SA23-2643-00

First Edition (1990)

This edition notice applies to the /BM RISC System/6000 POWERstation and POWERserver Hardware
Technical Reference — General Information Manual.

The following paragraph does not aprly to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM’s licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

©Copyright International Business Machines Corporation, 1990. All rights reserved.

Note to US Government Users — Documentation and programs related to restricted rights — Use, duplication,
or disclosure is subject to the restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks

The following trademarks apply to this book:

IBM is a registered trademark of International Business Machines Corporation.

Personal System/2 and PS/2 are trademarks of International Business Machines
Corporation.

RISC System/6000 is a trademark of International Business Machines Corporation.

AlX is a trademark of International Business Machines Corporation.

Preface 1]

iv Preface

About This Book

Purpose

The IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — General Information Manual is one part of the six—part RISC System /6000
hardware technical reference manual. This manual should be used in conjunction with the
following RISC System /6000 hardware technical reference manuals:

Audience

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Options and Devices (SA23—-2646)

IBM RISC System/6000 Hardware Technical Reference — 7012 POWERstation and
POWERserver (SA23-2660)

IBM RISC System/6000 Hardware Technical Reference — 7013 and 7016 POWERstation
and POWERserver (SA23-2644)

IBM RISC System/6000 Hardware Technical Reference — 7015 POWERserver
(SA23-2645)

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Micro Channel Architecture (SA23-2647).

The information in this manual is for reference. It is intended for hardware and program
designers, programmers, engineers, and anyone else who needs to understand the
operation of the IBM RISC System/6000.

Related Information

PS/2 Monochrome Display 8508 Technical Reference (SA23—-2448)
60/120MB Fixed-Disk Drive Technical Reference (S68X-2314)

PS/2 5.25-inch External Disk Drive Technical Reference (S68X-2348)
4—-Port Multiprotocol Interface Adapter Technical Reference (S33F-5337)
X.25 Co—Processor/2 Technical Reference (S16F—1879)

3270 Emulation Adapter Technical Reference (GA23—-0339).

Preface v

vi Preface

Table of Contents

Chapter 1. Introduction to the RISC System/6000 System 11
DeSCriPtiON i e e i 1-3
Central Electronics CompleXot iiiii it ittt ie it enennenenns 1-3
Workstation Hardware iiiiiiiiiiniiiiinnaeenennns 1-6
SGR 2564 Processor ChipSetottt ii it 1-9
SGR 2032 ProcessorChipSet ..ottt ittt i e, 1-16
Chapter 2. RISC System/6000 ProcesSSorscceeeeeeeenscsansans 2-1
[=T e] o (1] o P 2-5
Document Conventionscoitiiiiri it ittt ittt e e 2-5
SysStemMS OVerVIeW it i i i it it e e e e e 2-6
Instruction Formatsttt it iie et 2-7
Memory Addressingc.viiiiiiiiieit ittt et e, 2-14
BranCh ProCeSSOr ..ottt ittt i ittt ettt et e 2-16
Supervisor Linkage Instruction ittt it i, 2-23
Trap INStructionS ittt ittt i i i i e et it 2-24
Condition Register Field Instruction iiiiiiiiin... 2-25
Condition Register Logical Instructions, 2-25
Fixed—Point ProcessorRegistersciiiiiiiiininnnnrnennenns 2-29
Fixed—Point ProcessorInstructionscciiiiiiininnnennnnn. 2-31
Fixed—Point Store Instructionsottt 2-37
Fixed—Point Load with Update Instructions i, 2-42
Fixed—Point Store with Update Instructions 2-46
Fixed—Point Move Assist Instructionscoiiiiiiiiiiian.. 2-49
Fixed—Point Address Computation Instructions 2-53
Fixed—Point Arithmetic Instructions ittt 2-54
Fixed—Point Compare instructionsccoiiiiiiiiiiinnnnnnnn. 2-65
Fixed—Point Logical Instructionscciiiiiiiiiiiiiennennn.. 2-67
Fixed—Point Rotate and Shift Instructions o i, 2-73
Floating—Point ProcessorOverviewccciiiiinenennnnnnanenns 2-91
Floating—Point Data Representationcciiiiiiiennnnnnnn. 2-97
Floating—Point EXCeptionsc.coiiiiriiriiiriiiernnnnennennnnn 2-103
Floating—Point Resource Managementcciiitiiinenennnenn. 2-111
Floating—Point ExecutionModelsccoiiiiiiinreeinnnenennns 2-111
Floating—Point Processor Instructionsc..iiiiiienienrnnnnnss 2-114
Chapter3.Memoryccevvivivennnnns Cettietiessesasesennnns 31
Virtual Memory i i i et 3-3
SYStEM MEMOrYt i i it e it e it 3-3

Preface vii

Chapter 4. System /O Structureccceveieirerecrennssnsccennns 4-1

[1= ot o T o 4-3
Bit and Byte Numbering Conventions ittt 4-9
O BUS PIotoCOISiiiiiii ittt e ie e c e e et e e 4-15
ProgrammingModel i e i e 4-23
Special Facilitiesvovtiiiiniiiii ittt i et nrararnsnaneaennns 4-70
Systeml/OandStandard /Ol PR 4-78
Exception ReportingandHandlingccoiiiiiiiiiiiiiinnnen, 4-80
ImplementationDetailsc.iiiiiiiiii i i e, 4-80
Chapter 5. Vital ProductData Ceterecarieans eeenas 5-1
[L= (T o 5-3
Keyword Descriptor Summaryo i ittt it it r e 5-5
Hardware VPD Descriptor Summaryo iinininnieiniinrnnananens 5-10
Micro Channel Adapter Requirementsccoiiiiiiiiinennnnns 5-13
Sample Layout of the Micro Channel Adapter VPD 5-17
Chapter 6. Initial Program Load (IPL)ROMcccveveveneses ceese 6-1
1 L= T T o (T PP 6-3
IPLROM Componentscovuieienenreneneneneenneannsonensanns 6-6
IPL ROM Functional Characteristicscccviiiiiiiiiinnenns 6-14
o T 0o Te [T P 6-18
Chapter 7. Keyboard/Tablet/Speaker Adapterccciivenennnns 7-1
[=T To o 1T 7-5
System Interface: Input/Output Operationsto Adapter 7-7
Adapter Commandsc.itiiinriririnnetariiae et 7-14
Adapter Speaker Controlcciiitiiit it i i e i e 7-27
Adapter RAS and Security Functionsottt 7-31
Keyboard Device SupportNotescoiiiiiiniiiiiiiiiiinennn. 7-37
Adapter Design NOteSciiiiiin it it ie e ieennnaraennannans 7-37
Adapter and Keyboard Initialization Procedureccovvunt, 7-41
Standard I/0 Adapter Board to Device Interfaceccntn. 7-43
Chapter8.Keyboardcciiiiiiiiiniicercennncennssnnnnnnnns 8-1
[1= Yo 1o (T 8-3
Power—-On Routineciiiiiiii ittt it iei e tieteereaaraanan 8-4
Sequential Key—Code Scanningc.oviiiiiiiiiinrennienrenrenns 8-4
Commands fromthe Systemttt iiiiiiiiiiinene. 8-5
Commandstothe Systemiiiiiiiiiiii i iiinnarenanannns 8-6
£ Tz Lo I 07 o [T e 8-7
Clock And DataSignalscoiiiiiiinniinennennnenenensennenns 8-15
Keyboard Character Codescviiiiii it ittt ittt e eneannnns 8-17
Shift Status ..ottt i i i e i i i te e et 8-22
Lo T=T: |- T P 8-23
Key Position Layout iiiiiiiiiiiiinie i naranneaanns 8-23
Keyboard Layoutscoiiiiiiinin ittt e teneneienrneaeanens 8-24
Cablesand Connectorsoiiiiti ittt ittt et 8-29
Specifications i e i et e e 8-29

viii Preface

Chapter 9. 3-Button MouUSec.ivcitiiternnerncncncncrananas 9-1

[LT (T P 9-3
Operation MOdeSciiiiiiiiii it it e it e e 9-3
(00T 111 4T T Lo - P 9-4
Data RePOMtottt i it e e i i e 9-6
ErrorHandling . ..ot e e e 9-7
Data Frame ...t i i i i i e it i e e e e e 9-7
Data TransmissiONcoiiiiiiiit ittt ittt ittt 9-7
Electrical Interfacet e 9-8
Operational Characteristicsccviiiii it i e nnn 9-9
Connector Specificationscoiiiiiiii it i i e 99
Chapter 10. Micro Channel AdapterSupportcceiivennn. 10-1
DeSHPtiON e 10-3
IBM Micro Channel Optional Features Supported 10-4
Configurationot i i et 10-5
RISC System/6000 Configuration Procedurescccvvvnenn.. 10-6
Other Micro Channel Adapter Design Considerations 10-6
Adapter Configurations Supported i i i 10-7
10141 T=T 0 o T PO 10-7
a1 PP 10-9
Micro Channel Architecture Deviations, 10-10

Preface ix

X

Preface

Chapter 1. Introduction to the RISC System/6000
System

Chapter Contents
1 1= T Tt {7 (T o P 1-3
Central Electronics Complexottt iiee e, 1-3
Workstation Hardware ittt 1-6
SGR 2564 Processor ChipSetcciiiiiiiiii ittt 1-9
Fixed=PointUnit i i i it ii i 1-9
Floating—Point Unitci ittt inrenrneararanns 1-10
Instruction Cache and Branch ProcessingUnit 1-10
DataCache Unitc.ciiiiiiiiiii it ittt ieenrnencnnanns 1-11
Memory Control Unit it it et it ieirneeeannnss 1-12
10 1 1-12
SGR 2564 Processor Pipelineottt 1-14
SGR 2032 Processor ChipSet ..ottt ittt iieiennns 1-16
RISC System/6000 Table TopModelc.cciiiiiiiiinnnnnnn. 1-17

Introduction 1-1

1-2 General Information Manual

Description

The RISC System/6000 unit is a second—generation RISC machine. Like earlier RISC
processors, the RISC System/6000 unit employs a simple register—oriented instruction set
that is completely hardwired, and features a pipelined implementation and an efficient
storage hierarchy. This enables the processor chip set to run an instruction almost every
cycle. Unlike earlier RISC processors, however, the RISC System/6000 unit employs several
advanced architectural and implementation features including separate instruction and data
caches, zero—cycle branches, multiple instruction dispatch, simultaneous running of fixed—
and floating—point operations, and overlapped running of register—register (RR) operations
and load and store commands. As such, the RISC System/6000 unit combines the simplicity
of a RISC instruction set with sophisticated hardware design techniques to achieve a short
cycle time and a low cycles—per—instruction (CPI) ratio. In a single cycle, four instructions
can be run simultaneously: a branch instruction, a fixed—point instruction, a floating—point
instruction and a Condition register logical instruction. Counting the floating—point
multiply—add instruction as two operations, this yields a peak run rate of five operations per
cycle.

Central Electronics Complex

The RISC System/6000 SGR 2564 and SGR 3064 processor chip sets central electronics
complex (CEC) contains up to eleven semi—custom chips: a fixed—point unit (FXU), a
floating—point unit (FPU), an instruction cache and branch processing unit (ICU), four data
cache units (DCU), a memory control unit (MCU), an input and output unit (IOU), and a clock
chip (CLK). Every memory board contains two data multiplexing modules and one control
module for interleaving. The SGR 2564 and SGR 3064 processor chip sets share the same
architecture. In this manual, SGR 2564 is used and applies to both the SGR 2564 and SGR
3064 processor chip sets. A block diagram of the SGR 2564 and SGR 3064 processor chip
sets is illustrated in Figure 1 on page 1-4.

Introduction 1-3

1-4

I-Cache Reload (2W) E
..... ‘. .
@w) | | e
— FPU ' |pocu| | m
: : r
I-Bus (2W) : : y
ICU i DCU :‘__, B
aw) . 'M-Bus| 0
L Fxu [pcu| EWL Y
| | d
| | L] -
P-BUS (1W) I ! |bcu| oy
~ I —
System /O Bus
(2w)
IPL

ROM[—® Mcu [«

IoU |[¢&—

TCW
RAM

Micro Channel
Figure 1. SGR 2564 and SGR 3064 Processor Chip Sets

The ICU contains a two—way set—associative 8K-byte instruction cache. It runs branch
instructions, Condition register logical instructions, and supports interrupts. In most cases,
branches cost zero cycles because the ICU looks ahead in the instruction stream and
removes branches from the stream. In a given cycle, the ICU can dispatch two instructions,
two to the FXU, or two to the FPU, or one to the FXU and one to the FPU, by way of the
I-bus shown in Figure 1. The floating—point unit contains a full 64—bit double—precision
floating—point data flow and conforms to the IEEE 754 binary floating—point standard with
software support. Floating—point instructions can run in parallel with fixed—point instructions
for maximum performance. The FXU contains the general purpose registers and the
arithmetic logic unit, and runs all fixed—point instructions. The FXU includes an address
translation and data protection unit that makes precise interrupts easier to implement with
minimal performance penalty. The FXU also provides the directories and control for the data
cache, and controls the running of both fixed—point and floating—point load and store
instructions.

General Information Manual

Four DCUs provide a four—way set—associative 64K-byte data cache, and form a four-word
interface to memory, a two—word interface to FPU, and a single—word interface to FXU.
DCUs contain error checking and correction (ECC) and bit steering logic. They provide the
data path for Direct Memory Accesses (DMA), and supply the path for I-cache (instruction
cache) reloads. The MCU contains the controls and configuration registers for system
memory. The MCU provides the data path between I/O and processor chip set for I/0
(Input/Output) load and store instructions. The MCU also interfaces to the ROM that
contains the system initialization code for the processor chip set (also referred to as the
initial program load read—only memory (IPL ROM)).

The processor bus (P-bus) shown in Figure 1 on page 1-4 is used to send the address to
the MCU for D—cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is
used for |-cache translation look-aside buffer (TLB) reloads (by FXU), and for I/O loads and
stores (by FXU). The P-bus is also used for moves to and from special registers, (for
example, Segment registers, Link register, and Machine State register) between FXU and
ICU. The system I/O bus is used to transfer the DMA data between the IOU and system
memory by way of the DCU, and provides a path for I/O load and store operations between
the FXU and the IOU by way of the MCU.

The I/O unit contains an I/O channel control unit (IOCC) that generates the Micro Channel
interface. The IOCC uses the data stored in translation control word (TCW) and tag tables
for address translation and data protection during I/O operations.

Introduction 1-5

Workstation Hardware

1-6

The RISC System/6000 deskside and rack models have a processor board with a processor
chip set and up to eight memory board connectors. The models with the SGR 2564 chip set
require that the memory boards to be installed in pairs. On models containing the SGR 2032
chip set, memory boards do not have to be installed in pairs. These models have separate
I/0 Boards with eight Micro Channel slots and separate Standard I/O Boards as shown in
Figure 3 on page 1-8. '

The table top RISC System/6000 models have a processor board with a SGR 2032 chip set.
The processor board plugs into the connectors on the system board. The system board also
has two memory board connectors and four Micro Channel slots as shown in Figure 6 on
page 1-17.

* Keyboard/Tablet/Speaker Adapter

: v '

* Two EIA-232 Serial Ports ! J' D '

* Parallel Port ' FP X

* Diskette Adapter E | ::'_. (ol '

R I I ke : T FX) !
: : ; L D) '
v : ; I 1t08 |
b : .. [Rom—LMe !
' Standard I/0 Board | ' X
s .+ _Micro Channel » 10U Processor |
Prime, Board '

D B I T R R T TR A Y - - -

1/0 Board
oar System_r---B
Micro Channel]

1 I/0 Slots 8

Figure 2. RISC System/6000 Deskside and Rack Organization

The Micro Channel prime interface from the processor board, shown in Figure 2, is attached
to the I/0 Board where it is buffered (B) and feeds eight Micro Channel I/O slots. These I/O
slots can be occupied by Micro Channel boards such as file adapters, tape drive adapters,
LAN adapters (Ethernet or Token Ring), display and graphics adapters, coprocessors,
terminal emulators, and printer adapters. The I/O Board also contains the system 1/O
functions. One system 1/O function is the On Card Sequencer (OCS) micrmontrbllgr, which
initializes the processor chip set during IPL and controls the built-in self test (BIST
sequence. Other system I/O functions on the I/O Board are nonvolatile random access
memory (NVRAM) for configuration and error logging, operator panel interface for error
display, time—of—day clock, computer reset register, and system status and configuration
registers. The Standard I/O Board contains the interfaces and connectors to keyboard,
mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports. See the specific
system manual for the interfaces and connectors supported.

General Information Manual

Figure 3 on page 1-8 shows the physical layouts of the processor board, IO Board, and
Standard 1/0 Board. Shown on the processor board are the floating—point unit (FP),
fixed—point unit (FX), instruction cache unit (1), four data cache units (D), memory control
unit (MC), and one or two I/O units (I0U). In addition, the clock chip (CLK), and IPL ROM
are also shown. The clock chip has several crystal oscillators around it that vary in speed
depending upon the processor chip set. Five 1M-bit dynamic random access memory
(DRAM)s that make up the translation control word (TCW) and tag memory are shown at the
lower right hand corner. They are used by IOCC for address translation and data protection
during /O operations. Eight memory slots are shown on the right. The IPL ROM is next to
the MC chip.

The processor board also carries some Vendor Technology Logic (VTL) parts. The two
multiplexers (Mux) shown below the IPL ROM are used to multiplex 16 interrupt lines from
the 1/0 Board to 4 I/O unit inputs. The 64K bytes by 8 OCS ROM and two accompanying
latches are at the lower right corner. This ROM holds the test data for the On Card
Sequencer (OCS), which resides on the |/0 Board, and the latches are used to multiplex and
demultiplex the address and data lines.

Introduction 1-7

Processor —
COnnector§ . ,
FX|| D D
CLK C I] :{]
| :) ' Power
MC C |] Connectors
‘ ‘ L | | 1]
of o]y, e
TCW OCS ROM
— 00000 gt
—/1]
| II II
I/O Board 1 CI |] —
2 U1 1 J [Buffers| — Operator
3 O 1 j L] OCS Panel
Standard /0 Connector
4 L1 1] Board Connector
i 1]
: [: Power
———— 11—
, Micro Channel Connectors System 1/0 Connector
| —— m—
==:
L_.I.__l
Standard
I/O Board Parallel
Printer 0 .)
EIA-232 I/0 Board Connector
ElIA-232
Tablet
Keyboard Diskette
Mouse —
Figure 3. RISC System/6000 Deskside and Rack Processor board, 1/0O Board, and Standard I/O
Board.

The processor board carries a host of tie—up and tie—down resistors, and decoupling
capacitors not shown in Figure 3. There are also electromagnetic compatibility (EMC)
connectors that couple the chassis ground to board ground in order to minimize the
radio—frequency interference (RFI). Power connectors are shown at the right, and the I/O
Board connector is at the lower right corner of the processor board.

The I/0O Board is placed next to the processor board, and is attached to it by way of a
connector as shown in Figure 3. The I/O Board contains eight I/O slots and provides a
connector to the operator panel seven—-segment light emitting diodes (LEDs). The I/O Board
holds the OCS, system I/O, and a collection of additional VTL parts to implement its
functions.

The Standard 1/0 Board fits right behind the I/0 Board, and is attached to it through a
connector shown in Figure 3. The Standard I/O Board provides interfaces and connectors to
keyboard, mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports.

1-8 General Information Manual

SGR 2564 Processor Chip Set

As mentioned earlier, the SGR 2564 processor chip set implementation is partitioned into six
different semi—custom designed Very Large Scale Integration (VLSI) chips. The features of
the chips are summarized in the following subsections.

Fixed—-Point Unit
FXU decodes and runs all fixed—point instructions and floating—point load and store
instructions. Both fixed— and floating—point instructions go to the |-buffers of FXU and FPU,
and are run concurrently in FXU and FPU. In addition, FXU contains the address translation,
data protection, and D—cache directory units.

Its functions include:

Instruction decode. (Contains four instruction prefetch and two decode buffers.)
FXU and FPU synchronization logic.
Real-time clock and decrementer facilities.

Controls for floating—point load and store operation. Address generation and data cache
controls for floating—point load and store instructions are generated by FXU.

Register—to—register (RR) operations. The FXU has a register file that holds thirty—two
32-bit general purpose registers. The register file has five ports. Three ports are read
ports and two are write ports (3R,2W). The five ports can all be read and written
simultaneously. The hardware associated with the register file implements full bypass
(register forwarding) to eliminate hold—offs when two dependent operations (ops) follow
each other, and performs register tag allocation so that load operations do not hold off the
RR-ops as long as there are no dependencies.

Instruction runs. RR ops, fixed and floating load and store operations, interrupts, string
and character ops, and I/0 load and store operations.

Arithmetic-logic unit, shifter, and rotator.

Fixed—point multiply and divide operations implemented in hardware. Multiply takes 3 to 5
cycles and divide takes 19 to 20 cycles.

Address translation unit. Two—-way set-associative TLBs with 64 entries in each set.
Segment registers. Sixteen 32-bit segment registers.

Hardware TLB reloads. TLB misses are serviced by hardware that has significant
performance advantages over other RISC implementations where TLBs are reloaded by
software. FXU searches the Hash Anchor table (HAT) and Page Frame table (PFT), and
updates the PFT as required.

Data protection. Page protection and data locking are implemented in hardware.

Address translation for I-cache TLB reloads. When there is a TLB miss in ICU, FXU
brings the PFT entry from the memory, sends it to ICU over the P-bus, and performs the
required PFT updates.

Data cache control, directories, and least recently used (LRU) hardware contain a
four-way set associative data—cache directory with 128 entries in each set.

Store buffers. Data and address of one fixed—point store instruction can be held in this
buffer waiting for a convenient time to be put into the D—cache. In addition, there is a
four—entry pending store queue for floating—point store instructions.

Introduction 1-9

¢ Running floating—point load and store instructions.
o Request generation for data cache reload operations.

o Data cache operations such as cache line flush and cache line invalidate.

Floating—Point Unit
Unlike typical floating—point co—processor chips, the Floating Point Unit (FPU) is tightly
coupled with the rest of the processor chip set. FPU and FXU are equal—priority and
independent functional units. They receive the instructions from ICU at the same time and
run them concurrently. At a given cycle, a fixed— and floating—point instruction can be run
simultaneously. FPU has a full 64-bit double—precision data flow, runs floating—point
arithmetic ops (multiply, add, divide, subtract), performs conversion between single and
double precision, and synchronizes on floating—point load and store operations. FPU
conforms to IEEE 754 binary floating—point standard with software support and performs
IEEE 64-bit double—precision operations.

The FPU functions include:

o Accumulate instruction (A X B + C) is the key feature of the FPU. The multiply and add
operation is run with a single round and with the same delay as a multiply or an add. This
reduces the instruction path length by combining two instructions into one and provides
exceptional floating—point performance. Due to the 64-bit data flow, the FPU can run a
double—precision multiply, add, or accumulate every cycle. The multiply—add operation, by
only rounding the final result and producing the full 105 bit intermediate product, provides
significantly enhanced precision.

¢ Register renaming is used to increase the overlap of the running of floating— and fixed—
point functional units. This allows floating—point load and store operations to be run
independently from the floating—point arithmetic operations and makes it possible to carry
on load operations to a target register of a floating—point instruction while the
floating—point operation is still going on. This is done by remapping the target register to
one of the remap registers. As a result, the FXU can perform floating—point load
operations without having to wait for previous floating—point arithmetic operations to be
completed.

o Thirty-two architected 64—bit floating—point registers, six rename registers, and two divide
registers.

o Hardware divide.

e The leading zero anticipator avoids the full delay of a leading zero detector. This provides
overlap of addition and normalization.

Instruction Cache and Branch Processing Unit
The ICU contains a two—way set associative 8K—byte I-cache with a line size of 64 bytes.
The ICU processes branch instructions and Condition register (CR) logical instructions.
Then, it removes them from the instruction stream and dispatches the rest of the instructions
to fixed— and floating—point units. In most cases, fixed— and floating—point units receive an
uninterrupted instruction sequence and do not see the effect of the branches. This is
referred to as zero—cycle branches. Usually, unconditional branches cause no delay in the
pipeline. Conditional branches that are not taken (fall-through) also have no penalty
because ICU dispatches the branch—not-taken path to FXU and FPU before figuring out the
outcome of the branch. Of course, the branch—not-taken path instructions are cancelled if
the conditional branch is taken. The branch-taken path is fetched from the I-cache arrays
but is not dispatched to FXU and FPU. Conditional branches that are taken may delay the
pipeline by 0 to 3 cycles depending on on how much earlier the Condition register was set.

1-10 General Information Manual

The compiler tries to move the condition code setting instruction far enough ahead of the
conditional branch to minimize the conditional-branch penality.

The ICU performs the following functions:

o Instruction caching. Contains a two—way set associative 8K-byte cache, directories, and
hardware to support a Least—Recently-Used (LRU) replacement algorithm.

e Instruction address translation. Contains a two—way set associative translation look-aside
buffer (TLB) with 16 entries in each set.

¢ Instruction fetching. A maximum of four instructions can be fetched from the cache arrays
in a single cycle.

e Instruction dispatching. Dispatches a maximum of four instructions per cycle: two
instructions internally to branch and condition—register units and two instructions
externally to FXU and FPU.

¢ Branch run with zero—cycle branches.
« Condition register logical instruction run.
¢ Interrupt control.

¢ Manipulation of architected registers.

Data Cache Unit
The SGR 2564 chip set has a four-way set associative 64K-byte of data cache divided into
four data cache chips of 16K-byte each. The cache-line size is 128 bytes and the cache is
implemented as a store—back cache to minimize the memory bus traffic. (When the data is
stored in the D—cache, it is not sent to memory. The data is written into memory only when a
dirty line is replaced.) DCU supports fixed— and floating—point load and store operations, and
provides a path from memory for I-cache reload and DMA operations. D—cache provides bit
steering and ECC for load and store, I-cache reload, DMA, and memory scrub operations.
D-cache directories, LRU hardware, dirty-bit information, and TLBs are in the FXU.

The main features of the DCU include:

¢ The collection of four D—cache Chips has a four-word interface to system memory for
high—-bandwidth cache reload and store—back operations.

* Separate data interfaces to FXU (1 word) and FPU (2 words).

¢ D-cache reload buffer (CRB). A 128-byte CRB implemented across the four DCUs
receives data from memory, IPL , FXU, and FPU. A load operation can read data from
CRB if the data is from a line that is not yet loaded to cache arrays but is in the CRB. A
fast load—through path that bypasses the cache arrays is provided from the memory bus
to the FXU and FPU to minimize the load operation delays. Unlike simpler cache
implementations, which do not have a CRB, the SGR 2564 processor chip set does not
have to wait for the entire cache line to be brought from memory before it can access the
data required by the load instruction that caused the cache miss. This makes long cache
lines practical, which in return improves the D—cache hit ratio.

o Store—back buffer (SBB). A 128-byte SBB implemented across the four DCUs accepts
data from D-cache array or directly from CRB and passes it to system memory.
Store—-back buffers improve the performance because the data cache arrays are not kept
busy during the store—back sequence. The entire line is loaded in parallel into the SBB,
and the data is sent to the memory over the memory bus in 8 cycles. The DCU can
service the processor chip set during these cycles because the arrays are freed up by

Introduction 1-11

SBB. In addition, the store—back data can be left in the SBB and stored back later if a
higher priority memory access is pending.

¢ |—cache reload buffer (IRB). This receives data from memory or IPL ROM, and sends it to
the I-cache. The data from system memory is processed through ECC and bit—steering
logic. This buffer is also used for memory scrubbing.

¢ |/O DMA buffer (IOB). Buffers the data between system memory and I/0. The DMA traffic
goes between DCU and IOCC by way of the system 1/O bus.

e ECC (single-bit correct, double-bit detect) and bit—steering logic for incoming and
outgoing data from and to memory including D— and I-cache reload, DMA, and memory
scrub operations.

Memory Control Unit
The memory control unit (MCU) is the central system controller. The MCU controls the
interface between D—cache and system memory, oversees DMA operations between
memory and the IOCC, provides a data path for I/O loads and stores between the processor
chip set and IOCC, forms an interface to the IPL ROM, and controls memory scrub
operations.

The main features of the MCU are:
e Drives all control lines to memory.
o Controls DMA operations between IOCC and system memory.

¢ Controls memory interface to DCU. MCU informs DCU where the incoming data should
go. The MCU also directs the unloading of DMA and |-cache buffers.

o Controls the memory scrubbing. MCU generates the addresses and records any memory
errors DCU detects.

¢ Controls reading and writing of bit—steering registers.

e Contains the Bank Configuration registers, which indicate the size and starting point of
each bank of system memory.

¢ Provides a data—path for I/O load and store operations between the processor chip set
and IOCC.

o Performs arbitration for the memory bus.
* Provides an interface to initial program load read—only memory (IPL ROM).

o Collects external interrupts from the IOCC, decrementer, power supply, and system
memory.

I/0 Unit
The I/0 unit (I0U) contains an I/O channel controller (IOCC) that generates the Micro
Channel Prime interface. The data interface between the processor/system memory and the
I/O unit is by way of the two—word wide system I/O bus. The Micro Channel has a one-word
address bus and a one—word data bus. The IOCC supports an I/O architecture geared for
performance, robustness, and error recoverability. The Micro Channel architecture supports
streaming data, address and data parity, and synchronous exception reporting functions (I/O
load and store commands cause precise interrupts like regular load and store commands).
The main function of the IOCC is to transfer data between system memory and adapters on
the Micro Channel. The processor unit can transfer data to and from the adapters using 1/0
load and store operations, and the adapters can transfer data to and from system memory
using DMA. The IOCC supports both DMA bus masters and DMA slaves. All data transfers

1-12 General Information Manual

support address protection mechanisms to provide data security. Up to 15 DMA channels
and 16 levels of interrupts are supported by the IOCC. With the new streaming data mode,
multiple data cycles can be transferred within one bus envelope. This amortizes device
selection overhead across the entire packet and nearly doubles the performance for large
data bursts. Precise 1/0O load and store interrupts improve error recoverability.

The main features of the IOCC include:

¢ Interface to System I/O bus and Micro Channel.

o Programmed I/O (PIO) operations to and from the following address spaces.
- System memory space

Micro Channel I/O space (I/O adapters)

Micro Channel memory space (memory on the Micro Channel)
IOCC space

Architected IOCC registers

Tag and TCW RAM.

¢ |/O load and store operations are performed with or without alignment and with a
protection mechanism. Protection is provided by TCW for system memory and limit
registers for I/O devices.

¢ Handles data to and from DMA slaves.

e Handles data to and from DMA bus masters.

e Address translation for load and store operations and DMA bus masters.
¢ Handles I/O interrupts.

¢ Supports various IOCC commands such as enable and disable DMA, DMA device buffer
flush, lock, and time delay.

Introduction 1-13

SGR 2564 Processor Pipeline
Because of the complexity of the pipeline, various instruction buffers, hold—off conditions,
and the special cases, there are many possible variations and exceptions in the way an
instruction can be run in the RISC System/6000 unit. With that in mind, a typical pipeline for
a register-to—register (RR) operation could be constructed as follows:

------ ICU------p---------FXU----------

I-Cache |[Instruction|instruction| Execute | Write

Access Dispatch | Decode Back
(ICA) (DSP) (DEC) (EX) (WB)

In the first cycle, ICU reads the cache array, then in the dispatch (second) cycle the
instruction is partially decoded to see if it is a branch, and non-l-cache instructions are
dispatched to FXU and FPU. At the third cycle, FXU decodes the instruction, accesses the
register file, and latches up the values read from the register file at the Arithmetic Logic Unit
(ALU) input registers. In the execution (fourth) cycle, the ALU operation takes place. Finally,
the result is written back into the register file in the fifth cycle.

A typical pipeline for a load is as follows:

------ IcU------p----- FXU------94--DCU- 9--FXU--
I-Cache |[Instruction|instruction| Execute |D-Cache| Write
Access Dispatch | Decode Access Back
ALU | TLB
DIR

In the first half of the execution cycle, the ALU operation takes place and the virtual address
is calculated. In the second half of the execution cycle, TLBs are accessed to determine the
real page number and, in parallel, the D—cache directories are accessed to see if the data is
in the cache. In the fifth cycle, data cache is accessed and the data is shipped back to FXU
or FPU where it is latched in a register. And in the sixth cycle, the data is written into the
register file.

The floating—point arithmetic operation pipeline is as follows:

------ ICU------p-------cccccccccccccccccce-FPY--------cccccceccn--
I-Cache |Instruction| Predecode| Rename |Instruction | Execute-1 | Execute=2 | Write
Access Dispatch Decode | (Multiply) (Add) Back

There is a synchronization cycle before the decode operation, and the floating—point
arithmetic operations (multiply, add, accumulate) take two cycles to run.

1-14 General Information Manual

Because the RISC System/6000 unit is pipelined, all these operations are overlapped as
shown in the following illustration, and all the hardware resources are utilized to their full
potential.

Cycle
1 2 3 4 5 6 7 8
Instruction
1 ICA| DSP | DEC| EX wWB
2 ICA DSP | DEC| EX WB
3 ICA | DSP| DEC| EX | WB
4 ICA DSP| DEC| EX wB

As mentioned earlier, the pipeline is not as simple as described in the preceding text
because ICU contains I-buffers and can read up to four instructions per cycle from the
cache array. I-cache can dispatch two instructions per cycle to FXU and FPU. In addition,
both FXU and FPU contain their own |-buffers. ICU looks ahead and runs branches such
that they are in effect taken out of the instruction stream.

Introduction 1-15

SGR 2032 Processor Chip Set

The SGR 2032 processor chip set is a cost—reduced version of the SGR 2564 processor
chip set. The SGR 2032 processor chip set is shown in Figure 4.

I-Cache Reload E
ew ”
(W) i e
— FPU 5 E o
| |DCU| | r
| [y
ICU ! !
I-Bus (2W) —» — g
]]
] Dcu lM—Bus o
]]
—» Fxu ! R -
@w) : d
I 7 J s | |
P-BUS (1W) L™
l System I/O Bus
(2w)
RoM[—*| Mcu [
System /0 Bus (2W)

oy ¢——

TCW
RAM

Micro Channel
Figure 4. SGR 2032 Processor Chip Set

The major differences between the SGR 2032 processor chip set and the SGR 2564
processor chip set are as follows:

e The SGR 2032 processor chip set has only two DCUs rather than four.

¢ Fixed—- and floating—point data buses are dotted together. DCU provides a two—word bus.
Because FXU has only a single-word data interface, it is tied to only half of the bus. DCU
manipulates the data accordingly when FXU is using the bus.

¢ In the SGR 2032 processor chip set, the D—cache line size is 64 bytes (half of the SGR
2564 processor chip set D—cache line size).

1-16 General Information Manual

e DCU sends the data to reload the I-cache over the system I/O bus rather than having a
dedicated |-cache reload bus to ICU.

o The processor chip set has a two—word memory interface rather than a four— word
interface. As a result, the SGR 2032 processor chip set requires a minimum of one
memory board and the SGR 2564 processor chip set requires a minimum of two memory
boards. The minimum memory configuration for the SGR 2032 processor chip set is a
single 8M-byte memory board.

The SGR 2032 processor chip set and the SGR 2564 processor chip set use the same
chips. There are no new part numbers. A mode pin tells FXU, DCU, and MCU if the system
is a SGR 2032 processor chip set or the SGR 2564 processor chip set.

RISC System/6000 Table Top Model
The RISC System/6000 table top model uses the SGR 2032 processor chip set as shown in
Figure 4 on page 1-16. Figure 5 shows the processor board and Figure 6 shows the system
board for the RISC System/6000 table top model.

FPU FXU ICU
CLK DCU DCU MCU IoU
1] L1 I LN

Figure 5. RISC System/6000 Table Top Processor Board

Power Supply
External Diskette Connectors _ Internal Diskette
Connector | | 1 Connector
— —] —L— 1| Operator Panel
Parallel Port Connector
——1— Direct Bus—-Attached
c : 1 Fixed-Disk Connector
[| |] 2 .
I I » Micro Channel
Connectors
| . 1] 4
EIA-232 [J [I | 1 | - U Keylock and
EIA-232 [] ' .] Reset Button
Tablet [J Processor Board Connectors Connector
meyboard % . i
ouse :l, Memory Board —
Battery
,? [e Connectors Connector
Back Fan
Connector

Figure 6. RISC System/6000 Table Top System Board

Introduction 1-17

1-18 General Information Manual

Chapter 2. RISC System/6000 Processors

Chapter Contents

DesCrption e e e e 2-5
Document Conventionst i e i 2-5
SYStEMS OVeIVIEW . .. it i e e e 2-6
Instruction Formatscoo i i e e 2-7
Memory Addressingottt i e e 2-14
Effective Address Calculation i, 2-14
BranCh Processor ot i e e e e 2-16
Branch ProcessorRegisters, 2-16
Branch Instructions i e e 2-20
Supervisor Linkage Instruction i 2-23
Trap INStructionso e e e e 2-24
Condition Register Field Instruction i, 2-25
Condition Register Logical Instructionso, 2-25
Fixed—Point Processor Registerso it iiniininenannnn 2-29
General Purpose Registerst 2-29
Fixed—Point Exception Register 2-29
Multiply Quotient Register i 2-30
Fixed—Point Processor Instructions iiiiiinennn. 2-31
Fixed-Point Store Instructions i 2-37
Fixed-Point Load with Update Instructions oiiennn.. 2-42
Fixed—Point Store with Update Instructions 2-46
Fixed—Point Move Assist Instructions iiiiiiiiin..n. 2-49
Fixed—Point Address Computation Instructions 2-53
Fixed—Point Arithmetic Instructions i i, 2-54
Fixed—Point Compare Instructions ciiiiiiiiiiennn. 2-65
Fixed—Point Logical Instructionst iiiiiiiinnn. 2-67
Fixed—Point Rotate and Shift Instructions 2-73
Fixed—Point Rotate with Mask Instructions 2-73
Rotate Left Inmediate Then Mask Insert (M-Form) 2-73
Rotate Left Then Mask Insert (M—Form) 2-74
Rotate Left Inmediate Then AND With Mask (M—Form) 2-74
Rotate Left Then AND With Mask (M—Form) 2-74
Fixed—Point Rotate Bit Instructions iiiiiien... 2-75
Rotate Right And Insert Bit (X—=Form), 2-75
Fixed—Point Bit Mask Instructions i, 2-75
Mask Generate (X—=Form)ttt i e 2-75
Mask Insert From Register (X-—-Form), 2-76
Fixed—Point Shift Instructions i, 2-76
Shift Left (X=Form)o e 2-76

Shift Right (X—=Form) i i i i e 2-77

Shift Left With MQ (X—Form) it 2-77

Shift Right With MQ (X—=Form)ttt 2-78

Shift Left Immediate With MQ (X-Form)cu.. 2-78

Shift Right Immediate WithMQ (X=Form)t 2-79

Processor Description ~ 2-1

2-2

Shift Left Long Immediate With MQ (X-Form)
Shift Right Long Immediate With MQ (X-Form)
Shift Left Long With MQ (X=Form)t
Shift Right Long With MQ (X—Form) i
Shift Left Extended (X=Form)t i e
Shift Right Extended (X—Form) i
Shift Left Extended With MQ (X—Form) ittt
Shift Right Extended With MQ (X—Form) i,
Shift Right Algebraic Immediate (X-Form) i,
Shift Right Algebraic (X—=Form)ot
Shift Right Algebraic Immediate With MQ (X-Form)
Shift Right Algebraic With MQ (X—Form) iiiiian...
Shift Right Extended Algebraic (X—-Form) oot
Double—Precision Shifts it e
Move To and Move From System Registers Instructions
Move To and Move From Condition Register Instruction
Move From Machine State Register Instruction
Floating—Point ProcessorOverviewc..cooitiiiieninnnnnnnn.
Floating—Point Registers i i i
Floating—Point Status and Control Register
Floating—Point Data Representation iiiiiiiiiiinnnn.
Data Format i i e it e
Value Representation ittt
Binary Floating—Point Numbers i,
Normalized Numbers (+NOR) i
Zerovalues (+0)ottt
Denormalized Numbers (+DEN) i i
Infinities (+INF)o i i i i e ettt
NotaNumbers (NaNS)ot i et eeinens
Normalization and Denormalization ittt
PrECISION ..o e et et e
Roundingooi i e
DataHandling i e
Floating—Point Exceptionsttt i i it et e
Invalid Operation Exceptionot
Definition . ..o e e et
ACHON .ot
Zero Divide Exception ittt e e e e
Definition e
RV {1 4
Overflow Exception i i et
Definition e e e
ResultantValue ittt
Insuring Correct Results ittt
Ve (1o
Underflow Exceptionttt i i e i i i it
Definition e
Action ettt
Inexact Exception i e e
Definitiono e i
Vo (1o o

General Information Manual

2-79
2-80
2-80
2-81
2-81
2-82
2-82
2-83
2-83
2-84
2-84
2-85
2-85
2-86
2-87
2-89
2-90
2-91
2-92
2-93
2-97
2-97
2-98
2-98
2-98
2-99
2-99
2-99
2-99
2-100
2-101
2-101
2-102
2-103
2-105
2-105
2-105
2-106
2-106
2-106
2-107
2-107
2-107
2-107
2-108
2-109
2-109
2-109
2-110
2-110
2-110

Floating—Point Resource Managementciiiiiiinnn.. 2-11

Floating—Point ExecutionModels it iiiiiinann. 2-11
Execution Model for IEEE Operationsc.coiiiiienen.n. 2-111
Execution Model for Multiply—Add Type Instructions 2-113

Floating—Point Processor Instructionsiiiiiiininenn.. 2-114
Floating—Point Load Instructions 2-114

Normalized Operandttt iiintaraeennnnn 2-114
Infinity /QNaN/SNaN /Zeroottt iiininnannn 2-114
DenormalizedOperandc.ciiiiiiin ittt 2-114
Load Floating—Point Single (D-Form)c.coiiiiinnnn. 2-115
Load Floating—Point Single Indexed (X—-Form) 2-115
Load Floating—Point Double (D-Form) ot 2-116
Load Floating—Point Double Indexed (X—-Form)ovut. 2-116
Load Floating—Point Single With Update (D-Form) 2-117
Load Floating—Point Single With Update Indexed (X—-Form) 2-117
Load Floating—Point Double With Update (D-Form) 2-118
Load Floating—Point Double With Update Indexed (X-Form) 2-118
Floating—Point Store Instructions 2-119
No Denormalization Requiredo iiuiiinininennnn. 2-119
Denormalized Operandcoiiiiinin i, 2-119
Store Floating—Point Single (D-Form), 2-120
Store Floating—Point Single Indexed (X-Form) 2-120
Store Floating—Point Double (D—Form) 2-121
Store Floating—Point Double Indexed (X—-Form) 2-121
Store Floating—Point Single With Update (D-Form) 2-122
Store Floating—Point Single With Update Indexed (X-Form) 2-122
Store Floating—Point Double With Update (D-Form) 2-123
Store Floating—Point Double With Update Indexed (X-Form) 2-123
Floating—Point Move Instructions i, 2-124
Floating Move Register (X—Form) i, 2-124
Floating Negate (X—=Form)ottt 2-124
Floating Absolute Value (X—=Form)ttt iinnenenn. 2-124
Floating Negative Absolute Value (X-Form) 2-125
Floating—Point Arithmetic Instructions 2-126
Floating Add (A—Form)t et e e 2-126
Floating Subtract (A—Form)ttt 2-127
Floating Multiply (A—Form) i it ieieinennn 2-127
Floating Divide (A—Form)iiuiiiiininniinininnnennnnn 2-128
Floating Round To Single Precision (X-Form) 2-128
Floating—Point Accumulate Instructions covan. .. 2-129
Floating Multiply Add (A—Form) ...ttt 2-129
Floating Multiply Subtract (A-Form)ot 2-130
Floating Negative Multiply Add (A—Form) 2-131
Floating Negative Multiply Subtract (A-Form) 2-132
Floating—Point Compare Instructions iiiiiaan.. 2-133
Floating Compare Unordered (X-Form)c.ccoviiiennnnn.. 2-133
Floating Compare Ordered (X-Form)cciiiiiiiennnnnn. 2-134
Floating—Point Status and Control Register Instructions 2-135
Move From FPSCR (X—-Form)i ittt ittt i 2-135
Move To Condition Register From FPSCR (X-Form) 2-135
Move To FPSCR Fields (XFL-Form)cciiiriiinnnnnn... 2-136

Processor Description ~ 2-3

2-4

Move To FPSCR Field Immediate (X-Form)

Move To FPSCR Bit 1 (X—Form)
Move To FPSCR Bit 0 (X—Form)

..................................

