTA TIONAL-X
COMP-X
DISPLAY
INDEX
PACKED-DECIMAL
DISPLAY-I
POINTER

LIS]

L LEADING J
TRAILING L SEPARATE

L CHARACTER J

..

MF OSVS VSC2

VSC2 OSVS

MF

VSC2

..

lnterprogram Communication 11-25

........,~--------------------------------1

~ ' OCCURS integer-2 L _J phrase-1--phrase-2-----------• 2
TIMES

OCCURS integer-1 TO integer-2-~L---_J~-DEPENDING~--~-data-name-4- 3
TIMES LoN_J

~:

3-trase-1- phrase-2 J L SYNCHRONIZED
LsYNC---~

..

.. E JUSTIFIED
JUST--~

L J L BLANK L :=J ZERO :J
RIGHT WHEN

..... -.L-v-A-LU_E_L_I_S_~--1-i-te_r_a 1---1-~....---. _....,.

where phrase-1 ;s:

' ASCENDING -_J~~L---_J~ data-name-3
DESCENDING KEY IS

phrase-2 h:

• L INDEXED ~L--_J~-L.x-na.J J •
BY

Syntax Rules

The following syntax rules apply to the data description entry:

..

1. The EXTERNAL clause may be specified only in level 01 data description entries in the
WORKING-STORAGE SECTION.

2. The EXTERNAL clause and the REDEFINES clause must not be specified in the same
data description entry.

3. The GLOBAL clause may be specified only in level 01 data description entries.

4. Data-name-1 must be specified for any entry containing the GLOBAL or EXTERNAL
clause, or for record description associated with a file description entry containing the
EXTERNAL or GLOBAL clause.

11-26 Language Reference

General Rule

All other clauses in the data description entry are presented in Chapter 3, "Introduction to
the Nucleus" on page 3-1 and Chapter 4, "Identification Division in the Nucleus" on
page 4-1.

Interprogram Communication 11-27

Report Description Entry in the Interprogram
Communication Module

Function

Within the Interprogram Communication module, the report description entry in the
REPORT SECTION determines whether a report name is a local name or a global name.

General Format

The following figure shows the report description entry:

-Ro report-name-1-~t------_J-~L------_J~--------•
GLOBAL CODE 1itera1-1

IS_J

' CONTROL a data-name-1
IS .---------,

CONTROLS f
ARE FINAL~-----~---'

data-name-1

~·-~------------------------------+•1

L PAGE-~-----~ integer-1 ~-------------~---• 2
LuMIT IS__J LuNE_J LHEADING integer-2_J
l_LIMITS ARE_J l_LINES_J

1.,_-------------------------------+3
2• • 4

L FIRST DETAIL i nteger-3 _J L LAST DETAIL i nteger-4 _J

! :: =========~~~~--~----~~~-· __..,.
L FOOTING integer-5 =:J

Syntax Rule

Refer to Chapter 14, "Report Writer."

11-28 Language Reference

General Rules

The following general rules apply to the report description entry:

1. If the report description entry contains the GLOBAL clause, the special registers
LINE-COUNTER and PAGE-COUNTER are global names.

2. All other clauses in the report description entry are presented in Chapter 14, "Report
Writer."

lnterprogram Communication 11-29

EXTERNAL Clause

Function

The EXTERNAL clause specifies that a data item or a file connector is external. The con
stituent data items and group items of an external data record are available to every
program in the run-unit which describes the record.

General Format

The following figure shows the general format EXTERNAL clause:

... ., .. _--r----.-- EXTERNAL____.,.
L1s_J

Syntax Rules

The following syntax rules apply to the EXTERNAL clause:

1. The EXTERNAL clause may be specified in file description entries or in record
description entries in the WORKING-STORAGE SECTION.

2. The data-name specified as the subject of the level 01 entry with the EXTERNAL
clause must not be the same data-name specified for any other data description entry,
with the EXTERNAL clause, in the. same program.

3. The VALUE clause must not be used in any data description entry that includes, or is
subordinate to, an entry including the EXTERNAL clause. The VALUE clause may be
specified for condition name entries associated with such data description entries.

General Rules

The data in the record named by data-name is external and may be accessed and processed
by any program in the run-unit which describes or redefines it, subject to the following
general rules:

1. If two or more programs describe the same external data record within a run-unit, the
record names must be the same and the records must define the same number of
standard data format characters. However, a program describing an external record
may contain a data description entry with the REDEFINES clause, redefining the com
plete external record, and this complete redefinition need not occur identically in other
programs in the run-unit. Refer to "REDEFINES Clause" on page 6-29.

2. Use of the EXTERNAL clause does not imply that the associated file name or data
name is a global name. Refer to "GLOBAL Clause" on page 11-31.

3. The file connector associated with this description entry is an external file connector.

4. Refer to the User's Guide for further information on files with the EXTERNAL attri
bute.

11-30 Language Reference

GLOBAL Clause

Function

The GLOBAL clause specifies that a data-name, a file name, or a report name is a global
name. A global name is available to every program contained within the program which
declares it.

General Format

The following figure shows the GLOBAL clause:

~"'"'~-.------.-- GLOBAL __...,.
L1s_J

Syntax Rules

The following syntax rules apply to the GLOBAL clause:

1. The GLOBAL clause may be specified only in level 01 data description entries in the
FILE or the WORKING-STORAGE SECTION, file description entries, or report
description entries.

2. In the same Data Division, the data description entries for any two data items with the '
same data-name must not include the GLOBAL clause.

3. If the SAME RECORD AREA clause is specified for several files, the record description
entries or the file description entries for these files must not include the GLOBAL
clause.

General Rules

The following rules apply to the GLOBAL clause:

1. A data-name, file name, or report name described using a GLOBAL clause is a global
name. All data-names subordinate to a global name are global names. All condition
names associated with a global name are global names.

2. A statement in a program contained directly or indirectly within a program that
describes a global name may reference that name without describing it again. Refer to
"Scope of Names" on page 11-8.

3. If the GLOBAL clause is used in a data description entry containing the REDEFINES
clause, only the subject of the REDEFINES clause possesses the global attribute.

Interprogram Communication 11-31

Example

The following example shows nested programs and scopes:

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROLL.

DATA DIVISION.

01 TAX-RATES IS GLOBAL.
05 RATE-85
05 RATE-86
05 RATE-87
05 RAff-88

01 TOTAL-TAX

IDENTIFICATION DIVISION.
PROGRAM-ID. WEEKLY.

ADD 1.01 TO RATE-88.
ADD 100 TO TOTAL-TAX.

END PROGRAM WEEKLY.

END PROGRAM PAYROLL.

PIC 99V999.
PIC 99V999.
PIC 99V999.
PIC 99V999.
PIC 9(6)V99.

In the example above, program PAYROLL contains program WEEKLY. The first ADD
statement in WEEKLY is valid because it referred to a globally-defined data item in the
containing program. The second ADD statement is invalid because TOTAL-MAX is not
globally defined.

11-32 Language Reference

Procedure Division in the Interprogram Communication
Module

This section describes the Procedure Division in the interprogram communication module.

Procedure Division Header

The Procedure Division is identified by and must begin with the header:

......___PROCEDURE DIVISION-------------- --------

' USING data-name-1
CHAININGJ MF

The USING phrase is present if:

• The object program is to function under the control of a CALL statement, and the
CALL statement in the calling program contains a USING phrase.

• The object program is to receive data resulting from a CHAIN statement,
and the CHAIN statement in the chaining program contains a USING
phrase.

CHAINING and USING are synonymous.

Each of the data items in the USING phrase of the Procedure Division
header may be defined as a level 01 or 77 data item in the LINKAGE
SECTION, FILE SECTION or WORKING-STORAGE SECTION of the
program in which this header occurs.

An item in the USING phrase can be the name of a data item with USAGE
IS POINTER, provided the corresponding item in the USING phrase of the
CALL statement is also either the name of a pointer data item or an
ADDRESS special register.

MF

MF

VSC2

The LINKAGE SECTION data items are processed according to their data descriptions in
the invoked program.

When the USING phrase is present, a match is made between data-name-1
of the Procedure Division header in the invoked program and data-name-1
in the USING phrase of the CALL or CHAIN statement in the invoking MF
program. Their descriptions must define an equal number of character
positions. However, they need not be the same name. A data-name must
not appear more than once in the USING phrase of the Procedure Division
header of the invoked program. However, a data-name may appear more
than once in the same USING phrase of a CALL or CHAIN statement. MF

If data-name is described in the USING phrase of the Procedure Division
header in the LINKAGE SECTION, the CALL or CHAIN operation sets MF
the data-name to refer to the corresponding data item in the invoking
program. Then, any operation on the data-name in the invoked program
operates on the data item in the invoking program.

Interprogram Communication 11-33

If any data-name in the USING phrase of the Procedure Division header is .
described in the FILE SECTION or WORKING-STORAGE SECTION, the
CALL or CHAIN operation causes the value of the corresponding data item
in the invoking program to be moved to the data item it references. Changes
made to the data in the invoked program do not affect the data in the
invoking program.

The number of operands in the Procedure Division USING phrase and the
CALL USING or CHAIN USING phrase may be different. If they are dif·
ferent, then the operands in the two statements are matched from left to right
until the shorter list of operands is exhausted.

If the remaining unmatched operands are in the CALL or CHAIN statement,
they are ignored. If the remaining unmatched operands are in the Procedure
Division header and are LINKAGE SECTION items, they are unavailable to
the program. If they are referenced at run time, a run-time error occurs.

Any mismatch of operands is detected only at run time, so the directive
FLAG does not cause this extension to be flagged.

MF

If the USING phrase is specified, the INITIAL clause must not be present in any CD entry.
Refer to "Communication Description - Complete Entry Skeleton" on page 15-4.

DBCS Support

Parameters in the Procedure Division USING phrase which correspond to USAGE
DISPLAY-I items in the CALL argument list must be Double-Byte Character Set (DBCS)
items.

Example

The following example shows USING and CALL USING phrases:

Calling Program Description

WORKING-STORAGE SECTION.
01 PARAM-LIST.

05 PARTCODE
05 PARTNO
05 U-SALES

PIC A.
PIC X(4).
PIC 9(5).

PROCEDURE DIVISION.

CALL CALLED-PROG
USING PARAM-LIST.

In the calling program, the code for parts (PART CODE) and the part number (P ARTNO)
are referred to separately.

· 11..:34 Language Reference

Called Program Description

LINKAGE SECTION.
01 USING-LIST.

HJ PART-IO
HJ SALES

PIC X(5).
PIC 9(5).

PROCEDURE DIVISION USING USING-LIST.

In the called program, the code for parts and the part number are combined into one data
item (PART-ID). Reference to PART-ID is the only valid reference to them.

Interprogram Communication 11-35

CALL Statement

Function

The CALL statement transfers control from one object program to another in the run unit.

General Format

The following figure shows the formats of the CALL statement:

Format 1

-CALL L identi fier-1
1itera1-1

' USING ~~-----~-identi fier-2 --------r--'
1--~ REFERENCE

BY

' f----,.--------,-,...--------,-- record-name
1---..- REFERENCE ADDRESS OF

BY

' 1--.--..- CONTENT -- i dent if i er-6 --------;

' I CONTENTLliteral-2 J
LENGTH OF identifier-3

' VALUE --i= identifier-4
BY Lliteral-3------1

LENGTH OF identifier-5

.. [J OVERFLOW imperative-statement-1 [J ... ~
ON END-CALL

11-36 Language Reference

VSC2

VSC2

MF

Format 2

-cALLLidentifier-1
1 iteral-1

~
USING

REFERENCE
BY

REFERENCE

' identifier-2

' record-name
ADDRESS OF

' t----.-~ CONTENT -- i dent i fi er-6 ---------1

' CONTENT L l i teral-2
LENGTH OF identifier-3

' VALUE --C identifier-4
[literaz-3------1

LENGTH OF identtfier-5

.. b EXCEPTION imperative-statement-I J
ON

"' L NOT [J EXCEPTION imperative-statement-2 J [END-CALL J
ON

Syntax Rules

The following syntax rules apply to the CALL statement:

....

VSC2

VSC2

MF

..

1. identifier-! must be defined as an alphanumeric data item. The length of this item
cannot exceed 248 bytes. If it is longer, unpredictable results may occur at run time.

2. literal-1 must be a nonnumeric literal.

3. The CALL statement includes a USING phrase only when the Proce
dure Division header of the called program contains a USING phrase.
The two USING phrases should contain the same number of operands.
This rule is not enforced. Refer to "Procedure Division in the lnterpro- MF
gram Communication Module" on page 11-33.

Interprogram Communication 11-37

4. Each operand in the USING phrase must be defined as a data item in
the FILE SECTION, WORKING-STORAGE SECTION, COMMUNI
CATION SECTION, or LINKAGE SECTION, and must have a level
number of OI or 77, or 02 through 50. MF

5. Identifier-I, identifier-2, ... may be qualified when they reference data items defined in
the FILE SECTION or the COMMUNICATION SECTION.

6. literal-2 must be nonnumeric and cannot be a figurative constant.

7. Record name must name the OI or 77 level item in the LINKAGE or
WORKING-STORAGE SECTION.

VSC2

VSC2MF

8. For external calls, literal-I must match the program-id of the program, including its
case (uppercase or lowercase).

9. Calls from within nested programs to lowercase program names are folded to upper
case.

DBCS Support

10. The arguments in the CALL statement USING phrase should be USAGE DISPLAY-I
items, if the parameters in the Procedure Division USING clause of the called subpro
gram are DBCS items .

.__ ____________ End of DBCS Support ------------~

General Rules

The following rules apply to the CALL statement:

1. The execution of a CALL statement passes control to the called program.

2. If the called program has been statically bound into the Run Time
Environment, the identified program is known as a called-run-time sub
routine. Such programs retain all the values and settings from the pre-
vious call. If literal-1 or the data referenced by identifier-I consists MF
entirely of numeric digits or a single non-ASCII character, then it must
be statically bound into the Run Time Environment.

3. If the called program has been dynamically loaded, the identified program is a COBOL
subprogram. Such a program is loaded from the fixed-disk the first time a run unit
calls it and the first time it is called after a CANCEL.

On all other entries into the called program, the state of the program remains
unchanged from its state when last exited. This includes the state of all data fields,
the status and positioning of all files, and the state of all alterable switch settings.

4. At the end of execution, the called program ignores any ON OVERFLOW or ON
EXCEPTION phrase and returns control to the end of the CALL statement or, when
the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is
transferred to imperative-statement-2, execution continues according to the rules for
each statement specified in imperative-statement-2. If a procedure branching or condi
tional statement causing explicit transfer of control is executed, control is transferred
in accordance with the rules for that statement. Otherwise, control is transferred to
the end of the CALL statement upon completion of the execution of
imperative-statement-2.

5. If the available run-time memory cannot accommodate the program specified in the
CALL statement, the next sequential instruction is executed. If ON OVERFLOW or
ON EXCEPTION has been specified, the associated imperative statement is executed
and the NOT ON EXCEPTION phrase is ignored.

11-38 Language Reference

6. The data-names specified by the USING phrase of the CALL statement indicate those
items in the calling program that may be referred to in the called program. The data
names must appear in the same order in the USING phrase of the CALL statement and
the USING phrase of the Procedure Division header. The corresponding data-names
refer to a single set of data. The correspondence is positional, not by name. In the
case of index names, no correspondence is established. Index names in the called and
calling program always refer to separate indices.

7. Two or more programs in the run unit may have the same program name, and the ref
erence in a CALL statement to such a program name is resolved by using the scope of
names conventions for program names. Refer to "Conventions for Program Names" on
page 11-9.

For example, when two programs in the run unit have the same name specified in a
CALL statement:

a. One of the programs must also be contained directly or indirectly in the program
including the CALL statement or in the program containing the program including
that CALL statement, and

b. The other program must be contained in the program calling it or in a program
containing the program that calls it.

The mechanism used in this example is as follows:

a. If one of the two programs with the name specified in the CALL statement is
directly contained in the program including the CALL statement, that program is
called.

b. If one of the two programs with the name specified in the CALL statement pos
sesses the COMMON attribute and is directly contained in a program containing
another program that includes the CALL statement, that common program 1s
called, unless the calling program is contained in that common program.

c. Otherwise, the separate program is called.

8. If the called program does not possess the INITIAL attribute it, and each program con
tained in it, is in its initial state the first time it is called in a run unit and the first
time it is called after a CANCEL.

On all other entries into the called program, the state of the program and each
program it contains remains unchanged from its state when last exited.

9. If the called program possesses the INITIAL attribute, it and each program directly or
indirectly contained within it, is placed into its initial state every time the called
program is within a run unit.

10. Files associated with a called program's internal file connectors are not in the open
mode when the program is in an initial state. Refer to "Initial State of a Program" on
page 11-12.

On all other entries into the called program, the states and positioning of all such files
are the same as when the called program was last exited.

11. The process of calling a program or exiting from a called program does not alter the
status or positioning of a file associated with any external file connector.

12. The parameter values referenced in the CALL statement USING phrase are made
available to the called program at the time the CALL statement is executed.

13. The CALL statement may appear anywhere within a segmented program. Therefore,
when a CALL statement appears in a section with a segment number greater than or
equal to 50, that segment remains in its current state when the EXIT PROGRAM state
ment returns control to the calling program.

14. The BY CONTENT, BY REFERENCE and BY VALUE phrases are
transitive across the parameters that follow them until they encounter
another BY CONTENT, BY REFERENCE or BY VALUE phrase.

If no BY CONTENT, BY REFERENCE or BY VALUE phrase is speci
fied prior to the last parameter, the BY REFERENCE phrase is assumed.

MF

Interprogram Communication 11-39

15. If the BY REFERENCE phrase is specified or implied for a parameter,
the object program operates as if the data item in the called program
occupies the same memory area as the data item in the calling program.
The description of the data item in the called program must specify the
same number of character positions as specified by the description of
the corresponding data item in the calling program.

If a USING phrase specifies a BY REFERENCE ADDRESS OF record
name, the address of the record is passed to the CALLed program. The
corresponding item in the USING phrase of the CALLed program's Pro-
cedure Division header must have USAGE POINTER.

16. If the BY CONTENT phrase is specified or implied for a parameter, the
called program cannot change the value of this parameter. However,
the called program may change the value of the data item referenced by
the corresponding data-name in the called program's Procedure Divi
sion header.

The data description for each parameter of the CALL statement's BY
CONTENT phrase must be the same as the data description of the cor
responding parameter in the USING phrase of the Procedure Division
header. This means no conversion, extension, or truncation.

If literal-2 is specified, its length must be the same as the corresponding
parameter in the USING phrase of the Procedure Division header.

If LENGTH of identifier-3 is specified, the corresponding parameter in
the Procedure Division header USING phrase should be defined as PIC
9(9) USAGE IS COMPUTATIONAL.

17. If the BY VALUE phrase is specified or implied for a parameter, the
called program cannot change the value of this parameter in the calling
program. Only the value of the parameter is passed to the called
program. The address of the parameter is not passed. However, if the
parameter is longer than 4 bytes, the address, instead of the value, is
passed. The BY VALUE phrase is intended for use in calling programs
in other languages. It should not be used in calling a COBOL program.
Refer to the User's Guide for details of the format the value takes when it
is passed to your system.

VSC2

VSC2

MF

18. Called programs may contain CALL statements. However, a called program must not
execute a CALL statement that directly or indirectly calls the calling program. If a
CALL statement is executed within the range of a declarative, that CALL statement
cannot reference any called program to which control has been transferred and which
has not completed execution.

19. The END-CALL phrase delimits the scope of the CALL statement.

11-40 Language Reference

Example 1

The following programs show the call by reference mechanisms. They are identical in
meaning.

Calling Program Description

WORKING-STORAGE SECTION.
01 PARAM-LIST.

05 PARTCODE
05 PARTNO
05 U-SALES

PIC A.
PIC X(4).
PIC 9(5).

PROCEDURE DIVISION.

CALL "CALLED-PROG"
USING PARAM-LIST.

Called Program Description

LINKAGE SECTION.
01 USING-LIST.

10 PART-ID
10 SALES

PIC X(5).
PIC 9(5).

PROCEDURE DIVISION USING USING-LIST.

Calling Program Description

WORKING-STORAGE SECTION.
01 PARAM-LIST.

05 PARTCODE
05 PARTNO
05 U-SALES

PIC A.
PIC X(4).
PIC 9(5).

PROCEDURE DIVISION.

CALL "CALLED-PROG"
USING BY REFERENCE PARAM-LIST.

Called Program Description

LINKAGE SECTION.
01 USING-LIST.

10 PART-ID
10 SALES

PIC X(5).
PIC 9(5).

PROCEDURE DIVISION USING USING-LIST.

Interprogram Communication 11-41

Example 2

In the following example, the called program cannot change the value of PARAM-LIST
because it is called by value:

Calling Program Description

WORKING-STORAGE SECTION.
01 PARAM-LIST.

05 PARTCODE
05 PARTNO
05 U-SALES

PIC A.
PIC X(4).
PIC 9(5).

PROCEDURE DIVISION.

CALL "CALLED-PROG" USING
BY CONTENT PARAM-LIST.

Called Program Description

LINKAGE SECTION.
01 USING-LIST.

10 PART-ID
10 SALES

PIC X(5).
PIC 9(5).

PROCEDURE DIVISION USING USING-LIST.

11-.42 Language Reference

CANCEL Statement

Function

The CANCEL statement closes the named program and resets the program to its initial
state before it is called next time.

General Format

The following figure shows the format of the CANCEL statement:

' .,...__CANCEL -i- identifier-1 ~
L 1 iteral-1 __J

Syntax Rules

The following syntax rules apply to the CANCEL statement:

1. literal-I must be a nonnumeric literal.

2. identifier-I must reference an alphanumeric data item.

General Rules

The following rules apply to the CANCEL statement:

1. literal-I or the content of the data item referenced by identifier-I identifies the program
to be cancelled.

2. The execution of a CANCEL statement ends any logical relationship between the
program and the run unit. If a CANCELed program is called again, it is in its initial
state. Refer to "Initial State of a Program" on page ll-I2.

3. A program named in a CANCEL statement in another program must be callable by that
other program. Refer to "Scope of Names" on page 11-8, and "CALL Statement" on
page 11-36.

4. When an explicit or implicit CANCEL statement is executed, all programs contained
within the program referenced by the CANCEL statement are also cancelled. The
result is the same as if a valid CANCEL statement were executed for each contained
program in the reverse order in which the programs appear in the containing program.

5. A program named in the CANCEL statement must not refer directly or indirectly to
any called program that has not yet executed an EXIT PROGRAM statement.

6. A logical relationship to a cancelled program is established only by calling it again.

7. A called program is cancelled by being the operand of a CANCEL statement, by run
unit termination, or by execution of an EXIT PROGRAM statement in a called program
that possesses the INITIAL attribute.

Interprogram Communication 11-43

8. A CANCEL statement naming a program not called in this run· unit or called but can
celled is ignored. Control is transferred to the next executable statement following the
explicit CANCEL statement.

9. The contents of data items in external data records described by a program are not
changed when that program is cancelled.

10. During execution of a CANCEL statement, an implicit CLOSE statement without any
optional phrases is executed for each file in the open mode associated with an internal
file connector. Any USE procedures associated with any of these files are not exe
cuted.

11-44 Language Reference

CHAIN Statement

Function

The CHAIN statement transfers control from one object program to another
in the run unit. Control is not returned to the first object program.

General Format

The following figure shows the format of the CHAIN statement:

----- CHAIN -~L-identifier-I
literal-I

t
USING~-------- identifier-2-------,...._.

1----.-- REFERENCE
BY

1--.------------~-record-name

ADDRESS OF

t
.--..-~CONTENT -- identifier-2 ---------1

BY
CONTENT L l iteral-2

LENGTH OF identifier

., [J OVERFLOW imperative-statement-I~
ON

/

MF

MF

MF

Interprogram Communication 11-45

Syntax Rules

The following syntax rules apply to the CHAIN statement:

1. identifier-1 must be defined as an alphanumeric data item.

2. literal-1 must be a nonnumeric literal.

3. The USING phrase is included in the CHAIN statement only if there is a
USING phrase in the Procedure Division header of the chained program.
The number of operands in the two USING phrases can be unequal.
Refer to "Procedure Division Header" on page 11-33.

4. Each of the operands in the USING phrase must have been defined as a
data item in the FILE SECTION, WORKING-STORAGE SECTION,
COMMUNICATION SECTION or LINKAGE SECTION. Each
operand must have a level number of 01 through 49 or 77.

5. identifier-1, identifier-2, ... may be qualified when they reference data
items defined in the FILE SECTION or the COMMUNICATION
SECTION.

6. The Procedure Division parameters in the chained program must be
declared in the WORKING-STORAGE SECTION, not in the LINKAGE
SECTION. The parameters in the chaining program can be declared in
any section.

7. literal-2 must be nonnumeric and cannot be a figurative constant.

8. Record name must be the name of the 01 or 77 level item in the linkage or
WORKING-STORAGE SECTION.

General Rules

The following rules apply to the CHAIN statement:

1. The execution of a CHAIN statement passes control to the chained
program as the main program in a new run unit. After control is trans
ferred, the chaining program and all other programs in its run unit are
cancelled.

2. The chain operation moves the value from each data item referenced in
the USING phrase of the CHAIN statement to the data item referenced in
the USING phrase of the Procedure Division header of the chained
program.

3. A chained program cannot be a nested program.

4. Chained programs may contain CHAIN statements. A chained program
may chain directly or indirectly to the program from which it was
chained.

5. If the chained program is not found, the run is abandoned with a Run
Time Environment error message.

6. If the chained program is too big to fit in memory, the run is abandoned
with a Run Time Environment error message.

11-46 Language Reference

MF

MF

ENTRY Statement

Function

The ENTRY statement establishes an alternate entry-point into a called OSVS VSC2
COBOL program.

General Format

The following figure shows the format of the ENTRY statement:

.,,._ENTRY entry-name --..-L--------J---.---11r-4

USING !dentifter-J

Syntax Rules

OSVS VSC2

The following syntax rules apply to the ENTRY statement: OSVS VSC2

1. Entry name may be any alphanumeric literal.

2. The entry name must not be the name of the called program in which it
appears, but it must follow the same rules of formation.

3. An entry point cannot be used in a nested program.

DBCS Support

4. identifier-1 may be a DBCS literal .

....._ ___________ End of DBCS Support ___________ ____,

Interprogram Communication 11-47

General Rules

The following rules apply to the ENTRY statement:

1. When a CALL statement names an alternate entry-point in a calling
program, control is transferred to the next executable statement following
the ENTRY statement in the called program.

2. The called program can be a program in an external file that has previ
ously been called using its program-id. The AIX VS COBOL system
must be able to locate the program containing the entry-point when the
entry-point is named. Refer to the User's Guide.

3. Refer to "Procedure Division Header" on page 11-33 for information on
the USING phrase and rules for definition of identifier-1, etc ..

Example

The following example shows a called program with an ENTRY statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLSTAT.

DATA DIVISION.

WORKING-STORAGE SECTION.
0I RECORD-2 PIC X.
01 RECORD-I.

05 SALARY
05 RATE
05 HOURS

PROCEDURE DIVISION.

PICTURE S9(5)V99.
PICTURE S9V99.
PICTURE S99V9.

CALL "SUBPROG" USING RECORD-I.

CALL "PAYMASTER" USING RECORD-I RECORD-2.

STOP RUN.

11-48 Language_Reference

OSVS VSC2

OSVS VSC2

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG.

DATA DIVISION.

LINKAGE SECTION.
01 PAYREC.

10 PAY
10 HOURLY-RATE
10 HOURS

77 CODE PIC 9.

PICTURE S9(5}V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

EXIT PROGRAM.
ENTRY "PAYMASTER" USING PAYREC CODE.

GOBACK.

Interprogram Communication 11-49

EXIT PROGRAM Statement

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

The following figure shows the format of the EXIT PROGRAM statement:

.,.._..EXIT PROGRAM. -M

Syntax Rules

The following syntax rules apply to the EXIT PROGRAM statement:

1. The EXIT PROGRAM statement should appear in a sentence by itself.
This rule is not enforced.

2. The EXIT PROGRAM sentence must be the only sentence in the para
graph. This rul.e is not enforced.

MF

MF

3. The EXIT PROGRAM statement must not appear in a declarative procedure in which
the GLOBAL phrase is specified.

General Rules

The following rules apply to the EXIT PROGRAM statement:

1. If the EXIT PROGRAM statement is executed in a program not under the control of a
calling program, the statement continues execution of the program with the next exe
cutable statement.

2. The execution of an EXIT PROGRAM statement in a called program without the initial
attribute, continues execution with the next executable statement following the CALL
statement in the calling program. The state of the calling program is not altered from
when it executed the CALL statement except that the contents of data items and the
contents of data files shared between the calling and called program may have
changed. The state of the called program is not altered except that the end range of all
PERFORM statements have been reached.

3. Other than the actions specified in general rule 2, the execution of an EXIT
PROGRAM statement in a called program that possesses the initial attribute is the
same as executing a CANCEL statement. Refer to "CANCEL Statement" on
page 11-43.

1,1-50 Language Reference

GOBACK Statement

Function

The GOBACK statement marks the logical end of a called program. OSVS VSC2

General Format

The following figure shows the format of the GOBACK statement: OSVS VSC2

~ GOBACK. __...

Syntax Rule

A GOBACK statement must be the only statement, or the last of a series of OSVS VSC2
imperative statements, in a sentence.

General Rules

The following rules apply to the GOBACK statement: OSVS VSC2

1. If program execution reaches a GOBACK statement while operating
under control of a calling program, control returns to the point imme-
diately after the CALL statement in the calling program. ·

2. If program execution reaches a GOBACK statement in a main program,
the GOBACK statement terminates the program, as in the STOP RUN
statement. Refer to Chapter 3, "Introduction to the Nucleus"

3. The user should be aware that if neither the OSVS nor the VSC2 option
is given, then the GOBACK verb will appear syntactically to be a user
defined paragraph name. This might cause some unexpected changes in
the flow of control that are difficult to detect.

Interprogram Communication 11-51

USE Statement

Function

Within the Interprogram Communication module, the USE statement determines the asso
ciated declarative procedures invoked during the execution of any program contained
within the program with the USE statement.

General Format

The following figure shows the format of the USE statement:

- USE L _J AFTER L J L EXCEPTION I
GLOBAL STANDARD ERROR______j

' .,..__PROCEDURE ~file§name-1
ON INPUT

OUTPUT
1-0
EXTEND

Syntax Rule

Refer to Chapter 8, "File Input and Output."

General Rules

..

Special precedence rules are followed when programs are contained within other programs.
In applying these rules, only the first qualifying declarative is selected for execution. The
declarative selected for execution must satisfy the rules for execution of that declarative.
The order of precedence for selecting a declarative is:

1. The declarative in the program containing the statement that caused the qualifying
condition.

2. The declarative in which the GLOBAL phrase is sp~cified and which is within the
program directly containing the program which was last examined for a qualifying
declarative.

3. Any declarative selected by applying rule 2 to each more inclusive containing program
until rule 1 is applied to the outermost program. If no qualifying declarative is found,
none is executed.

11-52 Language Reference

USE BEFORE REPORTING Statement

Function

Within the Interprogram Communication module, the USE BEFORE REPORTING state
ment determines whether the associated declarative procedures are invoked during the exe
cution of any program contained within the program that includes the USE BEFORE
REPORTING statement.

General Format

The following figure shows the format of the USE BEFORE REPORTING statement:

..,.__USE---,,.....-------.- BEFORE REPORTING i dent ifi er-1 ___...,.
LGLOBAL_J

General Rules

Special precedence rules are followed when programs are contained within other programs.
In applying these rules, only the first qualifying declarative is selected for execution. The
declarative selected for execution must satisfy the rules for execution of that declarative.
The order of precedence for selecting a declarative is:

1. The declarative within the program that contains the statement which caused the qual
ifying condition.

2. The declarative in which the GLOBAL phrase is specified and which is within the
program directly containing the program last examined for a qualifying declarative.

3. Any declarative selected by applying rule 2 to each more inclusive containing program
until rule 1 is applied to the outermost program. If no qualifying declarative is found,
none is executed.

Interprogram Communication 11-53

•

11-54 Language Reference

PART 4. Advanced Features

PART 4. Advanced Features

Language Reference

Chapter 12. Table-Handling

Table-Handling 12-1

Contents

About This Chapter . 12-3
Introduction . 12-4

/ Data Division in the Table-Handling Module . 12-5
OCCURS Clause 12-5

Function . 12-5
General Format . 12-5
''Syntax Rules . 12-6
General Rules . 12-7
Example 1 . 12-8
Example 2 . 12-9
Example 3 . 12-10
Example 4 . 12-10

USAGE IS INDEX Clause . 12-12
Function . 12-12
General Format . 12-12
Syntax Rules . 12-12
General Rules . 12-12

Procedure Division in the Table-Handling Module . 12-13
Relation Condition-Comparisons Involving Index-Names and/or Index Data-Items 12-13
Overlapping Operands . 12-13

SEARCH Statement . 12-14
Function . 12-14
General Format . 12-14
Syntax Rules . 12-15
General Rules . 12-16

SET Statement . 12-19
Function - . 12-19
General Format . 12-19
Syntax Rules . 12-19
General Rules . 12-19

Table-Handling Sample Program . 12-21

12-2 Language Reference

About This Chapter

This chapter describes the Table-Handling module. The following aspects are covered:

• Defining a table
• Accessing a table
• Subscripting and indexing
• Determining maximum dimensions of a table.

Table-Handling 12-3

Introduction

The table-handling module defines tables of contiguous data-items and accesses an item rel
ative to its position in the table. Language facilities specify how many times an item is to
be repeated. Each item may be identified through use of a subscript or an index. Refer to
Chapter 2, "COBOL Concepts."

Table-handling allows accessing of items in variable-length tables and multiple dimensions.
The maximum number of multiple dimensions is seven.

Sixteen dimensions are permitted. MF

In addition, table-handling allows specifying of ascending or descending keys and permits
searching a dimension of a table for an item satisfying a specified condition.

In COBOL, a table is defined with an OCCURS clause in its data description. The
OCCURS clause specifies that the named item is to be repeated as many times as stated.
The named item is considered a table element, and its name and description apply to each
repetition (or occurrence) of the item. Since the occurrences are not given unique data
names, reference to a particular occurrence can be made only by specifying the data-name
of the table element, together with the occurrence number of the desired item within the
element.

The occurrence number is known as a subscript. The technique of supplying the occur
rence number of individual table elements is called subscripting. A related technique,
called indexing, is also available for table references. Both subscripting and indexing are
described in the following sections.

12-4 Language Reference

Data Division in the Table-Handling Module

This section describes the Data Division in the table-handling module.

OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for repeated data-items and
supplies information required for the application of subscripts or indices.

General Format

The following figures show the general format for the OCCURS clause:

Format 1

--- OCCURS i nteger-2

1 ASCENDING-_J~L~--_J~L.-naj] ~DESCENDING KEY IS

• L INDEXED ~L--_J--,--tdex-name_! J "
BY

Table-Handling 12-5

Format 2

.,._OCCURS Li nteger-1 ~ i nteger-2
NO WORDS

L _J DEPENDING L _J data-name-1 -
TIMES ON VSC2

..

I ASCENDING -_J~~L---_J~ L,_, • .J J ~DESCENDING KEY IS

• L INDEXED --.L--_J-.---Lx-name_j J
BY

....

Syntax Rules

The following rules apply to the OCCURS clause:

1. Where both integer-1 and integer-2 are used, the value of integer-1 must
be less than the value of integer-2. In Format 2, integer-1 TO may be
omitted. In this case the default value one is assumed.

2. The data description of data-name-1 must describe a positive integer or zero.

3. data-name-1, data-name-2, data-name-3, ... may be qualified.

VSC2

4. data-name-2 must be the name of the entry containing the OCCURS clause or the name
of an entry subordinate to the entry containing the OCCURS clause.

5. Additional instances of data-name-2 must name an entry subordinate to the group item
which is the subject of this entry.

6. An INDEXED BY phrase is required if the subject of this entry, or an entry subordi
nate to this entry, is to be referred to by indexing. The index-name identified by this
clause is not defined elsewhere, and not being data, cannot be associated with any data
hierarchy.

7. A data description entry containing Format 2 of the OCCURS clause
should only be followed, within the record description, by data
description entries subordinate to it.

A data description entry containing Format 2 of the OCCURS clause
may be followed, within the record description, by data description
entries which are not subordinate to it. The positions of these entries
within the record varies at run time with the value of the data
item referenced in the DEPENDING ON clause unless the
NOODOSLIDE system directive is set. In this case, the containing
record is considered as always containing the maximum number
of occurrences of the Format 2 item, irrespective of the value of
data-name-I. If the ODOSLIDE directive is set, when the value of
data-name-I is changed, the position referenced by identifiers fol-
lowing, but not subordinate to the table are dynamically changed.
The data these items contain may be lost.

12-6 Language Reference

osvs
MF

8. The OCCURS clause cannot be specified in a data description entry that:

a. Has 66 or 88 level-number

b. Describes an item whose size is variable. The size of an item is variable if the data
description of any subordinate item contains Format 2 of the OCCURS clause.

9. The OCCURS clause should not be specified in a data description entry
at the 01 level or as a 77 level-number. This restriction may be ignored. MF

10. In Format 2, the data-item defined by data-name-1 must not occupy a character posi
tion between the first character position defined by the data description entry and the
last character position defined by the record description entry.

11. If data-name-2 is not the subject of this entry, then:

a. All of the items identified by the data names in the KEY IS phrase must be within
the group item which is the subject of this entry.

b. Items identified by the data name in the KEY IS phrase must not contain an
OCCURS clause.

c. There must not be any entry that contains an OCCURS clause between the items
identified by the data names in the KEY IS phrase and the subject of this entry.

12. index-name-1 must be a unique word within the program.

13. If the OCCURS clause is specified in a data description entry for a record description
entry containing the EXTERNAL clause, then data-name-1 (the DEPENDING ON vari
able) must refer to a data item also having the EXTERNAL attribute.

14. If the OCCURS clause is specified in a data description entry for a record description
entry containing the GLOBAL clause, then data-name-1 (the DEPENDING ON vari
able) must refer to a data item also having the GLOBAL attribute.

DBCS Support

15. The OCCURS clause may be specified for a Double-Byte Character Set (DBCS) item.

16. The ASCENDING/DESCENDING KEY phrase (for a SEARCH ALL statement only)
can be specified in the OCCURS clause for a DBCS item.

~----------- End of DBCS Support ___________ __.

General Rules

The following rules apply to the OCCURS clause:

1. The OCCURS clause is used in defining tables and other homogenous sets of repeated
data-items. Whenever the OCCURS clause is used, the data name which is the subject
of this entry must be subscripted or indexed when referred to in a statement other than
SEARCH or USE FOR DEBUGGING. Further, if the subject of this entry is the name
of a group item, then all data names belonging to the group must be subscripted or
indexed when they are used as operands, except as the object of a REDEFINES clause.
Refer to "Subscripting" on page 2-30, "Indexing" on page 2-31, and "Identifier" on
page 2-33.

2. When a description includes an OCCURS clause, all description clauses, except for the
OCCURS clause, apply to each occurrence of the item described. Refer to the
restriction in rule lb on page 6744, under "Data Description Entries Other Than
CONDITION-NAMES and CONSTANT-NAMES" on page 6-44.

3. The number of occurrences of the subject entry is defined as follows:

a. In Format 1, the value of integer-2 represents the exact number of occurrences.

Table-Handling 12-7

b. In Format 2, the current value of the data-item referenced by data-name-I repres
ents the number of occurrences.

This format specifies a variable number of occurrences for the subject of this entry.
The value of integer-2 represents the maximum number of occurrences. The value
of integer-I represents the minimum number of occurrences. This does not mean
that the length of the subject is variable, but that the number of occurrences is
variable.

The value of the data-item referenced by data-name-I must fall in the range of
integer-I through integer-2. Reducing the value of the data-item referenced by
data-name-I makes the contents of data-items unpredictable. The data-items occur
rence numbers exceed the value of the data-item referenced by data-name-1.

4. When a group item, with a subordinate entry specifying Format 2 of the OCCURS
clause, is referenced, the part of the table area used in the operation is determined as
follows:

a. If the data-item referenced by data-name-I is outside the group, only the table area
specified by the value referenced by data-name-I will be used.

b. If the data-item referenced by data-name-I is in the same group and the group data
item is referenced as a sending item, only the table area specified by the value ref
erenced by data-name-I will be used in the operation. If the group is a receiving
item, the maximum length of the group will be used.

5. The KEY IS phrase indicates that the repeated data is arranged in ascending or
descending order according to the value contained in data-name-2. The ascending or
descending order is determined by the rules for comparison of operands. Refer to
"Comparison of Numeric Operands" on page 7-I2, and "Comparison of Nonnumeric
Operands" on page 7-I2. The data names are listed in their descending order of signif-
• J'-.
1cance.

Example 1

The following examples show single- and multiple-dimensional tables:

01 TABLE-ONE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

TABLE-ONE is the group item that contains the table. ELEMENT-ONE names the table
element of a one-dimensional table that occurs 3 times. ELEMENT-A and ELEMENT-B
are elementary items subordinate to ELEMENT-ONE.

01 TABLE-TWO.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-A PIC X(4).
15 ELEMENT-B PIC 9(4).

ELEMENT-ONE is an element of a one-dimensional table that occurs three times.
ELEMENT-TWO is an element of a two-dimensional table that occurs three times within
each occurrence of ELEMENT-ONE.

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES

PICTURE X(8).

In this example, ELEMENT-ONE is an element of a one-dimensional table that occurs
three times. ELEMENT-TWO is an element of a two-dimensional table that occurs three
times within each occurrence of ELEMENT-ONE. ELEMENT-THREE is an element of a

12-8 Language Reference

three-dimensional table that occurs two times within each occurrence of ELEMENT-TWO.
See Table 12-1 on page 12-9 for an explanation of storage layout for Table-Three.

Table 12-1. Storage Layout for Table-Three

Element-One Element-Two Element-Three
Occurs 3 Times Occurs 3 Times Occurs 2 Times

Element-one (1) Element-two (1 1) Element-three (1 1 1)
Element-two (1 2) Element-three (1 1 2)
Element-two (1 3) Element-three (1 2 1)

Element-three (1 2 2)
Element-three (1 3 1)
Element-three (1 3 2)

Element-one (2) Element-two (2 1) Element-three (2 1 1)
Element-two (2 2) Element-three (2 1 2)
Element-two (2 3) Element-three (2 2 1)

Element-three (2 2 2)
Element-three (2 3 1)
Element-three (2 3 2)

Element-one (3) Element-two (3 1) Element-three (3 1 1)
Element-two (3 2) Element-three (3 1 2)
Element-two (3 3) Element-three (3 2 1)

Element-three (3 2 2)
Element-three (3 3 1)
Element-three (3 3 2)

Example 2

This example shows a program using a multi-dimensional table with INDEXED BY option.
Each index-name identifies an index to be used in table references. The index-name is
specified through the OCCURS clause.

Each index named is a compiler-generated storage area. It contains a binary value repres
enting an actual displacement from the beginning of the table element. To be valid, the
displacement value must correspond to the value of an occurrence number in the table
element. Two forms of indexing are provided: direct and relative.

In direct indexing, the index-name is in the form of a subscript. The value contained in
the index is then calculated as the occurrence number minus one, multiplied by the length
of the individual table entry. For example:

05 ELEMENT-A OCCURS 10 INDEXED BY INX-A PIC X(8).

For the fifth occurrence of ELEMENT-A, the binary value contained in INX-A is
(5 - 1) * 8 = 32.

In relative indexing, the index-name is followed by a space, followed by a + or a -, fol
lowed by another space, followed by an unsigned numeric literal. The literal is considered
to be an occurrence number, and is converted to an index value before being added to or
subtracted from the index-name index.

The following example shows indexing specified for Table 12-1.

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES INDEXED BY INX-1.

10 ELEMENT-TWO OCCURS 3 TIMES INDEXED BY INX-2.
15 ELEMENT-THREE OCCURS 2 INDEXED BY INX-3

PICTURE X(8).

Table-Handling 12-9

Then a relative index reference to

ELEMENT-THREE (INX-1 + 1, INX-2 + 2, INX-3 -1)

computes the displacement:

(address of ELEMENT-ONE)
+ (contents of INX-1) + (48 * 1)
+ (contents of INX-2) + (16 * 2)
+ (contents of INX-3) - (8 * 1)

(Each occurrence of ELEMENT-ONE is 48 characters in length. Each occurrence of
ELEMENT-TWO is 16 characters in length. Each occurrence of ELEMENT-THREE is 8
characters in length.)

Example 3

The following is an example of a table INDEXED BY ASCENDING/DESCENDING KEY
option:

WORKING-STORAGE SECTION.
81 TABLE-RECORD.

85 EMPLOYEE-TABLE OCCURS 188 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.
18 EMPLOYEE-NAME PIC X(28).
18 EMPLOYEE-NO PIC 9(6).
18 WAGE-RATE PIC 9999V99.
18 WEEK-RECORD OCCURS 52 TIMES

ASCENDING KEY IS WEEK-NO INDEXED BY C.
15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATENESS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry. The key for
WEEK-RECORD is subordinate to that subordinate entry.

Note that keys must be listed in decreasing order of significance.

Example 4

The following are examples of the initialization of a table:

81 TABLE-ONE
85 ELEMENT-ONE PICTURE X VALUE "1".
85 ELEMENT-TWO PICTURE X VALUE "2".
85 ELEMENT-THREE PICTURE X VALUE "3".
85 ELEMENT-FOUR PICTURE X VALUE "4".

81 TABLE-TWO REDEFINES TABLE-ONE.
85 OCCURS-ELEMENT OCCURS 4 TIMES PICTURE X.

The table can be described as a record containing contiguous subordinate data description
entries. Each entry contains a VALUE clause for the initial value. The record is then
redescribed through a REDEFINES entry containing a subordinate entry with an OCCURS
clause. Due to the OCCURS clause, the subordinate entries of the redefined entry are
repeated.

81 TABLE-ONE VALUE "1234".
85 TABLE-TWO OCCURS 4 TIMES PICTURE X.

12-10 Language Reference

If the subordinate entries do not require separate handling, the VALUE of the entire entry
can be specified in the entry which names the table. The lower level entries then contain
OCCURS clauses, and show the hierarchical structure of the table. The subordinate
entries must not contain VALUE clauses.

Table-Handling 12-11

USAGE IS INDEX Clause

Function

The USAGE IS INDEX clause specifies the format of a data-item in the computer storage.

General Format

The following figure shows the general format for the USAGE IS INDEX clause:

~••~-.-~~~~~~-,--INDEX

LusAGE L ~
IS_j

Syntax Rules

The following syntax rules apply to the USAGE IS INDEX clause:

1. An index data-item can be referenced explicitly only in one of the following:

• A SEARCH or SET statement
• A relation condition
• The USING phrase of a Procedure Division header
• The USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items described with the
USAGE IS INDEX clause.

General Rules

The following general rules apply to the USAGE IS INDEX clause:

1. The USAGE clause can be written at any level. If the USAGE clause is written at a
group level, it applies to each elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to which the item
belongs.

2. An elementary item described with the USAGE IS INDEX clause is called an index
data-item and contains a value which must correspond to an occurrence number of a
table element. The elementary item cannot be a conditional variable. The VS COBOL
system allocates a 4-byte binary field with an implied PICTURE of 9(9) COMP. If the
USAGE IS INDEX clause describes a group item, the elementary items in the group are
all index data-items. The group itself is not an index data-item and cannot be used in
the SEARCH or SET statement or in a relation condition.

3. An index data-item may be part of a group referred to in a MOVE or input-output state
ment, in which case no conversion takes place.

12-12 Language Reference

Procedure Division in the Table-Handling Module

This section describes the Procedure Division in the table-handling module.

Relation Condition-Comparisons Involving Index-Names and/or
Index Data-Items

Relation tests may be made between the following data-items:

• Two index-names. The result is the same as if the corresponding occurrence numbers
were compared.

• An index-name and a data-item (other than an index data-item) or literal. The occur
rence number corresponding to the value of the index-name is compared to the data
item or literal.

• An index data-item and an index-name or another index data item. The actual values
are compared without conversion.

• The result of the comparison of an index data-item with any data-item or literal not
specified above is undefined.

Overlapping Operands

When a sending and a receiving item in a SET statement share a part of their storage area,
the result of the execution of such a statement is undefined.

Table-Handling 12-13

SEARCH Statement

Function

The SEARCH statement searches for a table element satisfying the specified condition and
adjusts the associated index name to indicate that table element.

General Format

The following figures show the general format for the SEARCH statement:

Format 1

- SEARCH identifier-1-~L----------j~-------------"
VARYING -r- identi fi er-2

L index-name-1

..
[~ END imperative-statement-1 =oJ

AT

.,.___WHEN condition-1--C imperative-statement-2
NEXT SENTENCE---~

12-14 Language Reference

..

LEND-SEARCH J
.....

Format 2

- SEARCH ALL identifier-1-.------------------,r---------.,
L _J END imperative-statement-1 _J
LAT

-wHEN-~-data-name-1-phrase-l~identifier-3

L literal -l --------1
arithmetic-expression-1

identifier-3 j phrase-1- data-name-1
literaz-1---------l
arithmetic-expression-1
condition-name-1----------------~

AND--.--data-name-2- phrase-1 ~ identi fier-4
L l itera 1-2 _____ ___,

arithmetic-expression-1
identtfier-4 J phrase-1- data-name-2
literal-2 J
arithmetic-expression-2
condition-name-2-----------------'

....,._imperative-statement-2 I L _J
L_NEXT SENTENCE END-SEARCH

where phrase-1 is:

.. E~~;-3 L =EQUAL L _J ..
TOI

Syntax Rules

The following rules apply to the SEARCH statement:

osvs

osvs

osvs

1. In both Formats 1 and 2, identifier-1 must not be subscripted or indexed, but its
description must contain an OCCURS clause and an INDEXED BY clause. The
description of identifier-1 in Format 2 must also contain the KEY IS phrase in its
OCCURS clause.

2. identifier-2, when specified, must be described as USAGE IS INDEX or as a numeric
elementary item without any positions to the right of the assumed decimal point.

3. In Format 1, condition-1 may be any condition as described in "Conditional
Expressions" on page 7-9.

4. In Format 2, all referenced condition-names must be defined as having only a single
value. · The data-name associated with a condition-name must appear in the KEY
clause of identifier-!. Each data-name-1, data-name-2 may be qualified. Each
data-name-1, data-name-2 must be indexed by the first index-name associated with
identifier-1 along with other indices or literals as required. Each data-name-1,
data-name-2 must also be referenced in the KEY clause of identifier-!. identifier-3,
identifier-4, or identifiers specified in arithmetic-expression-1, arithmetic-expression-2

Table-Handling 12-15

must not be referenced in the KEY clause of identifier-I or be indexed by the first
index-name associated with identifier-I.

In Format 2, when a data-name in the identifier-I KEY clause is referenced, or when a
condition-name associated with a data-name in the identifier-I KEY clause is refer
enced, all preceding data-names or associated condition-names must also be referenced.

5. If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not be
specified.

DBCS Support

6. identifier-I can be a DBCS (USAGE DISPLA Y-1) item. (Format 1)

7. condition-I may include DBCS relations and/or DBCS condition-name conditions.

8. identifier-I can be a DBCS item if the ASCENDING/DESCENDING KEY is defined as
a DBCS item. (Format 2)

General Rules

The following general rules apply to the SEARCH statement:

1. The scope of a SEARCH statement may be terminated by any of the following:

a. An END-SEARCH phrase at the same level of nesting

b. A separator period

c. An ELSE or END-IF associated with a previous IF statement.

2. If Format 1 of the SEARCH is used, a serial type of search operation takes place,
starting with the current index setting.

a. The SEARCH terminates immediately if, at the start, the index-name for
identifier-I contains a value corresponding to an occurrence number greater than
the highest permissible occurrence number for identifier-I. The number of occur
rences of identifier-I, the last of which is the highest permissible, is discussed in
the OCCURS clause. Refer to "OCCURS Clause" on page 12-5. If the AT END
phrase is specified, imperative-statement-I is executed. If the AT END phrase is
not specified, control passes to the next executable sentence.

b. If the index-name for identifier-I contains a value corresponding to an occurrence
number in the permissible range for identifier-1, the SEARCH statement evaluates
the conditions in the order they are written, making use of the index settings to
determine the occurrence of those items to be tested. (The permissible range for
identifier-I is discussed in "OCCURS Clause" on page 12-5.)

If none of the conditions are satisfied, the index name for identifier-I is incre
mented to reference the next occurrence. The process is then repeated using the
new index-name settings unless the new value of the index-name settings for
identifier-I corresponds to a table element outside the permissible range of occur
rence values, in which case the search terminates as indicated in rule la. If one of
the conditions is satisfied upon its evaluation, the search terminates immediately
and the imperative statement associated with that condition is executed. The
index-name remains set at the occurrence which satisfied the condition.

12-16 Language Reference

3. In a Format 2 SEARCH, the results of the SEARCH ALL operation are predictable
only when:

a. The data in the table is ordered in the same manner described in the
ASCENDING/DESCENDING KEY clause, associated with the description of
identifier-1, and

b. The contents of the key(s) referenced in the WHEN clause are sufficient to identify
a unique table element.

4. If Format 2 of the SEARCH is used, a nonserial type of search operation may take
place. The initial setting of the index-name for identifier-1 is ignored and its setting is
varied during the search operation. The setting is varied with the restriction that it is
never set to a value less than or greater than the range of values corresponding to the
first and last element of the table. The length of the table is discussed in the OCCURS
clause. If any of the conditions specified in the WHEN clause cannot be satisfied for
any setting of the index within the permitted range, control is passed to
imperative-statement-1 of the AT END phrase, if specified, or to the next executable
sentence when this phrase is not specified. In either case the final setting of the index
is not predictable. If all conditions can be satisfied, the index indicates an occurrence
allowing the conditions to be satisfied, and control passes to imperative-statement-2.

5. After execution of imperative-statement-1 or imperative-statement-2 that does not ter
minate with a GO TO statement, control passes to the next executable sentence.

6. In Format 2, the index-name used for the search operation is the first index-name
appearing in the identifier-1 INDEXED BY phrase. Any other index-names for
identifier-1 remain unchanged.

7. In Format 1, if the VARYING phrase is not used, the index-name used for the search
operation is the first index-name appearing in the identifier-! INDEXED BY phrase.
Any other index-names for identifier-1 remain unchanged.

8. In Format 1, if the VARYING index-name-1 phrase is specified and if index-name-1
appears in the identifier-1 INDEXED BY phrase, that index-name is used for this
search. If this is not the case, or if the VARYING identifier-2 phrase is specified, the
first index-name given in the identifier-1 INDEXED BY phrase is used for the search.
In addition, the following operations occur:

a. If the VARYING index-name-1 phrase is used and if index-name-1 appears in the
INDEXED BY phrase of another table entry, the occurrence number represented
by index-name-1 is incremented by the same amount as, and at the same time as,
the index-name for identifier-1.

b. If the VARYING identifier-2 phrase is specified and identifier-2 is an index data
item, then the data-item referenced by identifier-2 is incremented by the same
amount as, and at the same time as, the index for identifier-1. If identifier-2 is not
an index data-item, the data-item referenced by identifier-2 is incremented by the
value (1) at the same time as the index referenced by the index-name for
identifier-1.

9. If identifier-1 is a data-item subordinate to a data item containing an OCCURS clause
(specifying a two or three dimensional table) an index-name must be associated with
each dimension of the table through the INDEXED BY phrase of the OCCURS clause.
Only the setting of the index-name associated with identifier-1 (and the data-item
identifier-2 or index-name-1) is modified by the execution of the SEARCH statement.
To search an entire two or three dimensional table, it is necessary to execute a
SEARCH statement several times. Prior to each execution of a SEARCH statement,
SET statements must be executed to adjust index-names to appropriate settings.

Table-Handling 12-17

Figure 12-1 shows a flowchart of the Format 1 SEARCH operation containing two WHEN
phrases.

START

Index setting:
highest permissable
occurence number

>AT END 1

Condition-1 ,__ ___ True ---

False

Next
Condition-1

False

Increment index-name
for identifier-1 (index
name-1 if applicable)

Increment index-name-1
(for a different table)
or identifier-2

1--+ True ---

lmperative
statement-1

lmperative
statement-2

lmperative
statement-2

1 These operations are options included only when specified in the SEARCH
statement.

2 Each of these transfers control to the next executable sentence
unless the imperative-statement ends with a GO TO statement.

Figure 12-1. Flowchart of SEARCH Operation Containing Two WHEN Phrases

12-18 Language Reference

2

SET Statement

Function

The SET statement establishes reference points for table-handling operations by setting
index-names for table elements.

General Format

The following examples show the general format for the SET statement:

Format 1

f
~ SET---r identifier-1-r TO L identifie:=; _J

L.;ndex-name-l_J C::::index-nam~
integer-1

....

Format 2

f
~sETLindex-name-4:] LUP BY~identifier~-4

identifier-5 DOWN BY integer-2
index-name-6

....
MF

Syntax Rules

The following syntax rules apply to the SET statement:

1. identifier-!, identifier-3, and identifier-5 must name either index data-items or elemen
tary items described as integers.

2. identifier-4 must be described as an elementary numeric integer.

3. integer-1 and integer-2 may be signed. integer-1 must be positive.

General Rules

The following general rules apply to the SET statement:

1. Index-names are considered related to a given table and are defined by being specified
in the INDEXED BY clause.

Table-Handling 12-19

2. If index-name-3 is specified, the value of the index before the execution of the SET
statement must correspond to an occurrence number of an element in the table. If
index-name-4, index-name-5 is specified, the value of the index both before and after the
execution of the SET statement must correspond to an occurrence number of an
element in the table. If index-name-I is specified, the value of the index after the exe
cution of the SET statement must correspond to an occurrence number of an element
in the table. The value of the index associated with an index-name after the execution
of a SEARCH or PERFORM statement may be undefined. Refer to "SEARCH
Statement" on page I2-I4 and "PERFORM Statement" on page 7-73.

3. In Format I, the following action occurs:

a. index-name-I is set to a value that refers to the table element corresponding in
occurrence number to the table element referenced by index-name-3, identifier-3, or
integer-I. If identifier-3 is an index data-item, or if index-name-3 is related to the
same table as index-name-I, no conversion takes place.

b. If identifier-I is an index data-item, it may be set equal to either the contents of
index-name-3 or identifier-3 where identifier-3 is also an index item. No conversion
takes place in either case.

c. If identifier-I if not an index data-item, it may be set only to an occurrence number
corresponding to the value of index-name-3. Neither identifier-3 nor integer-I can
be used in this case.

d. The process is repeated for any additional occurrences of index-name-I or
identifier-I. Each time the value of index-name-3 or identifier-3 is used as it was at
the beginning of the statement's execution. Any subscripting or indexing for
identifier-I, etc., is evaluated immediately before the value of the respective data
item is changed.

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or decremented
(DOWN BY) by a value corresponding to the number of occurrences represented by the
value of integer-2 or identifier-4. Thereafter, the process is repeated for any additional
occurrences of index-name-4. Each time the value of identifier-4 is used as it was at the
beginning of the execution of the statement.

5. Data in Table I2-2 represents the validity of various operand combinations in the SET
statement. The numbers and letters in the receiving item list indicate the applicable
general rule.

Table 12-2. SET Statement Valid Operand Combinations

Receiving Iteml

Integer Data-
Sending Item Item Index-Name Index Data-Item

Integer Literal No/3c Valid/3a No/3b
Integer Data-Item No/3c Valid/3a No/3b
Index-Name Valid/3c Valid/3a Valid/3b2

Index Data-Name No/3c Valid/3a Valid/3b2

Note:

1 = Rule numbers referred to in General Rules above
2 = No conversion takes place.

12-20 Language Reference

Table-Handling Sample Program

This program illustrates one method of building a table, as well as two methods of
searching a table.

A chain store doing business in the continental United States divides the country into
seven sales areas. A weekly report of sales is made for each area. The program places
these sales figures into a cumulative table, and then issues a report comparing sales by
area for the current week with those for the preceding week, as well as for the same week
in the preceding year. Optional inquiries can be made to report-for any week of the
current year-which areas increased sales over last year.

The following table-handling features are illustrated: the OCCURS clause, the OCCURS
DEPENDING ON clause, the INDEXED BY option, direct indexing, relative indexing, the
PERFORM UNTIL statement used to search a table element, the SEARCH VARYING
STATEMENT used to search two table elements simultaneously, the SET TO statement,
and the SET UP BY statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. TABLES.
DATE-COMPILED. MAR 20, 1988.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6000.
OBJECT-COMPUTER. IBM-RISC-6000.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CURRENT-FILE
ASSIGN TO "CURRENT.FIL".

SELECT YR-TO-DATE-FILE
ASSIGN TO "DATE.FIL".

SELECT LAST-YR-FILE
ASSIGN TO "LASTYR.FIL".

SELECT PRINT-FILE
ASSIGN TO "PRINT.FIL".

SELECT OPTIONAL INQUIRY-FILE
ASSIGN TO "INQUIRY.FIL".

DATA DIVISION.
FILE SECTION.
FD CURRENT-FILE LABEL RECORDS OMITTED.
01 CURRENT-SALE-RECORD.

05 CURR-WEEK PIC 99.
05 CURR-FIGURES OCCURS 7 TIMES INDEXED BY WEEKC.

10 CURR-AREA-NO PIC 9.
10 CURR-AREA-SALE PIC S99999V99.

FD YR-TO-DATE-FILE LABEL RECORDS STANDARD.
01 YR-TO-DATE-RECORD.

05 YR-TO-DATE-TABLE OCCURS 52 TIMES INDEXED BY WEEKL.
10 FILLER PIC 99.
10 FILLER OCCURS 7 TIMES INDEXED BY WEEKW.

15 FILLER PIC 9.
15 FILLER PIC S99999V99.

Table-Handling 12-21

FD LAST-YR-FILE LABEL RECORDS STANDARD.
01 LAST-YR-RECORD.

05 LAST-YR-WEEK-TABLE OCCURS 52 TIMES
INDEXED BY WEEKY WEEKZ.

10 LAST-YR-WEEK-NO PIC 99.
10 LAST-YR-AREA-TOTALS OCCURS 7 TIMES INDEXED BY AREAY.

15 LAST-YR-AREA-NO PIC 9.
15 LAST-YR-AREA-FIGURES PIC S99999V99.

FD PRINT-FILE LABEL RECORDS OMITTED.
01 PRINT-RECORD.

05 FILLER PIC X.
05 PRINT-DATA PIC X(95).

FD INQUIRY-FILE LABEL RECORDS OMITTED.
01 INQUIRY-RECORD PIC 99.

WORKING-STORAGE SECTION.
77 THIS-WEEK PIC 99 COMP-3.
77 LAST-WEEK PIC 99 COMP-3.
77 ANY-INQ PIC 9 VALUE 0.
77 INQ-COND-MET PIC 9.
77 NO-INQ-MSG PIC X(21) VALUE " NO INQUIRY WAS MADE.".

01 NONE-MET-COND.
05 Fl LLER PIC X (17) VALUE " NO AREA IN WEEK ".
05 CON-MSG-WK PIC Z9.
05 FILLER PIC X(29) VALUE " EXCEEDED SALES OF LAST YEAR.".

01 YTD-WORK-TABLE.
05 WEEK-TABLE OCCURS 1 TO 52 TIMES

DEPENDING ON THIS-WEEK
INDEXED BY WEEKT WEEKX.

10 WEEK-NO PIC 99.
10 AREA-TOTALS OCCURS 7 TIMES

INDEXED BY AREAT AREAX.
15 AREA-NO PIC 9.
15 AREA-FIGURES PIC S99999V99.

