
SA23-2643-00 





First Edition (1990) 

This edition notice applies to the IBM RISC System/6000 POWERstation and POWERserver Hardware 
Technical Reference - General Information Manual. 

The following paragraph does not aprly to the United Kingdom or any country where such 
provisions are Inconsistent with loca law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR 
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied 
warranties in certain transactions; therefore, this statement may not apply to you. 

This publication could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated In new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time. 

It is possible that this publication may contain reference to, or information about, IBM products (machines 
and programs}, programming, or services that are not announced in your country. Such references or 
informatlon must not be construed to mean that IBM intends to announce such IBM products, programming, 
or services in your country. Any reference to an IBM licensed program in this publication is not intended to 
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent 
program instead. 

Requests for copies of this publication and for technical information about IBM products should be made to 
your IBM Authorized Dealer or your IBM Marketing Representative. 

©Copyright International Business Machines Corporation, 1990. All rights reserved. 

Note to US Government Users - Documentation and programs related to restricted rights - Use, duplication, 
or disclosure is subject to the restrictions set forth in GSA ADP Schedule Contract with IBM Corporation. 



Trademarks 

The following trademarks apply to this book: 

• IBM is a registered trademark of International Business Machines Corporation. 

• Personal System/2 and PS/2 are trademarks of International Business Machines 
Corporation. 

• RISC System/6000 is a trademark of International Business Machines Corporation. 

• AIX is a trademark of International Business Machines Corporation. 

Preface Ill 



Iv Preface 



About This Book 

Purpose 

Audience 

The IBM RISC System/6000 POWERstation and POWERserver Hardware Technical 
Reference - General Information Manual is one part of the six-part RISC System /6000 
hardware technical reference manual. This manual should be used in conjunction with the 
following RISC System /6000 hardware technical reference manuals: 

• IBM RISC System/6000 POWERstation and POWERserver Hardware Technical 
Reference - Options and Devices (SA23-2646) 

• IBM RISC System/6000 Hardware Technical Reference - 7012 POWERstation and 
POWERserver (SA23-2660) 

• IBM RISC System/6000 Hardware Technical Reference - 7013 and 7016 POWERstation 
and POWERserver (SA23-2644) 

• IBM RISC System/6000 Hardware Technical Reference - 7015 POWERserver 
(SA23-2645) 

• IBM RISC System/6000 POWERstation and POWERserver Hardware Technical 
Reference - Micro Channel Architecture (SA23-2647). 

The information in this manual is for reference. It is intended for hardware and program 
designers, programmers, engineers, and anyone else who needs to understand the 
operation of the IBM RISC System/6000. 

Related Information 

• PS/2 Monochrome Display 8508 Technical Reference (SA23-2448) 

• 60/120MB Fixed-Disk Drive Technical Reference (S68X-2314) 

• PS/2 5.25-inch External Disk Drive Technical Reference (S68X-2348) 

• 4-Port Multiprotocol lntertace Adapter Technical Reference (S33F-5337) 

• X.25 Co-Processor/2 Technical Reference (S16F-1879) 

• 3270 Emulation Adapter Technical Reference (GA23-0339). 

Preface V 



VI Preface 



Table of Contents 

Chapter 1. Introduction to the RISC System/6000 System • • • . • • • • • • • • • • . • 1·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Central Electronics Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Workstation Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
SGR 2564 Processor Chip Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
SGR 2032 Processor Chip Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 

Chapter 2. RISC System/6000 Processors • • • . • • • .. • • • • .. • • • • • • • • • • • • • • 2·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Systems Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Branch Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 
Supervisor Linkage Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 
Trap Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 
Condition Register Field Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 
Condition Register Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 
Fixed-Point Processor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 
Fixed-Point Processor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 
Fixed-Point Store Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 
Fixed-Point Load with Update Instructions............................... 2-42 
Fixed-Point Store with Update Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46 
Fixed-Point Move Assist Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 
Fixed-Point Address Computation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 
Fixed-Point Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54 
Fixed-Point Compare Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65 
Fixed-Point Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67 
Fixed-Point Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 
Floating-Point Processor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91 
Floating-Point Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97 
Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-103 
Floating-Point Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111 
Floating-Point Execution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111 
Floating-Point Processor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-114 

Chapter 3. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 3·1 
Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

Preface Vii 



Chapter 4. System 110 Structure • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • .. 4·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
Bit and Byte Numbering Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
1/0 Bus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 
Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 
Special Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-70 
System 110 and Standard 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 
Exception Reporting and Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80 
Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80 

Chapter 5. Vital Product Data • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 5·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Keyword Descriptor Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 
Hardware VPD Descriptor Summary.................................... 5-10 
Micro Channel Adapter Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
Sample Layout of the Micro Channel Adapter VPD . . . . . . . . . . . . . . . . . . . . . . . . 5-17 

Chapter 6. Initial Program Load (IPL) ROM • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
IPL ROM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . 6-6 
IPL ROM Functional Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 
Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 6-18 

Chapter 7. Keyboard/Tablet/Speaker Adapter • • . • • • • • • • • • • • • • • • • • • • • • • • 7·1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 
System Interface: Input/Output Operations to Adapter . . . . . . . . . . . . . . . . . . . . . . 7-7 
Adapter Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 
Adapter Speaker Control............................................. 7-27 
Adapter RAS and Security Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 
Keyboard Device Support Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Adapter Design Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Adapter and Keyboard Initialization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41 
Standard 1/0 Adapter Board to Device Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43 

Chapter 8. Keyboard • • • • • • • • • . . • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8· 1 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
Power-On Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Sequential Key-Code Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Commands from the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Commands to the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Scan Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Clock And Data Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 
Keyboard Character Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 
Shift Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 
Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
Key Position Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
Keyboard Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24 
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 

Viii Preface 



Chapter 9. 3-Button Mouse . . . . • . • • . . . . . . . . . . . . . . . • . . . . . . . . . . . . . • • . . 9-1 
Desrlption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
Data Report . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 
Error Handling . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Data Frame . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Data Transmission . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Electrical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Operational Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 
Connector Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 

Chapter 10. Micro Channel Adapter Support........................... 10-1 
Desrlptlon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 
IBM Micro Channel Optional Features Supported . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0-5 
RISC System/6000 Configuration Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
Other Micro Channel Adapter Design Considerations . . . . . . . . . . . . . . . . . . . . . . 10-6 
Adapter Configurations Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 
Micro Channel Architecture Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 

Preface ix 



X Preface 



Chapter 1. Introduction to the RISC System/6000 
System 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 1-3 
Central Electronics Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Workstation Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . 1-6 
SGR 2564 Processor Chip Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . • 1-9 

Fixed-Point Unit • . . . . . . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 1-9 
Floating-Point Unit . • • . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 1-1 O 
Instruction Cache and Branch Processing Unit . . . . . . . . . . . . . . . . . . . . . . . • • 1-1 O 
Data Cache Unit . . . . . . . . . . . . . . . . . . . • • . . . • . . . • . . . . . . • • • . . . . . . . . . . . 1-11 
Memory Control Unit.............................................. 1-12 
110 Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . 1-12 
SGR 2564 Processor Pipeline . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 

SGR 2032 Processor Chip Set . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 
RISC System/6000 Table Top Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 

Introduction 1 ·1 



1-2 General Information Manual 



Description 
The RISC System/6000 unit is a second-generation RISC machine. Like earlier RISC 
processors, the RISC System/6000 unit employs a simple register-oriented instruction set 
that is completely hardwired, and features a pipelined implementation and an efficient 
storage hierarchy. This enables the processor chip set to run an instruction almost every 
cycle. Unlike earlier RISC processors, however, the RISC System/6000 unit employs several 
advanced architectural and implementation features including separate instruction and data 
caches, zero-cycle branches, multiple instruction dispatch, simultaneous running of fixed­
and floating-point operations, and overlapped running of register-register (RR) operations 
and load and store commands. As such, the RISC System/6000 unit combines the simplicity 
of a RISC instruction set with sophisticated hardware design techniques to achieve a short 
cycle time and a low cycles-per-instruction (CPI) ratio. In a single cycle, four instructions 
can be run simultaneously: a branch instruction, a fixed-point instruction, a floating-point 
instruction and a Condition register logical instruction. Counting the floating-point 
multiply-add instruction as two operations, this yields a peak run rate of five operations per 
cycle. 

Central Electronics Complex 
The RISC System/6000 SGR 2564 and SGR 3064 processor chip sets central electronics 
complex (CEC) contains up to eleven semi-custom chips: a fixed-point unit (FXU), a 
floating-point unit (FPU), an instruction cache and branch processing unit (ICU), four data 
cache units (DCU), a memory control unit (MCU), an input and output unit (IOU), and a clock 
chip (CLK). Every memory board contains two data multiplexing modules and one control 
module for interleaving. The SGR 2564 and SGR 3064 processor chip sets share the same 
architecture. In this manual, SGR 2564 is used and applies to both the SGR 2564 and SGR 
3064 processor chip sets. A block diagram of the SGR 2564 and SGR 3064 processor chip 
sets is illustrated in Figure 1 on page 1-4. 

Introduction 1 ·3 



I-Cache Reload (2W) 

(2W) 

FPU 

ICU 1-----1 I-Bus (2W) 

(1W) 

FXU 

P-BUS(1W) 

~6M MCU 

IOU 

TCW RAM..------; .. 

r---- -----, 
I 
I 
I 
I 

1 locul 
I 
I 
•..._ __. 
"'" .. 

I 
locul 

: locul 
•M-Bus 
: (4W) 
I 

I I 
I 
I 
I ! locul 

I I 

L----- ----.J 
System 1/0 Bus 
(2W) 

Micro Channel 

Figure 1. SGR 2564 and SGR 3064 Processor Chip Sets 

_l 

M 
e 
m 
0 
r 
y 

B 
0 
a 
r 
d 
s I-

I-
I-

The ICU contains a two-way set-associative BK-byte instruction cache. It runs branch 
instructions, Condition register logical instructions, and supports interrupts. In most cases, 
branches cost zero cycles because the ICU looks ahead in the instruction stream and 
removes branches from the stream. In a given cycle, the ICU can dispatch two instructions, 
two to the FXU, or two to the FPU, or one to the FXU and one to the FPU, by way of the 
I-bus shown in Figure 1. The floating-point unit contains a full 64-bit double-precision 
floating-point data flow and conforms to the IEEE 754 binary floating-point standard with 
software support. Floating-point instructions can run in parallel with fixed-point instructions 
for maximum performance. The FXU contains the general purpose registers and the 
arithmetic logic unit, and runs all fixed-point instructions. The FXU includes an address 
translation and data protection unit that makes precise interrupts easier to implement with 
minimal performance penalty. The FXU also provides the directories and control for the data 
cache, and controls the running of both fixed-point and floating-point load and store 
instructions. 

1 ·4 General Information Manual 



Four DCUs provide a four-way set-associative 64K-byte data cache, and form a four-word 
interface to memory, a two-word interface to FPU, and a single-word interface to FXU. 
DCUs contain error checking and correction (ECC) and bit steering logic. They provide the 
data path for Direct Memory Accesses (OMA), and supply the path for I-cache (instruction 
cache) reloads. The MCU contains the controls and configuration registers for system 
memory. The MCU provides the data path between 1/0 and processor chip set for 1/0 
(Input/Output) load and store instructions. The MCU also interfaces to the ROM that 
contains the system initialization code for the processor chip set (also referred to as the 
initial program load read-only memory (IPL ROM)). 

The processor bus (P-bus) shown in Figure 1 on page 1-4 is used to send the address to 
the MCU for D-cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is 
used for I-cache translation look-aside buffer (TLB) reloads (by FXU), and for 1/0 loads and 
stores (by FXU). The P-bus is also used for moves to and from special registers, (for 
example, Segment registers, Link register, and Machine State register) between FXU and 
ICU. The system 1/0 bus is used to transfer the OMA data between the IOU and system 
memory by way of the DCU, and provides a path for 1/0 load and store operations between 
the FXU and the IOU by way of the MCU. 

The 1/0 unit contains an 110 channel control unit (IOCC) that generates the Micro Channel 
interface. The IOCC uses the data stored in translation control word (TCW) and tag tables 
for address translation and data protection during 1/0 operations. 

Introduction 1-5 



Workstation Hardware 
The RISC System/6000 deskside and rack models have a processor board with a processor 
chip set and up to eight memory board connectors. The models with the SGR 2564 chip set 
require that the memory boards to be installed in pairs. On models containing the SGR 2032 
chip set, memory boards do not have to be installed in pairs. These models have separate 
1/0 Boards with eight Micro Channel slots and separate Standard 1/0 Boards as shown in 
Figure 3 on page 1-8. · 

The table top RISC System/6000 models have a processor board with a SGR 2032 chip set. 
The processor board plugs into the connectors on the system board. The system board also 
has two memory board connectors and four Micro Channel slots as shown in Figure 6 on 
page 1-17. 

* Keyboard/Tablet/Speaker Adapter 
* Two EIA-232 Serial Ports 

* Parallel Port 
*Diskette Adapter 

Standard 110 Board 

1 1/0 Slots 8 
~-------------------------

,-----------------------------. 
M 
e 
m 
0 
r 
y 

1to8 

Processor 
Board 

Figure 2. RISC System/6000 Deskside and Rack Organization 

The Micro Channel prime interface from the processor board, shown in Figure 2, is attached 
to the 1/0 Board where it is buffered (8) and feeds eight Micro Channel 1/0 slots. These 1/0 
slots can be occupied by Micro Channel boards such as file adapters, tape drive adapters, 
LAN adapters (Ethernet or Token Ring), display and graphics adapters, coprocessors, 
terminal emulators, and printer adapters. The 1/0 Board also contains the syste._m 1/0 
functions. One system 1/0 function is the On Card Sequencer (OCS) microcontrOller, which 
initializes the processor chip set during IPL and controls the built-in self test (BIST) 
sequence. Other system 1/0 functions on the 1/0 Board are nonvolatile random access 
memory (NVRAM) for configuration and error logging, operator panel interface for error 
display, time-of-day clock, computer reset register, and system status and configuration 
registers. The Standard 110 Board contains the interfaces and connectors to keyboard, 
mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports. See the specific 
system manual for the interfaces and connectors supported. 

1 ·6 General Information Manual 



Figure 3 on page 1-8 shows the physical layouts of the processor board, 1/0 Board, and 
Standard 110 Board. Shown on the processor board are the floating-point unit (FP), 
fixed-point unit (FX), instruction cache unit (I), four data cache units (0), memory control 
unit (MC), and one or two 1/0 units (IOU). In addition, the clock chip (CLK), and IPL ROM 
are also shown. The clock chip has several crystal oscillators around it that vary in speed 
depending upon the processor chip set. Five 1 M-bit dynamic random access memory 
(DRAM)s that make up the translation control word (TCW) and tag memory are shown at the 
lower right hand corner. They are used by IOCC for address translation and data protection 
during 110 operations. Eight memory slots are shown on the right. The IPL ROM is next to 
the MC chip. 

The processor board also carries some Vendor Technology Logic (VTL) parts. The two 
multiplexers (Mux) shown below the IPL ROM are used to multiplex 16 interrupt lines from 
the 110 Board to 4 110 unit inputs. The 64K bytes by 8 OCS ROM and two accompanying 
latches are at the lower right corner. This ROM holds the test data for the On Card 
Sequencer (OCS), which resides on the 110 Board, and the latches are used to multiplex and 
demultiplex the address and data lines. 