..................................

Floating Point Roundto SingleModel,

Floating Round to Single Model:
Disabled Exponent Underflow: .
Enabled Exponent Underflow: .
Disabled Exponent Overflow: . .
Enabled Exponent Overflow: ..
Infinity Operand:
QNaNOperand:
SNaNOperand:
Normal Operand:

..................................

...................................

...................................

...................................

...................................

Round Single(sign,exp,frac,G,R,X):t e

RISC System/6000 Instruction Set

General Information Manual

...................................

2-137
2-137
2-138
2-139
2-139
2-139
2-140
2-141
2-142
2-142
2-142
2-142
2-143
2-143
2-144

Description

This chapter describes the document conventions, a general systems overview, instruction
formats, and memory addressing.

Document Conventions

The following conventions are used throughout the RISC System/6000 document:

Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are 16
bits, bytes are 8 bits

All numbers are decimal unless specified in some special way
b'nnn’ means a number expressed in binary format

x‘nnn’ means a number expressed in hexadecimal format

n x b'0’ means n zeros

n x b'1' means n ones

(RA|0) means the contents of register RA if the RA field has the value 1-31, or the value
0 if the RA field is 0

(Rx) means the contents of register Rx

(FRx) means the contents of register FRx

X(p) means bit p of register or field X

Xp means bit p of register or field X

X(p—q) means bits p through q of register or field X

X(p..q) means bits p through q of register or field X

Xp-g means bits p through q of register or field X

—(RA) means the one’'s complement of the contents of register RA
4,11, 11, ... means a field that is ignored by the hardware

The symbol || is used to describe two fields that are appended or concatenated to each
other. For example, 010|]111 is the same as 010111.

All bits in registers that are reserved are 0 on read and can be either 0 or 1 on write
2" means 2 raised to the nt" power

Field i refers to bits 4 x i to (4 x i) + 3 of a register

Positive means greater than 0

Negative means less than 0

Instructions are assumed to be non—privileged unless stated otherwise in the instruction
description.

Processor Description ~ 2-5

Systems Overview

The processor or processor unit contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action. The following classes of
instructions can be executed by the processing unit.

» Branch processor instructions, described on page 2-20
o Fixed—point processor instructions, described on page 2-31
o Floating—point processor instructions, described on page 2-114.

See Figure 7 for a representation of the logical partitioning provided by the IBM RISC
System/6000 architecture. The processing unit is a word—oriented fixed—point processor and
in a doubleword—oriented floating—point processor. The RISC System/6000 architecture
uses 32-bit word-aligned instructions and provides for byte, halfword, word, and
doubleword operand fetches and stores between system memory and a set of 32 general
purpose registers (GPRs), and between system memory and a set of 32 floating—point

registers (FPRs).
Programmed le l
Fixed-Point
Processor
—>
Branch ‘
Processor — GPRs
XER MQ Dat
CR SRRO C:cahe
LR SRR1
CTR MSR
— Floating—Point L_’l
Instruction Processor
Cache
FPRs
FPSCR
Main Memory

|

Direct Memory Access

Figure 7. System Architecture View

2-6 General Information Manual

Instruction Formats

D Form

B Form

| Form

SC Form

All instructions are 4 bytes long and are located on word boundaries. Thus, whenever
instruction addresses are presented to the processing unit (as in branch instructions) the two
low—order bits are ignored. Similarly, whenever the processing unit develops an instruction
address, its two low—order bits are 0.

Bits 0 through 5 always specify the opcode. For XO—form instructions, an extended opcode .
is specified in bits 22 through 30. For all other X—form instructions, an extended opcode is
specified in bits 21 through 30. For A—form instructions, an extended opcode is specified in
bits 26 through 30.

The remaining bits contain one or more alternative fields for the different instruction formats.

0 6 11 16
OPCD RT RA D
RS Sl
FRT ul
TO
BF
FRS
0 6 11 16 30 31
OPCD BO Bl BD AA| LK
0 6 30 31
OPCD Ll AA| LK
0 6 11 16 20 27 30 31
OPCD m m FL1 LEV FL2 SA| LK
SV

Processor Description ~ 2=7

X Form

0 6 1" 16 21 31
OPCD RT RA RB EO Rc
FRT FRA FRB
BF BFA SH
RS SPR NB
FRS 1
TO
BT
XL Form
0 6 1" 16 21 31
OPCD BT BA BB EO LK
BO BI
XFX Form
0 6 11 21 31
OPCD RT FXM EO Rc
XFL Form
0 6 16 21 31
OPCD FLM FRB EO Rc
XO Form
0 6 " 16 21 22 31
OPCD RT RA RB | OE| EO’ Re
A Form
0 6 1 16 21 26 31
OPCD FRT FRA FRB FRC X0 Rc
A-form instructions are used for four operand instructions. The operands, all floating—point
registers, are specified by the FRT, FRA, FRB, FRC fields. The short extended opcode, XO,
is in bits 26 through 30.
M Form
0 6 1" 16 21 26 31
OPCD RS RA RB MB ME Rc
SH

Instruction Fields
AA (30) Absolute Address bit

2-8 General Information Manual

BA (11-15)

BB (16-20)
BD (16-29)

BF (6-8)

BFA (11-13)

Bl (11-15)

Bit Description

0 The immediate field represents an address relative to the
current instruction address. For I-form branches, the
effective address of the branch is the sum of the Ll field
sign extended to 32 bits and the address of the branch
instruction. For B—form branches, the effective address of
the branch is the sum of the BD field sign extended to 32
bits and the address of the branch instruction.

1 The immediate field represents an absolute address. For
I-form branches, the effective address of the branch is the
LI field sign extended to 32 bits. For B~form branches, the
effective address of the branch is the BD field sign
extended to 32 bits.

Field used to specify a bit in the Condition register (CR) to be used as a
source.

Field used to specify a bit in the CR to be used as a source.

Immediate field specifying a 14-bit signed two’s complement branch
displacement, which is concatenated on the right with b'00’ and sign
extended to 32 bits.

Field used to specify one of the CR compare result fields or one of the
FPSCR fields as a target. If i = BF(6-8), then field i refers to bits i x 4 to (i x
4) + 3 of the register.

Field used to specify one of the CR compare result fields, one of the
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then
field j refers to bits j x 4 to (j x 4) + 3 of the register.

Field used to specify the bit in the CR to be used as the condition of the
branch.

Processor Description ~ 2-9

BO (6-10) Field used to specify different options that can be used in conditional branch
instructions. Following is the encoding for the BO field:

BO Description

0000x Decrement the CTR, then branch if the decremented
CTR # 0 and condition is false.

0001x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is false.

001xx Branch if condition is false.

0100x Decrement the CTR, then branch if the decremented
CTR # 0 and condition is true.

0101x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is true.

011xx Branch if condition is true.

1x00x Decrement the CTR, then branch if the decremented
CTR #0.

1x01x Decrement the CTR, then branch if the decremented
CTR =0.

1x1xx Branch always.

BT (6-10) Field used to specify a bit in the CR as the target of the result of an
instruction.
D (16-31) Immediate field specifying a 16-bit signed two’s complement integer sign
extended to 32 bits.

EO (21-30) A 10-bit extended opcode used in X—form instructions.
EO’ (22-30) A 9-bit extended opcode used in XO—form instructions.
FL1(16-19) A 4-bit field in the Supervisor Call (SVC) instruction.
FL2 (27-29) A 3-bit field in the SVC instruction.

2-10 General Information Manual

FXM (12-19) Field mask, identifies which CR field is to be updated.

Bit Description

12 CR Field 0 (bits 00-03)

13 CR Field 1 (bits 04-07)

14 CR Field 2 (bits 08-11)

15 CR Field 3 (bits 12-15)

16 CR Field 4 (bits 16-19)

17 CR Field 5 (bits 20-23)

18 CR Field 6 (bits 24-27)

19 CR Field 7 (bits 28-31).
FLM (7-14) Field mask, identifies which FPSCR field is to be updated.

Bit Description

7 FPSCR Field 0 (bits 00-03)

FPSCR Field 1 (bits 04—-07)
FPSCR Field 2 (bits 08—11)

10 FPSCR Field 3 (bits 12-15)
1 FPSCR Field 4 (bits 16-19)
12 FPSCR Field 5 (bits 20-23)
13 FPSCR Field 6 (bits 24-27)
14 FPSCR Field 7 (bits 28-31).

FRA (11-15) Field used to specify an FPR as a source of an operation.

FRB (16-20) Field used to specify an FPR as a source of an operation.

FRC (21-25) Field used to specify an FPR as a source of an operation.

FRS (6-10) Field used to specify an FPR as a source of an operation.

FRT (6-10) Field used to specify an FPR as the target of an operation.

1(16-19) Immediate field used as the data to be placed into a field in the FPSCR.

LEV (20-26) Immediate field in the SVC instruction that addresses the SVC routine by
b*1’ || LEV || b'00000’ if SA = 0.

LI (6-29 Immediate field specifying a 24-bit signed two’s complement integer that is
concatenated on the right with b‘00’ and sign extended to 32 bits.

LK (31) Link bit.

Bit Description
0 Do not set the Link register.
1 Set the Link register. If the instruction is a branch, the

address of the instruction following the branch instruction is
placed into the Link register. If the instruction is an SVC, the
address of the instruction following the SVC instruction is
placed into the Link register.

Processor Description 2-11

MB (21-25 & ME (26-30)
Fields used to specify a 32-bit string, consisting of either a substring of
ones surrounded by zeros or a substring of zeros surrounded by ones. The
encoding is as follows:

MB (21-25) Index to start bit of substring of ones.
ME (26-30) Index to stop bit of substring of ones.
Let mstart = MB and mstop = ME.

If mstart < mstop + 1
then mask (mstart..mstop) = ones
mask (all other) = zeroes.

If mstart = mstop + 1 then
mask (0-31) = ones.

If mstart> mstop + 1 then

mask (mstop + 1..mstart-1) = zeros
mask (all other) = ones.

NB (16-20) Field used to specify the number of bytes to move in an load or store string

immediate.
OPCD (0-5) The basic opcode field of the instruction.
OE (21) Used for extended arithmetic to inhibit setting of OV and SO in XER.

RA (11-15) Field used to specify a GPR to be used as a source or as a target.
RB (16-20) Field used to specify a GPR to be used as a source.

Rc (31) Record bit.
Setting Description
0 Do not set the Condition register.
1 Set the Condition register to reflect the result of the

operation.

For fixed—point instructions, CR bits (0-3) are set to reflect the result as a
signed quantity. The result as an unsigned quantity or a bit string can be
deduced from the EQ bit.

For floating—point instructions, CR bits (4—7) are set to reflect Floating—Point
Exception, Floating—Point Enabled Exception, Floating—Point Invalid
Operation Exception, and Floating—Point Overflow Exception.

RS (6-10) Field used to specify a GPR to be used as a source.
RT (6-10) Field used to specify a GPR to be used as a target.

SA (30) SVC Absolute.
Setting Description
0 SVC routine at address ‘1’ || LEV || b‘00000°.
1 SVC routine at address X'1FEOQ'.

SH (16-20) Field used to specify a shift amount.
Sl (16-31) Immediate field used to specify a 16-bit signed integer.

2-12 General Information Manual

SPR (11-15)

TO (6-10)

Ul (16-31)
XO (26-30)

Special Purpose register.

SPR Special Purpose Register
00000 (00) MQ

00001 (01) XER

00100 (04) from RTCU

00101 (05) from RTCL

00110 (06) from DEC

01000 (08) LR

01001 (09) CTR

10100 (20) to RTCU

10101 (21) to RTCL

10110 (22) to DEC

11010 (26) SRR O

11011 (27) SRR

TO bit ANDed with condition.

TO bit ANDed with Condition

6 Compares less than

7 Compares greater than

8 Compares equal

9 Compares logically less than
10 Compares logically greater than.

Immediate field used to specify a 16-bit unsigned integer.

A 5-bit extended opcode used by A-form instructions.

Processor Description 2=13

Memory Addressing

Within the context of a program executing on the processing unit (PU), system memory is
organized into doublewords, words, halfwords, and bytes, which are constrained to lie on
boundaries that are multiples of their sizes. See Figure 8 for an example of the memory
organization.

Bytes in system memory are consecutively numbered starting with 0. Each number is the
address of the corresponding byte. The 32-bit addresses computed for system memory
access are termed effective addresses and specify a byte in memory. System memory
address arithmetic wraps around from the maximum byte address, 232-1, to address 0.

System memory can be accessed by doubleword, word, halfword, or byte. The required
number of bytes are fetched from a properly aligned area of memory. The rules when the
operands are not properly aligned are controlled by a mode bit, MSR(AL). See Machine
State register on page 2-18.

The mapping to real memory addresses is controlled by relocate (address translation)
facilities. When the relocate facility is active, effective addresses generated by program
execution are first transformed to 52-bit virtual address, which in turn are mapped to real
memory.

In general, the terms memory and address are used within the context of the effective
addresses generated by the PU.

All processor computations are performed in registers in the processing unit (PU). There are
no instructions, for instance, to add two numbers, one of which is in memory.

Doubleword 000

Word 000 100

Halfword 000 010 100 110
Byte 000 | 001 010 011 100 101 110 111

0 8 16 24 32 40 48 56 63

Figure 8. Memory Organization

Effective Address Calculation
Effective addresses (EAs) are generated by instructions that reference data in system
memory and by taken branch instructions. Address calculations use 32-bit two’s
complement binary arithmetic. A carry from bit 0 is ignored.

A value of 0 in the RA field indicates the absence of the corresponding address component.
For the absent component, a 0 value is used in forming the address. This is shown in the
instruction descriptions as (RA|0).

X-form instructions are used for data references. Address computation adds the GPR
contents designated by the RA field or the value 0 if RA equals a value of 0 with the GPR
contents designated by the RB field. The computation is shown as (RA|0) + (RB).

With D—-form instructions, the 16-bit D field is sign extended to form a 32-bit address
component. In computing the effective address of a data element, this address component is
added to the GPR contents designated by the RA field or the value 0 if RA equals a value of
0.

2-14 General Information Manual

With I-form branch instructions, the 24-bit LI field is concatenated on the right with b‘00’ and
sign extended to form a 32-bit address. When AA equals a value of 0, this address is added
to the address of the branch instruction to form the effective address. If AA equals a value of
1, this 32-bit value is the effective address.

With B—form branch instructions, the 14-bit BD field is concatenated on the right with b‘00’
and sign extended to form a 32-bit value. If AA equals a value of 0, this 32-bit value is
added to the address of the branch instruction to form the effective address. If AA equals a
value of 1, this 32-bit value is the effective address.

With XL—form branch instructions, bits 0—29 of the Link register or the Count register are
concatenated on the right with b'00’ to form the effective address.

Processor Description 2-15

Branch Processor

This section describes the registers and instructions that make up the branch processor

facilities.

Branch Processor Registers
This section describes the branch processor registers and their bit definitions.

Condition Register

The Condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing (and branching).

0

31

CR

Bits

00-03
04-07
08-11
12-15
16-19
20-23
24-27
28-31

Name

CR Field 0
CR Field 1
CR Field 2
CR Field 3
CR Field 4
CR Field 5
CR Field 6
CR Field 7.

The Condition register bits are grouped into eight 4-bit fields, named CR Field 0 through CR
Field 7, which are set in one of the following ways:

A load or copy operation into a specific CR field.
CR Field 0 can be set as the implicit result of a fixed—point operation.
CR Field 1 can be set as the implicit result of a floating—point operation.

As the result of either a fixed or floating—point compare operation into a specified CR field.

Instructions are provided to test these bits singly and in combination.

When record bit (Rc) equals a value of 1 in most fixed—point instructions, the CR Field 0
(condition register bits 0-3) is set by a compare of the result to a value of 0. Add Immediate,
Add Immediate Lower, and Add Immediate Upper instructions set these four bits implicitly.
These bits are interpreted as shown in the following list.

Bit
0

Description

Compares Less Than, Negative (LT). For arithmetic operations, the result is
negative or less than a value of 0. For compare operations, (RA) < Si, Ul, or
(RB).

Compares Greater Than, Positive (RB). For arithmetic operations, the result
is negative or less than a value of 0. For compare operations, (RA) > Sl, Ul,
or (RB).

2-16 General Information Manual

2 Compares Equal, Zero (EQ). For arithmetic operations, the result is a value
of 0 or equal to a value of 0. For compare operations, (RA) = SI, U, or (RB).

3 Summary Overflow (SO). This is a copy of the final state of XER(SO) at the
completion of the instruction.

When the Rc bit equals a value of 1 in all floating—point instructions except the floating—point
compares, CR Field 1 (condition register bits 4-7) is set to the floating—point exceptions
status. These bits are interpreted as shown in the following list:

Bit Description

4 Floating—point Exception (FX). This is a copy of the final state of
FPSCR(FX) at the completion of the instruction .

5 Floating—point Enable Exception (FEX). This is a copy of the final state of
FPSCR(FX) at the completion of the instruction .

6 Floating—point Invalid Operation Exception (VX). This is a copy of the final

state of FPSCR(VX) at the completion of the instruction .

7 Floating—point Overflow Exception (OX). This is a copy of the final state of
FPSCR(OX) at the completion of the instruction .

Condition register bits 4—7 are copies of bits 0-3 in the Floating—Point Status and Control
register.

Link Register
The Link register (LR) is a 32-bit register. The Link register provides the branch target
address for the Branch Conditional Register instruction and holds the return address (link
address) for branch and link type instructions and SVC instructions.

0 31
LR

Count Register
The Count register (CTR) is a 32-bit register. The Count register contains a loop count and
is automatically decremented during execution of the branch and count instructions,
wrapping from X'00000000’ around through X'FFFFFFFF’. The Count register also provides
the branch target address for the Branch to Count Register instruction. The Count register
contains a copy of bits 16-31 of MSR and bits 1631 of the SVC instruction after execution
of that SVC instruction. Both registers can be copied to and from any GPR.

0 31
CTR

Processor Description 2-17

Machine State Register
The Machine State register (MSR) is a 32-bit register that defines the modal state of the
processor. When the RFI instruction is executed, bits 16-31 of SRR 1 are placed into bits
16-31 of the MSR. The MSR can also be modified by the Move to Machine State Register

instruction.
0 31
MSR
Bit Name Description
00-15 Reserved
16 EE External Interrupt Enable
17 PR Program State
18 FP FP Available
19 ME Machine Check Enable
20 FE FP Exception Enable
21-23 Reserved
24 AL Alignment Check
25 IP Interrupt Prefix
26 IR Instruction Relocate
27 DR Data Relocate
28-31 Reserved.
The following are the Machine State register bit definitions:
Bit(s) Description
0-15 Reserved.
16 External Interrupt Enable (EE).
Setting Description
0 The processor is disabled against external interrupts.
1 The processor is enabled to take external interrupts.
17 Problem State (PR).
Setting Description
0 The processor is privileged to execute any instruction.
1 The processor can only execute the non—privileged
instructions.
18 Floating—Point (FP) Available.
Setting Description
0 The processor cannot execute any floating—point
instructions, including floating—point loads, stores and
moves.
1 The processor can execute floating—point instructions.
19 Machine Check Enable (ME).
Setting Description
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

2-18 General Information Manual

20 Floating—Point Exception Interrupt Enable (FE).

Setting Description
0 Program interrupts on floating—point enabled exception are
disabled.
1 Program interrupts on floating—point enabled exception are
enabled.
21-23 Reserved.
24 Alignment Check (AL).
Setting Description
0 Alignment checking is off and the low—order bits of the
address are ignored.
1 Alignment checking is on; alignment checking proceeds as
follows:

If bits 29, 30, or 31 of an address generated by a doubleword data memory reference
instruction are nonzero, an alignment interrupt is generated if the hardware cannot perform
the unaligned access.

If bits 30 or 31 of an address generated by a word data memory reference instruction are
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned
access.

If bit 31 of an.address generated by a halfword data memory reference instruction is
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned
access.

This checking does not apply to the load and store string—type instructions since these
instructions always perform the unaligned access. Load and store multiple-type instructions
always generate an alignment interrupt if bits 30-31 of the effective address are nonzero.

When the memory reference is to an I/O segment, the address is sent to I/O unmodified,
regardless of the setting of MSR(AL).

25 Interrupt Prefix (IP).
Setting Description
0 Interrupts vectored to the effective address X'000xxxxx’

where xxx is the interrupt offset.

1 Interrupts vectored to the effective address X'FFF xxxxx’
where xxxxx is the interrupt offset. This is intended to direct
the interrupt to Read Only Memory (ROM).

26 Instruction Relocate (IR).

Setting Description

0 Instruction address translation is off.

1 Instruction address translation is on.
27 Data Relocate (DR).

Setting Description

0 Data address translation is off.

1 Data address translation is on.

Processor Description 2=19

28-31 Reserved.

Branch Instructions
The instruction execution sequence can be changed by the branch instructions. All
instructions are on word boundaries. Thus, bits 30 and 31 of the generated branch target
address are ignored by the processor unit in performing the branch.

Branch instructions compute their target addresses in one of four ways:

¢ Adding a constant to the address of the branch instruction.

Specifying an absolute address (the BD or LI field is sign extended to 32 bits).

Using the address contained in the Link register.

Using the address contained in the Count register.

For the first two methods, the target addresses can be computed sufficiently ahead of the
branch instruction so as to prefetch instructions along the target path. For the third and
fourth methods, prefetching instructions along the branch path is also possible provided the
Link register or the Count register is loaded sufficiently ahead of the branch instruction.

In the case of conditional branch instructions, instruction prefetching is done on each path of
the branch.

In the various target forms, branches generally either branch only, branch and provide a
return address, or branch conditionally. If the LK bit equals1, the link register can be used to
store the return address from an invoked subroutine. The return address is the instruction
immediately following the branch instruction.

In the branch conditional instructions, the BO field combines different types of branches into
one instruction. The BO field specifies how the branch is affected by or affects the Condition
register and the Count register. The encoding for the BO field is described as follows:

BO Description

0000x Decrement CTR,; then branch if the decremented CTR=0 and condition is
false.

0001x Decrement CTR; then branch if the decremented CTR=0 and condition is
false.

001xx Branch if condition is false.

0100x Decrement CTR; then branch if the decremented CTR=0 and condition is
true.

0101x Decrement CTR; then branch if the decremented CTR=0 and condition is
true.

011xx Branch if condition is true.

1x00x Decrement CTR; then branch if the decremented CTR=0.

1x01x Decrement CTR; then branch if the decremented CTR=0.

1x1xx Branch always.

2-20 General Information Manual

Branch (I-Form)

0 6 27 31
18 L AA| LK
b target address (AA=0,LK=0)
ba target address (AA=1,LK=1)
bl target address (AA=0,LK=0)
bla target address (AA=1,LK=1)

It AA equals 0, the branch target address is the sum of LI || b'00’ sign extended and the
address of this instruction.

It AA equals 1, the branch target address is the value, LI || b'00’ sign extended.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)

Set: None

Fixed-Point Exception register

Set: None

Branch Conditional (B—-Form)

0 6 11 16 27 31
16 BO BI BD AA| LK
bc BO, B, target address (AA=0,LK=0)
bca BO, BI, target address (AA=1,LK=1)
bel BO, BI, target address (AA=0,LK=0)
bcla BO, B, target address (AA=1,LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 .

If AA equals 0, the branch target address is the sum of BD || b'00’ sign extended and the
address of this instruction.

If AA equals 1, the branch target address is the value, BD || b‘00’ sign extended.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)

Set: None

Fixed—Point Exception register

Set: None

Processor Description 2-21

Branch Conditional Register (XL-Form)

0 6 11 16 21 31
19 BO BI " 16 LK
ber BO, Bl (LK = 0)

berl BO, BI (LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 and the branch target
address is LR (0-29) || b‘00’.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the Link register.

Condition Register (CR Field 0)
Set: None

Fixed—Point Exception Register
Set: None

Branch Conditional To Count Register (XL-Form)

0 6 1" 16 21 31
19 BO Bl nm 528 LK

bce BO, Bl (LK =0)

becl BO, BI (LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 and the branch target
address is CTR (0-29) || b‘00’.

The decrement CTR option is not defined for this instruction and can produce an undefined
branch target address.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

2-22 General Information Manual

Supervisor Linkage Instruction

The Supervisor Linkage instruction follows:

Supervisor Call (SC-Form)

0 6 1" 16 20 26 27 31
17 i mn FL1 LEV FL2| SA| LK
17 " m sV SA| LK

sve LEV, FL1, FL2 (SA =0, LK=0)

svcl LEV, FL1, FL2 (SA =0, LK =0)
svca Sv (SA=0,LK=0)
svcla Sv (SA =0, LK =0)

An SVC—type interrupt is generated. Bits 16-31 of the SVC instruction are placed into bits
0-15 of the Count register. Bits 16-31 of the MSR are placed into bits 16-31 of the Count
register. MSR bits (EE, PR, and FE) are set to 0. MSR bits (FP, ME, AL, IP, IR, and DR) are
not altered. The SRRs are not affected.

If SA equals 0, instruction fetch and execution continues at one of the 128 offsets, b'1’ || LEV
|| b'00000’, to the base effective address indicated by the setting of MSR(IP). FL1 and FL2
fields could be used for passing data to the SVC routine but are ignored by the hardware.

If SA equals 1, instruction fetch and execution continues at the offset, X'1FEQ’, to the base
effective address indicated by the setting of MSR bit (IP).

If LK equals 1, the effective address of the instruction following the SVC instruction is placed
into the Link register.

Condition register (CR Field 0)
Set: None
Fixed-Point Exception register
Set: None

Notes:

1. If SA equals 0, the FL1 and FL2 fields of the SVC instruction could have possible
software uses for passing parameters to the SVC routine.

2. If SA equals 1, the SV field of the SVC instruction could have possible software
uses for passing parameters to the SVC routine.

3. To insure correct operation, an SVC instruction must be preceded by an
unconditional branch or a condition register op without an intervening conditional
branch. If a useful instruction cannot be scheduled as specified, a no—op version
of the Condition Register OR instruction can be inserted.

Instruction No-op Version

cror BT, BA, BB BT=BA=BB

Processor Description 2-23

Trap Instructions

The trap instructions test for a specified set of conditions. If any of the conditions tested by a
trap instruction are met, a trap—type program interrupt occurs. If the tested conditions are not
met, instruction execution continues normally.

The contents of register RA is compared with either the sign—extended S| field or with the
contents of register RB, depending on the trap instruction. This comparison results in five
conditions that are ANDed with the TO field. If the result is not 0, a trap~type program
interrupt occurs. These conditions are:

TO bit ANDed with Condition

6 Compares less than

7 Compares greater than

8 Compares equal

9 Compares logically less than

10 Compares logically greater than.

Trap Immediate (D—Form)
0 6 11 16 31
03 TO RA sl

ti TO, RA, SI

The contents of register RA is compared with the sign—extended Sl field. If any
corresponding bit in the TO field and its respective condition generated as a result of the
compare are both on, a trap—type program interrupt is generated.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Trap (X-Form)
0 6 11 16 21 31
3 TO RA RB 4 Rc
t TO, RA, RB

The contents of register RA is compared with the contents of register RB. If any
corresponding bit in the TO field and its respective condition generated as a result of the
compare are both on, a trap—type program interrupt is generated.

Condition Register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (ifRc=1)

Fixed—Point Exception Register
Set: None

2-24 General Information Manual

Condition Register Field Instruction

The Condition Register Field instruction follows:

Move Condition Register Field (XL—Form)

0

6

9 11

14 16

21

31

19

BF

I\ BFA

iy

Re

mcrf

BF, BFA

The contents of the Condition register field j, where j = BFA, are copied into the CR Field i,
where i = BF. All other fields remain unchanged.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR Field 0)

Set: CR Field i, where i = BF

Fixed—-Point Exception register

Set: None

Condition Register Logical Instructions

The Condition Register Logical instructions follow:

Condition Register Equivalent (XL-Form)

6

1

16

21

31

19

BT

BA

289

LK

creqv

BT, BA, BB

The Condition register bit specified by the BA field is XORed with the Condition register bit
specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition Register (CR bit i, i = BT)

Set: CR (BT)

Fixed—Point Exception Register

Set: None

Processor Description

2-25

Condition Register XOR (XL-Form)
0 6 11 16 21 31
19 BT BA BB 193 LK

crxor BT, BA, BB

The Condition register bit specified by the BA field is XORed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register AND (XL-Form)
0 6 1" 16 21 31
19 BT BA BB 257 LK

crand BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register OR (XL-Form)
0 6 1 16 21 31
19 BT BA BB 449 LK
cror BT, BA, BB

The Condition register bit specified by the BA field is ORed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—Point Exception register
Set: None

2-26 General Information Manual

Condition Register AND With Complement (XL-Form)
0 6 1 16 21 31
19 BT BA BB 129 LK

crandc BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the complement of the
Condition register bit specified by the BB field and the result is placed into the Condition
register bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register OR With Complement (XL-Form)
0 6 1 16 21 3
19 BT BA BB 417 LK

crorc BT, BA, BB

The Condition register bit specified by the BA field is ORed with the complement of the
Condition register bit specified by the BB field and the result is placed into the Condition
register bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—-Point Exception Register
Set: None

Processor Description 2=27

Condition Register NAND (XL-Form)

0 6 11 16 21 31
19 BT BA BB 225 LK

crnand BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the Condition register bit

specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register NOR (XL-Form)
0 6 1" 16 21 31
19 BT BA BB 33 LK

crnand BT, BA, BB

The Condition register bit specified by the BA field is ORed with the Condition register bit
specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—Point Exception register
Set: None

2-28 General Information Manual

Fixed—Point Processor Registers

This section describes the registers in the fixed—point processor facility.

General Purpose Registers
All manipulation of information is done in registers internal to the processing unit (PU).The
principal storage within the fixed—point processor is a set of 32 general purpose registers
(GPRs). Each GPR consists of 32 bits. See Figure 9 for an example of the general purpose

registers.
0 31
GPR 00
GPR 01
GPR 30
GPR 31

Figure 9. General Purpose Registers

Fixed-Point Exception Register
The Fixed-Point Exception register (XER) is in the fixed—point unit and is 32 bits wide.

0 31
XER

Bit Description

0 Summary Overflow (SO)
The Summary Overflow bit is set to 1 whenever an instruction sets the
Overflow bit to indicate overflow and remains set until software resets it.
The SO bit is not altered by the compare instructions.

1 Overflow (OV)

The Overflow bit is set to indicate that an overflow has occurred during an
instruction operation. In the case of add and subtract instructions, it is set to
1 if the carry out of bit 0 is not equal to the carry out of bit 1. Otherwise the
OV bit is set to 0. The OV bit is not altered by the compare instructions.

Processor Description 2-29

3-15
16-23

24
25-31

Carry (CA)

The Carry bit is set to indicate a carry from bit 0 of the computed result. In
the case of add and subtract instructions, it is set to 1 if the operation
generates a carry out of bit 0. Otherwise, the CA bit is set to 0. The CA bit is
not altered by the compare instructions.

Reserved

Used by the Load String and Compare Byte Indexed instruction as the byte
being compared against.

Reserved

Used by Load String Indexed, Load String and Compare Byte Indexed, and
Store String Indexed instructions to indicate the number of bytes loaded or
stored.

Multiply Quotient Register
The Multiply Quotient (MQ) register is a 32—bit register that provides a register extension to
accommodate the product for the multiply instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long rotate and shift instructions
and as a temporary storage facility for store string instructions.

0

31

MQ

2-30 General Information Manual

Fixed—Point Processor Instructions

This section describes the fixed—point processor instructions used in the RISC System/6000
system. The load instructions generate the effective address (EA) as described in “Effective
Address Calculation” on page 2-14. The byte, halfword, or word in memory addressed by the
EA is loaded into register RT if the memory access does not cause an Alignment Interrupt or
a Data Storage Interrupt.

Load Byte And Zero (D—Form)
0 6 1 16 31
34 RT RA D

Ibz RT,D(RA)

Let the effective address (EA) be the sum (RA|0) + D.

The byte in memory addressed by the EA is loaded into bits 24-31 of register RT. Bits 0-23
of register RT are setto 0.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Byte And Zero Indexed (X—-Form)
0 6 1" 16 21 31
31 RT RA RB 87 Rc

Ibzx RT, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

The byte in memory addressed by the EA is loaded into bits 24—31 of register RT. Bits 0-23
of register RT are set to 0.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: Undefined (if Rc=1)

Fixed—Point Exception register
Set: None

Processor Description 2=-31

Load Half And Zero (D-Form)
0 6 1 16 31
40 RT RA D

Ihz RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are set to 0.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Half And Zero Indexed (X-Form)
0 6 1" 16 21 31
31 RT RA RB 279 Re
Ihzx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are setto 0.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

2-32 General Information Manual

Load Half Algebraic (D-Form)
0 6 1" 16 31
42 RT RA D

lha RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the loaded halfword.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Load Half Algebraic Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 343 Rc

Ihax RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—-31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the loaded halfword.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed-Point Exception register
Set: None

Processor Description 2-33

Load (D-Form)
0 6 1 16 31
32 RT RA D

| RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two—low order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is loaded into register RT.
Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 23 Rc
Ix RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is loaded into register RT.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Rc = 1)

Fixed—Point Exception register
Set: None

2-34 General Information Manual

Load Half Byte Reverse Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 790 Rc

Ihbrx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If EA addresses an I/0O segment and
the hardware cannot perform the access, an Alignment Interrupt is generated.

Bits 0-7 of the halfword in memory addressed by the EA are loaded into bits 24-31 of
register RT. Bits 8—15 of the halfword addressed by the EA are placed into bits 16-23 of
register RT. Bits 0—15 of register RT are set to 0.

Condition register (CR Field 0)

Set: None (if Re = 0)
Set: Undefined (f Re=1)
Fixed—Point Exception register
Set: None
Load Byte Reverse Indexed (X—Form)
0 6 1 16 21 31
31 RT RA RB 534 Rc
Ibrx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated. If the EA addresses an I/O
segment and the hardware cannot perform the access, an Alignment Interrupt is generated.

Bits 0-7 of the word in memory addressed by the EA are placed into bits 24-31 of register
RT. Bits 8-15 of the word addressed by the EA are placed into bits 16—23 of register RT. Bits
16-23 of the word addressed by the EA are placed into bits 8—15 of register RT. Bits 24-31
of the word addressed by the EA are placed into bits 00—07 of register RT.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-35

Load Multiple (D—Form)
0 6 11 16 31
46 RT RA D

Im RT, D(RA)
Let N equal (32 - RT field).

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, then an
Alignment Interrupt is generated.

Starting at that effective address, N consecutive words are placed into the GPRs starting at
register RT and filling all the GPRs through GPR 31.

If register RA is within the range to be loaded and RA # 0, data is not written into the
register. The data for register RA is discarded and the operation continues normally.

Condition register (CR Field 0)
Set: None

Fixed—-Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the
instruction from the beginning.

2-36 General Information Manual

Fixed-Point Store Instructions

The store instructions generate the effective address (EA) as described in "Effective Address
Calculation” on page 2-14. The contents of register RS are placed into the byte, halfword, or
word in memory addressed by the EA if the memory access does not cause an Alignment
Interrupt or a Data Storage Interrupt.

Store Byte (D-Form)
0 6 1 16 31
38 RS RA D
stb RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D.

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register
RS is unchanged.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Store Byte Indexed (X—Form)
0 6 1" 16 21 31
31 RS RA RB 215 Rec

stbx RS, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register
RS is unchanged.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-37

Store Half (D-Form)
0 6 1 16 31
a4 RS RA D

sth RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA.
Register RS is unchanged.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Store Half Indexed (X—Form)
0 6 11 16 21 31
31 RS RA RB 407 Rc

sthx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA.
Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-38 General Information Manual

Store (D-Form)
0 6 11 16 31
36 RS RA D

st RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the
EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register

Set: None
Store Indexed (X-Form)
0 6 11 16 21 31
31 RS RA RB 151 Rc
stx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the
EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (if Rc = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-39

Store Half Byte Reverse Indexed (X-Form)
0 6 1 16 21 31
31 RS RA RB 918 Rc

sthbrx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 24-31 of register RS are placed into memory in bits 0-7 of the halfword in memory
addressed by the EA. Bits 16—23 of register RS are placed into memory in bits 8—15 of the
halfword in memory addressed by the EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Re=1)

Fixed—Point Exception register
Set: None
Store Byte Reverse Indexed (X-Form)
0 6 " 16 21 31
31 RS RA RB 662 Rec

stbrx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 24-31 of register RS are placed into memory in bits 0-7 of the memory word addressed
by the EA. Bits 1623 of register RS are placed into memory in bits 08—15 of the memory
word addressed by the EA. Bits 8-15 of register RS are placed into memory in bits 16-23 of
the memory word addressed by the EA. Bits 0-7 of register RS are placed into memory in
bits 24-31 of the memory word addressed by the EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (f Re=1)

Fixed—Point Exception register
Set: None

2-40 General Information Manual

Store Multiple (D-Form)
0 6 1 16 31
47 RS RA D

stm RS, D(RA)
Let N equal (32 — RS field).

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, an Alignment
Interrupt is generated.

Starting at the EA, N consecutive words are stored from register RS through register 31.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the
instruction from the beginning.

Processor Description 2-41

Fixed—Point Load with Update Instructions

The load with update instructions generate the effective address (EA) as described in
“Effective Address Calculation” on page 2-14.

If RA # 0, RA # RT, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the effective address is placed into register RA. After the update, if the
memory access does not cause an Alignment Interrupt or a Data Storage Interrupt, the byte,
halfword, or word in memory addressed by the EA is placed into register RT.

When RA equals RT, the register contains the data loaded from memory, not the effective
address. If RA equals 0 or RA equals RT, the effective address is not saved.
Load Byte And Zero With Update (D—Form)
0 6 11 16 31
35 RT RA D

Ibzu RT, D(RA)
Let the effective address (EA) be the sum (RA|0) + D.