12-22 Language Reference

01 CURRENT-REPORT-PRINT.
05 FILLER PIC X (10) VALUE " WEEK NO.".
05 PRINT-WEEK PIC Z9.
05 PRINT-AREA VALUE II AREA II

10 FILLER PIC X(4}.
10 PRINT-AREA-NO PIC 9.
10 FILLER PIC X(4}.

05 PRINT-AREA-FIGURES.
10 FILLER PIC X(17} VALUE "THIS WEEK SALES ".
10 PRINT-AREA-SALES PIC $$$,$$$.99.
10 FILLER PIC X(5}.

05 PRINT-AREA-LAST-WEEK.
10 FILLER PIC X(17} VALUE "LAST WEEK SALES ".
10 LAST-WEEK-SALES PIC $$$,$$$.99.
10 FILLER PIC XX.

05 WEEK-PERCENT.
10 FILLER PIC X(15} VALUE "% CHANGE
10 WEEK-CHANGE PIC ++9.99.
10 FILLER PIC X(5}.

05 PRINT-AREA-LAST-YEAR.
10 FILLER PIC X(17} VALUE "LAST YEAR SALES 11 •

10 LAST-YEAR-SALES PIC $$$,$$$.99.
10 FILLER PIC XX.

05 YEAR-PERCENT.
10 FILLER PIC X(15} VALUE "% CHANGE
10 YEAR-CHANGE PIC ++9.99.

01 INQUIRY-PRINT-DATA.
05 FILLER PIC X(6} VALUE " WEEK ".
05 INQ-WK-NO PIC Z9.
05 FILLER PIC X(6} VALUE " AREA ".
05 INQ-AREA PIC 9.
05 FILLER PIC X(17} VALUE " $ INCREASE ".
05 INQUIRY-PRINT-FIGURE PIC $$.99.

01 LAST-WEEK-COMPARE.

05 FILLER PIC 99.
05 LW-AREA-TABLE OCCURS 7 TIMES INDEXED BY LWX.

10 LW-AREA-NO PIC 9.
10 LW-AREA-FIGURES PIC $99999V99.

01 ERROR-MSG.
05 FILLER PIC X.
05 ERROR-WEEK-NO PIC Z9.
05 ERROR-TEXT PIC X(40) VALUE

"EXCEEDS THIS-WEEK NO. INQUIRY IGNORED.".

Table-Handling 12-23

PROCEDURE DIVISION.
HOUSEKEEPING-ROUTINE.

OPEN INPUT CURRENT-FILE LAST-YR-FILE INQUIRY-FILE,
OUTPUT PRINT-FILE.

READ LAST-YR-FILE AT END GO TO CLOSE-ROUTINE.
READ CURRENT-FILE AT END GO TO CLOSE-ROUTINE.
MOVE CURR-WEEK TO PRINT-WEEK.
WRITE PRINT-RECORD FROM CURRENT-REPORT-PRINT

AFTER ADVANCING 0.
MOVE SPACES TO CURRENT-REPORT-PRINT.
MOVE CURR-WEEK TO THIS-WEEK.
SET WEEKT WEEKX WEEKY TO THIS-WEEK.
IF THIS-WEEK EQUAL 1 GO TO FIRST-WEEK-ROUTINE.

LATER-WEEK-ROUTINE.
OPEN I-0 YR-TO-DATE-FILE.
COMPUTE LAST-WEEK= THIS-WEEK - 1.
READ YR-TO-DATE-FILE INTO YTD-WORK-TABLE

AT END GO TO CLOSE-ROUTINE.
MOVE WEEK-TABLE (WEEKX - 1) TO LAST-WEEK-COMPARE.

WEEK-CALCULATION-ROUTINE.
MOVE CURRENT-SALE-RECORD TO WEEK-TABLE (WEEKT).
SET LWX AREAT AREAY TO 1.
PERFORM WEEK-PRINT THRU WEEK-PRINT-END 7 TIMES.

WRITE-FILE-ROUTINE.
REWRITE YR-TO-DATE-RECORD FROM YTD-WORK-TABLE.

INQUIRY-FIND-ROUTINE.
READ INQUIRY-FILE AT END GO TO CLOSE-ROUTINE.
MOVE 1 TO ANY-INQ.
IF INQUIRY-RECORD > THIS-WEEK MOVE INQUIRY-RECORD

TO ERROR-WEEK-NO,
WRITE PRINT-RECORD FROM ERROR-MSG AFTER ADVANCING 2,
GO TO INQUIRY-FIND-ROUTINE.

SET WEEKT WEEKY TO INQUIRY-RECORD.
SET AREAT AREAY TO 1.
MOVE INQUIRY-RECORD TO INQ-WK-NO.
MOVE 0 TO INQ-COND-MET.
PERFORM INQUIRY-PRINT THRU INQUIRY-PRINT-END UNTIL

AREAT = 8.
IF INQ-COND-MET EQUAL 0, MOVE INQUIRY-RECORD TO COND-MSG-WK,

WRITE PRINT-RECORD FROM NONE-MET-COND
AFTER ADVANCING 2.

GO TO INQUIRY-FIND-ROUTINE.

12-24 Language Reference

CLOSE-ROUTINE.
IF ANY-INQ EQUAL 0, WRITE PRINT-RECORD FROM NO-INQ-MSG

AFTER ADVANCING 2.
CLOSE CURRENT-FILE YR-TO-DATE-FILE LAST-YR-FILE

INQUIRY-FILE PRINT-FILE.
END-ROUTINE.

STOP RUN.
FIRST-WEEK-ROUTINE.

OPEN OUTPUT YR-TO-DATE-FILE.
SET WEEKZ TO 52.
MOVE LAST-YR-WEEK-TABLE (WEEKZ) TO LAST-WEEK-COMPARE.
PERFORM WEEK-CALCULATION-ROUTINE.
WRITE YR-TO-DATE-RECORD FROM YTD-WORK-TABLE.
GO TO INQUIRY-FIND-ROUTINE.

WEEK-PRINT.
COMPUTE WEEK-CHANGE = (AREA-FIGURES (WEEKT AREAT) -

LW-AREA-FIGURES (LWX)) I LW-AREA-FIGURES (LWX) *
100.00.

COMPUTE YEAR-CHANGE = (AREA-FIGURES (WEEKT AREAT) -
LAST-YR-AREA-FIGURES (WEEKY AREAY)) I
LAST-YR-AREA-FIGURES (WEEKY AREAY) * 100.00.

MOVE AREA-NO (WEEKT AREAT) TO PRINT-AREA-NO.
MOVE AREA-FIGURES (WEEKT AREAT) TO PRINT-AREA-SALES.
MOVE LW-AREA-FIGURES (LWX) TO LAST-WEEK-SALES.
MOVE LAST-YR-AREA-FIGURES (WEEKY AREAY) TO LAST-YEAR-SALES.
WRITE PRINT-RECORD FROM CURRENT-REPORT-PRINT

AFTER ADVANCING 1.
SET LWX AREAT AREAY UP BY 1.

WEEK-PRINT-END. EXIT.

INQUIRY-PRINT.
SEARCH AREA-TOTALS VARYING AREAY

AT END SET AREAT TO 8 GO TO INQUIRY-PRINT-END
WHEN AREA-FIGURES (WEEKT AREAT) >

LAST-YR-AREA-FIGURES (WEEKY AREAY)
MOVE 1 TO INQ-COND-MET,
COMPUTE INQUIRY-PRINT-FIGURE =

AREA-FIGURES (WEEKT AREAT) -
LAST-YR-AREA-FIGURES (WEEKY AREAY).

MOVE AREA-NO (WEEKT AREAT) TO INQ-AREA.
WRITE PRINT-RECORD FROM INQUIRY-PRINT-DATA

AFTER ADVANCING 2.
SET AREAT AREAY UP BY 1.

INQUIRY-PRINT-END. EXIT.

Table-Handling 12-25

12-26 Language Reference

Chapter 13. Sort-Merge

Sort-Merge 13-1

Contents

About This Chapter . 13-3
Introduction . 13-4

Relationship with File Input and Output . 13-4
Environment Division in the Sort-Merge Module-Input-Output Section 13-4
FILE-CONTROL Paragraph . 13-5

Function . 13-5
General Format . 13-5

FILE-CONTROL Entry . 13-6
Function . 13-6
General Format . 13-6
Syntax Rules . 13-6
General Rules . 13-6

I-0-CONTROL Paragraph . 13-8
Function . 13-8
General Format . 13-8
Syntax Rules . 13-8
General Rules . 13-9

Data Division in the Sort-Merge Module . 13-10
Sort-Merge File Description - Complete Entry Skeleton 13-10

General Format . 13-10
Syntax Rules . 13-11

DATA RECORDS Clause . 13-12
Function . 13-12
General Format . 13-12
Syntax Rule . 13-12
General Rules . 13·12

RECORD CONTAINS Clause . 13-13
Function . 13-13
General Format . 13-13
General Rule . 13-13

Procedure Division in the Sort-Merge Module . 13-14
MERGE Statement . 13-14

Function . 13-14
General Format . 13-14
Syntax Rules . 13-14
General Rules . 13-15

RELEASE Statement . 13-18
Function . 13-18
General Format . 13-18
Syntax Rules . 13-18
General Rules . 13-18

RETURN Statement . 13-19
Function . 13-19
General Format . 13-19
Syntax Rules . 13-19
General Rules . 13-19

SORT Statement . 13-21
Function . 13-21
General Format . 13-21
Syntax Rules . 13-21
General Rules . 13-22

Sort-Merge Sample Program . 13-26

13-2 Language Reference

About This Chapter

This chapter describes the AIX VS COBOL Sort-Merge module and how it provides the
capability to order one or more files of records, or to combine two or more identically
ordered files of records, according to a set of user-defined keys contained within each
record.

Sort-Merge 13-3

Introduction

The Sort-Merge module provides the capability to order one or more files of records, or to
combine two or more identically ordered files of records, according to a set of user
specified keys contained within each record. Optionally, a user may apply some special
processing to each of the individual records by input or output procedures. This special
processing may be applied before and/or after the records are ordered by the SORT state
ment or after the records have been combined by the MERGE statement.

Relationship with File Input and Output

The files specified in the USING and GIVING phrases of the SORT and
MERGE statements must be described implicitly or explicitly in the FILE
CONTROL paragraph as having sequential, relative or indexed organization OSVS VSC2
and sequential access mode. No input-output statement may be executed
for the file named in the sort-merge file description.

Environment Division in the Sort-Merge
Module-Input-Output Section

The Environment Division in the sort-merge module may contain a FILE-CONTROL para
graph, a file-control entry, and an I-0-CONTROL paragraph.

13-4 Language Reference

FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other file
related information.

General Format

The following figure shows the format of the FILE-CONTROL paragraph:

' ~FI LE-CONTROL. - fil e-contro 1-entry "4

Sort-Merge 13-5

FILE-CONTROL Entry

Function

The FILE-CONTROL entry names a sort or merge file and assigns the file to a memory
medium.

General Format

The following figure shows the FILE-CONTROL entry:

---- SELECT file-name ASSIGN [TO-.J [~ L external-file-reference
L EXTERNAL_J L data-name-1-----1

..
MF

DYNAMIC literal-I-----~

..
[m=J STATUS [JS] data-name-2]

SORT

.....
MF

Syntax Rules

The following rules apply to the FILE-CONTROL paragraph:

1. Each sort or merge file described in the Data Division must be named only once as file
name in the FILE-CONTROL paragraph. Each sort or merge file specified in the file
control entry must have a sort-merge file description entry in the Data Division.

2. Only the ASSIGN clause is permitted to follow a file name representing a sort-merge
file in the FILE-CONTROL paragraph.

General Rules

The following rules apply to the FILE-CONTROL paragraph:

1. The ASSIGN clause assigns the sort or merge file referenced by file name to a memory
medium. ·

2. When the SORT STATUS clause is specified, a value is placed into the
two-character data-item specified by data-name-2 after the execution of
each sort operation. This value indicates the status at completion of the
operation.

Valid combinations of status keys 1 and 2 indicate the status of the sort
operation. Refer to "1-0 Status" on page 8-8 for explanations of status
keys 1 and 2 and definitions of status.

The following combinations of status keys are possible:

13-6 Language Reference

MF

Table 13-1. Status Key Combinations

Status Key 1 Status Key 2 Status
0 0 Successful completion.

3 0 Permanent error.

9 Operating system error message number in status
key 2.

Sort-Merge 13-7

1-0-CONTROL Paragraph

Function

The I-0-CONTROL paragraph specifies the memory area that is to be shared by different
files.

General Format

The following figure shows the format of the I-0-CONTROL paragraph:

.,._ 1-0-CONTROL. -.----------------------.----11.,,.. ..

L SAME tRECORD -j---r--ir-------,-L_, __ ! J

Syntax Rules

SORT----< L AREA FOR J
SORT-MERGE

The following syntax rules apply to the I-0-CONTROL paragraph:

1. The I-0-CONTROL paragraph is optional.

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one
of the file names must represent a sort or merge file. Files that do not represent sort
or merge files may also be named in the clause.

4. The three formats of the SAME clause (SAME RECORD AREA, SAME SORT AREA,
SAME SORT-MERGE AREA) are considered separately in the following.

More than one SAME clause may be included in a program. However:

a. A file name must not appear in more than one SAME RECORD AREA clause.

b. A file name for a sort or merge file must not appear in more than one SAME SORT
AREA or SAME SORT-MERGE AREA clause.

c. If a file name not representing a sort or merge file appears in a SAME AREA
clause and one or more SAME SORT AREA or SAME SORT-MERGE AREA
clauses, all of the files named in the SAME AREA clause must be named in the
SAME SORT AREA or SAME SORT-MERGE AREA clause(s).

5. The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or
SAME RECORD AREA clause need not all have the same organization or access.

13-8 Language Reference

General Rules

The following rules apply to the 1-0-CONTROL paragraph:

1. The SAME RECORD AREA clause specifies that two or more files will use the same
memory area for processing the current logical record. All of the files may be open at
the same time. A logical record in the SAME RECORD AREA is considered a logical
record of each opened output file listed in the SAME RECORD AREA clause and of the
most recently read input file listed in the SAME RECORD AREA clause. This is
implicit redefinition of the area. Records are aligned on the leftmost character posi
tion.

2. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one
of the file names must represent a sort or merge file. Other files may also be named in
the clause. This clause specifies that memory is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies memory
area made available for sorting or merging each sort or merge file named. Thus
any memory area allocated for the sorting or merging may be used or reused by any
of the other sort or merge files.

b. In addition, memory areas assigned to files that are not sort or merge files may be
allocated as needed for sorting or merging the files named in the SAME SORT
AREA or SAME SORT-MERGE AREA clause.

c. Files other than sort or merge files do not share the same memory area with each
other. To specify that these files should share the same memory area, include a
SAME AREA or SAME RECORD AREA clause naming these files in the program.

d. Nonsort-merge files named in the SAME AREA or SAME RECORD AREA clause
must not be open during the execution of a SORT or MERGE statement using a
sort or merge file named in the clause.

Sort-Merge 13-9

Data Division in the Sort-Merge Module

An SD file description describes the size and names of the data records associated with the
file to be sorted or merged. None of the label procedures are user controlled. The rules for
blocking and internal memory depend on the SORT and MERGE statements.

Sort-Merge File Description - Complete Entry Skeleton

The sort-merge file description furnishes information concerning the physical structure,
identification, and record names of the file to be sorted or merged.

General Format

The following figure shows the sort-merge file description:

-- SD file-name---------------------------.

RECORD--,--.-----.,,.... i nteger-1-.----------;
CHARACTERS -----1 CONTAINS

phrase-l------------------1
1-------.- i nteger-4 TO i nteger-5 --.-------t

CONTAINS

. L t 11

DATA I RECORD ~S data-name-2J

LRECORDS
ARE

" [VALUE fJF FILE-ID L data-name-3 _J
L1sJ literal-1:._j

where phrase-1 ; s:

IN SIZE 1------..--- i nteger-2

FROM

" L DEPENDING--.,~-~ data-name-1 J "
LoNJ

18-10 Language Reference

CHARACTERS

...

TO integer-3

..

CHARACTERS

MF

Syntax Rules

The following syntax rules apply to the sort-merge file description:

1. The level indicator SD identifies the beginning of the sort-merge file description. The
level indicator SD must precede the file name.

2. The clauses that follow the name of the file are optional and their order of appearance
is immaterial. They are for documentation purposes only.

3. One or more record description entries must follow the sort-merge file description
entry. However, no input-output statements may be executed for this file.

4. If the VALUE OF FILE-ID clause is specified, literal-1 must be a nonnu- MF
meric literal and cannot be a figurative constant.

Sort-Merge 13-11

DATA RECORDS Clause

Function

The DATA RECORDS clause documents the names of data records and their associated
file.

General Format

The following figure shows the format of the DATA RECORDS clause:

' ------ DATA I RECORD ~S data-name-2 ---

L RECORDS
ARE

Syntax Rule

The listed data-name-2 items are data records that must have 01 level number record
descriptions with the same names.

General Rules

The following rules apply to the DATA RECORDS clause:

1. The presence of more than one data name indicates that the file contains more than
one type of data record. These records may have differences, such as different sizes or
different formats. The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is not altered by
the presence of more than one type of data record within the file.

13-12 Language Reference

RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

The following figure shows the format of the RECORDS CONTAIN clause:

RECORD~----~ i nteger-1------------<
CHARACTERS-----; CONTAINS

phrase-1----------------<
>-----~ i nteger-4 TO i nteger-5 ~-----1

CONTAINS

where phrase-1 is:

• LIS J VARYING
IN SIZE 1-----.--- i nteger-2

FROM

• L DEPENDING----.---r- data-name-1 J •
LoNJ

General Rule

CHARACTERS

TO integer-3 CHARACTERS

The RECORD clause for the Sort-Merge module is identical to the RECORD clause for the
sequential I-0 module. Refer to "RECORD Clause" on page 8-47 for a full specification of
this clause.

Sort-Merge 13-13

Procedure Division in the Sort-Merge Module

MERGE Statement

Function

The MERGE statement combines two or more identically sequenced files on a set of speci
fied keys and makes records available, in merge order, to an output procedure or file.

General Format

The following figure shows the format of the MERGE statement:
'

~ ' --- MERGE fil e-name-1---.L--_J---.---.L- ASCENDING -_J--..---.-L--J-.-- data-name-1------+
ON DESCENDING KEY

~ [:J SEQUENCE L :J alphabet-name-1 J
COLLATING IS

' -usING file-name-2 file-name-3---------------------

' I IS

THRO~section-name-2
THRU

l OUTPUT PROCEDURE [:J section-name-1

GIVING file-name-s-----------------------~

Syntax Rules

The following syntax rules apply to .the MERGE statement:

1. file-name-1 must be described in a sort-merge file description entry in the Data Divi
sion.

2. section-name-1 represents the name of an output procedure.

3. If the file referenced by file-name-1 contains variable-length records, the size of records
contained in file-name-2 and file-name-3 must not be less than the smallest record, nor
greater than the largest record described for file-name-1. If the file referenced by
file-name-1 contains fixed-length records, the size of records contained in the file refer-

13-14 Language Reference

enced by file-name-2 and file-name-3 must not be greater than the largest record
described for file-name-1.

4. file-name-2, file-name-3, and file-name-5 must be described in a file description entry in
the Data Division, not in a sort-merge file description entry.

5. The words THRU and THROUGH are equivalent.

6. data-name-1 is a KEY data name and is subject to the following rules:

a. The data-items identified by KEY data names must be described in records associ-
ated with file-name-1.

b. KEY data names may be qualified.

c. The data-items identified by KEY data names must not be variable-length items.

d. If file-name-1 has more than one record description, then the data-items identified
by KEY data names need be described in only one of the record descriptions.

e. None of the data-items identified by KEY data names can be described by an entry
which contains an OCCURS clause or is subordinate to an entry which contains an
OCCURS clause.

7. No more than one file name from a multiple file reel can appear in the MERGE state
ment.

8. File names must not be repeated within the MERGE statement.

9. MERGE statements may appear anywhere except the declaratives portion of the Proce
dure Division.

10. If file-name-5 references an indexed file, the first specification of data-name-1 must be
associated with an ASCENDING phrase. The data-item referenced by data-name-1
must occupy the same character positions in its record as the data-item associated with
the prime record key for the file.

11. If the GIVING phrase is specified and the file referenced by file-name-5 contains
variable-length records, the record size of the file referenced by file-name-1 must not be
less than the smallest record nor greater than the largest record described for
file-name-5. If the file referenced by file-name-5 contains fixed-length records, the
record size of the file referenced by file-name-1 must not be greater than the largest
record described for file-name-5.

General Rules

The following rules apply to the MERGE statement:

1. The MERGE statement merges all records contained on file-name-2 and file-name-3.

2. The data names following the word KEY are listed from left to right in the MERGE
statement in order of decreasing significance, regardless of their division into KEY
phrases.

a. When the ASCENDING phrase is specified, the merged sequence begins at the
lowest value of the contents of the data-items identified by the KEY data names
and proceeds to the highest value, according to the rules for comparison of oper
ands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence begins at the
highest value of the contents of the data-items identified by the KEY data names
and proceeds to the lowest value, according to the rule for comparison of operands
in a relation condition.

3. The collating sequence for comparison of the nonnumeric key data-items specified is
determined in the following order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE phrase in that
MERGE statement

Sort-Merge 13-15

b. The collating sequence established as the program collating sequence.

4. The output procedure must consist of one or more contiguous sections in a source
program. The sections may not form part of any other procedure. In order to make
merged records available for processing, the output procedure must include the exe
cution of at least one RETURN statement. Ccm.trol must not be passed to the output
procedure except when a related SORT or MERGE statement· is being executed. The
output procedure may consist of any procedures needed to select, modify, or copy the
returned records from file-name-1 one at a time in merge order. The restrictions on the
procedural statements within the output procedure are as follows:

a. The output procedure must not contain any transfers of control to points outside
the output procedure. ALTER, GO TO and PERFORM statements in the output
procedure are not permitted to refer to procedure names 'outside the output proce
dure. COBOL statements implying transfer of control to declaratives are allowed.

b. The output procedures must not contain any SORT or MERGE statements.

c. The remainder of the Procedure Division must not contain any transfers of control
to points inside the output procedures. ALTER, GO TO, and PERFORM statements
in the remainder of the Procedure Division are not permitted to refer to procedure
names within the output procedures.

5. If an output procedure is specified, control passes to it during execution of the MERGE
statement. The IBM AIX VS COBOL system inserts a return mechanism at the end of
the last section in the output procedure. When control passes the last statement in the
output procedure, the return mechanism provides for termination of the merge, and
then passes control to the next executable procedure. The merge procedure has then
reached a point at which it can select the next record in merged order when requested.
The RETURN statements in the output procedure are the requests for the next record.

6. Segmentation, as defined in Chapter 16, "Segmentation," can be applied to programs
containing the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by the MERGE statement must
appear:

• Totally within nonindependent segments, or
• Contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, then any output proce
dure referenced by that MERGE statement must be contained:

• Totally within nonindependent segments, or
• Contained in the same independent segment as the MERGE statement.

7. If the GIVING phrase is specified, all the merged records are written on file-name-5 as
the implied output procedure for the MERGE statement. At the start of the execution
of the MERGE statement, the file referenced by file-name-5 must not be in the open
mode. For each of the files referenced by file-name-5, the execution of the MERGE
statement causes the following actions:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the output phrase had been executed.

b. The merged logical records are returned and written onto the file. Each record is
written as if a WRITE statement without any optional phrases had been executed.

For a relative file, the relative key data-item for the first record returned contains
the value 1; for the second record returned, the value 2, etc. After execution of the
MERGE statement, the content of the relative key data-item indicates the last
record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

13-16 Language Reference

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed. However, the execution of such a USE
procedure must not cause the execution of any statement manipulating the file refer
enced by, or accessing the record area associated with, file-name-5. On the first
attempt to write beyond the externally defined boundaries of the file, any USE AFTER
STANDARD EXCEPTION/ERROR procedure specified for the file is executed. If
control is returned from the USE procedure or if no such USE procedure is specified,
the processing of the file is terminated as in paragraph 7c on page 13-16.

8. In the case of a match between the contents of the data-items identified by all the KEY
data names between records from two or more input files (file-name-2, file-name-3, ...),
the records are written on file-name-5 or returned to the output procedure in the same
order as the input files specified in the MERGE statement. Equal compare is deter
mined according to the rules for comparison of operands in a relation condition.

9. The results of the merge operation are predictable only when the records in the files
referenced by file-name-2, file-name-3, .. ., are ordered as described in the ASCENDING
or DESCENDING KEY clause associated with the MERGE statement.

10. If the file referenced by file-name-1 contains only fixed-length records, any record in
the file referenced by file-name-2 or file-name-3 containing fewer character positions
than the fixed-length is space-filled on the right, when the record is released to the file
referenced by file-name-1.

11. If the file referenced by file-name-5 contains only fixed-length records, any record in
the file referenced by file-name-1 containing fewer character positions than the fixed
length is space-filled on the right, when that record is returned to the file referenced by
file-name-5.

Sort-Merge 13-17

RELEASE Statement

Function

The RELEASE statement transfers records to the initial phrase of a SORT operation.

General Format

The following figure shows the format of the RELEASE statement:

.,...._RELEASE record name --,.---------.---1

LFROM identifier_J

Syntax Rules

The following syntax rules apply to the RELEASE statement:

1. A RELEASE statement may only be used within the range of an input procedure asso
ciated with a SORT statement for a file whose sort-merge file description entry con
tains record-name. Refer to "SORT Statement" on page 13-21.

2. Record-name must be the name of a logical record in the associated sort-merge file
description entry and may be qualified.

3. Record-name and identifier must not refer to the same memory area.

General Rules

The following rules apply to the RELEASE statement:

1. The execution of a RELEASE statement releases the record named by record-name to
the initial phase of a sort operation.

2. If the FROM phrase is used, the contents of the identifier data area are moved to
record-name, then the contents of record-name are released to the sort file. Moving
files takes place according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The information in the record area is no longer available,
but the information in the data area associated with identifier is available.

3. After the execution of the RELEASE statement, the logical record is no longer avail
able in the record area unless the associated sort-merge file is named in a SAME
RECORD AREA clause. The logical record is also available to the program as a record
of other files referenced in the same SAME RECORD AREA clause as the associated
sort-merge file and the file associated with record-name. When control passes from the
input procedure, the file consists of all those records which were placed in it by the
execution of RELEASE statements.

13-18 Language Reference

RETURN Statement

Function

The RETURN statement obtains either sorted records from the final phase of a SORT oper
ation or merged records during a MERGE operation.

General Format

The following figure shows the format of the RETURN statement:

--RETURN file-name-1 L ~ L ~
RECORD INTO identifier-1

..

...... ~L--_J~-END imperative-statement-1--------------------
AT

" [NOT LAT~ END imperative-statement-2 ~ LEND-RETURN~

Syntax Rules

The following syntax rules apply to the RETURN statement:

1. file-name-1 must be described by a sort-merge file description entry in the Data Divi
s10n.

2. A RETURN statement may only be used within the range of an output procedure asso
ciated with a SORT or MERGE statement for file-name-1.

3. The INTO phrase must not be used when the input file contains logical records of vari
able size as indicated by their record descriptions. The memory area associated with
identifier and the record area associated with file-name-1 must not be the same memory
area.

General Rules

The following rules apply to the RETURN statement:

1. When the logical records of a file are described with more than one record description,
these records automatically share the same memory area. This is equivalent to an
implicit redefinition of the area. The contents of any data-items that lie beyond the
range of the current data record are undefined at the completion of the execution of
the RETURN statement.

Sort-Merge 13-19

2. The execution of the RETURN statement makes the next existing record in the file
available in the record area associated with file referenced, as determined by the keys
listed in the SORT or MERGE statement. If no next logical record exists in the file
referenced, the AT END condition exists and control is transferred to
imperative-statement-I of the AT END phrase. Execution continues according to the
rules for each statement specified in imperative-statement-I. If a procedure branching
or conditional statement that transfers explicit control is executed, control is trans
ferred according to the rules for that statement. Otherwise, upon completion of the
execution of imperative-statement-I, control is transferred to the end of the RETURN
statement. The NOT AT END phrase is ignored. When the AT END condition occurs,
execution of the RETURN statement is unsuccessful and the contents of the record
area associated with file name are undefined. After the execution of
imperative-statement-I in the AT END phrase, no RETURN statement may be executed
as part of the current output procedure.

3. If an AT END condition does not occur during the execution of a RETURN statement,
then after the record is available and after executing any implicit move resulting from
an INTO phrase, control is transferred to imperative-statement-2. If
imperative-statement-2 is not specified, control is transferred to the end of the
RETURN statement.

4. The END-RETURN phrase delimits the scope of the RETURN statement.

5. The INTO phrase may be specified in a RETURN statement:

a. If only one record description is subordinate to the sort-merge file description
entry, or

b. If all record-names associated with file-name-I and the data-item referenced by
identifier-I describe a group item or an elementary alphanumeric item.

6. The result of the execution of a RETURN statement with the INTO phrase is equiv
alent to the application of the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by
identifier-I according to the rules for the MOVE statement without the CORRE
SPONDING phrase. The size of the current record is determined by rules specified
for the RECORD clause. If the file description entry contains a RECORD IS
VARYING clause, the implied move is a group move. The implied MOVE state
ment does not occur if the execution of the RETURN statement was unsuccessful.
Any subscripting associated with identifier-I is evaluated after the record has been
read and immediately before it is moved to the data-item. The record is available in
both the record area and the data-item referenced by identifier-I.

13-20 Language Reference

SORT Statement

Function

The SORT statement creates a sort file by executing input procedures or by transferring
records from another file. It then sorts the records in the sort file on a set of specified
keys. In the final phase of the sort operation, it makes each record from the sort file avail
able to output procedures or an output file, in sorted order.

General Format

The following figure shows the format of the SORT statement:

• -sORT file-name-1-.,---.,---.,--ASCENDING data-name-1--------
L ON J L DESCENDING _J L KEY _J

., [DUPLICATES
WITHJ

] [SEQUENCE alphabet-name J ..
LIN ORDER COLLATING J LIS J

• LUSING file-name-2
INPUT PROCEDURE --.L--J~section-name-1 [J

IS [THRO~ sect i on-name-2

• L GIVING file-name-4
OUTPUT PROCEDURE-,-[--.]- sect i on-name-3

IS

Syntax Rules

THRU

THRO~ sec ti on-name-4
THRU

The following syntax rules apply to the SORT statement:

..

1. file-name-1 must be described in a sort-merge file description entry in the Data Divi
sion.

2. section-name-1 represents the name of an input procedure. section-name-3 represents
the name of an output procedure.

Sort-Merge 13-21

3. file-name-2 and file-name-4 must be described in a file description entry in the Data
Division, not in a sort-merge file description entry. The actual size of the logical
record(s) described for file-name-2 and file-name-4 must be equal to the actual size of
the logical record(s) described for file-name-1. If the data descriptions of the elemen
tary items making up these records are not identical, the programmer must describe
the corresponding records so equal amounts of character positions are allocated for the
corresponding records.

4. data-name-1 represents a KEY data name, subject to the following rules:

a. The data-items identified by KEY data names must be described in records associ-
ated with file-name-1.

b. KEY data names may be qualified.

c. The data-items identified by KEY data names must not be variable in length items.

d. If file-name-1 has more than one record description, then the data items identified
by KEY data names need be described in only one of the record descriptions.

e. None of the data-items identified by KEY data names can be described by an entry
that either contains an OCCURS clause or is subordinate to an entry that contains
an OCCURS clause.

5. If the USING phrase is specified and the file referenced by file-name-1 contains
variable-length records, the size of the records contained in the file referenced by
file-name-2 must not be less than the smallest record nor larger than the largest record
described for file-name-1. If the file referenced by file-name-1 contains fixed-length
records, the size of the records contained in the file referenced by file-name-2 must not
be larger than the largest record described for the file referenced by file-name-1.

6. The words THRU and THROUGH are equivalent.

7. SORT statements may appear anywhere except in the declaratives portion of the Proce
dure Division or in an input or output procedure associated with a SORT or MERGE
statement.

8. If file-name-4 references an indexed file, the first specification of data-name-1 must
occupy the same character positions in its record as the data-item associated with the
prime record key for that file.

9. If the GIVING phrase is specified and file-name-4 contains variable-length records, the
size of the records in file-name-1 must not be less than the smallest record nor greater
than the largest record described for file-name-4. If the file referenced by file-name-4
contains fixed-length records, the size of the records in the file referenced by
file-name-1 must not be greater than the largest record described for file-name-4.

10. The file referenced by file-name-2 may reside on the same multiple file reel.

General Rules

The following rules apply to the SORT statement:

1. If the file referenced by file-name-1 contains only fixed-length records, any record in
the file referenced by file-name-2 containing fewer character positions than the fixed
length is space-filled on the right. Space-filling begins after the last character in the
record, when the record is released to the file referenced by file-name-1.

2. The data names following the word KEY are listed from left to right in the SORT state
ment in order of decreasing significance regardless of how they are divided into KEY
phrases.

a. When the ASCENDING phrase is specified, the sorted sequence moves from the
lowest value qf the contents of the data-items identified by the KEY data names to
the highest value, according to the rules for comparison of operands in a relation
condition.

13-22 Language Reference

b. When the DESCENDING phrase is specified, the sorted sequence is from the
highest value of the contents of the data items identified by the KEY data names to
the lowest value, according to the rules for comparison of operands in a relation
condition.

3. If the DUPLICATES phrase is not specified and the contents of all the key data-items
for one data record are equal to the contents of the corresponding key data-items for
one or more other data records, then the record's return order is undefined.

4. If the DUPLICATES phrase is specified and the contents of all the key data-items for
one data record are equal to the contents of the corresponding key data-items for one
or more other data records, then the order of return of these records is:

a. The order of the associated input files as specified in the SORT statement, or by
means of a run-time switch. Refer to the User's Guide for details of run-time
switches. Within a given input file the order is that in which the records are
accessed.

b. The order in which these records are released by an input procedure, when an
input procedure is specified.

5. The collating sequence that applies to the comparison of the nonnumeric key data
items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase
in the SORT statement.

b. Second, the collating sequence established as the program collating sequence.

6. The execution of the SORT statement consists of three distinct phases as follows:

a. Records are made available to the file referenced by file-name-1. This is achieved
either by the execution of RELEASE statements in the input procedure or by the
implicit execution of READ statements for file-name-2. When this phase com
mences, the file referenced by file-name-2 must not be in the open mode. When this
phase terminates, the file referenced by file-name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced. No processing of the files refer
enced by file-name-2 and file-name-4 takes place during this phase.

c. The records of the file referenced by file-name-1 are made available in sorted order.
The sorted records are either written to the file referenced by file-name-4 or made
available to the output procedure by the execution of a RETURN statement. When
this phase commences, the file referenced by file-name-4 must not be in the open
mode. When this phase terminates, the file referenced by file-name-4 is not in the
open mode.

7. The input procedure may consist of any procedure needed to select, modify, or copy the
records to file-name-1 one at a time by the RELEASE statement. The range includes
all statements executed as the result of a transfer of control by CALL, GO TO, and
PERFORM statements in the range of the input procedure. The range also includes all
statements in declarative procedures executed as a result of the execution of state
ments in the range of the input procedure. The range of the input procedure must not
cause the execution of any MERGE, RETURN, or SORT statement.

8. If an input procedure is specified, control is passed to the input procedure before the
file referenced by file-name-1 is sorted by the SORT statement. The AIX VS COBOL
system inserts a return mechanism at the end of the last section in the input procedure.
When control passes the last statement in the input procedure, the records released to
file-name-1 are sorted.

9. If the USING phrase is specified, all the records in the file(s) referenced by file-name-2
are transferred to the file referenced by file-name-1. For each of the files referenced by
file-name-2, the execution of the SORT statement causes the following actions:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the INPUT phrase had been executed.

Sort-Merge 13-23

b. The logical records are obtained and released to the sort operation. Each record is
obtained as if a READ statement with the NEXT and the AT END phrases had
been executed.

For a relative file, the content of the relative key data-item is defined after the exe
cution of the SORT statement, if file-name-2 is referenced in the GIVING phrase.

c. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed. This termination is
performed before the file referenced by file-name-1 is sorted by the SORT statement.

Any associated USE AFTER EXCEPTION/ERROR procedures are executed when these
implicit functions are performed. However, the execution of such a USE procedure
must not cause the execution of any statement manipulating the file referenced by, or
accessing the record area for file-name-2.

10. The output procedure may consist of any procedure needed to select, modify, or copy
the records from file-name-1, one at a time by the RETURN statement in sorted order.
The range includes all statements executed as the result of a transfer of control by
CALL, EXIT, GO TO, and PERFORM statements in the range of the output procedure.
It also includes all statements in declarative procedures executed as a result of the exe
cution of statements in the range of the output procedure. The range of the output
procedure must not cause the execution of any MERGE, RELEASE, or SORT state
ment.

11. If an output procedure is specified, control passes to it after file-name-1 has been sorted
by the SORT statement. The AIX VS COBOL system inserts a return mechanism at the
end of the last section in the output procedure. When control passes the last statement
in the output procedure, the return mechanism terminates the sort. The return mech
anism then passes control to the next executable statement after the SORT statement.
Before entering the output procedure, the sort procedure reaches a point where it can
request the next record in sorted order. The RETURN statements in the output proce
dure are the requests for the next record.

12. If file-name-4 contains only fixed-length records, any record in file-name-1 containing
fewer character positions than the fixed-length is space-filled to the right, beginning
after the last character in the record, when that record is returned to the file refer
enced by file-name-4.

13. If the GIVING phrase is specified, all the sorted records are written on the file refer
enced by file-name-4 as the implied output procedure for the SORT statement. For each
of the files referenced by file-name-4, the execution of the SORT statement causes the
following actions:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the OUTPUT phrase had been executed. This initiation is per
formed after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file. The records are
written as if a WRITE statement without any optional phrases had been executed.

For a relative file, the relative key data-item for the first record returned contains
the value 1. For the second record returned, the value 2, etc. After execution of
the SORT statement, the content of the relative key data-item indicates the last
record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed. However, the execution of the USE
procedure must not cause the execution of any statement manipulating the file refer
enced by, or accessing the record area for file-name-4. On the first attempt to write
beyond the externally defined boundaries of the file, any USE AFTER STANDARD
EXCEPTION/ERROR procedure specified for the file is executed. If control is returned
from the USE procedure or if no such USE procedure is specified, the processing of the
file is terminated as in 13c.

13-24 Language Reference

14. Segmentation, as defined in Chapter 16, "Segmentation," can be applied to programs
containing the SORT statement. However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an independent segment,
then any input procedures or output procedures referenced by that SORT statement
must appear:

• Totally in nonindependent segments, or
• Contained in a single independent segment.

b. If a SORT statement appears in an independent segment, then any input procedures
or output procedures referenced by that SORT statement must be contained:

• Totally in nonindependent segments, or
• Within the same independent segment as that SORT statement.

15. If the USING phrase is specified, all the records in file-name-2 are transferred automat
ically to file-name-1. At the times of execution of the SORT statement, file-name-2 must
not be open. The SORT statement automatically initiates the processing of, makes
available the logical records for, and terminates the processing of file-name-2. Any
associated USE procedure is executed when these implicit functions are performed.
The terminating function for all files is performed as if a CLOSE statement without
optional phrases had been executed for each file. The SORT statement also automat
ically performs the implicit functions of moving the records from the file area of
file-name-2 to the file area for file-name-1, and the release of records to the initial
phase of the sort operation.

Sort-Merge 13-25

Sort-Merge Sample Program

The following example shows a sample sort-merge program:

IDENTIFICATION DIVISION.
PROGRAM-ID. SORT-IT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6000.
OBJECT-COMPUTER. IBM-RISC-6000.
INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT NET-FILE-IN ASSIGN TO "NETFILE.IN".
SELECT NET-FILE-OUT ASSIGN TO "NETFILE.OUT".
SELECT NET -FI LE-WORK ASSIGN TO "NETFI LE. WRK".
SELECT YTD-NET-FI LE-IN ASSIGN TO "YTDNET. IN".
SELECT YTD-NET-FILE-MASTER

ASSIGN TO "YTDNET.MST".

DATA DIVISION.
FILE SECTION.

SD NET-FILE-WORK
DATA RECORD IS SALES-RECORD.

01 SALES-RECORD.
05 EMPL-NO
05 DEPT
05 NET-SALES
05 NAME-ADDR
05 MONTH

FD NET-FILE-IN
LABEL RECORDS ARE STANDARD
DATA RECORD IS NET-CARD-IN.

01 NET-CARD-IN.

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(61).
PICTURE X(2).

05 EMPL-NO-IN PICTURE 9(6).
05 DEPT-IN PICTURE 9(2).

88 OFF-SITE-LOCATION VALUES ARE 7, 9.
05 NET-SALES-IN PICTURE 9(7)V99.
05 NAME-ADDR-IN PICTURE X(61).
05 MONTH-IN PICTURE X(2).

13-26 Language Reference

FD NET-FILE-OUT
LABEL RECORDS ARE STANDARD
DATA RECORD IS NET-CARD-OUT.

01 NET-CARD-OUT.
05 EMPL-NO-OUT
05 DEPT-OUT
05 NET-SALES-OUT
05 NAME-ADDR-OUT
05 MONTH-OUT

FD YTD-NET-FILE-IN

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(61).
PICTURE X(2).

LABEL RECORDS ARE STANDARD
DATA RECORD IS YTD-NET-CARD-IN.

01 YTD-NET-CARD-IN.
05 YTD-EMPL-NO
05 YTD-DEPT
05 YTD-NET-SALES
05 YTD-NAME-ADDR
05 YTD-MONTH

FD YTD-NET-FILE-MASTER
LABEL RECORDS ARE STANDARD

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(61).
PICTURE X(2).

DATA RECORD IS YTD-NET-CARD-MASTER.
01 YTD-NET-CARD-MASTER.

05 EMPL-NO-MASTER PICTURE 9(6).
05 DEPT-MASTER-MASTER PICTURE 9(2).
05 NET-SALES-MASTER-MASTER PICTURE 9(7)V99.
05 NAME-ADDR-MASTER-MASTER. PICTURE X(61).
05 MONTH-MASTER-MASTER PICTURE X(2).

PROCEDURE DIVISION.
ELIM-DEPT-OFF-SITE-NO-PRINTOUT.

SORT NET-FILE-WORK
ASCENDING KEY DEPT
DESCENDING KEY NET-SALES
INPUT PROCEDURE SCREEN-DEPT
GIVING NET-FILE-OUT.

Sort-Merge 13-27

CHECK-RESULTS SECTION.
C-R-1.

OPEN INPUT NET-FILE-OUT.
C-R-2.

READ NET-FILE-OUT AT END GO TO C-R-FINAL.
DISPLAY EMPL-NO-OUT DEPT-OUT NET-SALES-OUT

NAME-ADDR-OUT.
C-R-3.

GO TO C-R-2.
C-R-FINAL.

CLOSE NET-FILE-OUT.

UPDATE-YEARLY-REPORT SECTION.
U-Y-R-1.

SORT NET-FILE-WORK
ASCENDING KEY DEPT
ASCENDING KEY EMPL-NO
USING NET-FILE-IN
GIVING NET-FILE-OUT.

U-Y-R-2.
MERGE NET-FILE-WORK

ASCENDING KEY DEPT
ASCENDING KEY EMPL-NO
ASCENDING KEY MONTH
USING YTD-NET-FILE-IN, NET-FILE-OUT
GIVING YTD-NET-FILE-MASTER.

STOP RUN.

SCREEN-DEPT SECTION.
S-D-1.

OPEN INPUT NET-FILE-IN.
S-D-2.

READ NET-FILE-IN AT END GO TO S-D-FINAL.
DISPLAY EMPL-NO-IN DEPT-IN NET-SALES-IN

NAME-ADDR-IN.
S-D-3.

IF OFF-SITE-LOCATION GO TO S-D-2
ELSE

S-D-FINAL.

MOVE NET-CARD-IN TO SALES-RECORD
RELEASE SALES-RECORD
GO TO S-D-2.

CLOSE NET-FILE-IN.
S-D-END.

EXIT.

13-28 Language Reference

Chapter 14. Report Writer

Report Writer 14-1

Contents

About This Chapter . 14-5
Introduction . 14-6
REPORT SECTION . 14-6
Report Structure . 14-6

Vertical Spacing . 14-6
Horizontal Spacing . 14-7
Data Manipulation . 14-7
Report Subdivisions . 14-7
Procedure Division Report Writer Statements . 14-8
Language Concepts . 14-8

Environment Division in the Report Writer Module . 14-10
INPUT-OUTPUT Section . 14-10
FILE-CONTROL Paragraph . 14-10

Function . 14-10
Additional Syntax Rule . 14-10

I-0-CONTROL Paragraph . 14-10
Function . 14-10
Additional Syntax Rule . 14-10

Data Division in the Report Writer Module . 14-11
File Description Entry . 14-11

Function . 14-11
General Format . 14-12
Syntax Rules . 14-13
General Rules . 14-13

REPORT Clause . 14-14
Function . 14-14
General Format . 14-14
Syntax Rules . 14-14
General Rules . 14-14
Example . 14-15

REPORT SECTION . 14-16
Report Description Entry . 14-16
Report Group Description Entry . 14-16
REPORT Description Entry . 14-17

CODE Clause . 14-19
Function . 14-19
General Format . 14-19
Syntax Rules . 14-19
General Rules . 14-19

CONTROL Clause . 14-20
Function . 14-20
General Format . 14-20
Syntax Rules . 14-20
General Rules . 14-20

PAGE Clause . 14-22
Function . 14-22
General Format . 14-22
Syntax Rules . 14-22
General Rules . 14-23
Page Regions . 14-25

Example 1 . 14-25
Example 2 . 14-26
Example 3 • . 14-27
Report Group Description Entry . 14-28

Function . 14-28
General Format . 14-28
Syntax Rules . 14-31
Presentation Rules Tables . 14-32

COLUMN NUMBER Clause . 14"45

14-2 Language Reference

Function . 14-45
General Format . 14-45
Syntax Rules . 14-45

Data-Name . 14-46
Function . 14-46
General Format . 14-46
Syntax Rule . 14-46
General Rules . 14-46

GROUP INDICATE Clause . 14-47
Function . 14-4 7
General Format . 14-47
Syntax Rule . 14-47
General Rules . 14-47

Level-Number . 14-48
Function . 14-48
General Format . 14-48
Syntax Rules . 14-48
General Rules . 14-48

LINE NUMBER Clause . 14-49
Function . 14-49
General Format . 14-49
Syntax Rules . 14-49
General Rules . 14-50

NEXT GROUP Clause . 14-51
Function . 14-51
Syntax Rules . 14-51
General Rules . 14-51

SIGN Clause . 14-53
Function . 14-53
General Format . 14-53
Syntax Rules . 14-53
General Rules . 14-53

SOURCE Clause . 14-55
Function . 14-55
General Format . 14-55
Syntax Rules . 14-55
General Rule . 14-55

SUM Clause . 14-56
Function . 14-56
General Format . 14-56
Syntax Rules . 14-56
General Rules . 14-57

TYPE Clause . 14-59
Function . 14-59
General Format . 14-59
Syntax Rules . 14-59
General Rules . 14-60

USAGE Clause . 14-63
Function . 14-63
General Format . 14-63
Syntax Rules . 14-63
General Rules . 14-63

VALUE Clause . 14-64
Function . 14-64
Syntax Rules . 14-64
General Rules . 14-64
Example . 14-65

Procedure Division in the Report Writer Module . 14-66
CLOSE Statement . 14-67

Additional Syntax Rule . 14-67
Additional General Rule . 14-67

GENERATE Statement . 14-68

Report Writer 14-3

Function . 14-68
General Format . 14-68
Syntax Rules . 14-68
General Rules . 14-68

INITIATE Statement . 14-71
Function . 14-71
General Format . 14-71
Syntax Rule . 14-71
General Rules . 14-71

OPEN Statement . 14-72
Additional Syntax Rules . 14-72
Additional General Rule . 14-72

SUPPRESS Statement . 14-73
Function . 14-73
General Format . 14-73
Syntax Rule . 14-73
General Rules . 14-73

TERMINATE Statement . 14-74
Function . 14-74
General Format . 14-74
Syntax Rule . 14-74
General Rules . 14-74

USE BEFORE REPORTING Statement . 14-76
Function . 14-76
General Format . 14-76
Syntax Rules . 14-76
General Rules . 14-76

Report Writer Sample Program . 14-77

14-4 Language Reference

About This Chapter

This chapter describes the AIX VS COBOL Report Writer module facility. The Report
Writer facility allows the COBOL programmer to produce a report by specifying the phys
ical appearance of the report, rather than by specifying the detailed procedures necessary
to produce that report. This chapter gives detailed information on Report Writer concepts,
formats, syntax, and general rules.

Report Writer 14-5

Introduction

The report writer is a special purpose feature that places its emphasis on the organization,
format, and contents of an output report. Although a report can be produced using the
standard COBOL language, the report writer language feature provides a more concise
facility for report structuring and report production. Much of the Procedure Division pro
gramming that would normally be supplied by the programmer is instead provided automat
ically by the report writer control system (RWCS). Thus, you are relieved. of writing
procedures for moving data, constructing print lines, counting lines on a page, numbering
pages, producing heading and footing lines, recognizing the end of logical data subd
ivisions, updating sum counters, etc. All of these operations are accomplished by the
RWCS as a consequence of source language statements that appear primarily in the
REPORT SECTION of the Data Division of the source program.

REPORT SECTION

The REPORT SECTION of a COBOL Data Division contains one or more report
description entries (RD entries), each of which forms the complete description of a report.

The report named in the report description entry is not assigned directly to an output file.
Instead, it is associated with a file name in the FILE SECTION when an OPEN statement
specifying the file name is executed. More than one report may be associated with the
same file name and the CODE clause is used to differentiate among the reports. For an
external file connector referenced by a file name, separately compiled programs may
specify different reports for the same file name. The file description entry must specify the
name of a report description entry for each report associated with a given file name in this
program.

The report description entry contains a set of clauses that names the report and supplies
specific information about the format of the printed page and the organization of the subd
ivisions of the report. An identification code may be given in the report description entry
so that each report may be identified separately in an intermediate output file.

Following each report description entry are one or more 01 level-number entries, each fol
lowed by a hierarchical structure similar to COBOL record descriptions. Each 01 level
number entry and its subordinate entries describe a report group. Each report group
consists of one or more print lines that are regarded as a unit. A report group is printed
entirely on one logical page; it is never split across pages.

Report Structure

When structuring a report, major consideration must be given to vertical and horizontal
spacing requirements, manipulation of data, and the physical and logical subdivisions of a
report.

Vertical Spacing

The report writer feature allows you to describe report groups containing multiple lines.
The vertical positioning of the lines on a page is specified by the LINE NUMBER clause
that is associated with each line. The NEXT GROUP clause indicates how many lines to
space after presenting the last line of the group. The first LINE NUMBER clause of the
next group indicates additional spacing information to be used in positioning of that group.

14-6 Language Reference

Horizontal Spacing

The report writer allows the user to position the fields of data on a report line by means of
the COLUMN NUMBER clause. The report writer control system supplies space fill
between all defined fields.

Data Manipulation

When you use the report writer feature, data movement to a report group is directed by
REPORT SECTION clauses rather than Procedure Division statements. The REPORT
SECTION clauses that effect the manipulation of data are the SOURCE, SUM, and
VALUE clauses.

The SOURCE clause specifies the sending data-item of an implicit MOVE statement. The
receiving printable item is defined by the description of the report group item in which the
SOURCE clause appears.

The SUM clause automatically causes the establishment of a sum counter. The object of
the SUM clause names the data item(s) that are added to the sum counter when a GEN
ERATE statement is executed. The movement of the sum counter contents to the receiving
printable item, defined by the description of the report group item in which the SUM
clause appears, is accomplished automatically when that report group is presented.

The VALUE clause defines a literal that appears in the printable item of a report group
each time that report group is to be presented.

In summary, a data-item in a report group is presented only if it has a COLUMN
NUMBER clause specifying where it is to be presented. The value that is placed in a
printable item is determined by the SOURCE, SUM, or VALUE clause stated in the report
group description. Under no circumstances can a report group printable item receive a
value directly through a Procedure Division statement.

Report Subdivisions

The physical and logical organization of a report interact to determine which information
is presented on a page.

Physical Subdivision of a Report
The PAGE clause specifies the length of the page, the size of the heading and footing
areas, and the size of the area in which the detail lines will appear. The report writer
control system uses the LINE NUMBER and NEXT GROUP clauses to position these
report groups, and when necessary, to advance to a new page with automatic production of
PAGE HEADING and PAGE FOOTING report groups.

Logical Subdivisions of a Report
DETAIL report groups may be structured into a nested set of control groups. Each control
group can begin with a CONTROL HEADING report group and end with a CONTROL
FOOTING report group.

When nested control groups are defined, the recognition of a change in value of a control
data-item in a control hierarchy is called a control break. The heading and footing lines
associated with the control data name are called CONTROL HEADING and CONTROL
FOOTING report groups.

Report Writer 14-7

During the execution of a GENERATE statement, the report writer control system uses the
control hierarchy to check automatically for control breaks. If a control break has
occurred, all controls that are minor to it are considered to have changed, even though
they may not in fact have changed. The occurrence of a control break causes the fol
lowing sequence of events to take place:

1. ALL CONTROL FOOTING report groups are presented up to, and including, the one at
the level at which the control break occurred.

2. ALL CONTROL HEADING report groups are presented from the control break level
down to the most minor control.

3. The DETAIL report group named in the GENERATE statement is presented.

Procedure Division Report Writer Statements

The report writer statements that appear in the Procedure Division are: INITIATE, GEN
ERATE, TERMINATE, SUPPRESS, and USE BEFORE REPORTING.

The INITIATE statement causes the report writer control system to perform automatically
a number of initialization functions. A report must be initiated before any detail proc
essing may take place.

The GENERATE statement which specifies a data-name causes the named DETAIL report
group to be formatted and written to the output device. In addition, it causes the report
writer control system to perform the many implicit actions described in the preceding
section.

The GENERATE statement which specifies a report-name provides a means of summary
reporting. A report produced by this type of statement has all detail print lines suppressed
automatically and consists of only the summary totals accumulated during the processing
of the DETAIL report group. The report writer control system processing for a GEN
ERATE report-name statement is identical to that which occurs for a GENERATE data
name statement, except that the former results in the suppression of detail print lines.

The TERMINATE statement causes the report writer control system to perform all of the
automatic functions associated with the termination of a report. The TERMINATE state
ment must be executed before the file containing the report is closed.

The SUPPRESS statement provides the object time facility to suppress the printing of an
entire report group.

The BEFORE REPORTING phrase of the USE statement provides a mechanism whereby
the Procedure Division statement may be executed at specific instances within the auto
matic procedures performed by the report writer control system. The statements in the
USE BEFORE REPORTING procedure may alter the contents of the data items that are
referenced by SOURCE clauses. Thus control is possible over the contents of data items
referenced within report groups that are produced automatically.

Language Concepts

This section describes COBOL language concepts.

Report File
A report file is an output file having sequential organization. A report file has a file
description entry containing a REPORT clause. The contents of a report file consists of
records that are written under control of the report writer control system (RWCS).

A report file is named by a file control entry and is described by a file description entry
containing a REPORT clause. A report file is referred to and accessed by the OPEN, GEN
ERATE, INITIATE, SUPPRESS, TERMINATE, USE BEFORE REPORTING, and CLOSE
statements.

14-8 Language Reference

Special Register PAGE-COUNTER
The reserved word PAGE-COUNTER is a name for a page counter that is generated for
each report description entry in the REPORT SECTION of the Data Division. The implicit
description is that of an unsigned integer that must be capable of representing a range of
values from 1 through 999999. The usage is defined by the implementer. The value in
PAGE-COUNTER is maintained by the report writer control system (RWCS) and is used by
the program to number the pages of a report. PAGE-COUNTER may be referenced only in
the SOURCE clause of the report section and in Procedure Division statements. Refer to
"PAGE-COUNTER Rules" on page 14-18.

Special Register LINE-COUNTER
The reserved word LINE-COUNTER is a name for a line counter that is generated for each
report description entry in the REPORT SECTION of the Data Division. The implicit
description is that of an unsigned integer that must be capable of representing a range of
values from 0 through 999999. The usage is defined by the implementer. The value in
LINE-COUNTER is maintained by the RWCS, and is used to determine the vertical posi
tioning of a report. LINE-COUNTER may be referenced only in the SOURCE clause of the
report section and in Procedure Division statements. However, only the RWCS may
change the value of LINE-COUNTER. Refer to "LINE-COUNTER Rules" on page 14-18.

Special Register PRINT-SWITCH

The reserved word PRINT-SWITCH is a name for a register whose value
may be set nonzero in the course of a USE BEFORE REPORTING declar
ative procedure. This has the effect of suppressing printing of the corre-
sponding report group. •

Subscripting

osvs

In the REPORT SECTION neither a sum counter nor the special registers
LINE-COUNTER and PAGE-COUNTER can be used as a subscript.

Report Writer 14-9

Environment Division in the Report Writer Module

INPUT-OUTPUT Section

Refer to Chapter 8, "File Input and Output" for information concerning the
INPUT-OUTPUT SECTION.

FILE-CONTROL Paragraph

Function

The FILE-CONTROL entry declares the relevant physical attributes of a report file. Refer
to Chapter 8, "File Input and Output" on page 8-1 for information concerning the
FILE-CONTROL paragraph.

Additional Syntax Rule

A report file must have sequential organization. Each report file specified in the SELECT
clause must have a file description entry containing a REPORT clause in the Data Divi
sion of the same program.

I-0-CONTROL Paragraph

Function

Refer to Chapter 8, "File Input and Output" for information on the 1-0-CONTROL para
graph.

Additional Syntax Rule

A report file may not appear in a SAME clause for which the RECORD phrase is specified.

14-10 Language Reference

Data Division in the Report Writer Module

File Description Entry

Function

The file description furnishes information concerning the physical structure, identification,
and record names pertaining to a given file.

Report Writer 14-11

General Format

The following figure shows the format of the file description entry:

..,__FD file-name~-----------------------__,.-.

BLOCK [J [J i nteger-2
CONTAINS integer-1 TO

.. L RECORD-~----...--~--------..-- i nteger-4 J
L CONT AI NS J Li nteger-3 TO _J L CHARACTERS

LABEL T RECORD~ STANDARD L IS OMITTED ---l

RECORDS ~ I
ARE f

data-name-1

' VALUE OF 1 data-name-2 L J Ldata-name-3
IS literal-1

FILE-ID L J Ldata-name-4
IS literal-2----'

RECORDING-.------,--....- F -----1

MOOE IS v----1
u----1
s----<
VARIABLE
FIXED

CHARACTERS
RECORDS

~r----------------r--1-------------~·

' ' DATA 1 RECORD~ data-name-5

RECORDS -c-=:j
ARE

REPORT g report-name-1
IS

REPORTS
ARE

14-12 Language Reference

OSVS VSC2

MF

OSVS VSC2

MF

osvs

Syntax Rules

The following syntax rules apply to the file description entry:

1. The level indicator FD identifies the beginning of the file description entry for a report
file and must precede the file name of the report file.

2. The clauses that follow file-name may appear in any order.

3. file-name may only reference a sequential file.

4. No record description entries may follow the file description entry for a
report file. Record description entries are permitted. OSVS

5. The subject of a file description entry that specifies a REPORT clause may be refer
enced in the Procedure Division only by the USE statement, the CLOSE statement, or
the OPEN statement with the OUTPUT or EXTEND phrase.

General Rules

The following rules apply to the file description entry:

1. With the exception of the REPORT clause, all clauses within the file description entry
for a report file are presented within the sequential I-0 module.

2. Refer to the following section "REPORT Clause" on page 14-14 for details on the
REPORT clause.

Report Writer 14-13

REPORT Clause

Function

The REPORT clause specifies the names of reports that comprise a report file.

General Format

The following figure shows the format of the REPORT clause:

L REPORT--+L--~-~- report-name-I___..,.

REPORTS L ::E~

Syntax Rules

The following syntax rules apply to the REPORT clause:

1. Each report-name specified in a REPORT clause must be the subject of a report
description entry in the REPORT SECTION of the same program. The order of appear
ance of the report-names is not significant.

2. A report-name must appear in only one REPORT clause.

3. The subject of a file description entry that specifies a REPORT clause may be refer
enced in the Procedure Division only by the USE statement, the CLOSE statement, or
the OPEN statement with the OUTPUT or EXTEND phrase.

General Rules

The following rules apply to the REPORT clause:

1. The presence of more than one report-name in a REPORT clause indicates that the file
contains more than one report.

2. After execution of an INITIATE statement and before the execution of a TERMINATE
statement for the same report file, the report file is under the control of the RWCS.
While a report file is under the control of the RWCS, no input-output statement may be
executed which references that report file.

14-14 Language Reference

Example

The following is an example of the REPORT clause:

FILE SECTION.

FD REPORT-FILE
LABEL RECORDS OMITTED
RECORD CONTAINS 121 CHARACTERS
REPORT IS EXPENSE-REPORT.

Report Writer 14-15

REPORT SECTION

The REPORT SECTION is located in the Data Division of a source program. This section
describes the reports written onto report files. The description of each report must begin
with a report description entry (RD entry) and be followed by one or more report group
description entries.

The general format of the REPORT SECTION is:

- REPORT SECTION. --,.-------------,.---t.,_ ..
L report-description-entry~

Report Description Entry

In addition to naming the report, the RD entry defines the format of each page of the
report by specifying the vertical boundaries of the region within which each type of report
group may be printed. The report description entry also specifies the control data items.
When the report is produced, changes in the values of the control data items cause the
detail information of the report to be processed in groups called control groups.

Each report named in the REPORT clause of a file description entry in the FILE SECTION
must be the subject of a report description entry in the REPORT SECTION. Furthermore,
each report in the REPORT SECTION must be named in one and only one file description
entry.

Report Group Description Entry

The report groups that will comprise the report are described following the report
description entry. The description of each report group begins with a report group
description entry (an entry that has the 01 level-number and a TYPE clause). Subordinate
to the report group description entry, group and elementary entries may be used to further
describe the characteristics of the report group.

14-16 Language Reference

REPORT Description Entry

Function
The report description entry names a report, specifies any identifying characters to be
appended to each print line in the report and describes the physical structure and organ
ization of that report.

General Format
The following figure shows the general format of the REPORT description entry:

-RD report-name-1-....,~-----------_J_,... ____________ .,

_J CODE literal-I
WITH

' CONTROL a data-name-1
IS ~--------.

CONTROLS f
ARE FINAL--.-------....----'

data-name-1

..
[PAGE -...,..-------r-- i nteger-1-.------..--..-----------.---.. 2

LuMIT IS__J LuNE_J LHEADING integer-2_J
L_LIMITS ARE_J LLINES_J

1 -----------------------------------.3
2.. .. 4

LFIRST DETAIL integer-3_J LLAST DETAIL integer-4_J

3 ----------------.-· ---
4 • .. -~--------~~

l_ FOOTING i nteger-5 _J

Syntax Rules
The following syntax rules apply to the REPORT entry:

1. report-name-1 must appear in one and only one REPORT clause.

2. The order of appearance of the clauses following report-name-1 is immaterial.

osvs

3. report-name-1 is the highest permissible qualifier that may be specified for
LINE-COUNTER, PAGE-COUNTER, and all data-names defined within the REPORT
SECTION.

Report Writer 14-17

General Rule
The following paragraphs list rules for CODE clause, CONTROL clause, and PAGE clause
in alphabetical order.

PAGE-COUNTER Rules
The following rules apply to PAGE-COUNTER:

1. PAGE-COUNTER is the reserved word used to reference a special register that is auto
matically created for each report specified in the REPORT SECTION. Refer to
"Special Register PAGE-COUNTER" on page 14-9.