Introduction 1-7 



Processor 
Board 

Standard 
110 Board 

B~~ Memory 
r::l r:1 r:1 Connector'------

~~~~ 
[!] ~ Ofb] 

I 1oul I 1oul Mux 

Parallel 
Printer 

c:::J c:::J TCW 
DDDDD 

OCSROM 
DCJ 

EIA-232 

EIA-232 

Tablet 
Keyboard 
Mouse 

1/0 Board Connector 

Diskette 
c::::::J 

Power 
Connectors 

Figure 3. RISC System/6000 Deskside and Rack Processor board, 1/0 Board, and Standard 1/0 
Board. 

The processor board carries a host of tie-up and tie-down resistors, and decoupling 
capacitors not shown in Figure 3. There are also electromagnetic compatibility (EMC) 
connectors that couple the chassis ground to board ground in order to minimize the 
radio-frequency interference (RFI). Power connectors are shown at the right, and the 1/0 
Board connector Is at the lower right corner of the processor board. 

The 1/0 Board is placed next to the processor board, and is attached to it by way of a 
connector as shown In Figure 3. The 1/0 Board contains eight 1/0 slots and provides a 
connector Jo the operator panel seven-segment light emitting diodes (LEDs). The 1/0 Board 
holds the OCS, system 1/0, and a collection of additional VTL parts to implement its 
functions. 

The Standard 1/0 Board fits right behind the 1/0 Board, and is attached to it through a 
connector shown in Figure 3. The Standard 1/0 Board provides interfaces and connectors to 
keyboard, mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports. 

1 ·8 General Information Manual 



SGR 2564 Processor Chip Set 
As mentioned earlier, the SGR 2564 processor chip set implementation is partitioned into six 
different semkustom designed Very Large Scale Integration (VLSI) chips. The features of 
the chips are summarized in the following subsections. 

Fixed-Point Unit 
FXU decodes and runs all fixed-point instructions and floating-point load and store 
instructions. Both fixed- and floating-point instructions go to the I-buffers of FXU and FPU, 
and are run concurrently in FXU and FPU. In addition, FXU contains the address translation, 
data protection, and D-cache directory units. 

Its functions include: 

• Instruction decode. (Contains four instruction prefetch and two decode buffers.) 

• FXU and FPU synchronization logic. 

• Real-time clock and decrementer facilities. 

• Controls for floating-point load and store operation. Address generation and data cache 
controls for floating-point load and store instructions are generated by FXU. 

• Register-to-register (RR) operations. The FXU has a register file that holds thirty-two 
32-bit general purpose registers. l"he register file has five ports. Three ports are read 
ports and two are write ports (3R,2W). The five ports can all be read and written 
simultaneously. The hardware associated with the register file implements full bypass 
(register forwarding) to eliminate hold-offs when two dependent operations (ops) follow 
each other, and performs register tag allocation so that load operations do not hold off the 
RR-ops as long as there are no dependencies. 

• Instruction runs. RR ops, fixed and floating load and store operations, interrupts, string 
and character ops, and 110 load and store operations. 

• Arithmetic-logic unit, shifter, and rotator. 

• Fixed-point multiply and divide operations implemented in hardware. Multiply takes 3 to 5 
cycles and divide takes 19 to 20 cycles. 

• Address translation unit. Two-way set-associative TLBs with 64 entries in each set. 

• Segment registers. Sixteen 32-bit segment registers. 

• Hardware TLB reloads. TLB misses are serviced by hardware that has significant 
performance advantages over other RISC implementations where TLBs are reloaded by 
software. FXU searches the Hash Anchor table (HAT) and Page Frame table (PFT), and 
updates the PFT as required. 

• Data protection. Page protection and data locking are implemented in hardware. 

• Address translation for I-cache TLB reloads. When there is a TLB miss in ICU, FXU 
brings the PFT entry from the memory, sends it to ICU over the P-bus, and performs the 
required PFT updates. 

• Data cache control, directories, and least recently used (LAU) hardware contain a 
four-way set associative data-cache directory with 128 entries in each set. 

• Store buffers. Data and address of one fixed-point store instruction can be held in this 
buffer waiting for a convenient time to be put into the D-cache. In addition, there is a 
four-entry pending store queue for floating-point store instructions. 

Introduction 1 ·9 



• Running floating-point load and store instructions. 

• Request generation for data cache reload operations. 

• Data cache operations such as cache line flush and cache line invalidate. 

Floating-Point Unit 
Unlike typical floating-point co-processor chips, the Floating Point Unit (FPU) is tightly 
coupled with the rest of the processor chip set. FPU and FXU are equal-priority and 
independent functional units. They receive the instructions from ICU at the same time and 
run them concurrently. At a given cycle, a fixed- and floating-point instruction can be run 
simultaneously. FPU has a full 64-bit double-precision data flow, runs floating-point 
arithmetic ops (multiply, add, divide, subtract), performs conversion between single and 
double precision, and synchronizes on floating-point load and store operations. FPU 
conforms to IEEE 754 binary floating-point standard with software support and performs 
IEEE 64-bit double-precision operations. 

The FPU functions include: 

• Accumulate instruction (A X B + C) is the key feature of the FPU. The multiply and add 
operation is run with a single round and with the same delay as a multiply or an add. This 
reduces the instruction path length by combining two instructions into one and provides 
exceptional floating-point performance. Due to the 64-bit data flow, the FPU can run a 
double-precision multiply, add, or accumulate every cycle. The multiply-add operation, by 
only rounding the final result and producing the full 105 bit intermediate product, provides 
significantly enhanced precision. 

• Register renaming is used to increase the overlap of the running of floating- and fixed­
point functional units. This allows floating-point load and store operations to be run 
independently from the floating-point arithmetic operations and makes it possible to carry 
on load operations to a target register of a floating-point instruction while the 
floating-point operation is still going on. This is done by remapping the target register to 
one of the remap registers. As a result, the FXU can perform floating-point load 
operations without having to wait for previous floating-point arithmetic operations to be 
completed. 

• Thirty-two architected 64-bit floating-point registers, six rename registers, and two divide 
registers. 

• Hardware divide. 

• The leading zero anticipator avoids the full delay of a leading zero detector. This provides 
overlap of addition and normalization. 

Instruction Cache and Branch Processing Unit 
The ICU contains a two-way set associative SK-byte I-cache with a line size of 64 bytes. 
The ICU processes branch instructions and Condition register (CR) logical instructions. 
Then, it removes them from the instruction stream and dispatches the rest of the instructions 
to fixed- and floating-point units. In most cases, fixed- and floating-point units receive an 
uninterrupted instruction sequence and do not see the effect of the branches. This is 
referred to as zero-cycle branches. Usually, unconditional branches cause no delay in the 
pipeline. Conditional branches that are not taken (fall-through) also have no penalty 
because ICU dispatches the branch-not-taken path to FXU and FPU before figuring out the 
outcome of the branch. Of course, the branch-not-taken path instructions are cancelled if 
the conditional branch is taken. The branch-taken path is fetched from the I-cache arrays 
but is not dispatched to FXU and FPU. Conditional branches that are taken may delay the 
pipeline by O to 3 cycles depending on on how much earlier the Condition register was set. 

1-10 General Information Manual 



The compiler tries to move the condition code setting instruction far enough ahead of the 
conditional branch to minimize the conditional-branch penalty. 

The ICU performs the following functions: 

• Instruction caching. Contains a two-way set associative BK-byte cache, directories, and 
hardware to support a Least-Recently-Used (LRU) replacement algorithm. 

• Instruction address translation. Contains a two-way set associative translation look-aside 
buffer (TLB) with 16 entries in each set. 

• Instruction fetching. A maximum of four instructions can be fetched from the cache arrays 
in a single cycle. 

• Instruction dispatching. Dispatches a maximum of four instructions per cycle: two 
instructions internally to branch and condition-register units and two instructions 
externally to FXU and FPU. 

• Branch run with zero-cycle branches. 

• Condition register logical instruction run. 

• Interrupt control. 

• Manipulation of architected registers. 

Data Cache Unit 
The SGR 2564 chip set has a four-way set associative 64K-byte of data cache divided into 
four data cache chips of 16K-byte each. The cache-line size is 128 bytes and the cache is 
implemented as a store-back cache to minimize the memory bus traffic. (When the data is 
stored in the D-cache, it is not sent to memory. The data is written into memory only when a 
dirty line is replaced.) DCU supports fixed- and floating-point load and store operations, and 
provides a path from memory for I-cache reload and OMA operations. D-cache provides bit 
steering and ECC for load and store, I-cache reload, OMA, and memory scrub operations. 
D-cache directories, LRU hardware, dirty-bit information, and TLBs are in the FXU. 

The main features of the DCU include: 

• The collection of four D-cache chips has a four-word interface to system memory for 
high-bandwidth cache reload and store-back operations. 

• Separate data interfaces to FXU (1 word) and FPU (2 words). 

• D-cache reload buffer (CRB). A 128-byte CRB implemented across the four DCUs 
receives data from memory, IPL, FXU, and FPU. A load operation can read data from 
CRB if the data is from a line that is not yet loaded to cache arrays but is in the CRB. A 
fast load-through path that bypasses the cache arrays is provided from the memory bus 
to the FXU and FPU to minimize the load operation delays. Unlike simpler cache 
implementations, which do not have a CRB, the SGR 2564 processor chip set does not 
have to wait for the entire cache line to be brought from memory before it can access the 
data required by the load instruction that caused the cache miss. This makes long cache 
lines practical, which in return improves the D-cache hit ratio. 

• Store-back buffer (SBB). A 128-byte SBB implemented across the four DCUs accepts 
data from D-cache array or directly from CRB and passes it to system memory. 
Store-back buffers improve the performance because the data cache arrays are not kept 
busy during the store-back sequence. The entire line is loaded in parallel into the SBB, 
and the data is sent to the memory over the memory bus in 8 cycles. The DCU can 
service the processor chip set during these cycles because the arrays are freed up by 

Introduction 1-11 



SBB. In addition, the store-back data can be left in the SBB and stored back later if a 
higher priority memory access is pending. 

• I-cache reload buffer {IRB). This receives data from memory or IPL ROM, and sends It to 
the I-cache. The data from system memory is processed through ECC and bit-steering 
logic. This buffer is also used for memory scrubbing. 

• 110 OMA buffer {IOB). Buffers the data between system memory and 110. The OMA traffic 
goes between OCU and IOCC by way of the system 110 bus. 

• ECC {single-bit correct, double-bit detect) and bit-steering logic for incoming and 
outgoing data from and to memory including D- and I-cache reload, OMA, and memory 
scrub operations. 

Memory Control Unit 

1/0 Unit 

The memory control unit {MCU) is the central system controller. The MCU controls the 
interface between 0-cache and system memory, oversees OMA operations between 
memory and the IOCC, provides a data path for 110 loads and stores between the processor 
chip set and IOCC, forms an interface to the IPL ROM, and controls memory scrub 
operations. 

The main features of the MCU are: 

• Drives all control lines to memory. 

• Controls OMA operations between IOCC and system memory. 

• Controls memory interface to OCU. MCU informs DCU where the incoming data should 
go. The MCU also directs the unloading of OMA and I-cache buffers. 

• Controls the memory scrubbing. MCU generates the addresses and records any memory 
errors DCU detects. 

• Controls reading and writing of bit-steering registers. 

• Contains the Bank Configuration registers, which indicate the size and starting point of 
each bank of system memory. 

• Provides a data-path for 1/0 load and store operations between the processor chip set 
and IOCC. 

• Performs arbitration for the memory bus. 

• Provides an interface to initial program load read-only memory {IPL ROM). 

• Collects external interrupts from the IOCC, decrementer, power supply, and system 
memory. 

The 1/0 unit {IOU) contains an 110 channel controller {IOCC) that generates the Micro 
Channel Prime interface. The data interface between the processor/system memory and the 
110 unit is by way of the two-word wide system 110 bus. The Micro Channel has a one-word 
address bus and a one-word data bus. The IOCC supports an 110 architecture geared for 
performance, robustness, and error recoverability. The Micro Channel architecture supports 
streaming data, address and data parity, and synchronous exception reporting functions {110 
load and store commands cause precise interrupts like regular load and store commands). 
The main function of the IOCC is to transfer data between system memory and adapters on 
the Micro Channel. The processor unit can transfer data to and from the adapters using 110 
load and store operations, and the adapters can transfer data to and from system memory 
using OMA. The IOCC supports both OMA bus masters and OMA slaves. All data transfers 

1-12 General Information Manual 



support address protection mechanisms to provide data security. Up to 15 OMA channels 
and 16 levels of interrupts are supported by the IOCC. With the new streaming data mode, 
multiple data cycles can be transferred within one bus envelope. This amortizes device 
selection overhead across the entire packet and nearly doubles the performance for large 
data bursts. Precise 1/0 load and store interrupts improve error recoverability. 

The main features of the IOCC include: 

• Interface to System 1/0 bus and Micro Channel. 

• Programmed 1/0 (PIO) operations to and from the following address spaces. 

- System memory space 

- Micro Channel 1/0 space (1/0 adapters) 

- Micro Channel memory space (memory on the Micro Channel) 

- IOCCspace 

- Architected IOCC registers 

- Tag and TCW RAM. 

• 1/0 load and store operations are performed with or without alignment and with a 
protection mechanism. Protection is provided by TCW for system memory and limit 
registers for 1/0 devices. 

• Handles data to and from OMA slaves. 

• Handles data to and from OMA bus masters. 

• Address translation for load and store operations and OMA bus masters. 

• Handles 1/0 interrupts. 

• Supports various IOCC commands such as enable and disable OMA, OMA device buffer 
flush, lock, and time delay. 

Introduction 1·13 



SGR 2564 Processor Pipeline 
Because of the complexity of the pipeline, various instruction buffers, hold-off conditions, 
and the special cases, there are many possible variations and exceptions in the way an 
instruction can be run in the RISC System/6000 unit. With that in mind, a typical pipeline for 
a register-to-register (RR) operation could be constructed as follows: 

1 -~~h~ ICl:~:~~I~~ ~~~.:~~1-o~--E:~u~ --~~~ --Access Dispatch Decode Back 
(ICA) (DSP) (DEC) (EX) (WB) 

In the first cycle, ICU reads the cache array, then in the dispatch (second) cycle the 
instruction is partially decoded to see if it is a branch, and non-I-cache instructions are 
dispatched to FXU and FPU. At the third cycle, FXU decodes the instruction, accesses the 
register file, and latches up the values read from the register file at the Arithmetic Logic Unit 
(ALU) input registers. In the execution (fourth) cycle, the ALU operation takes place. Finally, 
the result is written back into the register file in the fifth cycle. 

A typical pipeline for a load is as follows: 

-I~~~~ ICl:~~c~I~~ -1~~.:~~tlo~u ~.~~~~--::~~J :::-· 1 
Access Dispatch Decode Access 'I Back 

ALU I TLB 
DIR 

In the first half of the execution cycle, the ALU operation takes place and the virtual address 
is calculated. In the second half of the execution cycle, TLBs are accessed to determine the 
real page number and, in parallel, the 0-cache directories are accessed to see if the data is 
in the cache. In the fifth cycle, data cache is accessed and the data is shipped back to FXU 
or FPU where it is latched in a register. And in the sixth cycle, the data is written into the 
register file. 

The floating-point arithmetic operation pipeline is as follows: 

- - - - - - ICU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FPU - - - - - - - - - - - - - - - - - - - -

I-Cache Instruction Predecode Rename Instruction Execute-1 
Access Dispatch Decode (Multiply) 

Execute-2 
(Add) 

Write 
Back 

There is a synchronization cycle before the decode operation, and the floating-point 
arithmetic operations (multiply, add, accumulate) take two cycles to run. 

1·14 General Information Manual 



Because the RISC System/6000 unit is pipelined, all these operations are overlapped as 
shown in the following illustration, and all the hardware resources are utilized to their full 
potential. 

Cycle 
1 2 3 4 5 6 7 8 

Instruction 
1 ICA DSP DEC EX WB 
2 ICA DSP DEC EX WB 
3 ICA DSP DEC EX ~WB 

4 ICA DSP DEC EX WB 

As mentioned earlier, the pipeline is not as simple as described in the preceding text 
because ICU contains I-buffers and can read up to four instructions per cycle from the 
cache array. I-cache can dispatch two instructions per cycle to FXU and FPU. In addition, 
both FXU and FPU contain their own I-buffers. ICU looks ahead and runs branches such 
that they are in effect taken out of the instruction stream. 

Introduction 1·15 



SGR 2032 Processor Chip Set 
The SGR 2032 processor chip set is a cost-reduced version of the SGR 2564 processor 
chip set. The SGR 2032 processor chip set is shown in Figure 4. 

I-Cache Reload 
{2W) 

P-BUS (1W) 

S stem 110 Bus 2W 

~6M MCU 

IOU 

TCW..,_ __ __.. 
RAM 

Micro Channel 

Figure 4. SGR 2032 Processor Chip Set 

-------, 

LL ..... ,..- -.. 

M-Bus 
(2W) 

System 1/0 Bus 
(2W) 

_I 

M 
e 
m 
0 
r 
y 

B 
0 
a 
r 
d 
s ~ .... .... 

The major differences between the SGR 2032 processor chip set and the SGR 2564 
processor chip set are as follows: 

• The SGR 2032 processor chip set has only two DCUs rather than four. 

• Fixed- and floating-point data buses are dotted together. DCU provides a two-word bus. 
Because FXU has only a single-word data interface, it is tied to only half of the bus. DCU 
manipulates the data accordingly when FXU Is using the bus. 

• In the SGR 2032 processor chip set, the 0-cache line size is 64 bytes {half of the SGR 
2564 processor chip set D-cache line size). 

1-16 General Information Manual 



• DCU sends the data to reload the I-cache over the system 1/0 bus rather than having a 
dedicated I-cache reload bus to ICU. 

• The processor chip set has a two-word memory interface rather than a four- word 
interface. As a result, the SGR 2032 processor chip set requires a minimum of one 
memory board and the SGR 2564 processor chip set requires a minimum of two memory 
boards. The minimum memory configuration for the SGR 2032 processor chip set is a 
single BM-byte memory board. 

The SGR 2032 processor chip set and the SGR 2564 processor chip set use the same 
chips. There are no new part numbers. A mode pin tells FXU, DCU, and MCU if the system 
is a SGR 2032 processor chip set or the SGR 2564 processor chip set. 

RISC System/6000 Table Top Model 

Parallel Port 

EIA-232 
EIA-232 
Tablet 
Keyboard 
Mouse 

The RISC System/6000 table top model uses the SGR 2032 processor chip set as shown in 
Figure 4 on page 1-16. Figure 5 shows the processor board and Figure 6 shows the system 
board for the RISC System/6000 table top model. 

I FPU I I Fxul B 
I CLKI I ocul I ocul IMcul B 

Figures. RISC System/6000 Table Top Processor Board 

Power Supply 
Connectors Internal Diskette 

Connector 

c:::J Operator Panel 
Connector 

.----~~._ Direct Bus-Attached 
Fixed-Disk Connector 

,........,,-----.-------. 23
1 

} Micro Channel 
Connectors 

~---~--~ 4 

Back Fan 
Connector 

I 

Processor Board Connectors 

0 Keylock and 
Reset Button 
Connector 

} Memory Board o Battery 
,-------..-----: Connectors Connector 

Figure 6. RISC System/6000 Table Top System Board 

Introduction 1 • 17 



1·18 General Information Manual 



Chapter 2. RISC System/6000 Processors 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Systems Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 

Effective Address Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Branch Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 

Branch Processor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 
Branch Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 

Supervisor Linkage Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 
Trap Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 
Condition Register Field Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 
Condition Register Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 
Fixed-Point Processor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 

General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 
Fixed-Point Exception Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 
Multiply Quotient Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 

Fixed-Point Processor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 
Fixed-Point Store Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 
Fixed-Point Load with Update Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 
Fixed-Point Store with Update Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46 
Fixed-Point Move Assist Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 
Fixed-Point Address Computation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 
Fixed-Point Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54 
Fixed-Point Compare Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65 
Fixed-Point Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67 
Fixed-Point Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 

Fixed-Point Rotate with Mask Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 
Rotate Left Immediate Then Mask Insert (M-Form) . . . . . . . . . . . . . . . . . . . 2-73 
Rotate Left Then Mask Insert (M-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74 
Rotate Left Immediate Then AND With Mask (M-Form) . . . . . . . . . . . . . . . . 2-74 
Rotate Left Then AND With Mask (M-Form) . . . . . . . . . . . . . . . . . . . . . . . . . 2-74 

Fixed-Point Rotate Bit Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75 
Rotate Right And Insert Bit (X-Form) ................... ~.......... 2-75 

Fixed-Point Bit Mask Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75 
Mask Generate (X-Form)........................................ 2-75 
Mask Insert From Register (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76 

Fixed-Point Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76 
Shift Left (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76 
Shift Right (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77 
Shift Left With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77 
Shift Right With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78 
Shift Left Immediate With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78 
Shift Right Immediate With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79 

Processor Description 2· 1 



Shift Left Long Immediate With MO (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . 2-79 
Shift Right Long Immediate With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . 2-80 
Shift Left Long With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 
Shift Right Long With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 
Shift Left Extended (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 
Shift Right Extended (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 
Shift Left Extended With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 
Shift Right Extended With MO (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 
Shift Right Algebraic Immediate (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 
Shift Right Algebraic (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-84 
Shift Right Algebraic Immediate With MQ (X-Form) . . . . . . . . . . . . . . . . . . . 2-84 
Shift Right Algebraic With MQ (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85 
Shift Right Extended Algebraic (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85 

Double-Precision Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86 
Move To and Move From System Registers Instructions . . . . . . . . . . . . . . . . . . 2-87 
Move To and Move From Condition Register Instruction . . . . . . . . . . . . . . . . . . 2-89 
Move From Machine State Register Instruction . . . . . . . . . . . . . . . . . . . . . . . . . 2-90 

Floating-Point Processor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91 
Floating-Point Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92 
Floating-Point Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93 

Floating-Point Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97 
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97 
Value Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98 
Binary Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98 
Normalized Numbers (+NOR)....................................... 2-98 
Zero values (+O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99 
Denormalized Numbers (+DEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99 
Infinities (+INF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99 
Not a Numbers (NaNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99 
Normalization and Denormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100 
Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101 
Rounding............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101 
Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102 

Floating-Point Exceptions............................................ 2-103 
Invalid Operation Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105 

Definition..................................................... 2-105 
Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105 

Zero Divide Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106 
Definition..................................................... 2-106 

··'·Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 2-106 
Overflow Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107 

Definition................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107 
Resultant Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107 
Insuring Correct Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107 

Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108 
Underflow Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109 

Definition..................................................... 2-109 
Action .................... · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109 

Inexact Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-110 
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 O 
Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 2-110 

2·2 General Information Manual 



Floating-Point Resource Management ................................. . 
Floating-Point Execution Models ..................................... . 

Execution Model for IEEE Operations ............................... . 
Execution Model for Multiply-Add Type Instructions .................... . 

Floating-Point Processor Instructions ................................. . 
Floating-Point Load Instructions ................................... . 

Normalized Operand .......................................... . 
Infinity I QNaN I SNaN I Zero .................................... . 
Denormalized Operand ........................................ . 
Load Floating-Point Single {D-Form) ............................. . 
Load Floating-Point Single Indexed {X-Form) ...................... . 
Load Floating-Point Double {D-Form) ............................. . 
Load Floating-Point Double lnd~xed {X-Form) ...................... . 
Load Floating-Point Single With Update {D-Form) ................... . 
Load Floating-Point Single With Update Indexed {X-Form) ............ . 
Load Floating-Point Double With Update {D-Form) .................. . 
Load Floating-Point Double With Update Indexed {X-Form) ........... . 

Floating-Point Store Instructions ................................... . 
No Denormalization Required ................................... . 
Denormalized Operand ........................................ . 
Store Floating-Point Single {D-Form) ............................. . 
Store Floating-Point Single Indexed {X-Form) ...................... . 
Store Floating-Point Double {D-Form) ............................ . 
Store Floating-Point Double Indexed {X-Form) ..................... . 
Store Floating-Point Single With Update {D-Form) ................... . 
Store Floating-Point Single With Update Indexed {X-Form) ............ . 
Store Floating-Point Double With Update {D-Form) .................. . 
Store Floating-Point Double With Update Indexed {X-Form) ........... . 

Floating-Point Move Instructions ................................... . 
Floating Move Register (X-Form) ................................ . 
Floating Negate {X-Form) ...................................... . 
Floating Absolute Value {X-Form) ................................ . 
Floating Negative Absolute Value {X-Form) ........................ . 

Floating-Point Arithmetic Instructions ............................... . 
Floating Add {A-Form) ......................................... . 
Floating Subtract {A-Form) ..................................... . 
Floating Multiply {A-Form) ...................................... . 
Floating Divide {A-Form) ...................................... . 
Floating Round To Single Precision {X-Form) ....................... . 

Floating-Point Accumulate Instructions .............................. . 
Floating Multiply Add {A-Form) .................................. . 
Floating Multiply Subtract {A-Form) ............................... . 
Floating Negative Multiply Add {A-Form) ........................... . 
Floating Negative Multiply Subtract {A-Form) ....................... . 

Floating-Point Compare Instructions ................................ . 
Floating Compare Unordered {X-Form) .......................•...•. 
Floating Compare Ordered {X-Form) ............................. . 

Floating-Point Status and Control Register Instructions ................. . 
Move From FPSCR {X-Form) ................................... . 
Move To Condition Register From FPSCR {X-Form) ................. . 
Move To FPSCR Fields {XFL-Form) .............................. . 

Processor Description 

2-111 
2-111 
2-111 
2-113 
2-114 
2-114 
2-114 
2-114 
2-114 
2-115 
2-115 
2-116 
2-116 
2-117 
2-117 
2-118 
2-118 
2-119 
2-119 
2-119 
2-120 
2-120 
2-121 
2-121 
2-122 
2-122 
2-123 
2-123 
2-124 
2-124 
2-124 
2-124 
2-125 
2-126 
2-126 
2-127 
2-127 
2-128 
2-128 
2-129 
2-129 
2-130 
2-131 
2-132 
2-133 
2-133 
2-134 
2-135 
2-135 
2-135 
2-136 

2-3 



Move To FPSCR Field Immediate (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . 2-137 
Move To FPSCR Bit 1 (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-137 
Move To FPSCR Bit 0 (X-Form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-138 

Floating Point Round to Single Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-139 
Floating Round to Single Model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-139 
Disabled Exponent Underflow: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-139 
Enabled Exponent Underflow: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-140 
Disabled Exponent Overflow: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-141 
Enabled Exponent Overflow: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-142 
Infinity Operand: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-142 
QNaN Operand: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-142 
SNaN Operand: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-142 
Normal Operand: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-143 
Round Single(sign,exp,frac,G,R,X): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-143 

RISC System/6000 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-144 

2-4 General Information Manual 



Description 
This chapter describes the document conventions, a general systems overview, instruction 
formats, and memory addressing. 

Document Conventions 
The following conventions are used throughout the RISC System/6000 document: 

• Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are 16 
bits, bytes are 8 bits 

• All numbers are decimal unless specified in some special way 

• b'nnn' means a number expressed in binary format 

• x'nnn' means a number expressed in hexadecimal format 

• n x b'O' means n zeros 

• n x b'1' means n ones 

• (RAIO) means the contents of register RA if the RA field has the value 1-31, or the value 
O if the RA field is O 

• (Rx) means the contents of register Rx 

• (FRx) means the contents of register FRx 

• X(p) means bit p of register or field X 

• X,, means bit p of register or field X 

• X(p-q) means bits p through q of register or field X 

• X(p .. q) means bits p through q of register or field X 

• Xp.-q means bits p through q of register or field X 

• -,(RA) means the one's complement of the contents of register RA 

• I, II, Ill, ... means a field that is ignored by the hardware 

• The symbol II is used to describe two fields that are appended or concatenated to each 
other. For example, 01011111 is the same as 010111. 

• All bits in registers that are reserved are O on read and can be either 0 or 1 on write 

• 2" means 2 raised to the nth power 

• Field i refers to bits 4 xi to (4 xi) + 3 of a register 

• Positive means greater than O 

• Negative means less than O 

• Instructions are assumed to be non-privileged unless stated otherwise in the instruction 
description. 

Processor Description 2-5 



Systems Overview 
The processor or processor unit contains the sequencing and processing controls for 
instruction fetch, instruction execution, and interrupt action. The following classes of 
instructions can be executed by the processing unit. 

• Branch processor instructions, described on page 2-20 

• Fixed-point processor instructions, described on page 2-31 

• Floating-point processor instructions, described on page 2-114. 

See Figure 7 for a representation of the logical partitioning provided by the IBM RISC 
System/6000 architecture. The processing unit is a word-oriented fixed-point processor and 
in a doubleword-oriented floating-point processor. The RISC System/6000 architecture 
uses 32-bit word-aligned instructions and provides for byte, halfword, word, and 
doubleword operand fetches and stores between system memory and a set of 32 general 
purpose registers (GPRs), and between system memory and a set of 32 floating-point 
registers (FPRs). 

Programmed i.... 
1/0 ....-

Fixed-Point 
Processor 

i.... _.. 
....- -.., 

Branch .. 
Processor "' ... 

GP Rs I+-
XER MQ 

CR SARO Data 
Cache 

LR SRR1 

CTR MSR 

4 i.... ..a.J 
Floating-Point ....- ., 

Instruction Processor + 
Cache 

• FPRs 

FPSCR 

_I • 
Main Memory 

• 
_I_ 

Direct Memory Access 

Figure 7. System Architecture View 

2·6 General Information Manual 



Instruction Formats 

DForm 

BForm 

I Form 

SC Form 

All instructions are 4 bytes long and are located on word boundaries. Thus, whenever 
instruction addresses are presented to the processing unit (as in branch instructions) the two 
low-order bits are ignored. Similarly, whenever the processing unit develops an instruction 
address, its two low-order bits are O. 

Bits O through 5 always specify the opcode. For XO-form instructions, an extended opcode . 
is specified in bits 22 through 30. For all other X-form instructions, an extended opcode is 
specified in bits 21 through 30. For A-form instructions, an extended opcode is specified in 
bits 26 through 30. 

The remaining bits contain one or more alternative fields for the different instruction formats. 

0 6 11 16 

[ OPCD RT RA 0 

RS SI 

FAT UI 

TO 
BF 
FAS 

0 6 11 16 30 31 
I OPCD I BO I Bl I BO I AAI LKI 

0 6 30 31 

OPCD I LI I AAl LKl 

0 6 11 16 20 27 30 31 

I OPCD I Ill 
I "' I :~1 I LEV I F1 SAi LK I 

Processor Description 2-7 



XForm 
0 6 11 16 21 31 

[ OPCD RT RA RB EO J Re] 
FRT FRA FRB 
BF BFA SH 
RS SPR NB 
FRS I 

TO 
BT 

XL Form 
0 6 11 16 21 31 

I OPCD I:: I:~ I BB 
I EO I LKI 

XFX Form 
0 6 11 21 31 

OPCD I RT I FXM I EO l Re I 

XFL Form 
0 6 16 21 31 

OPCD I FLM I FRB I EO I Re I 

XO Form 
0 6 11 16 21 22 31 

I OPCD I RT I RA I RB I oel eo· l Re I 
A Form 

0 6 11 16 21 26 31 

I OPCD I FRT IFRA IFRB IFRC lxo I Rel 

A-form instructions are used for four operand instructions. The operands, all floating-point 
registers, are specified by the FRT, FAA, FRB, FRC fields. The short extended opcode, XO, 
is In bits 26 through 30. 

MForm 
0 6 11 16 21 26 31 

I OPCD I RS I RA I:~ I MB 
I ME I Rel 

Instruction Flelds 
AA (30) Absolute Address bit 

2·8 General Information Manual 



Bit 

0 

1 

Description 

The immediate field represents an address relative to the 
current instruction address. For I-form branches, the 
effective address of the branch is the sum of the LI field 
sign extended to 32 bits and the address of the branch 
instruction. For B-form branches, the effective address of 
the branch is the sum of the BD field sign extended to 32 
bits and the address of the branch instruction. 

The immediate field represents an absolute address. For 
I-form branches, the effective address of the branch is the 
LI field sign extended to 32 bits. For B-form branches, the 
effective address of the branch is the BD field sign 
extended to 32 bits. 

BA (11-15) Field used to specify a bit in the Condition register (CR) to be used as a 
source. 

BB (16-20) Field used to specify a bit in the CR to be used as a source. 

BO (16-29) Immediate field specifying a 14-bit signed two's complement branch 
displacement, which is concatenated on the right with b'OO' and sign 
extended to 32 bits. 

BF (6-8) Field used to specify one of the CR compare result fields or one of the 
FPSCR fields as a target. If i = BF(6-8), then field i refers to bits i x 4 to (i x 
4) + 3 of the register. 

BFA (11-13) Field used to specify one of the CR compare result fields, one of the 
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then 
field j refers to bits j x 4 to ax 4) + 3 of the register. 

Bl (11-15) Field used to specify the bit in the CR to be used as the condition of the 
branch. 

Processor Description 2-9 



BO (6-10) Field used to specify different options that can be used in conditional branch 
Instructions. Following is the encoding for the BO field: 

BO Description 

OOOOx Decrement the CTR, then branch If the decremented 
CTR ¢ O and condition is false. 

0001 x Decrement the CTR, then branch If the decremented 
CTR = O and condition is false. 

001xx Branch If condition is false. 

0100x Decrement the CTR, then branch if the decremented 
CTR ¢ O and condition is true. 

0101 x Decrement the CTR, then branch if the decremented 
CTR = O and condition is true. 

011xx Branch if condition is true. 

1 xOOx Decrement the CTR, then branch if the decremented 
CTR¢0. 

1 x01 x Decrement the CTR, then branch if the decremented 
CTR=O. 

1 x1 xx Branch always. 

BT (6-10) Field used to specify a bit in the CR as the target of the result of an 
instruction. 

D (16-31) Immediate field specifying a 16-bit signed two's complement integer sign 
extended to 32 bits. 

EO (21-30) A 1 o-bit extended opcode used in X-form instructions. 

EO' (22-30) A 9-bit extended opcode used in XO-form instructions. 

FL 1 (16-19) A 4-bit field in the Supervisor Call (SVC) instruction. 

FL2 (27-29) A 3-bit field in the SVC instruction. 

2· 10 General Information Manual 



FXM (12-19) Field mask, identifies which CR field is to be updated. 

Bit Description 

12 CR Field 0 (bits 00-03) 

13 

14 

15 

16 

17 

18 

19 

CR Field 1 (bits 04-07) 

CR Field 2 (bits 08-11) 

CR Field 3 (bits 12-15) 

CR Field 4 (bits 16-19) 

CR Field 5 (bits 20-23) 

CR Field 6 (bits 24-27) 

CR Field 7 (bits 28-31 ). 

FLM (7-14) Field mask, identifies which FPSCR field is to be updated. 

Bit Description 

7 FPSCR Field 0 (bits 00-03) 

8 FPSCR Field 1 (bits 04-07) 

9 FPSCR Field 2 (bits 08-11) 

10 FPSCR Field 3(bits12-15) 

11 FPSCR Field 4 (bits 16-19) 

12 FPSCR Field 5 (bits 20-23) 

13 FPSCR Field 6 (bits 24-27) 

14 FPSCR Field 7 (bits 28-31 ). 

FAA (11-15) Field used to specify an FPR as a source of an operation. 

FAB (16-20) Field used to specify an FPR as a source of an operation. 

FAC (21-25) Field used to specify an FPR as a source of an operation. 

FAS (6-10) Field used to specify an FPR as a source of an operation. 

FAT (6-10) Field used to specify an FPR as the target of an operation. 

I (16-19) Immediate field used as the data to be placed into a field in the FPSCR. 

LEV (20-26) Immediate field in the SVC instruction that addresses the SVC routine by 
b'1' II LEV 11 b'OOOOO' if SA = 0. 

LI (6-29 Immediate field specifying a 24-bit signed two's complement integer that is 
concatenated on the right with b'OO' and sign extended to 32 bits. 

LK (31) Link bit. 

Bit 

0 

1 

Description 

Do not set the Link register. 

Set the Link register. If the instruction is a branch, the 
address of the instruction following the branch instruction is 
placed into the Link register. If the instruction is an SVC, the 
address of the instruction following the SVC instruction is 
placed into the Link register. 

Processor Description 2· 11 



MB (21-25 & ME (26-30) 

MB (21-25) 

ME (26-30) 

Fields used to specify a 32-bit string, consisting of either a substring of 
ones surrounded by zeros or a substring of zeros surrounded by ones. The 
encoding is as follows: 

Index to start bit of substring of ones. 

Index to stop bit of substring of ones. 

Let mstart = MB and mstop = ME. 

If mstart < mstop + 1 
then mask (mstart .. mstop} =ones 
mask (all other) = zeroes. 

If mstart = mstop + 1 then 
mask (0-31) = ones. 

If mstart > mstop + 1 then 
mask (mstop + 1..mstart-1) =zeros 
mask (all other) = ones. 

NB (16-20) Field used to specify the number of bytes to move in an load or store string 
immediate. 

OPCD (0-5) The basic opcode field of the instruction. 

OE (21) Used for extended arithmetic to inhibit setting of OV and SO in XER. 

RA (11-15) Field used to specify a GPR to be used as a source or as a target. 

RB (16-20) Field used to specify a GPR to be used as a source. 

Re (31) Record bit. 

RS (6-10) 

RT (6-10) 

SA (30) 

SH (16-20) 

SI (16-31) 

Setting 

0 

Description 

Do not set the Condition register. 

1 Set the Condition register to reflect the result of the 
operation. 

For fixed-point instructions, CR bits (0-3) are set to reflect the result as a 
signed quantity. The result as an unsigned quantity or a bit string can be 
deduced from the EQ bit. 

For floating-point instructions, CR bits (4-7) are set to reflect Floating-Point 
Exception, Floating-Point Enabled Exception, Floating-Point Invalid 
Operation Exception, and Floating-Point Overflow Exception. 

Field used to specify a GPR to be used as a source. 

Field used to specify a GPR to be used as a target. 

SVC Absolute. 

Setting 

0 

1 

Description 

SVC routine at address '1' 11 LEV 11 b'OOOOO'. 

SVC routine at address X'1 FEO'. 

Field used to specify a shift amount. 

Immediate field used to specify a 16-bit signed integer. 

2· 12 General Information Manual 



SPR (11-15) Special Purpose register. 

SPR Speclal Purpose Register 

00000 (00) MQ 

00001 (01) XER 

00100 (04) from RTCU 

00101 (05) from RTCL 

00110 (06) from DEC 

01000 (08) LR 

01001 (09) CTR 

10100 (20) to RTCU 

10101 (21) to RTCL 

10110 (22) to DEC 

11010 (26) SRRO 

11011 (27) SRR 1. 

TO (6-10) TO bit ANDed with condition. 

TO bit ANDed with Condition 

6 Compares less than 

7 Compares greater than 

8 Compares equal 

9 Compares logically less than 

10 Compares logically greater than. 

UI (16-31) Immediate field used to specify a 16-bit unsigned integer. 

XO (26-30) A 5-bit extended opcode used by A-form instructions. 

Processor Description 2· 13 



Memory Addressing 
Within the context of a program executing on the processing unit (PU), system memory Is 
organized into doublewords, words, halfwords, and bytes, which are constrained to lie on 
boundaries that are multiples of their sizes. See Figure 8 for an example of the memory 
organization. 

Bytes in system memory are consecutively numbered starting with O. Each number is the 
address of the corresponding byte. The 32-bit addresses computed for system memory 
access are termed effective addresses and specify a byte in memory. System memory 
address arithmetic wraps around from the maximum byte address, 232-1, to address 0. 

System memory can be accessed by doubleword, word, halfword, or byte. The required 
number of bytes are fetched from a properly aligned area of memory. The rules when the 
operands are not properly aligned are controlled by a mode bit, MSR(AL). See Machine 
State register on page 2-18. 

The mapping to real memory addresses is controlled by relocate (address translation) 
facilities. When the relocate facility is active, effective addresses generated by program 
execution are first transformed to 52-bit virtual address, which in turn are mapped to real 
memory. 

In general, the terms memory and address are used within the context of the effective 
addresses generated by the PU. 

All processor computations are performed in registers in the processing unit (PU). There are 
no instructions, for instance, to add two numbers, one of which is in memory. 

Doubleword 

Word 

Halfword 

Byte 
0 

000 

ooo I 001 
8 

Figure 8. Memory Organization 

Effective Address Calculation 

000 

010 

010 I 011 
16 24 

000 

100 

100 110 

100 I 101 110 I 111 
32 40 48 56 63 

Effective addresses (EAs) are generated by instructions that reference data in system 
memory and by taken branch instructions. Address calculations use 32-bit two's 
complement binary arithmetic. A carry from bit O is ignored. 

A value of 0 in the RA field indicates the absence of the corresponding address component. 
For the absent component, a O value is used in forming the address. This is shown in the 
Instruction descriptions as (RAIO). 

X-form instructions are used for data references. Address computation adds the GPA 
contents designated by the RA field or the value O if RA equals a value of O with the GPA 
contents designated by the RB field. The computation is shown as (RAIO)+ (RB). 

With D-form instructions, the 16-bit D field is sign extended to form a 32-bit address 
component. In computing the effective address of a data element, this address component is 
added to the GPA contents designated by the RA field or the value O If RA equals a value of 
o. 

2 .. 14 General Information Manual 



With I-form branch instructions, the 24-bit LI field is concatenated on the right with b'OO' and 
sign extended to form a 32-bit address. When AA equals a value of 0, this address is added 
to the address of the branch instruction to form the effective address. If AA equals a value of 
1, this 32-bit value is the effective address. 

With B-form branch instructions, the 14-bit BO field is concatenated on the right with b'OO' 
and sign extended to form a 32-bit value. If AA equals a value of 0, this 32-bit value is 
added to the address of the branch instruction to form the effective address. If AA equals a 
value of 1 , this 32-bit value is the effective address. 

With XL-form branch instructions, bits 0-29 of the Link register or the Count register are 
concatenated on the right with b'OO' to form the effective address. 

Processor Description 2-15 



Branch Processor 
This section describes the registers and instructions that make up the branch processor 
facilities. 

Branch Processor Registers 
This section describes the branch processor registers and their bit definitions. 

Condition Register 
The Condition register (CR) is a 32-bit register that reflects the result of certain operations 
and provides a mechanism for testing (and branching). 

0 31 

CR 

Bits Name 

00-03 CR Field 0 

04-07 CR Field 1 

08-11 CR Field 2 

12-15 CR Field 3 

16-19 CR Field 4 

20-23 CR Field 5 

24-27 CR Field 6 

28-31 CR Field 7. 

The Condition register bits are grouped into eight 4-bit fields, named CR Field O through CR 
Field 7, which are set in one of the following ways: 

• A load or copy operation into a specific CR field. 

• CR Field O can be set as the implicit result of a fixed-point operation. 

• CR Field 1 can be set as the implicit result of a floating-point operation. 

• As the result of either a fixed or floating-point compare operation into a specified CR field. 

Instructions are provided to test these bits singly and in combination. 

When record bit (Re) equals a value of 1 in most fixed-point instructions, the CR Field O 
(condition register bits 0-3) is set by a compare of the result to a value of O. Add Immediate, 
Add Immediate Lower, and Add Immediate Upper instructions set these four bits implicitly. 
These bits are interpreted as shown in the following list. 

Bit Description 

O Compares Less Than, Negative (LT). For arithmetic operations, the result is 
negative or less than a value of 0. For compare operations, (RA) < SI, UI, or 
(RB). 

1 Compares Greater Than, Positive (RB). For arithmetic operations, the result 
is negative or less than a value of 0. For compare operations, (RA) > SI, UI, 
or (RB). 

2-16 General Information Manual 



2 

3 

Compares Equal, Zero (EQ). For arithmetic operations, the result is a value 
of O or equal to a value of O. For compare operations, (RA) = SI, UI, or (RB). 

Summary Overflow (SO). This is a copy of the final state of XER(SO) at the 
completion of the instruction. 

When the Re bit equals a value of 1 in all floating-point instructions except the floating-point 
compares, CR Field 1 (condition register bits 4-7) is set to the floating-point exceptions 
status. These bits are interpreted as shown in the following list: 

Bit Description 

4 Floating-point Exception (FX). This is a copy of the final state of 
FPSCR(FX) at the completion of the instruction . 

5 

6 

7 

Floating-point Enable Exception (FEX). This is a copy of the final state of 
FPSCR(FX) at the completion of the instruction . 

Floating-point Invalid Operation Exception (VX). This is a copy of the final 
state of FPSCR(VX) at the completion of the instruction . 

Floating-point Overflow Exception (OX). This is a copy of the final state of 
FPSCR(OX) at the completion of the instruction . 

Condition register bits 4-7 are copies of bits 0-3 in the Floating-Point Status and Control 
register. 

Link Register 
The link register (LR) is a 32-bit register. The link register provides the branch target 
address for the Branch Conditional Register instruction and holds the return address (link 
address) for branch and link type instructions and SVC instructions. 

0 31 

LR 

Count Register 
The Count register (CTR) is a 32-bit register. The Count register contains a loop count and 
is automatically decremented during execution of the branch and count instructions, 
wrapping from X'OOOOOOOO' around through X'FFFFFFFF'. The Count register also provides 
the branch target address for the Branch to Count Register instruction. The Count register 
contains a copy of bits 16-31 of MSR and bits 16-31 of the SVC instruction after execution 
of that SVC instruction. Both registers can be copied to and from any GPR. 

0 31 

CTR 

Processor Description 2· 17 



Machine State Register 
The Machine State register (MSR) is a 32-bit register that defines the modal state of the 
processor. When the RFI instruction is executed, bits 16-31 of SRR 1 are placed into bits 
16-31 of the MSR. The MSR can also be modified by the Move to Machine State Register 
instruction. 

0 31 

MSR 

Bit Name Description 
00-15 Reserved 
16 EE External Interrupt Enable 
17 PR Program State 
18 FP FPAvailable 
19 ME Machine Check Enable 
20 FE FP Exception Enable 
21-23 Reserved 
24 AL Alignment Check 
25 IP Interrupt Prefix 
26 IR Instruction Relocate 
27 DR Data Relocate 
28-31 Reserved. 

The following are the Machine State register bit definitions: 

Blt(s) Description 

0-15 Reserved. 

16 External Interrupt Enable (EE). 

Setting Description 

O The processor is disabled against external interrupts. 

1 The processor is enabled to take external interrupts. 

17 Problem State (PR). 

18 

19 

Setting 

0 

1 

Description 

The processor is privileged to execute any instruction. 

The processor can only execute the non-privileged 
instructions. 

Floating-Point (FP) Available. 

Setting Description 

O The processor cannot execute any floating-point 
instructions, including floating-point loads, stores and 
moves. 

1 The processor can execute floating-point instructions. 

Machine Check Enable (ME). 

Setting Description 

O Machine check interrupts are disabled. 

1 Machine check interrupts are enabled. 

2·18 General Information Manual 



20 

21-23 

24 

Floating-Point Exception Interrupt Enable (FE). 

Setting Description 

O Program interrupts on floating-point enabled exception are 
disabled. 

1 

Reserved. 

Program interrupts on floating-point enabled exception are 
enabled. 

Alignment Check (AL). 

Setting 

0 

1 

Description 

Alignment checking is off and the low-order bits of the 
address are ignored. 

Alignment checking is on; alignment checking proceeds as 
follows: 

If bits 29, 30, or 31 of an address generated by a doubleword data memory reference 
instruction are nonzero, an alignment interrupt is generated if the hardware cannot perform 
the unaligned access. 

If bits 30 or 31 of an address generated by a word data memory reference instruction are 
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned 
access. 

If bit 31 of an.address generated by a halfword data memory reference instruction is 
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned 
access. 

This checking does not apply to the load and store string-type instructions since these 
instructions always perform the unaligned access. Load and store multiple-type instructions 
always generate an alignment interrupt if bits 30-31 of the effective address are nonzero. 

When the memory reference is to an 1/0 segment, the address is sent to 1/0 unmodified, 
regardless of the setting of MSR(AL). 

25 Interrupt Prefix (IP). 

26 

27 

Setting 

0 

1 

Description 

Interrupts vectored to the effective address X'OOOxxxxx' 
where xxx is the interrupt offset. 

Interrupts vectored to the effective address X'FFF xxxxx' 
where xxxxx is the interrupt offset. This is intended to direct 
the interrupt to Read Only Memory (ROM). 

Instruction Relocate (IR). 

Setting Description 

O Instruction address translation is off. 

1 Instruction address translation is on. 

Data Relocate (DR). 

Setting 

0 

1 

. Description 

Data address translation is off. 

Data address translation is on. 

Processor Description 2-19 



28-31 Reserved. 

Branch Instructions 
The instruction execution sequence can be changed by the branch instructions. All 
instructions are on word boundaries. Thus, bits 30 and 31 of the generated branch target 
address are ignored by the processor unit in performing the branch. 

Branch instructions compute their target addresses in one of four ways: 

• Adding a constant to the address of the branch instruction. 

• Specifying an absolute address (the BD or LI field is sign extended to 32 bits). 

• Using the address contained in the Link register. 

• Using the address contained in the Count register. 

For the first two methods, the target addresses can be computed sufficiently ahead of the 
branch instruction so as to prefetch instructions along the target path. For the third and 
fourth methods, prefetching instructions along the branch path is also possible provided the 
Link register or the Count register is loaded sufficiently ahead of the branch instruction. 

In the case of conditional branch instructions, instruction prefetching is done on each path of 
the branch. 

In the various target forms, branches generally either branch only, branch and provide a 
return address, or branch conditionally. If the LK bit equals1, the link register can be used to 
store the return address from an invoked subroutine. The return address is the instruction 
immediately following the branch instruction. 

In the branch conditional instructions, the BO field combines different types of branches into 
one instruction. The BO field specifies how the branch is affected by or affects the Condition 
register and the Count register. The encoding for the BO field is described as follows: 

BO Description 

oooox 

0001x 

001xx 

0100x 

0101x 

011xx 

1x00x 

1x01x 

1x1xx 

Decrement CTR; then branch if the decremented CTR::;1:0 and condition is 
false. 

Decrement CTR; then branch if the decremented CTR=O and condition is 
false. 

Branch if condition is false. 

Decrement CTR; then branch if the decremented CTR::;!:Q and condition is 
true. 

Decrement CTR; then branch if the decremented CTR=O and condition is 
true. 

Branch if condition is true. 

Decrement CTR; then branch if the decremented CTR::;1:0. 

Decrement CTR; then branch if the decremented CTR=O. 

Branch always. 

2·20 General Information Manual 



Branch (I-Form) 
0 6 

I LI 

b target address (AA = 0, LK = 0) 
ba target address (AA = 1, LK = 1) 
bl target address (AA = 0, LK = 0) 
bla target address (AA = 1, LK = 1) 

27 31 

If AA equals 0, the branch target address is the sum of LI II b'OO' sign extended and the 
address of this instruction. 

If AA equals 1, the branch target address is the value, LI II b'OO' sign extended. 

If LK equals 1, the effective address of the instruction following the branch instruction is 
placed into the Link register. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Branch Conditional (B-Form) 
0 

be 
bca 
bcl 
bcla 

6 11 

I BO 

BO, Bl, target address 
BO, Bl, target address 
BO, Bl, target address 
BO, Bl, target address 

16 

I BO 

(AA = 0, LK = 0) 
(AA = 1, LK = 1) 
(AA = 0, LK = 0) 
(AA = 1, LK = 1) 

27 31 

The Bl field specifies the Condition register bit used as the condition of the branch. The BO 
field is used as described in "Branch Instructions" on page 2-20 . 

If AA equals O, the branch target address is the sum of BO II b'OO' sign extended and the 
address of this instruction. 

If AA equals 1, the branch target address is the value, BO II b'OO' sign extended. 

If LK equals 1, the effective address of the instruction following the branch instruction is 
placed into the Link register. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Processor Description 2·21 



Branch Conditional Register (XL-Form) 
0 6 11 16 21 31 

I 19 I BO Bl Ill 16 ILK I 
bcr 80,81 (LK = 0) 
bcrl 80,BI (LK = 1) 

The Bl field specifies the Condition register bit used as the condition of the branch. The BO 
field is used as described in "Branch Instructions" on page 2-20 and the branch target 
address is LR (0-29) II b'OO'. 

If LK = 1, the effective address of the instruction following the branch instruction is placed 
into the Link register. 

Condition Register (CR Field 0) 
- Set: None 

Fixed-Point Exception Register 
Set: None 

Branch Conditional To Count Register (XL-Form) 
0 6 11 16 

I 19 I BO Bl Ill 

bee 80,BI (LK = 0) 
bccl 80,BI (LK = 1) 

21 31 

528 ILK I 

The Bl field specifies the Condition register bit used as the condition of the branch. The BO 
field is used as described in "Branch Instructions" on page 2-20 and the branch target 
address is CTR (0-29) II b'OO'. 

The decrement CTR option is not defined for this instruction and can produce an undefined 
branch target address. 

If LK equals 1, the effective address of the instruction following the branch instruction is 
placed into the Link register. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

2·22 General Information Manual 



Supervisor Linkage Instruction 
The Supervisor Linkage instruction follows: 

Supervisor Call (SC-Form) 
0 6 11 16 20 26 27 31 

17 Ill Ill FL1 l LEV I FL2 SA LK 

17 Ill Ill sv SA LK 

svc LEV, FL 1, FL2 (SA "" 0, LK =0) 
svcl LEV, FL 1, FL2 (SA "" 0, LK =0) 
svca SV (SA - O, LK =0) 
svcla SV (SA "" O, LK =0) 

An SVC-type interrupt is generated. Bits 16-31 of the SVC instruction are placed into bits 
0-15 of the Count register. Bits 16-31 of the MSR are placed into bits 16-31 of the Count 
register. MSR bits (EE, PR, and FE) are set to 0. MSR bits (FP, ME, AL, IP, IR, and DR) are 
not altered. The SRRs are not affected. 

If SA equals 0, instruction fetch and execution continues at one of the 128 offsets, b'1' II LEV 
II b'OOOOO', to the base effective address indicated by the setting of MSR(IP). FL1 and FL2 
fields could be used for passing data to the SVC routine but are ignored by the hardware. 

If SA equals 1, instruction fetch and execution continues at the offset, X'1 FEO', to the base 
effective address indicated by the setting of MSR bit (IP). 

If LK equals 1, the effective address of the instruction following the SVC instruction is placed 
into the Link register. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Notes: 

1. If SA equals 0, the FL 1 and FL2 fields of the SVC instruction could have possible 
software uses for passing parameters to the SVC routine. 

2. If SA equals 1, the SV field of the SVC instruction could have possible software 
uses for passing parameters to the SVC routine. 

3. To insure correct operation, an SVC instruction must be preceded by an 
unconditional branch or a condition register op without an intervening conditional 
branch. If a useful instruction cannot be scheduled as specified, a no-op version 
of the Condition Register OR instruction can be inserted. 

Instruction No-op Version 

cror BT, BA, BB BT:BA=BB 

Processor Description 2-23 



Trap Instructions 
The trap instructions test for a specified set of conditions. If any of the conditions tested by a 
trap instruction are met, a trap-type program interrupt occurs. If the tested conditions are not 
met, instruction execution continues normally. 

The contents of register RA is compared with either the sign-extended SI field or with the 
contents of register RB, depending on the trap instruction. This comparison results In five 
conditions that are ANDed with the TO field. If the result is not 0, a trap-type program 
interrupt occurs. These conditions are: 

TO bit 

6 

7 

8 

9 

10 

ANDed with Condition 

Compares less than 

Compares greater than 

Compares equal 

Compares logically less than 

Compares logically greater than. 

Trap Immediate (D-Form) 
0 6 11 16 

03 I TO RA SI 

ti TO, RA, SI 

31 

The contents of register RA is compared with the sign-extended SI field. If any 
corresponding bit in the TO field and its respective condition generated as a result of the 
compare are both on, a trap-type program interrupt is generated. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Trap (X-Form) 
0 

31 

6 11 

I TO 

TO, RA, RB 

16 21 31 

RA RB 4 

The contents of register RA is compared with the contents of register RB. If any 
corresponding bit in the TO field and its respective condition generated as a result of the 
compare are both on, a trap-type program interrupt is generated. 

Condition Register (CR Field 0) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception Register 
Set: None 

2·24 General Information Manual 



Condition Register Field Instruction 
The Condition Register Field instruction follows: 

Move Condition Register Field (XL-Form) 
0 6 9 11 14 16 21 31 

I 19 I BF 1111 BFA 111 I Ill lo 
mcrf BF, BFA 

The contents of the Condition register field j, where j = BFA, are copied into the CR Field i, 
where i = BF. All other fields remain unchanged. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR Field 0) 
Set: CR Field i, where i = BF 

Fixed-Point Exception register 
Set: None 

Condition Register Logical Instructions 
The Condition Register Logical instructions follow: 

Condition Register Equivalent (XL-Form) 
0 6 11 16 

I 19 I BT I BA I BB 

creqv BT, BA, BB 

21 

I 2a9 

31 

The Condition register bit specified by the BA field is XORed with the Condition register bit 
specified by the BB field and the complemented result is placed into the Condition register 
bit specified by the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition Register (CR bit i, i = BT) 
Set: CR (BT) 

Fixed-Point Exception Register 
Set: None 

Processor Description 2·25 



Condition Register XOR (XL-Form) 
0 6 11 16 21 31 

I 19 I BT I BA I BB I 193 

crxor BT, BA, BB 

The Condition register bit specified by the BA field is XORed with the Condition register bit 
specified by the BB field and the result is placed into the Condition register bit specified by 
the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR bit i, i == BT) 
Set: CR (BT) 

Fixed-Point Exception register 
Set: None 

Condition Register AND (XL-Form) 
0 6 11 

I 19 I BT I BA 

crand BT, BA, BB 

16 21 

I BB I 2s1 

31 

The Condition register bit specified by the BA field is ANDed with the Condition register bit 
specified by the BB field and the result is placed into the Condition register bit specified by 
the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR bit i, i ... BT) 
Set: CR (BT) 

Fixed-Point Exception register 
Set: None 

Condition Register OR (XL-Form) 
0 6 11 

1 19 I BT I BA 

cror BT, BA, BB . 

16 21 

I BB I 449 

31 

The Condition register bit specified by the BA field is ORed with the Condition register bit 
specified by the BB field and the result Is placed into the Condition register bit specified by 
the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR bit i, i ... BT) 
Set: CR (BT) 

Fixed-Point Exception register 
Set: None 

2-26 General Information Manual 



Condition Register AND With Complement (XL-Form) 
0 6 11 16 21 31 

1 19 I BT I BA I BB I 129 

crandc BT, BA, BB 

The Condition register bit specified by the BA field is ANDed with the complement of the 
Condition register bit specified by the BB field and the result is placed into the Condition 
register bit specified by the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register {CR bit i, i ... BT) 
Set: CR {BT) 

Fixed-Point Exception register 
Set: None 

Condition Register OR With Complement (XL-Form) 
0 6 11 16 

I 19 I BT I BA I BB 

crorc BT, BA, BB 

21 

I 411 

31 

The Condition register bit specified by the BA field is ORed with the complement of the 
Condition register bit specified by the BB field and the result is placed into the Condition 
register bit specified by the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register {CR bit i, i ... BT) 
Set: CR {BT) 

Fixed-Point Exception Register 
Set: None 

Processor Description 2·27 



• 

Condition Register NANO (XL-Form) 
0 6 11 16 21 31 

1 19 I BT I BA I BB I 22s 

crnand BT, BA, BB 

The Condition register bit specified by the BA field is ANDed with the Condition register bit 
specified by the BB field and the complemented result is placed into the Condition register 
bit specified by the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR bit i, i = BT) 
Set: CR (BT) 

Fixed-Point Exception register 
Set: None 

Condition Register NOR (XL-Form) 
0 6 11 

I 19 I BT I BA 

crnand BT, BA, BB 

16 21 

I BB I 33 

31 

The Condition register bit specified by the BA field is ORed with the Condition register bit 
specified by the BB field and the complemented result is placed into the Condition register 
bit specified by the BT field. 

If LK equals 1, the contents of the Link register is undefined. 

Condition register (CR bit i, i = BT) 
Set: CR (BT) 

Fixed-P.oint Exception register 
Set: None 

2·28 General Information Manual 



Fixed-Point Processor Registers 
This section describes the registers In the fixed-point processor facility. 

General Purpose Registers 
All manipulation of information is done in registers internal to the processing unit (PU). The 
principal storage within the fixed-point processor is a set of 32 general purpose registers 
(GPRs). Each GPA consists of 32 bits. See Figure 9 for an example of the general purpose 
registers. 

0 31 

GPROO 

GPR01 

GPR30 

GPR31 

Figure 9. General Purpose Registers 

Fixed-Point Exception Register 
The Fixed-Point Exception register (XER) is in the fixed-point unit and is 32 bits wide. 

0 

Bit 

0 

1 

31 

XER 

Description 

Summary Overflow (SO) 

The Summary Overflow bit is set to 1 whenever an instruction sets the 
Overflow bit to indicate overflow and remains set until software resets it. 
The SO bit is not altered by the compare instructions. 

Overflow (OV) 

The Overflow bit is set to indicate that an overflow has occurred during an 
instruction operation. In the case of add and subtract instructions, it is set to 
1 if the carry out of bit O is not equal to the carry out of bit 1 . Otherwise the 
OV bit is set to 0. The OV bit is not altered by the compare instructions. 

Processor Description 2-29 

• 



2 Carry (CA) 

The Carry bit is set to indicate a carry from bit o of the computed result. In 
the case of add and subtract instructions, it is set to 1 if the operation 
generates a carry out of bit O. Otherwise, the CA bit is set to o. The CA bit is 
not altered by the compare instructions. 

3-15 Reserved 

16-23 Used by the Load String and Compare Byte Indexed instruction as the byte 
being compared against. 

24 Reserved 

25-31 Used by Load String Indexed, load String and Compare Byte Indexed, and 
Store String Indexed instructions to indicate the number of bytes loaded or 
stored. 

Multiply Quotient Register 
The Multiply Quotient (MQ) register is a 32-bit register that provides a register extension to 
accommodate the product for the multiply instructions and the dividend for the divide 
instructions. The MQ register is also used as an operand of long rotate and shift instructions 
and as a temporary storage facility for store string instructions. 

0 31 

MQ 

2·30 General Information Manual 



Fixed-Point Processor Instructions 
This section describes the fixed-point processor instructions used in the RISC System/6000 
system. The load instructions generate the effective address (EA) as described in "Effective 
Address Calculation" on page 2-14. The byte, halfword, or word in memory addressed by the 
EA is loaded into register RT if the memory access does not cause an Alignment Interrupt or 
a Data Storage Interrupt. 

Load Byte And Zero (D-Form) 
0 6 11 16 31 

I 34 I RT RA D 

lbz RT,D(RA) 

Let the effective address (EA) be the sum (RAIO)+ D. 

The byte in memory addressed by the EA is loaded into bits 24-31 of register RT. Bits 0-23 
of register RT are set to O. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Byte And Zero Indexed (X-Form) 
0 6 11 

I 31 I RT I RA 

lbzx RT, RA, RB 

16 

I RB 

Let the effective address (EA) be the sum (RAIO) + (RB). 

21 31 

87 

The byte in memory addressed by the EA is loaded into bits 24-31 of register RT. Bits 0-23 
of register RT are set to 0. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2-31 



Load Half And Zero (D-Form) 
0 6 11 16 31 

I 40 I RT D 

lhz RT, D(RA) 

Let the effective address (EA) be the sum (RAIO)+ D. If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1 , and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is loaded into bits 16-31 of register RT. Bits 
0-15 of register RT are set to 0. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Half And Zero Indexed (X-Form) 
0 6 11 

I a1 I RT 

lhzx RT, RA, RB 

16 21 31 

RA RB 279 

Let the effective address (EA) be the sum (RAIO)+ (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is loaded into bits 16-31 of register RT. Bits 
0-15 of register RT are set to 0. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

2-32 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Load Half Algebraic {D-Form) 
0 6 11 16 31 

I 42 I RT I D 

Iha RT, D(RA) 

Let the effective address (EA) be the sum (RAIO)+ D. If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is loaded into bits 16-31 of register RT. Bits 
0-15 of register RT are filled with a copy of bit O of the loaded halfword. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Half Algebraic Indexed {X-Form) 
0 6 11 

I 31 I RT I RA 

lhax RT, RA, RB 

16 21 31 

I RB I 343 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1 , and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is loaded into bits 16-31 of ·register RT. Bits 
0-15 of register RT are filled with a copy of bit O of the loaded halfword. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-33 



Load (D-Form) 
0 

I 32 

6 

I RT 

RT, D(RA) 

11 16 31 

I D 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals O, the two-low order bits of the EA are ignored. If alignment checking Is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

The word in memory addressed by the EA is loaded into register RT. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Loadlndexed(X-Form) 
0 

I 31 

6 

I RT 

Ix RT, RA, RB 

11 

I RA 

16 21 

I RB I 23 

31 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals O, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

The word in memory addressed by the EA is loaded into register RT. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

2-34 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Load Half Byte Reverse Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RT I RA I RB I 190 

lhbrx RT, RA, RB 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not O, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If EA addresses an 1/0 segment and 
the hardware cannot perform the access, an Alignment Interrupt is generated. 

Bits 0-7 of the halfword in memory addressed by the EA are loaded into bits 24-31 of 
register RT. Bits 8-15 of the halfword addressed by the EA are placed into bits 16-23 of 
register RT. Bits 0-15 of register RT are set to O. 

Condition register (CR Field 0) 
Set: None (If Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Load Byte Reverse Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RT I RA I RB I 534 

lbrx RT, RA, RB 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 
segment and the hardware cannot perform the access, an Alignment Interrupt is generated. 

Bits 0-7 of the word in memory addressed by the EA are placed into bits 24-31 of register 
RT. Bits 8-15 of the word addressed by the EA are placed into bits 16-23 of register RT. Bits 
16-23 of the word addressed by the EA are placed into bits 8-15 of register RT. Bits 24-31 
of the word addressed by the EA are placed into bits 00-07 of register RT. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2·35 



Load Multiple (D-Form) 
0 

I 46 

6 

I RT 

Im RT, D(RA) 

Let N equal (32 - RT field). 

11 16 31 

RA D 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, then an 
Alignment Interrupt is generated. 

Starting at that effective address, N consecutive words are placed Into the GPRs starting at 
register RT and filling all the GPRs through GPR 31. 

If register RA is within the range to be loaded and RA t:. 0, data is not written into the 
register. The data for register RA is discarded and the operation continues normally. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the 
instruction from the beginning. 

2-36 General Information Manual 



Fixed-Point Store Instructions 
The store instructions generate the effective address (EA) as described in "Effective Address 
Calculation" on page 2-14. The contents of register RS are placed into the byte, halfword, or 
word in memory addressed by the EA if the memory access does not cause an Alignment 
Interrupt or a Data Storage Interrupt. 

Store Byte (D-Form) 
0 

I 38 

6 

I RS 

stb RS, D(RA) 

11 16 

I D 

Let the effective address (EA) be the sum (RAIO) + D. 

31 

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register 
RS is unchanged. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store Byte Indexed (X-Form) 
0 6 11 

I 31 I RS I RA 

stbx RS, RA, RB 

16 

I RB 

Let the effective address (EA) be the sum (RAIO) + (RB). 

21 31 

215 

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register 
RS is unchanged. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-37 



Store Half (D-Form) 
0 

I 44 

6 

I RS 

sth RS, D(RA) 

11 16 31 

I D 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA. 
Register RS is unchanged. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store Half Indexed (X-Form) 
0 6 11 

I 31 I RS I RA 

sthx RS, RA, RB 

16 21 31 

I RB I 407 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA. 
Register RS is unchanged. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

2·38 General Information Manual 



Store (D-Form) 
0 

I 36 

6 

I RS 

st RS, D(RA) 

11 16 31 

I RA I D 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the 
EA. Register RS is unchanged. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store Indexed (X-Form) 
0 

I 31 

6 

I RS 

stx RS, RA, RB 

11 

I RA 

16 21 31 

I RB I 1s1 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the 
EA. Register RS is unchanged. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-39 



Store Half Byte Reverse Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RS I RA I RB I 91a 

sthbrx RS, RA, RB 

Let the effective address (EA) be the sum (RAIO)+ (RB). If alignment checking is disabled, 
MSR(AL) equals O, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not O, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

Bits 24-31 of register RS are placed into memory in bits 0-7 of the halfword in memory 
addressed by the EA. Bits 16-23 of register RS are placed into memory in bits 8-15 of the 
halfword in memory addressed by the EA. Register RS is unchanged. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

Store Byte Reverse Indexed (X-Form) 
0 6 11 

I 31 I RS I RA 

stbrx RS, RA, RB 

(if Re= 0) 
(if Re= 1) 

16 

I RB 

21 31 

I 662 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals O, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

Bits 24-31 of register RS are placed into memory in bits 0-7 of the memory word addressed 
by the EA. Bits 16-23 of register RS are placed into memory in bits 08-15 of the memory 
word addressed by the EA. Bits 8-15 of register RS are placed into memory in bits 16-23 of 
the memory word addressed by the EA. Bits 0-7 of register RS are placed into memory in 
bits 24-31 of the memory word addressed by the EA. Register RS is unchanged. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

2·40 General Information Manual 



Store Multiple (D-Form) 
0 

I 47 

6 

I RS 

stm RS, D(RA) 

Let N equal (32 - RS field). 

11 16 31 

RA D 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals O, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, an Alignment 
Interrupt is generated. 

Starting at the EA, N consecutive words are stored from register RS through register 31. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the 
instruction from the beginning. 

Processor Description 2-41 



Fixed-Point Load with Update Instructions 
The load with update instructions generate the effective address (EA) as described In 
•effective Address Calculation" on page 2-14. 

If RA :t:. 0, RA :t:. RT, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the effective address is placed into register RA. After the update, if the 
memory access does not cause an Alignment Interrupt or a Data Storage Interrupt, the byte, 
halfword, or word in memory addressed by the EA is placed into register RT. 

When RA equals RT, the register contains the data loaded from memory, not the effective 
address. If RA equals O or RA equals RT, the effective address is not saved. 

Load Byte And Zero With Update {D-Form) 
0 6 11 16 31 

I 35 I RT I D 

lbzu RT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. 

The byte in memory addressed by the EA is placed into bits 24-31 of register RT. Bits 0-23 
of register RT are set to O. 

If RA :t:. RT, RA :t:. 0, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Byte And Zero With Update Indexed {X-Form) 
0 6 11 16 

I 31 I RT I RA I RB 

lbzux RT, RA, RB 

Let the effective address (EA) be the sum (RAIO) + (RB). 

21 31 

119 

The byte in memory addressed by the EA is placed into bits 24-31 of register RT. Bits 0-23 
of register RT are set to O. 

If RA :t:. RT, RA :t:. 0, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

2-42 General Information Manual 



Load Half And Zero With Update (D-Form) 
0 6 11 16 31 

I 41 I RT I D 

lhzu RT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is placed into bits 16-31 of register RT. Bits 
0-15 of register RT are set too. 

If RA ¢ RT, RA ¢ O, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Half And Zero With Update Indexed (X-Form) 
0 6 11 16 

I 31 I RT RA RB 

lhzux RT, RA, RB 

21 31 

311 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in rrlemory addressed by the EA is placed into bits 16-31 of register RT. Bits 
0-15 of register RT are set to O. 

If RA ,,_ RT, RA ¢ 0, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt,, the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-43 



/ 

Load Half Algebraic With Update {D-Form) 
0 6 11 16 31 

I 43 I RT I D 

lhau RT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals O, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is placed into bits 16-31 of register RT. Bits 
0-15 of register RT are filled with a copy of bit O of the placed halfword. 

If RA -:1: RT, RA * O, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load Half Algebraic With Update Indexed {X-Form) 
0 6 11 16 

I 31 I RT I RA I RB 

lhaux RT, RA, RB 

21 31 

I 375 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

The halfword in memory addressed by the EA is placed into bits 16-31 of register RT. Bits 
0-15 of register RT are filled with a copy bit O of the placed halfword. 

If RA -:1: RT, RA * 0, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field 0) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

2·44 General Information Manual 



Load With Update {D-Form) 
0 6 11 16 31 

I 33 I RT RA D 

lu RT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

The word in memory addressed by the EA is placed into register RT. 

If RA t: RT , RA t: 0, and the memory access does not cause an Alignment Interrupt or a 
Data Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Load With Update Indexed {X-Form) 
0 6 11 

I 31 I RT 

lux RT, RA, RB 

16 21 31 

RA RB 55 

Let the effective address (EA) be the sum (RAIO)+ (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

The word in memory addressed by the EA is placed into register RT. 

If RA t: RT, RA t: 0, and the memory access does not cause an Alignment Interrupt or a Data 
Storage Interrupt, the EA is placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-45 



Fixed-Point Store with Update Instructions 
The store with update instructions generate the effective address (EA) as described in 
"Effective Address Calculation" on page 2-14. 

The contents of register RS are are placed into memory in the byte, halfword, or word in 
memory addressed by the EA if the memory access does not cause an Alignment Interrupt 
or a Data Storage Interrupt. 

If RA '# O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

In the store with update instructions, if RS equals RA, the contents of register RS are placed 
into memory in the byte, halfword, or word in memory addressed by the EA and the effective 
address is placed into register RA. 

Store Byte With Update (D-Form) 
0 6 11 16 31 

I 39 I RS RA D 

stbu RS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. 

Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA. 

If RA '# O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store Byte With Update Indexed (X-Form) 
0 6 11 

I 31 I RS RA 

stbux RS, RA, RB 

16 

RB 

Let the effective address (EA) be the sum (RAIO) + (RB). 

21 31 

247 

Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA. 

If RA '# O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

2·46 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Store Half With Update (D-Form) 
0 6 11 16 31 

I 45 I RS I D 

sthu RS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not 0, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

Bits 16-31 of register RS are stored in the halfword in memory addressed by the EA. 

If RA"' O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store Half With Update Indexed (X-Form) 
0 6 11 

I 31 I RS I RA 

sthux RS, RA, RB 

16 21 31 

I RB I 439 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the low-order bit of the EA is ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the low-order bit of the EA is not O, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. 

Bits 16-31 of register RS are stored in the halfword in memory addressed by the EA. 

If RA"' 0 and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2-47 



Store With Update (D-Form) 
0 6 11 16 31 

I 37 I RS I D 

stu RS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking Is disabled, 
MSR(AL) equals 0, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL) equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

Bits o-31 of register RS are stored in the word in memory addressed by the EA. 

If RA ~ O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address Is placed into register RA. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Store With Update Indexed (X-Form) 
0 6 11 

I 31 I RS I RA 

stux RS, RA, RB 

16 21 31 

I RB I 1a3 

Let the effective address (EA) be the sum (RAIO} + (RB}. If alignment checking is disabled, 
MSR(AL) equals O, the two low-order bits of the EA are ignored. If alignment checking is 
enabled, MSR(AL} equals 1, and the two low-order bits of the EA are not 00, the hardware 
attempts to perform the unaligned memory access. If the hardware cannot perform the 
unaligned memory access, an Alignment Interrupt is generated. 

Bits 0-31 of register RS are stored in the word in memory addressed by the EA. 

If RA ~ O and the memory access does not cause an Alignment Interrupt or a Data Storage 
Interrupt, the effective address is placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

2-48 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Fixed-Point Move Assist Instructions 
The string instructions allow movement of data from memory to registers or from registers to 
memory without concern for alignment. These instructions can be used for a short move 
between arbitrary memory locations or to initiate a long move between unaligned memory 
fields. 

Load String Indexed and Store String Indexed instructions of zero length have no effect on 
memory, PFT entries, nor 1/0 if T equals1, and do not cause data storage interrupts. Load 
String Indexed instructions of zero length do not alter the contents of register RT. 

Load String Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RT RA RB I 533 

lsx RT, RA, RB 

Let the effective address (EA) be the sum (RAIO) + (RB). Let XER(25-31) contain the byte 
count. Let register RT be the starting register. 

Let N equal XER(25-31 ), which is the number of bytes to be placed. Let NR equal ceil(N/4), 
which is the number of registers to receive data. Starting with the leftmost byte in register 
RT, N consecutive bytes in memory addressed by the EA are placed into register RT through 
RT+ NR-1, wrapping around back through the GPA O if required. Bytes are always placed 
left to right in the register. In the case when register RT + NR- 1 is only partially filled on the 
left, the rightmost bytes of that register are set to O. When XER(25-31) equals O, register RT 
is not altered. 

Registers RA (if RA :f:. 0) and RB, if in the range to be placed, are not written into. The data 
that would have been written into them is discarded, and the operation continues normally. 
The MO register is not affected by this operation. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the 
instruction is restarted from the beginning. 

Processor Description 2·49 



Load String Immediate (X-Form) 
0 6 11 16 21 31 

I 31 I RT I RA I NB I s91 

Isl RT, RA, NB 

Let the effective address (EA) be (RAIO). Let NB be the byte count. Let register RT be the 
starting register. 

Let N equal NB which is the number of bytes to load. If NB equals 0, N equals 32. Let NR 
equal ceil(N/4) which is the number of registers to receive data. Starting with the leftmost 
byte in register RT, N consecutive bytes in memory addressed by the EA are placed into 
register RT through RT + NR- 1, wrapping around back through the GPA 0 if required. 
Bytes are always placed left to right in the register. In the case when register RT + NR- 1 is 
only partially filled on the left, the rightmost bytes of that register are set to 0. 

Register RA (if RA '#. 0), if in the range to be placed, is not written into. The data that would 
have been written into it is discarded, and the operation continues normally. The MO register 
is not affected by this operation. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the 
instruction is restarted from the beginning. 

Load String And Compare Byte Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RT RA RB 277 I Re I 
lscbx RT, RA, RB (Re= 0) 

lscbx. RT, RA, RB (Re= 1) 

Let the effective address (EA) be the sum (RAIO) + (RB). Let XER(25-31) contain the byte 
count. Let register RT be the starting register. 

Let N equal XER(25-31 ), which is the number of bytes to be placed. Let NR equal ceil(N/4), 
which is the number of registers to receive data. 

Starting with the leftmost byte in register RT, consecutive bytes in memory addressed by the 
EA are placed into register RT through RT + NR- 1, wrapping around back through the 
GPR O if required, until either a byte match is found with XER16-23 or N bytes have been 
placed. If a byte match is found, that byte is also placed. 

Bytes are always placed left to right in the register. In the case when a match was found 
before N bytes were placed, the contents of the rightmost bytes not placed of that register 
and the contents of all succeeding registers up to and including register RT + NR- 1 are 
undefined. Also, no reference is made to memory after the matched byte is found, thus 
ensuring no spurious data storage interrupts are generated. In the case when a match was 
not found, the contents of the rightmost bytes not placed of register RT + NR- 1 is 
undefined. 

When XER(25-31) equals O, register RT is not altered. 

2·50 General Information Manual 



The count of the number of bytes placed up to and including the matched byte, if a match 
was found, is placed in XER(25-31 ). 

Registers RA (if RA :f. 0) and RB, if in the range to be placed, are not written into. The data 
that would have been written into them is discarded, and the operation continues normally. If 
the byte in XER 16-23 compares with any of the four bytes that would have been placed in 
register RA or register RB but are being discarded for restartability, the EQ bit and the count 
returned in XER(25-31) are undefined. 

The MQ register is not affected by this operation. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 

(if Re= 0) 
(if Re= 1) 

Set: XER(25-31) equals number of bytes loaded 

Notes: 

1. If Re equals 1 and XER(25-31) equals 0, CR Field O is undefined. If Re equals 1 
and XER(25-31) does not equals 0, CR Field 0 is set as follows: 

LT GT EQ SO equals b'OO'llmatchllXER(SO) 

2. A data storage interrupt can interrupt this instruction. If an interrupt occurs, the 
instruction is restarted from the beginning. 

3. When the the EA specifies an 110 segment, the hardware may not be able to meet 
the requirement that locations beyond the location containing the matching byte 
are not accessed. The hardware may fetch the number of bytes specified by 
XER(25-31) and then search for the matching byte. Accessing locations beyond 
the matching byte could cause spurious access violation exceptions. 

Processor Description 2·51 



Store String Indexed (X-Form) 
0 6 11 16 21 31 

I 31 I RS I RA I RB 661 

stsx RS, RA, RB 

Let the effective address (EA) be the sum (RAIO) + (RB). Let XER(25-31) contain the byte 
count. Let register RS be the starting register. 

Let N equal XER(25-31 ), which is the number of bytes to store. Let NR equal ceil(N/4) which 
is the number of registers to store data from. Starting with the leftmost byte in register RS, N 