The byte in memory addressed by the EA is placed into bits 24-31 of register RT. Bits 0—23
of register RT are set to 0.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Byte And Zero With Update Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 119 Rc

Ibzux RT, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

The byte in memory addressed by the EA is placed into bits 24—31 of register RT. Bits 0—23
of register RT are set to 0.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-42 General Information Manual

Load Half And Zero With Update (D-Form)
0 6 1 16 31
| RT RA D

Ihzu RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16-31 of register RT. Bits
0-15 of register RT are set to 0.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Half And Zero With Update Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 311 Re

Ihzux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in rrtemory addressed by the EA is placed into bits 1631 of register RT. Bits
0-15 of register RT are set to 0.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-43

Load Half Algebraic With Update (D—Form)
0 6 1 16 31
43 RT RA D

lhau RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16—31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the placed halfword.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Load Half Algebraic With Update Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 375 Rc

lhaux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16—-31 of register RT. Bits
0-15 of register RT are filled with a copy bit 0 of the placed halfword.

If RA = RT, RA = 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (ifRc=1)

Fixed—Point Exception register
Set: None

2-44 General Information Manual

Load With Update (D-Form)
0 6 11 16 31
33 RT RA D

lu RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is placed into register RT.

If RA 2 RT, RA = 0, and the memory access does not cause an Alignment Interrupt or a
Data Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load With Update Indexed (X-Form)
0 6 1" 16 21 31
31 RT RA RB 55 Rc
lux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is placed into register RT.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Rc=1)

Fixed—-Point Exception register
Set: None

Processor Description 2-45

Fixed—Point Store with Update Instructions

The store with update instructions generate the effective address (EA) as described in
“Effective Address Calculation” on page 2-14.

The contents of register RS are are placed into memory in the byte, halfword, or word in

memory addressed by the EA if the memory access does not cause an Alignment Interrupt
or a Data Storage Interrupt.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

In the store with update instructions, if RS equals RA, the contents of register RS are placed
into memory in the byte, halfword, or word in memory addressed by the EA and the effective
address is placed into register RA.
Store Byte With Update (D-Form)
0 6 1 16 31
39 RS RA D

stbu RS, D(RA)
Let the effective address (EA) be the sum (RA|0) + D.
Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register

Set: None
Store Byte With Update Indexed (X—-Form)
0 6 11 16 21 31
31 RS RA RB 247 Rc

stbux RS, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).
Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

2-46 General Information Manual

Store Half With Update (D-Form)
0 6 1 16 31
45 RS RA D

sthu RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment interrupt is generated.

Bits 16-31 of register RS are stored in the halfword in memory addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Store Half With Update Indexed (X—Form)
0 6 11 16 21 31
31 RS RA RB 439 Rc

sthux RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16—31 of register RS are stored in the halfword in memory addressed by the EA.

If RA = 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (f Re=0)
Set: Undefined (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-47

Store With Update (D—Form)
0 6 1 16 31
37 RS RA D

stu RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 031 of register RS are stored in the word in memory addressed by the EA.

If RA = 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Store With Update Indexed (X-Form)
0 6 1 16 21 31
31 RS RA RB 183 Re

stux RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are stored in the word in memory addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-48 General Information Manual

Fixed-Point Move Assist Instructions

The string instructions allow movement of data from memory to registers or from registers to
memory without concern for alignment. These instructions can be used for a short move
between arbitrary memory locations or to initiate a long move between unaligned memory
fields.

Load String Indexed and Store String Indexed instructions of zero length have no effect on
memory, PFT entries, nor I/O if T equals1, and do not cause data storage interrupts. Load
String Indexed instructions of zero length do not alter the contents of register RT.

Load String Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 533 Re

Isx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RT be the starting register.

Let N equal XER(25-31), which is the number of bytes to be placed. Let NR equal ceil(N/4),
which is the number of registers to receive data. Starting with the leftmost byte in register
RT, N consecutive bytes in memory addressed by the EA are placed into register RT through
RT + NR - 1, wrapping around back through the GPR 0 if required. Bytes are always placed
left to right in the register. In the case when register RT + NR— 1 is only partially filled on the
left, the rightmost bytes of that register are set to 0. When XER(25-31) equals 0, register RT
is not altered.

Registers RA (if RA # 0) and RB, if in the range to be placed, are not written into. The data
that would have been written into them is discarded, and the operation continues normally.
The MQ register is not affected by this operation.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: Undefined (fRc=1)

Fixed-Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

Processor Description 2-49

Load String Immediate (X—Form)
0 6 11 16 21 31
31 RT RA NB 597 Rc

Isl RT, RA, NB

Let the effective address (EA) be (RA|0). Let NB be the byte count. Let register RT be the
starting register.

Let N equal NB which is the number of bytes to load. If NB equals 0, N equals 32. Let NR
equal ceil(N/4) which is the number of registers to receive data. Starting with the leftmost
byte in register RT, N consecutive bytes in memory addressed by the EA are placed into
register RT through RT + NR - 1, wrapping around back through the GPR 0 if required.
Bytes are always placed left to right in the register. In the case when register RT + NR—1 is
only partially filled on the left, the rightmost bytes of that register are set to 0.

Register RA (if RA # 0), if in the range to be placed, is not written into. The data that would
have been written into it is discarded, and the operation continues normally. The MQ register
is not affected by this operation.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
‘Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

Load String And Compare Byte Indexed (X—Form)

0 6 1 16 21 31
31 RT RA RB 277 Re

Iscbx RT, RA, RB (Rc = 0)

Iscbx. RT, RA, RB (Rc = 1)

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RT be the starting register.

Let N equal XER(25-31), which is the number of bytes to be placed. Let NR equal ceil(N/4),
which is the number of registers to receive data.

Starting with the leftmost byte in register RT, consecutive bytes in memory addressed by the
EA are placed into register RT through RT + NR - 1, wrapping around back through the
GPR 0 if required, until either a byte match is found with XER16—23 or N bytes have been
placed. If a byte match is found, that byte is also placed.

Bytes are always placed left to right in the register. In the case when a match was found
before N bytes were placed, the contents of the rightmost bytes not placed of that register
and the contents of all succeeding registers up to and including register RT + NR— 1 are
undefined. Also, no reference is made to memory after the matched byte is found, thus
ensuring no spurious data storage interrupts are generated. In the case when a match was
not found, the contents of the rightmost bytes not placed of register RT + NR—1 is
undefined.

When XER(25-31) equals 0, register RT is not altered.

2-50 General Information Manual

The count of the number of bytes placed up to and including the matched byte, if a match
was found, is placed in XER(25-31).

Registers RA (if RA = 0) and RB, if in the range to be placed, are not written into. The data
that would have been written into them is discarded, and the operation continues normally. If
the byte in XER16-23 compares with any of the four bytes that would have been placed in
register RA or register RB but are being discarded for restartability, the EQ bit and the count
returned in XER(25-31) are undefined.

The MQ register is not affected by this operation.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: XER(25-31) equals number of bytes loaded
Notes:
1. If Rc equals 1 and XER(25-31) equals 0, CR Field 0 is undefined. If Rc equals 1
and XER(25-31) does not equals 0, CR Field 0 is set as follows:
LT GT EQ SO equals b*‘00’||match||XER(SO)

2. A data storage interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

3. When the the EA specifies an /O segment, the hardware may not be able to meet
the requirement that locations beyond the location containing the matching byte
are not accessed. The hardware may fetch the number of bytes specified by
XER(25-31) and then search for the matching byte. Accessing locations beyond
the matching byte could cause spurious access violation exceptions.

Processor Description 2-51

Store String Indexed (X-Form)
(] 6 11 16 21 31
31 RS RA RB 661 Rc

stsx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RS be the starting register.

Let N equal XER(25-31), which is the number of bytes to store. Let NR equal ceil(V/4) which
is the number of registers to store data from. Starting with the leftmost byte in register RS, N
consecutive bytes are stored starting at the EA from register RS, through register RS + NR -
1.

The contents of the MQ register is undefined.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.
Store String Immediate (X—Form)
0 6 11 16 21 31
31 RS RA NB 725 Rc

stsi RS, RA, NB

Let the effective address (EA) be (RA|0). Let NB be the byte count. Let register RS be the
starting register.

Let N equal NB, which is the number of bytes to store. If NB equals 0, N equals 32. Let NR
equal ceil(N/4) which is the number of registers to store data from. Starting with the leftmost
byte in register RS, N consecutive bytes are stored starting at the address in RA from
register RS, through register RS + NR— 1.

The contents of the MQ register is undefined.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

2-52 General Information Manual

Fixed—Point Address Computation Instructions
Compute Address Lower (D-Form)

Compute Address (XO-Form)

The sum (RA) + (RB) is placed into register RT.
Condition register (CR Field 0)

Set: None (if Rc =0)

Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register

Set: None (if OE = 0)

Set: SO OV (if OE =1)

0 6 1" 16 31
14 RT RA D
cal RT, D(RA)
The sum (RA|0) + D is placed into register RT.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
Compute Address Upper (D-Form)
0 6 1 16 31
15 RT RA ul
cau RT, RA, Ul
The sum (RAJ0) + UIl||X‘0000’ is placed into register RT.
Condition register (CR Field 0)
Set: None
Fixed-Point Exception register
Set: None
0 6 11 16 21 22 31
31 RT RA RB OE | 266 Rc
cax RT, RA, RB (Re =0, OE = 0)
cax. RT, RA, RB (Rc=1,0E=0)
caxo RT, RA, RB (Re=0,0E=1)
caxo. RT, RA, RB (Re=1,0E=1)

Processor Description

2-53

Fixed-Point Arithmetic Instructions
The arithmetic instructions treat registers as 32-bit signed integers.

The (X—Form) arithmetic instructions with Rc equals 1 and the (D—Form) arithmetic
instruction, Add Immediate, set CR Field 0 by a compare of the result to zero. ai, ai., ame,
aze, sfi, sfme, sfze, ae, and sfe instructions always set the CA bit to reflect the carry out of
bit 0. However, the (XO-Form)s only set the CR Field 0 when Rc equals 1, and the SO and
OV in the XER when OE equals 1.

The following is the interpretation of the CR Field 0:

Bit Name Description
0 LT Compares less than, negative
1 GT Compares greater than, positive
2 EQ Compares equal to, zero
3 SO Summary overflow from the XER.
The following is the interpretation of the XER:
Bit Name Description
0 SO Summary overflow
1 ov Overflow
2 CA Carry.
Add Immediate (D—Form)
0 6 11 16 31
12 RT RA Sl
ai RT, RA, Sl

The sum (RA) + Sl is placed into register RT.
Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: CA
Add Immediate And Record (D-Form)
0 6 " 16 31
13 RT RA sl
ai. RT, RA, SI

The sum (RA) + Sl is placed into register RT.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register
Set: CA

2-54 General Information Manual

Subtract From Immediate (D—Form)
0 6 1 16 3
08 RT RA sl

sfi RT, RA, SI
The sum — (RA) + Sl + 1 is placed into register RT.

Condition register (CR Field 0)
Set: None

Fixed-Point Exception register
Set: CA

Note: Subtract From Immediate instruction —1 can be used to obtain the one’s complement.

Add (XO-Form)
0 6 1 16 21 22 31
31 RT RA RB OE| 10 Rc
RT, RA, RB (OE =0, Rc = 0)
a. RT, RA, RB (OE =0, Rc = 1)
ao RT, RA, RB (OE=1,Rc =0)
ao. RT, RA, RB (OE=1,Rc=1)

The sum (RA) + (RB) is placed into register RT.
Condition register (CR Field 0)

Set: None (if Re =0)

Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register

Set: CA (if OE = 0)

Set: SO OV CA (if OE = 1)

Processor Description 2-55

Subtract From (XO-Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 8 Re
sf RT, RA, RB (OE =0, Rc = 0)
sf. RT, RA, RB (OE=0,Rc=1)
sfo RT, RA, RB (OE=1,Rc=0)
sfo. RT, RA, RB (OE=1,Rc=1)
The sum - (RA) + (RB) + 1 is placed into register RT.
Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (f Re=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)
Add Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA RB OE| 138 Re
ae RT, RA, RB (OE=0,Rc=0)
ae. RT, RA, RB (OE=0,Rc=1)
aeo RT, RA, RB (OE=1,Rc=0)
aeo. RT, RA, RB (OE=1,Rc=1)

The sum (RA) + (RB) + CA is placed into register RT.
Condition register (CR Field 0)

Set: None
Set: LT GT EQ SO

Fixed-Point Exception register

Set: CA
Set: SOOV CA

2-56 General Information Manual

(if Rc = 0)
(if Re = 1)

(if OE = 0)
(it OE = 1)

Subtract From Extended (XO—-Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 136 Rc
sfe RT, RA, RB (OE=0,Rc=0)
sfe. RT, RA, RB (OE=0,Rc=1)
sfeo RT, RA, RB (OE=1,Rc=0)
sfeo. RT, RA, RB (OE=1,Rc=1)
The sum — (RA) + (RB) + CA is placed into register RT.
Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SOOV CA (ifOE =1)
Add To Minus One Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA m OE | 234 Re
ame RT, RA (OE=0,Rc=0)
ame. RT, RA (OE=0,Rc=1)
ameo RT, RA (OE=1,Rc=0)
ameo. RT, RA (OE=1,Rc=1)

The sum — (RA) + CA + X'FFFFFFFF’ is placed into register RT.
Condition register (CR Field 0)

Set: None

Set: LT GT EQ SO

Fixed-Point Exception register

Set: CA
Set: SO OV CA

(if Re = 0)
(if Rc = 1)

(if OE = 0)
(if OF = 1)

Processor Description

2-57

Subtract From Minus One Extended (XO-Form)

The sum (RA) + CA + X‘00000000’ is placed into register RT.
Condition register (CR Field 0)

Set: None

Set: LT GT EQ SO

(if Rc = 0)
(it Re = 1)

Fixed—Point Exception register

Set: CA
Set: SO OV CA

2-58 General Information Manual

(if OE = 0)
(if OE = 1)

0 6 1 16 21 22 31
31 RT RA nm OE| 232 Re
sfme RT, RA (OE =0, Rc=0)
sfme. RT, RA (OE=0,Rc=1)
sfmeo RT, RA (OE=1,Rc=0)
sfmeo. RT, RA (OE=1,Rc=1)
The sum — (RA) + CA + X'FFFFFFFF’ is placed into register RT.
Condition register (CR Field 0)
Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)
Add To Zero Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA n OE| 202 Rc
aze RT, RA (OE=0,Rc=0)
aze. RT, RA (OE=0,Rc=1)
azeo RT, RA (OE=1,Rc=0)
azeo. RT, RA (OE=1,Rc=1)

Subtract From Zero Extended (XO-Form)

0 6 1 16 21 22 31
31 RT RA mn OE | 200 Rc

sfze RT, RA (OE=0,Rc=0)

sfze. RT, RA (OE=0,Rc=1)

sfzeo RT, RA (OE=1,Rc=0)

sfzeo. RT, RA (OE=1,Rc=1)

The sum — (RA) + CA + X'00000000' is placed into register RT.
Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc = 1)

Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)

Difference Or Zero Immediate (D—-Form)
0 6 1 16 31
09 RT RA Sl
dozi RT, RA, SI

The sum — (RA) + Sl + 1 is placed into register RT. If the value in register RA is algebraically
greater than the value of the Sl field, register RT is set to 0.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Note: This instruction is useful in computing the minimum and maximum of signed integers.

Processor Description 2-59

Difference Or Zero (XO—-Form)

0 6 1 16 21 22 31
31 RT RA RB OE| 264 Rc

doz RT, RA, RB (OE =0, Rc = 0)

doz. RT, RA, RB (OE = 0, Re = 1)

dozo RT,RA,RB (OE =1, Rc = 0)

dozo. RT,RA,RB (OE=1,Rc=1)

The sum —(RA) + (RB) + 1 is placed into register RT. If the value in register RA is
algebraically greater than the value in register RB, register RT is set to 0. If Rc equals 1, the
CR Field 0 is set to reflect the result placed in register RT (if register RT is set to 0, EQ is set
to 1). If OE equals 1, the OV can only be set on positive overflows.

Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV (if OE = 1)
Note: This instruction is useful in computing the minimum and maximum of signed integers.
Absolute (XO-Form)
0 6 1 16 21 22 31
31 RT RA " OE | 360 Rc
abs RT, RA (OE=0,Rc=0)
abs. RT, RA (OE=0,Rc=1)
abso RT, RA (OE=1,Rc=0)
abso. RT, RA (OE=1,Rc=1)

The absolute value [(RA)| is placed into register RT. If register RA contains the most
negative number (X'80000000’), the result of the instruction is the most negative number
and signals the OV bit if enabled.

Condition register (CR Field 0)

Set: None (fRc=0)

Set: LT GT EQ SO (ifRc=1)
Fixed—-Point Exception register

Set: CA (if OE = 0)

Set: SO OV (if OE = 1)

2-60 General Information Manual

Negate (XO-Form)

0 6 11 16 21 22 31
31 RT RA m OE| 104 Rc

neg RT, RA (OE=0,Rc=0)

neg. RT, RA (OE=0,Rc=1)

nego RT, RA (OE=1,Rc=0)

nego. RT, RA (OE=1,Rc=1)

The sum — (RA) + 1 is placed into register RT. If register RA contains the most negative
number (X'80000000’'), the result of the instruction is the most negative number and signals
the OV bit if enabled.

Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)
Negative Absolute (XO-Form)
0 6 11 16 21 22 31
31 RT RA m OE | 488 Rc
nabs RT, RA (OE=0,Rc=0)
nabs. RT, RA (OE=0,Rc=1)
nabso RT, RA (OE=1,Rc=0)
nabso. RT, RA (OE=1,Rc=1)

The negative absolute value —|(RA)] is placed into register RT.

Condition register (CR Field 0)
Set: None

Set: LT GT EQ SO

(if Rc = 0)
(if Re = 1)

Fixed—-Point Exception register
Set: None

Set: SO OV

(if OE = 0)
(if OE = 1)

The Negative Absolute instruction never overflows. If OE equals 1, the XER(OV) is setto 0

and XER(SO) is not changed.

Processor Description 2-61

Multiply (XO-Form)

0 6 1 16 21 22 31
31 RT RA RB OE | 107 Rc

mul RT, RA, RB (OE = 0, Rc = 0)

mul. RT, RA, RB (OE =0, Rc = 1)

mulo RT,RA, RB (OE =1, Re = 0)

mulo. RT, RA, RB (OE=1,Rc=1)

Bits 0-31 of the product (RA) x (RB) are placed into register RT. Bits 32—63 of the product
(RA) x (RB) are placed into the MQ register.

If Rc equals 1, the LT, GT, and EQ bits reflect the result in the MQ register (the low—order 32
bits). If OE equals1, the SO and OV bits are set to 1 if the product cannot be represented in

32 bits.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)

Multiply Immediate (D-Form)
0 6 11 16 31
07 RT RA Sl
muli RT, RA, SI

Bits 32-63 of the product (RA) x Si are placed into register RT. The contents of the MQ
register is undefined.

Condition register (CR Field 0)
Set: None
Fixed—-Point Exception register
Set: None

2-62 General Information Manual

Multiply Short (XO—Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 235 Re

muls RT,RA, RB (OE = 0, Rc = 0)

muls. RT,RA, RB (OE =0, Rc = 1)

mulso RT, RA, RB (OE =1, Rc=0)

mulso. RT, RA, RB (OE =1,Rc=1)

Bits 32—63 of the product (RA) x (RB) are placed into register RT. The contents of the MQ
register is undefined.

If Rc equals 1, the LT, GT, and EQ bits reflect the result in register RT (the low—order 32
bits). If OE equals 1, the SO and OV bits are set to 1 if the product cannot be represented in

32 bits.
Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)
Divide (XO—Form)
0 6 11 16 21 22 31
31 RT RA RB OE | 331 Re
div RT, RA, RB (OE=0,Rc=0)
div. RT, RA, RB (OE=0,Rc=1)
divo RT, RA, RB (OE=1,Rc=0)
divo. RT, RA, RB (OE=1,Rc=1)

The quotient [(RA) || (MQ)] / (RB) is placed into register RT. The remainder is placed into the
MQ register. The remainder has the same sign as the dividend, except that a zero quotient
or a zero remainder is always positive. The results obey the following equation:

dividend = (divisor x quotient) + remainder

where dividend is the original (RA) || (MQ), divisor is the original (RB), quotient is the final
(RT), and remainder is the final (MQ).

If Rc equals 1, the CR bits LT, GT, and EQ reflect the remainder. If OE equals 1, the SO and
OV bits are set to 1 if the quotient cannot be represented in 32 bits. For the case of —231
*-1, the MQ register is set to 0 and —231 i s placed in register RT. For all other overflows,
(MQ), (RT), and CR Field 0 (if Rc = 1) are undefined.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (f Rc = 1)

Fixed—Point Exception register

Processor Description 2-63

Set: None (if OE = 0)

Set: SO OV (it OE = 1)
Divide Short (XO-Form)
0 6 11 16 21 22 31
31 RT RA RB OE| 363 Re
divs RT, RA, RB (OE =0, Rc = 0)
divs. RT, RA, RB (OE =0,Rc =1)
divso RT, RA, RB (OE=1,Rc=0)
divso. RT, RA, RB (OE=1,Rc=1)

The quotient (RA) / (RB) is placed into register RT. The remainder is placed into the MQ
register. The remainder has the same sign as the dividend, except that a zero quotient or a
zero remainder is always positive. The results obey the following equation:

dividend = (divisor x quotient) + remainder

where dividend is the original (RA), divisor is the original (RB), quotientis the final (RT), and
remainder is the final (MQ).

If Rc equals 1, the the CR bits LT, EQ and GT reflect the remainder. If OE equals 1, the SO
and OV bits are set to 1 if the quotient cannot be represented in 32 bits (as is the case when
the divisor is 0, or the dividend is —23! and the divisor is —1). For the case of —231 ¥ —1, the
MQ Register is set to 0 and —231 is placed into register RT. For all other overflows, the (MQ),
(RT), and CR Field 0 (if Rc = 1) are undefined.

Condition register (CR Field 0)

Set: None (if Rc = 0)

Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register

Set: None (if OE = 0)

Set: SO OV (if OE = 1)

2-64 General Information Manual

Fixed—Point Compare Instructions

In compare instructions, the BF field specifies one of the CR fields that receives the result of
the compare. Compare operations either logically or algebraically compare the contents of
register RA with the sign extended S field, the Ul field, or the contents of register RB.

A logical compare operation is the comparison of two 32-bit unsigned integers. An algebraic
compare operation is the comparison of two 32-bit signed integers. The compare operation
sets one bit in the leftmost three bits of the CR field i to 1, the other two are setto 0. The
XER(SO) is copied into bit 3 of CR Field i. CR Field i bits are interpreted as follows:

Bit Name Description
0 LT (RA) < S, UL, or (RB)
1 GT (RA) > SI, Ul, or (RB)
2 EQ (RA) = SI, U, or (RB)
3 SO Summary Overflow from the XER
Compare Immediate (D-Form)
(] 6 9 11 16 31
1 BF | /| RA sl

cmpi BF, RA, SI
The contents of register RA are compared with S| as signed integers.

Condition register
Set: CR Field i, where i = BF

Fixed—Point Exception register
Set: None
Compare (X-Form)
0 6 9 N 16 21 31
31 BF /' 1| RA RB 0 Rc

cmp BF, RA, RB

The contents of register RA are compared with the contents of register RB as signed
integers. CR Field 0 is undefined if BF # 0 and Rc equals 1.

Condition register
Set: CR Field i, where i = BF

Fixed-Point Exception register
Set: None

Processor Description 2-65

Compare Logical Inmediate (D—Form)

0 6 9 M 16 31
10 BF /' | RA ul
cmpli BF, RA, Ul
The contents of register RA are compared with X'0000’ || Ul as unsigned integers.
Condition register
Set: CR Field i, where i = BF
Fixed—Point Exception register
Set: None
Compare Logical (X—-Form)
0 6 9 M 16 21 31
31 BF /' | RA RB 32 Rc

cmpl BF, RA, RB

The contents of register RA are compared with the contents of register RB as unsigned
integers. CR Field 0 is undefined if BF # 0 and Rc equals 1.

Condition register

Set: CR Field i, where i = BF

Fixed—Point Exception register

Set: None

2-66 General Information Manual

Fixed—Point Logical Instructions
The logical instructions perform the indicated operations by bit.

The (X-Form) logical instructions with the Rc bit set to 1 and the (D-Form) logical
instructions, Add Immediate Lower and Add Immediate Upper, set bits 0-3 of the Condition
register (CR Field 0) by a compare of the result to 0. The (X—Form) logical instructions with
the Rc bit set to 0 and the remaining (D—Form) logical instructions do not alter the Condition
register. The logical operations do not change the CA, OV and SO bits in the XER.

AND Immediate Lower (D-Form)

0 6 11 16 31
28 RS RA ul
andil. RA, RS, Ul
The contents of register RS are ANDed with X‘0000’ || Ul and the result is placed into
register RA.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register

Set: None
AND Immediate Upper (D-Form)
0 6 11 16 31
29 RS RA ul

andiu. RA, RS, Ul

The contents of register RS are ANDed with Ul || X'0000’ and the result is placed into
register RA.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register

Set: None
AND (X-Form)
0 6 1" 16 21 31
31 RS RA RB 28 Rc
and RA, RS, RB (Rc=0)
and. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (fRc=1)

Processor Description 2-67

Fixed—Point Exception register

Set: None
OR Immediate Lower (D-Form)
0 6 1 16 31
24 RS RA ul
oril RA,RS, Ul
The contents of register RS are ORed with X‘0000’ || Ul and the result is placed into register
RA.
Condition register (CR Field 0)
Set: None
Fixed—-Point Exception register
Set: None
OR Immediate Upper (D-Form)
0 6 11 16 31
25 RS RA ul
oriu RA, RS, Ul
The contents of register RS are ORed with Ul || X'0000’ and the result is placed into register
RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
OR (X-Form)
0 6 1" 16 21 31
31 RS RA RB 444 Rc
or RA, RS, RB (Rc=0)
or. RA, RS, RB (Rc=1)

The contents of register RS are ORed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

2-68 General Information Manual

XOR Immediate Lower (D-Form)

0 6 1 16 31
26 RS RA ul
xoril RA, RS, Ul
The contents of register RS are XORed with X'0000’ || Ul and the result is placed into
register RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
XOR Immediate Upper (D-Form)
0 6 1 16 31
27 RS RA ul

xoriu RA, RS, Ul
The contents of register RS are XORed with Ul || X‘0000’ and the result is placed into

register RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
XOR (X-Form)
0 6 11 16 21 31
31 RS RA RB 316 Rc
xor RA, RS, RB (Rc=0)
xor. RA, RS, RB (Rc=1)

The contents of register RS are XORed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-69

Equivalent (X-Form)

0 6 1" 16 21 31
31 RS RA RB 284 Re

eqv RA, RS, RB (Rc=0)

eqv. RA, RS, RB (Rc=1)

The contents of register RS are XORed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—-Point Exception register
Set: None
AND With Complement (X-Form)
0 6 1 16 21 31
31 RS RA RB 60 Rc
andc RA, RS, RB (Re=0)
andc. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the complement of the contents of register RB
and the result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
OR With Complement (X—-Form)
0 6 1 16 21 31
31 RS RA RB 412 Rc
orc RA, RS, RB (Rc=0)
orc. RA, RS, RB (Re=1)

The contents of register RS are ORed with the complement of the contents of register RB
and the result is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

2-70 General Information Manual

NOR (X-Form)

0 6 1" 16 21 31
31 RS RA RB 124 Rc

nor RA, RS, RB (Rc=0)

nor. RA, RS, RB (Rc=1)

The contents of register RS are ORed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
NAND (X-Form)
0 6 11 16 21 31
31 RS RA RB 476 Rec
nand RA, RS, RB (Rc=0)
nand. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc = 1)
Fixed—Point Exception register
Set: None
Extend Sign (X-Form)
0 6 11 16 21 31
31 RS RA m 922 Rc
exts RA, RS (Rc=0)
exts. RA, RS (Re=1)

Bits 16—31 of register RS are placed into bits 16—31 of register RA. Bit 16 of register RS is
placed into bits 0—15 of register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—-Point Exception register
Set: None

Processor Description 2-71

Count Leading Zeroes (X-Form)

0 6 11 16 21 31
31 RS RA n 26 Re

cntlz RA, RS (Rc=0)

cntlz. RA, RS (Re=1)

The number of leading 0—bits (the number of consecutive 0-bits starting at bit 0) of the
contents of register RS are placed in register RA. This number always lies between 0 and
32, inclusive.

If Rc equals 1, the LT, EQ, and GT bits are set to reflect the result. (In particular, if Rc equals
1, LT is always reset.)

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

2-72 General Information Manual

Fixed-Point Rotate and Shift Instructions

The fixed—point processor performs rotate operations on data from a general purpose
register and returns the result, or a portion of the result, to a general purpose register. The
rotate operations move a specified number of bits left. The bits that exit from bit position 0
enter at bit position 31.

The shift instructions logically perform left and right shifts. The result of each instruction is
placed into register RA under control of a generated mask.

Fixed—Point Rotate with Mask Instructions
If Rc equals 1, the rotate instructions set bits in the CR according to the value of register RA
at the completion of the instruction. The CR is set as if a compare between register RA and
the value 0 had been performed. Rotate and shift operations do not change the OV and SO
bits. Rotate and shift operations, except algebraic right shifts, do not change the CA bit. If Rc
equals 0, the CR is left unchanged.

The result of the rotate instruction is either inserted into the register under control of the
mask provided, or is ANDed with the mask before being placed into the register.

When the rotate with insert is used, the result of the rotate operation is placed into register
RA under control of the provided mask. If a mask bit is 1, the associated bit of the rotated
data (0 or 1) is placed into register RA; if the mask bit is 0, the associated data bit (0 or 1)
from the register remains unchanged.

The rotate left instructions allow rotate right instructions to be performed (in concept) by a
rotate left of 32—N, where N is the number of positions to rotate right.

Rotate Left Inmediate Then Mask Insert (M—Form)

0 6 1 16 21 26 31
20 RS RA SH MB ME Rc

Himi RA, RS, SH, MB, ME (Rc=0)

dimi. RA, RS, SH, MB, ME (Re = 1)

The contents of register RS are rotated left the number of positions specified by bits 16-20
of the instruction. The rotated data is inserted into register RA under control of the generated

mask.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-73

Rotate Left Then Mask Insert (M-Form)

0 6 11 16 21 26 31
22 RS RA RB MB ME Re

rimi RA, RS, RB, MB, ME (Rc = 0)

rimi. RA, RS, RB, MB, ME (Rc = 1)

The contents of register RS are rotated left the number of positions specified by bits 27-31
of register RB. The rotated data is inserted into register RA under control of the generated

mask.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

Rotate Left Inmediate Then AND With Mask (M-Form)

0 6 11 16 21 26 31
21 RS RA SH MB ME Re

rlimi RA, RS, SH, MB, ME (Rc=0)

rlimi. RA, RS, SH, MB, ME (Rc=1)

The contents of register RS are rotated left the number of positions specified by bits 16—-20
of the instruction. The rotated data is ANDed with the generated mask and the result is
placed into register RA.

Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (fRc=1)
Fixed-Point Exception register
Set: None
Rotate Left Then AND With Mask (M-Form)
0 6 11 16 21 26 31
23 RS RA RB MB ME Re
rinm RA, RS, RB, MB, ME (Rc =0)
rinm. RA, RS, RB, MB, ME (Rc=1)

The contents of register RS are rotated left the number of positions specified by bits 27-31
of register RB. The rotated data is ANDed with the generated mask and the result is placed

into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (f Re=1)

Fixed—Point Exception register
Set: None

2-74 General Information Manual

Fixed-Point Rotate Bit Instructions
Rotate Right And Insert Bit (X—Form)

0 6 1 16 21 31
31 RS RA RB 537 Rc

rrib RA, RS, RB (Rc=0)

rrib. RA, RS, RB (Rc=1)

Bit 0 of register RS is rotated right the amount specified by bits 27-31 of register RB. The bit
is then inserted into register RA.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Fixed-Point Bit Mask Instructions
Mask Generate (X—Form)

0 6 11 16 21 31
31 RS RA RB 29 Rc

maskg RA, RS, RB (Rc=0)

maskg. RA, RS, RB (Rc=1)

Let mstart equal RS(27-31), specifying the starting point of a mask of ones. Let mstop equal
RB(27-31), specifying the end point of the mask of ones.

If mstart < mstop + 1 then
MASK(mstart...mstop) equals 1s
MASK(all other bits) equals 0s

It mstart equals mstop + 1 then
MASK(0-31) equals 1s

It mstart > mstop + 1 then
MASK(mstop + 1...mstart— 1) equals 0s
MASK(all other bits) equals 1s

The MASK is then placed in register RA.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (if Rc=1)

Fixed-Point Exception register
Set: None

Processor Description 2-75

Mask Insert From Register (X-Form)

0 6 1 16 21 31
31 RS RA RB 541 Re

maskir RA, RS, RB (Rc =0)

maskir. RA, RS, RB (Re=1)

Register RS is inserted into register RA under control of the mask in register RB.

Condition register (CR Field 0)
Set: None (f Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Fixed-Point Shift Instructions
The instructions in this section logically perform left and right shifts.

The following process is performed when the result of a shift instruction is placed into
register RA under the control of a generated mask.

When the mask bit is 1, the respective bit from either the rotated word or a word of zeros is
placed into register RA. When the mask bit is 0, the respective bit from either the MQ
register or a word of 32 sign bits from register RS is placed into register RA.

If the Record bit (Rc) equals 1, the shift instructions set bits in the CR according to the value
of the contents of register RA at the completion of the instruction. The CR is set as if a
compare between the contents of register RA and the value 0 had been performed.

If Rc equals 0, the CR is left unchanged.
Shift Left (X-Form)

0 6 11 16 21 31
31 RS RA RB 24 Re

sl RA, RS, RB (Rc=0)

sl. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of

register RB.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is placed into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc = 1)

Fixed—Point Exception register
Set: None

2-76 General Information Manual

Shift Right (X-Form)

0 6 1 16 21 31
31 RS RA RB 536 Rc
sr RA, RS, RB (Rc =0)
Sr. RA, RS, RB (Rc=1)
Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed into register RA.
Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed~Point Exception register
Set: None
Shift Left With MQ (X-Form)
0 6 11 16 21 31
31 RS RA RB 152 Rc
slq RA, RS, RB (Rc=0)
slq. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is placed into register RA.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2=77

Shift Right With MQ (X-Form)

0 6 1 16 21 31
31 RS RA RB 664 Rc

srq RA, RS, RB (Rc=0)

srq. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ Register.

When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed into register RA.
Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Inmediate With MQ (X-Form)
0 6 1 16 21 31
31 RS RA SH 184 Rc
sliq RA, RS, SH (Rc=0)
sliq. RA, RS, SH (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 16-20 of the
instruction. The rotated word is placed into the MQ register. A mask of 32—N ones followed
by N zeros is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

2-78 General Information Manual

Shift Right Inmediate With MQ (X-Form)

0 6 11 16 21 31
31 RS RA SH 696 Rc

srig RA, RS, SH (Rc = 0)

srig. RA, RS, SH (Re = 1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16-20 of
the instruction. The rotated word is placed into the MQ register. A mask of N zeros followed
by 32—-N ones is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Long Immediate With MQ (X-Form)
0 6 1" 16 21 31
31 RS RA SH 248 Re
slliq RA, RS, SH (Rc=0)
slliq. RA, RS, SH (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 16—20 of the
instruction. A mask of 32—N ones followed by N zeros is generated. The rotated word is
merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—-Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-79

Shift Right Long Immediate With MQ (X-Form)

0 6 11 16 21 31
31 RS RA SH 760 Re

srli RA, RS, SH (Rc =0)

srig. RA, RS, SH (Rc = 1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16—20 of
the instruction. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Re=1)
Fixed—Point Exception register
Set: None
Shift Left Long With MQ (X-Form)
0 6 1 16 21 31
31 RS RA RB 216 Rc
sliq RA, RS, RB (Rc=0)
slig. RA, RS, RB (Rc=1)
Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated. The
rotated word is then merged with the contents of the MQ register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

When bit 26 of register RB is 1, a mask of 32—N zeros followed by N ones is generated. A
word of zeros is then merged with the contents of the MQ register, under control of the
generated mask.

The merged word is placed into register RA. The MQ register is not altered.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: LT GT EQ SO (if Rc =1)

Fixed-Point Exception register
Set: None

2-80 General Information Manual

Shift Right Long With MQ (X-Form)

0 6 1" 16 21 31

31 RS RA RB 728 Rc
sriq RA, RS, RB (Re=0)
srig. RA, RS, RB (Rc=1)
Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is generated. The
rotated word is then merged with the contents of the MQ register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

When bit 26 of register RB is 1, a mask of N ones followed by 32—N zeros is generated. A
word of zeros is then merged with the contents of the MQ register, under control of the -
generated mask.

The merged word is placed into register RA. The MQ register is not altered.
Condition register (CR Field 0)

Set: None (ifRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Extended (X-Form)
0 6 1" 16 21 31
31 RS RA RB 153 Rc
sle RA, RS, RB (Rc=0)
sle. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register. A mask of 32—-N ones followed
by N zeros is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-81

Shift Right Extended (X—Form)

0 6 1" 16 21 31
31 RS RA RB 665 Re

sre RA, RS, RB (Rc=0)

sre. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register. A mask of N zeros followed by
32-N ones is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None
Shift Left Extended With MQ (X-Form)
0 6 1 16 21 31
31 RS RA RB 217 Rc
sleq RA, RS, RB (Rc=0)
sleq. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of 32—N ones followed by N zeros is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc=1)

Fixed—Point Exception register
Set: None

2-82 General Information Manual

Shift Right Extended With MQ (X-Form)

0 6 11 16 21 31
31 RS RA RB 729 Rc

sreq RA, RS, RB (Rc=0)

sreq. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Right Algebraic Immediate (X—Form)
0 6 1" 16 21 31
31 RS RA SH 824 Rc
srai RA, RS, SH (Rc=0)
srai. RA, RS, SH (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16—20 of
the instruction. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with a word of 32 sign bits from the RS register, under control of the generated
mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32 bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)

Set: None (if Rc =0)
Set: LT GT EQ SO (if Rc = 1)
Fixed—Point Exception register
Set: None
Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with aze.

Processor Description 2-83

Shift Right Algebraic (X-Form)

0 6 1 16 21 31
31 RS RA RB 792 Rc

sra RA, RS, RB (Rc=0)

sra. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated
word is then merged with a word of 32 sign bits from the RS register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

Shift Right Algebraic Immediate With MQ (X—Form)

0 6 11 16 21 31
31 RS RA SH 952 Rc

sraiq RA, RS, SH (Rc=0)

sraig. RA, RS, SH (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16-20 of
the instruction. A mask of N zeros followed by 32—-N ones is generated. The rotated word is
placed into the MQ register. The rotated word is then merged with a word of 32 sign bits
from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Re = 1)

Fixed—Point Exception register
~Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

2-84 General Information Manual

Shift Right Algebraic With MQ (X-Form)

0 6 1 16 21 31
31 RS RA RB 920 Rec

sraq RA, RS, RB (Rc=0)

sraq. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated
word is placed into the MQ register. The rotated word is then merged with a word of 32 sign
bits from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

Shift Right Extended Algebraic (X—Form)

0 6 1 16 21 31
31 RS RA RB 921 Rc

srea RA, RS, RB (Rc=0)

srea. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of N zeros followed by 32—N ones is generated. The rotated word is
placed into the MQ register. The rotated word is then merged with a word of 32 sign bits
from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Processor Description 2-85

Double-Precision Shifts
Note: Some of the shift instructions use the MQ register. Double—length shifting of an

arbitrary pair of general purpose registers can be accomplished with a few such
instructions. The shift amount is specified either as an immediate value in the
instruction (0 < shift amount < 31) or as bits 26-31 of register RB (0 < shift amount <
63). The following examples treat registers R1 and R2 as containing a 64-bit integer,
with the R1 register containing the high order part. The shift amount is given as n for
the immediate shifts, and is in bits 26—31 of the R3 register for the variable shifts.

Shift Left Double Immediate

sliq r2,r2,n

sllig ri,ri,n
Shift Left Double

slq r2, r2, r3

sliq r1,r1,r3
Shift Right Double Immediate

sriq ri,r,n

srliq r2,r2,n
Shift Right Double

srq ri,r1,r3

srlq r2, r2, r3
Shift Right Algebraic Double Immediate

sraiq r1,ri,n

srliq r2,r2,n
Shift Right Algebraic Double

cmpli fi, r3, 32

srea r1,r1,r3

sreq re, r2, r3

bt fi, done

or re, r1, ri

srai ri, r1, 31

done:

2-86 General Information Manual

Move To and Move From System Registers Instructions
This section defines instructions for moving data between the GPRs and the special purpose

registers CTR, LR, and MQ.
Move To Special Purpose Register (X—Form)
0 6 11 16 21 31
31 RS SPR " 467 Rc

mispr SPR, RS
The contents of register RS are placed into the special purpose register indicated by the

SPR field.
SPR Register
00000 (00) MQ

00001 (01) XER
01000 (08) LR
01001 (09) CTR

All other combinations are reserved and do not alter any architected registers.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: Undefined (if Rc=1)

Fixed—Point Exception register
Set: None

Note: Execution of this instruction, specifying SPR11 set to 1 and MSR(PR) set to 1, results
in a privileged instruction—type Program Interrupt.

Processor Description 2-87

Move From Special Purpose Register (X—-Form)
0 6 1 16 21 31
31 RT SPR n 339 Rc

mfspr RT,SPR (Rc=0)

The contents of the special purpose register indicated by the SPR field are placed into
register RT.