2. In the REPORT SECTION, a reference to PAGE-COUNTER can only appear in a
SOURCE clause. In the Procedure Division, PAGE-COUNTER may be used in any
context in which a data-item with an integer value can appear.

3. If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be
qualified by a report-name whenever it is referenced in the Procedure Division.

In the REPORT SECTION an unqualified reference to PAGE-COUNTER is qualified
implicitly by the name of the report in whose report description entry the reference is
made. When the PAGE-COUNTER of a different report is referenced,
PAGE-COUNTER must be explicitly qualified by the report-name associated with the
different report.

4. Execution of the INITIATE statement causes the report writer control system to set
the PAGE-COUNTER of the referenced report to one.

5. PAGE-COUNTER is automatically incremented by one each time the report writer
control system executes a page advance.

6. PAGE-COUNTER may be altered by Procedure Division statements.

LINE-COUNTER Rules
The following rules apply to LINE-COUNTER:

1. LINE-COUNTER is the reserved word used to reference a special register that is auto
matically created for each report specified in the REPORT SECTION. Refer to
"Special Register LINE-COUNTER" on page 14-9.

2. In the REPORT SECTION a reference to LINE-COUNTER can only appear in a
SOURCE clause. In the Procedure Division, LINE-COUNTER may be used in any
context in which a data-item with an integral value may appear. However, only the
RWCS can change the content of LINE-COUNTER.

3. If more than one LINE-COUNTER exists in a program, LINE-COUNTER must be quali
fied by a report-name whenever it is referenced in the Procedure Division.

In the REPORT SECTION an unqualified reference to LINE-COUNTER is qualified
implicitly by the name of the report in whose description entry the reference is made.
When the LINE-COUNTER of a different report is referenced, LINE-COUNTER must
be explicitly qualified by the report-name associated with the different report.

4. Execution of an INITIATE statement causes the report writer control system to set the
LINE-COUNTER of the referenced report to zero. The RWCS also automatically resets
LINE-COUNTER to zero each time it executes a page advance.

5. The value of LINE-COUNTER is not affected by the processing of nonprintable report
groups or by the processing of a printable report group whose printing is suppressed by
means of the SUPPRESS statement.

6. At the time each print line is presented, the value of LINE-COUNTER represents the
line number on which the print line is presented. The value of LINE-COUNTER after
the presentation of a report group is governed by the presentation rules for the report
group. Refer to "Presentation Rules Tables" on page 14-32.

14-18 Language Reference

CODE Clause

Function

The CODE clause specifies a two-character literal that identifies each print line as
belonging to a specific report.

General Format

The following figure shows the general format of the CODE clause:

osvs

Syntax Rules

The following syntax rules apply to the CODE clause:

1. literal-I must be a two-character nonnumeric literal.

2. If the CODE clause is specified for any report in a file, it must be specified for all
reports in that file.

General Rules

The following general rules apply to the CODE clause:

I. When the CODE clause is specified, literal-I is automatically placed in the first two
character positions of each report writer logical r_ecord.

2. The positions occupied by literal-I are not included in the description of the print line,
but are included in the logical record size.

Report Writer 14-19

CONTROL Clause

Function

The CONTROL clause establishes the levels of the control hierarchy for the report.

General Format

The following figure shows the general format of the CONTROL clause:

t L CONTROL ~data-name-1

CONTROLS IS t I
ARE FINAL~-----~~

L data-name-1 _J

Syntax Rules

The following syntax rules apply to the CONTROL clause:

1. data-name-1 must not be defined in the REPORT SECTION. data-name-1 may be quali
fied.

2. Each recurrence of data-name-1 must identify a different data item.

3. data-name-1 must not have subordinate to it a variable occurrence data item.

General Rules

The following general rules apply to the CONTROL clause:

1. data-name-1 and the word FINAL specify the levels of the control hierarchy. FINAL, if
specified, is the highest control. data-name-1 is the major control. The next recur
rence of data-name-1 is an intermediate control, and so on. The last recurrence of
data-name-1 is the minor control.

2. The execution of the chronologically first GENERATE statement for a given report
causes the RWCS to save the values of all control data items associated with that
report. On subsequent executions of all GENERATE statements for that report,
control data items are tested by the RWCS for a change of value. A change of value in
any control data-item causes a control break to occur. This control break is associated
with the highest level for which a change of value is noted. Refer to "GENERATE
Statement" on page 14-68.

14-20 Language Reference

3. The RWCS tests for a control break by comparing the content of each control data-item
with the prior content of each control data-item that was saved when the previous
GENERATE statement for the same report was executed. The RWCS applies the ine
quality relation test as follows:

a. If the control data-item is a numeric data item, the relation test is for the compar
ison of two numeric operands.

b. If the control data-item is an index data item, the relation test is for the compar
ison of two index data items.

c. If the control data-item is a data item other than as described in 3a and 3b, the
relation test is for the comparison of two nonnumeric operands.

The inequality relation test is further explained in the appropriate paragraph. Refer to
"Relation Condition" on page 7-9.

4. FINAL is used when the most inclusive control group in the report is not associated
with a control data-name.

Report Writer 14-21

PAGE Clause

Function

The PAGE clause defines the length of a page and the vertical subdivisions within which
report groups are presented.

General Format

The following figure shows the format of the PAGE clause:

----~-------------------l~J--------------.•1
L PAGE-~-----~ integer-I-~---~~------------_.• 2

LuMIT IS__J LuNE_I LHEADING integer-2_J
L_LIMITS ARE_j l._LINES_j

1--------------------------------------3
2. • 4

L FIRST DETAIL integer-3 _J L LAST DETAIL integer-4 _J

; : ______ -----..--'

L FOOTING i nteger-5 =:J

Syntax Rules

The following syntax rules apply to the PAGE clause:

1. The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may be
written in any order.

2. integer-1 must not exceed three significant digits in length.

3. integer-2 must be greater than or equal to one.

4. integer-3 must be greater than or equal to integer-2.

5. integer-4 must be greater than or equal to integer-3.

6. integer-5 must be greater than or equal to integer-4.

7. integer-1 must be greater than or equal to integer-5.

14-22 Language Reference

8. The following rules indicate the vertical subdivision of the page in which each type of
report group may appear when the PAGE clause is specified. Refer to "Page Regions"
on page 14-25.

a. A report heading report group that is to be presented on a page by itself, if defined,
must be defined such that it can be presented in the vertical subdivision of the page
that extends from the line number specified by integer-2 to the line number speci
fied by integer-1, inclusive.

A report heading report group that is not to be presented on a page by itself, if
defined, must be defined such that it can be presented in the vertical subdivision of
the page that extends from the line number specified by integer-2 to the line
number specified by integer-3 minus 1, inclusive.

b. A page heading report group, if defined, must be defined such that it can be pre
sented in the vertical subdivision of the page that extends from the line number
specified by integer-2 to the line number specified by integer-3 minus 1, inclusive.

c. A control heading or detail report group, if defined, must be defined such that it
can be presented in the vertical subdivision of the page that extends from the line
number specified by integer-3 to the line number specified by integer-4, inclusive.

d. A control footing report group, if defined, must be defined such that it can be pre
sented in the vertical subdivision of the page that extends from the line number
specified by integer-3 to the line number specified by integer-5, inclusive.

e. A page footing report group, if defined, must be defined such that it can be pre
sented in the vertical subdivision of the page that extends from the line number
specified by integer-5 plus 1 to the line number specified by integer-1, inclusive.

f. A report footing report group that is to be presented on a page by itself, if defined,
must be defined such that it can be presented in the vertical subdivision of the page
that extends from the line number specified by integer-2 to the line number speci
fied by integer-1, inclusive.

A report footing report group that is not to be presented on a page by itself, if
defined, must be defined such that it can be presented in the vertical subdivision of
the page that extends from the line number specified by integer-5 plus 1 to the line
number specified by integer-1, inclusive.

9. All report groups must be described so that they can be presented on one page. The
RWCS never splits a multiline report group across page boundaries.

General Rules

The following general rules apply to the PAGE clause:

1. The vertical format of a report page is established using the integer values specified in
the PAGE clause.

a. PAGE LIMIT integer-1 defines the size of a report page by specifying the number of
lines available on each page.

b. HEADING integer-2 defines the first line number on which a report heading or
page heading report group may be presented.

c. FffiST DETAIL integer-3 defines the first line number on which a body group may
be presented. Report heading and page heading report groups may not be presented
on or beyond the line number specified by integer-3.

d. LAST DETAIL integer-4 defines the last line number on which a control heading or
detail report group may be presented.

e. FOOTING integer-5 defines the last line number on which a control footing report
group may be presented. Page footing and report footing report groups must follow
the line number specified by integer-5.

Report Writer 14-23

Figure 14-1 is an illustration of PAGE clause ranges:

REPORT PAGE DETAIL & CONTROL PAGE
HEADING/ HEADING CONTROL FOOTING FOOTING
FOOTING HEADING

HEADING integer-2

1
l

FIRST DETAIL integer-3

LAST DETAIL integer-4

+
, I FOOTING integer-5

PAGE LIMIT integer-1

Figure 14-1. Illustration of PAGE Clause Ranges

2. If the PAGE clause is specified, the following implicit values are assumed for any
omitted phrases:

a. If the HEADING phrase is omitted, a value of one is assumed for integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to iriteger-2 is given to
integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the value of
integer-1 is given to both integer-4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is omitted, the
value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is omitted, the
value of integer-4 is given to integer-5.

Figure 14-2 shows the default value for omitted PAGE LIMIT entries:

Omitted PAGE LIMIT Entry Default Value Assumed

HEADING integer-2 integer-2 = 1

FIRST DETAIL integer-3 integer-3 = integer-2

LAST DETAIL integer-4 integer-4 = integer-5

FOOTING integer-5 integer-5 = integer-4

both LAST DETAIL integer-4 and integer-4 & integer-5 =
FOOTING integer-5 integer-1

Figure 14-2. Values Assumed for Omitted PAGE Clause Options

3. If the PAGE clause is omitted, the report consists of a single page of indefinite length.

4. The presentation rules for each type of report group are specified in the appropriate
paragraph. Refer to "Presentation Rules Tables" on page 14-32.

14-24 Language Reference

Page Regions

Page regions that are established by the PAGE clause are described in Table 14-1.

Table 14-1. Page Regions Established by the Page Clause
Report Groups That May Be First Line Number
Presented in the Region of the Region
Report heading described with integer-2
NEXT GROUP NEXT PAGE
Report footing described with
LINE integer-1 NEXT PAGE

Report heading not described integer-2
with NEXT GROUP NEXT PAGE
Page heading

Control heading integer-3
Detail

Control footing integer-3

Page footing integer-5
Report footing not described
with LINE integer-1 NEXT PAGE

Example 1

The following example shows a sample Report Section:

DATA DIVISION.
FILE SECTION.

FD REPORT-FILE
REPORT IS EXPENSE-REPORT.

REPORT SECTION.
RD EXPENSE-REPORT

CONTROLS ARE FINAL QUARTER MM DD
PAGE LIMIT IS 59 LINES
HEADING 1
FIRST DETAIL 9
LAST DETAIL 48
FOOTING 52.

Last Line Number
of the Region

integer-1

integer-3
minus 1

integer-4

integer-5

integer-1 plus 1

Report Writer 14-25

Example 2

The following example shows the RD entry PAGE clause and the resulting report lines.

RD EXPENSE-REPORT
CONTROLS ARE FINAL MONTH DAY
PAGE LIMIT rs 59 LINES

HEADING 1 -----~
FIRST DETAIL 9
LAST DETAIL 48 r------.
FOOTING 52. ----~

PAGE clause specifies:

1. Physical page depth

2. Heading area

3. Area in which detail lines
may appear

4. Area in which footing lines
may appear

14-26 Language Reference

ACME MANUFACTURING COMPANY

QUARTERLY EXPENDITURES REPORT

JANUARY EXPENDITURES

DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

JANUARY 01 A00 2 A 2.00
A02 1 A 1.00
A02 2 c 16.00

PURCHASES AND COST FOR 1-01 5 $19.00 $19.00
**
JANUARY 02 A01

A04
A04

2
10
10

B
A
c

2.00
10. 00
80.00

PURCHASES AND COST FOR 1-02 22 $92.00 $111.00
**
JANUARY 05 AOl 2 B 2.00

PURCHASES AND COST FOR 1-05 2 $2.00 $113.00
**
JANUARY 08 AOl

A01
AOl

1()

8
20

A
B
D

10.00
12.48
38.40

PURCHASES AND COST FOR 1-08 38 $60.88 $173.88
**
JANUARY 13 A00

A00
4
1

PURCHASES AND COST FOR 1-13 5

B
c

6.24
8.00

$14.24 $188.12
**
JANUARY 15 AOO

A02
1()

1
D
c

19.20
8.0()

PURCHASES AND COST FOR 1-15 11 $27.2() $215.32
**
JANUARY 21 A03

A03
A03

10
1()

10

E
F
G

30.00
25.00
50.00

~URCHASES AND COST FOR 1-21 3() $105.00 $320.32

ANUARY 23 A00 5 A 5.00

PURCHASES AND COST FOR 1-23 5 $5.00 $325.32
**

Example 3

The following example shows the RD entry CONTROL clause and the resulting report
lines.

RD EXPENSE-REPORT
CONTROLS ARE FINAL

MONTH DAY-1
PAGE LIMIT IS

59 LINES
HEADING 1
FIRST DETAIL 9
LAST DETAIL 48
FOOTING 52.

CONTROL clause
speclllesthat

~~
1. DAY report field

changes value

2. MONTH report field
changes value

3. FINAL report field
changes value that
is when end-of-report
is reached. (Not
shown on this page.)

MONTH

JANUARY

JANUARY EXPENDITURES (CONTINUED)

DAY DEPT NO-PURCHASES TYPE

26 A04
A04

5
5

A
B

COST CUMULATIVE-COST

5.00
7.80

PURCHASES AND COST FOR 1-26 10 $12.80 $338.12
**

27 A00
A00

6
15

B
c

9.36
120.00

PURCHASES AND COST FOR 1-27 21 $129.36 $467.48
**

30 A00 2 B 3.12
A02 10 A 10.00
A02 1 c 8.00
A04 15 B 23.40
A04 10 c 80.00

PURCHASES AND COST FOR 1-30 38 $124.52 $592.00
**

31 A00
A04

1
6

A
A

1.00
6.00

PURCHASES AND COST FOR 1-31 7 $7.00 $599.00
**

TOTAL COST FOR JANUARY WAS $599.00

Report Writer 14-27

Report Group Description Entry

Function

The report group description entry specifies the characteristics of a report group and of the
individual items within a report group.

General Format

The following figures show the format for the report group description entry:

Format 1

data-name-1

NUMBER IS ~---..--NEXT PAGE
LINE -..-c----~~--.-l- i nteger-1

PLUS i nteger-2 _o_N _____ ---i

NEXT PAGE----------'

• L NEXT GROUP L _J L integer-3 . =:J
IS L PLUS i nteger-4 - 1

NEXT PAGE--~

-TYPE REPORT HEADING J IS RH
PAGE HEADING J PH
CONTROL HEADING I L data-name-2-=:Ji
CH FINAL
DETAIL
DE
CONTROL FOOTING
CF
PAGE FOOTING
PF
REPORT FOOTING
RF

..... ~E-us-A-GE-L--~--DI-S-PLA_Y_:J~. ~

IS=:J

14-28 Language Reference

J

I L data-name-3-=r-
FINAL

J

J

osvs

Format 2

-1eve1-number --,----------,----------------------+

data-name-1

r------.- NEXT PAGE
ON

LI NE -.-[----~---.---,-l- i nteger-1
NUMBER IS

PLUS i nteger-2 --------1
NEXT PAGE--------~

. E DISPLAY~ ·--

USAGE L J
IS

osvs

Report Writer 14-29

Format 3

.,._level-number L J L PICTURE 1 L J character-string
data-name-1 PIC __J IS

DISPLAY LEADING :-J SEPARATE
USAGE SIGN TRAILING

IS IS

"' t JUSTIFIED
[RIGHT]

[BLANK L J ZERO] I JUST WHEN

LINE~----~~integer-1 C:r
NUMBER IS NEXT PAGE

ON
PLUS i nteger-2 -------<
NEXT PAGE------~

COLUMN L J i nteger-3
NUMBER IS

CHARACTER

..

SOURCE ~l-J~ i dent i fi er-1----------------..------•
IS

VALUE
LIS]

l iteral-1------------------<

t ' SUM i dent if i er-2 ----.-----------..----.----------------;

LRESET LoN]

' '-UPON data-name-2-

.. [GROUP L J .
INDICATE

.. ..

14-30 Language Reference

[data-name-3 ___,
FINAL

osvs

Syntax Rules

The following syntax rules apply to the report description entry:

1. The report group description entry can appear only in the REPORT SECTION.

2. Except for the data-name clause, which when present must immediately follow the
level-number, the clauses may be written in any sequence.

3. In Format 2 the level-number may be any integer from 02 to 48 inclusive. In Format 3
the level-number may be any integer from 02 to 49 inclusive.

4. A description of a report group may consist of one, two, or three hierarchical levels:

a. The first entry that describes a report group must be a Format 1 entry.

b. Both Format 2 and Format 3 entries may be immediately subordinate to a Format 1
entry.

c. At least one Format 3 entry must be immediately subordinate to a Format 2 entry.

d. Format 3 entries must define elementary data items.

5. In a Format 1 entry, data-name-1 is required only when:

a. A detail report group is referenced by a GENERATE statement.

b. A detail report group is referenced by the UPON phrase of a SUM clause.

c. A report group is referenced in a USE BEFORE REPORTING sentence.

d. The name of a control footing report group is used to qualify a reference to a sum
counter.

If specified, data-name-1 may be referenced only by a GENERATE statement, the
UPON phrase of a SUM clause, a USE BEFORE REPORTING sentence, or as a sum
counter qualifier.

6. A Format 2 entry must contain at least one optional clause.

7. In a Format 2 entry, data-name-1 is optional. If present, it may be used only to qualify
a sum counter reference.

8. In the REPORT SECTION, the USAGE clause is used only to declare the usage of
printable items.

a. If the USAGE clause appears in a Format 3 entry, that entry must define a print
able item.

b. If the USAGE clause appears in a Format 1 or Format 2 entry, at least one subordi
nate entry must define a printable item.

9. An entry that contains a LINE NUMBER clause must not have a sub
ordinate entry that also contains a LINE NUMBER clause. However,
an entry containing the LINE NUMBER NEXT PAGE clause may have OSVS
a subordinate entry containing a LINE NUMBER clause but without the
NEXT PAGE option.

Report Writer 14-31

10. In Format 3:

a. A GROUP INDICATE clause may appear only in a type detail report group.

b. A SUM clause may appear only in a type control footing report group.

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry that contains a LINE NUMBER clause.

d. data-name-1 is optional but may be specified in any entry. data-name-1 may be ref
erenced only if the entry defines a sum counter.

e. LINE NUMBER clause must not be the only clause specified.

f. An entry that contains a VALUE clause must also have a COLUMN NUMBER
clause.

11. Table 14-2 shows all permissible clause combinations for a Format 3 entry. Read the
table from left to right along the selected row.

• An M indicates that the presence of the clause is mandatory.

• A P indicates that the presence of the clause is permitted, but not required.

• A blank indicates that the clause is not permitted.

Table 14-2. Permissible Clause Combinations in Format 3 Entries
Blank Group
When Indi-

Pie Column Source Sum: Value Just Zero cate Usage Sign Line
M M p p
M M M p p p p
M p M p p p p p
M p M p p p p p
M M M p p p p p

General Rules
The following general rules apply to the report group entry:

1. Format 1 is the report group entry. The report is defined by the contents of this entry
and all of its subordinate entries.

2. The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE clause
for the Report Writer module are the same as the BLANK WHEN ZERO clause, the
JUSTIFIED clause, and the PICTURE clause in the Nucleus. Refer to Chapter 3,
"Introduction to the Nucleus" for specifications. The other clauses of the report group
description entry are presented in alphabetical order later in this chapter.

Presentation Rules Tables

The tables and rules on the following pages specify:

1. The permissible combinations of LINE NUMBER and NEXT GROUP clauses for each
type of report group.

2. The requirements that are placed on the use of these clauses.

3. The interpretation that the RWCS gives to these clauses.

14-82 Language Reference

Organization
Presentation rules tables follow for each of these report groups: report heading, page
heading, page footing, and report footing. In addition, detail report groups, control
heading report groups, or control footing report groups are treated jointly in the body
group presentation rule table. Refer to "Body Group Presentation Rules" on page 14-38.

Columns 1 and 2 of a presentation rules table list all of the permissible combinations of
LINE NUMBER and NEXT GROUP clauses for the designated report group type. Conse
quently, to identify the set of presentation rules that apply to a particular combination of
LINE NUMBER and NEXT GROUP clauses, a presentation rules table is read from left to
right, along the selected row.

The applicable rules columns of a presentation rules table contain two parts. The first
part specifies the rules that apply if the report description contains a PAGE clause. The
second part specifies the rules that apply if the PAGE clause is omitted. The purpose of
the rules in the rules columns is discussed below:

1. Upper limit rules and lower limit rules

These rules specify the vertical subdivisions of the page within which the specified
report group may be presented.

In the absence of a PAGE clause, the printed report is not considered to be partitioned
into vertical subdivisions. Consequently, within the tables no upper limit rule or lower
limit rule is specified for a report description in which the PAGE clause is omitted.

2. Fit test rules

The fit test rules are applicable only to body groups and are specified only within the
body group presentation rules table. At object time the RWCS applies the fit test rules
to determine whether the designated body group can be presented on the page to which
the report is currently positioned.

However, even for body groups, there are no fit test rules when the PAGE clause is
omitted from the report description entry.

3. First print line position rules

The first print line position rules specify where on the report medium the RWCS shall
present the first print line of the given report group.

The presentation rules tables do not specify where on the report medium the RWCS
shall present the second and subsequent print lines (if any) of a report group. Certain
general rules determine where the second and subsequent print lines of a report group
shall be presented. Refer to "LINE NUMBER Clause" on page 14-49 for this informa
tion.

4. Next group rules

The next group rules relate to the proper use of the NEXT GROUP clause.

5. Final LINE-COUNTER setting rules:

The terminal values that the RWCS places in LINE-COUNTER after presenting report
groups are specified by the final LINE-COUNTER setting rules.

Report Writer 14-33

LINE NUMBER Clause Notation
Column 1 of the presentation rules table uses a shorthand notation to describe the
sequence of LINE NUMBER clauses that may appear in the description of a report group.
The meaning of the abbreviations used in column 1 is as follows:

1. The letter A represents one or more absolute LINE NUMBER clauses, none of which
has the NEXT PAGE phrase, that appear in consecutive order within the sequence of
LINE NUMBER clauses in the report group description entry.

2. The letter R represents one or more relative LINE NUMBER clauses that appear in
consecutive order within the sequence of LINE NUMBER clauses in the report group
description entry.

3. The letters NP represent one or more absolute LINE NUMBER clauses
that appear in consecutive order within the sequence of LINE
NUMBER clauses in the report group description entry with the phrase
NEXT PAGE appearing in the first and only in the first LINE
NUMBER clause. This entry may appear without a line number. OSVS

When two abbreviations appear together, they refer to a sequence of LINE NUMBER
clauses that consist of the two specified consecutive sequences. For example, A R refers to
a report group description entry within which the A sequence (defined in 1) is immediately
followed by the R sequence (defined in 2).

LINE NUMBER Clause Sequence Substitutions
Where A R is shown to be a permissible sequence in the presentation rules table, A is also
permissible and the same presentation rules are applicable.

Where NP R is shown to be a permissible sequence in the presentation rules table, NP is
also permissible and the same presentation rules are applicable.

Saved Next Group Integer Description
Saved next group integer is a data-item that is addressable only by the RWCS. When an
absolute NEXT GROUP clause specifies a vertical positioning value that cannot be accom
modated on the current page, the RWCS stores that value in saved next group integer.
After page advance processing, the RWCS positions the next body group using the value
stored in saved next group integer.

Report Heading Group Presentation Rules
Figure 14-3 on page 14-36 points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a report heading report
group. The report heading group presentation rules are as follows:

1. Upper limit rule

The first line number on which the report heading report group can be presented is the
line number specified by the HEADING phrase of the PAGE clause.

2. Lower limit rules

a. The last line number on which the report heading report group can be presented is
the line number that is obtained by subtracting 1 from the value of integer-3 of the
FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the report heading report group can be presented is
the line number specified by integer-I of the PAGE clause.

14-34 Language Reference

3. First print line position rules

a. The first print line of the report heading report group is presented on the line
number specified by the integer or its LINE NUMBER clause.

b. The first print line of the report heading report group is presented on the line
number obtained by adding the integer of the first LINE NUMBER clause and the
value obtained by subtracting 1 from the value of integer-2 of the HEADING phrase
of the PAGE clause.

c. The report heading report group is not presented.

d. The first print line of the report heading report group is presented on the line
number obtained by adding the content of its LINE-COUNTER (in this case, zero)
to the integer of the first LINE NUMBER clause.

4. Next group rules

a. The NEXT GROUP integer must be greater than the line number on which the
final print line of the report heading report group is presented. In addition, the
NEXT GROUP integer must be less than the line number specified by the value of
integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the final print
line of the report heading report group is presented must be less than the value of
integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP PAGE signifies that the report heading report group is to be pre
sented entirely by itself on the first page of the report. The RWCS processes no
other report group while positioned to the first page of the report.

5. Final LINE-COUNTER setting rules

a. After the report heading report group is presented, the RWCS places sum of the
NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the report heading report group is presented, the RWCS places the sum of the
NEXT GROUP integer and the line number on which the final print line of the
report heading report group was presented into LINE-COUNTER as the final
LINE-COUNTER setting.

c. After the report heading report group is presented, the RWCS places zero into
LINE-COUNTER as the final LINE-COUNTER setting.

d. After the report heading report group is presented, the final LINE-COUNTER
setting is the line number on which the final print line of the report heading report
group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

Report Writer 14-35

Applicable Rules ••• ..
If the PAGE clause is specified. If the PAGE clause is omitted.

Sequence First Final First Final
of LINE NEXT Print LINE- Print LINE-
NUMBER GROUP Upper Lower Line Next COUNTER Line COUNTER
clauses• clause Limit Limit Position Group Setting Position Setting

AR Absolute 1 2a 3a 4a 5a Illegal Combination t

AR Relative 1 2a 3a 4b 5b Illegal Combination t

AR NEXT 1 2b 3a 4c 5c Illegal Combination t

PAGE

AR 1 2a 3a 5d Illegal Combination t

R Absolute 1 2a 3b 4a 5a Illegal Combination tt

R Relative 1 2a 3b 4b 5b 3d 5d

R NEXT 1 2b 3b 4c 5c Illegal Combination tt

PAGE

R 1 2a 3b 5d 3c 5d

3c 5e 3c 5e

Figure 14-3. Report Heading Group Presentation Rules Table

*

**

Refer to "LINE NUMBER Clause Notation" on page 14-34 for a description of
the abbreviations used in column 1.

A blank entry in column 1 or column 2 indicates that the named clause is totally
absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the named
rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

t
tt

See the "LINE NUMBER Clause" on page 14-49.

See the "NEXT GROUP Clause" on page 14-51.

Note: If the PAGE clause is omitted from the report description entry, then a page
heading report group may not be defined. Refer to "TYPE Clause" on page 14-59.

Page Heading Group Presentation Rules
Figure 14-4 on page 14-37 points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a page heading report
group.

14-36 Language Reference

Applicable Rules ••• ..
If the PAGE clause is specified. ••••

Sequence First Final
of LINE NEXT Print LINE-
NUMBER GROUP Upper Lower Line Next COUNTER
clauses* clause Limit Limit Position Group Setting

AR 1 2 3a 4a

R 1 2 3b 4b

3c 4c

Figure 14-4. Page Heading Group Presentation Rules Table

*

**

Refer to "LINE NUMBER Clause Notation" on page 14-34 for a description of
the abbreviations used in column 1.

A blank entry in column 1 or column 2 indicates that the named clause is totally
absent from the report group description entry.

A blank entry in an applicable rules column indicates the absence of the named
rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

If the PAGE clause is omitted from the report description entry, then a page
heading report group may not be defined. Refer to "TYPE Clause" on
page 14-59.

The page heading group presentation rules are as follows:

1. Upper limit rule

If a report heading report group has been presented on the page on which the page
heading report group is to be presented, then the first line number on which the page
heading report group can be presented is one greater than the final LINE-COUNTER
setting established by the REPORT HEADING.

Otherwise, the first line number on which the page heading report group can be pre
sented is the line number specified by the HEADING phrase of the PAGE clause.

2. Lower limit rule

The last line number on which the page heading report group can be presented is the
line number that is obtained by subtracting one from the value of integer-3 of the
FffiST DETAIL phrase of the PAGE clause.

3. First print line position rules

a. The first print line of the page heading report group is presented on the line
number specified by the integer of its LINE NUMBER clause.

b. If a report heading report group has been presented on the page on which the page
heading report group is to be present, then the sum of the final LINE-COUNTER
setting established by the report heading report group and the integer of the first
LINE NUMBER clause of the page heading report group defines the line number
on which the first print line of the page heading report group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause of the page
heading report group and the value obtained by subtracting one from the value of
integer-2 of the HEADING phrase of the PAGE clause defines the line number on
which the first print line of the page heading report group is presented.

c. The page heading report group is not presented.

Report Writer 14-37

4. Final LINE-COUNTER setting rules

a. The final LINE-COUNTER setting is the line number on which the final print line
of the page heading report group was presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

Body Group Presentation Rules
Figure 14-5 on page 14-39 specifies the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in control heading, detail,
and control footing report groups. The body group presentation rules are as follows:

1. Upper limit rule

The first line number on which a body group can be presented is the line number speci
fied by the FIRST DETAIL phrase of the PAGE clause.

2. Lower limit rules

The last line number on which a control heading report group or detail report group
can be presented is the line number specified by the LAST DETAIL phrase of the
PAGE clause.

The last line number on which a control footing report group can be presented is the
line number specified by the FOOTING phrase of the PAGE clause.

3. Fit test rules

a. If the value in LINE-COUNTER is less than the integer of the first absolute LINE
NUMBER clause, then the body group is presented on the page to which the report
is currently positioned.

Otherwise, the RWCS executes page advance processing. After the page heading
report group, if defined, has been processed, the RWCS determines whether the
saved next group integer location was set when the final body group was presented
on the preceding page. Refer to rule 6 on page 14-40. If saved next group integer
was not set, the body group shall be presented on the page to which the report is
currently positioned. If saved next group integer was set, the RWCS moves the
saved next group integer into LINE-COUNTER, resets saved next group integer to
zero, and reapplies the previous paragraph of this rule.

b. If a body group has been presented on the page to which the report is currently
positioned, the RWCS computes a trial sum in a work location. The trial sum is
computed by adding the content of LINE-COUNTER to the integers of all LINE
NUMBER clauses of the report group. If the trial sum is not greater than the
lower limit integer of the body group, then the report group is presented on the
current page. If the trial sum exceeds the lower limit integer of the body group,
then the RWCS executes page advance processing. After the page heading report
group, if defined, has been processed, the RWCS reapplies the first part of this par
agraph.

If no body group has yet been presented on the page to which the report is cur
rently positioned, the RWCS determines whether the saved next group integer
location was set when the final body group was presented on the preceding page.
Refer to rule 6 on page 14-40.

If saved next group integer was not set, the body group is presented on the page to
which the report is currently positioned.

If saved next group integer was set, the RWCS moves the saved next group integer
into LINE-COUNTER, resets saved next group integer to zero, and computes a trial
sum in a work location.

The trial sum is computed by adding the content of LINE-COUNTER to the integer
one and the integers of all but the first LINE NUMBER clause of the body group.
If the trial sum is not greater than the lower limit integer of the body group then
the body group is presented on the current page. If the trial sum exceeds the lower
limit integer of the body group, the RWCS executes page advance processing. After

14-38 Language Reference

..
Sequence
of LINE
NUMBER
clauses•

AR

AR

AR

AR

R

R

R

R

NP R

NP R

NP R

NP R

the page heading report group (if defined) has been processed, the RWCS presents
the body group on that page.

Applicable Rules•••

If the PAGE clause is specified. If the PAGE clause
is omitted.

First Final First Final
NEXT Print LINE- Print LINE-
GROUP Upper Lower Fit Line Next COUNTER Line COUNTER
clause Limit Limit Test Position Group Setting Position Setting

Absolute 1 2 3a 4a 5 6a Illegal Combination t

Relative 1 2 3a 4a 6b Illegal Combination t

NEXT 1 2 3a 4a 6c Illegal Combination t

PAGE

1 2 3a 4a 6d Illegal Combination t

Absolute 1 2 3b 4b 5 6a Illegal Combination tt

Relative 1 2 3b 4b 6b 4d 6f

NEXT 1 2 3b 4b 6c Illegal Combination tt

PAGE

1 2 3b 4d 6d 4d 6d

Absolute 1 2 3c 4a 5 6a Illegal Combination t

Relative 1 2 3c 4a 6b Illegal Combination t

NEXT 1 2 3c 4a 6c Illegal Combination t

PAGE

1 2 3c 4a 6d Illegal Combination

4c 6e 4d 6d

Figure 14-5. Body Group Presentation Rules

*

**

t
tt

Refer to "LINE NUMBER Clause Notation" on page 14-34 for a
description of the abbreviations used in column 1.

A blank entry in column 1 or column 2 indicates that the named clause
is totally absent from the report group description entry.

A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT
GROUP clauses.

See "LINE NUMBER Clause" on page 14-49.

See "NEXT GROUP Clause" on page 14-51.

Report Writer 14-39

c. If a body group has been presented on the page to which the report is currently
positioned, the RWCS executes page advance processing. After the page heading
report group, if defined, has been processed, the RWCS reapplies this rule.

If no body group has yet been presented on the page to which the report is cur
rently positioned, the RWCS determines whether the saved next group integer
location was set when the final body group was presented on the preceding page.
Refer to rule 6. If saved next group integer was not set, the body group shall be
presented on the page to which the report is currently positioned. If saved next
group integer was set, the RWCS moves the saved next group integer into
LINE-COUNTER and resets saved next group integer to zero. If the value in
LINE-COUNTER is less than the integer of the first absolute LINE NUMBER
clause, the body group shall be presented on the page to which the report is cur~
rently positioned. Otherwise, the RWCS executes page advance processing. After
the page heading report group (if defined) has been processed, the RWCS presents
the body group on that page.

4. First print line position rules

a. The first print line of the body group is presented on the line number specified by
the integer of its LINE NUMBER clause.

b. If the value in LINE-COUNTER is equal to or greater than the line number speci
fied by the FIRST DETAIL phrase of the PAGE clause, and if no body group has
previously been presented on the page to which the report is currently positioned,
then the first print line of the current body group is presented on the line imme
diately following the line indicated by the value contained on LINE-COUNTER.

If the value in LINE-COUNTER is equal to or greater than the line number speci
fied by the FIRST DETAIL phrase of the PAGE clause, and if a body group has
previously been presented on the page to which the report is currently positioned,
then the first print line of the current page group is presented on the line that is
obtained by adding the content of LINE-COUNTER and the integer of the first
LINE NUMBER clause of the current body group.

If the value in LINE-COUNTER is less than the line number specified by the
FIRST DETAIL phrase of the PAGE clause, then the first printer line of the body
group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

d. The sum of the content of LINE-COUNTER and the integer of the first LINE
NUMBER clause defines the line number on which the first print line is presented.

5. Next group rule

The integer of the absolute NEXT GROUP clause must specify a line number that is
not less than that specified in the FIRST DETAIL phrase of the PAGE clause and that
is not greater than that specified in the FOOTING phrase of the PAGE clause.

6. Final LINE-COUNTER setting rules

a. If the body group that has just been presented is a control footing report group and
if the control footing report group is not associated with the highest level at which
the RWCS detected a control break, then the final LINE-COUNTER setting is the
line number on which the final print line of the control footing report group was
presented.

For all other cases the RWCS makes a comparison of the line number on which the
final print line of the body group was presented and the integer of the NEXT
GROUP clause. If the former is less than the latter, then the RWCS places the
NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.
If the former is equal to or greater than the latter, then the RWCS places the line
number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting; in addition, the RWCS
places the NEXT GROUP integer into the saved next group integer location.

14-40 Language Reference

b. If the body group that has just been presented is a control footing report group,
and if the control footing report group is not associated with the highest level at
which the RWCS detected a control break, then the final LINE-COUNTER setting
is the line number on which the final print line of the control footing report group
was presented.

For all other cases the RWCS computes a trial sum in a work location. The trial
sum is computed by adding the integer of the NEXT GROUP clause to the line
number on which the final print line of the body group was presented. If the sum is
less than the line number specified by the FOOTING phrase of the PAGE clause,
then the RWCS places that sum into LINE-COUNTER as the final
LINE-COUNTER setting. If the sum is equal to or greater than the line number
specified by the FOOTING phrase of the PAGE clause, then the RWCS places the
line number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a control footing report group,
and if the control footing report group is not associated with the highest level at
which the RWCS detected a control break, then the final LINE-COUNTER setting
is the line number on which the final print line of the control footing report group
was presented.

For all other cases the RWCS places the line number specified by the FOOTING
phrase of the PAGE clause into LINE-COUNTER as the final LINE-COUNTER
setting.

d. The final LINE-COUNTER setting is the line number on which the final print line
of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable body group.

f. If the body group that has just been presented is a control footing report group,
and if the control footing report group is not associated with the highest level at
which the RWCS detected a control break, then the final LINE-COUNTER setting
is the line number on which the final print line of the control footing report group
was presented. ·

For all other cases the RWCS places the sum of the line number on which the final
print line was presented and the NEXT GROUP integer into LINE-COUNTER as
the final LINE-COUNTER setting.

Page Footing Presentation Rules
Table 14-3 specifies the appropriate presentation rules for all permissible combinations of
LINE NUMBER and NEXT GROUP clauses in a page footing report group.

*

Table 14-3. Page Footing Presentation Rules

Applicable Rules***
** If the PAGE clause is specified.

Sequence First Final
of LINE NEXT Print LINE-
NUMBER GROUP Upper Lower Line Next COUNTER
clause* clause Limit Limit Position Group Setting
AR Absolute 1 2 3a 4a 5a
AR Relative 1 2 3a 4b 5b
AR 1 2 3a 5c

3b 5d

Refer to "LINE NUMBER Clause Notation" on page 14-34 for a description of
the abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is totally
absent from the report group description entry.

Report Writer 14-41

*** A blank entry in an applicable rules column indicates the absence of the named
rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

Note: If the PAGE clause is omitted from the report description entry, then a page
footing report group may not be defined. Refer to "TYPE Clause" on page 14-59.

The page footing presentation rules are as follows:

1. Upper limit rule

The first line number on which the page footing report group can be presented is the
line number obtained by adding one to the value of integer 5 of the FOOTING phrase
of the PAGE clause.

2. Lower limit rule

The last line number on which the page footing report group can be presented is the
line number specified by integer 1 of the PAGE clause.

3. First print line position rules

a. The first print line of the page footing report group is presented on the line speci
fied by the integer of its LINE NUMBER clause.

b. The page footing report group is not presented.

4. Next group rules

a. The NEXT GROUP integer must be greater than the line number on which the
final print line of the page footing report group is presented. In addition, the
NEXT GROUP integer must not be greater than the line number specified by
integer 1 of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the final print
line of the page footing report group is presented must not be greater than the line
number specified by integer 1 of the PAGE clause.

5. Final LINE-COUNTER setting rules

a. After the page footing report group is presented, the RWCS places the NEXT
GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the page footing report group is presented, the RWCS places the sum of the
NEXT GROUP integer and the line number on which the final print line of the
PAGE FOOTING report group was presented into LINE-COUNTER as the final
LINE-COUNTER setting.

c. After the PAGE FOOTING report group is presented, the final LINE-COUNTER
setting is the line number on which the final print line of the PAGE FOOTING
report group was presented.

d. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

14-42 Language Reference

Report Footing Presentation Rules
Figure 14-6 on page 14-44 specifies the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a report footing report
group. The report footing presentation rules are as follows:

1. Upper limit rules

a. If a page footing report group has been presented on the page to which the report is
currently positioned, then the first line number on which the report footing report
group can be presented is one greater than the final LINE-COUNTER setting estab
lished by the page footing report group.

Otherwise, the first line number on which the report footing report group can be
presented is the line number obtained by adding one and the value of integer 5 of
the PAGE clause.

b. The first line number on which the report footing report group can be presented is
the line number specified by the HEADING phrase of the PAGE clause.

2. Lower limit rules

a. The last line number on which a control heading report group or detail report
group can be presented is the line number specified by the last detail phrase of the
PAGE clause.

b. The last line number on which a control footing report group can be presented is
the line number specified by the FOOTING phrase of the PAGE clause.

3. First print line position

a. The first print line of the report footing report group is presented on the line speci
fied by the integer of its LINE NUMBER clause.

b. If a page footing report group has been presented on the page to which the report is
currently positioned, then the sum of the final LINE-COUNTER setting established
by the page footing report group and the integer of the first LINE NUMBER clause
of the report footing report group defines the line number on which the first print
line of the report footing report group is presented. Otherwise, the sum of the
integer of the first LINE NUMBER clause of the report footing report group and
the line number specified by the value of integer-5 of the FOOTING phrase of the
PAGE clause defines the line number on which the first print line of the report
footing report group is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause directs that
the report footing report group is presented on a page on which no other report
group has been presented. The first print line of the report footing report group is
presented on the line number specified by the integer of its LINE NUMBER clause.

d. The sum of the content of LINE-COUNTER and the integer of the first LINE
NUMBER clause defines the line number on which the first print line is presented.

e. The report footing report group is not presented.

4. Final LINE-COUNTER setting rules

a. The final LINE-COUNTER setting is the line number on which the final print line
of the report footing report group is presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

Report Writer 14-43

Applicable Rules***
**

If the PAGE clause is specified. If the PAGE clause is omitted.

Sequence First Final First Final
of LINE NEXT Print LINE- Print LINE-
NUMBER GROUP Upper Lower Line Next COUNTER Line COUNTER
clauses* clause Limit Limit Position Group Setting Position Setting

AR 1a 2 3a 4a Illegal Combination t

R 1a 2 3b 4a 3d 4a

NPR 1b 2 3c 4a Illegal Combination t

3e 4b 3e 4b

Figure 14-6. Report Footing Presentation Rules

*

**

t

See "LINE NUMBER Clause" on page 14-49 for a description of the abbrevi
ations used in column 1.

A blank entry in column 1 or column 2 indicates that the named clause is totally
absent from the report group description entry.

A blank entry in an applicable rules column indicates the absence of the named
rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

See "LINE NUMBER Clause" on page 14-49.

14-44 Language Reference

COLUMN NUMBER Clause

Function

The COLUMN NUMBER clause identifies a printable item and specifies the position of the
item on a print line.

General Format

The following figure shows the format of the COLUMN NUMBER clause:

---COLUMN-~-----~- i nteger-1----. .. _..
L NUMBER IS _J

Syntax Rules

The following syntax rules apply to the COLUMN NUMBER clause:

1. The COLUMN NUMBER clause can be specified only at the elementary level within a
report group. The COLUMN NUMBER clause, if present, must appear in or be subor
dinate to an entry that contains a LINE NUMBER clause.

2. Within a given print line, the printable items should be defined in
ascending column number order such that each printable item defined
occupies a unique sequence of contiguous character positions. No
restrictions on the sequence of COLUMN NUMBER clauses are enforced.

General Rules
The following rules apply to the COLUMN NUMBER clause:

osvs

1. The COLUMN NUMBER clause indicates that the object of a SOURCE clause, the
object of a VALUE clause or the sum counter defined by a SUM clause is to be pre
sented on the print line. The absence of a COLUMN NUMBER clause indicates that
the entry is not to be presented on a print line.

2. integer-1 specifies the column number of the leftmost character position of the print
able item.

3. The RWCS supplies space characters for all positions of a print line that are not occu
pied by printable items.

4. The leftmost position of the print line is considered to be column number 1.

Report Writer 14-45

Data-Name

Function

The data name specifies the name of the data-item being described.

General Format

The following figure shows the format of the data-name.

~ data-name-1 __....

Syntax Rule

In the REPORT SECTION, data-name-1 need not appear in a data description entry.

General Rules

In the REPORT SECTION, data-name-1 must be given in the following cases:

1. When data-name-1 represents a report group to be referred to by a GENERATE or a
USE statement in the Procedure Division

2. When reference is to be made to the sum counter in the Procedure Division or
REPORT SECTION

3. When a DETAIL report group is referenced in the UPON phrase of the SUM clause

4. When data-name-1 is required to provide sum counter qualification.

14-46 Language Reference

GROUP INDICATE Clause

Function

The GROUP INDICATE clause specifies that the associated printable item is presented
only on the first occurrence of its report group after a control break or page advance.

General Format

The following figure shows the format of the GROUP INDICATE clause:

..,.__GROUP L _J
INDICATE

....

Syntax Rule

The GROUP INDICATE clause must only be specified in a DETAIL report group entry
that defines a printable item.

General Rules

The following rules apply to the GROUP INDICATE clause:

1. If a GROUP INDICATE clause is specified, it causes the SOURCE or VALUE clause to
be ignored and spaces supplied, except:

a. On the first presentation of the DETAIL report group in the report

b. On the first presentation of the DETAIL report group after every page advance

c. On the first presentation of the DETAIL report group after every control group.

2. If the report description entry specifies neither a PAGE clause nor a CONTROL clause,
then a GROUP INDICATE printable item is presented the first time its DETAIL is pre
sented after the INITIATE statement is executed. Thereafter, spaces are supplied for
indicated items with SOURCE or VALUE clauses.

Report Writer 14-47

Level-Number

Function

The level-number indicates the position of a data-item within the hierarchical structure of
a report group.

General Format

The following figure shows the format of the level-number .

.,....___level-number ----M

Syntax Rules

The following syntax rules apply to the level-number:

1. A level-number is required as the first element in each data description entry.

2. Data description entries subordinate to an RD entry must have level-numbers 01
through 49 only.

General Rules

The following syntax rules apply to the level-number:

1. The level-number 01 identifies the first entry in a report group.

2. Multiple level 01 entries subordinate to a report description entry having the level
indicator RD do not represent implicit redefinitions of the same area.

14-48 Language Reference

LINE NUMBER Clause

Function

The LINE NUMBER clause specifies vertical positioning information for its report group.

General Format

The following figure shows the format of the LINE NUMBER clause:

- LINE ----.-L----_J~.----.-~- i nteger-1
NUMBER IS

PLUS i nteger-2 _o_N ______ ---i

NEXT PAGE--------~

>------~-NEXT PAGE

osvs

Syntax Rules

The following syntax rules apply to the LINE NUMBER clause:

1. integer-1 and integer-2 must not exceed three significant digits in length.

Neither integer-1 nor integer-2 may be specified in such a way as to cause any line of a
report group to be presented outside the vertical subdivision of the page designated for
that report group type, as defined by the PAGE clause. Refer to "PAGE Clause" on
page 14-22.

integer-2 may be zero.

2. Within a given report group description entry, an entry that contains a LINE
NUMBER clause must not contain a subordinate entry that also contains a LINE
NUMBER clause.

3. Within a given report group description entry, all absolute LINE NUMBER clauses
must precede all relative LINE NUMBER clauses.

4. Within a given report group description entry, successive absolute LINE NUMBER
clauses must specify integers that are in ascending order. The integers need not be
consecutive.

5. If the PAGE clause is omitted from a given report description entry, only relative LINE
NUMBER clauses may be specified in any report group description entry within that
report.

6. Within a given report group description entry, a NEXT PAGE phrase may appear only
once and, if present, must be in the first LINE NUMBER clause in that report group
description entry.

7. A LINE NUMBER clause with the NEXT PAGE phrase may appear only in the
description of body groups and in a REPORT FOOTING report group.

8. Every entry that defines a printable item (refer to "COLUMN NUMBER Clause" on
page 14-45) must either contain a LINE NUMBER clause, or be subordinate to an
entry that contains a LINE NUMBER clause.

Report Writer 14-49

9. The first LINE NUMBER clause specified within a PAGE FOOTING report group must
be an absolute LINE NUMBER clause.

General Rules

The following general rules apply to the LINE NUMBER clause:

1. A LINE NUMBER clause must be specified to establish each print line of a report
group.

2. The RWCS effects the vertical positioning specified by a LINE NUMBER clause before
presenting the print line established by that LINE NUMBER clause.

3. integer-1 specifies an absolute line number. An absolute line number specifies the line
number on which the print line is presented.

4. integer-2 specifies a relative line number. If a relative LINE NUMBER clause is not
the first LINE NUMBER clause in the report group description entry, the line number
on which its print line is presented is the line number on which the previous print line
of the report group was presented, added to integer-2 of the relative LINE NUMBER
clause. If integer-2 is zero, the line will be printed on the same line as the previous
print line.

If a relative LINE NUMBER clause is the first LINE NUMBER clause in the report
group description entry, then the line number on which its print line is presented is
determined by specified rules. Refer to "Presentation Rules Tables" on page 14-32.

5. The NEXT PAGE phrase specifies that the report group is to be presented beginning on
the indicated line number on a new page. Refer to "Presentation Rules Tables" on
page 14-32.

14-50 Language Reference

NEXT GROUP Clause

Function

The NEXT GROUP clause specifies information for vertical positioning of a page following
the presentation of the last line of a report group.

General Format
The following figure shows the general format of the NEXT GROUP clause:

--NEXT GROUP L :J L integer-3 ~
IS LPLUS integer-4~

NEXT PAGE --~

Syntax Rules

The following syntax rules apply to the NEXT GROUP clause:

1. A report group entry must not contain a NEXT GROUP clause unless the description
of that report group contains at least one LINE NUMBER clause.

2. integer-3 and integer-4 must not exceed three significant digits in length.

3. If the PAGE clause is omitted from the report description entry, only a relative NEXT
GROUP clause may be specified in any report group description entry within that
report.

4. The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a PAGE
FOOTING report group.

5. The NEXT GROUP clause must not be specified in a REPORT FOOTING report group
or in a PAGE HEADING report group.

General Rules

The following general rules apply to the NEXT GROUP clause:

1. Any positioning of the page specified by the NEXT GROUP clause takes place after the
presentation of the report group in which the clause appears. Refer to "Presentation
Rules Tables" on page 14-32.

2. The RWCS uses the vertical positioning information supplied by the NEXT GROUP
clause along with information from the TYPE and PAGE clauses and the value in
LINE-COUNTER to determine a new value for LINE-COUNTER. Refer to "Presenta
tion Rules Tables" on page 14-32.

3. The NEXT GROUP clause is ignored by the RWCS when it is specified on a CONTROL
FOOTING report group that is at a level other than the highest level at which a
control break is detected.

Report Writer 14-51

4. The NEXT GROUP clause of a body group refers to the next body group to be pre
sented and, therefore, can affect the location at which the next body group is pre
sented. The NEXT GROUP clause of a REPORT HEADING report group can affect the
location at which the PAGE HEADING report group is presented. The NEXT GROUP
clause of a PAGE FOOTING report group can affect the location at which the
REPORT FOOTING report group is presented. Refer to "Presentation Rules Tables"
on page 14-32.

14-52 Language Reference

SIGN Clause

Function

The SIGN clause specifies the position and the mode of representation of the operational
sign when it is necessary to describe these properties explicitly.

General Format

The following figure shows the general format of the SIGN clause:

....
LsIGN

j LEADING T SEPARATE
LIS L TRAILING L CHARACTER _J

Syntax Rules

The following syntax rules apply to the SIGN clause:

1. The SIGN clause may be specified only for a numeric data description entry whose
PICTURE contains the character S.

2. The numeric data description entries to which the SIGN clause applies must be
described, implicitly or explicitly, as USAGE IS DISPLAY.

3. When the SIGN clause is included in a report group description entry, the SEPARATE
CHARACTER phrase must be specified.

General Rules

The following rules apply to the SIGN clause:

1. The optional SIGN clause, if present, specifies the position and the mode of represen
tation of the operational sign for the numeric data description entry to which it
applies. The SIGN clause applies only to numeric data description entries whose
PICTURE contains the character S. The S indicates the presence of, but neither the
representation nor, necessarily, the position of the operational sign.

2. A numeric data description entry, whose PICTURE contains the character S but to
which no optional SIGN clause applies, has an operational sign, but neither the repre
sentation nor, necessarily, the position of the operational sign is specified by the char
acter S. In this (default) case, rule 3 does not apply to such signed numeric data-items.
The representation of the default operational sign is defined in "Selection of Character
Representation and Radix" on page 2-20.

3. Since a SIGN clause in a report group description entry must specify the SEPARATE
CHARACTER phrase:

a. The operational sign will be presumed to be the leading (or respectively, trailing)
character position of the elementary numeric data-item. This character position is
not a digit position.

Report Writer 14-53

b. The letter S in a PICTURE character string is counted in determining the size of
the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data format char
acters +and-, respectively.

4. Each numeric data description entry whose PICTURE contains the character S is a
signed numeric data description entry. If a SIGN clause applies to such an entry and
conversion is necessary for purposes of computation or comparisons, conversion takes
place automatically.

14-54 Language Reference

SOURCE Clause

Function

The SOURCE clause identifies the sending data-item that is moved to an associated print
able item defined within a report group description entry.

General Format

The following figure shows the general format for the SOURCE clause:

.,...__SOURCE [J identifier-1--
IS

Syntax Rules

The following rules apply to the SOURCE clause:

1. identifier-1 may be defined in any section of the Data Division. If identifier-1 1s a
REPORT SECTION item it must be a:

a. PAGE-COUNTER

b. LINE-COUNTER

c. Sum counter that is part of the report within which the SOURCE clause appears.

2. identifier-1 specifies the sending data-item of the implicit MOVE statement that the
RWCS executes to move the content of the data-item referenced by identifier-1 to the
printable item. identifier-1 must be defined so that it conforms to the rules for sending
items in the MOVE statement. Refer to "MOVE Statement" on page 7-65.

General Rule

The RWCS formats the print lines of a report group just before presenting the report
group. Refer to "TYPE Clause" on page 14-59. At this time the implicit MOVE statements
specified by SOURCE clauses are executed by the RWCS.

Report Writer 14-55

SUM Clause

Function

The SUM clause establishes a sum counter and names the data-items to be summed.

General Format

The following figure shows the general format of the SUM clause:

~ i
.,...__SUM identifier-1~~~~~~~~-~~~~~~~~~~~~~~~-~--i-~~•~4 L J

1
J LRESET L :::J [data-name-21

UPON data-name-1 ON FINAL __ _,

Syntax Rules

The following rules apply to the SUM clause:

1. identifier-1 must reference a numeric data-item. If identifier-1 is defined in the
REPORT SECTION, identifier-1 must reference a sum counter.

If the UPON phrase is omitted, any identifiers in the associated SUM clause which are
themselves sum counters must be defined either in the same report group that contains
this SUM clause or in a report group which is at a lower level in the control hierarchy
of this report.

If the UPON phrase is specified, any identifiers in the associated SUM clause must not
be sum counters.

2. data-name-1 must be the name of a DETAIL report group described in the same report
as the CONTROL FOOTING report group in which the SUM clause appears.
data-name-1 may be qualified by a report name.

3. A SUM clause may appear only in the description of a CONTROL FOOTING report
group.

4. data-name-2 must be one of the data names specified on the CONTROL clause for this
report. data-name-2 must not be a lower level control than the associated control for
the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the CONTROL clause for
this report.

5. The highest permissible qualifier of a sum counter is the report name.

14-56 Language Reference

General Rules

The following rules apply to the SUM clause:

1. The SUM clause establishes a sum counter. The sum counter is a numeric data-item
with an optional sign. At object time, the RWCS adds into the sum counter the value
in each data-item referenced by identifier-I. This addition is consistent with the rules
for arithmetic statements. Refer to "Arithmetic Statement Rules" on page 7-20.

2. The size of the sum counter is equal to the number of receiving character positions
specified by the PICTURE clause that accompanies the SUM clause in the description
of the elementary item.

3. Only one sum counter exists for an elementary report entry regardless of the number of
SUM clauses specified in the elementary report entry.

4. If the elementary report entry for a printable item contains a SUM clause, the sum
counter serves as a source data-item. The RWCS moves the data contained in the sum
counter, according to the rules of the MOVE statement, to the printable item for pres
entation.

5. If a data-name appears as the subject of an elementary report entry that contains a
SUM clause, the data name is the name of the sum counter; the data name is not the
name of the printable item that the entry may also define.

6. It is permissible for Procedure Division statements to alter the contents of sum
counters.

7. The RWCS adds data-item values referenced by identifiers into sum counters during
the execution of GENERATE and TERMINATE statements. There are three categories
of sum counter incrementing: subtotaling, crossfooting, and rolling forward. Subto
taling is accomplished only during execution of GENERATE statements and after any
control break processing but before processing of the DETAIL report group. Refer to
"GENERATE Statement" on page 14-68. Crossfooting and rolling forward are accom
plished during the processing of CONTROL FOOTING report groups. Refer to "TYPE
Clause" on page 14-59.

8. The UPON phrase provides the capability to accomplish selective subtotaling for the
DETAIL report groups named in the phrase.

9. The RWCS adds each individual addend into the sum counter at a time that depends
upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same CONTROL FOOTING
report group, then the accumulation of that addend into the sum counter is termed
crossfooting.

Crossfooting occurs when a control break takes place and at the time the
CONTROL FOOTING report group is processed.

Crossfooting is performed according to the sequence in which sum counters are
defined within the CONTROL FOOTING report group. That is, all crossfooting
into the first sum counter defined in the CONTROL FOOTING report group is com
pleted, and then all crossfooting into the second sum counter defined in the
CONTROL FOOTING report group is completed.

When one of the addends is the sum counter defined by the data description entry
in which that SUM clause appears, the initial value of that sum counter at the time
of summation is used in the summing operation.

b. When the addend is a sum counter defined in a lower level CONTROL FOOTING
report group, then the accumulation of that addend into the sum counter is termed
rolling forward. A sum counter in a lower level CONTROL FOOTING report group
is rolled forward when a control break occurs and at the time that the lower level
CONTROL FOOTING report group is processed.

c. When the addend is not a sum counter, the accumulation into a sum counter of
such an addend is called subtotaling. If the SUM clause contains the UPON
phrase, the addends are subtotaled when a GENERATE statement for the desig-

Report Writer 14-57

nated DETAIL report group is executed. If the SUM clause does not contain the
UPON phrase, the addends which are not sum counters are subtotaled when any
GENERATE data name statement is executed for the report in which the SUM
clause appears.

10. If two or more of the identifiers specify the same addend, then the addend is added into
the sum counter as many times as the addend is referenced in the SUM clause. It is
permissible for two or more of the data-names to specify the same DETAIL report
group. When a GENERATE data name statement for such a DETAIL report group is
given, the incrementing occurs repeatedly, as many times as data name appears in the
UPON phrase.

11. The subtotaling that occurs when a GENERATE report name statement is executed is
discussed in the appropriate paragraph. Refer to "GENERATE Statement" on
page 14-68.

12. In the absence of an explicit RESET phrase, the RWCS will set a sum counter to zero
at the time that the RWCS is processing the CONTROL FOOTING report group within
which the sum counter is defined. If an explicit RESET phrase is specified, then the
RWCS will set the sum counter to zero at the time that the RWCS is processing the
designated level of the control hierarchy. Refer to the following section "TYPE
Clause" on page 14-59.

Sum counters are initially set to zero by the RWCS during the execution of the INI
TIATE statement for the report containing the sum counter.

14-58 Language Reference

TYPE Clause

Function

The TYPE clause specifies the particular type of report group that is described by this
entry and indicates the time at which the report group is to be processed by the RWCS.

General Format

The following figure shows the general format of the TYPE clause:

---TYPE REPORT HEADING J IS RH
PAGE HEADING J PH
CONTROL HEADING

I
L data-name-2=-

CH FINAL
DETAIL J DE
CONTROL FOOTING I L data-name-3-==r-
CF FINAL
PAGE FOOTING J PF
REPORT FOOTING J RF

Syntax Rules

The following rules apply to the TYPE clause:

1. The following abbreviations are acceptable:

RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.
DE is an abbreviation for DETAIL.
CF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

2. REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL
FOOTING FINAL, PAGE FOOTING, and REPORT FOOTING report groups may each
appear no more than once in the description of a report.

3. PAGE HEADING and PAGE FOOTING report groups may be specified only if a PAGE
clause is specified in the corresponding report description entry.

Report Writer 14-59

4. data-name-2, data-name-3, and FINAL, if present, must be specified in
the CONTROL clause of the corresponding report description entry.
This rule is not enforced with regard to FINAL.

At most, one CONTROL HEADING report group and one CONTROL
FOOTING report group can be specified for each data name or FINAL
in the CONTROL clause of the report description entry. However,
neither a CONTROL HEADING report group nor a CONTROL
FOOTING report group is required for a data name or FINAL specified
in the CONTROL clause of the report description entry.

osvs

5. In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT
FOOTING report groups, SOURCE clauses and USE statements must not reference
any of the following:

a. Group data-items containing a control data-item

b. Data-items subordinate to a control data-item

c. A redefinition or renaming of any part of a control data-item.

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE
statements must not reference control data names.

6. When a GENERATE report name statement is specified in the Procedure Division, the
corresponding report description entry must include no more than one DETAIL report
group. If no GENERATE data name statements are specified for such a report, a
DETAIL report group is not required.

7. The description of a report must include at least one body group.

General Rules

The following rules apply to the TYPE clause:

1. DETAIL report groups are processed by the RWCS as a direct result of GENERATE
statements. If a report group is other than TYPE DETAIL, its processing is an auto
matic RWCS function.

2. The REPORT HEADING phrase specifies a report group that is processed by the
RWCS only once each report, as the first report group of that report. The REPORT
HEADING report group is processed during the execution of the chronologically first
GENERATE statement for that report.

3. The PAGE HEADING phrase specifies a report group that is processed by the RWCS as
the first report group on each page of that report except under the following
conditions:

a. A PAGE HEADING report group is not processed on a page that is to contain only
a REPORT HEADING report group or only a REPORT FOOTING report group.

b. A PAGE HEADING report group is processed as the second report group on a page
when it is preceded by a REPORT HEADING report group that is not to be pre
sented on a page by itself.

Refer to "Presentation Rules Tables" on page 14-32.

4. The CONTROL HEADING phrase specifies a report group that is processed by the
RWCS at the beginning of a control group for a designated control data name or, in the
case of FINAL, is processed during the execution of the chronologically first GEN
ERATE statement for that report. During the execution of any GENERATE statement
at which the RWCS detects a control break, any CONTROL HEADING report groups
associated with the highest control level of the break and lower levels are processed.

5. The DETAIL phrase specifies a report group that is processed by the RWCS when a
corresponding GENERATE statement is executed.

14-60 Language Reference

6. The CONTROL FOOTING phrase specifies a report group that is processed by the
RWCS at the end of a control group for a designated control data name.

In the case of FINAL, the CONTROL FOOTING report group is processed only once
each report as the last body group of that report. During the execution of any GEN
ERATE statement in which the RWCS detects a control break, any CONTROL
FOOTING report group associated with the highest level of the control break or more
minor levels is presented. All CONTROL FOOTING report groups are presented
during the execution of the TERMINATE statement if there has been at least one
GENERATE statement executed for the report. Refer to "TERMINATE Statement" on
page 14-74.

7. The PAGE FOOTING phrase specifies a report group that is processed by the RWCS as
the last report group on each page except under the following conditions:

a. A PAGE FOOTING report group is not processed on a page that is to contain only
a REPORT HEADING report group or only a REPORT FOOTING report group.

b. A PAGE FOOTING report group is processed as the second to last report group on
a page when it is followed by a REPORT FOOTING report group that is not to be
processed on a page by itself.

Refer to "Presentation Rules Tables" on page 14-32.