consecutive bytes are stored starting at the EA from register RS, through register RS + NR-
1. 

The contents of the MQ register is undefined. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the 
instruction is restarted from the beginning. 

Store String Immediate (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA NB 725 

stsi RS, RA, NB 

Let the effective address (EA) be (RAIO). Let NB be the byte count. Let register RS be the 
starting register. 

Let N equal NB, which is the number of bytes to store. If NB equals 0, N equals 32. Let NR 
equal ceil(N/4) which is the number of registers to store data from. Starting with the leftmost 
byte in register RS, N consecutive bytes are stored starting at the address in RA from 
register RS, through register RS + NR- 1. 

The contents of the MO register is undefined. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the 
instruction is restarted from the beginning. 

2·52 General Information Manual 



Fixed-Point Address Computation Instructions 
Compute Address Lower (D-Form) 

0 6 11 16 

I 14 I RT I D 

cal RT, D(RA) 

The sum (RAIO) + D is placed into register RT. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

Compute Address Upper (D-Form) 
0 6 11 

I 1s I RT 

cau RT, RA, UI 

16 

I UI 

The sum (RAIO) + UlllX'OOOO' is placed into register RT. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

Compute Address (XO-Form) 
0 6 11 16 

I 31 I RT RA I RB 

cax RT, RA, RB (Re = 0, OE = 0) 

cax. RT, RA, RB (Re = 1, OE = 0) 

caxo RT, RA, RB (Re= 0, OE= 1) 

caxo. RT, RA, RB (Re = 1, OE = 1) 

The sum (RA) + (RB) is placed into register RT. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 
Set:SOOV 

(if OE= 0) 
(if OE= 1) 

31 

31 

21 22 31 

Processor Description 2·53 



Fixed-Point Arithmetic Instructions 
The arithmetic instructions treat registers as 32-bit signed integers. 

The (X-Form) arithmetic instructions with Re equals 1 and the (D-Form) arithmetic 
instruction, Add Immediate, set CR Field O by a compare of the result to zero. ai, ai., ame, 
aze, sfi, sfme, sfze, ae, and sfe instructions always set the CA bit to reflect the carry out of 
bit 0. However, the (XO-Form)s only set the CR Field O when Re equals 1, and the SO and 
OV in the XER when OE equals 1. 

The following is the interpretation of the CR Field O: 

Bit Name Description 
O LT Compares less than, negative 
1 GT Compares greater than, positive 
2 EQ Compares equal to, zero 
3 SO Summary overflow from the XER. 

The following is the interpretation of the XER: 

Bit Name Description 
O SO Summary overflow 
1 OV Overflow 
2 CA Carry. 

Add Immediate (D-Form) 
0 6 11 16 

I 12 I RT 

ai RT, RA, SI 

The sum (RA) + SI is placed into register RT. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: CA 

Add Immediate And Record (D-Form) 
0 6 11 

I 13 I RT 

ai. RT, RA, SI 

16 

The sum (RA) + SI is placed into register RT. 

Condition register (CR Field O) 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 

2·54 General Information Manual 

SI 

SI 

31 

31 



Subtract From Immediate (D-Form) 
0 6 11 16 

I oa I RT I SI 

sfi RT, RA, SI 

The sum ...., (RA) + SI + 1 is placed into register RT. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: CA 

31 

Note: Subtract From Immediate instruction -1 can be used to obtain the one's complement. 

Add (XO-Form) 
0 

I 31 

a 

6 

I RT 

RT, RA, RB 

11 16 

RA I RB 

(OE = 0, Re = 0) 

a. RT, RA, RB (OE= 0, Re= 1) 

ao RT, RA, RB (OE = 1 , Re = 0) 

ao. RT, RA, RB (OE= 1, Re= 1) 

The sum (RA) + (RB) is placed into register RT. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: LT GT EQ so (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set: SOOVCA 

(if OE= 0) 
(if OE= 1) 

21 22 31 

I OE I 10 

Processor Description 2·55 



Subtract From (XO-Form) 
0 6 11 16 

I 31 I RT RA I RB 

sf RT, RA, RB (OE = 0, Re = 0) 

sf. RT, RA, RB (OE • 0, Re • 1) 

sfo RT, RA, RB (OE= 1, Re= 0) 

sfo. RT, RA, RB (OE= 1, Re= 1) 

The sum -, (RA) + (RB) + 1 is placed Into register RT. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

Add Extended (XO-Form) 

(if OE= 0) 
(if OE= 1) 

0 6 11 16 

I 31 

ae 

ae. 

aeo 

aeo. 

I RT 

RT, RA, RB 

RT, RA, RB 

RT, RA, RB 

RT, RA, RB 

RA I RB 

(OE = 0, Re = 0) 

(0E=0,Rc=1) 

(OE = 1 , Re = 0) 

(OE = 1, Re = 1) 

The sum (RA) + (RB) + CA is placed into register RT. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

2·56 General Information Manual 

(if Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 

21 22 31 

loel a I Re I 

21 22 31 

I OE I 138 



Subtract From Extended (XO-Form) 
0 6 11 16 

I 31 I RT RA I RB 

sf e RT, RA, RB (OE = 0, Re = 0) 

sfe. RT, RA, RB (OE = 0, Re = 1) 

sfeo RT, RA, RB (OE = 1, Re = 0) 

sfeo. RT, RA, RB (OE = 1, Re = 1) 

The sum ...., (RA) + (RB) + CA is placed into register RT. 

Condition register {CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

{if Re= 0) 
{if Re= 1) 

(if OE= 0) 
{if OE= 1) 

Add To Minus One Extended (XO-Form) 
0 6 11 16 

I a1 I RT RA I '" 
ame RT, RA {OE = 0, Re = 0) 

ame. RT, RA (OE = 0, Re = 1) 

ameo RT,RA (OE = 1, Re = 0) 

ameo. RT,RA (OE = 1, Re = 1) 

21 22 31 

21 22 31 

The sum ...., (RA) + CA + X'FFFFFFFF' is placed into register RT. 

Condition register (CR Field 0) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

(if OE= 0) 
(if OE= 1) 

Processor Description 2-57 



Subtract From Minus One Extended (XO-Form) 
0 6 11 16 21 22 

I 31 I RT RA I /11 loel 232 

sf me RT,RA (OE = 0, Re = 0) 

sf me. RT,RA (OE = 0, Re = 1) 

sfmeo RT,RA (OE "" 1, Re = 0) 

sfmeo. RT,RA (OE = 1, Re = 1) 

The sum ..., (RA) + CA + X'FFFFFFFF' is placed into register RT. 

Condition register (CR Field 0) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

Add To Zero Extended (XO-Form) 

(if OE= 0) 
(if OE= 1) 

0 6 11 16 

I 31 

aze 

aze. 

azeo 

azeo. 

I RT 

RT, RA 

RT, RA 

RT,RA 

RT,RA 

RA I /11 

(OE = 0, Re = 0) 

(0E=0,RC=1) 

(OE = 1, Re = 0) 

(OE = 1 , Re = 1) 

21 22 

I OE I 202 

The sum (RA) + CA + X'OOOOOOOO' is placed into register RT. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

2·58 General Information Manual 

(if Re= 0) 
(if Re= 1) 

(If OE= 0) 
(if OE= 1) 

31 

I Re I 

31 



Subtract From Zero Extended (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I /11 loEI 200 I Re I 

sfze RT,RA (OE .. 0, Re = 0) 

sfze. RT,RA (OE = 0, Re = 1) 

sfzeo RT,RA (OE = 1, Re = 0) 

sfzeo. RT,RA (OE = 1, Re = 1) 

The sum ..., (RA) + CA + X'OOOOOOOO' is placed into register RT. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 
Set:SOOVCA 

Difference Or Zero Immediate (D-Form) 
0 6 11 

I os I RT 

dozi RT, RA, SI 

(if Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 

16 

I SI 

31 

The sum ..., (RA) + SI + 1 is placed into register RT. If the value in register RA is algebraically 
greater than the value of the SI field, register RT is set to o. 
Condition register (CR Field 0) 

Set: None 

Fixed-Point Exception register 
Set: None 

Note: This instruction is useful in computing the minimum and maximum of signed integers. 

Processor Description 2·59 



Difference Or Zero (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I RB loEI 264 I Re I 

doz RT, RA, RB (OE = 0, Re = 0) 

doz. RT, RA, RB (OE = 0, Re = 1) 

dozo RT, RA, RB (OE = 1, Re = 0) 

dozo. RT, RA, RB (OE = 1 , Re = 1) 

The sum -,(AA) + (RB) + 1 is placed into register RT. If the value in register RA is 
algebraically greater than the value in register RB, register RT is set to 0. If Re equals 1, the 
CR Field O is set to reflect the result placed in register RT (if register RT is set to 0, EQ is set 
to 1 ). If OE equals 1, the OV can only be set on positive overflows. 

Condition register (CR Field O) 
Set: None (if Re = O) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set: SO OV 

(if OE= 0) 
(if0E=1) 

Note: This instruction is useful in computing the minimum and maximum of signed integers. 

Absolute (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I Ill loel 360 I Re I 

abs RT, RA (OE = 0, Re = 0) 

abs. RT, RA (OE = 0, Re = 1) 

ab so RT, RA (OE = 1 , Re = 0) 

abso. RT, RA (OE = 1 , Re = 1 ) 

The absolute value l(RA)I is placed into register RT. If register RA contains the most 
negative number (X'80000000'), the result of the instruction is the most negative number 
and signals the OV bit if enabled. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: CA 
Set: SO OV 

2·60 General Information Manual 

(if OE= 0) 
(if OE= 1) 



Negate (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I "' loel 104 I Re I 

neg RT,RA (OE = 0, Re = 0) 

neg. RT,RA (OE = 0, Re = 1) 

nego RT,RA (OE = 1, Re = 0) 

nego. RT, RA (OE = 1, Re = 1) 

The sum ..., (RA) + 1 is placed into register RT. If register RA contains the most negative 
number (X'SOOOOOOO'), the result of the instruction is the most negative number and signals 
the OV bit if enabled. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 
Set: SOOV 

Negative Absolute (XO-Form) 

(If Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 

0 6 11 16 

I 31 

nabs 

nabs. 

I RT 

RT, RA 

RT,RA 

RA I "' 
(OE = 0, Re = 0) 

(OE = 0, Re = 1) 

nabso RT, RA (OE = 1, Re = 0) 

nabso. RT, RA (OE= 1, Re= 1) 

21 22 31 

I OE I 488 

The negative absolute value-l(RA)I is placed into register RT. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 
Set:SOOV 

(if Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 

The Negative Absolute instruction never overflows. If OE equals 1, the XER(OV) is set to O 
and XER(SO) is not changed. 

Processor Description 2-61 



Multiply (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I RB loel 107 I Re I 

mul RT, RA, RB {OE ... 0, Re = 0) 

mul. RT, RA, RB {OE = 0, Re • 1) 

mulo RT, RA, RB {OE = 1, Re = 0) 

mulo. RT, RA, RB {OE = 1, Re = 1) 

Bits o-31 of the product {RA) x {RB) are placed into register RT. Bits 32-63 of the product 
{RA) x {RB) are placed into the MO register. 

If Re equals 1, the LT, GT, and EO bits reflect the result in the MO register {the low-order 32 
bits). If OE equals1, the SO and OV bits are set to 1 if the product cannot be represented in 
32 bits. 

Condition register {CR Field O) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: None 
Set: SOOV 

Multiply Immediate (D-Form) 
0 6 11 

I 01 I RT 

mull RT, RA, SI 

{if Re= 0) 
{ifRc=1) 

{if OE• 0) 
{if OE .. 1) 

16 

I SI 

31 

Bits 32-63 of the product {RA) x SI are placed into register RT. The contents of the MO 
register is undefined. 

Condition register {CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

2·62 General Information Manual 



Multiply Short (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I RB loEI 235 I Re I 

muls RT, RA, RB (OE = 0, Re = 0) 

muls. RT, RA, RB (OE = 0, Re = 1) 

mulso RT, RA, RB (OE = 1, Re = 0) 

mulso. RT, RA, RB (OE = 1, Re = 1) 

Bits 32-63 of the product (RA) x (RB) are placed into register RT. The contents of the MO 
register is undefined. 

If Re equals 1 , the LT, GT, and EQ bits reflect the result in register RT (the low-order 32 
bits). If OE equals 1, the SO and OV bits are set to 1 if the product cannot be represented in 
32 bits. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 
Set:SOOV 

Divide (XO-Form) 

(if Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 

0 6 11 16 

I 31 

div 

div. 

dive 

divo. 

I RT 

RT, RA, RB 

RT, RA, RB 

RT, RA, RB 

RT, RA, RB 

RA 

(OE = 0, Re = 0) 

(OE = 0, Re = 1) 

(OE = 1, Re = 0) 

(OE= 1, Re= 1) 

21 22 31 

I OE I 331 

The quotient [(RA) II (MQ)] I (RB) is placed intq register RT. The remainder is placed into the 
MQ register. The remainder has the same sign as the dividend, except that a zero quotient 
or a zero remainder is always positive. The results obey the following equation: 

dividend= (divisor x quotien~ + remainder 

where dividend is the original (RA) II (MQ), divisor is the original (RB), quotient is the final 
(RT), and remainder is the final (MQ). 

If Re equals 1, the CR bits LT, GT, and EQ reflect the remainder. If OE equals 1, the SO and 
OV bits are set to 1 if the quotient cannot be represented in 32 bits. For the case of -231 

+-1, the MO register is set to O and-231 is placed in register RT. For all other overflows, 
(MQ), (RT), and CR Field O (if Re= 1) are undefined. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 

(if Re= 0) 
(if Re= 1) 

Processor Description 2·63 



Set: None (if OE= 0) 
Set: SO OV (if OE= 1) 

Divide Short (XO-Form) 
0 6 11 16 21 22 31 

I 31 I RT RA I RB loEI 363 

divs RT, RA, RB (OE = 0, Re = 0) 

divs. RT, RA, RB (OE = 0, Re = 1) 

divso RT, RA, RB (OE = 1, Re = 0) 

divso. RT, RA, RB (OE = 1, Re = 1) 

The quotient (RA) I (RB) is placed into register RT. The remainder is placed into the MQ 
register. The remainder has the same sign as the dividend, except that a zero quotient or a 
zero remainder is always positive. The results obey the following equation: 

dividend= (divisorx quotient) + remainder 

where dividend is the original (RA), divisor is the original (RB), quotient is the final (RT), and 
remainder is the final (MQ). 

If Re equals 1, the the CR bits LT, EQ and GT reflect the remainder. If OE equals 1 , the SO 
and OV bits are set to 1 if the quotient cannot be represented in 32 bits (as is the case when 
the divisor is 0, or the dividend is -231 and the divisor is -1 ). For the case of -231 + -1, the 
MQ Register is set to O and -231 is placed into register RT. For all other overflows, the (MQ), 
(RT), and CR Field O (if Re = 1) are undefined. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 
Set: SOOV 

2·64 General Information Manual 

(if Re= 0) 
(if Re= 1) 

(if OE= 0) 
(if OE= 1) 



Fixed-Point Compare Instructions 
In compare instructions, the BF field specifies one of the CR fields that receives the result of 
the compare. Compare operations either logically or algebraically compare the contents of 
register RA with the sign extended SI field, the UI field, or the contents of register RB. 

A logical compare operation is the comparison of two 32-bit unsigned integers. An algebraic 
compare operation is the comparison of two 32-bit signed integers. The compare operation 
sets one bit in the leftmost three bits of the CR field i to 1, the other two are set to O. The 
XER(SO) is copied into bit 3 of CR Field i. CR Field i bits are interpreted as follows: 

Bit Name Description 

0 LT (RA) < SI, UI, or (RB) 

1 GT (RA) > $1, UI, or (RB) 

2 EQ (RA) = SI, UI, or (RB) 

3 SO Summary Overflow from the XER 

Compare Immediate (D-Form) 
0 6 9 11 16 

I 11 I BF I II I RA I SI 

cmpi BF, RA, SI 

The contents of register RA are compared with SI as signed integers. 

Condition register 
Set: CR Field I, where i = BF 

Fixed-Point Exception register 
Set: None 

Compare (X-Form) 
0 

I 31 

6 9 11 

I BF I II I RA 

cmp BF, RA, RB 

16 21 

I RB lo 

31 

31 

The contents of register RA are compared with the contents of register RB as signed 
integers. CR Field O Is undefined if BF ¢ O and Re equals 1. 

Condition register 
Set: CR Field i, where i = BF 

Fixed-Point Exception register 
Set: None 

Processor Description 2·65 



Compare Logical Immediate (D-Form) 
0 6 9 11 16 

j 10 I BF I II I RA I UI 

cmpli BF, RA, UI 

The contents of register RA are compared with X'OOOO' II UI as unsigned integers. 

Condition register 
Set: CR Field I, where i = BF 

Fixed-Point Exception register 
Set: None 

Compare Logical (X-Form) 
0 6 9 11 

I 31 I BF I /1 I RA 

cmpl BF, RA, RB 

16 21 

I RB 

31 

31 

The contents of register RA are compared with the contents of register RB as unsigned 
integers. CR Field O is undefined if BF ,,_ 0 and Re equals 1. 

Condition register 
Set: CR Field i, where i = BF 

Fixed-Point Exception register 
Set: None 

2·66 General Information Manual 



Fixed-Point Logical Instructions 
The logical instructions perform the indicated operations by bit. 

The (X-Form} logical instructions with the Re bit set to 1 and the (D-Form} logical 
instructions, Add Immediate Lower and Add Immediate Upper, set bits 0-3 of the Condition 
register (CR Field O} by a compare of the result to o. The (X-Form) logical instructions with 
the Re bit set to O and the remaining (D-Form} logical instructions do not alter the Condition 
register. The logical operations do not change the CA, OV and SO bits in the XER. 

AND Immediate Lower (D-Form) 
0 6 11 16 31 

I 28 I UI 

andil. RA, RS, UI 

The contents of register RS are ANDed with x·oooo· II UI and the result is placed into 
register RA. 

Condition register (CR Field 0) 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

AND Immediate Upper (D-Form) 
0 6 11 

I 29 

andiu. RA, RS, UI 

16 31 

I UI 

The contents of register RS are ANDed with UI II X'OOOO' and the result is placed into 
register RA. 

Condition register (CR Field 0) 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

AND (X-Form) 
0 6 11 

I 31 I RS 

and RA, RS, RB 

and. RA, RS, RB 

16 21 31 

RA RB 28 

(Re ... O} 

(Re= 1} 

The contents of register RS are ANDed with the contents of register RB and the result is 
placed into register RA. 

Condition register (CR Field O} 
Set: None 
Set: LT GT EC SO 

(if Re ... O} 
(If Re= 1} 

Processor Description 2·67 



Fixed-Point Exception register 
Set: None 

OR Immediate Lower (D-Form) 
0 6 11 

I 24 

oril RA, RS, UI 

16 31 

I UI 

The contents of register RS are ORed with X'OOOO' II UI and the result is placed Into register 
RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

OR Immediate Upper (D-Form) 
0 6 11 

I 2s 
orlu RA, RS, UI 

16 31 

I UI 

The contents of register RS are ORed with UI II X'OOOO' and the result is placed into register 
RA. 

Condition register (CR Field O) 
Set: None 

Fixed-Point Exception register 
Set: None 

OR (X-Form) 
0 6 11 

I 31 I RS 

or RA, RS, RB 

or. RA, RS, RB 

16 21 31 

RA RB 444 

(Re= 0) 

(Re= 1) 

The contents of register RS are ORed with the contents of register RB and the result is 
placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

2·68 General Information Manual 

(if Re= 0) 
(if Re= 1) 



XOR Immediate Lower (D-Form) 
0 6 11 16 31 

I 26 RA I UI 

xoril RA, RS, UI 

The contents of register RS are XORed with X'OOOO' II UI and the result is placed into 
register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

XOR Immediate Upper (D-Form) 
0 6 11 

1 21 

xoriu RA, RS, UI 

16 31 

RA UI 

The contents of register RS are XORed with UI II X'OOOO' and the result is placed into 
register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed-Point Exception register 
Set: None 

XOR (X-Form) 
0 6 11 

I 31 RS 

xor RA, RS, RB 

xor. RA, RS, RB 

16 21 31 

RA RB 316 

(Re= 0) 

(Re= 1) 

The contents of register RS are XORed with the contents of register RB and the result is 
placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-69 



Equivalent (X-Form) 
0 6 11 16 21 

I 31 I RS RA RB 284 

eqv RA, RS, RB (Re= 0) 

eqv. RA, RS, RB (Re= 1) 

The contents of register RS are XORed with the contents of register RB and the 
complemented result is placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

AND With Complement (X-Form) 
0 

I 31 

andc 

andc. 

6 

I RS 

RA, RS, RB 

RA, RS, RB 

11 

RA 

(Re= 0) 

(Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

RB 
21 

60 

31 

I Re I 

31 

The contents of register RS are ANDed with the complement of the contents of register RB 
and the result is placed into register RA. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: LT GT EQ SO (if Re = 1) 

Fixed-Point Exception register 
Set: None 

OR With Complement (X-Form) 
0 6 11 

I 31 I RS 

ore RA, RS, RB 

ore. RA, RS, RB 

16 

RA RB 

(Re= 0) 

(Re= 1) 

21 31 

412 

The contents of register RS are ORed with the complement of the contents of register RB 
and the result is placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

2· 70 General Information Manual 

(if Re= 0) 
(if Re= 1) 



NOR (X-Form) 
0 6 11 16 21 

I 31 RS RA RB 124 

nor RA, RS, RB (Re= 0) 

nor. RA, RS, RB (Re= 1) 

The contents of register RS are ORed with the contents of register RB and the 
complemented result is placed into register RA. 

Condition register (CR Field 0) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

NANO (X-Form) 
0 6 11 

I 31 RS 

nand RA, RS, RB 

nand. RA, RS, RB 

16 

RA RB 

(Re= 0) 

(Re"' 1) 

21 

476 

The contents of register RS are ANDed with the contents of register RB and the 
complemented result is placed into register RA. 

Condition register (CR Field 0) 
Set: None (if Re "' 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Extend Sign (X-Form) 
0 6 11 

I 31 RS 

exts RA,RS 

exts. RA,RS 

16 

RA Ill 

(Re= 0) 

(Re= 1) 

21 

922 

31 

I Re I 

31 

31 

Bits 16-31 of register RS are placed into bits 16-31 of register RA. Bit 16 of register RS is 
placed into bits 0-15 of register RA. 

Condition register (CR Field O) 
Set: None (if Re "' 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2-71 



Count Leading Zeroes (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA Ill 26 I Re I 
cntlz RA,RS (Re= 0) 

cntlz. RA,RS (Re= 1) 

The number of leading 0-bits (the number of consecutive 0-bits starting at bit 0) of the 
contents of register RS are placed in register RA. This number always lies between O and 
32, inclusive. 

If Re equals 1, the LT, EQ, and GT bits are set to reflect the result. (In particular, if Re equals 
1, LT is always reset.) 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

2· 72 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Fixed-Point Rotate and Shift Instructions 
The fixed-point processor performs rotate operations on data from a general purpose 
register and returns the result, or a portion of the result, to a general purpose register. The 
rotate operations move a specified number of bits left. The bits that exit from bit position O 
enter at bit position 31. 

The shift instructions logically perform left and right shifts. The result of each instruction is 
placed into register RA under control of a generated mask. 

Fixed-Point Rotate with Mask Instructions 
If Re equals 1, the rotate instructions set bits in the CR according to the value of register RA 
at the completion of the instruction. The CR is set as if a compare between register RA and 
the value O had been performed. Rotate and shift operations do not change the OV and SO 
bits. Rotate and shift operations, except algebraic right shifts, do not change the CA bit. If Re 
equals 0, the CR is left unchanged. 

The result of the rotate instruction is either inserted into the register under control of the 
mask provided, or is ANDed with the mask before being placed into the register. 

When the rotate with insert is used, the result of the rotate operation is placed into register 
RA under control of the provided mask. If a mask bit is 1 , the associated bit of the rotated 
data (0 or 1) is placed into register RA; if the mask bit is O, the associated data bit (0 or 1) 
from the register remains unchanged. 

The rotate left instructions allow rotate right instructions to be performed (in concept) by a 
rotate left of 32-N, where N is the number of positions to rotate right. 

Rotate Left Immediate Then Mask Insert (M-Form) 
0 6 11 16 21 26 31 

I 20 I RS I RA I SH MB ME I Re I 
rlimi RA, RS, SH, MB, ME (Re= 0) 

rlimi. RA, RS, SH, MB, ME (Re= 1) 

The contents of register RS are rotated left the number of positions specified by bits 16-20 
of the instruction. The rotated data is inserted into register RA under control of the generated 
mask. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-73 



Rotate Left Then Mask Insert (M-Form) 
0 6 11 16 21 26 31 

I 22 I RS I RA I RB MB ME I Re I 
rimi RA, RS, RB, MB, ME (Re= 0) 

rimi. RA, RS, RB, MB, ME (Re= 1) 

The contents of register RS are rotated left the number of positions specified by bits 27-31 
of register RB. The rotated data is inserted into register RA under control of the generated 
mask. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Rotate Left Immediate Then AND With Mask (M-Form) 
0 6 11 16 

I 21 I RS I RA I SH 

rlimi RA, RS, SH, MB, ME (Re= 0) 

rlimi. RA, RS, SH, MB, ME (Re= 1) 

21 26 31 

MB ME I Re I 

The contents of register RS are rotated left the number of positions specified by bits 16-20 
of the instruction. The rotated data is ANDed with the generated mask and the result is 
placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

Rotate Left Then AND With Mask (M-Form) 
0 

I 23 

rlnm 

rlnm. 

6 11 

I RS I RA 

RA, RS, RB, MB, ME 

RA, RS, RB, MB, ME 

(if Re= 0) 
(if Re= 1) 

16 

I RB 

(Re= 0) 

(Re= 1) 

21 26 31 

MB I ME 

The contents of register-RS are rotated left the number of positions specified by bits 27-31 
of register RB. The rotated data is ANDed with the generated mask and the result is placed 
into register RA. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

2· 7 4 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Fixed-Point Rotate Bit Instructions 
Rotate Right And Insert Bit (X-Form) 

0 6 11 

I 31 I RS RA 

rrib RA, RS, RB (Re= 0) 

rrib. RA, RS, RB (Re= 1) 

16 21 31 

RB 537 

Bit O of register RS is rotated right the amount specified by bits 27-31 of register RB. The bit 
is then inserted into register RA. 

Condition register (CR Field 0) 
Set: None (if Re = 0) 
Set: LT GT EQ so (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Fixed-Point Bit Mask Instructions 
Mask Generate (X-Form) 

0 6 11 

I 31 RS RA 

maskg RA, RS, RB (Re= 0) 

maskg. RA, RS, RB (Re= 1) 

16 

RB 
21 31 

29 

Let mstart equal RS(27-31 ), specifying the starting point of a mask of ones. Let mstop equal 
RB(27-31 ), specifying the end point of the mask of ones. 

If mstart < mstop + 1 then 
MASK(mstart ... mstop) equals 1 s 
MASK(all other bits) equals Os 

If mstart equals mstop + 1 then 
MASK(0-31) equals 1s 

If mstart > mstop + 1 then 
MASK(mstop + 1 ... mstart-1) equals Os 
MASK(all other bits) equals 1 s 

The MASK is then placed in register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-75 



Mask Insert From Register (X-Form) 
0 6 11 16 21 

I 31 I RS RA I RB 541 

maskir RA, RS, RB (Re= 0) 

maskir. RA, RS, RB (Re= 1) 

Register RS is inserted into register RA under control of the mask in register RB. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

Fixed-Point Shift Instructions 

(if Re= 0) 
(if Re= 1) 

The instructions in this section logically perform left and right shifts. 

31 

The following process is performed when the result of a shift instruction is placed into 
register RA under the control of a generated mask. 

When the mask bit is 1, the respective bit from either the rotated word or a word of zeros is 
placed into register RA. When the mask bit is O, the respective bit from either the MO 
register or a word of 32 sign bits from register RS is placed into register RA. 

If the Record bit (Re) equals 1, the shift instructions set bits in the CR according to the value 
of the contents of register RA at the completion of the instruction. The CR is set as if a 
compare between the contents of register RA and the value O had been performed. 

If Re equals O, the CR is left unchanged. 

Shift Left (X-Form) 
0 6 11 16 21 31 

I 31 RS RA RB 24 I Re I 
sl RA, RS, RB (Re= 0) 

sl. RA, RS, RB (Re= 1) 

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of 
register RB. 

When bit 26 of register RB is 0, a mask of 32-N ones followed by N zeros is generated. 

When bit 26 of register RB is 1, a mask of all zeros is generated. 

The logical AND of the rotated word and the generated mask is placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = O) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

2· 76 General Information Manual 



Shift Right (X-Form) 
0 6 11 16 21 31 

I 31 RS RA RB 536 I Re I 
sr RA, RS, RB (Re= 0) 

sr. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-Nbits where Nis the shift amount specified in bits 27-31 of 
register RB. 

When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is generated. 

When bit 26 of register RB is 1, a mask of all zeros is generated. 

The logical AND of the rotated word and the generated mask is placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

Shift Left With MQ (X-Form) 
0 

I 31 

slq 

slq. 

6 

I RS 

RA, RS, RB 

RA, RS, RB 

11 

RA 

(Re= 0) 

(Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

I RB 

21 31 

152 

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of 
register RB. The rotated word is placed into the MQ register. 

When bit 26 of register RB is O, a mask of 32-N ones followed by N zeros is generated. 

When bit 26 of register RB is 1, a mask of all zeros is generated. 

The logical AND of the rotated word and the generated mask is placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2-77 



Shift Right With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 664 

srq RA, RS, RB (Re= 0) 

srq. RA, RS, RB (Re = 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. The rotated word is placed into the MO Register. 

When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is generated. 

When bit 26 of register RB is 1 , a mask of all zeros is generated. 

The logical AND of the rotated word and the generated mask is placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: None 

Shift Left Immediate With MQ (X-Form) 
0 6 11 

I 31 I RS RA 

sliq RA, RS, SH (Re= 0) 

sliq. RA, RS, SH (Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

SH 

21 31 

184 

Register RS is rotated left N bits where N is the shift amount specified in bits 16-20 of the 
instruction. The rotated word is placed into the MO register. A mask of 32-N ones followed 
by N zeros is generated. The logical AND of the rotated word and the generated mask is 
placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: None 

2· 78 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Shift Right Immediate With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA SH 696 

sriq RA, RS, SH (Re= 0) 

sriq. RA, RS, SH (Re = 1 ) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 16-20 of 
the instruction. The rotated word is placed into the MQ register. A mask of N zeros followed 
by 32-Nones is generated. The logical AND of the rotated word and the generated mask is 
placed into register RA. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

Shift Left Long Immediate With MQ (X-Form) 
0 6 11 

I 31 I RS RA 

slliq RA, RS, SH (Re= 0) 

slliq. RA, RS, SH (Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

SH 
21 31 

248 

Register RS is rotated left N bits where N is the shift amount specified in bits 16-20 of the 
instruction. A mask of 32-N ones followed by N zeros is generated. The rotated word is 
merged with the contents of the MQ register, under control of the generated mask. See 
"Fixed-Point Shift Instructions" on page 2-76 for information about the mask. The merged 
word is placed into register RA. The rotated word is placed into the MO register. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: LT GT EQ SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2· 79 



Shift Right Long Immediate With MQ {X-Form) 
0 6 11 16 21 31 

I 31 I RS RA SH 760 

srliq RA, RS, SH (Re= 0) 

srliq. RA, RS, SH (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 16-20 of 
the instruction. A mask of N zeros followed by 32-N ones is generated. The rotated word is 
then merged with the contents of the MO register, under control of the generated mask. See 
"Fixed-Point Shift Instructions" on page 2-76 for information about the mask. The merged 
word is placed into register RA. The rotated word is placed into the MO register. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: None 

Shift Left Long With MQ {X-Form) 
0 

I 31 

sllq 

sllq. 

6 

I RS 

RA, RS, RB 

RA, RS, RB 

11 

RA 

(Re= 0) 

(Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

RB 
21 31 

216 

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of 
register RB. 

When bit 26 of register RB is 0, a mask of 32-N ones followed by N zeros is generated. The 
rotated word is then merged with the contents of the MO register, under control of the 
generated mask. See "Fixed-Point Shift Instructions" on page 2-76 for information about the 
mask. 

When bit 26 of register RB is 1, a mask of 32-N zeros followed by Nones is generated. A 
word of zeros is then merged with the contents of the MO register, under control of the 
generated mask. 

The merged word is placed into register RA. The MO register is not altered. 

\ 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: None 

2·80 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Shift Right Long With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 728 I Re I 
srlq RA, RS, RB (Re= 0) 

srlq. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. 

When bit 26 of register RB is O, a mask of N zeros followed by 32-N ones is generated. The 
rotated word is then merged with the contents of the MO register, under control of the 
generated mask. See "Fixed-Point Shift Instructions" on page 2-76 for information about the 
mask. 

When bit 26 of register RB is 1, a mask of Nones followed by 32-N zeros is generated. A 
word of zeros is then merged with the contents of the MO register, under control of the · 
generated mask. 

The merged word is placed into register RA. The MO register is not altered. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: LT GT EO SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Shift Left Extended (X-Form) 
0 6 11 

I 31 I RS 

sle RA, RS, RB 

RA 

(Re= 0) 

sle. RA, RS, RB (Re = 1) 

16 

RB 
21 

153 

31 

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of 
register RB. The rotated word is placed into the MO register. A mask of 32-N ones followed 
by N zeros is generated. The logical AND of the rotated word and the generated mask is 
placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: LT GT EO SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Processor Description 2-81 



Shift Right Extended (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 665 I Re I 
sre RA, RS, RB (Re ... 0) 

sre. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. The rotated word is placed into the MO register. A mask of N zeros followed by 
32-N ones is generated. The logical AND of the rotated word and the generated mask is 
placed into register RA. 

Condition register (CR Field 0) 
Set: None (if Re ... 0) 
Set: LT GT EO SO (if Re= 1) 

Fixed-Point Exception register 
Set: None 

Shift Left Extended With MQ (X-Form) 
0 6 11 

I 31 I RS RA 

sleq RA, RS, RB (Re'"' 0) 

sleq. RA, RS, RB (Re'"' 1) 

16 

RB 
21 31 

217 

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of 
register RB. A mask of 32-N ones followed by N zeros is generated. The rotated word is 
then merged with the contents of the MO register, under control of the generated mask. See 
"Fixed-Point Shift Instructions" on page 2-76 for information about the mask. The merged 
word is placed into register RA. The rotated word is placed into the MO register. 

Condition register (CR Field 0) 
Set: None (if Re ... O) 
Set: LT GT EO SO (if Re ... 1) 

Fixed-Point Exception register 
Set: None 

2-82 General Information Manual 



Shift Right Extended With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 729 

sreq RA, RS, RB (Re= 0) 

sreq. RA, RS, RB (Re = 1 ) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. A mask of N zeros followed by 32-N ones is generated. The rotated word is 
then merged with the contents of the MQ register, under control of the generated mask. See 
"Fixed-Point Shift Instructions" on page 2-76 for information about the mask. The merged 
word is placed into register RA. The rotated word is placed into the MQ register. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

Shift Right Algebraic Immediate (X-Form) 
0 6 11 

I 31 I RS RA 

srai RA, RS, SH (Re= 0) 

srai. RA, RS, SH (Re= 1) 

(if Re= 0) 
(if Re= 1) 

16 

SH 

21 31 

824 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 16-20 of 
the instruction. A mask of N zeros followed by 32-N ones is generated. The rotated word is 
then merged with a word of 32 sign bits from the RS register, under control of the generated 
mask. See "Fixed-Point Shift Instructions" on page 2-76 for information about the mask. 

The merged word is placed into register RA. 

The rotated word is ANDed with the complement of the generated mask. This 32 bit result is 
ORed together and then ANDed with bit O of register RS to produce the CA bit. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed 
with aze. 

Processor Description 2-83 



Shift Right Algebraic (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 792 I Re I 
sra RA, RS, RB (Re= 0) 

sra. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is 
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated 
word is then merged with a word of 32 sign bits from the RS register, under control of the 
generated mask. See "Fixed-Point Shift Instructions" on page 2-76 for information about the 
mask. 

The merged word is placed into register RA. 

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is 
ORed together and then ANDed with bit O of register RS to produce the CA bit. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 

(if Re= 0) 
(if Re= 1) 

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed 
with a Add to Zero Extended instruction. 

Shift Right Algebraic Immediate With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA SH 952 

sraiq RA, RS, SH (Re= 0) 

sraiq. RA, RS, SH (Re = 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 16-20 of 
the instruction. A mask of N zeros followed by 32-N ones is generated. The rotated word is 
placed into the MQ register. The rotated word is then merged with a word of 32 sign bits 
from the RS register, under control of the generated mask. See "Fixed-Point Shift 
Instructions" on page 2-76 for information about the mask. 

The merged word is placed into register RA. 

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is 
ORed together and then AN Ded with bit O of register RS to produce the CA bit. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EQ SO 

Fixed-Point Exception register 
Set: CA 

(if Re= 0) 
(if Re= 1) 

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed 
with a Add to Zero Extended instruction. 

2-84 General Information Manual 



Shift Right Algebraic With MQ (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 920 I Re I 
sraq RA, RS, RB (Re= 0) 

sraq. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is 
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated 
word is placed into the MO register. The rotated word is then merged with a word of 32 sign 
bits from the RS register, under control of the generated mask. See "Fixed-Point Shift 
Instructions" on page 2-76 for information about the mask. 

The merged word is placed into register RA. 

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is 
ORed together and then ANDed with bit O of register RS to produce the CA bit. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: CA 

(if Re= 0) 
(if Re= 1) 

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed 
with a Add to Zero Extended instruction. 

Shift Right Extended Algebraic (X-Form) 
0 6 11 16 21 31 

I 31 I RS RA RB 921 I Re I 
srea RA, RS, RB (Re= 0) 

srea. RA, RS, RB (Re= 1) 

Register RS is rotated left 32-N bits where N is the shift amount specified in bits 27-31 of 
register RB. A mask of N zeros followed by 32-N ones is generated. The rotated word is 
placed into the MO register. The rotated word is then merged with a word of 32 sign bits 
from the RS register, under control of the generated mask. See "Fixed-Point Shift 
Instructions" on page 2-76 for information about the mask. 

The merged word is placed into register RA. 

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is 
ORed together and then ANDed with bit O of register RS to produce the CA bit. 

Condition register (CR Field 0) 
Set: None 
Set: LT GT EO SO 

Fixed-Point Exception register 
Set: CA 

(if Re= 0) 
(if Re= 1) 

Processor Description 2·85 



Double-Precision Shifts 
Note: Some of the shift instructions use the MO register. Double-length shifting of an 

arbitrary pair of general purpose registers can be accomplished with a few such 
instructions. The shift amount is specified either as an immediate value in the 
instruction (0 s..shift amount s..31} or as bits 26-31 of register RB (0 s..shift amount .s. 
63}. The following examples treat registers R1 and R2 as containing a 64-bit integer, 
with the R1 register containing the high order part. The shift amount is given as n for 
the immediate shifts, and is in bits 26-31 of the R3 register for the variable shifts. 

Shift Left Double Immediate 
sliq r2, r2, n 
slliq r1, r1, n 

Shift Left Double 
~q ~.~.~ 
sllq r1 , r1 , r3 

Shift Right Double Immediate 
sriq r1 , r1 , n 
srliq r2, r2, n 

Shift Right Double 
srq r1, r1, r3 
srlq r2, r2, r3 

Shift Right Algebraic Double Immediate 
sraiq r1 , r1 , n 
srliq r2, r2, n 

Shift Right Algebraic Double 
cmpli 
srea 
sreq 
bit 
or 
srai 

done: 

2·86 General Information Manual 

fi, r3, 32 
r1, r1, r3 
r2, r2, r3 
fi, done 
r2, r1, r1 
r1, r1, 31 



Move To and Move From System Registers Instructions 
This section defines instructions for moving data between the GPRs and the special purpose 
registers CTR, LR, and MQ. 

Move To Special Purpose Register (X-Form) 
0 6 11 16 21 31 

I 31 I RS I SPR I '" I 467 

mtspr SPR, RS 

The contents of register RS are placed into the special purpose register indicated by the 
SPR field. 

SPR 
00000 
00001 
01000 
01001 

(00) 
(01) 
(08) 
(09) 

Register 
MQ 
XER 
LR 
CTR 

All other combinations are reserved and do not alter any architected registers. 

Condition register (CR Field O) 
Set: None (if Re = 0) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Note: Execution of this instruction, specifying SPR11 set to 1 and MSR(PR) set to 1, results 
in a privileged instruction-type Program Interrupt. 

Processor Description 2·87 



Move From Special Purpose Register (X-Form) 
0 6 11 16 21 31 

I RT SPR Ill 339 

mfspr RT, SPA (Re = 0) 

The contents of the special purpose register indicated by the SPA field are placed into 
register RT. 

SPR 
00000 
00001 
00100 
00101 
00110 
01000 
01001 

(00) 
(01) 
(04) 
(05) 
(06) 
(08) 
(09) 

Register 
MO 
XER 
RTCU 
RTCL 
DEC 
LR 
CTR 

All other combinations are reserved and do not alter any architected registers. 

Condition register (CR Field O) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Note: Execution of this instruction, specifying SPR11 set to 1 and MSR(PR) set to 1, results 
in a privileged instruction-type Program Interrupt. 

2·88 General Information Manual 



Move To and Move From Condition Register Instruction 
This section defines instructions for moving data between the general purpose registers and 
the Condition register. 

Move To Condition Register Fields (XFX-Form) 
0 6 11 12 20 21 31 

I RS 11 I FXM I I I 144 

mtcrf FXM, RS 

The contents of register RS are placed into Condition register under control of the FXM field 
mask. FXM field mask is defined as follows: 

Bit Description 

12 Bits 00-03 of CR updated 

13 Bits 04-07 of CR updated 

14 Bits 08-11 of CR updated 

15 Bits 12-15 of CR updated 

16 Bits 16-19 of CR updated 

17 Bits 20-23 of CR updated 

18 Bits 24-27 of CR updated 

19 Bits 28-31 of CR updated. 

Register RS is not changed. 

Condition register (CR Field O) 
Set: See description above 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Move To Condition Register From XER (X-Form) 
0 6 9 11 16 21 31 

I 31 BF I II Ill Ill 512 

mcrxr BF 

The contents of XER(0-3) are copied into Condition register Field i, where i equals BF. All 
other fields of the Condition register remain unchanged. The XER(0-3) is reset to 0. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: XER(0-3) 

(if Re= 0) 
(if Re equals 1 and BF -::t. 0) 

Processor Description 2·89 



Move From Condition Register (X-Form) 
0 6 11 16 21 

I 31 I RT I 111 I 111 I 1s 

mfcr RT 

The contents of the Condition register are placed into register RT. 

Condition register (CR Field 0) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed-Point Exception register 
Set: None 

Move From Machine State Register Instruction 
This section defines the instruction for moving data from Machine State registers. 

Move From Machine State Register (X-Form) 
0 6 11 16 

I a1 I RT I 111 I 111 

mfmsr RT 

The contents of the MSR are placed into register RT. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed-Point Exception register 
Set: None 

2-90 General Information Manual 

(if Re= 0) 
(if Re= 1) 

21 

83 

31 

31 



Floating-Point Processor Overview 
The floating-point processor (FPP) provides high-performance execution of floating-point 
operations. Instructions are provided to perform arithmetic operations in floating-point 
registers and move floating-point data between memory and these registers. 

This architecture provides for hardware to implement a floating-point system as defined in 
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic, but has 
a dependency on supporting software to be in conformance with that standard. 

A floating-point number consists of a signed exponent and a signed significand. The 
quantity expressed by this number is the product of the significand and the number 2exponent. 

Encodings are provided in the data format to represent finite numeric values, ± Infinity and 
Not-a-Number (NaN) values. Operations involving infinities produce results obeying 
traditional mathematical conventions. NaN values have no mathematical interpretation. Their 
encoding permits a variable diagnostic-information field. They can indicate such things as 
uninitialized variables and can be produced by certain invalid operations. 

There are two classes of exceptional events that occur during instruction execution that are 
unique to the FPP: 

• FPP unavailable 

• Floating-point exceptiOf!. 

The FPP unavailable event is signaled ~ith a Floating-Point Not Available Interrupt. 
Floating-point exceptions are signaled with bits set in the Floating-Point Status and Control 
register and can generate a precise interrupt with the proper bits enabled. 

The Floating-Point Available bit is defined to enhance context switching performance for 
programs that do not require the use of FPP. The Floating-Point Available bit is defined in 
the "Machine State Register", MSR(FP), on page 2-18. 

If the MSR(FP) bit equals 1, the FPP is available for use and floating-point instructions can 
be successfully executed. If the MSR(FP) bit equals O, the FPP is unavailable for use, 
execution of any floating-point instruction is suppressed, and a Floating-Point Unavailable 
Interrupt is generated to signal the attempted use of the FPP in the unavailable state. 

The following floating-point exceptions are detected by the hardware: 

• Invalid operation exception 

- SNaN 

- Infinity - Infinity 

- Infinity x Zero 

- Infinity+ Infinity 

- Zero+ Zero 

- Ordered Compare With a NaN 

• Zero Divide Exception 

• Overflow Exception 

• Underflow Exception 

• Inexact Exception 

Processor Description 2·91 



Each floating-point exception and exception sub-class (in the case of Invalid Operation 
Exception) has an Exception bit defined in the Floating-Point Status and Control Register. 
Each floating-point exception has an Enable bit defined in the Floating-Point Status and 
Control Register. See "Floating-Point Status and Control Register " on page 2-93 for 
definitions of these bits. A bit is defined in the MSR, Floating-Point Exception Interrupt 
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an 
enabled floating-point exception occurs. 

Floating-Point Registers 
Implementations of this architecture provide 32 floating-point registers (FPR). The 
floating-point instruction formats provide a 5-bit field for specifying the FPRs used in the 
instruction execution. The FPRs are numbered 0-31. See Figure 1 O for a representation of 
the floating-point registers. A Floating-Point Status and Control register controls the 
handling of floating-point exceptions and records status resulting from the floating-point 
operations. 

Each FPR contains 64 bits, which support the double-precision floating-point format. All 
operations that interpret the contents of an FPR as a floating-point value use the 
double-precision floating-point format for this interpretation. 

All floating-point operations other than load and store operations are performed on 
operands located in FPRs and place the result value in an FPR. Status information is placed 
in the Floating-Point Status and Control register and in some cases in the Condition register. 

Load and store double instructions are provided that transfer 64 bits of data between 
memory and the FPRs in the FPP with no conversion. Load single instructions are provided 
to transfer and convert floating-point values in single floating format from memory to the 
same value in double floating format in the FPRs. Store single instructions are provided to 
transfer and convert floating-point values in double floating format from the FPRs to the 
same value in single-floating format in memory. 

FPROO 

FPR 01 

... 

. . . 

FPR30 

FPR 31 

0 63 

Figure 10. Floating-Point Registers 

2-92 General Information Manual 



Floating-Point Status and Control Register 
The Floating-Point Status and Control register (FPSCR) contains the status and control 
flags for floating-point operations. Bits 0-19 are Status bits. Bits 20-31 are Control bits. 

0 

Bit 
00 
01 

02 

03 

04 
05 
06 
07 

08 

09 

10 

11 

12 

13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 

25 
26 
27 

28 
29 
30 
31 

Name 
FX 
FEX 

vx 

ox 

ux 
zx 
xx 
VXSNAN 

VXISI 

VXIDI 

VXZDZ 

VXIMZ 

vxvc 

FR 
Fl 
c 
FL 
FG 
FE 
FU 

VE 

OE 
UE 
ZE 

XE 

RN 
RN 

FPSCR 

Description 
Floating-Point Exception Summary 
Floating-Point Enabled Exception 
Summary 
Floating-Point Invalid Operation Exception 
Summary 
Floating-Point Overflow Exception 

Floating-Point Underflow Exception 
Floating-Point Zero Divide Exception 
Floating-Point Inexact Exception 
Floating-Point Invalid Operation Exception 
(SNaN) 

Floating-Point Invalid Operation Exception 
(INF- INF) 
Floating-Point Invalid Operation Exception 
(INF+ INF) 
Floating-Point Invalid Operation Exception 
(O+ 0) 
Floating-Point Invalid Operation Exception 
(INF x 0) 

Floating-Point Invalid Operation Exception 
(Invalid Compare) 
Floating-Point Fraction Rounded 
Floating-Point Fraction Inexact 
Floating-Point Result Class Descripter 

Floating-Point Less Than 
Floating-Point Greater Than 
Floating-Point Equal 
Floating-Point Unordered 

Reserved 
Reserved 
Reserved 
Reserved 

Floating-Point Invalid Operation Exception 
Enable 
Floating-Point Overflow Exception Enable 
Floating-Point Underflow Exception Enable 
Floating-Point Zero Divide Exception 
Enable 

Floating-Point Inexact Exception Enable 
Reserved 
Floating-Point Rounding Control 
Floating-Point Rounding Control. 

31 

Processor Description 2·93 



The format of the FPSCR follows: 

Bit Description 

O Floating-Point Exception Summary (FX). Every floating-point arithmetic 
instruction, floating-point compare instruction, and the Floating Round to 
Single instruction shall implicitly set FPSCR(FX) if that instruction causes 
any of the Floating-Point Exception bits in the FPSCR to transition from O to 
1. Also, use of the mtfsb1 instruction, which causes any of the 
Floating-Point Exception bits in the FPSCR to transition from O to 1 shall 
implicitly set FPSCR(FX). The mcrfs instruction shall be able to implicitly 
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mtfsbO 
instructions are able to set or clear FPSCR(FX) explicitly. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15-19 

Floating-Point Enabled Exception Summary (FEX). This bit signals the 
occurrence of any of the enabled exception conditions. It is the 'OR' of all 
the floating-point exceptions masked with their respective enable. 

Floating-Point Invalid Operation Exception Summary (VX). This bit signals 
the occurrence of any invalid operation exceptions. It is the 'OR' of all the 
invalid operation exceptions. 

Floating-Point Overflow Exception (OX). See "Overflow Exception" on page 
2-107 for information about this register. 

Floating-Point Underflow Exception (UX). See "Underflow Exception" on 
page 2-109 for information about this register. 

Floating-Point Zero Divide Exception (ZX). See "Zero Divide Exception" on 
page 2-106 for information about this register. 

Floating-Point Inexact Exception (XX). See "Inexact Exception" on page 
2-11 O for information about this register. 

Floating-Point Invalid Operation Exception (SNaN) (VXSNAN). See "Invalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Invalid Operation Exception (INF - INF) (VXISI). See "Invalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Invalid Operation Exception (INF+ INF) (VXIDI). See 0 lnvalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Invalid Operation Exception (0 + O) (VXZDZ). See "Invalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Invalid Operation Exception (INF x 0) (VXIMZ). See "Invalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Invalid Operation Exception (Invalid Compare) (VXVC). See 
"Invalid Operation Exception" on page 2-105 for information about this 
register. 

Floating-Point Fraction Rounded (FR). The last floating-point instruction 
that rounded the intermediate result incremented the fraction. 

Floating-Point Fraction Inexact (Fl). The last floating-point instruction that 
rounded the intermediate result produced an inexact fraction or a disabled 
exponent overflow. 

Floating-Point Result Flags (FPRF). 

2-94 General Information Manual 



20-23 

24 

25 

26 

27 

28 

29 

Bit 

15 

16-19 

Reserved. 

Description 

Floating-point result class descripter (C) 

Floating-point condition code (FPCC). 

Bit Description 

16 Floating-point less than or negative 
(FL or<) 

17 

18 

19 

Floating-point greater than or positive 
(FG or>) 

Floating-point equal or zero (FE or equals) 

Floating-point unordered or NaN (FU). 
Floating-point compare instructions always 
set one of the FPCC bits to 1 and the other 
three FPCC bits to 0. Other instructions can 
set the FPCC bits with the C bit to encode 
these 5 bits to indicate the class of the 
stored result. See Figure 11 on page 2-96 
for the floating-point result flags. Notice 
that in this case the three high-order bits of 
the FPCC retain their relational significance 
indicating that the value is less than, 
greater than, or equal to zero. 

Floating-Point Invalid Operation Exception Enable (VE). See "Invalid 
Operation Exception" on page 2-105 for information about this register. 

Floating-Point Overflow Exception Enable (OE). See "Overflow Exception" 
on page 2-107 for information about this register. 

Floating-Point Underflow Exception Enable (UE). See "Underflow 
Exception" on page 2-109 for information about this register. 

Floating-Point Zero Divide Exception Enable (ZE). See "Zero Divide 
Exception" on page 2-106 for information about this register. 

Floating-Point Inexact Exception Enable (XE). See "Inexact Exception" on 
page 2-110 for information about this register. 

Reserved. 

Processor Description 2-95 



30-31 Floating-Point Rounding Control (RN). See "Rounding" on page 2-101 for 
information about this register. 

Setting Description 

00 Round To Nearest 

01 

10 

11 

Round Toward Zero 

Round Toward +Infinity 

Round Toward -Infinity. 

Note: Every exception bit in the FPSCR is sticky (bits 0-12) with the exception of the 
Floating-Point Enabled Exception Summary and Floating-Point Invalid Operation 
Exception Summary bits. That is, once set they remain set until one of the following 
instructions possibly changes them: mtfsf, mtfsfi, mtfsbO, and mcrfs. 

Result 
Flags Result Value Class 

C<>=? 

10001 -Quiet NaN 
01001 -Infinity 
01000 - Normalized Number 
11000 - Denormalized Number 
10010 -Zero 
00010 +Zero 
10100 + Denormalized Number 
00100 + Normalized Number 
00101 + lnlfnlty 

Figure 11. Floating Point Result Flags 

2·96 General Information Manual 



Floating-Point Data Representation 
This section describes how data is represented in the Floating-Point Processor. 

Data Format 

I sl 
0 1 

I sl 
0 1 

This architecture defines the representation of a floating-point value in two different binary 
fixed-length formats. The format can be a one-word format for a single-precision floating­
point value or a two-word format for a double-precision floating-point value. The single 
format (See Figure 12) can be used for data in memory. The double format (See Figure 13) 
can be used for data in memory and for data in floating-point registers. The length of the 
exponent and the fraction fields differ between these two formats. 

EXP FRACTION 

9 31 

Figure 12. Floating-Point Single Format 

EXP FRACTION 

12 63 

Figure 13. Floating-Point Double Format 

Values in floating-point format are composed of the following fields: 

S Sign bit. 

EXP 

FRACTION 

Exponent + Bias. 

Fraction. 

Bit O is the Sign bit, the xMSB bit is the most significant bit of the EXP field, the xLSB bit is 
the least significant bit of the EXP field, the fMSB bit is the most significant bit of the 
FRACTION field, and the fLSB bit is the least significant bit of the FRACTION field. 

Representation of numerical values in the floating-point formats consist of a Sign bit S, a 
biased exponent EXP, and the fraction portion FRACTION, of the significand. The 
significand consists of a leading implied bit concatenated on the right with the FRACTION 
field. This leading implied bit is a 1 for normalized numbers and a O for denormalized 
numbers and is located in the unit bit position (the first bit to the left of the binary point). 
Values represented within the two floating point formats can be specified by the parameters 
listed in Figure 14. 

Processor Description 2-97 



Format 

Single Double 

Exponent Bias + 127 + 1023 
Maximum Exponent + 127 + 1023 
Minimum Exponent - 126 - 1022 

Widths (bits) 
Format 32 64 
Sign 1 1 
Exponent 8 11 
Fraction 23 52 
Significand 24 53 

Figure 14. IEEE Floating Point Fields 

The architecture requires that the FPRs of the FPP support the arithmetic instructions on 
values in the double-precision floating-point format only. 

Value Representation 
This architecture defines numerical and non-numerical values representable within each of 
the two supported formats. The numerical values are approximations to the real numbers 
and include the normalized numbers, denormalized numbers, and zero values. The 
non-numerical values representable are the infinities and the NaN values. The infinities are 
adjoined to the real numbers but are not numbers themselves, and the standard rules of 
arithmetic do not hold when they appear in an operation. They are related to the real 
numbers by order alone. Restricted operations among numbers and infinities can be 
defined. Figure 15 shows the relative location on the real number line for each of the 
defined entities. 

~1NFI -NOR +NOR ~INF 

Figure 15. Approximation to Real Numbers 

The NaN values are not related to the numbers or infinities by order or value, but are 
encodings used to convey diagnostic information such as the representation of uninitialized 
variables. 

The following is a description of the different floating-point values defined in the architecture. 

Binary Floating-Point Numbers 
Machine-representable values used as approximations to real numbers. Three categories of 
numbers are supported: normalized numbers, denormalized numbers, and zero values. 

Normalized Numbers (±NOR) 
The following are values that have a biased exponent value in the range: 

• 1 to 254 in single format 

• 1 to 2046 in double format. 

They are values in which the implied unit bit is 1. Normalized numbers are interpreted as 
follows: 

NOR equals (-1)s x 2E x (1.fraction) 

2-98 General Information Manual 



where sis the sign, Eis the unbiased exponent, and 1.fraction is the significand that is 
composed of a leading unit bit (implied bit) and a fraction part. 

The ranges covered by the magnitude (M) of a normalized floating-point number are 
approximately equal to: 

Single Format: 

1.2x1 Q-38 s; M :s: 3.4x1 o3s 

Double Format: 

2.2x1 Q-308 :s: M s; 1.8x10308 

Zero values (±0) 
Zero values are values that have a biased exponent value of O and a fraction value of 0. 
Zeros can have a positive or negative sign. 

Denormalized Numbers (+DEN) 
Denormalized numbers are values that have a biased exponent value of O and a nonzero 
fraction value. They are nonzero numbers smaller in magnitude than the representable 
normalized numbers. They are values in which the implied unit bit is o. Denormalized 
numbers are interpreted as follows: 

DEN equals (-1 )S x 2Emin x (O.fraction) 

where Emin is the minimum representable exponent value (-126 for single precision, -1022 
for double precision). 

Infinities (+INF) 
Infinities are values that have the maximum biased exponent value: 

• 255 in the single format 

• 2047 in the double format. 

and a zero fraction value. They are used to approximate values greater in magnitude than 
the maximum normalized value. 

Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted operations 
defined among numbers and infinities. Infinities and the real numbers can be related by 
ordering in the affine sense: 

-INF < every finite number < + INF 

Arithmetic on infinities is exact and usually does not signal an exception. Exceptions occur 
because of invalid operations. See "Invalid Operation Exception" on page 2-105 for 
information. 

Not a Numbers (NaNs) 
NaN values are values that have the maximum biased exponent value and a nonzero 
fraction value. The Sign bit is ignored (NaN values are neither positive nor negative). If the 
high-order bit of the fraction field is 1, it is defined as a quiet NaN (QNaN); otherwise, it is 
defined as a signaling NaN. Quiet NaNs are used to represent the result of certain invalid 
operations when Invalid Operation Exception is disabled, FPSCR(VE) equals 0. Examples 
include undefined arithmetic operations on infinities or NaNs. NaNs used in this manner can 
convey diagnostic information to help Identify results from these invalid operations. Signaling 
NaNs are used to signal exceptions when they appear as arithmetic operands, while quiet 
NaNs propagate through most operations without signaling exceptions regardless of the 

Processor Description 2·99 



condition of the operation. Specific encoding can thus be preserved through a number of 
arithmetic operations for its intended use as diagnostic information. When a QNaN is the 
result of an operation because one of the operands is a NaN or because a QNaN was 
generated due to a disabled Invalid Operation Exception, then the following rule is applied to 
determine the NaN with the high-order fraction bit set to 1 that is to be stored as the result. 

If (FAA) is a NaN 
Then (FAT) +- (FAA) 
Else if (FRB) is a NaN 

Then (FAT) +- (FRB) 
Else if (FRC) is a NaN 

Then (FAT) +- (FRC) 
Else if generated QNaN 

Then (FAT) +- generated QNaN 

If the operand specified by the FAA is a NaN, that NaN is stored as the result. If the operand 
specified by the FRB is a NaN (if the instruction specifies an FRB operand), that NaN is 
stored as the result. If the operand specified by the FRC is a NaN (if the instruction specifies 
an FRC operand), that NaN is stored as the result. If a QNaN was generated due to a 
disabled Invalid Operation Exception, that QNaN is stored as the result. If a QNaN is to be 
generated as a result, the QNaN generated has a sign bit of O, an exponent field of all ones 
and a high-order fraction bit of 1 with all other fraction bits 0. Any instruction that generates 
a QNaN as the result of a disabled Invalid Operation generates this QNaN. 

Normalization and Denormalization 
When an arithmetic operation produces an intermediate result, consisting of a sign bit, an 
exponent, and a nonzero significand with a O leading bit, it is not a normalized number and 
must be normalized before it is stored. 

To normalize a number, the significand is shifted left while the exponent is decremented by 
one for each bit shifted, until the leading significand bit becomes 1. The Guard bit and the 
Round bit (See •Execution Model for IEEE Operations" on page 2-111 ) participate in the 
shift with zeros shifted Into the Round bit. The exponent is regarded as if its range were 
unlimited. If the resulting exponent value is less than the minimum value that can be 
represented in the format specified for the result, the intermediate result is said to be Tiny. 
The stored result is determined by the rules described in "Underflow Exception" on page 
2-109. The sign of the number does not change. 

When an arithmetic operation produces a nonzero intermediate result with an exponent 
value less than the minimum value that can be represented in the format specified for the 
result, the stored result is determined by the rules described in "Underflow Exception" on 
page 2-109. This process may require denormalization. 

To denormalize a number, the significand is shifted right while the exponent is incremented 
by one for each bit shifted until the exponent is equal to the format minimum value. If any 
significant bits are lost in this shifting process then Loss of Accuracy has occurred and 
Underflow Exception is signaled. The sign of the number does not change. 

When denormalized numbers are operands of multiply and divide operations they are 
prenormalized internally before the operations are performed. 

2-100 General Information Manual 



Precision 

Rounding 

All arithmetic operations are performed in floating-point double-precision. Floating-point 
single-precision is obtained with the implementation of three forms of instructions: 

1. Load Floating-Point Single 

This form of instruction accesses a single-precision operand in memory, converts it to 
double-precision operand, and loads it into an FPR. No exceptions are detected on the load 
operation. 

2. Arithmetic operation performed in double precision 

3. Round to Floating-Point Single 

This form of instruction rounds a double-precision operand to single-precision, checks the 
exponent for single-precision range, handles any exceptions according to respective enable 
bits, and stores that operand into an FPR as a double-precision operand. 

4. Store Floating-Point Single 

This form of instruction converts a double-precision operand to single-precision and stores 
that operand into memory. If the operand requires denormalization in order to fit in 
single-precision, it is denormalized prior to storing it. No exceptions are detected on the 
store operation. (Assumes step 3. has been executed.) 

All arithmetic instructions defined by this architecture produce an intermediate result that can 
be regarded as being infinitely precise. This result must then be written with a precision of 
finite length into an FPR. After normalization or denormalization, if the infinitely precise 
intermediate result is not representable, it must be rounded. 

Four modes of rounding are provided that are user-selectable through the Floating-Point 
Rounding Control field in the FPSCR. These are encoded as follows: 

RN 
00 

01 

10 

11 

Rounding Mode 

Round To Nearest 

Round Towards Zero 

Round Towards + Infinity 

Round Towards - Infinity. 

Let Zbe the infinitely precise intermediate arithmetic result or the operand of a convert 
operation. If Z can be represented exactly in the target format, rounding in all modes is 
equivalent to truncation of Z. If Z cannot be represented exactly in the target format, let Z1 
~nd Z2 be the next largest and next smallest numbers representable in the target format that 
bound Z, then Z1 or Z2 can be used to approximate the result in the target format. Figure 16 
shows the relation of Z, Z1, and Z2. 

Processor Description 2-101 



.---------By Incrementing LSB of Z l lnflnltely Precise Value l l i-----By Truncating after LSB _____ 1 l 
I I I I 

Z2 z Z1 0 Z2 z Z1 

Negative values •4----1----•llll Positive values 

Figure 16. Selection of Z1 and Z2 

The following rules specify the rounding in the four modes: 

Round To Nearest 

Round Toward Zero 

Round Toward +Infinity 

Round Toward -Infinity 

Choose the best approximation of Z1 or Z2. In case of a tie, 
choose the one that is even (least significant bit 0). 

Choose the smaller in magnitude (Z1 or Z2). 

Choose Z1. 

Choose Z2. 

The arithmetic instructions are defined for operations on values that are in the double format. 

See "Execution Model for IEEE Operations" on page 2-111 for a detailed explanation of 
rounding. 

Data Handling 
Instructions are defined to move floating-point data between the FPRs and memory. For 
double format the data is not altered during the move. For single-format data, a format 
conversion from single to double is performed when loading from memory into an FPR and a 
format conversion from double to single is performed when storing from an FPR to memory. 
No floating-point exceptions are raised during these operations. 

The arithmetic instructions interpret the operand data and produce result data only in the 
double format. 

Note: The Round Floating-Point Double to Single instruction is provided to allow value 
conversion from double to single-precision with appropriate exception checking and 
rounding. This instruction should be used after every arithmetic operation for 
obtaining conforming IEEE single-precision results. 

2· 102 General Information Manual 



Floating-Point Exceptions 
This architecture defines the following Floating-Point Exceptions: 

• Invalid Operation Exception 

- SNaN 

- Infinity - Infinity 

- Infinity x Zero 

- Infinity + Infinity 

- Zero+ Zero 

- Ordered Compare with a NaN. 

• Zero Divide Exception 

• Overflow Exception 

• Underflow Exception 

• Inexact Exception. 

These exceptions can occur during the floating-point arithmetic and conversion operations. 
For each exception, there is one FPSCR bit to indicate occurrence of the exception and 
another FPSCR bit to indicate whether the exception is enabled or disabled. If any of these 
exceptions are recognized during the execution of a floating-point instruction, the exception 
condition is signalled by setting the corresponding exception bit for the condition in the 
FPSCR. A Floating-Point Exception Summary bit in the FPSCR is set when any of the 
exception bits transitions from O to 1 , or when explicitly set by software. A Floating-Point 
Enabled Exception Summary bit in the FPSCR is set when any of the exceptions are set and 
the exception is enabled (enable bit is 1 ). 

Multiple exceptions can be set in four cases: 

• Inexact Exception can be set with Overflow Exception. 

• Inexact Exception can be set with Underflow Exception. 

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (Inf x 0) 
for multiply-add type instructions. 

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (NaN 
Compare) for compare instructions. 

When an exception occurs, a result can be delivered or the instruction execution can be 
suppressed depending on the exception. When a result is to be delivered, it can be a 
different value for the enabled and disabled conditions for some of the exceptions. 

The IEEE standard specifies the handling of the exceptional conditions in terms of traps and 
trap handlers. In this architecture, an Exception Enable bit of 1 causes the generation of 
result values as specified in the IEEE standard for the trap enabled case. An Exception 
Enable bit of O causes the generation of default result values as specified for the trap 
disabled (or no trap occurs or trap is not implemented} case. The result to be delivered in 
each case for each exception is described in the following sections. 

In this architecture the detection of the floating-point exception conditions either requires a 
programmed test or enabling of program interrupts to be generated on enabled floating­
point exceptions. For the programmed test to uniquely detect all exceptions that occur 

Processor Description 2· 103 



precisely, each instruction that can cause a floating-point exception should be followed by a 
test of the FPSCR Floating-Point Exception bit. Detection of an exception can cause a 
software branch to an exception-handling routine. For program Interrupt detection, MSR(FE) 
must first be turned on, and any floating-point exception desired to be interrupted on must 
have its respective enable turned on. 

Note: This program interrupt is generated every cycle that FPSCR(FEX) equals 1 and 
MSR(FE) equals 1. It is the responsibility of the exception handler to clear the 
exception bit that caused the interrupt. Also, the address of the instruction that 
causes the interrupt is the address that is saved in the SRA O register, and, if the 
SAR O register is unaltered, that instruction is the instruction returned to and 
re-executed. For certain types of floating-point exceptions, returning to the 
instruction following the instruction that caused the interrupt may be required and 
therefore the exception handler is required to increment the address in the SRA O 
register by 4. 

System performance with the MSR(FE) bit set to 1 can be significantly degraded. 

Floating-point exception bits in the FPSCR are sticky. That is, once set, they remain set until 
software resets them with either a mtfsf, mtfsfi, mtfsb1, mtfsbO, or mtcrfs instruction. 

Instruction execution is suppressed in some cases when an exception occurs, so there is no 
possibility that one of the operands would be lost. These cases are: 

• Enabled Invalid Operation 

• Enabled Zero Divide. 

In all other cases, a specified result is generated and written to the destination specified for 
the instruction causing the exception. These cases are: 

• Disabled Invalid Operation 

• Disabled Zero Divide 

• Disabled Overflow 

• Disabled Underflow 

• Disabled Inexact 

• Enabled Overflow 

• Enabled Underflow 

• Enabled Inexact. 

The following sections define each of the floating-point exceptions and specify the action to 
be taken when they are detected. For single-precision applications, the exception detection 
and handling can be slightly different. See "Floating Round to Single Precision" instruction 
on page 2-128 for exceptions and handling of exceptions for single-precision floating-point 
arithmetic. 

2-104 General Information Manual 



Invalid Operation Exception 
Definition 

Action 

An Invalid Operation Exception occurs whenever an operand is invalid for the specified 
operation. The invalid operations follow: 

• Any operation on a signaling NaN (SNaN) 

• For add or subtract operations, magnitude subtraction of infinities (INF - INF) 

• Multiplication of zero by infinity (INF x 0) 

• Division of zero by zero (0 + 0) 

• Division of infinity by infinity (INF+ INF) 

• Ordered comparison involving a NaN (NaN Compare). 

The action to be taken depends on the setting of the Invalid Operation Exception Enable bit 
of the FPSCR. 

When the Invalid Operation Exception Enable bit is enabled, FPSCR(VE) equals 1, and 
invalid operation occurs, the following actions are taken: 

1. Instruction execution is suppressed; operands are unmodified. 

2. One of the following invalid operation exceptions is set 

FPSCR(VXSNAN) (if SNaN) 

FPSCR(VXISI) 

FPSCR(VXIDI) 

FPSCR(VXZDZ) 

FPSCR(VXIMZ) 

FPSCR(VXVC) 

(if INF - INF) 

(if INF+ INF) 

(if 0 + 0) 

(if INF x 0) 

(if NaN Compare). 

3. If the operation is a compare operation, the FPCC field is set to reflect floating-point 
unordered. 

When the Invalid Operation Exception Enable bit is disabled, FPSCR(VE) equals 0, and 
invalid operation occurs, the following actions are taken: 

1. One of the Invalid operation exceptions is set: 

FPSCR(VXSNAN) if SNaN) 

FPSCR(VXISI) (if INF - INF) 

FPSCR(VXIDI) 

FPSCR(VXZDZ) 

FPSCR(VXIMZ) 

FPSCR(VXVC) 

(if INF + INF) 

(if 0 + 0) 

(if INF x 0) 

(if NaN Compare). 

Processor Description 2· 105 



2. If the operation destination is an FPR, the result is a QNaN. 

3. If a result is generated, the FPRF field in the FPSCR is set to reflect the quiet NaN result. 
If the operation is a compare operation, the FPCC field is set to reflect floating-point 
unordered. 

Zero Divide Exception 
Definition 

Action 

A Zero Divide Exception occurs when a divide instruction is executed with a zero divisor 
value and a finite nonzero dividend value. 

The action taken depends on the setting of the Zero Divide Exception Enable bit of the 
FPSCR. 

When the Zero Divide Exception Enable bit is enabled, FPSCR(ZE) equals 1, and zero 
divide exception occurs, the following actions are taken: FPSCR(ZX) +- 1. 

1. Instruction execution is suppressed; operands are unmodified. 

2. The Zero Divide Exception bit is set, FPSCR(ZX) +-1. 

When the Zero Divide Exception Enable bit is disabled, FPSCR(ZE) equals 0, and zero 
divide exception occurs, the following actions are taken: 

1. The Zero Divide Exception bit is set FPSCR(ZX) +- 1. 

2. The result is set to ± infinity, where the sign is determined by the exclusive 'OR' of the 
sign of the operands. 

3. The FPRF field in the FPSCR is set to indicate an infinity with the proper sign. 

4. The result is placed into the target FPR. 

2-106 General Information Manual 



Overflow Exception 
Definition 

Overflow occurs when the magnitude of the rounded intermediate result exceeds that of the 
largest finite number of the specified result precision. 

The Floating Round to Single Precision instruction may produce incorrect results when all 
the following conditions are met: 

1. The Floating Round to Single Precision instruction is dependent on a previous 
floating-point arithmetic operation. Dependent means that it uses the target register of 
the arithmetic operation as the source register. 

2. Less than two nondependent floating-point arithmetic operations occur between the 
Floating Round to Single Precision instruction and the operation on which it is dependent. 

3. The magnitude of the double precision result of the arithmetic operation is less than 
2**128 before rounding. 

4. The magnitude of the double precision result after rounding is exactly 2**128 . 

Resultant Value 

If the error occurs, the magnitude of the result placed in the target register is 2**128: 

X'47FOOOOOOOOOOOOO' or X'C7FOOOOOOOOOOOOO' 

This is not a valid single precision value. The setting of the FPSCR and Condition register 
(CR) will be the same as if the result did not overflow. 

Insuring Correct Results 

If after considering the results described above, the programmer decides that the error will 
cause significant problems for his application, either of the following methods may be used 
to avoid the error. 

• Insure that two nondependent floating-point operations are placed between a floating 
point arithmetic operation and the dependent round to single. The target register for these 
operations should not be the same register that the Floating Round to Single Precision 
instruction uses as a source register. 

• Insert two floating round to single precision operations when the floating round to single 
precision may be dependent on a arthmetic operation that precedes it by less than three 
floating-point instructions. 

Either solution degrades performance by an amount dependent on the particular appliction. 

Processor Description 2-107 



Action 
The action to be taken depends on the setting of the Overflow Exception Enable bit of the 
FPSCR. 

When the Overflow Exception Enable bit is enabled, FPSCR(OE) equals 1, and exponent 
overflow occurs, the following actions are taken: 

1. The Overflow Exception is set FPSCR(OX) ~ 1. 

2. The exponent of the normalized intermediate result is adjusted by subtracting 1536. 

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper 
sign. 

4. The rounded result is placed into the specified FPR. 

When the Overflow Exception Enable bit is disabled, FPSCR(OE) equals 0, and overflow 
occurs, the following actions are taken: 

1. The Overflow Exception bit is set FPSCR(OX) ~ 1. 

2. The Inexact Exception bit is set FPSCR(XX) ~ 1. 

3. The result is determined by the rounding mode, FPSCR(RN), and the sign of the 
intermediate result as follows: for negative overflows, store -Infinity; and, for positive 
overflows, store the formats largest finite number. 

a. Round To Nearest : Store ± Infinity, where the sign is the sign of the intermediate 
result. 

b. Round To Zero: Store the formats largest finite number with the sign of the 
intermediate result. 

c. Round To + Infinity: For negative overflows, store the formats most negative finite 
number, and, for positive overflows, store + infinity. 

d. Round To - Infinity: For negative overflows, store - infinity and, for positive overflows, 
store the formats largest finite number. 

4. The FPRF field in the FPSCR is set to indicate the class and sign of the result. 

5. The result is placed into the specified FPR. 

2· 108 General Information Manual 



Underflow Exception 
Definition 

Action 

Underflow Exception is defined separately for the enabled and disabled states: 

Enabled: Underflow occurs when the intermediate result is Tiny. 

Disabled: Underflow occurs when the intermediate result is Tiny and there is Loss of 
Accuracy 

A Tiny result is detected before rounding, when a nonzero result value computed as though 
the exponent range were unbounded would be less in magnitude than the smallest 
normalized number. 

If the intermediate result is Tiny and the Underflow Exception Enable bit is off, FPSCR(UE) 
equals 0, the intermediate result is to be denormalized and rounded. See "Normalization and 
Denormalization" on page 2-100 and "Rounding" on page 2-101 for information about 
denormalizing and rounding results. 

Loss of Accuracy is detected as an inexact result when the delivered result value differs from 
what would have been computed were both the exponent range and precision unbounded. 

The action to be taken depends on the setting of the Underflow Exception Enable bit of the 
FPSCR. 

When the Underflow Exception Enable bit is enabled, FPSCR(UE) equals 1, and exponent 
underflow occurs, the following actions are taken: 

1. The Underflow Exception bit is set FPSCR(UX) ~ 1. 

2. The exponent of the normalized intermediate result is adjusted by adding 1536. 

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper 
sign. 

4. The rounded result is placed into the specified FPR. 

Note: The FR and Fl bits in the FPSCR allow the trap handler to simulate a trap disabled 
environment. The bits provide enough information to unround the result prior to 
denormalization. 

When the Underflow Exception Enable bit is disabled, FPSCR(UE) equals 0, and underflow 
occurs, the following actions are taken: 

1. The Underflow Exception bit is set FPSCR(UX) ~ 1. 

2. The FPRF field in the FPSCR is set to indicate the class and sign of the result 
(± Denormalized Number or± zero). 

3. The rounded result is placed into the specified FPR. 

Processor Description 2·109 



Inexact Exception 
Definition 

Action 

The Inexact Exception occurs when one of two conditions occurs during rounding: 

1. The rounded result differs from the intermediate result assuming the intermediate result 
exponent range and precision to be unbounded. 

2. The rounded result overflows and the Overflow Exception is disabled. 

When the Inexact Exception occurs, the following actions are taken: 

1. The Inexact Exception bit is set FPSCR(XX) ~ 1. 

2. The FPRF field in the FPSCR is set to indicate the class and sign of the result. 

3. The rounded or overflowed result is placed into the destination FPR. 

2-110 General Information Manual 



Floating-Point Resource Management 
Facilities are defined to allow control of the use of the Floating-Point Processor. MSR(FP) Is 
the Floating-Point Available bit. It controls the execution of floating-point instructions. When 
the FPP is available, MSR(FP) equals 1, the floating-point instructions can be executed. 
Otherwise the FPP is unavailable, MSR(FP) equals 0. An attempt to execute a floating-point 
instruction in this state causes a Floating-Point Unavailable Interrupt and the instruction 
execution Is suppressed. 

The test for invalid processor op code is made before the MSR(FP) bit is inspected. 

Floating-Point Execution Models 
All implementations of this architecture must provide the equivalent of the following 
execution models to ensure that identical results are obtained. 

Special rules are provided in the definition of the arithmetic instructions for the infinities, 
denormalized numbers, and NaNs. 

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic 
makes use of two additional bit positions to avoid potential transient overflow conditions. 
One extra bit Is required when denormalized double-precision numbers are prenormalized. 
The second bit Is required to permit the computation of the adjusted exponent value in the 
following cases when the corresponding exception enable bits is 1 : 

• Underflow during multiplication using a denormalized factor. 

• Overflow during division using a denormalized divisor. 

Execution Model for IEEE Operations 
IEEE conforming signlficand arithmetic is considered to be performed with a floating-point 
accumulator. Figure 17 shows the format of the accumulator. 

FRACTION 

0 1 

Figure 17. IEEE Execution Model 

The S bit is the Sign bit. 

52 

The C bit Is the Carry bit that captures the carry out of the slgnificand. 

The L bit is the Leading Unit bit of the signlficand that receives the implicit bit from the 
operands. 

The FRACTION field is a 52-bit field which accepts the fraction of the operands. 

The Guard (G), Round (R), and Sticky (X) bits are extensions to the low-order bits of the 
accumulator. The G and R bits are required for post normalization of the result. The G, R, 
and X bits are required during rounding to determine if the intermediate result is equally near 
the two nearest representable values. The X bit serves as an extension to the G and R bits 
by representing the logical OR of all bits that can appear to the low-order side of the R bit, 
either due to shifting the accumulator right or other generation of low-order result bits. The 
G and R bits participate In the left shifts with zeros being shifted Into the R-blt. Figure 18 
shows the significance of the G, R, and X bits with respect to the Intermediate result (IR), the 

Processor Description 2-111 



next lower in magnitude representable number (NL), and the next higher in magnitude 
representable number (NH). 

GRX Interpretation 

000 IR is exact 

000 
010 IR closer to NL 
0 11 

100 IR midway between NL & NH 

1 0 1 
11 0 IR closer to NH 
1 1 1 

Figure 18. Interpretation of G, R, and X Bits 

The significand of the intermediate result is made up of the L bit, the FRACTION field, and 
the G, R, and X bits. 

The infinitely precise intermediate result of an operation is the result normalized in the L, 
FRACTION, G, R, and X bits of the floating-point accumulator. 

Before the results are stored into an FPR, the significand is rounded using the rounding 
mode specified by the Floating-Point Rounding Control field (RM) of the FPSCR. If rounding 
results in a carry into the C bit, the significand is shifted right one position and the exponent 
incremented by one. This, in turn, can result in an exponent overflow. Fraction bits to the left 
of the bit position used for rounding are stored into the FPR and low order bit positions, if 
any, are set to 0. 

Four modes of rounding are provided that are user-selectable through the Floating-Point 
Rounding Control field (RM) of the FPSCR. This field is encoded as follows: 

RN Rounding Mode 

00 

01 

10 

11 

Round To Nearest 

Round Toward Zero 

Round Toward + Infinity 

Round Toward - Infinity 

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of 
accumulator bits. Figure 19 refers to the bit positions of Guard, Round, and Sticky for double 
and single-precision FP numbers. 

Format Guard Round Sticky 

Double G bit R bit x bit 
Single 24 25 26-52 G,R,X 

Figure 19. Location of the Guard, Round, and Sticky Bits 

2-112 General Information Manual 



Rounding can be treated as though the significand were shifted right, if required, until the 
least significant bit to be retained is in the low-order bit position of the FRACTION field. If 
any of the Guard, Round, or Sticky bits are nonzero, the result is inexact. 

Z1 and Z2, as defined in "Rounding" on page 2-101, can be used to approximate the result 
in the target format when one of the following rules is used. 

If rounding results in a carry into the C bit, the significand must be shifted right one position 
and the exponent is increased by one. This can result in signaling an inexact result if the low 
order bit of the fraction had been a 1 . 

Where the result is to have fewer than 53 bits of precision because the instruction is a round 
to single-precision, the intermediate result is either normalized, or is placed in correct 
denormalized form before the result is rounded. 

Execution Model for Multiply-Add Type Instructions 
The architecture makes use of a special form of instruction that performs up to three 
operations in one instruction (a multiply, an add, and a negate operation). With this added 
capability is the special feature of being able to produce a more exact intermediate result as 
an input to the rounder. Figure 20 shows the intermediate results produced by the multiply 
add operations. 

s I c I L FRACTION 

0 1 105 

Figure 20. Multiply Add Execution Model 

The first part of the operation is a multiply operation. The multiply operation has two 53 bit 
significands as inputs, which are assumed to be prenormalized, and produces a result 
conforming to the preceding model. The sign produced by the multiply operation portion is 
defined to be the XOR of the signs of the two multiply input operands. If there is a carry out 
of the significand (C), the significand is shifted to the right by one bit, shifting the L bit 
(Leading Unit bit) into the most significant bit of the fraction, shifting the C bit (carry out) into 
the L bit. All 106 bits (L bit, the fraction) of the product take part in the add operation. If the 
exponents of the two inputs to the adder are not equal, the significand of the operand with 
the smaller exponent is aligned (shifted) to the right by an amount that is added to that 
exponent to make it equal to the other inputs exponent. Zeros are shifted into the left of the 
significand as it is aligned and bits shifted out of bit 105 of the significand are ORed into the 
X bit. The add operation also produces a result conforming to the preceding model with the 
X bit taking part in the add operation. The sign produced by the add portion is defined to be 
the sign of the largest of the two add input operands. When the sum of two operands with 
opposite sign is exactly zero, the sign of that sum is positive in all rounding modes except 
Round Toward - Infinity, in which mode that sign is negative. The sum of operands with the 
same sign retains the sign of the operands, even if the operands are zeros. 

The result of the add is then normalized, with all bits of the add result, except the X bit, 
participating in the shift. The normalized result provides an intermediate result as input to the 
rounder that conforms to the model described in "Execution Model for IEEE Operations" on 
page 2-111. The intermediate result has the following characteristics: 

• The Guard bit is bit 53 of the intermediate result. 

• The Round bit is bit 54 of the intermediate result. 

• The Sticky bit is the OR of all remaining bits to the right of bit 55, inclusive. 

The rules of rounding the intermediate result are the same as the described in "Execution 
Model for IEEE Operations". 

Processor Description 2· 113 



If the instruction is Floating Negative Multiply Add or Floating Negative Multiply Subtract, the 
negate occurs after rounding. 

Floating-Point Processor Instructions 
Arithmetic operations allow implementations that range from those where the processor 
waits for the execution of each FPP operation to those providing for the overlapped 
execution of multiple operations. The instructions to load and copy the FPSCR appear to 
synchronize the operation of the FPP. For the copy operation, the status from all outstanding 
operations must be available before the contents of the FPSCR is transferred to the RT 
register. When the FPSCR is loaded, the status bits cannot be changed by any outstanding 
operations. Similarly, the execution of outstanding operations cannot be affected by new 
values for the FPSCR control bits. Floating-point register usage is governed by a rule of 
precedence which states that a register cannot be used by a given instruction until its 
contents reflect the results of all those instructions that precede it. 

Floating-Point Load Instructions 
There are two basic forms of load instructions, single-precision and double-precision. Since 
the FPRs only support floating-point double-precision operands single-precision data must 
be converted to double-precision prior to loading into the FPR. The conversion and loading 
steps are as follows: 

Let WORD (0-31) be the floating-point single-precision operand accessed from memory. 

Normalized Operand 
If WORD (1-8) > 0 and WORD (1-8) < 255 

FAT (0-1) ~WORD (0-1) 
FAT (2) ~ WORD (1) 
FAT (3) ~ WORD (1) 
FAT (4) ~ WORD (1) 
FAT (5-63) ~ WORD (2-31 )1129 x b'O' 

Infinity I QNaN I SNaN I Zero 
If WORD (1-8) = 255 or WORD (1-31) = 0 