SPR Register
00000 (00) MQ
00001 (01) XER
00100 (04) RTCU
00101 (05) RTCL
00110 (06) DEC
01000 (08) LR
01001 (09) CTR

All other combinations are reserved and do not alter any architected registers.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined | (if Re=1)

Fixed—Point Exception register
Set: None

Note: Execution of this instruction, specifying SPR1¢ set to 1 and MSR(PR) set to 1, results
in a privileged instruction—type Program Interrupt.

2-88 General Information Manual

Move To and Move From Condition Register Instruction
This section defines instructions for moving data between the general purpose registers and
the Condition register.

Move To Condition Register Fields (XFX—Form)
0 6 11 12 20 21 31

K} RS /| FXM /1 144 Re

mtcrf FXM, RS

The contents of register RS are placed into Condition register under control of the FXM field
mask. FXM field mask is defined as follows:

Bit Description

12 Bits 00-03 of CR updated
13 Bits 04-07 of CR updated
14 Bits 08—11 of CR updated
15 Bits 12-15 of CR updated
16 Bits 16—19 of CR updated
17 Bits 20-23 of CR updated
18 Bits 24—-27 of CR updated
19 Bits 28—-31 of CR updated.

Register RS is not changed.

Condition register (CR Field 0)
Set: See description above (if Re = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Move To Condition Register From XER (X-Form)
0 6 9 11 16 21 31
31 BF |/ | m 7 512 Rc

mcerxr BF

The contents of XER(0-3) are copied into Condition register Field i, where i equals BF. All
other fields of the Condition register remain unchanged. The XER(0-3) is reset to 0.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Rc equals 1 and BF = 0)

Fixed—Point Exception register
Set: XER(0-3)

Processor Description 2-89

Move From Condition Register (X—-Form)

0 6

"

16

21

31

31

RT

n

m

19

Rc

mfcr RT

The contents of the Condition register are placed into register RT.

Condition register (CR Field 0)
Set: None

Set: Undefined

Fixed—Point Exception register
Set: None

Move From Machine State Register Instruction
This section defines the instruction for moving data from Machine State registers.

Move From Machine State Register (X—-Form)

0 6

11

16

(if Re = 0)
(if Re = 1)

21

31

31

RT

n

mn

83

Rec

mfmsr RT

The contents of the MSR are placed into register RT.

Condition register (CR Field 0)
Set: None

Set: Undefined

Fixed—Point Exception register
Set: None

2-90 General Information Manual

(if Rc = 0)
(if Re = 1)

Floating—Point Processor Overview

The floating—point processor (FPP) provides high—performance execution of floating—point
operations. Instructions are provided to perform arithmetic operations in floating—point
registers and move floating—point data between memory and these registers.

This architecture provides for hardware to implement a floating—point system as defined in
ANSVIEEE Standard 754—-1985, IEEE Standard for Binary Floating Point Arithmetic, but has
a dependency on supporting software to be in conformance with that standard.

A floating—point number consists of a signed exponent and a signed significand. The
quantity expressed by this number is the product of the significand and the number 2exponent.
Encodings are provided in the data format to represent finite numeric values, + Infinity and
Not-a~-Number (NaN) values. Operations involving infinities produce results obeying
traditional mathematical conventions. NaN values have no mathematical interpretation. Their
encoding permits a variable diagnostic—information field. They can indicate such things as
uninitialized variables and can be produced by certain invalid operations.

There are two classes of exceptional events that occur during instruction execution that are
unique to the FPP:

e FPP unavailable
¢ Floating—point exception.

The FPP unavailable event is signaled with a Floating—Point Not Available Interrupt.
Floating—point exceptions are signaled with bits set in the Floating—Point Status and Control
register and can generate a precise interrupt with the proper bits enabled.

The Floating—Point Available bit is defined to enhance context switching performance for
programs that do not require the use of FPP. The Floating—Point Available bit is defined in
the "Machine State Register”, MSR(FP), on page 2-18.

If the MSR(FP) bit equals 1, the FPP is available for use and floating—point instructions can
be successfully executed. If the MSR(FP) bit equals 0, the FPP is unavailable for use,
execution of any floating—point instruction is suppressed, and a Floating—Point Unavailable
Interrupt is generated to signal the attempted use of the FPP in the unavailable state.

The following floating—point exceptions are detected by the hardware:
¢ Invalid operation exception

~ SNaN
Infinity — Infinity

Infinity x Zero

Infinity + Infinity
Zero + Zero
Ordered Compare With a NaN

e Zero Divide Exception

¢ Overflow Exception
¢ Underflow Exception
¢ Inexact Exception

Processor Description 2-91

Each floating—point exception and exception sub—class (in the case of Invalid Operation
Exception) has an Exception bit defined in the Floating—Point Status and Control Register.
Each floating—point exception has an Enable bit defined in the Floating—Point Status and
Control Register. See "Floating—Point Status and Control Register " on page 2-93 for
definitions of these bits. A bit is defined in the MSR, Floating—Point Exception Interrupt
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an
enabled floating—point exception occurs.

Floating—Point Registers
Implementations of this architecture provide 32 floating—point registers (FPR). The
floating—point instruction formats provide a 5-bit field for specifying the FPRs used in the
instruction execution. The FPRs are numbered 0-31. See Figure 10 for a representation of
the floating—point registers. A Floating—Point Status and Control register controls the
handling of floating—point exceptions and records status resulting from the floating—point
operations.

Each FPR contains 64 bits, which support the double—precision floating—point format. All
operations that interpret the contents of an FPR as a floating—point value use the
double—precision floating—point format for this interpretation.

All floating—point operations other than load and store operations are performed on
operands located in FPRs and place the result value in an FPR. Status information is placed
in the Floating—Point Status and Control register and in some cases in the Condition register.

Load and store double instructions are provided that transfer 64 bits of data between
memory and the FPRs in the FPP with no conversion. Load single instructions are provided
to transfer and convert floating—point values in single floating format from memory to the
same value in double floating format in the FPRs. Store single instructions are provided to
transfer and convert floating—point values in double floating format from the FPRs to the
same value in single—floating format in memory.

FPR 00
FPR 01

FPR 30
FPR 31

Figure 10. Floating—Point Registers

2-92 General Information Manual

Floating—Point Status and Control Register
The Floating—Point Status and Control register (FPSCR) contains the status and control
flags for floating—point operations. Bits 0—-19 are Status bits. Bits 20~31 are Control bits.

0 31
FPSCR

Bit Name Description

00 FX Floating—Point Exception Summary

01 FEX Floating—Point Enabled Exception
Summary

02 VX Floating—Point Invalid Operation Exception
Summary

03 OX Floating—Point Overflow Exception

04 UXx Floating—Point Underflow Exception

05 ZX Floating—Point Zero Divide Exception

06 XX Floating—Point Inexact Exception

07 VXSNAN Floating—Point Invalid Operation Exception
(SNaN)

08 VXISI Floating—Point Invalid Operation Exception
(INF — INF)

09 VXIDI Floating—Point Invalid Operation Exception
(INF + INF)

10 VXZDZ Floating—Point Invalid Operation Exception
(0+0)

11 VXiMZ Floating—Point Invalid Operation Exception
(INF x 0)

12 VXVC Floating—Point Invalid Operation Exception
(Invalid Compare)

13 FR Floating—Point Fraction Rounded

14 Fl Floating—Point Fraction Inexact

15 C Floating—Point Result Class Descripter

16 FL Floating—Point Less Than

17 FG Floating—Point Greater Than

18 FE Floating—Point Equal

19 FU Floating—Point Unordered

20 Reserved

21 Reserved

22 Reserved

23 Reserved

24 VE Floating—Point Invalid Operation Exception
Enable

25 OE Floating—Point Overflow Exception Enable

26 UE Floating—Point Underflow Exception Enable

27 ZE Floating—Point Zero Divide Exception
Enable

28 XE Floating—Point Inexact Exception Enable

29 Reserved

30 RN Floating—Point Rounding Control

31 RN Floating—Point Rounding Control.

Processor Description

2-93

The format of the FPSCR follows:

Bit
0

10
11

12

13

14

15-19

Description

Floating—Point Exception Summary (FX). Every floating—point arithmetic
instruction, floating—point compare instruction, and the Floating Round to
Single instruction shall implicitly set FPSCR(FX) if that instruction causes
any of the Floating—Point Exception bits in the FPSCR to transition from 0 to
1. Also, use of the mtfsb1 instruction, which causes any of the
Floating—Point Exception bits in the FPSCR to transition from 0 to 1 shall
implicitly set FPSCR(FX). The merfs instruction shall be able to implicitly
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mtfsb0
instructions are able to set or clear FPSCR(FX) explicitly.

Floating—Point Enabled Exception Summary (FEX). This bit signals the
occurrence of any of the enabled exception conditions. It is the 'OR’ of all
the floating—point exceptions masked with their respective enable.

Floating—Point Invalid Operation Exception Summary (VX). This bit signals
the occurrence of any invalid operation exceptions. It is the ‘OR’ of all the
invalid operation exceptions.

Floating—Point Overflow Exception (OX). See “Overflow Exception” on page
2-107 for information about this register.

Floating—Point Underflow Exception (UX). See “Underflow Exception” on
page 2-109 for information about this register.

Floating—Point Zero Divide Exception (ZX). See “Zero Divide Exception” on
page 2-106 for information about this register.

Floating—Point Inexact Exception (XX). See “Inexact Exception” on page
2-110 for information about this register.

Floating—Point Invalid Operation Exception (SNaN) (VXSNAN). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Invalid Operation Exception (INF — INF) (VXISI). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Invalid Operation Exception (INF + INF) (VXIDI). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Invalid Operation Exception (0 + 0) (VXZDZ). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Invalid Operation Exception (INF x 0) (VXIMZ). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Invalid Operation Exception (Invalid Compare) (VXVC). See
“Invalid Operation Exception” on page 2-105 for information about this
register.

Floating—Point Fraction Rounded (FR). The last floating—point instruction
that rounded the intermediate result incremented the fraction.

Floating—Point Fraction Inexact (F!). The last floating—point instruction that
rounded the intermediate result produced an inexact fraction or a disabled
exponent overflow.

Floating—Point Result Flags (FPRF).

2-94 General Information Manual

20-23
24

25

26

27

28

Bit Description

15 Floating—point result class descripter (C)
16-19 Floating—point condition code (FPCC).
Bit Description
16 Floating—point less than or negative
(FL or <)
17 Floating—point greater than or positive
(FG or >)
18 Floating—point equal or zero (FE or equals)
19 Floating—point unordered or NaN (FU).

Floating—point compare instructions always
set one of the FPCC bits to 1 and the other
three FPCC bits to 0. Other instructions can
set the FPCC bits with the C bit to encode
these 5 bits to indicate the class of the
stored result. See Figure 11 on page 2-96
for the floating—point result flags. Notice
that in this case the three high—order bits of
the FPCC retain their relational significance
indicating that the value is less than,
greater than, or equal to zero.

Reserved.

Floating—Paint Invalid Operation Exception Enable (VE). See “Invalid
Operation Exception” on page 2-105 for information about this register.

Floating—Point Overflow Exception Enable (OE). See “Overflow Exception”
on page 2-107 for information about this register.

.Floating-Point Underflow Exception Enable (UE). See “Underflow

Exception” on page 2-109 for information about this register.

Floating—Point Zero Divide Exception Enable (ZE). See “Zero Divide
Exception” on page 2-106 for information about this register.

Floating—Point Inexact Exception Enable (XE). See “Inexact Exception” on
page 2-110 for information about this register.

Reserved.

Processor Description 2-95

30-31 Floating—Point Rounding Control (RN). See “Rounding” on page 2-101 for
information about this register.

Setting Description

00 Round To Nearest

01 Round Toward Zero

10 Round Toward +Infinity
1 Round Toward —Infinity.

Note: Every exception bit in the FPSCR is sticky (bits 0—12) with the exception of the
Floating—Point Enabled Exception Summary and Floating—Point Invalid Operation
Exception Summary bits. That is, once set they remain set until one of the following
instructions possibly changes them: mtfsf, mtfsfi, mtfsb0, and merfs.

Result

Flags Result Value Class
Ce>="?

10001 - Quiet NaN

01001 - Infinity

01000 - Normalized Number
11000 - Denormalized Number
10010 | —Zero

00010 + Zero

10100 + Denormalized Number
00100 + Normalized Number
00101 + Inifnity

Figure 11. Floating Point Result Flags

2-96 General Information Manual

Floating—Point Data Representation

This section describes how data is represented in the Floating—Point Processor.

Data Format
This architecture defines the representation of a floating—point value in two different binary
fixed—length formats. The format can be a one—word format for a single—precision floating—
point value or a two—word format for a double—precision floating—point value. The single
format (See Figure 12) can be used for data in memory. The double format (See Figure 13)
can be used for data in memory and for data in floating—point registers. The length of the
exponent and the fraction fields differ between these two formats.

S| EXP FRACTION

0 1 9 31
Figure 12. Floating—Point Single Format

S | EXP FRACTION

0 1 12 63
Figure 13. Floating—Point Double Format

Values in floating—point format are composed of the following fields:
S Sign bit.

EXP Exponent + Bias.

FRACTION Fraction.

Bit 0 is the Sign bit, the xMSB bit is the most significant bit of the EXP field, the xLSB bit is
the least significant bit of the EXP field, the fMSB bit is the most significant bit of the
FRACTION field, and the fLSB bit is the least significant bit of the FRACTION field.

Representation of numerical values in the floating—point formats consist of a Sign bit S, a
biased exponent EXP, and the fraction portion FRACTION, of the significand. The
significand consists of a leading implied bit concatenated on the right with the FRACTION
field. This leading implied bit is a 1 for normalized numbers and a 0 for denormalized
numbers and is located in the unit bit position (the first bit to the left of the binary point).
Values represented within the two floating point formats can be specified by the parameters
listed in Figure 14.

Processor Description 2-97

Format
Single Double

Exponent Bias + 127 + 1023
Maximum Exponent + 127 + 1023
Minimum Exponent - 126 - 1022
Widths (bits)

Format 32 64

Sign 1 1

Exponent 8 1

Fraction 23 52

Significand 24 53

Figure 14. IEEE Floating Point Fields

The architecture requires that the FPRs of the FPP support the arithmetic instructions on
values in the double—precision floating—point format only.

Value Representation
This architecture defines numerical and non—numerical values representable within each of
the two supported formats. The numerical values are approximations to the real numbers
and include the normalized numbers, denormalized numbers, and zero values. The
non—numerical values representable are the infinities and the NaN values. The infinities are
adjoined to the real numbers but are not numbers themselves, and the standard rules of
arithmetic do not hold when they appear in an operation. They are related to the real
numbers by order alone. Restricted operations among numbers and infinities can be
defined. Figure 15 shows the relative location on the real number line for each of the
defined entities.

;lNF[-NOR |-DEN| -0 | +0 | +DEN | +NOR |+INF
I I b I I
Figure 15. Approximation to Real Numbers

The NaN values are not related to the numbers or infinities by order or value, but are
encodings used to convey diagnostic information such as the representation of uninitialized
variables.

The following is a description of the different floating—point values defined in the architecture.

Binary Floating—Point Numbers
Machine-representable values used as approximations to real numbers. Three categories of
numbers are supported: normalized numbers, denormalized numbers, and zero values.

Normalized Numbers (:NOR)
The following are values that have a biased exponent value in the range:

¢ 110 254 in single format

e 110 2046 in double format.

They are values in which the implied unit bit is 1. Normalized numbers are interpreted as
follows: ,

NOR equals (-1)8 x 2E x (1.fraction)

2-98 General Information Manual

where s is the sign, E is the unbiased exponent, and 1.fraction is the significand that is
composed of a leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normalized floating—point number are
approximately equal to:

Single Format:
1.2x10-38 < M < 3.4x1038
Double Format:
2.2x10-308 < M < 1.8x10308 "

Zero values (+0)
Zero values are values that have a biased exponent value of 0 and a fraction value of 0.
Zeros can have a positive or negative sign.

Denormalized Numbers (+DEN)
Denormalized numbers are values that have a biased exponent value of 0 and a nonzero
fraction value. They are nonzero numbers smaller in magnitude than the representable
normalized numbers. They are values in which the implied unit bit is 0. Denormalized
numbers are interpreted as follows:

DEN equals (—1) x 2Emin x (0 fraction)

where Emin is the minimum representable exponent value (—126 for single precision, —1022
for double precision).

Infinities (£INF)

Infinities are values that have the maximum biased exponent value:
e 255 in the single format
e 2047 in the double format.

and a zero fraction value. They are used to approximate values greater in magnitude than
the maximum normalized value.

Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted operations
defined among numbers and infinities. Infinities and the real numbers can be related by
ordering in the affine sense:

—INF < every finite number < + INF

Arithmetic on infinities is exact and usually does not signal an exception. Exceptions occur
because of invalid operations. See “Invalid Operation Exception” on page 2-105 for
information.

Not a Numbers (NaNs)
NaN values are values that have the maximum biased exponent value and a nonzero
fraction value. The Sign bit is ignored (NaN values are neither positive nor negative). If the
high—order bit of the fraction field is 1, it is defined as a quiet NaN (QNaN); otherwise, it is
defined as a signaling NaN. Quiet NaNs are used to represent the result of certain invalid
operations when Invalid Operation Exception is disabled, FPSCR(VE) equals 0. Examples
include undefined arithmetic operations on infinities or NaNs. NaNs used in this manner can
convey diagnostic information to help identify results from these invalid operations. Signaling
NaNs are used to signal exceptions when they appear as arithmetic operands, while quiet
NaNs propagate through most operations without signaling exceptions regardless of the

Processor Description 2-99

condition of the operation. Specific encoding can thus be preserved through a number of
arithmetic operations for its intended use as diagnostic information. When a QNaN is the
result of an operation because one of the operands is a NaN or because a QNaN was
generated due to a disabled Invalid Operation Exception, then the following rule is applied to
determine the NaN with the high—order fraction bit set to 1 that is to be stored as the result.

If (FRA) is a NaN
Then (FRT) « (FRA)
Else if (FRB) is a NaN
Then (FRT) « (FRB)
Else if (FRC) is a NaN
Then (FRT) « (FRC)
Else if generated QNaN
Then (FRT) « generated QNaN

If the operand specified by the FRA is a NaN, that NaN is stored as the result. If the operand
specified by the FRB is a NaN (if the instruction specifies an FRB operand), that NaN is
stored as the result. If the operand specified by the FRC is a NaN (if the instruction specifies
an FRC operand), that NaN is stored as the result. If a QNaN was generated due to a
disabled Invalid Operation Exception, that QNaN is stored as the result. If a QNaN is to be
generated as a result, the QNaN generated has a sign bit of 0, an exponent field of all ones
and a high—order fraction bit of 1 with all other fraction bits 0. Any instruction that generates
a QNaN as the result of a disabled Invalid Operation generates this QNaN.

Normalization and Denormalization
When an arithmetic operation produces an intermediate result, consisting of a sign bit, an
exponent, and a nonzero significand with a 0 leading bit, it is not a normalized number and
must be normalized before it is stored.

To normalize a number, the significand is shifted left while the exponent is decremented by
one for each bit shifted, until the leading significand bit becomes 1. The Guard bit and the
Round bit (See “Execution Model for IEEE Operations” on page 2-111) participate in the
shift with zeros shifted into the Round bit. The exponent is regarded as if its range were
unlimited. If the resulting exponent value is less than the minimum value that can be
represented in the format specified for the result, the intermediate result is said to be Tiny.
The stored result is determined by the rules described in “Underflow Exception” on page
2-109. The sign of the number does not change.

When an arithmetic operation produces a nonzero intermediate result with an exponent
value less than the minimum value that can be represented in the format specified for the
result, the stored result is determined by the rules described in “Underflow Exception” on
page 2-109. This process may require denormalization.

To denormalize a number, the significand is shifted right while the exponent is incremented
by one for each bit shifted until the exponent is equal to the format minimum value. If any
significant bits are lost in this shifting process then Loss of Accuracy has occurred and
Underflow Exception is signaled. The sign of the number does not change.

When denormalized numbers are operands of multiply and divide operations they are
prenormalized internally before the operations are performed.

2-100 General Information Manual

Precision

Rounding

All arithmetic operations are performed in floating—point double—precision. Floating—point
single—precision is obtained with the implementation of three forms of instructions:

1. Load Floating—Point Single

This form of instruction accesses a single—precision operand in memory, converts it to
double—precision operand, and loads it into an FPR. No exceptions are detected on the load
operation.

2. Arithmetic operation performed in double precision
3. Round to Floating—Point Single

This form of instruction rounds a double—precision operand to single—precision, checks the
exponent for single—precision range, handles any exceptions according to respective enable
bits, and stores that operand into an FPR as a double—precision operand.

4. Store Floating—Point Single

This form of instruction converts a double—precision operand to single—precision and stores
that operand into memory. If the operand requires denormalization in order to fit in
single—precision, it is denormalized prior to storing it. No exceptions are detected on the
store operation. (Assumes step 3. has been executed.)

All arithmetic instructions defined by this architecture produce an intermediate result that can
be regarded as being infinitely precise. This result must then be written with a precision of
finite length into an FPR. After normalization or denormalization, if the infinitely precise
intermediate result is not representable, it must be rounded.

Four modes of rounding are provided that are user-selectable through the Floating—Point
Rounding Control field in the FPSCR. These are encoded as follows:

RN Rounding Mode

00 Round To Nearest

01 Round Towards Zero

10 Round Towards + Infinity
11 Round Towards — Infinity.

Let Zbe the infinitely precise intermediate arithmetic result or the operand of a convert
operation. If Z can be represented exactly in the target format, rounding in all modes is
equivalent to truncation of Z. If Z cannot be represented exactly in the target format, let Z7
and Z2 be the next largest and next smallest numbers representable in the target format that
bound Z, then Z1 or Z2 can be used to approximate the result in the target format. Figure 16
shows the relation of Z, Z7, and Z2.

Processor Description 2-101

By Incrementing LSB of Z

Infinitely Precise Value

By Truncating after LSB

vy I
l] l l l
I I] | 1
22 , 21 0 22 ; 21

Negative values < } » Positive values
Figure 16. Selection of Z1 and Z2
The following rules specify the rounding in the four modes:

Round To Nearest Choose the best approximation of Z1 or Z2. In case of a tie,
choose the one that is even (least significant bit 0).

Round Toward Zero Choose the smaller in magnitude (Z1 or Z2).
Round Toward +Infinity Choose Z1.
Round Toward -Infinity Choose Z2.

The arithmetic instructions are defined for operations on values that are in the double format.

See “Execution Model for IEEE Operations” on page 2-111 for a detailed explanation of
rounding.

Data Handling
Instructions are defined to move floating—point data between the FPRs and memory. For
double format the data is not altered during the move. For single—format data, a format
conversion from single to double is performed when loading from memory into an FPR and a
format conversion from double to single is performed when storing from an FPR to memory.
No floating—point exceptions are raised during these operations.

The arithmetic instructions interpret the operand data and produce result data only in the
double format.

Note: The Round Floating—Point Double to Single instruction is provided to allow value
conversion from double to single—precision with appropriate exception checking and
rounding. This instruction should be used after every arithmetic operation for
obtaining conforming IEEE single—precision results.

2-102 General Information Manual

Floating—Point Exceptions
This architecture defines the following Floating—Point Exceptions:
¢ Invalid Operation Exception
- SNaN
Infinity — Infinity
Infinity x Zero

Infinity + Infinity

Zero + Zero

Ordered Compare with a NaN.
e Zero Divide Exception

o Overflow Exception

¢ Underflow Exception

¢ |nexact Exception.

These exceptions can occur during the floating—point arithmetic and conversion operations.
For each exception, there is one FPSCR bit to indicate occurrence of the exception and
another FPSCR bit to indicate whether the exception is enabled or disabled. If any of these
exceptions are recognized during the execution of a floating—point instruction, the exception
condition is signalled by setting the corresponding exception bit for the condition in the
FPSCR. A Floating—Point Exception Summary bit in the FPSCR is set when any of the
exception bits transitions from 0 to 1, or when explicitly set by software. A Floating—Point
Enabled Exception Summary bit in the FPSCR is set when any of the exceptions are set and
the exception is enabled (enable bit is 1).

Multiple exceptions can be set in four cases:
¢ Inexact Exception can be set with Overflow Exception.
¢ Inexact Exception can be set with Underflow Exception.

¢ Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (Inf x 0)
for multiply—add type instructions.

¢ Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (NaN
Compare) for compare instructions.

When an exception occurs, a result can be delivered or the instruction execution can be
suppressed depending on the exception. When a result is to be delivered, it can be a
different value for the enabled and disabled conditions for some of the exceptions.

The IEEE standard specifies the handling of the exceptional conditions in terms of traps and
trap handlers. In this architecture, an Exception Enable bit of 1 causes the generation of
result values as specified in the IEEE standard for the trap enabled case. An Exception
Enable bit of 0 causes the generation of default resut values as specified for the trap
disabled (or no trap occurs or trap is not implemented) case. The result to be delivered in
each case for each exception is described in the following sections.

In this architecture the detection of the floating—point exception conditions either requires a
programmed test or enabling of program interrupts to be generated on enabled floating—
point exceptions. For the programmed test to uniquely detect all exceptions that occur

Processor Description 2-103

precisely, each instruction that can cause a floating—point exception should be followed by a
test of the FPSCR Floating—Point Exception bit. Detection of an exception can cause a
software branch to an exception—handling routine. For program Interrupt detection, MSR(FE)
must first be turned on, and any floating—point exception desired to be interrupted on must
have its respective enable turned on.

Note: This program interrupt is generated every cycle that FPSCR(FEX) equals 1 and
MSR(FE) equals 1. It is the responsibility of the exception handler to clear the
exception bit that caused the interrupt. Also, the address of the instruction that
causes the interrupt is the address that is saved in the SRR 0 register, and, if the
SRR 0 register is unaltered, that instruction is the instruction returned to and
re~executed. For certain types of floating—point exceptions, returning to the
instruction following the instruction that caused the interrupt may be required and
therefore the exception handler is required to increment the address in the SRR 0
register by 4.

System performance with the MSR(FE) bit set to 1 can be significantly degraded.

Floating—point exception bits in the FPSCR are sticky. That is, once set, they remain set until
software resets them with either a mtfsf, mtfsfi, mtfsb1, mtfsb0, or mtcrfs instruction.

Instruction execution is suppressed in some cases when an exception occurs, so there is no
possibility that one of the operands would be lost. These cases are:

¢ Enabled Invalid Operation
e Enabled Zero Divide.

In all other cases, a specified result is generated and written to the destination specified for
the instruction causing the exception. These cases are:

¢ Disabled Invalid Operation
¢ Disabled Zero Divide

¢ Disabled Overfiow

¢ Disabled Underflow

¢ Disabled Inexact

e Enabled Overflow

¢ Enabled Underflow

e Enabled Inexact.

The following sections define each of the floating—point exceptions and specify the action to
be taken when they are detected. For single—precision applications, the exception detection
and handling can be slightly different. See “Floating Round to Single Precision” instruction
on page 2-128 for exceptions and handling of exceptions for single—precision floating—point
arithmetic.

2-104 General Information Manual

Invalid Operation Exception

Definition

Action

An Invalid Operation Exception occurs whenever an operand is invalid for the specified
operation. The invalid operations follow:

¢ Any operation on a signaling NaN (SNaN)

¢ For add or subtract operations, magnitude subtraction of infinities (INF — INF)
o Multiplication of zero by infinity (INF x 0)

o Division of zero by zero (0 + 0)

o Division of infinity by infinity (INF + INF)

e Ordered comparison involving a NaN (NaN Compare).

The action to be taken depends on the setting of the Invalid Operation Exception Enable bit
of the FPSCR.

When the Invalid Operation Exception Enable bit is enabled, FPSCR(VE) equals 1, and
invalid operation occurs, the following actions are taken:

1. Instruction execution is suppressed; operands are unmodified.
2. One of the following invalid operation exceptions is set

FPSCR(VXSNAN) (if SNaN)
FPSCR(VXISI) (if INF = INF)
FPSCR(VXIDI) (if INF + INF)
FPSCR(VXzD2Z) (if0+0)
FPSCR(VXIMZ) (if INF x 0)
FPSCR(VXVC) (if NaN Compare).

3. If the operation is a compare operation, the FPCC field is set to reflect floating—point
unordered.

When the Invalid Operation Exception Enable bit is disabled, FPSCR(VE) equals 0, and
invalid operation occurs, the following actions are taken:

1. One of the invalid operation exceptions is set:

FPSCR(VXSNAN) if SNaN)
FPSCR(VXISI) (if INF — INF)
FPSCR(VXIDI) (if INF + INF)
FPSCR(VXZD2) (if 0 +0)
FPSCR(VXIMZ) (if INF x 0)
FPSCR(VXVC) (it NaN Compare).

Processor Description 2-105

2. If the operation destination is an FPR, the result is a QNaN.

3. If aresult is generated, the FPRF field in the FPSCR is set to reflect the quiet NaN result.
If the operation is a compare operation, the FPCC field is set to reflect floating—point
unordered.

Zero Divide Exception

Definition
A Zero Divide Exception occurs when a divide instruction is executed with a zero divisor
value and a finite nonzero dividend value.

Action
The action taken depends on the setting of the Zero Divide Exception Enable bit of the
FPSCR.

When the Zero Divide Exception Enable bit is enabled, FPSCR(ZE) equals 1, and zero
divide exception occurs, the following actions are taken: FPSCR(ZX) « 1.

1. Instruction execution is suppressed; operands are unmodified.
2. The Zero Divide Exception bit is set, FPSCR(ZX) «1.

When the Zero Divide Exception Enable bit is disabled, FPSCR(ZE) equals 0, and zero
divide exception occurs, the following actions are taken:

1. The Zero Divide Exception bit is set FPSCR(ZX) « 1.

2. The result is set to + infinity, where the sign is determined by the exclusive ‘OR’ of the
sign of the operands.

3. The FPREF field in the FPSCR is set to indicate an infinity with the proper sign.
4. The result is placed into the target FPR. :

1

2-106 General Information Manual

Overflow Exception

Definition

Overflow occurs when the magnitude of the rounded intermediate result exceeds that of the
largest finite number of the specified result precision.

The Floating Round to Single Precision instruction may produce incorrect results when all
the following conditions are met:

1. The Floating Round to Single Precision instruction is dependent on a previous
floating—point arithmetic operation. Dependent means that it uses the target register of
the arithmetic operation as the source register.

2. Less than two nondependent floating—point arithmetic operations occur between the
Floating Round to Single Precision instruction and the operation on which it is dependent.

3. The magnitude of the double precision result of the arithmetic operation is less than
2**128 before rounding.

4. The magnitude of the double precision result after rounding is exactly 2**128 .

Resultant Value
If the error occurs, the magnitude of the result placed in the target register is 2**128:

X*47F0000000000000’ or X'C7F0000000000000’

This is not a valid single precision value. The setting of the FPSCR and Condition register
(CR) will be the same as if the result did not overflow.

Insuring Correct Results

If after considering the results described above, the programmer decides that the error will
cause significant problems for his application, either of the following methods may be used
to avoid the error.

¢ Insure that two nondependent floating—point operations are placed between a floating
point arithmetic operation and the dependent round to single. The target register for these
operations should not be the same register that the Floating Round to Single Precision
instruction uses as a source register.

¢ Insert two floating round to single precision operations when the floating round to single
precision may be dependent on a arthmetic operation that precedes it by less than three
floating—point instructions.

Either solution degrades performance by an amount dependent on the particular appliction.

Processor Description 2-107

Action
The action to be taken depends on the setting of the Overflow Exception Enable bit of the
FPSCR.

When the Overflow Exception Enable bit is enabled, FPSCR(OE) equals 1, and exponent
overflow occurs, the following actions are taken:

1. The Overflow Exception is set FPSCR(OX) « 1.
2. The exponent of the normalized intermediate result is adjusted by subtracting 1536.

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result is placed into the specified FPR.

When the Overflow Exception Enable bit is disabled, FPSCR(OE) equals 0, and overflow
occurs, the following actions are taken:

1. The Overflow Exception bit is set FPSCR(OX) « 1.
2. The Inexact Exception bit is set FPSCR(XX) « 1.

3. The result is determined by the rounding mode, FPSCR(RN), and the sign of the
intermediate result as follows: for negative overflows, store —Infinity; and, for positive
overflows, store the formats largest finite number.

a. Round To Nearest : Store = Infinity, where the sign is the sign of the intermediate
result.

b. Round To Zero: Store the formats largest finite number with the sign of the
intermediate result.

¢. Round To + Infinity: For negative overflows, store the formats most negative finite
number, and, for positive overflows, store + infinity.

d. Round To — Infinity: For negative overflows, store — infinity and, for positive overflows,
store the formats largest finite number.

4. The FPRF field in the FPSCR is set to indicate the class and sign of the result.
5. The result is placed into the specified FPR.

2-108 General Information Manual

Underflow Exception

Definition

Action

Underflow Exception is defined separately for the enabled and disabled states:

Enabled: Underflow occurs when the intermediate result is Tiny.
Disabled: Underflow occurs when the intermediate result is Tiny and there is Loss of
Accuracy

A Tiny result is detected before rounding, when a nonzero result value computed as though
the exponent range were unbounded would be less in magnitude than the smallest
normalized number.

If the intermediate result is Tiny and the Underflow Exception Enable bit is off, FPSCR(UE)
equals 0, the intermediate result is to be denormalized and rounded. See “Normalization and
Denormalization” on page 2-100 and “Rounding” on page 2-101 for information about
denormalizing and rounding results.

Loss of Accuracy is detected as an inexact result when the delivered result value differs from
what would have been computed were both the exponent range and precision unbounded.

The action to be taken depends on the setting of the Underflow Exception Enable bit of the
FPSCR.

When the Underflow Exception Enable bit is enabled, FPSCR(UE) equals 1, and exponent
underflow occurs, the following actions are taken:

1. The Underflow Exception bit is set FPSCR(UX) « 1.
2. The exponent of the normalized intermediate result is adjusted by adding 1536.

3. The FPREF field in the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result is placed into the specified FPR.

Note: The FR and Fli bits in the FPSCR allow the trap handler to simulate a trap disabled
environment. The bits provide enough information to unround the result prior to
denormalization.

When the Underflow Exception Enable bit is disabled, FPSCR(UE) equals 0, and underflow
occurs, the following actions are taken:

1. The Underflow Exception bit is set FPSCR(UX) « 1.

2. The FPRF field in the FPSCR is set to indicate the class and sign of the result
(+ Denormalized Number or + zero).

3. The rounded result is placed into the specified FPR.

Processor Description 2-109

Inexact Exception

Definition
The Inexact Exception occurs when one of two conditions occurs during rounding:
1. The rounded result differs from the intermediate result assuming the intermediate result
exponent range and precision to be unbounded.
2. The rounded result overflows and the Overflow Exception is disabled.
Action

When the Inexact Exception occurs, the following actions are taken:

1. The Inexact Exception bit is set FPSCR(XX) < 1.

2. The FPRF field in the FPSCR is set to indicate the class and sign of the result.
3. The rounded or overflowed result is placed into the destination FPR.

2-110 General Information Manual

Floating—Point Resource Management

Facilities are defined to allow control of the use of the Floating—Point Processor. MSR(FP) is
the Floating—Point Available bit. It controls the execution of floating—point instructions. When
the FPP is available, MSR(FP) equals 1, the floating—point instructions can be executed.
Otherwise the FPP is unavailable, MSR(FP) equals 0. An attempt to execute a floating—point
instruction in this state causes a Floating—Point Unavailable Interrupt and the instruction
execution is suppressed.

The test for invalid processor op code is made before the MSR(FP) bit is inspected.

Floating—Point Execution Models

All implementations of this architecture must provide the equivalent of the following
execution models to ensure that identical results are obtained.

Special rules are provided in the definition of the arithmetic instructions for the infinities,
denormalized numbers, and NaNs.

Although the double—precision format specifies an 11-bit exponent, exponent arithmetic
makes use of two additional bit positions to avoid potential transient overflow conditions.
One extra bit is required when denormalized double—precision numbers are prenormalized.
The second bit is required to permit the computation of the adjusted exponent value in the
following cases when the corresponding exception enable bits is 1:

¢ Underflow during multiplication using a denormalized factor.
¢ Overflow during division using a denormalized divisor.
Execution Model for IEEE Operations

IEEE conforming significand arithmetic is considered to be performed with a floating—point
accumulator. Figure 17 shows the format of the accumulator.

S|C|L FRACTION G |R|X

0 1 52
Figure 17. IEEE Execution Model
The S bit is the Sign bit.
The C bit is the Carry bit that captures the carry out of the significand.

The L bit is the Leading Unit bit of the significand that receives the implicit bit from the
operands.

The FRACTION field is a 52-bit field which accepts the fraction of the operands.

The Guard (G), Round (R), and Sticky (X) bits are extensions to the low—order bits of the
accumulator. The G and R bits are required for post normalization of the result. The G, R,
and X bits are required during rounding to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits that can appear to the low—order side of the R bit,
either due to shifting the accumulator right or other generation of low—order result bits. The
G and R bits participate in the left shifts with zeros being shifted into the R—bit. Figure 18
shows the significance of the G, R, and X bits with respect to the intermediate result (IR), the

Processor Description 2-111

next lower in magnitude representable number (NL), and the next higher in magnitude
representable number (NH).

GRX Interpretation

000 IR is exact

000

010 IR closer to NL

011

100 IR midway between NL & NH
101

110 IR closer to NH

111

Figure 18. Interpretation of G, R, and X Bits

The significand of the intermediate result is made up of the L bit, the FRACTION field, and
the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in the L,
FRACTION, G, R, and X bits of the floating—point accumulator.

Before the results are stored into an FPR, the significand is rounded using the rounding
mode specified by the Floating—Point Rounding Control field (RM) of the FPSCR. If rounding
results in a carry into the C bit, the significand is shifted right one position and the exponent
incremented by one. This, in turn, can result in an exponent overflow. Fraction bits to the left
of the bit position used for rounding are stored into the FPR and low order bit positions, if
any, are set to 0.

Four modes of rounding are provided that are user—selectable through the Floating—Point
Rounding Control field (RM) of the FPSCR. This field is encoded as follows:

RN Rounding Mode

00 Round To Nearest

01 Round Toward Zero

10 Round Toward + Infinity
11 Round Toward — Infinity

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of
accumulator bits. Figure 19 refers to the bit positions of Guard, Round, and Sticky for double
and single—precision FP numbers.

Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 26-52 G,R,X

Figure 19. Location of the Guard, Round, and Sticky Bits

2-112 General Information Manual

Rounding can be treated as though the significand were shifted right, if required, until the
least significant bit to be retained is in the low—order bit position of the FRACTION field. If
any of the Guard, Round, or Sticky bits are nonzero, the result is inexact.

Z1 and Z2, as defined in “Rounding” on page 2-101, can be used to approximate the resuit
in the target format when one of the following rules is used.

If rounding results in a carry into the C bit, the significand must be shifted right one position
and the exponent is increased by one. This can result in signaling an inexact result if the low
order bit of the fraction had been a 1.

Where the result is to have fewer than 53 bits of precision because the instruction is a round
to single—precision, the intermediate result is either normalized, or is placed in correct
denormalized form before the result is rounded.

Execution Model for Multiply—Add Type Instructions
The architecture makes use of a special form of instruction that performs up to three
operations in one instruction (a multiply, an add, and a negate operation). With this added
capability is the special feature of being able to produce a more exact intermediate result as
an input to the rounder. Figure 20 shows the intermediate results produced by the multiply
add operations.

S|(C|L FRACTION G [R|X
0 1 105

Figure 20. Multiply Add Execution Model

The first part of the operation is a multiply operation. The multiply operation has two 53 bit
significands as inputs, which are assumed to be prenormalized, and produces a result
conforming to the preceding model. The sign produced by the multiply operation portion is
defined to be the XOR of the signs of the two multiply input operands. If there is a carry out
of the significand (C), the significand is shifted to the right by one bit, shifting the L bit
(Leading Unit bit) into the most significant bit of the fraction, shifting the C bit (carry out) into
the L bit. All 106 bits (L bit, the fraction) of the product take part in the add operation. If the
exponents of the two inputs to the adder are not equal, the significand of the operand with
the smaller exponent is aligned (shifted) to the right by an amount that is added to that
exponent to make it equal to the other inputs exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit 105 of the significand are ORed into the
X bit. The add operation also produces a result conforming to the preceding model with the
X bit taking part in the add operation. The sign produced by the add portion is defined to be
the sign of the largest of the two add input operands. When the sum of two operands with
opposite sign is exactly zero, the sign of that sum is positive in all rounding modes except
Round Toward — Infinity, in which mode that sign is negative. The sum of operands with the
same sign retains the sign of the operands, even if the operands are zeros.

The result of the add is then normalized, with all bits of the add result, except the X bit,
participating in the shift. The normalized result provides an intermediate result as input to the
rounder that conforms to the model described in “Execution Model for IEEE Operations” on
page 2-111. The intermediate result has the following characteristics:

o The Guard bit is bit 53 of the intermediate result.
¢ The Round bit is bit 54 of the intermediate resuilt.
¢ The Sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

The rules of rounding the intermediate result are the same as the described in “Execution
Model for IEEE Operations”.

Processor Description 2-113

If the instruction is Floating Negative Multiply Add or Floating Negative Multiply Subtract, the
negate occurs after rounding.