8. The REPORT FOOTING phrase specifies a report group that is processed by the RWCS
only once each report and as the last report group of that report. The REPORT
FOOTING report group is processed during execution of a corresponding TERMINATE
statement if there has been at least one GENERATE statement executed for the report.
Refer to "TERMINATE Statement" on page 14-74.

9. The sequence of steps that the RWCS executes when it processes a REPORT
HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or REPORT
FOOTING report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the data name
of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group is not printable,
there is no further processing to be done for the report group.

c. If a SUPPRESS statement has not been executed and the report group is printable,
the RWCS formats the print lines and presents the report group according to the
presentation rules for that type of report group. Refer to "Presentation Rules
Tables" on page 14-32.

10. The sequence of steps that the RWCS executes when it processes a CONTROL
FOOTING report group is described below.

The GENERATE rules specify that when a control break occurs, the RWCS produces
the CONTROL FOOTING report groups beginning at the minor level and proceeding
upward through the level at which the highest control break was sensed. In this
regard, it should be noted that even though no CONTROL FOOTING report group has
been defined for a given control data name, the RWCS will still have to execute the
step described in rule lOf on page 14-62 if a RESET phrase within the report
description specifies that control data name.

a. Sum counters are crossfooted; that is, all sum counters defined in this report group
that are operands of SUM clauses in the same report group are added to their sum
counters. Refer to "SUM Clause" on page 14-56.

b. Sum counters are rolled forward; that is, all sum counters defined in the report
group that are operands of SUM clauses in higher level CONTROL FOOTING
report groups are added to the higher level sum counters. Refer to "SUM Clause"
on page 14-56.

c. A USE BEFORE REPORTING procedure references the data name of the report
group, the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group is not printable,
the RWCS next executes the step described in rule lOf on page 14-62.

Report Writer 14-61

e. If a SUPPRESS statement has not been executed and the report group is printable,
the RWCS formats the print lines and presents the report group according to the
presentation rules of CONTROL FOOTING report groups ..

f. The report writer control system then resets those sum counters that are to be reset
when the RWCS processes this level in the control hierarchy. Refer to "SUM
Clause" on page 14-56.

11. The DETAIL report group processing what the RWCS executes in response to a GEN
ERATE data name statement is described in rules lla through lle.

When the description of a report includes exactly one DETAIL report group, the detail
related processing that the RWCS executes in response to a GENERATE report name
statement is described in rules lla through lld. These steps are performed as though a
GENERATE data name statement were being executed.

When the description of a report includes no DETAIL report groups, the detail-related
processing that the RWCS executes in response to a GENERATE report name state
ment is described in rule lla. This step is performed as though the description of the
report included exactly one DETAIL report group and as though GENERATE data
name statement were being executed.

a. The RWCS performs any subtotaling that has been designated for the DETAIL
report group. Refer to "SUM Clause" on page 14-56.

b. If there is a USE BEFORE REPORTING procedure that refers to the data name of
the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed, or if the report group is not print
able, there is no further processing done for the report group.

d. If the DETAIL report group is being processed as a consequence of a GENERATE
report-name statement, there is no further processing done for the report group.

e. If neither llc nor lld applies, the RWCS formats the print lines and presents the
report group according to the presentation rules for DETAIL report groups. Refer
to "Presentation Rules Tables" on page 14-32.

12. Wh,en the RWCS is processing a CONTROL HEADING, CONTROL FOOTING, or
DETAIL report group, as described in rules 9, 10, and 11, the RWCS may have to inter
rupt the processing of that body group after determining that the body group is to be
presented and execute a page advance (and process PAGE FOOTING and PAGE
HEADING report groups) before actually presenting the body group.

13. During control break processing, the values of control data-items that the RWCS used
to detect a given control break are referred to as prior values.

a. During control break processing of a CONTROL FOOTING report group, any refer
ences to control data-items in a USE procedure or SOURCE clause associated with
that CONTROL FOOTING report group are supplied with prior values.

b. When a TERMINATE statement is executed, the RWCS makes the prior control
data-item values available to SOURCE clause or USE procedure references in
CONTROL FOOTING and REPORT FOOTING report groups as though a control
break had been detected in the highest control data-name.

c. All other data-item references within report groups and their USE procedures
access the current values that are contained within the data-items at the time the
report group is processed.

14-62 Language Reference

USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer memory.

General Format

The following figure shows the general format of the USAGE clause:

..,.,.,_-,--------r--DISPLAY ----1

LUSAGE L J
IS

Syntax Rules

The following rules apply to the USAGE clause:

1. The USAGE clause may be written in any data description entry.

2. If the USAGE clause is written in the data description entry for a group item, it may
also be written in the data description entry for a subordinate elementary item or
group item.

3. The USAGE clause for a report group item can specify only USAGE IS DISPLAY.

General Rules

The following rules apply to the USAGE clause:

1. If the USAGE clause is written at a group level, it applies to each elementary item in
the group.

2. The USAGE clause specifies the manner in which a data item is represented in the
memory of a computer. It does not affect the use of the data item, although specifica
tions for some statements in the Procedure Division may restrict the USAGE clause of
the operands referred to. The USAGE clause may affect the radix or type of character
representation of the item.

3. The USAGE IS DISPLAY clause indicates that the format of the data is a standard
data format.

4. If the USAGE clause is not specified for an elementary item, or for any group to which
the item belongs, the usage is implicitly DISPLAY.

Report Writer 14-63

VALUE Clause

Function

The VALUE clause defines the value of REPORT SECTION printable items.

General Format
The following figure shows the general format of the VALUE clause:

.,._VALUE-. ~L-15-~~- l i tera 1-1---....

Syntax Rules

The following rules apply to the VALUE clause:

1. A signed numeric literal must have a signed numeric PICTURE character string asso
ciated with it.

2. A numeric literal in a VALUE clause of an item must have a value which is within the
range of values indicated by the PICTURE clause, and must not have a value which
would require truncation of nonzero digits. A nonnumeric literal in a VALUE clause
of an item must not exceed the size indicated by the PICTURE clause.

3. The VALUE clause must not be specified in any entry that is part of the description or
redefinition of an external data record.

General Rules

The following rules apply to the VALUE clause:

1. The VALUE clause must not conflict with other clauses in the data description of the
item or in the data description within the hierarchy of the item.

a. If the category of the item is numeric, literal-1 in the VALUE clause must be
numeric.

b. If the category of the item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, literal-1 in the VALUE clause must be a nonnumeric literal. The
literal is aligned in the data item as if the data item had been described as alphanu
meric. Refer to "Standard Alignment Rules" on page 2-19. Editing characters in
the PICTURE clause are included in determining the size of the data item but have
no effect on initialization of the data item. Refer to "PICTURE Clause" on
page 6-18. Therefore, the value for an edited item must be specified in an edited
form.

c. Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause
that may be specified.

2. In the REPORT SECTION, if the elementary report entry containing the VALUE
clause does not contain a GROUP INDICATE clause, then the printable item will
assume the specified value each time its report group is printed. However, when the
GROUP INDICATE clause is also present, the specified value will be presented only

14-64 Language Reference

when certain object item conditions exist. Refer to "GROUP INDICATE Clause" on
page 14-47.

Example

The following is an example of Report Group Description Entry and the resulting report
lines.

Report Writer Source Lines

•

I II I
01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.

05 COLUMN IS 2 GROUP INDICATE PICTURE IS A(9) __ --,
SOURCE IS MONTHNAME OF RECORD-AREA (MONTH)~·--~
COLUMN IS 13 GROUP INDICATE PICTURE IS 99
SOURCE IS DAY-1.

05 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT.
05 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES.
05 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE.
05 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST •

01 I TYPE IS CONTROL FOOTING DAY-1. I •
05 LINE NUMBER IS PLUS 2;]1------------m-•

10 COLUMN 2 PICTURE X(22)
VALUE "PURCHASES AND COST FOR". 1-----t---
COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
COLUMN 26 PICTURE X VALUE 11 - 11 • >-----+---~

COLUMN 27 PICTURE 99 SOURCE DAY-1.
COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.
MIN
COLUMN 49 PICTURE $$$9.99 SUM COST.
COLUMN 65 PICTURE $$$$9.99 SUM COST
RESET ON FINAL.

05 ILINE PLUS l!COLUMN 2 PICTURE X(71)
!VALUE ALL "*"·I

I • •
Resulting Report Lines

A02
A02
A02
A03
A04
A05
A05

10
2
1

15
5
8
5

10.00 ~ 3.12
8.00

75.00
7.80
8.00

40.00 ..
~-~~P:::'.U:='.RC~H-:-!As==E=-s-=-AN:::D:--'.c=o:=:ST:-::::Fo=R 2-15 4§] • !Im.92 m---£f?50.92

Report Group Deecrlpllon Entry specifies:

FUNCTION - through TYPE clauses as:

TYPE DETAIL • TYPE CONTROL FOOTING • VERTICAL SPACING - through • relative LINE clauses

HORIZONTAL SPACING - through • COLUMN clauses

CONTENTS - through:

SOURCE clauses • SUM clauses • VALUE clauses •

Report Writer 14-65

Procedure Division in the Report Writer Module

The Procedure Division contains declarative procedures when the USE BEFORE
REPORTING statement from the Report Writer module is present in a COBOL source
program. Shown below is the general format of the Procedure Division when the USE
BEFORE REPORTING statement is present.

- PROCEDURE DIVISION. - DECLARATIVES.------------------

~
- section-name SECTION. - phrase-1 ~L--------,---1--------.-. ...

paragraph-name. J
Lsentence

--END DECLARATIVES.-------------------------

~
--section-name SECTION. --,r---------------.---1

L paragraph-name. 'L J
sentence

where phrase-1 is:

- USE BEFORE REPORTING statement_,.......

14-66 Language Reference

CLOSE Statement

Additional Syntax Rule

A report file must have sequential organization and open mode output. Refer to Chapter 8,
"File Input and Output."

Additional General Rule

All reports associated with a report file that have been initiated must be ended with the
execution of a TERMINATE statement before a CLOSE statement is executed for that
report file.

Report Writer 14-67

GENERATE Statement

Function

The GENERATE statement directs the RWCS to produce a report in accordance with the
report description specified in the REPORT SECTION of the Data Division.

General Format

The following figure shows the general format of the GENERATE statement:

..---- GENERATE L data-riame-1 J
report-name-1

Syntax Rules

....

The following rules apply to the GENERATE statement:

1. data-name-I must name a TYPE DETAIL report group and may be qualified by a report
name.

2. report-name-I may be used only if the referenced report description contains:

a. A CONTROL clause
b. Not more than one DETAIL REPORT GROUP
c. At least one body group.

General Rules

The following rules apply to the GENERATE statement:

1. In response to a GENERATE report-name-I statement, the RWCS performs summary
processing. If all of the GENERATE statements that are executed for a report are of
the form GENERATE report-name-I, then the report that is produced is called a
summary report.

2. In response to a GENERATE data-name-I statement, the RWCS performs detail proc
essing that includes certain processing that is specific for the DETAIL report group
designated by the GENERATE statement. Normally, the execution of a GENERATE
data-name-I statement causes the RWCS to present the designated DETAIL report
group.

3. During the execution of the chronologically first GENERATE statement for a given
report, the RWCS saves the values within the control data items. During the execution
of the second and subsequent GENERATE statements for the same report, and until a
control break is detected, the RWCS utilizes this set of control values to determine
whether a control break has occurred. When a control break occurs, the RWCS saves
the new set of control values, which it thereafter uses to sense for a control break until
another control break occurs.

14;,;68 Language Reference

4. During the report presentation, an automatic function of the RWCS is to process
PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS must
advance the report to a new page for the purpose of presenting a body group. Refer to
"Presentation Rules Tables" on page 14-32.

5. When the chronologically first GENERATE statement for a given report is executed,
the RWCS processes, in order, the report groups that are named below, provided that
such report groups are defined within the report description. The RWCS also processes
PAGE HEADING and PAGE FOOTING report groups as described in rule 4. The
actions taken by the RWCS when it processes each type of report group are explained
under the appropriate paragraph. Refer to "TYPE Clause" on page 14-59.

a. The REPORT HEADING report group is processed.

b. The PAGE HEADING report group is processed.

c. All CONTROL HEADING report groups are processed from major to minor.

d. If a GENERATE data-name-1 statement is being executed, the processing for the
designated DETAIL report group is performed. If a GENERATE report-name-1
statement is being executed, a certain number of the steps that are involved in the
processing of a DETAIL report group are performed. Refer to "TYPE Clause" on
page 14-59.

The following figure shows the sequence of operations of the FIRST GENERATE state
ment.

main line
COBOL
program

write (as
specified)
RH, PH,
CH FINAL

write (as
specified)
CH major -
CH minor

write
DETAIL
line . .

GENERATE
(next
sequential
instruction)

NO

6. When a GENERATE statement other than the chronologically first is executed for a
given report, the RWCS performs the steps listed below, as applicable. The RWCS also
processes PAGE HEADING and PAGE FOOTING report groups as described in rule 4.
The actions taken by the RWCS when it processes each type of report group are
explained under the appropriate paragraph. Refer to "TYPE Clause" on page 14-59.

a. Sense for control break. The rules for determining the equality of control data
items are the same as those specified for relation conditions. If a control break has
occurred, then:

1) Enable the CONTROL FOOTING USE procedures and CONTROL FOOTING
SOURCE clauses to access the control data item values that the RWCS used to
detect a given control break. Refer to "TYPE Clause" on page 14-59.

2) Process the CONTROL FOOTING report groups in the order minor to major.
Only CONTROL FOOTING report groups that are not more major than the
highest level at which a control break occurred are processed.

3) Process the CONTROL HEADING report groups in the order major to minor.
Only the CONTROL HEADING report groups that are not more major than the
highest level at which a control break occurred are processed.

b. If a GENERATE data-name-1 statement is being executed, the processing for the
designated DETAIL report group is performed. If a GENERATE report-name-1
statement is being executed, certain of the steps that are involved in the processing
of a DETAIL report group are performed. Refer to "TYPE Clause" on page 14-59.

Report Writer 14-69

7. GENERATE statements for a report can be executed only after an INITIATE statement
for the report has been executed and before a TERMINATE statement for the report
has been executed.

The following figure shows the sequence of operations of subsequent GENERATE
statements.

main line
COBOL
program

GENERATE
(next
sequential
instruction)

Note: When the PAGE clause

add all SUM
operands

is specified, the following Enter
steps are executed before each
printable body group is
produced.

Return

14-70 Language Reference

add SUM
O!Jerands up to
this control
level and save

reset SUM
operands up to
this control
level

write
DETAIL
line

save new
control
values

write control
headings-
this level to
minor, using
new values

If a USE BEFORE REPORTING Declarative is specified,
it is executed just before its associated control
group is produced, whether or not a control break
or page break occurred.

write page
footing

advance page
and increment
PAGE-COUNTER

write control
footings-
minor to this
level, using
old values

set controls
to new values

write page
heading

INITIATE Statement

Function

The INITIATE statement causes the RWCS to begin the processing of a report.

General Format

The following figure shows the general format of the INITIATE statement:

' ~INITIATE report-name-1

Syntax Rule

report-name-1 must be defined by a report description entry in the REPORT SECTION of
the Data Division.

General Rules

The following rules apply to the INI'rIATE statement:

1. The INITIATE statement performs the following initialization functions for each
named report:

a. All sum counters are set to zero
b. LINE-COUNTER is set to zero
c. PAGE-COUNTER is set to one.

2. The INITIATE statement does not place the file associated with the report in the open
mode; therefore, an OPEN statement with either the OUTPUT phrase or the EXTEND
phrase for the file must be executed before the execution of the INITIATE statement.

3. A subsequent INITIATE statement for report-name-1 must not be executed unless an
intervening TERMINATE statement has been executed for report-name-1.

4. If more than one report name is specified in an INITIATE statement, the result of exe
cuting this INITIATE statement is the same as if a separate INITIATE statement had
been written for each report name in the same order as specified in the INITIATE
statement.

Report Writer 14-71

OPEN Statement·

Additional Syntax Rules

The following rules apply to the OPEN statement:

1. A report file must have sequential organization.

2. The OPEN statement for a report file must contain only the OUTPUT phrase or the
EXTEND phrase.

Refer to Chapter 8, "File Input and Output."

Additional General Rule

The OPEN statement for a report file must be executed prior to the execution of an INI
TIATE statement for any reports contained in the file.

14-72 Language Reference

SUPPRESS Statement

Function

The SUPPRESS statement causes the RWCS to inhibit the presentation of a report group.

General Format

The following figure shows the general format of the SUPPRESS statement:

...___SUPPRESS L ~
PRINTING

Syntax Rule

The SUPPRESS statement may only appear in a USE BEFORE REPORTING procedure.

General Rules

The following rules apply to the SUPPRESS statement:

1. The SUPPRESS statement inhibits presentation only for the report group named in the
USE procedure within which the SUPPRESS statement appears.

2. The SUPPRESS statement must be executed each time the presentation of the report
group is to be inhibited.

3. When the SUPPRESS statement is executed, the RWCS is instructed to inhibit the
processing of the following report group functions:

a. The presentation of the print lines of the report group.
b. The processing of all LINE clauses in the report group.
c. The processing of the NEXT GROUP clause in the report group.
d. The adjustment of LINE-COUNTER.

4. The SUPPRESS PRINTING function may also be achieved by moving
the value 1 to the special register PRINT-SWITCH.

The statement:

MOVE 1 TO PRINT-SWITCH

has exactly the same effect as the statement:

SUPPRESS PRINTING

osvs

Report Writer 14-73

TERMINATE Statement

Function

The TERMINATE statement causes the RWCS to complete the processing of the specified
reports.

General Format

The following figure shows the general format of the TERMINATE statement:

t
--TERMINATE report-name-I____...,.

Syntax Rule

report-name-I must be defined by a report description entry in the REPORT SECTION of
the Data Division.

General Rules

The following rules apply to the TERMINATE statement:

1. The TERMINATE statement causes the RWCS to produce all the CONTROL
FOOTING report groups beginning with the minor CONTROL FOOTING report group.
The REPORT FOOTING report group is then produced. The RWCS makes the prior
set of control data item values available to the CONTROL FOOTING and REPORT
FOOTING SOURCE clauses and USE procedures, as though a control break had been
sensed in the most major control data-name.

2. If no GENERATE statements have been executed for a report between the execution of
an INITIATE statement and a TERMINATE statement, the TERMINATE statement
does not cause the RWCS to produce any report groups or perform any of the related
processing for that report.

3. During report presentation, an automatic function of the RWCS is to process PAGE
HEADING and PAGE FOOTING report groups, if defined, when the RWCS must
advance the report to a new page for presenting a body group. Refer. to "Presentation
Rules Tables" on page 14-32.

4. The TERMINATE statement cannot be executed for a report unless the TERMINATE
statement was chronologically preceded by an INITIATE statement for which no TER
MINATE statement has yet been executed.

5. If more than one report name is specified in a TERMINATE statement, the result of
executing this TERMINATE statement is the same as if a separate TERMINATE state
ment had been written for each report name in the same order as specified in the TER
MINATE statement.

14-74 Language Reference

6. The TERMINATE statement does not close the file with which the report is associated;
a CLOSE statement for the file must be executed. Every report that is in an initiated
condition must be terminated before a CLOSE statement is executed for the associated
file.

The figure below shows the sequence of operations of the TERMINATE statement.

main line
add all SUM COBOL

program f----. operands . and save . .
TERMINATE
(next

I+-sequential
instruction)

'--
produce
RF group

save new
~ control ~

'4-----

values

produce l+--i PF group•

•-omitted if there is
no PAGE clause

write control
footings --
minor to
major, using
old values

I
set controls
to new values

I
reset SUM
operands up
to major
level

I
produce
CF FINAL
group

Report Writer 14-75

USE BEFORE REPORTING Statement

Function

The USE BEFORE REPORTING statement specifies Procedure Division statements that
are executed just before a report group named in the REPORT SECTION of the Data Divi
sion is presented.

General Format

The following figure shows the general format of the USE BEFORE REPORTING state
ment:

.,.__USE BEFORE REPORTING identifier-1---

Syntax Rules

The following rules apply to the USE BEFORE REPORTING statement:

1. A USE BEFORE REPORTING statement, when present, must immediately follow a
section header in the declaratives portion of the Procedure Division and must appear
in a sentence by itself. The remainder of the section must consist of zero, one, or more
procedural paragraphs that define the procedures to be used.

2. identifier-I must reference a report group. identifier-I must not appear in more than
one USE BEFORE REPORTING statement.

3. The GENERATE, INITIATE, or TERMINATE statements must not appear in a para
graph within a USE BEFORE REPORTING procedure. A PERFORM statement in a
USE BEFORE REPORTING procedure must not have GENERATE, INITIATE, or TER
MINATE statements in its range.

4. A USE BEFORE REPORTING procedure must not alter the value of any control data
item.

5. The USE BEFORE REPORTING statement itself is never executed; it merely defines
the conditions calling for the execution of the USE procedures.

General Rules

The following rules apply to the USE BEFORE REPORTING statement:

1. A declarative procedure is invoked just before the named report group is produced
during the execution of the program. The report group is named by identifier-I in the
USE BEFORE REPORTING statement which prefaces the declarative.

2. Within a declarative procedure, there must be no reference to any nondeclarative pro
cedures.

3. Procedure names associated with a USE BEFORE REPORTING statement may be ref
erenced in a different declarative section or in a nondeclarative procedure only with a
PERFORM statement.

14-76 Language Reference

4. In the USE BEFORE REPORTING statement, the designated procedures are executed
by the RWCS just before the named report group is produced. Refer to "TYPE Clause"
on page 14-59.

5. Within a USE procedure, there must not be the execution of any statement that would
cause the execution of a USE procedure that had previously been invoked and had not
yet returned control to the invoking routine.

Report Writer Sample Program

The following example shows a complete Report Writer sample program.

This program is run after the close of the last working day of each month of the year. It
supplies a record of purchases made by the Acme Manufacturing Company during the
current year. Detail purchases for the current month are reported. For previous months,
only a summary of each day's purchases is reported. In addition, a summary of the total
number and amount of purchases is presented for each month, each quarter, and for the
year to date.

INFILE, the input file, is an indexed file of the current year's purchases ordered on the
invoice number of each purchase, with alternate ordering both on the date of purchase and
on department. (This same file is used for report programs other than the one illustrated
here.) INFILE is created via remote terminal from the comptroller's office; after each pur
chase order is signed by the comptroller, details of the purchase are added to the file from
the terminal.

REPORT-FILE, the output file, is a physical sequential file assigned to the printer.

Report Writer 14-77

IDENTIFICATION DIVISION.
PROGRAM-ID. ACME.
REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6eee.
OBJECT-COMPUTER. IBM-RISC-6eee.
SPECIAL-NAMES.

SWITCH e IS SW ON IS YEAR-END.

INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT INFILE ASSIGN TO INXMASl
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ORDER-NO PASSWORD IS DEPT-PASS
ALTERNATE RECORD KEY IS DATE-PURCHASE

WITH DUPLICATES
ALTERNATE RECORD KEY IS DEPT

WITH DUPLICATES
FILE STATUS IS SK.

SELECT REPORT-FILE ASSIGN TO "REPORTFL".

DATA DIVISION.
FILE SECTION.
FD INFI LE

LABEL RECORDS ARE OMITTED
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD.
05 ORDER-NO PIC X(6).
05 DEPT PIC XXX.
05 DATE-PURCHASE.

10 MM PIC 99.
10 DD PIC 99.
10 VY PIC 99.

05 NO-PURCHASES PIC 99.
05 TYPE-PURCHASE PIC A.
05 COST PIC 999V99.

FD REPORT-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 121 CHARACTERS
REPORT IS EXPENSE-REPORT.

14-78 Language Reference

WORKING~STORAGE SECTION.
77 SAVED-MONTH PIC 99 VALUE IS 0.
77 CONTINUED PIC X(ll) VALUE IS SPACE.
77 QUARTER-USED PIC X(7).
77 DEPT-PASS PIC X(8) VALUE SPACES.
77 QUARTER PIC 9 VALUE 0.
77 REM PIC 9.
77 SK PIC XX.
01 TODAYS-DATE.

05 YR PIC 99.
05 MO PIC 99.
05 DA PIC 999.

01 QUARTER-NAMES VALUE "1ST2ND3RD4TH"
05 QUARTERNAME PIC X(3) OCCURS 4.

01 DATE-USED.
05 THIS-CENT PIC XX.
05 THIS-YEAR PIC XX.
05 FILLER PIC XXX VALUE SPACES.

01 MONTH-TABLE-1.
05 RECORD-MONTH.

10 FILLER PICTURE A(9) VALUE IS "JANUARY ".
10 FILLER PICTURE A(9) VALUE IS "FEBRUARY ".
10 FILLER PICTURE A(9) VALUE IS "MARCH
10 FILLER PICTURE A(9) VALUE IS "APRIL
10 FILLER PICTURE A(9) VALUE IS "MAY
10 FILLER PICTURE A(9) VALUE IS "JUNE
10 FILLER PICTURE A(9) VALUE IS "JULY
10 FILLER PICTURE A(9) VALUE IS "AUGUST
10 FILLER PICTURE A(9) VALUE IS "SEPTEMBER".
10 FILLER PICTURE A(9) VALUE IS "OCTOBER ".
10 FILLER PICTURE A(9) VALUE IS "NOVEMBER ".
10 FILLER PICTURE A(9) VALUE IS "DECEMBER ".

05 RECORD-AREA REDEFINES RECORD-MONTH.
10 MONTHNAME PICTURE A(9) OCCURS 12 TIMES.

Report Writer 14-79

REPORT SECTION.
RD EXPENSE-REPORT

CONTROLS ARE FINAL QUARTER MM DD
PAGE LIMIT IS 59 LINES
HEADING 1
FIRST DETAIL 9
LAST DETAIL 48
FOOTING 52.

01 TYPE IS REPORT HEADING.
05 LINE NUMBER IS 1

COLUMN NUMBER IS 27
PICTURE IS A(26)
VALUE IS "ACME MANUFACTURING COMPANY".

05 LINE NUMBER IS 3
COLUMN NUMBER IS 26
PICTURE IS A(27)
VALUE IS "RUNNING EXPENDITURES REPORT".

01 PAGE-HEAD
TYPE IS PAGE HEADING.
05 LINE NUMBER IS 5.

10 COLUMN IS 30
PICTURE IS A(9)
SOURCE IS MONTHNAME (MM).

10 COLUMN IS 39
PICTURE IS A(12)
VALUE IS "EXPENDITURES".

10 COLUMN IS 52
PICTURE IS X(ll)
SOURCE IS CONTINUED.

05 LINE IS 7.
10 COLUMN IS 2

PICTURE IS X(35)
VALUE IS "MONTH DAY DEPT NO-PURCHASES".

10 COLUMN IS 40
PICTURE IS X(33)
VALUE IS "TYPE COST CUMULATIVE-COST".

01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.
05 COLUMN IS 2 GROUP INDICATE PICTURE IS A(9)

SOURCE IS MONTHNAME (MM).
05 COLUMN IS 13 GROUP INDICATE PICTURE IS 99

SOURCE IS DD.
05 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT.
05 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES.
05 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE.
05 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST.

14-80 Language Reference

01 TYPE IS CONTROL FOOTING DD.
05 LINE NUMBER IS PLUS 2.

10 COLUMN 2 PICTURE X(22)
VALUE "PURCHASES AND COST. FOR".

10 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
10 COLUMN 26 PICTURE X VALUE "-".
10 COLUMN 27 PICTURE 99 SOURCE DD.
10 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.
10 MIN

COLUMN 49 PICTURE 9.99 SUM COST.
10 COLUMN 65 PICTURE $9.99 SUM COST

RESET ON FINAL.
05 LINE PLUS 1 COLUMN 2 PICTURE X(71)

VALUE ALL "*".
01 TYPE CONTROL FOOTING MM

LINE PLUS 1 NEXT GROUP NEXT PAGE.
05 COLUMN 16 PICTURE A(l4) VALUE "TOTAL COST FOR".
05 COLUMN 31 PICTURE A(9)

SOURCE MONTHNAME (MM).
05 COLUMN 43 PICTURE AAA VALUE "WAS".
05 INT

COLUMN 48 PICTURE 9.99 SUM MIN.
01 QUARTER-FOOT TYPE CONTROL FOOTING QUARTER

LINE NEXT PAGE.
05 COLUMN 16 PIC A(l4)

VALUE "TOTAL COST FOR".
05 COLUMN 31 PIC X(3)

SOURCE QUARTERNAME (QUARTER).
05 COLUMN 35 PIC A(7)

VALUE "QUARTER".
05 COLUMN 43 PIC A(7)

SOURCE QUARTER-USED.
05 QUARTER-INT COLUMN 52 PIC $9.99

SUM INT.
01 FINAL-FOOT TYPE CONTROL FOOTING FINAL

LINE NEXT PAGE.
05 COLUMN 16 PIC A(l9)

VALUE "TOTAL COST FOR YEAR".
05 COLUMN 36 PIC A(7)

SOURCE DATE-USED.
05 COLUMN 52 PIC $$9.99

SUM QUARTER-INT.
01 TYPE PAGE FOOTING LINE 57.

05 COLUMN 59 PICTURE X(l2) VALUE "REPORT-PAGE-".
05 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER.

01 TYPE REPORT FOOTING
LINE PLUS 1 COLUMN 32 PICTURE A(l3}
VALUE "END OF REPORT".

Report Writer 14-81

PROCEDURE DIVISION.
DECLARATIVES.
PAGE-HEAD-RTN SECTION.

USE BEFORE REPORTING PAGE-HEAD.
PAGE-HEAD-RTN-TEST.

IF MM NOT = SAVED-MONTH NEXT SENTENCE
ELSE MOVE "(CONTINUED)" TO CONTINUED

GO TO PAGE-HEAD-RTN-EXIT.
IF SAVED-MONTH = 3 OR 6 OR 9 OR YEAR-END

MOVE 1 TO PRINT-SWITCH MOVE 0 TO REM
ELSE MOVE SPACES TO CONTINUED MOVE 1 TO REM.
MOVE MM TO SAVED-MONTH.

PAGE-HEAD-RTN-EXIT.
EXIT.

QUARTER-FOOT-ROUTINE SECTION.
USE BEFORE REPORTING QUARTER-FOOT.

QUARTER-FOOT-PROCESS.
IF YEAR-END MOVE 4 TO QUARTER.
IF REM NOT = 0 MOVE "TO DATE" TO QUARTER-USED

ELSE MOVE "WAS II TO QUARTER-USED.
QUARTER-FOOT-PROCESS-END.

EXIT.
FINAL-FOOT-ROUTINE SECTION.

USE BEFORE REPORTING FINAL-FOOT.
FINAL-FOOT-PROCESS.

IF YEAR-END
MOVE "19" TO THIS-CENT
MOVE YY TO THIS-YEAR

ELSE MOVE "TO DATE" TO DATE-USED.
FINAL-FOOT-PROCESS-END.

EXIT.
END DECLARATIVES.

14-82 Language Reference

NONDECLARATIVES SECTION.
BEGIN-PROCESS.

ACCEPT DEPT-PASS.
ACCEPT TODAYS-DATE FROM DATE.
OPEN INPUT INFILE OUTPUT REPORT-FILE.
IF SK NOT = "00" GO TO EXCEPTION-2.
MOVE 010101 TO DATE-PURCHASE.
START INFILE KEY NOT LESS THAN DATE-PURCHASE.
INITIATE EXPENSE-REPORT.

READATA.
READ INFILE NEXT.
IF SK NOT = "00" GO TO .EXCEPTION-I.
IF MM NOT = SAVED-MONTH

PERFORM QUARTER-CALC-1 THRU QUARTER-CALC-END
ELSE GO TO SWITCH-PARA.

IFMM=MO
ALTER SWITCH-PARA TO PROCEED TO DETAIL-REPORT.

SWITCH-PARA.
GO TO SUMMARY-REPORT.

SUMMARY-REPORT.
GENERATE EXPENSE-REPORT.
GO TO READATA.

DETAIL-REPORT.
GENERATE DETAIL-LINE.
GO TO READATA.

QUARTER-CALC-1.
IF SAVED-MONTH = 3 OR 6 OR 9 OR YEAR-END

ADD 1 TO QUARTER.
QUARTER-CALC-END.

EXIT.
EXCEPTION-I.

TERMINATE EXPENSE-REPORT.
IF SK = "10" GO TO END-PROGRAM.
DISPLAY "INPUT RECORD = " INPUT-RECORD.

EXCEPTION-2.
DISPLAY "STATUS KEY = II SK.
DISPLAY "SAVE CONSOLE SHEET".

END-PROGRAM.
CLOSE INFILE REPORT-FILE.
STOP RUN.

Report Writer 14-83

~4-84 Language Reference

Chapter 15. Communication

Communication 15-1

Contents

About This Chapter . 15-3
Introduction . 15-4
Data Division in the Communication Module . 15-4

COMMUNICATION SECTION . 15-4
Communication Description - Complete Entry Skeleton 15-4
Example 1 . 15-16
Example 2 . 15-16
Example 3 . 15-17
Example 4 . 15-17
Example 5 . 15-17
Example 6 . 15-17
Example 7 . 15-18
Example 8 . 15-18

Procedure Division in the Communication Module . 15-19
ACCEPT MESSAGE COUNT Statement . 15-20

Function . 15-20
General Format . 15-20
Syntax Rule . 15-20
General Rules . 15-20

DISABLE Statement . 15-21
Function . 15-21
General Format . 15-21
Syntax Rules . 15-21
General Rules . 15-21

ENABLE Statement . 15-23
Function . 15-23
General Format . 15-23
Syntax Rules . 15-23
General Rules . 15-23

PURGE Statement . 15-25
Function . 15-25
General Format . 15-25
Syntax Rule . 15-25
General Rules . 15-25

RECEIVE Statement . 15-26
Function . 15-26
General Format . 15-26
Syntax Rule . 15-26
General Rules . 15-26

SEND Statement . 15-29
Function . 15-29
General Format . 15-29
Syntax Rules . 15-29
General Rules . 15-30

Communication Sample Program . 15-33

15'-2 Language Reference

About This Chapter

This chapter describes the AIX VS COBOL Communications module and how it provides
the ability to access, process, and create messages among various communication programs
and devices.

AIX VS COBOL accepts the syntax for the ANSI Communications optional module.
However, Communications is not supported at run time. Therefore, you can compile pro
grams that use this Communications syntax, but you cannot run them on this system.

Communication 15•3

Introduction

The communication module provides the ability to access, process, and create messages or
portions thereof. It provides the ability to communicate through a Message Control
System (MCS) with local and remote communication devices.

Data Division in the Communication Module

Data Division in the Communication Module contains two sections: the COMMUNI
CATION SECTION and the Communication Description - Complete Entry Skeleton.

COMMUNICATION SECTION

In a COBOL program the communication description (CD) entries represent the highest
level of organization in the COMMUNICATION SECTION. The COMMUNICATION
SECTION header is followed by a communication description entry consisting of a level
indicator (CD), a data-name and a series of independent clauses. These clauses indicate
the queues and subqueues, the message data and time, the source, the text length, the
status and end keys, and message count of input. These clauses specify the destination
count, the text length, the status and error keys, and destinations for output. For an
input-output communication description entry the clauses specify the message date,
message time, symbolic terminal, text length, end key, and status key. The entry itself is
terminated by a period. These record areas may be implicitly redefined by user-specified
record description entries following the various communication description clauses.

Communication Description - Complete Entry Skeleton

This section defines the function and the general rules of the Communication Description -
Complete Skeleton Entry.

Function
The communication description specifies the interface area between the MCS and a
COBOL program.

15-4 Language Reference

General Format
The following figures show the format of the communication description:

Format 1

-- CD cd-name ~--~~---~-INPUT~-----------------~·~
[FOR J L INITIAL J t-phrase-1 J

data-name-1, data-name-2, ..• , data-name-11

where phrase-1 is:

1-----~QUEUE ~-~~data-name-1

LisJ SYMBOLIC
L J SUB-QUEUE-1 [J data-name-2

SYMBOLIC IS

SUB-QUEUE-2 -,.-[_I_S_Jr-data-name-3
SYMBOLIC

SUB-QUEUE-3 ~[-I S-j~ data-name-4

• [MESSAGE DATE [IS :::J data-name-5 :=J L MESSAGE TIME [IS J data-name-6 ~

1-----~ SOURCE~--~ data-name-7
Lisj SYMBOLIC

TEXT LENGTH~-~ data-name-8
LisJ

• LEND KEY L J data-name-9 ~ [STATUS KEY -~-~-data-name-HJ o:J
IS LisJ

•
L MESSAGE :=J

COUNT--r-L--J.-----data-name-11 :::J
IS

•

•

•

Communication 10-o

Format 2

- CD cd-name ----OUTPUT-------------------------•
L FOR _J L DESTINATION COUNT ~-~-data-name-1 _J

Lis]

., [TEXT LENGTH [IS J data-name-2 ~ [STATUS KEY [IS J data-name-3-.-J

DESTINATION TABLE OCCURS integer-2-,---------,---,-------------------i
TIMES

INDEXED----,--- i ndex-name-1
LBYJ

------------------r--~-------------------~·~

ERROR KEY~[-]--.- data-name-4
IS

Format 3

f-------- DESTINATION-~-~ data-name-5
LisJ SYMBOLIC

..

-co cd-name~[_F_O_R_=:J--.-~[-I-N-IT-I-AL-~I-O-r-~-p-hr_a_s-e--1-------------~-.---·~

data-name-1, data-name-2, ... , data-name-6

where phrase-1 is:

.. [MESSAGE DATE ~-~-data-name~[MESSAGE TIME---,---.--data-name-2 J
LIS J LIS J

..

1-------TERMINAL data-name-3
LisJ SYMBOLIC

TEXT LENGTH ___,.[_I_S_J_ data-name-4

., [END KEY I J data-name-5 ~ [STATUS KEY [J data-name-6 J
-IS IS

..

Syntax Rules
The following syntax rules apply to Data Division in the Communication Module:

All Formats

1. A communication description (CD) must appear only in the COMMUNICATION
SECTION.

Formats 1 and 3

2. Within a single program, the INITIAL clause may be specified in only one CD. The
INITIAL clause must not be used in a program that specifies the USING phrase of the
Procedure Division Header. Refer to "Procedure Division Header" on page 11-33.

15-6 Language Reference

3. Except for the INITIAL clause, the optional clauses may be written in any order.

4. If neither option in the format is specified, a level 01 data description entry must follow
the CD description entry. Either option may be followed by a level 01 data description
entry.

5. Record description entries following an input CD implicitly redefine this record and
must· describe a record of exactly 87 standard data format characters. Multiple redefi
nitions of this record are permitted; however, only the first redefinition may contain
VALUE clauses. However, the MCS will always reference the record according to the
data descriptions defined in syntax rule 4.

6. data-name-1, data-name-2, ... , data-name-11 must be unique within the CD. Within this
series, any data-name may be replaced by the reserved word FILLER.

Format 2

7. The optional clauses may be written in any order.

8. If none of the optional clauses of the CD is specified, a level 01 data description entry
must follow the CD description entry.

9. Record descriptions following an output CD implicitly redefine this record. Multiple
redefinitions of this record are permitted; however, only the first redefinition may
contain VALUE clauses. Note that the MCS will always reference the record
according to the data descriptions defined in general rule 18 on page 15-12.

10. data-name-1, data-name-2, ... , data-name-5 must be unique within a CD.

11. If the DESTINATION TABLE OCCURS clause is not specified, one ERROR KEY and
one SYMBOLIC DESTINATION area is assumed. In this case, neither subscripting
nor indexing is permitted when referencing these data items.

12. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may only be referred to by subscripting or indexing.

13. There is no restriction on the value of the data item referenced by data-name-1 and
integer-2.

Format 3

14. Record descriptions following an input-output CD implicitly redefine this record and
must describe a record of exactly 33 standard data characters. Multiple redefinitions of
this record are permitted; however, only the first redefinition may contain VALUE
clauses. The MCS will always reference the record according to the data descriptions
defined in rule 26 on page 15-13.

15. data-name-1, data-name-2, ... , data-name-6 must be unique within the CD. Within this
series, any data-name may be replaced by the reserved word FILLER.

General Rules
The following general rules apply to Data Division in the Communication module:

All Formats

1. Figure 15-1 on page 15-8 indicates the possible contents of the data items referenced by
data-name-10 for Format 1, data-name-3 for Format 2 and by data-name-6 for Format 3
at the completion of each statement shown. An X on a line in a statement column
indicates that the associated code shown for that line is possible for that statement.

Communication 15-7

RECEIVE

SEND input-output-Cd

SEND output-cd

PURGE

ACCEPT MESSAGE COUNT

ENABLE INPUT

ENABLE INPUT 1/0 TERMINAL

ENABLE OUTPUT

DISABLE INPUT

DISABLE INPUT 1/0 TERMINAL

DISABLE OUTPUT

Status Key Value

x x x x x x x x x x x 00 No error detected. Action completed.

x 10 One or more destinations are disabled. Action
completed. (See General Rule 2.)

x x 10 Destination disabled. No action taken.

x x x x x x 15 Symbolic source, or one or more queues of
destinations already disabled/enabled.
(See General Rule 2.)

x x x x x 20 One or more destinations unknown. Action
completed for known destination. (See
General Rule 2.)

x x x x 20 One or more queues or subqueues unknown.
No action taken.

x x x 21 Symbolic source is unknown. No action taken.

x x x x 30 Destination count invalid. No action taken.

x x x x x x 40 Password invalid. No enabling/disabling
action taken.

x x 50 Text length exceeds size of identifier-1.

x x 60 Portion requested to be sent has text length of
zero or identifier-1 absent. No action taken.

x 65 Output queue capacity exceeded. See General
Rule 2.

x 70 One or more destinations do not have portions
associated with them. Action completed for
other destinations.

x x x x x x 80 A combination of at least two status key
conditions 10, 15, and 20 have occurred.
(See General Rule 2.)

9x Operating-system-defined status.

Figure 15-1. Communication Status Key Condition

15-8 Language Reference

2. Figure 15-2 indicates the possible content of the data item referenced by data-name-4
for Format 2 at the completion of each statement shown. An X on a line in a statement
column indicates that the associated error key value shown for that line is possible for
that statement.

SEND

PURGE

ENABLE OUTPUT

DISABLE OUTPUT

Error Key Value

x x x x 0 No error.

x x x x 1 Symbolic destination unknown.

x x 2 Symbolic destination disabled.

x 4 No partial message with referenced symbolic
destination.

x x 5 Symbolic destination already enabled/disabled.

x 6 Output queue capacity exceeded.

7-9 Reserved for future use.

A-Z Operating-system-defined condition.

Figure 15·2. Error Key Values

Format 1

3. The input CD information constitutes the communication between the MCS and the
program as information about the message being handled. This information does not
come from the terminal as part of the message.

4. For each input CD, a record area of 87 contiguous standard data format characters is
allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an elementary
alphanumeric data item of 12 characters occupying positions 1-12 in the record.

b. The SYMBOLIC SUBQUEUE-1 clause defines data-name-2 as the name of an ele
mentary alphanumeric data item of 12 characters occupying positions 13-24 in the
record.

c. The SYMBOLIC SUBQUEUE-2 clause defines data-name-3 as the name of an ele
mentary alphanumeric data item of 12 characters occupying positions 25-36 in the
record.

d. The SYMBOLIC SUBQUEUE-3 clause defines data-name-4 as the name of an ele
mentary alphanumeric data item of 12 characters occupying positions 37-48 in the
record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data item whose
implicit description is that of an integer of 6 digits without an operational sign
occupying character positions 49-54 in the record.

f. The MESSAGE TIME clause defines data-name-6 as the name of a data item whose
implicit description is that of an integer of 8 digits without an operational sign
occupying character positions 55-62 in the record.

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an elementary
alphanumeric data item of 12 characters occupying positions 63-74 in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an elementary data
item whose implicit description is that of an integer of 4 digits without an opera
tional sign occupying character positions 75-78 in the record.

Communication 15-9

i. The END KEY clause defines data-name-9 as the name of an elementary alphanu-
meric data item of 1 character occupying position 79 in the record. ·

j. The STATUS KEY clause defines data-name-10 as the name of an elementary
alphanumeric data item of 2 characters occupying positions 80-81 in the record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of a data item
whose implicit description is that of an integer of 6 digits without an operational
sign occupying character positions 82 through 87 in the record.

The second option may be used to replace the above clauses by a series of data-names
which, taken in order, correspond to the data-names defined by these clauses.

Use of either option results in a record whose implicit description is equivalent to the
following:

01

IMPLICIT DESCRIPTION COMMENT

data-name-0
02 data-name-1 PICTURE X(12). SYMBOLIC QUEUE
02 data-name-2 PICTURE X(12). SYMBOLIC SUBQUEUE-1
02 data-name-3 PICTURE X(12). SYMBOLIC SUBQUEUE-2
02 data-name-4 PICTURE X(12). SYMBOLIC SUBQUEUE-3
02 data-name-5 PICTURE 9(06). MESSAGE DATE
02 data-name-6 PICTURE 9(08). MESSAGE TIME
02 data-name-7 PICTURE X(12). SYMBOLIC SOURCE
02 data-name-8 PICTURE 9(04). TEXT LENGTH
02 data-name-9 PICTURE X. END KEY
02 data-name-10 PICTURE XX. STATUS KEY
02 data-name-11 PICTURE 9(06). MESSAGE COUNT

Note: The information in the column COMMENT is for clarification and is not
part of the description.

5. The contents of the data items referenced by data-name-2, data-name-3, and
data-name-4, when not being used must contain spaces.

6. The data items referenced by data-name-1, data-name-2, data-name-3, and data-name-4
contain symbolic names designating queues, subqueues, ... , respectively. All symbolic
names must follow the rules for the formation of system-names, ·and must have been
previously defined to the MCS.

7. A RECEIVE statement causes the serial return of the next message or a portion of a
message from the queue as specified by the entries in the CD.

If during the execution of a RECEIVE statement, a message from a more specific
source is needed, the contents of the data item referenced by data-name-1 can be made
more specific by the use of the contents of the data items referenced by data-name-2,
data-name-3, and in turn data-name-4. When a given level of the queue structure is
specified, all higher levels must also be specified.

If fewer than all the levels of the queue hierarchy are specified, the MCS determines
the message or portion of a message to be accessed.

After the execution of a RECEIVE statement, the contents of the data items referenced
by data-name-1 through data-name-4 will contain the symbolic names of all the levels of
the queue structure.

8. When a program is scheduled by the MCS to process a message, that program estab
lishes a run-unit. The symbolic names of the queue structure that demanded the run
unit will be placed in the data items referenced by data-name-1 through data-name-4 of
the CD associated with the INITIAL clause as applicable. In all other cases, the con
tents of the data items referenced by data-name-1 through data-name-4 of the CD asso
ciated with the INITIAL clause are initialized to spaces.

The symbolic names are inserted or the initialization to spaces is completed prior to
the execution of the first Procedure Division statement.

15.,10 Language Reference

The execution of a subsequent RECEIVE stc.tement naming the same contents of the
data items referenced by data-name-1 through data-name-4 will return the act•·al
message that caused the program to be scheduled. Only at that thrte will the remainCJ.er
of the CD be updated.

9. If the MCS attempts to schedule a program lacking an INITIAL clause, the results are
undefined.

10. data-name-5 has the format YYMMDD (year, month, day). Its contents represent the
date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-5 are only updated by the MCS
as part of the execution of a RECEIVE statement.

11. The contents of data-name-6 have the format HHMMSSTT (hours, minutes, seconds,
hundredths of a second) and its contents represent the time at which the MCS recog
nizes that the message is complete.

The contents of the data item referenced by data-name-6 are only updated by the MCS
as part of the execution of the RECEIVE statement.

12. During the execution of a RECEIVE statement, the MCS provides, in the data item
referenced by data-name-7, the symbolic name of the communications terminal that is
the source of the message being transferred. This symbolic move must follow the rules
for the formation of system names. However, if the symbolic name of the communi
cation terminal is not known to the MCS, the contents of the data item referenced by
data-name-7 will contain spaces.

13. The MCS indicates by the contents of the data item referenced by data-name-8 the
number of character positions filled as a result of the execution of the RECEIVE state
ment. Refer to "RECEIVE Statement" on page 15-26.

14. The contents of the data item referenced by data•name-9 are set only by the MCS as
part of the execution of a RECEIVE statement according to the following rules:

a. When the RECEIVE MESSAGE phrase is specified, then data-name-9 is set to one
of the following rules:

• If an end of group has been detected, the contents of the data item referenced
by data-name-9 are set to 3.

• If an end of message has been detected, the contents of the data item referenced
by data-name-9 are set to 2.

• If less than a message is transferred, the contents of the data item referenced by
data-name-9 are set to 0.

b. When the RECEIVE SEGMENT phrase is specified, data-name-9 is set to one of the
following:

• If an end of group has been detected, the contents of the data item referenced
by data-name-9 are set to 3.

• If an end of message has been detected, the contents of the data item referenced
by data-name-9 are set to 2.

• If an end of segment has been detected, the contents of the data item referenced
by data-name-9 are set to 1.

• If less than a message segment is transferred, the contents of the data item ref
erenced by data-name-9 are set to 0.

c. When more than one of the above conditions is satisfied simultaneously, the rule
first satisfied in the order listed determines the contents of the data item referenced
by data-name-9.

15. The contents of the data item referenced by data-name-10 indicate the status condition
of the previously executed RECEIVE, ACCEPT MESSAGE COUNT, ENABLE INPUT,
or DISABLE INPUT statements.

Communication 15-11

The actual association between the contents of the data item referenced by
data-name-10 and the status condition itself is defined in Figure 15-1 on page 15-8.

16. The contents of the data item referenced by data-name-11 indicate the number of mes
sages that exist in a queue, subqueue-1, ... The MCS updates the contents of the data
item referenced by data-name-11 only as part of the execution of an ACCEPT statement
with the COUNT phrase.

Format 2

17. The output CD information is not sent to the terminal, but constitutes the communi
cation between the program and the MCS as information about the message being
handled.

18. For each output CD, a record area of contiguous standard data format characters is
allocated according to the formula (10 plus 13 times integer-2).

a. The DESTINATION COUNT clause defines data-name-1 as the name of a data item
whose implicit description is that of an integer without an operational sign occu
pying character positions 1-4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an elementary data
item whose implicit description is that of an integer of 4 digits without an opera
tional sign occupying character positions 4-8 in the record.

c. The STATUS KEY clause defines data-name-3 to be an elementary alphanumeric
data item of 2 characters occupying positions 9-10 in the record.

d. Character positions 11-23 and every set of 13 characters thereafter will form table
items of the following description:

• The ERROR KEY clause defines data-name-4 as the name of an elementary
alphanumeric data item of 1 character.

• The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an
elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit description is equivalent to:

01

IMPLICIT DESCRIPTION COMMENT

data-name-0
02 data-name-1 PICTURE 9(04). DESTINATION COUNT
02 data-name-2 PICTURE 9(04). TEXT LENGTH
02 data-name-3 PICTURE XX. STATUS KEY
02 data-name OCCURS i nteger-2 TIMES. DESTINATION TABLE

03 data-name-4 PICTURE X. ERROR KEY
03 data-name-5 PICTURE X(12). SYMBOLIC DESTINATION

Note: In the above, the information under COMMENT is for clarification and is
not part of the description.

19. During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT state
ment, the contents of the data item referenced by data-name-1 will indicate to the MCS
the number of symbolic destinations that are to be used from the area referenced by
data-name-5.

The MCS finds the first symbolic destination in the first occurrence of the area refer
enced by data-name-5, the second symbolic destination in the second occurrence of the
area referenced by data-name-5 .. ., up to and including the occurrence of the area refer
enced by data-name-5 and indicated by the contents of data-name-1.

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT state
ment the value of the data item referenced by data-name-1 is outside the range of 1
through integer-2, an error condition is indicated and the execution of the SEND,
ENABLE OUTPUT, or DISABLE OUTPUT statement is terminated.

15-12 Language Reference

20. The user is responsible for ensuring that the value of the data item referenced by
data-name-1 is valid at the time of execution of the SEND, ENABLE OUTPUT, or
DISABLE OUTPUT statement.

21. As part of the execution of a SEND statement, the MCS will interpret the contents of
the data item referenced by data-name-2 to be the user's indication of the number of
leftmost character positions of the data item referenced by the associated SEND identi
fier from which data is to be transferred. Refer to "SEND Statement" on page 15-29.

22. Each occurrence of the data item referenced by data-name-5 contains a symbolic desti
nation previously known to the MCS. These symbolic destination names must follow
the rules for the formation of system-names.

23. The contents of the data item referenced by data-name-3 indicate the status condition
of the previously executed SEND, ENABLE OUTPUT, or DISABLE OUTPUT state
ment.

The actual association between the contents of the data item referenced by data-name-3
and the status condition itself is defined in Figure 15-1 on page 15-8.

24. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT
statement, the MCS determines that any specified destination is unknown, the contents
of the data item referenced by data-name-3, and all occurrences of the data items refer
enced by data-name-4, are updated.

The contents of the data item referenced by data-name-4 when equal to 1 indicate that
the associated value in the area referenced by data-name-5 has not been previously
defined to the MCS. Otherwise, the contents of the data item referenced by
data-name-4 are set to zero.

Format 3

25. The input-output CD information constitutes the communication between the MCS and
the program about the message being handled. This information does not come from
the terminal as part of the message.

26. For each input-output CD, a record area of 33 contiguous character positions is allo
cated. This record area is defined to the MCS as follows:

a. The MESSAGE DATE clause defines data-name-1 as the name of a data item whose
implicit description is that of an integer of 6 digits, without an operational sign,
occupying positions 1-6 in the record.

b. The MESSAGE TIME clause defines data-name-2 as the name of a data item whose
implicit description is that of an integer of 8 digits, without an operational sign,
occupying positions 7-14 in the record.

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of an elemen
tary alphanumeric data item of 12 characters occupying positions 15-26 in the
record.

d. The TEXT LENGTH clause defines data-name-4 as the name of an elementary data
item whose implicit description is that of an integer of 4 digits, without an opera
tional sign, occupying positions 27-30 in the record.

e. The END KEY clause defines data-name-5 as the name of an elementary alphanu
meric data item of 1 character occupying position 31 in the record.

f. The STATUS KEY clause defines data-name-6 as the name of an elementary alpha
numeric data item of 2 characters occupying positions 32 and 33 in the record.

The second option may be used to replace the above clauses by a series of data names
which, taken in order, correspond to the data names defined by these clauses.

Communication 15-13

Use of either option results in a record whose implicit description is equivalent to the
following:

01

IMPLICIT DESCRIPTION COMMENT

data-name-fl
02 data-name-1 PICTURE 9(6). MESSAGE DATE
02 data-name-2 PICTURE9(8). MESSAGE TIME
02 data-name-3 PICTURE X(12). SYMBOLIC TERMINAL
02 data-name-4 PICTURE 9(4). TEXT LENGTH
02 data-name-5 PICTURE X. END KEY
02 data-name-6 PICTURE XX. STATUS KEY

Note: In the above, the information under COMMENT is for clarification and is
not part of the data description.

27. When a program is scheduled by the MCS to process a message, the first RECEIVE
statement referencing the input-output CD with the INITIAL clause returns the actual
message that caused the program to be scheduled.

28. data-name-1 has the format YYMMDD (year, month, day). Its content represents the
date on which the MCS recognizes that the message is complete.

The content of the data item referenced by data-name-1 is updated only by the MCS as
part of the execution of a RECEIVE statement.

29. data-name-2 has the format HHMMSSTT (hours, minutes, seconds, hundredths of a
second) and its content represents the time at which the MCS recognizes that the
message is complete.

The content of the data item referenced by data-name-2 is updated only by the MCS as
part of the execution of the RECEIVE statement.

30. When a program is scheduled by the MCS to process a message, that program estab
lishes a run-unit. The symbolic name of the communication terminal that is the source
of the message that invoked this program is placed in the data item referenced by
data-name-3 of the input-output CD associated with the INITIAL clause as applicable.
This symbolic name must follow the rules for the formation of system-names.

In all other cases, the content of the data item referenced by data-name-3 of the input
output CD associated with the INITIAL clause is initialized to spaces.

The symbolic name is inserted, or the initialization to spaces is completed, prior to the
execution of the first Procedure Division statement.

31. If the MCS attempts to schedule a program lacking an INITIAL clause, the results are
undefined.

32. When the INITIAL clause is specified for an input-output CD and the program is sched
uled by the MCS, the content of the data item referenced by data-name-3 must not be
changed by the program. If this content is changed, the execution of any statement
referencing cd-name-1 is unsuccessful and the data item referenced by data-name-6 is
set to indicate unknown source or destination, as applicable. Refer to rule 11 on
page 15-11.

33. For an input-output CD without the INITIAL clause, or for an input-output CD with
the INITIAL clause when the program is not scheduled by the MCS, the program must
specify the symbolic name of the source or destination in data-name-3 prior to the exe
cution of the first statement referencing cd-name-1.

After executing the first statement referencing cd-name-1, the content of the data item
referenced by data-name-3 must not be changed by the program. If this content is
changed, the execution of any statement referencing cd-name-1 is unsuccessful and the
data item referenced by data-name-6 is set to indicate unknown source or destination,
as applicable. Refer to general rule 11 on page 15-11.

15-14 Language Reference

34. The MCS indicates, through the content of the data item referenced by data-name-4,
the number of character positions filled as a result of the RECEIVE statement. Refer
to "RECEIVE Statement" on page 15-26. · ·

As part of the execution of a SEND statement, the MCS interprets the content of the
data item referenced by data-name-4 as an indication of the number of leftmost char
acter positions of the data item referenced by the associated SEND identifier from
which data is transferred. Refer to "SEND Statement" on page 15-29.

35. The content of the data item referenced by data-name-5 is set only by the MCS as part
of the execution of a RECEIVE statement according to the following rules:

a. When the RECEIVE MESSAGE phrase is specified:

• If an end of group has been detected, the content of the data item referenced by
data-name-5 is set to 3.

• If an end of message has been detected, the content of the data item referenced
by data-name-5 is set to 2.

• If less than a message segment is transferred, the content of the data item refer
enced by data-name-5 is set to 0.

b. When the RECEIVE SEGMENT phrase is specified:

• If an end of group has been detected, the content of the data item referenced by
data-name-5 is set to 3.

• If an end of message has been detected, the content of the data item referenced
by data-name-5 is set to 2.

• If less than a message segment is transferred, the content of the data item refer
enced by data~name-5 is set to 0.

c. When more than one of the conditions is satisfied simultaneously, the first rule sat
isfied in the order listed determines the content of the data item referenced by
data-name-5.

36. The content of the data item referenced by data-name-6 indicates the status condition
of the previously executed DISABLE, ENABLE, PURGE, RECEIVE, or SEND state
ment.

The actual association between the content of the data item referenced by data-name-6
and the status condition itself is defined in general rule 11 on page 15-11.

Communication 15-15

Example 1

The following is an example of a Communication Description followed by Record
Description entries. The length and format of each field in this example is fixed and the
total length must be exactly 87 standard data format characters.

COMMUNICATION SECTION.

CD IN-QUE
FOR INITIAL INPUT.

01 IN-QUE-AREA.
02 IN-QUES.

04 IN-Q
04 IN-SUBQl
04 IN-SUBQ2
04 IN-SUBQ3

02 IN-MSG-DATE
02 IN-MSG-TIME
02 IN-SYM-SOURCE
02 IN-TXT-LENGTH
02 IN-END-KEY
02 IN-STATUS-KEY
02 IN-MSG-COUNT

Example 2

PIC X(12).
PIC X(12).
PIC X(12).
PIC X(12).
PIC 9(06).
PIC 9(08).
PIC X(12).
PIC 9(04).
PIC X.
PIC XX.
PIC 9(06).

The CD in this example is semantically equivalent to Example 1. Key words are spelled
out. Length and format of fields are implied.

COMMUNICATION SECTION.

CD IN-QUE
FOR INITIAL INPUT

SYMBOLIC QUEUE IS IN-Q
SYMBOLIC SUB-QUEUE-1 IS IN-SUBQl
SYMBOLIC SUB-QUEUE-2 IS IN-SUBQ2
SYMBOLIC SUB-QUEUE-3 IS IN-SUBQ3
MESSAGE DATE IS IN-MSG-DATE
MESSAGE TIME IS IN-MSG-TIME
SYMBOLIC SOURCE IS IN-SYM-SOURCE
TEXT LENGTH IS IN-TXT-LENGTH
END KEY IS IN-END-KEY
STATUS KEY IS IN-STATUS-KEY
MESSAGE COUNT IS IN-MSG-COUNT.

15-16 Language Reference

Example 3

The following CD is semantically equivalent to Examples 1 and 2. Eleven data names are
presented with no leading key words as a short form of Example 2.

COMMUNICATION SECTION.

CD IN-QUE
FOR INITIAL INPUT

Example 4

IN-Q IN-SUBQl IN-SUBQ2 IN-SUBQ3 IN-MSG-DATE IN-MSG-TIME
IN-SYM-SOURCE IN-TXT-LENGTH IN-END-KEY IN-STATUS-KEY
IN-MSG-COUNT.

Examples 4 and 5 describe two output communication descriptions. The format of Example
4 allows initial values to be associated with data names.

CD OUT-QUE FOR OUTPUT.
01 OUT-QUE-AREA.

02 OUT-DEST-COUNT
02 OUT-TXT-LENGTH
02 OUT-STATUS-KEY
02 OUT-DEST-ERKEY
02 OUT-SYM-DEST

Example 5

CD OUT-QUE FOR OUTPUT

PIC 9(04) VALUE 1.
PIC 9(04).
PIC XX.
PIC X.
PIC X(12) VALUE "CONSOLI".

DESTINATION COUNT IS OUT-DEST-COUNT
TEXT LENGTH IS OUT-TXT-LENGTH
STATUS KEY IS OUT-STATUS-KEY
DESTINATION TABLE OCCURS 1 TIMES
ERROR KEY IS OUT-DEST-ERKEY
SYMBOLIC DESTINATION IS OUT-SYM-DEST.

Example 6

Examples 6 through 8 represent three equivalent 1-0 communication description formats.

CD IO-QUE FOR I-0
MESSAGE DATE IS IO-MSG-DATE
MESSAGE TIME IS IO-MSG-TIME
SYMBOLIC TERMINAL IS IO-SYM-TERM
TEXT LENGTH IS IO-TXT-LENGTH
END KEY IS IO-END-KEY
STATUS KEY IS IO-STATUS-KEY.

Communication 15-17

Example 7

CD IO-QUE FOR I-0
IO-MSG-DATE IO-MSG-TIME IO-SYM-TERM IO-TXT-LENGTH
IO-END-KEY IO-STATUS-KEY.

Example 8

CD
01

IO-QUE FOR I-0
IO-QUE-AREA.
02 IO-MSG-DATE
02 IO-MSG- TIME
02 IO-SYM- TERM
02 IO-TXT-LENGTH
02 IO-END-KEY
02 IO-STATUS-KEY

15-18 Language Reference

PIC 9(6).
PIC 9(8).
PIC X (12).
PIC 9(4).
PIC X.
PIC XX.

Procedure Division in the Communication Module

Six Procedure Division statements are used to perform communication tasks. These state
ments, as listed below, provide the capabilities to enable/disable communication, to
send/receive messages, to get a message count, and to purge a message queue.

• ACCEPT MESSAGE COUNT
• DISABLE
• ENABLE
• PURGE
• RECEIVE
• SEND.

Communication 15-19 '·

ACCEPT MESSAGE COUNT Statement

Function

The ACCEPT MESSAGE COUNT statement causes the number of messages in a queue to
be made available.

General Format

The following figure shows the format of the ACCEPT MESSAGE COUNT statement:

.,.__ACCEPT cd-name MESSAGE COUNT____.

Syntax Rule

cd-name must reference an input CD.