FAT (0-1) ~WORD (0-1) 
FAT (2) ~ WORD (1) 
FAT (3) ~ WORD (1) 
FAT (4) ~ WORD (1) 
FAT (5-63) ~WORD (2-31)1129 x b'O' 

Denormalized Operand 
If WORD (1-8) = O and WORD (9-31) · 0 

sign ~.WORD (0) 
exp ~-126 
frac (0-52) ~ b'O'llWORD (9-31 )1129 x b'O' 
normalize the operand 

Do while frac (0) = O 
frac ~ frac (1-52)11b'O' 
exp~ exp-1 

End 
FRT(O) ~ sign 
FRT(1-11) ~exp+ 123 
FRT(12-63) ~ frac (1-52) 

2· 114 General Information Manual 



Note: The preceding description of the conversion steps are a model only. The actual 
implementation can vary from this but must produce results equivalent to what this 
model would produce. 

For double-precision loads, no conversion is required as the data from memory is placed 
straight into the FPR. 

Note: Recall that RA, RB, and RT denote general-purpose registers, while FRA, FRB, 
FRC and FRT denote floating-point registers. 

Load Floating-Point Single (D-Form) 
0 6 11 16 31 

I FRT lo 
Ifs FRT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1 , and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 110 segment, a Data 
Storage Interrupt is generated. 

The word in storage addressed by the EA is interpreted as a floating-point single-precision 
operand. This word is converted to floating-point double-precision and placed into register 
FRT. 

Condition register (CR Field O) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Load Floating-Point Single Indexed (X-Form) 
0 6 11 

I a1 I FRT RA 

lfsx FRT, RA, RB 

16 21 31 

I RB 1 sas 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned nemory access. If the hardware cannot perform the unaligned storage access, 
an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a Data Storage 
Interrupt is generated. 

The word in storage addressed by the EA is interpreted as a floating-point single-precision 
operand. This word is converted to floating-point double-precision (see "Floating-Point 
Load Instructions" on page 2-114) and placed into register FRT. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-115 



Load Floating-Point Double (D-Form) 
0 6 11 16 31 

I 50 I FRT RA D 

ltd FRT, D(RA) 

Let the effective address (EA) be the sum {RAIO) + D. If alignment checking is disabled, 
MSR{AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1 , and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The doubleword in memory addressed by the EA is placed into register FRT. 

Condition register (CR Field O) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Load Floating-Point Double Indexed (X-Form) 
0 6 11 16 

1 31 I FRT RA I RB 

lfdx FRT, RA, RB 

21 

1599 

31 

Let the effective address (EA) be the sum {RAIO)+ {RB). If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The doubleword in storage addressed by the EA is and placed into register FRT. 

Condition register {CR Field 0) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

2-116 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Load Floating-Point Single With Update (D-Form) 
0 6 11 16 31 

I 49 I FRT RA D 

lfsu FRT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a Data 
Storage Interrupt is generated. 

The word in memory addressed by the EA is interpreted as a floating-point single-precision 
operand. This word is converted to floating-point double-precision and placed into register 
FRT. See "Floating-Point Load Instructions" on page 2-114 for information about double­
precision load instructions. If RA :t: 0 and the memory access does not cause an Alignment 
Interrupt or a Data Storage Interrupt , the EA is placed into register RA. · 

Condition register (CR Field O) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Load Floating-Point Single With Update Indexed (X-Form) 
0 6 11 16 21 

I 31 I FRT RA RB 567 

lfsux FRT, RA, RB 

31 

Let the effective address (EA) be the sum (RAIO)+ (RB). If alignment checking is disabled, 
MSR(AL) equals 0, then the two low-order bits are ignored. If alignment checking is 
enabled, MSR(AL) equals 1 , and the two low-order bits are not 00, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The word in memory addressed by the EA is interpreted as a floating-point single-precision 
operand. This word is converted to floating-point double-precision (see "Floating-Point 
Load Instructions" on page 2-114) and placed into register FRT. If register RA :t: 0 and the 
storage access does not cause an Alignment Interrupt or a Data Storage Interrupt , the EA is 
placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-117 



Load Floating-Point Double With Update (D-Form) 
0 6 11 16 31 

I s1 I FRT lo 
lfdu FRT, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt Is generated. If the EA addresses an 110 segment, a 
Data Storage Interrupt is generated. 

The doubleword in memory addressed by the EA is placed into register FRT. If register RA ¢ 

O and the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt, 
the EA is placed into register RA. · 

Condition register (CR Field 0) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Load Floating-Point Double With Update Indexed (X-Form) 
0 6 11 16 21 

I 31 I FRT I RA I RB 

lfdux FRT, RA, RB 

31 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals o, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 110 segment, a 
Data Storage Interrupt is generated. 

The doubleword in memory addressed by the EA is placed into register FRT. If register RA ¢ 

0 and the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt, 
the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

2· 118 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Floating-Point Store Instructions 
There are two basic forms of store instructions, single-precision and double-precision. 
Since the FPRs only support floating-point double-precision operands, double-precision 
data must be converted to single-precision prior to storing operands into storage. The 
conversion steps follow: 

Let WORD (Q-31) be the word in storage written to. 

No Denormallzation Required 
If FRS (1-11) > 896 or FRS (1-63) = 0 or 

FPSCR (UE) = 1 
WORD (0-1) +- FRS (0-1) 
WORD (2-31) +- FRS (5-34) 

Denormalized Operand 
If FRS (1-11) s 896 and FPSCR (UE) = 0 

sign +- FRS(O) 
exp+- FRS(1-11)-1023 
frac +- 'l'llFRS (12-63) 
Denormalize the operand 

Do while exp <-126 

End 

frac +- 'O'llfrac (0-62) 
exp+- exp+ 1 

WORD (0) +- sign 
WORD (1-8) +- x'OO' 
WORD (9-31) +- frac (1-23) 

Notes: 

1. The preceding description of the conversion steps are a model only. The actual 
implementation can vary from this but must produce results equivalent to what this 
model would produce. 

2. Recall that RA, RB, and RT denote general-purpose registers, while FRA, FRB, 
FRC, and FRT denote floating-point registers. 

Processor Description 2· 119 



Store Floating-Point Single (D-Form) 
0 6 11 16 31 

I s2 I FRS I RA lo 
stfs FRS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a Data 
Storage Interrupt is generated. 

The contents of register FRS is converted to single-precision and stored into the word in 
memory addressed by the EA. 

Condition register (CR Field 0) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Store Floating-Point Single Indexed (X-Form) 
6 11 

I a1 I FRS RA 

stfsx FAS, RA, RB 

16 21 31 

RB I 663 

Let the effective address (EA) be the sum (RAIO)+ (RB). If alignment checking is disabled, 
MSR(Al) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a Data 
Storage Interrupt is generated. 

The contents of register FRS is converted to single-precision (see "Floating Point Store 
Instructions" on page 2-119) and stored into the word in memory addressed by the EA. 

Condition register (CR Field 0) 
Set None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

2-120 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Store Floating-Point Double (D-Form) 
0 6 11 16 31 

I 54 I FRS RA D 

stfd FAS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The contents of register FAS is stored into the doubleword in memory addressed by the EA. 
Register FAT is unchanged. 

Condition register (CR Field O) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Store Floating-Point Double Indexed (X-Form) 
0 6 11 16 

I 31 I FRS RA 

sttdx FRS,RA,RB 

21 31 

RB 727 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The contents of register FAS is stored into the doubleword in memory addressed by the EA. 
Register FAT is unchanged. 

Condition register (CR Field 0) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-121 



Store Floating-Point Single With Update (D-Form) 
0 6 11 16 31 

I 53 I FRS RA jo 
stfsu FRS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a Data 
Storage Interrupt is generated. 

The contents of register FRS is stored into the doubleword in memory addressed by the EA. 
Register FRT is unchanged. If register RA -:1- 0 and the storage access does not cause an 
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA. 

Condition register (CR Field 0) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Store Floating-Point Single With Update Indexed (X-Form) 
0 6 11 16 21 

I 31 I FRS RA RB 1695 

stfsux FRS, RA, RB 

31 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the two low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform 
the unaligned memory access. If the hardware cannot perform the unaligned memory 
access, an Alignment Interrupt is generated. If the EA addresses an 110 segment, a Data 
Storage Interrupt is generated. 

The contents of register FRS is stored into the doubleword in memory addressed by EA. 
Register FRT is unchanged. If register RA -:1- O and the storage access does not cause an 
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 
Set: Undefined 

Fixed Point Status and Control register 
Set: None 

2-122 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Store Floating-Point Double With Update (D-Form} 
0 & 11 16 31 

I 55 I FAS lo 
stfdu FRS, D(RA) 

Let the effective address (EA) be the sum (RAIO) + D. If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1, and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The contents of register FRS is stored into the doubleword in memory addressed by the EA. 
Register FRT is unchanged. If RA ~ O and the storage access does not cause an Alignment 
Interrupt or a Data Storage Interrupt , the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None 

Fixed Point Status and Control register 
Set: None 

Store Floating-Point Double With Update Indexed (X-Form) 
0 & 11 16 21 

I 31 I FAS I RA I RB 1759 

stfdux FRS, RA, RB 

31 

Let the effective address (EA) be the sum (RAIO) + (RB). If alignment checking is disabled, 
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled, 
MSR(AL) equals 1 , and the three low-order bits are not 000, the hardware attempts to 
perform the unaligned memory access. If the hardware cannot perform the unaligned 
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0 segment, a 
Data Storage Interrupt is generated. 

The contents of register FRS is stored into the doubleword in memory addressed by the EA. 
Register FRT is unchanged. If register RA ~ O and the storage access does not cause an 
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA. 

Condition register (CR Field O) 
Set: None (if Re = O) 
Set: Undefined (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

Processor Description 2·123 



Floating-Point Move Instructions 
These instructions move data from one floating register to another with data modifications as 
described in each instruction description. These instructions do not modify the FPSCR and 
do not generate any exceptions. 

The Re bit in these instructions controls the loading of result status into Condition register 
Field F1. If Re equals 1, the CR Field 1 is loaded, otherwise CR is unchanged. 

Floating Move Register (X-Form) 
0 6 11 16 

I 63 I FRT Ill FRB 

fmr FRT, FRB (Re= 0) 
fmr. FRT, FRB (Re= 1) 

The contents of register FRB is placed into register FRT. 

Condition register (CR Field 1) 
Set: None (if Re = 0) 
Set: FX FEX VX OX (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

Floating Negate (X-Form) 
0 6 11 

I 63 I FRT Ill 

fneg FRT, FRB (Re= 0) 
fneg. FRT, FRB (Re= 1) 

16 

FRB 

21 

I 12 

21 

140 

The contents of register FRB with bit O inverted is placed into register FRT. 

Condition register (CR Field 1) 
Set: None (if Re = 0) 
Set: FX FEX VX OX (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

Floating Absolute Value (X-Form) 
0 6 11 

I 63 I FRT Ill 

fabs FRT, FRB (Re= 0) 
tabs. FRT, FRB (Re= 1) 

16 

FRB 

21 

1264 

The contents of register FRB with bit O set to O is placed into register FAT. 

Condition register (CR Field 1) 
Set: None (if Re = 0) 
Set: FX FEX vx ox (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

2-124 General Information Manual 

31 

I Re I 

31 

31 



Floating Negative Absolute Value (X-Form) 
0 6 11 16 21 

I 63 I FRT Ill FRB 1136 

fnabs FRT, FRB (Re= 0) 
fnabs. FRT, FRB (Re= 1) 

The contents of register FRB with bit O set to 1 is placed into register FRT. 

Condition register (CR Field 1) 
Set: None (if Re = O) 
Set: FX FEX VX OX (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

31 

I Re I 

Processor Description 2· 125 



Floating-Point Arithmetic Instructions 
Floating Add (A-Form) 

0 

I 63 

fa 
fa. 

6 

I FAT 

FAT, FAA, FRB 
FAT, FAA, FRB 

11 

FAA 

(Re= 0) 
(Re= 1) 

16 21 26 31 

FAB Ill 21 

The 64-bit double-precision floating-point operand in register FAA is added to the 64-bit 
double-precision floating-point operand in register FRB. The result is rounded under control 
of the Floating-Point Rounding Control field (RM) of the FPSCR and placed Into register 
FAT. 

Addition of two floating-point numbers is based on exponent comparison and addition of the 
two significands. The exponents of the two operands are compared, and the significand 
accompanying the smaller exponent is shifted right, with its exponent increased by one for 
each bit shifted, until the two exponents are equal. The two significands are then added 
algebraically to form an intermediate sum. All 53 bits in the significand as well as all three 
guard bits (G, R, and X) enter into the computation. 

If a carry occurs, the sum is shifted right one bit position and the exponent is Increased by 
one. If the Leading significand bit (L) is not a 1, the result Is normalized by shifting the 
significand left while decrementing the exponent until the Leading bit (L) is a 1. The X bit 
does not participate in the left shifts. Rather, zeros are shifted into the R bit from the right. 

Tininess is checked before rounding. The unrounded result is then rounded using the mode 
specified by the RM field of the FPSCR. The rounded result is then checked for overflow and 
inexact exceptions. 

When the sum of two operands with an opposite sign Is exactly O, the sign of that sum is 
positive in all rounding modes except Round Toward- Infinity, in which mode that sign is 
negative. The sum of operands with the same sign retains the sign of the operands, even if 
the operands are zeros. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

oxuxxx 
VXSNAN VXISI 

2-126 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Floating Subtract (A-Form) 
0 6 11 16 21 26 31 

I 63 I FRT FRA FRB Ill 20 I Re I 
fs FRT, FRA, FRB (Re= 0) 
fs. FRT, FRA, FRB (Re= 1) 

The 64-bit double-precision floating-point operand in register FRB is subtracted from the 
64-bit double-precision floating-point operand in register FRA. The result is rounded under 
control of the Floating-Point Rounding Control field (RM) of the FPSCR and placed into 
register FRT. 

The execution of the Floating Subtract instruction is identical to that of the Floating Add 
instruction, except that the contents of FRB participates in the operation with bit 0 inverted. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox ux xx 
VXSNAN VXISI 

Floating Multiply (A-Form) 
0 6 11 

I 63 I FRT FRA 

fs FRT, FRA, FRC (Re= 0) 
fs. FRT, FRA, FRC (Re= 1) 

16 

Ill 

(if Re= 0) 
(if Re= 1) 

21 26 31 

25 

The 64-bit double-precision floating-point operand in register FRA is multiplied by the 64-
bit double-precision floating-point operand in register FRC. The result is rounded under 
control of the Floating-Point Rounding Control field (RM) of the FPSCR and placed into 
register FRT. 

Multiplication of two floating-point numbers is based on exponent addition and multiplication 
of the significands. 

If an operand is a denormalized number, it is prenormalized before the operation is begun. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox uxxx 
VXSNAN VXIMZ 

(if Re= 0) 
(if Re= 1) 

Processor Description 2-127 



Floating Divide (A-Form) 
0 6 11 16 21 26 31 

I 63 I FRT FRA FRB Ill 18 I Re I 
fd FAT, FRA, FRB (Re= 0) 
fd. FAT, FRA, FRB (Re = 1) 

The 64-bit double-precision floating-point operand in register FRA is divided by the 64-bit 
double-precision floating-point operand in register FRB. No remainder is preserved. The 
result is rounded under control of the Floating-Point Rounding Control field (RM) of the 
FPSCR and placed into register FRT. 

The floating-point division operation is based on exponent subtraction and division of the 
two significands. 

If an operand is a denormalized number, it is prenormalized before the operation is begun. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox uxzxxx 
VXSNAN VXIDI VXZDZ 

Floating Round To Single Precision (X-Form) 
0 6 11 16 

I 63 I FRT Ill FRB 

trsp FAT, FRB (Re= 0) 
frsp. FRT, FRB (Re = 1) 

(if Re= 0) 
(if Re = 1) 

21 

12 

31 

I Re I 

The 64-bit double-precision floating-point operand in register FRB is rounded to 
single-precision using the rounding mode specified by the (RM) field of the FPSCR and 
placed into register FRT. 

See "Floating Point Round to Single Model" on page 2-139 for a detailed description of the 
model for rounding a floating-point double-precision operand to floating-point 
single-precision. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation (SNaN) when the FPSCR(VE) bit equals 1. 

This instruction may produce incorrect results under limited circumstances. Refer to 
"Overflow Exception" on page 2-107 for directions on insuring the correct result. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox uxxx 
VXSNAN 

2-128 General Information Manual 

(if Re= 0) 
(if Re = 1) 



Floating-Point Accumulate Instructions 
These instructions combine a multiply and add operation without an intermediate rounding 
operation. The fraction part of the intermediate product is106-bits wide where all 106 bits 
take part in the add or subtract portion of the instruction. 

Floating Multiply Add (A-Form) 
0 6 11 16 21 26 31 

I 63 I FRT I FRA I FRB FRC 29 I Re I 
fma FRT, FRA, FRC, FRB (Re= 0) 
fma. FRT, FRA, FRC, FRB (Re= 1) 

The operation (FRT) +- - [(FRA) x (FRC)] + (FRB) is performed. 

If an operand is a denormalized number, it is prenormalized before the operation is begun. 

The 64-bit double-precision floating-point operand in register FAA is multiplied by the 
64-bit double-precision floating-point operand in register FRC. The 64-bit double-precision 
floating-point operand in register FRB is added to this intermediate result. The result is 
rounded under control of the Floating-Point Rounding Control field (RM) of the FPSCR and 
placed into register FRT. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None (if Re = O) 
Set: FX FEX VX OX (if Re = 1) 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox uxxx 
VXSNAN VXISI VXIMZ 

Processor Description 2-129 



Floating Multiply Subtract (A-Form) 
0 6 11 16 21 26 31 

I 63 I FRT I FRA I FRB FRC 28 I Re I 
fms FRT, FRA, FRC, FRB (Re= 0) 
fms. FRT, FRA, FRC, FRB (Re= 1) 

The operation (FRT) +- - [(FRA) x (FRC)] - (FRB) is performed. 

If an operand is a denormalized number it is prenormalized before the operation is begun. 

The 64-bit double-precision floating-point operand in register FRA is multiplied by the 
64-bit double-precision floating-point operand in register FRC. The 64-bit double-precision 
floating-point operand in register FRB is subtracted from this intermediate result. The result 
is rounded under control of the Floating-Point Rounding Control field (RM) of the FPSCR 
and placed into register FRT. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

oxuxxx 
VXSNAN VXISI VXIMZ 

2· 130 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Floating Negative Multiply Add (A-Form) 
0 6 11 16 21 26 31 

I 63 I FAT I FAA I FRB FRC 31 I Re I 
fnma FRT, FRA, FRC, FRB (Re= 0) 
fnma. FRT, FRA, FRC, FRB (Re= 1) 

The operation (FRT) +- - { [(FRA) x (FRC)] + (FRB)} is performed. 

If an operand is a denormalized number, it is prenormalized before the operation is begun. 

The 64-bit double-precision floating-point operand in register FRA is multiplied by the 
64-bit double-precision floating-point operand in register FRC. The 64-bit double-precision 
floating-point operand in register FRB is added to this intermediate result. The result is 
rounded under control of the Floating-Point Rounding Control field (RM) of the FPSCR, 
negated, and placed into register FRT. 

This instruction is Identical to "Floating Multiply Add (A-Form)" on page 2-129 ,with the final 
result negated, but with the following exceptions: 

• QNaNs propagate with no effect on their Sign bit. 

• QNaNs generated as the result of a disabled Invalid Operation Exception have a sign bit 
of O. 

• SNaNs converted to QNaNs as the result of a disabled Invalid Operation Exception have 
no effect on its sign bit. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

oxuxxx 
VXSNAN VXISI VXIMZ 

(if Re= 0) 
(if Re= 1) 

Processor Description 2·131 



Floating Negative Multiply Subtract (A-Form) 
0 6 11 16 21 26 31 

I 63 I FRT I FRA I FRB FRC 30 I Re I 
fnms FRT, FRA, FRC, FRB (Re= 0) 
fnms. FRT, FRA, FRC, FRB (Re= 1) 

The operation (FRT) ~ - { [(FRA) x (FRC)] - (FRB)} is performed. 

If an operand is a denormalized number, it is prenormalized before the operation is begun. 

The 64-bit double-precision floating-point operand in register FRA is multiplied by the 
64-bit double-precision floating-point operand in register FRC. The 64-bit double-precision 
floating-point operand in register FRB is subtracted from this intermediate result. The result 
is rounded under control of the Floating-Point Rounding Control field (RM) of the FPSCR, 
negated, and placed into register FRT. 

This instruction is identical to "Floating Multiply Subtract (A-Form)" on page 2-130, with the 
final result negated, but with the following exceptions: 

• QNaNs propagate with no effect on their sign bit. 

• QNaNs generated as the result of a disabled Invalid Operation Exception have a sign bit 
of 0. 

• SNaNs converted to QNaNs as the result of a disabled Invalid Operation Exception have 
no effect on its sign bit. 

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid 
Operation Exceptions when the FPSCR(VE) bit equals 1. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: C FL FG FE FU FR Fl 

ox uxxx 
VXSNAN VXISI VXIMZ 

2-132 General Information Manual 

(if Re= 0) 
(if Re= 1) 



Floating-Point Compare Instructions 
The IBM RISC System/6000 architecture provides two floating-point compare instructions 
for ordered and unordered compares. In the compare instructions, the BF value determines 
which field in the Condition register receives the result of the compare. One bit in the field is 
set to 1, the others are set to 0. The four bit compare result bits are interpreted as follows: 

Bit 0 (FRA) < (FRB) 

Bit 1 (FRA) > (FRB) 

Bit 2 (FRA) = (FRB) 

Bit 3 (FRA) ? (FRB) (Unordered) 

Floating Compare Unordered (X-Form) 
0 6 9 11 16 21 31 

I 63 I BF I 111 FRA FRB lo 
fcmpu BF, FRA, FRB 

The 64-bit double-precision floating-point operand in register FRA is compared to the 
64-bit double-precision floating-point operand in register FRB. The Floating-Point 
Condition Code field of the FPSCR is set to reflect the value of operand FRA with respect to 
operand FRB. The BF value determines which field in the Condition register receives the 
four FPCC bits. 

If one of the operands is a NaN, either quiet or signaling, the FPCC is set to reflect 
unordered. If one of the operands is a signaling NaN, the VXSNAN is set. 

Condition register [CR Field i, i = BF(6-8)] 
Set: FL FG FE FU 

Fixed Point Status and Control register 
Set: FL FG FE FU 

VXSNAN 

Note: If Re = 1, the CR Field 1 and the VXVC is undefined. 

Processor Description 2-133 



Floating Compare Ordered (X-Form) 
0 6 9 11 16 21 31 

I 63 I BF I 111 FRA I FRB 

fcmpo BF, FRA, FRB 

The 64-bit double-precision floating-point operand in register FRA is compared to the 
64-bit double-precision floating-point operand in register FRB.The Floating-Point Condition 
Code field of the FPSCR is set to reflect the value of operand FAA with respect to operand 
FRB. The BF value determines which field in the Condition register receives the four FPCC 
bits. 

If one of the operands is a NaN, either quiet or signaling, the FPCC is set to reflect 
unordered. If one of the operands is a signaling NaN, the VXSNAN is set, and if Invalid 
Operation is disabled (VE = 0), the VXVC is set. Otherwise, if one of the operands is a Quiet 
NaN, the VXVC is set. 

Condition register [CR Field i, i = BF(6-8)] 
Set: FL FG FE FU 

Fixed Point Status and Control register 
Set: FL FG FE FU 

VXSNAN VXVC 

Note: If Re = 1, the CR Field 1 and the VXVC is undefined. 

2-134 General Information Manual 



Floating-Point Status and Control Register Instructions 
Move From FPSCR (X-Form) 

0 6 11 16 21 

I 63 FRT Ill Ill I sa3 

mffs FAT (Re = 0) 
mffs. FAT (Re = 1) 

The contents of FPSCR is placed Into bits 32-63 of floating-point register FRT. 
X'FFFFFFFF' is placed into bits 0-31 of floating point register FAT. 

31 

Note: This instruction loads the contents of the Floating-Point Status and Control register 
into an FPR, loading ones into the upper 32 bits. This makes the contents of the FPR 
look like a quiet NaN and is treated as one if used as an operand for any floating 
point-arithmetic operation. 

Condition register (CR Field 1) 
Set: None (if Re = O) 
Set: FX FEX VX OX (if Re = 1) 

Fixed Point Status and Control register 
Set: None 

Move To Condition Register From FPSCR (X-Form) 
0 6 9 11 14 16 

I 63 I BF 
'"' BFA mcrfs BF, BFA 

21 

164 
31 

The four bits of the Floating-Point Status and Control register, determined by the BFA field, 
are copied to CR Field i (i =BF). All other CR bits are unchanged. 

If the field specified by the BFA contains reserved or undefined bits, O bits are supplied for 
the copy. 

BFA specifies one of the 4-bit fields, 0-7, of the FPSCR. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Reset:FX OX 

UX ZX XX VXSNAN 
VXISI VXIDI VXZDZ VXIMZ 
vxvc 

(if Re= 0) 
(if Re= 1) 

(BFA = 0) 
(BFA = 1) 
(BFA = 2) 
(BFA = 3) 

Note: If Re = 1 and the BF field ~ 1, the CR Field 1 is undefined. 

Processor Description 2· 135 



Move To FPSCR Fields (XFL-Form) 
0 

I 63 

mtfsf 
mtfsf. 

67 
,,, FLM 

FLM, FRB 
FLM, FRB 

(Re= 0) 
(Re= 1) 

15 16 
,,, FRB 

FLM is a field mask, defined as follows: 

Bit Description 

7 FPSCR 00-03 is updated 

8 FPSCR 04-07 is updated 

9 FPSCR 08-11 is updated 

10 FPSCR 12-15 is updated 

11 FPSCR 16-19 is updated 

12 FPSCR 20-23 is updated 

13 FPSCR 24-27 is updated 

14 FPSCR 28-31 is updated. 

21 31 

I 111 

Bits 32-63 of the contents of the floating-point register FRB are placed into FPSCR under 
control of the field mask specified by the FLM. 

Condition register (CR Field 1) 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: Field i, where i = BF 

(if Re= 0) 
(if Re= 1) 

Note: This instruction is synchronizing within the floating-point unit and tends to hold off 
execution of subsequent floating-point RR operations. When specifing FPSCR 0-3, 
bit 3 (OX) can transistion from O to 1. However, bit O (FX) is set or reset explicitly by 
the instruction. Also, bits 1-2 cannot be explicitly set or reset. 

2· 136 General Information Manual 



Move To FPSCR Field Immediate (X-Form) 
0 6 9 11 16 20 21 31 

I 63 I BF I 11 I Ill 111134 

mtfsfi BF, I (Re = O} 
mtfsfi. BF, I (Re = 1} 

Bits 16-19 of the instruction are placed into the field of the FPSCR specified by the BF field. 
All other fields of the FPSCR are unchanged. 

Condition register (CR Field 1} 
Set: None 
Set: FX FEX VX OX 

Fixed Point Status and Control register 
Set: Field i, where i = BF 

(if Re= O} 
(if Re= 1} 

Note: This instruction is synchronizing within the floating-point unit and tends to hold off 
execution of subsequent floating-point RR operations. When specifing FPSCR 0-3, 
bit 3 (OX} can transistion from O to 1. However, bit O (FX} is set or reset explicitly by 
the instruction. Also, bits 1-2 cannot be explicitly set or reset. 

Move To FPSCR Bit 1 (X-Form) 
0 

I 63 

mtfsb1 BT 
mtfsb1. BT 

6 

BT 

(Re= 0) 
(Re= 1) 

11 16 21 31 

Ill Ill 1 ae 

The bit specified by the BT field in FPSCR is set to 1. All other bits of the FPSCR are 
unchanged. 

Condition register (CR Field 1) 
Set: None (if Re = O) 
Set: FX FEX VX OX (if Re = 1 ) 

Fixed Point Status and Control register 
Set: Bit i, where i =BT 

Note: This instruction is synchronizing within the floating-point unit and tends to hold off 
execution of subsequent floating-point RR operations. Also, bits 1-2 cannot be 
explicitly set or reset. 

Processor Description 2· 137 



Move To FPSCR Bit 0 (X-Form) 
0 6 11 16 21 31 

I 63 I BT Ill I Ill I 10 I Ac I 
mtfsbO BT (Re• 0) 
mtfsbO. BT (Re== 1} 

The bit specified by the BT field in FPSCR is set to O. All other bits of the FPSCR are 
unchanged. 

Condition register (CR Field 1} 
Set: None (if Re • 0) 
Set: FX FEX vx ox (if Re ... 1} 

Fixed Point Status and Control register 
Set: Bit i, where i ... BT 

Note: This instruction is synchronizing within the floating-point unit and tends to hold off 
execution of subsequent floating point RR operations. Also, bits 1-2 cannot be 
explicitly set or reset. 

2·138 General Information Manual 



Floating Point Round to Single Model 
The following describes the model for Floating Round to Single-Precision instruction. 

Floating Round to Single Model: 

If FRB(1-11)<897 and FRB(1-63)>0 then 
Do 

If FPSCR(UE)=O then goto Disabled Exponent Underflow 
If FPSCR(UE)=1 then goto Enabled Exponent Underflow 

End 

If FRB(1-11)>1150 and FRB(1-11)<2047 then 
Do 

If FPSCR(OE)=O then goto Disabled Exponent Overflow 
If FPSCR(OE)=1 then goto Enabled Exponent Overflow 

End 

If FRB(1-11)>896 and FRB(1-11)<1151 then goto Normal Operand 

If FRB(1-63)=0 then goto Zero Operand 

If FRB(1-11)=2047 then 
Do 

If FRB(12-63)=0 then goto Infinity Operand 
If FRB(12)=1 then goto QNaN Operand 
If FRB(12)=0 and FRB(13-63)>0 then goto SNaN Operand 

End 

Disabled Exponent Underflow: 

sign +- FRB(O) 
If FRB(1-11)=0 then 

Do 
exp +--1022 
frac +- b'O' II FRB(12-63) 

End 
If FRB(1-11)>0 then 

Do 
exp+- FRB(1-11)-1023 
frac +- b'1' II FRB(12-63) 

End 
Denormalize operand: 

G II R II X +- b'OOO' 
Do while exp<-126 

exp+- exp+ 1 
frac 11 G 11 R 11 X +- b'O' 11 frac 11 G 11 R or X 

End 
FPSCR(UX) +- frac(24-52)11GllRllX>0 
If frac(24-52)11GllRllX>0 then FPSCR(XX) +- b'1' 
Round single(sign,exp,frac,G,R,X) 
If frac=O then 

Do 
FRT(OO) +- sign 
FRT(01-63) +- 0 
If sign=O then FPSCR(FPRF) +- "+zero" 
If sign=1 then FPSCR(FPRF) +- "-zero" 

Processor Description 2-139 



End 
If frac>O then 

Do 

End 
Done 

If frac(0)=1 then 
Do 

If sign=O then FPSCR(FPRF) f- "+normal number" 
If sign=1 then FPSCR(FPRF) f- "-normal number" 

End 
If frac(O)=O then 

Do 
If sign=O then FPSCR(FPRF) f- "+denormalized number" 
If sign=1 then FPSCR(FPRF) f- "-denormalized number" 

End 
Normalize operand: 

Do while frac(O)=O 
exp f- exp-1 
frac 11 G 11Rf-frac(1-52)11G11R11 b'O' 

End 
FRT(O) f- sign 
FRT(1-11) f- exp+ 1023 
FRT(12-63) f- frac(1-23) II 29*b'O' 

Enabled Exponent Underflow: 

FPSCR(UX) f- b'1' 
sign f- FRB(O) 
If FRB(1-11)=0 then 

Do 
exp f- -1022 
frac f- b'O' II FRB(12-63) 

End 
If FRB(1-11)>0 then 

Do 
exp f- FRB(1-11)-1023 
frac f- b'1' II FRB(12-63) 

End 
Normalize operand: 

Do while frac(O)=O 
exp f- exp-1 
frac f- frac(1-52) II b'O' 

End 
If frac(24-52)>0 then FPSCR(XX) f- b'1' 
Round single(sign,exp,frac,O,O,O) 
exp f- exp+ 192 
FRT(O) f- sign 
FRT(1-11) f- exp+ 1023 
FRT(12-63) f-frac(1-23) II 29*b'O' 
If sign=O then FPSCR(FPRF) f- "+normal number" 
If sign=1 then FPSCR(FPRF) f- "-normal number" 
Done 

2·140 General Information Manual 



Disabled Exponent Overflow: 

FPSCR(OX) +- b'1' 
FPSCR(XX) +- b'1' 
If FPSCR(RN)=b'OO' then (Round to Nearest) 

Do 

End 

If FRB(O)=b'O' then 
Do 

FRT(0-63) +- x'7FFOOOOOOOOOOOOO' 
FPSCR(FPRF) +- "+infinity" 

End 
If FRB(O)=b'1' then 

Do 

End 

FRT(0-63) +- x'FFFOOOOOOOOOOOOO' 
FPSCR(FPRF) +- "-infinity" 

If FPSCR(RN)=b'01' then (Round Truncate) 
Do 

End 

If FRB(O)=b'O' then 
Do 

FRT(0-63) +- x'47EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "+normal number" 

End 
If FRB(O)=b'1' then 

Do 
FRT(0-63) +- x'C7EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "-normal number" 

End 

If FPSCR(RN)=b'10' then (Round to +Infinity) 
Do 

End 

If FRB(O)=b'O' then 
Do 

End 

FRT(0-63) +- x'7FFO 0000 0000 0000' 
FPSCR(FPRF) +- "+infinity" 

If FRB(O)=b'1' then 
Do 

FRT(0-63) +- x'C7EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "-normal number" 

End 

If FPSCR(RN)=b'11' then (Round to -Infinity) 
Do 

End 

If FRB(O)=b'O' then 
Do 

FRT(0-63) +- x'47EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "+normal number" 

End 
If FRB(O)=b'1' then 

Do 

End 

FRT(0-63) +- x'FFFO 0000 0000 0000' 
FPSCR(FPRF) +- "-infinity" 

Processor Description 2-141 



Done 

Enabled Exponent Overflow: 
sign +- FRB(O) 
exp+- FRB(1-11)-1023 
frac +- b'1' 11 FRB(12-63) 
If frac(24-52)>0 then FPSCR(XX) +- b'1' 
Round single(sign,exp,frac,0,0,0) 

Enabled Overflow: 
FPSCR(OX) +- b'1' 
exp +- exp - 192 
FRT(O) +- sign 
FRT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) II 29*b'O' 
If sign=O then FPSCR(FPRF) +- "+normal number" 
If sign=1 then FPSCR(FPRF) +- "-normal number" 
Done 

Zero Operand 

FRT(0-63) +- FRB(0-63) 
If FRB(O)=b'O' then FPSCR(FPRF) +- "+zero" 
If FRB(O)=b'1' then FPSCR(FPRF) +- "-zero" 
Done 

Infinity Operand: 

FRT(0-63) +- FRB(0-63) 
If FRB(O)=b'1' then FPSCR(FPRF) +- "-infinity" 
Done 

QNaN Operand: 

FRT(0-63) +- FRB(0-34) II 29*b'O' 
FPSCR(FPRF) +- "QNaN" 
Done 

SNaN Operand: 

FPSCR(VXSNAN) +- b'1' 
If FPSCR(VE)=O then 

Do 

End 
Done 

FRT(0-11) +- FRB(0-11) 
FRT(12) +- b'1' 
FRT(13-63) +- FRB(13-34) 1129*b'O' 
FPSCR(FPRF) +- "ONaN" 

2-142 General Information Manual 



Normal Operand: 

sign +- FRB(O) 
exp+- FRB(1-11)-1023 
frac +- b'1' 11 FRB(12-63) 
If frac(24-52)>0 then FPSCR(XX) +- b'1' 
Round single(sign,exp,frac,0,0,0) 
If exp>+ 127 and FPSCR(OE )= O then go to Disabled Exponent Overflow 
If exp>+ 127 and FPSCR(OE) = 1 then go to. Enabled Overflow 
FRT(O) +- sign 
FRT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) II 29*b'O' 
If sign=O then FPSCR(FPRF) +-"+normal number" 
If sign=1 then FPSCR(FPRF) +- "-normal number" 
Done 

Round Single(sign,exp,frac,G,R,X): 

inc+- b'O' 
lsb +- frac(23) 
gbit +- frac(24) 
rbit +- frac(25) 
xbit +- frac(26-52)11GllRllX>O 
If FPSCR(RN)=b'OO' then 

Do 

End 

If sign 11 lsb II gbit II rbit II xbit = b'x11 xx' then inc +- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'x011 x' then inc +- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'x01 x1' then inc +- b'1' 

If FPSCR(RN)=b'1 O' then 
Do 

End 

If sign 11 lsb II gbit II rbit II xbit = b'Ox1 xx' then inc +- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'Oxx1 x' then inc +- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'Oxxx1' then inc+- b'1' 

If FPSCR(RN)=b'11' then 
Do 

End 

If sign 11 lsb II gbit II rbit II xbit = b'1 x1 xx' then inc+- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'1xx1x' then inc+- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'1 xxx1' then inc+- b'1' 

frac(0-23) +- frac(0-23) +inc 
If carry out=1 then 

Do 
frac(0-23) +- b'1' II frac(0-22) 
exp+- exp+ 1 

End 
FPSCR(FR) +- inc 
FPSCR(FI) +- gbit or rbit or xbit 
Return 

Processor Description 2· 143 



RISC System/6000 Instruction Set 
Primary Extended 

Mnemonic Instruction Format Opcode Opcode 

a[o][.] Add XO 31 10 

abs[o][.] Absolute XO 31 360 

ae[o][.] Add Extended XO 31 138 

ai Add Immediate D 12 

al. Add Immediate And Record D 13 

ame[o][.] Add To Minus One Extended XO 31 234 

and[.] AND x 31 28 

andc[.] AND With Complement x 31 60 

and ii. AND Immediate Lower D 28 

andiu. AND Immediate Upper D 29 

aze[o][.] Add To Zero Extended XO 31 202 

b[l][a] Branch I 18 

bc[l][a] Branch Conditional B 16 

bee[ I] Branch Conditional To Count Register XL 19 528 

bcr[I] Branch Conditional Register XL 19 16 

cal Compute Address Lower D 14 

cau Compute Address Upper D 15 

cax[o][.) Compute Address XO 31 266 

cmp Compare x 31 0 

cm pi Compare Immediate D 11 

cmpl Compare Logical x 31 32 

cmpli Compare Logical Immediate D 10 

cntlz[.) Count Leading Zeroes x 31 26 

crand Condition Register AND XL 19 257 

crandc Condition Register AND With Complement XL 19 129 

creqv Condition Register Equivalent XL 19 289 

crnand Condition Register NANO XL 19 225 

crnor Condition Register NOR XL 19 33 

cror Condition Register OR XL 19 449 

crorc Condition Register OR With Complement XL 19 417 

crxor Condition Register XOR XL 19 193 

div[o][.) Divide XO 31 331 

divs[o][.) Divide Short XO 31 363 

doz[o][.) Difference Or Zero XO 31 264 

dozi Difference Or Zero Immediate D 09 

2· 144 General Information Manual 



Primary Extended 
Mnemonic Instruction Format Opcode Opcode 

eqv[.] Equivalent x 31 284 

exts[.] Extend Sign x 31 922 

fa[.] Floating Add A 63 21 

fabs[.] Floating Absolute Value x 63 264 

fcmpo Floating Compare Ordered x 63 32 
fcmpu Floating Compare Unordered x 63 0 

fd[.] Floating Divide A 63 8 

fm[.] Floating Multiply A 63 5 

fma[.J Floating Multiply Add A 63 29 

fmr[.) Floating Move Register x 63 72 

fms[.J Floating Multiply Subtract A 63 28 

fnabs[.J Floating Negative Absolute Value x 63 136 

fneg[.] Floating Negate x 63 40 

fnma[.J Floating Negative Multiply Add A 63 31 

fnms[.] Floating Negative Multiply Subtract A 63 30 

frsp[.] Floating Round To Single Precision x 63 12 

fs[.J Floating Subtract A 63 20 

I Load D 32 

lbrx Load Byte Reverse Indexed x 31 534 

lbz Load Byte And Zero D 34 

lbzu Load Byte And Zero With Update D 35 
lbzux Load Byte And Zero With Update Indexed x 31 119 

lbzx Load Byte And Zero Indexed x 31 87 

lfd Load Floating-Point Double D 50 
lfdu Load Floating-Point Double With Update D 51 

lfdux Load Floating-Point Double With Update x 31 631 
Indexed 

lfdx Load Floating-Point Double Indexed x 31 599 
Ifs Load Floating-Point Single D 48 

lfsu Load Floating-Point Single With Update D 49 

lfsux Load Floating-Point Single With Update x 31 567 
Indexed 

lfsx Load Floating-Point Single Indexed x 31 535 
Iha Load Half Algebraic D 42 

lhau Load Half Algebraic With Update D 43 

Processor Description 2· 145 



Primary Extended 
Mnemonic Instruction Format Opcode Opcode 

lhaux Load Half Algebraic With Update Indexed x 31 375 

lhax Load Half Algebraic Indexed x 31 343 

lhbrx Load Half Byte Reverse Indexed x 31 790 

lhz Load Half And Zero D 40 

lhzu Load Half And Zero With Update D 41 

lhzux Load Half And Zero With Update Indexed x 31 311 

lhzx Load Half And Zero Indexed x 31 279 

Im Load Multiple D 46 

lscbx[.) Load String And Compare Byte Indexed x 31 277 

lsi Load String Immediate x 31 597 

lsx Load String Indexed x 31 533 

lu Load With Update D 33 

lux Load With Update Indexed x 31 55 

Ix Load Indexed x 31 23 

maskg[.J Mask Generate x 31 29 

maskir[.] Mask Insert From Register x 31 541 

mcrf Move Condition Register Field XL 19 0 

mcrfs Move To Condition Register From FPSCR x 63 64 

mcrxr Move To Condition Register From XER x 31 512 

mfcr Move From Condition Register x 31 19 

mffs[.J Move From FPSCR x 63 583 

mfmsr Move From Machine State Register x 31 83 

mfspr Move From Special Purpose Register x 31 339 

mtcrf Move To Condition Register Fields XFX 31 144 

mtfsbO[.] Move To FPSCR Bit 0 x 63 70 

mtfsb1[.] Move To FPSCR Bit 1 x 63 38 

mtfsf[.] Move To FPSCR Fields XFL 63 711 

mtfsfi[.] Move To FPSCR Field Immediate x 63 134 

mtspr Move To Special Purpose Register x 31 467 

mul[o)[.) Multiply XO 31 107 

muli Multiply Immediate D 07 

muls[o)[.] Multiply Short XO 31 235 

nabs[o)[.) Negative Absolute XO 31 488 

nand[.) NANO x 31 476 

neg[o][.J Negate XO 31 104 

2· 146 General Information Manual 



Primary Extended 
Mnemonic Instruction Format Opcode Opcode 

nor[.] NOR x 31 124 

or[.] OR x 31 444 

ore[.] OR With Complement x 31 412 

oril OR Immediate Lower D 24 

oriu OR Immediate Upper D 25 

rlimi[.] Rotate Left Immediate Then Mask Insert M 20 

rlinm[.] Rotate Left Immediate Then AND With M 21 
Mask 

rlmi[.] Rotate Left Then Mask Insert M 22 

rlnm[.] Rotate Left Then AND With Mask M 23 

rrib[.] Rotate Right And Insert Bit x 31 537 

sf[o][.] Subtract From XO 31 8 

sfe[o)[.] Subtract From Extended XO 31 36 

sfi Subtract From Immediate D 08 

sfme[o][.] Subtract From Minus One Extended XO 31 232 

sfze[o][.] Subtract From Zero Extended XO 31 200 

sl[.] Shift Left x 31 24 

sle[.] Shift Left Extended x 31 153 

sleq[.] Shift Left Extended With MQ x 31 217 

sliq[.] Shift Left Immediate With MQ x 31 184 

slliq[.] Shift Left Long Immediate With MQ x 31 248 

sllq[.] Shift Left Long With MQ x 31 216 

slq[.] Shift Left With MQ x 31 152 

sr[.] Shift Right x 31 536 

sra[.] Shift Right Algebraic x 31 792 

srai[.] Shift Right Algebraic Immediate x 31 824 

sraiq[.] Shift Right Algebraic Immediate With MQ x 31 952 

sraq[.] Shift Right Algebraic With MQ x 31 920 

sre[.] Shift Right Extended x 31 665 

srea[.] Shift Right Extended Algebraic x 31 921 

sreq[.] Shift Right Extended With MQ x 31 729 

sriq[.J Shift Right Immediate With MQ x 31 696 

srliq[.] Shift Right Long Immediate With MC x 31 760 

srlq[.] Shift Right Long With MQ x 31 728 

Processor Description 2·147 



Primary Extended 
Mnemonic Instruction Format Opcode Opcode 

srq(.] Shift Right With MQ x 31 664 

st Store D 36 

stb Store Byte D 38 

stbrx Store Byte Reverse Indexed x 31 662 

st bu Store Byte With Update D 39 

stbux Store Byte With Update Indexed x 31 247 

stbx Store Byte Indexed x 31 215 

stf d Store Floating-Point Double D 54 

stfdu Store Floating-Point Double With Update D 55 

stfdux Store Floating-Point Double With Update x 31 759 
Indexed 

stf dx Store Floating-Point Double Indexed x 31 727 

stf s Store Floating-Point Single D 52 

stf su Store Floating-Point Single With Update D 53 

stf sux Store Floating-Point Single With Update x 31 695 
Indexed 

stf sx Store Floating-Point Single Indexed x 31 663 

sth Store Half D 44 

sthbrx Store Half Byte Reverse Indexed x 31 918 

sthu Store Half With Update D 45 

sthux Store Half With Update Indexed x 31 439 

sthx Store Half Indexed x 31 407 

stm Store Multiple D 47 

stsi Store String Immediate x 31 725 

stsx Store String Indexed x 31 661 

stu Store With Update D 37 

stux Store With Update Indexed x 31 183 

stx Store Indexed x 31 151 

svc[l][a] Supervisor Call SC 17 

t Trap x 31 4 

ti Trap Immediate D 03 
xor[.] XOR x 31 316 

xoril XOR Immediate Lower D 26 

xoriu XOR Immediate Upper D 27 

2-148 General Information Manual 



Chapter 3. Memory 

Chapter Contents 
Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
Special Features......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
DRAM Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Data Mux and Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Bit Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Memory Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 

Memory 3-1 



3-2 General Information Manual 



Virtual Memory 
Virtual memory is a large address space containing logical system objects such as programs 
and data. Each object is assigned a unique address in the virtual memory space at the time 
of creation. Subsequently, this address is used thereafter to reference that object. 

Virtual memory objects are mapped to system memory on a demand basis. At the time of 
reference by a system or user program, the translate unit associated with the system unit 
verifies whether that object is currently in system memory and, if so, supplies the appropriate 
(real) memory address. If not in system memory, the operating system is called to obtain the 
requested object, place it in system memory, and update the tables used by the translate 
unit. The original faulting instruction is then retried and control is returned to the original 
system of user program. As long as the (virtual) access does not have any real-time 
dependencies, this demand mapping is transparent. 

System Memory 
System memory is that memory closely associated with the system unit complex. The RISC 
System/6000 architecture provides for up to 4 gigabytes of system memory. 

Direct Memory Access (OMA) operations to this memory neither synchronize nor update the 
system unit cache. This may cause the cache and its associated system memory to be 
inconsistent, resulting in the loss or corruption of data when the system unit and the 1/0 
device both attempt to access the same memory area. The following set of guidelines should 
be followed to eliminate this problem: 

• Ensure all cache (line) data has been flushed to system memory prior to starting an 
output OMA operation. 

• If accessing a shared data area in system memory, addressing should be such that these 
accesses go through the IOCC buffer cache. 

• On bus master input operations, unmap any shared memory pages by way of their 
controlling Translate Control Word (TCW) before attempting to use the data in system 
memory. A buffer flush operation can be performed at the same time a memory page is 
unmapped. 

Introduction 
The RISC System/6000 memory board can be placed in either a SGR 2564 processor chip 
set or a SGR 2032 processor chip set. The board functions the same in both chip sets. In a 
SGR 2032 processor chip set, a single board is accessed at one time. Two 40-bit error 
checking and correction (ECC) words (32 data, 7 ECC and 1 redundant bit steering) can be 
transferred into or out of the board on a given clock cycle. ECC is not discussed in detail in 
this document since ECC is done in the cache and the Memory Control Unit (MCU). The 
memory board does not distinguish between ECC bits and data bits. As far as the memory 
board is concerned, a word is 40 bits wide. 

Memory boards in the SGR 2564 processor chip set are operated in pairs. Two boards are 
accessed at one time, thus giving the system a 160-bit memory bus. The system memory to 
data cache transfers four 4-byte words on each memory access. 

Description 
This section contains a general description of the RISC System/6000 memory board. The 
board is designed for 80 bit doubleword memory access. The size of the RISC System/6000 
memory board ranges from 8 to 32 megabytes. Each board has three Application Specific 

Memory 3-3 



Integrated Circuit (ASIC) chips to control the Dynamic Random Access Memory (DRAM) 
and the data flow. There is one DRAM control chip and two Data Multiplexer chips. All 
address and timing signals from the MCU are input to the DRAM controller chip. Each Data 
Multiplexer (Mux) chip has two 40-bit bi-directional data buses connected to the memory 
banks. See Figure 21 for a functional block diagram of the 4-way interleaved memory board. 

Memory Array Memory Array 

Bank o l l.._ _J" J I' I. 
~ ... 

Bank 2 [ 
I..._ tJ J I 'I • • 

JI 40 Bits (even) 40 Bits (even) 

-*-
_.._ 

Cache Data 
.._Cache Data But Data Mux ~ Controller ~ Data Mux i...... Bus ..... .... 

(0.39) 
p and Buffer and Buffer ~ (40 .. 79) --..-

... ~ • 
"40 Bits (odd) .f 40 Bits (odd) 

..._ j 

Bank 1 l I.... _J 
J J" '1 

_y j 

Bank 3 l I.... _J 
J J" '1 

MCU Inputs, 
Row/Column Addresses, Refresh 

Figure 21. Memory Board Description 

Special Features 
• High performance 80-bit data width 

• 4-way interleaving 

• High density (8, 16, and 32 megabytes) 

• 5V de and 3.6V de DRAM power (Do not mix 5V de and 3.6V de memory boards in the 
same system unit.) 

• Accepts generic timing inputs, generates multiple DRAM timing modes 

• On-board refresh address counter 

• Buffered read and write instructions 

• Buffered write data 

• Page mode operation 

3-4 General Information Manual 



Memory Banks 
Each of the interleaved memory banks consist of two 40-bit wide memory arrays or Single 
In-line Memory Mod.ules (SIMMs). The SIMMs are either 1 M byte, 2M byte or 4M byte in 
density. The 1 M byte SIMM has (10) 256K x 4 DRAMs surface mounted on one side. The 
2M byte SIMM has (10) 256K x 4 DRAMs surface mounted on each side. The 4M byte 
SIMM has (5) 1024K x 4 DRAMs surface mounted on each side. The maximum board 
configuration has eight 4M byte SIMMs giving the board a total of 32M bytes. The minimum 
configuration has eight 1 M byte SIM Ms giving the board a total of BM byte. 

DRAM Controller 
The DRAM controller chip is responsible for providing all inputs to the DRAMs except data. 
This chip generates the necessary row-column addresses, row-column address strobes, 
read-write, and memory refresh timings. In addition, control logic for the Data Mux chips is 
generated in the DRAM controller. The inputs to the DRAM controller come from the Memory 
Control Unit (MCU) on the processor board, presence detect pins, and the Data Mux chips. 

Data Mux and Buffer 
The Data Mux chips transfer data between the caches and the memory banks. Each Data 
Mux chip has a 40-bit data bus connected to the caches. Together, the two Data Mux chips 
provide the board with its 80-bit (double word) interface. The Data Mux chips have two 
40-bit data buses, each of which is dotted to two memory arrays on a board in 4-way 
interleave mode. Figure 21 on page 3-4 shows a diagram of the memory board. An even 
data bus is connected to one SIMM in each of the even memory banks (banks O and 2), and 
an odd data bus is connected to one array in each of the odd memory banks (banks 1 and 
3). During write operations, the Data Mux chips can buffer data as long as the DRAMs are 
being refreshed. 

Bit Scattering 
The RISC System/6000 SGR 2564, SGR 3064 and SGR 2032 processor chip sets use bit 
scattering to ensure a minimum of bits of a memory word from being stored in a single 
DRAM. In the RISC System/6000 SGR2564 and SGR 3063 processor chip sets, there is no 
more than one bit from a single word stored in one DRAM. This is possible because the 
memory bus has four words on it and there are four bits in a given DRAM. In the RISC 
System/6000 SGR2032 processor chip set, there are two bits from each of the two memory 
bus words in a given DRAM. With a minimum of bits from a single word in a DRAM, the ECC 
is better able to detect and correct errors caused by a bad DRAM. 

Memory Refresh 
The RISC System/6000 memory board is able to generate refresh timings. Every 15.6 µs the 
board receives a refresh pulse from an external clock. When there are multiple memory 
boards, the refresh pulses from the clock are input to pairs of boards at 3.9 µs intervals. 
Therefore, each board receives a refresh pulse every 15.6 µs. 

The DRAMs worst case requirement for a refresh signal is 4 ms for 1 M byte and 2M byte 
SIMMs. In other words, each row address must receive a refresh signal every 4 ms. The 1 M 
byte and 2M byte SIMMs have 512 row addresses. Since the refresh pulse comes every 
15.6 µs, it is required that with each refresh pulse two row addresses are refreshed. The 
necessary logic is provided in the controller to refresh two row addresses in the board when 
using 1 M byte DRAMs. The 4M byte SIMM has 1024 row addresses but must be refreshed 
within 8 ms, so two refreshes must occur per refresh pulse. This too is implemented by the 
controller. It should be noted that with the double-side surface-mounted SIM Ms, the 
corresponding row addresses for DRAMs on both sides of the board are refreshed together. 

Memory 3-5 



3·6 General Information Manual 



Chapter 4. System 1/0 Structure 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 

System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
Bus Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
Bus 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
IOCC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Data Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
Bit and Byte Numbering Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 

Processor and Bus Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
Byte Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 

110 Bus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 
Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 

Priority Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Non-Preemptive Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Preemptive Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Fairness Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 

Basic Transfer Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 
Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19 
Dynamic Bus Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19 
Partial Transfer Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 
Bus Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 

Bus Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 
Invalid Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 
Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 
Channel Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 
Bus Time Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 

Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 
Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 

Load and Store Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 
Address Spaces and Effective Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 
1/0 Segment Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27 
Address and Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 
String Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 
Load and Store Access Authority Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 
Load and Store Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 

Translation, Protection, and the TCW Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34 
Bus Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 

Buffered Bus Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 
Unbuffered Bus Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 
Bus Master Access Authority Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44 
Bus Master Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45 

OMA Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46 
OMA Slave Operations Using Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47 

System 110 Structure 4· 1 



OMA Slave Operations Using Tew·~ . . . . . . . . . • . . . • . . . • . . . . . . . . . • . . • 4-52 
OMA Slave Bus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . • . • . . • 4-56 
OMA Slave Transfers to Bus Memory . . . . . . . . • . . . . • . . • . . . . . . . • . . • • • 4-56 
OMA Slave Transfers to System Memory . . . . . . . . . . . • . • . . . . . . . . • • . • . • 4-56 
Special Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • • . . . . . . . . . . . • 4-57 
OMA Slave Error Conditions . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 4-57 

IOCC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . 4-59 
Time Delay Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . 4-59 
End of Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . 4-61 
Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . . • . . . • . . . 4-61 
Enable and Disable Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-62 

Buffer Flush Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-63 
Bus Master Buffer Flush Command . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 4-63 
OMA Slave Buffer Flush Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . 4-64 
Buffer Invalidate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-65 

1/0 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-65 
Special Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-70 

Board Configuration Data . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . • . . . 4-71 
IOCC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 4-71 
Bus Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-75 
TCW/Tag Anchor Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76 
Component Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-77 

System 1/0 and Standard 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 
System 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 
System Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . 4-78 

Nonvolatile RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 
Standard 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 

Exception Reporting and Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80 
Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80 

IOCC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80 
System Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-81 
Nonvolatile RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82 
Standard 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84 
Bus Master Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 4-84 
Component Reset Register . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • . . . . . . . . 4-84 
Notes on Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84 
Bus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 4-84 
1/0 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84 
Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 4-85 
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-85 
IPL Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-85 
Architectural Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-88 

4-2 General Information Manual 



Description 
This chapter describes the RISC System/6000 Input/Output (1/0) architecture. General 1/0 
bus support functions for Load and Store instructions, interrupt, and channel control are 
provided by the 1/0 Channel Controller (IOCC). A number of feature 1/0 slots are associated 
with the IOCC for pluggable 1/0 devices. Also attached to the 1/0 bus, but not occupying 
feature slots, is the Standard 1/0. See "System 1/0 and Standard 1/0" on page 4-78. 

The IOCC design allows certain variations of function and performance to optimize its usage 
across multiple machine environments. The specific personalization is established with the 
contents of the IOCC Configuration register (See "IOCC Configuration Register" on page 
4-71 and "Implementation Details" on page 4-80.) 

Figure 22 illustrates the logical view of the IOCC in the RISC System/6000 units. 

Processor stem Bus Chip Set --..;;;;..,.,=......,_=,.___ __ ..... 

IOCC 

Figure 22. System Block Diagram 

Memory 

1/0 
Bus 

1/0 Slots 

} Standard 1/0 

System 1/0 Structure 4-3 



System Structure 
Figure 23 illustrates a more detailed logical view of the RISC System/6000 IOCC. Functions 
provided by the IOCC include data buffering, address translation, access protection, direct 
memory access (OMA), and Interrupt support. 

Processor 
Chip Set 

·--------~ • Virtual • 
: Memo 

Cache 
Data 

XI ate LIST Addr ------

(Real) 
System 
Memory 

IOCC 
,-------------~ 

I 

·----·-· ·-·-----· I I I I 

Micro 
Channel Bus 

UST .:....._+ * BFR : ~ Data----
Data : :.; : 

Bus 
Memory 

Bus 110 

I 

........ , 

OMA 
Ctrl 

·------· I t 

: *Tag : 
• Table • 
I I 

lnterrup 
Ctr I 

Address--- Addr 
Range 

._ _____________ , 

Bus 
Memory 

Bus 
Master 

Bus 110 

-. 

Note: * May be implementation specific. (See "Implementation Details" on page 4-80). 

Figure 23. Programming Model 

The operating system can access all system facilities, for example, virtual memory, system 
memory, bus 110, bus memory, and the IOCC. The IOCC contains special facilities needed 
by the system for translation, protection, and other functions. 

4-4 General Information Manual 



Problem state programmers are normally restricted to virtual memory. Mapping of the virtual 
address to system memory is then always managed by way of the translation mechanism 
associated with the processor chip set. For certain applications, the operating system also 
grants conditional access authority to the bus 1/0 and bus memory. Accesses to bus memory 
and bus 110 devices are checked for proper access authority, restricting user programs to 
access only those devices for which they are authorized to use. Accesses to bus 110 are 
verified by way of an address range check, and accesses to bus memory are verified by way 
of a key in the translate control word (TCW) table described in "Translation, Protection, and 
TCW Table" on page 4-34. 

The RISC System/6000 1/0 architecture includes the definition of 16 independent 1/0 
channels. One channel (X'F') is reserved for use by the system master for Load and Store 
transfers, leaving 15 that can be programmed for bus master transfers. The number of 
channels that can be programmed for OMA slave transfers is implementation specific. (See 
·1occ Configuration Register" on page 4-71 and •implementation Details" on page 4-80.) A 
bus master is a Micro Channel device that contains its own direct memory access controller. 
A OMA slave is a Micro Channel device that requires the system to provide the direct 
memory access control. 

The RISC System/6000 1/0 architecture also includes a provision for 16 IOCC buffers that 
can be associated with each of the 1/0 channels previously described. The presence of this 
mode (called the buffered mode) and the amount of IOCC buffer is implementation specific. 
(See ·1occ Configuration Register" on page 4-71 and "Implementation Details" on page 
4-80.) 

Normally, all accesses to system memory go through the processor chip set cache. 
However, if sharing memory areas with 110 devices, means must be provided for maintaining 
cache coherency. How cache coherency is provided is implementation specific. (See "IOCC 
Configuration Register" on page 4-71 and "Implementation Details" on page 4-80.) All 
caches can be visible to programmers, including selected application level programmers. 

A bus master on the 110 bus accesses bus memory and bus 110. Pages in the bus memory 
address space are mapped to system memory by way of the TCW table. Mapped pages are 
checked for proper access authority before allowing an access to proceed. Since the IOCC 
cannot intercept or stop accesses to bus attached memory or bus 110 devices, no access 
checking is performed when a bus master addresses devices on the 1/0 bus. 

The RISC System/6000 OMA slave controller provides a convenient mechanism for moving 
data between an 110 device and system or bus memory. It provides addressing and control 
functions on behalf of the 1/0 device. Two methods for providing addresses for the OMA 
slave operations are supported in the architecture. In the first, memory addresses are 
obtained from a tag table in the IOCC. This table provides translation facilities similar to the 
System/370 indirect address word list, with additional capabilities allowing data chaining 
down to the byte level. In the second method, a TCW table provides the Real Page Number 
(RPN) used along with an offset as the memory address. Both methods are described in 
more detail later in this document. For implementation specific details, see "IOCC 
Configuration Register" on page 4-71 and "Implementation Details" on page 4-80 . 

Virtual Memory 
Virtual memory is a large address space containing logical system objects such as programs 
and data. Each object is assigned a unique address in the virtual memory space at the time 
of creation and this address is used thereafter to reference that object. 

Virtual memory objects are mapped to system memory on a demand basis. At the time of 
reference by a system or user program, the translate unit associated with the processor chip 
set verifies whether that object is currently in system memory and, if so, supplies the 
appropriate (real) memory address. If not in system memory, the operating system is called 

System 1/0 Structure 4-5 



to obtain the requested object, place it in system memory, and update the tables used by the 
translate unit. The original faulting instruction is then retried and control is returned to the 
original system or user program. As long as the (virtual) access does not have any real-time 
dependencies, this demand mapping is transparent. 

System Memory 
System memory is that memory closely associated with the processor chip set complex. The 
RISC System/6000 architecture provides for up to 4G bytes of system memory. 

Bus master and OMA slave operations to this memory neither synchronize nor update the 
processor chip set cache or Page Frame Table (PFT). This can cause the cache and its 
associated system memory to be inconsistent, resulting in the loss or corruption of data 
when the processor chip set and an 1/0 device both attempt to access the same memory 
area. 

In buffered mode, it is the responsibility of the software to ensure there is no data lost due to 
cache inconsistencies. In unbuffered mode, the hardware maintains the cache coherency. 
Buffered versus unbuffered modes are described later in this chapter. 

Bus Memory 

Bus 1/0 

1/0 bus memory is the memory that logically resides on the 1/0 bus. The 1/0 bus includes 32 
address bits, providing up to 4G bytes of addressability. PC family 1/0 buses utilize disjointed 
address spaces for bus memory and 1/0 devices. In the RISC System/6000 units, these two 
address spaces are mapped together as illustrated in Figure 33 on page 4-23. This address 
space is differentiated from the 1/0 address space by way of an address decode. 1/0 bus 
memory is referenced when the address is above 64K bytes. Processor accesses to this 
memory space do not go through the system cache and do not suffer from cache 
consistency problems described in "System Memory" on page 4-6. 

Bus memory is generally packaged on feature 1/0 cards and is associated with specific 
devices. Devices are generally mapped into the bus memory space when they have large 
addressability requirements, such as video display buffers and floating-point work space. 
Any bus master on the 1/0 bus has unconditional access to other devices on the Micro 
Channel 1/0 bus. As such, access to bus memory is unprotected. 

Bus memory references are redirected to system memory by way of the TCW mechanism. 
Refer to the "Translation, Protection, and TCW Tabl~" section on page 4-34 for a description 
of this mapping process. These accesses are translated and checked for appropriate 
authority before allowing them to proceed. If allowed to proceed, this mapping of bus 
addresses to system memory is transparent to the requesting bus master or OMA slave. 
Special rules must be followed to guarantee the consistency of this memory if it is shared 
with the processor chip set. See "System Memory" on page 4-6 for a description of these 
rules. 

The 1/0 bus includes a special address space for accessing 1/0 control registers. This 
address space is mapped together with the bus memory and is referenced when the address 
Is within the lower 64K bytes. It includes16 address bits and provides up to 64K bytes of 
addressability. 1/0 devices do not decode address bits A31 to A 16 and these address bits 
are considered undefined relative to 1/0 devices. Note that the addressing nomenclature on 
the 1/0 bus follows the Micro Channel format illustrated in Figure 24 on page 4-9. 

IOCC Control Registers 
IOCC control registers are special facilities managed by the system supervisor that control 
all aspects of the Load and Store instructions, channel, and interrupt operations. They are 
only accessible to Load and Store instructions from the system processor and are addressed 
in a disjoint address space inaccessible to 1/0 bus devices. This address space is defined in 

4·6 General Information Manual 



such a way that it may be mapped onto the 1/0 bus, providing implementation flexibility in 
distributing IOCC control facilities across multiple chip packages. Refer to the "Special 
Facilities" section on page 4-70 for a description of these registers. 

System 1/0 Structure 4· 7 



Data Security 
The RISC System/6000 unit is intended to be used in shared environments and contains 
mechanisms to maintain data security. The IOCC supports attachment of user-supplied 1/0 
devices and device drivers, and includes extensive hardware and operating system 
mechanisms to insulate the system and other users from them. All accesses to memory or 
the 1/0 bus are checked to verify that the user has authority to use that resource. Shared 
resources, such as IOCC or memory buffers, are controlled (for example.zeroed) so that no 
task gets access to some other task's data. 

4-8 General Information Manual 



Bit and Byte Numbering Conventions 
This section describes the processor and bus notation and the byte reversal numbering 
conventions. 

Processor and Bus Notation 
Standard IBM notational practice is to address multi-byte fields in ascending order from left 
to right. This results in the most significant byte (MSB) always having the lowest address 
and provides consistency in addressing which is independent of the word size of the 
machine. Bits are always numbered from left to right. This notation is used in all processor, 
channel, and serial protocol descriptions. 

The Micro Channel reverses both bit and byte addressing notations (The reason for this is 
historic and is based on the vendor processors which were used in Micro Channel machines 
when the Micro Channel Architecture was developed). Figure 24 illustrates the notational 
differences between the Micro Channel and RISC System/6000 family. 

IBM Notation 
0 

lo, I I I~ 
0 1 

lo, 
MSB LSB 

I J~ I I 111s, I I 

0 1 2 3 

lo, 
MSB LSB I 
I I I I 111s, 1 1511P, I ¥312f I I I I I ~1 

Micro Channel Notation 0 

l1, I I I~ 
1 0 

l1r 1 

MSB LSB ,o I 
I I 1s11, I I 

3 2 1 0 

131 'Mis~, J412r, I 1 61 1~ I I I I I 18171 

LSB rl I I I I I I I I 

Figure 24. Data Addressing and Bit Numbering Notations 

System 1/0 Structure 4·9 



The IBM Micro Channel practice of numbering bytes in ascending order from right to left 
results in the most significant byte of a word having the highest address. This poses 
problems in byte ordering on 2- or 4-byte buses. For byte strings such as text to be 
compatible across different word lengths and between different systems, the strings must be 
organized with the most significant byte having the lowest address. Figure 25 on page 4-11 
illustrates the consistency with the standard IBM notation and Figure 26 on page 4-12 
illustrates the address inconsistency when using the Micro Channel notation. With the Micro 
Channel numbering scheme, there is no consistency In addressing across the various word 
sizes; two half-word stores produce a different result in memory than one full-word store. 

4·10 General Information Manual 



Two half-word Store instructions from the processor register to 
memory. 

Processor Register Data in Memory Address 

0 1 

17J Jo1 Jo1 I 1~ 
"A" 0 

"A" HB" 
,11s, I I I 

I I I I I I 

Jo, I~ "B" 1 

I I I 

0 1 

Jo, I~ Jo1 il5J 

_.. HC" 2 
.. C" HD" -.. 

,1181 I I I 
I I I I I 

Jo, I~ L _., HD" 3 .. 
I I I 

Full-word Store Instruction from the processor register to memory. 

Processor Register 

0 1 2 3 

HA" HB" "C" "D" 
0 31 

J 
Data in Mem ory Address 

_.. 
Jo, 

"A" ... 
I I I I I I~ 0 

_.. 
Jo, 

1118" 
- ... 

I I I I I I~ 1 

_.. 
Jo, 

"C" -.. 
I I I I I I~ 2 

L-+ "D" I~ 3 

Figure 25. Addressing Consistency Using Standard IBM Notation 

System 1/0 Structure 4· 11 



Two half-word Store instructions from the processor register to 
memory. 

Processor Register Data in Memory Address 

1 0 

l11 I~ l1P I 1°1 

.. "B" 0 
"A" "B" 

,s11, I I I 
I I 

1111 1°1 
"A" 1 

I I I 

1 0 

l11 1°1 l1P I 1°1 

.. "D" 2 
"C" "D" 

18171 
I I I 

I I 

1111 1°1 
"C" 3 

I I I 

Full-word Store instruction from the processor register to memory. 

Processor Register 

3 2 1 0 

131 
"A" "B" "C" "D" 

1°1 I I I I i 412? I I I I l611P I I I I 18 171 I I I 

Data in Memory Address 

l11 

"D" I~ 0 

I I I 

l11 

"C" 

1°1 
1 

I I I 

l11 

"B" I~ 2 

I I I 

l1, 

"A" 

1°1 
3 

I I I 

Figure 26. Addressing Inconsistency When Using Micro Channel Notation 

4-12 General Information Manual 



Byte Reversal 
Data in the RISC System/6000 unit is handled by the compilers using standard IBM 
addressing notations. To meet addressing notations of the IBM Micro Channel, the byte 
ordering must be reversed. The IOCC and the system board are designed to provide 
byte-order reversal as illustrated in Figure 27. This reversal occurs in both directions as 
information passes through the IOCC. 

lo, 

IBM (4-Byte) Organization 

0 1 2 3 

MSB LSB I 
I I I I 17181 I I I I 1511P I I I I ~3 12f I I I I I ~1 : -t ----------~ ----------~ ----------f · BYi.; R~~~1: : ..... ---. -.. tf ·1 · .... -r•o .. ·- ... -... l.>!!~·-1~~-: 

l1r 1 ~81 , 18171 , ~~~ , 1° I 
2-Byte Micro Channel Device 

IBM (4-Byte) Organization 

0 1 2 3 

MSB LSB 

I ~1 1 I I I I 111s1 I 11511P I I ~3 12f 1 I I I 

, _____________ 1----------- ~----------J----I 

l I 

I 

J I 

I 

I 

I l 
I .. ----------- --~- -. - - - . 

3 2 

-----------
1 

Byte Reversal: 
he IOCC : by t 

----_______ , 

0 

13? 1 ,~~ 1 r1 ~ , , 1 , , 1611r , , , , , ,111, , ~~~ P I 
4-Byte Micro Channel Device 

Figure 27. PC Bus Byte Reversal 

The 1/0 data bits require renaming but otherwise maintain a one-to-one ordering with IBM 
standards. 

Combining Figure 26 and Figure 27 gives the example shown in Figure 28. 

System VO Structure 4· 13 



0 

Processor Register 

0 1 2 3 

"A" "B" "C" "D" 

r-•-•••••••••• 1-----------
' l ' t 

J t 

' ' 
' l 
t 

~ ------------e------
3 2 

31 

~----------1----

----------
1 

Byte Reversal: 
helOCC : byt 

I 

----_______ , 

0 

I "D" "C" "B" "A" I On the Micro 
~3.~~''--'-'~'~• ........ •~3_4~12.?~''--'-'~'~' ·'~1_6~11.P~''--'-'~'~• ........ •-8~17~'~·'~'~'._P ..... Channel 

In Micro Channel Memory 
I 

1 Data in Memory Address 1 

l1, "A" I~ I I I 

0 

l11 

"B" I~ I I I 

1 

l11 

"C" 

1°1 I I I 

2 

17, 
HD" I~ I I I 

3 

Figure 28. Example Showing Micro Channel Byte Reversal 

4-14 General Information Manual 



1/0 Bus Protocols 

Arbitration 

The RISC System/6000 IOCC is optimized to use the Micro Channel. If the IOCC must drive 
another bus, conversion logic translates the Micro Channel protocols to the target bus. 

A brief description of the Micro Channel protocols is summarized in this section. For more 
details, see the IBM RISC System/6000 POWERstation and POWERserver Hardware 
Technical Reference - Micro Channel Architecture. 

Note: This chapter uses the abbreviated signal names as they appear in the IBM RISC 
System/6000 POWERstation and POWERserver Hardware Technical 
Reference - Micro Channel Architecture; for example, 'cd chrdy' represents 'card 
channel ready'. 

Arbitration is the resolution of multiple bus requests, awarding use of the bus to the highest 
priority requester. It applies to all devices that request bus use such as processors, bus 
master devices, and OMA slave devices. Characteristics of the Micro Channel arbitration 
mechanism include: 

• One to 16 bus masters 

• Multi-drop (dot-OR) mechanism 

• Parallel prioritization 

• Asynchronous operation· 

• Cycle-by-cycle arbitration 

• Programmable priority levels 

• Programmable fairness mode 

• Mixable linear and fairness modes 

• Preemptive burst capability 

• Extendable to multiple buses. 

The arbitration mechanism distributes prioritization among the arbiters but retains control 
and clocking functions within the IOCC. It uses a bus-like structure and does not require any 
slot-unique wiring for its operation. Bus arbitration timing is programmable and is 
established by a field in the IOCC Configuration register. 

Figure 29 illustrates typical device arbiters and their relationship in the system. Parameters 
such as arbitration level and burst characteristics are programmable by way of Configuration 
registers in each device. There are no restrictions on changing operating modes following 
system startup. 

System 110 Structure 4· 15 



Micro Channel 
Arbiter IOCC 

Drq Preempt i.-------1.---.... Preempt 
~~ ~~~ ~~~ 

Burst Burst-------+---- Burst 
Rotational 
Protocol 
Priority 
Level 

Micro Channel 
Arbiter 

Arbitration 
Bus 

Drq Preempt-----+--• 
Dack Arb/Gn..---+-+--t--t 

Burst Burst-----
Rotational 
Protocol 

Priority Arb •• 
Level Bus 

Figure 29. 1/0 Bus Arbitration 

IOCC 
Clock 

Figure 30 Illustrates an arbitration cycle. Devices request service by activating the 'preempt' 
signal. The IOCC responds by deactivating the 'arb/gnt' signal when the current bus owner 
completes Its bus activity. Each requesting arbiter then presents its arbitration level on the 
arbitration bus. This bus is designed in such a way that lower priority devices remove 
themselves from contention, and only the highest priority requester is left on the bus after a 
logic settling time. The IOCC then reactivates the 'arb/gnt' signal, and the device with its 
arbitration level value on the arbitration bus is granted use of the bus. Device Request (Drq) 
and Device Acknowledge (Dack) are signals (internal to each of the device arbiters) which 
signal a request to arbitrate for the bus, and acknowledgement of being granted the bus, 
respectively. 

At the end of the bus cycle, the arbitration cycle Is repeated if the 'burst' signal Is not active. 
If there are no requesters, control is returned to the default arbiter at the arbitration bus level 
X'F'. 

4· 16 General Information Manual 



_J Drq ~~~\ ___ _ 
Preempt 

Arb/Gnt 

Arbitration Bus 

Dack 

SO/S1 

Cmd 

Figure 30. Arbitration Cycle 

Both OMA slave and bus master devices utilize the arbitration mechanism to initiate bus 
cycles. The difference is that once granted use of the bus, the bus master device controls 
bus cycles, while the IOCC controls the bus cycles for OMA slave devices. 

Priority Assignment 
At startup, each device supporting arbitration is assigned a unique priority level ranging from 
X'O-F'. This priority level establishes the selection criteria to be used when contention exists. 
If multiple requests occur simultaneously, the device with the lowest numbered priority level 
is awarded use of the bus. 

Arbitration level X'F' is always assigned to the system processor. If there are no other bus 
requesters, bus ownership defaults to level X'F'. Thus, the IOCC owns the 110 bus during 
idle conditions. Since 1/0 bus utilization is normally low, the IOCC does not normally have to 
arbitrate for the bus for 1/0 Load and Store instructions. 

Micro Channel 1/0 devices with long bursting characteristics should be designed using the 
Fairness (rotational) Arbitration Protocol, without which it is possible to lock out system 
processor 110 Load or Store instructions until the 1/0 device transfer is complete. If a lockout 
occurs for an extended period of time, a bus timeout error is posted, the 'arb/gnt' signal is 
deactivated, and the 'reset' signals are activated to all slots. While the bus timeout error is 
active, all system processor 110 Load and Store instructions are guaranteed access to the 
bus. 

Non-Preemptive Burst 
Devices can force non-preemptive burst operations if it is necessary to retain control of the 
bus for short periods of time. Examples include use of a read-modify-write sequence in 
setting locks and use of a burst to allow the completion of a word-organized transfer 
sequence. The device signals the arbiter that a forced burst is required by activating the 
'burst' signal to the arbiter. When the burst sequence is complete, the device must 
deactivate the 'burst' signal. 

Preemptive Burst 
This function allows a device to use consecutive bus cycles without any arbitration overhead, 
as long as no other device is requesting bus service. It takes advantage of the low average 
utilization of most 1/0 buses, and increases the effective data rate of a device. Devices 
programmed for preemptive burst mode conditionally activate the 'burst' signal when the 
'preempt' signal is inactive. A device can remain temporarily non-preemptive for up to 7.8 

System 1/0 Structure 4-17 



microseconds following a preemption request. This allows completion of, for example, block 
transfers. 

Fairness Modes 
Devices operating in burst mode or devices with high bus request rates can cause severe 
interference to devices assigned lower priority levels. The problem is compounded when 
multiple high-bandwidth devices are present in the system. The programmable fairness 
mode is provided to make these high-bandwidth devices subject to preemption by any 
device. If multiple high-bandwidth devices are active simultaneously, service is rotated in a 
priority sequence, and each receives a percentage of bus cycles inversely proportional to the 
number of active bus requesters. 

To meet wide variations in device operating requirements, arbiters are programmable to 
operate in either linear or fairness mode. Operating modes can be mixed on the same bus. 
Linear priority mode is provided to meet low latency requirements of unbuffered devices, 
while fairness mode provides a more equitable distribution of bus cycles in a high-demand 
environment, for example, with two or more high-bandwidth bus masters. 

Fairness mode is a special case of preemptive burst. If there is only one bus requester, the 
current bus owner can utilize all of the bus bandwidth. As with preemptive burst, a device 
programmed in fairness mode can remain temporarily non-preemptive for up to 7.8 
microseconds following a preemption request. 

Basic Transfer Cycle 
Although the RISC System/6000 1/0 architecture is generic and can attach a number of 
unique buses, the intended design point is the Micro Channel. These bus protocols are 
illustrated in Figure 31. 

0 100 200 

A31 to AO, M/10 

S1/SO (R/W) 

Cmd 

Figure 31. 110 Bus Cycles 

The Micro Channel offers a 32-bit data path with 4G bytes of address space. It includes 
extensive support for reliability, availability, serviceability, extendability, and configurability. 
The physical package and connector are designed to improve electrical characteristics. 

Two status lines, 'SO' and 'S1', define the initiation of bus write and read cycles respectively, 
while the 'M/10' line differentiates between 110 memory and 1/0 devices. All addresses for 
the next cycle are overlapped with the processing of the current cycle. The bus architecture 
includes a special protocol for transferring sequential blocks of data. This is known as the 
Streaming Data Protocol, and is described in the next section. 

4-18 General Information Manual 



Streaming Data 
The Streaming Data Protocol is a single-address, multiple-data protocol that improves bus 
efficiency by amortizing bus cycle arbitration and address setup across multiple data cycles. 
It has particular value in transferring data between a memory and a processor cache or 
between a memory and a high-performance 1/0 device. 

Streaming data begins with a cycle similar to a standard basic transfer cycle, but switches to 
a clock synchronous transfer protocol. 

Streaming data operations are supported for IOCC initiated transactions such as Load and 
Store instructions, OMA slave, and bus master operations. 

Following the activation of the 'cmd' signal, the bus master indicates Streaming Data 
Protocol capability by starting a bus clock called the 'sd strobe' signal. This clock is used by 
both the bus master and slave to transfer data, with data being clocked onto the bus on one 
clock edge and clocked off the bus on the next clock edge. The operation proceeds with new 
data being placed on the bus every time the 'sd strobe' signal makes a high-to-low 
transition. For additional information on the Streaming Data Protocol, refer to IBM RISC 
System/6000 POWERstation and POWERseNer Hardware Technical Reference - Micro 
Channel Architecture. 

Dynamic Bus Sizing 
110 bus read or write operations do not necessarily have to match the physical width of the 
device. The Micro Channel architecture requires that discrepancies in data transfer widths 
be automatically managed by the current bus master. The IOCC is considered to be the 
current bus master for processor initiated 1/0 Load and Store instructions, and thus, must 
manage logical data-width transformations. 

A Load or Store instruction issued to a device of lesser width than the command causes 
multiple 1/0 cycles to be taken until the transfer width is satisfied. This automatic data-width 
matching is referred to as multicycle operations in the RT system and as dynamic bus sizing 
in the Micro Channel architecture. The multiple 1/0 cycles complete as a preemptable 
operation in the RISC System/6000 unit, allowing bus master and OMA slave cycles to break 
in for service. As such, bus master or OMA slave latency is unaffected by use of dynamic 
bus sizing. 

Protocols and sequencing of dynamic bus sizing are illustrated in Figure 32. 

Transfer 
Size 

4 B 

1 B 
1 B 
1 B 
1 B 

Bus Protocols 
s 

BE (Byte B 
Enable) H 
0 1 2 3 _E_ A1 AO 
0 0 0 0 o I o 0 

0 1 1 1 1 0 0 
1 0 1 1 0 0 1 
1 1 0 1 1 1 0 
1 1 1 0 0 1 1 

Figure 32. Dynamic Bus Sizing 

Bus Sequencing 

32-Bit 16-Bit 8-Bit 
Slave Slave Slave 

+32 + 16 + 8 

+16 + 16 +8--i 
+16 + 16 ~16 +a 

+a +a +a 
+a +a +a '+a ~8 
+8 +8 +8 ~8 
+8 +8 +8 ~8 ~8 

System 1/0 Structure 4-19 



It is generally recommended that the programmer writing an 1/0 device driver be aware of 
the physical characteristics of the target device. One should be aware when dynamic bus 
sizing is invoked by IOCC hardware since this operation requires more time to complete. 
See the "String Operations" section on page 4-30 for details on where this could be a 
problem. 

4·20 General Information Manual 



Partial Transfer Cycles 

Bus Refresh 

Partial write operations, for example, writing one byte of a 2-byte device, or two bytes of a 
4-byte device, are permitted in the bus architecture and are useful in performing unaligned 
moves. The Micro Channel supports partial write operations when operating with both 
memory and 1/0 devices. 

Bus write operations issued on address boundaries matching the device width allow 
completion of the operation in the minimum number of bus cycles. Operations issued to 
non-aligned addresses transfer the data to the device using multiple (partial write) cycles. 
These write operation use the bus 'SBHE'/'AO' and 'BEO to BE3' protocols to write the 
desired portion of the word. Partial transfers apply to 1/0 Load and Store instructions and 
(potentially) to bus master and OMA slave operations when operating with bus memory. 

Partial transfers can take two to four times the normal number of bus cycles and caution 
should be exercised in their use. If non-aligned, 1/0 Load and Store instructions halt the 
processor for a longer period of time, adding latency to system interrupt service. See "String 
Operations" on page 4-30 for details on where this could be a problem. 

Bus refresh cycles are provided as a convenience to 1/0 devices with embedded random 
access memory (RAM). Refresh cycles occur at one of several periodic rates selectable by 
the Configuration register. Refer to "IOCC Configuration Register" on page 4-71 for a 
description of refresh options. The refresh cycle occurs with the 'arb/gnt' signal high and 
does not consume a bus arbitration level. 

A refresh cycle is similar to an 1/0 memory read operation, except that the 'refresh' line is 
also activated. Address bits O through 11 (using the Micro Channel notation shown in Figure 
24 on page 4-9) are incremented by one, and a copy is placed on the Micro Channel during 
the refresh cycle. 

Bus Errors 
Four different kinds of errors are detectable on the Micro Channel: 

• Invalid address 

• Parity 

• Channel check 

• Bus timeout. 

When an error occurs, the error status is logged in IOCC registers as an aid in error 
recovery. Individual error status is kept for each 1/0 device (by arbitration level) to assist in 
recovery of multiple errors and is stored in the Channel Status register associated with that 
device. 1/0 Load and Store instructions utilize channel 15 in regular operation and error 
status for those operations is saved in that set of registers. Refer to "Load and Store Error 
Conditions" on page 4-32 for a description of this error status. 

Invalid Address 
The Micro Channel architecture requires a positive response to all addresses. Address 
response is signalled on the Micro Channel by driving the 'cd sfdbk' signal low. Failure to 
respond indicates that the address is invalid, or is issued to a missing or mis-seated card. 

If an 1/0 Load or Store instruction is issued with Segment Register bit 12 on, the IOCC 
checks for this address response. If none is received, a Data Storage Interrupt (OSI) is 

System 1/0 Structure 4-21 



issued and a card selected feedback error code is set in Channel Status register 15. Refer to 
"1/0 Segment Register Definition" on page 4-27 for additional details. 

Parity Errors 
The Micro Channel architecture definition includes address and data parity functions. 
Checking is performed only when both the bus master and slave support parity. Refer to 
"Exception Reporting and Handling" on page 4-80 for details of the RISC System/6000 110 
parity support. 

Channel Check 
The Micro Channel includes a 'chck' signal which indicates an unusual event occurred 
during the bus cycle. Examples include data parity error and page fault. 

For details on the use of the 'chck' signal in reporting exception conditions within RISC 
System/6000 unit, see "Exception Reporting and Handling" on page 4-80. 

It is important to note that the RISC System/6000 unit is designed to recover from 
synchronous channel checks. Adapters that use the 'chck' signal asynchronously will make 
an Initial Program Load (IPL), the only recovery which is possible. 

Bus Time Out 

Interrupt 

A number of conditions can result in a hung bus or in grossly extended 1/0 bus cycles. 
These errors can result in overrun conditions to other devices on the 1/0 bus and are 
checked by the IOCC using a bus timeout mechanism. Although the minimum architected 
bus timeout value is 7 .8 microseconds, the IOCC does not attempt to check that finely and 
should implement a timeout that varies between 15 and 120 microseconds. For 
implementation details, see "Implementation Details" on page 4-80. 

Bus hang problems are caused by either hardware or software errors. These errors are 
generally associated with arbitration for the 1/0 bus followed by failure to complete the bus 
cycle. 

On a bus timeout error, the IOCC deactivates the 'arb/gnt' signal, and sets bit 1 (the bus 
timeout bit) in the IOCC Miscellaneous Interrupt register. This error is considered to be 
uncorrectable and the master enable control in the IOCC Configuration register is reset. This 
disables all interrupt and channel requests. Also, a 'reset' signal is applied to all 1/0 slots. 
IOCC internal status is unchanged, so that channel conditions at the time of the error can be 
logged. As an aid in determining the cause of the error, extraneous bus status is also 
captured in the Bus Status register. 

Incorrect programming of the OMA controller can result in a hung bus. The OMA controller 
includes multiple channels; each can be personalized to control either a bus master or OMA 
slave device. Personalization can be dynamically performed. If a programmer should 
personalize a channel for bus master operation, but the device is actually a OMA slave 
device, the bus will hang on the first OMA request that the device makes. 

Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on the Micro 
Channel are level-sensitive, active-low, and exhibit natural interrupt-sharing capabilities. 
The IOCC provides pull-up resistors on all Micro Channel interrupt signals so that unused 
lines float to the inactive state. Refer to the "1/0 Interrupt" section on page 4-65 for additional 
details. 

4-22 General Information Manual 



Programming Model 
The following section describes the programming model for the 1/0 bus support functions 
provided by the IOCC. 

Load and Store Instructions 
The load and Store instructions can be issued to devices on the 110 bus in a similar manner 
to those issued to system memory. The programmer specifies a Segment register identifying 
a specific address space and supplies an offset into that space. The offset is obtained from 
the effective address and is not translated prior to being applied as a bus address. Figure 33 
illustrates this process. 

110 load and Store instructions are under control of the Segment registers. A command is 
directed to the 1/0 bus when the type (T) bit of the Segment register is set to a value of 1 
and the bus unit id (BUID) address is set to select the IOCC. 

Effective Address 
Seg 
Reg # 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 34 

4 

Segment Registers 

TK IOCC Ctrl 
Select 

Figure 33. 1/0 Addressing 

c 
t Ext 

1/0 

MEM 

64K Byte 
Bus 110 

I3L._____.. 32 16 Pages of 
256M Byte 

Ctrl 
Bus Memory 

System 1/0 Structure 4-23 



Address Spaces and Effective Addresses 
Figure 34 illustrates the RISC System/6000 addressing modes. 110 addressing requirements 
are met by having multiple address spaces. These address spaces are selected by way of 
control bits In the Segment register resulting in three 110 effective address operating modes 