Floating—Point Processor Instructions

Arithmetic operations allow implementations that range from those where the processor
waits for the execution of each FPP operation to those providing for the overlapped
execution of multiple operations. The instructions to load and copy the FPSCR appear to
synchronize the operation of the FPP. For the copy operation, the status from all outstanding
operations must be available before the contents of the FPSCR is transferred to the RT
register. When the FPSCR is loaded, the status bits cannot be changed by any outstanding
operations. Similarly, the execution of outstanding operations cannot be affected by new
values for the FPSCR control bits. Floating—point register usage is governed by a rule of
precedence which states that a register cannot be used by a given instruction until its
contents reflect the results of all those instructions that precede it.

Floating—Point Load Instructions
There are two basic forms of load instructions, single—precision and double—precision. Since
the FPRs only support floating—point double—precision operands single—precision data must
be converted to double—precision prior to loading into the FPR. The conversion and loading
steps are as follows:

Let WORD (0-31) be the floating—point single—precision operand accessed from memory.

Normalized Operand
It WORD (1-8) > 0 and WORD (1-8) < 255
FRT (0-1) « WORD (0-1)
FRT (2) « WORD (1)
FRT (3) « WORD (1)
FRT (4) < WORD (1)
FRT (5-63) « WORD (2-31)([29 x b‘0’

Infinity / QNaN / SNaN / Zero
It WORD (1-8) = 255 or WORD (1-31) =0
FRT (0-1) « WORD (0-1)
FRT (2) « WORD (1)
FRT (3) « WORD (1)
FRT (4) « WORD (1)
FRT (5-63) « WORD (2-31)|[29 x b0’

Denormalized Operand
If WORD (1-8) = 0 and WORD (9-31) - 0
sign « WORD (0)
exp «-126
frac (0-52) « b‘0’||WORD (9-31)|]29 x b‘0’
normalize the operand
Do while frac (0) =0
frac « frac (1-52)||b'0’
exp «exp-1
End
FRT(0) « sign
FRT(1-11) « exp + 123
FRT(12-63) « frac (1-52)

2-114 General Information Manual

Note: The preceding description of the conversion steps are a model only. The actual
implementation can vary from this but must produce results equivalent to what this
model would produce.

For double—precision loads, no conversion is required as the data from memory is placed
straight into the FPR.

Note: Recall that RA, RB, and RT denote general-purpose registers, while FRA, FRB,
FRC and FRT denote floating—point registers.
Load Floating—Point Single (D—-Form)
0 6 11 16 31
48 FRT RA D

Ifs FRT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an /0O segment, a Data
Storage Interrupt is generated.

The word in storage addressed by the EA is interpreted as a floating—point single—precision
operand. This word is converted to floating—point double—precision and placed into register
FRT.

Condition register (CR Field 0)
Set: None

Fixed Point Status and Control register
Set: None
Load Floating—Point Single Indexed (X-Form)
0 6 1" 16 21 31
31 FRT RA RB 535 Re

Iftsx FRT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned nemory access. If the hardware cannot perform the unaligned storage access,
an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data Storage
Interrupt is generated.

The word in storage addressed by the EA is interpreted as a floating—point single—precision
operand. This word is converted to floating—point double—precision (see "Floating—Point
Load Instructions” on page 2-114) and placed into register FRT.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (fRc=1)

Fixed Point Status and Control register
Set: None

Processor Description 2=115

Load Floating-Point Double (D—Form)
0 6 11 16 31
50 FRT RA D

Ifd FRT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a
Data Storage Interrupt is generated.

The doubleword in memory addressed by the EA is placed into register FRT.

Condition register (CR Field 0)
Set: None

Fixed Point Status and Control register
Set: None
Load Floating—Point Double Indexed (X-Form)
0 6 1 16 21 31
31 FRT RA RB 599 Rc

Ifdx FRT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a
Data Storage Interrupt is generated.

The doubleword in storage addressed by the EA is and placed into register FRT.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: Undefined (ifRc=1)

Fixed Point Status and Control register
Set: None

2-116 General Information Manual

Load Floating—Point Single With Update (D-Form)
0 6 1 16 31
49 FRT RA D

lfsu FRT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data
Storage Interrupt is generated.

The word in memory addressed by the EA is interpreted as a floating—point single—precision
operand. This word is converted to floating—point double—precision and placed into register
FRT. See “Floating—Point Load Instructions” on page 2-114 for information about double—
precision load instructions. If RA # 0 and the memory access does not cause an Alignment
Interrupt or a Data Storage Interrupt , the EA is placed into register RA. '

Condition register (CR Field 0)
Set: None

Fixed Point Status and Control register

Set: None
Load Floating—Point Single With Update Indexed (X-Form)
0 6 11 16 21 31
31 FRT RA RB 567 Rc

lfsux FRT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, then the two low—order bits are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a
Data Storage Interrupt is generated.

The word in memory addressed by the EA is interpreted as a floating—point single—precision
operand. This word is converted to floating—point double—precision (see "Floating—Point
Load Instructions” on page 2-114) and placed into register FRT. If register RA = 0 and the
storage access does not cause an Alignment Interrupt or a Data Storage Interrupt , the EA is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: Undefined (ifRc=1)

Fixed Point Status and Control register
Set: None

Processor Description 2-117

Load Floating—Point Double With Update (D-Form)
0 6 1 16 31
51 FRT RA D

lfdu FRT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the three low-order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a
Data Storage Interrupt is generated.

The doubleword in memory addressed by the EA is placed into register FRT. If register RA #
0 and the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt,
the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed Point Status and Control register
Set: None
Load Floating—Point Double With Update Indexed (X-Form)
0 6 1" 16 21 31
31 FRT RA RB 631 Rc

lfdux FRT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/0O segment, a
Data Storage Interrupt is generated.

The doubleword in memory addressed by the EA is placed into register FRT. If register RA #
0 and the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt,
the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: Undefined (ifRc=1)

Fixed Point Status and Control register
Set: None

2-118 General Information Manual

Floating—Point Store Instructions
There are two basic forms of store instructions, single—precision and double—precision.
Since the FPRs only support floating—point double—precision operands, double—precision
data must be converted to single—precision prior to storing operands into storage. The
conversion steps follow:

Let WORD (0-31) be the word in storage written to.

No Denormalization Required
It FRS (1-11) > 896 or FRS (1-63) = 0 or
FPSCR (UE) = 1
WORD (0-1) « FRS (0-1)
WORD (2-31) « FRS (5-34)

Denormalized Operand
If FRS (1-11) <896 and FPSCR (UE) =0
sign « FRS(0)
exp « FRS(1-11) -1023
frac « ‘1'j|FRS (12-63)
Denormalize the operand
Do while exp <126
frac « ‘0’||frac (0-62)
exp « exp + 1
End
WORD (0) « sign
WORD (1-8) « x‘00’
WORD (9-31) « frac (1-23)

Notes:

1. The preceding description of the conversion steps are a model only. The actual
implementation can vary from this but must produce results equivalent to what this
model would produce.

2. Recall that RA, RB, and RT denote general—purpose registers, while FRA, FRB,
FRC, and FRT denote floating—point registers.

Processor Description 2-119

Store Floating-Point Single (D-Form)
0 6 1 16 31
52 FRS RA D

stfs FRS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data
Storage Interrupt is generated.

The contents of register FRS is converted to single—precision and stored into the word in
memory addressed by the EA.

Condition register (CR Field 0)
Set: None

Fixed Point Status and Control register
Set: None
Store Floating—Point Single Indexed (X—Form)
0 6 11 16 21 31
31 FRS RA RB 663 Re

stfsx FRS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low-order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data
Storage Interrupt is generated.

The contents of register FRS is converted to single—precision (see "Floating Point Store
Instructions” on page 2-119) and stored into the word in memory addressed by the EA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re=1)

Fixed Point Status and Control register
Set: None

2-120 General Information Manual

Store Floating—Point Double (D-Form)
0 6 11 16 31
54 FRS RA D

stfd FRS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an 1/0O segment, a
Data Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by the EA.
Register FRT is unchanged.

Condition register (CR Field 0)
Set: None

Fixed Point Status and Control register
Set: None
Store Floating—Point Double Indexed (X-Form)
0 6 1" 16 21 31
31 FRS RA RB 727 Re

stfdx FRS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. if the EA addresses an /O segment, a
Data Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by the EA.
Register FRT is unchanged.

Condition register (CR Field 0)
Set: None (if Rc=0)
Set: Undefined (if Rc=1)

Fixed Point Status and Control register
Set: None

Processor Description 2-121

Store Floating—Point Single With Update (D-Form)
0 6 11 16 31
53 FRS RA D

stisu FRS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data
Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by the EA.
Register FRT is unchanged. If register RA # 0 and the storage access does not cause an
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed Point Status and Control register
Set: None
Store Floating—Point Single With Update Indexed (X-Form)
0 6 11 16 21 31
31 FRS RA RB 695 Rc

stfsux FRS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the two low—order bits are not 00, the hardware attempts to perform
the unaligned memory access. If the hardware cannot perform the unaligned memory
access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a Data
Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by EA.
Register FRT is unchanged. If register RA # 0 and the storage access does not cause an
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (ifRc=1)

Fixed Point Status and Control register
Set: None

2-122 General Information Manual

Store Floating—Point Double With Update (D—Form)
0 6 1 16 31
55 FRS RA D

stidu FRS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an /O segment, a
Data Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by the EA.
Register FRT is unchanged. If RA # 0 and the storage access does not cause an Alignment
Interrupt or a Data Storage Interrupt , the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed Point Status and Control register
Set: None
Store Floating—Point Double With Update Indexed (X-Form)
0 6 11 16 21 31
31 FRS RA RB 759 Rc

stfdux FRS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the three low—order bits are ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the three low—order bits are not 000, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If the EA addresses an I/O segment, a
Data Storage Interrupt is generated.

The contents of register FRS is stored into the doubleword in memory addressed by the EA.
Register FRT is unchanged. If register RA # 0 and the storage access does not cause an
Alignment Interrupt or a Data Storage Interrupt , the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc=0)
Set: Undefined (if Rc = 1)

Fixed Point Status and Control register
Set: None

Processor Description 2-123

Floating—Point Move Instructions
These instructions move data from one floating register to another with data modifications as
described in each instruction description. These instructions do not modify the FPSCR and
do not generate any exceptions.

The Rec bit in these instructions controls the loading of result status into Condition register
Field F1. If Rc equals 1, the CR Field 1 is loaded, otherwise CR is unchanged.

Floating Move Register (X-Form)

0 6 11 16 21 31
63 FRT mn FRB 72 Rc
fmr FRT, FRB (Rc=0)
fmr. FRT, FRB (Rc=1)

The contents of register FRB is placed into register FRT.

Condition register (CR Field 1)
Set: None (if Re = 0)
Set: FX FEX VX OX (if Rc =1)

Fixed Point Status and Control register
Set: None

Floating Negate (X—-Form)

0 6 1 16 21 31
63 FRT m FRB 40 Rc

fneg FRT, FRB (Re=0)

fneg. FRT, FRB (Rc=1)

The contents of register FRB with bit 0 inverted is placed into register FRT.

Condition register (CR Field 1)
Set: None (if Rc =0)
Set: FX FEX VX OX (if Rc=1)

Fixed Point Status and Control register
Set: None

Floating Absolute Value (X—Form)

0 6 11 16 21 31
63 FRT I FRB 264 Re
fabs FRT, FRB (Rc = 0)
fabs. FRT, FRB (Rc = 1)

The contents of register FRB with bit 0 set to 0 is placed into register FRT.

Condition register (CR Field 1)
Set: None (if Re = 0)
Set: FX FEX VX OX (if Re = 1)

Fixed Point Status and Control register
Set: None

2-124 General Information Manual

Floating Negative Absolute Value (X—Form)

0 6 1 16 21 31
63 FRT m FRB 136 Rc

fnabs FRT, FRB (Rc=0)

fnabs. FRT, FRB (Rc=1)

The contents of register FRB with bit 0 set to 1 is placed into register FRT.

Condition register (CR Field 1)
Set: None (if Re =0)
Set: FX FEX VX OX (if Rc =1)

Fixed Point Status and Control register
Set: None

Processor Description 2-125

Floating—Point Arithmetic Instructions
Floating Add (A-Form)

0 6 11 16 21 26 31
63 FRT FRA FRB " 21 Re

fa FRT,FRA,FRB (Rc=0)

fa. FRT,FRA,FRB (Rc=1)

The 64-bit double—precision floating—point operand in register FRA is added to the 64-bit
double—precision floating—point operand in register FRB. The result is rounded under control
of the Floating—Point Rounding Control field (RM) of the FPSCR and placed into register
FRT.

Addition of two floating—point numbers is based on exponent comparison and addition of the
two significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added
algebraically to form an intermediate sum. All 53 bits in the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum is shifted right one bit position and the exponent is increased by
one. If the Leading significand bit (L) is not a 1, the result is normalized by shifting the
significand left while decrementing the exponent until the Leading bit (L) is a 1. The X bit
does not participate in the left shifts. Rather, zeros are shifted into the R bit from the right.

Tininess is checked before rounding. The unrounded result is then rounded using the mode
specified by the RM field of the FPSCR. The rounded result is then checked for overflow and
inexact exceptions.

When the sum of two operands with an opposite sign is exactly 0, the sign of that sum is
positive in all rounding modes except Round Toward- Infinity, in which mode that sign is
negative. The sum of operands with the same sign retains the sign of the operands, even if
the operands are zeros.

The FPREF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)
Set. None (if Rc = 0)
Set: FXFEXVXOX (ifRc=1)

Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXISI

2-126 General Information Manual

Floating Subtract (A-Form)

0 6 " 16 21 26 31
63 FRT FRA FRB 7 20 Rc

fs FRT, FRA, FRB (Rc=0)

fs. FRT, FRA, FRB (Rc=1)

The 64-bit double—precision floating—point operand in register FRB is subtracted from the
64—-bit double—precision floating—point operand in register FRA. The result is rounded under
control of the Floating—Point Rounding Control field (RM) of the FPSCR and placed into
register FRT.

The execution of the Floating Subtract instruction is identical to that of the Floating Add
instruction, except that the contents of FRB participates in the operation with bit 0 inverted.

The FPREF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)

Set: None (if Rc =0)
Set: FX FEX VX OX (fRc=1)
Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXISI

Floating Multiply (A-Form)

0 6 11 16 21 26 31
63 FRT FRA i FRC 25 Rc

fs FRT, FRA, FRC (Rc=0)

fs. FRT, FRA, FRC (Rc=1)

The 64-bit double—precision floating—point operand in register FRA is multiplied by the 64—
bit double—precision floating—point operand in register FRC. The result is rounded under
control of the Floating—Point Rounding Control field (RM) of the FPSCR and placed into
register FRT.

Multiplication of two floating—point numbers is based on exponent addition and multiplication
of the significands.

If an operand is a denormalized number, it is prenormalized before the operation is begun.

The FPREF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)

Set: None (if Rc=0)
Set: FX FEX VX OX (ifRc=1)
Fixed Point Status and Control register
Set: CFLFGFE FUFRFI
OX UX XX

VXSNAN VXIMZ

Processor Description 2-127

Floating Divide (A—Form)

0 6 11 16 21 26 31
63 FRT FRA FRB " 18 Rc

fd FRT, FRA,FRB (Rc=0)

fd. FRT,FRA,FRB (Rc=1)

The 64-bit double—precision floating—point operand in register FRA is divided by the 64-bit
double—precision floating—point operand in register FRB. No remainder is preserved. The
result is rounded under control of the Floating—Point Rounding Control field (RM) of the
FPSCR and placed into register FRT.

The floating—point division operation is based on exponent subtraction and division of the
two significands.

If an operand is a denormalized number, it is prenormalized before the operation is begun.

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)

Set: None (if Re = 0)
Set: FX FEX VX OX (if Re=1)
Fixed Point Status and Control register
Set: CFLFGFE FUFRFI
OX UX ZX XX

VXSNAN VXIDI VXZDZ

Floating Round To Single Precision (X—Form)

0 6 11 16 21 31
63 FRT i FRB 12 Rc

frsp FRT, FRB (Rc=0)

frsp. FRT, FRB (Rc=1)

The 64-bit double—precision floating—point operand in register FRB is rounded to
single—precision using the rounding mode specified by the (RM) field of the FPSCR and
placed into register FRT.

See “Floating Point Round to Single Model” on page 2-139 for a detailed description of the
model for rounding a floating—point double—precision operand to floating—point
single—precision.

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation (SNaN) when the FPSCR(VE) bit equals 1.

This instruction may produce incorrect results under limited circumstances. Refer to
“Overflow Exception” on page 2-107 for directions on insuring the correct result.

Condition register (CR Field 1)

Set: None (f Re = 0)
Set: FX FEX VX OX (if Rc=1)
Fixed Point Status and Control register
Set: CFLFGFE FU FR FI
OX UX XX
VXSNAN

2-128 General Information Manual

Floating—Point Accumulate Instructions
These instructions combine a multiply and add operation without an intermediate rounding
operation. The fraction part of the intermediate product is106-bits wide where all 106 bits
take part in the add or subtract portion of the instruction.

Floating Multiply Add (A-Form)

0 6 11 16 21 26 31
63 FRT FRA FRB FRC 29 Rc

fma FRT, FRA, FRC, FRB (Rc=0)

fma. FRT, FRA, FRC, FRB (Rc=1)

The operation (FRT) « — [(FRA) x (FRC)] + (FRB) is performed.
If an operand is a denormalized number, it is prenormalized before the operation is begun.

The 64-bit double—precision floating—point operand in register FRA is multiplied by the
64-bit double—precision floating—point operand in register FRC. The 64-bit double—precision
floating—point operand in register FRB is added to this intermediate result. The resuit is
rounded under control of the Floating—Point Rounding Control fieid (RM) of the FPSCR and
placed into register FRT.

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)
Set: None (if Re = 0)
Set: FXFEX VX OX (if Re = 1)

Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXISI VXIMZ

Processor Description 2-129

Floating Multiply Subtract (A-Form)

0 6 11 16 21 26 31
63 FRT FRA FRB FRC 28 Rc

fms FRT, FRA, FRC, FRB (Rc=0)

fms. FRT, FRA, FRC, FRB (Rc=1)

The operation (FRT) « —[(FRA) x (FRC)] — (FRB) is performed.
If an operand is a denormalized number it is prenormalized before the operation is begun.

The 64-bit double—precision floating—point operand in register FRA is multiplied by the
64-bit double—precision floating—point operand in register FRC. The 64—bit double—precision
floating—point operand in register FRB is subtracted from this intermediate result. The result
is rounded under control of the Floating—Point Rounding Control field (RM) of the FPSCR
and placed into register FRT.

The FPREF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)
Set: None (if Rc = 0)
Set: FXFEX VX OX (if Rc=1)

Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXISI VXIMZ

2-130 General Information Manual

Floating Negative Multiply Add (A-Form)

0 6 11 16 21 26 31
63 FRT FRA FRB FRC 31 Rc

fnma FRT, FRA, FRC, FRB (Rc = 0)

fnma. FRT, FRA, FRC, FRB (Rc = 1)

The operation (FRT) « — { [[FRA) x (FRC)] + (FRB)} is performed.
If an operand is a denormalized number, it is prenormalized before the operation is begun.

The 64-bit double—precision floating—point operand in register FRA is multiplied by the
64-bit double—precision floating—point operand in register FRC. The 64-bit double—precision
floating—point operand in register FRB is added to this intermediate result. The result is
rounded under control of the Floating—Point Rounding Control field (RM) of the FPSCR,
negated, and placed into register FRT.

This instruction is identical to “Floating Multiply Add (A—Form)” on page 2-129 ,with the final
result negated, but with the following exceptions:

o QNaNs propagate with no effect on their Sign bit.

¢ QNaNs generated as the result of a disabled Invalid Operation Exception have a sign bit
of 0.

¢ SNaNs converted to QNaNs as the result of a disabled Invalid Operation Exception have
no effect on its sign bit.

The FPREF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)
Set: None (f Rc =0)
Set: FXFEX VX OX (f Rc=1)

Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXIS| VXIMZ

Processor Description 2-131

Floating Negative Multiply Subtract (A—-Form)

0 6 11 16 21 26 31
63 FRT FRA FRB FRC 30 Rc

fnms FRT, FRA, FRC, FRB (Rc = 0)

fnms. FRT, FRA, FRC, FRB (Rc = 1)

The operation (FRT) « - { [(FRA) x (FRC)] — (FRB)} is performed.
If an operand is a denormalized number, it is prenormalized before the operation is begun.

The 64-bit double—precision floating—point operand in register FRA is multiplied by the
64-bit double—precision floating—point operand in register FRC. The 64-bit double—precision
floating—point operand in register FRB is subtracted from this intermediate result. The result
is rounded under control of the Floating—Point Rounding Control field (RM) of the FPSCR,
negated, and placed into register FRT.

This instruction is identical to “Floating Multiply Subtract (A—Form)” on page 2-130, with the
final result negated, but with the following exceptions:

¢ QNaNs propagate with no effect on their sign bit.

o QNaNs generated as the result of a disabled Invalid Operation Exception have a sign bit
of 0.

* SNaNs converted to QNaNs as the result of a disabled Invalid Operation Exception have
no effect on its sign bit.

The FPRF field of the FPSCR is set to the class and sign of the result except for Invalid
Operation Exceptions when the FPSCR(VE) bit equals 1.

Condition register (CR Field 1)
Set: None (if Rc = 0)
Set: FXFEXVXOX (if Rc = 1)

Fixed Point Status and Control register
Set: CFLFGFEFUFRFI
OX UX XX
VXSNAN VXISI VXIMZ

2-132 General Information Manual

Floating—Point Compare Instructions
The IBM RISC System/6000 architecture provides two floating—point compare instructions
for ordered and unordered compares. In the compare instructions, the BF value determines
which field in the Condition register receives the result of the compare. One bit in the field is
set to 1, the others are set to 0. The four bit compare result bits are interpreted as follows:

Bit 0 (FRA) < (FRB)
Bit 1 (FRA) > (FRB)
Bit 2 (FRA) = (FRB)
Bit 3 (FRA) ? (FRB) (Unordered)
Floating Compare Unordered (X-Form)
0 6 9 11 16 21 31
63 BF /il FRA FRB 0 Rc

fcmpu BF, FRA, FRB

The 64-bit double—precision floating—point operand in register FRA is compared to the
64-bit double—precision floating—point operand in register FRB. The Floating—Point
Condition Code field of the FPSCR is set to reflect the value of operand FRA with respect to
operand FRB. The BF value determines which field in the Condition register receives the
four FPCC bits.

If one of the operands is a NaN, either quiet or signaling, the FPCC is set to reflect
unordered. If one of the operands is a signaling NaN, the VXSNAN is set.

Condition register [CR Field i, i = BF(6-8)]
Set: FLFG FEFU

Fixed Point Status and Control register
Set: FLFGFEFU
VXSNAN

Note: If Rc =1, the CR Field 1 and the VXVC is undefined.

Processor Description 2-133

Floating Compare Ordered (X-Form)
0 6 9 1N 16 21 31
63 BF /Il FRA FRB 32 Rc

fcmpo BF, FRA, FRB

The 64-bit double—precision floating—point operand in register FRA is compared to the
64-bit double—precision floating—point operand in register FRB.The Floating—Point Condition
Code field of the FPSCR is set to reflect the value of operand FRA with respect to operand
FRB. The BF value determines which field in the Condition register receives the four FPCC
bits.

If one of the operands is a NaN, either quiet or signaling, the FPCC is set to reflect
unordered. If one of the operands is a signaling NaN, the VXSNAN is set, and if Invalid
Operation is disabled (VE = 0), the VXVC is set. Otherwise, if one of the operands is a Quiet
NaN, the VXVC is set.

Condition register [CR Field i, i = BF(6-8)]
Set: FLFGFEFU

Fixed Point Status and Control register
Set: FLFGFEFU
VXSNAN VXVC

Note: If Rc = 1, the CR Field 1 and the VXVC is undefined.

2-134 General Information Manual

Floating—Point Status and Control Register Instructions
Move From FPSCR (X-Form)

0 6 11 16 21 31
63 FRT " mn 583 Rc

mfts FRT (Rc=0)

mfts. FRT (Rc=1)

The contents of FPSCR is placed into bits 32—63 of floating—point register FRT.
X'FFFFFFFF’ is placed into bits 0-31 of floating point register FRT.

Note: This instruction loads the contents of the Floating—Point Status and Control register
into an FPR, loading ones into the upper 32 bits. This makes the contents of the FPR
look like a quiet NaN and is treated as one if used as an operand for any floating
point-arithmetic operation.

Condition register (CR Field 1)

Set: None (ifRc=0)
Set: FXFEX VX OX (if Rc = 1)
Fixed Point Status and Control register
Set: None
Move To Condition Register From FPSCR (X-Form)
0 6 9 11 14 16 21 31
63 BF /Il BFA mny m 64 Re

mcrfs BF, BFA

The four bits of the Floating—Point Status and Control register, determined by the BFA field,
are copied to CR Field i (i = BF). All other CR bits are unchanged.

If the field specified by the BFA contains reserved or undefined bits, 0 bits are supplied for
the copy.

BFA specifies one of the 4-bit fields, 0-7, of the FPSCR.
Condition register (CR Field 1)

Set: None (f Re = 0)
Set: FXFEX VX OX (fRc=1)
Fixed Point Status and Control register
Reset:FX OX (BFA = 0)
UX ZX XX VXSNAN (BFA = 1)
VXISI VXIDI VXZDZ VXIMZ (BFA = 2)
VXVC (BFA = 3)

Note: If Rc = 1 and the BF field = 1, the CR Field 1 is undefined.

Processor Description 2-135

Move To FPSCR Fields (XFL-Form)

0 67 15 16 21 31
63 /| FLM /| FRB 711 Rec

mtfsf FLM, FRB (Rc=0)

mtfsf. FLM, FRB (Rc=1)

FLM is a field mask, defined as follows:
Bit Description
FPSCR 00-03 is updated
FPSCR 04-07 is updated

9 FPSCR 08-11 is updated
10 FPSCR 12-15 is updated
11 FPSCR 16-19 is updated
12 FPSCR 20-23 is updated
13 FPSCR 24-27 is updated
14 FPSCR 28-31 is updated.

Bits 32-63 of the contents of the floating—point register FRB are placed into FPSCR under
control of the field mask specified by the FLM.

Condition register (CR Field 1)
Set: None (if Rc = 0)
Set: FXFEX VX OX (if Rc = 1)

Fixed Point Status and Control register
Set: Field i, where i = BF

Note: This instruction is synchronizing within the floating—point unit and tends to hold off
execution of subsequent floating—point RR operations. When specifing FPSCR 0-3,
bit 3 (OX) can transistion from 0 to 1. However, bit 0 (FX) is set or reset explicitly by
the instruction. Also, bits 1-2 cannot be explicitly set or reset.

2-136 General Information Manual

Move To FPSCR Field Immediate (X—-Form)

0 6 9 11 16 20 21 31
63 BF "y m I /1 134 Rc

mifsfi BF, | (Rc=0)

mitfsfi. BF, | (Rc=1)

Bits 16—-19 of the instruction are placed into the field of the FPSCR specified by the BF field.
All other fields of the FPSCR are unchanged.

Condition register (CR Field 1)
Set: None (if Rc = 0)
Set: FXFEX VX OX (fRc=1)

Fixed Point Status and Control register
Set: Field i, where i = BF

Note: This instruction is synchronizing within the floating—point unit and tends to hold off
execution of subsequent floating—point RR operations. When specifing FPSCR 0-3,
bit 3 (OX) can transistion from 0 to 1. However, bit 0 (FX) is set or reset explicitly by
the instruction. Also, bits 1-2 cannot be explicitly set or reset.

Move To FPSCR Bit 1 (X-Form)

0 6 11 16 21 31
63 BT " " 38 Rc

mtfsb1 BT (Rc=0)
mtfsb1. BT (Rc=1)
The bit specified by the BT field in FPSCR is set to 1. All other bits of the FPSCR are
unchanged.
Condition register (CR Field 1)

Set: None (if Rc = 0)

Set: FXFEX VX OX (ifRc=1)

Fixed Point Status and Control register
Set: Biti, wherei=BT

Note: This instruction is synchronizing within the floating—point unit and tends to hold off
execution of subsequent floating—point RR operations. Also, bits 1-2 cannot be
explicitly set or reset.

Processor Description 2=137

Move To FPSCR Bit 0 (X-Form)

0 6 1 16 21 31
63 BT mn n 70 Rc

mtfsb0 BT (Rc=0)
mifsb0. BT (Rc=1)
The bit specified by the BT field in FPSCR is set to 0. All other bits of the FPSCR are
unchanged.
Condition register (CR Field 1)

Set: None (if Re = 0)

Set: FXFEXVXOX (ifRc=1)

Fixed Point Status and Control register
Set: Biti, wherei=BT

Note: This instruction is synchronizing within the floating—point unit and tends to hold off
execution of subsequent floating point RR operations. Also, bits 1—2 cannot be
explicitly set or reset.

2-138 General Information Manual

Floating Point Round to Single Model

The following describes the model for Floating Round to Single—Precision instruction.
Floating Round to Single Model:
If FRB(1-11)<897 and FRB(1-63)>0 then
Do

If FPSCR(UE)=0 then goto Disabled Exponent Underflow
If FFSCR(UE)=1 then goto Enabled Exponent Underflow
End

If FRB(1-11)>1150 and FRB(1-11)<2047 then
Do
If FPSCR(OE)=0 then goto Disabled Exponent Overflow
If FPSCR(OE)=1 then goto Enabled Exponent Overflow b
End

If FRB(1-11)>896 and FRB(1-11)<1151 then goto Normal Operand
If FRB(1-63)=0 then goto Zero Operand
If FRB(1—11)=2047 then

Do

If FRB(12-63)=0 then goto Infinity Operand

If FRB(12)=1 then goto QNaN Operand

If FRB(12)=0 and FRB(13-63)>0 then goto SNaN Operand
End

Disabled Exponent Underflow:

sign « FRB(0)
If FRB(1-11)=0 then
Do
exp « —-1022
frac « b0’ || FRB(12-63)
End
If FRB(1-11)>0 then
Do
exp « FRB(1-11) — 1023
frac « b‘1’ || FRB(12-63)
End
Denormalize operand:
G || R || X « b'000’
Do while exp<—126
exp <« exp + 1
frac||G||R || X« b0’ || frac || G || R or X
End
FPSCR(UX) « frac(24-52)||G||R||X>0
If frac(24-52)||G||R||X>0 then FPSCR(XX) « b‘1’
Round single(sign,exp,frac,G,R,X)
I frac=0 then
Do
FRT(00) « sign
FRT(01-63) « 0
If sign=0 then FPSCR(FPRF) « “+zero”
If sign=1 then FPSCR(FPRF) « “-zero”

Processor Description 2-139

End
If frac>0 then
Do
If frac(0)=1 then
- Do
If sign=0 then FPSCR(FPRF) « “+normal number”
If sign=1 then FPSCR(FPRF) « “-~normal number”
End
If frac(0)=0 then
Do
If sign=0 then FPSCR(FPRF) « “+denormalized number”
If sign=1 then FPSCR(FPRF) « “~denormalized number”
End
Normalize operand:
Do while frac(0)=0
exp « exp—1
frac || G || R « frac(1-52) || G || R || b‘0’
End
FRT(0) « sign
FRT(1-11) « exp + 1023
FRT(12-63) « frac(1-23) || 29"b'0’
End
Done

Enabled Exponent Underflow:

FPSCR(UX) « b‘1’
sign « FRB(0)
If FRB(1-11)=0 then
Do
exp « -1022
frac « b’0’ || FRB(12-63)
End
If FRB(1-11)>0 then
Do
exp « FRB(1-11) — 1023
frac « b’1’ || FRB(12-63)
End
Normalize operand:
Do while frac(0)=0
exp « exp-1
frac « frac(1-52) || b‘'0’
End
If frac(24-52)>0 then FPSCR(XX) « b'1’
Round single(sign,exp,frac,0,0,0)
exp « exp + 192
FRT(0) « sign
FRT(1-11) « exp + 1023
FRT(12-63) « frac(1-23) || 29*b‘0’
If sign=0 then FPSCR(FPRF) « “+normal number”
If sign=1 then FPSCR(FPRF) « “~normal number”
Done

2-140 General Information Manual

Disabled Exponent Overflow:

FPSCR(OX) « b'1’
FPSCR(XX) « b1’
If FPSCR(RN)=b’00’ then (Round to Nearest)
Do
If FRB(0)=b'0’ then
Do
FRT(0-63) « x'7FF0000000000000’
FPSCR(FPRF) « “+infinity”
End
If FRB(0)=b'1’ then
Do
FRT(0-63) « x’FFF0000000000000’
FPSCR(FPRF) « “—infinity”

End
End
Iif FPSCR(RN)=b'01’ then (Round Truncate)
Do
If FRB(0)=b'0’ then
Do
FRT(0-63) < x'47EF FFFF E000 0000’
FPSCR(FPRF) « “+normal number”
End
If FRB(0)=b‘'1’ then
Do
FRT(0-63) « x‘C7EF FFFF E000 0000’
FPSCR(FPRF) « “—normal number”
End
End

If FPSCR(RN)=b‘10’ then (Round to +Infinity)
Do

If FRB(0)=b'0’ then
Do
FRT(0-63) « x‘7FF0 0000 0000 0000’
FPSCR(FPRF) « “+infinity”
End
If FRB(0)=b'1’ then
Do

FRT(0-63) « x‘C7EF FFFF E000 0000’
FPSCR(FPRF) « “-~normal number”

End
End
If FPSCR(RN)=b'11’ then (Round to —Infinity)
Do
If FRB(0)=b'0’ then
Do
FRT(0-63) « x'47EF FFFF E000 0000’
FPSCR(FPRF) « “+normal number”
End
If FRB(0)=b'1’ then
Do
FRT(0-63) « x'FFF0 0000 0000 0000’
FPSCR(FPRF) « “~infinity”
End
End

Processor Description 2-141

Done

Enabled Exponent Overflow:
sign « FRB(0)
exp « FRB(1-11) - 1023
frac « b'1’ || FRB(12-63)
If frac(24-52)>0 then FPSCR(XX) « b'1’
Round single(sign,exp,frac,0,0,0)
Enabled Overflow:
FPSCR(OX) « b'1’
exp « exp—192
FRT(0) « sign
FRT(1-11) « exp + 1023
FRT(12-63) « frac(1-23) || 29*b‘0’
If sign=0 then FPSCR(FPRF) « “+normal number”
If sign=1 then FPSCR(FPRF) « “~normal number”
Done

Zero Operand

FRT(0-63) « FRB(0-63)

If FRB(0)=b‘0’ then FPSCR(FPRF) « “+zero”
If FRB(0)=b'1’ then FPSCR(FPRF) « "-zero”
Done

Infinity Operand:

FRT(0-63) « FRB(0-63)
If FRB(0)=b'1’ then FPSCR(FPRF) « “~infinity”
Done

QNaN Operand:

FRT(0-63) « FRB(0-34) || 29"b'0’
FPSCR(FPRF) « “QNaN"
Done

SNaN Operand:

FPSCR(VXSNAN) « b'1’
It FPSCR(VE)=0 then
Do
FRT(0-11) « FRB(0-11)
FRT(12) « b'1’
FRT(13-63) « FRB(13-34) || 29"b'0’
FPSCR(FPRF) « “QNaN"
End
Done

2-142 General Information Manual

Normal Operand:

sign « FRB(0)

exp « FRB(1-11) - 1023

frac « b*1’ || FRB(12-63)

If frac(24-52)>0 then FPSCR(XX) « b‘1’

Round single(sign,exp,frac,0,0,0)

If exp>+127 and FPSCR(OE)= 0 then go to Disabled Exponent Overflow
If exp>+127 and FPSCR(OE) = 1 then go to Enabled Overflow
FRT(0) « sign

FRT(1-11) « exp + 1023

FRT(12-63) « frac(1-23) || 29*b'0’

If sign=0 then FPSCR(FPRF) « “+normal number”

If sign=1 then FPSCR(FPRF) « “~normal number”

Done

Round Single(sign,exp,frac,G,R,X):

inc « b'0’
Isb « frac(23)
gbit « frac(24)
rbit « frac(25)
xbit « frac(26-52)||G||R||X>0
If FPSCR(RN)=b‘00’ then
Do

If sign || Isb || gbit || rbit || xbit = b’x11xx’ then inc « b‘'1’
If sign || Isb || gbit || rbit || xbit = b’x011x’ then inc « b'1’
£ dlf sign || Isb || gbit || rbit || xbit = b’x01x1’ then inc « b‘1’
n
If FPSCR(RN)=b'10’ then
Do
If sign || Isb || gbit || rbit || xbit = b'Ox1xx’ then inc « b‘1’
If sign || Isb || gbit || rbit || xbit = b'Oxx1x’ then inc « b‘1’
£ dIf sign || Isb || gbit || rbit || xbit = b'Oxxx1’ then inc « b'1’
n
If FPSCR(RN)=b'11’ then
Do

If sign || Isb || gbit || rbit || xbit = b'1x1xx’ then inc « b‘1’
If sign || Isb || gbit || rbit || xbit = b'1xx1x’ then inc « b‘1’
£ If sign || Isb || gbit || rbit || xbit = b*1xxx1’ then inc « b*{’
nd
frac(0-23) « frac(0-23) + inc
If carry out=1 then
Do
frac(0-23) « b'1’ || frac(0-22)
exp « exp + 1
End
FPSCR(FR) « inc

FPSCR(FI) « gbit or rbit or xbit
Return

Processor Description 2-143

RISC System/6000 Instruction Set

Primary Extended
Mnemonic Instruction Format Opcode Opcode
alo]l.] Add X0 31 10
abs[o][.] Absolute X0 31 360
aejo][.] Add Extended X0 31 138
ai Add Immediate D 12
ai. Add Immediate And Record D 13
ame[o][.] Add To Minus One Extended X0 31 234
and[.] AND X 31 28
andcl.] AND With Complement X 31 60
andil. AND Immediate Lower D 28
andiu. AND Immediate Upper D 29
aze[o][.] Add To Zero Extended X0 31 202
b[l][a] Branch | 18
befl}[a] Branch Conditional B 16
bece]l] Branch Conditional To Count Register XL 19 528
ber(l] Branch Conditional Register XL 19 16
cal Compute Address Lower D 14
cau Compute Address Upper D 15
caxfo][.] Compute Address X0 31 266
cmp Compare X 31 0
cmpi Compare Immediate D 11
cmpl Compare Logical X 31 32
cmpli Compare Logical Immediate D 10
cntiz[.] Count Leading Zeroes X 31 26
crand Condition Register AND XL 19 257
crandc Condition Register AND With Complement XL 19 129
creqv Condition Register Equivalent XL 19 289
crnand Condition Register NAND XL 19 225
crnor Condition Register NOR XL 19 33
cror Condition Register OR XL 19 449
crorc Condition Register OR With Complement XL 19 417
crxor Condition Register XOR XL 19 193
div[o][.] Divide X0 31 331
divs[o][.] Divide Short X0 31 363
doz[o][.] Difference Or Zero X0 31 264
dozi Difference Or Zero Immediate D 09

2-144 General Information Manual

Primary Extended

Mnemonic Instruction Format Opcode Opcode

eqvl[.] Equivalent X 31 284

exts|.] Extend Sign X 31 922

fa[.] Floating Add A 63 21

fabsl.] Floating Absolute Value X 63 264

fcmpo Floating Compare Ordered X 63 32

fcmpu Floating Compare Unordered X 63 0

fd[.] Floating Divide A 63 8

fm[.] Floating Multiply A 63 5

fmal.] Floating Multiply Add A 63 29

fmrl.] Floating Move Register X 63 72

fms|.] Floating Multiply Subtract A 63 28

fnabsl.] Floating Negative Absolute Value X 63 136

frnegl.] Floating Negate X 63 40

fnmal.] Floating Negative Multiply Add A 63 31

fams|.] Floating Negative Multiply Subtract A 63 30

frsp[.] Floating Round To Single Precision X 63 12

fs[.] Floating Subtract A 63 20

| Load D 32

Ibrx Load Byte Reverse Indexed X 31 534

Ibz Load Byte And Zero D 34

Ibzu Load Byte And Zero With Update D 35

Ibzux Load Byte And Zero With Update Indexed X 31 119

Ibzx Load Byte And Zero Indexed X 31 87

Ifd Load Floating—Point Double D 50

lfdu Load Floating—Point Double With Update D 51

Ifdux Load Floating—Point Double With Update X 31 631
Indexed

Ifdx Load Floating—Point Double Indexed X 31 599

Ifs Load Floating—Point Single D 48

Ifsu Load Floating—Point Single With Update D 49

Ifsux Load Floating—Point Single With Update X 31 567
Indexed

Ifsx Load Floating—Point Single Indexed X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic With Update D 43

Processor Description 2-145

Primary Extended
Mnemonic Instruction Format Opcode Opcode
lhaux Load Half Algebraic With Update Indexed X 31 375
Ihax Load Half Algebraic Indexed X 31 343
lhbrx Load Half Byte Reverse Indexed X 31 790
Ihz Load Half And Zero D 40
lhzu Load Half And Zero With Update D 41
Ihzux Load Half And Zero With Update Indexed X 31 31
Ihzx Load Half And Zero Indexed X 31 279
Im Load Multiple D 46
Iscbx].] Load String And Compare Byte Indexed X 31 277
Isi Load String Immediate X 31 597
Isx Load String Indexed X 31 533
lu Load With Update D 33
lux Load With Update Indexed X 31 55
Ix Load Indexed X 31 23
maskg|[.] Mask Generate X 31 29
maskir[.] Mask Insert From Register X 31 541
merf Move Condition Register Field XL 19 0
merfs Move To Condition Register From FPSCR X 63 64
merxr Move To Condition Register From XER X 31 512
mfer Move From Condition Register X 31 19
mffs[.] Move From FPSCR X 63 583
mfmsr Move From Machine State Register X 31 83
mfspr Move From Special Purpose Register X 31 339
mtcrf Move To Condition Register Fields XFX 31 144
mtfsbOl[.] Move To FPSCR Bit 0 X 63 70
mitfsbi[.] Move To FPSCR Bit 1 X 63 38
mtfsf[.] Move To FPSCR Fields XFL 63 71
mtfsfil.] Move To FPSCR Field Immediate X 63 134
mtspr Move To Special Purpose Register X 31 467
mulfo][.] Multiply X0 31 107
muli Multiply Immediate D 07
muls[o].] Multiply Short X0 31 235
nabs[o][.] Negative Absolute X0 31 488
nand[.] NAND X 31 476
neglo][.] Negate X0 31 104

2-146 General Information Manual

Primary Extended

Mnemonic Instruction Format Opcode Opcode
nor|.] NOR X 31 124
orf.] OR X 31 444
orc[.] OR With Complement X 31 412
oril OR Immediate Lower D 24
oriu OR Immediate Upper D 25
rlimif.] Rotate Left Immediate Then Mask Insert M 20
rlinm[.] Rotate Left Immediate Then AND With M 21

Mask
rimi[.] Rotate Left Then Mask Insert M 22
rinm[.] Rotate Left Then AND With Mask M 23
rrib[.] Rotate Right And Insert Bit X 31 537
sf[o][.] Subtract From X0 31 8
sfe[o][.] Subtract From Extended X0 31 36
sfi Subtract From Immediate D 08
sfmefo][.] Subtract From Minus One Extended X0 31 232
sfze[o][.] Subtract From Zero Extended X0 31 200
si[.] Shift Left X 31 24
sle[.] Shift Left Extended X 31 153
sleq[.] Shift Left Extended With MQ X 31 217
sliq[.] Shift Left Immediate With MQ X 31 184
slliq[.] Shift Left Long Immediate With MQ X 31 248
sliq[.] Shift Left Long With MQ X 31 216
slq[.] Shift Left With MQ X 31 152
sr[.] Shift Right X 31 536
sra[.] Shift Right Algebraic X 31 792
srail.] Shift Right Algebraic Immediate X 31 824
sraiq[.] Shift Right Algebraic Immediate With MQ X 31 952
sraq[.] Shift Right Algebraic With MQ X 31 920
sre[.] Shift Right Extended X 31 665
srea[.] Shift Right Extended Algebraic X 31 921
sreq[.] Shift Right Extended With MQ X 31 729
sriq[.] Shift Right Immediate With MQ X 31 696
srlig[.] Shift Right Long Immediate With MQ X 31 760
srig[.] Shift Right Long With MQ X 31 728

Processor Description 2=147

Primary Extended
Mnemonic Instruction Format Opcode Opcode
srq[.] Shift Right With MQ X 31 664
st Store D 36
stb Store Byte D 38
stbrx Store Byte Reverse Indexed X 31 662
stbu Store Byte With Update D 39
stbux Store Byte With Update Indexed X 31 247
stbx Store Byte Indexed X 31 215
stfd Store Floating—Point Double D 54
stfdu Store Floating—Point Double With Update D 55
stfdux Store Floating—Point Double With Update X 31 759
Indexed
stfdx Store Floating—Point Double Indexed X 31 727
stfs Store Floating—Point Single D 52
stfsu Store Floating—Point Single With Update D 563
stfsux Store Floating—Point Single With Update X 31 695
Indexed
stfsx Store Floating—Point Single Indexed X 31 663
sth Store Half D 44
sthbrx Store Half Byte Reverse Indexed X 31 918
sthu Store Half With Update D 45
sthux Store Half With Update Indexed X 31 439
sthx Store Half Indexed X 31 407
stm Store Multiple D 47
stsi Store String Immediate X 31 725
stsx Store String Indexed X 31 661
stu Store With Update D 37
stux Store With Update Indexed X 31 183
stx Store Indexed X 31 151
svcfl][a] Supervisor Call SC 17
t Trap X 31 4
ti Trap Immediate D 03
xor[.] XOR X 31 316
xoril XOR Immediate Lower D 26
xoriu XOR Immediate Upper D 27

2-148 General Information Manual

Ehapter 3. I\7Iemory

Chapter Contents
Virtual Memory ...
System Memory ..
Introduction
Description
Special Features
Memory Banks .
DRAM Controller

...