General Rules

1. The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field speci
fied for cd-name to be updated to indicate the number of messages that exist in a
queue, subqueue-1,

2. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of the
area specified by a communication description entry must contain at least the name of
the symbolic queue to be tested. Testing the condition causes the contents of the data
items referenced by data-name-10 (STATUS KEY) and data-name-1 (MESSAGE
COUNT) of the area associated with the communication entry to be appropriately
updated. Refer to "Communication Description - Complete Entry Skeleton" on
page 15-4.

15-20 Language Reference

DISABLE Statement

Function

The DISABLE statement notifies the MCS to inhibit data transfer between specified output
queues and destinations or between specified sources and input queues.

General Format

The following figure shows the format of the DISABLE statement:

...____DISABLE L INPUT ~L----J~cd-name ~L---_J~KEY ~ identifier-1 ~
TERMINAL ~l WITH L literal-1 ___J

OUTPUT ______ _,

Syntax Rules

The following syntax rules apply to the DISABLE statement:

1. cd-name must reference an input CD when the INPUT phrase is specified.

2. cd-name must reference an output CD when the OUTPUT phrase is specified.

3. literal-1 or the contents of the data item referenced by identifier-1 must be defined as
alphanumeric.

General Rules

The following general rules apply to the DISABLE statement:

1. The DISABLE statement provides a logical disconnection between the MCS and the
specified sources or destinations. When this logical disconnection is already in exist
ence, or is to be handled by some other means external to this program, the DISABLE
statement is not required in this program. The logical path for the transfer of data
between the COBOL programs and the MCS is not affected by the DISABLE statement.

2. When the INPUT phrase with the optional word TERMINAL is specified, the logical
path between the source and all queues and subqueues is deactivated. Only the con
tents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the area
referenced by cd-name are meaningful.

3. When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths for all of the sources associated with the queues and subqueues specified
by the contents of data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYM
BOLIC SUBQUEUE-3) of the area referenced by cd-name are deactivated.

4. When the OUTPUT phrase is specified, the logical path for destination, or the logical
paths for all destinations, specified by the contents of the data item referenced by
data-name-5 (SYMBOLIC DESTINATION) of the area referenced by cd-name are deac
tivated.

Communication 15-21

5. literal-! or the contents of the data-name referenced by identifier-! will be matched
with a password built into the system. The DISABLE statement will be honored only if
literal-! or the contents of the data item referenced by identifier-! match the system
password. When literal-1 or the contents of the data item referenced by identifier-! do
not match the system password, the value of the STATUS KEY item in the area refer
enced by cd-name is updated.

The MCS must be capable of handling a password of from 1 to 10 characters inclusive.

6. The MCS will ensure that the execution of a DISABLE statement will cause the logical
disconnection at the earliest time the source or destination is inactive. The execution
of the DISABLE statement will never cause the remaining portion of the message to be
terminated during transmission to or from a terminal.

15-22 Language Reference

ENABLE Statement

Function

The ENABLE statement notifies the MCS to allow data transfer between specified output
queues and destinations for output or between specified sources and input queues for
input.

General Format

The following figure shows the format of the ENABLE statement:

......____ENABLE -r INPUT L J
L TERMINAL J

cd-name ~L---_J~- KEY -r- i denti fi er-1 ~
WITH L_literal-l___J

OUTPUT ______ _.

Syntax Rules

The following syntax rules apply to the ENABLE statement:

1. cd-name must reference an input CD when the INPUT phrase is specified.

2. cd-name must reference an output CD when the OUTPUT phrase is specified.

3. literal-1 or the contents of the data item referenced by identifier-1 must be defined as
alphanumeric.

General Rules

The following general rules apply to the ENABLE statement:

1. The ENABLE statement provides a logical connection between the MCS and the speci
fied sources or destinations. When this logical connection is already in existence, or is
to be handled by some other means external to this program, the ENABLE statement is
not required in this program. The logical path for the transfer of data between the
COBOL programs and the MCS is not affected by the ENABLE statement.

2. When the INPUT phrase with the optional word TERMINAL is specified, the logical
path between the source and all associated queues and subqueues which are already
enabled is activated. Only the contents of the data item referenced by data-name-7
(SYMBOLIC SOURCE) of the area referenced by cd-name are meaningful to the MCS.

3. When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths for all of the sources associated with the queue and subqueues specified
by the contents of data-name-1 (SYMBOLIC QlJEUE) through data-name-4 (SYM
BOLIC SUBQUEUE-3) of the area referenced by cd-name are activated.

4. When the OUTPUT phrase is specified, the logical path for destination, or the logical
paths for all destinations, specified by the contents of the data item referenced by
data-name-5 (SYMBOLIC DESTINATION) of the area referenced by cd-name are acti
vated.

Communication 15-23

5. literal-1 or the contents of the data item referenced by identifier-1 will be matched with
a password built into the system. The ENABLE statement will be honored only if
literal-1 or the contents of the data item referenced by identifier-1 match the system
password. When literal-1 or the contents of the data item referenced by identifier-1 do
not match the system password, the value of the STATUS KEY item in the area refer
enced by cd-name is updated.

The MCS must be capable of handling a password of from 1 to 10 characters inclusive.

15:-24 Language Reference

PURGE Statement

Function

The PURGE statement eliminates from the MCS a partial message that has been released
by one or more SEND statements.

General Format

The following figure shows the format of the PURGE statement:

--- PURGE cd-name ______..,.

Syntax Rule

cd-name must reference an output CD or input-output CD.

General Rules

The following general rules apply to the PURGE statement:

1. Execution of a PURGE statement causes the MCS to eliminate any partial message
awaiting transmission to the destinations specified in the CD referenced by cd-name.

2. Any message that has associated with it an EMI or EGI is not affected by the exe
cution of a PURGE statement.

3. The content of the status key data item and the content of the error key data item (if
applicable) of the area referenced by cd-nan1e-l are updated by the MCS. Refer to
"Communication Description - Complete Entry Skeleton" on page 15-4.

Communication 15-25

RECEIVE Statement

Function

The RECEIVE statement makes available to the COBOL program a message, message
segment, or a portion of a message or segment, along with pertinent information about that
data from a queue maintained by the Message Control System. The RECEIVE statement
allows for a specific imperative statement when no data is available.

General Format

The following figure shows the format for the RECEIVE statement:

-RECEIVE cd-name L MESSAGE TINTO identifier-!
SEGMENT

"' L NO DATA imperati ve-statement-1 OJ
..

>-----~-DATA imperative-statement-2 END-RECEIVE
WITH

Syntax Rule

cd-name must reference an input CD or input-output CD.

General Rules

The following general rules apply. to the RECEIVE statement:

1. If cd-name references an input CD, the contents of the data items specified by
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUBQUEUE-3) of
the area referenced by cd-name designate the queue structure containing the message.
Refer to "Communication Description - Complete Entry Skeleton" on page 15-4.

2. If cd-name references an input-output CD, the contents of the data items specified by
data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name designate the
source of the message. Refer to "Communication Description - Complete Entry
Skeleton" on page 15-4.

3. The message, message segment, or portion of a message or segment is transferred to the
receiving character positions of the area referenced by identifier-I and aligned to the
left without space fill.

15-26 Language Reference

4. When, during the execution of a RECEIVE statement, the MCS makes data available
in the data item referenced by identifier-I, the NO DATA phrase, if specified, is ignored
and control is transferred to the end of the RECEIVE statement or, if the WITH DATA
phrase is specified, to imperative-statement-2. If control is transferred to
imperative-statement-2, execution continues according to the rules for each statement
specified in imperative-statement-2. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred in accordance
with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the RECEIVE statement.

5. When, during the execution of a RECEIVE statement, the MCS does not make data
available in the data item referenced by identifier-I, one of the three actions listed
below will occur. The conditions under which data is not made available are defined
by the implementer.

a. If the NO DATA phrase is specified in the RECEIVE statement, the RECEIVE
operation is terminated with the indication that action is complete and control is
transferred to imperative-statement-I. Execution then continues according to the
rules for each statement specified in imperative-statement-I. If a procedure
branching or conditional statement that causes explicit transfer of control is exe
cuted, control is transferred in accordance with the rules for that statement; other
wise, upon completion of the execution of imperative-statement-I, control is
transferred to the end of the RECEIVE statement and the WITH DATA phrase, if
specified, is ignored.

b. If the NO DATA phrase is not specified in the RECEIVE statement, execution of
the object program is suspended until data is made available in the data item refer
enced by identifier-I.

c. If one or more queues or subqueues are unknown to the MCS, the appropriate
status key code is stored and control is then transferred as if data had been made
available.

6. The data items identified by cd-name are appropriately updated by the MCS at each
execution of a RECEIVE statement.

7. A single execution of a RECEIVE statement never returns to the data item referenced
by identifier-I more than a single message (when the MESSAGE phrase is used) or a
single segment (when the SEGMENT phrase is used). However, the MCS does not pass
any portion of a message to the object program until the entire message is available in
the input queue, even if the SEGMENT phrase of the RECEIVE statement is specified.

8. When the MESSAGE phrase is used, end of segment indicators are ignored, and the
following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-I, the message is
stored in the area referenced by identifier-I.

b. If a message size is less than the area referenced by identifier-I, the message is
aligned to the leftmost character position of the area referenced by identifier-I with
no space fill.

c. If a message size is greater than the area referenced by identifier-I, the message
fills the area referenced by identifier-I left to right starting with the leftmost char
acter of the message. The remainder of the message can be transferred to the area
referenced by identifier-I with subsequent RECEIVE statements referring to the
same queue, subqueue, The remainder of the message, for the purposes of
applying rules 8a, 8b, and 8c is treated as a new message.

9. When the SEGMENT phrase is used, the following rules apply:

a. If a segment is the same size as the area referenced by identifier-I, the segment is
stored in the area referenced by identifier-I.

b. If a segment size is less than the area referenced by identifier-I, the segment is
aligned to the leftmost character position of the area referenced by identifier-I with
no space fill.

Communication 15-27

c. If a segment size is greater than the area referenced by identifier-1, the segment
fills the area referenced by identifier-1 left to right starting with the leftmost char
acter of the segment. The remainder of the segment can be transferred to the area
referenced by identifier-1 with subsequent RECEIVE statements referring to the
same queue, subqueue, The remainder of the segment, for the purposes of
applying rules 9a on page 15-27, 9b on page 15-27, and 9c is treated as a new
segment.

d. If the text to be accessed by the RECEIVE statement has associated with it an end
of message indicator or end of group indicator, the existence of an end of segment
indicator associated with the text is implied and the text is treated as a message
segment.

10. Once the execution of a RECEIVE statement has returned a portion of a message, only
subsequent execution of RECEIVE statements in that run-unit can cause the remaining
portion of the message to be returned.

11. The END-RECEIVE phrase delimits the scope of the RECEIVE statement. Refer to
"Delimited Scope Statements" on page 2-48.

15-28 Language Reference

SEND Statement

Function

The SEND statement causes a message, a message segment, or a portion of a message or
segment to be released to one or more output queues maintained by the Message Control
System.

General Format

The following figures show the format of the SEND statement:

Format 1

.,.__SEND cd-name FROM identifier-1-M

Format 2

- SEND cd-name -L.----------_J-,-~L-----_J--.--.~- i dent i fier-2
FROM identifier-I WITH ES1-----1

EMI
EGJ-----'

BE FOR~
AFTER

.. L REPLACING

Syntax Rules

LINE
LINES

ADVANCING intege~
L :J tidentifier-3

mnemonic-name-------<
PAGE--------~

[LINE]

....

The following syntax rules apply to the SEND statement:

1. cd-name must reference an output CD or an input-output CD.

2. identifier-2 must reference a one-character integer without an operational sign.

3. When identifier-3 is used in the ADVANCING phrase, it must be the name of an ele
mentary integer item.

4. When the mnemonic-name phrase is used, the name is identified with a particular
. feature specified. The mnemonic-name is defined in the SPECIAL-NAMES paragraph

of the ENVIRONMENT DIVISION.

5. An integer or the value of the data item referenced by identifier-3 may be zero.

Communication 15-29

General Rules

The following general rules apply to the SEND statement:

Both Formats

1. When a receiving communication device (printer, display screen, card punch, etc.) is
oriented to a fixed line size:

a. Each message or message segment will begin at the leftmost character position of
the physical line.

b. A message or message segment that is smaller than the physical line size is
released and appears space-filled to the right.

c. Excess characters of a message or message segment will not be truncated. Charac
ters will be packed to a size equal to that of the physical line and then transmitted
to the device. The process continues on the next line with the excess characters.

2. When a receiving communication device (paper tape punch, another computer, etc.) is
oriented to handle variable-length messages, each message or message segment will
begin on the next available character position of the communications device.

3. As part of the execution of a SEND statement, the MCS will interpret the contents of
the data item, referenced by data-name-2 (TEXT LENGTH) of the area referenced by
cd-name, to the user's specification of the number of leftmost character positions of the
data item referenced by identifier-I, from which data is to be transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area
referenced by cd-name are zero, no characters of the data item referenced by
identifier-I are transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area
referenced by cd-name are outside the range of zero through the size of the data item
referenced by identifier-I inclusive, an error is indicated by the value of the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name, and no
data is transferred. Refer to Figure I5-I on page I5-8 for Status.

4. As part of the execution of a SEND statement, the contents of the data item referenced
by data-name-3 (STATUS KEY) of the area referenced by cd-name is updated by the
MCS. Refer to "Communication Description - Complete Entry Skeleton" on page I5-4.

5. The effect of having special control characters within the contents of the data item
referenced by identifier-I is undefined.

6. A single execution of a SEND statement for Format I releases only a single portion of
a message or of a message segment to the MCS.

A single execution of a SEND statement of Format 2 never releases to the MCS more
than a single message or a single message segment as indicated by the contents of the
data item referenced by identifier-2 or by the specified indicator ESI, EMI, or EGL

However, the MCS will not transmit any portion of a message to a communications
device until the entire message is placed in the output queue.

7. During the execution of the run-unit, the disposition of a portion of a message not ter
minated by an EMI or EGI or which has not been eliminated by the execution of a
PURGE statement is undefined. However, the message does not logically exist for the
MCS and cannot be sent to a destination.

8. Once the execution of a SEND statement has released a portion of a message to the
MCS, only subsequent execution of SEND statements in the same run-unit can cause
the remaining portion of the message to be released.

15-30 Language Reference

Format 2

9. The contents of the data item referenced by identifier-2 indicate that the contents of
the data item referenced by identifier-1 are to have associated with it an end of
segment indicator, an end of message indicator, or an end of transmission indicator
according to the following schedule:

If the contents of the
data item referenced The contents of data
by identifier-2 item referenced by
associated with it is: identifier-I have: Which means:

0 no indicator no indicator

1 ESI an end of segment indicator

2 EMI an end of message indicator

3 EGI an end of group indicator

Any character other than 1, 2, or 3 will be interpreted as 0
If the contents of the data item referenced by identifier-2 is other than 1, 2, or 3, and
identifier-1 is not specified, then an error is indicated by the value in the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name, and no
data is transferred.

10. The ESI indicates to the MCS that the message segment is complete. The EMI indi
cates to the MCS that the message is complete.

The EGI indicates to the MCS that the group of messages is complete. The Run Time
Environment specifies the interpretation that is given to the EGI by the MCS.

The MCS will recognize these indications and establish whatever is necessary to main
tain group, message, and segment control.

11. The hierarchy of ending indicators is EGI, EMI, ESL An EGI need not be preceded by
an ESI or EML An EMI need not be preceded by an ESL

12. The ADVANCING phrase allows control of the vertical positioning of each message or
message segment on a communication device where vertical positioning is applicable.
If vertical positioning is not applicable on the device, the MCS will ignore the vertical
positioning specified or implied.

13. If identifier-2 if specified and the content of the data item referenced by identifier-2 is
zero, the ADVANCING phrase and the REPLACING phrase, if specified, are ignored by
the MCS.

14. On a device where vertical positioning is applicable and the ADVANCING phrase is
not specified, automatic advancing is provided as if AFTER ADVANCING 1 LINE had
been specified.

Communication 15-31

15. If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning
is applicable, the following rules apply: ··

a. If identifier-3 or integer is specified, characters transmitted to the communication
device will be repositioned vertically downward the number of lines equal to the
value associated with the data item referenced by identifier-3 or integer.

b. If the value of the data item referenced by identifier-3 is negative, the results are
undefined.

c. If mnemonic-name is specified, characters transmitted to the communication device
will be positioned according to the rules specified for that communication device.

d. If the BEFORE phrase is used, the message or message segment is represented on
the communication device before vertical repositioning according to 15a and 15b.

e. If the AFTER phrase is used, . the message or message segment is represented on the
communication device after vertical repositioning according to 15a and 15b.

f. If PAGE is specified, characters transmitted to the communication device will be
represented on the device before or after (depending upon the phrase used) the
device is repositioned to the next page. If PAGE is specified, then advancing is
provided as if the user had specified BEFORE or AFTER (depending upon the
phrase used) ADVANCING 1 LINE (PAGE has no meaning in conjunction with a
specific device).

16. When using receiving character-imaging communication devices, on which it is pos
sible to present two or more characters at the same position, superimpose second or
subsequent characters on characters already displayed at that position, or display each
character in the place of characters previously transmitted to that line, the following
rules apply:

a. If the REPLACING phrase is specified, the characters transmitted by the SEND
statement replace all characters which may have previously been transmitted to
the same line, beginning with the leftmost character position of the line.

b. If the REPLACING phrase is not specified, the characters transmitted by the SEND
statement appear superimposed upon the characters that may have previously been
transmitted to the same line, beginning with the leftmost character position of the
line.

17. When a receiving communication device does not support the replacement of charac
ters, regardless of whether or not the REPLACING phrase is specified, the characters
transmitted by the SEND statement appear superimposed upon the characters which
may have previously been transmitted to the same line, beginning with the leftmost
character position of the line.

18. When a receiving communication device does not support the superimposing of two or
more characters at the same position, regardless of whether or not the REPLACING
phrase is specified, the characters transmitted by the SEND statement replace all char
acters that may have previously been transmitted to the same line beginning with the
leftmost character position of the line.

16-32 Language Reference

Communication Sample Program

The following example shows a sample Communication program.

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTCOMM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6000.
OBJECT-COMPUTER. IBM-RISC-6000.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 NAK-MSGl
01 ACK-MSG2

01 ACK-MSG3.
02 FILLER
02 ACK-QUES
02 FILLER
02 ACK-DEVICE

01 MSG-HOLD
01 NAK-MSGl-LENGTH
01 ACK-MSG2-LENGTH
01 ACK-MSG3-LENGTH

COMMUNICATION SECTION.

CD IN-QUE

PIC X(20) VALUE "NO DATA RECEIVED".
PIC X(22) VALUE "MESSAGE ACKNOWLEDGED".

PIC X(05) VALUE "QUE: II

PIC X(48).
PIC X(05) VALUE "DEV: II

PIC X(12).

PIC X(72).
PIC 99 VALUE 20.
PIC 99 VALUE 22.
PIC 99 VALUE 70.

FOR INITIAL INPUT.
01 IN-QUE-AREA.

02 IN-QUES.
04 IN-Q PIC X(12).
04 IN-SUBQl PIC X(12).
04 IN-SUBQ2 PIC X(12).
04 IN-SUBQ3 PIC X(12).

02 IN-MSG-DATE PIC 9(06).
02 IN-MSG-TIME PIC 9(08).
02 IN-SYM-SOURCE PIC X(12).
02 IN-TXT-LENGTH PIC 9(04).
02 IN-END-KEY PIC X.
02 IN-ST~TUS-KEY PIC XX.
02 IN-MSG-COUNT PIC 9(06).

CD OUT-QUE FOR OUTPUT.
01 OUT-QUE-AREA.

02 OUT-DEST-COUNT PIC 9(04) VALUE 1.
02 OUT-TXT-LENGTH PIC 9(04).
02 OUT-STATUS-KEY PIC XX.
02 OUT-DEST-ERKEY PIC X.
02 OUT-SYM-DEST PIC X(12) VALUE "CONSOL!".

Communication 15-33

PROCEDURE DIVISION.

ENABLE-MESSAGE.
ENABLE OUTPUT OUT-QUE WITH KEY "COMMTESTl".
ACCEPT IN-QUE MESSAGE COUNT.
PERFORM PROCESS-MESSAGES UNTIL IN-MSG-COUNT = 0.
STOP RUN.

PROCESS-MESSAGES.
RECEIVE IN-QUE MESSAGE INTO MSG-HOLD

NO DATA
MOVE NAK-MSGl-LENGTH TO OUT-TXT-LENGTH
SEND OUT-QUE FROM NAK-MSGl WITH EMI
STOP RUN

END-RECEIVE.

MOVE ACK-MSG2-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM ACK-MSG2 WITH EMI.

MOVE IN-QUES TO ACK-QUES.
MOVE IN-SYM-SOURCE TO ACK-DEVICE.
MOVE ACK-MSG3-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM ACK-MSG3 WITH EMI.

MOVE IN-TXT-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM MSG-HOLD WITH EGI.

ACCEPT IN-QUE MESSAGE COUNT.

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTCOMM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6000.
OBJECT-COMPUTER. IBM-RISC-6000.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 NAK-MSGl
01 ACK-MSG2

01 ACK-MSG3.
02 FILLER
02 ACK-QUES
02 FILLER
02 ACK-DEVICE

01 MSG-HOLD
01 NAK-MSGl-LENGTH
01 ACK-MSG2-LENGTH
01 ACK-MSG3-LENGTH

15-34 Language Reference

PIC X(20) VALUE "NO DATA RECEIVED".
PIC X(22) VALUE "MESSAGE ACKNOWLEDGED".

PIC x(05) VALUE "QUE: "
PIC X(48).
PIC X(05) VALUE "DEV: "
PIC X (12).

PIC X(72).
PIC 99 VALUE 20.
PIC 99 VALUE 22.
PIC 99 VALUE 70.

COMMUNICATION SECTION.

co IN-QUE
FOR INITIAL INPUT.

01 IN-QUE-AREA.
02 IN-QUES.

04 IN-Q PIC X(12).
04 IN-SUBQl PIC X(12).
04 IN-SUBQ2 PIC X(12).
04 IN-SUBQ3 PIC X(12).

02 IN-MSG-DATE PIC 9(06).
02 IN-MSG-TIME PIC 9(08).
02 IN-SYM-SOURCE PIC X(12).
02 IN-TXT-LENGTH PIC 9(04).
02 IN-END-KEY PIC X.
02 IN-STATUS-KEY PIC XX.
02 IN-MSG-COUNT PIC 9(06).

CD OUT-QUE FOR OUTPUT.
01 OUT-QUE-AREA.

02 OUT-DEST-COUNT PIC 9(04) VALUE 1.
02 OUT-TXT-LENGTH PIC 9(04).
02 OUT-STATUS-KEY PIC XX.
02 OUT-OEST-ERKEY PIC X.
02 OUT-SYM-DEST PIC X(12) VALUE "CONSOLl".

PROCEDURE DIVISION.

ENABLE-MESSAGE.
ENABLE OUTPUT OUT-QUE WITH KEY "COMMTESTl".
ACCEPT IN-QUE MESSAGE COUNT.
PERFORM PROCESS-MESSAGES UNTIL IN-MSG-COUNT = 0.
STOP RUN.

PROCESS-MESSAGES.
RECEIVE IN-QUE MESSAGE INTO MSG-HOLD

NO DATA
MOVE NAK-MSGl-LENGTH TO OUT-TXT-LENGTH
SEND OUT-QUE FROM NAK-MSGl WITH EMI
STOP RUN

END-RECEIVE.

MOVE ACK-MSG2-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM ACK-MSG2 WITH EMI.

MOVE IN-QUES TO ACK-QUES.
MOVE IN-SYM-SOURCE TO ACK-DEVICE.
MOVE ACK-MSG3-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM ACK-MSG3 WITH EMI.

MOVE IN-TXT-LENGTH TO OUT-TXT-LENGTH.
SEND OUT-QUE FROM MSG-HOLD WITH EGI.

ACCEPT IN-QUE MESSAGE COUNT.

Communication 15-35

15-36 Language Reference

Chapter 16. Segmentation

Segmentation 16-1

Contents

About This Chapter . 16-3
Introduction . 16-4
General ~es~ription of Segmentation . 16-4

Organization . 16-4
Segmentation Classification . 16-5
Segmentation Control . 16-5

Structure of Program Segments . 16-6
Segment-Numbers . 16-6
SEGMENT-LIMIT . 16-7

Restrictions on Program Flow . 16-7
ALTER Statement . 16-7
PERFORM Statement . 16-8
MERGE Statement . 16-8
SORT Statement . 16-8

16-2 Language Reference

About This Chapter

This chapter describes the Segmentation module and its technique to optimize storage use
by allowing some Procedure Division sections to overlay one another during execution
time.

Three types of segments are discussed in this chapter:

• Fixed permanent
• Fixed overlayable
• Independent

Segmentation 16-3

Introduction

The segmentation module provides a capability to specify object program overlay require
ments.

Segmentation provides a facility for specifying permanent and independent segments. Seg
mentation also allows the intermixing of sections with different segment-numbers and
allows the fixed portion of the source program to contain segments that may be overlaid.

General Description of Segmentation

COBOL segmentation enables a means for the user to communicate with the IBM AIX VS
COBOL system to specify object program overlay requirements.

COBOL segmentation deals only with segmentation of procedures. As such, only the Pro
cedure Division is considered in determining segmentation requirements for an object
program.

Organization

This section is organized into Program segments, Fixed portion, and Independent segments.

Program Segments
Although it is not mandatory, the Procedure Division for a source program is usually
written as a consecutive group of sections, each of which is composed of a series of closely
related operations that are designed to collectively perform a particular function.
However, when segmentation is used, the entire Procedure Division must be divided into
sections. In addition, each section must be classified as belonging either to the fixed
portion or to one of the independent segments of the object program. Segmentation in no
way affects the need for qualification of procedure-names to ensure uniqueness.

Fixed Portion
The fixed portion is defined as that part of the object program which is logically treated as
if it were always in memory. This portion of the program is composed of fixed permanent
segments, and fixed segments that can be overlaid.

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by
any other part of the program.

A fixed overlayable segment is a segment in the fixed portion which, although logically
treated as if it were always in memory, can be overlaid by another segment to optimize
memory utilization. Variation of the number of fixed permanent segments in the fixed
portion can be accomplished by using a special facility called the SEGMENT-LIMIT
clause. Refer to "SEGMENT-LIMIT" on page 16-7. Such a segment, if called for by the
program, is always made available in its last used state.

16-4 Language Reference

Independent Segments
An independent segment is defined as part of the object program which can overlay and
can be overlaid by either a fixed overlayable segment or another independent segment. An
independent segment is in its initial state whenever control is transferred (either implicitly
or explicitly) to that segment for the first time during the execution of a program. On
subsequent transfers of control to the segment, an independent segment is also in its initial
state when:

1. Control is transferred to that segment as a result of the implicit transfer of control
between consecutive statements from a segment with a different segment-number; that
is, when control falls through into the independent segment from the physically pre
ceding segment.

2. Control is transferred to that segment as the result of the implicit transfer of control
between a SORT or MERGE statement, in a segment with a different segment-number,
and an associated input or output procedure in that independent segment.

3. Control is transferred explicitly to that segment from a segment with a different
segment-number (with the exception noted in 2).

On subsequent transfer of control to the segment, an independent segment is in its last
used state when:

1. Control is transferred implicitly to that segment from a segment with a different
segment-number (except as noted in 1). This could happen, for example, when control
is returned to the independent segment from a Declarative procedure.

2. Control is transferred explicitly to that segment as the result of the execution of an
EXIT PROGRAM statement.

Segmentation Classification

Sections that are to be segmented are classified, using a system of segment-numbers and
the following criteria:

1. Logic requirements. Sections that must be available for reference at all times, or
which are referred to very frequently, are normally classified as belonging either to
one of the overlayable fixed segments or to one of the permanent segments. Sections
that are used less frequently are normally classified as belonging to one of the inde
pendent segments, depending on logic requirements.

2. Frequency of use. Generally, the more frequently to which a section is referred, the
lower its segment-number. The less frequently to which it is referred, the higher its
segment-number.

3. Relationship to other sections. Sections that frequently communicate with one
another should be given the same segment-numbers.

Segmentation Control

The logical sequence of the program is the same as the physical sequence except for spe
cific transfers of control. Control may be transferred within a source program to any para
graph in a section. It is not mandatory to transfer control to the beginning of a section.

Segmentation 16-5

Structure of Program Segments

Segment-Numbers

Section classification is accomplished by means of a system of segment-numbers. The
segment-number is included in the section header.

General Format
The following figure shows the format of the segment numbers:

M---section-name SECTION~-------~- -----~
L segment-number J

Syntax Rules
The following syntax rules apply to segment-numbers:

1. Segment-number must be an integer ranging in value from 0 through 99.

2. If the segment-number is omitted from the section header, the segment-number is
assumed to be 0.

3. Sections in the declaratives must contain segment numbers less than 50.

General Rules
The following general rules apply to segment-numbers:

1. All sections which have the same segment-number constitute a program segment. All
sections which have the same segment-number need not be physically contiguous in the
source program.

2. Segments with segment-number 0 through 49 belong to the fixed portion of the object
program.

3. Segments with segment-number 50 through 99 are independent segments.

16-6 Language Reference

SEGMENT-LIMIT

General Format
The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has the
following format:

....
L SEGMENT -LIMIT LIS :=J segment-number J

....

Syntax Rule
Segment-number must be an integer ranging in value from 1 through 49.

General Rule
The SEGMENT-LIMIT clause is for documentation purposes only.

Restrictions on Program Flow

When segmentation is used, the following restrictions are placed on the ALTER,
PERFORM, MERGE and SORT statements.

ALTER Statement

A GO TO statement in a section whose segment-number is greater than or equal to 50 must
not be referred to by an ALTER statement in a section with a different segment-number.

All other uses of the ALTER statement are valid and performed even if the GO TO to
which the ALTER refers is in a fixed overlayable segment.

Segmentation 16-7

PERFORM Statement

A PERFORM statement that appears in a section that is not in an independent segment
can have within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

• Sections and/or paragraphs wholly contained in one or more nonindependent segments.
• Sections and/or paragraphs wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its range,
in addition to any declarative sections whose execution is caused within that range, only
one of the following:

• Sections and/or paragraphs wholly contained in one or more nonindependent segments.

• Sections and/or paragraphs wholly contained in the same independent segment as that
PERFORM statement.

MERGE Statement

If the MERGE statement appears in a section that is not in an independent segment, then
any output procedure referenced by that MERGE statement must appear as either one or
the other of the following:

• Totally within nonindependent segments
• Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output procedure ref
erenced by that MERGE statement must appear as either one or the other of the following:

• Totally within nonindependent segments
• Wholly within the same independent segment as that MERGE statement.

SORT Statement

If a SORT statement appears in a section that is not an independent segment, then any
input procedures or output procedures referenced by that SORT statement must appear:

• Totally within nonindependent segments, or
• Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input procedures or
output procedures referenced by that SORT statement must be contained:

• Totally within nonindependent segments, or
• Wholly within the same independent segment as that SORT statement.

16-8 Language Reference

Chapter 17. Program Debugging

Program Debugging 17-1

Contents

About This Chapter . 17-3
Introduction . 17-4

Standard ANSI COBOL Debug . 17-4
Environment Division in COBOL Debug . 17-5
WITH DEBUGGING MODE Clause . 17-5

Function . 17-5
General Format . 17-5
General Rules . 17-5

Procedure Division in COBOL Debug . 17-6
READY TRACE Statement . 17-6

Function . 17-6
General Format . 17-6
General Rule . 17-6

RESET TRACE Statement . 17-7
Function . 17-7
General Format . 17-7
General Rule . 17-7

USE FOR DEBUGGING Statement . 17-8
Function . 17-8
General Format . 17-8
Syntax Rules . 17-8
General Rules . 17-9

Debugging Lines . 17-13
Debugging Facilities Sample Program . 17-14

17-2 Language Reference

About This Chapter

This chapter describes the AIX VS COBOL Debugging facility which provides the capa
bility to generate program trace, to print debugging lines, or to monitor data items under
predefined conditions.

Program Debugging 17-3

Introduction

Debugging allows the user to describe the conditions under which procedures are to be
monitored during the execution of the object program.

Standard ANSI COBOL Debug

The decisions of what to monitor and what information to display are explicitly in the
domain of the user. The COBOL debug facility simply provides a convenient access to per
tinent information.

The features of the language that support the COBOL debug module are:

• A WITH DEBUGGING MODE switch - used at object code creation time
• A run-time switch
• A USE FOR DEBUGGING statement
• A special register - DEBUG-ITEM
• Debugging lines.

The reserved word DEBUG-ITEM is the name for a special register generated automat
ically by the IBM AIX VS COBOL system that supports the debugging facility. Only one
DEBUG-ITEM is allocated per program. The names of the subordinate data items in
DEBUG-ITEM are also reserved words.

Compile-Time Switch
The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER paragraph
in the Environment Division. It serves as a compile-time switch over debugging statements
written in the source program.

When the WITH DEBUGGING MODE clause is specified in a program, all debugging
sections and all debugging lines are handled as specified in this section of the document.

When DEBUGGING MODE is not specified in a program, all the debugging sections and
debugging lines are treated as if they were comment lines and their syntax is not checked.

COBOL Debug Run-Time Switch
A run-time switch dynamically activates the debugging code inserted by the AIX VS
COBOL system. This switch cannot be addressed in the program; it is controlled outside
the COBOL environment. If the switch is on, the effects of any USE FOR DEBUGGING
statements written in the source program are permitted. If the switch is off, all the effects
described in the USE FOR DEBUGGING statements are inhibited. However, all debugging
lines remain in effect. Therefore, you do not need to recompile in order to provide or
remove this facility.

The run-time switch has no effect on the execution of the object program if the WITH
DEBUGGING MODE clause was not specified in the source program.

The switch is described in the User's Guide.

17-4 Language Reference

Environment Division in COBOL Debug

WITH DEBUGGING MODE Clause

Function

The WITH DEBUGGING MODE clause indicates that all debugging sections and all
debugging lines are to be included in the object code. If this clause is not specified, all
debugging lines and sections are treated as if they were comment lines.

General Format

The following figure shows the format of the WITH DEBUGGING MODE clause:

..__SOURCE-COMPUTER. L computer-name \ E J · _____...
NO WORDS j DEBUGGING MODE

WITH
MF

General Rules

The following general rules apply to the WITH DEBUGGING MODE clause:

1. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER par
agraph of the CONFIGURATION SECTION of a program, all USE FOR DEBUGGING
statements and all debugging lines are included in the object code.

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION of a program, any USE FOR DEBUG
GING statements, all associated debugging sections, and any debugging lines are
treated as if they were comment statements.

Program Debugging 17-5

Procedure Division in COBOL Debug

READYTRACESt~ement

Function

The READY TRACE statement is a debugging feature which causes each OSVS VSC2
section and paragraph name to appear on the display screen in order of exe- MF
cution.

General Format

The following figure shows the format of the Ready Trace statement:

~ READY TRACE .. ~

General Rule

The AIX VS COBOL system directive TRACE must be set to on to allow OSVS VSC2
execution of the statement. READY TRACE is documentary only when the MF
directive is not set. Refer to the User's Guide for details on setting the
TRACE directive.

17-6 Language Reference

RESET TRACE Statement

Function

The RESET TRACE statement disables the tracing of section and paragraph OSVS VSC2
names on the display screen. MF

General Format

The following figure shows the format of the RESET TRACE statement:

.,...._RESET TRACE ••

General Rule

The AIX VS COBOL system directive TRACE must be set to on to allow OSVS VSC2
execution of the statement. RESET TRACE is documentary only when the MF
directive is not set. Refer to the User's Guide for details on setting the
TRACE directive.

Program Debugging 17-7

USE FOR DEBUGGING Statement

Function

The USE FOR DEBUGGING statement identifies the user items that are to be monitored
by the debugging section.

General Format

The following figure shows the format of the USE FOR DEBUGGING statement:

---- section-name SECTION~-------~
L segment-number J

-usE DEBUGGING-----cd-name-1-------------·--
LFOR _J ON

Syntax Rules

1---o----------.-- i dent if i er-1
ALL-r-------;

REFERENCES OF
fil e-name-l -------------1
procedure-name-l -----------1

ALL PROCEDURES---------~

The following syntax rules apply to the USE FOR DEBUGGING statement:

1. Debugging section(s), if specified, must appear together immediately after the Declar
atives header.

2. Except in the USE FOR DEBUGGING statement itself, there must be no reference to
any nondeclarative procedure within the debugging section.

3. Statements appearing outside of the set of debugging sections must not reference
procedure-names defined within the set of debugging sections.

4. Except for the USE FOR DEBUGGING statement itself, statements appearing within a
given debugging section may reference procedure-names defined within a different Use
procedure only with a Perform statement.

5. Procedure-names defined within debugging sections must not appear within USE FOR
DEBUGGING statements.

6. Any given identifier, cd-name, file-name, or procedure-name may appear in only one
USE FOR DEBUGGING statement and may appear only once in that statement.

7. The ALL PROCEDURES phrase can appear only once in a program.

8. When the ALL PROCEDURES phrase is specified, procedure-name-1 must not be speci
fied in any USE FOR DEBUGGING statement.

17-8 Language Reference

9. If the data description entry of the data item referenced by identifier-I contains an
OCCURS clause or is subordinate to a data description entry that contains an
OCCURS clause, identifier-I must be specified without the subscripting or indexing
normally required.

10. References to the special register DEBUG-ITEM are restricted to references from
within a debugging section.

General Rules

The following general rules apply to the USE FOR DEBUGGING statement:

1. In the following general rules all references to cd-name, identifier-I, procedure-name-I,
and file-name-I apply equally to any additional instances of these items.

2. Automatic execution of a debugging section is not caused by a statement appearing in
a debugging section.

3. When file-name-I is specified in a USE FOR DEBUGGING statement, that debugging
section is executed:

a. After the execution of any OPEN or CLOSE statement that references file-name-I,
and

b. After the execution of any READ statement (after any other specified USE proce
dure) not resulting in the execution of an associated AT END or INVALID KEY
imperative statement, and

c. After the execution of any DELETE or ST ART statement that references
file-name-1.

4. When procedure-name-I is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. Immediately before each execution of the named procedure

b. Immediately after the execution of an ALTER statement that references
procedure-name-I.

5. The ALL PROCEDURES phrase causes the effects described in 4 to occur for every
procedure-name in the program, except those appearing within a debugging section.

6. When the ALL REFERENCES OF identifier-phrase is specified, that debugging section
is executed for every statement that explicitly references identifier-I at each of the fol
lowing times:

a. In the case of a WRITE or REWRITE statement immediately before the execution
of that WRITE or REWRITE statement and after the execution of any implicit
move resulting from the presence of the FROM phrase.

b. In the case of a GO TO statement with a DEPENDING ON phrase, immediately
before control is transferred and prior to the execution of any debugging section
associated with the procedure-name to which control is to be transferred.

c. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL
phrase references identifier-I, immediately after each initialization, modification or
evaluation of the contents of the data item referenced by identifier-I.

d. In the case of any other COBOL statement, immediately after execution of that
statement.

If identifier-I is specified in a phrase that is not executed or evaluated, the associated
debugging section is not executed.

Program Debugging 17-9

7. When identifier-I is specified without the ALL REFERENCES OF phrase, that debug
ging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly references
identifier-I, immediately before the execution of that WRITE or REWRITE state
ment.

b. After the execution of any implicit move resulting from the presence of the FROM
phrase.

c. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL
phrase references identifier-I, immediately after each initialization, modification or
evaluation of the contents of the data item referenced by identifier-I.

d. Immediately after the execution of any other COBOL statement that explicitly ref
erences and causes the contents of the data item referenced by identifier-I to be
changed.

If identifier-I is specified in a phrase that is not executed or evaluated, the associated
debugging section is not executed.

8. The associated debugging section is not executed for a specific operand more than once
as a result of the execution of a single statement, regardless of the number of times
that operand is explicitly specified. In the case of a PERFORM statement which
caused iterative execution of a referenced procedure, the associated debugging section
is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative verb iden
tifies a separate statement for the purpose of debugging.

9. When cd-name-I is specified in a USE FOR DEBUGGING statement, that debugging
section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement that refer
ences cd-name-1.

b. After the execution of a RECEIVE statement referencing cd-name-I that does not
result in the execution of the NO DATA imperative-statement, and

c. After the execution of an ACCEPT MESSAGE COUNT statement that references
cd-name-1.

10. A reference to file-name-I, identifier-I, procedure-name-I, or cd-name-I as a qualifier
does not constitute reference to that item for the debugging described in the general
rules above.

IL Associated with each execution of a debugging section is the special register
DEBUG-ITEM, which provides information about the conditions that caused the exe
cution of a debugging section. DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE
02 FILLER
02 DEBUG-NAME
02 FILLER
02 DEBUG-SUB-1

02 FILLER
02 DEBUG-SUB-2

02 FILLER
02 DEBUG-SUB-3

PICTURE IS X(6).
PICTURE IS X VALUE SPACE.
PICTURE IS X(30).
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PICTURE IS X(n).

17-10 Language Reference

12. Prior to each execution of a debugging section, the contents of the data item refer
enced by DEBUG-ITEM are space-filled. According to the following general rules, the
contents of data items subordinate to DEBUG-ITEM are then updated immediately
before control is passed to that debugging section. Spaces remain as the contents of
any data item not specified in the general rules that follow.

Updating is accomplished in accordance with the rules for the MOVE statement, the
sole exception being the move to DEBUG-CONTENTS when the move is treated
exactly as if it was an alphanumeric to alphanumeric elementary move with no conver
sion of data from one form of internal representation to another.

13. The contents of DEBUG-LINE is the relevant COBOL source line number. This pro
vides the means of identifying a particular source statement.

14. DEBUG-NAME contains the first 30 characters of the name that caused the debugging
section to be executed.

All qualifiers of the name are separated in DEBUG-NAME by the word IN or OF.

Subscripts/indexes, if any, are not entered into DEBUG-NAME.

15. If the reference to a data item that causes the debugging section to be executed is sub
scripted or indexed, the occurrence number of each level is entered, as necessary, in
DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3, respectively.

16. DEBUG-CONTENTS is a data item that is large enough to contain the data required
by the general rules that follow.

17. If execution of the first nondeclarative procedure in the program causes the debugging
section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains START PROGRAM.

18. If a reference to procedure-name-1 in an ALTER statement causes the debugging
section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains the applicable procedure-name associated with the
TO phrase of the ALTER statement.

19. If the transfer of control associated with the execution of a GO TO statement causes
the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers control to
procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

20. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT or
MERGE statement causes the debugging section to be executed, the following condi
tions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references
procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

1) SORT INPUT, if the reference to procedure-name-1 is the INPUT phrase of a
SORT statement.

2) SORT OUTPUT, if the reference to procedure-name-1 is in the OUTPUT phrase
of a SORT statement.

3) MERGE OUTPUT, if the reference to procedure-name-1 is in the OUTPUT
phrase of a MERGE statement.

Program Debugging 17-11

21. If the transfer of control from the control mechanism associated with a PERFORM
statement causes the debugging section associated with procedure-name-I' to be exe
cuted, the following conditions exist:

a. DEBUG-LINE identifies the PERFORM statement that references
procedure-name-I.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains PERFORM LOOP.

22. If procedure-name-1 is a USE procedure that is to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the statement that causes execution of the USE procedure.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains USE PROCEDURE.

23. If an implicit transfer of control from the previous sequential paragraph to
procedure-name-1 causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains FALL THROUGH.

24. If references to file-name-1, cd-name-1 causes the debugging section to be executed,
then:

a. DEBUG-LINE identifies the source statement that references file-name-1,
cd-name-1.

b. DEBUG-NAME contains the name of file-name-1, cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-1, DEBUG-CONTENTS contains spaces.

e. For any reference cd-name-1, DEBUG-CONTENTS contains the contents of the
area associated with the cd-name.

25. If a reference to identifier-1 causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the source statement that references identifier-I.

b. DEBUG-NAME contains the name of identifier-1.

c. DEBUG-CONTENTS contains the contents of the data item referenced by
identifier-1 at the time that control passes to the debugging section. Refer to rules
6 and 7 on page 17-10.

17-12 Language Reference

Debugging Lines

A debugging line is any line with a D in the indicator area of the line. Any debugging line
that consists solely of spaces from margin A to margin R is considered the same as a blank
line.

The contents of a debugging line must allow a syntactically correct program to be formed
with or without the debugging lines being considered as comment lines.

A debugging line will be considered to have all the characteristics of a comment line, if the
WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER para
graph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted,
except that each continuation line must contain a D in the indicator area and character
strings may not be broken across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER para
graph.

Program Debugging 17-13

Debugging Facilities Sample Program

The following example shows a COBOL program skeleton with debugging facilities:

IDENTIFICATION DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-RISC-6000 WITH DEBUGGING MODE.

PROCEDURE DIVISION.
DECLARATIVES.

DEBUGl SECTION. USE FOR DEBUGGING ON UPDATE-PAY-MASTER.
DEBUG-11.

PERFORM SHOW-DEBUG-ITEMS.
PERFORM SHOW-PAY-MASTER-INFO.

DEBUG-12.
EXIT.

DEBUG2 SECTION. USE FOR DEBUGGING ON ALL REFERENCES OF TOTAL-AMOUNT.
DEBUG-21.

PERFORM SHOW-DEBUG-ITEM.
PERFORM SHOW-DATA-TOTAL-AMT.

DEBUG-22.
EXIT.

END DECLARATIVES.

PAYROLL-MONTHLY SECTION.

READY TRACE.
UPDATE-PAY-MASTER.

DELETE-PAY-MASTER.

*
*

D
D

RESET TRACE.

The next two statements are debugging lines. They will be
considered as comments if the WITH DEBUGGING MODE is not specified.

DISPLAY "This is a debugging line".
DISPLAY "Another debugging line".

17-14 Language Reference

Chapter 18. Screen-Handling

Screen-Handling 18-1

Contents

About This Chapter .
Introduction .
Environment Division in the Screen-Handling Module
SPECIAL-NAMES Paragraph ..

Function
General Format

CONSOLE IS CRT Clause
Function
General Format
General Rule . . .

CURSOR IS Clause
Function
General Format
Syntax Rule
General Rules

CRT STATUS Clause
Function
General Format
Syntax Rule
General Rule . .
Example

Data Division in the Screen-Handling Module
SCREEN SECTION

Function
General Format
Syntax Rules . .
General Rule

Screen Description - Complete Entry Skeleton
Function
General Format
Syntax Rules .
General Rules
Example 1 .
Example 2 ...

AUTO Clause
Function
General Format
Syntax Rules ..
General Rules

BACKGROUND-COLOR Clause
Function
General Format
Syntax Rules .
General Rules

BELL Clause
Function
General Format
Syntax Rules ..

BLANK Clause . .
Function
General Format
Syntax Rule
General Rules
Example

BLANK WHEN ZERO Clause
Function
General Format
Syntax Rule

BLINK Clause

18-2 Language Reference

18-5
18-6
18-8
18-9
18-9
18-9

18-10
18-10
18-10
18-10
18-11
18-11
18-11
18-11
18-11
18-12
18-12
18-12
18-12
18-12
18-13
18-14
18-14
18-14
18-14
18-14
18-14
18-15
18-15
18-16
18-17
18-18
18-19
18-19
18-21
18-21
18-21
18-21
18-21
18-22
18-22
18-22
18-22
18-22
18-24
18-24
18-24
18-24
18-25
18-25
18-25
18-25
18-25
18-25
18-26
18-26
18-26
18-26
18-27

Function
General Format
Syntax Rules ..

COLUMN Clause .
Function
General Format .
Syntax Rules .
General Rules .

FOREGROUND-COLOR Clause .
Function
General Format .
Syntax Rules .
General Rules .
Example .. .

FULL Clause .
Function
General Format .
Syntax Rules .
General Rules .

GRID Clause .
Function
General Format .
Syntax Rules .

HIGHLIGHT Clause .
Function
General Format .
Syntax Rules .
General Rule .
Example .. .

JUSTIFIED Clause .
Function
General Format .
Syntax Rules .
General Rules .

LEFTLINE Clause
Function
General Format .
Syntax Rules .

LINE Clause .
Function
General Format .
Syntax Rules .
General Rules .

OCCURS Clause .
Function
General Format .
Syntax Rules .
General Rules .
Example .. .

OVERLINE Clause .
Function
General Format .
Syntax Rules ...

:?ICTURE Clause .
Function
General Format .
Syntax Rules .
General Rules .

PROMPT Clause .
Function .. .
General Format .
Syntax Rules .

Screen-Handling

18-27
18-27
18-27
18-28
18-28
18-28
18-28
18-28
18-30
18-30
18-30
18-30
18-30
18-31
18-32
18-32
18-32
18-32
18-32
18-34
18-34
18-34
18-34
18-35
18-35
18-35
18-35
18-35
18-35
18-36
18-36
18-36
18-36
18-36
18-37
18-37
18-37
18-37
18-38
18-38
18-38
18-38
18-38
18-40
18-40
18-40
18-40
18-40
18-41
18-42
18-42
18-42
18-42
18-43
18-43
18-43
18-43
18-43
18-45
18-45
18-45
18-45

18-3

General Rules . 18-45
REQUIRED Clause . 18-46

Function . 18-46
General Format . 18-46
Syntax Rules . 18-46
General Rules . 18-46

REVERSE-VIDEO Clause . 18-47
Function . 18-4 7
General Format . 18-4 7
General Rules . 18-47

SECURE Clause . 18-48
Function . 18-48
General Format . 18-48
Syntax Rules . 18-48
General Rule . 18-48
Example . 18-48

SIGN Clause . 18-49
Function . 18-49
General Format . 18-49
Syntax Rules . 18-49
General Rule . 18-49

SIZE Clause . 18-50
Function . 18-50
General Format . 18-50
Syntax Rules . 18-50
General Rules . 18-50

UNDERLINE Clause . 18-51
Function . 18-51
General Format . 18-51
Syntax Rules . 18-51

VALUE Clause . 18-52
Function . 18-52
General Format . 18-52
Syntax Rules . 18-52

ZERO-FILL Clause . 18-53
Function . 18-53
General Format . 18-53
Syntax Rule . 18-53
General Rules . 18-53

Procedure Division . 18-54,
ACCEPT Statement . 18-55

Function . 18-55
General Format . 18-55
Syntax Rules . 18-57
General Rules . 18-58

DISPLAY Statement . 18-61
Function . 18-61
General Format . 18-61
Syntax Rules . 18-62
General Rules . 18-63
Screen-Handling Sample Program . 18-65

18-4 Language Reference

About This Chapter

This chapter describes the AIX VS COBOL Screen-Handling module and describes how it
supports formatted full-screen output and input using enhanced DISPLAY/ACCEPT state
ment and additional statements in the Environment Division and Data Division.

Screen-Handling 18-5

Introduction

Note: This material in this chapter pertains exclusively to the Micro Focus dialect.

The Screen-Handling module provides the user with enhanced screen-handling facilities. It
consists of a SCREEN SECTION and additional formats of ACCEPT and DISPLAY state
ments.

Two methods of screen input-output operations are available:

1. The display of nonscrolling forms consisting of areas of the screen as defined in the
SCREEN SECTION. A SCREEN SECTION entry is a screen description. It is
similar in appearance to a data description but defines a screen item or area of the
display screen rather than an area in memory.

2. The display of data items which constitute nonscrolling forms. The details of the areas
of the display screen to be used are provided in the associated ACCEPT and DISPLAY
9perations.

The SCREEN SECTION contains a description of each field on the display screen that is
accessed in a Format 1 ACCEPT or DISPLAY operation. Such a field is called a screen
item. Many screen items describe only the layout of fields within a field on the display
screen and are never referenced explicitly.

The SCREEN SECTION contains syntax which enables the operator to:

• Specify the exact location of fields.
• Accept data typed at specified positions.
• Display literal text at specified positions.
• Define screen attributes.
• Control console features.

Details of how a screen item is to look are given by screen description clauses in its
description. Details of how a data item is to look on the display screen are given by
screen options in the WITH phrase of the ACCEPT or DISPLAY statement. Many screen
options are the same as screen description clauses.

Figure 18-1 on page 18-7 summarizes the screen description clauses, screen options, and
data description clauses available in the SCREEN SECTION and for use with ACCEPT
and DISPLAY statements. It also specifies options or clauses that can be used with each
of the types of fields defined below:

• An input field is a screen item whose description contains a TO phrase.
• An output field is a screen item whose description contains a FROM phrase.
• An update field is a screen item whose description contains a USING phrase.
• A literal field is an elementary screen item whose description contains no PICTURE

clause.

There are two ways to enter data into numeric and numeric-edited screen fields: fixed
format mode and free format mode.

Fixed format mode is the default manner in which data entry is made to numeric and
numeric-edited screen fields. This mode formats and echoes the entered data and also
moves the cursor in accordance with the requirements of the field's picture specification,
as each keystroke is received. Characters other than +, -, and the decimal point char
acter are rejected; insertion characters in edited fields are skipped over as the cursor
moves backwards and forwards; any sign indicator is modified in accordance with its
normal specification; floating symbols move left and right in the field and insertion
symbols are inserted or deleted as digits.

Free format mode is an alternative manner in which data entry can be assigned to numeric
and numeric-edited screen fields. The default mode is fixed format mode (see above entry).
This configurable mode allows data to be keyed into a PIC X field of appropriate length,
and it is only when the operator leaves the field that the data is reformatted to comply
with the picture specification. Once the operator moves the cursor from the field, the IBM
AIX VS COBOL system disregards all characters other than digits and the sign and

18-6 Language Reference

decimal point symbols. It then extracts, stores, or reformats the numeric value in accord
ance with the normal COBOL rules for a MOVE to an item with the same picture as the
screen or working-storage item. The numeric value is then usually echoed to the screen.

Screen Clauses/ SCREEN SECTION WITH PHRASE
Screen Options/
Data Description Input Output Update Literal

ACCEPT DISPLAY Clauses Field Field Field Field

AUTO x x x
BACKGROUND-COLOR x x x x x x
BELL x x x x x x
BLANK x x x x x
BLANK WHEN ZERO 1 x x x
BLINK x x x x x x
COLUMN x x x x
FOREGROUND-COLOR x x x x x x
FULL x x x
GRID x x x x x x
HIGHLIGHT x x x x x x
JUSTIFIED 1 x x x
LEFT-JUSTIFY x
LEFTLINE x x x x x x
LINE x x x x
OCCURS 1 x x x
OVERLINE x x x x x x
PROMPT x x x
REQUIRED x x x
REVERSE-VIDEO x x x x x x
RIGHT-JUSTIFY x
SECURE x x x
SIGN 1 x x x
SIZE x x x x x x
SPACE-FILL x
TRAILING-SIGN x
UNDERLINE x x x x x x
UPDATE x
ZERO-FILL x x x

X = clause/option allowed
1 = Data description clause allowed in the SCREEN SECTION

Figure 18-1. Permitted Use Of Options

These clauses and options are described in the following sections.

Note: The attributes GRID, LEFTLINE, and OVERLINE are provided for compat
ibility. They are accepted syntactically but have no effect at run time. The attribute
BLINK is always accepted syntactically but will have effect only on terminals that
support blinking.

Screen-Handling 18-7

Environment Division in the Screen-Handling Module

The Environment Division in the Screen-Handling Module contains the following sections:

• SPECIAL-NAMES Paragraph
• CONSOLE IS CRT Clause
• CURSOR IS Clause
• CRT STATUS Clause.

18-8 Language Reference

SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means for relating implementer names to
user-specified mnemonic names.

General Format

The following figure shows the format of the SPECIAL-NAMES paragraph:

- SPECIAL-NAMES. :J
L CONSOLE [_J CRT J L CURSOR [J data-name-1

IS IS

... [CRT STATUS LIS~ data-name-2 =:J
....

Syntax rules and general rules for the SPECIAL-NAMES paragraph are listed below each
clause.

Screen-Handling 18-9

CONSOLE IS CRT Clause

Function

The CONSOLE IS CRT clause changes the default interpretation of ACCEPT or DISPLAY
statements from the ANSI standard format to Format 2 described later in this chapter.

General Format

The following figure shows the format of the CONSOLE IS CRT clause:

~CONSOLE -c--~~ CRT
IS

General Rule

The CONSOLE IS CRT clause causes any ACCEPT or DISPLAY statement whose operand
is not a screen-name, and that has no phrases specific to a particular format, to be treated
as Format 2. If the CONSOLE IS CRT clause is not present, these statements are treated
as the standard ANSI ACCEPT or DISPLAY. Refer to "ACCEPT Statement" on page 7-22,
"ACCEPT Statement" on page 18-55, "DISPLAY Statement" on page 18-61, and "DISPLAY
Statement" on page 7-32.

18-10 Language Reference

CURSOR IS Clause

Function

The CURSOR IS clause specifies the data item to contain the cursor address as used by the
ACCEPT statement.

General Format

The following figure shows the format of the CURSOR IS clause:

.,.__CURSOR -----~-data-name-1---1
Lis_J

Syntax Rule

data-name-1 must be declared in the WORKING-STORAGE SECTION of the program.

General Rules

The following general rules apply to the CURSOR IS clause:

1. At the start of an ACCEPT statement, if data-name-1 contains a value that is a valid
character position on the display screen (see rule 4), that position is used as the initial
position for the cursor. Otherwise, data-name-1 is ignored, and the initial position for
the cursor is the start of the first input field on the screen. At the end of an ACCEPT
statement, if the position in data-name-1 has been used in that statement, data-name-1
is updated to show the position of the cursor at the termination of the ACCEPT state
ment.

2. CURSOR IS has no effect on the positioning of fields on the screen.

3. data-name-1 must be 4 or 6 characters in length. If data-name-1 is 4 characters in
length, the first two characters are interpreted as line number, and the second two as
column number. If data-name-1 is 6 characters in length, the first three characters are
interpreted as line number, and the second three as column number.

4. The clause has no effect if data-name-1 contains an illegal position (for example, zeros,
a nonnumeric value, or a value that is beyond the bottom of the screen).

5. If data-name-1 contains a valid position that does not correspond to an input field being
accepted by the current ACCEPT statement, the cursor is positioned to the next such
field or, if there is none, to the first such field. The ordering of the fields is the order
their descriptions appear in the Data Division.

Screen-Handling 18-11

CRT STATUS Clause

Function

The CRT STATUS clause specifies a data item into which a status value is moved after
each Format 1 or 2 ACCEPT statement.

General Format

The following figure shows the format of the CRT STATUS clause:

...__CRT STATUS ~L-1-s-:::J~data-name-l ___....

Syntax Rule

data-name-1 must be described in the WORKING-STORAGE SECTION and must be three
bytes long.

General Rule

If the CRT STATUS clause is specified in the SPECIAL-NAMES paragraph, every Format
1 or 2 ACCEPT statement (as described later in this chapter) places a value into
data-name-1 to indicate the outcome of the ACCEPT operation. data-name-1 consists of
status keys which are set to indicate possible conditions resulting from the completion of
the operation. They are described below.

CRT Status Key 1

The first byte of data-name-1 is CRT Status Key 1 and should be described as PICTURE 9
USAGE DISPLAY. It indicates the condition that caused the termination of the ACCEPT
operation. The possible values are:

0 Indicates a terminator key or autoskip out of the final field

1 Indicates a user-defined function key

2 Indicates an AIX VS COBOL defined function key

9 Indicates an error

A terminator key is a key whose purpose is terminating ACCEPT operations (for example,
send). There is a configuration option that causes the field-tab key, when used in the final
field of an ACCEPT, to act as a terminator key also. Defining function keys is also a con
figuration option.

A termination that returns a value of 0 is a normal termination.

If the ACCEPT statement contains an ON EXCEPTION phrase, any value in CRT Status
Key 1, except 0, will cause the execution of the imperative-statement in that phrase.

18-12 Language Reference

CRT Status Key 2

The second byte of data-name-1 is CRT Status Key 2 and contains a code giving further
details of the condition that terminated the ACCEPT operation. Its format and possible
values depend on the value in CRT Status Key 1, as shown in Table 18-1.

Table 18-1. Valid Combinations of CRT Status Keys 1 and 2

KEY2
KEYl Format Value Meaning

0 PIC 9 DISPLAY 0 The operator pressed a terminator key.

0 PIC 9 DISPLAY 1 Autoskip out of the last field.

1 PIC 99 COMP 0-127 The user-defined function key number.

2 PIC 99 COMP 0-26 The ADIS function key number.

9 PIC 99 COMP 0 No items fall within the screen.

Refer to the User's Guide for an explanation of function key numbers.

CRT Status Key 3

The third byte of data-name-1 is CRT Status Key 3. If CRT Status Key 1 and CRT Status
Key 2 are zero, then CRT Status Key 3 contains the raw keyboard code for the key that
terminated the ACCEPT operation. Otherwise, the contents of CRT Status Key 3 are unde
fined.

Where a sequence of keystrokes rather than a single key has been configured to perform a
single function, only the code for the first keystroke is returned.

The following is an example of the CRT STATUS clause:

Example

ENVIRONM~NT DIVISION.

SPECIAL-NAMES.
CONSOLE IS CRT
CURSOR IS CURSOR-Y-X
CRT STATUS IS CRT-STATUS.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 CRT-STATUS PIC X(3).
01 CURSOR-Y-X.

02 CUR-Y PIC 99.
02 CUR-X PIC 99.

Screen-Handling 18-13

Data Division in the Screen-Handling Module

SCREEN SECTION

Function

The SCREEN SECTION provides screen-handling facilities for use with Format 1 ACCEPT
and DISPLAY statements.

General Format

The following figure shows the format of the SCREEN SECTION:

.,._SCREEN SECTION. ~c---------------,--~~4
screen-description-entry _J

Syntax Rules

The following syntax rules apply to the SCREEN SECTION:

1. The SCREEN SECTION must be the last section in the Data Division.

2. Screen-description-entries contain screen description clauses. Data description clauses
allowed in the SCREEN SECTION are restricted to those described in this chapter.

General Rule

The SCREEN SECTION contains a description of each field on the screen that is accessed
in a Format 1 ACCEPT or DISPLAY operation. Such a field is called a screen item. Many
screen items describe only the layout of fields within a field on the display screen and are
never referenced explicitly.

18-14 Language Reference

Screen Description - Complete Entry Skeleton

Function

A screen description entry specifies the attributes, behavior, size and location for a refer
enced screen item that is accepted or displayed at run time.

Screen-Handling 18-15

General Format

The following figure shows the general format of the Screen Description - Complete Entry
Skeleton:

.,...___level-number~------~~--------~---------..
L screen-name _J L BLANK -i- SCREEN _J

LUNE~

.. L BELL _J L BLINK :J L HIGHLIGHT =i L GRID =i L LEFTLINE :J
LBEEP_J

.. L OVERLINE J L REVERSE-VIDEO J L UNDERLINE~

.. L SIZE [identi fierml _J
LrsJ integer-I~

.. LLINE-c ~
cf-----~~~~--~-~~L-ictentifie~

NUMBER IS ~:~ integer-2

.. LcoLUMN-~~--------------~
COL--~ ~identifie~

NUMBER IS PL integer-3
+

.. [FOREGROUND-COLOR --~L-J- i nteger-4 =1
IS

BACKGROUND-COLOR integer-5 >-------1itera1-1

PICTURE-i--l J picture-string
PIC-__J IS

18-16 Language Reference

VALUE~---<

FROM Li denti fi er-4
l itera 1-2

IS

TO identifier-5

USING identifier-6----------'

..

..

..

..

..

..

.. LBLANK~--~-ZERO=i LJUSTIFIED~RIGHTJ
L WHEN _J L JUST __ _J~

.. E J L LEADING J L l
SIGN-[--ij TRAILING SEPARATE L j

IS CHARACTER

.. L PRoMPT-..-L------------~----i
L ~ [identifie~

CHARACTER IS literal-3

.. L OCCURS i nteger-6 L J L ~ULL J L ZERO-FILL =i
TIMES LLENGTH-CHECK

....