as follows: 

1. Standard Bus Mode: This 110 effective address mode provides for 32-bit addressing of 
the 110 bus. In this mode the Segment register control bits are in the following state, T • 
1, I = 0, and M = O. 

The 32 bit bus memory address is formed by concatenating 28 bits of the effective 
address with the 4 extent (EXT) bits from the Segment register. This partitions the bus 
memory device space into 16 pages of 256M bytes each (4 G bytes of total address 
space), and separate Segment registers must be used to address across pages. If 
consecutive Segment registers are used when crossing bus memory pages, the 
addressing is continuous, and appears as a single linear address space. The 16 bit 110 
device address is taken directly from the effective address. To address a device within 
the 64K byte Micro Channel 110 space, effective address bits 4 through 15 and Segment 
register bits 28 through 31 must all be set to a value of 0. Effective addresses are not 
translated, but are used as real addresses into the 110 space. 

For a pictorial representation of this addressing mode, see Figure 35 on page 4-26. 

2. RT Compatibility Mode: This addressing mode assists in the simulation of the RT system 
allowing for 24 bit addressing. In this mode the Segment register control bits are in the 
following state, T = 1, I = O, M = 1, and .EXT = x. 

In this mode, 16M bytes of bus memory is selected using an effective address of X'x4 
xxxx xx', and 64K bytes of bus 1/0 using X'xO 00 xx xx'. Any other effective addressing 
range other than these two results in a Data Storage interrupt and an invalid operation 
error status is set in the Channel Status register {CSR) 15. This mode maintains 
compatibility with the 110 structure of the RT system and provides the ability to replace an 
RT object code Load or Store instruction with its RISC System/6000 equivalent, and the 
simulator does not have to worry about differences in the effective address format. 

In this mode, the hardware sets the effective address high order 8 bits (AO to A7) to a 
value of O before placing the address on the bus. Note that with this definition of the bus, 
no bus memory devices can reside in the address range from 0 to 64K bytes. Also note 
that in the RT compatibility mode, no bus memory devices can reside in the lower 64 KB 
range of the bus memory address space (64M bytes to 64M bytes + 64 K bytes). If the 
Segment register X'F' is used to provide access to the IOCC address spaces, all user 
Load and Store instruction effective addresses operate the same as those in the RT 
system. 

For a pictorial representation of this addressing mode, see Figure 36 on page 4-26. 

3. IOCC Control Mode: This addressing mode provides for access to the IOCC facilities. In 
this mode the segment register control bits are in the following state, T = 1, I = 1, M "' x, 
and EXT= x. 

Included in this address space are IOCC registers, the tag and TCW tables, the system 
registers and Nonvolatile Random Access Memory (NVRAM). Note that some references 
to the IOCC control space are on word boundaries only and req111ire a data length of 4 
bytes, for example the tag and TCW tables, and the IOCC registers. 

4·24 General Information Manual 



The IOCC control space is privileged and is only accessible when the Segment register 
privileged bit is set to a value of 0. Attempts to access this address space when the 
Segment register privileged bit is set to a value of 1 causes a Data Storage interrupt to 
be posted and and invalid operation error status to be set in the Channel Status register 
15. Attempts to access undefined effective addresses in the IOCC control address space 
also results in a Data Storage interrupt (invalid operation). 

For a pictorial representation of this addressing mode, see Figure 37 on page 4-27. 

Although bus memory and bus 1/0 are disjointed in PC products, the RISC System/6000 unit 
maps these two address spaces together. Since bus 1/0 only requires 64K bytes of 
addressing, this address space easily maps into the low addresses of the (4G bytes) bus 
memory address space. The architecture of PC products is such that no bus memory feature 
cards may be hardwired in the address range of O to 64K bytes, and no address conflicts 
exist. Note that the 64K bytes of Micro Channel 1/0 space can be accessed when utilizing 
each of the three effective address operating modes as illustrated in Figure 34. The values 
for the T, I and M bits for each of the three 1/0 effective address operating modes are 
described previously and are illustrated in Figure 34. 

System Address (T = 0) 110 Address (T = 1, BUID = IOCC) 
I I 

I Standard Bus RT Compatibility IOCC Control I 
Mode Mode Mode 

I = X, M = X I = 0, M = 0 I = 0, M = 1 I = 1, M = X 
256M 256M 256M 256M .....-----. 

192M 192M 192M 192M 

128M Sys 128M Bus 128M 128M Mem Mem 

16--
Bus Mem 

64M 64M 64M 0 64M 

0 
64K 1/0 _ _.._ ______ ..__ ____ ___, 

Space 

Figure 34. Addressing Model 

System 1/0 Structure 4-25 



Figures 35, 36, and 37 summarize the RISC System/6000 effective addresses. Effective 
addresses are obtained from the processor general purpose registers and are under user 
control. If a bus memory page is mapped to system memory, the bus address is translated to 
the address of the mapped system memory page. 

Standard Bus Mode I = O, M = O 

Bus 1/0 Address 
O O O O 0 O 0 O O O O O (Seg Reg bits 28 to 31 = 0) Bus 

110 

Seg 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 1 1 1 0 0 DLY Time 
Reg Delay 
# 

Bus Memory Address 

0 3 4 78 15 16 23 24 31 

Figure 35. User Effective Addresses: Standard Bus Mode 

RT Compatibility Mode I= 0, M = 1 

000000000000 Bus 110 Address 

Seg OOOOOOOOOOOOx000000011100 
Reg 
# ....... _._ ......... _._ .................................. ......_ ......... ...._ ......... _._ ................................... ......_ ........ ~ 

0100 Bus Memory Address 

0 3 4 78 15 16 23 24 31 

Figure 36. User Effective Addresses: RT Compatibility Mode 

4-26 General Information Manual 

Bus 
Memory 

Bus 
110 

Time 
Delay 

Bus 
Memory 



IOCC Addressing 1:1,M:X 

Seg 0 0 0 0 O O 0 0 O O O O 1/0 Device Address 

0 

Reg 
# 

000011 

3 4 78 

IOCC Commands 

TCWNumber 

15 16 23 24 

1:1,M:X 

Bus 
110 

IOCC 
Registers 

System 
Registers 

Tag Table 

NV RAM 

0 0 TCW Table 

31 

Seg O O O o O O o O O o O O X o O O O O O O 1 1 1 O O Dly Time 

~ ~-# 
O 1 Return From 

0 0 Reg# 

O O Chnl # 

RC Ctl 1 1 TCW Number 

Interrupt 

Lock 

Invalidate 

Enable/Disable 
Channel (Arb Lvl) 

0 1 1 1 1 0 0 0 Flush OMA 
Slave Buffer 

FW Flush Bus 
Master Buffer 
and Replace RC 

0 3 4 78 15 16 23 24 31 

Figure 37. IOCC Effective Addresses 

110 Segment Register Definition 
Segment registers provide access authority to the 1/0 bus for 1/0 Load and Store 
instructions. They are protected resources within the system and generally cannot be 
changed except by the system control program. Some personalizations of 110 bus operations 
are provided to match unique device (or 1/0 bus) characteristics. This personalization is 
controlled by control bits in the Segment registers shown in Figure 38. 

System 1/0 Structure 4·27 



TK -

0 

BUID 

c 
t 

~l 1_ Reserved l Reserved 

Privileged Key Address 
Memory/IQ Increment 

Address Check 

Figure 38. 1/0 Segment Register 

IMB - EXT 

28 31 

~L L110Bus 
Address 

Bypass 

RT Compatibility Select 
IOCC Select 

The following Segment register definition applies only to IOCC and 1/0 bus applications. Bits 
O and 1 are system control bits defining system state. Bits 4 to 11 select system facilities 
such as the IOCC. Bits 12, 13, 25 and 26 mediate IOCC operations, while bit 24 provides 
access to IOCC facilities. Bits 2, 3,14 to 23 and bit 27 are reserved, and bits 28 to 31 are 
used as an address extension for the 1/0 bus address. A complete description of all fields in 
the Segment register is given in the following list: 

Bits Description 

O Type: This bit defines whether a Load or Store instruction is targeted to 
system memory or the 1/0 address spaces. System memory is selected 
when this bit is set to a value of 0, and 1/0 is selected when this bit is set to 
a value of 1. The definition of the Segment register, illustrated in Figure 38, 
is only valid for 1/0 operations, that is when bit O is set to a value of 1 , and 
the BUID selects the IOCC. 

1 Privileged Key: This bit is generally set to a value of O when the operating 
system is in control and set to a value of 1 when in the user mode. 

2-3 Reserved: These bits are reserved and must be set to a value of 0. 

4-11 Bus Unit Identification (BUID): The BUID field is decoded to select the 
IOCC. Addresses between X'20 - 23' are assigned to the IOCC. Hardware 
strapping options on the IOCC allow specification of its exact BUID field 
value on some implementations. Implementations on machines that support 
a single IOCC must have a BUID of X'20'. 

12 Address Check: This bit provides for conditional checking of 1/0 addresses 
during Load and Store instructions. The Micro Channel provides for a 
positive address response by device activation of the 'cd sfdbk' line. If this 
line is not activated, the device address is invalid. See the "Invalid Address" 
section on page 4-21. An 1/0 Load or Store instruction that does not receive 
a positive address response is allowed to proceed when bit 12 in the 
Segment register is set to a value of O. A command issued to an invalid 
device address when bit 12 is set to a value of 1 causes a Data Storage 
interrupt to be posted and a card selected feedback error code to be set in 
Channel Status register 15. Figure 39 summarizes all the combinations of 
bit 12 and the address response by an 1/0 board. 

4·28 General Information Manual 



Bit 12 
Address Response (Card Select Feedback) 

o o Command Can Proceed 
O 1 Command Can Proceed 
1 0 Data Storage Interrupt 
1 1 Command Can Proceed 

Figure 39. Bit 12 and Address Response Definition 

13 Address Increment: This bit controls incrementing of the 110 bus address if a 
Load or Store instruction is issued to a bus 1/0 device with a physical data 
width less than that of the instruction. The IOCC breaks the transfer into 
multiple 1/0 bus cycles and this bit controls whether the address is 
incremented between the 1/0 bus cycles. See the "Dynamic Bus Sizing" 
section on page 4-19 for a description of this function. Addresses are 
incremented when bit 13 is set to a value of 1 and are not incremented if bit 
13 is set to a value of 0. The address increment function is controllable on a 
device-by-device basis. In the case of a Load or Store instruction to bus 
memory, bit 13 is ignored and the bus addresses are always incremented. 
The Micro Channel architecture specifies that all addresses are to be 
incremented when performing dynamic bus sizing. This bit should be set to 
a value of 1 when working with devices designed to this architecture. 
Caution should be used in using string operations, as certain devices can 
support multicycle operations up to a particular word size, but not to exceed 
that word size. Consult the particular device specifications for details. 

14-23 

24 

25 

26 

Reserved: These bits are reserved and must be set to a value of 0. 

IOCC Select: This bit selects the IOCC control mode. 

RT Compatibility Select: This bit selects the RT Compatibility Mode when 
the IOCC Select (I) bit= 0. 

Bypass: When this bit is set to a value of 1 , the IOCC bypasses TCW 
checking and memory mapping and only direct bus access is possible. 

When this bit is set to a value of 0, the extended functions of authority 
checking, access validation, and system consistency are invoked. 

This bit is ignored if I equals 1. 

27 Reserved: This bit is reserved and must be set to a value of 0. 

28-31 Bus Memory Extent: This field is concatenated with effective address bits 4 
to 31, to form a 32-bit 1/0 bus address when working in standard bus mode. 
It is gated to address bits 'A31' to 'A28' on the 1/0 bus. 

Address and Data Alignment 
Data for Load and Store instructions is normally right-justified in the processor register. 
One-byte operands are located in byte 3. Two-byte operands are located in bytes 2 and 3. 
String operations are an exception and are left-justified in the starting processor register. 

Target 1/0 device addresses should normally be aligned on boundaries equal to the device 
width. This maintains optimal performance when performing Load and Store instructions. If 
this rule is not observed, the IOCC performs the operation using multiple (narrower) 1/0 bus 
cycles. This can take up to four times longer to complete the Load or Store operation. Refer 
to "Partial Transfer Cycles" on page 4-21 for additional details. 

System 1/0 Structure 4·29 



String Operations 
String operations allow the issuance of Load or Store instructions with data widths from 1 to 
128 bytes. The bus protocol used in the data transfer is dependent on the 110 device. String 
operations are applicable to any addressable device on the Micro Channel and to t.he tag 
tables, TCW tables, and to the NVRAM within the IOCC address space. However, for some 
1/0 devices, applicability of string operations may be limited by the device itself. 

String operations issued to normal PC devices are performed using standard bus protocols. 
Multiple bus cycles are issued, using dynamic bus sizing, until the transfer length is satisfied. 
These multiple cycles operate under preemptive burst arbitration rules and Load or Store 
string instructions will be momentarily suspended if any 1/0 device requests OMA slave or 
bus master operation. 

String operations issued to devices supporting the streaming data transfer protocol use that 
protocol where appropriate. This protocol operates under non-preemptive burst arbitration 
rules. In the case of string operations, however, the amount of time from the preempt 
request by a device until the IOCC releases the bus is controlled by the Burst Control bits in 
the IOCC Configuration register (see "IOCC Configuration Register" on page 4-71 and 
"Implementation Details" on page 4-80). 

It is generally recommended that the programmer writing an 110 device driver be aware of 
the physical characteristics of the target device when using string operations. One should be 
aware of the effects of dynamic bus sizing and partial transfers, since these operations 
require more time to complete. Refer to "Dynamic Bus Sizing" on page 4-19 and "Partial 
Transfer Cycles" on page 4-21 for details of these functions. Slower than expected 110 
instruction processing can have detrimental effects on system performance. For example, 
the system processor can not accept an interrupt while 110 Load or Store instructions are in 
process. Both dynamic bus sizing and unaligned moves (partial transfers) take longer to 
complete, adding latency to system interrupt service. Although most devices are reasonably 
fast and do not cause any problems, this latency can be large if extended string operations 
are performed against slow devices. 

Load and Store Access Authority Checking 
1/0 Load and Store instructions are subject to access authority checking. Separate 
mechanisms are used for checking bus 1/0 and bus memory, as illustrated in Figure 40. Bus 
1/0 accesses are checked by way of a base and bounds (range) check, while memory 
accesses are verified by way of a storage key in the TCW table. If the page is mapped to 
system memory, write authority is also verified. Load and Store instructions to bus memory 
or (shared) system memory are treated like a bus master operating on channel 15 and use 
IOCC registers associated with that channel. 

4-30 General Information Manual 



I Low Limit I High Limit I Register 

~o~,_._ ................ ...._~11~1_a,~'~' ........ ...._~1~15_~1~~~' ........ ...._ ......... 1_2~,3~12~f ........ 1...._ ......... ~1 ~~~1 400040 

16 16 

Segment Key= O ---------1 
Time Delay Command 

Bus 110 Op 
TCWTable 

[----,-e~tie~ #1_:1-i<~i r-ct;1- - =~~a~:~;ry 
16 20 23 25 27 28 31 Op 
- - - - - - - - - - - - - - - - - - - - Sys Mem and 

3 

..-----ia:1 

Channel Status register 15 8 

Status 
0 3 4 7 8 

Authority Mask 
15 16 23 24 

Figure 40. Load and Store Access Authority Checking 

Or Access 
OK 

And 

Register 
31 4F 00 60 

Operations to bus 110 have fine address granularities and are verified by way of address 
range checking. Address ranges are controlled by the operating system and restrict access 
of user programs to authorized devices. Address range information is considered part of the 
user (program) context and is loaded into an IOCC register by the operating system. This 
register defines a contiguous range of authorized 1/0 addresses with a minimum address 
granularity of 1 byte. Invalid access attempts cause a Data Storage interrupt to be posted 
and a limit check error code to be set in Channel Status register 15. This interrupt is precise 
for all 1/0 Load and Store instructions. Address range checking is suspended if the segment 
register privileged key is set to a value of 0, or if a time delay command is issued. Refer to 
"Time Delay Command" on page 4-59 for details of this command. Also note that if the 
address increment is off (bit 13 of the 110 Segment register equals 0), only the starting 
address is tested. If address increment is on, the full length of the access must be within the 
limit bounds. 

Operations to bus memory have coarser address granularities and are protected on page 
boundaries. Each page in the bus memory address space has a 3-bit storage protect key 
associated with the page that defines the protection class of the page. An 8-bit authority 
mask in Channel Status register 15 specifies the key values (and by inference, pages) that 
this program is authorized to access. This mechanism is identical to the memory protect 

System 1/0 Structure 4-31 



mechanism used for bus master devices. Memory protect keys are kept in the TCW table 
and are described in the "Translation, Protection, and TCW Table" section on page 4-34. 
The mask information is considered part of the user (program) context and is loaded by the 
operating system. 

Bus memory access checking is suspended if the segment register privileged key (K) is set 
to a value of O or if the bypass control bit (B) is set to a value of 1 in the Segment register. 
Refer to the "l/O Segment Register Definition" section on page 4-27 for details. 

The TCW table and IOCC registers containing limit check information and authority masks 
are protected system resources and are only accessible when the segment register 
privileged key is set to a value of 0. Attempts to access these facilities when the privileged 
key is set to 1 causes a Data Storage interrupt to be posted and invalid operation status to 
be set in Channel Status register 15. 

Load and Store Error Conditions 
Error conditions that arise in Load and Store instructions include bus errors, programming 
errors, and hardware errors. The specific cause of the error is determined by examining the 
error code contained in Channel Status register 15. On a memory error, 1/0 bus (page) 
address bits A31 to AS are placed in bits 4 to 31 of this register. This assists in determining 
the cause of error. Figure 41 illustrates the resultant register contents. 

Processor Effective Address 

Seg 
Reg # 0 0 O 0 0 1 0 0 1 1 1 1 0 0 O 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 34 

Channel Status register 15 

0 0 0 
0 
1 
1 

0 1 0 
0 
1 
1 

1 0 0 
0 
1 
1 

1 1 0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

OK 
Invalid Operation 

Limit Check 

Authority Error 
Page Fault 

Channel Check 
Data Parity Error 

110 Bus 
Address Bits 
A31 to A6 

110 Bus Protocol Error 
Card Selected Feedback Error 
ECC Error 
System Address Error 
TCW Reload Error 
IOCC Error 

Figure 41. Load And Store Error Status 

4-32 General Information Manual 



Load and Store instruction errors are synchronous and generate a Data Storage interrupt. 
No device should asynchronously report errors by activating the 'chck' signal. However, if 
this occurs, the error is not reported here, but is reported as an miscellaneous interrupt as 
described in the "1/0 Interrupts" section on page 4-65. Refer to "Exception Reporting and 
Handling on page 4-80 for more information. Load and store error codes are summarized as 
follows: 

Error Code 

0001 

0011 

0101 

0110 

1000 

1001 

1010 

1011 

1100 

1101 

Description 

Invalid Operation: This error code is set if an attempt is made to access a 
facility or device not authorized by the system supervisor. It is also set if an 
attempt is made to access a bus address for which a TCW does not exist 
(except when the bypass bit is on). 

Limit Check: This error code is set if an attempt is made to access a bus 110 
device not within the address range established by the limit registers. 

Authority Error: This error code is set if an attempt is made to access a bus 
or system memory page and the storage key in the TCW does not match 
the authority mask in Channel Status register 15. It can also be set if a write 
operation is attempted to a read-only page in system memory. 

Page Fault: This error code is set if an attempt is made to access a page 
with TCW bits 30 and 31 set to 8'01 '.This should occur in normal operation. 

Channel Check: This error code is set if a device responds with a channel 
check indication. For example, a device might respond with a channel check 
for a write operation to that device where there is bad parity on the data or 
for other device detected errors during an operation to that device. This 
error cannot be reported if a card selected feedback error is reported (card 
selected feedback error takes precedence over channel check error). 

Data Parity: This error code is set if the IOCC detects bad parity on a Load 
operation from an 1/0 device (However, in the case of a Load operation, a 
channel check error takes precedence over a data parity error). This error 
code is also set if the IOCC detects bad data parity or an uncorrectable 
ECC error during a load of a TCW. 

110 Bus Protocol Error: This error code is set if a Micro Channel protocol 
error has been detected (for example, a card pulls the 'cd ds 32' line on the 
Micro Channel but does not pull the 'cd ds 16' line at the same time). 

Card Selected Feedback Error: This error code is set if, after a device is 
addressed, it does not respond by driving the 'cd sfdbk' line, and the 
address check bit is on in the 1/0 Segment register. Conditions which could 
cause this to occur are if the device is not present, if the device is not 
seated in the card slot properly, if the device is not enabled or if the device 
detects bad address parity and does not respond to that address. This error 
code takes precedence over a channel check. 

Error Correcting Code (ECC) Error: This error code is set if the IOCC 
received an uncorrectable ECC error response from the internal system bus 
during a Load or Store instruction that is mapped to system memory (this is 
similar to a bus master operation). 

System Address Error: This error code is set if the IOCC sends an address 
over the system bus and does not receive an address acknowledgement. 

System 1/0 Structure 4·33 



111 0 

1 1 1 1 

TCW Reload Error: This error code is set if the IOCC detects a parity or 
uncorrectable ECC error during an indirect TCW reload (with the bypass bit 
off). 

IOCC Error: This error code is set if the IOCC detects an internal error 
during a Load or Store instruction. This error only occurs in a TCW or tag 
table access or flush command. All other IOCC errors result in a check 
stop. 

No provision is made to capture status for multiple errors. If this should occur, Channel 
Status register 15 contains error information relating to the first error. Any subsequent load 
or store errors will result in Data Storage interrupts, but do not change any condition status 
in the Channel Status register. 

Load and Store instructions with the bypass bit off and with a previous error set in the CSR 
results in a Data Storage interrupt. Load and Store instructions with the bypass bit on and 
with a previous error set in the CSR are processed. 

Channel 15 is treated differently than the other channels following an error. Channel 15 
always remains enabled, or a deadlock situation would exist. All other channels are disabled 
following an error. 

Synchronous errors are precise, and a retry may be attempted as part of the error recovery. 
Certain other errors associated with an 1/0 Load or Store instruction may not be 
synchronous, and are not reflected in this register. An example of these errors include 
delayed channel check response (see "Exception Reporting and Handling" on page 4-80) 
and a bus timeout condition (see "Bus Timeout" on page 4-22 for more information). 

1/0 bus errors such as address or data parity errors can be caused by hardware 
malfunctions or transient electrical noise. Refer to "Exception Reporting and Handling" on 
page 4-80 for more information. 

Translation, Protection, and the TCW Table 
The IOCC provides address translation for all Load, Store, bus master and OMA slave 
operations to system memory and access protection for all Load, Store and bus master 
operations to system memory. Access protection is also provided for all Load and Store 
operations to bus 1/0 or bus memory. Translation allows the organizing of 1/0 buffers within 
the context of the virtual page map and assists in eliminating a subsequent move operation. 
Protection insulates the system from non-well behaved devices or programs. 

Bus memory protection or system memory translate and protection information is contained 
in a TCW table. Each TCW entry identifies whether that page is mapped to system memory. 
If a page is mapped, the TCW entry also contains mapping and access authority information. 
This table is an IOCC analogue of the system translation tables, and is generally managed 
in concert with those tables. Address translation and protection mechanisms apply to 
4K-byte memory pages, matching the system page size. 

Load or Store operation protection of bus 1/0 is by a base and bounds address check. The 
high- and low-limit addresses are contained in IOCC registers. Refer to "Load and Store 
Access Authority Checking" on page 4-30 for a detailed description. 

The TCW table organization is illustrated in Figure 42. The TCW table has a one-to-one 
correspondence with the first n pages of 1/0 bus memory addresses. The first 64K bytes of 
bus memory can never exist since bus 1/0 is mapped at those addresses, and the first 16 
TCWs should be initialized as invalid, that is, set to page fault. Thus, the first valid TCW 
entry maps 1/0 bus addresses X'OO 01 00 00' to X'OO 01 OF FF'; the second entry controls 
mapping of addresses X'OO 01 1 O 00' to X'OO 01 1 F FF', and so on. 

4-34 General Information Manual 



The number of bus memory addresses that can be mapped depends on how much TCW 
Random Access Memory (RAM) is supplied by the IOCC. This amount is product dependent 
and varies from a minimum of 96 K bytes (maps 96M bytes of bus memory) to a maximum 
of 4 M bytes (maps the full 4G bytes bus memory space). A field in the IOCC Configuration 
register is used to specify the amount of TCW RAM supplied. Refer to "IOCC Configuration 
Register" section on page 4-71 for details. Access to the TCW table entries must be 4-byte 
aligned. 

If the bus memory 1/0 address is mapped to system memory, the Real Page Number (RPN) 
in the TCW is used to access system memory. Otherwise, the address is directly applied to 
the 1/0 bus. 

The TCW table is a protected system resource located in the IOCC address space between 
addresses X'O CO 00 00' and X'O FF FF FF'. It is only accessible to Load and Store 
instructions from the system processor when the segment register privileged key is set to a 
value of O. Attempts to access this table when the privileged key is set to a value of 1 causes 
a Data Storage interrupt to be posted and invalid operation error status to be set in Channel 
Status register 15. 

Processor Effective Address 
Seg 
Reg # RC Ctrl 1 1 

0 3 4 7 8 10 

Mask 

TCWTable 

RPN 

Figure 42. TCW Table 

FW 
31 

Bfr # - Key RC Ctrl 

20 23 31 

Ref/Chg _J 1 
Bus Memory []o 

Page Fault O 1 
Sys Memory Read-Only 1 O 
Sys Memory Read-Write 1 1 

Replace 
Flush 

TCW's can be used for both bus master and OMA slave operations. A detailed description of 
a TCW entry is described as follows: (Some fields described in the following section may be 
implementation-dependent as noted.) 

Bits Description 

0-19 Real Page Number: This field in the TCW contains the real page address 
that the bus address is mapped to in system memory. 

System 110 Structure 4-35 



20-23 

24 

25-27 

28-29 

30-31 

Buffer Number: On buffered implementations, this field contains a 4-bit 
number specifying which of 16 buffers can be used by the IOCC when 
operating with this page. Although any buffer number may generally be 
assigned to any page, caution should be exercised since buffer sharing is 
not possible with OMA slave channels when tags are used. Personalization 
of a channel for a OMA slave operation causes that channel to use the 
same buffer number. On implementations not buffered, these bits are 
indeterminate. 

Reserved and must be set to a value of 0. 

Page Protect Key: This field contains a 3-bit key specifying the protection 
class of the page. Memory pages are assigned to one of eight protection 
classes. When a device initially arbitrates for the bus, an 8-bit access 
authority mask is obtained from the Channel Status register associated with 
that device. When a page is accessed, the key obtained from the TCW 
specifies the mask bit to be tested. If the selected bit is set to a value of 1, 
the access is permitted. Mask information for 1/0 Load and Store 
instructions are contained in Channel Status register 15. Load or store 
references to a bus memory page without the appropriate authority cause a 
Data Storage interrupt and set an access authority error code in Channel 
Status register 15. Refer to "Load and Store Access Authority Checking" on 
page 4-30 for details. Similarly, invalid access attempts by a bus master 
device terminate the operation for this device and set an access authority 
error code in the Channel Status register associated with the device. Refer 
to "Bus Master Access Authority Checking" on page 4-44 for details. 

Reference and Change (RC}: These bits are equivalent to the RC bits in the 
system page frame table. Bus master transfers and shared memory Load 
and Store instructions do not modify the page frame table. As an aid in page 
management, the IOCC provides the reference and change history of all of 
its pages. This can be used to improve system performance in paging 
operations. Whenever a page is accessed, the IOCC sets its associated 
reference bit in the TCW table to a value of 1. Similarly, whenever a page is 
written, the IOCC sets both the reference and change bits to a value of 1. 
The B'01' code point is never naturally set by hardware and is only set by 
software to assist in page management. Note that these bits only apply to 
pages mapped to system memory. 

Page Mapping and Control: These bits define page mapping and read-write 
authority. They are coded as shown in Figure 43. 

Bus Memory 
Page Fault (No Access) 

System Memory 

Figure 43. Page Mapping and Control Bits 

Code points B'OX' signify that the page is not mapped to system memory. Code point B'OO' 
should be set to allow accesses to memory devices on the 1/0 bus. Code point B'01' should 
be set when a page is not mapped and no device is present at that address. It causes a 
Data Storage interrupt if the operation is a load or a store, and a synchronous channel check 
response if the operation is a bus master transfer. Both of these actions are interpreted as 
an 1/0 bus page fault. Bus master devices designed to take advantage of this function are 
expected to halt and wait for the system to take corrective action. 

4·36 General Information Manual 



Code point B'1 X' signifies that the page is mapped to system memory. For Programmed 1/0 
(PIO) operations, it causes the IOCC to redirect references to system memory using the 
TCW mechanism. Note that PIO to system memory using the TCW mechanism is 
implementation dependent. (See "Implementation Details" on page 4-80.) Bit 27 of the IOCC 
Configuration register is set at a value of O if PIO to system memory is supported. If not 
supported (Bit 27 equals 1 ), a PIO Load and Store instruction will result in a Data Storage 
interrupt. 

Bus master operations are mapped by channel and enabled as defined by bits 2 and 3 of the 
status field of the Channel Status register. Note that bit 30 should match bit 2 of the status 
field of the Channel Status register; otherwise, it is treated as a page fault error condition as 
described in the preceeding text. 

Bit 31 controls write authority; if set to a value of 1, the page can be written. Note that the K 
bit (bit 1, or the Privileged bit) bit in the Segment register overrides bit 31, that is, privileged 
access is not limited by the Read-Write or Read-Only bit. 

Bus Master 
Bus master transfers refer to data transfers between a bus master 1/0 device and memory 
where the bus master device supplies the memory addresses and controls all aspects of the 
data transfer. 

The RISC System/6000 1/0 architecture supports both buffered and unbuffered bus master 
transfers. In the buffered mode, 1/0 buffers are provided as a performance feature and may 
also include caching of the current TCW table entry in a buffer control register. The following 
sections include descriptions of both the buffered and unbuffered bus master operations. 
The mode of operation is implementation specific (See "IOCC Configuration Register" on 
page 4-71 and "Implementation Details" on page 4-80). 

Buffered Bus Master 
Figure 44 illustrates bus master operations to system memory. Sequential data transfers are 
transferred on IOCC buffer boundaries, and the IOCC provides a set of 64-byte data buffers. 
The actual bus master transfer cycles operate only against these buffers. 

To initiate bus master transfers, the system first loads the TCW table with the appropriate 
mapping information. When the TCW mapping is complete, the channel can be initialized to 
run by loading the control registers with a set of values starting the demand reload process. 
The easiest way to do this is to load the control registers with the following: 

1. Channel Status register - B'OOme O 100 0000 1111 auth auth 0000 0000' 

2. Cache Buffer register 4 - B'OOOO 0000 0000 0000 0000 0000 0000 0000' 

3. Cache Status register 8 - B'001 O 0000 0000 0000 0000 0000 0000 0000' 

These values cause the IOCC to reload the control registers from the TCW table on the first 
access attempt by the 1/0 device. 

Following device arbitration, the appropriate Channel Status register is selected. The buffer 
number field in that register is then used to select the Buffer Control registers used by this 
device. The 1/0 bus address is compared with the address contained in the Buffer Control 
register. If a match occurs, the associated buffer is correct, and the operation can proceed 
against the buffer. 

If the 1/0 bus address does not match the address contained in the Buffer Control register, a 
TCW access is required. The 1/0 bus address is used to select the appropriate TCW, and 
the buffer number field obtained is used to select the appropriate set of Buffer Control 
registers. These registers are then tested to see if the 1/0 address matches. If a match 

System 1/0 Structure 4-37 



occurs, the contents of the buffer are valid and the operation can proceed. If not, the buffer 
needs to be loaded. 

Prior to loading of the buffer, the current buffer Is checked to see If It can be cast out. A bit In 
the Buffer Control register indicates whether that buffer is dirty. H so, the buffer Is written 
back to system memory prior to access of the new buffer. Following access of a new buffer, 
the 1/0 bus address and new TCW are written Into the Buffer Control registers. 

The IOCC must perform a read-modify-write sequence to guarantee that the buffer space, 
which has not been written to, does not change the data In system memory when that buffer 
is written to memory. 

I, I I I 111 I 1 1~~.~~~1~?~~~1111111 1 I I 11 11111 I 1~~1~~~1~~~ 11' I 11 I 'I I 1 I 
6 

TCWTable 

20 l12 
Ctrl 

t32 

Sixteen 64-Byte Buffers 

! 
System 
Memory 

Figure 44. Buffered Bus Master Data Transfer Operation 

As illustrated in Figure 45, each bus master channel is dynamically associated with two 
32-blt controlling registers. These registers are also used for OMA slave operations but are 
defined differently when personalized for bus master data transfer operations. 

4-38 General Information Manual 



Processor Effective Address 

Processor Effective Address 

Buffer Control Registers 

._ _____________________ , 

Bus o 
Arb - -
Lvl 

I 

Channel Status register : 4 

T 
0 0 ME 

PN 
0 1 0 0 

0 1 
1 0 
1 1 

1 0 0 0 
0 1 
1 0 
1 1 

1 1 0 0 
0 1 
1 0 
1 1 

---·- --
Buffer # Authority Mask 

11 12 15 16 23 24 

T 
Channel 
Control 

Authority Error 
Page Fault 
TCWExtent 
110 Bus Protocol Error 
Data Parity Error 
Address Parity Error 

Match To 
Storage Key 

Card Selected Feedback Error 
ECC Error 
System Address Error 
TCW Reload Error 
IOCC Error 

Figure 45. Buffered Bus Master Control Registers 

31 

Each of the 16 channels has its own Channel Status register. This register contains channel 
status, some personalization controls, a buffer pointer, and an 8-bit memory access 
authority mask. 

The Buffer Control registers are associated with a specific buffer and can be dynamically 
coupled to any channel. These registers cache the TCW associated with the buffer and 

System 110 Structure 4-39 



provide faster operation for sequential accesses. Selection of the Buffer and Buffer Control 
registers to be used is determined by the buffer number field in the TCW. 

Register fields are described in the following section: 

• Register O - Channel Status register 

Bits 

0-3 

4 

5 

6-11 

12-15 

16-23 

24-31 

Description 

Control and Status: This field contains channel control and status, and 
may be set by both the control program or the IOCC. Values between 
X'0-3' are control channel operations while values between X'04-15' are 
error codes. Refer to "'Bus Master Error Conditions" on page 4-45 for a 
description of bus master error conditions. When bits O to 1 are B'OO', 
Bits 2 to 3 provide control of channel operations. Bit 2 is set by a Store 
instruction to the appropriate Channel Status register and indicates 
whether the channel is mapped (Bit 2 equals 1 ), or not-mapped (Bit 2 
equals 0). Bit 3 is controlled by channel enable and disable commands. 
Refer to "Enable and Disable Commands" on page 4-62 for more 
information on the enable and disable commands. 

OMA Slave Flag: This bit is set to a value of O using an 1/0 Store 
instruction to personalize a channel for bus master data transfer 
operation. The IOCC never changes the value of this bit. 

Reserved: This bit is reserved and must be set to a value of 1. 

Reserved: These bits are reserved and must be set to a value of 0. 

Buffer Number: This field is loaded from TCW bits 20 to 23 and is used 
as an indirect address to select the correct 64-byte buffer and Buffer 
Control registers. 

Authority Mask: This field defines the memory access authority granted to 
this channel. Each bit corresponds to one memory protection class, 
where bit O corresponds to class O (TCW key 0), bit 1 corresponds to 
class 1 (TCW key 1 ), and so forth. 

Reserved: These bits are reserved and must be set to a value of 0. 

• Register 4 - Buffer Control 

This register contains a copy of the current TCW associated with this buffer. This register 
functions as a TCW cache and improves performance of bus master operations and Load 
and Store instructions. Refer to "Translation, Protection and TCW Table" on page 4-34 for 
a description of the bit fields in this register. 

Note: PIO's with the bypass bit off may alter this register and therefore software should use 
a buffer number which is not being used (X'F' recommended). 

4-40 General Information Manual 



• Register 8 - Buffer Control 

This register contains a copy of the 1/0 bus address associated with the TCW register 
described in the preceeding text. Whenever a bus master operation or a Load and Store 
instruction references a memory object, the 1/0 bus address is first checked against this 
register to see if the object is contained in the associated buffer. The bit usage follows: 

I 
Bits Description / 

O Buffer Dirty: This bit indicates that the buffer associated with this channel 
is dirty, that is, has been written to and therefore contains data which is 
inconsistent with data in system memory. This bit is reset by the IOCC 
when the buffer is flushed and is set when the first byte is written to the 
buffer. Though hardware normally sets and resets this bit, software has 
both read and write access. 

1 

2 

3-5 

6-25 

26-31 

Buffered: This bit indicates that the buffer contains data which has been 
prefetched. It is set upon initial prefetching of the buffer and is reset at 
the time the buffer is flushed to system memory. Though hardware 
normally sets and resets this bit, software has both read and write 
access. When the operation completes and the device interrupts, the 
buffer must be flushed to system memory by software using the buffer 
flush command. 

Buffer Invalidate: This bit is used to indicate that the buffer has been 
invalidated. When this bit is set to a value of 1 it forces a prefetch from 
system memory to this buffer. The bit is reset to a value of O at the time 
the buffer is prefetched from system memory and set to a value of 1 
when the buffer is flushed to system memory. Though hardware normally 
sets and resets this bit, software has both read and write access. When 
the invalidate bit is set to a value of 1 , it overrides the buffer dirty and the 
buffer prefetched bits. 

Reserved: These bits are reserved and must be set to a value of O. 

1/0 Bus Address A31 to A12: This field is used by the IOCC to detect 
when a page changes. It contains a copy of the 1/0 bus address that 
caused the last TCW to be fetched. This field is referred to on a 
cycle-by-cycle basis to determine if the current TCW in register 4 is 
valid. If a page is changed, that is, address bits A31 to A12 change, the 
IOCC reaccesses the TCW table. 

1/0 Bus Address A 11 to A6: This field is used by the IOCC to detect when 
a buffer changes. It contains a copy of the 1/0 bus address relating to the 
current 64-byte 110 buffer within the 4 K-byte system page. If a bus 
master changes buffers within the 4 K-byte system page, that is, address 
bits A 11 to A6 change, the IOCC accesses system memory as 
appropriate to make a new 64-byte 1/0 buffer available. 

System 1/0 Structure 4-41 



Unbuffered Bus Master 
Figure 46 Illustrates the unbuffered bus master operations to system memory. Note that the 
64-byte IOCC buffers are not shown as with the buffered mode previously described. Also 
not shown Is the caching of the current TCW table entry. Figure 46 assumes direct access of 
the TCW table entry on each 1/0 access by the bus master. 

I 110 Bus Address I I 110 Bus Data I 
I I II I II I 1 II I , , " II I I II ti I II I II 11 II II II I II II II ii II I II I " I II II I I 

20 12 + 32 

TCWEntry ~ 
~Ir 

l12 20 
System 

Ctrl __., Memory ... 
__., ... 

Rgure 46. Unbuffered Bus Master Data Transfer Operation 

The Bus Master Channel Status register for the unbuffered case is Illustrated In Figure 47. 
Each of the 16 channels has Its own Channel Status register. This register contains status, 
some personalization controls, and an &-bit memory access authority mask. 

4-42 General Information Manual 



Bus o 
Arb - -
Lvl 

Processor Effective Address 

Channel Status Register 

Status 0 1 
0 345 

T 
0 0 M E 

p N 

0 1 0 0 
0 1 
1 0 
1 1 

1 0 0 0 
0 1 
1 0 
1 1 

1 1 0 0 
0 1 
1 0 
1 1 

Authority Mask 
78 15 16 23 24 

T 
Channel 
Control 

Authority Error 
Page Fault 
TCW Extent 
1/0 Bus Protocol Error 
Data Parity 
Address Parity Error 

Match To 
Storage Key 

Card Selected Feedback Error 
ECC Error 
System Address Error 
TCW Reload Error 
IOCC Error 

Figure 47. Unbuffered Bus Master Control Registers 

Note that that the Buffer Control registers shown in Figure 45 on page 4-39 are not 
supported in this mode. A Load instruction to register 8 returns all O's. On a Store instruction 
to register 8, data is ignored. Register 4 is used for DMA slave operations and a Load or 
Store instruction to register 4 will be treated as described in "OMA Slave' on page 4-46. 

Following device arbitration, the appropriate Channel Status register is selected. The 1/0 bus 
address is used to select the appropriate TCW. The RPN from the TCW entry and 12 bits 
from the 1/0 bus address are used to address system memory. 

System 110 Structure 4-43 



Register fields are described below: 

• .Register o - Channel Status register 

Bits 

0-3 

4 

5-15 

16-23 

24-31 

Description 

Control and Status: For a description of these bits see "Buffered Bus 
Master" on page 4-37. 

OMA Slave Flag: For a description of this. bit see "Buffered Bus Master" 
on page 4-37. 

Reserved: These bits are reserved and must be set to a value of O. 

Authority Mask: For a description of these bits see "Buffered Bus Master " 
on page 4-37. 

Reserved: These bits are reserved and must be set to a value of 0. 

Bus Master Access Authority Checking 
Bus master operations are subject to access authority checking. As illustrated in Figure 48, 
accesses are verified by checking the TCW memory protect key against an authority mask 
associated with the requesting channel. 

TCW Table 1/0 Bus Address 

[ ~~ - -[ ~~.: -~4- :b[Jt;~r I ---- ______ j_ ________ r 
3 

Bus Memory 
Op 

t Sys Mem and Write Enable 
Read 

Channel Status Register 

Status O 1 
0 3 

..---t 8: 1 _______ _. 

8 

31 

Figure 48. Bus Master Access Authority Checking 

Access 
OK 

Bus master operations are protected on page boundaries. Each page in the bus memory 
address space has a 3-bit storage protect key associated with that page, which defines the 
protection class of the page. These keys are kept in the TCW table described in the 
"Translation, Protection and TCW Table" on page 4-34. An 8-bit mask in each channel 
specifies the key values (and by inference, pages) that this channel is authorized to access. 
For information on what action occurs on an authority error, see "Bus Master Error 
Conditions" on page 4-45. 

Authority mask information is considered part of the context and is loaded into the 
appropriate Channel Status register by the operating system. The Channel Status registers 
are protected system resources and are only accessible when the segment register 
privileged key is set to a value of O. Attempts to access these registers when the privileged 

4.44 General Information Manual 



key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation 
status to be set in Channel Status register 15. 

Bus Master Error Conditions 
Error conditions that arise in bus master operations include bus errors, programming errors, 
and hardware errors. On an error, an error code identifying the specific error cause is set 
into the Channel Status register (bits 0 to 3) corresponding to that channel, along with 1/0 
bus address bits A31 to A6 to identify the page in error. After the error code is set into the 
status field, the IOCC does not respond to bus requests for this channel, effectively disabling 
the channel. The Channel Status registers thus capture the channel status until the error 
code is reset by a Store instruction from the system supervisor. 

All errors cause the 'chck' signal to be pulsed. In addition, on TCW extent and address parity 
errors, the IOCC will not activate the 'sfdbkrtn' line. When a bus master device sees this 
error condition, it should suspend operations and post an interrupt. For additional information 
refer to "Exception Reporting and Handling" on page 4-80. 

After the error condition, if the bus master device tries to continue accesses with the channel 
effectively disabled (also, if the bus master tries to make an access and the channel was 
never enabled), the IOCC activates 'chck' and will not activate 'sfdbkrtn'. If the access is 
directed to the IOCC, the IOCC will not take or supply data, and continued read accesses by 
the device after the error results in the IOCC bus drivers being disabled which results in all 
ones on the 1/0 data bus. 

1/0 bus errors such as an address or data parity errors may be caused by hardware 
malfunctions or transient electrical noise. Refer to "Parity Error" on page 4-22 and "Channel 
Check" on page 4-22 for a description of these errors. Error codes are summarized as 
follows: 

Error Code 

0 1 0 1 

0 1 1 0 

0 1 11 

1000 

1 0 0 1 

1010 

1 0 11 

Description 

Authority Error: This error code is set if the storage key in the TCW does not 
match the authority mask in the Channel Status register or an attempt is 
made to write to a read-only page. 

Page Fault: This error code is set if an attempt is made to access a page 
with TCW bits 30 and 31 set to 8'01'. This can occur in normal operation. 
Devices attempting to take advantage of this function must present an 
interrupt after receiving a 'chck' signal on the 1/0 bus. 

TCW Extent: This error code is set if an attempt is made to access a bus 
address for which a TCW does not exist. 

1/0 Bus Protocol Error: This error code is set if a Micro Channel protocol 
error has been detected (for example, the channel is mapped to system 
memory, but the bus master pulls the 'M/10' line on the Micro Channel bus, 
indicating that it is doing an 1/0 operation). 

Data Parity: This error code is set if the IOCC detects bad parity when 
operating as a slave on the bus (when the transfer is from device to system 
memory). 

Address Parity: This error code is set if the IOCC detects bad parity on the 
address bus. This error is detected even when the IOCC is not involved in 
the transfer (that is, on a bus-to-bus transfer). This is a bus monitoring 
function of the IOCC. 

Card Selected Feedback Error: This error code is set if, after a device is 
addressed it does not respond by driving the 'cd sfbk' line. This is a bus 
monitoring function of the IOCC. 

System 1/0 Structure 4-45 



1100 

1101 

111 0 

1 1 1 1 

OMA Slave 

ECC Error: This error code is set if the IOCC received an uncorrectable 
ECC error response from the system bus during a bus master transfer 
request to sys~em memory. 

System AddrJss Error: This error code is set if the IOCC sends data over 
the system bus and does not receive an address acknowledgement. This 
can occur if the real page number in the address is bad. 

TCW Reload Error: This error code is set if the IOCC detects a parity or 
uncorrectable ECC error during a TCW access. 

IOCC Error: This error code is set if the IOCC detects an internal error 
(except those dealing with the Channel Status registers or Buffer Control 
registers) during any bus master channel operation. An error with the 
Channel Status or Buffer Control registers results in a check stop. 

OMA controller is the name given to a system-supplied resource that mediates data 
transfers between memory and OMA slaves. The IOCC contains a OMA controller for the 1/0 
bus. Three parties are involved in this type of OMA operation: the OMA slave, the memory, 
and the OMA controller. This type of OMA operation is often used for the following reasons: 

• Cost. 

A OMA controller must provide interfaces to both system addresses and data and is 
highly pin-intensive. The data flow is quite regular and lends itself well to implementation 
using RAM arrays. Thus, multiple-channel OMA controllers are relatively easy to 
implement. Since most systems require at least one OMA device, a common practice in 
low-end systems is to provide a multi-channel OMA controller as a shared resource and 
amortize its cost across multiple devices. 

• Protection. 

OMA controllers manage all address, control, and byte count functions associated with 
data transfer. As such, it is relatively easy for a system to protect its memory from the 
external environment by using OMA channels, and making channel setup a privileged 
operation. 

Using the OMA controller, data can be transferred between a device and bus memory, or 
between a device and system memory. Data transfers to or from system memory may or 
may not be buffered. The RISC System/6000 110 architecture supports both buffered and 
unbuffered OMA slave transfers. In the buffered mode, 1/0 data buffers are provided as a 
performance feature for transfers between 1/0 and system memory, and can also include 
caching of the current TCW table entry in a Buffer Control register. Data transfers to or from 
bus memory are never buffered. The following sections include descriptions of both the 
buffered and unbuffered OMA slave operations. The mode of operation is implementation 
specific (see "IOCC Configuration Register" section on page 4-71 and "Implementation 
Details" on page 4-80"). 

All memory is partitioned into 4K-byte pages, and the OMA controller is organized to handle 
physical transfers of this size. The architecture supports two modes of managing each 
4K-byte page of memory for OMA slave operations. One mode uses TCW's and the other 
uses tag elements to handle this management of memory pages. See "OMA Slave 
Operations Using Tag's" on page 4-47 and "OMA Slave Operations Using TCW's" on page 
4-52 for a description of these two modes. The choice of using TCW's or tag's for the 
management of the 4K-byte pages is implementation dependent (See "IOCC Configuration 
Register" section on page 4-71 and "Implementation Details" on page 4-80") 

4·46 General Information Manual 



Each DMA slave channel includes a pair of 32 bit registers used to contain the current 
memory address and control information corresponding to the current page being accessed. 
The IOCC implements up to 15 DMA channels. Each channel is associated with one of 16 
1/0 bus arbitration levels. One of these arbitration levels (level 15) must be allocated to the 
system processor for issuing Load and Store instructions to the 1/0 bus, reducing the 
maximum number of useable DMA channels to 15. For implementations using tags, the 
number of channels implemented must be 15. For implementations using TCW's, the 
number of useable DMA channels is implementation dependent (see "IOCC Configuration 
Register" section on page 4-71 and "Implementation Details" on page 4-80"). 

The DMA Slave Control registers are accessible by way of Load and Store instructions from 
the system processor, and are located in the IOCC address space. DMA Slave Control 
registers are a protected system resource and are only accessible when the segment 
register privileged key is set to 0. Attempts to access these registers when the privileged key 
is set to a value of 1 will cause a Data Storage interrupt to be posted and invalid operation 
error status to be set in Channel Status register 15. 

Each channel is personalized to operate with either a bus master or DMA slave. Bit 4 of the 
Channel Status register (DMA register 0) must be set to a value of 1 when controlling a DMA 
slave device, and set to O when controlling a bus master device. 

Note: Software should program uncorrected channels as bus master channels. 

The system supervisor must first load the DMA slave control registers prior to enabling a 
channel. Following setup, the channel is enabled using the DMA enable command 
described in the "Enable and Disable Commands" section on page 4-62. The IOCC is then 
ready to control DMA operations on behalf of a DMA slave device. 

The action taken when loading a Channel Status register for DMA slave operation where 
there are less channels than Channel Status registers, with a channel number greater than 
that indicated in the IOCC Configuration register is implementation-dependent. (See 
"Implementation Details" on page 4-80). Software supports assignment of DMA channels to 
arbitration levels on a first come first serve basis. If a channel is not available the resource 
request is rejected. Hardware does not check for the mapping of a DMA channel to more 
than one arbitration level at a time. This must be policed by the software. 

If the operation completes without error, the IOCC terminates the DMA slave operation and 
disables the channel. If an error occurs during the DMA slave operation, the IOCC sets a 
code identifying the error into the Channel Status register status field and terminates the 
OMA slave operation. No additional DMA slave requests or enable commands will be 
accepted by this channel until the error is cleared by way of a Store instruction. The OMA 
Slave Control registers are frozen, capturing details on channel status at the time of error. 
Refer to the "DMA Slave Error Conditions" on page 4-57 for details. 

To suspend or terminate a OMA operation prior to its normal ending point, it is recommended 
that a OMA disable command be used. This command provides a soft termination of a DMA 
operation without destroying the current state of the DMA slave control registers. Refer to " 
Enable and Disable Commands" section on page 4-62 for details on this command. 

DMA slave termination is accompanied by the IOCC pulsing the 'tc' signal. Devices are 
expected to post an interrupt when this occurs, notifying the system that the DMA operation 
is complete. The system supervisor can then inspect the DMA registers to determine if the 
operation completed normally. 

OMA Slave Operations Using Tags 
Tags provide support for byte-level scatter and gather OMA slave operations. A OMA slave 
transfer is described by the DMA Slave Control registers and a list of tag entries. The DMA 

System 1/0 Structure 4-47 



Slave Control registers describe the initial partial transfer and each of the tags describes 
another part of the transfer. 

OMA Slave Control registers O and 4 contain a copy of the tag except for the status field as 
described in "OMA Slave Error Conditions" on page 4-57 and "Enable and Disable 
Commands" on page 4-62. 

The tags are organized as a heap in a special memory space called a tag table. The tag 
table includes 4096 entries and requires 32K bytes of memory. During the course of a OMA 
slave operation, the IOCC will reload the OMA Slave Control registers from the tag table on 
a demand basis. The OMA Slave registers must be loaded directly using a Store instruction 
with the initial tag entry. 

To allow for management of large logical buffers, the OMA controller allows chaining of tags. 
Whenever a page boundary is crossed or the length count expires, the OMA controller 
automatically fetches the tag containing the mapping information for the next page and 
reloads the OMA Slave Control registers for that channel. Since each tag also includes 
length count information, this structure provides natural data chaining down to the byte level. 

Figure 49 illustrates OMA slave operations using tag elements. Data may be transferred 
between a device and system memory or between a device and bus memory. All data 
transfers to or from system memory have 64-byte granularity. In the buffered mode, the 
IOCC must provide a 64 byte data buffer for each channel, and this buffer must be managed 
by the software. The actual 1/0 bus OMA cycle operates only against these buffers. In the 
unbuffered mode, the IOCC must provide some sort of read-modify-write capability so that 
transfers from the device, which will be less than 64 bytes, can be matched to the system 
memory interface. Data transfers to or from bus memory are not buffered. 

OMA Slave Control 

l System 
Memory 

Memory Address ...a..I 
--.."] 

Ctrl J Next J Length ......... 

J• ~ 

i..+ Tag Table + 
_[ p l Data Buffers 

(in Buffered Mode) 
+ 

c-----1~-A~;.:~-•<--] • 
l 

1101oata 
l ___ L __ J ___ J ____ 

Figure 49. OMA Slave, Using Tag's 

4-48 General Information Manual 



The tag table is a protected system resource located in the IOCC address space between 
addresses X'-0 80 00 00' and X'-0 80 7F FF'. Figure 50 illustrates this address space. It is 
only accessible to Load and Store instructions from the system processor when the segment 
register privileged key is set to 0. Attempts to access this table when the privileged key is set 
to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error 
status to be set in Channel Status register 15. 

4 

0 

Processor Effective Address 
Seg 
Reg # 0 0 0 0 1 0 0 0 0 0 0 0 

0 34 78 5 

0 

Tag Table 

+ 

Direction (0 - Memory to 110) 
Enable Terminal Count 

......____ System Memory 

OMA Slave (Bit 4 = 1) 

Figure 50. Tag Table Addressing 

31 

Each 4K-byte page involved in a OMA slave transfer, except for the first, has at least one 
8-byte tag element in the tag table. The first tag is set up in the OMA Slave Control 
registers. These tags contain relevant information required for the OMA slave operation such 
as the memory address, length count, and direction. Tags may be chained together to 
control OMA across multiple memory pages, or to provide a data chaining function. Each tag 
represents the initial set of values to be loaded into the OMA Slave Control registers every 
time a page is crossed or the length count of the current transfer expires. Access to the tag 
table entries is word access only. The bit definition of a tag entry is defined as follows: 

• Word 4 of a tag contains a 32-bit real address to either the bus memory space or system 
memory space. 

• Word 0 of a tag contains control information relating to the current 4K-byte page and 
includes the following: 

System 1/0 Structure 4·49 



Bits 

0-3 

4 

5 

6 

7 

8-19 

20-31 

Description 

Reserved: This field is reserved and must be set to a value of 0. The 
hardware does not update the Channel Status register bits O to 3 with 
these bits. 

OMA Slave Flag: This bit is set to a value of 1 using an 1/0 Store 
instruction to personalize a OMA channel for a OMA slave operation. The 
IOCC never changes the value of this bit. The hardware does not update 
the Channel Status register bit 4 with this bit. 

System Memory Flag: This bit selects whether system memory or bus 
memory is to take part in a OMA slave transaction. This bit is set to a 
value of 1 for OMA slave transfers to system memory and set to a value 
of O for OMA slave transfers to bus memory. 

Enable Terminal Count Flag: This bit causes the IOCC to pulse the 'tc' 
signal whenever the length count expires. This signal terminates the 
OMA slave operation and causes the device to post an 1/0 interrupt. Note 
that this function is independent of OMA termination by the channel, and 
tag chaining may be continued. This can be used to advantage in 
assisting emulation of channel command chaining, or in emulating the 
auto-reload function available in the 8237 OMA controller. Note also that 
the IOCC always pulses 'tc' signal when the next tag field is X'FFF' and 
the length count expires, regardless of the setting of this bit. 

Direction Flag: This bit selects the direction (device to memory or 
memory to device) of a OMA slave transfer. This bit is set to a value of O 
to transfer data from memory to the 1/0 device and is set to a value of 1 
to transfer data from the 1/0 device to memory. 

Next Tag Field: This field contains a 12-bit index into the tag table. This 
index is a pointer to the next tag to be used when the length count 
expires. When this condition occurs, the OMA controller automatically 
fetches the tag containing the mapping information for the next piece of 
the transfer and reloads the OMA Slave Control registers for that 
channel. A next tag field of all 1 s indicates that this is the last tag in a 
chain. If this field is all 1 s and the length count expires, the IOCC 
disables the channel and does not accept any further OMA slave 
requests from the device. The last tag in the tag table has an address of 
all 1 s and therefore cannot be used. 

Length Count Field: This field contains a length count for the data 
transfer. This length count is a binary number one less than the number 
of bytes to be transferred and cannot be greater than the number of bytes 
left to the end of the page. 

Figure 51 on page 4-51 illustrates the register definitions when tag control elements are 
used to manage memory. Bits 28 and 29 (r) in the effective address indicate which word is 
being addressed. 

4-50 General Information Manual 



Processor Effective Address 

OMA Slave Control Registers 
r_ -_ - -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_-_-_-_-_-_-_-_- _- _- _- _- _- _- _- _-_-_-_-_-_-_---_ -_ -_ -_ -_ -_ - -

8 Bl } 
Register& 
in Buffered 
Mode Only 

4 

0 

0 

TTT~DMASlave 
0 0 0 0 Disabled 

Enabled 

l 
hc,cj 

0 
1 
1 

0 1 0 
0 
1 
1 

1 
0 
1 
0 
1 
0 
1 

Extra Req 
L Direction (0 - Memory to 1/0) 

Enable Terminal Count 
System Memory 

1 0 0 0 Channel Check 
Data Parity Error 

1 1 

0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 

110 Bus Protocol Error 
Card Selected Feedback Error 
ECC Error 
System Address Error 
Tag Reload Error 
IOCC Error 

Figure 51. OMA Slave Registers Using Tag's 

The register fields are as described in the following section. 

• Register O - Channel Status register 

There are 16 Channel Status registers (CSR) each having a one-to one correspondence 
to one of 16 arbitration levels. The bit assignments for this register are as follows: 

Bits Description 

0 - 3 Control and Status: This 4-bit field contains control information when bits 
O and 1 are B'OO'. When bits 2 and 3 are at B'OO', the channel associated 
with this arbitration level is in the disabled state. When bits 2 and 3 are at 
8'01 ', the channel is enabled. Bit 3 is set using the channel enable 
command and reset using the channel disable command. Code points 
8'10' and 8'11' for bits 2 and 3 are reserved. When bits O and 1 are not at 
B'OO', the contents of bits O and 3 represents error codes. See "OMA 

System 1/0 Structure 4-51 



4 

5 

6 

7 

8-19 

20-31 

Slave Error Conditions" on page 4-57 for a description of these error 
codes. 

DMA Slave Flag: This bit is defined the same as for the tag table word O 
defined on page 4-49. 

System Memory Flag: This bit is defined the same as for the tag table 
word O defined on page 4-49. 

Enable T/C Flag: This bit is defined the same as for the tag table word O 
defined on page 4-49. 

Direction Flag: This bit is defined the same as for the tag table word 0 
defined on page 4-49. 

Next Tag Field: This bit is defined the same as for the tag table word O 
defined on page 4-49. 

Length Count Field: This bit is defined the same as for the tag table word 
O defined on page 4-49. 

• Register 4 - Memory Address Register 

This register is defined the same as tag table word 4. 

• Register 8 -Buffer Control Register 

This register only exists for buffered implementations. The bits assignments are as 
follows: 

Bits Description 

O Buffer Dirty: This bit is used to indicate that the buffer associated with this 
channel is dirty, that is, has been written to and therefore contains data 
which is inconsistent with data in system memory. 

1 Buffered: This bit indicates that the buffer contains data that has been 
prefetched. It is set upon initial prefetching of the buffer and is reset at 
the time the buffer is flushed to system memory. Though hardware 
normally sets and resets this bit, software has both read and write 
access. When the operation completes and the device interrupts, the 
buffer must be flushed to system memory by software using the buffer 
flush command. 

2 Buffer Invalidate: This bit is used to indicate that the buffer has been 
invalidated. When this bit is set to a value of 1 it forces a prefetch from 
system memory to this buffer. The bit is reset to a value of O at the time 
the buffer is prefetched from system memory and set to a value of 1 
when the buffer is flushed to system memory. Though hardware normally 
sets and resets this bit, software has both read and write access. When 
the invalidate bit is set to a value of 1, it overrides the buffer dirty and the 
buffer prefetched bits. 

3-31 Reserved: These bits are reserved and must be set to a value of O. 

OMA Slave Operations Using TCW's 
TCWs provide support for page level scatter and gather OMA slave operations. The OMA 
Slave Control register is initialized with the first page TCW; the rest of the TCWs involved in 
the transfer are sequential. Figure 52 on page 4-53 illustrates OMA slave operations using 
TCWs. Notice that the memory address consists of a TCW number and an offset (unlike the 
tag which contains a real address to system memory). 

4-52 General Information Manual 



When TCW entries are used for OMA slave operations, bits 20 to 31 of the TCW entry are 
not used and software must set these to a value of 0. See "Translation, Protection and TCW 
Table" on page 4-34 for a description of the TCW table. 

OMA Slave Control Registers 

Ctrl Chnl # Length 

Memory Address 
TCW # Offset 

20 12 
12 

i-----• TCW Table 

20 
RPN 

[~~~-~~~~B~~~~~d~~~~~~~~j 
Figure 52. OMA Slave, Using TCW's 

System 
Memory 

Data Buffers 
(In Buffered Mode) 

1/0 Data 

Figure 53 on page 4-54 illustrates the register definitions when TCW's are used to control 
OMA slave operation. 

System 1/0 Structure 4-53 



OMA Slave Control Registers r.·.· ·.·.·.·_·_·_·_·_·_·:.·.·.·.·.·:.·_·:: :::::::::::::.·.·_·_·_·_·. 

Notes 
(During OMA Operation) 

Channel Status register 

Status 1 Ctrl Chnl # 
0 3 5 7 8 1112 

T 1 T ~OMA Slave 

0 0 0 
0 

0 
1 

Disabled 
Enabled 

1. Number of OMA Slave Control Regs 
Is dependent on the number of OMA 
channels implemented. 
2. Number of CSR's Is always 16 

Length Count 

1 
h-,cl 

Register 8 
In Buffered 
Mode Only 

1 
1 

0 1 0 
0 

0 
1 
0 
1 

Extra Req 

T L Direction (0 - Memory to 1/0) 

L_ System Memory 

1 0 

1 1 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

TCW Extent 
Channel Check 
Data Parity Error 
110 Bus Protocol Error 
Card Selected Feedback Error 
ECC Error 
System Address Error 
TCW or Tag Reload Error 
IOCC Error 

Figure 53. OMA Slave Registers, Using TCW's 

4-54 General Information Manual 



The register fields are described below. 

• Register O - Channel Status register 

There are 16 Channel Status registers (CSR) each having a one to one correspondence 
to one of 16 arbitration levels. The bit assignments for this register are as follows. 

Bits Description 

0-3 

4 

5-7 

8-11 

12-31 

Control and Status: This 4-bit field contains control information when bits 
O and 1 are B'OO'. When bits 2 and 3 are at B'OO', the channel associated 
with this arbitration level is in the disabled state. When bits 2 and 3 are at 
8'01 ',the channel is enabled. Bit 3 is set using the channel enable and 
reset using the disable command. Code points 8'1 O' and B'11' for bits 2 
and 3 are reserved. When bits O and 1 are not at B'OO', the contents of 
bits O and 3 represents error codes. See "OMA Slave Error Conditions" 
on page 4-57 for a description of these error codes. 

OMA Slave Flag: This bit is set to a value of 1 using an 1/0 Store 
instruction to personalize a OMA channel for OMA slave operation. The 
IOCC never changes the value of this bit. 

Control: The definition of these bits are the same whether the OMA slave 
operation uses TCWs or tags (except for TCWs, there is no T/C enable). 
These operations are described in "OMA Slave Operations Using Tags" 
on page 4-47. This field only exists for channel numbers (as specified in 
bits 8 to 11 of this register) less than or equal to the number of OMA 
slave channels implemented. 

Channel Number: This field' is used to assign a OMA channel to a specific 
Channel Status register. 

Length Count: This field is used to indicate the length of the OMA slave 
transfer (byte count minus 1 ). This field only exists for channel numbers 
(as specified in bits 8 to 11 of this register) less than or equal to the 
number of OMA slave channels implemented. A terminal count is 
generated by a device when this field goes negative, that is, when the 
most significant bit goes from a value of 0 to a value of 1. 

• Register 4 - Memory Address 

This register contains the memory address for the OMA slave operation. The number of 
registers available of this type is implementation dependent (See "IOCC Configuration 
Register" on page 4-71 and "Implementation Details" on page 4-80). However, the 
number available must equal the number of OMA channels implemented. These registers 
are dynamically associated to the arbitration level based on the channel number assigned 
in the Channel Status register (CSR). So.ftware must insure that a single channel number 
is never assigned to more than one CSR (arbitration l~vel). 

If the transfer is to or from bus memory (Channel Status register bit 5 equal to 0) this 
register is applied as a 32 bit address directly to the 1/0 address bus. If the transfer is to 
or from the system memory, this register is defined as follows: 

Bits Description 

0-19 TCW Number: The TCV'J number in the memory address provides an 
index into the TCW table where the RPN is obtained if the channel is 
mapped to system memory. 'JVhen mapped to system memory, the 
address used to addres~ system memory consists of the RPN fr9m the 
TCW concatenated with the offset. 

System 1/0 Structure 4-55 



20-31 Offset: These bits are the lower 12 bits of the memory address. 

The OMA address is incremented by the size of the transfer, and the length count is 
decremented by the same amount. Each time the TCW number is incremented in register 
4, the next sequential TCW entry (RPN) is obtained. Note that if software tries to access 
register 4 with a channel number greater than the number of channels supported (as 
indicated in the IOCC Configuration register), the results are implementation-dependent 
(see "Implementation Details" on page 4-80). Also note that only one OMA channel can 
be assigned per arbitration level. 

• Register 8 - Buffer Control Register 

This register only exists for buffered implementations. The bit assignments are described 
in "OMA Slave Operations Using Tags" on page 4-47. 

OMA Slave Bus Protocols 
Conventional bus protocols are used in OMA operations and are documented in "Basic 
Transfer Cycle" on page 4-18. 

1/0 devices request OMA service on a demand basis by arbitrating for the bus using the 
'preempt' line. This causes the 'grant' line to be deactivated, causing an arbitration cycle. 
When the 'grant' line is reactivated, the IOCC inspects the Control register associated with 
the bus requester to determine if any OMA service is required. If it is, the IOCC performs a 
OMA slave sequence on behalf of the requester. 

Typical requests are for one or two bytes. On occasion, multiple requests from different 
devices are received at the same time. When this occurs, service is sequential with the 
highest priority requester serviced first. 

When service is granted to a device, data is transferred between the device and memory. 
The sequence to be used depends on whether the memory is bus or system memory. The 
number of bytes transferred is generally equal to the data width of the device. The OMA 
address is incremented by the size of the transfer and the length count is decremented by 
the same amount. 

If the specified OMA address does not have the same boundary as the 1/0 device data 
width, the operation proceeds using a Partial Transfer Protocol as described in "Partial 
Transfer Cycles" on page 4-21. For example, a OMA transfer involving a 2-byte 1/0 device 
and a buffer starting on an odd address results in two 1- byte OMA sequences being 
performed. This retains the functional integrity of the operation, but requires additional time 
to complete the operation. As a result, it is suggested that buffers in system memory be 
located on address boundaries matching the physical width of the 110 device. 

OMA Slave Transfers to Bus Memory 
OMA slave transfers between a device and bus memory consist of two bus cycles: one to 
read the data from the source and one to write the data to the target. An input operation 
consists of an 1/0 device read cycle followed by a bus memory write cycle. An output 
operation is reversed. 

There is no buffering on transters to or from bus memory. 

OMA Slave Transfers to System Memory 
OMA slave transfers between a device and system memory have only one apparent bus 
cycle: an 1/0 device read or write cycle. These transfers are are described as follows: 

• Buffered. 

The memory operation is directed to the IOCC buffer and does not appear as a bus cycle. 
The buffer operation is overlapped with the 1/0 cycle, and a sequence of OMA cycles to 

4-56 General Information Manual 



system memory appears on the bus as a sequence of 1/0 read or write operations. As a 
result, the average instantaneous performance of OMA slave transfer to system memory 
may be much better than to bus memory. 

Whenever the address crosses an IOCC buffer boundary or the length count expires, the 
IOCC transfers the data between the buffer and system memory. This operation may 
increase the worst case bus latency (depending on the IOCC implementaion), decreasing 
effective OMA performance. 

No restriction is placed on having OMA addresses begin or end on IOCC buffer boundaries. 
The OMA controller performs read-modify-write sequences to system memory as required. 
As this potentially occurs only on the first and last buffers to be transferred, addressing has 
little effect on performance. 

When performing OMA slave transfers to system memory, and the first address does not 
start on a 64-byte boundary or the remaining count is less than 64, the OMA controller 
automatically performs either a buffer prefetch before storing the OMA data into the buffer or 
do some sort of read-modify-write before storing the data to system memory (depending on 
the implementation). If a buffer flush command is issued before the length count expires 
and the buffer cache contains less than 64-bytes ( the memory address is not 
B'xx .. xxOOOOOO'), the remainder of the buffer transfer to system memory may consist of 
zeros (implementation dependent). See "Buffer Flush Commands" on page 4-63 for 
additional details. 

• Unbuffered. 

OMA slave transfers between a device and system memory have only one apparent bus 
cycle: an 1/0 device read or write. The memory operation is directed to the IOCC, is 
overlapped with the 1/0 cycle, and therefore does not appear as a bus cycle. As a result, the 
average instantaneous performance of OMA slave transfers to system memory may be twice 
that of bus memory. 

Special Sequences 
Special mechanisms are provided to improve the relative data transfer efficiency of highly 
buffered devices. 

The Micro Channel supports preemptive burst operations to take advantage of low average 
1/0 bus loading. A device starts this mode by activating the 'burst' line prior to the end of the 
OMA slave cycle. No arbitration cycle occurs, and the OMA controller concatenates 
successive OMA sequences until the 'burst' line is deactivated. Micro Channel arbitration 
rules require preemptive burst devices to deactivate the 'burst' line request if any other 
device requires bus service. 

The OMA controller also supports a special transfer mode called streaming data transfer. 
This mode is a single-address, multiple-data protocol, and is described in "Streaming Data" 
on page 4-19. 

OMA Slave Error Conditions 
Error conditions that arise in OMA operations include bus errors, programming errors, and 
hardware errors. The specific cause of the error is coded and set into the status field (bits O 
to 3 ) in the Channel Status register. The 'tc' signal is then pulsed, which should cause the 
1/0 device to suspend OMA operations and post an interrupt. If it does not, but continues to 
request OMA service, the IOCC services the OMA requests with dummy cycles, pulsing the 
'tc' signal on every cycle. Error codes are summarized as follows: 

Error Codes Description 

0100 Extra Request: This error code is set if a OMA slave request is received by 
a OMA channel when the channel is disabled. Receipt of an unsolicited 

System 1/0 Structure 4-57 



0 111 

1000 

1001 

1010 

1 0 11 

1100 

1 101 

111 0 

1 1 1 1 

OMA request is an error unique to a OMA slave. This error is generally 
caused by 1/0 device malfunctions and the IOCC pulses the 'tc' signal in an 
attempt to shut off the OMA slave. This error can also occur with incorrect 
programming of the channel. 

TCW Extent Error: This error code is set if a OMA slave request is received 
and the OMA slave control register 4 contains a TCW number for which 
there does not exist a corresponding TCW. 

Channel Check: This error code is set if the device responds with a channel 
check indication during a OMA slave operation. 

As an example, a device might respond with a 'chck' signal for a Write 
operation to that device where there is bad parity on the data, or for other 
device-detected errors during an operation to that device. This error will not 
be reported if a card selected feedback error is reported (a card selected 
feedback error takes precedence over a channel check error). 

Data Parity: This error code is set if the IOCC detects bad parity on the data 
bus when the IOCC is reading data. (See "Exception Reporting and 
Handling" on page 4-80 for details.) 

1/0 Bus Protocol Error: This error code is set if a Micro Channel Protocol 
error has been detected (for example, a card pulls the 'cd ds 32' line on the 
Micro Channel but does not pull the 'cd ds 16' line at the same time). 

Card Selected Feedback Error: This error code is set if, after a device is 
addressed, it does not respond by driving the 'cd sfbk' line. Conditions that 
could cause this to occur are: if the device is not present; is not seated in 
the card slot properly; is not enabled or detects bad address parity and does 
not respond to that address. This error code takes precedence over a 
channel check error. 

ECC Error: This error code is set if the IOCC receives an uncorrectable 
ECC error response from the system 1/0 bus during a OMA slave request to 
system memory. 

System Address Error: This error code is set if the IOCC sends data over 
the system 1/0 bus and does not receive an address acknowledgement. 

TCW or Tag Reload Error: This error code is set if the IOCC detects a parity 
or uncorrectable ECC error during a TCW or Tag table access. 

IOCC Error: This error code is set if the IOCC detects an internal error 
during any OMA slave operation. If the IOCC error is on access to the OMA 
Slave registers; this error will not occur and the machine will check stop 
instead. 

4-58 General Information Manual 



IOCC Commands 
IOCC commands are used to change the state of the IOCC or control special bus actions. 
They take the form of Load and Store instructions to special (effective) addresses, where the 
addresses specify the actions to be taken. The Load or Store instruction can be either a 
string or non-string operation. Commands supported .bY the IOCC include: 

• Time delay 

• End of interrupt 

• Lock 

• Enable and disable 

• Buffer flush 

• Buffer invalidate. 

User applications can only issue the time delay command, and then only if they have 
Segment register authority to access the 110 bus. All the other commands are protected and 
must have the segment register privileged key set to a value of O (bit 1) and the IOCC select 
bit set to a value of 1 (bit 24). IOCC commands are not placed on the 1/0 bus. 

All IOCC commands are 4 byte operations except the time delay command,which can be 1, 
2, or 4 bytes. 

Time Delay Command 
A number of Micro Channel devices have strict rules regarding minimum periodicity of 
programmed 1/0 commands. Using program path lengths for timing is not a good 
programming practice, since program performance varies widely by processor type and 
(current) operating environment. To assist in programming devices with real-time 
dependencies, the IOCC supports a special time delay command that can guarantee 
separation of bus 1/0 commands. 

The time delay command is coded as a 1-, 2-, or 4-byte Load or Store instruction and is 
illustrated in Figure 54 on page 4-60. It is normally inserted between successive Load and 
Store instructions to devices with time sensitivities and enforces minimum time spacing 
between the 110 bus cycles. This command is similar to the time delay command in the RT 
system but allows additional time delay increments. The command provides delay 
increments ranging from 1 to B microseconds and is specified using the effective address 
and the logical (byte) length. If a Load instruction is used to call the time delay function, the 
data returned is indeterminate. If a Store instruction is used, the.data is ignored. 

System 1/0 Structure 4-59 



Effective Address For Time Dela Command 

Delay In Microseconds 
1 Byte 2 Byte 4 Byte T -- -- --
1 2 4 0 0 0 
2 2 4 0 0 1 
3 2 4 0 1 0 
4 2 4 0 1 1 
5 2 4 1 0 0 
6 2 4 1 0 1 
7 2 4 1 1 0 
8 2 4 1 1 1 

Figure 54. Time Delay Qommand 

The time delay command is issued by any user application having Segment register 
authority to access the 1/0 bus. Command execution is overlapped with succeeding 
processor instructions as long as they do not attempt to access any 1/0 space. If, however, 
another 110 Load or Store instruction is issued to the 1/0 space before the time delay has 
expired, that command is synchronously halted until the pending delay is completed. This 
command affects only programmed 1/0 and has no effect on DMA or other 1/0 operations 
run by hardware. 

The time delay command is issued with the I bit in the 110 Segment register equal to 1 or O. 
The time delay command cannot be included as part of a string operation. Implementation 
accuracy of the time delay command is to -0 and + 1 microseconds (for example, a 1 
microsecond delay is greater than or equal to 1 microsecond but less than 2 microseconds). 

4·60 General Information Manual 



End of Interrupt 
Following presentation of an 1/0 interrupt to the system External Interrupt Source (EIS) 
register, the IOCC automatically masks off that interrupt so the presentation is only made 
once. An end of interrupt command re-enables this mask, causing any active interrupts to 
be presented (or re-presented) to the system EIS register. On a Store instruction, the data is 
ignored. On a Load instruction, the data is indeterminate. This command, illustrated in 
Figure 55, should be issued following the interrupt service. 

Effective Address for the End of lnterru t Command 

Figure 55. End of Interrupt 

This command is privileged and is only accessible when the segment register privileged bit 
is set to a value of 0. Attempts to run this command when the segment register privileged bit 
is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error 
status to be set in Channel Status register 15. 

Lock Command 
Devices on the Micro Channel 1/0 bus have the ability to momentarily suspend arbitration to 
guarantee the atomicity of sequential bus cycles. This is required when implementing 
functions such as a test and set or an exchange (jump) sequence. These require a 
read-modify-write sequence to be performed under one arbitration envelope and are 
characteristically used to control access to shared control areas. 

The IOCC provides a lock prefix command for operating with devices dependent upon this 
use of shared variables. It causes the arbiter to suspend arbitration between two successive 
1/0 Load and Store instructions, and should be placed prior to the first 1/0 instruction. 
Arbitration is suspended on the first 1/0 command following receipt of a lock command, 
even if it is directed to IOCC facilities. Thus, access to IOCC facilities such as the TCW 
tables, can be made atomic. The processor cannot be interrupted between the lock 
command and the second 1/0 instruction, and interrupts must be masked off during the 
atomic sequence. 

Figure 56 illustrates command execution and the effective address format. It is permissible 
to insert test or logic instructions between the two 1/0 instructions. Although there are no 
restrictions on the number of instructions inserted, OMA and interrupt latency can be 
affected and it is recommended that reasonable caution be used. Any errors occurring 
during execution of the first 1/0 instruction cause the lock command to be canceled and 
arbitration re-enabled. 

System 110 Structure 4-61 



Instruction Stream 

: lock 

, Suspend Arbitration : 

Figure 56. Lock Command 

This command is privileged and is only accessible when the segment register privileged bit 
is set to a value of 0. Attempts to run this command when the segment register privileged bit 
is set to a value of 1 cause a Data Storage interrupt to be posted and invalid operation error 
status to be set in Channel Status register 15. 

This instruction must be a Store instruction. The results of a load instructions are 
implementation-dependent (see "Implementation Details" on page 4-80). On a Store 
instruction, the data is ignored. 

Note: Use of this command requires extreme care. Failure to use it appropriately can cause 
a bus timeout. Therefore, the period of time between the first bus operation and the 
second must be absolutely guaranteed to be less than 7.8 microseconds. To ensure 
this, all interrupts must be disabled during the entire lock sequence, the lock must not 
cause an exception other than a bus exception, and must be restartable. Also, the 
kernals non-maskable interrupt handlers, such as machine check and system reset, 
must be programmed to abort the lock sequence and restart the entire lock sequence 
upon returning. 

Enable and Disable Commands 
The enable and disable commands allow system initiation and suspension of OMA slave 
and bus master operations for devices attached to the Micro Channel. Each command is 
directed to a specific channel as specified by the channel field in the effective address. The 
command formats are illustrated in Figure 57. Bits 12 to 15 of the effective address specify 
the channel to be started or stopped. 

Effective Address for the Enable load and Disable Store Commands 
Seg 

0Reg' goo~ g 1 o o ~~nl fs ?so o o o o o2g 341 1 1 o o o3~ 

Figure 57. Enable and Disable Commands (Load equals enable and Store equals disable). 

The enable command initializes a channel to accept requests by changing the channel 
status in the Channel Status register from the disabled (B'OOXO') state to the enabled 
(B'OOX1 ') state. This command is coded as a Load instruction and returns the original 
contents of the selected Channel Status register to the target processor register. The 
channel status field must initially be B'OOXO' for this command to update the channel status 
to the enabled state. This command always returns a status consisting of the full contents of 

4-62 General Information Manual 



the associated Channel Status register. The status field is the only field changed by this 
command. 

The disable command disables operation for a particular channel by changing the channel 
status from the enabled state (B'OOX1 ') to the disabled (B'OOXO') state and is coded as a 
Store instruction (data is ignored). It does not disrupt any other data in the channel registers, 
allowing restart of the operation if the device is designed accordingly. The channel status 
field must initially be B'OOX1' for this command to be run. If it is not B'OOX1 ', a no operation 
(NOP) instruction occurs when this command is issued. 

The X in the preceding paragraph does not indicate a do not care, but indicates that the 
enable and disable commands do not change the current state of the status bit 2 (mapped 
or not-mapped). 

A request from a OMA slave when the channel is disabled is considered to be an error and 
sets an extra request error code in the Channel Status register associated with that device. 
The 'tc' signal is pulsed in an attempt to shut off the device. 

If a bus master makes a request to a disabled bus master channel, the IOCC will not 
activate the 'sfdbkrtn' signal and synchronously activates the 'chck' signal, but does not 
update the error status. 

Notice that an enable or disable command to channel X'F' results in an NOP. Channel X'F' 
is dedicated to the default master and remains enabled at all times. 

These commands are protected system functions and are only issued when the segment 
register privileged key is set to a value of o. Attempts to issue these commands when the 
privileged key is set to a value of 1 will cause a Data Storage interrupt to be posted and 
invalid operation error status to be set in Channel Status register 15. 

Buffer Flush Commands 
The buffer flush commands are provided for implementations which support IOCC buffers. 
These commands will result in a NOP (data ignored on a Store instruction, indeterminate on 
a Load instruction) if the buffers are not supported. For more information see 
"Implementation Details" on page 4-80. 

If the buffers are supported, the IOCC buffers must be flushed to system memory at the end 
of a transfer. The buffer flush commands provide the flush and invalidate functions. 

The buffer flush commands are protected system functions and may only be issued when 