...

...

...

...

..

DataMuxand Bufferccii ittt ittt it i e e ittt e e

Bit Scattering ..
Memory Refresh

...

Memory

3-1

3-3

3-3
3-3

3-5
3-5
3-5
3-5
3-5

3-2 General Information Manual

Virtual Memory

Virtual memory is a large address space containing logical system objects such as programs
and data. Each object is assigned a unique address in the virtual memory space at the time
of creation. Subsequently, this address is used thereafter to reference that object.

Virtual memory objects are mapped to system memory on a demand basis. At the time of
reference by a system or user program, the translate unit associated with the system unit
verifies whether that object is currently in system memory and, if so, supplies the appropriate
(real) memory address. If not in system memory, the operating system is called to obtain the
requested object, place it in system memory, and update the tables used by the translate
unit. The original faulting instruction is then retried and control is returned to the original
system of user program. As long as the (virtual) access does not have any real-time
dependencies, this demand mapping is transparent.

System Memory

System memory is that memory closely associated with the system unit complex. The RISC
System/6000 architecture provides for up to 4 gigabytes of system memory.

Direct Memory Access (DMA) operations to this memory neither synchronize nor update the
system unit cache. This may cause the cache and its associated system memory to be
inconsistent, resulting in the loss or corruption of data when the system unit and the 1/0
device both attempt to access the same memory area. The following set of guidelines should
be followed to eliminate this problem:

¢ Ensure all cache (line) data has been flushed to system memory prior to starting an
output DMA operation.

o If accessing a shared data area in system memory, addressing should be such that these
accesses go through the IOCC buffer cache.

o On bus master input operations, unmap any shared memory pages by way of their
controlling Translate Control Word (TCW) before attempting to use the data in system
memory. A buffer flush operation can be performed at the same time a memory page is
unmapped.

Introduction
The RISC System/6000 memory board can be placed in either a SGR 2564 processor chip
set or a SGR 2032 processor chip set. The board functions the same in both chip sets. Ina
SGR 2032 processor chip set, a single board is accessed at one time. Two 40-bit error
checking and correction (ECC) words (32 data, 7 ECC and 1 redundant bit steering) can be
transferred into or out of the board on a given clock cycle. ECC is not discussed in detail in
this document since ECC is done in the cache and the Memory Control Unit (MCU). The
memory board does not distinguish between ECC bits and data bits. As far as the memory
board is concerned, a word is 40 bits wide.

Memory boards in the SGR 2564 processor chip set are operated in pairs. Two boards are
accessed at one time, thus giving the system a 160—bit memory bus. The system memory to
data cache transfers four 4-byte words on each memory access.

Description
This section contains a general description of the RISC System/6000 memory board. The
board is designed for 80 bit doubleword memory access. The size of the RISC System/6000
memory board ranges from 8 to 32 megabytes. Each board has three Application Specific

Memory 3-3

Integrated Circuit (ASIC) chips to control the Dynamic Random Access Memory (DRAM)
and the data flow. There is one DRAM control chip and two Data Multiplexer chips. All
address and timing signals from the MCU are input to the DRAM controller chip. Each Data
Multiplexer (Mux) chip has two 40-bit bi—directional data buses connected to the memory
banks. See Figure 21 for a functional block diagram of the 4—way interleaved memory board.

Memory Array Memory Array
Bank 0 —>
Y
Bank 2 ¢ >
40 Bits (even) 40 Bits (even)
Cache Data Bus | Data M Data M S“"" Data
ata Mux —p Data Mux us
< P Controller
0.39) and Buffer |—»| - le— and Buffer (40..79)
40 Bits (odd) 40 Bits (odd)
Bank 1 < b|
A 4 \ 4
Bank 3 “
MCU Inputs,

Row/Column Addresses, Refresh
Figure 21. Memory Board Description

Special Features
¢ High performance 80-bit data width
e 4-way interleaving
¢ High density (8, 16, and 32 megabytes)

¢ 5V dc and 3.6V dc DRAM power (Do not mix 5V dc and 3.6V dc memory boards in the
same system unit.)

e Accepts generic timing inputs, generates multiple DRAM timing modes
o On-board refresh address counter

o Buffered read and write instructions

o Buffered write data

o Page mode operation

3-4 General Information Manual

Memory Banks
Each of the interleaved memory banks consist of two 40-bit wide memory arrays or Single
In-line Memory Modules (SIMMs). The SIMMs are either 1M byte, 2M byte or 4M byte in
density. The 1M byte SIMM has (10) 256K x 4 DRAMs surface mounted on one side. The
2M byte SIMM has (10) 256K x 4 DRAMSs surface mounted on each side. The 4M byte
SIMM has (5) 1024K x 4 DRAMs surface mounted on each side. The maximum board
configuration has eight 4M byte SIMMs giving the board a total of 32M bytes. The minimum
configuration has eight 1M byte SIMMs giving the board a total of 8M byte.

DRAM Controller
The DRAM controller chip is responsible for providing all inputs to the DRAMs except data.
This chip generates the necessary row—column addresses, row—column address strobes,
read-write, and memory refresh timings. In addition, control logic for the Data Mux chips is
generated in the DRAM controller. The inputs to the DRAM controller come from the Memory
Control Unit (MCU) on the processor board, presence detect pins, and the Data Mux chips.

Data Mux and Buffer
The Data Mux chips transfer data between the caches and the memory banks. Each Data
Mux chip has a 40-bit data bus connected to the caches. Together, the two Data Mux chips
provide the board with its 80-bit (double word) interface. The Data Mux chips have two
40-bit data buses, each of which is dotted to two memory arrays on a board in 4-way
interleave mode. Figure 21 on page 3-4 shows a diagram of the memory board. An even
data bus is connected to one SIMM in each of the even memory banks (banks 0 and 2), and
an odd data bus is connected to one array in each of the odd memory banks (banks 1 and
3). During write operations, the Data Mux chips can buffer data as long as the DRAMs are
being refreshed.

Bit Scattering
The RISC System/6000 SGR 2564, SGR 3064 and SGR 2032 processor chip sets use bit
scattering to ensure a minimum of bits of a memory word from being stored in a single
DRAM. In the RISC System/6000 SGR2564 and SGR 3063 processor chip sets, there is no
more than one bit from a single word stored in one DRAM. This is possible because the
memory bus has four words on it and there are four bits in a given DRAM. In the RISC
System/6000 SGR2032 processor chip set, there are two bits from each of the two memory
bus words in a given DRAM. With a minimum of bits from a single word in a DRAM, the ECC
is better able to detect and correct errors caused by a bad DRAM.

Memory Refresh
The RISC System/6000 memory board is able to generate refresh timings. Every 15.6 us the
board receives a refresh pulse from an external clock. When there are multiple memory
boards, the refresh pulses from the clock are input to pairs of boards at 3.9 us intervals.
Therefore, each board receives a refresh pulse every 15.6 us.

The DRAMSs worst case requirement for a refresh signal is 4 ms for 1M byte and 2M byte
SIMMs. In other words, each row address must receive a refresh signal every 4 ms. The 1M
byte and 2M byte SIMMs have 512 row addresses. Since the refresh pulse comes every
15.6 us, it is required that with each refresh pulse two row addresses are refreshed. The
necessary logic is provided in the controller to refresh two row addresses in the board when
using 1M byte DRAMs. The 4M byte SIMM has 1024 row addresses but must be refreshed
within 8 ms, so two refreshes must occur per refresh pulse. This too is implemented by the
controller. It should be noted that with the double—side surface-mounted SIMMs, the
corresponding row addresses for DRAMSs on both sides of the board are refreshed together.

Memory 3-5

3-6 General Information Manual

Chapter 4. System I/O Structure

Chapter Contents

DesSCriptioN ... e e e et 4-3
System Structure e e 4-4
Vitual Memory e e et 4-5
SystemMemory e e 4-6
BUSMEMOTY ...t i i e e e e e e 4-6

BUS IO ..o e e et 4-6
IOCC Control Registersiuiiiiiii i, 4-6
DataSecurityccvviiiiiiii i i i e it it e e 4-8
Bit and Byte NumberingConventions ittt 4-9
Processorand Bus Notation it iiiniiiianann. 4-9
Byte Reversalccoitiiiiiiii it i i ittt et e, 4-13
VOBUSProtocolscciiiiiiiiii it i i et i i it it teaenens 4-15
ArDItration e e e e e e e 4-15
Priority Assignment i e 4-17
Non-Preemptive Burst ittt i 4-17
Preemptive Burst i e 4-17
FairnessModes ettt 4-18
BasicTransferCycle it i i i 4-18
StreamingDataottt 4-19
DynamicBus Sizing i e 4-19
Partial Transfer Cycles ittt 4-21
BusRefresh ... i i e e e 4-21

BUS ErTOrS . . oot ettt ittt e e e e et e 4-21
Invalid Addresso v vv et it it e i et 4-21
Parity Errorso e e e et e 4-22
Channel Checkot i i i i i i et it e i e iananes 4-22

Bus Time Outo i i i e it ettt e e e 4-22

111 =T (1T) P 4-22
Programming Model i i i 4-23
Load and Store Instructionsc.cciiiiiiiiiiin it 4-23
Address Spaces and Effective Addressescoiiiannn. 4-24

10 Segment Register Definitionol 4-27
Address and Data Alignment i i 4-29
String Operationscoiiiiiiiii it i i e 4-30
Load and Store Access Authority Checkingcoviint. 4-30
Load and Store Error Conditionsttt 4-32
Translation, Protection, andthe TCW Table, 4-34
BusMaster ...t i e i e e e 4-37
BufferedBusMaster.ttt i e e 4-37
Unbuffered Bus Master iiiiiiiiiiiiiiiiinennnn, 4-42

Bus Master Access Authority Checkingcoviiin.. 4-44

Bus Master Error Conditionst 4-45
DMA SlaVve ittt i e e et e 4-46
DMA Slave Operations UsingTagsccooviiiiiiinnennennnn. 4-47

System /O Structure ~ 4=1

4-2

DMA Slave Operations Using TCW'so,
DMA Slave Bus Protocols ...ttt e,
DMA Slave TransferstoBus Memoryccciivvnrevnnnnn.
DMA Slave Transfers to SystemMemory,

Special Sequences . .

...

DMA Slave Error Conditions i ittt ittt ettt et

I0CC Commands
Time Delay Command
End of Interrupt
Lock Command

...

--

...

Enable and Disable Commandscciii ittt irennnieennnnns

Buffer Flush Commands

...

Bus Master Buffer FlushCommand,
DMA Slave Buffer FlushCommandcciiiiiiriinnennn..
Buffer Invalidate Commandccii ittt i i

/O Interrupts
Special Facilities

...

...

Board ConfigurationDatacccoiiiiiin it iiiinn.
IOCC Configuration Registerciiiiiiiininiinrnennn.

Bus Status Register .

...

TCW/Tag Anchor Address Regiisterccoitiiiiininnnnnan..
ComponentReset Register iiiiiiiininnennnns
Systeml/OandStandard /Ottt i i e

System /O
System Registers

Nonvolatile RAM
Standard /O

...

...

...

...

Exception Reportingand Handling ciiiiiiiiiiiniinnnn..

Implementation Details . ..

...

IOCC Configuration Registerc.ccciiiiiiiiiinininennnnn.

System Registers
Nonvolatile RAM
Standard IO
Bus Master Transfers ..

...

...

...

...

Component ResetRegisterccviiiii ittt it i e e,

Notes on Error Detection
Bus Timeout
/O Interrupts
Lock Command

General Information Manual

..

...

...

...

...

4-52
4-56
4-56
4-56
4-57
4-57
4-59
4-59
4-61
4-61
4-62
4-63
4-63
4-64
4-65
4-65
4-70
4-71
4-71
4-75
4-76
4-77
4-78
4-78
4-78
4-78
4-78
4-80
4-80
4-80
4-81
4-82
4-84
4-84
4-84
4-84
4-84
4-84
4-85
4-85
4-85
4-88

Description

This chapter describes the RISC System/6000 Input/Output (I/O) architecture. General I/O
bus support functions for Load and Store instructions, interrupt, and channel control are
provided by the I/O Channel Controller (IOCC). A number of feature 1/0 slots are associated
with the IOCC for pluggable 1/0 devices. Also attached to the 1/O bus, but not occupying
feature slots, is the Standard I/0. See “System 1/0 and Standard /0" on page 4-78.

The IOCC design allows certain variations of function and performance to optimize its usage
across multiple machine environments. The specific personalization is established with the
contents of the IOCC Configuration register (See “lIOCC Configuration Register” on page
4-71 and “Implementation Details” on page 4-80.)

Figure 22 illustrates the logical view of the IOCC in the RISC System/6000 units.

Processor System Bus
Chip Set Memory

/0
Bus I
10CC I/0 Slots

~ Standard 1/0

Figure 22. System Block Diagram

System I/O Structure ~ 4-3

System Structure
Figure 23 illustrates a more detailed logical view of the RISC System/6000 IOCC. Functions
provided by the IOCC include data buffering, address translation, access protection, direct
memory access (DMA), and interrupt support.

I::——b- Cache [¢—— L/ST Data
Processor
Chip Set

» Xlate |—— L/ST Addr

Micro
Channel Bus

Bus
Memory

Addr > ¢

A 4

Addr
Bus
| lﬂ Addr P |—> Master

Interru 1 X

Ctrl p '

— Bus /O - — Addr—] |¢ ’l Bus /O _—J
' Range '

Note: * May be implementation specific. (See “Implementation Details” on page 4-80).
Figure 23. Programming Model

The operating system can access all system facilities, for example, virtual memory, system
memory, bus I/O, bus memory, and the IOCC. The IOCC contains special facilities needed
by the system for translation, protection, and other functions.

4-4 General Information Manual

Problem state programmers are normally restricted to virtual memory. Mapping of the virtual
address to system memory is then always managed by way of the translation mechanism
associated with the processor chip set. For certain applications, the operating system also
grants conditional access authority to the bus I/0 and bus memory. Accesses to bus memory
and bus I/0 devices are checked for proper access authority, restricting user programs to
access only those devices for which they are authorized to use. Accesses to bus I/O are
verified by way of an address range check, and accesses to bus memory are verified by way
of a key in the translate control word (TCW) table described in “Translation, Protection, and
TCW Table” on page 4-34.

The RISC System/6000 I/0 architecture includes the definition of 16 independent I/O
channels. One channel (X‘F’) is reserved for use by the system master for Load and Store
transfers, leaving 15 that can be programmed for bus master transfers. The number of
channels that can be programmed for DMA slave transfers is implementation specific. (See
“IOCC Configuration Register” on page 4-71 and “Implementation Details” on page 4-80.) A
bus master is a Micro Channel device that contains its own direct memory access controller.
A DMA slave is a Micro Channel device that requires the system to provide the direct
memory access control.

The RISC System/6000 I/O architecture also includes a provision for 16 I0CC buffers that
can be associated with each of the /O channels previously described. The presence of this
mode (called the buffered mode) and the amount of IOCC buffer is implementation specific.
(See “IOCC Configuration Register” on page 4-71 and “Implementation Details” on page
4-80.)

Normally, all accesses to system memory go through the processor chip set cache.
However, if sharing memory areas with 1/0 devices, means must be provided for maintaining
cache coherency. How cache coherency is provided is implementation specific. (See “IOCC
Configuration Register” on page 4-71 and “Implementation Details” on page 4-80.) All
caches can be visible to programmers, including selected application level programmers.

A bus master on the 1/0 bus accesses bus memory and bus I/0. Pages in the bus memory
address space are mapped to system memory by way of the TCW table. Mapped pages are
checked for proper access authority before allowing an access to proceed. Since the IOCC
cannot intercept or stop accesses to bus attached memory or bus I/O devices, no access
checking is performed when a bus master addresses devices on the I/O bus.

The RISC System/6000 DMA slave controller provides a convenient mechanism for moving
data between an I/0 device and system or bus memory. It provides addressing and control
functions on behalf of the I/O device. Two methods for providing addresses for the DMA
slave operations are supported in the architecture. In the first, memory addresses are
obtained from a tag table in the IOCC. This table provides transiation facilities similar to the
System/370 indirect address word list, with additional capabilities allowing data chaining
down to the byte level. In the second method, a TCW table provides the Real Page Number
(RPN) used along with an offset as the memory address. Both methods are described in
more detail later in this document. For implementation specific details, see “IOCC
Configuration Register” on page 4-71 and “Implementation Details” on page 4-80 .

Virtual Memory
Virtual memory is a large address space containing logical system objects such as programs
and data. Each object is assigned a unique address in the virtual memory space at the time
of creation and this address is used thereafter to reference that object.

Virtual memory objects are mapped to system memory on a demand basis. At the time of
reference by a system or user program, the translate unit associated with the processor chip
set verifies whether that object is currently in system memory and, if so, supplies the
appropriate (real) memory address. If not in system memory, the operating system is called

System /O Structure ~ 4-5

to obtain the requested object, place it in system memory, and update the tables used by the
translate unit. The original faulting instruction is then retried and control is returned to the
original system or user program. As long as the (virtual) access does not have any real-time
dependencies, this demand mapping is transparent.

System Memory

System memory is that memory closely associated with the processor chip set complex. The
RISC System/6000 architecture provides for up to 4G bytes of system memory.

Bus master and DMA slave operations to this memory neither synchronize nor update the
processor chip set cache or Page Frame Table (PFT). This can cause the cache and its
associated system memory to be inconsistent, resulting in the loss or corruption of data
when the processor chip set and an I/O device both attempt to access the same memory
area.

In buffered mode, it is the responsibility of the software to ensure there is no data lost due to
cache inconsistencies. In unbuffered mode, the hardware maintains the cache coherency.
Buffered versus unbuffered modes are described later in this chapter.

Bus Memory

Bus I/0

I/O bus memory is the memory that logically resides on the I/O bus. The I/O bus includes 32
address bits, providing up to 4G bytes of addressability. PC family 1/0 buses utilize disjointed
address spaces for bus memory and I/O devices. In the RISC System/6000 units, these two
address spaces are mapped together as illustrated in Figure 33 on page 4-23. This address
space is differentiated from the 1/0O address space by way of an address decode. I/O bus
memory is referenced when the address is above 64K bytes. Processor accesses to this
memory space do not go through the system cache and do not suffer from cache
consistency problems described in “System Memory” on page 4-6.

Bus memory is generally packaged on feature I/O cards and is associated with specific
devices. Devices are generally mapped into the bus memory space when they have large
addressability requirements, such as video display buffers and floating—point work space.
Any bus master on the I/0 bus has unconditional access to other devices on the Micro
Channel I/O bus. As such, access to bus memory is unprotected.

Bus memory references are redirected to system memory by way of the TCW mechanism.
Refer to the “Translation, Protection, and TCW Table” section on page 4-34 for a description
of this mapping process. These accesses are translated and checked for appropriate
authority before allowing them to proceed. If allowed to proceed, this mapping of bus
addresses to system memory is transparent to the requesting bus master or DMA slave.
Special rules must be followed to guarantee the consistency of this memory if it is shared
with the processor chip set. See “System Memory” on page 4-6 for a description of these
rules.

The I/0 bus includes a special address space for accessing I/O control registers. This
address space is mapped together with the bus memory and is referenced when the address
is within the lower 64K bytes. It includes16 address bits and provides up to 64K bytes of
addressability. I/O devices do not decode address bits A31 to A16 and these address bits
are considered undefined relative to I/O devices. Note that the addressing nomenclature on
the 1/O bus follows the Micro Channel format illustrated in Figure 24 on page 4-9.

I0CC Control Registers

I0CC control registers are special facilities managed by the system supervisor that control
all aspects of the Load and Store instructions, channel, and interrupt operations. They are
only accessible to Load and Store instructions from the system processor and are addressed
in a disjoint address space inaccessible to I/0 bus devices. This address space is defined in

4-6 General Information Manual

such a way that it may be mapped onto the 1/O bus, providing implementation flexibility in
distributing IOCC control facilities across multiple chip packages. Refer to the “Special
Facilities” section on page 4-70 for a description of these registers.

System /O Structure ~ 4=7

Data Security
The RISC System/6000 unit is intended to be used in shared environments and contains

mechanisms to maintain data security. The IOCC supports attachment of user-supplied I/O
devices and device drivers, and includes extensive hardware and operating system
mechanisms to insulate the system and other users from them. All accesses to memory or
the I/0 bus are checked to verify that the user has authority to use that resource. Shared
resources, such as IOCC or memory buffers, are controlled (for example,zeroed) so that no
task gets access to some other task’s data.

4-8 General Information Manual

Bit and Byte Numbering Conventions

This section describes the processor and bus notation and the byte reversal numbering
conventions.

Processor and Bus Notation
Standard IBM notational practice is to address multi-byte fields in ascending order from left
to right. This results in the most significant byte (MSB) always having the lowest address
and provides consistency in addressing which is independent of the word size of the
machine. Bits are always numbered from left to right. This notation is used in all processor,
channel, and serial protocol descriptions.

The Micro Channel reverses both bit and byte addressing notations (The reason for this is
historic and is based on the vendor processors which were used in Micro Channel machines
when the Micro Channel Architecture was developed). Figure 24 illustrates the notational
differences between the Micro Channel and RISC System/6000 family.

IBM Notation

0
O i
0 1
MSB LSB
O M8 s
0 1 2 3
MSB LSB
TR REN AN EEEE AL SRR i o S WA
Micro Channel Notation 0
7|||||||9|
1 0
MSB LSB
B8 ®
3 2 1 0
MSB LSB
RN & o ANTETE . L ST TR

Figure 24. Data Addressing and Bit Numbering Notations

System /O Structure 49

The IBM Micro Channel practice of numbering bytes in ascending order from right to left
results in the most significant byte of a word having the highest address. This poses
problems in byte ordering on 2— or 4—byte buses. For byte strings such as text to be
compatible across different word lengths and between different systems, the strings must be
organized with the most significant byte having the lowest address. Figure 25 on page 4-11
illustrates the consistency with the standard IBM notation and Figure 26 on page 4-12
illustrates the address inconsistency when using the Micro Channel notation. With the Micro
Channel numbering scheme, there is no consistency in addressing across the various word
sizes; two half-word stores produce a different result in memory than one full-word store.

4-10 General Information Manual

Two half-word Store instructions from the processor register to
memory.

Processor Register Datain Memory Address
0 1
l‘A,’ o
“p? «“B” — 0 |7
0||||I||7|8III|I|1I5 mmm—
| “B” 1
>
ol I | 17
0 1
“c” 2
Lol “p” —b 0 i |7
°I|I||||7l8||||||}5 L
I “p” 3
>
ol 1 1111 |7

Full-word Store instruction from the processor register to memory.

Processor Register

0 1 2 3
“A” uB” ‘lc’! ‘ID”
TR NENL TN L ST o AR A
1
Data in Memory Address
“A!’ 0
ol P11 |7
IIB” 1
>
°| [|7
llc” 2
0| Lyl 17
MD” 3
—>
0| Lall |7

Figure 25. Addressing Consistency Using Standard IBM Notation

System 1/O Structure 4-11

Two half-word Store instructions from the processor register to

memory.
Processor Register Data in Memory Address
1 0
“B” 0
uAn uB” ——’ 7 ‘ | Jgi
1l5||||I|8'7l||||||0 ' S
I “p” 1
> |7 0
I I T T |
1 0
“p” 2
“g” “p” ——eee——— 7' . Io
115||||||8I7|||||||o
| ucu 3
Bl 0
I T T |

Full-word Store instruction from the processor register to memory.

Processor Register

3 2 1 0
“A!! HB" llcu “D”
3I"IllII?412|3|IlII1I6|115IIIIII8|7IIIIIII0
|
Data in Memory Address
uD!! o
> |7 0
(N T I I I
llc” 1
L
7| 1111 10
“B!! 2
> |7 0
[
“A!! 3
>
7| Li1l LOJ

Figure 26. Addressing Inconsistency When Using Micro Channel Notation

4-12 General Information Manual

Byte Reversal

Data in the RISC System/6000 unit is handled by the compilers using standard IBM
addressing notations. To meet addressing notations of the IBM Micro Channel, the byte

ordering must be reversed. The IOCC and the system board are designed to provide

byte—order reversal as illustrated in Figure 27. This reversal occurs in both directions as
information passes through the IOCC.

IBM (4-Byte) Organization

0 1 2 3
MSB LSB
O v 8 R
T ————— 1 I Byte Reversal !
L +— | by the 10CC
1 0
LSB MSB
1|5| | I | |8|7I | | I0
2-Byte Micro Channel Device
IBM (4-Byte) Organization
0 1 2 3
MSB LSB
RN AT L IR o o AT A
X Byte Reversal .
' by the IOCC '
3 2 1 0
LSB MSB
B e B

4-Byte Micro Channel Device
Figure 27. PC Bus Byte Reversal

The I/O data bits require renaming but otherwise maintain a one-to—one ordering with IBM

standards.

Combining Figure 26 and Figure 27 gives the example shown in Figure 28.

System 1/O Structure

4-13

Processor Register

0 1 2 3
IIA" ‘(B” [” IID”
YETENERL LT L T . AT L
X Byte Reversal |
: by the IOCC
3 2 1 0
l‘D’, l‘c,’ “B” IIA,, on the

Micro
31::|15?4I2P||L1|1|6J1|5|111118J7||||||o

] 1 | Channel
|

in Micro Cha|nnel Memory

'Data in Memory Address’

“A” o
>
. 71 | | loi
IIB" 1
—* 7 0

7IIII|II0

“D”

7IIIIIII0

>

llc” | 2

Figure 28. Example Showing Micro Channel Byte Reversal

4-14 General Information Manual

I/O Bus Protocols

The RISC System/6000 IOCC is optimized to use the Micro Channel. If the IOCC must drive
another bus, conversion logic translates the Micro Channel protocols to the target bus.

A brief description of the Micro Channel protocols is summarized in this section. For more
details, see the /BM RISC System/6000 POWERstation and POWERserver Hardware
Technical Reference — Micro Channel Architecture.

Note: This chapter uses the abbreviated signal names as they appear in the IBM RISC
System/6000 POWERstation and POWERserver Hardware Technical
Reference — Micro Channel Architecture; for example, ‘cd chrdy’ represents ‘card
channel ready’.

Arbitration
Arbitration is the resolution of multiple bus requests, awarding use of the bus to the highest
priority requester. It applies to all devices that request bus use such as processors, bus
master devices, and DMA slave devices. Characteristics of the Micro Channel arbitration
mechanism include:

e One to 16 bus masters

e Multi-drop (dot—OR) mechanism
o Parallel prioritization

e Asynchronous operation’

» Cycle-by—cycle arbitration

o Programmable priority levels

¢ Programmable fairness mode

e Mixable linear and fairness modes
¢ Preemptive burst capability

o Extendable to multiple buses.

The arbitration mechanism distributes prioritization among the arbiters but retains control
and clocking functions within the IOCC. It uses a bus—like structure and does not require any
slot-unique wiring for its operation. Bus arbitration timing is programmable and is
established by a field in the IOCC Configuration register.

Figure 29 illustrates typical device arbiters and their relationship in the system. Parameters
such as arbitration level and burst characteristics are programmable by way of Configuration
registers in each device. There are no restrictions on changing operating modes following
system startup.

System I/O Structure 4-15

Micro Channel

Arbiter 10CC
Drq Preempt J » Preempt
Dack Arb/Gnt fe Arb/Gnt
Burst Burst - » Burst
Rotational
Protocol T
Priority Arb
Level Bus locc
Clock
Arbitration
Micro Channel Bus
Arbiter
—» Drq Preemptl¢
<4— Dack Arb/Gnt¢
—» Burst Burst »
—» |F,lotatior}al
rotoco
Priority Arb '-'
Level Bus ||

Figure 29. 1/O Bus Arbitration

Figure 30 illustrates an arbitration cycle. Devices request service by activating the ‘preempt’
signal. The IOCC responds by deactivating the ‘arb/gnt’ signal when the current bus owner
completes its bus activity. Each requesting arbiter then presents its arbitration level on the
arbitration bus. This bus is designed in such a way that lower priority devices remove
themselves from contention, and only the highest priority requester is left on the bus after a
logic settling time. The IOCC then reactivates the ‘arb/gnt’ signal, and the device with its
arbitration level value on the arbitration bus is granted use of the bus. Device Request (Drq)
and Device Acknowledge (Dack) are signals (internal to each of the device arbiters) which
signal a request to arbitrate for the bus, and acknowledgement of being granted the bus,
respectively.

At the end of the bus cycle, the arbitration cycle is repeated if the ‘burst’ signal is not active.
If there are no requesters, control is returned to the default arbiter at the arbitration bus level
XF.

4-16 General Information Manual

_J] Pra R

e v

L e I
X Arbitration Bus X

5\ Dack >

\ soist

\ Cmd /]

Both DMA slave and bus master devices utilize the arbitration mechanism to initiate bus
cycles. The difference is that once granted use of the bus, the bus master device controls
bus cycles, while the IOCC controls the bus cycles for DMA slave devices.

Figure 30. Arbitration Cycle

Priority Assignment
At startup, each device supporting arbitration is assigned a unique priority level ranging from
X'0-F'. This priority level establishes the selection criteria to be used when contention exists.
If multiple requests occur simultaneously, the device with the lowest numbered priority level
is awarded use of the bus.

Arbitration level X'F’ is always assigned to the system processor. If there are no other bus
requesters, bus ownership defaults to level X‘F'. Thus, the IOCC owns the /O bus during
idle conditions. Since 1/0 bus utilization is normally low, the IOCC does not normally have to
arbitrate for the bus for I/O Load and Store instructions.

Micro Channel I/O devices with long bursting characteristics should be designed using the
Fairness (rotational) Arbitration Protocol, without which it is possible to lock out system
processor I/O Load or Store instructions until the I/O device transfer is complete. If a lockout
occurs for an extended period of time, a bus timeout error is posted, the ‘arb/gnt’ signal is
deactivated, and the ‘reset’ signals are activated to all slots. While the bus timeout error is
active, all system processor /O Load and Store instructions are guaranteed access to the
bus.

Non-Preemptive Burst
Devices can force non—preemptive burst operations if it is necessary to retain control of the

bus for short periods of time. Examples include use of a read—-modify—write sequence in
setting locks and use of a burst to allow the completion of a word—organized transfer
sequence. The device signals the arbiter that a forced burst is required by activating the
‘burst’ signal to the arbiter. When the burst sequence is complete, the device must
deactivate the ‘burst’ signal.

Preemptive Burst
This function allows a device to use consecutive bus cycles without any arbitration overhead,
as long as no other device is requesting bus service. It takes advantage of the low average
utilization of most I/O buses, and increases the effective data rate of a device. Devices
programmed for preemptive burst mode conditionally activate the ‘burst’ signal when the
‘preempt’ signal is inactive. A device can remain temporarily non—preemptive for up to 7.8

System /O Structure 4-17

microseconds following a preemption request. This allows completion of, for example, block
transfers.

Fairness Modes
Devices operating in burst mode or devices with high bus request rates can cause severe
interference to devices assigned lower priority levels. The problem is compounded when
multiple high-bandwidth devices are present in the system. The programmable fairness
mode is provided to make these high—bandwidth devices subject to preemption by any
device. If multiple high-bandwidth devices are active simultaneously, service is rotated in a
priority sequence, and each receives a percentage of bus cycles inversely proportional to the
number of active bus requesters.

To meet wide variations in device operating requirements, arbiters are programmable to
operate in either linear or fairness mode. Operating modes can be mixed on the same bus.
Linear priority mode is provided to meet low latency requirements of unbuffered devices,
while fairness mode provides a more equitable distribution of bus cycles in a high-demand
environment, for example, with two or more high—bandwidth bus masters.

Fairness mode is a special case of preemptive burst. If there is only one bus requester, the
current bus owner can utilize all of the bus bandwidth. As with preemptive burst, a device
programmed in fairness mode can remain temporarily non—preemptive for up to 7.8
microseconds following a preemption request.

Basic Transfer Cycle
Although the RISC System/6000 I/O architecture is generic and can attach a number of
unique buses, the intended design point is the Micro Channel. These bus protocols are
illustrated in Figure 31.

0 100 200

X A31 to A0, MO X

ADL

siso(RwW) / |

.......

Cmd

—

Figure 31. 1/O Bus Cycles

The Micro Channel offers a 32-bit data path with 4G bytes of address space. It includes
extensive support for reliability, availability, serviceability, extendability, and configurability.
The physical package and connector are designed to improve electrical characteristics.

Two status lines, ‘S0’ and ‘S1’, define the initiation of bus write and read cycles respectively,
while the ‘M/IO’ line differentiates between /0 memory and I/O devices. All addresses for
the next cycle are overlapped with the processing of the current cycle. The bus architecture
includes a special protocol for transferring sequential blocks of data. This is known as the
Streaming Data Protocol, and is described in the next section.

4-18 General Information Manual

Streaming Data
The Streaming Data Protocol is a single—address, multiple—data protocol that improves bus
efficiency by amortizing bus cycle arbitration and address setup across multiple data cycles.
It has particular value in transferring data between a memory and a processor cache or
between a memory and a high—performance 1/O device.

Streaming data begins with a cycle similar to a standard basic transfer cycle, but switches to
a clock synchronous transfer protocol.

Streaming data operations are supported for IOCC initiated transactions such as Load and
Store instructions, DMA slave, and bus master operations.

Following the activation of the ‘cmd’ signal, the bus master indicates Streaming Data
Protocol capability by starting a bus clock called the ‘sd strobe’ signal. This clock is used by
both the bus master and slave to transfer data, with data being clocked onto the bus on one
clock edge and clocked off the bus on the next clock edge. The operation proceeds with new
data being placed on the bus every time the ‘sd strobe’ signal makes a high—to—low
transition. For additional information on the Streaming Data Protocol, refer to IBM RISC
System/6000 POWERstation and POWERserver Hardware Technical Reference — Micro
Channel Architecture.

Dynamic Bus Sizing
I/O bus read or write operations do not necessarily have to match the physical width of the
device. The Micro Channel architecture requires that discrepancies in data transfer widths
be automatically managed by the current bus master. The IOCC is considered to be the
current bus master for processor initiated /O Load and Store instructions, and thus, must
manage logical data—width transformations.

A Load or Store instruction issued to a device of lesser width than the command causes
multiple I/0 cycles to be taken until the transfer width is satisfied. This automatic data—width
matching is referred to as multicycle operations in the RT system and as dynamic bus sizing
in the Micro Channel architecture. The multiple 1/0 cycles complete as a preemptable
operation in the RISC System/6000 unit, allowing bus master and DMA slave cycles to break
in for service. As such, bus master or DMA slave latency is unaffected by use of dynamic
bus sizing.

Protocols and sequencing of dynamic bus sizing are illustrated in Figure 32.

Bus Protocols Bus Sequencing
Transfer | BE (Byte g
Size Enable) | H 32-Bit 16-Bit 8-Bit
0123 E A1 Ao| |Slave Slave Slave
aBloooololo of [»32]| »16: »>8
2B 11000 »16 | » 16 -» 8 —
2B|1100/0 110 »16 | » 16 916 | » 8 -
1B|0111] 1 0 0 »8 »8 »>8
1iB|1011| 0|0 1 »8 »38 »>8| “»8 »8
1B|1101({ 1 |10 »8 38 »8 > 8
1B|{1110] 0 11 —»8 » 8 »>8 “»8 »>8

Figure 32. Dynamic Bus Sizing

System I/O Structure 4-19

Itis generally recommended that the programmer writing an I/O device driver be aware of
the physical characteristics of the target device. One should be aware when dynamic bus
sizing is invoked by IOCC hardware since this operation requires more time to complete.
See the “String Operations” section on page 4-30 for details on where this could be a
problem.

4-20 General Information Manual

Partial Transfer Cycles
Partial write operations, for example, writing one byte of a 2—-byte device, or two bytes of a
4-byte device, are permitted in the bus architecture and are useful in performing unaligned
moves. The Micro Channel supports partial write operations when operating with both
memory and I/O devices.

Bus write operations issued on address boundaries matching the device width allow
completion of the operation in the minimum number of bus cycles. Operations issued to
non-aligned addresses transfer the data to the device using multiple (partial write) cycles.
These write operation use the bus ‘SBHE'/'A0’ and ‘BEO to BE3’ protocols to write the
desired portion of the word. Partial transfers apply to 1/O Load and Store instructions and
(potentially) to bus master and DMA slave operations when operating with bus memory.

Partial transfers can take two to four times the normal number of bus cycles and caution
should be exercised in their use. If non-aligned, I/O Load and Store instructions halt the
processor for a longer period of time, adding latency to system interrupt service. See “String
Operations” on page 4-30 for details on where this could be a problem.

Bus Refresh
Bus refresh cycles are provided as a convenience to I/O devices with embedded random
access memory (RAM). Refresh cycles occur at one of several periodic rates selectable by
the Configuration register. Refer to “|OCC Configuration Register” on page 4-71 for a
description of refresh options. The refresh cycle occurs with the ‘arb/gnt’ signal high and
does not consume a bus arbitration level.

A refresh cycle is similar to an I/O memory read operation, except that the ‘refresh’ line is
also activated. Address bits 0 through 11 (using the Micro Channel notation shown in Figure
24 on page 4-9) are incremented by one, and a copy is placed on the Micro Channel during
the refresh cycle.