Syntax Rules

The following syntax rules apply to the screen description complete entry skeleton:

1. Each screen description entry must start with a level number from 01 through 49.
Refer to Chapter 3, "Introduction to the Nucleus" for further details on level numbers.

2. Each level 01 item must have a screen-name.

3. Screen-name assigns a name to the screen item described in the screen description.
Screen-name immediately follows level number, conforming to the rules for user-defined
names.

4. A screen item can only be referenced in a Format 1 ACCEPT or DISPLAY statement.

5. Each elementary screen item must contain at least one of the following clauses: BELL,
BLANK LINE, BLANK SCREEN, COLUMN, LINE, PICTURE, and VALUE.

6. The data items in the FROM, TO, and USING phrases are associated with the screen
item. The USING phrase is equivalent to the combination of a FROM and TO phrase,
each specifying the same field.

7. An ACCEPT statement can be executed on a group screen item containing screen items
with FROM or VALUE phrases only if that group also contains screen items with TO
or USING phrases.

8. The clauses following screen-name can be specified in any order.

9. A clause that appears in the description of a group screen item applies to all the ele
mentary subordinate items in that group in whose descriptions it would be allowed.

10. The word FILLER is not permitted in screen description but the screen-name can be
omitted provided the level-number is not 01.

Screen-Handling 18-17

11. If the same clause is specified more than once for the same screen item, the clause that
appears at the lowest level within the hierarchy is the one which takes effect.

12. The attributes GRID, LEFTLINE, and OVERLINE are provided for compatibility.
They are accepted syntactically but have no effect at run time. The attribute BLINK is
always accepted syntactically but will have effect only on terminals that support
blinking.

General Rules

The following general rules apply to the screen description complete entry skeleton:

1. Screen descriptions define areas on the screen. Each entry consists of a level number,
an optional screen-name, and various optional clauses relating to the positioning of
fields as well as to console functions.

2. When the screen item is displayed, data is taken from the literal or data item named in
the associated FROM or USING phrase. Items within the TO phrase only are treated
as though FROM SPACE or FROM ZERO were specified, depending on the type of
screen item.

3. When the screen item is accepted, the data entered is moved from the display screen to
the data item named in the TO or USING phrase. Depending on the category of the
item, conversion and de-editing are done, if necessary.

4. An input field is a screen item whose description contains a TO phrase.

5. An output field is a screen item whose description contains a FROM phrase.

6. An update field is a screen item whose description contains a USING phrase.

7. A literal field is an elementary screen item whose description contains no PICTURE
clause.

8.· An ACCEPT of a group screen item consists of accepting those elementary subordinate
items that are input or update fields. They are accepted in the order their descriptions
appear in the SCREEN SECTION at the display screen positions indicated by the
screen descriptions. Unless otherwise specified in the CURSOR IS clause, the cursor is
initially positioned at the start of the first item. Refer to "CURSOR IS Clause" on
page 18-11. As the ACCEPT operation into each item is terminated, the cursor moves
to the start of the next item.

9. A DISPLAY of a group screen item consists of displaying those elementary subordinate
items that are output, update, or literal fields. They are displayed simultaneously at
the screen positions indicated by the screen descriptions.

10. If the length of an ACCEPT or DISPLAY screen item exceeds the length of the current
line, wraparound is to the next line.

11. If a screen item is too large to fit within the physical screen, truncation occurs at the
first character that is off-screen for output fields and alphanumeric input and update
fields, and at the first field that is off-screen for numeric and numeric-edited input and
update fields.

18-18 Language Reference

Example 1

The following example shows the screen description entry:

01 TITLES-SCREEN.
05 BLANK SCREEN.
05 LINE 3 HIGHLIGHT

VALUE "SCREEN PICTURE".
05 COL 30 HIGHLIGHT

VALUE "W-S PICTURE".
05 COL 60 HIGHLIGHT

VALUE "INPUT FIELD".
05 LINE 15 COL 20 HIGHLIGHT

VALUE "RECEIVING FIELDS".
05 LINE REVERSE-VIDEO VALUE "FIELD-1=".
05 LINE REVERSE-VIDEO VALUE "FIELD-2=".
05 LINE REVERSE-VIDEO VALUE "FIELD-3=".
05 LINE REVERSE-VIDEO VALUE "FIELD-4=".

Example 2

The following example shows another screen description entry:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 EMPLOYEE-RECORD.

05 E-NAME
05 E-ADDRESS
05 E-CITY
05 E-STATE
05 E-ZI P-CODE

77 TITLE-LINE
77 NAME-LINE
77 ADDRESS-LINE
77 CITY-LINE
77 STATE-LINE
77 ZIP-CODE-LINE

PIC X(25).
PIC X(35).
PIC X(l5).
PIC X(02).
PIC X(05).

PIC X(20) VALUE "Employee Data Screen".
PIC X(14) VALUE "Employee Name:".
PIC X(08) VALUE "Address:".
PIC X(05) VALUE "City:".
PIC X(06) VALUE "State:".
PIC X(09) VALUE "Zip Code:".

Screen-Handling 18-19

SCREEN SECTION.
01 DATA-SCREEN.

05 BLANK SCREEN.
05 LINE 1 COLUMN 30 PIC X(20) FROM TITLE-LINE.
05 LINE 3 COLUMN 5 PIC X(14) FROM NAME-LINE.
05 LINE 3 COLUMN 22 PIC X(25) TO E-NAME.
05 LINE 5 COLUMN 5 PIC X(08) FROM ADDRESS-LINE.
05 LINE 5 COLUMN 22 PIC X(35) TO E-ADDRESS.
05 LINE 7 COLUMN 5 PIC X(05) FROM CITY-LINE.
05 LINE 7 COLUMN 22 · PIC X(15) TO E-CITY.
05 LINE 9 COLUMN 5 PIC X(06) FROM STATE-LINE.
05 LINE 9 COLUMN 22 PIC X(02) TO E-STATE.
05 LINE 11 COLUMN 5 PIC X(09) FROM ZIP-CODE-LINE.
05 LINE 11 COLUMN 22 PIC X(05) TO E-ZIP-CODE.

PROCEDURE DIVISION.
SRl.

DISPLAY SPACE.
DISPLAY DATA-SCREEN.
ACCEPT DATA-SCREEN.

STOP RUN.

18-20 Language Reference

AUTO Clause

Function

The AUTO clause automatically terminates an ACCEPT operation of the screen item when
the last character position is keyed. No explicit terminator key is necessary.

General Format

The following figure shows the format of the AUTO clause:

IOl .. .,~-.--AUTO ., ..
L AUTO-SKIP _J

Syntax Rules

The following syntax rules apply to the AUTO clause:

1. AUTO and AUTO-SKIP are synonymous.

2. The AUTO clause is allowed only with input and update fields.

3. If this clause is specified at group level, it applies to all elementary subordinate items.

General Rules

The following general rules apply to the AUTO clause:

1. Provided any REQUIRED or FULL clause is satisfied, the cursor is positioned to the
next screen item. Alternatively, if the screen item is the last one in the ACCEPT oper
ation, the entire ACCEPT is terminated.

2. This clause overrides any existing configllration options for automatic skipping and for
the automatic termination of an ACCEPT statement. Refer to the User's Guide for
details of configuration options.

3. In a fixed-format numeric-edited screen item, the AUTO clause causes the decimal
point position to be skipped automatically once all of the integer places have been
filled. Selection of fixed format mode is a configuration optiQn. Refer to the User's
Guide for details of configuration options.

Screen-Handling 18-21

BACKGROUND-COLOR Clause

Function

The BACKGROUND-COLOR clause specifies the background color of the screen item.

General Format

The following figure shows the format of the BACKGROUND-COLOR clause:

~.,.,~-BACKGROUND-COLOR --~L--_J~- i nteger-1 __..,.
IS

Syntax Rules

The following syntax rules apply to the BACKGROUND-COLOR clause:

1. BACKGROUND-COLOR and BACKGROUND-COLOUR are synonymous.

2. This clause is allowed with any screen item.

3. If this clause is specified at group level, it applies to all elementary subordinate items.

4. integer-1 must be a value from 0 to 7.

General Rules

The following general rules apply to the BACKGROUND-COLOR clause:

1. This clause is only available for use with a color screen.

2. integer-1 specifies the background color of the screen item. The colors and their corre
sponding values are:

0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 brown
7 white

3. If this clause is not specified, the background color defaults to black.

4. If a screen description contains a BLANK SCREEN clause, and either contains a
BACKGROUND-COLOR clause or is subordinate to one that does, then when the
screen item is displayed by a DISPLAY statement the specified color becomes the
default background color. It remains the default background color until either another
screen item with this combination of options is displayed (whether in the same
DISPLAY statement or another), or a Format 2 DISPLAY statement with both options
is executed.

18-22 Language Reference

5. Upon initial execution of your program, the AIX VS COBOL system assumes that the
current colors displayed on the screen are white for the foreground and black for the
background. Therefore, if the first DISPLAY statement tries to set the foreground
color to white or the background color to black, then the AIX VS COBOL system
leaves the color alone since it thinks the color is already set correctly. If your
program is affected by this you may do one of two things:

a. Set the terminal colors to white (foreground) and black (background) using the AIX
system chcolor command before entering the COBOL application.

b. DISPLAY colors other than foreground white or background black as your first
DISPLAY statement in your COBOL program.

Screen-Handling 18-23

BELL Clause

Function

The BELL clause causes an audible alarm to sound each time the item containing the
clause is accepted or displayed.

General Format

The following figure shows the format of the BELL clause:

.... LBELL =:J
BEEP

Syntax Rules

....

The following syntax rules apply to the BELL clause:

1. BELL and BEEP are synonymous.

2. This clause is only allowed with elementary items.

18-24 Language Reference

BLANK Clause

Function

The BLANK clause is effective each time the screen item containing the clause is dis
played. BLANK LINE erases from the current cursor position to the end of the current
line. BLANK SCREEN erases the entire display screen and places the cursor at line 1,
column 1.

General Format

The following figure shows the format of the BLANK clause:

.__BLANK--L-LINE _J
SCREEN

Syntax Rule

The BLANK clause is allowed only with elementary items.

General Rules

The following general rules apply to the BLANK clause:

1. This clause has no effect in an ACCEPT operation.

2. The erasing is done before the item is displayed.

3. The BLANK SCREEN clause causes the display screen to return to its default fore
ground and background colors. For additional effects, if the screen item is subject to a
FOREGROUND-COLOR or BACKGROUND-COLOR clause, refer to the sections on
those clauses.

Example

01 PASSWORD-SCREEN.
02 BLANK SCREEN.
02 LINE 5 COLUMN 5 BLANK LINE
VALUE "ENTER PASSWORD".

Screen-Handling 18-25

BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause causes the blanking of a screen item when its value is
zero. Refer to Chapter 6, "Data Division" for standard rules for this data description
clause which also apply when the BLANK WHEN ZERO clause is used in screen defi
nitions.

General Format

The following figure shows the format of the BLANK WHEN ZERO clause:

..____BLANK ~L--_J-,-- ZERO_____.....
WHEN

Syntax Rule

The following rule applies to the BLANK WHEN ZERO clause:

1. This clause is allowed only with input, output, and update fields that are numeric or
numeric-edited.

18-26 Language Reference

BLINK Clause

Function

The BLINK clause causes the screen item to blink when it appears on the screen.

General Format

The following figure shows the format of the BLINK clause:

...._BLINK--M

Syntax Rules

The following syntax rules apply to the BLINK clause:

1. The BLINK clause is allowed with any screen item.

2. If the BLINK clause is specified at group level, it applies to all suitable subordinate
elementary items.

3. The BLINK clause is always accepted syntactically. However, it will only have effect
at run time if the display being used supports blinking.

Screen-Handling 18-27

COLUMN Clause

Function

The COLUMN clause specifies the column at which the screen item starts on the screen.

General Format

The following figure shows the format of the COLUMN clause:

L COLUMN
COL---'

Syntax Rules

NUMBER IS PLUS
+

integer-I

The following syntax rules apply to the COLUMN clause:

1. identifier-I must be an unsigned numeric integer and must contain a value greater
than zero and less than 256.

2. identifier-I must not be subject to OCCURS clauses.

3. integer-I must be unsigned, greater than zero, and less than 256.

4. PL US and + are synonymous.

5. COL is an abbreviation for COLUMN.

6. Omitting the NUMBER option results in a default value of +1.

7. COLUMN I is assumed for screen descriptions that specify the LINE clause but omit
the COLUMN clause.

8. The COLUMN clause may be specified with any elementary item.

General Rules

The following general rules apply to the COLUMN clause:

1. The COLUMN clause specifies the column in which the screen item is to appear on the
display screen in an ACCEPT or DISPLAY operation.

2. If the COLUMN clause has an identifier or an integer but does not specify PLUS, +, or
-, the clause gives an absolute column number. Column I is the column number speci
fied in the AT phrase of the statement. If the AT phrase is not specified, then column I
is the first column on the screen.

18-28 Language Reference

3. If PLUS, +, or - is specified in the COLUMN clause, then the column number is rela
tive to that at which the preceding screen item ends, regardless of whether the state
ment displays the preceding item on the screen. This depends on the current effective
length of that item at run time, derived from its PICTURE, VALUE, and SIZE clauses.
The counting of column numbers restarts at a level 01 item at column 1.

4. If a screen description contains neither a LINE or COLUMN clause, and the item is
not a level 01 item, COLUMN + 1 is assumed. The item then starts immediately fol
lowing the preceding item in the SCREEN SECTION.

5. If a COLUMN position is specified that is off the screen, wraparound occurs to the
next (or previous) line.

Screen-Handling 18-29

FOREGROUND-COLOR Clause

Function

The FOREGROUND-COLOR clause specifies the foreground color of the screen item.

General Format

The following figure shows the format of the FOREGROUND-COLOR clause:

.,..,., __ FOREGROUND-COLOR ---.-L--_J"-"T"- i nteger-1 ----M

IS

Syntax Rules

The following syntax rules apply to the FOREGROUND-COLOR clause:

1. FOREGROUND-COLOR and FOREGROUND-COLOUR are synonymous.

2. This clause is allowed with any screen item.

3. If this clause is specified at group level, it applies to all elementary subordinate items.

4. integer-1 must be a value from 0 through 7.

General Rules

The following general rules apply to the FOREGROUND-COLOR clause:

1. This clause is only available for use with a color screen.

2. integer-1 specifies the foreground color of the screen item. The colors and their corre
sponding values are:

0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 brown
7 white

3. If this clause is not specified, the foreground color defaults to white.

4. If a screen description contains a BLANK SCREEN clause, and either contains a
BACKGROUND-COLOR clause or is subordinate to one that does, then when the
screen item is displayed by a DISPLAY statement the specified color becomes the
default foreground color. It remains the default foreground color until either another
screen item with this combination of options is displayed (whether in the same
DISPLAY statement or another), or a Format 2 DISPLAY statement with both options
is executed.

18-30 Language Reference

5. If the HIGHLIGHT clause is also specified, foreground colors are brightened.

6. Upon initial execution of your program, the AIX VS COBOL system assumes that the
current colors displayed on the screen are white for the foreground and black for the
background. Therefore, if the first DISPLAY statement tries to set the foreground
color to white or the background color to black, then the AIX VS COBOL system
leaves the color alone since it thinks the color is already set correctly. If your
program is affected by this you may do one of two things:

Example

a. Set the terminal colors to white (foreground) and black (background) using the AIX
system chcolor command before entering the COBOL application.

b. DISPLAY colors other than foreground white or background black as your first
DISPLAY statement in your COBOL program.

The following example shows the FOREGROUND-COLOR clause:

05 LINE 2 PIC X(10) TO EMP-NAME BACKGROUND-COLOR IS 1
FOREGROUND-COLOR IS 4.

Screen-Handling 18-31

FULL Clause

Function

The FULL clause specifies that the operator must either leave the screen item completely
empty or fill it entirely with data.

General Format

The following figure shows the format of the FULL clause:

.... I FULL
- LENGTH-CHECK _J

Syntax Rules

The following syntax rules apply to the FULL clause:

1. FULL and LENGTH-CHECK are synonymous.

2. The FULL clause is valid only in input and update fields and group items.

3. If this clause is specified at group level, it applies to all suitable subordinate elemen
tary items.

General Rules

The following general rules apply to the FULL clause:

1. The FULL clause is effective during the execution of any ACCEPT statement that
causes the screen item to be accepted provided the cursor enters the screen item at
some time during the ACCEPT operation. Until this clause is satisfied, terminator key
strokes are rejected, and the cursor is repositioned to the end of the item. If the item is
fixed-format numeric-edited, the cursor is repositioned to the decimal point position.

2. If the screen item is alphanumeric, then to satisfy this clause, either the entire item
must contain only spaces or prompt characters, or both the first and last character
positions must contain nonspace, nonprompt characters.

3. If the screen item is free-format numeric or free-format numeric-edited, then to satisfy
the clause, either the resultant value must be zero, or both the first and last character
positions must contain nonspace, nonprompt characters.

4. If the screen item is fixed-format numeric-edited, then to satisfy the clause either the
value must be zero or there must be no digit positions in which zero-suppression has
taken effect.

5. The FULL clause has no effect on fixed-format numeric or on numeric-edited screen
items that have no zero-suppression positions.

6. For update fields, the FULL clause can be satisfied by initial data as well as operator
keyed data.

18-32 Language Reference

7. The FULL clause may not be effective if a function key is used to terminate the
ACCEPT operation. Refer to the User's Guide for details of configuration options.

8. An error message may be configured for display on the display screen if the FULL
clause is not satisfied. Refer to the User's Guide for details of configuration options.

Screen-Handling 18-33

GRID Clause

Function

The GRID clause causes each character of the screen item to have a vertical line on its
left-hand side when the item appears on the screen. Each line is within the character
position.

General Format

The following figure shows the format of the GRID clause:

Syntax Rules

The following syntax rules apply to the GRID clause:

1. The GRID clause can be used with any screen item.

2. If the GRID clause is specified at group level, it applies to all suitable subordinate ele
mentary items.

3. This clause is provided for compatibility. It is accepted syntactically but has no effect
at run time.

18-34 . Language Reference

HIGHLIGHT Clause

Function

The HIGHLIGHT clause causes the screen item to appear in high-intensity mode when it
appears on the screen.

General Format

The following figure shows the format of the HIGHLIGHT clause:

---- HIGHLIGHT~

Syntax Rules

The following syntax rules apply to the HIGHLIGHT clause:

1. This clause is valid for input, output, update, or literal fields.

2. If the HIGHLIGHT clause is specified at group level, it applies to all suitable subordi
nate elementary items.

General Rule

If the FOREGROUND-COLOR clause is also specified, the HIGHLIGHT clause causes the
foreground colors to become brighter.

Example

The following example shows the HIGHLIGHT clause:

01 PERSON-INFO.
02 BLANK SCREEN.
02 LINE 5 COLUMN 5 PIC X(20) FROM EMP-NAME HIGHLIGHT.
02 LINE 7 COLUMN 5 PIC X(40) FROM EMP-ADDR.

Screen-Handling 18-35

JUSTIFIED Clause

Function

The JUSTIFIED clause specifies nonstandard positioning of data within a screen item
when data is either moved to it or entered into it. Refer to Chapter 6, "Data Division" for
standard rules for this data description clause which are also applicable when the JUSTI
FIED clause is used in screen definitions.

General Format

The following figure shows the format for the JUSTIFIED clause:

.... L JUSTIFIED I RIGHT-M
JUST---~

Syntax Rules

The following syntax rules apply to the JUSTIFIED clause:

1. JUST is an abbreviation for JUSTIFIED.

2. The JUSTIFIED clause is allowed only with input, output, and update fields.

General Rules

The following general rules apply to the JUSTIFIED clause:

1. If the screen item is an output or update field, when data is moved to it from the
sending item, the JUSTIFIED clause is applied according to the normal rules for
MOVE. Refer to Chapter 3, "Introduction to the Nucleus" on page 3-1.

2. If the screen item is an input or update field, when the accepting of data into it has
terminated, the JUSTIFIED clause causes the data entered to be moved right by the
number of character positions occupied by prompt characters, and the left of the field
to be padded with spaces. This is done before the data is moved to the receiving item.
This does not occur if data is not entered.

3. If the screen item has a SECURE clause, the effect on the data is the same as it would
be without the presence of the SECURE clause. This effect does not appear on the
screen.

18-36 Lang:q.age Ref ere nee

LEFTLINE Clause

Function

The LEFTLINE clause causes the leftmost character of the screen item to have a vertical
line on its left-hand side when the item appears on the screen. The line is within the
character-position.

General Format

The following figure shows the format of the LEFTLINE clause:

.,..__ LEFTLINE __...,.

Syntax Rules

The following syntax rules apply to the LEFTLINE clause:

1. The LEFTLINE clause can be used with any screen item.

2. If the LEFTLINE clause is specified at group level, it applies to all suitable subordi
nate elementary items.

3. This clause is provided for compatibility. It is accepted syntactically but has no effect
at run time.

Screen-Handling 18-37

LINE Clause

Function

The LINE clause specifies the line at which the screen item starts on the screen.

General Format

The following figure shows the format of the LINE clause:

NUMBER IS

Syntax Rules

PLUS
+

integer-1

The following syntax rules apply to the LINE clause:

1. identifier-1 must be an unsigned numeric integer and must contain a value greater
than zero and less than 256.

2. identifier-1 must not be subject to OCCURS clauses.

3. integer-1 must be unsigned, greater than zero, and less than 256.

4. PL US and + are synonymous.

5. Omitting the NUMBER option results in a default value of + 1.

6. The current line is assumed for screen descriptions which omit the LINE clause.

7. The LINE clause may be specified with any elementary item.

General Rules

The following general rules apply to the LINE clause:

1. The LINE clause specifies the line on which the screen item is to appear on the display
screen in an ACCEPT or DISPLAY operation.

2. If the LINE clause has an identifier or an integer but does not specify PLUS, +, or -,
the clause gives an absolute line number. Line 1 is the line number specified in the AT
phrase of the statement. If the AT phrase is not specified, then line 1 is the first line
on the screen.

3. If PLUS, +, or - is specified in the LINE clause, then the line number is relative to
that at which the preceding display screen item ends, regardless of whether the state
ment displays the preceding item on the screen. This depends on the current effective
length of that item at run time, derived from its PICTURE, VALUE, and SIZE clauses.
The counting of line numbers restarts at a level 01 item at line 1.

18-38 Language Reference

4. If a screen description contains neither a LINE nor COLUMN clause and the item is
not a level 01 item, COLUMN +1 is assumed. The item then starts immediately fol
lowing the preceding item in the screen section.

5. If a LINE position is specified that is off the screen, the ACCEPT or DISPLAY is trun
cated.

Screen-Handling 18-39

OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for repeated screen items and
supplies information required for the application of subscripts or indexes. Refer to
Chapter 12, "Table-Handling" for standard rules for this data description clause which are
also applicable when the OCCURS clause is used in screen definitions.

General Format

The following figure shows the format of the OCCURS clause:

~OCCURS i nteger-1--lr----_J-.----1-.M,.
TIMES

Syntax Rules

The following syntax rules apply to the OCCURS clause:

1. This clause is allowed only with input, output, update fields, and with group items.

2. If OCCURS clauses apply to the screen item, then the same number of OCCURS
clauses, specifying the same number of occurrences, must apply to the receiving item.
These OCCURS clauses must not include the DEPENDING phrase.

3. If OCCURS clauses apply to the screen item, either the same number of OCCURS
clauses, specifying the same number of occurrences or no OCCURS clauses at all, must
apply to the sending item. These OCCURS clauses must not include the DEPENDING
phrase.

General Rules

The following general rules apply to the OCCURS clause:

1. In a screen description that is subject to an OCCURS clause, the LINE and COLUMN
clauses apply to each individual table entry. Either the LINE or the COLUMN clause
should specify relative positioning, because if they both specify an absolute position
every entry will appear in the same place.

2. If the screen item is an output field and no OCCURS clauses apply to the sending item,
then in a DISPLAY operation the contents of the sending item are moved to every
occurrence of the screen item.

3. If the screen item is an update field or it is an output field with OCCURS clauses
applying to the sending item, then in a DISPLAY operation the contents of each occur
rence of the sending item are moved to the corresponding occurrence of the screen
~~ .

4. If the screen item is an update or input field then in an ACCEPT operation the data
entered into each occurrence of the screen item is moved to the corresponding occur
rence of the receiving item.

18-40 Language Reference

Example

The following example shows the OCCURS clause:

WORKING-STORAGE SECTION.
01 NAMES.

05 NAME-TABLE PIC X(20) OCCURS 10 TIMES.

SCREEN SECTION.
01 STUDENT-NAMES.

05 BLANK SCREEN.
05 LINE 5 VALUE "ENTER STUDENT NAMES:".
05 LINE 8.
05 LINE +2 COLUMN 2 PIC X(20)

TO NAME-TABLE OCCURS 10.

Screen-Handling 18-41

OVERLINE Clause

Function

The OVERLINE clause causes every character of the screen item to have a horizontal line
above it when the item appears on the screen. The line is within the character position.

General Format

The following figure shows the format of the OVERLINE clause:

~ OVERLINE ---

Syntax Rules

The following syntax rules apply to the OVERLINE clause:

1. The OVERLINE clause can be used with a screen item.

2. If the OVERLINE clause is specified at group level, it applies to all suitable subordi
nate elementary items.

3. This clause is provided for compatibility. It is accepted syntactically but has no effect
at run time.

18-42 Language Reference

PICTURE Clause

Function

The PICTURE clause describes the length, general characteristics, and editing require
ments of a screen item. The FROM, TO, and USING phrases identify the source of data for
display and the destination of data accepted.

General Format

The following figure shows the format of the PICTURE clause:

L :~~TURE I [IS J character-string
FROM---r-identifier-1 TO identifier-2-i

Lliteral-1 I
USING identi fier-3 -----------~

Syntax Rules

The following syntax rules apply to the PICTURE clause:

1. The PICTURE clause may include any standard editing characters.

2. Each PICTURE clause must contain either a FROM, TO, or USING phrase.

3. PIC is an abbreviation for PICTURE.

4. The USING phrase is equivalent to the TO and FROM phrases, both specifying the
same identifier.

5. The PICTURE clause is allowed only with elementary items.

6. The identifier in the FROM, TO, or USING phrase can be qualified. If no OCCURS
clause applies to the screen item, then this identifier can be subscripted or indexed. It
must be defined in the FILE, WORKING-STORAGE, or LINKAGE section of the
program.

7. The PICTURE clause need not be the same as the PICTURE clause of the data item
referenced in the FROM, TO, or USING clause, but it must be such that the implied
MOVE is legal.

General Rules

The following general rules apply to the PICTURE clause:

1. The character string describes the length and category of the screen item. It is used in
the same way as the character string in the PICTURE clause for a data item.

2. Executing a DISPLAY statement on a screen item whose description includes a FROM
or USING phrase moves data from the associated data item to the screen item and then
displays the screen item on the screen.

Screen-Handling 18-43

3. Executing an ACCEPT statement on a screen item whose description includes a TO or
USING phrase accepts operator-keyed data into the screen item and then moves that
data to the associated data item.

4. It is recommended that every numeric screen item either be a numeric-edited item or
contain only 9s in its PICTURE clause. Editing and de-editing are applied as necessary
when data is moved to or from the associated data item.

18-44 Language Reference

PROMPT Clause

Function

The PROMPT clause causes the empty character positions in the screen item to be marked
on the screen during an ACCEPT operation while the system is ready to accept operator
keyed data into that item.

General Format

The following figure shows the format of the PROMPT clause:

..__PROMPT~~~~~~~~~~~~~-~

L CHARACTER ~-~~L- i dent i fi er-1
lrs] literal-1

Syntax Rules

The following syntax rules apply to the PROMPT clause:

1. This clause is allowed only with input and update fields and with group items.

2. If this clause is specified at group level, it applies to all subordinate elementary items.

3. identifier-1 must be a single-character alphabetic or alphanumeric data item.

4. identifier-1 must not be subject to an OCCURS clause.

5. literal-1 must be a one-character nonnumeric literal or a figurative constant.

General Rules

The following general rules apply to the PROMPT clause:

1. If the CHARACTER phrase is not specified, the PROMPT clause is documentary only.

2. The CHARACTER phrase specifies a prompt character to be used for marking empty
character positions. The prompt character overrides the configured option. Refer to
the User's Guide for details on configuration options.

3. The PROMPT clause causes the prompt character to replace trailing spaces in alpha
numeric or free-format numeric screen items. It also causes the prompt character to
replace leading suppressed digit positions in fixed-format numeric-edited screen items.

4. The PROMPT clause has no effect on fixed-format, nonedited numeric screen items or
numeric-edited screen items that have no zero-suppression positions.

5. This clause has no effect if the SECURE clause is specified.

6. The prompt characters appearing in the screen item are changed to spaces upon termi
nation of the ACCEPT operation.

7. Using the left or right arrow key to try to move over a prompted area terminates the
ACCEPT into the screen item, unless there is no further item in the applicable direc
tion.

Screen-Handling 18-45

REQUIRED Clause

Function

The REQUIRED clause specifies that the operator must not leave the screen item empty.

General Format

The following figure shows the format of the REQUIRED clause:

.,...,.,~-.--REQUIRED .,,.
L EMPTY-CHECK _J

Syntax Rules

The following syntax rules apply to the REQUIRED clause:

1. REQUIRED and EMPTY-CHECK are synonymous.

2. The REQUIRED clause is allowed only with input and update fields and with group
items.

3. This clause may be specified on a group screen item, in which case it applies to all
suitable elementary items which are subordinate to that item.

General Rules

The following general rules apply to the REQUIRED clause:

1. The REQUIRED clause takes effect during the execution of any ACCEPT statement
that causes the screen item to be accepted as long as the cursor enters the screen item
at some time during the ACCEPT statement. Unless this clause is satisfied, terminator
keystrokes are rejected and the cursor is repositioned to the beginning of the item.

2. To satisfy this clause, alphanumeric screen items must contain at least one nonspace,
nonprompt character; numeric screen items must have a nonzero value.

3. For update fields, the REQUIRED clause can be satisfied by initial data as well as by
operator-keyed data.

4. The REQUIRED clause may not be effective if a function key is used to terminate an
ACCEPT operation. Refer to the User's Guide for details on configuration options.

5. An error message may be configured for display on the screen if the REQUIRED clause
is not satisfied. Refer to the User's Guide for details on configuration options.

18-46 Language Reference

REVERSE-VIDEO Clause

Function

The REVERSE-VIDEO clause causes the screen item to be displayed in reverse-video.

General Format

The following figure shows the format of the REVERSE-VIDEO clause:

---REVERSE-VIDEO ---

General Rules

The following general rules apply to the REVERSE-VIDEO clause:

1. The REVERSE-VIDEO clause is allowed with any screen item.

2. If the REVERSE-VIDEO clause is specified at group level, it applies to all suitable sub
ordinate elementary items.

Screen-Handling 18-47

SECURE Clause

Function

The SECURE clause prevents operator-keyed data from appearing on the screen.

General Format

The following figure shows the format of the SECURE clause:

.... [SECURE j
NO-ECHO

...

Syntax Rules

The following syntax rules apply to the SECURE clause:

1. The SECURE clause is allowed only with input and update fields.

2. SECURE and NO-ECHO are synonymous.

3. This clause may be specified in a group screen item, in which case it applies to all
suitable elementary items which are subordinate to that item.

General Rule

When the SECURE clause is specified, only spaces and the cursor appear in the screen
item.

Example

The following example shows the SECURE clause:

01 PASSWORD-SCREEN.
02 BLANK SCREEN.
02 LINE 5 VALUE "ENTER PASSWORD".
02 LINE 6 PIC X(6) TO PASS-WO SECURE.

18-48 Language Reference

SIGN Clause

Function

The SIGN clause specifies the position and representation of the operational sign. Refer to
Chapter 6, "Data Division" for standard rules for this data description clause which are
also applicable when the SIGN clause is used in screen definitions.

General Format

The following figure shows the format of the SIGN clause:

....
LSIGN Lis] L~~~~~~~GJ LsEPARAn-~c----J--<

CHARACTER

...

Syntax Rules

The following syntax rules apply to the SIGN clause:

1. The SIGN clause is allowed only with input, output, and update fields whose pictures
contain the character S.

2. This clause is allowed only with elementary items.

General Rule

It is recommended that the SEPARATE option be used when the SIGN clause is specified
in a screen description. If the SEPARATE option is not specified, a sign denoted by Sin a
PICTURE clause appears as an overwrite.

Screen-Handling 18-49

SIZE Clause

Function

The SIZE clause specifies the current size of the screen item.

General Format

The following figure shows the format of the SIZE clause:

.,....____SIZE -L--_J~~L- i dent ifi er-1 --r-+'11
IS integer-1~

Syntax Rules

The following syntax rules apply to the SIZE clause:

1. The SIZE clause is allowed only with elementary screen items.

2. identifier-I must be an unsigned numeric integer and must not be subject to an
OCCURS clause.

3. integer-I must be unsigned.

General Rules

The following general rules apply to the SIZE clause:

1. The SIZE clause has no effect if the size specified is zero.

2. If the SIZE clause is specified for a numeric or numeric-edited screen item and the size
specified is not zero, the screen item is treated as though it were free-format. This
overrides the setting of the configuration option.

3. If the size specified in the SIZE clause is less than that implied by the associated
PICTURE or VALUE clause, only the left-hand portion of the screen item appears on
the screen. If the JUSTIFIED clause is present, then only the right-hand portion of the
screen item appears. The remainder of the screen item can be considered to contain
spaces or zeros, as appropriate.

4. If the size specified in the SIZE clause is greater than that implied by the PICTURE or
VALUE clause for output or literal fields, the screen item is padded on the right with
spaces.

5. Changing the value in identifier-I alters the effective size of the screen item at run
time. This may alter the screen positions of items whose descriptions follow it in the
SCREEN SECTION. Refer to "LINE Clause" on page I8-38 and "COLUMN Clause" on
page I8-28.

18-50 Language Reference

UNDERLINE Clause

Function

The UNDERLINE clause causes the screen item to be underlined when it appears on the
screen.

General Format

The following figure shows the format of the UNDERLINE clause:

~UNDERLINE__....

Syntax Rules

The following syntax rules apply to the UNDERLINE clause:

1. The UNDERLINE clause is allowed with any screen item.

2. If the UNDERLINE clause is specified at group level, it applies to all suitable subordi
nate elementary items.

Screen-Handling 18-51

VALUE Clause

Function

The VALUE clause specifies literal information for display on the screen.

General Format

The following figure shows the format of the VALUE clause:

.... [J literal-1--M
VALUE L

IS

Syntax Rules

The following syntax rules apply to the VALUE clause:

1. The literal associated with the VALUE clause must be nonnumeric. It cannot be a
figurative constant.

2. The VALUE clause is allowed only with elementary items that have no PICTURE
clauses.

18-52 Language Reference

ZERO-FILL Clause

Function

The ZERO-FILL clause causes trailing prompt characters to be replaced by zeros instead of
spaces.

General Format

The following figure shows the format of the ZERO-FILL clause:

--ZERO-FILL--

Syntax Rule

This clause is allowed only with input and update fields that are alphabetic or alphanu
meric.

General Rules

The following general rules apply to the ZERO-FILL clause:

1. The ZERO-FILL clause causes trailing prompt characters to be replaced by zeros
instead of spaces when data is moved from the screen item to the receiving item. This
occurs only if the operator enters data into the screen item.

2. If the receiving item has a JUSTIFIED clause, the ZERO-FILL clause causes leading
positions left vacant by justification to be zero-filled.

Screen-Handling 18-53

Procedure Division

The formats of the ACCEPT and DISPLAY statements described in this section allow non
scrolling forms to be accepted or displayed. The operator can then enter data into a dis
played form.

The order of execution of an ACCEPT or DISPLAY statement is always:

1. The AT phrase
2. The BLANK phrase
3. Display of current contents of the data area (ACCEPT only)
4. The BELL phrase
5. The ACCEPT or DISPLAY operation.

Format 2 of both ACCEPT and DISPLAY statements contains a WITH phrase that allows
the user to specify certain options available during the operation. Many of these options
are also available as screen description clauses and have been documented earlier in this
chapter. Refer to "SCREEN SECTION" on page 18-14 for descriptions of:

AUTO
BACKGROUND-COLOR
BELL
BLINK
FOREGROUND-COLOR
FULL
GRID
HIGHLIGHT
LEFTLINE
OVERLINE
PROMPT
REQUIRED
REVERSE-VIDEO
SECURE
SIZE
UNDERLINE
ZERO-FILL (with alphabetic or alphanumeric data items)

In addition to the options available as screen description clauses, the following options can
be used in the WITH phrase: SPACE-FILL, ZERO-FILL, LEFT-JUSTIFY, RIGHT-JUSTIFY,
TRAILING-SIGN, and UPDATE. ZERO-FILL appears in this list and as a screen
description clause because it has two different uses. Its second use is documented later in
this chapter.

A configuration option is available that allows the entry of data into numeric and numeric
edited screen fields in free-format mode. In COBOL, nonedited numeric data items are
intended for holding data in an internal form; however, Format 2 ACCEPT and DISPLAY
statements enable such data items to appear on the screen. If free-format mode is in effect,
the data will automatically appear reformatted as follows with:

• The virtual decimal point represented by a period

• The sign represented by a sign character (- for minus; space for plus) which appears
immediately before the leftmost digit

• Zero suppression in all integer character positions, except the least significant

• Left justification

The SPACE-FILL, ZERO-FILL, LEFT-JUSTIFY, RIGHT-JUSTIFY, and TRAILING-SIGN
options amend this format.

All of the additional options available with the WITH phrase are described under the rules
for ACCEPT and/or DISPLAY formats.

18-54 Language Reference

ACCEPT Statement

Function

The ACCEPT statement makes data keyed at the CRT available to your program. Refer to
Chapter 7, "Procedure Division in the Nucleus" for other formats of the ACCEPT state
ment.

General Format

The following figures show the format of the ACCEPT statement:

Format 1

---ACCEPT screen-name----------------------------

AT LINE L J L identifier-I
NUMBER integer-I

AT---C identifier-3
integer-3

.. LON L EXCEPTI~ imperative-statement-I :J
ESCAPE

COLUMN 1 L J Lidentifier-2
COL ___J NUMBER i nteger-2 -

" [NOT ON L EXCEPT~ imperative-statement-2 J LEND-ACCEPT J
ESCAPE

....

..

Screen-Handling 18-55

Format 2

..,_ACCEPT identifier-1---------------------------

AT ·LINE L identi fier-2
L NUMBER J i nteger-1

COL~ [J [identifier-3
COL NUMBER integer-2

AT-i=_ identifier-4
integer-3

.. L FROM CRT J L MODE ~c-1-s =:J~ BLOCK J [+
1
J

WITH with-list

.. LONLEXCEPTI~imperative-statement-1 =:J
ESCAPE

.. [NOT ON L EXCEPT~ imperat i ve-statement-2 J LEND-ACCEPT J
ESCAPE

18-56 Language Reference

....

where with-list is:
--~-,--AUTO--~--------------,--~~

AUTO-SKIP _j

L BELL_j
BEEP
BLINK _______________ __,

FULL
LENGT
GRID
HIGHL
LEFTL
OVERL
PROMP

H-CHECK ~

IGHT
INE
INE
T 1

L_CHARACTER IS_J
IRED
-CHECK-=-
SE-VIDEO

~o-=r

REQU
EMPTY
REVER
SE CUR
NO-EC
SIZE

LIS]
[identifier-6

integer-4
UNDER
FOREG

BACKG

LEFT
RIGHT
SPACE

LINE
ROUND-COLOR

ROUND-COLOR

JUSTIFY
-JUSTIFY
-FILL
ING-SIGN
E

TRAIL
UPDAT
ZERO-FILL

Syntax Rules

[IS]

[IS]

L_ identifie~
-1 iteral-1

integer-5

integer-6

The following syntax rules apply to the ACCEPT statement:

Both Formats

1. The LINE and COLUMN phrases can appear in any order.

2. EXCEPTION and ESCAPE are synonymous.

3. integer-3 must be 4 or 6 digits long.

Format 1

4. identifier-3 must be a PIC 9(4) or a PIC 9(6) data item.

Format 2

5. identifier-4 must be a PIC 9(4) or a PIC 9(6) data item.

Screen-Handling 18-57

6. An ACCEPT statement whose operand is an identifier is treated as Format 2 if it has:

a. An AT phrase

b. A FROM phrase with the CRT option

c. A WITH phrase

d. A MODE IS BLOCK phrase

e. An EXCEPTION phrase

f. No FROM phrase but the CONSOLE option clause is specified in the
SPECIAL-NAMES paragraph.

If it has the FROM phrase with the CONSOLE option, or if it has no FROM phrase
and the CONSOLE IS CRT clause is not specified in the SPECIAL-NAMES paragraph,
it is treated as the standard ANSI ACCEPT statement. Refer to "ACCEPT Statement"
on page 7-22.

7. The phrases following the identifier can be in any order.

8. If the PROMPT option is specified, the CHARACTER option must specify a literal and
not an identifier.

9. The SPACE-FILL, ZERO-FILL, LEFT-JUSTIFY, RIGHT-JUSTIFY and
TRAILING-SIGN options are allowed only if the operand is an elementary item.

10. The attributes GRID, LEFTLINE, and OVERLINE are provided for compatibility.
They are accepted syntactically but have no effect at run time.

11. The attribute BLINK is always accepted syntactically but will have effect only on a
terminal that supports blinking.

General Rules

The following general rules apply to the ACCEPT statement:

Both Formats

1. The AT phrase gives the absolute address on the screen where the ACCEPT operation
is to start.

2. If integer-3 is 4 digits long, the first two digits specify the line, the second two the
column. If integer-3 is 6 digits long, the first three digits specify the line, while the
second three specify the column.

3. Certain combinations of line and column numbers have special meanings:

a. Until the column comes within range, out-of-range column values are reduced by
the line length and the line value is incremented.

b. Out-of-range line values cause the screen to scroll up one line. The effect is the
same as if the line number of the bottom line had been specified.

c. If the line and column numbers given are both zero, the ACCEPT starts at the posi
tion following the position where the preceding Format 1 or Format 2 ACCEPT
operation finished. Column 1 of each line is considered to follow the last column of
the previous line.

d. If the line number is zero, but a nonzero column number is specified, the ACCEPT
starts at the specified column, on the line following the line where the preceding
Format 1 or 2 ACCEPT operation finished.

e. If the column number is zero, but a nonzero line number is specified, the ACCEPT
starts on the specified line, at the column following the column where the pre
ceding Format 1 or 2 ACCEPT operation finished.

18-58 Language Reference

4. If the ON EXCEPTION phrase is specified, imperative-statement-1 is executed if the
ACCEPT operation finishes with anything other than a normal termination. If the
NOT ON EXCEPTION phrase is specified, imperative-statement-2 is executed if the
ACCEPT operation terminates normally. Refer to "CRT STATUS Clause" on
page 18-12 for possible types of termination.

5. The END-ACCEPT phrase delimits the scope of the ACCEPT statement. Refer to
"Explicit and Implicit Scope Terminators" on page 2-36.

Format 1

6. If identifier-3 is 4 digits long, the first two digits specify the line, the second two the
column. If identifier-3 is 6 digits long, the first three digits specify the line, the second
three the column.

7. This format of the ACCEPT statement accepts screen items which are defined within
the SCREEN SECTION of the program and allows full access to the enhanced screen
handling facilities.

Format 2

8. If identifier-4 is 4 digits long, the first two digits specify the line, the second two the
column. If identifier-4 is 6 digits long, the first three digits specify the line, the second
three the column.

9. If no AT phrase is specified, the ACCEPT operation starts at line 1, column 1.

10. If identifier is a group item and there is no MODE IS BLOCK phrase, then those ele
mentary subordinate items which have names other than FILLER are accepted. They
are positioned on the screen in the order their descriptions appear in the DATA DIVI
SION and are separated by the lengths of the FILLER items in the group. For this
purpose, the first position on a line is regarded as immediately following the last posi
tion on the previous line. The items are accepted in the same order. Unless otherwise
specified in the CURSOR IS clause, the cursor is initially positioned at the start of the
first item. Refer to "CURSOR IS Clause" on page 18-11. As the ACCEPT operation
into each item is terminated, the cursor moves to the start of the next item.

11. The MODE IS BLOCK phrase indicates that the identifier is to be treated as an ele
mentary item. Even if it is a group item it is displayed as one item.

12. If the PROMPT option is not specified, no character is output to mark empty character
positions. PROMPT without the CHARACTER option causes this to be done using the
character configured for this purpose.

13. If the PROMPT option is not specified, those character positions into which the oper
ator does not enter data produce spaces in the data item.

14. The SPACE-FILL option causes data in free-format, nonedited numeric data items to
appear on the screen with zero-suppression in all integer character positions. This
option affects only free-format, nonedited numeric data items. This takes effect when
initial data in the data item is displayed and again when the ACCEPT operation into
the data item is terminated. Any leading sign is displayed in the rightmost space.

15. The ZERO-FILL option causes data in free-format, nonedited numeric data items to
appear on the screen with no zero-suppression. This takes effect when initial data in
the data item is displayed and again when the ACCEPT operation into the data item is
terminated. Refer to "ZERO-FILL Clause" on page 18-53 for the effect this option has
when used with alphabetic or alphanumeric data items.

16. The LEFT-JUSTIFY option is documentary only.

17. The RIGHT-JUSTIFY option causes operator-keyed characters to be moved on the
screen to the rightmost character positions of the field. This option affects only free
format, nonedited numeric data items. This takes effect upon display of the initial data
(the current contents displayed) in the data item and also upon termination of the
ACCEPT operation.

Screen-Handling 18-59

18. The TRAILING-SIGN option causes the operational sign to appear in the rightmost
character position of the field. This takes effect upon display of initial data in the data
item and also upon termination of the ACCEPT operation. This option affects only
signed, nonedited numeric data items which are in free-format mode.

19. The UPDATE option causes the current contents (initial data) of the data item to be
displayed before the operator is prompted to key in new input. If the operator does not
key in any new data, the initial data is then treated as though it were operator-keyed.
If the UPDATE option is not specified, the display of initial data is a configuration
option. Refer to the User's Guide for details of configuration options.

18-60 Language Reference

DISPLAY Statement

Function

The DISPLAY statement transfers data from the program to the CRT screen. Refer to
Chapter 7, "Procedure Division in the Nucleus" for another format of the DISPLAY state
ment.

General Format

The following figures shows the format of the DISPLAY statement:

Format 1

- DISPLAY screen-name-----------------------------

AT LINE L L identifier-I
NUMBER j i nteger-1-

COLUMN 1 Lidentifier-2
COL __J L NUMBER J i nteger-2

AT --c_ i dent i fi er-3
integer-3

Screen-Handling 18-61

Format 2

-- DISPLAY L identifie~ at-phrase [J [J L J
literal-I UPON-i-CRT MODE L J BLOCK with-phrase

L._CRT-UNDER IS

~here at-phrase is:

AT LINE J Lidentifier-2
L NUMBER integer-I

-AT---ridentifie~
L._ i nteger-3

where with-phrase is:

--wnH BELL
BEEP
BLIN

--GRID
HIGH
LEFT
OVER
REVE
SIZE

_J
K

LIGHT
LINE
LINE
RSE-VIDEO

Lis J
LINE

L identifier-5
integer-4

COLUMN 1 L J Li dent i fi er-3
COL~ NUMBER integer-2

.....

UNDER
FOREG ROUND-COLOR

[IS]
integer-5-

BACKG ROUND-COLOR
[IS]

i nteger-6 --

LSCRE~ BLANK
LINE

Syntax Rules

The following syntax rules apply to the DISPLAY statement:

Both Formats

1. The LINE and COLUMN phrases can appear in any order.

2. integer-3 must be 4 or 6 digits long.

Format 1

3. identifier-3 must be 4 or 6 digits long.

18-62 Language Reference

Format 2

4. identifier-4 must be 4 or 6 digits long.

5. A DISPLAY statement with an operand that is an identifier or a literal is treated as
Format 2 if it has:

a. An AT phrase

b. An UPON phrase with the CRT or CRT-UNDER option

c. A WITH phrase

d. Or a MODE IS BLOCK phrase.

e. No UPON phrase but the CONSOLE IS CRT clause is specified in the
SPECIAL-NAMES paragraph.

If it has the UPON phrase with the CONSOLE option, or if it has no UPON phrase and
the CONSOLE IS CRT phrase is not specified in the SPECIAL-NAMES paragraph, it is
treated as the standard ANSI DISPLAY statement. Refer to "DISPLAY Statement" on
page 7-32.

6. The phrases following the identifier can be in any order.

7. If identifier-I or iiteral-1 is not specified, then the MODE IS BLOCK and WITH
phrases are not allowed.

8. The attributes GRID, LEFTLINE, and OVERLINE are provided for compatibility.
They are accepted syntactically but have no effect at run time.

9. The attribute BLINK is accepted syntactically but will have effect only on a terminal
that supports blinking.

10. When the CRT-UNDER option is specified, the output of that DISPLAY statement will
be underlined.

General Rules

The following general rules apply to the DISPLAY statement:

Both Formats

1. The AT phrase gives the absolute address on the screen where the DISPLAY operation
is to start.

2. If integer-3 is 4 digits long, the first two digits specify the line, and the second two
specify the column. If integer-3 is 6 digits long, the first three digits specify the line,
while the second three specify the column.

3. Certain combinations of line and column numbers have special meanings, as follows:

a. Until the column comes within range, out-of-range column values are reduced by
the line length and the line value is incremented.

b. Out-of-range line values cause the screen to scroll up one line. The effect is the
same as if the line number of the bottom line had been specified.

c. If the line and column numbers given are both zero, the DISPLAY starts at the
position following the position where the preceding Format 1 or Format 2
DISPLAY operation finished. Column 1 of each line is considered to follow the last
column of the previous line.

d. If the line number is zero but a nonzero column number is specified, the DISPLAY
starts at the specified column on the line following the line where the preceding
Format 1 or 2 DISPLAY operation finished.

e. If the column number is zero but a nonzero line number is specified, the DISPLAY
starts on the specified line at the column following the column where the preceding
Format 1 or 2 DISPLAY operation finished.

Screen-Handling 18-63

Format 1

4. If identifier-3 is 4 digits long, the first two digits specify the line, and the second two
specify the column. If identifier-3 is 6 digits long, the first three digits specify the line,
and the second three specify the column.

5. This format of the DISPLAY statement displays screen items, which are defined within
the screen section of the program, and allows full access to the enhanced screen
handling facilities.

Format 2

6. If identifier-4 is 4 digits long, the first two digits specify the line, the second two the
column. If identifier-4 is 6 digits long, the first three digits specify the line, the second
three the column.

7. Part of this statement can be repeated to allow the display of several data items. If the
first identifier has no AT phrase, it begins at line 1, column 1. Each subsequent data
item begins at the current cursor position at left after the previous data item.

8. If identifier-1 is a group item and there is no MODE IS BLOCK phrase, then those ele
mentary subordinate items which have names other than FILLER are displayed. They
are displayed simultaneously on the screen in the order their descriptions appear in the
DATA DIVISION, and separated by the lengths of the FILLER items in the group. For
this purpose, the first position on a line is regarded as immediately following the last
position on the previous line.

9. The MODE IS BLOCK phrase indicates that the identifier is to be treated as an ele
mentary item. Thus, even if it is a group item it is displayed as one item.

10. If no identifier or literal is present, the DISPLAY operation moves the cursor without
actually displaying any data.

11. If the identifier is one of the following figurative constants it has a special effect as
follows:

a. SPACE clears from the specified cursor position to the end of the screen

b. LOW-VALUE moves the cursor to the specified position

c. ALL X"Ol" clears from the specified cursor position to the end of the line

d. ALL X"02" clears the whole screen

e. ALL X"07" sounds the bell

If the identifier is a figurative constant that is not listed above and the SIZE option is
not specified, one occurrence of its value is displayed.

12. If the SIZE option is specified for a figurative constant that has no special effect, then
the figurative constant is displayed as many times as necessary to reach the length
specified in the size option. However, if the display wraps around to a new line, it
starts again at the beginning of the figurative constant.

13. If both the BLANK SCREEN and FOREGROUND-COLOR options are specified, the
designated color becomes the default foreground color.

14. If both the BLANK SCREEN and BACKGROUND-COLOR options are specified, the
designated color becomes the default background color.

18-64 Language Reference

Screen-Handling Sample Program

The following example shows a complete screen-handling program:

IDENTIFICATION DIVISION
PROGRAM-ID SCDEMOl.

* THIS PROGRAM DEMONSTRATES SCREEN-HANDLING. IT
*SHOWS, FOR DEMONSTRATION PURPOSES ONLY, HOW
* PART OF A PROGRAM FOR HANDLING A BANK ACCOUNT
* MIGHT BE WRITTEN: IT ACCEPTS A PASSWORD, AND
* THEN REPEATEDLY ACCEPTS DETAILS OF CHECKS.
* NEITHER THE PASSWORD NOR THE CHECK DETAILS ARE
* ACTUALLY PROCESSED: ONLY THE SCREEN-HANDLING
* CODE IS GIVEN. FOR BOTH, THE PROGRAM USES
* FORMAT 1 OF THE ACCEPT AND DISPLAY VERBS, WHICH
* REFERENCES SCREEN ITEMS. THE MESSAGE ASKING THE
* OPERATOR WHETHER TO CONTINUE DEMONSTRATES
* FORMAT 2, WHICH REFERENCES DATA ITEMS.

*

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

CURSOR IS CURSOR-POSITION

DATA DIVISION.
WORKING-STORAGE SECTION.

01

01

CURSOR-POSITION.
02 CURSOR-LINE
02 CURSOR-COL

DATE-COLS.
02 DAY-COL
02 MONTH-COL
02 YEAR-COL

PIC 99.
PIC 99.

PIC 99 VALUE 56.
PIC 99 VALUE 59.
PIC 99 VALUE 62.

* AREAS TO CONTAIN DATA FROM FORMS ON THE SCREEN.

01 P-PASSWORD

01 $-CHECK.
02 S-TO
02 S-FOR
02 S-REFNO
02 $-AMOUNT
02 $-DATE.

03 S-DAY
03 $-MONTH
03 S-YEAR

PIC X(20) VALUE SPACES.

PIC X(15) OCCURS 4.
PIC X(Ie).
PIC X(Ie).
PIC S9(6)V99.

PIC 99.
PIC 99.
PIC 9999.

Screen-Handling 18-65

*
* AREA FOR FORMAT 2 ACCEPT/DISPLAY USED FOR
* "CONTINUE" MESSAGE

01 GO-ON.

02 GO-MESSAGE PIC X(55) VALUE
"DO YOU WANT TO ENTER ANOTHER? (Y FOR YES,

N TO FINISH):".
02 FILLER PIC X.

01 GO-ON-RED.
02 FILLER PIC X(55).
02 GO- ON-REPLY PIC X.

SCREEN SECTION.
01 PASSWORD-FORM.

02 BLANK SCREEN.
02 VALUE "PLEASE ENTER PASSWORD<".
02 PIC X(20) TO P-PASSWORD, REQUIRED, SECURE.
02 VALUE ">".

01 CHECK-FORM.
03 BLANK SCREEN.
03 LINE 2, COLUMN 35, VALUE "CHECK".

03 LINE 4.
03 OCCURS 4.

04 PIC X FROM "<", LINE, COLUMN 10.
04 PIC X (15) USING S-TO.
04 PIC X FROM ">".

03 VALUE "RECIPIENT NAME AND ADDRESS",
LINE + 2, COLUMN 6.

03 VALUE "<", LINE 14, COLUMN 10.
03 PIC ZZZ, ZZ9.99 USING S-AMOUNT,

REQUIRED.
03 VALUE ">".
03 VALUE "AMOUNT", LINE 15, COLUMN - 9.

03 VALUE "<", LINE 5, COLUMN 40.
03 PIC X(lO) USING S-FOR.
03 VALUE ">".
03 VALUE " FOR", LINE 6, COLUMN - 9.

03 VALUE "< 11 , LINE 5, COLUMN 60.
03 PIC X(lO) USING S-REFNO, FULL.
03 VALUE ">".
03 VALUE "REFERENCE", LINE 6, COLUMN - 9.

18-66 Language Reference

03 VALUE "DATE:", LINE 14, COLUMN 46.
03 VALUE "<", COLUMN DAY-COL.
03 PIC ZZ USING S-DAY, PROMPT IS "D",

AUTO, REQUIRED.
03 VALUE "/", COLUMN MONTH-COL.
03 PIC ZZ USING S-MONTH, PROMPT IS

"M", AUTO, REQUIRED.
03 VALUE "/", COLUMN YEAR-COL.
03 PIC ZZZZ USING S-YEAR, PROMPT IS "Y",

FULL, REQUIRED.

03 VALUE ">

01 ERROR MESSAGES, BLINK.
02 CLEAR-MSG LINE 24, BLANK LINE.
02 MSGl LINE 24, VALUE "INVALID DAY".
02 MSG2 LINE 24, VALUE "INVALID MONTH".
02 MSG3 LINE 24, VALUE "INVALID YEAR".

PROCEDURE DIVISION.

START-UP.
DISPLAY PASSWORD-FORM.
ACCEPT PASSWORD-FORM.

* CODE TO CHECK THE PASSWORD WOULD BE WRITTEN HERE.

INITIALIZE-CHECK.
MOVE SPACES TO CURSOR-POSITION.
DISPLAY CLEAR-MSG.
MOVE SPACES TO $-CHECK.
MOVE ZERO TO $-AMOUNT S-DAY $-MONTH S-YEAR.
DISPLAY CHECK-FORM.

ACCEPT-CHECK.
ACCEPT CHECK-FORM.

Screen-Handling 18-67

VALIDATE-DATE.
MOVE 14 TO CURSOR-LINE.
IF S-DAY > 31

DISPLAY MSGl
ADD DAY-COL 1 GIVING CURSOR-COL
GO TO ACCEPT-CHECK

ELSE IF S-MONTH > 12
DISPLAY MSG2
ADD MONTH-COL 1 GIVING CURSOR-COL
GO TO ACCEPT-CHECK

ELSE IF S-YEAR < 1900 OR > 2100
DISPLAY MSG3
ADD YEAR-COL 1 GIVING CURSOR-COL
GO TO ACCEPT-CHECK

ELSE
DISPLAY CLEAR-MSG.

* CODE TO PROCESS THE CHECK, PERHAPS WITH FURTHER
* VALIDATION OF THE DATE, WOULD BE WRITTEN HERE.

NEXT-CHECK.
MOVE SPACE TO GO-ON-REPLY.
DISPLAY GO-ON AT 2401.
ACCEPT GO-ON-RED AT 2401.
IF GO-ON-REPLY = "y" OR "Y" GO TO INITIALIZE
CHECK.
IF GO-ON-REPLY = "n" OR "N" STOP RUN.

GO TO NEXT CHECK.

18-68 Language Reference

Appendix A. Ryan-McFarland Syntax Supplement

Ryan-McFarland Syntax Supplement A-1

Introduction . A-3
Reserved Words . A-3
Identification Division - The PROGRAM-ID Paragraph A-3
Environment Division . A-3

ASSIGN Clause . A-3
ORGANIZATION Clause . A-5

Data Division . A-6
VALUE OF LABEL Clause . A-6
Default Sign Representation . A-6
USAGE Clause . A-7

Procedure Division . A-8
Literals as CALL Parameters . A-8
EXIT PROGRAM Statement . A-8
Bound Checking . A-8
Size Allocation for Index Data Items . A-8
STOP RUN Statement . A-8
Nonstandard Operations on Alphanumeric Data Items A-9
PERFORM Statement . A-9
Procedure Names . A-9
REWRITE on Line-Sequential Files . A-9
OPEN and CLOSE on SEQUENTIAL Files . A-9
ACCEPT Statement .. A-10
DISPLAY Statement . A-11
File I-0 Status Codes . A-11

A-2 Language Reference

Introduction

This appendix lists syntax which is accepted by your COBOL system for compatibility
with revision 2.0 of Ryan-McFarland (RM) COBOL. Many features found in RM/COBOL
exist already in AIX VS COBOL. These are documented in the main body of this manual.
Some of the compatibility syntax listed in this appendix is identical to AIX VS COBOL
syntax, but behaves differently if you set the RM system directive when you submit your
source code to your COBOL system. See the User's Guide for details of the RM directive.

Reserved Words

The following non-standard reserved words are given as reserved words when the RM
directive is given:

BEEP
BLINK
COMP-3
COMPUTATIONAL-1
COMPUTATIONAL-6
ECHO
EOS
HIGH
PROMPT
REVERSE
UNLOCK

BINARY
COMP-1
COMP-6
COMPUTATIONAL-3
CONVERT
EOL
ERASE
POS
PRINT
TAB
UPDATE

Identification Division - The PROGRAM-ID Paragraph

The feature of RM/COBOL that allows a data-name to be the same as the PROGRAM-ID is
not supported in the AIX VS COBOL language.

Environment Division

The following information describes the Ryan-McFarland compatibility syntax of the Envi
ronment Division of an AIX VS COBOL program.

ASSIGN Clause

Format
The following format of the ASSIGN clause is supported:

111+-SELECT file-name ASSIGN~IN. PUT
TO INPUT-OUTPUT-1

OUTPUT
PRINT------i
RANDOM --'-------'

Ryan-McFarland Syntax Supplement A-3

General Rule
The words INPUT, OUTPUT, INPUT-OUTPUT, PRINT, and RANDOM are treated as doc
umentary.

A-4 Language Reference

ORGANIZATION Clause

Format
The following format of the ORGANIZATION clause is supported:

.,..__ORGANIZATION ~L--~~-BINARY SEQUENTIAL
IS

General Rules
The following rules apply to the ORGANIZATION clause:

1. This clause is treated as equivalent to ORGANIZATION IS SEQUENTIAL.

However, if you specify the ANSI parameter with the RM system directive when you
submit your source code to the AIX VS COBOL system, this clause is treated as equiv
alent to ORGANIZATION IS LINE-SEQUENTIAL.

2. If you do not specify an ORGANIZATION clause for a file, then ORGANIZATION IS
LINE-SEQUENTIAL is assumed, providing you set the RM system directive when you
submit your source code to the AIX VS COBOL system.

However, if you specify the ANSI parameter with the RM system directive when you
submit your source code to the AIX VS COBOL system, then ORGANIZATION IS
SEQUENTIAL is assumed.

Ryan-McFarland Syntax Supplement A-5

Data Division

The following information describes the Ryan-McFarland syntax for items found in the
Data Division of AIX VS COBOL programs:

VALUE OF LABEL Clause

Format
The following clause is supported in an FD entry:

11+--VALUE OF LABEL-~--~-ZiteraZ
L1s_J

This clause is treated as documentary.

Length of Nonnumeric Literals
In the Data Division, nonnumeric literals up to 2,047 characters long are allowed, if the
RM system directive is set.

Default Sign Representation

The following figure shows the format for the default sign representation:

....... ~ L-----r-- SIGN ~L--_J~ TRAILING SEPARATE
NUMERIC _J IS

....

This syntax is assumed in the Special-Names paragraph if the RM system directive is set.

If you specify RM with the ANSI parameter, this phrase is not assumed.

A-6 Language Reference

USAGE Clause

Format
The following format of the USAGE clause is supported:

.,._____USAGE~--~~ COMPUTATIONAL-I ~---1~
IS COMP-I----<

COMPUTATIONAL-6
COMP-6 ___ _,

COMPUTATIONAL
COMP-----'

Syntax Rules
The following syntax rules apply to the USAGE clause:

1. COMP and COMPUTATIONAL are synonymous.
2. COMP-1 and COMPUTATIONAL-1 are synonymous.
3. COMP-6 and COMPUTATIONAL-6 are synonymous.