the segment register privileged key is set to a value of 0. Attempts to issue these commands 
when the privileged key is set to a value of 1 causes a Data Storage interrupt (OSI) to be 
posted and invalid operation error status to pe set in Channel Status register 15. 

Bus Master Buffer Flush Command 
IOCC buffers for bus master transfers are managed similar to the CPU cache, and a flush 
operation is performed by the address. To improve performance, the buffer flush command 
is defined so the buffer flush can be performed simultaneously with normal TCW 
maintenance. The command utilizes a bit in the effective address to optionally flush the 
buffer while accessing a TCW table entry. Figure 58 illustrates the effective address format. 
The buffer associated with the TCW is conditionally transferred to system memory if the 
buffer data has been changed (Only flushed if dirty and valid). The IOCC remains busy until 
the buffer transfer is completed and does not accept any new commands. Independent of 
whether the transfer takes place or not, the buffer is invalidated by setting Buffer Control 
register 8 to 0 including the D and B bits, the TCW number and the offset, and the invalidate 
bit (I) equal 1 . This causes any subsequent accesses to this buffer to have to reaccess the 
TCWs and system memory. If on, the dirty bit is turned off, so any subsequent flush 
commands will not cause a buffer transfer. 

System 1/0 Structure 4-63 



Effective Address for the Bus Master Auffer Flush Command 
Seg 
Reg # R C Ctrl 1 1 FW Bus Master 

O 3 4 7 8 10 31 Buffer Flush 

Mask 

11T1 Replace 
Flush 

Figure 58. Bus Master Buffer Flush 

Bit 30 of the effective address causes any buffers associated with this memory page to be 
flushed, while bit 31 causes the 4-bit mask value to replace the reference, change, and 
control bits in the TCW. The following list shows what happens for the various combinations 
of the Flush and Replace bits: 

• Flush equals 0, Replace equals 0. 

This is just a Load or Store instruction to the TCW table. 

• Flush equals O, Replace equals 1. 

On a Load instruction. return the old value of the TCW. On a Store instruction, data is 
ignored. The TCW is updated based on the R, C, and CTL bits in the mask field. 

• Flush equals 1, Replace equals O. 

On a Load instruction. return the old value of the TCW. If operating in buffered mode, flush 
the buffer, update the Buffer Control registers, and on a Store instruction, ignore the data. In 
unbuffered mode, the Store instruction is a NOP. 

• Flush equals 1 , Replace equals 1 . 

On a Load instruction. return the old value of the TCW. On a Store instruction, data is 
ignored. If operating in buffered mode, flush the buffer, update the Buffer Control registers. 
The TCW is updated based on the R, C, and CTL bits in the mask field. 

OMA Slave Buffer Flush Command 
The IOCC buffer for the OMA slave is managed as simple buffers, and the flush operation is 
performed by channel number. The OMA Slave buffer flush command is illustrated in 
Figure 59 and is issued by way of an 1/0 Store instruction. Bits 12 to 15 of the effective 
address specifies the buffer that the command is directed to. 

Figure 59. OMA Slave Buffer Flush 

OMA Slave 
Buffer Flush 

The OMA Slave buffer flush command conditionally causes the buffer associated with the 
specified OMA channel to be transferred to system memory if the buffer data has been 
changed, that is, the dirty bit is on. The IOCC remains busy until the buffer transfer is 
completed and does not accept any new commands. Following the data transfer, the dirty 
and buffered bits are reset and the invalidate bit (I) is set. 

On a Store instruction, the data is ignored. A Load instruction causes a OSI. In the 
unbuffered mode, a Store instruction is a NOP and a Load instruction returns indeterminate 
data. 

4·64 General Information Manual 



Buffer Invalidate Command 
Figure 60 illustrates the effective address format for this command. 

Effective Address for Invalidate Command 
Seg 
Reg# O O O O O 1 O O Buf # O O O O O O O O O 1 1 O 1 O O O 

0 3 4 7 8 15 16 3 24 1 

Figure 60. Buffer Invalidate Command 

The buffer invalidate command assists in the management of DMA slave and bus master 
operations.This command forces the hardware to reload the buffer on the next OMA slave 
operation or bus master operation. On bus master operations, the Buffer Control register 4 is 
also reloaded. A Load instruction returns the state of the bits. On a Store instruction, the 
data must be X'20000000'. 

If operating in the unbuffered mode, this Store instruction is a NOP, and a Load instruction 
returns zeroes. 

This command is privileged and is only accessible when the segment register privileged bit 
is set to a value of 0. Attempts to use this command when the segment register privileged bit 
is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error 
status to be set in Channel Status register 15. 

1/0 Interrupts 
The IOCC supports 11 bus 1/0 interrupts, 3 native 1/0 interrupts, 1 miscellaneous interrupt, 
and 1 reserved interrupt level. The miscellaneous interrupts are collected together and are 
presented as one logical level. This results in a total of 16 IOCC interrupt levels. 

The architecture supports both a direct and a coded mapping of the 1/0 interrupt requests 
(IRQ's) to the EIS register. The specific approach supported is implementation dependent 
(See "Implementation Details" on page 4-80). When the direct mapping approach is 
supported, the mapping is a direct one for one map ( Interrupt level O maps directly to EIS 
Bit 0, level 1 maps directly to EIS Bit 1 and so on). 

The following information describes the coded mapping approach in detail including a 
description of an Interrupt Vector table used in the mapping. 

When the coded mapping is supported, the 16 interrupt levels are coded and are mappable 
to any EIS bit between O and 63. Figure 61 illustrates the interrupt mechanism. 

System 1/0 Structure 4·65 



Interrupt Enable Register 80 
.l_ .l_ _l J_ J_ _l _l _l 

Misc Kbd Ser Bus Interrupt - Bus Interrupt Par Bus Int 84 Interrupt 
A/B 3_._4_1_5.1_6_1_ 7 8 

0 7 8 

9 J_ 10_1_ 11_l_12 14_l 15 Request 
Register 

~ 
15 

....--E-n .... co_d_l_n_g_A_n_d_M_a_p_p_ln_g _ _, / 

I O O I Interrupt Vector 180 

8 15 

Figure 61. Interrupt Mechanism 

Interrupts are presented to the system with a special sequence, setting a bit in the system 
EIS register corresponding to the vector code presented. Refer to the "Processor 
Architecture" section of IBM RISC System/6000 POWERstation and POWERserver 
Hardware Technical Reference - General Information Manual for additional details. 

The presentation cycle begins when an interrupt occurs. If the interrupt is enabled, its 
corresponding bit in the interrupt request field is set to a value of 1. An IOCC sequence then 
codes the interrupt, looks up a vector value, and presents that value to the system as an 
interrupt. If multiple interrupts occur simultaneously, the hardware resolves which interrupt is 
presented first. Following the presentation of each interrupt, a special hardware mask bit is 
reset to ensure that each interrupt is presented only once. 

When the system responds to the interrupt, the current processor state is saved, and a 
device-specific interrupt handler is invoked. As part of that service, the interrupt source is 
reset. When the device service is complete, an end of Interrupt command is issued, which 
sets the special hardware mask, reenabling the presentation of interrupts on this level. If 
another interrupt is pending at this level, the EIS register in the system is set again. 

Interrupt registers are illustrated in Figure 62 on page 4-67. These registers are a protected 
system resource located in the IOCC address space between addresses X'-0 40 00 80' and 
X'-0 40 00 9F', and are only accessible to Load and Store instructions from the system 
processor when the segment register privileged key is set to a value of O. Attempts to 
access this address space when the privileged key is set to 1 results in a Data Storage 

4-66 General Information Manual 



interrupt to be posted and invalid operation error status to be set in Channel Status register 
15. 

Processor Effective Address 

=::# 0000 01000000 0000 0000100rrr00 

0 34 78 15 16 23 24 

Control Registers 

Interrupt Enables 

Reserved 

0 34 78 15 16 23 24 

Vector Table 

Miscellaneous Keyboard Ser Port A/B 

0 

IRQ8 
Reserved 

IRQ12 

34 

IRQ9 

Parallel Port 

78 15 16 

Figure 62. Interrupt Registers 

IRQ 10 

IRQ14 

• Register BO - Interrupt Enable Register 

23 24 

IRQ3 

IRQ11 

IRQ15 

31 

80 

84 

88 

31 

90 

94 

98 

9C 

31 

This register provides the ability to enable or disable any of the primary 16 interrupt 
requests. Bits 16 to 31 are reserved and should be set to a value of O on a Store instruction. 
On a Load instruction, bits 16 to 31 are indeterminate. No dynamic management of this 
register is necessary during interrupt service. It is provided primarily to allow disabling of 
inactive, potentially noisy interrupts. 

System 1/0 Structure 4-67 



• Register 84 - Interrupt Request Register 

This register provides access to the device interrupt sources and can be read using an 1/0 
Load instruction. Bits 16 to 31 are reserved and on a Load instruction are indeterminate. 
A Store instruction to this address is a NOP. A detailed description of each bit follows: 

Bits Description 

O Miscellaneous Interrupt: miscellaneous interrupts are not directly 
vectored to the EIS register. The RISC System/6000 unit provides one 
EIS register with 64 interrupts, of which the IOCC is allocated 16 levels. 
To fit within this maximum, the IOCC presents miscellaneous interrupts 
as a class interrupt, consuming one logical level. This appears in bit O 
(vector lookup 0), and is an OR of all the bits in register 88. If this 
interrupt is posted, the system is required to read IOCC register 88 to 
determine the cause of the interrupt. Bit O is set to a value of 1 when any 
miscellaneous interrupt occurs and bit O in the Enable register is set to a 
value of 1. This bit is a summary OR of register 88 and cannot be written. 
During an 1/0 Store instruction to this register, bit O is ignored. This bit is 
reset when register 88 is reset. 

1 Keyboard Interrupt: This bit is set to a value of 1 when a keyboard 
interrupt occurs and bit 1 in the Enable register is set to a value of 1. This 
interrupt is level-sensitive and must be reset within the device prior to an 
interrupt return. 

2 Serial Port Interrupts: This bit is set to a value of 1 when a board serial 
port A or serial port B interrupt occurs (Shared Interrupt) and bit 2 in the 
Enable register is set to a value of 1. This interrupt is level-sensitive and 
must be reset within the device prior to an interrupt return. 

3-7,9-12,14-15 
1/0 Bus Interrupts: These bits are set to a value of 1 when 1/0 bus 
interrupts occur and their corresponding bits in the Enable register are 
set to a value of 1. These bits reflect the current signal level of each of 
the Micro Channel interrupt lines and are not latched. It is not necessary 
to reset these bits as part of interrupt service. 

8 Reserved: This bit is reserved and must be set to a value of O. 

13 Parallel Port Interrupt: This bit is set to a value of 1 when a Standard 1/0 
parallel port interrupt occurs and bit 13 in the Enable register is set to a 
value of 1. This interrupt is level-sensitive and must be reset within the 
device prior to an interrupt return. 

16-31 Reserved: These bits are reserved and must be set to a value of 0. 

4·68 General Information Manual 



• Register 88 - Miscellaneous Interrupts Register 

The first two bits of this register contain IOCC errors not reported in the Channel Status 
registers. These errors are caused by asynchronous events or are associated with 
situations where no device interrupt is posted. As such, the IOCC reports these errors by 
way of its own interrupt. 

The third bit of this register provides an interrupt for the Standard 1/0 keyboard 
Ctrl-Alt-Anything sequence and is called a Keyboard External Interrupt. 

The summary OR of this register is presented as bit 0 of register 80. 

This register is both read and written using 1/0 Load and Store instructions. Store 
instructions function only as a masked reset. Writing a value of O to a bit position resets 
that bit, while writing a value of 1 does nothing. A detailed description of each bit follows: 

Bit Description 

0 Channel Check: This bit is set if the 1/0 bus 'chck' line is active during a 
Micro Channel operation (PIO or DMA slave) at the beginning of a cycle 
(after 'arb/gnt' signal falls and before the first time the 'cmd' signal falls). 
There should be no devices that asynchronously report errors by 
activating the 'chck' signal. However, if this occurs, the channel check 
posts an asynchronous IOCC error interrupt. Normally, in the RISC 
System/6000 unit, the 'chck' signal is presented as a synchronous 
exception and a Data Storage interrupt is posted instead. Refer to 
"Exception Reporting and Handling" on page 4-80 and "Channel Check" 
on page 4-22 for more information. 

1 Bus Timeout: This bit is set if an 1/0 bus timeout occurred. See "Bus 
Timeout" on page 4-22 for additional details. While this bit is active, the 
'arb/gnt' signal is forced high, bus arbitration is suspended, and control of 
the 1/0 bus is unconditionally given to the IOCC. 

2 Keyboard External: This bit is set when the Ctrl-Alt-Anything sequence 
is pressed at the Standard 1/0 keyboard and is called a Keyboard 
External Interrupt. It is presented to the system as an external interrupt. 
Software is then able to determine which key caused the interrupt and 
takes the appropriate action. This bit is implementation dependent (See 
"Implementation Details" on page 4-80). 

3-31 Reserved: These bits are reserved and must be set to a value of 0. 

• Register 90 to 9F - Vector Table 

This set of registers contains the interrupt vectors to be presented to the system EIS 
register. One vector is provided for each bit in register 84. The operating system loads 
this table with a set of 6-bit values corresponding to the interrupt priority desired. 

Note: The vector table is implementation-specific (See "Implementation Details" on 
page 4-80). Implementations that support a single 1/0 bus can fix the conversion 
of interrupt level to the EIS bit. This fixed conversion will be the identify transform 
(that is, interrupt 0 to EIS bit 0, interrupt 5 to EIS bit 5, and so on.) When the 
vector table is not supported, a Load or Store instruction to the vector table 
addresses results in a Data Storage interrupt (invalid operation). 

System 1/0 Structure 4-69 



Special Facilities 
Figure 63 illustrates the register organization within the IOCC. (For implementation details, 
see "Implementation Details" on page 4-80.) 

Address 
From To r--------------------------------, 

I 

0 40 00 00 0 4F 00 00 ,...._B_o_a-rd-ld-e1-n-tif-ic_a_ti_o_n_,__D_e_v-ic_e_Dl_e_p_e-nd_e_n_t...., ' Board 
~ Config 

O 40 00 04 O 4F 00 04 __ D_e_v-ic_e_~._e_p_e_n-de_n_t __ S_u_b ___ A_d._fd-re_s_s-in_g_ ~ Registers 

0 40 00 10 

0 40 00 20 

0 40 00 24 

0 40 00 2C 

0 40 00 40 

0 40 00 60 0 4F 00 60 

0 40 00 64 0 4F 00 64 

0 40 00 68 0 4F 00 68 

0 40 00 80 

0 40 00 84 

0 40 00 88 

0 40 00 90 

0 40 00 94 

0 40 00 98 

O 40 00 9C 

Figure 63. IOCC Registers 

4· 70 General Information Manual 

.--------------------. IOCC 
Configuration Data Config 

,__ ___ ,__ ___ I,__ ___ .__ __ ___. Register 

Resjrved I Bus Status! ~~~us 
Register .-------------------.I TCW/Tag 

(Implementation Dependent) Anchor 

---------------------- Address 

l 

I-

I-

Slot I I Component 
Reserved . N. Reset 

Register 

Low Limit 
I 

High Limit Load/Store 
I Limit 

Channel Status Register 
l l l 

Reservef - (lmplemintation Delendent) 

Reservef- (Implementation Dependent) 
l l 

Interrupt Enables 
l 

Interrupt Requests Reserved 
l 

Misc Interrupts 
l 

(Implementation Dependent) 

l l l 

~ 

~ 

!--" 

-

-
-

Channel 
Control 
Registers 

Interrupt 
Control 
Registers 

Interrupt 
Vector 
Table 



Board Configuration Data 
The Micro Channel defines a slot select mechanism for accessing board-unique 
configuration data (byte-only access). Eight bytes of addressing is provided per board, 
which includes a unique 2-byte board identification and up to 4 bytes of programmable 
parameters. This mechanism is called setup, and is used at startup time to determine the 
boards in the system and to set configuration parameters on each board. Support is 
provided for up to 16 boards. 

The Board Configuration registers are illustrated in Figure 64. They are a protected system 
resource located in the IOCC address space. These registers are only accessible to Load 
and Store instructions from the system processor when the segment register privileged key 
is set to a value of 0. Attempts to access these registers when the privileged key is set to a 
value of 1 causes a Data Storage Interrupt and an invalid operation status to be set in 
Channel Status register 15. 

Processor Effective Address 

Seg 0 0 O O O 1 O 0 Slot O O 0 O O O 0 X O O O O O r r r 
Reg# 

0 34 78 15 16 23 24 31 

Data 

Board Identification 
LS Byte (XO) MS Byte 

Dev Unique O 

4 

0 34 78 15 16 23 24 31 

Figure 64. Board Configuration Registers 

Refer to the/BM RISC System/6000 POWERstation and POWE.Rserver Hardware Technical 
Reference - Micro Channel Architecture manual for a description of the setup mechanism. 
Even though the architecture specifies that only address bits O to 2 are to be used in the 
address decode operation, some boards are developed with a dependency on setup 
addresses being between X'01 00' and X'01 07'. To accommodate these boards, bit 23 is 
allowed to be a value of either a 1 or O. The small r in bit positions 29 to 31 are variables 
designating the byte being addressed within the 2-word field. 

Board configuration data is unique to each specific board. Refer to each board specification 
for details. 

Note that the software should do a byte reversal on 2-byte entities that are targeted for the 
Board Configuration registers used during setup cycles; for example, the most significant 
byte of the board ldenUflcallon sho.uld be placed In the register as shown ~ure 64. ] 

IOCC Configuration Register LQ. >< c..l 0 00 \ 0 _ 
The IOCC design allows for certain variations of function and performance that optimize its 
usage across multiple machine environments. The specific personalization is established 
with the contents of the IOCC Configuration register. For the contents of this register for 
specific implementations, see "Implementation Details" on page 4-80. 

This register is a protected system resource located in the IOCC address space at address 
X'-0 40 00 10'. It is only accessible to Load and Store instructions from the system 
processor when the segment register privileged key is set to a value of O. Attempts to 

System 1/0 Structure 4· 71 



access this register when the privileged key is set to a value of 1 result in a Data Storage 
Interrupt and an invalid operation error status set in Channel Status register 15. 

This register is set up by hardware and ROM code and is treated as a read-only register by 
the operating software with the exception of the master enable bit. 

Figure 65 illustrates the organization of the configuration register. Bit 0 in this register is 
initialized to a value of O at startup. 

Processor Effective Address 

SReg 0000010000000000000000010000 
eg# 

0 34 78 15 16 23 24 31 

Configuration Data 

E_ Bur Dis Ref - RAM _ Arb - S- TB c #of 
N Ctr Size Time Chnl's j_ _l _l J_ _l _l J_ _l_ 

0 34 78 15 16 23 24 31 

Figure 65. IOCC Configuration Register 

The various fields in the Configuration register are described as follows: 

Bits 

0 

1 

2-3 

Description 

Master Enable: This bit functions as a master enable control for channel and 
interrupt operations only. It is intended to disable channel operations until 
the system has initialized the Channel Control registers, tag table, and TCW 
table, but also could be used following startup to assist recovery from 
catastrophic errors. Normally, this bit is set to a value of 1 following initial 
program load (IPL) and is never changed thereafter. 

Reserved: This bit is reserved and must be set to a value of 0. 

Burst Control: Programmable burst control is an optional implementation. A 
Load instruction to these bits indicates the state implemented or currently 
assigned (see also "Implementation Details" on page 4-80). If not supported, 
a Store instruction to these bits is a NOP. These bits control the maximum 
time that the IOCC continues to utilize the 1/0 bus by way of the Load and 
Store instructions under bursting protocol following a bus request from 
another device. This set of controls is provided as a protective measure to 
retain reasonable interrupt response time in the presence of an 1/0 bus hog. 
The Micro Channel architecture places few restrictions on device bursting, 
and it is possible for a device to be designed with long (non-preemptive) 
burst sequences, even if operating in the fairness mode. The device then 
receives a disproportionate number of bus cycles if the IOCC does not also 
utilize non-preemptive burst sequences to increase the blocking factor. It is 
the responsibility of the IOCC to ensure that the 7.8-microsecond bus 
timeout constraint is adhered to. 

4-72 General Information Manual 



2 3 

IT]] 1 
0 
1 

Complete Current Cycle 
1.6 microsecond 
3.2 microsecond 
6.4 microsecond 

Figure 66. Bit 2 and 3 Burst Control Setting 

4-5 

6-7 

The IOCC normally uses a Preemptive Burst protocol when executing Load 
and Store instructions. Under normal bus loading, this provides high 
statistical data rates while also providing the lowest latency to OMA slave 
and bus master devices. 

Disable Control: These two bits are implementation dependent (see 
"Implementation Details" on page 4-80). 

Refresh Control: These bits allow specification of bus refresh periodicity and 
the number of (burst) refresh cycles taken. This provides for a certain 
amount of flexibility to handle new memory technologies with different 
refresh rate requirements. The refresh control setting is defined as follows 
(rates are maximum times allowed): 

6 7 Rate #Cycles 

0 0 Off -
0 1 60 microsecond 4 
1 0 30 microsecond 4 
1 1 15 microsecond 4 

Figure 67. Refresh Control Setting 

8 Reserved: This bit is reserved and must be set to a value of 0. 

9-11 RAM Size Specification: These bits allow specification of the amount of 
control RAM to be packaged with the IOCC. Different applications require 
different amounts of TCW table, and the IOCC design allows this size to be 
varied. This provides the flexibility to optimize cost and function across a 
wide range of system applications. These bits should be personalized to 
match the size of the RAM provided with the IOCC. The following table 
shows the net sizes of the TCW table and Tag table resulting for each size 
provided: 

Bit 
910 11 RAM Size TCWTable Tag Table 

0 0 0 128K-byte 96K-byte 32K-byte 

0 0 1 256K-byte 224K-byte 32K-byte 

0 1 0 512K-byte 480K-byte 32K-byte 

0 1 1 1M-byte 992K-byte 32K-byte 

1 0 0 2M-byte 2016K-byte 32K-byte 

1 0 1 4M-byte 4064K-byte 32K-byte 

Note: Tags used for OMA slave operation (Bit 25 equals 0). 

Figure 68. RAM Size Specification for Combination TCW and Tag Table 

System 1/0 Structure 4-73 



Bit RAM Size 
91011 TCWTable 

0 0 0 32K-byte 

0 0 1 64K-byte 

0 1 0 128K-byte 

0 1 1 256K-byte 

1 0 0 512K-byte 

1 0 1 1M-byte 

1 1 0 2M-byte 

1 1 1 4M-byte 

Note: TCWs used for both OMA slave and bus master operation (Bit 25 
equals 1). 

Figure 69. RAM Size Specification for TCW Table 

12 

13-15 

The Tag table has 32K bytes, and the remainder is allocated to the TCW 
table. If both the OMA slave and the bus master operations are handled 
using TCWs, all of the RAM is available for the TCW table. Due to the 
mapping of bus 1/0 and bus memory into one address space, there is no 
bus memory allowed between OK and 64K-bytes, and the first 16 TCW 
entries are never accessed. 

Reserved: This bit Is reserved and must be set to a value of O. 

Arbitration Time: These bits allow specification of the arbitration time on the 
Micro Channel 1/0 bus. Different systems applications have different bus 
configurations and loading, and require different arbitration values. These 
values can be varied from the architected minimum to a value greater than 
that provided by the RT system bus application. Each arbitration value in the 
table represents a range, for example, 100 nanoseconds equals 100 to 200 
nanoseconds. 

Bits Arbitration Time 
13-15 (nanoseconds) 

0 0 0 100 

0 0 1 200 

0 1 0 300 

0 1 1 400 

1 0 0 500 

1 0 1 600 

1 1 0 700 

1 1 1 800 

Figure 70. Arbitration Time Configurations 

16-22 Reserved: These bits are reserved and should be a value of O. 

4· 7 4 General Information Manual 



23 

24 

25 

26-27 

TCW and Tag Tables in System Memory: A value of 1 in this bit indicates 
that the TCW and tag tables are in system memory. The register for 
anchoring the address of a system memory based TCW and tag table is at 
X'0400024'. 

All pages in system memory provided for TCW and tag tables are 
continuous in real memory and permanently pinned. The TCW and tag 
tables are only accessed through the IOCC space and are not mapped into 
the PFT. Any error while accessing this memory results in a TCW or tag 
access error. This area is not scrubbed. 

A value of 0 in this bit indicates that non-system memory is used for the 
TCW and tag tables. 

Reserved: This bit is reserved and must be set to a value of O. 

OMA Slave TCW and Tag Bit: This bit indicates whether the OMA supports 
the use of tags or TCWs for OMA slave operations. A value of O indicates 
tags are supported. 

Cache Buffer Support and Cache Coherency: These bits have the following 
meanings: 

26 27 

[U] Buffered Mode, Software Enforced Consistency 
Unbuffered Mode 
Reserved 
Reserved 

Figure 71. Cache Mode Bits 

In the buffered mode, the IOCC buffers exist, and PIOs to system memory 
are allowed. In the unbuffered mode, there are no IOCC buffers and PIOs to 
system memory are not allowed. 

28-31 Number of OMA Slave Channels: These bits indicate the number of OMA 
slave channels (that is, the number of OMA Slave Control registers) that are 
supported. Both B'OOOO' and B'1111' indicate that 15 channels are 
supported. Also, B'0001 ', B'0010', B'0011' indicate that one, two, and three 
channels are supported, respectively. The number of channels supported is 
implementation-specific However, the number of arbitration levels 
supported is not implementation-dependent, and must be equal to 16. (See 
"Implementation Details" on page 4-80). If the implementation supports 
tag's, then all 15 OMA slave channels must be supported. The minimum 
required by the Micro Channel architecture is 2. The minimum required by 
the RISC System/6000 architecture is the number of slots plus the number 
required by the Standard 1/0 devices. If buffers are supported, the number 
of buffers must equal the number of channels supported. 

Bus Status Register 
The Bus Status register (BSA) is a diagnostic facility that aids in 1/0 error isolation. It is 
comprised of one R/W register and provides the ability to set and sample signals on the 1/0 
bus. 

The BSA is a protected system resource located in the IOCC address space at address X'-0 
40 00 20'. It is only accessible to Load and Store instructions from the system processor 
when the segment register privileged key is set to a value of O. Attempts to access these 
registers when the privileged key is set to a value of 1 causes a Data Storage Interrupt and 

System 1/0 Structure 4-75 



an invalid operation error status to be set in Channel Status register 15. Figure 72 illustrates 
the Bus Status register . 

Processor Effective Address 

SReg 0000 010000000000000000100000 
eg# 

0 34 

BSA Data 

I , 
·o 

78 15 16 

Reserved 

II I II I 

Figure 72. Bus Status Register 

23 24 31 

31 

Burst 
Cd Chrdy 
SOR (0) 
SOR (1) 

The 'arb' bus lines, 'burst' signal, 'cd chrdy' signal, and 'sdr (O)' and 'sdr (1 )' signals are 
latched in the BSR latches when a bus timeout error occurs. The 'arb' bus bit 0 is the least 
significant and bit 3 is the most significant bit. If a bus timeout error occurs during an 1/0 
cycle, further bus errors will not be trapped until the error interrupt is cleared out of the 
Miscellaneous Interrupt register. As such, the BSR contains a copy of the sampled 1/0 bus 
signal lines at the time of the first error. No provision is made for saving bus states for 
successive errors. 

Results of a Store instruction are implementation-dependent (see "Implementation Details" 
on page 4-80). On a Load instruction, the data returned is the contents of the register as 
described, if an error has occurred (bit 1 of the Miscellaneous Interrupt register is on); the 
contents of bits O to 23 are indeterminate. 

TCWrrag Anchor Address Register 
This register specifies the starting address of the TCW/tag table when that table is in system 
memory (as indicated by bit 23 of the IOCC Configuration register). This register is 
undefined when bit 23 of the IOCC Configuration register is a O, and a Store instruction to 
this register when bit 23 is a O will cause a Data Storage Interrupt, and an invalid operation 
status to be set in Channel Status register 15. 

The TCW/Tag Anchor Address register is a protected system resource located in the IOCC 
address space at address X'-0 40 00 24'. It is only accessible to Load and Store instructions 
from the system processor when the Segment register privileged key is set to a value of 0. 
Attempts to access these registers when the privileged key is set to a value of 1 causes a 
data storage interrupt and invalid operation status to be set in Channel Status register 15. 
Figure 73 on page 4-77 illustrates the TCW/Tag Anchor Address register. 

4-76 General Information Manual 



Processor Effective Address 

Seg 0000 01000000 0000 000000100100 
Reg# 

0 34 78 15 16 23 24 31 

Anchor Address Register Data 

I Start of TCW/Tag's in System Memory 
. I I I I I I I I I I I I I I I I I I I I I I I I I I 

0 7 8 15 16 23 24 31 

Figure 73. TCW/Tag Anchor Address Register 

Software must guarantee that the table starting address is on a boundary which is equal to 
the size of the table. For example, for a 128K-byte table must start on a 128K- byte 
boundary. 

Component Reset Register 
The Component Reset register (CRR) is comprised of one register and provides the ability to 
individually drive the resets to each 1/0 slot. Writing a value of O into a bit position resets that 
slot, and writing a value of 1 removes the reset. All Standard 1/0 adapters are reset by one 
'reset' signal controlled by bit position 31 in the CRR. 

The CRR is a protected system resource located in the IOCC address space at the address 
X'-0 40 00 2C'. It is accessible to Load and Store instructions from the system processor 
when the segment register privileged key is set to a value of o. Attempts to store into this 
register when the privileged key is set to a value of 1 causes a Data Storage Interrupt and 
an invalid operation error status to be set in Channel Status register 15. 

Figure 74 shows the Component Reset register. The actual number of slots supported is 
implementation dependent (See "Implementation Details" on page 4-80) and is consistent 
with the IOCC configuration definition. On a Load instruction to this register, the value of bits 
16 to 30 and the unused bits in the slots field are implementation dependent. 

Processor Effective Address 

Seg 0000010000000000000000101100 
Reg# 

0 34 78 15 16 23 24 31 

Component Reset Register Data _r-+ Standard 110 

l~o-1_1 __ 1_1 __ 1_1_5_1~-7-~--1-1 __ 1_1 __ 1_1_5~1 -,-------~-e-1s_j_r~-e-,d------~1N~I 

0 3 4 7 8 15 16 23 24 31 

Figure 74. Component Reset Register 

The CRR is initialized to a value of O at startup. This sets and holds a bus reset to all the 1/0 
boards until explicitly enabled by a startup diagnostic utility. 

After a reset operation occurs, the software removes the reset by writing a value of 1 to the 
board slots. To ensure proper timing relationships, the software must make sure the reset is 
held a minimum of 100 milliseconds before removing the reset. 

System 1/0 Structure 4-77 



Software can determine if a slot exists and contains a board by removing the reset to the slot 
and reading the board identification. A board identification of X'FFFF' means that no slot 
exists, or that the slot is empty. 

On a bus timeout error, hardware sets the implemented CAR bits to a value of 0. 

System 1/0 and Standard 1/0 
Two classes of devices are described in this se~tion, the System 110 and Standard 1/0. 

System 1/0 is defined as facilities in the 1/0 space intrinsic to the system but not normally 
considered 1/0 devices. Included in this category are NVRAM, clock and calendar, operator 
panel, system registers, and on card sequencers (OCS). System 1/0, though in the 1/0 
space, is isolated from the 1/0 bus by way of an internal bus and is a protected resource. 

Standard 1/0 devices in the RISC System/6000 unit are defined as those 1/0 devices 
intrinsic to a basic workstation, and as such, are included as part of the base machine. Not 
being optional features, these devices do not necessarily occupy feature slots. The list of 
items which fall into this category is implementation specific (see "Implementation Details" 
on page 4-80). 

System 1/0 
System 1/0 is located in the IOCC control space, is privileged, and is only accessible when 
the segment register privileged bit is set to a value of 0. Attempts to access this address 
space when the privileged bit is set to a value of 1 causes a Data Storage Interrupt to be 
posted and an invalid operation error status to be set in Channel Status register 15. The 
remainder of this section contains information describing System 1/0. 

System Registers 
System Registers are located in the IOCC control space between the addresses X'O 40 00 
CO' and X'O 40 00 FC' defining a contiguous space of 64 bytes. These registers are 
implementation-dependent (See "Implementation Details" on page 4-80). 

Nonvolatile RAM 
The Nonvolatile Random Access Memory (NVRAM) is located in the IOCC control space 
between X'O AO 00 00' and X'O BF FF FF' and occupies 2 M-bytes of address space. The 
amount of NVRAM in the system is implementation-specific (see "Implementation Details" 
on page 4-80). 

Standard 1/0 
The Micro Channel provides for a 16-bit bus 1/0 address. To access a device within this 
address space, effective address bits 4 to 15 and segment register bits 28 to 31 must all be 
a value of 0. 1/0 addresses between X'OO 00' and X'OO FF' are reserved for the Standard 
1/0. Figure 75 on page 4-79 illustrates the Standard 1/0 addressing. 

Accesses to the 1/0 bus are checked for proper access authority by way of an address range 
check, restricting user programs to access only authorized devices. However, since the 
IOCC cannot intercept or stop accesses to bus attached memory or bus 1/0 devices by a 
bus master on the 1/0 bus, no access checking is performed when a bus master addresses 
these devices. 

Actual Standard 1/0 address assignment are implementation dependent (see 
"Implementation Details" on page 4-80). 

4-78 General Information Manual 



Processor Effective Address T = 1, I = x, M = x, B = x 

~:~# 0000 00000000 Address 

0 3 4 78 15 16 23 24 31 

Figure 75. Standard 1/0 Addressing 

110 Bus Address 

110 Device Address Address 
> 255 ,__.._._ .................. _._.a....+_._ .................. _._ ...... -t 

00000000 Device Addr Standard 
110 

15 87 0 

System 1/0 Structure 4· 79 



Exception Reporting and Handling 
The IBM RISC System/6000 POWERstation and POWERserver Hardware Technical 
Reference - Micro Channel Architecture manual contains a section entitled "Exception 
Condition Reporting and Handling" that defines the data and address parity on the Micro 
Channel. 

The following are general guidelines that were followed in designing the RISC System/6000 
units and adapters, and should be followed in designing new adapter boards for the RISC 
System/6000 machines: 

• Full parity support is recommended for all address and data buses for all RISC 
System/6000 adapter boards, internal boards, and internal devices (such as Standard 1/0 
devices, NVRAM, and System registers). Full address and data parity support is defined 
as traversing the complete paths of the address and data busses (generate parity at the 
signal source and check parity at each destination point where the address and data will 
be used). 

• Internal RISC System/6000 boards (Standard 1/0 and 110 Boards) provide both address 
and data parity support to each of their devices. 

• Adapter boards to be supported for RISC System/6000 units should provide both address 
and data parity support at the board connector and on all internal data and address 
buses. 

- 8- and 16-bit devices should provide the 32 bit board connector to gain access to all 
the required parity signals. 

- 8- and 16-bit devices, should also implement a notch in the board tab so they can be 
installed in a 16-bit board slot. 

Note: Suitable pull-up resisters should be utilized as appropriate. 

• Adapters that do not use the 32-bit board connector (8- and 16-bit data), should support 
data parity as a minimum. The objective is to include the 32-bit connector described 
previously to allow address parity, also, if possible. 

• Devices and boards should meet the signal timing specifications described in the 
"Exception Condition Reporting and Handling" section of the IBM RISC System/6000 
POWERstation and POWERserver Hardware Technical Reference - Micro Channel 
Architecture. 

Implementation Details 
This section provides specific implementation details for all RISC System/6000 units. 

IOCC Configuration Register 
Some of the bits in the IOCC Configuration register indicate support or non-support of 
various implementation dependent features. The following is a summary of the definition of 
the RISC System/6000 IOCC Configuration register implementation. In the case of read only 
memory (ROM) code initialized bits, the value that the ROM must initialize these bits to is 
shown. 

4-80 General Information Manual 



Bits 

2-3 

4-5 

6-7 

9-11 

13-15 

23 

25 

26-27 

28-31 

System Registers 

Description 

Burst Control: RISC System/6000 units support the use of the 
programmable burst control as indicated in bits 2 and 3 of the IOCC 
Configuration register. These bits are set to B'11' by the ROM code. 

Reserved: These bits are reserved and must be set to B'01 '. 

Refresh Control: These bits are set to B'01' (60 microsecond refresh) by the 
ROM code. 

RAM Size Specification: These bits are set to B'010' by the ROM code. 

Arbitration Time: These bits are set to B'011' (400 nanoseconds) by the 
ROM code. 

TCW/Tag Tables in System Memory: RISC System/6000 units support the 
use of non-system memory for TCW and tag tables as indicated by a O in 
this bit. 

OMA Slave TCW/Tag: RISC System/6000 units support the use of tags for 
OMA slave operations as indicated by a O in this bit.. 

Buffer Support/Coherency: RISC System/6000 units support the use of 
buffers for bus master and OMA slave operations that are managed by 
software, as indicated by a B'OO' in these bits. This also indicates that RISC 
System/6000 units support PIO operations to system memory. 

Number of OMA Slave Channels: RISC System/6000 units support the use 
of 15 channels for OMA slave operations as indicated by B'OOOO' in these 
bits. 

Figure 76 on page 4-82 shows the register assignments within this area. 

Software polls the Power Status and Keylock Decode register (address X'O 40 00 E4') to 
determine if any bit within that register changes state, and then tests to determine the bit that 
caused the state change in order to take the proper action. Bits 28 to 31 in this register are 
the cover keylock switch position decode bits and are used by ROM and software to 
determine proper IPL procedures based on the switch position (The keyboard lock in the 
RISC System/6000 units is a software function). 

System 1/0 Structure 4-81 



Address Data 

0 40 00 co 

O 40 00 C4 

0 40 00 cs 

0 40 00 cc 

0 40 00 DO 

0 40 00 04 

0 40 00 D8 

0 40 00 DC 

0 40 00 EO 

0 40 00 E4 

0 40 00 ES 

0 40 00 EC 

0 40 00 FO 

0 40 00 F4 

0 40 00 F8 

0 40 00 FC 

Time of Day Clock and Alarm 
l l l 

Tre of Day c
1
1ock and Al.rm 

Time of Day Clock and Alarm 
l l l 

Time of Day Clock and Alarm 
J l l 

T~le of Day ~ock and Al.rm 

Time of Day Clock and Alarm 
J J l 

Time of Day Clock and Alarm 
l l l 

Time of Day Clock and Al_rm 
J J 

System Reset Count 
I l l 

Power Status and Keylock Decode 
I J I 
low er ContJol and Resj_t 

Diagnostic Control 
_l l l 

Reserved 
J J l 

l 
Res_rved 

l 
Reserved 

l l J 
1/0 Board Part No and EC Level 

l l l 
Figure 76. System Registers 

Nonvolatile RAM 

System 
Registers 

For the RISC System/6000 units, only 32K bytes of nonvolatile random access memory 
(NVRAM) is presently planned and is located in the lower 32K-byte area of this space. 
Figure 77 on page 4-83 illustrates the address assignments for the NVRAM area. 

4-82 General Information Manual 



Address Data 

0 AO 00 00 (4 Bytes) Reserved 

0 AO 00 04 (4 Bytes) NVRAM Size 

0 AO 00 08 (4 Bytes) Date and Time NVRAM Initialized 

0 AO 00 OC (4 Bytes) Reserved 

0 AO 00 10 (4 Bytes) SCSI Initiator Address Slot 1-16 

0 AO 0014 (4 Bytes) Reserved 

0 AO 00 18 (4 Bytes) Reserved 

O AO 001C (4 Bytes) Reserved 

0 AO 00 20 (224 Bytes) 
Memory Control And Error Registers 

Ma_p_ped From BUID 0 Address 1000-10DO 
0 AO 01 00 (256 Bytes) Memory Error Summary Data 

0 AO 02 00 (36 Bytes) Previous IPL Device Descriptor 

0 AO 02 FC (4 Bytes) Software CRC Value For AO 00 00 - AO 02 FB 

0 AO 03 00 (4 Bytes) LEDs (Mirrored) 

O AO 03 04 (4 Bytes) LEDs (Mirrored) 

0 AO 03 08 (4 Bytes) Check Stop Count 

O AO 03 OC (4 Bytes) PTR To OCS Logout Area Lt 00 AO 44 00 

0 AO 0310 (4 Bytes) OCS Code EC Level 

0 AO 0314 (4 Bytes) Seeds ROM, EC Level 

0 AO 0318 (4 Bytes) Manufacturing Control Word 

0 AO 03 1C (4 Bytes) Pointer To Manufacturing Data Area 

0 AO 03 20 (64 Bytes) OCS LED String Output Area 

O AO 03 60 (4 Bytes) Pointer to OCS Code Exec. Area 

0 AO 03 64 (4 Bytes} Pointer to OCS Work Area 

0 AO 03 68 (20 Bytes) Machine Check Error Save 

0 AO 03 7C (4 Bytes) OCS and RS Command Interface 

0 AO 03 80 (128 Bytes) Reserved for OCS Buffer to RS Proc. 

0 AO 04 00 (16K Bytes) OCS Work and Code Area 

0 AO 44 00 (15,360 Bytes) Software Data Area 

Figure 77. NVRAM Addressing 

. ..., 

I-

I-

} 
} 

Protected Software 
or ROM Access 
Only 

Hardware 
Prevents OCS 
Write To This 
Area 

Shared Access 
OCS, Software, 
ROM 

OCS Area 

Software Area 

System 1/0 Structure 4-83 



Standard 1/0 
Figure 78 is a Standard 1/0 address map indicating the address assignments for each 
Standard 1/0 device. 

Hex Address Range Standard 1/0 Device 

0000-002F Reserved 

0030-0037 Serial Port 1 

0038- 003F Serial Port 2 

0040-0041 Serial OMA Registers 

0042-0047 Reserved 

0048-004F Mouse 

0050- 0059 Keyboard/Tablet/Sound 

005A-0061 Reserved 

0062-0067 Diskette 

0068-0077 Reserved 

0078-007A Parallel Port 

007B-OODF Reserved 

OOEO-OOE7 Time Delay Command 

OOE8-00FF Reserved 

Figure 78. Standard 1/0 Address Map 

Bus Master Transfers 
Bus master operations follow the buffered mode of operation (see "Buffered Bus Master" on 
page 4-37). 

Component Reset Register 
The RISC System/6000 units support eight slots plus the Standard 1/0. Bits 0-7 of this 
register represents the eight slots and bit 31 is for the Standard 1/0. On a Load instruction, 
the value of bits 8 to 30 will be indeterminate. 

Notes on Error Detection 
IOCC and 1/0 bus protocol errors are not logged in the Channel Status register. 

TCW errors are parity errors, not ECC errors. 

Bus Timeout 
The time period is the time between refresh cycles (which is programmable through bits 6 
and 7 of the IOCC Configuration register; see "IOCC Configuration Register" on page 4-80) 
plus the amount of time the device was on the bus prior to the first refresh cycle. For 
example, for a 15 microsecond refresh, the time range would be 15 to 30 microseconds, and 
for a 60 microsecond refresh, the time range would be 60 to 120 microseconds. 

110 Interrupts 
The RISC System/6000 units support the coded method of handling 1/0 interrupts as 
described in the architecture including the use of the interrupt vector tables. 

4-84 General Information Manual 



Lock Command 
On a Load instruction, a Data Storage Interrupt will result. 

Power-On Reset 
A power-on reset, system reset, or check stop condition resets the master enable bit in the 
Configuration register. When this bit is a value of 0, the following is accomplished: 

• The Component Reset register is reset 

• A reset condition is forced to all 1/0 slots 

• The 'preempt' signal is de-gated, disabling channel arbitration 

• Interrupt presentation is inhibited to the system. 

This register bit can be set or reset by a Store instruction to the IOCC Configuration register. 
Figure 79 illustrates the system implementation. 

IOCC Micro 
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .. Channel Bus 

'Bus 
: Time 
: Out 

System , 
Reset ___,,..._ ...... 

CHK ___ _ 

Stop 

OR 

Figure 79. System Reset 

IPL Procedures 

R10.0 

Reg 

.... R 

0 

WRTData ++ 

CRR 

Reg 

.... R 

0 

1/0 Slots 

Figure 80 on page 4-87 illustrates the power-on state of the IOCC registers. Indeterminate 
power-on states are indicated with an x, and undefined states are indicated with a -. 
Attempts to read an IOCC register with an x before it has been initialized can result in a 
parity error, and the IOCC error interrupt mask should be disabled. The Channel Control 
registers and the interrupt vector table must be initialized with the Store instruction to 
establish good parity in these registers. 

The TCW table, tag table, and IOCC memory also turn on in an indeterminate state. 
Attempts to read these address spaces before they have been initialized can result in parity 
errors, and the IOCC error interrupt mask should be disabled until after these spaces are 
initialized. These facilities must be initialized with a sequence of Store instructions to 
establish good parity. 

System 1/0 Structure 4-85 



Hardware provides a means for ROM to set the buffers and registers in the appropriate 
invalid state at power-on. Following a power-on condition, the following procedure must be 
followed to initialize the IOCC: 

1 . Initialize the IOCC Configuration register. 

2. Reset the Interrupt Control registers. 

3. Initialize Channel Control registers, register 8 bit 2(1) is a value of 1, all other bits are a 
value of 0. Register O and 4 should be reset to a value of 0. 

4. Reset the Load and Store Limit registers. 

5. lnitializ~ the interrupt vector table:\ 
', 

6. Initialize th~ TCW table. 

7. Initialize the tag table. 

Except for the master enable bit being reset, the IOCC does not lose any state information 
following a check stop reset. Thus, it is not necessary to reinitialize the IOCC following a 
check stop condition. 

4-86 General Information Manual 



Address 
From To r··------··---------------------- .. 

I 

0 40 00 00 0 4F 00 00 ,....._B_o_a-rd_l_d-in_t_lf-lc-at-lo_n_1_oe_v_lc-e-~-e-pe-nd_e_n_t...., ~ ~~~~~ 

0 40 00 04 0 4F 00 04 l Device ~ependent l ' Registers 

0400010 j Oxxx xxxx 1 xxxx xxxx I 
0400020 

040002C !oooo ooool 

-
I 

I 0000 ooooj 

1°1 

IOCC 
Conflg 
Register 

Bus 
Status 
Register 

Component 
Reset 
Register 

0400040 I I Load and xxxx xxxx I xxxx xxxx I xxxx xxxx I xxxx xxxx Store Limit 

r··--··-------------------·--·--·~ 
0 40 00 60 0 4F 00 60 xxxx xxxx1 xxxx xxxx1xxxx xxxx1 xxxx xxxx .. : Channel 

.- "' Control 
O 40 oo 64 o 4F oo 64 xxxx xxxx 1 xxxx xxxx 1 xxxx xxxx l xxxx xxxx ., i Registers 

O 40 00 68 O 4F 00 68 xxxx xxxx l xxxx xxxx l xxxx xxxx l xxxx xxxx I-

0400080 

0400084 

0400088 

xxxx xxxx l xxxx xxxx 
.. 

xxxx xxxx l xxxx xxxx - .. 
xxxx xxxx l xxxx xxxx 

xxxx xxxx1 xxxx xxxx1 xxxx xxxx1 xxxx xxxx 

xxxx xxxx 1 xxxx xxxx 1 xxxx xxxx1 xxxx xxxx 

XXXX XXXX XXXX XXXX XXXX XXXX I XXXX XXXX 
j_ l J_ 

0400090 

0400094 

0 40 00 98 

040009C xxxx xxxx1 xxxx xxxx l xxxx xxxx1 xxxx xxxx 

Figure 80. IOCC Power-On States 

Interrupt 
Control 
Registers 

Interrupt 
Vector 
Table 

System 1/0 Structure 4·87 



Architectural Deviations 
The following are implementation specific deviations from the 110 architecture. 

• On a Load or Store error with the Bypass bit off, the error address bits A31 to A6 are not 
put into Channel Status register 15. However, since this error causes a Data Storage 
interrupt, the processor chip set saves the address of the failing instruction in the Machine 
Status Save and Restore Register O (SOR 0), and that address can be used to determine 
where the failure occurred. 

• On a Load or Store, an Invalid Operation error is not logged into Channel Status register 
15 if the instruction was preceded by a Load or Store to a Channel Status register. 
Software must prevent this by following any access to a Channel Status register with a 
non-110 Instruction (the supervisory code is the only code which accesses the Channel 
Status registers). 

• The bus address is not put into the Channel Status register if a system address error is 
preceded by a TCW reload. This can only be caused by a supervisory level software 
problem. 

• The time delay command Is Implemented with time delays of 1, 2, 3, 4, 5, and 6 
microseconds; delays of 7 or 8 microseconds should not be used. 

• For bus master operation, the 'chck' signal Is not activated on succeeding cycles following 
a data parity error. Bus masters should terminate on first occurrence of 'chck' signal. 

• Bus Master buffer flush command through a Load Instruction Is not supported; a Store 
instruction should be used. 

• Streaming data is not supported for IOCC initiated Load or Store, and OMA Slave 
operations. · 

4·88 General Information Manual 



Chapter 5. Vital Product Data 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Importance . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Customer and Service Personnel Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
VPD Structural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 
System Data Set . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 

Keyword Descriptor Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 
Descriptor Keywords • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 

Hardware VPD Descriptor Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 o 
Rack Record . . . . . . . . • . . . . . • . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . . . . . 5-1 o 

Implementation Notes . . . . . . . . . . . . . . . . . . . .. . . . . . . . • . . . . . . . . . • . . . 5-1 O 
Enclosure Record . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . 5-1 o 

Implementation Notes . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . • . . . 5-1 o 
Processor Board Record . . . . . . . . . . . • . . . . . . • . . . • . . . . . . . . . . . . . . . . . . . 5-11 

Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 5-11 
VO Board Records . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . . . 5-11 

Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
Memory Records . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 

Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
Extra 1/0 Board Record • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
Direct Access Storage Device (DASO) Records . . . . . . . . . . . . . . . . . . . . . . . . 5-12 

Device Required Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
Optional Descriptors . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 

Micro Channel Adapter Requirements . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
Preferred Implementation - POS Configuration Registers . . . . . . . . . . . . . . . . . 5-14 
System Configuration Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 
Extended Storage F aclllty . . . . • . . . . . . . . ..•...... · . • . . . . . . . . . . . . . . . . . . 5-16 

Sample Layout of the Micro Channel Adapter VPD . . . . . . • . . . . . . . . . . . . . . . . . 5-17 

Vital Product Data 5·1 



5·2 General Information Manual 



Description 
Vital product data (VPD) uniquely defines each hardware, software, and microcode element 
of a system. Configuration data identifies the physical and logical location of each hardware 
element of a system including addressing information. The combination of configuration and 
VPD provides the system with a bill of material description that typically includes the 
assembly part number, Engineering Change (EC) level, serial number, and other detailed 
information. The objective from a system point of view is to determine this information by 
reading this data directly from the hardware, software, and microcode components. 

Certain information such as machine type, model and external serial number, for example, 
deskside system numbers, are not in machine-readable form. This information is provided in 
Nonvolatile Random Access Memory (NVRAM) during manufacturing. Access to 
configuration and VPD information is provided by the AIX Operating System with the System 
Management Interface Tools. This interface allows the user to add VPD (such as a serial 
number) as well as other user-information such as owner, physical location, and information 
applicable to inventory or asset control. 

Importance 
The collection of configuration and VPD offers the following advantages: 

1. Assists the operating system in auto-configuring the system and its components. 

2. Assists diagnostics in problem determination and fault isolation: 

a. Error logging includes VPD information so that a historical entry is associated with a 
serialized unit (such as an adapter). 

b. Identifying the physical and logical location of failing units for replacement. 

3. Assists the operating system in determining the proper device driver and loadable 
microcode level. 

4. Assists the user in maintaining asset and inventory control. 

5. Provides a means of licensing software on a processor ID or serial number basis. 

Characteristics 
Configuration and VPD have the following characteristics: 

• Vital product data is available at the rack, drawer, and field replaceable unit (FRU) level. 

• For compatibility verification and testing, pluggable FRUs or potentially pluggable FRUs 
are required to be known to the system. 

• Uniquely identifies each system hardware, software, and microcode element. 

• Becomes part of the VPD record during installation or upgrade. 

• When elements do not support VPD in directly readable form, it may be entered manually. 
Data entered manually is flagged by the operating system software. 

• Accessed locally or from a remote console by way of a configuration and VPD facility 
provided by software. 

Customer and Service Personnel Assistance 
When field upgrades are made to a RISC System/6000 system, for example, adding a 
DASO drawer to a rack system, the user or service personnel is required to enter information 
regarding its physical location and properties using the System Management Interface Tools. 

Vital Product Data 5·3 



VPD Structural Overview 
A system-level file or data set contains the fully expanded information on all vital product 
data elements for each enclosure component. The tree structure so formed begins with a 
rack or an enclosure level and goes on to identify all system components logically 
connected. 

Rack 

Enclosure 

Processor 
Board 

Memory 
Boards 

110 Board 

Figure 81. Configuration Tree 

5-4 General Information Manual 

Slot 1 
SCSI 

Slot 3 
Display Ad t 
Slot4 
Token Ring 

Slot 5 
8 Port 232 

Slot& 

Slot7 

Slota 

Standard 1/0 
Board 

FD1 
L-- FD2 

L-- FD3 
Graphics 
Display 

Network 

T1 
T2 
T3 

Keyboard 
Mouse 
Diskette 
EIA-232 Serial Port 
Parallel Port 



System Data Set 
The format of the data representing the configuration tree described p(eviously is defined by 
software. The preferred hardware implementation of vital product data is in the form of 
keyword descriptors. The VPD is gathered by a software device driver that interfaces with 
the hardware. If the vital product data is stored in a format other than the preferred method, 
the individual device driver must convert that data into the keyword descriptor format and 
store that data in a format required by the system configuration and management software 
method. 

Keyword Descriptor Summary 
Each keyword header is composed of four bytes of information. The first character is the 
*(asterisk) character in ASCII. The next two characters are an abbreviated mnemonic 
associated with a specific descriptor. The last byte is binary and represents the total length 
of the keyword descriptor including its header. The length is the total byte count divided by 
two. Hence, descriptor data is always an even number of bytes with left-justified padding, as 
required. 

The descriptors listed are a combination of all descriptor keywords used throughout the 
system. Certain specific types of adapters require pointer values based on the method of 
implementing VPD. 

Descriptor Keywords 
If a descriptor is manually entered, it must be extended to its full size by the configuration 
and VPD utility. In addition, the characters ME (for manual entry) are inserted in the 
high-order positions, adding two characters to its length. 

The following list identifies the descriptor keywords currently defined: 

• *AD L = addressing field 

The addressing field format is unique to each component described. It specifies sufficient 
addressing information to program the adapter. The format of the addressing field is 
specified by software. This descriptor is not present within the machine-readable VPD 
field contained within an adapter or channel. It is added by software to the configuration 
and the VPD file or the NVRAM area for VPD. 

• *AT L = adapter type 

To support different system field-replacement strategies, this keyword defines a category 
of Micro Channel adapters. Used in conjunction with the part number (defined by the *PN 
Land *EC L keywords), this keyword defines a FRU. Its use is not currently planned for 
the RISC System/6000 system. 

• *CD L =board ID (adapter board ID) 

The board ID field is supplied by software after reading the board ID from POS O and 
POS 1 registers. (POS stands for Programmable Option Select, which replaces switches 
on feature boards. It is defined under the section "Micro Channel Adapter Requirements" 
on page 5-13.) This descriptor only applies to Micro Channel adapters. This descriptor is 
not present within the machine-readable VPD field contained within an adapter or 
channel. It is added by software to the configuration and VPD file or the NVRAM area for 
VPD. 

Following the two bytes of the board ID is a field generated and used by software, which 
contains mask bytes and POS data used to initialize the adapter. It also contains a flag 

Vital Product Data 5·5 



byte to indicate whether this adapter was successfully configured. The detailed 
specification of this field is defined by the software operating system. 

• *DC L = date code 

The data is in ASCII character format. 

• *DD L = device driver level (minimum required) 

The data portion of this descriptor is in ASCII. It represents the minimum device driver 
level required. The first release is level 00. Levels are incremented by one for each 
successive level independently of operating system version and of modification level. This 
field is required for all adapters. The minimum value for L is 3, which is two bytes or two 
ASCII character numbers of descriptor data plus the header. 

The device driver level represents a generic interface level to software. If the interface 
changes between software and hardware such that a new interface is required by 
hardware, the value of this level is incremented. This level is independent of the operating 
system being used. 

If this keyword is not explicitly specified, level 00 is implied. 

• *DG L = diagnostic level (minimum required) 

The data portion of this descriptor is in ASCII. It represents the minimum diagnostic level 
required. The first release is level 00. Levels are incremented by one for each successive 
level independently of operating system version and modification level. This field is 
required for all adapters. The minimum value for L is 3, which is two bytes or two ASCII 
character numbers of descriptor data plus header. 

The diagnostic level represents a generic interface level to diagnostics. If the interface 
changes between software and hardware such that a new interface is required by 
hardware, the value of this level is incremented. This level is independent of the operating 
system being used. 

If this keyword is not explicitly specified, level 00 is implied. 

• *DL L = drawer level 

The data portion of this descriptor is in ASCII and specifies a drawer location in 
Electronics Industries Association units. It represents the drawer location within a rack for 
an enclosure. Environmental Impact Association (EIA) unit values are marked on the rear 
panel of the rack. These values are captured during manufacturing while a rack is in! its 
final manufacturing test. In the field, configuration changes that alter drawer information 
must be supplied by the trained customer or customer engineer installing the change. 

• *DS L = displayable message (ASCII) 

This is an optional field that may include a message to be printed or displayed for this 
record type. The ASCII character* should be avoided within the data content of this 
message. 

Micro Channel adapters designed for the RISC System/6000 system unit require this 
keyword with a brief description of the adapter function. 

• *DU L = drawer unit 

This field is used at the system level to describe the contents of a drawer unit within a 
rack system. The number in this field can be a feature code, a machine type and model 
number, or other alphanumeric field used to describe the drawer unit. The data portion is 
in ASCII format. 

5-6 General Information Manual 



• *EC L "' engineering change level 

The data portion of this descriptor is in ASCII. The characters are alphanumeric and 
represent the engineering change level for this element. The values of L, which range 
from 3 to 8, represent descriptor data counts of 2 to 12 alphanumeric characters. This 
descriptor number is right-justified and may be padded with high-order zeros or blanks 
for display or printout. 

• *FC L"' feature code 

The feature code is equivalent to the information contained in the *TM L keyword 
(machine type and model). For example, due to the ordering system being used, the 
primary rack in a rack system is the machine type and model. Secondary racks that may 
be attached are designated as feature codes, not machine types. Therefore, this keyword 
is used to describe the feature code by which a system component is ordered. 

The data is in ASCII character format. 

• *FN L"' FRU number 

The data portion of this descriptor is in ASCII. The characters are alphanumeric and 
represent the IBM FRU for this element of the RISC System/6000 product. Currently, this 
descriptor is an 8-position field. 

• *LA L "' pointer to loadable microcode on the adapter 

This keyword is an optional descriptor type available for use. If an adapter choses to 
implement loadable microcode using the POS registers for writing and reading of 
microcode, this field is required. Micro Channel adapters can use the POS sub-address 
facility or any other method to implement loadable microcode. 

The data portion of this descriptor is an address pointer in the POS sub-address space. 
Byte O is the most significant address byte, and byte 1 is the least significant address byte 
in binary. 

• *LL L"' loadable microcode level (minimum required) 

The data portion of this descriptor is in ASCII. It represents the minimum loadable 
microcode level required for functional operation. The first release is level 00. Levels are 
incremented by one for each successive level. Loadable microcode is associated with a 
given board ID rather than a part number or EC level. Therefore, as changes are made to 
a particular adapter, a corresponding microcode level may be required for correct 
operation. This field is required if loadable microcode is required for functional operation 
of the adapter. The field's presence notifies the initialization code of this additional 
requirement. The minimum value for Lis 3, which is two bytes or two ASCII character 
numbers of descriptor data plus the header. 

This is a generic level equivalent in use to a device driver or a diagnostic level. It indicates 
that a significant change has been implemented on the adapter and that a new minimum 
level of loadable microcode is required. 

• *LO L "' location ( internal or external ) 

This descriptor is optional. The data portion of this optional descriptor contains the ASCII 
characters IN for internal devices or EX for external devices or for other components. The 
default value for this descriptor is EX and is implied if this field is not specified. This field 
is generated dynamically by software for fixed disks attached to a SCSI adapter that 
provides internal reset capability. For other devices, it may be entered by the user in the 
configuration and VPD utility. It is required for power domain and security domain 
requirements. The value of L is 3. 

Vital Product Data 5· 7 



• *MF L =manufacturer 

The manufacturer descriptor field is typically six characters of ASCII data. For IBM-built 
components, the first three characters are IBM. The next three characters are 
alphanumeric and are a code assigned to each IBM location. For six characters of 
descriptor data, L equals 5. 

Vendor manufacturers are identified by a 6-digit number assigned by the purchasing 
department when a contract is established. An abbreviation for the IBM location 
establishing the contract is concatenated to the purchase order number. 

• *NA L = network address 

This keyword is used by adapters that require a unique network address for a local area 
network. Adapters such as token-ring, or baseband use this field. This descriptor varies in 
size and data type as specified by an individual adapter. 

• *NX L = pointer to next adapter VPD for multi-board adapters 

This is an optional field used by multi-board adapters that occupy more than one board 
slot on an 1/0 bus. The first board encountered in a slot position must provide POS 
registers. Additional adapter boards must be plugged into the next higher slot position. If 
the next adapter does not implement POS registers, this field specifies the VPD address 
to be specified in POS registers 7 and 6, respectively, in order to access VPD data on a 
second, third, or fourth additional adapter. The field is two bytes in binary format, and is 
accessed using the POS 3 register or port 3 in the same manner as for the first adapter 
board. 

• *PC L = processor component definition 

This data represents binary information that details the processor speed and model. 

• *Pl L = processor ID 

The data portion of this descriptor is an ASCII alphanumeric field that represents the 
processor ID for a processor enclosure. This data is normally extracted from IPL ROM 
associated with the processor board. This serial number is often used for software 
licensing. 

• *PN L = part number 

The data portion of this descriptor is in ASCII. The characters are alphanumeric and 
represent the IBM part number for this element. The values of L, which range from 3 to 8, 
represent descriptor data counts of 2 to 12 alphanumeric characters. This descriptor 
number is right-justified and may be padded with high-order zeros for display or printout. 

• *RA L = pointer to ROM code on adapter 

This is an optional descriptor type available for use. If an adapter choses to access 
on-board ROM using the POS registers for reading microcode, this field is required. 
Adapters can use the POS extended-addressing facility or any other method to 
implement access to ROM. 

The data portion of this descriptor is an address pointer in the POS sub-address space. 
Byte O is the most significant address byte, and byte 1 is the least significant address byte 
in binary. 

• *RL L = ROM level and ID 

The data portion of this descriptor is in ASCII and is a minimum of four characters. 
Optionally, a second field of information of variable length specifies the ROM ID. This 

5-8 General Information Manual 



additional information is required if more than one ROM is located on an individual 
adapter or board. 

• *RN L = rack name (letter designation) 

This keyword is a required descriptor for records describing a rack enclosure. The 
abbreviated name consists of a 2 ASCII character field such as: "space A", or "space B" 
that matches the letter installed on the rear of the rack unit. It is used by diagnostics for 
FRU location specification. 

• *RW L = pointer to Read and Write adapter registers 

This keyword is an optional descriptor type available for use. If an adapter choses to 
implement Read/Write registers using POS registers, this field is required. Adapters can 
use the POS sub-address space or any other method to implement access to Read/Write 
registers and storage. 

The data portion of this descriptor is an address pointer in the POS sub-address space. 
Byte O is the most significant address byte, and byte 1 is the least significant address byte 
in binary-form. 

• *SL L = slot location 

Memory board adapters use this description to specify board slot location. The data field 
is 2 bytes in size. 

• *SN L = serial number 

The serial number is specified as an even number of ASCII alphanumeric characters in 
the range from 00000000 to ZZZZZZZZ with 8 characters as the maximum size. The 
number is right-justified and software may extend the high-order positions with zeros for 
display or printing. 

• *SZ L =size 

Memory board adapters use this description to specify the size in M bytes. The data 
portion contains 2 ASCII numbers representing the useable memory configured with this 
adapter. 

• *TM L = machine type and model 

The data portion of this descriptor specifies the machine type in ASCII in a length of 4 
characters, followed by a machine model of 4 characters, for a total data length of 8 
characters. Therefore, L is specified as 6 representing 8 characters of data plus the 
header. 

• *US L = user data 

The data portion of this field is an ASCII character string specified by the user utilizing the 
configuration and VPD utility. It could be used to specify owner, location, or similar 
information. It must contain an even number of bytes. 

• *VE L = pointer to VPD extended data on adapter 

This optional descriptor is used as an address pointer in the sub-address space of VPD 
for a Micro Channel adapter. It points to a storage location that contains additional 
keyword descriptors in order to support an implementation of non-contiguous keyword 
descriptor data. 

The data portion of this descriptor is an address pointer in the POS sub-address space. 
Byte O is the most significant address byte, and byte 1 is the least significant address byte 
in binary-form. 

Vital Product Data 5·9 



• *ZO - *ZZ L = available for adapter-specific use. 

Hardware VPD Descriptor Summary 
The following sections define the minimum requirements of various hardware components of 
a system. 

Rack Record 
The required descriptors for the rack record are as follows: 

Keyword Description 

*TM L Machine type and model (for the primary rack) 

*FC L 

*SN L 

*MF L 

*RN L 

Implementation Notes 

Feature code (for secondary, attached racks) 

Serial number 

Manufacturer 

Rack name (letter designation). 

Rack configuration data is supplied by manufacturing in NVRAM. The rack name is a letter 
designation (A, B, C) used by diagnostic programs to locate problem FRUs. This information 
must be input by a customer engineer from the hard card using a configuration and system 
management utility if this unit is field-installed. The serial number specified must match the 
external label on the system unit. 

Enclosure Record 
The required descriptors for the enclosure record are as follows: 

Keyword Description 

*SN L Serial number (externally visible) 

*TM L 

*PIL 

*DL L 

*MF L 

Implementation Notes 

Machine type and model or *FC L = feature code 

Processor ID (from IPL ROM - for license requirements) 

Drawer level (if rack-mounted) 

Manufacturer. 

An enclosure represents a physical package. It may be a drawer in a rack, a deskside 
system, a table-top system, a portable file, a free-standing tape drive, or other 
free-standing unit. Enclosures are normally machine type and models; however, feature 
codes can also be designated. 

This information must be input by a customer engineer from the hard card using a 
configuration and system management utility if this unit is field-installed. The serial number 
specified must match the external label. 

5· 10 General Information Manual 



Processor Board Record 
The required descriptors for the processor board record are as follows: 

Keyword Description 

Board part number 

EC level 

ROM level and ID (IPL ROM) 

ROM level and ID (OCS ROM) 

ROM level and ID (seeds ROM) 

*PN L 

*EC L 

*RL L 

*RL L 

*RL L 

*PC L 

*ZO L-*Z9L 

Processor component definition (specifies speed and processor model). 

Processor chip information. 

Implementation Notes 
The board description represents a reflection of the physical packaging of a processor unit. 
The processor board is the physical unit that contains the processor chips. 

110 Board Records 
The required descriptors for the 1/0 Board records are as follows: 

Keyword Description 

*EC L EC level. 

Implementation Notes 
The 1/0 Board contains the 1/0 slots for installing 1/0 adapters. If a model contains only a 
system board, the value in the System 1/0 register designates the level of the hardware 
components supporting the interface to the logic normally associated with the 1/0 Board. 

As currently implemented in most models, the 1/0 Board level is identified by an 8-bit code 
in a System 1/0 register. Each level is incremented by one. Software locates the 
corresponding part number and the EC level by table lookup. 

Memory Records 
The required descriptors for the memory records are as follows: 

Keyword Description 

*EC L EC level 

*SL L Slot location (software) 

*ZO L EC level Left Data Multiplexer (Mux) chip 

*Z1 L EC level Right Data Mux chip 

*Z2 L EC level Controller chip. 

Implementation Notes 
The initial memory board does not support VPD. The default data of all zeros is written to 
the board immediately after startup. If the board is revision level 2 or higher, the real VPD is 
returned on the first read operation. If the board is revision level 1 (initial release), all zeros 
are returned on the first read operation. 

Vital Product Data 5-11 



Extra 1/0 Board Record 
The keywords specified depend on the function provided by the board. The function should 
be compatible with the requirements for a system, an 1/0 Board, or other adapters. The 
minimum requirements always include the *PN and *EC keywords. 

Direct Access Storage Device {DASO) Records 
The exact information may vary from vendor to vendor; however, the data supplied by the 
inquiry command on the SCSI interface contains machine type and model, part number, EC 
or revision level, serial number, and microcode information (the RL and LL keywords as 
appropriate). Some units provide VPD for the disk enclosure unit as well as data for the logic 
board associated with the unit, where each may be a FRU. Serialization is always required. 
Software must provide a FRU number if one is not contained in the machine-readable VPD. 

Device Required Descriptors 
The required device descriptors are as follows: 

Keyword Description 

*TM L Machine type and model 

*SN L Serial number (matches external label). 

Optional Descriptors 
The optional device descriptors are as follows: 

Keyword Description 

*PN L Part number 

*EC L 

*RL L 

*LL L 

*MF L 

EC level 

ROM level and ID (if ROM is present) 

Loadable ROM level and ID (minimum level required) 

Manufacturer. 

5-12 General Information Manual 



Micro Channel Adapter Requirements 
The preferred method of implementation is to use Programmable Option Select (POS) 
register sub-addressing space during board setup. When POS registers 6 and 7 contain 
values other than X'OOOO', POS register 3 is a port that accesses a Read-only Memory 
(ROM or EPROM) module, containing vital product data in the keyword descriptor format. 
For example, when POS register 6 equals X'01' and POS register 7 equals X'OO', a 
one-byte load operation from POS register 3 reads data from address X'0001' in the 
EPROM containing VPD. When POS register 6 equals X'02' and a load from POS register 3 
of 1 byte reads from the address X'0002', and so forth. An alternative address is X'FF01 '. 

A header is defined that immediately precedes memory containing the descriptor keywords. 
It is recommended that a pluggable EPROM be written at the time of manufacture on a 
part-by-part basis (for serialization and incorporation of the latest EC level information). 

An alternative method of machine-readable VPD allows the adapter to provide the data in 
an adapter-specific manner. For example, available ROM locations could be used in a 
fixed-memory location known to the device driver for this adapter. The device driver must 
gather and convert the vital product data into the keyword format described for the preferred 
method. The device driver then provides the information to the operating system in the 
manner required by the individual operating system. This alternative method allows existing 
adapters to add VPD with the least hardware impact. 

Most adapters designed for the RISC System/6000 have implemented the preferred method 
with the required keywords defined in the following list: 

• Required Words 

Keyword 

*PN L 

*EC L 

*FN L 

*SN L 

*DS L 

*MF L 

*DD L 

*DG L 

Description 

Part number 

EC level 

FRU number for field replacement unit 

Serial number 

Brief description, (for example SCSI, token ring, and 8-port) 

Manufacturer and location 

Device driver level 

Diagnostic level 

• Optionally Required 

Keyword 

*RL L 

*LL L 

*NA L 

Description 

ROM level and ID information (if ROM is present) 

Loadable microcode level (if loadable code is present) 

Network address (if adapter type requires a network address). 

Vital Product Data 5-13 



• Optional 

Keyword 

*RA L 

*RWL 

*DS L 

*LAL 

Description 

Pointer to ROM code on adapter 

Pointer to Read and Write Adapter registers 

Displayable message (additional description) 

Pointer to loadable ROM code on adapter 

*ZO L - *ZZ L Available for adapter-specific use. 

Preferred Implementation - POS Configuration Registers 
POS 

Addresses 
POS 

Registers 

msb lsb 
7 6 5 4 3 2 1 0 

Device ID Low 

Device ID High 
Device Unique lCEN 

xxxO (LSB) 

xxx1 (MSB) 
xxx2 (LSB) 

xxx3 (MSB) 
xxx4 (LSB) 

R/W Port for Ext Config Data (VPD) 

xxx5 (MSB) 

xxx6 (LSB)) 
xxx7 (MSB) 

Device Unique 

CHCtq STA.!I_ Device Un!g_ue 

CHCK I Extended Address 
CHCK I Extended Address 

System writes addresses into 
POS register 6. This address 
points Into extended POS 
register space. 

System reads POS register 3 to 
access data stored in extended 
POS register space. 

'01'x 

255x8 1--_.. ... 
'FF'x 

Extended POS 
Register Space 

Note: POS register 6 is initialized to a value of O when the power is turned on. A nonzero 
value must be written to POS register 6 to access the extended POS register space. 

Figure 82. POS Configuration Registers 

Where: 

Term Description 

MSB Most significant byte 

LSB Least significant byte. 

5-14 General Information Manual 



The main objectives of the POS feature is to: 

• Eliminate switches on the processor board, 1/0 Board and feature boards. 

• Permit installation of multiple, identical-feature boards. 

• Positively identify any board by slot. 

• Resolve resource assignment conflicts. 

• Provide access to an extension POS register that provides information specific to that 
feature board. 

System Configuration Protocol 
Software can access the previously defined POS registers in the adapter address space. 
Each board decodes the three least significant bits of the address bus (X' A2', X'A1 ', X'AO') 
and the '-cd setup' signal. Normally, each enabled board returns the '-cd sfdbk' signal to the 
processor when an access is made to the board address space. The '-cd sfdbk' signal is not 
generated when the '-cd setup' line is in the setup state for addresses X'XXXO' through X' 
XXX7'. Boards should fully decode the X'AO', X'A1', and X'A2' addresses with the '-cd 
setup' signal to select a POS register. 

Under this implementation, the following POS registers and bits are architected: 

1. POS address X'XXXO' is the least significant byte of the adapter device ID. 

2. POS address X'XXX1' is the most significant byte of the device ID in bits O through 3, 
while bits 4 through 7 specify the device function relative to the 1/0 bus. 

3. POS address X'XXX2'. Bit O (the least significant bit) is the board enable bit. Other bits 
may be used for device unique information. 

Following a reset, bit O is off (board disabled). 

4. POS address X'XXX3' is a port that provides read access to vital product data during 
board setup. Optionally, port 3 may also be used for write capability beyond those bytes 
required for VPD up to a total of 64K bytes. POS registers 6 and 7 act as a pointer to this 
space. 

When POS registers 6 and 7 are a value of O, POS register 3 may contain device-unique 
information. 

5. POS address X'XXX4' may be used for device-unique information. 

6. POS address X'XXX5.' Bits 5 through O can be used for device-unique information. Bits 
7 and 6 (most significant bits) have special uses. 

Bit 7 is the channel check indicator which is set to a value of O on a channel check 
condition. The indicator is set to a value of 1 on a channel reset. 

If the channel check active indicator is used by an attachment, bit 6 of POS address 
X'XXXS' can be used to indicate that additional status is available through POS register 
addresses X'XXX6' and X'XXX7'. 

Bit 6 of POS address X'XXX5' is the channel check status indicator (Stat). When set to a 
value of 0, this bit indicates that channel check exception status is available using POS 
addresses X'XXX6' and X'XXX7'. When set to a value of 1, it indicates that no status is 
available. For status information, POS addresses X'XXX6' and X'XXX7' can be the 
status, a pointer to status at another address, or a command port to present the address 
elsewhere. 

Vital Product Data 5-15 



7. POS addresses X'XXX6' and X'XXX7' can be used to support exception status as 
previously described. 

When the '-cd setup' signal is active, POS register 6 and POS register 7 are used as a 
pointer to an extended storage facility. POS register 6 represents the low-order byte of 
that address, while POS register 7 contains the high-order byte of that address pointer. If 
255 or fewer bytes of data are required, POS address X'XXX7' need not be implemented. 
However, writing a value of O to POS address X'XXX7' must not affect other POS 
registers and normal operation. 

Following a reset operation, POS addresses X'XXX6' and X'XXX7' are both reset to a 
value of 0. 

The data located using the extended addressing mode is accessed according to the system 
configuration protocol for Micro Channel feature boards utilizing the 'CD Setup' line. A valid 
POS byte-selecting address is driven on the bus where only the least significant address 
bits { X'AO' through X'A2') are meaningful. 

Under non-exception conditions, when POS register addresses X'XXX6' and X'XXX7' are 
nonzero, a data byte read from POS address X'XXX3' accesses an extended storage facility 
within the adapter. 

If POS addresses X'XXX6' and X'XXX7' are a value of 0, POS registers 3 and 4 may be 
accessed as device-unique Read-Write POS bits. 

Extended Storage Facility 
The extended storage facility {extended configuration information) is a read-only device of 
sufficient size to store the information identified in Figure 83. Location O of this facility is not 
accessible since POS registers 6 and 7 must be nonzero to access this facility. Therefore, 
this storage facility begins at address X'OO 01' (in POS registers 7 and 6, respectively), or 
optionally at address X'FF 01 '. 

POS 

7 6 
00 00 
00 01 
00 04 
00 06 
00 08 
00 09 
00 OB 
00 oc 
00 WW 

-~qt_a_C~!l!~i~I~ •• _ •• _______ •• ___ • _ 
_ ~~Q !n_ ~~c~ ___________________ _ 
.1:': ll~!'~!h_ ~f _ s_t'?r_ap~ ~'! ~:~~t! !'~!~~) __ 
-~~~ j~ ~:-~~t! -~~q ~l!l!:J!}_ - - - - - - - - - -

-*J!>~~i'!'!t!r:.>. - - - - - - - - - - - - - - - - - - - -
_ ~~ _{~ _ 2:-~~l!r~~te! !<!Y"'!~r~} ________ _ 

. I:{~ !-:~Y)E! tn_C!l!.SJ'!e_ 1~!19th) - - - - - - - - -

-Ql!t{l _ - - - - - - - - - - - - - - - - - - - - - - - - -
* KW L (Next keyword) 

Figure 83. Extended Storage Facility 

The following fields are required information for every adapter supporting this architecture. A 
sample layout is included on page 5-17. 

1. VPD: The ASCII characters "VPD" specify that this adapter supports the following 
architected information. 

If "VPD" are not the first three characters, the data obtained is not treated as vital product 
data in machine-readable form. 

5·16 General Information Manual 



2. TL: The total length in 2-byte words to read from this facility beginning at address X'OO 
08' to the end of the last data field. This field is two bytes in binary format. 

3. CRC Value - This 2-byte value is a CRC value starting at address X'OO 08' through the 
end of storage (TL). 

The CRC polynomial is 1 + X (exp 5) + X (exp 12) + X (exp 16), which is the same as the 
CRC polynomial used for most diskette records. 

Sample Layout of the Micro Channel Adapter VPD 

Contents of ROM and PROM Address 
(Hex) (ASCII numbers in parentheses are decimal, 1-byte values) 

00 01 

00 08 

00 14 

00 22 

00 2E 

00 38 

00 42 

00 4C 

00 52 

00 58 

Notes: 

V P 0 (00) (40) XX YY 

* P N (06) 6 1 8 1 6 8 2 A 

* E C (07) 4 9 5 0 2 6 2 5 3 6 

* S N (06) 0 0 0 0 O 1 9 4 

* F N (05) 1 3 5 7 2 2 

* M F (05) I B M 0 3 7 

* 0 S (05) 8 - P 0 R T 

* O G (03) 0 1 

* 0 0 (03) 0 1 

1. XX YY is the CRC value on data from x·oo 08' through x·oo 57'. 

2. -, a dash, is binary zeros. 

3. ( ) is decimal byte length divided by 2. 

Address 
(Hex) 

00 01 

00 08 

00 14 

00 22 

00 2E 

00 38 

00 42 

00 4C 

00 52 

00 58 

Contents of ROM and PROM 
(Hex) 

56 50 44 00 28 FC BC 

2A 50 4E 06 36 31 38 31 36 38 32 41 

2A 45 43 07 34 39 35 30 32 36 32 35 33 36 

2A 53 4E 06 30 30 30 30 30 31 39 34 

2A 46 4E 05 31 33 35 37 32 32 

2A 40 46 05 49 42 40 30 33 37 

2A 44 53 05 38 20 50 4F 52 54 

2A 44 47 03 30 31 

2A 44 47 03 30 31 

Vital Product Data 5· 17 



5-18 General Information Manual 



Chapter 6. Initial Program Load (IPL) ROM 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 

ROM Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
Hardware Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
Cold System Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
Warm System Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
ROM Warm IPL Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Hardware-Initiated IPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Software-Initiated IPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Check Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
LEDs.......................................................... 6-5 
NV RAM........................................................ 6-5 
IPL Expansion Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
IPL Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
Service IPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 

IPL ROM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 
Initial Sequence Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 

Initial Sequence Controller Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 
Core Sequence Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 

Core Sequence Controller Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 
IPL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

IPL Controller Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 O 
·IPL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 

Trusted (Normal) Default IPL Device Selection Sequence . . . . . . . . . . . . 6-11 
Service Default IPL Device Selection Sequence . . . . . . . . . . . . . . . . . . . . 6-12 

Power-On Self Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 
POST Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 

Device Interface Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 
Device Interface Routine Functional Description . . . . . . . . . . . . . . . . . . . . . . 6-13 

IPL ROM Functional Characteristics.................................... 6-14 
Cold IPL Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 
ROM Warm IPL Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 
IPL Control Block................................................ 6-14 

IPL Record..................................................... 6-15 
Interface to the Loaded Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 
NVRAM........................................................ 6-16 
IPL Expansion Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 
Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 
Linkage Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 

LED Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Errors ..................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
ROM LED Values During IPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
ROM Entry Point Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 

Initial Program Load ROM 6-1 



Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 
OCS Display Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 
Bist Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 
IPL ROM LED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 

6·2 , General Information Manual 



Description 
The initial program load (IPL) is the sequence of events that occurs during the period of time 
following a power-on reset or system reset operation until control of the1processor is passed 
to loaded code. 

The IPL consists of initializing and testing the base hardware, and then finding, loading, and 
executing code. The task of the read-only memory (ROM) resident IPL function is to verify 
that the portion of the machine necessary to initialize the IPL function, and then to start the 
IPL if possible. 

ROM Hardware 
• ROM is located on the processor board. 

• ROM addressing begins at X'FFFOOOOO'. 

• IPL ROM code entry point address is X'FFF00100'. 

• ROM configuration information is contained in ROM. 

The following configuration information is required: 

- Board engineering change (EC) level and part number 

- Processor serial number 

- ROM part number and ID 

- ROM copyright 

- ROM time stamp. 

Hardware Initialization 
Prior to execution of IPL ROM code, hardware initialization puts the processor into a known 
working state: 

• Memory Configuration registers are set to all zeros. 

• Cache lines are marked as invalid entries (zero). 

• Cache directories contain even parity. 

• Translation Look-Aside Buffer (TLB) entries contain even parity. 

• Registers contain even parity. 

• Machine State register (MSR) has IP equal to 1 (Interrupt Prefix bit), ME equal to 1 
(Machine Check Enable bit), and the other bits equal to 0. (The Shift Register latch (SRL) 
for IP equals O and ME equals 0). 

For RISC System/6000 units with the On Card Sequencer (OCS), hardware initialization is 
performed by the OCS. Hardware initialization is performed before control is passed to IPL 
ROM code and leaves the machine in the same state for ROM. 

Cold System Reset 
Cold system reset occurs at initial startup or when a hardware event (such as check stop) 
triggers the system reset finite state machine and the resulting system reset count is not 
equal to 1. Following hardware initialization by OCS, a System Reset interrupt occurs at 
X'FFF00100' in IPL ROM. 

Initial Program Load ROM 6·3 



Warm System Reset 
A warm system reset occurs when a hardware event triggers the system reset finite state 
machine and the resulting system reset count is equal to 1. A System Reset interrupt occurs 
and normally (MSR IP bit equals O) execution proceeds at location X'00000100' in the 
operating system. The operating system can perform actions such as dumping all or part of 
memory or invoking a debugger and then can reload the operating system kernel. (If the 
MSR IP bit equals 1, execution proceeds at X'FFF00100', and a cold IPL occurs.) 

ROM Warm IPL Function 
An entry point is provided in IPL ROM to facilitate reloading of the code specified in the IPL 
record. The ROM warm IPL function reloads the IPL record and code specified in the IPL 
record and passes control to the code while disturbing the existing machine state as little as 