Bus Errors
Four different kinds of errors are detectable on the Micro Channel:

¢ Invalid address
o Parity

e Channel check
¢ Bus timeout.

When an error occurs, the error status is logged in IOCC registers as an aid in error
recovery. Individual error status is kept for each I/O device (by arbitration level) to assist in
recovery of multiple errors and is stored in the Channel Status register associated with that
device. I/0 Load and Store instructions utilize channel 15 in regular operation and error
status for those operations is saved in that set of registers. Refer to “Load and Store Error
Conditions” on page 4-32 for a description of this error status.

Invalid Address
The Micro Channel architecture requires a positive response to all addresses. Address
response is signalled on the Micro Channel by driving the ‘cd sfdbk’ signal low. Failure to
respond indicates that the address is invalid, or is issued to a missing or mis—seated card.

If an I/0 Load or Store instruction is issued with Segment Register bit 12 on, the IOCC
checks for this address response. If none is received, a Data Storage Interrupt (DSI) is

System /O Structure 4-21

issued and a card selected feedback error code is set in Channel Status register 15. Refer to
“IVO Segment Register Definition” on page 4-27 for additional details.

Parity Errors
The Micro Channel architecture definition includes address and data parity functions.
Checking is performed only when both the bus master and slave support parity. Refer to
“Exception Reporting and Handling” on page 4-80 for details of the RISC System/6000 I/O
parity support.

Channel Check
The Micro Channel includes a ‘chck’ signal which indicates an unusual event occurred
during the bus cycle. Examples include data parity error and page fault.

For details on the use of the ‘chck’ signal in reporting exception conditions within RISC
System/6000 unit, see “Exception Reporting and Handling” on page 4-80.

It is important to note that the RISC System/6000 unit is designed to recover from
synchronous channel checks. Adapters that use the ‘chck’ signal asynchronously will make
an Initial Program Load (IPL), the only recovery which is possible.

Bus Time Out
A number of conditions can result in a hung bus or in grossly extended I/O bus cycles.
These errors can result in overrun conditions to other devices on the 1/O bus and are
checked by the IOCC using a bus timeout mechanism. Although the minimum architected
bus timeout value is 7.8 microseconds, the IOCC does not attempt to check that finely and
should implement a timeout that varies between 15 and 120 microseconds. For
implementation details, see “Implementation Details” on page 4-80.

Bus hang problems are caused by either hardware or software errors. These errors are
generally associated with arbitration for the 1/0 bus followed by failure to complete the bus
cycle.

On a bus timeout error, the IOCC deactivates the ‘arb/gnt’ signal, and sets bit 1 (the bus
timeout bit) in the IOCC Miscellaneous Interrupt register. This error is considered to be
uncorrectable and the master enable control in the IOCC Configuration register is reset. This
disables all interrupt and channel requests. Also, a ‘reset’ signal is applied to all /O slots.
IOCC internal status is unchanged, so that channel conditions at the time of the error can be
logged. As an aid in determining the cause of the error, extraneous bus status is also
captured in the Bus Status register.

Incorrect programming of the DMA controller can result in a hung bus. The DMA controller
includes multiple channels; each can be personalized to control either a bus master or DMA
slave device. Personalization can be dynamically performed. If a programmer should
personalize a channel for bus master operation, but the device is actually a DMA slave
device, the bus will hang on the first DMA request that the device makes.

Interrupt
Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on the Micro
Channel are level-sensitive, active—low, and exhibit natural interrupt-sharing capabilities.
The IOCC provides pull-up resistors on all Micro Channel interrupt signals so that unused
lines float to the inactive state. Refer to the “I/O Interrupt” section on page 4-65 for additional
details.

4-22 General Information Manual

Programming Model

The following section describes the programming model for the I/O bus support functions
provided by the IOCC.

Load and Store Instructions
The Load and Store instructions can be issued to devices on the I/O bus in a similar manner
to those issued to system memory. The programmer specifies a Segment register identifying
a specific address space and supplies an offset into that space. The offset is obtained from
the effective address and is not translated prior to being applied as a bus address. Figure 33
illustrates this process.

I/O Load and Store instructions are under control of the Segment registers. A command is
directed to the I/O bus when the type (T) bit of the Segment register is set to a value of 1
and the bus unit id (BUID) address is set to select the IOCC.

Effective Address
Se
Reg# 0000010011110000000001100000
MEELANEUAETEERE LA I NENE .« ART RN &
a 28 16—

64K Byte
Bus /O

Segment Registers

3 C - 110
t]_ t - t X
r BUID r r DCD
!] lllllllllllllllll .l. LLl
MEM
2 8 2 3 |4
16 Pages of
> gSGMMByte
us Memo
TK 10CC Cirl ctrl i
Select

Figure 33. /0O Addressing

System /O Structure 4-23

Address Spaces and Effective Addresses
Figure 34 illustrates the RISC System/6000 addressing modes. I/O addressing requirements
are met by having multiple address spaces. These address spaces are selected by way of
control bits in the Segment register resulting in three I/O effective address operating modes
as follows:

1. Standard Bus Mode: This I/O effective address mode provides for 32-bit addressing of
the I/O bus. In this mode the Segment register control bits are in the following state, T =
1,1=0,and M =0.

The 32 bit bus memory address is formed by concatenating 28 bits of the effective
address with the 4 extent (EXT) bits from the Segment register. This partitions the bus
memory device space into 16 pages of 256M bytes each (4 G bytes of total address
space), and separate Segment registers must be used to address across pages. If
consecutive Segment registers are used when crossing bus memory pages, the
addressing is continuous, and appears as a single linear address space. The 16 bit IO
device address is taken directly from the effective address. To address a device within
the 64K byte Micro Channel I/O space, effective address bits 4 through 15 and Segment
register bits 28 through 31 must all be set to a value of 0. Effective addresses are not
translated, but are used as real addresses into the I/0O space.

For a pictorial representation of this addressing mode, see Figure 35 on page 4-26.

2. RT Compatibility Mode: This addressing mode assists in the simulation of the RT system
allowing for 24 bit addressing. In this mode the Segment register control bits are in the
following state, T=1,1=0,M =1, and EXT = x.

In this mode, 16M bytes of bus memory is selected using an effective address of X'x4
xxxx xx’, and 64K bytes of bus I/O using X'x0 00 xx xx'. Any other effective addressing
range other than these two results in a Data Storage interrupt and an invalid operation
error status is set in the Channel Status register (CSR) 15. This mode maintains
compatibility with the 1/O structure of the RT system and provides the ability to replace an
RT object code Load or Store instruction with its RISC System/6000 equivalent, and the
simulator does not have to worry about differences in the effective address format.

In this mode, the hardware sets the effective address high order 8 bits (A0 to A7) to a
value of 0 before placing the address on the bus. Note that with this definition of the bus,
no bus memory devices can reside in the address range from 0 to 64K bytes. Also note
that in the RT compatibility mode, no bus memory devices can reside in the lower 64 KB
range of the bus memory address space (64M bytes to 64M bytes + 64 K bytes). If the
Segment register X'F’ is used to provide access to the IOCC address spaces, all user
Load and Store instruction effective addresses operate the same as those in the RT
system.

For a pictorial representation of this addressing mode, see Figure 36 on page 4-26.

3. 10CC Control Mode: This addressing mode provides for access to the IOCC facilities. In
this mode the segment register control bits are in the following state, T=1,1=1, M =x,
and EXT = x.

Included in this address space are IOCC registers, the tag and TCW tables, the system
registers and Nonvolatile Random Access Memory (NVRAM). Note that some references
to the IOCC control space are on word boundaries only and require a data length of 4
bytes, for example the tag and TCW tables, and the IOCC registers.

4-24 General Information Manual

The IOCC control space is privileged and is only accessible when the Segment register
privileged bit is set to a value of 0. Attempts to access this address space when the
Segment register privileged bit is set to a value of 1 causes a Data Storage interrupt to
be posted and and invalid operation error status to be set in the Channel Status register
15. Attempts to access undefined effective addresses in the IOCC control address space
also results in a Data Storage interrupt (invalid operation).

For a pictorial representation of this addressing mode, see Figure 37 on page 4-27.

Although bus memory and bus I/O are disjointed in PC products, the RISC System/6000 unit
maps these two address spaces together. Since bus 1/0O only requires 64K bytes of
addressing, this address space easily maps into the low addresses of the (4G bytes) bus
memory address space. The architecture of PC products is such that no bus memory feature
cards may be hardwired in the address range of 0 to 64K bytes, and no address conflicts
exist. Note that the 64K bytes of Micro Channel I/O space can be accessed when utilizing
each of the three effective address operating modes as illustrated in Figure 34. The values
for the T, | and M bits for each of the three I/O effective address operating modes are
described previously and are illustrated in Figure 34.

System Address (T = 0) I/0 Address (T = 1, BUID = IOCC)
]]
[1 | Standard Bus RT Compatibility 10CC Control |
Mode Mode Mode
I=X,M=X I1=0,M=0 I=0,M=1 I=1,M=X
256M [256M I 256M 256M
_ _ N _
192M — 192M — 192M — 192M —
- - - -
[Sys | Bus N B
128M ™ Mem 128M — Mem 128M B 128M -
= = 16 =
~ — Bus Memj| —
64M [— 64M [~ 64M - 0 64M —
[| I | [_
0 0 0 0
64K 1/0
Space

Figure 34. Addressing Model

System I/O Structure 4-25

Figures 35, 36, and 37 summarize the RISC System/6000 effective addresses. Effective
addresses are obtained from the processor general purpose registers and are under user
control. If a bus memory page is mapped to system memory, the bus address is translated to
the address of the mapped system memory page.

Standard Bus Mode I1=z0,M=0
Bus I/0 Address B
000000000000 (Seg Reg bits 28 to 31 = 0) .,33
JllllllllllIIIIIIIIILLIII
Segd (0000 00000000Xx00000001110O0|DLY| Time
Reg I | Delay
| T T N T O VO O N O T T T O T O (N N I O
Bus Memory Address Bus
oo b b b1 1| Memory
0 34 78 15 16 23 24 31
Figure 35. User Effective Addresses: Standard Bus Mode
RT Compatibility Mode I=0,M=1
000000000000 Bus I/O Address Bus
||||||||||||||||||I|||l|||/o
Seg 10000 00000000x000000011100|DLY| Time
Reg | l Delay
| N T N A T T T N Y T T N T I O O O D |
0100 Bus Memory Address Bus
o b Lttt | Memory
0 34 78 15 16 23 24 31

Figure 36. User Effective Addresses: RT Compatibility Mode

4-26 General Information Manual

10CC Addressing I=1,M=X

Seg [0000[00000000 1O Device Address Bus

R:g B 1NN 1 1 N N T N T T T T T N Y I I | II/o
0100 2 looooooox/locc |oo| tocc
L)1 ISlot#] 411311 ‘?df”Fﬁsn 1 Registers

Sys Reg | System
01000000/00000000|11 Address | Registers
| O T T T | N T T T T Y I Y Y |
100000000{ TagTable Address [0 0| Tag Table

I_lllllllllllllllllll

101 NVRAM Address NVRAM
Lidl1 |||||||||||||||||1]
0000{11 TCW Number 0 0| TCW Table
||||||||||||||||||||||||||]
0 34 78 15 16 23 24 31
10CC Commands I=1,M=X
Seg (0000/00000000[X000000011100|Dly [Time
Reg Delay
| L1 1111 1 111 L1
01 00000000{10001 10 0| Return From
| Interrupt
it
00110000 Lock
| L1 1 L1111
0 0| Reg # 0110100 0| Invalidate
Ll Lli11l
Enable/Disable
0 Of Chnl # 01110000 Channel (Arb Lvl)
Lit 1111
1111 Flush DMA
0 000 Slave Buffer
| | 1 | L1l | I I T I | L1111 1
RC|Ctl|1 1 TCW Number Fw| Flush Bus
Master Buffer
||1|||||||||||||||1||| 1 | and Replace RC
0 34 78 15 16 23 24 31

Figure 37. I0CC Effective Addresses

I/0 Segment Register Definition
Segment registers provide access authority to the I/O bus for I/O Load and Store
instructions. They are protected resources within the system and generally cannot be
changed except by the system control program. Some personalizations of /O bus operations
are provided to match unique device (or I/O bus) characteristics. This personalization is
controlled by control bits in the Segment registers shown in Figure 38.

System 1/O Structure 4-27

Cc
t
TK| - BUID |f - IMB |-| EXT
0 3/4 7,8 11|12] 15,16 23|24 26| |28 31
1||||||||1[||11||||| L1l
I |
—I-_— Reserved Reserved Kgdarg:s
Privileged Key Address Bypass
Memory/10 Increment RT Compatibility Select
Address Check I0CC Select

Figure 38. I/0O Segment Register

The following Segment register definition applies only to IOCC and I/O bus applications. Bits
0 and 1 are system control bits defining system state. Bits 4 to 11 select system facilities
such as the IOCC. Bits 12, 13, 25 and 26 mediate IOCC operations, while bit 24 provides
access to IOCC facilities. Bits 2, 3,14 to 23 and bit 27 are reserved, and bits 28 to 31 are
used as an address extension for the I/0O bus address. A complete description of all fields in
the Segment register is given in the following list:

Bits Description

0 Type: This bit defines whether a Load or Store instruction is targeted to
system memory or the 1/0O address spaces. System memory is selected
when this bit is set to a value of 0, and I/O is selected when this bit is set to
a value of 1. The definition of the Segment register, illustrated in Figure 38,
is only valid for I/O operations, that is when bit 0 is set to a value of 1, and
the BUID selects the IOCC.

1 Privileged Key: This bit is generally set to a value of 0 when the operating
system is in control and set to a value of 1 when in the user mode.

2-3 Reserved: These bits are reserved and must be set to a value of 0.

4-11 Bus Unit Identification (BUID): The BUID field is decoded to select the
IOCC. Addresses between X'20 — 23’ are assigned to the IOCC. Hardware
strapping options on the IOCC allow specification of its exact BUID field
value on some implementations. Implementations on machines that support
a single IOCC must have a BUID of X'20'.

12 Address Check: This bit provides for conditional checking of I/O addresses
during Load and Store instructions. The Micro Channel provides for a
positive address response by device activation of the ‘cd sfdbk’ line. If this
line is not activated, the device address is invalid. See the “Invalid Address”
section on page 4-21. An 1/O Load or Store instruction that does not receive
a positive address response is allowed to proceed when bit 12 in the
Segment register is set to a value of 0. A command issued to an invalid
device address when bit 12 is set to a value of 1 causes a Data Storage
interrupt to be posted and a card selected feedback error code to be set in
Channel Status register 15. Figure 39 summarizes all the combinations of
bit 12 and the address response by an I/O board.

4-28 General Information Manual

Bit 12
l— J— Address Response (Card Select Feedback)

Command Can Proceed

0
0 Command Can Proceed
1
1

0

1

0 | Data Storage Interrupt
1 | Command Can Proceed

Figure 39. Bit 12 and Address Response Definition

13

14-23
24
25

26

27
28-31

Address Increment: This bit controls incrementing of the I/O bus address if a
Load or Store instruction is issued to a bus 1/0O device with a physical data
width less than that of the instruction. The IOCC breaks the transfer into
multiple I/O bus cycles and this bit controls whether the address is
incremented between the 1/0 bus cycles. See the “Dynamic Bus Sizing”
section on page 4-19 for a description of this function. Addresses are
incremented when bit 13 is set to a value of 1 and are not incremented if bit
13 is set to a value of 0. The address increment function is controllable on a
device—-by—device basis. In the case of a Load or Store instruction to bus
memory, bit 13 is ignored and the bus addresses are always incremented.
The Micro Channel architecture specifies that all addresses are to be
incremented when performing dynamic bus sizing. This bit should be set to
a value of 1 when working with devices designed to this architecture.
Caution should be used in using string operations, as certain devices can
support multicycle operations up to a particular word size, but not to exceed
that word size. Consult the particular device specifications for details.

Reserved: These bits are reserved and must be set to a value of 0.
I0CC Select: This bit selects the IOCC control mode.

RT Compatibility Select: This bit selects the RT Compatibility Mode when
the IOCC Select (1) bit = 0.

Bypass: When this bit is set to a value of 1, the IOCC bypasses TCW
checking and memory mapping and only direct bus access is possible.

When this bit is set to a value of 0, the extended functions of authority
checking, access validation, and system consistency are invoked.

This bit is ignored if | equals 1.
Reserved: This bit is reserved and must be set to a value of 0.

Bus Memory Extent: This field is concatenated with effective address bits 4
to 31, to form a 32-bit I/O bus address when working in standard bus mode.
It is gated to address bits ‘A31’ to ‘A28’ on the I/O bus.

Address and Data Alignment
Data for Load and Store instructions is normally right—justified in the processor register.
One-byte operands are located in byte 3. Two—byte operands are located in bytes 2 and 3.
String operations are an exception and are left—justified in the starting processor register.

Target I/0O device addresses should normally be aligned on boundaries equal to the device
width. This maintains optimal performance when performing Load and Store instructions. If
this rule is not observed, the IOCC performs the operation using multiple (narrower) I/O bus
cycles. This can take up to four times longer to complete the Load or Store operation. Refer
to “Partial Transter Cycles” on page 4-21 for additional details.

System I/O Structure 4-29

String Operations
String operations allow the issuance of Load or Store instructions with data widths from 1 to
128 bytes. The bus protocol used in the data transfer is dependent on the I/O device. String
operations are applicable to any addressable device on the Micro Channel and to the tag
tables, TCW tables, and to the NVRAM within the IOCC address space. However, for some
I/0 devices, applicability of string operations may be limited by the device itself.

String operations issued to normal PC devices are performed using standard bus protocols.
Multiple bus cycles are issued, using dynamic bus sizing, until the transfer length is satisfied.
These multiple cycles operate under preemptive burst arbitration rules and Load or Store
string instructions will be momentarily suspended if any I/0O device requests DMA slave or
bus master operation.

String operations issued to devices supporting the streaming data transfer protocol use that
protocol where appropriate. This protocol operates under non—preemptive burst arbitration
rules. In the case of string operations, however, the amount of time from the preempt
request by a device until the IOCC releases the bus is controlled by the Burst Control bits in
the IOCC Configuration register (see “IOCC Configuration Register” on page 4-71 and
“Implementation Details” on page 4-80).

It is generally recommended that the programmer writing an I/O device driver be aware of
the physical characteristics of the target device when using string operations. One should be
aware of the effects of dynamic bus sizing and partial transfers, since these operations
require more time to complete. Refer to “Dynamic Bus Sizing” on page 4-19 and “Partial
Transfer Cycles” on page 4-21 for details of these functions. Slower than expected I/0
instruction processing can have detrimental effects on system performance. For example,
the system processor can not accept an interrupt while I/O Load or Store instructions are in
process. Both dynamic bus sizing and unaligned moves (partial transfers) take longer to
complete, adding latency to system interrupt service. Although most devices are reasonably
fast and do not cause any problems, this latency can be large if extended string operations
are performed against slow devices.

Load and Store Access Authority Checking
I/0 Load and Store instructions are subject to access authority checking. Separate
mechanisms are used for checking bus /O and bus memory, as illustrated in Figure 40. Bus
I/O accesses are checked by way of a base and bounds (range) check, while memory
accesses are verified by way of a storage key in the TCW table. If the page is mapped to
system memory, write authority is also verified. Load and Store instructions to bus memory
or (shared) system memory are treated like a bus master operating on channel 15 and use
10CC registers associated with that channel.

4-30 General Information Manual

Low Limit High Limit Register

()Lll||||7|8|||1||1|51|6|||||2|3|2‘|‘1|L||3|1 40 00 40

16 16

Segment Key =0
Time Delay Command

1/0 Bus —LTEQ
Address
GTEQ|And| Or |— Access
OK
Bus /O Op —
TCW Table
.................... Bypass =1 —{and
Buffer #|-| Key | Ctri Bus Memory
16 |20 23| |2527/28 31 Op |
T T T Sys Mem and And
3 1-‘: Write Enableq oy —
Read - And
| _|An
SEL
8:1—
Channel Status register 15 8
Status - - Authority Mask - Register
0| 11341 I 178|||||:1|51|6||||:2|32i‘1||||3|1 4F 00 60

Figure 40. Load and Store Access Authority Checking

Operations to bus I/0 have fine address granularities and are verified by way of address
range checking. Address ranges are controlled by the operating system and restrict access
of user programs to authorized devices. Address range information is considered part of the
user (program) context and is loaded into an IOCC register by the operating system. This
register defines a contiguous range of authorized /O addresses with a minimum address
granularity of 1 byte. Invalid access attempts cause a Data Storage interrupt to be posted
and a limit check error code to be set in Channel Status register 15. This interrupt is precise
for all I/O Load and Store instructions. Address range checking is suspended if the segment
register privileged key is set to a value of 0, or if a time delay command is issued. Refer to
“Time Delay Command” on page 4-59 for details of this command. Also note that if the
address increment is off (bit 13 of the I/O Segment register equals 0), only the starting
address is tested. If address increment is on, the full length of the access must be within the
limit bounds.

Operations to bus memory have coarser address granularities and are protected on page
boundaries. Each page in the bus memory address space has a 3-bit storage protect key
associated with the page that defines the protection class of the page. An 8-bit authority
mask in Channel Status register 15 specifies the key values (and by inference, pages) that
this program is authorized to access. This mechanism is identical to the memory protect

System 1/O Structure 4-31

mechanism used for bus master devices. Memory protect keys are kept in the TCW table
and are described in the “Translation, Protection, and TCW Table” section on page 4-34.
The mask information is considered part of the user (program) context and is loaded by the
operating system.

Bus memory access checking is suspended if the segment register privileged key (K) is set
to a value of 0 or if the bypass control bit (B) is set to a value of 1 in the Segment register.
Refer to the “I/O Segment Register Definition” section on page 4-27 for details.

The TCW table and IOCC registers containing limit check information and authority masks
are protected system resources and are only accessible when the segment register
privileged key is set to a value of 0. Attempts to access these facilities when the privileged
key is set to 1 causes a Data Storage interrupt to be posted and invalid operation status to
be set in Channel Status register 15.

Load and Store Error Conditions
Error conditions that arise in Load and Store instructions include bus errors, programming
errors, and hardware errors. The specific cause of the error is determined by examining the
error code contained in Channel Status register 15. On a memory error, /0O bus (page)
address bits A31 to A6 are placed in bits 4 to 31 of this register. This assists in determining
the cause of error. Figure 41 illustrates the resultant register contents.

Processor Effective Address

Se
Reg#
L1

0000010011110000000001100000

34]I|7|8IIJIIl15|1lelllllg3l2flllIlq1

Channel Status register 15

Status [X X I/0 Bus Address
0 3 678 15,16 23124 31
lLIlIlllllllllllllllllllllll|
/0 Bus
00 g 0| OK ; . Address Bits
1| Invalid Operation A31 to A6
10 -
1 1! Limit Check
0 1100 -
0 1| Authority Error
1 0| Page Fauit
11 -
1 0|0 o]/ Channel Check
0 1| Data Parity Error
1 0| 1O Bus Protocol Error
1 1| Card Selected Feedback Error
1 1/0 o]/ ECCError
0 1| System Address Error
1 0] TCW Reload Error
1 1] 10CC Error

Figure 41. Load And Store Error Status

4-32 General Information Manual

Load and Store instruction errors are synchronous and generate a Data Storage interrupt.
No device should asynchronously report errors by activating the ‘chck’ signal. However, if
this occurs, the error is not reported here, but is reported as an miscellaneous interrupt as
described in the “I/O Interrupts” section on page 4-65. Refer to “Exception Reporting and
Handling on page 4-80 for more information. Load and store error codes are summarized as

follows:
Error Code
0001

0011

0101

0110

1000

1001

1010

1011

1100

1101

Description

Invalid Operation: This error code is set if an attempt is made to access a
facility or device not authorized by the system supervisor. It is also set if an
attempt is made to access a bus address for which a TCW does not exist
(except when the bypass bit is on).

Limit Check: This error code is set if an attempt is made to access a bus I/0
device not within the address range established by the limit registers.

Authority Error: This error code is set if an attempt is made to access a bus
or system memory page and the storage key in the TCW does not match
the authority mask in Channel Status register 15. It can also be set if a write
operation is attempted to a read-only page in system memory.

Page Fault: This error code is set if an attempt is made to access a page
with TCW bits 30 and 31 set to B‘01'. This should occur in normal operation.

Channel Check: This error code is set if a device responds with a channel
check indication. For example, a device might respond with a channel check
for a write operation to that device where there is bad parity on the data or
for other device detected errors during an operation to that device. This
error cannot be reported if a card selected feedback error is reported (card
selected feedback error takes precedence over channel check error).

Data Parity: This error code is set if the IOCC detects bad parity on a Load
operation from an I/O device (However, in the case of a Load operation, a
channel check error takes precedence over a data parity error). This error
code is also set if the IOCC detects bad data parity or an uncorrectable
ECC error during a load of a TCW.

I/0 Bus Protocol Error: This error code is set if a Micro Channel protocol
error has been detected (for example, a card pulls the ‘cd ds 32’ line on the
Micro Channel but does not pull the ‘cd ds 16’ line at the same time).

Card Selected Feedback Error: This error code is set if, after a device is
addressed, it does not respond by driving the ‘cd sfdbk’ line, and the
address check bit is on in the I/O Segment register. Conditions which could
cause this to occur are if the device is not present, if the device is not
seated in the card slot properly, if the device is not enabled or if the device
detects bad address parity and does not respond to that address. This error
code takes precedence over a channel check.

Error Correcting Code (ECC) Error: This error code is set if the IOCC
received an uncorrectable ECC error response from the internal system bus
during a Load or Store instruction that is mapped to system memory (this is
similar to a bus master operation).

System Address Error: This error code is set if the IOCC sends an address
over the system bus and does not receive an address acknowledgement.

System l/O Structure 4-33

1110 TCW Reload Error: This error code is set if the IOCC detects a parity or
uncorrectable ECC error during an indirect TCW reload (with the bypass bit
off).

1111 IOCC Error: This error code is set if the IOCC detects an internal error
during a Load or Store instruction. This error only occurs in a TCW or tag
table access or flush command. All other IOCC errors result in a check
stop.

No provision is made to capture status for multiple errors. If this should occur, Channel
Status register 15 contains error information relating to the first error. Any subsequent load
or store errors will result in Data Storage interrupts, but do not change any condition status
in the Channel Status register.

Load and Store instructions with the bypass bit off and with a previous error set in the CSR
results in a Data Storage interrupt. Load and Store instructions with the bypass bit on and
with a previous error set in the CSR are processed.

Channel 15 is treated differently than the other channels following an error. Channel 15
always remains enabled, or a deadlock situation would exist. All other channels are disabled
following an error.

Synchronous errors are precise, and a retry may be attempted as part of the error recovery.
Certain other errors associated with an I/O Load or Store instruction may not be
synchronous, and are not reflected in this register. An example of these errors include
delayed channel check response (see “Exception Reporting and Handling” on page 4-80)
and a bus timeout condition (see “Bus Timeout” on page 4-22 for more information).

I/O bus errors such as address or data parity errors can be caused by hardware
malfunctions or transient electrical noise. Refer to “Exception Reporting and Handling” on
page 4-80 for more information.

Translation, Protection, and the TCW Table
The IOCC provides address translation for all Load, Store, bus master and DMA slave
operations to system memory and access protection for all Load, Store and bus master
operations to system memory. Access protection is also provided for all Load and Store
operations to bus 1/0 or bus memory. Translation allows the organizing of I/O buffers within
the context of the virtual page map and assists in eliminating a subsequent move operation.
Protection insulates the system from non—well behaved devices or programs.

Bus memory protection or system memory translate and protection information is contained
in a TCW table. Each TCW entry identifies whether that page is mapped to system memory.
If a page is mapped, the TCW entry also contains mapping and access authority information.
This table is an IOCC analogue of the system translation tables, and is generally managed
in concert with those tables. Address translation and protection mechanisms apply to
4K-byte memory pages, matching the system page size.

Load or Store operation protection of bus I/O is by a base and bounds address check. The
high— and low-limit addresses are contained in IOCC registers. Refer to “Load and Store
Access Authority Checking” on page 4-30 for a detailed description.

The TCW table organization is illustrated in Figure 42. The TCW table has a one-to—one
correspondence with the first n pages of I/0O bus memory addresses. The first 64K bytes of
bus memory can never exist since bus I/O is mapped at those addresses, and the first 16
TCWs should be initialized as invalid, that is, set to page fault. Thus, the first valid TCW
entry maps I/O bus addresses X‘00 01 00 00’ to X'00 01 OF FF’; the second entry controls
mapping of addresses X'00 01 10 00’ to X'00 01 1F FF’, and so on.

4-34 General Information Manual

The number of bus memory addresses that can be mapped depends on how much TCW
Random Access Memory (RAM) is supplied by the IOCC. This amount is product dependent
and varies from a minimum of 96 K bytes (maps 96M bytes of bus memory) to a maximum
of 4 M bytes (maps the full 4G bytes bus memory space). A field in the IOCC Configuration
register is used to specify the amount of TCW RAM supplied. Refer to “lOCC Configuration
Register” section on page 4-71 for details. Access to the TCW table entries must be 4-byte
aligned.

If the bus memory I/O address is mapped to system memory, the Real Page Number (RPN)
in the TCW is used to access system memory. Otherwise, the address is directly applied to
the I/O bus.

The TCW table is a protected system resource located in the IOCC address space between
addresses X'0 CO 00 00’ and X‘'0 FF FF FF'. It is only accessible to Load and Store
instructions from the system processor when the segment register privileged key is set to a
value of 0. Attempts to access this table when the privileged key is set to a value of 1 causes
a Data Storage interrupt to be posted and invalid operation error status to be set in Channel
Status register 15.

Processor Effective Address

Seg
Reg #|RC|Ctrl| 1 1 TCW Number FW
3|4 718 (10 5| 23|24 31
T A T A A [N O S I O
14 ’1L|—— Replace
Mask Flush ‘
TCW Table
|
RPN Bfr# |-| Key |RC|Ctri
O v v N8 1578 120, 23] 12D 77|28 | 3

Ref/Chg —:I- I

Bus Memory | o
Page Fault |0
1

1

Sys Memory Read-Only
Sys Memory Read-Write

- 0O -0

Figure 42. TCW Table

TCW's can be used for both bus master and DMA slave operations. A detailed description of
a TCW entry is described as follows: (Some fields described in the following section may be
implementation—dependent as noted.)

Bits Description

0-19 Real Page Number: This field in the TCW contains the real page address
that the bus address is mapped to in system memory.

System I/O Structure 4-35

20-23 Buffer Number: On buffered implementations, this field contains a 4-bit
number specifying which of 16 buffers can be used by the IOCC when
operating with this page. Although any buffer number may generally be
assigned to any page, caution should be exercised since buffer sharing is
not possible with DMA slave channels when tags are used. Personalization
of a channel for a DMA slave operation causes that channel to use the
same buffer number. On implementations not buffered, these bits are
indeterminate.

24 Reserved and must be set to a value of 0.

25-27 Page Protect Key: This field contains a 3-bit key specifying the protection
class of the page. Memory pages are assigned to one of eight protection
classes. When a device initially arbitrates for the bus, an 8-bit access
authority mask is obtained from the Channel Status register associated with
that device. When a page is accessed, the key obtained from the TCW
specifies the mask bit to be tested. If the selected bit is set to a value of 1,
the access is permitted. Mask information for I/O Load and Store
instructions are contained in Channel Status register 15. Load or store
references to a bus memory page without the appropriate authority cause a
Data Storage interrupt and set an access authority error code in Channel
Status register 15. Refer to “Load and Store Access Authority Checking” on
page 4-30 for details. Similarly, invalid access attempts by a bus master
device terminate the operation for this device and set an access authority
error code in the Channel Status register associated with the device. Refer
to “Bus Master Access Authority Checking” on page 4-44 for details.

28-29 Reference and Change (RC): These bits are equivalent to the RC bits in the
system page frame table. Bus master transfers and shared memory Load
and Store instructions do not modify the page frame table. As an aid in page
management, the IOCC provides the reference and change history of all of
its pages. This can be used to improve system performance in paging
operations. Whenever a page is accessed, the IOCC sets its associated
reference bit in the TCW table to a value of 1. Similarly, whenever a page is
written, the I0CC sets both the reference and change bits to a value of 1.
The B‘01’ code point is never naturally set by hardware and is only set by
software to assist in page management. Note that these bits only apply to
pages mapped to system memory.

30-31 Page Mapping and Control: These bits define page mapping and read—write
authority. They are coded as shown in Figure 43.

30 31

0 0| Bus Memory
0 1| Page Fault (No Access)

1 [W System Memory

Figure 43. Page Mapping and Control Bits

Code points B‘0X’ signify that the page is not mapped to system memory. Code point B‘00’
should be set to allow accesses to memory devices on the I/O bus. Code point B‘01’ should
be set when a page is not mapped and no device is present at that address. It causes a
Data Storage interrupt if the operation is a load or a store, and a synchronous channel check
response if the operation is a bus master transfer. Both of these actions are interpreted as
an I/O bus page fault. Bus master devices designed to take advantage of this function are
expected to halt and wait for the system to take corrective action.

4-36 General Information Manual

Code point B‘1X’ signifies that the page is mapped to system memory. For Programmed 1/O
(PIO) operations, it causes the IOCC to redirect references to system memory using the
TCW mechanism. Note that PIO to system memory using the TCW mechanism is
implementation dependent. (See “Implementation Details” on page 4-80.) Bit 27 of the IOCC
Configuration register is set at a value of 0 if PIO to system memory is supported. If not
supported (Bit 27 equals 1), a PIO Load and Store instruction will result in a Data Storage
interrupt.

Bus master operations are mapped by channel and enabled as defined by bits 2 and 3 of the
status field of the Channel Status register. Note that bit 30 should match bit 2 of the status
field of the Channel Status register; otherwise, it is treated as a page fault error condition as
described in the preceeding text.

Bit 31 controls write authority; if set to a value of 1, the page can be written. Note that the K
bit (bit 1, or the Privileged bit) bit in the Segment register overrides bit 31, that is, privileged
access is not limited by the Read—Write or Read—Only bit.

Bus Master
Bus master transfers refer to data transfers between a bus master /0 device and memory
where the bus master device supplies the memory addresses and controls all aspects of the
data transfer.

The RISC System/6000 I/O architecture supports both buffered and unbuffered bus master
transfers. In the buffered mode, I/O buffers are provided as a performance feature and may
also include caching of the current TCW table entry in a buffer control register. The following
sections include descriptions of both the buffered and unbuffered bus master operations.
The mode of operation is implementation specific (See “IOCC Configuration Register” on
page 4-71 and “Implementation Details” on page 4-80).

Buffered Bus Master
Figure 44 illustrates bus master operations to system memory. Sequential data transfers are
transferred on IOCC buffer boundaries, and the IOCC provides a set of 64—byte data buffers.
The actual bus master transfer cycles operate only against these buffers.

To initiate bus master transfers, the system first loads the TCW table with the appropriate
mapping information. When the TCW mapping is complete, the channel can be initialized to
run by loading the control registers with a set of values starting the demand reload process.
The easiest way to do this is to load the control registers with the following:

1. Channel Status register — B'00me 0100 0000 1111 auth auth 0000 0000’
2. Cache Buffer register 4 — B‘0000 0000 0000 0000 0000 0000 0000 0000’
3. Cache Status register 8 - B‘0010 0000 0000 0000 0000 0000 0000 0000’

These values cause the IOCC to reload the control registers from the TCW table on the first
access attempt by the 1/0 device.

Following device arbitration, the appropriate Channel Status register is selected. The buffer
number field in that register is then used to select the Buffer Control registers used by this
device. The I/0O bus address is compared with the address contained in the Buffer Control
register. If a match occurs, the associated buffer is correct, and the operation can proceed
against the buffer.

If the I/O bus address does not match the address contained in the Buffer Control register, a
TCW access is required. The I/O bus address is used to select the appropriate TCW, and
the buffer number field obtained is used to select the appropriate set of Buffer Control
registers. These registers are then tested to see if the I/O address matches. If a match

System 1/O Structure 4-37

occurs, the contents of the buffer are valid and the operation can proceed. If not, the buffer
needs to be loaded.

Prior to loading of the buffer, the current buffer is checked to see if it can be cast out. A bit in
the Buffer Control register indicates whether that buffer is dirty. If so, the buffer is written
back to system memory prior to access of the new buffer. Following access of a new buffer,
the 1/0 bus address and new TCW are written into the Buffer Control registers.

The I0CC must perform a read-modify-write sequence to guarantee that the buffer space,
which has not been written to, does not change the data in system memory when that buffer
is written to memory.

1/0 Bus Address /0 Bus Data
lHIIH'IIHHI'IIIIIIIIHIHII lIIIIII'HIIIllllllllllllllllll

20 ls 6 132
v

[.éo.n;;;;r; To Last Access | -
o Sixteen 64-Byte Buffers
TCW Table I
20 112
System
Ctrl _—:l Memory

Figure 44. Buffered Bus Master Data Transfer Operation

As illustrated in Figure 45, each bus master channel is dynamically associated with two
32-bit controlling registers. These registers are also used for DMA slave operations but are
defined differently when personalized for bus master data transfer operations.

4-38 General Information Manual

Processor Effective Address

Seg
Reg # 00000100|/Chni#|{000000000110/0000
11134III7IBI|]11FI151|61IIll%alzflI L1
e —la
Processor Effective Address
Se
Reg# 00000100 Bfr# {000000000110{rr00
oII 134II|7|8II11 1?!]51I6II [| |?3|2f' | Il%1
T[4 s
Buffer Control Registers
|
alblell - TCW Number Buffer Line}e
T 0 3 51678 , 18 B3
' 4 RPN Bfr# |-| Key|RC|Ctri}e
M0 I8 1518, 19120, 23] 2P 27128 | 31

T
1
L]
.
L]
.
L]
]
L]
]
]
]
(]
.
]
(]
L]
L]
.
1
1
L]

&4

|
Bus 0 |Status [01] - Buffer #|Authority Mask -
Arb - -»0 34567|8 11|12 15|16 23|24 31
Lvi | T O T TR T O O O Y N T T N T A D T T I 1 T |
v I
0 0/|ME| Channel Match To
P N| Control Storage Key
0 1j0 0 -
0 1| Authority Error
1 0| Page Fault
1 1] TCW Extent
1 olo o| VO Bus Protocol Error
0 1| Data Parity Error
1 0| Address Parity Error
1 1] Card Selected Feedback Error
1 1|0 o| ECCError
0 1| System Address Error
1 o| TCW Reload Error
1 1] 10CC Error

Figure 45. Buffered Bus Master Control Registers

Each of the 16 channels has its own Channel Status register. This register contains channel
status, some personalization controls, a buffer pointer, and an 8-bit memory access
authority mask.

The Buffer Control registers are associated with a specific buffer and can be dynamically
coupled to any channel. These registers cache the TCW associated with the buffer and

System 1/O Structure 4-39

provide faster operation for sequential accesses. Selection of the Buffer and Buffer Control
registers to be used is determined by the buffer number field in the TCW.

Register fields are described in the following section:

¢ Register 0 — Channel Status register

Bits
0-3

6-11
12-15

16-23

24-31

Description

Control and Status: This field contains channel control and status, and
may be set by both the control program or the IOCC. Values between
X'0-3’ are control channel operations while values between X'04-15’ are
error codes. Refer to “Bus Master Error Conditions” on page 4-45 for a
description of bus master error conditions. When bits 0 to 1 are B‘'00’,
Bits 2 to 3 provide control of channel operations. Bit 2 is set by a Store
instruction to the appropriate Channel Status register and indicates
whether the channel is mapped (Bit 2 equals 1), or not-mapped (Bit 2
equals 0). Bit 3 is controlled by channel enable and disable commands.
Refer to “Enable and Disable Commands” on page 4-62 for more
information on the enable and disable commands.

DMA Slave Flag: This bit is set to a value of 0 using an 1/O Store
instruction to personalize a channel for bus master data transfer
operation. The IOCC never changes the value of this bit.

Reserved: This bit is reserved and must be set to a value of 1.
Reserved: These bits are reserved and must be set to a value of 0.

Buffer Number: This field is loaded from TCW bits 20 to 23 and is used
as an indirect address to select the correct 64—-byte buffer and Buffer
Control registers.

Authority Mask: This field defines the memory access authority granted to
this channel. Each bit corresponds to one memory protection class,
where bit 0 corresponds to class 0 (TCW key 0), bit 1 corresponds to
class 1 (TCW key 1), and so forth.

Reserved: These bits are reserved and must be set to a value of 0.

o Register 4 — Buffer Control

This register contains a copy of the current TCW associated with this buffer. This register
functions as a TCW cache and improves performance of bus master operations and Load
and Store instructions. Refer to “Translation, Protection and TCW Table” on page 4-34 for
a description of the bit fields in this register.

Note: PIO’s with the bypass bit off may alter this register and therefore software should use
a buffer number which is not being used (X'F’ recommended).

4-40 General Information Manual

o Register 8 — Buffer Control

This register contains a copy of the /O bus address associated with the TCW register
described in the preceeding text. Whenever a bus master operation or a Load and Store
instruction references a memory object, the I/0 bus address is first checked against this
register to see if the object is contained in the associated buffer. The bit usage follows:

Bits
0

3-5
6-25

26-31

Description

Buffer Dirty: This bit indicates that the buffer associated with this channel
is dirty, that is, has been written to and therefore contains data which is
inconsistent with data in system memory. This bit is reset by the IOCC
when the buffer is flushed and is set when the first byte is written to the
buffer. Though hardware normally sets and resets this bit, software has
both read and write access.