General Rules
The following general rules apply to the USAGE clause:

1. The COBOL system allocates a 2 byte signed binary data item capable of holding
values in the range -32k to +32k, for each data item declared as USAGE COMP·l in
the source program, regardless of its picture string. Each USAGE COMP-1 data item is
treated as though it had a standard AIX VS COBOL picture string of S9(4) COMP.

2. COMP-6 data items are treated as the standard AIX VS COBOL COMP format. If, as a
result of this, less data space is allocated to each item than would be under the
RM/COBOL system, the space is padded with null bytes (X'OO').

3. USAGE IS COMPUTATIONAL means the same as USAGE IS DISPLAY.

Ryan-McFarland Syntax Supplement A-7

Procedure Division

The following information describes the Ryan-McFarland compatibility syntax for items in
the Procedure Division.

Literals as CALL Parameters

Literals can be used as parameters to CALL statements.

EXIT PROGRAM Statement

The EXIT PROGRAM statement closes all files that the exited subprogram has opened if
RM system directive is set.

However, if you specify the ANSI parameter with the RM directive, the EXIT PROGRAM
statement does not close these files.

Bound Checking

Table subscripts are not bound checked.

Size Allocation for Index Data Items

Two bytes are allocated to index data items instead of the normal four when RM system
directive is set.

STOP RUN Statement

Format
The following format of the STOP RUN statement is supported:

....._STOP RUNLidentif~
literal

Syntax Rules
The following rules apply to the STOP RUN statement:

1. identifier must be a numeric integer data item.

2. literal must be a numeric integer.

A-8 Language Reference

General Rule
The value held in the numeric integer data item or the value of the literal is placed in a
special register RETURN-CODE.

Nonstandard Operations on Alphanumeric Data Items

Alphanumeric values can be stored in numeric-data items, but will be right justified (as is
normal with a numeric receiving item) and space-filled on the left. For example, if" AB" is
moved to an item described as PIC 9(5), the value stored will be " AB".

PERFORM Statement

The AIX VS COBOL system normally uses a stack for handling PERFORM statements,
while RM COBOL associates a return address with a specific procedure name. As a result,
with RM COBOL all end points of PERFORM statements are active until they are used,
whereas under AIX VS COBOL only the end point of the innermost current PERFORM
statement is active at any one time.

However, if the PERFORM(RM) directive is set, AIX VS COBOL will handle PERFORM
statements in the way RM COBOL does. Refer to the User's Guide.

Procedure Names

Programs can contain procedure names that are the same as data-names.

REWRITE on Line-Sequential Files

The REWRITE statement can be u,sed on sequential files, providing the new record is the
same length as the original.

OPEN and CLOSE on SEQUENTIAL Files

The RM/COBOL language permits OPEN and CLOSE statements to be specified with NO
REWIND on a sequential file. In the AIX VS COBOL language, such statements are
treated as documentary only.

Ryan-McFarland Syntax Supplement A-9

ACCEPT Statement

Format
The following format for the ACCEPT statement is supported:

' .,.._ACCEPT identifier-I .. ~
L phrase-1 J LON EXCEPTION-identifier-6- imperative-statement-1 J

where phrase-1 is:

1Jo--UNITLidentifie~ L =:J
l iteral-1 LINE--r- identifier-3HJ

POS~identifier-4
POS literal-3

L literal-2 ---~

SIZE L identifier-5
l iteral-4

. EPROMPT
UPDATE

~ LEcHo~ LcoNVERT-.J LTAB]

L l i tera 1-5 -i

EOL
EOS

General Rule

NO BEEP OFF HIGH
LOW

BLINK

..

..

REVERSE

This format is treated as equivalent to Format 2 of the ACCEPT statement in the Screen
Handling module of AIX VS COBOL. However, multiple operands are allowed.

A-10 Language Reference

DISPLAY Statement

Format
The following format for the DISPLAY statement is supported:

'-DISPLAY---r---identifier-1 1 L _J
L_literal-l___J phrase-1

....

where phrase-1 is:

-uNITLidentifier-2 , L ~
l itera 1-2 ___J LINE ---i- identi fier-3

L l iteral-3

POS~identifier-4

POS literal-4
SIZE L identi fier-5

literal-5

• L ERASE E ~ L BEEP :J E HIG"3 L BLINK J L REVERSE ::J •
EOL LOW
EOS

General Rule
This format is treated as equivalent to Format 2 of the DISPLAY statement in the Screen
Handling module of AIX VS COBOL.

File 1-0 Status Codes

AIX VS COBOL I-0 status codes are mapped onto their RM equivalents as shown m
Table A-1.

Table A-1 (Page 1 of 3). Mapping of File I-0 Status Codes

AIX VS COBOL 1-0 RM/COBOL 1-0
Codes Codes
Key 1 Key 2 Key 1 Key 2 Meaning

9 2 9 1 File not open when access
attempted

9 4 9 4 Illegal file name

9 5 9 5 Illegal device specification

9 6 9 0 Attempt to write to a file open
input

9 8 9 0 Attempt to read from a file open
output

9 12 9 2 Attempt to open a file already
open

9 13 9 4 File not found

Ryan-McFarland Syntax Supplement A-11

Table A-1 (Page 2 of 3). Mapping of File 1-0 Status Codes

AIX VS COBOL I-0 RM/COBOL I-0
Codes Codes
Key 1 Key2 Key 1 Key2 Meaning
9 17 9 7 Record error : probably zero

length

9 18 9 0 Attempt to read part of record

9 19 9 0 Rewrite error : open mode or
access mode wrong

9 30 9 4 File system is read only

9 31 9 4 Not owner of this file

9 35 9 4 Incorrect access permission

9 37 9 4 File access denied

9 38 9 5 Disk not compatible

9 39 9 5 File not compatible

9 41 9 8 Corrupt index file

9 43 9 8 File information missing for
indexed file

9 47 9 8 Indexed structure overflow

9 65 9 3 File locked

9 66 2 2 Attempt to add duplicate record
key to indexed file

9 67 9 1 Indexed file not open

9 68 9 9 Record locked

9 69 9 8 Illegal argument to ISAM
module

9 71 9 8 Bad indexed file format

9 72 9 8 End of indexed file

9 73 9 8 No record found in indexed file

9 74 9 8 No current record in indexed file

9 75 9 4 Name of indexed file too long

9 78 9 8 Illegal key description in
indexed file

9 81 2 2 Key already exists in indexed
file

9 100 9 0 Invalid file operation

9 101 9 0 Illegal operation on indexed file

9 104 9 4 Null file name used in a file
operation.

9 138 9 3 File closed with lock -- cannot
open

9 139 9 0 Record length or key incon-
sis tent

9 141 9 2 File already open -- cannot open

9 142 9 1 File not open -- cannot close

9 143 9 0 Rewrite/delete not after sue-
cessful read

A-12 Language Reference

Table A-1 (Page 3 of 3). Mapping of File I-0 Status Codes

AIX VS COBOL 1-0 RM/COBOL 1-0
Codes Codes
Key 1 Key2 Key 1 Key2 Meaning

9 146 9 6 No current record (sequential
read)

9 147 9 0 Wrong open/access mode
(read/start)

9 148 9 0 Wrong open/access mode (write)

9 149 9 0 Wrong open/access mode
(rewrite/ delete)

9 151 9 0 Random read on sequential file

9 152 9 0 Rewrite on file not open 1-0

9 158 9 0 Rewrite on line-sequential file

9 182 9 0 Console in/out open in wrong
mode

9 183 9 4 Attempt to open line-sequential
file for 1-0

9 188 9 4 File name too large

9 194 3 4 File size too large

9 195 9 0 Delete/rewrite not preceded by a
read

9 196 9 8 Record number is too large in a
relative file

9 210 9 3 File is closed with lock

9 any other 3 0

Locked Records
The following happens if a record is found to be locked:

1. If the file has an applicable declaratives section and it has a file status value associ
ated with it:

• Processing is transferred to the declaratives section

• The record area contains the correct record for the read

• The 1-0 status code indicates the "record locked" condition.

2. If the file has no applicable declaratives section or file status associated with it, the
locked record is continually retried until its lock is released.

Ryan-McFarland Syntax Supplement A-13

A-14 Language Reference

Appendix B. Data General Syntax Supplement

Data General Syntax Supplement B-1

Introduction . B-3
Lon~ User-Defi~e~ .Names B-3
Environment D1v1s10n . B-4

Switch Names ... B-4
File Name On Disk . B-4
DATA SIZE Clause .. B-4
INDEX SIZE Clause . B-4
Duplicate Alternate Keys . B-5
Alternate Keys . B-5
I-0 Control Entry ... B-5

Data Division . B-6
VALUE Clause .. B-6
SCREEN SECTION . B-6

Procedure Division . B-7
ACCEPT Statement ... B-7
CALL Statement . B-8
COPY INDEXED Statement . B-8
DISPLAY Statement . B-8
File Sharing Syntax . B-8
OPEN Statement . B-8
READ Statement . B-8

B-2 Language Reference

Introduction

This appendix lists syntax that is accepted by your COBOL system purely for compatibility
with revision 1.3 of Data General Interactive COBOL. Many features found in Data
General Interactive COBOL already exist in AIX VS COBOL. These features are docu
mented in the main body of this manual. Some of the compatibility syntax listed in this
appendix is identical to AIX VS COBOL syntax, but behaves differently if you set the DG
system directive when you submit your source code to your COBOL system. See the User's
Guide for details of the DG directive.

Long User-Defined Names

Data-names and procedure names longer than 30 characters are allowed. However, only
the first 30 characters are significant. The cross referencing listing and ANIMATOR func
tions only handle the first 30.

Data General Syntax Supplement B-3

Environment Division

This section describes the Data General compatibility syntax used for items in the Environ
ment Division.

Switch Names

In addition to the switches 0 to 8 supported by IBM AIX VS COBOL, another form of
switch name can be used. It is an uppercase letter in the range A to Z.

These letters are mapped to switches 0 to 25. At run time, you should use the appropriate
digit on your command line and not the letter itself.

For example, to turn on switch J, you would enter:

+9 filename

after the run command. You cannot, however, specify a run-time switch in a CALL state
ment, as in:

CALL "PROG.INT/A"

because this is not supported.

File Name On Disk

When you assign a file to disk, the file on disk is named in uppercase letters, regardless of
whether the name you specify is in uppercase or lowercase letters.

DATA SIZE Clause

In a SELECT statement, you can use:

....
L DATA-~L----_J~-integer J

SIZE IS

It is treated as documentary.

INDEX SIZE Clause

....

In a SELECT statement for a relative or indexed file, you can use:

....
L INDEX ~L----_J~- integer J

SIZE IS

It is treated as documentary.

B-4 Language Reference

....

Duplicate Alternate Keys

You can have duplicate alternate keys in an indexed file regardless of whether or not you
have specified the DUPLICATES phrase.

Alternate Keys

Alternate keys can occupy the same area as primary keys.

1-0 Control Entry

The SAME AREA phrase is treated as equivalent to the SAME RECORD AREA phrase.

Data General Syntax Supplement B-5

Data Division

This section describes the Data General syntax for items in the Data Division.

VALUE Clause

A numeric literal can be used in a VALUE clause in the data description of a nonnumeric
data item.

SCREEN SECTION

The HIGHLIGHT option when used with TO or USING items highlights all the unpro
tected areas of the display screen.

B-6 Language Reference

Procedure Division

This section describes the Data General compatibility syntax for items in the Procedure
Division.

ACCEPT Statement

Format

This section describes the compatibility format and general rules for the ACCEPT state
ment.

Format 2 of the ACCEPT statement in the Nucleus is enhanced with additional options:

.,.__ACCEPT id FROM LINE
NUMBER

USER
NAME

ESCAPE
KEY

EXCEPTION
STATUS

General Rules
The following general rules apply to the ACCEPT statement:

1. The value returned from the ACCEPT FROM LINE NUMBER phrase is always
numeric.

For users operating under the AIX operating system, the value returned by the
ACCEPT FROM LINE NUMBER clause denotes the device number of the terminal
attached to standard input. The device number is of the form major device number,
minor device number, such as 1, 3, and this is returned as a decimal number. For
example, a device number of 1, 3 would be returned as 259 (1 times 256, plus 3).

2. The FROM USER NAME option returns a user id number on AIX systems.

3. The FROM EXCEPTION STATUS option contains a three character code that identi
fies the type of exception condition that has occurred during the execution of a CALL
or CALL PROGRAM statement. Its PICTURE is 9(3).

If the FROM EXCEPTION STATUS is to be examined it should be done immediately
after the CALL or CALL PROGRAM, before execution of any other statements. File
input-output operations will alter the exception status value making the value unde
fined. The CALL ... ON OVERFLOW or CALL ... ON EXCEPTION will cause the
value of the EXCEPTION STATUS to be undefined.

4. ESCAPE KEY contains the two-digit code generated by a termination key.

Data General Syntax Supplement B-7

CALL Statement

This section describes the compatibility format and general rule for the CALL statement.

Format
The following example shows the format for the CALL statement:

- CALL PROGRAM id-1 it ___,l-------J--r--.--L-------------:J-,--1 .. ~,. f I LON ::J EXCEPTION imperative stmt

USING data-name

General Rule
This format is treated as equivalent to a CHAIN statement.

COPYINDEXEDSta~ment

The COPY statement can be followed by the word INDEXED. The word INDEXED is
treated as documentary.

DISPLAY Statement

The DISPLAY statement with the WITH NO ADVANCING option is changed to be as in
DG COBOL.

File Sharing Syntax

The default lock mode for both Indexed Sequential Access Method (ISAM) and relative
files is MANUAL WITH LOCK ON MULTIPLE RECORDS.

OPEN Statement

The OPEN verb can be followed by the keyword EXCLUSIVE. It is treated as equivalent
to the WITH LOCK phrase.

READ Statement

The file name and the noise word RECORD can be followed by the keyword LOCK. It
causes the READ statement to acquire a lock on the record read. This does not apply to
line sequential files.

B-8 Language Reference

Appendix C. Microsoft Syntax Supplement

Appendix C. Microsoft Syntax Supplement C-1

Introduction
Compatibility with Microsoft COBOL
Dialect Controlling Directives
Summary of Syntactic Differences

Special Registers LIN and COL
Environment Division
Data Division
Procedure Division .

Problem Determination
General
Environment Division
Data Division
Procedure Division . .
File Input and Output
Screen-Handling
Extension Subroutines
Documentation

C-2 Language Reference

C-3
C-3
C-3
C-3
C-3
C-4
C-4
C-5
C-8
C-9
C-9

C-10
C-10
C-11
C-12
C-13
C-13

Introduction

This appendix lists syntax that is accepted by your COBOL system purely for compatibility
with Microsoft COBOL. Many features found in Microsoft COBOL already exist in AIX
VS COBOL. These features are documented in the main body of this manual. Some of the
compatibility syntax listed in this appendix is identical to AIX VS COBOL syntax, but
behaves differently if you set the IBM-MS system directive when you submit your source
code to your COBOL system. See the User's Guide for details of the IBM-MS directive.

Compatibility with Microsoft COBOL

IBM AIX VS COBOL is fully compatible with Microsoft COBOL Vl.O, and the corre
sponding IBM PC COBOL Vl.O. Some minor differences between the product and Micro
soft COBOL V2.2 are described below.

Dialect Controlling Directives

The compiler has a default setting of NOIBM-MS, which switches off all specific Microsoft
V2.2 syntax and semantics. To get maximum compatibility with the Microsoft V2.2 com
piler use the following directives:

MS(2)
NOANS85
NOOPTIONAL·FILE

OSEXT(COB)
NO BOUND

NOOSVS
OLDINDEX
PERFORM-TYPE (RM)

For details of the effects of these, see the User's Guide.

Summary of Syntactic Differences

MF
NOTRUNC
SIGN (EBCDIC)

NORW
AUTOLOCK

This section indicates the areas where the syntax and semantics may differ between Micro
soft V2.2 and AIX VS COBOL.

Special Registers LIN and COL

LIN and COL are intended to be used for specifying the line number and column number,
respectively, of the current cursor position on the screen. Together they form part of the
position-spec phrase which is supported in the ACCEPT, DISPLAY and EXHIBIT state
ments documented later in this appendix.

The format of the LIN and COL is PIC 89(4) COMP. They are used like ordinary data
items, except that they must not be declared; they are automatically declared by the
system. The programmer should set them to the desired values before using them in the
position-spec phrase.

Note that COL, the abbreviation for COLUMN, is not available as a Micro Focus reserved
word if the IBM-MS directive is set.

Appendix C. Microsoft Syntax Supplement C-3

Environment Division

The Special-Names Paragraph
The following two clauses are supported:

...._PRINTER IS mnemonic name ------------1M1

...._ SWITCH-n comment-id-~L-ON--i-- IS condition-name
OFF_J

...

Where: n is an integer in the range 0 to 8. The default setting is OFF.

The User's Guide contains full details on how you can set a run-time switch on.

Data Division

The USAGE Clause

Format
The following format of the USAGE clause is supported:

.,..__USAGE--.-----.---.-~- COM PUT A TIONAL-~0
LIS _J COMP-0 -------<

COMPUTATIONAL
COMP ____ ___,

...

Syntax Rules
1. COMP and COMPUTATIONAL are synonymous.

2. COMP-0 and COMPUTATIONAL-0 are synonymous.

General Rules
1. COMPUTATIONAL data items are treated as external decimal items.

2. USAGE IS COMPUTATIONAL means the same as USAGE IS DISPLAY.

3. USAGE IS COMP-0 is allowed only with numeric items. If an item is described with a
PICTURE no longer than S9(5), the effect is a data item whose description is PIC S9(4)
USAGE COMP; that is, a 2-byte signed binary item. Otherwise, the effect is a data
item with the PICTURE clause actually specified and with USAGE DISPLAY.

4. You must use the NOTRUNC option to cause correct behavior for COMP-0 items.

C-4 Language Reference

Procedure Division

The Position-Spec Phrase

Function

Format

The position-spec phrase specifies the screen position m the ACCEPT, DISPLAY and
EXHIBIT statements described in this appendix.

identifier-I
LIN----'

~Ji nteger-2

i nteger-2 --------~

i dent ifi er-2
COL-----'

~Ji nteger-3

i nteger-4 --------~

Syntax Rule
The comma shown in the above format is mandatory.

The ACCEPT statement
The following two formats of the ACCEPT statement are supported:

Format 1

.,.__ACCEPT identifier--,-----..-- ESCAPE KEY--------1 ...
LFROM_J

Format 2

.,.____ACCEPT L _J i dent i fi er L _J
position-spec WITH-phrase

General Rules
Format 2

....

1. The ACCEPT operation treats a group item as an elementary item: it accepts the item
itself and not its subordinate elementary items.

2. If the screen position at which the first operand is to appear is not specified, the
default is the current cursor position.

3. Rules 1 and 2 above also apply to Format 2 of the ACCEPT statement as described in
"ACCEPT Statement" on page 18-55.

Appendix C. Microsoft Syntax Supplement C-5

4. The WITH-phrase options and their synonyms are:

AUTO/AUTO-SKIP

BACKGROUND-COLOR

BELL/BEEP

BLINK

REVERSE-VIDEO

RIGHT-JUSTIFY

SECURE/NO-ECHO

SIZE

SPACE-FILL

TRAILING-SIGN

UNDERLINE

UPDATE

ZERO-FILL

These options also apply to Format 2 of the ACCEPT statement as documented in
"ACCEPT Statement" on page 18,55.

The options listed below differ from standard AIX VS COBOL, as follows:

a. UDPATE-If the update option is not specified, a data item for data entry is dis
played initially as spaces. (If the IBM-MS directive is not set, the display of initial
data is a configuration option.)

If the UPDATE option is specified, initial data of the data item for data entry is
displayed.

b. PROMPT-This option need not be specified to display prompt characters.

c. LENGTH-CHECK-If this option is specified, it causes an implicit EMPTY-CHECK
option, so that the operator must enter something.

d. FOREGROUND-COLOR and BACKGROUND COLOR-Integer-1 in these clauses
specifies the foreground color and background color of the screen item respectively,
and can be defined by a value from 0 to 15, as follows:

0 black 8 grey
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high-intensity

white

On a color screen, if the foreground color option specifies an integer whose value is
from 8 to 15, this is equivalent to specifying an integer from 0 to 7 and specifying
the HIGHLIGHT option. On a monochrome screen, this is equivalent to simply
specifying the HIGHLIGHT option.

On a color screen, if the background color option specifies an integer whose value
is from 8 to 15, this is equivalent to specifying an integer from 0 to 7 and specifying
the BLINK clause. On a monochrome screen, this is equivalent to simply speci
fying the BLINK option.

C-6 Language Reference

If both the foreground color and the background color are specified with integers
greater than 7, the foreground color will have the HIGHLIGHT effect. The back
ground will not have the BLINK effect.

e. The attribute BLINK is accepted syntactically. However, it will only have effect at
run time if the display being used supports blinking.

The DISPLAY Statement

Format
The following format of the DISPLAY statement is supported:

.,.._ DISPLAY-~[------~~~[-identi f~
position-spec L_literal_______J

ERASE-~

L WITH-phrase =mJ

General Rules
1. The DISPLAY operation treats a group item as an elementary item: it displays the item

itself and not its subordinate elementary items.

2. If the screen position at which the first operand is to appear is not specified, the
default is the current cursor position.

3. Rules 1 and 2 above also apply to Format 2 of the DISPLAY statement as described in
"DISPLAY Statement" on page 18-61.

4; If ERASE is specified, the screen is cleared from the current cursor position onwards.

The following two rules are additional rules which apply to Format 2 of the DISPLAY
statement as documented in "DISPLAY Statement" on page 18-61.

5. The WITH phrase options and their synonyms are:

BACKGROUND-COLOR

BELL/BEEP

BLANK

BLINK

FOREGROUND-COLOR

HIGHLIGHT

REVERSE-VIDEO

SIZE

UNDERLINE

Appendix C. Microsoft Syntax Supplement C-7

6. FOREGROUND-COLOR and BACKGROUND-COLOR-Integer-1 in these clauses speci
fies the foreground color and background color of the screen item respectively, and can
be defined by a value from 0 to 15, as follows:

0 black 8 grey
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high-intensity

white

On a color screen, if the foreground color option specifies an integer whose value is
from 8 to 15, this is equivalent to specifying an integer from 0 to 7 and specifying the
HIGHLIGHT option. On a monochrome screen, this is equivalent to simply specifying
the HIGHLIGHT option.

On a color screen, if the background color option specifies an integer whose value is
from 8 to 15, this is equivalent to specifying an integer from 0 to 7 and specifying the
BLINK clause. On a monochrome screen, this is equivalent to simply specifying the
BLINK option.

If both the foreground color and the background color are specified with integers
greater than 7, the foreground color will have the HIGHLIGHT effect. The background
will not have the BLINK effect.

7. BLINK is always accepted syntactically, but will have effect only on a terminal that
supports blinking.

The EXHIBIT Statement

Format
The following format of the EXHIBIT statement is supported:

i I
111+--- EXHIBIT ---.L----J--.--.....,L----_J--.---.L-------J~~ti dent i~fi er

CHANGED NAMED position-spec literal
ERASE

~ ..
L UPON mnemonic-name J

General Rule
ERASE clears the screen from the current cursor position onward.

Problem Determination

The following sections indicate some problems you may encounter, and some suggested
resolutions. There are some minor cases when the current compiler will produce errors
when encountering missing periods or spelling errors (for example, SOURCE COMPUTER
in place of SOURCE-COMPUTER will cause an error message to be issued.)

C-8 Language Reference

General

Problem

Source code appears to extend beyond column 72 and an error is issued by the compiler.
This will occur if the standard TAB settings on the Microsoft V2.2 compiler have been
changed (either by patching the run time or by using the /0 directive).

Solution

Remove all tab settings from the source files.

Difference

Error messages and numbers returned by the compiler and the run time are different. This
should present no problems, but it is something you should be aware of.

Environment Division

Problem

EJECT IS ... (in SPECIAL-NAMES) is rejected by the compiler.

Solution

Replace the word EJECT by the word FORMFEED.

Problem

The compiler gives error on SPECIAL-NAMES paragraph header.

Solution

This occurs if the SPECIAL-NAMES paragraph is not inside the ENVIRONMENT DIVI
SION.

Problem

SEGMENT-LIMIT IS ... This clause is now treated as documentary.

Solution

This should cause no problems, but it is worth noting that segmentation is an outdated
feature of COBOL (the function it performs is really an operating system function) and has
been marked by ANSI as an obsolete feature.

Appendix C. Microsoft Syntax Supplement C-9

Data Division

Problem

Items with PIC clauses like -.ZZ fail compilation. These were allowed by the Microsoft
V2.2 compiler but are not valid ANSI COBOL syntax.

Solution

Change the PIC field description.

Problem

REDEFINES will not compile if it refers to a data item that does not immediately precede
the redefining item of the same level. For example.

03 A.

03 B.

03 C REDEFINES A.

This is illegal because C is not the next item of the same level after A.

Solution

Move the redefinition so it is the next item of the same level.

Procedure Division

Problem

The CHAIN statement is not fully supported, and use of this syntax should be avoided.

Solution

Restructure the application to use the CALL statement.

Problem

It is not possible to sound the BELL by displaying an item that contains hexadecimal 7.

Solution

Use the RTE subprogram call X"E5" in place of the display.

Problem

The screen is not cleared automatically at the start of a run.

Solution

Use the RTE subprogram call X"E4" to clear the screen.

C-10 Language Reference

Problem

READY TRACE and RESET TRACE statements do not have any effect.

Solution

Use the compiler directive TRACE to enable processing of these statements at run time.
The default is that they are treated as documentary by the compiler, to avoid the gener
ation of the extra code needed for their support.

Problem

A DECLARATIVES statement is rejected by the compiler if it occurs after the paragraph
header.

Solution

The DECLARATIVES statement must immediately follow the SECTION header, rather
than the paragraph header.

File Input and Output

Problem

OPEN EXTEND on a non-existent file will not create it.

Solution

Add the word OPTIONAL after the word SELECT for this file.

Problem

The WAIT clause on a READ behaves differently. This is ignored by the current compiler;
instead, the file status is updated to indicate that a record is locked.

Solution

Check for the Record locked status and loop back to re-read the record.

Problem

Locking syntax is ignored in the ST ART statement.

Solution

Use the appropriate locking semantics in the OPEN or READ statements and the SELECT
statement for the file in question.

Appendix C. Microsoft Syntax Supplement C-11

Problem

Relative records are not deleted if they are rewritten with the first byte containing
LOW-VALUES.

Solution

Using this feature of the Microsoft V2.2 system was discouraged m the manual. The
program logic should be replaced with a DELETE statement.

Problem

Incorrect filenames are being used by programs.

Solution

All filenames must be terminated by a space, where the Microsoft V2.2 compiler allowed
termination with a null byte.

Other Differences

The structure of Microsoft COBOL files is different from the Micro Focus file format used
in the IBM AIX VS COBOL system.

Screen-Handling

Problem

COLUMN PLUS 1 does not give the correct intervening space under some circumstances.
For instance, the lines

02 LINE 1 COLUMN 1 .••
02 COLUMN PLUS 1 •..

will not put a space in column 2, while

02 LINE 1 COLUMN 1 •..
02 LINE 1 COLUMN PLUS 1 •••

will work correctly.

Solution

Add an explicit LINE clause.

Problem

Alphabetic fields do not allow non-alphabetic characters to be accepted into them.

Solution

Change the PIC A(n) of the field to PIC X(n).

C-12 Language Reference

Other Differences

• Integer NUMERIC field are ACCEPTed differently; digits are inserted from left to
right. Only NUMERIC-EDITED fields insert digits from right to left.

• DISPLAY ... ERASE does not clear the screen attributes, which it does in Microsoft
COBOL.

• Cursor left/right will move between fields in an ACCEPT. In Microsoft COBOL these
keys move only within a field.

• Cursor up/down behaves differently between fields.

• Ctrl-B does not move to a previous field as it does in Microsoft COBOL.

Extension Subroutines

The following Microsoft V2.2 Extension subroutines do not exist in AIX VS COBOL:

COMMAND
EXIST
REMOVE

Documentation

CURPOS
KBDAVAIL
RENAME

EX CODE
LO CASE
UP CASE

When this manual refers to COMP fields, these references are intended to be to BINARY
fields rather than the Microsoft V2.2 USAGE IS COMP, since the latter are treated in the
same way as USAGE DISPLAY items.

Appendix C. Microsoft Syntax Supplement C-13

C-14 Language Reference

Appendix D. Reserved Word List

Reserved Word List D-1

Introduction . D-3

D-2 Language Reference

Introduction

Table D-1 on page D-4 lists the reserved words in AIX VS COBOL.

An x in a column indicates that the word is reserved in that dialect or module. A blank
indicates that the word is not reserved there. A * in a column indicates that the word is
reserved. However, these starred items are not supported in this implementation.

Not all reserved words from imported syntaxes (for example, OSVS and VSC2) are sup
ported in AIX VS COBOL, but they are still treated as reserved words to prevent them
from being used as user-defined words. This prevents them from causing problems if com
piled with a mainframe compiler that supports those dialects.

The syntax for the optional ANSI module Communications is accepted by AIX VS COBOL.
However, Communications is not supported at run time.

Key:

AN85

85RW

85CM

85DB

85SG

SAA

osvs
VSC2

MF

= ANSl85 required modules

= ANSl85 Report Writer Module

= ANSI85 Communications Module

= ANSI85 Debug Module

= ANSl85 Segmentation Module

= SAA COBOL CPI

= OSVS dialect of AIX VS COBOL

= VSC2 dialect of AIX VS COBOL

= MF extensions in AIX VS COBOL

Reserved Word List D-3

Table D-1 (Page 1 of 9). Reserved Words

Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF
(x x x x x x x x x
) x x x x x x x x x
* x x x x x x x x x

** x x x x x x x x x
+ x x x x x x x x x
- x x x x x x x x x

. (period) x x x x x x x x x
I x x x x x x x x x
; x x x x x x x x x

< x x x x x x x x x
<= x x x x x x x x x
= x x x x x x x x x

> x x x x x x x x x
>= x x x x x x x x x
: x x
I x x x x x x x x x
" x x x x x x x x x
$ x x x x x x x x x
, x x x x x x x x x

ACCEPT x x
ACCESS x x
ACTUAL *
ADD x x
ADDRESS x x
ADVANCING x x

AFTER x x
ALL x x
ALPHABET x x

ALPHABETIC x x
ALPHABETIC-LOWER x x x
ALPHABETIC-UPPER x x x

ALPHANUMERIC x x x
ALPHANUMERIC-EDITED x x x
ALSO x x

ALTER x x
ALTERNATE x x
AND x x

ANY x x x
APPLY x
ARE x x

AREA x x
AREA-VALUE (1) x
AREAS x x

ASCENDING x x
ASSIGN x x
AT x x

AUTHOR x x
AUTO x
AUTO-SKIP x

AUTOMATIC x
BACKGROUND-COLOR x
BACKGROUND-COLOUR x

BACKWARD x
BEEP x
BEFORE x x

BEGINNING x x
BELL x
BINARY x x x

BLANK x x
BLINK x
BLOCK x x

BOTTOM x x
BY x x
COI x

C02 x
C03 x
C04 x

D-4 Language Reference

Table D-1 (Page 2 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF

C05 x
C06 x
C07 x

cos x
C09 x
ClO x

cu x
C12 x
CALL x x

CANCEL x x
CBL *
CD x

CF x
CH x
CHAIN x

CHAINING x
CHANGED x x
CHARACTER x x

CHARACTERS x x
CLASS x x x
CLOCK-UNITS x x

CLOSE x x
COBOL x x
CODE x

CODE-SET x x x
COL (2) x
COLLATING x x

COLUMN x x
COM-REG *
COMMA x x

COMMAND-LINE x x
COMMIT x
COMMON x x x

COMMUNICATION x x
COMP x x
COMP-0 x

COMP-3 x x x
COMP-4 x x
COMP-5 x

COMP-X x
COMPUTATIONAL x x
COMPUTATIONAL-0 x

COMPUTATIONAL-3 x x x
COMPUTATIONAL-4 x x
COMPUTATIONAL-5 x

COMPUTATIONAL-X x
COMPUTE x x
CONFIGURATION x x

CONSOLE x x
CONTAINED x
CONTAINS x x

CONTENT x x
CONTINUE x x x
CONTROL x

CONTROLS x
CONVERTING x x x
COPY x x

CORE-INDEX x
CORR x x
CORRESPONDING x x

COUNT x x x
CRT x
CRT-UNDER x

CSP x
CURRENCY x x
CURRENT-DATE x

Reserved Word List D-5

Table D-1 (Page 3 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF

CURSOR x
DATA x x
DATE x x x

DATE-COMPILED x x
DATE-WRITTEN x x
DAY x x

DAY-OF-WEEK x x x
DBCS x x
DE x

DEBUG-CONTENTS x
DEBUG-ITEM x
DEBUG-LINE x
DEBUG-NAME x
DEBUG-SUB-I x
DEBUG-SUB-2 x
DEBUG-SUB3 x
DEBUGGING x x
DECIMAL-POINT x x

DECLARATIVES x x
DELETE x x
DELIMITED x x

DELIMITER x x
DEPENDING x x
DESCENDING x x

DESTINATION x
DETAIL x
DISABLE x
DISK x
DISP x
DISPLAY x x
DISPLAY-I x x x
DISPLAY-ST *
DIVIDE x x

DIVISION x x
DOWN x x
DUPLICATES x x

DYNAMIC x x
EGCS x
EGI x
EJECT x x x
ELSE x x
EMI x

EMPTY-CHECK x
ENABLE x
END x x

END-ACCEPT x
END-ADD x x
END-CALL x x

END-COMPUTE x x
END-DELETE x x
END-DIVIDE x x
END-EVALUATE x x
END-IF x x
END-MULTIPLY x x

END-OF-PAGE x x
END-PERFORM x x
END-READ x x

END-RECEIVE x
END-RETURN x x
END-REWRITE x x

END-SEARCH x x
END-START x x
END-STRING x x

END-SUBTRACT x x
END-UNSTRING x x
END-WRITE x x

D-6 Language Reference

Table D-1 (Page 4 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF
ENDING x x
ENTER x x
ENTRY x x
ENVIRONMENT x x
EOP x x
EQUAL x x
ERASE x
ERROR x x
ESCAPE x
ESI x
EVALUATE x x x
EVERY x x

EXAMINE x
EXCEPTION x x x
EXCESS-3 *
EXCLUSIVE x
EXEC x
EXECUTE x
EXHIBIT x x
EXIT x x
EXTEND x x
EXTERNAL x x x x
FALSE x x x
FD x x
FILE x x
FILE-CONTROL x x
FILE-ID x
FILE-LIMIT x
FILE-LIMITS x
FILLER x x
FINAL x
FIRST x x x
FIXED x
FOOTING x x
FOR x x
FOREGROUND-COLOR x
FOREGROUND-COLOUR x
FROM x x
FULL x
GENERATE x
GIVING x x
GLOBAL x x x
GO x x
GO BACK x x
GREATER x x
GRID x
GROUP x
HEADING x
HIGH-VALUE x x
HIGH-VALUES x x
HIGHLIGHT x

ID x x
IDENTIFICATION x x
IF x x
IN x x
INDEX x x
INDEXED x x

INDICATE x
INITIAL x x
INITIALIZE x x x
INITIATE x
INPUT x x
INPUT-OUTPUT x x
INSPECT x x
INTO x x
INVALID x x

Reserved Word List D-7

Table D-1 (Page 5 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF
I-0 x x
I-0-CONTROL x x
IS x x

INSTALLATION x x
JUST x x
JUSTIFIED x x

KANJI x
KEPT x x
KEY x
KEYBOARD x

LABEL x x
LAST x
LEADING x x

LEAVE *
LEFT x x
LEFT.JUSTIFY x

LEFTLINE x
LENGTH x x
LENGTH-CHECK x

LESS x x
LIMIT x
LIMITS x

LINAGE x x
LINAGE-COUNTER (3) x x
LINE x x

LINE-COUNTER x
LINES x x
LINKAGE x x

LOCK x x x
LOW-VALUE x x
LOW-VALUES x x

MANUAL x
MEMORY x x
MERGE x x

MESSAGE x
MODE x x
MODULES x x

MORE-LABELS * *
MOVE x x
MULTIPLE x x

MULTIPLY x x
NAME x
NAMED x x

NATIVE x x
NEGATIVE x x
NEXT x x

NO x x
NO-ECHO x
NOMINAL *
NOT x x
NOTE *
NULL x

NULLS x
NUMBER x x
NUMERIC x x

NUMERIC-EDITED x x x
OBJECT-COMPUTER x x
OCCURS x x

OF x x
OFF x x
OMITTED x x

ON x x x
OPEN x x
OPTIONAL x x

OR x x
ORDER x x x
ORGANIZATION x x

D-8 Language Reference

Table D-1 (Page 6 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF

OTHER x x x
OTHERWISE x
OUTPUT x x

OVERFLOW x x
OVERLINE x
PACKED-DECIMAL x x

PADDING x x x
PAGE x x
PAGE-COUNTER x

PASSWORD x x
PERFORM x x

PF x
PH x
PIC x x

PICTURE x x
PLUS x x
POINTER x x x

POSITION x x
POSITIONING x
POSITIVE x x x

PREVIOUS x
PRINT-SWITCH x
PRINTER x

PRINTER-1 x
PRINTING x
PROCEDURE x x

PROCEDURES x
PROCEED x x
PROCESSING x

PROGRAM x x
PROGRAM-ID x x
PROMPT x

PROTECTED x
PURGE x x
QUEUE x

QUOTE x x
QUOTES x x
RANDOM x x

RANGE x
RD x
READ x x

READY x x
RECEIVE x
RECORD x x

RECORD-OVERLOW x
RECORDING x x x
RECORDS x x

REDEFINES x x
REEL x x
REFERENCE x x

REFERENCES x
RELATIVE x x
RELEASE x x

RELOAD * *
REMAINDER x x
REMARKS x

REMOVAL x x
RENAMES x x
REORG-CRITERIA x

REPLACE x x x
REPLACING x x
REPORT x

REPORTING x x
REPORTS x
REQUIRED x

Reserved Word List D-9

Table D-1 (Page 7 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF

REREAD *
RERUN x x
RESERVE x x

RESET x x x x
RETURN x x
RETURN-CODE x x
REVERSE-VIDEO x
REVERSED x x
REWIND x x

REWRITE x x
RF x
RH x

RIGHT x x
RIGHT-JUSTIFY x
ROLLBACK x
ROUNDED x x
RUN x x
SOl x

S02 x
SAME x x
SCREEN x

SD x x
SEARCH x x
SECTION x x

SECURE x
SECURITY x x
SEGMENT x

SEGMENT-LIMIT x
SEEK *
SELECT x x

SELECTIVE *
SEND x
SENTENCE x x

SEPARATE x x
SEQUENCE x x
SEQUENTIAL x x

SERVICE * *
SET x x x
SHIFT-IN *
SHIFT-OUT *
SIGN x x

SIZE x x
SKIPl x x
SKIP2 x x
SKIP3 x x
SORT x x
SORT-CONTROL x
SORT-CORE-SIZE x x
SORT-FILE-SIZE x x
SORT-MERGE x x

SORT-MESSAGE x x
SORT-MODE-SIZE x x
SORT-RETURN x x

SOURCE x x
SOURCE-COMPUTER x x
SPACE x x

SPACE-FILL x
SPACES x x
SPECIAL-NAMES x x

STANDARD x x
STANDARD-1 x x
STANDARD-2 x x

START x x
STATUS x x x
STOP x x

D-10 Language Reference

Table D-1 (Page 8 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF

STORE *
STRING x x
SUB-QUEUE-1 x

SUB-QUEUE-2 x
SUB-QUEUE-3 x

SUBTRACT x x
SUM x
SUPPRESS x x x

SYMBOLIC x x
SYNC x x
SYNCHRONIZED x x

SY SIN x
SYSIPT x
SYS LIST x

SYSLST x
SYS OUT x
SYSPNCH x

SYSPUNCH x
TABLE x
TALLY x x

TALLYING x x
TAPE x x
TERMINAL x

TERMINATE x
TEST x x x
TEXT x

THAN x x
THEN x x x x x
THROUGH x x

THRU x x
TIME x x x
TIME-OF-DAY x

TIMES x x
TITLE x x
TO x x

TOP x x
TOTALED *
TOTALING *
TRACE x x x
TRACK-AREA *
TRACK-LIMIT *
TRACKS *
TRAILING x x
TRAILING-SIGN x

TRANSFORM x
TRUE x x x
TYPE x

UNDERLINE x
UNIT x x
UNLOCK x

UNSTRING x x
UNTIL x x
UP x x

UPDATE x
UPON x x
USAGE x x

USE x x
USER x
USING x x

VALUE x x
VALUES x x
VARIABLE x

VARYING x x
WHEN x x
WHEN-COMPILED x x

Reserved Word List D-11

Table D-1 (Page 9 of 9). Reserved Words
Reserved Word AN85 85RW 85CM 85DB 85SG SAA osvs VSC2 MF
WITH x x
WORDS x x
WORKING-STORAGE x x
WRITE x x
WRITE-ONLY x
ZERO x x
ZERO-FILL x
ZEROES x x
ZEROS x x
Notes:

(1) AREA-VALUE is a reserved word only if the RESERVE ... AREA clause is used.

(2) COL is not a reserved word if the IBM-MS dialect is used.

(3) LINAGE-COUNTER is a reserved word only if the LINAGE clause is used.

D-12 Language Reference

Appendix E. Obsolete Language Elements

Obsolete Language Elements E-1

Introduction . E-3
List of Obsolete Language Elements . E-3

E-2 Language Reference

Introduction

This appendix lists those language elements that are marked as obsolete in the ANSI
X3.23-1985 COBOL specification. The language elements listed here:

• Are to be deleted at the next revision of the standard COBOL specification

• Will not be enhanced, modified, or maintained.

List of Obsolete Language Elements

• Associating the figurative constant ALL literal where literal is longer than one char
acter with a data item that is numeric or numeric edited.

• The paragraphs AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED,
and SECURITY within the IDENTIFICATION DIVISION.

• The MEMORY SIZE clause of the OBJECT-COMPUTER paragraph.

• The RERUN clause of the I-0-CONTROL paragraph.

• The MULTIPLE FILE TAPE clause of the I-0-CONTROL paragraph.

• The LABEL RECORDS clause in the file description entry.

• The VALUE OF clause in the file description entry.

• The DATA RECORDS clause in the file description entry.

• The ALTER statement.

• The KEY phrase within the DISABLE statement.

• The KEY phrase within the ENABLE statement.

• The ENTER statement.

• The option to include procedure-name in the GO TO statement.

• The REVERSED phrase within the OPEN statement.

• The STOP literal statement.

• The segmentation module.

• The debug module.

Obsolete Language Elements E-3

E-4 Language Reference

abbreviated combined relation condition.
The combined condition that results from the
explicit omission of a common subject or a
common subject and common relation operator
in a consecutive sequence of relation condi
tions.

access mode. The manner in which records
are to be operated upon within a file.

actual decimal point. The physical represen
tation, using the decimal point characters
period (.) or comma (,), of the decimal point
position in a data item.

alphabet name. A user defined word, in the
SPECIAL-NAMES paragraph of the Environ
ment Division, that assigns a name to a specific
character set or collating sequence.

alphabetic character. A letter or a space
character.

alphanumeric character. Any character in
the computer's character set.

alphanumeric-edited character. A character
within an alphanumeric character string that
contains at least one B, 0 (zero), or/ (slash).

alternate record key. A key, other than the
prime record key, whose contents identify a
record within an indexed file.

ANSI (American National Standards Insti
tute). An organization consisting of producers,
consumers, and general interest groups, that
established the procedures by which accredited
organizations create and maintain voluntary
industry standards in the United States.

arithmetic expression. An identifier or a
numeric elementary item, a numeric literal,
such identifiers and literals separated by arith
metic operators, two arithmetic expressions sep
arated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

arithmetic operator. A single character, or a
fixed two character combination that belongs to
the following set:

Character
+

*
I
**

Meaning
addition
subtraction
multiplication
division
exponentiation

ascending key. A key upon the values of
which data is ordered, starting with the lowest

Glossary

value of the key up to the highest value of the
key, in accordance with the rules for comparing
data items.

ASCII. American National Standard Code for
Information Interchange, which allows tape file
processing in accordance with the following
standards:

• American National Standard Code for Infor
mation Interchange, X3.4-1968

• American National Standard Magnetic Tape
Labels for Information Interchange,
X3.27-1969

• American National Standard Recorded Mag
netic Tape for Information Interchange (800
CPI NRZI), X3.22-1967

ASCII control characters. Characters listed
in the ASCII code table.

assignment name. A name that identifies the
organization of a COBOL file and the name by
which it is known to the system.

assumed decimal point. A decimal point
position that does not involve the existence of
an actual character in a data item. The
assumed decimal point has logical meaning with
no physical representation.

AT END condition. A condition caused:

• During the execution of a READ statement
for a sequentially accessed file, when no
next logical record exists in the file, or
when the number of significant digits in the
relative record number is larger than the
size of the relative key data item, or when
an optional input file is not present.

• During the execution or a RETURN state
ment, when no next logical record exists for
the associated sort or merge file.

• During the execution of a SEARCH state
ment, when the search operation terminates
without satisfying the condition specified in
any of the associated WHEN phrases.

binary item. A numeric data item represented
in binary notation (on the base 2 numbering
system). Binary items have a decimal equiv
alent consisting of the decimal digits 0 through
9, plus an operation sign. The leftmost bit of
the item is the operational sign.

binary search. A dichotomizing search in
which, at each step of the search, the set of

Glossary G-1

data elements is divided by two; some appro
priate action is taken in case of an odd numb~r.

block. A physical unit of data that is normally
composed of one or more logical records. For
mass storage files, a block may contain a
portion of a logical record. The size of a block
has no direct relationship to the size of the
logical record(s) that are either contained
within the block or that overlap the block. The
term is synonymous with physical record.

breakpoint. A place in a computer program,
usually specified by an instruction, where its
execution may be interrupted by external inter
vention or by a monitor program.

buffer. A portion of storage used to hold input
or output data temporarily.

byte. A string consisting of a certain number
of bits, usually eight, treated as a unit, and
representing a character.

CD-name. A user-defined word that names an
MCS interface area described in a communi
cation description entry within the COMMUNI
CATION SECTION of the Data Division.

called program. A program that is the object
of a CALL statement combined at object time
with the calling program to produce a run-unit.
The term is synonymous with subprogram.

calling program. A program that executes a
CALL to another program.

case structure. A program processing logic in
which a series of conditions is tested in order to
make a choice between a number of resulting
actions.

chained program. A program that is the
object of a CHAIN statement.

chaining program. A program that executes
a CHAIN to another program.

character. The basic indivisible unit of the
language.

character position. The amount of physical
storage required to store a single standard data
format character described as USAGE IS
DISPLAY.

character set. All the valid characters for a
programming language or a computer system.

character string. A sequence of contiguous
characters that form a COBOL word, a literal, a
PICTURE character string or comment entry.

checkpoint. A point at which information
about the status of a job and the system can be
recorded so that the job step can be later
restarted ..

G-2 Language Reference

class condition. The proposition, for which a
truth value can be determined, that the content
of an item is wholly alphabetic, is wholly
numeric, or consists exclusively of those char
acters listed in the definition of a class name.

clause. An ordered set of consecutive COBOL
character strings whose purpose is to specify an
attribute of an entry.

CMS (Conversational Monitor System). A
virtual machine operating system that provides
general interactive, time sharing, problem
solving, and program development capabilities,
and that operates only under the control of the
VM/SP control program.

COBOL character set. The complete SAA
COBOL character set consists of the 77 charac
ters listed below:

Character
0,1, ... 9
A,B, ... z
a,b, ... z
b
+

*
I

$

"
(
)
>
<

Meaning
Digit
Uppercase letter
Lowercase letter
Space
Plus sign
Minus sign (hyphen)
Asterisk
Slant (slash)
Equal sign
Currency sign
Comma (decimal point)
Semicolon
Period (decimal point, full stop)
Quotation mark
Left parenthesis
Right parenthesis
Greater than symbol
Less than symbol

COBOL system directing statement. A
statement, beginning with a directing verb, that
causes your COBOL system to take a specific
action during creation of the intermediate code.

COBOL word. See word.

collating sequence. The sequence in which
the characters that are acceptable to a com
puter are ordered for purposes of sorting,
merging, comparing, and for processing indexed
files sequentially.

column. A character position within a print
line. The columns are numbered from 1, by i,
starting at the leftmost character position of
the print line and extending to the rightmost
position of the print line.

combined condition. A condition that is the
result of connecting two or more conditions
with the AND or the OR logical operator.

comment-entry. An entry in the Identifica
tion Division that may be any combination of
characters from the computer's character set.

comment line. A source program line repres
ented by an asterisk (*) in the indicator area of
the line and any characters from the computer's
character set in area A and area B of that line.
The comment line serves only for documenta
tion in a program. A special form of comment
line represented by a slant (/) in the indicator
area of the line and any characters form the
computer's character set in area A and area B
of that line causes page ejection prior to
printing the comment.

common program. A program that, despite
being directly contained within another
program, may be called from any program
directly or indirectly contained in that other
program.

communication description entry. An entry
in the COMMUNICATION SECTION of the
Data Division that is composed of the level indi
cator CD, followed by a cd-name, and then fol
lowed by a set of clauses as required. The entry
describes the interface between the Message
Control System (MCS) and the COBOL
program.

Communication Device. A mechanism (hard
ware or hardware/software) capable of sending
data to a queue or receiving data from a queue
or both. This mechanism may be a computer or
a peripheral device. One or more programs con
taining communication description entries and
residing within the same computer define one
or more of these mechanisms.

COMMUNICATION SECTION. The section
of the Data Division that describes the interface
areas between the MCS and the program, com
posed of one or more CD description entries.
See message control system.

compile. (1) To translate a program expressed
in a high-level language into a program
expressed in an intermediate language,
assembly language, or a computer language. (2)
To prepare a machine language program from a
computer program written in another program
ming language by making use of the overall
logic structure of the program, or generating
more than one computer instruction for each
symbolic statement, or both, as well as per
forming the function of an assembler.

compile time. The time at which a COBOL
source program is translated, by a COBOL com
piler, to a COBOL object program.

compiler. A program that translates a
program written in a higher level language into
a machine language object program.

compiler directing statement. A statement,
beginning with a compiler directing verb, that
causes the compiler to take a specific action

during compilation. The SAA compiler
directing statements are COPY, EJECT, SKIP
1/2/3, TITLE, and USE.

complex condition. A condition in which one
or more logical operators act upon one or more
conditions. (See also negated simple condition,
combined condition, and negated combined con
dition.)

computer name. A system name that identi
fies the computer upon which the program is to
be compiled or run.

condition. A status of a program at run time
for which a truth value can be determined.
Where the term condition (condition-1,
condition-2, ...) appears in these language spec
ifications in or in reference to condition
(condition-1, condition-2, ...) of a general format,
it is a conditional expression consisting of
either a simple condition optionally parenthe
sized, or a combined condition consisting of the
syntactically correct combination of simple con
ditions, logical operators, and parentheses, for
which a truth value can be determined.

condition name. A user defined word that
assigns a name to a subset of values that a con
ditional variable may assume; or a user defined
word assigned to a status of an implementer
defined switch or device. When condition name
is used in general formats, it represents a
unique data item reference consisting of a syn
tactically correct combination of a condition
name, together with qualifiers and subscripts,
as required for uniqueness of reference.

condition name condition. The proposition,
for which a truth value can be determined, that
the value of a conditional variable is a member
of the set of values attributed to a condition
name associated with the conditional variable.

conditional expression. A simple condition
or a complex condition specified in an EV AL
U ATE, IF, PERFORM, or SEARCH statement.
(See also simple condition and complex condi
tion.)

conditional statement. A statement speci
fying that the truth value of a condition is to be
determined and that the subsequent action of
the object program is dependent on this truth
value.

conditional variable. A data item one or
more values of which has a condition name
assigned to it.

CONFIGURATION SECTION. A section of
the Environment Division that describes overall
specifications of source and object programs.

connective. A reserved word that is used to
do the following:

Glossary G-3

• Associate a data-name, paragraph-name,
condition-name, or text-name with the
reserved word's qualifier.

• Link two or more operands written in a
series.

• Form conditions (logical connectives). See
logical operator.

CONSOLE. A COBOL environment name
associated with the operator console.

constant-name. A user-defined word assigned
as the name of a fixed value.

contiguous items. Items that are described by
consecutive entries in the Data Division, and
that bear a definite hierarchic relationship to
each other.

counter. A data item usea for storing numbers
or number representations in a manner that
permits these numbers to be increased or
decreased by the value of another number, or to
be changed or reset to zero or to an arbitrary
positive or negatiye value.

cross-reference listing. The portion of the
compiler listing that contains information on
where files, fields, and indicators are defined,
referenced, and modified in a program.

CRT. An output device by which an operator
can receive visual data.

currency sign. The character $ of the COBOL
character set.

currency symbol. The character defined by
the CURRENCY SIGN clause in the SPECIAL
NAMES paragraph. If no CURRENCY SIGN
clause is present in a COBOL source program,
the currency symbol is identical to the currency
sign.

current record. In file processing the record
that is available in the record area associated
with a file.

data clause. A clause, appearing in a data
description entry in the Data Division of a
COBOL program, that provides information
describing a particular attribute of a data item.

data description entry. An entry, in the Data
Division of a COBOL program, that is composed
of a level number, followed by a data-name, if
required, and then followed by a set of data
clauses, as required.

data dictionary. A table, built by your
COBOL system and held in memory, that con
tains information on each user-defined name.

Data Division. One of the four main compo
nents of a COBOL program. The Data Division
describes the data to be processed by the object
program: files to be used and the records con-

G-4 Language Reference

tained within them; internal Working Storage
records that will be needed; data to be made
available in more than one program in the run
unit.

data item. A unit of data (excluding literals)
defined by the COBOL program.

data-name. A user defined word that names a
data item described in a data item described in
a data description entry. When used in the
general formats, data-name represents a word
that must not be subscripted or qualified unless
specifically permitted by the rules of the format.

DBCS (Double Byte Character Set). See
Double Byte Character Set (DBCS).

debugging line. A debugging line is any line
with a D in the indicator area of the line.

DEBUGGING SECTION. A section that con
tains a USE FOR DEBUGGING statement.

declaratives. A set of one or more special
purpose sections, written at the beginning of
the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and
the last of which is followed by the key words
END DECLARATIVES. A declarative is com
posed of a section header, followed by a USE
compiler directing sentence, followed by a set of
zero, one, or more associated paragraphs.

declarative sentence. A compiler directing
sentence consisting of a single USE statement
terminated by the separator period.

delimited scope statement. Any statement
that includes its explicit scope terminator.

delimiter. A character or a sequence of con
tiguous characters that identify the end of a
string of characters and separate that string of
characters from the following string of charac
ters. A delimiter is not part of the string of
characters that it delimits.

descending key. A key upon the values of
which data is ordered starting with the highest
value of key down to the lowest value of key, in
accordance with the rules for comparing data
items.

destination. The symbolic identification of
the receiver of a transmission from a queue.

digit. Any of the numerals from 0 through 9.
In COBOL, the term is not used in reference to
any other symbol.

digit position. The amount of physical storage
required to store a single digit. This amount
may vary depending on the usage specified in
the data description entry that defines the data
item.

direct access. The facility to obtain data from
storage devices or to enter data into a storage

device in such a way that the process depends
only on the location of that data and not on a
reference to data previously accessed.

division. A collection of zero, one or more
sections or paragraphs, called the division body,
that are formed and combined in accordance
with a specific set of rules. Each division con
sists of the division header and the related divi
sion body. There are four (4) divisions in a
COBOL program: Identification, Environment,
Data, and Procedure.

division header. A combination of words, fol
lowed by a separator period that indicates the
beginning of a division. The division headers in
a COBOL program are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

Double Byte Character Set (DBCS). A set of
characters in which each character is repres
ented by two bytes. Languages such as
Japanese, Chinese, and Korean, which contain
more symbols than can be represented by 256
code points, require Double Byte Character
Sets. Since each character requires two bytes,
entering, displaying, and printing DBCS charac
ters requires hardware and supporting software
which are DBCS capable.

dynamic access. An access mode in which
specific logical records can be obtained from or
placed into a mass storage file in a nonsequen
tial manner and obtained from a file in a
sequential manner during the scope of the same
OPEN statement.

EBCDIC (Extended Binary Coded Decimal
Interchange Code). A coded character set
consisting of 8 bit coded characters.

EBCDIC character. Any one of the symbols
included in the 8 bit EBCDIC (Extended Binary
Coded Decimal Interchange Code) set.

editing character. A single character or fixed
two character combination belonging to the fol
lowing set:

Character Meaning
b space
0 zero
+ plus

minus
CR credit
DB debit
z zero suppress

* check protect
$ currency sign

comma (decimal point)
period (decimal point)

I slant (slash)

element (text element). One logical unit of a
string of text, such as the description of a single
data item or verb, preceded by a unique code
identifying the element type.

elementary item. A data item that is
described as not being further logically subdi
vided.

End of Procedure Division. The physical
position of a COBOL source program after
which no further procedures appear.

end program header. A combination of
words, followed by a separator period, that indi
cates the end of a COBOL source program. For
example:

END PROGRAM program-name.

entry. Any descriptive set of consecutive
clauses terminated by a separator period and
written in the Identification Division, Environ
ment Division, or Data Division of a COBOL
program.

environment clause. A clause that appears
as part of an Environment Division entry.

Environment Division. One of the four main
component parts of a COBOL program. The
Environment Division describes the computers
upon which the source program is compiled and
those on which the object program is executed,
and provides a linkage between the logical
concept of files and their records, and the phys
ical aspects of the devices on which files are
stored.

environment name. A name, specified by
IBM, that identifies system logical units,
printer and card punch control characters,
report codes, and/or program switches. Valid
environment names for SAA COBOL are:
SYSIN, SYSOUT, CONSOLE, COl, CSP, and
UPSI-0 through UPSI-7. When an environment
name is associated with a mnemonic name in
the Environment Division, the mnemonic name
may then be substituted in any format in which
such substitution is valid.

execution time. See run time.

execution time environment. See run time
environment.

explicit scope terminator. A reserved word
which terminates the scope of a particular Pro
cedure Division statement.

exponent. A number, indicating the power to
which another number (the base) is to be raised.
Positive exponents denote multiplication, nega
tive exponents denote division, fractional expo
nents denote a root of a quantity. In COBOL,
an exponential expression is indicated with the
symbol ** followed by the exponent.

Glossary G-5

extend mode. The state of a file after exe
cution of an OPEN statement, with the
EXTEND phrase specified for that file, and
before the execution of a CLOSE statement,
without the REEL or UNIT phrase for that file.

external decimal item. A format for repres
enting numbers in which the digit is contained
in bits 4 through 7 and the sign is contained in
bits 0 through 3 of the rightmost byte. Bits 0
through 3 of all other bytes contain l's (hex F).
For example, the decimal value of + 123 is
represented as 1111 0001 1111 0010 1111 0011.
(Also known as zoned decimal item.)

external file connector. A file connector that
is accessible to one or more object programs in
the run-unit.

figurative constant. A compiler generated
value referenced through the use of certain
reserved words.

file. A collection of logical records.

file connector. A storage area that contains
information about a file and is used as the
linkage between a file-name and a physical file
and between a file-name and its associated
record area.

file clause. A clause that appears as part of
any of the following Data Division entries: file
description entry (FD entry) and sort-merge file
description entry (SD entry).

File Control. The name of an Environment
Division paragraph in which the data files for a
given source program are declared.

file description entry. An entry in the File
section of the Data Division that is composed of
the level indicator FD, followed by a file name,
and then followed by a set of file clauses as
required.

file name. A user defined word that names a
file connector described in a file description
entry or a sort merge file description entry
within the FILE SECTION of the Data Divi
sion.

file organization. The permanent logical file
structure established at the time that a file is
created.

file position indicator. A conceptual entity
that is used in the selection of the next record.

FILE SECTION. The section of the Data Divi
sion that contains file description entries and
sort merge file description entries together with
their associated record descriptions.

format. A specific arrangement of a set of
data.

group item. A data item that is composed of
subordinate data items.

G-6 Language Reference

header label. (1) A file label or data set label
that precedes the data records on a unit of
recording media. (2) Synonym for beginning of
file label.

high order end. The leftmost character of a
string of characters.

Identification Division. One of the four main
component parts of a COBOL program. The
Identification Division identifies the source
program and the object program. The Identifi
cation Division may include the following doc
umentation: author name, installation, or date.

identifier. A syntactically correct combination
of a data-name, with its qualifiers and sub
scripts, as required for uniqueness of reference,
that names a data item or the value of the refer
enced data item. The rules for identifier associ
ated with the general formats may, however,
specifically, prohibit qualification or sub
scripting.

imperative statement. A statement that
either begins with an imperative verb and speci
fies an unconditional action to be taken or is a
conditional statement that is delimited by its
explicit scope terminator (delimited scope state
ment). An imperative statement may consist of
a sequence of imperative statements.

implementer-name. A system-name that
refers to a particular feature available on the
implementer's computing system.

implicit scope terminator. A separator
period that terminates the scope of any pre
ceding unterminated statement, or a phrase of a
statement that, by occurring, indicates the end
of the scope of any statement contained within
the preceding phrase.

implicit segment. A segment created by your
COBOL system to control the size of code seg
ments.

index. A computer storage area or register,
the content of which represents the identifica
tion of a particular element in a table.

index data item. A data item in which the
values associated with an index name can be
stored in a form specified by the implementer.

index name. A user defined word that names
an index associated with a specific table.

indexed data-name. An identifier that is com
posed of a data-name, followed by one or more
index names enclosed in parentheses.

indexed file. A file with indexed organization.

indexed organization. The permanent logical
file structure in which each record is identified
by the value of one or more keys within that
record.

indexing. Synonymous with subscripting
using index names.

indicator area. The leftmost parameter posi
tion of a COBOL source record, that indicates
the use of the record.

input file. A file that is opened in the INPUT
mode.

input mode. The state of a file after execution
of an OPEN statement, with the INPUT phrase
specified, for that file and before the execution
of a CLOSE statement, without the REEL or
UNIT phrase for that file.

input-output file. A file that is opened in the
I-0 mode.

INPUT-OUTPUT SECTION. The section of
the Environment Division that names the files
and the external media required by an object
program and that provides information required
for transmission and handling of data during
execution of the object program.

input procedure. A set of statements, to
which control is given during the execution of a
SORT statement, for the purpose of controlling
the release of specified records to be sorted.

integer. A numeric literal or a numeric data
item that does not include any digit positions to
the right of the assumed decimal point. When
the term integer appears in general formats,
integer must not be a numeric data item, and
must not be signed, nor zero unless explicitly
allowed by the rules of that format.

internal data. The data described in a
program, excluding all external data items and
external file connectors. Items described in the
LINKAGE SECTION of a program are treated
as internal data.

internal decimal item. A format in which
each byte in a field except the rightmost byte
represents two numeric digits. The rightmost
byte contains one digit and the sign. For
example, the decimal value + 123 is represented
as 0001 0011 1111. (Also known as packed
decimal.)

internal file connector. A file connector that
is accessible only to one object program in a
run-unit.

invalid key condition. A condition, at object
time, caused when a specific value of the key
associated with an indexed or relative file is
determined to be invalid.

I-0 CONTROL. The name of an Environment
Division paragraph in which object program
requirements for rerun points, sharing of same
areas by several data files, and multiple file

storage on a single input-output device are spec
ified.

1-0 mode. The state of a file after execution of
an OPEN statement, with the I-0 phrase speci
fied, for that file and before the execution of a
CLOSE statement without the REEL or UNIT
phase for that file.

iteration structure. A program processing
logic in which a series of statements is repeated
while a condition is true or until a condition is
true.