possible. The hardware is not reinitialized. The IPL device is redetermined. 

Note: Upon receipt of a warm system reset interrupt, an operating system can elect to 
reload itself without branching to ROM. 

Hardware-Initiated IPL 
The following events cause hardware to generate a System Reset Interrupt: 

• Power-On Reset (POR). 

• Reset button on operator panel pushed. Keyswitch lock enables the Reset button. 

• Check stop. 

Software-Initiated IPL 
ROM warm IPL can be achieved by branching to the warm IPL entry point in ROM. 

Software can designate the IPL device by way of the device lists in nonvolatile random 
access memory (NVRAM). Software can expedite the IPL process by designating a known 
IPL device near the front of the device lists. Only devices for which there is an IPL control 
block entry indicating the device is present and functional are eligible as IPL devices. 
Software must provide a method for the operator to customize the device lists in NVRAM. If 
the operator elects not to specify a device list, the ROM uses a predefined default list. 

No special entry point has been defined in the IPL ROM to facilitate a software initiated cold 
IPL. 

Check Stop 
For RISC System/6000 units without OCS, (a check stop event causes a halt), the check 
stop count in NVRAM is always a value of o. 
A check event stop causes a cold system reset. 

Before executing the power-on self test (POST), the IPL ROM inspects the check stop count 
in NVRAM: 

• A value of O indicates that a check stop event has not occurred. The IPL ROM continues 
normal execution. 

• A value of 1 indicates that a check stop event has occurred and that OCS has logged out 
check stop data in NVRAM. The IPL ROM continues normal execution. 

• A value greater than 1 indicates that an error occurred, which caused a check stop event, 
that was undetected by the OCS built-in self test (BIST). The IPL ROM puts an error 
code in the light-emitting diodes (LEDs) and halts. 

6·4 General Information Manual 



LEDs 

NV RAM 

The RISC System/6000 units have three 7-segment LEDS on the operator panel. The IPL 
ROM displays appropriate values in the LEDs to indicate the progress of the IPL and to 
identify the point of the error should a fatal error occur. 

The RISC System/6000 units have at least BK byte of NVRAM. 

The IPL ROM reads the following information from NVRAM if NVRAM is valid: 

• Information as to whether a memory bit should be steered and what the bit is. 

• IPL expansion code 

• Check stop count 

• Normal device list 

• Service device list. 

IPL Expansion Code 
The IPL ROM code function can be expanded by way of code in NVRAM. The IPL ROM 
provides for the presence of an expansion code in NVRAM. The IPL sequence controller 
detects the presence of an expansion code, copies it in to RAM, and passes control to it. 

IPL Record 

Security 

In order to IPL, a valid IPL record must reside on a valid IPL RISC System/6000 media. This 
record consists of: 

• An ID uniquely identifying it as a RISC System/6000 IPL record 

• A media description, such as characteristics of the IPL device 

• One or more load descriptions, such as location, length, and entry point of code to be 
loaded (service or normal) 

• The address of where the code must load. 

The IPL record format is common for all devices. 

A Keylock switch in the secure position disables the Reset button on the operator panel. In 
the normal position, the Keylock switch permits the IPL to initialize only from trusted IPL 
devices. In the service position, the Keylock switch allows the IPL to initialize from any IPL 
device: 

• Disabling of Reset button is a hardware function. 

• Disabling of the IPL from devices other than trusted IPL devices is Implemented in the IPL 
ROM. The IPL ROM controller code senses the position of the keyswitch and if in the 
normal position, only permits IPL from trusted IPL devices. If a valid IPL record and IPL 
code are found on a trusted IPL device, the IPL sequence completes; otherwise, the IPL 
ROM loops, polling the trusted IPL devices for an IPL record and testing for a change in 
keyswitch position. 

Service IPL 
The IPL ROM supports an IPL from an alternate load description. For systems with a service 
keyswitch position, when the keyswitch is in the service position, the IPL ROM ignores the 
primary (normal) load description in an IPL record and loads the software described by the 

Initial Program Load ROM 6-5 



alternate (service) load description. The IPL ROM Inspects the code length fields In the 
primary and alternate load descriptions to determine what is loadable from a particular 
device. The length field must be a value of O if the code is not present. 

This function is provided so that diagnostics or another alternate operating environment can 
initialize the IPL from the same device as the operating system. 

IPL ROM Components 
The IPL ROM code is functionally divided into the power-on self tests, the device interface 
routines, and three control programs: 

• Initial Sequence controller (ISC) 

• Core Sequence controller (CSC) 

• IPL controller (IPLC). 

Initial Sequence Controller 
The Initial Sequence controller (ISC) accepts control after hardware initialization and passes 
control to the Core Sequence controller (CSC) after completion. The following diagram gives 
a general idea of what the ISC does. 

Entry From ROM 
Hardware Initialization 

Cold IPL-----. 

lnltlalizatlon 

ROM Cyclic 
Redundancy Check 
(CRC) Test 

Check Stop 
Count> 1? 

Execute 
RAM POST 

Enough Good 
RAM For IPL? 

Yes 

Exit to CSC 

(Miscompare)----., 

Yes -------• 

No---------

Halt 

Figure 84. Initial Sequence Controller Logic Flow 

6·6 General Information Manual 



Initial Sequence Controller Functions 
The major Initial Sequence controller functions are: 

1. Perform initialization. 

- Read ROM configuration information from non-CRC checked part of ROM and set 
ROM size and speed in the Memory Control Unit Control register (MCCR). 

- Set initial LED values. 

- Perform other initialization as required. 

2. Inspect check stop count: 

- If O or 1, continue normal execution. 

- If greater than 1, halt with an error code in LEDs. 

3. Check system ROM cyclic redundancy check. 

- Halt if miscompare. 

4. Execute RAM POST. 

- Determine memory configuration (includes setting CRC). 

- Find at least 1 M byte of good memory (Swapping extents if necessary). 

- Test memory and create a bit map. 

- Store results of RAM POST into the IPL control block. 

5. Inspect return code from the RAM POST. 

- Halt if less than 1 M byte of good memory. 

Core Sequence Controller 
The Core Sequence controller accepts control from the Initial Sequence controller and 
passes control to the IPL controller. The Core Sequence controller sequences through the 
POSTs. These POSTs complete the testing performed by the IPL ROM. The following 
diagram gives a general idea of what the Core Sequence controller does. 

Entry From lnltl1 Sequence Controller 

No 

Call Next POST 

Last POST 
? 

Yes 

Exit To IPL Controller 

Figure 85. Core Sequence Controller 

Fatal 
Error 

HALT 

Initial Program Load ROM 6· 7 



Core Sequence Controller Functions 
The functions of the Core Sequence controller are: 

1 . Execute POSTs in a predefined order. 

2. POSTs are passed a pointer to the IPL control block to record results. 

3. Return codes are passed from POSTs to the Core Sequence controller. 

IPL Controller 
The IPL controller accepts control from the Core Sequence controller and passes control to 
loaded code. The following diagram gives a general idea of what the IPL controller does. It is 
the job of the IPL controller to find a successful IPL path. If no IPL attempt is successful, the 
IPL controller continues to cycle through the IPL device list (Devlist), trying to initiate an IPL 
from each IPL device. 

6·8 General Information Manual 



Entry From Core Sequence Controller 

ROM Warm 
System Reset 

No 

No 

No 

Secure 
Keyswitch? 

Check CRC for 
Device Lists 

Device List 
Empty? 

Sense 
Keyswitch 

Build Device 
List 

Get Device 
From List 

Device= 
Expansion Code ? 

load IPL 
Record 

Valid IPL 
Record? 

Will Boot 
Code Fit? 

Load OK? 

Figure 86. IPL controller 

Yes 

No 

---Yes 

Expansion Code 
CRC Check 

Load and Turn Control 
to Expansion Code 

Initialize 
System State 

Exit to 
Code 

Initial Program Load ROM 6-9 



IPL Controller Functions 
The functions of the IPL controller are: 

1. NVRAM CRC test. 

- Check NVRAM cyclic redundancy check on portions of NVRAM containing configured 
IPL device selection sequence. 

2. Build the list of IPL device candidates based on: 

- Keyswitch position 

- Device lists (if present). 

3. Cycle through created device lists. 

4. Get the candidate from the list. 

5. If the candidate is expansion code, load and execute it. 

6. Otherwise attempt to load IPL record from candidate device. (If the Small Computer 
Systems Interface (SCSI) disk, the IPL controller finds a memory area to store the bad 
block map.) 

7. If the keyswitch is not in the service position, look for an IPL record in which the primary 
code description length field is not O. 

8. If the keyswitch is in the service position, look for an IPL record in which the alternate 
code description length field is not 0. 

9. If the valid IPL record is not loaded, get the next candidate from the list. 

1 O. If all candidates have been attempted, rebuild the list and retry. 

11. Load code. The code loaded in the first good 1 M byte of memory is loaded contiguously. 
Beyond the 1 M byte boundary, the loading skips around memory bad blocks if the flag 
byte in the IPL record says to do fragmentation. 

- If the code does not fit in RAM, get the next candidate from the list. 

- If all candidates have been attempted, rebuild the list and retry. 

12. Initialize machine state for execution of loaded code. 

13.lf an IPL was done from a disk, the volume ID (unique ID) is saved in the IPL control 
block. 

The system is left in real mode with: 

- Interrupts disabled 

- All good memory initialized with good error checking and correction (ECC) 

- Any IPL device used inactive 

- Memory contents as shown in Figure 87. 

6-10 General Information Manual 



IPL Devices 

Loaded Code 
I Low 

: 

-------------------------
Bad Block Map 

IPL Record/CR Record (1 KB) 

IPL ROM Stack Area (32KB) 

Expansion Code From NVRAM 
(If Present) 

IPL Controller and Device 
Interface Routines (32KB) 

IPL Control Block (Variable) 

Location of Last Bad Memory 
Block 

: Area of < ROM Requirements 

Figure 87. RAM map 

14.Pass control to code loaded. 

Parameters passed to the loaded code in registers are: 

- Pointer to IPL control block. 

- The IPL control block contains pointers to other things {such as memory bit map). 

The IPL devices supported are: 

• Standard Feature 3.5-inch diskette 

• 5.25-inch diskette 

• IBM 7012 Model 320 direct bus-attached {OBA) file disk 

• SCSI adapter-attached IPL devices 

• Expansion code. 

Trusted (Normal) Default IPL Device Selection Sequence 

The trusted {normal) default IPL device order is: 

• Direct bus-attached file {IBM 7012 Model 320 fixed disk) 

• SCSI device. 

Initial Program Load ROM 6·11 



Service Default IPL Device Selection Sequence 

The default service IPL device list Is as follows: 

• Standard 1/0 diskette 0, and then 1 

• Expansion code in NVRAM 

• OBA flle (IBM 7012 Model 320 fixed disk) 

• SCSI device. 

Power-On Self Tests 
Tests run during the execution of the IPL ROM, before any load from an IPL device, are 
referred to as power-on self tests (POSTs). 

The IPL ROM executes POSTs to determine the presence and functionality of that portion of 
the system required for a successful IPL. The results of these tests are collected In a data 
structure In RAM called the IPL control block. The IPL ROM testing Is limited to that portion 
of the machine necessary for IPL: the base system (RAM and 1/0 Channel Controller) and 
the IPL devices. The IPL ROM code does not halt due to the absence or failure of hardware 
except where that absence or failure directly precludes the IPL. 

If an error is detected during a POST, information about the error is returned for resolution. 

Except for base system function, testing performed by IPL ROM POSTs is minimal. The IPL 
device POSTs tests an adapter's functionality and device presence. 

The following tests are performed: 

• RAM POST 

• 1/0 Channel controller (IOCC) POST 

• IPL device POSTs: 

- Standard/feature diskette drive 

- Adapter test is performed. 

- Device presence test is performed. 

- IBM 7012 Model 320 OBA disk 

- Adapter ID is determined and saved. 

- Adapter test is performed. 

- Device presence test is performed. 

- SCSldisk. 

- Adapter IDs are determined and saved. 

- Adapter tests are performed. 

- Device presence tests are performed. 

Before calling a POST routine, the controller puts a value in the LEDs identifying the POST 
so that if there is an error while running a POST and control does not return, the error is 
identifiable. 

POST routines are passed a pointer to the area of the IPL control block in which to store the 
test results. 

6·12 General Information Manual 



POST Functional Descriptions 
• RAM POST 

- Processor and memory interface tests (Memory Control Unit) 

- Memory test 

• IOCC POST 

- Processor and IOCC interface tests 

- IOCC register tests 

- Bus test (IOCC to Standard 1/0) 

- OMA test 

- Test interrupts 

• IPL device POSTs 

- Standard diskette POST 

- Adapter test 

- Device presence test 

- IBM 7012 Model 320 OBA disk POST 

- Adapter test 

- Device presence test 

- SCSI adapter POSTs 

- Adapter tests 

- Device presence tests. 

Device Interface Routines 
IPL ROM contains device interface routines for the IPL devices. These device interface 
routines provide functions to enable ROM IPL code to load the IPL record and code 
described in the IPL and configuration records. The fixed disk device interface routines 
support bad block management to allow reading non-contiguous areas from the IPL media. 

The device interface routines are as similar as possible for all devices. The device interface 
routines convert locations and lengths, as required, to the format expected by the adapters. 
The device geometry from the IPL record is available for use by the device interface routines 
used in performing the required conversions. The device interface routines should not query 
devices for their geometry. 

Device Interface Routine Functional Description 
• Standard diskette 

- Restore parameters: IPL control block pointer, adapter identifier, device identifier. 

- Read (with retries) parameters: IPL control block pointer, cylinder, head, sector, 
number of sectors, memory address. 

• IBM 7012 Model 320 OBA disk 

- Restore parameters: IPL control block pointer, adapter identifier, device identifier. 

- Read (with retries) parameters: IPL control block pointer, physical sector number, 
number of sectors, memory address. 

Initial Program Load ROM 6-13 



• SCSI adapter 

- Restore parameters: IPL control block pointer, adapter identifier, device identifier. 

- Read (with retries) parameters: IPL control block pointer, physical sector number, 
number of sectors, memory address. 

IPL ROM Functional Characteristics 
The following section describes the IPL ROM entry points, control block, configuration 
records, NVRAM, expansion code, and LED operation. 

Cold IPL Entry Point 
The ROM entry point is at real address X'FFF00100'. This is the normal entry point following 
power-on reset. 

ROM Warm IPL Entry Point 
An entry point is provided in IPL ROM to facilitate the reloading of the system after a warm 
system reset. The entry point results in an IPL record and code being reloaded. On a warm 
IPL, the system must pass the IPL control block pointer in register 3. The pointers In the IPL 
control block are considered valid and reuseable. 

The ROM warm IPL entry point is stored in the ROM entry point table. A pointer to the ROM 
entry point table is stored in the IPL control block by the IPL ROM. 

The following requirements must be met to perform a ROM warm IPL: 

• IPL ROM code operates in real mode. 

• ROM is mapped to real address X'FFFOOOOO' at startup. 

• The IPL control block must be in memory and a pointer to it must be passed to ROM in 
register 3. 

• The contents of the IPL control block as saved by the previous execution of the IPL ROM 
must be intact. (The operating system must not delete the existing contents of the IPL 
control block.) 

• The RISC System/6000 linkage conventions and the register conventions established by 
the IPL ROM must be followed. 

• The IPL ROM code alters the contents of memory. 

IPL Control Block 
The IPL control block is created in RAM during the execution of ROM. The IPL control block 
size is variable. The IPL controller is dependent on the IPL control block for the results of 
power-on self tests executed for IPL devices. Loading of the IPL record and the code by the 
IPL ROM does not overwrite the IPL control block. A pointer to the IPL control block is 
passed to the loaded code. Loaded software can relocate the IPL control block and add 
entries for IPL devices, but should preserve the rest of the IPL control block. The IPL control 
block must be intact in order for the ROM warm IPL to work and loaded software must pass 
ROM a pointer to the IPL control block. 

6-14 General Information Manual 



The following shows some of the information that is stored in the IPL control block: 

• NVRAM tests results 

• Actual IPL device 

• Service IPL flag 

• Pointer to ROM entry point table 

• Pointer to IPL record 

• IPL ROM date stamp (IPL ROM build date) 

• POST results (is a unique structure for each POST) 

• Results of expansion code CRC test 

• A pointer to a memory bit map 

• Pointer to NVRAM expansion code 

• Pointer to the bad block map 

• ROM part number and ID 

• An area reserved for future use by IPL ROM. 

IPL Record 
The IPL record is located in a predefined area on all devices. 

The record formats are the same for all devices. 

The IPL ROM loads the IPL record into a known location in RAM. 

The record is 512 bytes long and contains the following: 

• A unique ID to identify the record as a RISC System/6000 IPL record. 

• A description of the media, for example, device characteristics. 

• Descriptions, for example, location, length, and entry point, of one or more code areas to 
be loaded. 

- The primary load description describes how to load the normal operating system if the 
operating system is present on the device. If it is not present, the length field of the 
primary load description must be 0. 

- The alternate load description describes how to a load an alternate operating 
environment, such as diagnostics, if the alternate operating environment is present on 
the device. If it is not present, the length field of the alternate load description must be 
0. 

Interface to the Loaded Code 
The IPL ROM loads code into memory and passes the following parameter, pointer to IPL 
control block, in register 3. 

Initial Program Load ROM 6· 15 



NV RAM 
All machines have NVRAM. NVRAM is described on page 6-5. 

The following are read from NVRAM by ROM IPL code: 

• Check stop count (stored by hardware) 

• Device lists stored by software ( trusted and service ) 

• IPL expansion code from software data area 

• Cyclic Redundancy Check (CRC) values for the areas of NVRAM from which data is read 
by the IPL ROM. 

For details on how the device lists are stored in the NVRAM and how the expansion code is 
loaded by the software, see the description of the Nvload and lplist commands in the 
Commands Reference. For examples of device driver code refer to Kernel Extensions and 
Device Support Programming Concepts . 

IPL Expansion Code 

Header 

Code Area 

The RISC System/6000 IPL ROM facilitates expansion of the functions performed during the 
execution of the IPL ROM by providing for the presence of expansion code in NVRAM. 
When present, the expansion code is loaded in RAM and executed in-line as part of the 
normal IPL ROM operation. 

The expansion code resides in the variable software area of NVRAM. IPL expansion code 
contains a header and a code area. The IPL ROM uses the header to detect the presence 
and validity of the expansion code. The code area includes the code to be run as an 
extension to the in-line IPL ROM operation. It has complete control of the machine when 
run. 

The header is a field that contains the recognition pattern, the length of the code area, the 
pointer to the expansion code in NVRAM, and the CRC check value for the code area. The 
recognition pattern consists of two bytes containing X'A5A5'. The CRC is a field containing 
the CRC value for the code area. The length field is a 2- byte field containing the size of the 
code area in bytes. 

The first word of the code area must be the entry point. If an expansion code header is 
present in NVRAM, the code area must be present even if it merely does a return to the 
normal IPL ROM. 

Linkage Information 
After the expansion code area is recognized, the code is loaded into the RAM location and 
the CRC is verified. Then ROM passes control to the entry point. The expansion code has 
complete control of the system at this point. 

The expansion code is expected to complete the IPL sequence without returning to ROM. 

The expansion code must adhere to the common linkage conventions described in AIX 
Version 3 Technical Reference Manual. 

Arguments are passed to the expansion code in the general purpose register R3 which is a 
pointer to the IPL control block. 

The ROM cannot handle a return from any IPL device. 

6-16 General Information Manual 



LED Operation 

Errors 

ROM displays the appropriate values in the LEDs before executing hardware tests so that if 
the POST does not return to ROM, the appropriate value is displayed: 

1. At the start of each POST, the LEDs are set to the value for that POST. 

2. If the POST completes correctly, the next POST is started. Some POSTs execute so 
quickly that if no error occurs, the display of the corresponding value will not be visible to 
the operator. 

3. If the POST code gets lost, the POST LED value remains displayed indicating the error. 

4. If the POST detects an error, the sequence controller determines by way of the return 
code whether the error is a fatal or non-fatal error. 

5. If the error is non-fatal, the error information is preserved in the IPL control block and the 
sequence controller continues. 

6. If the POST error is fatal, the LEDs display an appropriate value steadily and operation of 
the system halts. 

Errors occurring during IPL ROM execution can be fatal or non-fatal. The fatal errors are 
those that prevent an IPL. Non-fatal errors are those that leave the machine in a state to 
initiate an IPL. The operating system can interrogate the IPL control block to determine if 
errors occurred during IPL ROM execution. 

ROM LED Values During IPL 
ROM has been assigned a LED range of 200 to 299. Specific values are assigned during 
code development. There are special cases where a series of informational data is needed 
to be presented in the LEDS. 

The LED codes displayed during execution of the IPL ROM are listed on page 6-20. 

ROM Entry Point Table 
The IPL control block contains a pointer to the ROM entry point table. The ROM entry point 
table contains the entry point for the ROM warm IPL. 

Initial Program Load ROM 6-17 



Error Codes 
The error codes displayed by the LEDs are listed in the following three categories: 

• OCS display codes 

• BIST error codes 

• IPL ROM LED codes. 

OCS Display Codes 
The following is a list of the OCS display codes: 

Code Description 

100 Success code. 

101 Starting initialization of BIST (built in self test). 

102 Starting BIST. 

103 Model not found. 

104 Equipment conflict: CBA not found. 

105 Cannot read OCS EPROM. 

112 Checkstop but cannot log out. 

113 Checkstop count> 0. 

120 Starting CRC check. 

121 Bad CRC on OCS EPROM. 

123 Bad CRC on OCS NVRAM space. 

125 Bad CRC on TOD RAM. 

140 Bad configuration of manufacture's bits. 

142 Box manufacturing. 

144 Manufacturing BIST error. 

151 AIPGM test code. 

152 DCLST test code. 

153 ACLST test code. 

154 AST test code. 

180 LOGOUT test number. 

Code Chip 

001 FPU. 

002 FXPT. 

003 ICU. 

004 MCU. 

010 DCUO. 

6-18 General Information Manual 



029 

042 

061 

074 

106 

BIST Error Codes 

IOCC01. 

DCU1. 

IOCC02. 

DCU2. 

DCU3. 

The FAILCDS field records module errors. The following summarizes the possible error 
codes that might be recorded here: 

Code Description 

0 

1 

2 

4 

8 

16 

32 

No errors at all (a good module). 

DCLST has error on this module. 

ACLST has error on this module. 

AST has error on this module. 

The DD level could not be ascertained for this module. 

The module is not present or is not responding on the COP bus. 

An equipment incompatibility exists between this module and another. 

Any combination of these error codes is possible, and is displayed in the decimal radix by 
the OCS as a BIST error. For example, suppose a module passed DCLST and ACLST, but 
has an error in AST, then the error code displayed would be the three-digit CBA of the 
module, followed by the two-digit error code, 04. If the module has an error in both ACLST 
and AST, the error code would be 06. 

Initial Program Load ROM 6· 19 



IPL ROM LED Codes 
The following is a list of the IPL ROM LED codes. 

Note: The following LEDs are normally displayed for 1 second or less, unless noted. 

LED Fate Description 
200 Keylock in secure position. 
201 Fatal IPL ROM Initialization. 
202 Fatal Machine check handler. 
203 Fatal Data Storage Interrupt handler. 
204 Fatal Instruction Storage Interrupt handler. 
205 Fatal External Interrupt handler. 
206 Fatal Alignment Interrupt handler. 
207 Fatal Program Interrupt handler. 
208 Fatal Floating point unavailable handler. 
209 Fatal Reserved 900 handler. 
21 O Fatal SVC 1000 handler. 
211 Fatal IPL ROM CRC did not compare correctly. 
212 Fatal RAM POST Memory Configuration registers error. 
213 Fatal RAM POST full or halfword and byte load and store error. 
214 Fatal RAM POST PIO load and store circuitry error. 
215 Fatal RAM POST ECC generation circuitry error. 
216 Fatal RAM POST ECC correction circuitry error. 
217 Fatal RAM POST bit steering logic error. 
218 Fatal RAM POST 1 M byte of good memory not found, address 

or remap error. 
219 Fatal RAM POST bit map generation. 
220 Fatal IPL control block initialization. 

Note: The following LEDs may be displayed for 1 O seconds or more. 

LED 
221 
222 
223 
224 

225 

226 
227 
228 
232 
233 
234 

235 

236 
237 
241 
242 
243 
244 

Keyswltch 
Position 
Normal 
Normal 
Normal 
Normal 

Normal 

Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

Normal 

Normal. 
Normal 
Service 
Service 
Service 
Normal 

6-20 General Information Manual 

IPL Path 
Set By 
NV RAM 
NV RAM 
NV RAM 
NV RAM 

NV RAM 

NV RAM 
NV RAM 
NV RAM 
ROM 
ROM 
ROM 

ROM 

ROM 
ROM 
NV RAM 
NV RAM 
NV RAM 
NVRAM 

Attempting 
Device 
NVRAM CRC checked bad. 
Standard 1/0 selected for IPL. 
SCSI devices selected for IPL. 
Synchronous Link Adapter selected 
for IPL. 
IBM 7012 Model 320 (OBA fixed disk) 
selected for IPL. 
Ethernet selected for IPL. 
Token ring selected for IPL. 
Expansion code selected for IPL. 
Reserved for Standard 1/0 usage. 
SCSI devices selected for IPL. 
Synchronous Link Adapter selected 
for IPL. 
IBM 7012 Model 320 (OBA fixed disk) 
selected for IPL. 
Ethernet selected for IPL. 
Token ring selected for IPL. 
Reserved for service mode. 
Standard 1/0 selected for IPL. 
SCSI devices selected for IPL. 
Synchronous Link Adapter selected 
for IPL. 



245 

246 
247 
248 
252 
253 
254 

255 

256 
257 

Service NV RAM 

Service NV RAM 
Service NVRAM 
Service NV RAM 
Service ROM 
Service ROM 
Service ROM 

Service ROM 

Service ROM 
Service ROM 

IBM 7012 Model 320 (OBA fixed disk) 
selected for IPL. 
Ethernet selected for IPL. 
Token ring selected for IPL. 
Expansion code selected for IPL. 
Standard 110 selected for IPL. 
SCSI devices selected for IPL. 
Synchronous Link Adapter selected 
for IPL. 
IBM 7012 Model 320 (OBA fixed disk) 
selected for IPL. 
Ethernet selected for IPL. 
Token ring selected for IPL. 

Note: The following LEDs are normally displayed for 1 second or less, unless noted. 

LED 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 

Fate 
Fatal 

Meaning 
IOCC POST 
Standard 110 POST 
SCSI POST 
IBM 7012 Model 320 POST 
Synchronous Link Adapter POST 
XX3 POST (Ethernet) 
XX2 POST (Token ring) 
XX1 POST 
Attempting warm IPL 
IPL ROM has completed loading and has passed control to 
loaded code (loaded code changes LEDs). 

Initial Program Load ROM 6-21 



6-22 General Information Manual 



Chapter 7. Keyboard/Tablet/Speaker Adapter 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 
System Interface: Input/Output Operations to Adapter . . . . . . . . . . . . . . . . . . . . . . 7-7 

Sequences of Events for System/Adapter Communications . . . . . . . . . . . . . . . 7-7 
System Initiated Transfer to the 8051 Adapter . . . . . . . . . . . . . . . . . . . . . . . . 7-7 
Adapter's 8051 Initiated Transfer to System . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
Adapter's 8051 Initiated Block Transfer to System . . . . . . . . . . . . . . . . . . . . 7-8 

IOW and IOR Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 
Read 8255 PA Input Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 
Read Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 
Read 8255 PB Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Read 8255 PC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Write 8255 PA Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 
Configure 8255 Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 
Enable Keyboard and UART IRQ.................................. 7-12 
Disable Keyboard and UART IRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 

Adapter Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 
Activate Adapter Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 
Release Adapter Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 

Adapter Initiated Interrupt Request - ID Codes . . . . . . . . . . . . . . . . . . . . . . . . . 7-13 
Adapter Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 

Command Byte Decodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 
Extended Command Decodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 
Select Extended Command Set (X'OO') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 
Write to Keyboard (X'01 ') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 
Write to Speaker (X'02') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 
Write to UART Device (X'03' and X'04') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 
Write UART -Control (X'03') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 
Write UART - Query (X'04') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 
Set UART Baud Rate (X'05') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 
Initialize UART Framing (X'06') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18 
Set Speaker Duration - High Byte (X'07') . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18 
Set Speaker Frequency- High and Low Byte (X'08' and X'09') . . . . . . . . . . 7-18 
Diagnostic Write Keyboard Port Pins (X'OC') . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Write Shared RAM (X'1 R') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 

Extended Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Read Shared RAM (X'OO' - X'1 F') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Reset Mode Bit (X'20' - X'2F') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Set Mode Bit (X'30' - X'3F') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Initialize Speaker Volume (X'40' - X'43') . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 
Terminate Speaker and Reset Duration (X'44') . . . . . . . . . . . . . . . . . . . . . . . 7-20 
Set Scan Count for System Attention Keystroke Sequence (X'5S') . . . . . . . . 7-20 
Execute 8051 Soft Reset (X'60') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 
Force System Attention Interrupt (X'62') . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21 
Diagnostic Sense Keyboard and UART Port Pins (X'70') . . . . . . . . . . . . . . . 7-21 

Keyboard/TableVSpeaker Adapter 7·1 



Dump Adapter Shared RAM (X'80' and X'81') . . . . . . . . . . . . . . . . . . . . . . . . 7-21 
Dump RAS Logs With or Without Reset (X'82' and X'83') . . . . . . . . . . . . . . . 7-22 
Restore Initial Conditions (X'90') . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . 7-22 
Read 8051 Release Marker (X'EO'.:.. X'EF') . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 
NOP (X'FO' -X'FF') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 
Functional Description and Allocation Map........................... 7-22 
Read-Shared RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23 
Modes and Status Bits in Shared RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 7-24 
Read-Only Shared RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 
RAS Logs in Shared RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 7-26 

Adapter Speaker Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27 
Sharing of Speaker Input With the Micro Channel Audio Signal............. 7-27 
Speaker Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27 
Speaker Duration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . 7-28 
Speaker Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28 
Speaker Command Queue Description . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 7-29 

Functional Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29 
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . . . . 7-29 

Keystroke Click Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 7-29 
Functional Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30 
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30 
Click Suppression for Defined Scan Code Set . . . . . . . . . . . . . . . . . . . . . . . . 7-30 
Click Interference with other Speaker Operations . . . . . . . . . . . . . . . . . . . . . 7-30 

Adapter RAS and Security Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 
Detection of Special Keystroke Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 

Initiate System Attention Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 
Diagnostic Wraps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-32 
Adapter Self-Test After a Power-On, System, or Adapter Reset Operation . . . 7-32 
Diagnose Functions Executed on System Command..................... 7-32 
Adapter Informational Codes Returned to System . . . . . . . . . . . . . . . . . . . . . . . 7-32 

Acknowledgement Informational Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-33 
Command Reject Informational Codes.............................. 7-33 
Status Report Informational Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34 

Adapter Error Codes Returned to System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34 
Abnormal End Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 7-34 

System Action Required....................................... 7-34 
Device Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-35 

System Action Required....................................... 7-35 
Codes..................................................... 7-35 

Keyboard Device Support Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Keyboard Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 

Resend (X'FE') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Echo (X'EE') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 

Keyboard Outputs ................. ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Resend (X'FE') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Ack (X'FA') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Overrun (X'OO') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 

Adapter Design Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 
Channel 110 Device Address Bit Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-40 

8051 RAM Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-40 

7 ·2 General Information Manual 



Adapter and Keyboard Initialization Procedure............................ 7-41 
Standard 1/0 Adapter Board to Device Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43 

Keyboard Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43 
Tablet (UART Port) Device Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43 

KeyboardfrableVSpeaker Adapter 7-3 



7-4 General Information Manual 



Description 
The adapter contains an 8051 single-chip microcontroller programmed to support a RISC 
System/6000 family serial keyboard interface, a tablet device with a full duplex serial UART 
interface, and a speaker. The adapter interfaces bi-directionally to the system bus through 
an 8-bit 82C55A Programmable Peripheral Interface chip, and a 6-bit Command register for 
keyboard and UART ports. 

The adapter also performs a multi-keystroke detection, which directly initiates a system 
attention interrupt. 

The Standard 110 adapter board provides the connectors to the keyboard, tablet devices, 
and speaker. These functions are not available on some RISC System/6000 system units. 

System Software Interface 
System-to-adapter communications are over the two low-order data bus bytes (DO through 
D15) utilizing 110 write operations. Adapter-to-system communications are initiated by the 
adapter raising an interrupt level request. Data transfers to the system are over the byte (DO 
through D7) utilizing 110 read operations. Additionally, an adapter selective reset can be 
initiated by the system using an 1/0 write sequence. 

Programmable Peripheral Interface Functions 
The 82C55A (referred to hereafter as 8255) chip is a general-purpose programmable 110 
chip used to interface the 8051 microcontroller to the system, and as a diagnostic sensing 
port. The 8255 chip is configured to operate in mode 2 with ports B and C (lower) defined as 
inputs. Port A provides a bi-directional bus with the 8051 chip while port C (upper) provides 
the necessary handshake controls. 

Microcontroller Functions 
The adapter generally does not interpret information passing between the system and the 
keyboard or tablet. That information is simply passed through the adapter. The 8051 
receives data from the keyboard or tablet, validates it, and passes it on to the system. The 
8051 chip receives device commands from the system and passes them on to the selected 
device. The 8051 chip also receives commands from the system that are validated and 
executed by the 8051 chip, for example, reading and writing shared random access memory 
(RAM). 

The 8051 chip has 128 bytes of RAM. Commands are defined that allow the system to read 
or write a selected set of these bytes. This shared RAM contains status and mode control 
information, error logs, and device control parameters for the keyboard, speaker and UART 
port. 

Keyboard Interface 
The adapter receives a frame of data serial by bit from the keyboard, validates the frame, 
buffers up to 5 bytes, and presents the data to the system as a byte of data in the 8255 input 
buffer. The adapter interrupts the system when data is placed in the interface buffer. 

The system can transmit keyboard commands to the keyboard by writing to the Command 
register of the adapter and 8255 output buffer. The 8051 chip embeds the data byte in a 
frame, and then transmits the frame serial by bit to the keyboard with odd parity. 

The 11-bit framing protocol and keyboard commands are defined in chapter 8 of this 
manual. Scan codes received from the keyboard are passed on to the system in their 
original form; the adapter performs no translation. However, keystrokes received while the 
buffer is full (overrun) are lost. 

Keyboard/Tablet/Speaker Adapter 7-5 



Tablet Interface 
The adapter provides a port for tablet devices. It is a full duplex serial port operating in an 
11-bit UART framing protocol. The adapter buffers up to two blocks (or reports) of tablet 
device data through the UART port. The system can send commands through the adapter to 
the tablet. Data reports and commands are defined in the tablet section of this manual. 
Reports received from the tablet are passed on to the system in their original form; the 
adapter does not change the report byte content. However, reports received while the buffer 
is full (overrun) are lost. 

Speaker Interface 
The system keyboard contains a small speaker that can be driven from either the adapter or 
the Micro Channel audio signal. The adapter always has control of the volume. Frequency 
and duration parameters are controlled by either the adapter or the Micro Channel audio 
signal through an 'OR' circuit. System software must ensure that only one path is active at a 
time. 

The adapter provides an option of automatic click tone through the speaker for every 
keystroke at a default frequency and duration. 

The adapter buffers one set of frequency and duration parameters while a current tone is 
active. 

7 ·6 General Information Manual 



System Interface: Input/Output Operations to Adapter 
System software communicates with adapter by using memory-mapped read and write 
operations. Configuring the 8255 chip, enabling, and disabling interrupt requests are done 
with a write operation to the 8255 chip. The adapter hardware reset function is performed by 
writing to the Standard 1/0 Programmable Option Select (POS) registers. 

Communications between the system software and the adapter can be initiated by either 
party. The system can send 2 bytes of command and data to the adapter. The adapter has 
two modes of transferring data to the system: non-blocked (single byte) and blocked 
(multiple bytes in sequence). The adapter signals the system that it has information to 
transfer with an interrupt request, if enabled. Alternatively, the system can disable the 
interrupt request and poll the 8255 chip for keyboard and UART port data. 

Sequences of Events for System/ Adapter Communications 
The following paragraphs list the specific, detailed steps used for communications between 
the system software and the 8051 adapter. 

System Initiated Transfer to the 8051 Adapter 
1. System verifies that the 8255 output buffer is not full (by testing its internal flag). 

2. System should set an internal programming flag indicating that the 8255 output buffer is 
full. (The system should reset the flag in an acknowledgement interrupt handler). 

3. System issues an 1/0 write operation to the adapter with the command and data bytes. 

4. The 8255 chip sets the output buffer full (OBF) [PC?= O], which initiates an 8051 
interrupt. 

5. The 8051 interrupt reads the Command register (command must be read before data). 

6. The 8051 interrupt reads the data from the 8255 PA register. 

7. The 8255 chip resets the OBF [PC?= 1], dropping the interrupt to the 8051 chip. 

8. The 8051 interrupt posts the command and data to a work queue. 

9. The 8051 chip exits the interrupt level. 

1 O. The 8051 command execution work queue initiates an interrupt request to the system 
signifying execution status of the command: 

- ID 0: Informational (command accepted or rejected) 

- ID 3: Returning requested byte 

- ID 4: Requested block transfer ready. 

Keyboard/Tablet/Speaker Adapter 7 • 7 



Adapter's 8051 Initiated Transfer to System 
1. The 80S1 chip waits for the input buffer to empty (18F = 0) by testing PCS. 

2. The 80S1 chip writes interrupt ID to 82SS PC bits 2-0. (PC must be written before PA.) 

3. The 80S1 chip writes a data byte to the 82SS PA input buffer. 

4. The 82SS chip sets the 18F to full (18F = 1 ), which raises IRQ to the system. 

5. System accepts the interrupt request. 

6. System reads interrupt ID from 82SS PC register. (PC must be read before PA.) If ID 
equals 8'100'; then go to the block transfer chart. 

7. System reads a data byte from the 82SS PA register (input buffer). 

8. The 82SS chip resets 18F, which drops IRQ. 

9. System processes information and exits the interrupt level. 

Adapter's 8051 Initiated Block Transfer to System 
This sequence transfers multiple bytes of the following kinds of information: 

• Tablet data when in blocking mode 

• Adapter shared RAM dump 

• RAS logs dump. 

The following steps initiate an adapter 80S1 block transfer to the system: 

1. The 80S1 chip waits for the 18F to equal O. 

2. The 80S1 chip writes the interrupt ID 8'100' to PC bits 2-0. 

3. The 80S1 chip writes a block length (byte count) to the 82SS PA input buffer. 

4. The 82SS chip sets the 18Fequal to 1, which raises IRQ to the system. 

5. The 80S1 chip waits for the 18F to equal 0. 

6. System accepts an interrupt request. 

7. System reads interrupt ID 8'100' from the 82SS PC register. 

8. System reads the count from the 82SS PA register. 

9. The 82SS chip resets the 18F, which drops IRQ. 

1 a.System waits (polls) for IRQ to be set (either by sensing IRQ internally in the system 
processor, or by reading the 82SS PC bit S). 

11. The 80S1 chip writes an interrupt ID appropriate to the data to the 82SS PC bits 2-0 
(8'01 O' or 8'011 '). 

12.The 80S1 chip writes a data byte to the 8255 PA input buffer. 

13.The 82SS chip sets the 18F equal to 1, which sets PCS and raises IRQ to·the system (if 
enabled). 

14.The 80S1 chip waits for the 18F to equal 0. 

1 S.System reads interrupt ID from the 82S5 PC register. 

16.System reads a data byte from the 82SS PA register. 

17.The 82SS chip resets the 18F, which resets PCS, which drops IRO. 

7·8 General Information Manual 



18. Repeat the previous 8 steps for the number of data bytes indicated by the count. 

19.System processes information and exits the interrupt level. 

IOW and IOR Operations 
The following chart lists the defined 1/0 Operations to the adapter: 

Host 110 
Operation Address Function Comments 

IOR 0054 Read 8255 PA Input buffer returned 

IOR 0059 Read command Last command returned 

IOR 0055 Read 8255 PB Diagnostic sense 

IOR 0056 Read 8255 PC Low 3 bits= interrupt ID 

IOW 0050 Write 8255 PA Command and data latched 
for execution by 8051 chip 

IOW 0057 Configure 8255 Required data = X'C3' 

IOW 0057 Enable IRQ Required data = X'09' 

IOW 0057 Disable IRQ Required data = X'08' 

IOW 0058 Clear 3-Key system Write any data 
interrupt 

IOR 0058 3-Key system Bit 0 = 1 
interrupt Status 

Read 8255 PA Input Buffer 

Operation 

IOR 

Action 

Address High-Data Byte Low-Data Byte 

0054 PA input buffer 

The 8-bit 8255 PA input buffer contents are returned to system software. 
8255 PC bit 3 is reset, which drops IRQ to the system processor and frees 
the 8255 PA input buffer. 

Pre-Condition The 8255 PA input buffer is valid only when the 8255 PC bit 3 equals 1, 
which initiates an interrupt request to the system processor. 

Comments The meaning of the returned byte is determined by the interrupt ID in PC 
bits 2-0, which must have previously been read. 

Read Command Register 

Operation 

IOR 

Action 

Address High-Data Byte Low-Data Byte 

0059 Command register 

The 8-bit Command register contents are returned to system software. This 
register contains bits 13-8 of the last write operation to the 8255 PA output 
buffer. 

Pre-Condition This register is only valid after a write operation to the 8255 PA output 
buffer. 

Comments The returned byte bits 7-6 are 1 s followed by bifs 13-8 of the command 
written in bits 5-o. 

Keyboard/Tablet/Speaker Adapter 7-9 



Read 8255 PB Port 

Operation 

IOR 

Action 

Address High-Data Byte Low-Data Byte 

0055 Port B inputs 

The following eight signals wired into the 8255 Port B are sensed and 
returned to system software: 

Bit Description 

7 

6 

5 

4 

3 

2 

1 

0 

Reserved 

+Speaker volume bit 1 

+Speaker volume bit O 

-ACK (Acknowledge) 

-STB (Strobe) 

- Tablet/Mouse fuse good 

-Keyboard fuse good 

UART RXD 

Pre-Condition (None) 

Comments 

Read 8255 PC Register 

Operation 

IOR 

Action 

This operation is used during polling operations after the IBF has been 
sensed in the PC register and prior to reading the PA input buffer. For 
diagnostic purposes, it can be issued at any time to dynamically sense the 
state of the eight signals listed previously. 

Address High-Data Byte Low-Data Byte 

0056 PC register contents 

The 8-bit 8255 PC register contents are returned to system software. PC bit 
7 indicates whether the PA output buffer is full (0) or empty (1 ). PC bit 5 
indicates whether PA input buffer is full (1) or empty (0). PC bits 6 and 4 are 
used for hand shaking controls between the 8255 chip and the 8051 chip 
and can be ignored. PC bit 3 is the interrupt request line to the system 
processor. PC bits 2-0 define eight possible interrupt identifier codes for the 
PA input buffer as follows: 

PC7-0 Interrupt ID 
(Binary) Number 

XX1X iOOO 0 

XX1X i001 1 

XX1X i010 2 

XX1X i011 3 

XX1X i100 4 

XX1X i101 5 

XX1X i110 6 

XX1X i111 7 

7-10 General Information Manual 



Where X =don't care bits 
i = 1 if IRQ enabled, or 0 if disabled. 

Refer to "Adapter Initiated Interrupt Request - ID Codes" on page 7-13 for 
an explanation of the interrupt IDs. 

Pre-Condition PC register bits 2-0 are valid only if PC bit 5 equals 1. The 8255 chip resets 
PC bit 5 when the PA input buffer is read. 

Comments This operation determines why interrupt request was initiated by the adapter 
and how the PA input buffer should be interpreted. This operation must be 
issued prior to reading the PA input buffer. This operation can also be used 
prior to writing to the PA output buffer to determine if it is full or empty. 

Write 8255 PA Output Buffer 

Operation 

IOW 

Action 

Address High-Data Byte Low-Data Byte 

0050 8051 command 8051 data 

Two bytes of data are written to the adapter as follows (bit 15 is the most 
significant bit): 

Bits 15-14- Should be set to B'OO' 

Bits 13-8 - Latched in adapter Command register 

Bits 7-0 - Latched in 8255 PA output buffer. 

The 8255 chip resets PC bit 7 (to 0) indicating that the PA output buffer is 
full, which initiates an interrupt request to the 8051 chip. When enabled, the 
8051 interrupt handler first reads the 5 low bits from the Command register 
(bits 12-8), then the 8 bits from the 8255 PA output buffer (bits 7-0). Then 
the 8255 chip sets PC bit 7 (to 1) indicating that the PA output buffer is now 
empty. The 13-bit command and data is posted to an 8051 internal queue 
for subsequent execution. 

Pre-Condition The 8255 PA output buffer must be empty. This can be determined by 
interrogating the state of the 8255 PC bit 7: (0) means full and (1) means 
empty. 

Comments 

Configure 8255 Chip 

Operation 

IOW 

Action 

The 14-bit Command and Data combinations are described in "Adapter 
Commands" on page 7-14. The subsequent 8051 execution handler 
acknowledges the command by initiating an appropriate interrupt ID. 

Address High-Data Byte Low-Data Byte 

0057 X'C3' 

The 8255 chip resets its internal registers (Control, PA, PB, PC). Then the 
data byte is loaded into the 8255 Control register, setting the 8255 chip to 
operate as follows: 

• The PA is a bi-directional port with an output buffer and an input buffer. 

• The PB is an input-only sensing port for diagnostic use. 

• The PC bits 7-4 are handshaking controls for the PA register to the 8051 
chip. 

• The PC bit 5 means the 8255 input buffer is full. 

Keyboardffablet/Speaker Adapter 7-11 



• The PC bit 3 is an interrupt request to the system processor. 

• The PC bits 2-0 are input-only sensing pins set by the 8051 chip. 

Pre-Condition The 8051 chip must be held in its reset state whi.le this configure operation 
is being done. 

Comments This operation is normally issued after the adapter has been reset, either by 
a reset adapter operation, a system reset, or a power-on operation. 

Enable Keyboard and UART IRQ 

Operation 

IOW 

Action 

Address High-Data Byte Low-Data Byte 

0057 X'09' 

The 8255 PC bit 3 is allowed to initiate an interrupt request to the system 
processor when the PA input buffer has been loaded by the 8051 chip. 

Pre-Condition The 8255 chip must have been properly configured. 

Comments This operation is normally issued after the 8255 chip has been configured 
and after an interrupt request had previously been disabled. 

Disable Keyboard and UART IRQ 

Operation Address High-Data Byte Low-Data Byte 

IOW 0057 X'08' 

Action The 8255 PC bit 3 is disallowed from initiating an interrupt request to the 
system processor. 

Pre-Condition (None) 

Comments This operation can be issued to suspend system software and adapter 
communications; adapter and device operations are not directly affected. 
Overrun conditions can occur if the suspension lasts longer than the 
buffering capability of the devices attached, for example, the keyboard and 
tablet. 

Adapter Reset Operation 
Resetting the adapter is a two-step process: first the reset state must be activated, then 
released. The minimum time that the reset must be active is 1 O microseconds. There is no 
maximum time. 

Activate Adapter Reset 
Action The selective reset to the adapter is raised and held active. The 8051 chip is 

held in its reset state. (The 8255 chip is only reset by a power-on 
operation.) 

Pre-Condition (None) 

Comments 

Release Adapter Reset 
Action 

The adapter reset condition is held active until a subsequent release 
adapter reset operation is performed. 

The selective reset to the adapter is dropped. The 8051 chip proceeds to 
perform its internal self-testing and initialization. At the completion of the 
8051 self-testing, a completion code is posted to the shared RAM address 
X'1 C' and to the system in the 8255 chip with an interrupt ID of 6. 

7·12 General Information Manual 



Pre-Condition The adapter selective reset was activated either by an activate adapter 
reset operation, by a system reset, or by a power-on reset. The 8255 chip 
must be configured before the reset operation is released. 

Comments The 8051 chip performs its self-test and initializes RAM to the defined 
defaults. Refer to "Adapter and Keyboard Initialization Procedure" on page 
7-41 for the recommended procedure to initialize the adapter and keyboard. 

Adapter Initiated Interrupt Request- ID Codes 
When the 8051 adapter has information to pass to the system, a 3-bit identification code is 
placed in the 8255 PC register bits 2-0 and a data byte in the PA Input register. Then an 
interrupt request is raised to the system, if enabled. The following table lists the interrupt ID 
codes, and their meanings. 

Interrupt ID 
Number Interrupt Meaning Data Byte Contents 

0 Informational interrupt Information code * 

1 Byte received from keyboard Received byte 

2 Byte received from UART device Received byte 

3 Returning byte requested by system Requested byte 

4 Block transfer ready Byte count 

5 [Unassigned] 

6 8051 self-test performed Completion code 

7 8051 detected an error condition Error code ** 

*Refer to "Adapter Informational Codes Returned to System" on page 7-32. 

**Refer to "Adapter Error Codes Returned to System" on page 7-34. 

Keyboard/Tablet/Speaker Adapter 7-13 



Adapter Commands 
Commands interpreted by the 8051 chip are initiated by the system by way of an 110 write 
operation to the 8255 PA register (output buffer). Command byte bits 4-0 are latched in the 
Command register of the adapter and are decoded by the 8051 chip to determine the 
meaning of the data byte latched in the 8255 PA register. Command byte bits 7-5 are 
diagnostic controls with bit 5 latched in an extension to the Command register. The 
Diagnostic Control bits must normally be B'OOO'. 

Command Byte Decodes 
The following table lists the command byte decodes. 

Command Byte Command Function Data Byte Function 

0000 0000 Select extended command set Extended command (see next 
chart) 

0000 0001 Write to keyboard Byte to be transmitted to 
keyboard 

0000 0010 Write to speaker Tone duration low-byte (num-
ber of 1 /128 second ticks) 

0000 0011 Write UART - control (no Byte to be transmitted to UART 
response) device 

0000 0100 Write UART - query (response Byte to be transmitted to UART 
expected) device 

0000 0101 Set UART baud rate Baud rate counter value 
(default is 9600 bps) 

0000 0110 Initialize UART framing Odd and even parity control and 
blocking factor (default= X'84') 

0000 0111 Set speaker duration Tone duration high-byte 

0000 1000 Set speaker frequency-high Frequency counter high-byte 

0000 1001 Set speaker frequency-low Frequency counter low-byte 

0000 1010 [Unassigned] 

0000 1011 [Unassigned] 

0000 1100 Diagnostic write keyboard port Bit 6 to keyboard data out pin 
pins Bit 7 to keyboard clock out pin 

0000 1101 [Unassigned] 

0000 1110 [Unassigned] 

0000 1111 [Unassigned] 

0001 RRRR Write shared RAM Byte written to 8051 shared 
RAM (low order 4 command 
bits select shared RAM 
address) 

7·14 General Information Manual 



Extended Command Decodes 
The extended command set is decoded by the 8051 chip from the data byte latched in the 
8255 PA register when the Command register equals X'OO'. The following table lists the data 
bY1e decodes for the extended command set. 

Data 
Byte Extended Command Function 

00-1F Read shared RAM (low-order 5 bits equals shared RAM address) 

2M Reset mode bit number M (M = 0-F hex) 

3M Set mode bit number M (M = 0-F hex) 

40-43 Initialize speaker volume: 40 = off, 41 = low, 42 = medium, 43 = high 

44 Terminate speaker and reset duration 

45-4F [Unassigned] 

50 [Not valid] 

51-53 Set scan count for system attention keystroke sequence 
51 : 1 keystroke 
52: 2 keystrokes 
53: 3 keystrokes (default) 

54-5F [Not valid] 

60 Execute 8051 soft reset - force abnormal end code X'AO' 

62 Force system attention interrupt 

61, [Unassigned diagnostics] 
63-6F 

70 Diagnostic sense keyboard and UART port pins returned bY1e: 
bit 0 = UART RXD pin 
bit 2 = keyboard clock in pin 
bit 5 = keyboard data in pin 

71-7F [Unassigned diagnostics] 

80 Dump adapter shared RAM address OO-OF 

81 Dump adapter shared RAM address 10-1 F 

82 Dump RAS Logs, reset activity and error counters 

83 Dump RAS Logs without counter reset 

84-8F [Unassigned] 

90 Restore initial conditions 

91-DF [Unassigned] 

EO-EF Read 8051 release marker 
(low-order 4 bits = bY1e offset into 16-byte release marker) 

FX NOP- adapter only returns an ACK interrupt to system (X =don't care) 

Select Extended Command Set (X'OO') 
The adapter interprets the data byte as an extended command, which does not require an 
associated parameter. Refer to the specific extended command description. 

KeyboardfTablet/Speaker Adapter 7·15 



Write to Keyboard (X'01 ') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'41' Command rejected; adapter is busy with a previous transmission to the 
keyboard (S3 = 1) 

X'43' Command rejected; keyboard interface is disabled (M11 = 0) 

X'44' Command rejected; associated data byte is not valid. 

If the command is accepted, the associated data byte is transmitted to the keyboard. 

The associated data byte to be transmitted to the keyboard must not be the keyboard 
resend command as defined by shared RAM address X'03'. 

Write to Speaker (X'02') 
The adapter acknowledges receipt of the command with an interrupt ID of 0 and an 
Informational Code indicating acceptance or rejection of the command: 

Code Description 

X'01' Command accepted; speaker started 

X'04' Command accepted; parameters queued 

X'47' Command rejected; duration that is not valid specified 

X'48' Command rejected: frequency count value that is not valid specified 

X'4A' Command rejected; speaker queue full (S7 = 1 ). 

If the speaker queue is full, the command is rejected with code X'4A'; otherwise, the 
associated data byte is written to static random access memory (SAAM) address X'02' as 
the pending duration (low) and S7 is set on to indicate that speaker parameters have been 
queued. (It is assumed that pending duration (high) and pending frequency have been 
previously set in SAAM addresses X'01', X'15', and X'16', respectively.) 

If the speaker facilities are busy (SO = 1 or S 1 = 1), the command is accepted with a 
parameters queued acknowledgement. When the facilities become available, these queued 
parameters are validated and activated. 

Otherwise, if speaker facilities are currently available, S7 is set off. The pending frequency 
and duration parameters are validated and, if not valid, an appropriate command reject code 
is returned. Valid speaker parameters are activated and the command is accepted with a 
speaker started acknowledgement. 

(Refer to "Speaker Functional Description" on page 7-27.) 

Write to UART Device (X'03' and X'04') 
The adapter acknowledges receipt of the command with an interrupt ID of 0 and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'4B' Command rejected - UART interface is disabled (M12 = 0) 

X'4C' Command rejected - adapter is busy with a previous write to UART (S4 = 
1 ). 

7-16 General Information Manual 



If the command is accepted, the associated data byte is transmitted to the UART (tablet) 
device. 

The adapter has dual internal buffers for blocking reports received from a tablet device. 
Each buffer has a 6-byte length in order to receive a device report up to 6 bytes long. One 
buffer can be in the process of being transferred to the system while the other is being filled 
by a report from the device. If the device attempts to start a third report while the two buffers 
are busy, the third report (and all subsequent ones) are discarded until a buffer is available. 

The MS mode bit specifies whether blocking of received reports is active or inactive. When 
inactive (MS = 0), a byte received from the device is passed on to the system. When 
blocking is active (MS = 1), then report bytes received are buffered and blocked according to 
the blocking factor in SRAM address X'19'. Bytes of a blocked report are only transferred to 
the system when the complete report has been received by the adapter. 

If the adapter detects a parity error on a report byte being received from the tablet, the 
adapter discards that report. 

Write UART - Control (X'03') 
All UART device commands not having a defined response must be issued with the write 
UART - control command to the adapter. 

Write UART - Query (X'04') 
All UART device commands having a defined response must be issued with the write UART 
- query command to the adapter. lf,a device command requiring a response is sent and no 
response is received within 2S milliseconds, an error has occurred. The adapter returns the 
device error code X'EA' to the system. 

Set UART Baud Rate (X'05') 
The adapter acknowledges receipt of the command with an interrupt ID of 0 and an 
informational code of X'OO' indicating acceptance of the command. The associated data byte 
is written to SRAM address X'1 B' and is a counter value used to control the UART transmit 
and receive baud rate. The valid rate is determined by the UART device plugged. The 
default rate is 9600 bits per second. 

The counter value in SRAM address X'1 B' is related to the baud rate according to the 
following formula: 

Osc 
Counter value = 256 - ----

192 * Baud 

Where: Counter value= positive number rounded to an integer less than 2S6 
Osc = 80S1 oscillator frequency (Hz) 
Baud = desired baud rate (bits per second). 

For an assumed OSC value of 9.216 MHz, valid baud rates and corresponding counter 
values can be tabulated as follows: 

Baud Rate 

24,000 
9,600 
4,800 
2,400 
1,200 

600 
300 

Counter (decimal) 

2S4 
2S1 
246 
236 
216 
176 
96. 

Keyboard/TableVSpeaker Adapter 7-17 



Initialize UART Framing (X'06') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'4E' Command rejected - invalid framing parameter. 

If the command is accepted, the associated data byte is written to SAAM address X'19'. It is 
used to control the parity generation and checking for UART transmission and reception, and 
to specify the number of bytes in the report received from the UART device. The framing 
parameter is defined as follows: 

Bits Description 

7 

6-3 

2-0 

1 =odd parity (default); O =even parity 

Must be O's 

Blocking factor; valid values are 2, 3, 4 (default), 5, or 6. 

Note: The blocking factor must match the report length of the tablet device when blocking 
is active (M5 = 1 ). 

Set Speaker Duration - High Byte (X'07') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'4A' Command rejected - Speaker queue full (S7 = 1 ). 

If the command is accepted, the associated data byte is written to SAAM address X'01' as 
the pending speaker duration - high byte. Note that no validation of the duration value is 
performed until the speaker parameters are activated. 

(Refer to "Speaker Functional Description" on page 7-27.) 

Set Speaker Frequency - High and Low Byte (X'OS' and X'09') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'4A' Command rejected - speaker queue full (S7 = 1 ). 

If the command is accepted, the associated data byte is written to SAAM address X'15' for 
high byte command X'08', or SAAM address X'16' for low byte command X'09', as the 
pending speaker frequency. Note that no validation of the frequency value is performed until 
the speaker parameters are activated. 

(Refer to "Speaker Functional Description" on page 7-27.) 

7-18 General Information Manual 



Diagnostic Write Keyboard Port Pins (X'OC') 
The adapter acknowledges receipt of the command with an interrupt ID of 0 and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'51' Command rejected - illegal mode (M1 O = 0). 

This command is executed only in diagnostic mode. Data byte bit 7 is written to the 
keyboard clock line and data byte bit 6 is written to the keyboard data line. These values are 
kept on the indicated keyboard interface lines until the interface is cleared or a subsequent 
diagnostic write keyboard port pin alters them. 

Write Shared RAM (X'1 R') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code of X'OO' indicating acceptance of the command. The associated data byte 
is written to the SRAM address specified by the low 4 bits of the command byte, which 
address the read or write shared RAM addresses X'OO' through X'OF'. 

Extended Command Descriptions 
The following section describes the extended commands for the keyboard tablet speaker 
adapter. 

Read Shared RAM (X'OO' - X'1 F') 
The adapter acknowledges the command by returning an interrupt ID of 3 and an associated 
data byte containing the contents of the SRAM address specified by bits 4-0 of the extended 
command byte. The command allows system software to read any single byte of read, write, 
or read-only shared RAM addresses X'OO' through X'1 F'. 

Reset Mode Bit (X'20' - X'2F') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'51' Command rejected- illegal mode (M10 = 0). 

If the command is accepted, the designated mode bit in shared RAM is cleared (set to X'O'). 
The mode bit affected is determined by the decimal value of the extended command byte 
bits 3-0, for example, mode bits O through 15. 

Resetting of mode bit M11 can only be done while in diagnostic mode (M10 = 1); otherwise, 
the command is rejected. 

Set Mode Bit (X'30' - X'3F') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code of X'OO' indicating acceptance of the command. The designated mode bit 
in shared RAM is set to 1. The mode bit affected is determined by the decimal value of the 
extended command byte bits 3-0, for example, mode bits O through 15. 

Keyboard!TableVSpeaker Adapter 7-19 



Initialize Speaker Volume {X'40' - X'43') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code of X'OO' indicating acceptance of the command. The speaker volume 
controls, and the associated mode bits B and 9, are set according to the specific command: 

Code Description 

X'40' Speaker volume = Off; M9, MB = 00 

X'41' Speaker volume = Low; M9, MB = 01 

X'42' Speaker volume = Medium; M9, MB = 1 O 

X'43' Speaker volume= High; M9, MB= 11. 

The volume controls remain set until altered by a subsequent initialize speaker volume 
command, a set or reset of mode bits B or 9, or an adapter reset. 

Volume commands are immediately executed, for example, volume is not a queued 
parameter. 

Terminate Speaker and Reset Duration (X'44') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating the current state of the speaker: 

Code Description 

X'02' Speaker was already inactive (S1 = O); no action taken 

X'03' Speaker was active and has been terminated. 

Speaker termination clears Status bits SO and S1, the speaker duration ticks in SAAM 
addresses X'13' and X'14', and clears the adapter speaker frequency input signal (allowing 
other features to control the speaker frequency). 

Status bit S7 is set off, indicating no speaker command queued. Any values in SAAM 
addresses X'01 ', X'02', X'15', and X'16' are not affected. 

Set Scan Count for System Attention Keystroke Sequence (X'5S') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'50' Command rejected - invalid count specified. 

If the command is accepted, the indicated scan count (S) is set in SRAM address X'17' and 
the state of the system attention keystroke sequence is reset. The extended command byte 
bits 3-0 are interpreted as a scan count for the system attention keystroke sequence. Valid 
values for Sare: 1, 2, or 3 (default). 

Execute 8051 Soft Reset (X'60') 
If the adapter is not in the diagnostic mode (that is, if M10 = 0), the command is rejected by 
returning an interrupt ID of O with an informational code of X'51': Illegal Mode. 

If the adapter is in the diagnostic mode (M1 O = 1 ), an abnormal end condition is forced. An 
interrupt ID of 7 with an abnormal end code of X'AO' is returned to the system, plus two 
additional bytes, each with an interrupt ID of 7. The adapter then re-initializes the B051 chip, 
performs the self-tests, and reports the self-test completion code with an interrupt ID of 6. 
At the conclusion of this command, the adapter is in normal operations with SRAM set to the 

7 ·20 General Information Manual 



defined defaults and the device interfaces cleared. (Refer to "Abnormal End Codes" on page 
7-34.) 

Force System Attention Interrupt (X'62') 
If the adapter is not in the diagnostic mode (that is, if M1 O = 0), the command is rejected by 
returning an interrupt ID of O with an informational code of X'51 ': Illegal Mode. 

If the adapter is in diagnostic mode (M 1 O = 1 ), an immediate system attention interrupt is 
forced. This command performs the identical function initiated by the system attention 
special keystroke sequence except that no final scan code is queued nor placed in SAAM 
address X'1A'. This command ends by returning an interrupt ID of O with an informational 
code of X'OO'. 

Diagnostic Sense Keyboard and UART Port Pins (X'70') 
If the adapter is not in diagnostic mode (that is, if M10 = 0), the command is rejected by 
returning an interrupt ID of O with an informational code of X'51 ': Illegal Mode. 

If the adapter is in diagnostic mode (M10 = 1), an interrupt ID of 3 is returned with an 
associated data byte defined as follows: 

Bit Description 

0 

1 

2 

3 

4 

5 

6 

7 

State of UART 'Receive Data' (RXD) input signal 

0 

State of 'Keyboard Clock In' input signal 

0 

0 

State of 'Keyboard Data In' input signal 

0 

0. 

Dump Adapter Shared RAM (X'SO' and X'81 ') 
The adapter acknowledges receipt of the command with an interrupt ID of 0 and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'60' Command rejected - RAM queue is busy with prior dump command. 

If the command is accepted, a 16-bit block of shared RAM is queued for transmission to the 
system. The command X'80' queues the read or write SAAM addresses X'OO' - X'OF'; the 
command X'81' queues the read-only SAAM addresses X'1 O' - X'1 F'. When the queued 
block is ready for transmission to the system, an interrupt ID of 4 with an associated data 
byte containing the byte-count (16) is returned. Then each SAAM byte is returned, in 
sequence, with an interrupt ID of 3. 

Subsequent dump adapter SRAM or dump RAS logs commands are rejected until the 
currently queued block has been transmitted. 

KeyboardfTablet/Speaker Adapter 7-21 



Dump RAS Logs With or Without Reset (X'82' and X'83') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code indicating acceptance or rejection of the command: 

Code Description 

X'OO' Command accepted 

X'60' Command rejected - RAM queue is busy with prior dump command. 

If the command is accepted, a 12-byte block of RAS Logs information (SAAM addresses 
X'20' - '28') is queued for transmission to the system. When the queued block is ready for 
transmission to the system, an interrupt ID of 4 with an associated data byte containing the 
byte-count (12) is returned. Then each SAAM byte is returned, in sequence, with an 
interrupt ID of 3. After the block has been transmitted, and if the operation was initiated with 
command X'82', then SAAM addresses X'20' - '28' is zeroed out. Otherwise, SAAM is not 
affected. 

Subsequent dump adapter SRAM or dump RAS Logs commands are rejected until the 
currently queued block has been transmitted. 

Restore Initial Conditions (X'90') 
The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code of X'OO' indicating completion of the command. Shared RAM addresses 
X'OO' through X'1 B' are initialized to the defined default conditions. The speaker command 
queue is cleared and any active speaker operation Is terminated. All queued keyboard and 
tablet input data is cleared and the respective interface controls reset to initial conditions. 

This command does not affect RAS Logs or the attached keyboard and tablet devices. The 
8051 self-tests are not performed. This command does not clear certain types of information 
that may be, or have been, queued for transmission to the host (for example, error code, 
status report informational code, or requested RAM block). 

Read 8051 Release Marker (X'EO' - X'EF') 
The adapter acknowledges the command by returning an interrupt ID of 3 and an associated 
data byte containing the contents of the selected Release Marker byte in 8051 ROM. The 
particular byte is specified by bits 3-0 of the extended command byte. Each command 
allows system software to read the corresponding single byte of the 16-byte Release Marker 
field defined as follows: 

Bytes 

0- 1 

2- 7 

8-11 

12-13 

14-15 

NOP (X'FO' - X'FF') 

Description 

VV: Version number of 8051 code (2-character ASCII) 

MMDDYY: Date of 8051 Version, Month, Date and Year (6-character ASCII) 

SSSS: Unique serial number of 8051 chip (32-bit binary number) 

KK: Check sum on serial number field (16-bit binary number) 

ZZ: Check sum on entire 8051 ROM (16-bit binary number). 

The adapter acknowledges receipt of the command with an interrupt ID of O and an 
informational code of X'OO' indicating acceptance of the command. The low 4 bits of the 
extended command byte are ignored. This command performs no other function. 

Functional Description and Allocation Map 
(Refer to "8051 RAM Allocation" on page 7-40.) 

7-22 General Information Manual 



Read-Shared RAM 

SRAM Number of Initialized 
Address Read or Write Shared RAM Data Bytes Value 

00 Keyboard acknowledge byte 1 FA 

01-02 Pending speaker duration ticks 2 0000 

03 Keyboard resend command 1 FE 

04 Keyboard break code 1 FO 

05 Maximum retry count before a keyboard hard 1 08 
error is reported 

06 Keyboard echo command 1 EE 

07 Click duration 1 36 

08 Click suppress scan code number1 1 12 

09 Click suppress scan code number 2 1 59 

OA Click suppress scan code number 3 1 39 

OB-OC Click frequency - high or low 2 0896 

OD Keystroke initiate system attention - scan 1 11 
number 1. Also, click suppress scan code 
number 4. 

OE Keystroke initiate system attention - scan 1 19 
number 2. Also, click suppress scan code 
number 5. 

OF Keystroke initiate system attention - scan 1 FF 
number 3. (The default is "any scan match.") 

Keyboard/TableVSpeaker Adapter 7-23 



Modes and Status Bits in Shared RAM 

SRAM 
Address MIS Initialized 
/Bit Bit# Adapter Mode and Status Bits Value 

10.0 MO Report receipt of keyboard acknowledgement byte O=NO 
with an informational interrupt 

10.1 M1 Report completion of UART transmit with an 0= No 
informational interrupt 

10.2 M2 [Unassigned] 

10.3 M3 Report completion of speaker tone with an 1 =Yes 
informational interrupt 

10.4 M4 [Unassigned] 0 

10.S MS Blocking of received UART bytes is active. 1 =Yes 

10.6 M6 System attention keystroke SEQ search is active. 1 =Yes 

10.7 M7 Suppress click for defined scan code set. 0= No 

11.0 MS Speaker volume bit O 0= Med 

11.1 M9 Speaker volume bit 1 1 =Med 

11.2 M10 Diagnostic mode is in effect. 0= No 

11.3 M11 Keyboard interface is enabled with clear. 1 =Yes 

11.4 M12 UART interface is enabled with clear. 0 =No 

11.S M13 [Unassigned] 

11.6 M14 Inhibit keystroke auto-click 1 =Yes 

11.7 M1S Ignore UART input (manufacturing test only) 0 =No 

12.0 so Speaker frequency timer busy 0 

12.1 S1 Timeout timer busy 0 

12.2 S2 [Unassigned] 0 

12.3 S3 Keyboard transmit is busy. 0 

12.4 S4 UART transmit is busy. 0 

12.S SS Click busy 0 

12.6 S6 [Unassigned] 0 

12.7 S7 Speaker queue full 0 

Notes: 

1. Mode bits can be altered using the set mode bit and reset mode bit command. 
Status bits are read-only. Mode bits 0-3 enable the corresponding bits in the 
status report informational codes (refer to this section on page 7-34). 

2. Setting mode bit 11 or 12 clears the keyboard or UART interface, respectively, 
even if the mode bit was already set. Mode bit 11 can be cleared only in diagnostic 
mode. The keyboard interface should not normally be disabled. 

3. Mode bit 1 S = 1 causes the adapter to discard all data received by the UART port. 

7-24 General Information Manual 



Read-Only Shared RAM 

SRAM Number of Initialized 
Address Read or Write Shared RAM Data Bytes Value 

13-14 Active speaker duration ticks remaining. 2 0000 

15-16 Pending speaker frequency - high/low 2 0000 

17 Scan count for system attention keystroke 1 03 
sequence (maximum #of scan codes is 3). 

18 Keyboard sequence state 1 00 
High 4 bits= system attention sequence state 

19 UART framing: 1 84 
MSB =odd/even parity control (1 =odd) 
Low 3 bits = blocking factor (valid: 2 to 6) 

1A System attention scan code- actual third byte 1 00 
received in a 3-byte sequence. 

18 UART baud rate (counter reload value) 1 FB 
defaults to 9600 bps. See note 3. 

1C Actual 8051 self-test completion code (value 1 AE 
indicated is for the "good machine". See note 
2. 

1D-1E 8051 abnormal end information 2 0000 

1F Error code for most recent interrupt ID of 7. 1 00 
See note 1. 

Notes: 

1. Refer to "Adapter Error Codes Returned to System" on page 7-34. 

~ 2. Refer to "Adapter Self-Test After a Power-On, System, or Adapter Reset Operation" on 
page 7-32. 

3. Refer to "Set UART Baud Rate" on page 7-17. 

Keyboardffablet/Speaker Adapter 7-25 



RAS Logs in Shared RAM 

SRAM Number of 
Address Read-Only Shared RAM - RAS Logs Bytes 

20-21 Number of keyboard frames received divide by 16 (not a 2 
keystroke count) 

22-23 Number of keyboard receive retries performed (includes 2 
those resulting in hard errors) 

24 Number of keyboard receive hard errors 1 

25 Number of keyboard frames transmitted 1 

26 Number of keyboard transmit retries performed (includes 1 
those resulting in hard errors) 

27 Number of keyboard transmit hard errors 1 

28-29 Number of UART frames (bytes) received divided by 16. 2 

2A Number of UART frames transmitted 1 

28 Number of UART receive errors (number offrames received 1 
with bad parity 

Notes: 

1. Logs are read-only by way of the dump RAS logs commands. All counters are zeroed 
upon completion of the dump RAS logs with reset command or an 8051 reset 
operation. 

2. Each counter is an 8-bit or 16-bit binary value. Due to the large number of keyboard or 
UART frames received, those two counters are incremented only once per 16 frames 
received. 

7-26 General Information Manual 



Adapter Speaker Control 
The speaker resides in the system keyboard. It is completely controlled and powered by the 
adapter board. The speaker interface on the Standard 1/0 Board contains circuits to control 
the volume of the frequency signal. Both the adapter and Micro Channel audio signal have 
access to the speaker interface. 

The adapter implements the logical speaker functions used by system software, including 
frequency, duration, and volume parameters. The speaker functions are command-driven 
and queued. The adapter also implements a keystroke click tone for the keyboard. 

Sharing of Speaker Input With the Micro Channel Audio Signal 
The Micro Channel audio signal activates the speaker through the interface circuits on the 
Standard 1/0 Board. This is an audio voltage sum node. This signal is ORed with the signal 
from the adapter. The quiescent state of the signal is a high voltage level (logical X'1 '). Either 
the adapter or audio signal can alter it. No form of interlocking is provided to prevent one 
source from driving the speaker signal while the other source is driving it. 

Speaker Frequency Control 
The speaker frequency is set by system software. Commands allow for a 2-byte count value 
to be sent to the adapter. The adapter uses the count value to initialize internal counters, 
which control a speaker frequency signal driving the adapter input to the speaker interface 
OR circuit. System software sends the count value to the adapter using the set speaker 
frequency commands with high-byte and low-byte values sent separately. 

The permissible range of the count value provides a speaker input frequency range from a 
maximum of 12019 Hz to a minimum of 23 Hz. 

The 2-byte count value used by the adapter is related to the generated speaker frequency 
according to the following formulas: 

F 
N = 11 - log (9216000 * OSC ) 

Cx = 2 exp[ N] 

Ct = OSC/(24 * F) - KO _ Kt 

Cx 

Where: 
Cx = 
Ct 
log = 
F 
osc = 
[NJ = 

KO 
Kt 

= 
= 

Limitations: 

Exception: 

Cx = 
Ct 

Count value, high byte 
Count value, low byte 
Base 2 logarithm function 
Desired speaker frequency (Hz) 
8051 oscillator frequency (Hz) 
The exponent on the number 2 where the brackets mean that N is 
to be rounded to an integer and if [NJ > 0, then use [NJ, otherwise, use 
0. 

3.7 (a constant) 
9.25 (another constant). 

Element of the set: (1, 2, 4, 8, 16, 32, 64) 
Integer in the range [19, 255] for Cx = 1, the range [120, 255) if 
otherwise 

A Cx value of O provides a silent tone. See the following note. 

Keyboard/Tablet/Speaker Adapter 7-27 



Example: 
F = 
OSC= 
N = 
Cx = 
Ct = 

2500 Hz = 
9.216 MHz = 
-0.29, so [NJ = 
1 
141 

Desired speaker frequency 
Assumed 8051 oscillator 
0 

For the assumed OSC frequency of 9.216 MHz, the formulas for Cx and Ct can be simplified 
and tabulated as follows: 

Frequency Range (Hz) ex (decimal) Ct Formula 

23-45 64 (6000 I F) - 9.31 

46-90 32 (12000 IF) - 9.37 

91 - 181 16 (24000 I F) - 9.48 

182-362 8 (48000 IF) - 9.71 

363-724 4 (96000 I F)-10.18 

725-1432 2 (192000 I F) - 11.10 

1433-12019 1 (384000 I F) - 12.95 

Note: A timed period of silence can be obtained by setting the frequency count value to 0. 
Specifically, if the frequency - high byte Cx = 0, the low byte Ct is ignored. The 
speaker operation is executed exactly as for any valid frequency, except that the 
frequency signal pin from the 8051 chip to the speaker is held in its quiescent state. 

Speaker Duration Control 
A speaker tone duration is specified by the system as the number of duration ticks where 
each duration tick is 1 /128 of a second. Duration ticks are specified as a 15-bit number with 
a permissible range from Oto 32767, for example, X'OOOO' through X'7FFF'. The actual 
number of duration ticks is one greater than the number specified, providing a tone duration 
from 7.8 milliseconds to 256 seconds. System software must first specify the tone 
duration-high byte, then issue the write to speaker command specifying the duration-low 
byte. 

Speaker Volume Control 
The adapter controls the speaker volume for both the adapter use of the speaker and the 
Micro Channel adapter use. System software must ensure that only one source is driving the 
frequency control. In either case, system software must use the adapter function to specify 
the speaker volume level. 

Four levels of volume are available: off, low, medium, and high. The adapter initializes itself 
to medium after a reset operation. System software can alter this setting at any time. The 
adapter retains the last setting in the 8051 shared RAM mode bits 8 and 9 as follows: 

M9,8 Volume 

8'00' Off 

8'01' Low 

8'10' Medium (default) 

8'11' High 

7-28 General Information Manual 



Speaker Command Queue Description 
Execution of the write to speaker command is queued if the speaker facilities are busy 
doing a click or a previous speaker command. Speaker commands are rejected if a Write to 
Speaker command is currently queued, for example, if the queue consists of one set of 
parameters (frequency and duration). When speaker parameters are written to the adapter, 
they are initially pending (queued). They become active when speaker facilities are 
available. 

A keystroke click occurs only if speaker facilities are immediately available, for example, the 
click is not queued. 

Speaker volume is assumed to be a global parameter under user control. As such, it is not 
queued. Speaker volume commands are immediately executed. 

Functional Operation 
Commands to set frequency (high and low bytes) and duration (high byte) place these 
parameters in the queue as pending. The commands are rejected if the queue is full. 

The write to speaker command places the duration (low byte) parameter in the queue as 
pending, with an implied request to activate the speaker using the pending parameters. The 
command is rejected if the queue is full. 

Normal response to the write to speaker command is either speaker started or parameters 
queued. 

Implementation 
Speaker command queueing uses the following adapter resources: 

• SAAM address X'01-02' =pending duration high and low. 

(Active duration is maintained in SAAM address X'13-14'.) 

• SAAM address X'15-16' =pending frequency high/low. 

(Active frequency kept in private RAM.) 

• Status bit S7 defined as speaker queue full 

• Status report informational code bit 3; set on if speaker parameters (frequency or 
duration) are invalid: 

- When a keystroke click occurs (frequency only) 

- OR 

- When the pending speaker command is dequeued. 

Note: Parameters are not validated until actually activated. 

Keystroke Click Description 
The keyboard defined in the referenced specification does provide a mechanical acoustical 
feedback for a key button being depressed. The adapter can also provide a keystroke 
auto-click function that generates a click tone whenever a valid scan code is received. The 
resulting clicks only represent a replacement for a mechanically generated keyboard click. 
The adapter-generated click only means that the adapter has received a valid scan code 
and queued it to the system. The click cannot be interpreted to mean that the system 
software has received the keystroke. 

Keyboard/Tablet/Speaker Adapter 7-29 



Functional Operation 
The keystroke auto-click function defaults to inactive. It can be enabled by setting mode bit 
M14 off. The click defaults to a 301 Hz tone for 1.68 msec. The click frequency and duration 
can be respecified by system software. 

A keystroke click is Initiated only when the adapter receives the make of any valid scan code 
and queues It to the system. Valid scan codes are those in the range X'01' through X'9F'. 

If the byte received from the keyboard Is a break code, then the next byte received does not 
Initiate a click. 

If the keystroke queue Is full when a keyboard byte is received, then the adapter replaces 
the last byte in the queue with the overrun code X'OO', discards the current byte received, 
and does not initiate a click. 

Implementation 
The keystroke auto-click function uses the following adapter resources: 

• SAAM address X'07' = click duratlq'n 
I 

• SAAM address X'OB-OC' = click fr,equency 

• Mode Bit M14 defined as Inhibit keystroke auto-click 

• Status report informational code bit 3 is set on if the click frequency In SAAM is not valid 
when the keystroke auto-click function is initiated. 

The click duration Is specified by SAAM address X'07' as a count of 30.52 microsecond 
ticks. The count in SAAM is an 8-bit number. The actual number of duration ticks is one 
greater than the number specified in SAAM, providing a range of click durations from 30.52 
microsecond to 7.8 millisecond In 30.52 microsecond increments. 

The click frequency is specified by SAAM addresses X'OB' - 'OC'. These two bytes are used 
as the frequency counter values Cx and Ct, respectively. They are interpreted by the adapter 
exactly as for any other speaker frequency. They must adhere to the same rules as specified 
in the section "Speaker Frequency Control" on page 7-27. Cx = O is not valid, in other words, 
click cannot be the silent tone. 

If an click frequency that is not valid is written to SAAM and the adapter attempts to click due 
to a keystroke, no click occurs. An unsolicited status report informational code byte with bit 3 
on is posted to the system. 

Click Suppression for Defined Scan Code Set 
The keystroke auto-click function can be suppressed for a definable set of five scan codes 
by setting mode bit M7 = '1'. The default set of scan codes is defined by the five SAAM 
addresses X '08 thru OA', 'OD', and 'OE'. (Note that the last two locations also define the 
system attention interrupt sequence.) A scan code can be deleted from the suppress set by 
setting its corresponding SAAM location to X'FF'. 

Ciiek Interference with other Speaker Operations 
If the adapter's speaker facilities are busy with a previous speaker command when a click is 
to be initiated, then no click occurs. It is ignored. Conversely, if the speaker is busy with a 
click, and the system issues a write to speaker command, then the parameters for that 
command are queued and activated when the click completes. 

The adapter has no knowledge of a Micro Channel device using the speaker. Consequently, 
if the Micro Channel device is using the speaker and the adapter issues a click, the sound 
observed is a combination the Micro Channel device-generated tone and the click tone. 

7-30 General Information Manual 



Adapter RAS and Security Functions 
The following sections describe the RAS and security functions provided for by the adapter. 

Detection of Special Keystroke Sequences 
As keystrokes pass from the keyboard to the system through the adapter, the adapter 
searches for a special sequences of scan codes. The sequence causes the adapter to 
initiate a system attention interrupt. The scan code received by the adapter is always 
presented to the system with an interrupt ID of 1. 

Initiate System Attention Interrupt 
The adapter is able to force the system attention interrupt signal to the system. This signal is 
initiated by a unique 3-keystroke sequence. The system attention interrupt default keystroke 
sequence can be redefined or disabled by the system software. 

Incoming keystrokes are searched by the adapter for the special sequence whose default is 
as follows: · 

1. Scan Code X'11 '. 

2. Scan Code X'19'. 

3. Match on any scan code other than X'62'. 

Key position requirements: first two keys must be make or break. 

When the sequence is detected, an immediate system attention interrupt is initiated. The 
sequence search can be disabled by the system software setting mode bit M6 off. When 
enabled, the sequence search is always active (except when the keylock switch is on, or if 
system software has disabled the keyboard interface with M 11 = 0, or has disabled keyboard 
scanning). The system can alter the keystroke sequence searched, and the length of the 
sequence can be one, two, or three keystrokes. 

Read or write SRAM defines the three scan codes. If the sequence length is 2 or 3, then the 
first two scan codes can appear in either order. If the sequence length is 3 and scan number 
is 3 in SRAM = X'FF' (default conditions), then the sequence detection is satisfied when any 
third scan code is received (other than a break code). The third scan code received of a 
length-3 sequence is always placed in read-only SRAM address X'1 A' before the system 
attention interrupt is initiated by the adapter. 

Individual activity counters maintain counts of frames received and transmitted through the 
keyboard and tablet UART ports. Retry counters accumulate counts of keyboard retries 
performed. Individual error counters accumulate the number of hard errors for the keyboard 
and tablet UART ports. 

The keyboard and speaker ports can be diagnostically wrapped or sensed at the signal 
points that leave the system board. No external wrap connectors are required. Also, UART 
port signals can be diagnostically sensed. The 8051 chip performs a self-test function after 
a system reset. Self-tests can also be performed on command from the system. 

The adapter initiates retry operations with the keyboard on transmit and receive errors. The 
number of retries performed can be redefined by system software. The adapter returns 
8051-detected error conditions to the system where additional error recovery procedures 
can be performed. 

KeyboardfTablet/Speaker Adapter 7·31 



Diagnostic Wraps 
Certain adapter port signals can be diagnostically sensed through the following mechanisms: 

• Extended command X'70':= (refer to page 7-21.) 

• Reading 8255 PB Port:= (refer to page 7-10.) 

Adapter command byte bit 5 = 1 causes the UART 'TxD' signal to be wrapped to the UART 
'RxD' signal on the system board at the 8051 pins. To wrap a byte, use the write UART­
control {X'23') adapter command with any desired data byte. That data byte is then read at 
the UART RxD pin and posted to the system with an interrupt ID of 2. 

Adapter Self-Test After a Power-On, System, or Adapter Reset 
Operation 

The following 8051 facilities are tested: 

• 8051 ROM checksum 

• 8051 RAM 

• 8051 internal registers. 

As the tests in this self-test series are executed, a bit-significant completion code is 
generated. The code is initialized to X'51' and, as each test completes, the corresponding bit 
is complemented if the test was successful.Tests are executed and bits are complemented 
from most- to least-significant with bit meanings as follows: 

Bit Description Meaning 

7 

6 

5 

4 

3 

Reset initiation indicator 

Accumulator and PSW test 

ROM checksum test 

RAM test with X'Af\ data 

RAM test with X'55' data 

1 = initialized by a hardware reset * 

o = test passed OK 

1 = test passed OK 

O = test passed OK 

1 = test passed OK 

2 RAM test - addressing 1 = test passed OK 

1 RAM test with X'OO' data 1 = test passed OK 

O Control registers checksum test O = test passed OK 

Thus, if all tests pass successfully, the resultant completion code is X'AE'. The completion 
code is stored in read-only shared RAM address X'1 C' and posted to the system in the 8255 
chip with an interrupt ID of 6. 

* A hardware reset is initiated by a system power-on, system reset, or adapter reset 
operation. If bit 7 = 0, then the self-test was initiated by the 8051 chip having forced an 
abnormal end to the normal operations. (Refer to "Abnormal End Codes" on page 7-34.) 

Diagnose Functions Executed on System Command 
• Execute 8051 soft reset (extended command X'60'); force abnormal end code X'AO', 

perform self-tests, and report the completion code with an interrupt ID of 6 

• Force system attention interrupt (extended command X'62'). 

Adapter Informational Codes Returned to System 
The data byte associated with interrupt ID of O is an informational code. Informational codes 
are classified as: 

7 ·32 General Information Manual 



• Acknowledgement 

• Command reject 

• Status report. 

Acknowledgement Informational Codes 
One of the following codes is returned as the data byte associated with interrupt ID of O to 
acknowledge receipt of an adapter command from the system. 

X'OO' Host command acknowledged. 

X'01' Speaker started. 

X'02' Speaker inactive. 

X'03' Speaker terminated. 

X'04' Speaker parameters queued. 

Command Reject Informational Codes 
If the adapter rejects a command from the system, it does so by returning one of the 
following codes as the data byte associated with interrupt ID of o. 

Reject Code Command Handler Issuing 

X'41' = Reject keyboard transmit busy Write keyboard operation 

X'43' = Reject keyboard disabled Write keyboard operation 

X'44' = Reject invalid keyboard data Write keyboard operation 

X'47' = Reject invalid speaker duration Write keyboard operation 

X'48' = Reject invalid speaker freq Write keyboard operation 

X'4A' = Reject speaker queue full Write keyboard operation 

X'4B' = Reject UART disabled Write UART operation 

X'4C' = Reject UART transmit busy Write UART operation 

X'4D' =Reject invalid baud Set UART baud rate operation 

X'4E' = Reject invalid framing Set UART baud rate operation 

X'SO' = Reject invalid count Set sequence A length operation 

X'51' = Reject illegal mode Diagnostic and diagnostic sense operation 

X'60' = Reject ram queue busy Dump RAM block operation 

X'7F' = Reject undefined operation 

Keyboard/Tablet/Speaker Adapter 7-33 



• 

Status Report Informational Codes 
The adapter can send an unsolicited status report informational code to the system with 
interrupt ID of O. A status report code is distinguished from acknowledgement and command 
reject codes by having the most significant bit of the byte set on. The remaining bits of the 
status report byte are bit-significant. The bits are defined as follows: 

Bit Condition 

7 = 1 (Status report identifier) 

6 = Speaker tone completed 

5 = Keyboard returned Ack 

4 = Unassigned 

3 = Invalid speaker parameter 

2 = UART transmit complete 

1 = RAS log near overflow 

0 = RAS log overflowed. 

Conditioned by M3=1 

Conditioned by M0=1 

(Click or queued frequency or 
duration) 

Conditioned by M1 =1 

Adapter Error Codes Returned to System 
The data byte associated with interrupt ID of 7 is an error code. Error codes are classified 
as: 

• Abnormal end codes 

• Device error codes. 

Abnormal End Codes 
An abnormal end code occurs when the adapter has detected an unrecoverable error 
condition and forced an abnormal end to normal operations. The data byte (abnormal end 
code) provides the nature of the specific condition detected. When the abnormal end code 
has been read by the system, 2 additional bytes are provided by the adapter with an 
interrupt ID of 7 that define the 8051 microcode address, which detected the condition. After 
the microcode address has been transferred to the system, or if the 8051 chip times out 
waiting for the system, the 8051 chip re-initializes itself and attempts to restore normal 
operations. The 8051 shared RAM is reset to its default state. After the soft reset self-test 
has been performed by the 8051 chip, the completion code is reported with an interrupt ID of 
6. Note that the high order bit of the completion code is off, indicating a soft reset of the 8051 
chip rather than a hardware-initiated reset. 

System Action Required 

When the system detects an abnormal end code, it should then prepare to receive the 
subsequent two codes (8051 address). That information should be logged as an incident. 
Re-initialize the 8051 shared RAM, if any of the defaults had been previously altered. If an 
abnormal end code immediately re-occurs, the system should issue an adapter reset 
operation. 

Codes 
X'AO' = Diagnose initiated 8051 soft reset 
X'A1' = 
X'A3' = 
X'A4' = 
X'A6' = 
X'A7' 

7-34 General Information Manual 

Word queue low decode 
Host transmit queue decode 
Increment RAS log decode 
Wild branch 
System reset failed. 



Device Error Codes 
A device error code occurs when an unexpected condition has been detected by the 8051 
microcode at a device interface. The problem may not be with the device itself. The adapter 
attempts to continue normal operations. ~ 

System Action Required 

The device error code information should be logged as an incident. The system may have to 
issue some kind of device reset command to try and clear the condition. A particular device 
error code may suggest a recovery procedure. If the condition persists, the system should 
issue an adapter reset operation. 

Codes 

X'EO' = Keyboard Transmit Timeout 

Adapter has started to transmit a frame to the keyboard. Transmission of that frame did not 
complete within the maximum allowed time. The keyboard interface has been cleared and 
re-enabled. The keyboard echo command could be issued to test the circuits to the 
keyboard and back. If the condition is continues, the keyboard may have been unplugged. 

X'E1' = Keyboard Receive Timeout 

The adapter has started to receive a frame from the keyboard. Reception of that frame did 
not complete within the maximum allowed time. The keyboard interface has been cleared 
and re-enabled if mode bit 11 = 1. The keyboard echo command could be issued to test the 
circuits to the keyboard and back. If the condition is continues, the keyboard may have been 
unplugged. 

X'E2' = Kbd Ack Not Received 

An acknowledgement response was expected from the last transmission to the keyboard, 
but something other than an acknowledgement was received. The actual keyboard response 
byte has been queued to the system. 

X'E3' = Unexpected Kbd Ack Received ' 

An unexpected acknowledgement response was received from the keyboard. It was 
unexpected because a prior transmission had not been performed by the adapter. 

X'E4' =Hard Error on Kbd Frame Receive 

The adapter has unsuccessfully performed the maximum number of keyboard frame receive 
retries. The frame received has a solid framing error. The keyboard interface is enabled for 
further communication. 

X'ES' = Hard Error on Kbd Frame Transmit 

The adapter has unsuccessfully performed the maximum number of keyboard frame 
transmit retries. The keyboard has responded with a solid error condition (resend) due to the 
keyboard receiving an invalid frame or invalid command. The keyboard interface is 
enabled for further communication. 

X'E6' = Kbd Clock Pin Not Plus 

See the following explanation of the X'E7' code. 

X'E7' = Kbd Clock Pin Not Minus 

The adapter has attempted to release or hold the clock signal to the keyboard. The 
read-back of the signal on the clock line did not verify. If this condition persists, it may 
indicate a interface circuit failure. It may also be due to noise on the cable, or the keyboard 
may have been unplugged. The adapter attempts to continue the operation. 

KeyboardfTablet/Speaker Adapter 7 ·35 

" 



X'E8' = UART Interrupt Without TIRI 

A serial port interrupt occurred without a transmit or receive identifier. The Interrupt is 
ignored and processing continues. 

X'E9' = UART Transmit Timeout 

The 8051 serial port buffer was loaded for transmission to the UART device. Transmission 
did not complete within the maximum allowed time. Processing continues. A UART device 
wrap command could be issued. If the condition is still persists, the UART device may have 
been unplugged or the 8051 serial port failed. 

X'EA' = UART Ack Timeout 

The 8051 serial port did transmit the byte to the UART device. The device did not respond 
within the maximum allowed time. Processing continues. Other device commands could be 
issued. If no response is received, the device may have been unplugged. 

7 ·36 General Information Manual 



Keyboard Device Support Notes 
The information in this section supplements that in the respective keyboard section of this 
manual. 

Keyboard Commands 
Resend (X'FE') 

Echo (X'EE') 

The system should not issue this command. The function is handled internally by the 
adapter retry facility. 

The adapter passes the keyboard response to the system. 

Keyboard Outputs 
Resend (X'FE') 

Ack (X'FA') 

The adapter intercepts this output and handles it in the adapter retry facility. The X'FE' is not 
passed on to the system. 

The adapter intercepts this output and reports the occurrence of the acknowledgement only 
if mode bit O = 1. 

Overrun (X'OO') 
The adapter also injects an overrun response if the keystrokes fill the adapter's 5-byte FIFO 
queue. 

Adapter Design Notes 
Figure 88 shows the adapter components and the system interface. 

Figure 89 shows the interface logic for keyboard and speaker signals between the 8051 
chip and the connector to the keyboard. 

Figure 90 shows the interface logic for tablet signals between the 8051 UART and the 
connector to the tablet. 

Also shown in the Interface figures are the points where signals are wrapped to the 8255 
Port B inputs for diagnostic sensing. 

Keyboard/Tablet/Speaker Adapter 7-37 



110 Channel 8051 

----Initiate System Attn lntrpt 

ie-----Unused -------1 
---From PC.3 _.,, 

Command 
Register 

UARTRCV 
Control 

D12BUF 
011BUF 
D10BUF 
D09BUF 
D08BUF 

-PSEN 

P2.3 

Port 0 

P2.2 
P2.1 
P2.0 

P1.5 Unused 

XTAL2 Oscillator 

P3.4 32KHz 

-INTO KB CLK In 
(P3.2) 

P3.5 KB Data In 

P3.7 KB CLKOut 

P3.6 l<B Data Out 

P1.7 Speaker Vol1 

P1.6 Speaker Volo 

P2.7 Speaker 
Frequency 

P3.0 UART RCV 
(RxD) i 

-RCVCTL-tt 

P3.1 UART 
(TxD) TRNSMT 

Reset RST 

r Port B:71 
(lnputs)1 

765- 43210 
Y I._ UART Receive (RxD) 
1.-- Other Sys Bd Signals 

,._ ___________ --- Olag Wrap 

3 Spkr Sig 

Box B: Decode the Command Register Select= 
(NOT A02) and (110 Write) and (Adapter Select) 

Figure 88. Adapter Logic and System Interface 

7·38 General Information Manual 



8051 

P3.2 +KB CLKIN 

-~ (-INTO) 

P3.7 +KBCLKOUT 

P3.5 +KB DATA IN 

-~ P3.6 +KB DATA OUT 

P1.7 +SPKRVOL1 

P1.6 +SPKRVOLO Vol/Freq 
Select 

OR 

P2.7 +SPKRFREQ 

Micro Channel Audio 

Figure 89. Adapter-tcH<eyboard Connector Interface 

8051 

PB.O 

P3.0 
(RxD) 

P3.1 
(TxD) 

+UARTTRANSMT~~~~~-----...._ 

-UART RCV Control -----­
(CMND register Bit 5) 

Figure 90. Adapter-to-Tablet (UART Port) Connector Interface 

IJI +KBD CLK 

IJl+KBD DATA 

Spkr +SPKR 
Amp SIG 

-RxD 

-TxD 

Keyboard/Tablet/Speaker Adapter 7-39 



Channel 110 Device Address Bit Decoding 
Read or Write Standard 1/0 Keyboard Adapter 

1/0 Address: 

Where: 

MSB LSB 
1111 11 I 
5432 1098 7654 3210 

0000 0000 0101 ORPP = X'005-' 

PP = 8255 Port addressing for 1/0 Read and Write 
PP IOR IOW ------
00: Read PA register Write PA register 
01: Read PB register Write PB register 
1 O: Read PC register Write PC register 
11 : Illegal Write Control 

PA is defined to be the adapter data register. 
It sends and receives the low-order data byte. 

R = Adapter command register control 

R IOR IOW 

1 : No action No Action 
O: No action Latch high byte in 

adapter register 

Note: A normal 2-byte write operation to the adapter would have RPP = 000, to 1/0 
address X'0050'. This loads the command and data bytes in their respective 
registers. 

8051 RAM Allocation 

Absolute 
RAM 
Address 

00-07 
08-0F 
10-17 
18-1F 
20-2B 
2C-2E 
2F-3B 
3C-4B 
4C-57 
58-63 
64-68 
69-7F 

7-40 General Information Manual 

Shared 
RAM 
Address 

10-12 
13-1F 
OO-OF 
20-2B 

Usage 

Register Bank O 
Register Bank 1 
Register Bank 2 
Register Bank 3 
Work Area 
24-Bit Shared Bit Space 
Shared (R.0.) Byte Space 
Shared (R/W) Byte Space 
RAS Logs 
UART Current Receive Blocks 
Keystroke Queue 
Stack 

Number 
of Bytes 

8 
8 
8 
8 

12 
3 

13 
16 
12 
12 
5 

23 

Total: 128 



Adapter and Keyboard Initialization Procedure 
The following are the recommended steps for initializing the adapter and keyboard after a 
system reset operation occurs: 

1 . Activate adapter reset. 

The 8051 reset is activated by the power-on operation, system reset, or system software 
directly activating the bit in the CAR register. Additionally, the power-on operation causes 
a power-on reset (POR) to the 8255 chip. 

2. Configure 8255 chip. 

Write the adapter Config 8255 Chip operation to properly configure the 8255 chip for 
communication with the 8051 chip. 

3. Enable Host Interrupt IRQ 

Write the adapter Enable IRQ operation to allow the interrupt request line to the system 
to be activated when the adapter is initiating a transfer to the system. 

Note: This step can be done at some later time if the interrupts cannot be handled yet. 
Data transfers in subsequent steps are either interrupt-driven or polled. 

4. Variable Delay Td. 

Allows the keyboard to startup and perform its internal tests, quiescent clock, and data 
lines before the 8051 interface to the keyboard is active. The delay Td is determined by 
the relation: 

Where: 

Tkp + Td'2:. Tkg + Tkb + Tkc 

OR 

Td'2:. (Tkg- Tkp) + Tkb + Tkc 

Tkp = 

Tkg = 
= 

Tkb = 
= 

Tkc = 
< 

Time since keyboard power applied 
(usually same as time since system POR) 

Time for keyboard to startup 
2 seconds (maximum) per keyboard specification 

Time for keyboard basic assurance test (BAT) to run 
300 milliseconds to 500 milliseconds per keyboard 
specification 

Time for keyboard to transmit completion 
20 milliseconds. 

If the time since system POR is greater than about 2.5 seconds, no delay is necessary. 

5. Release adapter reset. 

Releasing the 8051 reset in CAR allows the 8051 chip to run its self-test and 
initialization. 

6. Wait for adapter initialization response. 

After the 8051 self-test and initialization is completed, the completion code is posted to 
the 8255 chip. This should occur within 100 milliseconds of the preceding release. 

Keyboard/Tablet/Speaker Adapter 7-41 



7. Validate adapter self-test completion code. 

The expected machine data value is X'AE' with interrupt ID of 6. 

8. Reset the keyboard. 

Issue the adapter command to reset the keyboard. The expected adapter command 
response is X'OO' with an interrupt ID of o. 

9. Wait for keyboard initialization response. 

Wait for a data byte from the keyboard, which should be received within 500 milliseconds. 

Note: If the byte returned is a device error code, for example, X'EO', the keyboard is 
probably not attached (unplugged). 

10. Validat~ keyboard reset. 

The data byte should have been returned with an interrupt ID of 1. Data byte should be 
as follows: 

Keyboard basic assurance test (BAT) completion code= X'AA'. 

The adapter and keyboard are now initialized to their defined defaults. 

7-42 General Information Manual 



Standard 1/0 Adapter Board to Device Interface 
The following section shows the the device interfaces to the Standard 1/0 adapter board. 

Keyboard Port Interface 
The following figure shows the keyboard port (receptacle) on the Standard 1/0 adapter 
board. 

Figure 91. Keyboard Connector 

Pin Signal 
1 Keyboard Data 
2 Speaker Signal 
3 Ground 
4 +5 V de 
5 Keyboard Clock 
6 Speaker Ground 

Tablet (UART Port) Device Interface 
The following figure shows the tablet connector (receptacle) on the UART port of the 
Standard 1/0 adapter board. 

5 3 

Figure 92. Tablet Connector 

Pin Signal 
1 Ground 
2 Direct Current (DC) Return (Ground) 
3 +5 V de 
4 Reserved 
5 Receive from device 
6 Transmit to device 
7 Reserved 
8 Reserved 

Keyboard/TableVSpeaker Adapter 7.43 



7-44 General Information Manual 



Chapter 8. Keyboard 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
Power-On Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Basic Assurance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Sequential Key-Code Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Commands from the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Commands to the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Scan Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 

Set 1 Scan Code Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Set 2 Scan Code Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 O 
Set 3 Scan Code Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 

Clock And Data Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 
Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 
Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 

Keyboard Character Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 
Extended Code Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 

Shift Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 
Shift Key Priorities and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 

Speaker...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
Key Position Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 
Keyboard Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24 
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 

Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 
Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 

Keyboard 8-1 



8-2 General Information Manual 



Description 
The following features are contained on the keyboard used with the RISC System/6000 unit : 

• Multikey buffer with overrun detection 

• Num Lock, Scroll Lock, and Caps Lock LED indicators 

• Multiple scan code sets 

• A speaker to generate tones. 

The keyboard interface is bidirectional and allows scan-coded outputs to be output from the 
keyboard and serial command, and data to be input from the RISC System/6000 unit. 

The keyboard uses membrane technology, which relies upon a microcomputer to perform 
the keyboard scan function. 

System software is allowed to have maximum flexibility in defining certain keyboard 
operations by having the keyboard return a unique scan code for each key. Scan codes are 
shown in the "Scan Codes" section on page 8-7. All keys are individually programmable to 
recognize the following conditions: 

• Make only 

• Make/Break 

• Repeat 

• Repeat Make/Break. 

Note: Repeat and repeat make/break keys cannot be mixed on any keyboard. 

The repeat rate is programmable from 2 to 30 characters per second. The repeat delay is 
programmable from 250 milliseconds to 1 second. A break code is formed by prefixing the 
scan code with X'FO'. 

The microcomputer in the keyboard performs several functions, including a basic assurance 
test (BAT) at startup or when requested by the system. The following functions are also 
contained on the keyboard: 

• Keyboard scanning 

• Buffering up to three key scan codes 

• Maintaining bidirectional serial communications with the system unit 

• Executing the handshake protocol required by each scan code transfer. 

The U.S. keyboard contains 101 keys arranged in four major groups (102 keys for other 
countries). The keys on the central portion of the keyboard are arranged in a standard 
typewriter layout. At the top are 12 user-defined function keys. To the immediate right of the 
central portion are 1 O cursor-control keys and on the far right is a numeric pad. The three 
LED indicators are mounted on the upper right corner of the keyboard. The keyboard key 
positions and layout are shown in "Key Position Layout" on page 8-24 and "Keyboard 
Layouts" on page 8-23. 

The keyboard has two tilt positions for operator comfort (7 and 15 degrees) and a speaker 
for use by the system for generating tones. 

Keyboard 8·3 



Power-On Routine 
The activities described in the following sections take place when power is first applied to the 
keyboard. 

Power-On Reset 
The keyboard logic generates a power-on reset function (POR) when power is first applied 
to the keyboard. POR takes a minimum of 150 milliseconds and a maximum of 2 seconds 
from the time power is first applied to the keyboard. 

Basic Assurance Test 
The basic assurance test (BAT) consists of a keyboard processor test, a checksum of the 
read-only memory (ROM), and a random-access memory (RAM) test. During the BAT, 
activity on the clock and data lines is ignored. The LED indicators are turned on at the 
beginning and off at the end of the BAT. The BAT takes a minimum of 300 milliseconds and 
a maximum of 500 milliseconds. This is in addition to the time required by the POR. 

On satisfactory completion of the BAT, a completion code (X'AA') is sent to the system, and 
keyboard scanning begins. If a BAT error occurs, the keyboard sends an error code to the 
system. The keyboard is then disabled pending command input. Completion codes are sent 
between 450 milliseconds and 2.5 seconds after POR, and between 300 and 500 
milliseconds after a reset command is acknowledged. 

Immediately following POR, the keyboard monitors the signals on the keyboard 'clock' and 
'data' lines and sets the line protocol. 

Sequential Key-Code Scanning 

Buffer 

Keys 

The keyboard detects all keys pressed and sends each scan code in correct sequence. 
When not being serviced by the system, the keyboard stores the scan codes in its buffer. 

A 16-byte first-in-first-out (FIFO) in the keyboard stores the scan codes until the system is 
ready to receive them. A buffer-overrun condition occurs when more than 16 bytes are 
placed in the keyboard buffer. An overrun code replaces the 17th byte. If more keys are 
pressed before the system allows keyboard output, the additional data is lost. 

When the keyboard is allowed to send data, the bytes in the buffer are sent as in normal 
operation, and new data entered is detected and sent. Response codes do not occupy a 
buffer position. 

If keystrokes generate a multiple-byte sequence, the entire sequence must fit into the 
available buffer space, or the keystroke is discarded and a buffer-overrun condition occurs. 

The make scan of a key is sent to the keyboard controller when the key is pressed. When 
the key is released, its break scan code is sent. 

When a key is pressed and held down, the keyboard sends the make code for that key, 
delays 500 milliseconds ± 20 percent, and again begins sending a make code for that key at 
a rate of 10.9 characters per second ±20 percent. The typematic rate and delay can be 
modified by the X'F3' command (see °Commands from the System" that follows). 

8-4 General Information Manual 



If two or more keys are held down, only the last key pressed repeats at the typematic rate. 
Typematic operation stops when the last key pressed is released, even if other keys are still 
held down. If a key is pressed and held down while keyboard transmission is inhibited, only 
the first make code is stored in the buffer. This prevents buffer overflow because of 
typematic action. 

Scan code set 3 allows key types to be changed by the system. See "Set 3 Scan Code 
Table" on page 8-13 for the default settings. 

Commands from the System 
The following command set is used by the keyboard: 

Hex 

Command 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

F8 

F7 

F6 

Description 

Reset: Perform power-on check (BAT) and report. 

Resend: Resend last byte. 

Set make: Set designated keys to the make code. 

Set make/break: Set designated keys to make/break. 

Set repeat: Set designated keys to repeat. 

Set repeat make/break: Set all keys to repeat make/break. 

Set all make: Set all keys to make. 

Set all make/break: Set all keys to make/break. 

Set all repeat: Set all keys to repeat. 

Set default: Reinitializes the basic default conditions. 

FS Default disable: Set all keys to repeat make/break and discontinue 
scanning. 

Enable: Start scanning. F4 

F3 Set repeat rate/delay: Set the repeat delay to 1 + the binary value of bits 5 
and 6 (bit 7 (MSB)=O) x 250ms ± 20%. Set the repeat rate according to the 
following: 

• Period = ((8 +A} x 2)B/2 x 0.00834 seconds± 20%. 

• A = Binary value of bits 2, 1, 0 (LSB) 

• B = Binary value of bits 3, 4. 

F2 Read ID: Respond with X'83AB'. 

F1, 00 to EC Commands not valid: If these commands are sent, the keyboard returns a 
resend (X'FE'} command. 

FO Select alternate scan code: Select scan code set 1, 2, or 3. 

EF Layout ID: Responds with X'BO' and X'BF' for the United States (U.S.) 101 
keyboard layout or X'B 1' and X'BF' for the World Trade (WT} 102 keyboard 
layout. 

EE Echo: Respond with X'EE'. 

Keyboard 8-5 



ED Set LED indicator: The LED indicators are set according to bits 0, 1, 2 of the 
subsequent byte. 

Bit LED 

0 

1 

2 

Scroll Lock 

Num Lock 

Caps Lock 

Commands to the System 
The following codes are output by the keyboard: 

Hex 

Output 

FF(or 00) 

FE 

FC 

FA 

FO 

EE 

AA 

83AB 

Description 

Overrun or key detection error: Output by keyboard following keystroke 
buffer overflow or a nonidentified switch closure. X'FF' is output if scan code 
set 1 is being used, or X'OO' is output if scan code set 2 or 3 is being used. 

Resend: Output by keyboard following receipt of input that is not valid or any 
input with incorrect parity. 

If an error occurs during the BAT, the keyboard sends this code, 
discontinues scanning, and waits for system response or POR to restart. 

Ack: Output by keyboard following receipt of any valid input other than the 
echo or resend commands. 

Break code: Prefixed to the scan code of a make/break key to indicate 
break of the key. 

Echo: Output in response to echo command. 

BAT completion code: Output following completion of the self-tests. Any 
other output indicates a test error. 

Keyboard ID: Output in response to the read id command or following BAT 
completion code. 

8-6 General Information Manual 



Scan Codes 
Three sets of scan codes are supported and are selectable by way of commands. Scan code 
set 2 is the default. The system changes the keyboard to Set 3 Scan Code. 

Set 1 Scan Code Tables 
For scan code set 1, each key is assigned a base scan code and sometimes extra codes to 
generate artificial shift states in the system. The typematic scan codes are identical to the 
base scan code for each key. 

Table 1 shows the code sent for the keys, regardless of any shift states in the keyboard or 
system. See "Key Position Layout" on page B-23 and "Keyboard Layouts" on page B-24 to 
determine the character associated with each key number. 

Table 1 Set 1, Keyboard Scan Codes Page 1of2 

Key Make Break Key Make Break 
Number Code Code No. Code Code 

1 29 A9 49 2F AF 

2 02 B2 50 30 BO 

3 03 B3 51 31 B1 

4 04 B4 52 32 B2 

5 05 BS 53 33 B3 

6 06 B6 54 34 B4 

7 07 B7 55 35 BS 

8 OB BB 56 73 F3 

9 09 B9 57 36 B6 

10 OA BA SB 1D 9D 

11 OB BB 60 3B BB 

12 oc BC 61 39 B9 

13 OD BD 62 EO 3B EO BB 

14 7D FD 64 EO 1D E09D 

15 OE BE 90 45 cs 
16 OF BF 91 47 C7 

17 10 90 92 4B CB 

18 11 91 93 4F CF 

19 12 92 94 7C FC 

20 13 93 96 4B ca 
21 14 94 97 4C cc 
22 15 95 98 50 DO 

23 16 96 99 52 D2 

24 17 97 100 37 B7 

Keyboard 8· 7 



Table 1 Set 1, Keyboard Scan Codes Page 2 of 2 

Key Make Break Key Make Break 
Number Code Code No. Code Code 

25 18 98 101 49 C9 

26 19 99 102 40 CD 

27 1A 9A 103 51 01 

28 1B 9B 104 53 03 

29 2B AB 105 4A CA 

30 3A BA 106 4E CE 

31 1E 9E 107 7E FE 

32 1F 9F 108 EO 1C E09C 

33 20 AO 109 78 F8 

34 21 A1 110 01 81 

35 22 A2 112 3B BB 

36 23 A3 113 3C BC 

37 24 A4 114 30 BO 

38 25 AS 115 3E BE 

39 26 A6 116 3F BF 

40 27 A7 117 40 co 
41 28 AB 118 41 C1 

42 2B AB 119 42 C2 

43 1C 9C 120 43 C3 

44 2A AA 121 44 C4 

45 56 06 122 57 07 

46 2C AC 123 58 08 

47 20 AD 125 46 C6 

48 2E AE 

\ 
8-8 General Information Manual 



The remaining keys send a series of codes that are dependent on the various shift keys 
(Ctrl, Alt, and Shift), and the state of the Num Lock key (on or off). Because the base scan 
code is identical to another key, an extra code (X'EO' or X'E1 ') has been added to the base 
code to make it unique. The remaining keys (with the exception of the keypad/key , Prnt 
Sc/Sys Req, and Pause/Break keys) are shown in Table 2. 

Table 2 Set 1, Remaining Keys Scan Code 

Shift+ Num 
Key Lock Shift Num Lock 
No. Make/Break Make/Break Make/Break 

75 EO 52/ EO AA EO 52/ EO 2A EO 52/ 

EO D2/ EO D2 EO 2A EO D2 EO AA 

76 E053/ EO AA EO 52/ EO 2A EO 52/ 

EOD2 EO D2 EO 2A EO D3 EOAA 

79 E04B/ EO AA EO 4B/ EO 2A EO 4B/ 

EOCB EOCB EO 2A EO CB EOAA 

80 E047/ EO AA EO 47/ EO 2A EO 47/ 

EO C7 EO C7 E02A EOC7 EO AA 

81 E04F/ EOAA EO 47/ EO 2A EO 4F/ 

EOC7 EO CF EO 2A EO CF EOAA 

83 EO 48/ EO AA EO 48/ EO 2A EO 48/ 

EOC8 EO ca EO 2A EO CB EOAA 

84 EO 50/ EO AA EO 50/ EO 2A EO 50/ 

EO DO EO DO EO 2A EO DO EOAA 

85 EO 49/ EO AA EO 50/ EO 2A EO 49/ 

EOC9 EO C9 EO 2A EO C9 EOAA 

86 EO 51/ EO AA EO 51/ EO 2A EO 51/ 

EO D1 EO D1EO2A EO D1 EO AA 

89 E04D/ EO AA EO 40/ EO CD EO 2A/ 

EOCD EO CD EO 2A EOCD EOAA 

Note: If the left Shift key is held down, the AA/2A Shift Make and Break are sent with the 
other scan codes. If the right Shift key is held down, 86/36 is sent. If both Shift keys 
are down, both sets of codes are sent with the other scan code. 

The following describes the scan code for the keypad/key: 

Key Number Make/Break 

95 Scan code: EO 35/EO 85 

Shift: EO AA EO 35/EO 85 EO 2A. 

Note: If the left Shift key is held down, the AA/2A shift make and break are sent with the 
other scan codes. If the right Shift key is held down, 86/36 is sent. If both Shift keys 
are down, both sets of codes are sent with the other scan code. 

Keyboard 8-9 



"'he following describes the scan code for the Prnt Sc/Sys Req key: 

Key Number Make/Break 

124 Scan code: EO 35/EO 85 

Shift: EO AA EO 35/EO 85 EO 2A. 

The following describes the scan code for the Pause/Break key: 

Key Number Make/Break 

126 Scan code: EO 2A EO 37/EO 87 EO AA 

Ctrl and Shift: EO 37/EO 87 

Alt: 54/D4. 

Note: This key is not typematic. All associated scan codes occur on the make of the key. 

Set 2 Scan Code Tables 
For scan code set 2, each key is assigned a unique 8-bit make scan code that is sent when 
the key is pressed. Each key also sends a break code when the key is released. The break 
code consists of 2 bytes, the first of which is the break code prefix X'FO'; the second byte is 
the same as the make scan code for that key. The typematic scan code for a key is the same 
as the key make code. 

Table 3 shows the codes sent for the keys, regardless of any shift states in the keyboard or 
system. See "Key Position Layout" on page 8-23 and "Keyboard Layouts" on page 8-24 to 
determine the character associated with each key number. 

Table 3 Set 2, Keyboard Scan Codes Page 1 of 2 

Key Make Break Key Make Break 
No. Code Code No. Code Code 

1 OE FO OE 49 2A FO OE 

2 16 FO 16 50 32 FO 32 

3 1E FO 1E 51 31 FO 31 

4 26 FO 26 52 3A FO 3A 

5 25 FO 25 53 41 FO 41 

6 2E FO 2E 54 49 FO 49 

7 36 FO 36 55 4A F04A 

8 3D FO 3D 56 51 FO 51 

9 3E FO 3E 57 59 FO 59 

10 46 FO 42 58 14 FO 14 

11 45 FO 45 60 11 FO 11 

12 4E FO 4E 61 29 FO 29 

13 55 FO 55 62 EO 11 EO FO 11 

14 6A FO 6A 64 EO 14 EO FO 14 

15 66 FO 66 90 77 FO 77 

16 OD FOOD 91 6C F06C 

17 15 FO 15 92 68 FO 68 

8·10 General Information Manual 



Table 3 Set 2, Keyboard Scan Codes Page 2 of 2 

Key Make Break Key Make Break 
No. Code Code No. Code Code 

18 10 FO 10 93 69 F069 

19 24 F024 94 68 F068 

20 20 F020 96 75 F075 

21 2C F02C 97 73 F073 

22 35 F035 98 72 F072 

23 3C F03C 99 70 F070 

24 43 F043 100 7C F07C 

25 44 FO 25 101 70 F070 

26 40 F040 102 74 FO 74 

27 54 FO 54 103 7A FO 7A 

28 58 F058 104 71 FO 71 

29 50 F050 105 78 F078 

30 58 F058 106 79 FO 79 

31 1C FO 1C 107 60 F060 

32 1F FO 1F 108 E05A EO FO 5A 

33 23 F033 109 63 F063 

34 28 F028 110 76 F076 

35 34 FO 34 112 05 FO 05 

36 33 FO 33 113 06 FO 06 

37 38 F038 114 04 FO 04 

38 42 F042 115 oc FO OC 

39 48 F04B 116 03 F003 

40 4C F04C 117 OB FOOS 

41 52 F052 118 83 F083 

42 50 F050 119 OA FOOA 

43 SA F05A 120 01 FO 01 

44 12 FO 12 121 09 F009 

45 61 FO 61 122 78 F078 

46 1A FO 1A 123 07 FO 07 

47 22 F022 125 7E F07E 

48 21 FO 21 

Keyboard 8· 11 



The remaining keys send a series of codes that are dependent on the state of the shift keys 
(Ctl, Alt, and Shift), and the state of Numlock (on or off). Because the base scan code is 
identical to another key, an extra code (X'EO') is added to the base code to make it unique. 
With the exception of the keypad I (95), PrtSc/SysRq (124), and Pause/Break (126) keys, 
the remaining keys are shown in Table 4. 

Table 4 Set 2, Remaining Keys Scan Code 

Key Shift+ Num Lock Shift Num Lock 
No. Make/Break Make/Break Make/Break 

75 EO 70/ EO FO 12 EO 70/ EO 12 EO 70/ 

EO FO 70 EO FO 70 EO 12 EO FO 70 EO FO 12 

76 EO 71/ EO FO 12 EO 71/ EO 12 EO 71/ 

EO FO 71 EO FO 71 EO 12 EO FO 71 EO FO 12 

79 EO 6B/ EO FO 12 EO 6B/ EO 12 EO 6B/ 

EO FO 6B EO FO 6B EO 12 EO FO 6B EO FO 12 

80 EO 6C/ EO FO 12 EO 6C/ EO 12 EO 6C/ 

EO FO 6C EO FO 6C EO 12 EO FO 6C EO FO 12 

81 EO 69/ EO FO 12 EO 69/ EO 12 EO 69/ 

EO FO 69 EO FO 69 EO 12 EO FO 69 EO FO 12 

83 EO 75/ EO FO 12 EO 75/ EO 12 EO 75/ 

EO FO 75 EO FO 75 EO 12 EO FO 75 EO FO 12 

84 EO 72/ EO FO 12 EO 72/ EO 12 EO 72/ 

EO FO 72 EO FO 72 EO 12 EO FO 72 EO FO 12 

85 EO 70/ EO FO 12 EO 70/ EO 12 EO 70/ 

EO FO 70 EO FO 70 EO 12 EO FO 70 EO FO 12 

86 EO 7A/ EO FO 12 EO 7A/ EO 12 EO 7A/ 

EO FO 7A EO FO 7A EO 12 EO FO 7 A EO FO 12 

89 EO 74/ EO FO 12 EO 74/ EO 12 FO 74/ 

EO FO 74 EO FO 12 EO 74 EO FO 7 4 EO FO 12 

Note: If the left Shift key is held down, the FO 12/12 shift make and break are sent with the 
other scan codes. If the right Shift key is held down, FO 59/59 is sent. If both Shift 
keys are down, both sets of codes are sent with the other scan code. This applies to 
key 95 also. 

The following describes the scan code for the keypad I key: 

Key Number Make/Break 

95 Scan code: EO 4A/EO FO 4A 

Shift: EO FO 12 EO 4A/EO FO 4A EO 12. 

The following describes the scan code for the SysReq key: 

Key Number Make/Break 

124 Scan code: EO 12 EO 7C/EO FO 7C EO FO 12 

8-12 General Information Manual 



Ctrl and Shift: EO 7C/EO FO 7C 

Alt: 84/F084. 

The scan code for the Pause/Break key is as follows: 

Key No. Make/Break 

126 Make code: E114 77 E1 FO 14 FO 77 

Ctrl: EO 7E EO FO 7E. 

Note: This key is not typematic. All associated scan codes occur on the make of the key. 

Set 3 Scan Code Tables 
For scan code set 3, each key is assigned a unique 8-bit make scan code that is sent when 
the key is pressed. Each key also sends a break code when the key is released. The break 
code consists of 2 bytes: the break code prefix X'FO' and the make scan code for the key. 
The typematic scan code for a key is the same as the key make code. With this scan code 
set, each key sends only one scan code, and no key is affected by the state of any other 
key. 

Table 5 shows the code sent for the keys, regardless of any shift states in the keyboard or 
system. See "Key Position Layout" on page 8-23 and "Keyboard Layouts" on page 8-24 to 
determine the character associated with each key number. 

Note: Default key state is typematlc. 

Table 5 Set 3, Keyboard Scan Codes Page 1of3 

Key Make Break Key Make Break 
No. Code Code No. Code Code 

1 OE FOOE 55 4A F04A 

2 16 FO 16 56 51 FO 51 

3 1E FO 1E 57 59 F059 

4 26 F026 58 11 FO 11 

5 25 FO 25 60 19 FO 19 

6 2E F02E 61 29 F029 

7 36 F036 62 39 F039 

8 3D F03D 64 58 F058 

9 3E F03E 75 67 FO 67 

10 46 F046 76 64 F064 

11 45 F045 79 61 FO 61 

12 4E F04E 80 6E F06E 

13 55 F055 81 65 F065 

14 5D F05D 83 63 F063 

15 66 F066 84 60 FO 61 

16 OD FOOD 85 6F FO 6F 

17 15 FO 15 86 6D FO 6D 

18 1D FO 1D 89 6A F06A 

Keyboard 8-13 



Table 5 Set 3, Keyboard Scan Codes Page 2 of 3 

Key Make Break Key Make Break 
No. Code Code No. Code Code 

19 24 F024 90 76 FO 76 

20 20 F020 91 6C F06C 

21 2C F02C 92 68 F068 

22 3S F03S 93 69 F069 

23 3C F03C 94 68 F068 

24 43 F043 9S 77 FO 77 

2S 44 F044 96 7S FO 7S 

26 40 F040 97 73 FO 73 

27 S4 F040 98 72 F072 

28 S8 FOS8 99 70 FO 70 

29 4C FOSC 100 7E FO 7E 

30 14 FO 14 101 70 FO 70 

31 1C FO 1C 102 74 F074 

32 18 FO 18 103 7A FO 7A 

33 23 F023 104 71 FO 71 

34 28 F028 10S 84 FO 84 

3S 34 FO 34 106 7C FO 7C 

36 33 FO 33 107 78 FO 78 

37 38 F038 108 79 FO 79 

38 42 FO 42 109 78 FO 78 

39 48 F048 110 08 FOOS 

40 4C F04C 112 07 F007 

41 S2 FOS2 113 OF FOOF 

42 SA FOSA 114 17 FO 17 

43 SA FOSA 11S 1F FO 1F 

44 12 FO 12 116 27 F027 

4S 13 FO 13 117 27 F027 

46 1A FO 1A 118 37 F037 

47 22 F022 119 3F FO 3F 

48 21 FO 21 120 47 F047 

49 2A F02A 121 4F F04F 

so 32 F032 122 S6 FOS6 

S1 31 FO 31 123 SE FOSE 

S2 3A F03A 124 S7 FOS7 

8· 14 General Information Manual 



Table 5 Set 3, Keyboard Scan Codes Page 3 of 3 

Key Make Break Key Make Break 
No. Code Code No. Code Code 

53 41 F041 125 SF FOSF 

54 49 F049 126 62 F062 

Clock And Data Signals 
The keyboard and system communicate over the clock and data lines. The source of each of 
these lines is an open-collector device on the keyboard that allows either the keyboard or 
system to force a line to an inactive (low) level. When no communication is occurring, the 
clock line is an active (high) level. The state of the data line Is held active (high) by the 
keyboard. 

When the system sends data to the keyboard, it forces the data line to an inactive level and 
allows the clock to go to an active level. 

An inactive signal has a value of at least O, but not more than +0.7 volts. A signal at the 
inactive level is a logical O. An active signal has a value of at least +2.4, but not more than 
+5.5 volts. A signal at the active level is a logical 1. Voltages are measured between a signal 
source and the DC network ground. 

When the keyboard sends data to or receives data from the system, it generates the 'clock' 
signal to time the data. The system can prevent the keyboard from sending data by forcing 
the 'clock' line to an inactive level. The 'data' line can be active or inactive during this time. 

During the BAT, the keyboard allows the clock and data lines to go to an active level. 

Data Stream 
Data transmissions to and from the keyboard consist of an 11-bit data stream (mode 2) sent 
serially over the 'data' line. The following describes the keyboard data stream bits: 

Bit Description 

11 Stop bit (always 1) 

10 Parity bit (odd parity) 

9 Data bit 7 (most significant bit) 

8 Data bit 6 

7 Data bit 5 

6 Data bit 4 

5 Data bit 3 

4 Data bit 2 

3 Data bit 1 

2 Data bit O (least significant bit) 

1 Start bit (always O) 

The Parity bit is either 1 or O, and the 8 Data bits, plus the Parity bit, always have an odd 
number of 1. 

Keyboard 8-15 



Nqte: . Mod~ 1 is a 9-bit data stream that does not have a Parity bit or Stop bit, and the 
Start bit is always 1. 

Data Output · . · · 
When the keyboard is ready to send data, it first checks for a keyboard-inhibit or system 
request-to-send status on the clock and data lines. When the clock line is inactive, data is 
stored in the keyboard buffer. If the clock line is active and the data line is inactive 
(request-to-send); data is stored in the keyboard buffer, and the keyboard receives system 
data. 

Data Input 

If the clock and data lines are both active, the keyboard sends the O Start bit, 8 Data bits, the 
Parity bit, and the Stop bit. Data is valid before the trailing edge and beyond the leading 
edge of the clock pulse. During transmission, the keyboard checks the clock line for an 
active level every 60 ii.sec. When the system lowers the clock line from an active level after 
the keyboard starts sending data, a condition known as line contention occurs, and the 
keyboard stops sending data. If line contention occurs before the leading edge of the 10th 
clock signal (Parity bit), the keyboard buffer returns the clock and data lines to an active 
level. If line contention does not occur by the 10th clock signal, the keyboard completes the 
transmission. Following line contention, the system may request the keyboard to resend the 
data. Following a transmission, the system can inhibit the keyboard until the system 
processes the input, or until it requests that a response be sent. 

When the system is ready to send data to the keyboard, it first checks to see if the keyboard 
is sending data. If the keyboard is sending data, but has not reached the 10th clock signal, 
the system can override the keyboard output by forcing the keyboard clock line to an inactive 
level. If the keyboard transmission is beyond the 10th clock signal, the system must receive 
the transmission. 

If the keyboard is not sending, or if the system elects to override the keyboard output, the 
system forces the keyboard clock line to an inactive level for more than 60 µsec. while 
preparing to send data. When the system is ready to send the Start bit (the 'data' is inactive), 
it allows the clock line to go to an active state. 

The keyboard checks the state of the clock line at intervals of no more than 1 O milliseconds. 
If a system 'request-to-send' signal is detected, the keyboard clocks in 11 bits. After the 
10th clock, the keyboard checks for an active level on the data line, and if the line is active, it 
forces it inactive, and clocks once more. This action signals the system that the keyboard 
has received data. On receipt of this signal, the system returns to a ready state, in which it 
can accept keyboard .output, or the system goes to the inhibited state until it is ready. 

If the keyboard data line is at an inactive level following the 10th clock signal, a framing error 
has occurred, and the keyboard continues to clock until the data line becomes active. The 
keyboard then makes the data inactive and sends a resend command. 

Each system command or data transmission to the keyboard requires a response from the 
keyboard before the system can send its next output. The keyboard responds within 20 ms 
unless the system prevents keyboard output. If the keyboard response is not valid or has a 
parity error, the system sends the command or data again. If F3 (set typematic rate/delay), 
FO (select alternate scan codes), or ED (set/reset mode indicators) have been sent and 
acknowledged, and the value byte has been sent but the response is not valid or has a parity 
error, the system resends both the command and the value byte. 

8· 16 General Information Manual 



Keyboard Character Codes 

Keyboard Character Codes Page 1of3 

Key Base Case Uppercase Ctrl Alt 

1 ' ... -1 (*) 

2 Shift 1 I -1 (*) 
(Left) 

3 2 @ Null(OOO)(*) (*) 

4 3 # -1 (*) 

5 4 $ -1 (*) 

6 5 % -1 (*) 

7 6 " RS(030) (*) 

8 7 & -1 (*) 

9 8 * -1 (*) 

10 9 ( -1 (*) 

11 0 ) -1 (*) 

12 - US(031) (*) -
13 • + -1 (*) 

15 Backspace Backspace Del(127) (*) 
(008) (008) 

16 -+ 1(009) I+-(*) (*) (*) 

17 q Q DC1(017) (*) 

18 w w ETB(023) (*) 

19 e E ENQ(005) (*) 

20 r R DC2(018) (*) 

21 t T DC4(020) (*) 

22 y y EM(025) (*) 

23 u u NAK(021) (*) 

24 I I HT(009) (*) 

25 0 0 51(015) (*) 

26 p p DLE(016) (*) 

27 [ { Esc(027) (*) 

28 1 } GS(029) (*) 

29 \ I FS(028) (*) 

30 Caps Lock -1 -1 -1 -1 

31 a A SOH(001) (*) 

(*) Refer to "Extended Code Functions". 

Keyboard 8-17 



Keyboard Character Codes Page 2 of 3 

Key Base Case Uppercase Ctr I Alt 

32 s s DC3(019) (*) 

33 d D EOT(004) (*) 

34 f F ACK(006) (*) 

35 g G BEL(007) (*) 

36 h H BS(008) (*) 

37 j J LF(010) (*) 

38 k K VT(011) (*) 

39 I L FF(012) (*) 

40 ' -1 (*) 
' 

41 ' " -1 (*) 

43 CR(013) CR(013) LF(010) (*) 

44 Shift -1 -1 -1 -1 
(Left) 

48 z z SUB(026) (*) 

47 )( x CAN(024) (*) 

48 c c ETX(003) (*) 

49 v v SYN(022) (*) 

50 b B STX(002) (*) 

51 n N 80(014) (*) 

52 m M CR(013) (*) 

53 ' < -1 (*) 

54 > -1 (*) 

55 I ? -1 (*) 

57 Shift -1 -1 -1 -1 
(Right) 

58 Ctrl -1 -1 -1 -1 
(Left) 

60 Alt (Left) -1 -1 -1 -1 

61 Space Space Space Space 

62Alt -1 -1 -1 -1 
(Right) 

64 Ctrl/Alt -1 -1 -1 -1 
(Right) 

90 Num Lock -1 -1 -1 -1 

95 I I (*) (*) 

(*)Refer to "Extended Code Functions". 

8·18 General Information Manual 



Keyboard Character Codes Page 3 of 3 

Key Base Case Uppercase Ctrl Alt 

100 * .. (*} (*} 

105 - - (*} (*} 

106 + + (*} (*} 

108 Enter Enter LF(010} (*) 

110 Esc Esc Esc (*) 

112 through 123 Null(*) Null(*} Null(*) Null(*) 

125 -1 -1 -1 -1 

126 Pause Pause Break Break 

(*)Refer to "Extended Code Functions". 

Keys that have meaning only In Num Lock, Shift, or Ctrt states are described In "Special 
Character Codes that follows". 

Special Character Codes 

Num 
Key Lock Base Case Alt Ctrl 

91 7 Home(*) -1 Clear Screen 

92 4 +-(*) -1 Reverse Word(*} 

93 1 End(*} -1 Erase to EOL(*) 

96 8 1'(*) -1 (*) 

97 5 (*} -1 (*) 

98 2 J,(*} -1 (*) 

99 0 Ins -1 (*} 

101 9 Page Up(*) -1 Top of Text and Home 

102 6 -4(*) -1 Advance Word(*) 

103 3 Page Down (*) -1 Erase to EOS(*) 

104 Delete(*} 

105 - Sys Request -1 -1 

106 + + (*) -1 -1 

(*) Refer to "Extended Code Functions". 

Extended Code Functions 
For certain functions that cannot be represented by a standard ASCII code, an extended 
code is used. A character code of 000 (null) is returned in the AL register. 

This indicates that the system or application program should examine a second code, which 
indicates the actual function. Usually, this second code is the scan code of the primary key 
that was pressed. This code is returned in the AH register. 

The extended codes are shown in the following table: 

Keyboard 8·19 



Keyboard Extended Functions Page 1ot 2 

Second Code Function 

1 Alt Esc 

3 Null Character 

14 Alt Backspace 

15 l+-(Back-tab) 

16-25 AltQ, W, E, R, T, Y, U, I, 0, P 

26-28 Alt[]..J 

3o-38 Alt A, S, D, F, G, H, J, K, L 

39-41 Alt;" 

43 Alt\ 

44-50 AltZ, X, C, V, B, N, M 

51-53 Alt,. I 

55 Alt Keypad• 

59-68 F1 to F10 Function Keys (Base Case) 

71 Home 

72 i(Cursor Up) 

73 Page Up 

74 Alt Keypad-

75 +-(Cursor Left) 

76 Center Cursor 

n -+(Cursor Right) 

78 Alt Keypad-

79 End 

80 !(Cursor Down) 

81 Page Down 

82 Ins (Insert) 

83 Del (Delete) 

84-93 ShHt F1 to F10 

94-103 Ctrl F1 to F10 

104-113 Alt F1 to F10 

114 Ctrl PrtSc (Start/Stop Echo to Printer) 

115 Ctrl +-(Reverse Word) 

116 Ctrl -+(Advance Word) 

117 Ctrl End (Erase to End of Une-EOL) 

118 Ctrl PgDn (Erase to End of Screen-EOS) 

8·20 General Information Manual 



KeybOard Extended Functions Page 2of 2 

Second Code Function 

119 Ctrl Home (Clear Screen and Home) 

120-131 Alt 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, "'keys 2 through 13 

132 Ctrl PgUp (Top 25 Lines of Text and Cursor Home) 

133, 134 F11,F12 

135, 136 Shift F11, F12 

137, 138 Ctr1 F11, Fl 2 

139, 140 Alt F11, F12 

141 Ctrl Up/8 

142 Ctrl Keypad -

143 Ctrl Keypad 5 

144 Ctrl Keypad + 
145 Ctrl Downl2 

146 Ctrl lns/O 

147 Ctrl Del/. 

148 Ctrl Tab 

149 Ctrl Keypad I 

150 Ctrl Keypad * 

151 Alt Home 

152 Alt Up 

153 Alt Page Up 

155 Alt Left 

157 Alt Right 

159 Alt End 

160 Alt Down 

161 Alt Page Down 

162 Alt Insert 

163 Alt Delete 

164 Alt Keypad I 

165 Alt Tab 

166 Alt Enter 

Keyboard 8-21 



Shift Status 
Shift: This key temporarily shifts keys 1 through 13, 16 through 29, 31 through 41, 

and 46 through 55 to uppercase (base case Hin Caps Lock state). Also, the 
Shift key temporarily reverses the Num Lock or non-Num Lock state of keys 
91 through 93, 96, 98, 99, and 101 through 104. 

Ctrl: This key temporarily shifts keys 3, 7, 12, 15 through 29, 31 through 39, 43, 
46 through 52, 75 through 89, 91 through 93, 95 through 108, 112 through 
124, and 126 to the Ctrl state. 

Alt: This key temporarily shifts keys 1 through 29, 31 through 43, 46 through 55, 
75 through 89, 95, 100, and 105 through 124 to the Alt state. 

The Alt key also allows the user to enter any character code from 1 to 255. The user holds 
down the Alt key and types the decimal value of the characters desired on the numeric 
keypad (keys 91 through 93, 96 through 99, and 101 through 103). The Alt key is then 
released. If the number Is greater than 255, a modulo-256 value is used. This value is 
Interpreted as a character code and is sent through the keyboard routine to the system or 
application program. The Alt key is handled internally in the keyboard routine. 

Caps Lock: This key shifts keys 17 through 26, 31 through 39, and 46 through 52 to 
uppercase. When the Caps Lock key Is pressed again, it reverses the 
action. The Caps Lock key is handled Internally in the keyboard routine. 
When the Caps Lock key is pressed, the Caps Lock mode indicator lights if 
the caps lock mode is entered. 

Scroll Lock: When interpreted by appropriate application programs, this key indicates 
that the cursor control keys cause windowing over the text rather than 
moving the cursor. When the Scroll Lock key is pressed again, it reverses 
the action. The keyboard routine simply records the current shift state of the 
Scroll Lock key. It is the responsibility of the application program to perform 
the function. When the Scroll Lock key Is pressed the scroll lock mode 
indicator lights if the scroll lock mode is entered. 

Num Lock: This key shifts keys 91 through 93, 96 through 99, and 101 through 104 to 
uppercase. When the Num Lock key Is pressed again, the action Is 
reversed. Num Lock Is handled Internally to the keyboard routine. When the 
Num Lock key is pressed, the Num Lock mode Indicator lights If num lock 
mode Is entered. 

Shift Key Priorities and Combinations 
If combinations of the Alt, Ctri, and Shift keys are pressed and only one Is valid, the following 
shows the priority: 

1. Alt key 

2. Ctri key 

3. Shift key. 

The only valid combination is Alt and Ctri, which is used in the system-reset function. 

8·22 General Information Manual 



Speaker 
The keyboard has a 50 millimeter paper cone speaker located in the bottom cover. The 
speaker is rated at 200 milliwatts continuous power and has an 8 ohm ±15% coil impedance 
at 1000. The speaker should have a frequency response of at least 500 to 5000 Hz ±20 dB 
and should be driven exclusively by the system by way of two lines connected directly at the 
cable connector. 

Key Position Layout 
Keyboard key position layouts are shown in Figure 93 and Figure 94. 

75 80 85 90 95 100 105 

76 81 86 91 96 101 ~06 
107) 

92 97 102 

93 98 103 108 
109 

(94) 99 104 

Figure 93. US 101 Key Position Layout 

75 80 85 90 95 100 105 

76 81 86 91 96 101 106 
107) 

92 97 102 

93 98 103 108 
109 

(94) 99 104 

Figure 94. WT102 Key Position Layout 

Keyboard 8-23 



Keyboard Layouts 
Keyboard layouts are in alphabetic order on the following pages. Nomenclature is on both 
the top and front face of the keys. 

Belgium 

EJ l,.F_1__,, ... F-2 ..... ,-F3-.. ,-F4-, , F5 I F6 I F7 I F8 11 F9 I F10 I F11 I F12 

Insert Home Page 
Up 

3 .._ 
2 

Delete End Page 
Down 

...._ 
__., 

Shift 
Lock 

~ 

Ctrl 

Figure 95. Belgian 

Canada 

EJ 
# I 

~ ... 
Ins er =±: 

Suppr Fin i 

Figure 96. Canadian French 

Denmark 

EJ I F1 I F2 I F3 I F4 I I Fs I F& I F7 I Fe I I F9 I F10 I F11 I F12 

! 
'Ii 1 

Insert Home Page 
Up 

...._ 
__., Delete End Page 

Down 

Caps 
Lock 

~ 

Ctrl 

Figure 97. Danish 

8-24 General Information Manual 

Num 
Lock 
C::J 

Num 
Lock 

7 
Homa 

4 ... 
1 
End 

0 
Ins 

Caps 
Lock 
C::J 

I 

8 

k 

9 

&roll 
Lock 
C::J 

-
.,. 

Pg Up 

5 6 
+ 

... -
2 3 • Pg On 

Enter 

Del 

Num Caps Scroll 
Lock Lock Lock 
C::J C::J C::J 

Num I k -

7 8 9 
Iii. .,. t 

+ 
4 5 6 ... - ... 
1 2 3 
Fin • i Entr 

0 
lnser Suppr 

Num Caps Scroft 
Lock Lock Lock 
C::J C::J C::J 

Num I * -
Lock 

7 8 9 
l:!l!.1!!11. 

.,. 
.fl.Ill! 

4 5 6 
+ 

... ... -
1 2 3 
End .. 
0 

f>g_On 
Enter 

Ins Del 



France 

E1 
3 

Figure 98. French 

German 

E1 
0 

..Jt., 

Figure99. German 

Italy 

E1 

Figure 100. Italian 

tmpr -'rret 
ecran delll 

lnser .:. 

Su ppr Fin 

Druck 

Einfg Pos1 

Enif Ende 

Bloc 
Stamp Scorr 

Ins .:. 

Cane Fine 

t 
=i:: • 

Bild .,. 
Bild 
... 

Pag+ 

Pag.j,. 

Num Caps Scroll 
Lock Lock Lock 
c:::J c:::J c:::J 

Verr I * -
num 

7 8 .2 
"' + :!; 

+ 
4 5 6 ... - ... 
1 ~ ~ 
Fin .j, • Entr 

0 . 
lnser Su ppr 

Num Caps Scroll 
Lock Lock Lock 
c:::J c:::J c:::J 

Num 
,;;. -,. x -

7 8 9 
Pos1 + Bild 

4 5 6 
+ 

... ... -
1 2 3 

Ende .j, Bild 

0 
En-
ter 

Elnlg Enif 

Num Caps Scroll 
Lock Lock Lock 
c:::J c:::J c:::J 

Bloc I Num * -

7 8 9 
II<. + Pag• 

+ 
4 5 6 ... ... -
1 2 3 
Fine ... Pag.i. 

lnvio 

0 
Ins Ca pr 

Keyboard 8-25 



Norway 

EJ 
§ .__ 

.___ -.: 
Caps 
Lock 

0> 

Ctr! 

Figure 101. Norwegian 

Portugal 

EJ I F1 I F2 I F3 I F4 I I F5 I FB I F7 I FB I I F9 I F10 I F11 I F12 

Caps 
Lock 

Spain 

Figure 102. Portuguese 

EJ I F1 I F2 I F3 I F4 I I FS I F6 I F7 I FB I I F9 I F10 I F11 I F12 

Bloq 
Nayus 

Figure 103. Spanish 

8·26 General Information Manual 

Insert Home 

Delete End 

Insert Home 

Delete End 

lmpr Bloq 
Pant Despl 

Insert lnlclo 

Su pr Fin 

Page 
Up 

Page 
Down 

Page 
Up 

Page 
Down 

Re 
Peg 

Av 
Peg 

Caps Scroll 
Lock Lock 
Cl Cl 

Num 
I * -

Lock 

7 8 9 
Home 

.,.. 
i:s..l!l1J 

4 5 6 + 
.__ 

- ... 
1 2 3 
End • Pg Dn 

' 
Enter 

0 
Ins Del 

Caps Scroll 
Lock Lock 
Cl Cl 

Num I * -
Lock 

7 8 9 
Home 

.,.. 
Pg Up 

4 5 6 
+ 

... - ... 
1 2 3 
End • Pg Dn 

0 
Enter 

Ins Del 

Num Caps Scroll 
Lock Lock Lock 
Cl c:::J c:::J 

Bloq 
Num I * -

7 8 9 
lnlclo 'I' RePag 

4 5 6 
+ 

... ... -
1 2 3 
Fin • AvPag 

Intro 

0 
Ins Supr 



Sweden/Finland 

EJ 

Figure 104. Swedish/Finland 

Swiss (Fr./Gr.) 

EJ IF1 IF2 IF3 IF4 I IF5 IF& IF7 IFB 11 F9 IF1D IF11 IF12 

0 

6 

U.K. 

EJ 

Figure 105. Swiss 

Figure 106. U.K. English 

Print Scroll 
Screen Lock 

Insert Homa 

Delete End 

Insert Homa 

Delete End 

Insert Home 

Delete End 

Paga 
Up 

Paga 
Down 

Page 
Up 

Paga 
Down 

Page 
Up 

Page 
Down 

Num I Caps I Scroll 
Lock Lock Lock 
c:::J c:::J c:::J 

Num 
Lock 

_!. x -

7 8 9 
Home • Pg Up 

4 5 6 + 
... - .... 
1 2 3 

End + Pg On 

0 ' 
Enter 

Ins Del 

Num Caps Scroll 
Lock Lock Lock 
c:::J c:::J c:::J 

Num I k -
Lock 

7 8 9 
Home 

.,. 
Pg Up 

4 5 6 + 

... - -+ 
1 2 3 
End + Pg On 

0 
Enter 

Ins Del 

Num 
leaps I Scroll Lock Lock Lock 

c:::J c:::J c:::J 

Num I * -
Lock 

7 8 9 
Home 

.,. 
Pg Up 

4 5 6 + .. -+ -
1 2 3 
End + Pg On 

0 
Enter 

Ins Oat 

Keyboard 8·27 



United States 

El I F1 I F2 I F3 I F4 I I FS I Fe I F7 I Fe I I Fl I F1o I Fu I F12 11::.j ='I P8U3 I ~ I~ I ?' 
lnHlt Home 

Page 
Up 

Num I * -Lock 

Dellllll End = 7 8 9 
Home ... Pg Up I 

4 
+-

5 ~ 
+ 

1 2 3 
End " Pg On 

0 
Enter 

Ins Del 

Figure 107. U.S. English 

8-28 General Information Manual 



Cables and Connectors 
The keyboard has a detachable cable with a connector that attaches to a connector at the 
rear of the RISC System/6000 workstation. This shielded six-conductor cable provides 
power lines (+5 V de) and two bidirectional signal lines. The cable is approximately 2.75 
meters (9 feet) long. Figure 108 shows the pin configuration and signal assignments. 

Figure 108. Keyboard Connector 

Pin Signal 
1 Keyboard Data 
2 Speaker Signal 
3 Ground 
4 +5 V de 
5 Keyboard Clock 
6 Speaker Ground 

Specifications 
Specifications for the keyboard are shown in the following sections. 

Power Requirements 
The voltage and current shown as follows is required by the keyboard: 

• +5 V dc±10% 

• 275 mA. 

Dimensions and Weight 
Dimensions and weight of the keyboard are shown in the following list: 

• Length: 492 mm (19.4 in.) 

• Depth: 21 O mm (8.3 in.) 

• Height: 58 mm (2.3 in.), legs extended 

• Weight: 2.25 Kg (5.0 lbs.). 

Keyboard 8·29 



8-30 General Information Manual 



Chapter 9. 3-Button Mouse 

Chapter Contents 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 
Data Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Data Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 

Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 

Electrical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Logic Voltage Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 

Operational Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 
Connector Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 

Mouse 9-1 



9-2 General Information Manual 



Desription 
This section contains mouse operational characteristics and modes, commands, and an 
explanation of data transmission between the mouse and the system. Connector 
specifications and voltage information for the mouse are also found in this section. 

Note: For additional information refer to "Mouse Adapter" in the "Standard 1/0" section of 
the particular RISC System/6000 technical reference manual. 

Description 
The mouse is a cursor-positioning device that uses a rubber-coated ball and two 
mechanical encoders to indicate X and Y coordinates to the system to position the cursor. 
Three push-button switches are used to transmit select signals directly to the system. The 
mouse is connected to the system with a thin cable from a connector on the rear of the 
system unit. The ball is removable for cleaning. 

Operation Modes 
The following describes the mouse modes of operation: 

Mode Description 

reset At startup or on receipt of a reset command, the mouse performs a 
self-test, transmits a completion code (X'AA') upon satisfactory completion, 
and an ID code (X'OO') to the system. The following defaults are set: 

stream 

remote 

wrap 

• Sampling rate equals 100 reports per second. 

• Linear scaling. 

• Stream mode. 

• 150 counts per inch (6 counts per millimeter). 

• 100 reports per second. 

• Mouse is disabled. 

• The mouse sends an error code of X'FC' followed by an ID code of X'OO' 
immediately following an error to complete the diagnostics. The mouse is 
disabled and waits for additional commands from the system. 

In this mode, the mouse transmits a data report to the system if a button is 
pressed or released or if at least one count of movement has been detected 
since last reported. The rate of transfer is determined by the set sampling 
rate command and ranges from 1 O samples per second to 200 samples per 
second. No transmissions occur while the mouse is motionless unless a 
button is operated, then the incremental movement report is 0. 

In this mode the mouse transmits data only in response to a read data 
command. 

In this mode any byte of data sent by the system, except X'EC' or X'FF', is 
returned by the mouse. 

Mouse 9-3 



Commands 
The following list contains descriptions of the mouse commands: 

Hex 

Command 

FF 

FE 

F6 

FS 

F4 

F3AA 

F2 

FD 
EE 

EC 

Description 

Reset: Causes the mouse to enter the reset mode and perform an internal 
self-test. 

Resend: This command is sent any time the mouse receives a command 
that is not valid. 

Set Default: This command reinitializes all conditions to the power-on 
default state. 

Disable: Used in stream mode to stop transmissions from the mouse. The 
mouse responds to all other commands while disabled. If the mouse is in 
stream mode, it must be disabled prior to sending it any command that 
requires a response. 

Enable: Allows the mouse to begin transmissions if it is in stream mode. 

Set Sampling Rate: In stream mode the following sample rates are set to 
the value indicated by byte AA: 

Second 

Byte AA Sample Rate 

X'OA' 1 O per second 

X'14' 20 per second 

X'28' 40 per second 

X'3C' 60 per second 

X'SO' 80 per second 

X'64' 100 per second 

X'C8' 200 per second. 

Read Device Type: Always receives a response of X'OO'. 

Set Remote Mode: This command sets remote mode. 

Set Wrap Mode: Puts the mouse in wrap mode. 

Reset Wrap Mode: Resets wrap mode. The mouse returns to the previous 
mode of operation after receiving this command. 

Note: If the mouse enters wrap mode while it is operating in stream mode, the reset wrap 
mode command causes the mouse to return to the stream mode in a disabled state. 

EB 

EA 

Read Data: This command requests that all data defined in the data packet 
format be transmitted and is executed in either remote or stream mode. 
Following a read data command, the accumulators are cleared after the 
data transmission. 

Set Stream Mode: Sets stream mode. 

9·4 General Information Manual 



E9 

E8BB 

E7 

E6 

Status Request: Causes the mouse to send the following 3-byte status 
report: 

Byte Bit Configuration 

1 7 Reserved 

6 O equals stream mode, 1 equals remote mode 

5 O equals disabled, 1 equals enabled 

4 O = Scaling 1 :1, 1 = Scaling 2:1 

3 Reserved 

2 1 equals left button pressed 

1 1 equals middle button pressed 

0 1 equals right button pressed 

2 7-0 Current resolution setting (Bit O = LSB) 

3 7-0 Current sampling rate (Bit O = LSB) 

Set Resolution: Sets the resolution to the following value specified by byte 
BB: 

Second 

Byte BB 

X'OO' 

X'01' 

X'02' 

X'03' 

3-Button 

25 per inch (1 per mm) 

75 per inch (3 per mm) 

150 per inch (6 per mm) 

320 per inch (12 per mm) 

Set Scaling 2:1: Scaling is used to provide a course or fine tracking 
response. At the end of a sample interval in stream mode, the current X and 
Y data values are converted to new values. The sign bits are not involved in 
this conversion. The following shows the relationship between the input and 
output counts: 

Input 

0 

1 

2 

3 

4 

5 

N(>=6) 

Output 

0 

1 

3 

6 

9 

2.0 x N 

2:1 scaling is only performed in stream mode. 

, Reset Scaling: Restores 1 :1 scaling. 

Mouse 9-5 



Data Report 
When operating in stream mode, any change to the status bytes of the mouse device causes 
a data report to be sent at the end of a sample interval. Mouse movement of one count, or 
changing the button status from pressed position to released position, or vice versa, causes 
a change in the status bytes of the mouse device. 

In the remote mode, a data report is sent in response to a read data command. The buttons 
are reported in their current state at the time of transmission. 

The data report format shown in the following table is 3 bytes long and valid for both stream 
and remote modes. 

Data Report Format 

Byte Bits Indication 

1 0 Left button status, 1 equals pressed 

1 Right button status, 1 equals pressed 

2 Middle button status, 1 equals pressed 

3 Reserved 

4 X data sign bit (1 equals negative value) 

5 Ydata sign bit (1 equals negative value) 

6 X data overflow (1 equals overflow) 

7 Y data overflow (1 equals overflow) 

2 1-6 Xdata 

7 MSB of Xdata 

0 LSB of Xdata 

3 1-6 Ydata 

7 MSB of Ydata 

0 LSB of Ydata 

The data values are in binary and the LSB indicates 0.1 inch (0.25 mm) of movement when 
operating with linear scaling at 1 O counts per inch (four counts per mm) resolution. Negative 
values of X and Y data are expressed in twos complement where a 0.1 inch movement in 
the negative direction is expressed with all bits set to 1 and the Sign bit set to 1. After a 
transmission, the accumulators are set to 0. 

9-6 General Information Manual 



Error Handling 
When the mouse receives any input that is not valid or any input with incorrect polarity, it 
issues a resend command (X'FE'). If two inputs that are not valid are received in 
succession, an error code of X'FC' is sent to the system. 

Following a system transmission, the mouse responds within 25 milliseconds to commands 
that require a response, or if an error is detected in the transmission. If the mouse is in the 
stream mode, the system must disable the mouse before issuing any command requiring a 
response. When a command requiring a response is issued by the system, another 
command should not be issued until either the response is received or 25 milliseconds has 
elapsed. No more than four commands not requiring responses can be sent to the mouse in 
succession. 

Data Frame 
The following describes the data frame: 

Bit Function 

start bit 

0 

1-6 

7 

parity bit 

stop bit 

Data Transmission 

Always O 

Data (LSB) 

Data 

Data (MSB) 

Odd parity 

Always 1 

During a data transmission, the 'elk' signal is used to clock serial data. The mouse generates 
the clocking signal when sending data to and receiving data from the system. The system 
requests that the mouse receive system data output by forcing the data signal line to inactive 
and allowing the 'elk' signal to go active. 

Communication is bidirectional, using the clock and data signal lines. The signal for each of 
these lines comes from open collector devices, allowing either the mouse or the system to 
force a line to the inactive level. During a non-transmission state, the 'elk' and 'data' signals 
are both held at the ( +) level. 

Data Output 
When the mouse is ready to transmit data, it must first check for its own inhibit or system 
request-to-send status on the clock and data lines. If the 'elk' signal is low (inhibit status), 
data is continuously updated, and no transmissions are started. If the 'elk' signal is high and 
the data signal is low (request-to-send), data is updated. Data is received from the system 
and no transmissions are started by the mouse until the 'elk' and 'data' signals are both high. 

If the 'elk' and 'data' signals are both high, the mouse proceeds to output a O Start bit, 8 Data 
bits, a Parity bit, and a Stop bit if a transmission is required. Data is valid prior to the falling 
edge of the 'elk' signal and beyond the rising edge of the 'elk' signal. During transmission, 
the mouse checks for line contention by checking for an inactive level on the 'elk' signal at 
intervals not to exceed 100 µsec. Contention occurs when the system lowers the 'elk' signal 

Mouse 9·7 



Data Input 

to inhibit the mouse output after a transmission has been started. If this occurs before the 
rising edge of the tenth clock (Parity bit), the mouse internally stores its data packet in its 
buffer and returns the 'data' and 'elk' signals to an active level. If the contention does not 
occur by the 10th clock, the transmission is complete. 

Following a transmission, the system can inhibit the mouse by holding the 'elk' signal low 
until it can service the input or until the system receives a request from the mouse to send a 
response. 

When the system is ready to send data, it first checks to see if the mouse is transmitting 
data. When the mouse is transmitting, the system can override the output by forcing the 'elk' 
signal to an inactive level prior to the tenth clock. When the mouse transmission occurs after 
the 10th clock, the system receives the data. 

When the mouse is not transmitting or if the system chooses to override the output, the 
system forces the 'elk' signal to an inactive level for a period of not less than 100 µsec while 
preparing for output. When the system is ready to output a O Start bit (data line low), it 
allows the 'elk' signal to go to a(+) level. This state is checked by the mouse at an interval 
not to exceed 1 O milliseconds. 

When a request-to-send condition is detected, the mouse clocks in 11 bits of data. 
Following the tenth clock, the mouse checks for a(+) level on the data line, and if found, the 
mouse forces the data low and clocks once more. This signals the system to return to the 
ready state so it can accept input or enter the inhibit mode until ready. If the data signal is 
detected at an inactive level following clock 10, a framing error has occurred and the mouse 
continues clocking until the data signal is high. The mouse then clocks the Line Control bit 
and requests a resend. 

For each system command or data transmission that requires a response, the system waits 
for the mouse to respond before sending its next output. The response must be within 20 
ms, unless the system inhibits the mouse output or inhibits the data transmission from the 
system that requires a response. 

When a system command is initiated, the data transmission and the associated response is 
not valid. If there is a parity error, the system retransmits the command or data. If the 
response is still not valid or has a parity error after two retries, the system resets the mouse. 

Electrical Interface 
The RISC System/6000 Standard 1/0 supplies the electrical interface to the mouse, 
providing supply and logic level voltages. 

Supply Voltage 
One voltage level is available to the mouse at the system connector. 

V cc = 5 V de ± 10% 

No more than 100 mV peak-to-peak differential noise and ripple is present on the +5 volt 
line. 

On startup and shutdown the mouse can tolerate a voltage overshoot of V cc +30% or a 
voltage undershoot of V cc -0.3 V with no damage. 

Logic Voltage Levels 
The term - level is defined to be equivalent to a voltage, V, measured between a signal 
source and a network ground such that 0.0 V:::;; V:::;; +0.7 V. A signal at a- level is a logical 0. 

9-8 General Information Manual 



The term + level is defined to be equivalent to a voltage, V, measured between a signal 
source and a network ground such that 2.4 V ~ V ~ +5.5 V. A signal at a + level is a logical 1. 

Operational Characteristics 
Operational characteristics for the mouse are described in the following list: 

Description Characteristic 

resolution Programmable to 25, 75, 150, or 320 counts per inch. Default 
equals 150. 

sampling rate Programmable to 10, 20, 30, 40, 60, 80, 100, or 200 reports per 
second. Default equals 100. 

data modes 

scaling 

power 

protocol 

Stream (default), remote, or wrap. 

1 :1 or 2:1. 

+ 5 V de, ±10%, < 125 mA. 

Clock and Data Interface. 

Connector Specifications 
Figure 109 shows the mouse connector. 

Figure 109. Mouse Cable Connector 

The following list contains mouse connector pin numbers and signals: 

Pin Signal 
1 Mouse Data 
2 Reserved 
3 Ground 
4 +SV de 
5 Mouse Clock 
6 Reserved 

Mouse 9-9 



9· 10 General Information Manual 



Chapter 10. Micro Channel Adapter Support 

Chapter Contents 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 
IBM Micro Channel Optional Features Supported . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
RISC System/6000 Configuration Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Devices Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
ADF's . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 

Other Micro Channel Adapter Design Considerations . . . . . . . . . . . . . . . . . . . . . . 10-6 
Adapter Configurations Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 

Raw Card Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Assembled Card Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
Card Layout With Metal Bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
Top Card Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 

Power ............................. ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 
Recommended Maximum Current Per Adapter . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 

Micro Channel Architecture Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 

Micro Channel Adapter Support 10-1 



1 0·2 General Information Manual 



Description 
This chapter provides some basic information specific to the RISC System/6000 and the 
support of Micro Channel adapters. Topics included in this chapter are as follows: 

• The first section provides a description of the Micro Channel optional features which will 
be supported in the RISC System/6000 family. 

• The second section provides a brief overview of the RISC System/6000 configuration 
procedure describing how Micro Channel adapters are configured in the system. 

• The third section, titled "RISC System /6000- Other Micro Channel Adapter Design 
Considerations" complements the IBM RISC System/6000 POWERstation and 
POWERserver Hardware Technical Reference - Micro Channel Architecture document. 
That document includes 2 chapters. The first chapter is "Micro Channel Architecture". The 
second chapter titled "Micro Channel Adapter Design", provides some basic guidelines to 
design adapters for the Micro Channel architecture 16-bit and 32-bit products. This third 
section provides additional information not included in the referenced document, such as 
physical specifications for a larger card type, and a current limitation specification for 
Micro Channel adapters installed in the RISC System/6000 family. 

• The last section of this chapter lists deviations from the Micro Channel architecture. 

Micro Channel Adapter Support 10-3 



IBM Micro Channel Optional Features Supported 
There are a number of features that are optional in the IBM Micro Channel Architecture that 
are supported in the RISC System/6000 family. The optional features that are supported in 
the RISC System/6000 family are: 

• Streaming Data Operations: The streaming data procedure provides a faster data transfer 
rate than the basic transfer procedure. The RISC System/6000 family provides for 16 and 
32-bit Bus Master Streaming Data with the IOCC operating as the slave. 

• Address and Data Parity: The address and data parity support (odd parity) provides the 
ability to detect and recover from parity errors on the Micro Channel. 

• Video Extension:16-bit and 32-bit adapters with video extension may be installed in the 
RISC System/6000 system. However the video extension function is not supported. The 
appropriate signals for the video extension function are provided pull-up resistors but the 
signals are not bussed. The Micro Channel 'oscillator' (OSC) signal is also provided for 
the video extension. The video extension connector pins are supported as follows: 

A Side Pin BSide 

Pullup-2K 10 Pullup-2K 

Pullup-2K 9 Pullup-2K 

Pullup-2K 8 Pullup-2K 

Ground 7 Pullup-2k 

Pullup-2K 6 Pullup-2K 

Pullup-2K 5 Pullup-2K 

OSC (14.318 MHz) 4 Pullup-2K 

Ground 3 Pullup-2K 

Pullup-2K 2 Pullup-2K 

Pullup-2K 1 Pullup-2K 

10-4 General Information Manual 



• Matched Memory: 32-bit adapters with matched-memory extension may be installed in 
the RISC System/6000 system units. However the matched memory function is not 
supported. The appropriate signals for the matched memory function are bussed and 
pull-up resistors are provided. The matched memory connector pins are supported as 
follows: 

A Side Pin BSide 

Pullup-2.5K 1 Pullup-2.5K 

Ground 2 Pullup-2.5K 

Pullup-2.5K 3 Pullup-2.5K (Reserved) 

Pullup-2.5K (Reserved) 4 Ground 

• Asynchronous Channel Check (-CHCK): To maximize the system and Micro Channel 
availability, use of the asynchronous -CHCK should be avoided in the RISC System/6000 
system. If the asynchronous -CHCK is used by 1/0 adapters, the asynchronous -CHCK is 
detected and all Micro Channel 1/0 activity is momentarily suspended, and this usually 
results in a system reset. 

Configuration 
When a Micro Channel adapter is plugged into a system, the adapter must be made known 
and usable within that system. The RISC System/6000 system and PS/2 systems 
accomplish this by using two different procedures. The procedure is called "SETUP" in a 
PS/2, and is called "Devices Configuration" in a RISC System/6000 system. In "System 
Configuration" in the Micro Channel Architecture chapter, it explains that the system master 
configures a system using setup cycles. The system configuration procedure supports the 
identification of the adapters that reside within the system (by reading the adapter ID's in 
POS) and the configuration of those adapters (by writing configuration data into POS). 
Programmable Option Select (POS) registers are a set of software programmable registers 
located on the adapter accessible during setup cycles. The Option Diskette supplied with an 
existing Micro Channel adapter contains the specific adapter configuration data in a software 
module called the Adapter Description File (ADF). In the RISC System/6000 family, the 
appropriate ADF information is "prepopulated" on the fixed disk in the "Predefined" database 
for the adapters initially supported (Predefined is a set of object classes for the predefined 
configuration data). For a description of the "SETUP" procedures for the PS/2 systems, see 
the "IBM Personal System/2 Hardware Interface Technical Reference". 

Micro Channel Adapter Support 10·5 



RISC System/6000 Configuration Procedures 
The following sections give a very brief overview of the RISC System/6000 configuration 
procedures (Including the Micro Channel 1/0 adapters), and reference the appropriate 
chapters in the RISC System/6000 AIX Version 3 software documentation for details. 

Devices Configuration 

AD F's 

"Devices Configuration" is a procedure which performs a series of steps to make a device 
known and usable in the RISC System/6000 system. Devices Configuration includes a 
number of software modules called Device Methods. Devices Configuration is performed 
during both system IPL and runtime. Specific "Predefined" information must be provided for 
each adapter. In the RISC System/6000 family, all adapter predefined information is 
prepopulated in the predefined database on the fixed disk for all adapters initially supported. 
Device Methods use the devices predefined information to resolve all device configuration 
options and creates the "Customized Database" (which is the systems "Configured" 
database). There are five device methods that are needed to support a device. They are the 
define, configure, change, undefine, and unconfigure methods. For detailed information on 
the Device Methods, see "Device Methods" in "Programming Device Support for AIX 
Configure subsystems". The appropriate adapter configuration data is also written (By 
Device Drivers) in each adapters set of POS registers. When adding a device to the system, 
there are other areas that must be considered in addition to writing device methods. These 
areas include how the data base, device SMIT dialogues, device drivers, ADF utility, installp, 
and diagnostics, all relate to your device. "Device Methods" in "Programming Device Support 
for AIX Configure subsystems" defines and describes all these items in detail or references 
the appropriate documentation. 

A utility called adfutil command provides the capability to field merge Micro Channel adapter 
resource information (ADF's) for Micro Channel adapters into the predefined information in 
the AIX Version 3 Configuration Database (See adfutil command section in "How To Write 
Device Methods" for more detail). This is accomplished by processing information (ADF's) 
found on DOS formatted diskettes provided with the Micro Channel adapter hardware. A 
new device driver for an existing Micro Channel adapter must also be written specifically for 
the RISC System/6000 system before it can be installed. 

Device Drivers 
For information on writing an adapter device driver see the chapter "How to Write Device 
Drivers" in the software documentation. 

Other Micro Channel Adapter Design Considerations 
This section complements another RISC System /6000 document, IBM RISC System/6000 
POWERstation and POWERserver Hardware Technical Reference - Micro Channel 
Architecture. That document includes 2 chapters. The first chapter is "Micro Channel 
Architecture". The second chapter titled "Micro Channel Adapter Design", provides some 
basic guidelines to design adapters for the Micro Channel architecture 16-bit and 32-bit 
products. This third section will include additional information not included in the referenced 
document such as physical specifications for a larger card type, and a current limitation 
specification for Micro Channel adapters to be installed in the RISC System/6000 system. 

1 0·6 General Information Manual 



Adapter Configurations Supported 
The 1/0 Board provides channel connectors to support the following adapter configurations. 

• 16-bit adapter 

• 32-bit adapter 

• 16-bit adapter with video extension 

• 32-bit adapter with video extension 

• 32-bit adapter with match memory 

The physical specification for the 32-bit adapter with video extension is included in this 
section along with the physical specifications for the Type 5 card described below. Physical 
specifications for the other adapter configurations are described in IBM RISC System/6000 
POWERstation and POWERserver Hardware Technical Reference - Micro Channel 
Architecture. 

Dimensions 
RISC System/6000 packaging physically supports two card form factors, Type 3 and Type 5. 

• Type 3 Cards: The Type 3 nominal raw card physical size is 3.475 x 11.5 inches. For 
details of the Type 3 card physical specifications, see the "Micro Channel Adapter Design" 
chapter in IBM RISC System/6000 POWERstation and POWERserver Hardware 
Technical Reference - Micro Channel Architecture (The Type 3 card is also known as 
the Standard raw card size in that document). The raw card is 11.5 inches in length and 
the retainer that fastens to the end of the card extends the overall length to approximately 
12.2 inches. The retainer sits in an adapter channel that will support the card and prevent 
it from tilting sideways and coming into contact with adjacent cards. In some cases the 
card is retained on its top edge (the 3.475 height). Card retainers are required on this 
card. 

• Type 5 Cards: The Type 5 nominal raw card physical size is 4.825 x 13.1 inches. For 
details of the Type 5 card physical specifications, see the figures at the end of this 
section. The raw card is 13.1 inches in length and sits in a channel that will support the 
card and prevent if from tilting sideways. In some cases the card is retained on its top 
edge (the 4.825 height). No card retainer is allowed on this card. 

Cards (Type 3 and Type 5) that are shorter than the dimensions indicated above will require 
a special card retainer which extends the card length to allow proper retention once 
installed. 

Raw Card Thickness 

Thermal 

The bus connector is designed for a feature card thickness of 0.062 ±.005 inch. 

The adapter design should avoid clustering of high temperature components. No component 
should exceed its maximum thermal rating. A figure is shown at the end of this section 
illustrating areas on each card Type where placement of components that tend to operate 
warm should be avoided. 

Micro Channel Adapter Support 1O·7 



Assembled Card Thickness 
For minimum feature card spacing and maximum component height specifications, see 
"Micro Channel Adapter Physical Specifications" in the IBM RISC System/6000 
POWERstation and POWERserver Hardware Technical Reference - Micro Channel 
Architecture document. Deviations from the thicknesses specified can result in touching of 
adjacent cards, affect cooling due to reduced air flow, and may limit placement of 1/0 cards 
within the machine. 

Card Layout With Metal Bracket 
The metal bracket covers 0.200 inch of the card when installed. When laying out the card, 
do not install any components near the 1/0 end of the card that would interfere with the 
installation of the bracket. During the wiring operation do not route lands under the bracket 
because the bracket is located just above the circuit board. If the bracket was slightly bent, 
the bracket could short to the lands. Also use care when placing components near the 
bracket whose leads could short to the bracket. The metal bracket location is the same for 
both Type 3 and Type 5 cards. 

Top Card Connectors 
There are specific requirements for card designs that use a top card connector (See the 
drawings at the end of this section for details). The raw card drawings indicate a specific 
area that must be used for the top card connector. The top of the connector must not extend 
beyond 0.276 inch above the top edge of the Type 3 card. For the Type 5 card, the top edge 
connector must be recessed and not extended above the top edge of the card. Above these 
points, the connector may interfere with the covers. If the connector is located at any point 
other than that specified, the cabling will impact airflow through the system. Note from the 
drawings that Type 3 cards designed specifically for the RISC System/6000 system may 
have a top card connector position other than that specified for the PS/2. Type 3 card 
designs intended for both RISC System/6000 and PS/2 systems which use top card 
connectors, should use the top card connector position specified for use in the PS/2. See the 
appropriate figures in the "Micro Channel Adapter Design" chapter. 

10·8 General Information Manual 



Power 
The following figure illustrates the recommended maximum currents for adapters installed in 
the RISC System/6000 system. This allows for maximum slot configurability in each RISC 
System/6000 system. Figure 11 O also provides the absolute maximum currents that may be 
allowed per individual card slot and for all slots. Care must be taken when designing cards 
which exceed the recommended maximum current specifications, as this results in system 
configuration limitations (such as not populating some card slots or placement of lower 
power cards or empty card slots next to high power adapters). The RISC System/6000 
current capabilities exceed those defined in the Micro Channel architecture. To enable 
portability across all Micro Channel systems, the Micro Channel architecture current 
requirements should be met. 

RISC System/6000 Models 

320 

RECOMMENDED +5 Volts 
maximum current per +12 Volts 
adapter (amps) -12 Volts 

Absolute maximum +5 Volts 6.5 
current per adapter +12 Volts 1.0 
slot (amps) -12 Volts 0.4 

Maximum current +5 Volts 19.0 
allowed for all card +12 Volts 2.0 
slots combined -12 Volts 0.4 
(amps) 

Figure 110. RISC System /6000 Channel Load Currents 

Notes: 

520,530, 
540,730 930 

3.12 Note 1 
0.25 
0.10 

6.5 6.5 Note 2 
1.0 1.0 
0.5 0.4 

25.0 25.0 Note 3 
2.0 2.7 
1.9 2.0 

1. The RECOMMENDED maximum current ratings allow for maximum configurability 
of all Micro Channel card slots in each RISC System /6000. 

2. The total current for all Micro Channel cards installed in any particular RISC 
System/6000 system must not exceed the maximum total rated currents listed. 

3. The RISC System/6000 system can provide the absolute maximum currents listed 
per Micro Channel card slot. However, cards designed to exceed the 
RECOMMENDED maximum current limits per adapter, result in system 
configuration limitations such as fewer cards allowed per system, etc. Adapter 
cards with power dissipation of 20 watts or more should be separated by empty 
card positions or lower power adapters when possible. 

Micro Channel Adapter Support 10-9 



Micro Channel Architecture Deviations 
The following are Implementation specific RISC System/6000 deviations from the Micro 
Channel architecture. It has been verified that the supported set of adapters function 
satisfactorily on the Micro Channel in the RISC System/6000 systems with the stated 
deviations. 

• When the RISC System/6000 1/0 Channel Converter (IOCC) is an 1/0 slave on the Micro 
Channel, it will hold the '-CHRDYRTN' line (in some situations) longer than the specified 
3.5 microseconds ('-CHRDYRTN' may be held inactive 3.8 microseconds.) 

• The IOCC does not meet the timing specification T31 for the BE(0-3) lines. BE(0-3) 
becomes valid with the falling edge of '-AOL' instead of the specified time. This still 
provides sufficient time for the 'BE(0-3)' signals to be valid on the bus to meet the T33 
timing parameter for slaves. 

• The RISC System/6000 1/0 Channel Converter (IOCC) as a slave does not check data 
parity on 2-byte transfers from 16-bit bus masters (such as the Token Ring 
High-Performance Adapter and the 4-Port Multi Protocol Adapter) when the lower 2-bits 
of the address are binary '10'. 

• The IOCC activates '-SD STROBE' during Programmed 1/0 (PIO) operations, though 
streaming data operations with the IOCC as the master are not supported. 

• The IOCC does not meet the T1 timing specification during REFRESH cycles. Address is 
valid coincident with Status active Instead of 1 o ns prior to Status active. 

• The RISC System/6000 Standard 1/0 does not activate 'Channel Check' (-CHCK) for 
address parity errors. If an address parity error occurs, the Standard 1/0 will not be 
selected and will not activate '-CD SFDBK'. The lack of '-CD SFDBK' will be detected by 
the IOCC and reported as an exception. 

• The RISC System/6000 Standard 1/0 does not have a parity enable/disable POS bit. In 
the RISC System/6000, the parity function is enabled. 

10· 10 General Information Manual 



\ \ 
\ 

\ ,_ 

~ 
"' ID 

\ 

~ 
"' ~ 

.. 
Figure 111. Type 5 Adapter Assembly 

Micro Channel Adapter Support 10-11 



lift' fl) 
l'K"ftl) 

i 010' • ttfrt'fl 
A'O • M'lll 

COO'• Ml' 
9LO'O •IL 'fl 

too• • ''°'' 
(!) tLO'O • tt'9L 

GtlD aLtlln'fa MUM $Lt• 

HI .. oot• 

ssaocmu .A'WGSSY lftllntt ••·LI !~ 010' • stt' 
H''O • CS'6 

§ 

~ 
v~ 

1-
® I ~ 

@J 

. ~ !~ 
~ ~ ~ 

§~ ~ ~ i 
,~ ~ ! .; 

~ 
~ i 

-~ ~ I ;! " 
~ ~ « 

~ ::; * -4t. ~ f::H 
I - g ~ ~ 

r'!l . 
> 

0 

i .; 

fl 
~ 

. 
~. M 

« ! ~,: N ~ 2 
.; 

I ! ~ 1; g - 4 

! i IN 
~ . e 

~g ~ 
f.,:. 

; I" 
2~ ~ 

el t-- H 
I 

~· llf -= 
L. '..!!! .. ,. r I ~ 

NIN K'I ® 
(I!JJ .... too· ' 001• 

~~ 01 {)Ct} 94.0'0' t.S'Z 

OS"' ti 
tO'tl I 13-< 

Figure 112. Adapter Dimensions-Type 5 Card (32-Bit) 

10-12 General Information Manual 



s:::: s· 
0 
~ 

~ 
:::J 
!!. 

~ 
¥ .... 
en c: 

~ 
~ 

..a. 
9 
..a. 
w 

:!! 
cc 
c: 
<D 
_.. 

~'~ 
_.. 
~ 
0 
0 
:::J 
:::J 

lli CD n a: 

Q T' ":::; ... 
c 
~r 
CD 
:::J 
UI s· 
:::J 
UI 

~ 
'}> 
~ .e 

(87XI 0.508 t 0.025 BOTH SIDES @ 0.98 t 0.165 © 
.020 :I: .001 ,039 t .0065 

(87XJ 0.508 t 0.025 BOTH SIDES @ 3.81 
.020 :I: .001 ,150 

(I II. 761 
N.'"3C>l 

NOTES 

@ DIMENSIONS CJUTICAL TO FIJllCTIOll. 

2 CAAD5 USING CMD5 TEOINOl..OGY SHOii.ii MAKE AU. CARD TASS TIE: SAi€ 

LENGTH TO REDUCE TIE: ~ aF INCORRECT BIAS TO TIE: MDDll..ES. 

(&'>XI 1,27 BOTH SIDES @ 
.050 

l+!o.127 (.0051 s !xi --­
<e7x> BOTH SIDES 
(TAB TO DATUlll @ 

!+!o.051 1 .0021 s I 
(86X) BOTH SIDES 
ITAB TO TABI @ 

... "' ~,8 -o 
•0 

0 • 0 • .. .. .. .. 
~~ S: IC ... .;, .. ... 
! 



...... -· 
GllW3 - HUM SLt' 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II ___ J.J 

001' 

"'" ..... 

fSLtl"U 
ILl'lt} , 

I 
@ 91.0'0 • K'9L 

........ ~I 
9LO'O ' t6'1 

t6C' 

DI lxtl 
OOl"C 

too• ' 911' 
'9LD'O ' IL 'ii 

010· • su:· 
sz·o • a·r. 

i ~ 
- <I 

~I 
i. 

Figure 114. Adapter Dimensions-Type 3 Card (32-Bit with Video Extension) 

10· 14 General Information Manual 

• e 
w 
I 

I 
i I 

~- I 0 • i "" H ! 1: ! ! 
0 ' 

~~ 
0 i i ~ I 

~ i 
.. e .. I ~ i 

h I e 
ra !5 

h ei w I 
I I n I 
D 

£ e @I ® • 



Figure 115. Connector Dimensions (32-Bit) 

Micro Channel Adapter Support 10-15 



....... 
0 
I ....... 
0) 

G> 
CD 
::I 
CD 

ii 
::!! 

(Q 
c: 

5" 

CiJ 
0 .... 
3 ..... ..... ~ 

!'> 0 
::::J 

~ 
'O 

s:: 
CD 

ID 

UI 
::I 

~ 

c: 
!!!. 

Q. 

~ 
'O 
CD 
c.J 

0 

~ 
"'tJ 

~ a; 
(/) 

a 
~ 

:; 
;! ... 

!~ "'111 
llla 
il!l 

~:!! m: 15i!' !lfZ 

i~ ~~ 

·TVPE S 
C:ARO PROFILE 

EDGE CONNECTOR LOCATION 

ADAPTER MAY BE RETAINED 
ON EDGE IN THIS AREA 

ADAPTER MAY BE RETAINED 
Oii EDGE IN THIS AREA 

EDGE C:ONNECTOR LOCATION 

COMPONENT (A} SIDE 



Figure 117. Component Locations for Thermal 

Micro Channel Adapter Support 10· 17 



...... 
0 
I ...... 
m 
G> 
CD 
::s 
CD 

el 
'Tl 
cO 
c 

S" 
0 
3 <D 
~ 

?> 0 
::s 

0 
0 
::s 
::s 
CD 

~ 

s:: 
II> ::s 
c 
!!!. 

0 
0 
3 
3 
0 
::s 
0 
!!!. 
~ 

$16 
N 

YI I I 

1 .67 MAX OVER PLATING 
20· ± 2· 

.07 

co ,.... "° U'\ 
MM MM 
<( <( <( <( 

<D 

0.38 ±0.13 
.015 ±.005 

NOTES 

Q} ALL TABS. BOTH SIDES. TO BE GOLD PLATED 0.0018 mm (.00007 inJ MIN 
OVER 0.0025~ mm (.0001 inl MIN NICKEL ANO CHAMFERED AS SHOWN. 

TYP BOTH SIDES 
C>. ~5° TYP BOTH SIDES 

I \ co ...... '° U'\ MM MM 
<( <( <t <( 

:ti,,. 
N 

..; 

TYP BOTH SIDES 
CALL ACCEPTABLE OPTIONS SHOWN! 

g 
•IN 

r-

y 













--------- ----- - -- - ---- -- -----------·-
® 

© IBM Corp. 1990 

International Business Machines 
Corporation 
11400 Burnet Road 
Austin, Texas 78758-3493 

Printed in the 
United States of America 
All Rights Reserved 

SA23-2643-00 

SA23-2643-00 

~ I 