K. When referring to storage capacity, two to
the tenth power; 1024 in decimal notation.

key. A data item that identifies the location of
a record, or a set of data items which serve to
identify the ordering of data.

key of reference. The key, either prime or
alternate, currently being used to access
records within an indexed file.

key word. A reserved word whose presence is
required when the format in which the word
appears is used in a source program.

language name. A system name that specifies
a particular programming language.

level indicator. Two alphabetic characters
that identify a specific type of file or a position
in a hierarchy. The level indicators in the Data
Division are: CD, FD, and SD.

level number. A user defined word, expressed
as a two digit number, which indicates the
hierarchical position of data item or the special
properties of a data description entry. Level
numbers in the range from 1 through 49 indi
cate the position of a data item in the hierar
chical structure of a logical record. Level
numbers in the range 1 through 9 may be
written either as a single digit or as a zero fol
lowed by a significant digit. Level numbers 66,
77 and 88 identify special properties of a data
description entry.

library name. A user defined word that names
a COBOL library that is to be used by the com
piler for a given source program compilation.

library text. A sequence of text words,
comment lines, the separator space, or the sepa
rator pseudo-text delimiter in a COBOL library.

line-sequential file organization. A type of
sequential file containing variable-length
records in the format of text files produced by
the host operating system.

LINKAGE SECTION. The section in the Data
Division of the called program that describes
data items available from the calling program.
These data items may be referred to by both the
calling and called program.

Glossary G-7

literal. A character string whose value is
implied by the ordered set of characters com
prising the string.

logical operator. One of the reserved words,
AND, OR, or NOT. In the formation of a condi
tion, either AND or OR, or both can be used as
logical connectives. NOT can be used for
logical negation.

logical record. The most inclusive data item.
The level number for a record is 01. A record
may be either an elementary item or a group of
items. The term is synonymous with record.

low order end. The rightmost character of a
string of characters.

main program. In a hierarchy of programs
and subroutines, the first program to receive
control when the programs are run.

mass storage device. A device having a large
storage capacity; for example, magnetic disk,
magnetic drum.

MCS. See Message Control System.

megabyte (M). One megabyte equals 1,048,576
bytes.

merge file. A collection of records to be
merged by a MERGE statement. The merge file
is created and can be used only by the merge
function.

message. Data associated with an end-of.
message indicator or an end-of-group indicator.
(See message indicators.)

Message Control System (MCS). A commu
nication control system that supports the proc
essing of messages to and from terminal devices.

message count. The count of the number of
complete messages that exist in the designated
queue of messages.

message indicators. End-of-group indicator
(EGI), end-of-message indicator (EMI), and end
of-segment indicator (ESI) are conceptual indi
cations that serve to notify the MCS that a
specific condition exists (end-of-group, end-of.
message, end-of-segment).

Within the hierarchy of EGI, EMI, and ESI, an
EGI is conceptually equivalent to an ESI, EMI,
and EGI. An EMI is conceptually equivalent to
an ESI and EMI, Thus, a segment may be ter
minated by an ESI, EMI, or EGL A message
may be terminated by an EMI or EGL

message segment. Data that forms a logical
subdivision of a message normally associated
with an end-of-segment indicator. (See message
indicators.)

G-8 Language Reference

mnemonic name. A user defined word that is
associated in the Environment Division with a
specified implementer name.

MVS/XA (Multiple Virtual
Storage/Extended Architecture). An IBM
operating system that manages multiple virtual
address spaces in IBM processors operating in
extended architecture mode. MVS/XA supports
the 31 bit addressing mechanism of extended
architecture mode and, thus, can manage an
address space as large as 2 billion (that is,
2x109) bytes.

name. A word composed of not more than 30
characters that defines a COBOL operand.

native character set. The implementer
defined character set associated with the com
puter specified in the OBJECT-COMPUTER
paragraph.

native collating sequence. The implementer
defined collating sequence associated with the
computer specified in the OBJECT-COMPUTER
paragraph.

negated combined condition. The NOT
logical operator immediately followed by a
parenthesized combined condition.

negated simple condition. The NOT logical
operator immediately followed by a simple con
dition.

next executable sentence. The next sentence
to which control will be transferred after exe
cution ofthe current statement is complete.

next executable statement. The next state
ment to which control will be transferred after
execution of the current statement is complete.

next record. The record that logically follows
the current record of a file.

noncontiguous items. Elementary data items,
in the Working Storage and LINKAGE
SECTIONS, that bear no hierarchic relation
ship to other data items.

nonnumeric item. A data item whose
description permits its content to be composed
of any combination of characters taken from
the computer's character set. Certain catego
ries of nonnumeric items may be formed from
more restricted character sets.

nonnumeric literal. A literal bounded by quo
tation marks. The string of characters may
include any character in the computer's char
acter set.

numeric character. A character that belongs
to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.

numeric-edited item. A numeric item that is
in such a form that it may be used in printed

output. It may consist of external decimal
digits form 0 through 9, the decimal point,
commas, the dollar sign, editing sign control
symbols, plus other editing symbols.

numeric item. A data item whose description
restricts its content to a value represented by
characters chosen from the digits from 0
through 9; if signed, the item may also contain
a +, -, or other representation of an operational
sign.

numeric literal. A literal composed of one or
more numeric characters that also contain
either a decimal point, or an algebraic sign, or
both. The decimal point must not be the right
most character. The algebraic sign, if present,
must be the leftmost character.

OBJECT-COMPUTER. The name of an Envi
ronment Division paragraph in which the com
puter environment, within which the object
program is executed, is described.

object of entry. A set of operands and
reserved words, within a Data Division entry of
a COBOL program, that immediately follows
the subject of the entry.

object program. A set or group of executable
machine language instructions and other mate
rial designed to interact with data to provide
problem solutions. In this context, an object
program is generally the machine language
result of the operation of a COBOL compiler on
a source program. Where there is no danger of
ambiguity, the word program alone may be used
in place of the phrase, object program.

object time. The time at which an object
program is executed. The term is synonymous
with execution time.

obsolete element. A COBOL language
element in standard COBOL that is to be
deleted from the next revision of standard
COBOL.

open mode. The state of a file after execution
of an OPEN statement for that file and before
the execution of a CLOSE statement without
the REEL or UNIT phrase for that file. The
particular open mode is specified in the OPEN
statement as either INPUT, OUTPUT, I-0, or
EXTEND.

operand. Whereas the general definition of
operand is "that component which is operated
upon," for the purposes of this document, any
lowercase word (or words) that appears in a
statement or entry format may be considered to
be an operand and, as such, is an implied refer
ence to the data indicated by the operand.

operational sign. An algebraic sign, associ
ated with a numeric data item or a numeric

literal, to indicate whether its value is positive
or negative.

optional word. A reserved word that is
included in a specific format only to improve
the readability of the language and whose pres
ence is optional to the user when the format in
which the word appears is used in a source
program.

OS/2 (Operating System/2). A multitasking
operating system for the IBM Personal Com
puter family that allows you to run both DOS
mode and OS/2 mode programs.

output field. A screen item whose description
contains a FROM phrase.

output file. A file that is opened in either
OUTPUT mode or EXTEND mode.

output mode. The state of a file after exe
cution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for
that file and before the execution of a CLOSE
statement without the REEL or UNIT phrase
for that file.

output procedure. A set of statements to
which control is given during execution of a
SORT statement after the sort function is com
pleted, or during execution of a MERGE state
ment after the merge function reaches a point
at which it can select the next record in merged
order when requested.

overflow condition. A condition that occurs
when a portion of the result of an operation
exceeds the capacity of the intended unit of
storage.

packed decimal item. See Internal Decimal
Item.

page. A vertical division of output data repres
enting a physical separation of such data, the
separation being based on internal logical
requirements and/or external characteristics of
the output medium.

page body. That part of the logical page in
which lines can be written and/or spaced.

paragraph. In the Procedure Division, a para
graph name followed by a separator period and
by zero, one, or more sentences. In the Identifi
cation and Environment Divisions, a paragraph
header followed by zero, one or more entries.

paragraph header. A reserved word, followed
by the separator period, that indicates the
beginning of a paragraph in the Identification
and Environment Divisions. The permissible
paragraph headers in the Identification Divi
sion are:

PROGRAM-ID.
AUTHOR

Glossary G-9

INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the Envi
ronment Division are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-0-CONTROL.

paragraph name. A user defined word that
identifies and begins a paragraph in the Proce
dure Division.

parameter. Parameters are used to pass data
values between calling and called programs.

phrase. A phrase is an ordered set of one or
more consecutive COBOL character strings that
form a portion of a COBOL procedural state
ment or of a COBOL clause.

physical record. See block.

pointer item. An elementary data item to
which a USAGE IS POINTER clause applies.

prime record key. A key whose contents
uniquely identify a record within an indexed
file.

procedure. A paragraph or group of logically
successive paragraphs, or a section or group of
logically successive sections, within the Proce
dure Division.

Procedure Division. One of the four main
component parts of a COBOL program. The
Procedure Division contains instructions for
solving a problem. The Procedure Division may
contain imperative statements, conditional
statements, compiler directing statements, para
graphs, procedures, and sections.

procedure name. A user defined word that is
used to name a paragraph or section in the Pro
cedure Division. It consists of a paragraph
name (which may be qualified), or a section
name.

process. Any operation or combination of
operations on data.

program name. In the Identification Division,
a user defined word that identifies a COBOL
library bounded by but not including, pseudo-
text delimiters. ./

pseudo-text. A sequence of text words,
comment lines, or the separator space in a
source program or COBOL library bounded by,
but not including, pseudo-text delimiters.

G-10 Language Reference

pseudo-text delimiters. Two contiguous
equal sign (=) characters used to delimit
pseudo-text.

punctuation character. A character that
belongs to the following set:

Character

,,
(
)
b

Meaning
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

qualified data-name. An identifier that is
composed of a data-name followed by one or
more sets of either of the connectives OF and
IN followed by a data-name qualifier.

qualifier.

1. A data-name or a name associated with a
level indicator which is used in a reference
either together with another data-name
which is the name of an item that is subor
dinate to the qualifier or together with a
con di ti on name.

2. A section name that is used in a reference
together with a paragraph name specified in
that section.

3. A library name that is used in a reference
together with a text name associated with
that library.

queue. A logical collection (of messages, proc
esses, print jobs) waiting to be transmitted or
processed.

queue name. A symbolic name that tells the
MCS the logical path by which a message or a
portion of a completed message may be acces
sible in a queue.

Queued Sequential Access Method
(QSAM). An extended version of the basic
sequential access method (BSAM). When this
method is used, a queue is formed of input data
blocks that are awaiting processing or of output
data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an
output device.

QSAM
Method).
Method.

(Queued Sequential
See Queued Sequential

Access
Access

random access. An access mode in which the
program specified value of a key data item iden
tifies the logical record that is obtained from,
deleted from, or placed into a relative or
indexed file.

receiving item. A data item referred to in a
TO or USING phrase in a PICTURE clause in
the SCREEN SECTION.

record. See logical record.

record area. A storage area allocated for the
purpose of processing the record described in a
record description entry in the FILE SECTION
of the Data Division. In the FILE SECTION,
the current number of character positions in
the record area is determined by the explicit or
implicit RECORD clause.

record description. See record description
entry,

record description entry. The total set of
data description entries associated with a par
ticular record. The term is synonymous with
record description.

record key. A key whose contents identify a
record within an indexed file. Within an
indexed file in SAA COBOL, a record key is the
prime record key.

record name. A user defined word that names
a record described in a record description entry
in the Data Division of a COBOL program.

recording mode. The format of the logical
records in a file. Recording mode can be F
(fixed-length), V (variable-length), S (spanned),
or U (undefined).

reel. A discrete portion of a storage medium,
the dimensions of which are determined by each
implementer, that contains part of a file, all of a
file, or any number of files. The term is synony
mous with unit and volume.

relation. See relational operator.

relation character. A character that belongs
to the following set:

Character Meaning
> Greater than
< Less than

Equal to

relation condition. The proposition, for
which a truth value can be determined, that the
value of an arithmetic expression, data item,
nonnumeric literal or index name has a specific
relationship to the value of another arithmetic
expression, data item, nonnumeric literal, or
index name. (See also relational operator.)

relational operator. A reserved word, a
relation character, a group of consecutive
reserved words, or a group of consecutive
reserved words and relation characters used in
the construction of a relation condition. The
permissible operators and their meanings are:

Operator Meaning
IS GREATER THAN Greater than

IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than
IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than
IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to
IS GREATER THAN OR EQUAL TO

Greater than or
equal to

IS > = Greater than or
equal to

IS LESS THAN OR EQUAL TO
Less than or
equal to

IS < = Less than or
equal to.

relative file. A file with relative organization.

relative key. A key whose contents identify a
logical record in a relative file.

relative organization. The permanent logical
file structure in which each record is uniquely
identified by an integer value greater than zero,
which specifies the record's logical ordinal posi
tion in the file.

relative record number. The ordinal number
of a record in a file whose organization is rela
tive. This number is treated as a numeric
literal which is an integer.

reserved word. A COBOL word specified in
the list of words that may be used in a COBOL
source program, but that must not appear in the
program as user defined words or system names.

routine. A set of statements in a program that
causes the computer to perform an operation or
series of related operations.

RTS. See Run Time System

run time. The time at which an object
program is executed. The term is synonymous
with object time.

Run Time Environment (RTE). A module
that interprets intermediate code, provides
various support services to native code and acts
as an interface to the operating system.

Run Time System (RTS). See Run Time
Environment.

run-unit. One or more object programs which
interact with one another and which function,
at object time, as an entity to provide problem
solutions.

scope terminator. A COBOL reserved word
that marks the end of certain Procedure Divi-

Glossary G-11

sion statements. It may be either explicit
(END-ADD) or implicit (separator period).

screen description entry. An entry in the
SCREEN SECTION of the Data Division that is
composed of a level number, followed by an
optional screen-name, and then by a set of
screen clauses as required. This entry is very
similar in structure to a data description entry,
but while a data description entry declares
areas in memory, a screen description entry
declares areas on the screen.

screen item. A field on the screen to which
the screen description entry assigns properties.

SCREEN SECTION. The last section within
the Data Division, in which the layouts of the
screen areas accessed in Format 2 ACCEPT and
DISPLAY statements are defined.

section. A set of zero, one or more paragraphs
or entities, called a section body, the first of
which is preceded by a section header. Each
section consists of the section header and the
related section body.

section header. A combination of words fol
lowed by a separator period that indicates the
beginning of a section in the Environment,
Data and Procedure Divisions. In the Environ
ment and Data Divisions, a section header is
composed of reserved words followed by a sepa
rator period. The permissible section headers
in the Environment Division are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers m the Data
Division are:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
SCREEN SECTION.
REPORT SECTION.

In the Procedure Division, a section header is
composed of section name, followed by the
reserved word SECTION, followed by a sepa
rator period.

section name. A user-defined word that
names a section in the Procedure Division.

segment-number. A user-defined word that
classifies sections in the Procedure Division for
segmentation. Segment-numbers may contain
only characters from 0 through 9. A segment
number may be expressed either as a one- or a
two-digit number.

selection structure. A program processing
logic in which one or another series of state
ments is executed, depending on whether a con
dition is true or false.

G-12 Language Reference

sending item. A data item referred to in a
FROM or USING phrase in a PICTURE clause
in the SCREEN SECTION.

sentence. A sequence of one or more state
ments, the last of which is terminated by a sepa
rator period.

separator. A punctuation character used to
delimit character strings.

separator comma. A comma (,) followed by a
space used to delimit character strings.

separator period. A period (.) followed by a
space used to delimit character strings.

separator semicolon. A semicolon (;) fol
lowed by a space used to delimit character
strings.

sequence structure. A program processing
logic in which a series of statements is executed
in sequential order.

sequential access. An access mode in which
logical records are obtained from or placed into
a file in a consecutive predecessor to successor
logical record sequence determined by the order
of records in the file.

sequential file. A file with sequential organ
ization.

sequential organization. The permanent
logical file structure in which a record is identi
fied by a predecessor successor relationship
established when the record is placed into the
file.

serial search. A search in which the members
of a set are consecutively examined, beginning
with the first member and ending with the last.

sign condition. The proposition, for which a
truth value can be determined, that the alge
braic value of a data item or an arithmetic
expression is either less than, greater than, or
equal to zero.

simple condition. Any single condition
chosen from the set:

relation condition
class condition
condition name condition
switch status condition
sign condition
(simple condition)

sort file. A collection of records to be sorted
by a SORT statement. The sort file is created
and can be used by the sort function only.

sort-merge file description entry. An entry
in the FILE SECTION of the Data Division that
is composed of the level indicator SD, followed
by a file name, and then followed by a set of file
clauses as required.

source. The symbolic definition of the origi
nator of a transmission to a queue.

SOURCE-COMPUTER. The name of an Envi
ronment Division paragraph in which the com
puter environment, within which the source
program is compiled, is described.

source program. Although it is recognized
that a source program may be represented by
other forms and symbols, in this document it
always refers to a syntactically correct set of
COBOL statements. A COBOL source program
commences with the Identification Division or a
COPY statement. A COBOL source program is
terminated by the absence of additional source
program lines.

special character. A character that belongs
to the following set:

Character
+

*
I

$

,,
(
)
>
<

Meaning
plus sign
mmus sign
asterisk
slant (slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point, full stop)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

special character word. A reserved word that
is an arithmetic operator or a relation char
acter.

SPECIAL-NAMES. The name of an Environ
ment Division paragraph in which environment
names are related to user specified mnemonic
names.

special registers. Certain compiler generated
storage areas whose primary use is to store
information produced in conjunction with the
use of a specific COBOL feature.

split key. A concatenation of one or more data
items within a record associated with that file
name. The split key can be referenced only in
ST ART and READ statements.

standard data format. The concept used in
describing the characteristics of data in a
COBOL Data Division under which the charac
teristics or properties of the data are expressed
in a form oriented to the appearance of the data
on a printed page of infinite length and breadth,
rather than a form oriented to the manner in
which the data is stored internally in the com
puter, or on a particular external medium.

statement. A syntactically valid combination
of words, literals, and separators, beginning
with a verb, written in a COBOL source
program.

structured programming. A technique for
organizing and coding a computer program in
which the program comprises a hierarchy of
segments, each segment having a single entry
point and a single exit-point. Control is passed
downward through the structure without
unconditional branches to higher levels of the
hierarchy.

subject of entry. An operand or reserved
word that appears immediately following the
level indicator or the level number in a Data
Division entry.

subprogram. See called program.

sub-queue. A logical hierarchical division of a
queue.

subscript. An occurrence number represented
by either an integer, a data-name optionally fol
lowed by an integer with the operator + or -, or
an index name optionally followed by an integer
with the operator + or -, which identifies a par
ticular element in a table.

subscripted data-name. An identifier that is
composed of a data-name followed by one or
more subscripts enclosed in parentheses.

switch status condition. The proposition, for
which a truth value can be determined, that an
UPSI switch, capable of being set to an on or
off status, has been set to a specific status.

symbol function. The use of specified charac
ters in the PICTURE clause to represent data
types.

syntax. (1) The relationship among characters
or groups of characters, independent of their
meanings or the manner of their interpretation
and use. (2) The structure of expressions in a
language. (3) The rules governing the structure
of a language. (4) The relationship among
symbols. (5) The rules for the construction of a
statement.

system name. A COBOL word that is used to
communicate with the operating environment.

table. A set of logically consecutive items of
data that are defined in the Data Division by
means of the OCCURS clause.

table element. A data item that belongs to
the set of repeated items comprising a table.

text name. A user defined word that identifies
library text.

text word. A character or a sequence of con
tiguous characters following the indicator area

Glossary G-13

(column 7) in a COBOL library, source program,
or in a pseudo-text which is:

• A separator, except for: space; a pseudo
text delimiter; and the opening and closing
delimiters for nonnumeric literals. The
right parenthesis and left parenthesis char
acters, regardless of context within the
library, source program, or pseudo-text, are
always considered text words.

• A literal including, in the case of nonnu
meric literals, the opening quotation mark
and closing quotation mark that bound the
literal.

• Any other sequence of contiguous COBOL
characters except comment lines and the
word COPY bounded by separators which is
neither a separator nor a literal.

top down design. The design of a computer
program using a hierarchic structure in which
related functions are performed at each level of
the structure.

top down development. See structured pro
gramming.

trailer label. (1) A file or data set label that
follows the data records on a unit of recording
medium. (2) Synonym for the end-of-file label.

truth value. The representation of the result
of the evaluation of a condition in terms of one
of two values: true or false.

unary operator. A plus (+) or a minus (-)
sign, that precedes a variable or a left paren
thesis in an arithmetic expression and that has
the effect of multiplying the expression by + 1
or -1, respectively.

unit. A module of direct access, the dimen
sions of which are determined by IBM.

UPSI switch. A program switch that performs
the functions of a hardware switch. Eight
switches are provided: UPSI-0 through UPSI-7.

user defined word. A COBOL word that must
be supplied by the user to satisfy the format of
a clause or statement.

G-14 Language Reference

variable. A data item whose value may be
changed by execution of the object program. A
variable used in an arithmetic expression must
be a numeric elementary item.

variable occurrence data item. A table
element that is repeated a variable number of
times. Such an item must contain an OCCURS
DEPENDING ON clause in its data description
entry, or be subordinate to such an item.

verb. A word that expresses an action to be
taken by a COBOL compiler or object program.

Virtual Machine/System Product (VM/SP).
An IBM licensed program that manages the
resources of a single computer so that multiple
computing systems appear to exist. Each
virtual machine is the functional equivalent of
a real machine.

Virtual Storage Access Method (VSAM). A
high performance mass storage access method.
Three types of data organization are available:
entry sequenced data sets (ESDS), key
sequenced data sets (KSDS), and relative record
data sets (RRDS). Their COBOL equivalents
are, respectively: sequential, indexed, and rela
tive organizations.

VM/SP. See Virtual Machine/System Product.

volume. A module of external storage. For
tape devices it is a reel; for direct access
devices it is a unit.

volume switch procedures. System specific
procedures executed automatically when the
end of a unit or reel has been reached before
end-of-file has been reached.

VSAM. See Virtual Storage Access Method

word. A character string of not more than 30
characters that forms a user defined word, a
system name, or a reserved word.

WORKING-STORAGE SECTION. The
section of the Data Division that describes
working storage data items, composed either of
noncontiguous items or working storage records
or both.

zoned decimal item. See external decimal
item.

abbreviated combined relation conditions 7-17
ACCEPT MESSAGE COUNT statement 15-20
ACCEPT statement 7-22, 18-55, A-10, B-7
ADD statement 7-24
ADDRESS Special Register 2-15, 11-17, 11-33
algebraic signs 2-19
alignment rules 2-19
alphabetic data rules 6-19
alphanumeric data rules 6-19
alphanumeric-edited data rules 6-19
ALTER statement 7-27, 16-7
alternate keys B-5
Apply clause

CORE-INDEX 8-30
RECORD-OVERFLOW 8-30
REORG-CRITERIA 8-30
WRITE-ONLY 8-30

arithmetic expressions 7-7
arithmetic operators 7-8
arithmetic statements 7-20
ASCil 5-8
ASSIGN clause 8-19, A-3
AT END condition 8-9, 8-11
AUTO clause 18-21

BACKGROUND-COLOR clause 18-22
BELL clause 18-24
BLANK clause 18-25
blank lines 2-53
BLANK WHEN ZERO clause 6-11, 18-26
blink 18-27, 18-58, 18-63
BLINK clause 18-27
BLOCK CONTAINS clause 8-39
body group presentation rules 14-38
bound checking A-8
byte order 2-27
byte storage mode 2-22

CALL statement 11-36, B-8
CANCEL statement 11-43
CHAIN statement 11-45
character set 2-4

character-strings 2-6
class condition 7-13
clause

ASSIGN A-3
AUTO 18-21
BACKGROUND-COLOR 18-22
BELL 18-24
BLANK 18-25
BLANK WHEN ZERO 6-11, 18-26
BLINK 18-27
BLOCK CONTAINS 8-39
CODE 14-19
CODE-SET 8-40
COLUMN 18-28
COLUMN NUMBER 14-45
CONSOLE IS CRT 18-10
CONTROL 14-20
CRT STATUS 18-12
CURSOR IS 18-11
DATA RECORDS 8-42, 13-12
DATA SIZE B-4
Data-name 14-46
Data-name or FILLER 6-12
EXTERNAL 11-30
FOREGROUND-COLOR 18-30
FULL 18-32
GLOBAL 11-31
GRID 18-34
GROUP INDICATE 14-47
HIGHLIGHT 18-35
INDEX SIZE B-4
JUSTIFIED 6-13, 18-36
LABEL RECORDS 8-43
LEFTLINE 18-37
LENGTH-CHECK 18-32
LINAGE 8-44
LINE 18-38
LINE NUMBER 14-49
NEXT GROUP 14-51
OCCURS 12-5, 18-40
ORGANIZATION A-5
OVERLINE 18-42
PAGE 14-22
PICTURE 6-18, 18-43
POINTER 6-40, 6-44
PROMPT 18-45
RECORD 8-47
RECORD CONTAINS 13-13
RECORDING MODE 8-50
REDEFINES 6-29
RENAMES 6-32
REPORT 14-14

Index

Index X-1

clause (continued)
REQUIRED 18-46
REVERSE-VIDEO 18-47
SECURE 18-48
SIGN 6-35, 14-53, 18-49
SIZE 18-50
SOURCE 14-55
SUM 14-56
SYNCHRONIZED 6-37
TYPE 14-59
UNDERLINE 18-51
USAGE 6-39, 14-63, A-7
USAGE IS INDEX 12-12
VALUE 6-41, 14-64, 18-52, B-6
VALUE OF 8-51
WITH DEBUGGING MODE 17-5
ZERO-FILL 18-53

CLOSE statement
DISP parameter 8-53
in Report Writing facility 14-67

COBOL
See VS COBOL

COBOL words 2-6
CODE clause 14-19
CODE-SET clause 8-40
color 18-22, 18-30, 18-58, 18-62
COLUMN clause 18-28
COLUMN NUMBER clause 14-45
combined and negated combined condition 7-16
COMMAND-LINE 7-23, 7-33
COMMAND-LINE function name 5-14
comment-entries 2-15
COMMIT statement 8-58
common phrases 7-19
common programs 11-7
communication module

Data Division
description - complete entry

skeleton 15-4
introduction 15-4
Procedure Division

ACCEPT MESSAGE COUNT
statement 15-20

DISABLE statement 15-21
ENABLE statement 15-23
PURGE statement 15-25
RECEIVE statement 15-26
SEND statement 15-29

Communications module 1-4, 15-3, D-3
COMP-0 C-4
comparison

involving data items with USAGE
POINTER 7-13

involving index-names and/or index data
items 7-12

involving index-names and/or index data
items 12-13

of nonnumeric operands 7-12

X-2 Language Reference

comparison (continued)
of numeric operands 7-12

compile-time switch 17-4
complex conditions 7-15
COMPUTATIONAL-X or COMP-X format 2-28
COMPUTATIONAL-0 C-4
COMPUTATIONAL-1 or COMP-1 A-7
COMPUTATIONAL-3, COMP-3, or

PACKED-DECIMAL format 2-25
COMPUTATIONAL-4 or COMP-4 format 2-21
COMPUTATIONAL-5 or COMP-5 format 2-27,

6-39
COMPUTATIONAL-6 or COMP-6 A-7
COMPUTATIONAL, COMP, BINARY

format 2-21
COMPUTE statement 7-29
computer memory natural boundaries 2-22
concepts

algebraic signs 2-19
COMPUTATIONAL-X or COMP-X

format 2-28
COMPUTATIONAL-3, COMP-3, or

PACKED-DECIMAL format 2-25
COMPUTATIONAL-4 or COMP-4 2-21
COMPUTATIONAL-5 or COMP-5

format 2-27
COMPUTATIONAL, COMP, BINARY 2-21
explicit and implicit attributes 2-35
explicit and implicit Procedure Division ref-

erences 2-34
explicit and implicit scope terminators 2-36
explicit and implicit specifications 2-34
explicit and implicit transfers of

control 2-34
item alignment 2-20
of classes of data 2-18
of computer-independent data

description 2-16
of levels 2-16
optional division, section, and paragraph

headings 2-37
program structure 2-37
selection of character representation and

radix 2-20
standard alignment rules 2-19
uniqueness of reference 2-28

condition evaluation rules 7-18
condition name 2-7, 2-33
condition-name condition 7-14
condition-name rules 6-43
conditional expressions 7-9
conditional sentence 2-46
conditional statement 2-46
Configuration Section 5-4
CONSOLE function name 5-14
CONSOLE IS CRT clause 18-10
constant names 2-13, 6-43

continuation of lines 2-53
CONTINUE statement 7-31
CONTROL clause 14-20
conventions

for condition names, data names, file names,
record names and report names 11-9

for index names 11-10
for program names 11-9

COPY INDEXED statement B-8
COPY statement 9-5
CORRESPONDING phrase 7-20, 7-66
CRT STATUS clause 18-12
CSP function name 5-14
CURRENT-DATE Special Register 2-13
CURSOR IS clause 18-11
COl through C12 function names 5-14

data description entry in the interprogram com
munication module 11-25

Data Division 1-7
AUTO clause 18-21
BACKGROUND-COLOR clause 18-22
BELL clause 18-24
BLANK clause 18-25
BLANK WHEN ZERO clause 6-11, 18-26
BLINK clause 18-27
BLOCK CONTAINS clause 8-39
CODE clause 14-19
CODE-SET clause 8-40
COLUMN clause 18-28
COLUMN NUMBER clause 14-45
communication description 15-4
COMMUNICATION SECTION 15-4
CONTROL clause 14-20
data description 6-7
Data General syntax supplement B-6
DATA RECORDS clause 8-42, 13-12
Data-name clause 14-46
Data-name or FILLER clause 6-12
default sign representation A-6
entries 2-54
file description 8-35
file description entry 14-11
FILE SECTION 8-34
for file input and output 8-34
FOREGROUND-COLOR clause 18-30
FULL clause 18-32
general format 2-42
GRID clause 18-34
GROUP INDICATE clause 14-47
HIGHLIGHT clause 18-35
in the communication module 15-4
in the interprogram communication

module 11-17
in the nucleus 6-1

Data Division (continued)
in the report writer module 14-11
in the screen-handling module 18-14
in the Sort-Merge module 13-10
in the table-handling module 12-5
initial valuestop 6-7
JUSTIFIED clause 6-13, 18-36
LABEL RECORDS 8-43
LEFTLINE clause 18-37
length of nonnumeric literals A-6
level number 6-15
level-number 14-48
LINAGE clause 8-44
LINE clause 18-38
LINE NUMBER clause 14-49
Microsoft syntax supplement

differences between Microsoft and AIX VS
COBOL C-10

problem determination C-10
NEXT GROUP clause 14-51
noncontiguous working storage 6-6
OCCURS clause 12-5, 18-40
organization 2-41
OVERLINE clause 18-42
PAGE clause 14-22
PICTURE clause 6-18, 18-43
presentation rules tables 14-32
PROMPT clause 18-45
RECORD clause 8-47
record description structure 6-7, 8-34
RECORDING MODE clause 8-50
REDEFINES clause 6-29
RENAMES clause 6-32
REPORT clause 14-14
report description entry 14-16, 14-17
report group description entry 14-16, 14-28
REPORT SECTION 14-6, 14-16
report structure 14-6
REQUIRED clause 18-46
REVERSE-VIDEO clause 18-47
Ryan-McFarland syntax supplement A-6
screen description - complete entry

skeleton 18-15
SCREEN SECTION 18-14, B-6
SECURE clause 18-48
SIGN clause 6-35, 14-53, 18-49
SIZE clause 18-50
SORT-MERGE file description 13-10
SOURCE clause 14-55
SUM clause 14-56
SYNCHRONIZED clause 6-37
TYPE clause 14-59
UNDERLINE clause 18-51
USAGE clause 6-39, 14-63, A-7
USAGE IS INDEX clause 12-12
VALUE clause 6-41, 14-64, 18-52, B-6
VALUE OF clause 8-51
working-storage records 6-6

Index X-3

Data Division (continued)
WORKING-STORAGE SECTION 6-6
ZERO-FILL clause 18-53

Data General syntax supplement
Data Division

SCREEN SECTION B-6
VALUE clause B-6

dialect controlling directive B-3
Environment Division

alternate keys B-5
DAT A SIZE clause B-4
duplicate alternate keys B-5
I-0 control entry B-5
INDEX SIZE clause B-4
switch names B-4

long user-defined names B-3
Procedure Division

ACCEPT statement B-7
CALL statement B-8
COPY INDEXED statement B-8
DISPLAY statement B-8
file sharing syntax B-8
OPEN statement B-8
READ statement B-8

data manipulation 14-7
DATA RECORDS clause 8-42, 13-12
data rules

alphabetic 6-19
alphanumeric 6-19
alphanumeric-edited 6-19
numeric 6-19
numeric-edited 6-20

DATA SIZE clause B-4
Data-name 14-46
Data-name or FILLER clause 6-12
DATE 7-22
DATE-COMPILED paragraph 4-7
DAY 7-22
DAY-OF-WEEK 7-22
DBCS

See double-byte character set (DBCS)
debug module and interactive debugging

COBOL run-time switch 17-4
compile-time switch 17-4
Environment Division

WITH DEBUGGING MODE clause 17-5
introduction 17-4
lines 17-13
Procedure Division

READY TRACE statement 17-6
RESET TRACE statement 17-7

standard ANSI COBOL 17-4
DECLARATIVES

description 2-44
format 2-45

default sign representation A-6
DELETE statement 8-59

X-4 Language Reference

delimited scope statements 2-48
DG dialect controlling directive B-3
DISABLE statement 15-21
DISPLAY format 2-21
DISPLAY statement 7-32, 18-61, A-11, B-8
DISPLA Y-1 USAGE 6-39
DIVIDE statement 7-34
divisions of a program 2-37
double byte character support

in INITIALIZE statement 7-55
double-byte character set (DBCS)

character-strings 2-6
class and category 2-18
elementary move rules 7-67
figurative constant values 2-12
literals 2-11
PICTURE clause 6-20
support 1-5
use with relational operators 7-11
using in comments 4-5

duplicate alternate keys B-5

EBCDIC 5-8
editing

fixed insertion 6-24
floating insertion 6-25
rules 6-22
simple insertion 6-23
special insertion 6-24
zero suppression 6-26

EJECT statement 10-5
elementary item size 6-20
elements 1-8
ENABLE statement 15-23
end program header 3-6, 11-13
ENTER statement 7-38
ENTRY statement 11-47
Environment Division 1-7

alternate keys B-5
ASSIGN clause A-3
Configuration Section 5-4
CONSOLE IS CRT clause 18-10
CRT STATUS clause 18-12
CURSOR IS clause 18-11
Data General syntax supplement B-4
DATA SIZE clause B-4
duplicate alternate keys B-5
file-control entry 8-18, 13-6
FILE-CONTROL paragraph 8-17, 13-5, 14-10
for file input and output 8-16
general description 2-39, 5-4
general format 2-40
I-0 control 8-29
I-0 control entry B-5
I-0-CONTROL paragraph 13-8, 14-10

Environment Division (continued)
in COBOL debug 17-5
in the nucleus 5-1
in the report writer module 14-10
in the screen-handling module 18-8
in the sort-merge module 13-4
INDEX SIZE clause B-4
INPUT-OUTPUT SECTION 14-10
Microsoft syntax supplement

differences between Microsoft and AIX VS
COBOL C-4

problem determination C-4, C-8
OBJECT-COMPUTER paragraph 5-6
organization 2-39
ORGANIZATION clause A-5
Ryan-McFarland syntax supplement A-3
SOURCE-COMPUTER paragraph 5-5
SPECIAL-NAMES paragraph 5-8, 18-9
structure 2-39
switch names B-4
WITH DEBUGGING MODE clause 17-5

EVALUATE statement 7-39
EXAMINE statement 7-43
EXECU::fE statement 7-45
EXHIBIT statement 7-46
EXIT PROGRAM statement 11-50, A-8
EXIT statement 7-48
explicit and implicit

attributes 2-35
Procedure Division references 2-34
scope terminators 2-36
specifications 2-34

EXTERNAL clause 11-30
external objects

common and initial programs 11-7
description 11-7
scope of names 11-8
sharing data 11-8
sharing files 11-8

FD 8-35
figurative constant values 2-11
figurative constants 3-4
file connector 11-6
file description entry in the interprogram com

munication module 11-19
file I-0 status codes 8-8, A-11
file input and output

AT END condition 8-11
Data Division

BLOCK CONTAINS clause 8-39
CODE-SET clause 8-40
DATA RECORDS clause 8-42
file description 8-35
FILE SECTION 8-34
LABEL RECORDS 8-43

file input and output (continued)
Data Division (continued)

LINAGE clause 8-44
RECORD clause 8-47
record description structure 8-34
RECORDING MODE clause 8-50
VALUE OF clause 8-51

Environment Division
file-control entry 8-18
FILE-CONTROL paragraph 8-17
I-0 control 8-29
input-output section 8-16

indexed 8-7
introduction 8-6
INVALID KEY condition 8-11
linage-counter 8-12
organization of indexed files 8-7
organization of relative files 8-6
organization of sequential files 8-6
Procedure Division

CLOSE statement 8-53
COMMIT statement 8-58
DELETE statement 8-59
OPEN statement 8-62
READ statement 8-68
REWRITE statement 8-75
START statement 8-79
UNLOCK statement 8-85
USE statement 8-86
WRITE statement 8-89

relative input-output 8-6
sequential input-output 8-6
sharing files 8-12

file modes 8-12
file name on disk B-4
file position indicator 8-7
file sharing syntax B-8
file sharing. 8-12
file-control entry 8-18, 13-6
FILE-CONTROL paragraph 8-17, 13-5, 14-10
fixed insertion editing 6-24
floating insertion editing 6-25
FOREGROUND-COLOR clause 18-30
FORMFEED function name 5-14
FULL clause 18-32
function-name reference 5-13

G symbol in PICTURE clause 6-21
general format 1-7
general rules 1-8
GENERATE statement 14-68
GLOBAL clause 11-31
global names 11-6
GO TO statement 7-50

Index X-5

GOBACK statement 11-51
GRID clause 18-34
GROUP INDICATE clause 14-47

hexadecimal literals 2-10, 2-11
HIGHLIGHT clause 18-35
horizontal spacing 14-7

I-0 control 8-29
I-0 control entry B-5
I-0 status 8-8
I-0-CONTROL paragraph 13-8, 14-10
Identification Division 1-7

DATE COMPILED paragraph 4-7
general description 2-38
general format 2-38
in the interprogram communication

module 11-15
nucleus 4-1
organization 2-38
PROGRAM-ID paragraph 4-6
PROGRAM-ID paragraph and nested source

programs 11-15
REMARKS paragraph 4-8
structure 2-38

identifier 2-33
IF statement 7-52
imperative sentence 2-48
imperative statement 2-47
implicit FILLER or padding bytes 2-22
implicit specifications 2-34
implicit synchronization 2-23
incompatible data 7-21
independent segments 16-5
INDEX SIZE clause B-4
indexed I-0 8-6
indexed input-output 8-7
indexing 2-31, 12-9
INDEX, USAGE IS 12-12
indicator area 1-8
initial programs 11-7
INITIALIZE statement 7 -54
INITIATE statement 14-71
Input-Output Section 8-16
INSPECT statement 7-57
interactive debugging

See debug module and interactive debugging
interprogram communication

data description entry 11-25
EXTERNAL clause 11-30
file description entry 11-19
GLOBAL clause 11-31

X-6 Language Reference

interprogram communication (continued)
Identification Division

PROGRAM-ID paragraph and nested
source programs 11-15

language concepts 11-6
linkage section 11-17
nested source programs 11-10
Procedure Division

CALL statement 11-36
CANCEL statement 11-43
CHAIN statement 11-45
ENTRY statement 11-47
EXIT PROGRAM statement 11-50
GOBACK statement 11-51
header 11-33
USE BEFORE REPORTING

statement 11-53
USE statement 11-52

report description entry 11-28
INVALID KEY condition 8-9, 8-11

JUSTIFIED clause 6-13, 18-36

KEPT LOCK phrase 8-68

LABEL RECORDS clause 8-43
language concepts

ADDRESS 2-15
character set 2-4
character-strings 2-6
CURRENT-DATE 2-13
file connector 11-6
global and local names 11-6
nested source programs 11-6
PICTURE character-strings 2-15
report file 14-8
RETURN-CODE 2-14
separators 2-5
SORT-CONTROL 2-15
SORT-CORE-SIZE 2-15
SORT-FILE-SIZE 2-15
SORT-MODE-SIZE 2-15
SORT-RETURN 2-15
special register

LINE-COUNTER 14-9
PAGE-COUNTER 14-9
PRINT-SWITCH 14-9

structure 2-5
subscripting 14-9

language concepts (continued)
TALLY 2-13
TIME-OF-DAY 2-14
WHEN-COMPILED 2-14, 2-15

language structure 2-5
LEFTLINE clause 18-37
length of nonnumeric literals A-6
LENGTH-CHECK clause 18-32
level number 6-15
level numbers 2-16
level-number 14-48
library

COPY statement 9-5
REPLACE statement 9-10

LINAGE clause 8-44
LINAGE-COUNTER 8-12
LINE clause 18-38
LINE NUMBER clause 14-49
LINE NUMBER clause notation 14-34
LINE NUMBER clause sequence

substitutions 14-34
LINKAGE SECTION 11-17
listing control

EJECT statement 10-5
SKIPl, SKIP2, SKIP3 statements 10-4
TITLE statement 10-6

literals 2-9
literals as CALL parameters A-8
local names 11-6
locked records 8-68, A-13
logic error condition 8-10

manual formats
areas A and B 1-9
elements 1-8
general rules 1-8
indicator area 1-8
sequence number 1-8
source 1-8
syntax rules 1-8

memory natural boundaries 2-20, 2-22
MERGE statement 13-14, 16-8
Message Coritrol System (MCS) 15-4
Microsoft syntax supplement

compatibility of AIX VS COBOL with Micro
soft COBOL C-3

dialect controlling directives C-3
problem determination

Data Division C-10
documentation differences C-13
Environment Division C-9
extension subroutines C-13
file input and output C-11
general C-9
Procedure Division C-10
screen-handling C-12

Microsoft syntax supplement (continued)
summary of syntactic differences

Data Division C-4
Environment Division C-4
Procedure Division C-5
special registers LIN and COL C-3

MOVE statement 7-65
multiple record locks 8-14
MULTIPLE REEL 8-25
multiple results in arithmetic statements 7-21
MULTIPLE UNIT 8-25
MULTIPLY statement 7-69

Native 5-8
negated simple condition 7-16
nested source programs 11-6

END PROGRAM header 11-13
initial state of a program 11-12
organization 11-11
structure 11-11

NEXT GROUP clause 14-51
NEXT special register 6-43
noncontiguous working storage 6-6
nonnumeric literals 2-10
NOT ON SIZE ERROR phrase 7-19
nucleus

Data Division
BLANK WHEN ZERO clause 6-11
data description 6-7
Data-name or FILLER clause 6-12
initial valuestop 6-7
JUSTIFIED clause 6-13
level number 6-15
noncontiguous working storage 6-6
PICTURE clause 6-18
record description structure 6-7
REDEFINES clause 6-29
RENAMES clause 6-32
SIGN clause 6-35
SYNCHRONIZED clause 6-37
USAGE clause 6-39
VALUE clause 6-41
working-storage records 6-6

end program header 3-6
Environment Division

Configuration Section 5-4
general description 5-4
OBJECT-COMPUTER paragraph 5-6
SOURCE-COMPUTER paragraph 5-5
SPECIAL-NAMES paragraph 5-8

figurative constants 3-4
function 3-4
Identification Division

DATE COMPILED paragraph 4-7
general description 4-4
PROGRAM-ID paragraph 4-6

Index X-7

nucleus (continued)
Identification Division (continued)

REMARKS paragraph 4-8
name characteristics 3-4
overall language 3-4
Procedure Division

abbreviated combined relation
conditions 7-17

ACCEPT statement 7-22
ADD statement 7-24
ALTER statement 7-27
arithmetic expressions 7-7
arithmetic operators 7-8
arithmetic statement rules 7-20
common phrases 7-19
complex conditions 7-15
COMPUTE statement 7-29
condition evaluation rules 7-18
conditional expressions 7-9
CONTINUE statement 7-31
CORRESPONDING phrase 7-20
DISPLAY statement 7-32
DIVIDE statement 7-34
ENTER statement 7-38
EVALUATE statement 7-39
EXAMINE statement 7-43
EXECUTE statement 7-45
EXHIBIT statement 7-46
EXIT statement 7-48
general format 7-6
GO TO statement 7-50
IF statement 7-52
incompatible data rule 7-21
INITIALIZE statement 7-54
INSPECT statement 7-57
MOVE statement 7-65
multiple results in arithmetic statement

rules 7-21
MULTIPLY statement 7-69
negated simple condition 7-16
NOT ON SIZE ERROR phrase 7-19
ON SIZE ERROR phrase 7-19
ON statement 7-71
overlapping operand rules 7-21
PERFORM statement 7-73
ROUNDED phrase 7-19
SET statement 7-84
signed receiving item rule 7-21
STOP statement 7-86
STRING statement 7-87
SUBTRACT statement 7-91
TRANSFORM statement 7-94
UNSTRING statement 7-96

reference format 3-4
subscripting 3-4

numeric data rules 6-19
numeric literals 2-10

X-8 Language Reference

numeric-edited data rules 6-20

OBJECT-COMPUTER paragraph 5-6
OCCURS clause 12-5, 18-40
ON SIZE ERROR phrase 7-19
ON statement 7-71
OPEN statement 8-62, 14-72, B-8
optional words 2-9
organization

indexed files 8-7
sequential files 8-6

ORGANIZATION clause 8-19, A-5
overlapping operands 7-21, 12-13
OVERLINE clause 18-42

PACKED-DECIMAL format 2-25
PAGE clause 14-22
page footing presentation rul~s 14-41
page heading group presentat10n rules 14-36
page regions 14-25
paragraph 1-7
paragraphs

DATE COMPILED 4-7
description 2-44
FILE-CONTROL 8-17, 13-5, 14-10
header and name 2-54
I-0 control 8-29
I-0-CONTROL 13-8, 14-10
OBJECT-COMPUTER 5-6
PROGRAM ID 4-6
PROGRAM-ID 11-15
reference format 2-54
REMARKS 4-8
SOURCE-COMPUTER 5-5
SPECIAL-NAMES 5-8, 18-9

PERFORM statement 7-73, 16-8, A-9
permanent error condition 8-10
PICTURE character-strings 2-15
PICTURE clause 6-18, 18-43
POINTER

clause 6-40, 6-44
format 2-28
usage 7-13, 7-67, 7-85, 11-18, 11-33, 11-40

Pointer usage 7-20
presentation rules

body group 14-38
page footing 14-41
page heading group 14-36
report footing 14-43
report heading group 14-34
tables 14-32

presentation rules tables
body group presentation rules 14-38
LINE NUMBER clause notation 14-34
LINE NUMBER clause sequence substi-

tutions 14-34
organization 14-33
page footing presentation rules 14-41
page heading group presentation rules 14-36
report footing presentation rule 14-43
report heading group presentation

rules 14-34
saved next group integer description 14-34

PRINT-SWITCH 14-9, 14-73
Procedure Division 1-7

abbreviated combined relation
conditions 7-17

ACCEPT MESSAGE COUNT
statement 15-20

ACCEPT statement 7-22, 18-55, A-10, B-7
ADD statement 7-24
ALTER statement 7-27
arithmetic expressions 7-7
arithmetic operators 7-8
arithmetic statement rules 7-20
body 2-45
bound checking A-8
CALL statement 11-36, B-8
CANCEL statement 11-43
CHAIN statement 11-45
CLOSE statement 8-53, 14-67
combined and negated combined

condition 7-16
COMMIT statement 8-58
common phrases 7-19
COMPUTE statement 7-29
condition evaluation rules 7-18
conditional expressions 7-9
CONTINUE statement 7-31
COPY INDEXED statement B-8
CORRESPONDING phrase 7-20
Data General syntax supplement B-7
declaratives 2-44
DELETE statement 8-59
DISABLE statement 15-21
DISPLAY statement 7-32, 18-61, A-11, B-8
DIVIDE statement 7-34
ENABLE statement 15-23
ENTER statement 7-38
ENTRY statement 11-47
EVALUATE statement 7-39
EXAMINE statement 7-43
EXECUTE statement 7-45
execution 2-44
EXHIBIT statement 7-46
EXIT PROGRAM statement 11-50, A-8
EXIT statement 7-48
file I-0 status codes A-11
file sharing syntax B-8

Procedure Division (continued)
for file input and output 8-53
general format 2-45, 7-6
GENERATE statement 14-68
GO TO statement 7-50
GOBACK statement 11-51
header 2-45, 11-33
IF statement 7-52
in COBOL debug 17-6
in the communication module 15-19
in the interprogram communication

module 11-33
in the nucleus 7-1
in the report writer module 14-66
in the screen-handling module 18-54
in the sort-merge module 13-14
in the table-handling module 12-13
incompatible data 7-21
INITIALIZE statement 7-54
INITIATE statement 14-71
INSPECT statement 7-57
literals as CALL parameters A-8
locked records A-13
MERGE statement 13-14
Microsoft syntax supplement

differences between Microsoft and AIX VS
COBOL C-5

problem determination C-5
MOVE statement 7-65
multiple results in arithmetic

statements 7-21
MULTIPLY statement 7-69
negated simple condition 7-16
nonstandard operations on alphanumeric

data items A-9
NOT ON SIZE ERROR phrase 7-19
ON SIZE ERROR phrase 7-19
ON statement 7-71
OPEN statement 8-62, 14-72, B-8
overlapping operands 7-21, 12-13
paragraph 2-44
PERFORM statement 7-73, A-9
procedure names A-9
procedures 2-44
PURGE statement 15-25
READ statement 8-68, B-8
READY TRACE statement 17-6
RECEIVE statement 15-26
RECORD CONTAINS clause 13-13
RELEASE statement 13-18
report writer statements 14-8
RESET TRACE statement 17-7
RETURN statement 13-19
REWRITE on line-sequential files A-9
REWRITE statement 8-75
ROUNDED phrase 7-19
Ryan-McFarland syntax supplement A-8
SEARCH statement 12-14

Index X-9

Procedure Division (continued)
section 2-44
SEND statement 15-29
SET statement 7-84, 12-19
signed receiving items 7-21
size allocation for index data items A-8
SORT statement 13-21
START statement 8-79
statements and sentences 2-46
STOP RUN statement A-8
STOP statement 7-86
STRING statement 7-87
SUBTRACT statement 7-91
SUPPRESS statement 14-73
TERMINATE statement 14-74
TRANSFORM statement 7-94
UNLOCK statement 8-85
UNSTRING statement 7-96
USE BEFORE REPORTING

statement 11-53, 14-76
USE statement 8-86, 11-52
USING phrase 11-33
WRITE statement 8-89

procedure names A-9
program flow restrictions 16-7
program segments 16-4, 16-6
program structure 1-7, 2-37
PROGRAM-ID paragraph 4-6, 11-15
PROMPT clause 18-45
pseudo-text 2-53
PURGE statement 15-25

qualification 2-29

READ statement 8-68, B-8
READY TRACE statement 17-6
RECEIVE statement 15-26
RECORD clause 8-47
RECORD CONTAINS clause 13-13
record description structure 6-7
record locking

multiple 8-14
single 8-13

RECORDING MODE clause 8-50
REDEFINES clause 6-29
reel devices 8-6
reference format 2-52
reference modification 2-32
relative I-0 8-6
RELEASE statement 13-18
REMARKS paragraph 4-8

X-10 Language Reference

RENAMES clause 6-32
REPLACE statement 9-10
REPORT clause 14-14
REPORT description entry 14-17
report description entry in the interprogram

communication module 11-28
report footing presentation rules 14-43
report group description entry 14-28
report heading group presentation rules 14-34
report writer module

Data Division
CODE clause 14-19
COLUMN NUMBER clause 14-45
CONTROL clause 14-20
Data-name clause 14-46
GROUP INDICATE clause 14-47
level-number 14-48
LINE NUMBER clause 14-49
NEXT GROUP clause 14-51
PAGE clause 14-22
REPORT clause 14-14
report description entry 14-16, 14-17
report group description entry 14-16,

14-28
REPORT SECTION 14-16
SIGN clause 14-53
SOURCE clause 14-55
SUM clause 14-56
TYPE clause 14-59
USAGE clause 14-63
VALUE clause 14-64

Environment Division
FILE-CONTROL paragraph 14-10
I-0-CONTROL paragraph 14-10

file description entry 14-11
INPUT-OUTPUT SECTION 14-10
language concepts 14-8
Procedure Division

CLOSE statement 14-67
GENERATE statement 14-68
INITIATE statement 14-71
OPEN statement 14-72
SUPPRESS statement 14-73
TERMINATE statement 14-74
USE BEFORE REPORTING

statement 14-76
section 14-6
structure 14-6
subdivisions 14-7

report writer statements 14-8
REQUIRED clause 18-46
reserved word list D-3
reserved words 2-8
RESET TRACE statement 17-7
RETURN statement 13-19
RETURN-CODE Special Register 2-14
REVERSE-VIDEO clause 18-47

REWIND 8-25
REWRITE on line-sequential files A-9
REWRITE statement 8-75
ROUNDED phrase 7-19
run time environment error 8-11
Ryan-McFarland syntax supplement

Data Division
default sign representation A-6
length of nonnumeric literals A-6
USAGE clause A-7

Environment Division
ASSIGN clause A-3
ORGANIZATION clause A-5

introduction A-3
Procedure Division

ACCEPT statement A-10
bound checking A-8
DISPLAY statement A-11
EXIT PROGRAM statement A-8
file I-0 status codes A-11
literals as CALL parameters A-8
locked records A-13
nonstandard operations on alphanumeric

data items A-9
PERFORM statement A-9
procedure names A-9
REWRITE on line-sequential files A-9
size allocation for index data items A-8
STOP RUN statement A-8

SAA conformance 1-4, D-3
SAME clause 8-32, 13-8
saved next group integer description 14-34
scope of names 11-8
scope terminators 2-36
screen handling

Data Division
AUTO clause 18-21
BACKGROUND-COLOR clause 18-22
BELL clause 18-24
BLANK clause 18-25
BLANK WHEN ZERO clause 18-26
BLINK clause 18-27
COLUMN clause 18-28
FOREGROUND-COLOR clause 18-30
FULL clause 18-32
GRID clause 18-34
HIGHLIGHT clause 18-35
JUSTIFIED clause 18-36
LEFTLINE clause 18-37
LINE clause 18-38
OCCURS clause 18-40
OVERLINE clause 18-42
PICTURE clause 18-43
PROMPT clause 18-45
REQUIRED clause 18-46

screen handling (continued)
Data Division (continued)

REVERSE-VIDEO clause 18-47
screen description - complete entry skel-

eton 18-15
SCREEN SECTION 18-14
SECURE clause 18-48
SIGN clause 18-49
SIZE clause 18-50
UNDERLINE clause 18-51
VALUE clause 18-52
ZERO-FILL clause 18-53

Environment Division
CONSOLE IS CRT clause 18-10
CRT STATUS clause 18-12
CURSOR IS clause 18-11
SPECIAL-NAMES paragraph 18-9

introduction 18-6
Procedure Division

ACCEPT statement 18-55
DISPLAY statement 18-61

SEARCH statement 12-14
section 2-44, 2-54
SECURE clause 18-48
SEGMENT-LIMIT 16-7
segment-numbers 16-6
segmentation module

classification 16-5
control 16-5
fixed portion 16-4
general description 16-4
independent segments 16-5
introduction 16-4
organization 16-4
program segments 16-4
restrictions

ALTER statement 16-7
MERGE statement 16-8
PERFORM statement 16-8
SORT statement 16-8

structure
SEGMENT-LIMIT 16-7
segment-numbers 16-6

structure of program segments 16-6
SELECT statement 8-19
SEND statement 15-29
sentence 2-44
separators 2-5
sequence number 1-8
sequence numbers 2-53
sequential I-0 8-6
SET statement 7-84, 12-19
sharing data 11-8
sharing files 8-12, 11-8
SIGN clause 6-35, 14-53, 18-49
sign condition 7-15
signed receiving items 7-21

Index X-11

simple insertion editing 6-23
single record lock 8-13
SIZE clause 18-50
SKIPl, SKIP2, SKIP3 statements 10-4
SORT statement 13-21, 16-8
SORT STATUS 13-6
SORT-CONTROL Special Register 2-15
SORT-CORE-SIZE Special Register 2-15
SORT-FILE-SIZE Special Register 2-15
sort-merge

Data Division
DATA RECORDS clause 13-12
file description 13-10

Environment Division
file-control entry 13-6
FILE-CONTROL paragraph 13-5
I-0-CONTROL paragraph 13-8

Procedure Division
MERGE statement 13-14
RECORD CONTAINS clause 13-13
RELEASE statement 13-18
RETURN statement 13-19
SORT statement 13-21

relationship with file input and output 13-4
SORT-MERGE file description 13-10
SORT-MESSAGE Special Register 2-15
SORT-MODE-SIZE Special Register 2-15
SORT-RETURN Special Register 2-15
SOURCE clause 14-55
source format 1-8
SOURCE-COMPUTER paragraph 5-5
special insertion editing 6-24
special register (MF extension)

NEXT 6-43
special register (report writer module)

LINE-COUNTER 14-9
PAGE-COUNTER 14-9
PRINT-SWITCH 14-9

special registers (language concepts)
ADDRESS 2-15
CURRENT-DATE 2-13
RETURN-CODE 2-14
SORT-CONTROL 2-15
SORT-CORE-SIZE 2-15
SORT-FILE-SIZE 2-15
SORT-MESSAGE 2-15
SORT-MODE-SIZE 2-15
SORT-RETURN 2-15
TALLY 2-13
TIME-OF-DAY 2-14
WHEN-COMPILED 2-14, 2-15

SPECIAL-NAMES paragraph 5-8, 18-9
split-key name 8-23
standard alignment rules 2-19
ST ART statement 8-79
statements

ACCEPT 7-22, 18-55, A-10, B-7
ACCEPT MESSAGE COUNT 15-20

X-12 Language Reference

statements (continued)
ADD 7-24
ALTER 7-27, 16-7
arithmetic 7-20
CALL 11-36, B-8
CANCEL 11-43
CHAIN 11-45
CLOSE 8-53, 14-67
COMMIT 8-58
COMPUTE 7-29
conditional 2-46
CONTINUE 7-31
COPY 9-5
COPY INDEXED B-8
DELETE 8-59
delimited scope statements 2-48
DISABLE 15-21
DISPLAY 7-32, 18-61, A-11, B-8
DIVIDE 7-34
EJECT 10-5
ENABLE 15-23
ENTER 7-38
ENTRY 11-47
EVALUATE 7-39
EXAMINE 7-43
EXECUTE 7-45
EXHIBIT 7-46
EXIT 7-48
EXIT PROGRAM 11-50, A-8
GENERATE 14-68
GO TO 7-50
GOBACK 11-51
IF 7-52
imperative 2-47
INITIALIZE 7-54
INITIATE 14-71
INSPECT 7-57
MERGE 13-14, 16-8
MOVE 7-65
MULTIPLY 7-69
ON 7-71
OPEN 8-62, 14-72, B-8
PERFORM 7-73, 16-8, A-9
PURGE 15-25
READ 8-68, B-8
READY TRACE 17-6
RECEIVE 15-26
RELEASE 13-18
REPLACE 9-10
RESET TRACE 17-7
RETURN 13-19
REWRITE 8-75
SEARCH 12-14
SEND 15-29
SET 7-84, 12-19
SKIP!, SKIP2, SKIP3 10-4
SORT 13-21, 16-8
START 8-79

statements (continued)
STOP 7-86
STOPRUN A-8
STRING 7-87
SUBTRACT 7-91
SUPPRESS 14-73
TERMINATE 14-74
TITLE 10-6
TRANSFORM 7-94
UNLOCK 8-85
UNSTRING 7-96
USE 8-86, 11-52
USE BEFORE REPORTING 11-53, 14-76
WRITE 8-89

status keys 8-8
STOP RUN statement A-8
STOP statement 7-86
STRING statement 7-87
subscripting 2-30
SUBTRACT statement 7-91
SUM clause 14-56
supported language elements of IBM OS/VS

COBOL 85 high-level 1-4
SUPPRESS statement 14-73
switch names B-4
switch-status condition 7-15
SYNCHRONIZED clause 2-22, 6-37
syncronization

description 2-22
memory natural boundaries 2-20

syntactic differences
Environment Division C-4
Procedure Division C-5
special registers LIN and COL C-3

syntax problem determination
documentation differences C-13
Environment Division C-9
extension subroutines C-13
file input and output C-11
general C-9
Procedure Division C-10
screen-handling C-12

syntax rules 1-8
SYSIN function name 5-14
SYSIPT function name 5-14
SYSLISTfunction name 5-14
SYSLST function name 5-14
SYSOUT function name 5-14
SYSPNCH function name 5-14
SYSPUNCH function name 5-14
SOl, S02 function names 5-14

tab expansion 8-76
TAB function name 5-14

table-handling
Data Division

OCCURS clause 12-5
USAGE IS INDEX clause 12-12

introduction 12-4
Procedure Division

overlapping operands 12-13
SEARCH statement 12-14
SET statement 12-19

TALLY Special Register 2-13
tape devices 8-6
TERMINATE statement 14-74
TIME 7-22
TIME-OF-DAY Special Register 2-14
TITLE statement 10-6
transfers of control 2-34
TRANSFORM statement 7-94
truncation 2-24
TYPE clause 14-59

UNDERLINE clause 18-51
uniqueness of reference 2-28
UNLOCK statement 8-85
UNSTRING statement 7-96
USAGE clause 6-39, 14-63, A-7
USAGE IS INDEX clause 12-12
USE BEFORE REPORTING statement 11-53,

14-76
USE FOR DEBUGGING 17-8
USE statement 8-86, 11-52
user-defined names B-3
user-defined words 2-7
USING phrase 11-33, 11-36

VALUE clause 6-41, 14-64, 18-52, B-6
VALUE OF clause 8-51
vertical spacing 14-6
VS COBOL

debug run-time switch 17-4
directing statement 2-47
enhancements 1-5
Identification Division 2-38
language elements 1-4
manual format 1-7
program structure 1-7, 2-37
source program 3-5
standard debug 17-4
supported elements 1-4
words 2-6

WHEN-COMPILED Special Register 2-14
WITH DEBUGGING MODE clause 17-5
word storage mode 2-22
working-storage records 6-6
WORKING-STORAGE SECTION 6-6
WRITE statement 8-89

zero suppression editing 6-26
ZERO-FILL clause 18-53

X-14 Language Reference

Reader's Comment Form

Language Reference for IBM AIX VS COBOL Compiler/6000
SC23-2177-00

Please use this form only to identify publication errors or to request changes in publications. Your
comments assist us in improving our publications. Direct any requests for additional publications, technical
questions about IBM systems, changes in IBM programming support, and so on, to your IBM representative
or to your IBM-approved remarketer. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

0 If your comment does not need a reply (for example, pointing out a typing error), check this box and do
not include your name and address below. If your comment is applicable, we will include it in the next
revision of the manual.

0 If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request additional
publications.

Please print

Date-----

Your Name------------------
Company Name------------------

Mailing Address -------------------

Area Code

No postage necessary if mailed in the U.S.A

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

--1---·
I PIO:! PIO:!

I
I
I
I
b
c:
::J
Ol
c:
0
<(
"'O

~
0
"S
()

I
I
I
I
I
I
I
I
I
I
I
I

--r---·
ade.L pue p10:1 a1deis ioN oa asea1d ade_L pue p10:1

---------- - - --- - -- - ---- ------------- ·-
@ IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin , Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2177-00

5[23-2177-00