Buftered: This bit indicates that the buffer contains data which has been
prefetched. It is set upon initial prefetching of the buffer and is reset at
the time the buffer is flushed to system memory. Though hardware
normally sets and resets this bit, software has both read and write
access. When the operation completes and the device interrupts, the
buffer must be flushed to system memory by software using the buffer
flush command.

Buffer Invalidate: This bit is used to indicate that the buffer has been
invalidated. When this bit is set to a value of 1 it forces a prefetch from
system memory to this buffer. The bit is reset to a value of 0 at the time
the buffer is prefetched from system memory and set to a value of 1
when the buffer is flushed to system memory. Though hardware normally
sets and resets this bit, software has both read and write access. When
the invalidate bit is set to a value of 1, it overrides the buffer dirty and the
buffer prefetched bits.

Reserved: These bits are reserved and must be set to a value of 0.

I/0 Bus Address A31 to A12: This field is used by the IOCC to detect
when a page changes. It contains a copy of the I/0 bus address that
caused the last TCW to be fetched. This field is referred to on a
cycle-by—cycle basis to determine if the current TCW in register 4 is
valid. If a page is changed, that is, address bits A31 to A12 change, the
IOCC reaccesses the TCW table.

1/0O Bus Address A11 to A6: This field is used by the IOCC to detect when
a buffer changes. It contains a copy of the 1/0 bus address relating to the
current 64—byte I/0 buffer within the 4 K-byte system page. If a bus
master changes buffers within the 4 K-byte system page, that is, address
bits A11 to A6 change, the IOCC accesses system memory as
appropriate to make a new 64-byte I/0 buffer available.

System I/O Structure 4-41

Unbuffered Bus Master
Figure 46 illustrates the unbutfered bus master operations to system memory. Note that the

64-byte IOCC buffers are not shown as with the buffered mode previously described. Also
not shown is the caching of the current TCW table entry. Figure 46 assumes direct access of
the TCW table entry on each I/O access by the bus master.

1/0 Bus Address /0 Bus Data
IIlllllIlllllllllllllll]llllllI IIIHIIIIIIIIII'IIIIIII'HIIIIl
20 12 132

TCW Entry
\ 4
20 112
System
Ctrl Memory
—»
>

Figure 46. Unbuffered Bus Master Data Transfer Operation

The Bus Master Channel Status register for the unbuffered case is illustrated in Figure 47.
Each of the 16 channels has its own Channel Status register. This register contains status,

some personalization controls, and an 8-bit memory access authority mask.

4-42 General Information Manual

Processor Effective Address

Se
Reg# 00000100 Chnl ([000000000110/0000
°|] |34|] |7|8| |11 1?| 151161 [?31244| L1 1:11
~[a
Channel Status Register
|] |] |
Bus 0 |Status|0 1 - Authority Mask -
Arb - -™0 3|4 5 7|8 15|16 23|24 31
I A YT et YO Tt T T T T s O IO O
Lvi
v
0 0o|M E| Channel Match To
P _N| Control Storage Key
0 110 0 -
0 1] Authority Error
1 0| Page Fault
1 1| TCW Extent
1 0{0 0| IO Bus Protocol Error
0 1| Data Parity
1 0| Address Parity Error
1 1| Card Selected Feedback Error
1 1]0 0| ECCError
0 1| System Address Error
1 0| TCW Reload Error
1 1| 10CC Error

Figure 47. Unbuffered Bus Master Control Registers

Note that that the Buffer Control registers shown in Figure 45 on page 4-39 are not

supported in this mode. A Load instruction to register 8 returns
to register 8, data is ignored. Register 4 is used for DMA slave
Store instruction to register 4 will be treated as described in “D

all 0’s. On a Store instruction
operations and a Load or
MA Slave’ on page 4-46.

Following device arbitration, the appropriate Channel Status register is selected. The 1/O bus

address is used to select the appropriate TCW. The RPN from
from the 1/O bus address are used to address system memory.

the TCW entry and 12 bits

System I/O Structure 4-43

Register fields are described below:

¢ .Register 0 — Channel Status register

Bits Description

0-3 Control and Status: For a description of these bits see “Buffered Bus
Master ” on page 4-37.

4 DMA Slave Flag: For a description of this bit see “Buffered Bus Master”
on page 4-37.

5-15 Reserved: These bits are reserved and must be set to a value of 0.

16-23 Authority Mask: For a description of these bits see “Buffered Bus Master ”
on page 4-37.

24-31 Reserved: These bits are reserved and must be set to a value of 0.

Bus Master Access Authority Checking
Bus master operations are subject to access authority checking. As illustrated in Figure 48,
accesses are verified by checking the TCW memory protect key against an authority mask
associated with the requesting channel.

TCW Table 1/0 Bus Address
- Key | Ctrl ‘__I
16 | 20 24{25 27|28 31 Bus Memory —
-------------------- Op
r; l 1 — And— Access
Sys Mem and Write Enable 4 q, — OK
Read
SEL
8:1
. 8
Channel Status Register —_—
[
Status|0 1 - — |Authority Mask - J
I ||3] J7|8||| ||151|61|1|1%32?|||u"’;1

Figure 48. Bus Master Access Authority Checking

Bus master operations are protected on page boundaries. Each page in the bus memory
address space has a 3-bit storage protect key associated with that page, which defines the
protection class of the page. These keys are kept in the TCW table described in the
“Translation, Protection and TCW Table” on page 4-34. An 8-bit mask in each channel
specifies the key values (and by inference, pages) that this channel is authorized to access.
For information on what action occurs on an authority error, see “Bus Master Error
Conditions” on page 4-45.

Authority mask information is considered part of the context and is loaded into the
appropriate Channel Status register by the operating system. The Channel Status registers
are protected system resources and are only accessible when the segment register
privileged key is set to a value of 0. Attempts to access these registers when the privileged

4-44 General Information Manual

key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation
status to be set in Channel Status register 15.

Bus Master Error Conditions
Error conditions that arise in bus master operations include bus errors, programming errors,
and hardware errors. On an error, an error code identifying the specific error cause is set
into the Channel Status register (bits 0 to 3) corresponding to that channel, along with /O
bus address bits A31 to A6 to identify the page in error. After the error code is set into the
status field, the IOCC does not respond to bus requests for this channel, effectively disabling
the channel. The Channel Status registers thus capture the channel status until the error
code is reset by a Store instruction from the system supervisor.

All errors cause the ‘chck’ signal to be pulsed. In addition, on TCW extent and address parity
errors, the IOCC will not activate the ‘sfdbkrtn’ line. When a bus master device sees this
error condition, it should suspend operations and post an interrupt. For additional information
refer to “Exception Reporting and Handling” on page 4-80.

After the error condition, if the bus master device tries to continue accesses with the channel
effectively disabled (also, if the bus master tries to make an access and the channel was
never enabled), the IOCC activates ‘chck’ and will not activate ‘sfdbkrtn’. If the access is
directed to the IOCC, the I0OCC will not take or supply data, and continued read accesses by
the device after the error results in the IOCC bus drivers being disabled which results in all
ones on the I/0 data bus.

I/0 bus errors such as an address or data parity errors may be caused by hardware
malfunctions or transient electrical noise. Refer to “Parity Error” on page 4-22 and “Channel
Check” on page 4-22 for a description of these errors. Error codes are summarized as
follows:

Error Code Description

0101 Authority Error: This error code is set if the storage key in the TCW does not
match the authority mask in the Channel Status register or an attempt is
made to write to a read—only page.

0110 Page Fault: This error code is set if an attempt is made to access a page
with TCW bits 30 and 31 set to B‘01'. This can occur in normal operation.
Devices attempting to take advantage of this function must present an
interrupt after receiving a ‘chck’ signal on the 1/O bus.

0111 TCW Extent: This error code is set if an attempt is made to access a bus
address for which a TCW does not exist.

1000 1/0 Bus Protocol Error: This error code is set if a Micro Channel protocol
error has been detected (for example, the channel is mapped to system
memory, but the bus master pulls the ‘M/IO’ line on the Micro Channel bus,
indicating that it is doing an 1/O operation).

1001 Data Parity: This error code is set if the IOCC detects bad parity when
operating as a slave on the bus (when the transfer is from device to system
memory).

1010 Address Parity: This error code is set if the IOCC detects bad parity on the

address bus. This error is detected even when the IOCC is not involved in
the transfer (that is, on a bus—to—-bus transfer). This is a bus monitoring
function of the IOCC.

1011 Card Selected Feedback Error: This error code is set if, after a device is
addressed it does not respond by driving the ‘cd sfbk’ line. This is a bus
monitoring function of the IOCC.

System /O Structure 4-45

1100 ECC Error: This error code is set if the IOCC received an uncorrectable
ECC error response from the system bus during a bus master transfer
request to syjlem memory.

1101 System Address Error: This error code is set if the IOCC sends data over
the system bus and does not receive an address acknowledgement. This
can occur if the real page number in the address is bad.

1110 TCW Reload Error: This error code is set if the IOCC detects a parity or
uncorrectable ECC error during a TCW access.

1111 I0CC Error: This error code is set if the IOCC detects an internal error
(except those dealing with the Channel Status registers or Buffer Control
registers) during any bus master channel operation. An error with the
Channel Status or Buffer Control registers results in a check stop.

DMA Slave
DMA controller is the name given to a system—supplied resource that mediates data
transters between memory and DMA slaves. The IOCC contains a DMA controller for the I/0
bus. Three parties are involved in this type of DMA operation: the DMA slave, the memory,
and the DMA controller. This type of DMA operation is often used for the following reasons:

e Cost.

A DMA controller must provide interfaces to both system addresses and data and is
highly pin—intensive. The data flow is quite regular and lends itself well to implementation
using RAM arrays. Thus, multiple-channel DMA controllers are relatively easy to
implement. Since most systems require at least one DMA device, a common practice in
low—end systems is to provide a multi-channel DMA controller as a shared resource and
amortize its cost across multiple devices.

¢ Protection.

DMA controllers manage all address, control, and byte count functions associated with
data transfer. As such, it is relatively easy for a system to protect its memory from the
external environment by using DMA channels, and making channel setup a privileged
operation.

Using the DMA controller, data can be transferred between a device and bus memory, or
between a device and system memory. Data transfers to or from system memory may or
may not be buffered. The RISC System/6000 I/O architecture supports both buffered and
unbuffered DMA slave transfers. In the buffered mode, I/O data buffers are provided as a
performance feature for transfers between I/O and system memory, and can also include
caching of the current TCW table entry in a Buffer Control register. Data transfers to or from
bus memory are never buffered. The following sections include descriptions of both the
buffered and unbuffered DMA slave operations. The mode of operation is implementation
specific (see “IOCC Configuration Register” section on page 4-71 and “Implementation
Details” on page 4-80").

All memory is partitioned into 4K-byte pages, and the DMA controller is organized to handle
physical transfers of this size. The architecture supports two modes of managing each
4K-byte page of memory for DMA slave operations. One mode uses TCW's and the other
uses tag elements to handle this management of memory pages. See “DMA Slave
Operations Using Tag's” on page 4-47 and “DMA Slave Operations Using TCW's” on page
4-52 for a description of these two modes. The choice of using TCW's or tag’s for the
management of the 4K-byte pages is implementation dependent (See “IOCC Configuration
Register” section on page 4-71 and “Implementation Details” on page 4-80")

4-46 General Information Manual

Each DMA slave channel includes a pair of 32 bit registers used to contain the current
memory address and control information corresponding to the current page being accessed.
The I0CC implements up to 15 DMA channels. Each channel is associated with one of 16
1/0 bus arbitration levels. One of these arbitration levels (level 15) must be allocated to the
system processor for issuing Load and Store instructions to the 1/0 bus, reducing the
maximum number of useable DMA channels to 15. For implementations using tags, the
number of channels implemented must be 15. For implementations using TCW's, the
number of useable DMA channels is implementation dependent (see “IOCC Configuration
Register” section on page 4-71 and “Implementation Details” on page 4-80“).

The DMA Slave Control registers are accessible by way of Load and Store instructions from
the system processor, and are located in the IOCC address space. DMA Slave Control
registers are a protected system resource and are only accessible when the segment
register privileged key is set to 0. Attempts to access these registers when the privileged key
is set to a value of 1 will cause a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

Each channel is personalized to operate with either a bus master or DMA slave. Bit 4 of the
Channel Status register (DMA register 0) must be set to a value of 1 when controlling a DMA
slave device, and set to 0 when controlling a bus master device.

Note: Software should program uncorrected channels as bus master channels.

The system supervisor must first load the DMA slave control registers prior to enabling a
channel. Following setup, the channel is enabled using the DMA enable command
described in the “Enable and Disable Commands” section on page 4-62. The IOCC is then
ready to control DMA operations on behalf of a DMA slave device.

The action taken when loading a Channel Status register for DMA slave operation where
there are less channels than Channel Status registers, with a channel number greater than
that indicated in the IOCC Configuration register is implementation—dependent. (See
“Implementation Details” on page 4-80). Software supports assignment of DMA channels to
arbitration levels on a first come first serve basis. If a channel is not available the resource
request is rejected. Hardware does not check for the mapping of a DMA channel to more
than one arbitration level at a time. This must be policed by the software.

If the operation completes without error, the IOCC terminates the DMA slave operation and
disables the channel. If an error occurs during the DMA slave operation, the IOCC sets a
code identifying the error into the Channel Status register status field and terminates the
DMA slave operation. No additional DMA slave requests or enable commands will be
accepted by this channel until the error is cleared by way of a Store instruction. The DMA
Slave Control registers are frozen, capturing details on channel status at the time of error.
Refer to the “DMA Slave Error Conditions” on page 4-57 for details.

To suspend or terminate a DMA operation prior to its normal ending point, it is recommended
that a DMA disable command be used. This command provides a soft termination of a DMA
operation without destroying the current state of the DMA slave control registers. Refer to “
Enable and Disable Commands” section on page 4-62 for details on this command.

DMA slave termination is accompanied by the IOCC pulsing the ‘t¢’ signal. Devices are
expected to post an interrupt when this occurs, notifying the system that the DMA operation
is complete. The system supervisor can then inspect the DMA registers to determine if the
operation completed normally.

DMA Slave Operations Using Tags

Tags provide support for byte—level scatter and gather DMA slave operations. A DMA slave
transfer is described by the DMA Slave Control registers and a list of tag entries. The DMA

System /O Structure 4-47

Slave Control registers describe the initial partial transfer and each of the tags describes
another part of the transfer.

DMA Slave Control registers 0 and 4 contain a copy of the tag except for the status field as
described in “DMA Slave Error Conditions” on page 4-57 and “Enable and Disable
Commands” on page 4-62.

The tags are organized as a heap in a special memory space called a tag table. The tag
table includes 4096 entries and requires 32K bytes of memory. During the course of a DMA
slave operation, the IOCC will reload the DMA Slave Control registers from the tag table on
a demand basis. The DMA Slave registers must be loaded directly using a Store instruction
with the initial tag entry.

To allow for management of large logical buffers, the DMA controller allows chaining of tags.
Whenever a page boundary is crossed or the length count expires, the DMA controller
automatically fetches the tag containing the mapping information for the next page and
reloads the DMA Slave Control registers for that channel. Since each tag also includes
length count information, this structure provides natural data chaining down to the byte level.

Figure 49 illustrates DMA slave operations using tag elements. Data may be transferred
between a device and system memory or between a device and bus memory. All data
transfers to or from system memory have 64-byte granularity. In the buffered mode, the
I0CC must provide a 64 byte data buffer for each channel, and this buffer must be managed
by the software. The actual I/O bus DMA cycle operates only against these buffers. In the
unbuffered mode, the IOCC must provide some sort of read-modify-write capability so that
transters from the device, which will be less than 64 bytes, can be matched to the system
memory interface. Data transfers to or from bus memory are not buffered.

DMA Slave Control
| System
Memory

Memory Address

Ctrl | Next Lengthr—

T

> Tag Table

r
Data Buffers _|
(in Buffered Mode)

|: _____ VO Address] /0 Data
e I I

Figure 49. DMA Slave, Using Tag's

4-48 General Information Manual

The tag table is a protected system resource located in the IOCC address space between
addresses X'-0 80 00 00’ and X'-0 80 7F FF'. Figure 50 illustrates this address space. It is
only accessible to Load and Store instructions from the system processor when the segment
register privileged key is set to 0. Attempts to access this table when the privileged key is set
to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error
status to be set in Channel Status register 15.

Processor Effective Address

Seg

Reg#/000010000000 0f TagTableEntry 100

oI|134III7I8II|IJI15I 17IIII?3|2?IIII q.'

15
Tag Table
‘_

4 Memory Address

AR ERLAEERENE L SRR o i AR EEEE b
0 - Ctrl Next Tag Length Count

0 4 718 15|16 1920 23[24 31

N N TN N N N N T N N D T G A s s sy vt |

Direction (0 - Memory to 1/O)
Enable Terminal Count
System Memory

DMA Slave (Bit4 = 1)
Figure 50. Tag Table Addressing

Each 4K-byte page involved in a DMA slave transfer, except for the first, has at least one
8-byte tag element in the tag table. The first tag is set up in the DMA Slave Control
registers. These tags contain relevant information required for the DMA slave operation such
as the memory address, length count, and direction. Tags may be chained together to
control DMA across multiple memory pages, or to provide a data chaining function. Each tag
represents the initial set of values to be loaded into the DMA Slave Control registers every
time a page is crossed or the length count of the current transfer expires. Access to the tag
table entries is word access only. The bit definition of a tag entry is defined as follows:

o Word 4 of a tag contains a 32-bit real address to either the bus memory space or system
memory space.

e Word 0 of a tag contains control information relating to the current 4K-byte page and
includes the following:

System I/O Structure 4-49

Bits
0-3

8-19

20-31

Description

Reserved: This field is reserved and must be set to a value of 0. The
hardware does not update the Channel Status register bits 0 to 3 with
these bits.

DMA Slave Flag: This bit is set to a value of 1 using an I/O Store
instruction to personalize a DMA channel for a DMA slave operation. The
IOCC never changes the value of this bit. The hardware does not update
the Channel Status register bit 4 with this bit.

System Memory Flag: This bit selects whether system memory or bus
memory is to take part in a DMA slave transaction. This bit is set to a
value of 1 for DMA slave transfers to system memory and set to a value
of 0 for DMA slave transfers to bus memory.

Enable Terminal Count Flag: This bit causes the IOCC to pulse the ‘tc’
signal whenever the length count expires. This signal terminates the
DMA slave operation and causes the device to post an I/O interrupt. Note
that this function is independent of DMA termination by the channel, and
tag chaining may be continued. This can be used to advantage in
assisting emulation of channel command chaining, or in emulating the
auto-reload function available in the 8237 DMA controller. Note also that
the IOCC always pulses ‘tc’ signal when the next tag field is X'FFF’ and
the length count expires, regardless of the setting of this bit.

Direction Flag: This bit selects the direction (device to memory or
memory to device) of a DMA slave transfer. This bit is set to a value of 0
to transfer data from memory to the I/O device and is set to a value of 1
to transfer data from the 1/O device to memory.

Next Tag Field: This field contains a 12—bit index into the tag table. This
index is a pointer to the next tag to be used when the length count
expires. When this condition occurs, the DMA controller automatically
fetches the tag containing the mapping information for the next piece of
the transfer and reloads the DMA Slave Control registers for that
channel. A next tag field of all 1s indicates that this is the last tag in a
chain. If this field is all 1s and the length count expires, the IOCC
disables the channel and does not accept any further DMA slave
requests from the device. The last tag in the tag table has an address of
all 1s and therefore cannot be used.

Length Count Field: This field contains a length count for the data
transfer. This length count is a binary number one less than the number
of bytes to be transferred and cannot be greater than the number of bytes
left to the end of the page.

Figure 51 on page 4-51 illustrates the register definitions when tag control elements are
used to manage memory. Bits 28 and 29 (r) in the effective address indicate which word is

being addressed.

4-50 General Information Manual

Processor Effective Address

3#99 00000100/ Chnl [000000000110|rr00
oIII34llI7|8II11 1FI151I6IIIII?3|2?II Ilq1
DMA Slave Control Registers
T] Register 8
l1 | [Reserved pul m%uffoer?d
il ode On
||||||||||15|1|6|||||%3|2‘|1|||||q1 y
Memory Address NN
0 7,8 15,16 23,24 31—
L1 N RN LS
Status| 1 Ctrl Next Tag Length Count 4T
15|16 19| 20 23|24 31—
111 |||||||1||||||||||||
L—PDMA Slave
v
0 0/0 O Disabled ccc
0 1| Enabled L1
10 -
11 - . L Direction (0 — Memory to 1/0)
0 1{0 0| ExtraReq Enable Terminal Count
01 - System Memory
10 -
11 -
1 0/0 o]l Channel Check
0 1| Data Parity Error
1 0| VO Bus Protocol Error
1 1| Card Selected Feedback Error
1 1|10 0| ECCError
0 1| System Address Error
1 0| Tag Reload Error
1 1] 10CC Error

Figure 51. DMA Slave Registers Using Tag's
The register fields are as described in the following section.
* Register 0 — Channel Status register

There are 16 Channel Status registers (CSR) each having a one—to one correspondence
to one of 16 arbitration levels. The bit assignments for this register are as follows:

Bits Description

0-3 Control and Status: This 4-bit field contains control information when bits
0 and 1 are B'00’. When bits 2 and 3 are at B‘00’, the channel associated
with this arbitration level is in the disabled state. When bits 2 and 3 are at
B'01’, the channel is enabled. Bit 3 is set using the channel enable
command and reset using the channel disable command. Code points
B‘10’ and B‘11’ for bits 2 and 3 are reserved. When bits 0 and 1 are not at
B‘00’, the contents of bits 0 and 3 represents error codes. See “DMA

System I/O Structure 4-51

8-19

20-31

Slave Error Conditions” on page 4-57 for a description of these error
codes.

DMA Slave Flag: This bit is defined the same as for the tag table word 0
defined on page 4-49.

System Memory Flag: This bit is defined the same as for the tag table
word 0 defined on page 4-49.

Enable T/C Flag: This bit is defined the same as for the tag table word 0
defined on page 4-49.

Direction Flag: This bit is defined the same as for the tag table word 0
defined on page 4-49.

Next Tag Field: This bit is defined the same as for the tag table word 0
defined on page 4-49.

Length Count Field: This bit is defined the same as for the tag table word
0 defined on page 4-49.

¢ Register 4 — Memory Address Register

This register is defined the same as tag table word 4.

¢ Register 8 —Bufter Control Register

This register only exists for buffered implementations. The bits assignments are as

follows:
Bits
0

3-31

Description

Buffer Dirty: This bit is used to indicate that the buffer associated with this
channel is dirty, that is, has been written to and therefore contains data
which is inconsistent with data in system memory.

Buffered: This bit indicates that the buffer contains data that has been
prefetched. It is set upon initial prefetching of the buffer and is reset at
the time the buffer is flushed to system memory. Though hardware
normally sets and resets this bit, software has both read and write
access. When the operation completes and the device interrupts, the
buffer must be flushed to system memory by software using the buffer
flush command.

Buffer Invalidate: This bit is used to indicate that the buffer has been
invalidated. When this bit is set to a value of 1 it forces a prefetch from
system memory to this buffer. The bit is reset to a value of 0 at the time
the buffer is prefetched from system memory and set to a value of 1
when the buffer is flushed to system memory. Though hardware normally
sets and resets this bit, software has both read and write access. When
the invalidate bit is set to a value of 1, it overrides the buffer dirty and the
buffer prefetched bits.

Reserved: These bits are reserved and must be set to a value of 0.

DMA Slave Operations Using TCW'’s
TCWs provide support for page level scatter and gather DMA slave operations. The DMA
Slave Control register is initialized with the first page TCW; the rest of the TCWs involved in
the transfer are sequential. Figure 52 on page 4-53 illustrates DMA slave operations using
TCWs. Notice that the memory address consists of a TCW number and an oftset (unlike the
tag which contains a real address to system memory).

4-52 General Information Manual

When TCW entries are used for DMA slave operations, bits 20 to 31 of the TCW entry are
not used and software must set these to a value of 0. See “Translation, Protection and TCW
Table” on page 4-34 for a description of the TCW table.

DMA Slave Control Registers

I
Ctrl {Chnl #| Length

Memory Address
TCW # | Ofiset

20 12
12 o
System
TCW Table Memory
20
RPN

:

|
Data Buffers _|
(in Buffered Mode)

---Yo Yo eeeeea - I

I/O Bus Address } I/O Data

Figure 52. DMA Slave, Using TCW's

Figure 53 on page 4-54 illustrates the register definitions when TCW's are used to control
DMA slave operation.

System I/O Structure 4-53

Processor Effective Address

Seg
Reg #/{0000 010 OArb Lvi

000000000110(0000

OIII34III7I81[11 1FI151I6|IIII?3|2?II llq1
Processor Effective Address
Seg
Reg#/00000100| Chnl#/000000000110{rr00
olII34III7|81L]11?I]51I61IIII?3|2i4II llq1
T 1
DMA Slave Control Registers_._.
T Register 8
[1B| Il Reserved — m duffgr?d
ode On
o | P LR A L SR ol A b y
Memory Address
a0, TGWNumber ., 192, , Offpet, 31
Notes
(During DMA Operation) 1. Number of DMA Slave Control Regs
is dependent on the number of DMA
channels implemented.
2. Number of CSR’s is always 16
Channel Status register
| | |
Status|1| Ctrl | Chnl # 12 Length Count
°|||3 5L|78|1|11|1||1||||||||||||1311
‘ L———»DMA Slave l
0 0/0 o| Disabled c-c
0 1| Enabled -
: ? _ [_ Direction (0 -~ Memory to /0)
0 1|0 o| ExtraReq
01 - System Memory
10 -
1 1| TCW Extent
1 0/0 o| Channel Check
0 1| Data Parity Error
1 0| /O Bus Protocol Error
1 1] Card Selected Feedback Error
1 110 0| ECCError
0 1| System Address Error
1 0| TCW or Tag Reload Error
1 1| IOCC Error

Figure 53. DMA Slave Registers, Using TCW's

4-54 General Information Manual

The register fields are described below.
¢ Register 0 — Channel Status register

There are 16 Channel Status registers (CSR) each having a one to one correspondence
to one of 16 arbitration levels. The bit assignments for this register are as follows.

Bits Description

0-3 Control and Status: This 4-bit field contains control information when bits
0 and 1 are B'00’. When bits 2 and 3 are at B'00’, the channel associated
with this arbitration level is in the disabled state. When bits 2 and 3 are at
B‘01’, the channel is enabled. Bit 3 is set using the channel enable and
reset using the disable command. Code points B'10’ and B*11’ for bits 2
and 3 are reserved. When bits 0 and 1 are not at B'00’, the contents of
bits 0 and 3 represents error codes. See “DMA Slave Error Conditions”
on page 4-57 for a description of these error codes.

4 DMA Slave Flag: This bit is set to a value of 1 using an 1/O Store
instruction to personalize a DMA channel for DMA slave operation. The
IOCC never changes the value of this bit.

5-7 Control: The definition of these bits are the same whether the DMA slave
operation uses TCWs or tags (except for TCWs, there is no T/C enable).
These operations are described in “DMA Slave Operations Using Tags”
on page 4-47. This field only exists for channel numbers (as specified in
bits 8 to 11 of this register) less than or equal to the number of DMA
slave channels implemented.

8-11 Channel Number: This field is used to assign a DMA channel to a specific
Channel Status register.
12-31 Length Count: This field is used to indicate the length of the DMA slave

transfer (byte count minus 1). This field only exists for channel numbers
(as specified in bits 8 to 11 of this register) less than or equal to the
number of DMA slave channels implemented. A terminal count is
generated by a device when this field goes negative, that is, when the
most significant bit goes from a value of 0 to a value of 1.

o Register 4 — Memory Address

This register contains the memory address for the DMA slave operation. The number of
registers available of this type is implementation dependent (See “IOCC Configuration
Register” on page 4-71 and “Implementation Details” on page 4-80). However, the
number available must equal the number of DMA channels implemented. These registers
are dynamically associated to the arbitration level based on the channel number assigned
in the Channel Status register (CSR). Software must insure that a single channel number
is never assigned to more than one CSR (arbitration level).

If the transfer is to or from bus memory (Channel Status register bit 5 equal to 0) this
register is applied as a 32 bit address directly to the I/O address bus. If the transfer is to
or from the system memory, this register is defined as follows:

Bits Description

0-19 TCW Number: The TCW number in the memory address provides an
index into the TCW table where the RPN is obtained if the channel is
mapped io system memory. When mapped to system memory, the
address used to address system memory consists of the RPN from the
TCW concatenated with the offset.

System /O Structure 4-55

20-31 Offset: These bits are the lower 12 bits of the memory address.

The DMA address is incremented by the size of the transfer, and the length count is
decremented by the same amount. Each time the TCW number is incremented in register
4, the next sequential TCW entry (RPN) is obtained. Note that if software tries to access
register 4 with a channel number greater than the number of channels supported (as
indicated in the IOCC Configuration register), the results are implementation~dependent
(see “Implementation Details” on page 4-80). Also note that only one DMA channel can
be assigned per arbitration level.

* Register 8 — Buffer Control Register

This register only exists for buffered implementations. The bit assignments are described
in “DMA Slave Operations Using Tags” on page 4-47.

DMA Slave Bus Protocols
Conventional bus protocols are used in DMA operations and are documented in “Basic
Transfer Cycle” on page 4-18.

I/0 devices request DMA service on a demand basis by arbitrating for the bus using the
‘preempt’ line. This causes the ‘grant’ line to be deactivated, causing an arbitration cycle.
When the ‘grant’ line is reactivated, the IOCC inspects the Control register associated with
the bus requester to determine if any DMA service is required. If it is, the IOCC performs a
DMA slave sequence on behalf of the requester.

Typical requests are for one or two bytes. On occasion, multiple requests from different
devices are received at the same time. When this occurs, service is sequential with the
highest priority requester serviced first.

When service is granted to a device, data is transferred between the device and memory.
The sequence to be used depends on whether the memory is bus or system memory. The
number of bytes transferred is generally equal to the data width of the device. The DMA
address is incremented by the size of the transfer and the length count is decremented by
the same amount.

If the specified DMA address does not have the same boundary as the 1/0O device data
width, the operation proceeds using a Partial Transfer Protocol as described in “Partial
Transfer Cycles” on page 4-21. For example, a DMA transfer involving a 2-byte 1/0 device
and a buffer starting on an odd address results in two 1— byte DMA sequences being
performed. This retains the functional integrity of the operation, but requires additional time
to complete the operation. As a result, it is suggested that buffers in system memory be
located on address boundaries matching the physical width of the /O device.

DMA Slave Transfers to Bus Memory
DMA slave transfers between a device and bus memory consist of two bus cycles: one to
read the data from the source and one to write the data to the target. An input operation
consists of an 1/O device read cycle followed by a bus memory write cycle. An output
operation is reversed.

There is no buffering on transters to or from bus memory.

DMA Slave Transfers to System Memory
DMA slave transfers between a device and system memory have only one apparent bus
cycle: an I/O device read or write cycle. These transfers are are described as follows:

o Buffered.

The memory operation is directed to the IOCC buffer and does not appear as a bus cycle.
The buffer operation is overlapped with the I/O cycle, and a sequence of DMA cycles to

4-56 General Information Manual

system memory appears on the bus as a sequence of I/O read or write operations. As a
result, the average instantaneous performance of DMA slave transfer to system memory
may be much better than to bus memory.

Whenever the address crosses an IOCC buffer boundary or the length count expires, the
I0CC transfers the data between the buffer and system memory. This operation may
increase the worst case bus latency (depending on the IOCC implementaion), decreasing
effective DMA performance.

No restriction is placed on having DMA addresses begin or end on IOCC buffer boundaries.
The DMA controller performs read—-modify—write sequences to system memory as required.
As this potentially occurs only on the first and last buffers to be transferred, addressing has
little effect on performance.

When performing DMA slave transfers to system memory, and the first address does not
start on a 64-byte boundary or the remaining count is less than 64, the DMA controller
automatically performs either a buffer prefetch before storing the DMA data into the buffer or
do some sort of read-modify-write before storing the data to system memory (depending on
the implementation). If a buffer flush command is issued before the length count expires
and the buffer cache contains less than 64—bytes (the memory address is not
B'xx..xx000000’), the remainder of the buffer transfer to system memory may consist of
zeros (implementation dependent). See “Buffer Flush Commands" on page 4-63 for
additional details.

¢ Unbuffered.

DMA slave transfers between a device and system memory have only one apparent bus
cycle: an I/O device read or write. The memory operation is directed to the IOCC, is
overlapped with the 1/0O cycle, and therefore does not appear as a bus cycle. As a result, the
average instantaneous performance of DMA slave transfers to system memory may be twice
that of bus memory.

Special Sequences
Special mechanisms are provided to improve the relative data transfer efficiency of highly
buffered devices.

The Micro Channel supports preemptive burst operations to take advantage of low average
I/0 bus loading. A device starts this mode by activating the ‘burst’ line prior to the end of the
DMA slave cycle. No arbitration cycle occurs, and the DMA controller concatenates
successive DMA sequences until the ‘burst’ line is deactivated. Micro Channel arbitration
rules require preemptive burst devices to deactivate the ‘burst’ line request if any other
device requires bus service.

The DMA controller also supports a special transfer mode called streaming data transfer.
This mode is a single—address, multiple—data protocol, and is described in “Streaming Data”
on page 4-19.

DMA Siave Error Conditions
Error conditions that arise in DMA operations include bus errors, programming errors, and
hardware errors. The specific cause of the error is coded and set into the status field (bits 0
to 3) in the Channel Status register. The ‘tc’ signal is then pulsed, which should cause the
I/0 device to suspend DMA operations and post an interrupt. If it does not, but continues to
request DMA service, the IOCC services the DMA requests with dummy cycles, pulsing the
‘tc’ signal on every cycle. Error codes are summarized as follows:

Error Codes Description

0100 Extra Request: This error code is set if a DMA slave request is received by
a DMA channel when the channel is disabled. Receipt of an unsolicited

System I/O Structure 4-57

0111

1000

1001

1010

1011

1100

1101

1110

1111

DMA request is an error unique to a DMA slave. This error is generally
caused by I/0 device malfunctions and the IOCC pulses the ‘t¢’ signal in an
attempt to shut off the DMA slave. This error can also occur with incorrect
programming of the channel.

TCW Extent Error: This error code is set if a DMA slave request is received
and the DMA slave control register 4 contains a TCW number for which
there does not exist a corresponding TCW.

Channel Check: This error code is set if the device responds with a channel
check indication during a DMA slave operation.

As an example, a device might respond with a ‘chck’ signal for a Write
operation to that device where there is bad parity on the data, or for other
device—detected errors during an operation to that device. This error will not
be reported if a card selected feedback error is reported (a card selected
feedback error takes precedence over a channel check error).

Data Parity: This error code is set if the IOCC detects bad parity on the data
bus when the IOCC is reading data. (See “Exception Reporting and
Handling” on page 4-80 for details.)

I/0 Bus Protocol Error: This error code is set if a Micro Channel Protocol
error has been detected (for example, a card pulls the ‘cd ds 32’ line on the
Micro Channel but does not pull the ‘cd ds 16’ line at the same time).

Card Selected Feedback Error: This error code is set if, after a device is
addressed, it does not respond by driving the ‘cd sfbk’ line. Conditions that
could cause this to occur are: if the device is not present; is not seated in
the card slot properly; is not enabled or detects bad address parity and does
not respond to that address. This error code takes precedence over a
channel check error.

ECC Error: This error code is set if the IOCC receives an uncorrectable
ECC error response from the system I/O bus during a DMA slave request to
system memory.

System Address Error: This error code is set if the IOCC sends data over
the system 1/O bus and does not receive an address acknowledgement.

TCW or Tag Reload Error: This error code is set if the IOCC detects a parity
or uncorrectable ECC error during a TCW or Tag table access.

IOCC Error: This error code is set if the IOCC detects an internal error
during any DMA slave operation. If the IOCC error is on access to the DMA
Slave registers; this error will not occur and the machine will check stop
instead.

4-58 General Information Manual

IOCC Commands
IOCC commands are used to change the state of the IOCC or control special bus actions.
They take the form of Load and Store instructions to special (effective) addresses, where the
addresses specify the actions to be taken. The Load or Store instruction can be either a
string or non-string operation. Commands supported by the IOCC include:

e Time delay

¢ End of interrupt

e Lock

o Enable and disable
o Buffer flush

+ Buffer invalidate.

User applications can only issue the time delay command, and then only if they have
Segment register authority to access the I/O bus. All the other commands are protected and
must have the segment register privileged key set to a value of 0 (bit 1) and the IOCC select
bit set to a value of 1 (bit 24). IOCC commands are not placed on the I/O bus.

All IOCC commands are 4 byte operations except the time delay command,which can be 1,
2, or 4 bytes.

Time Delay Command
, A number of Micro Channel devices have strict rules regarding minimum periodicity of
programmed I/O commands. Using program path lengths for timing is not a good
programming practice, since program performance varies widely by processor type and
(current) operating environment. To assist in programming devices with real-time
dependencies, the IOCC supports a special time delay command that can guarantee
separation of bus I/O commands.

The time delay command is coded as a 1—, 2—, or 4-byte Load or Store instruction and is
illustrated in Figure 54 on page 4-60. It is normally inserted between successive Load and
Store instructions to devices with time sensitivities and enforces minimum time spacing
between the I/O bus cycles. This command is similar to the time delay command in the RT
system but allows additional time delay increments. The command provides delay
increments ranging from 1 to 8 microseconds and is specified using the effective address
and the logical (byte) length. If a Load instruction is used to call the time delay function, the
data returned is indeterminate. If a Store instruction is used, the data is ignored.

System 1/O Structure 4-59

Effective Address For Time Delay Command

Se
Reg% 000000000000 X000000011100

L|||4lll IlllIl‘l|16|lll|%3|2?llq8

Delay

29 q1

Delay In Microseconds
1 Byte 2 Byte 4 Byte

— |t

1 2 4 000
2 2 4 001
3 2 4 010
4 2 4 011
5 2 4 100
6 2 4 101
7 2 4 110
8 2 4 111

Figuré 54. Time Delay Command

The time delay command is issued by any user application having Segment register
authority to access the /O bus. Command execution is overlapped with succeeding
processor instructions as long as they do not attempt to access any 1/O space. If, however,
another 1/0 Load or Store instruction is issued to the I/O space before the time delay has
expired, that command is synchronously halted until the pending delay is completed. This
command affects only programmed I/O and has no effect on DMA or other I/O operations
run by hardware.

The time delay command is issued with the | bit in the 1/0 Segment register equal to 1 or 0.
The time delay command cannot be included as part of a string operation. Implementation
accuracy of the time delay command is to -0 and +1 microseconds (for example, a 1
microsecond delay is greater than or equal to 1 microsecond but less than 2 microseconds).

4-60 General Information Manual

End of Interrupt
Following presentation of an I/O interrupt to the system External Interrupt Source (EIS)
register, the IOCC automatically masks off that interrupt so the presentation is only made
once. An end of interrupt command re—enables this mask, causing any active interrupts to
be presented (or re—presented) to the system EIS register. On a Store instruction, the data is
ignored. On a Load instruction, the data is indeterminate. This command, illustrated in
Figure 55, should be issued following the interrupt service.

Effective Address for the End of Interrupt Command
Se
neg# 0000010000000000000010001100| Endof

OLI 134I | |7I81 I | }5|1|6| 111 I%slzfl L1 1 Iq1 InterruPt

Figure 55. End of Interrupt

This command is privileged and is only accessible when the segment register privileged bit
is set to a value of 0. Attempts to run this command when the segment register privileged bit
is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error
status to be set in Channel Status register 15.

Lock Command
Devices on the Micro Channel I/0 bus have the ability to momentarily suspend arbitration to
guarantee the atomicity of sequential bus cycles. This is required when implementing
functions such as a test and set or an exchange (jump) sequence. These require a
read-modify—write sequence to be performed under one arbitration envelope and are
characteristically used to control access to shared control areas.

The IOCC provides a lock prefix command for operating with devices dependent upon this
use of shared variables. It causes the arbiter to suspend arbitration between two successive
I/0 Load and Store instructions, and should be placed prior to the first I/O instruction.
Arbitration is suspended on the first I/O command following receipt of a lock command,
even if it is directed to IOCC facilities. Thus, access to IOCC facilities such as the TCW
tables, can be made atomic. The processor cannot be interrupted between the lock
command and the second /O instruction, and interrupts must be masked off during the
atomic sequence.

Figure 56 illustrates command execution and the effective address format. It is permissible
to insert test or logic instructions between the two 1/O instructions. Although there are no
restrictions on the number of instructions inserted, DMA and interrupt latency can be
affected and it is recommended that reasonable caution be used. Any errors occurring
during execution of the first I/0O instruction cause the lock command to be canceled and
arbitration re—enabled.

System I/O Structure 4-61

Effective Address For Lock Command

Seg
Reg#/0000010000000000000000110000
WL WL NN o A SN oo ST N &

Instruction Stream

Use
Llock L0|ad <o I-b Results| --- ST

» Lock » | 1/0 Load Op—| L /O Store Op

L: Suspend Arbitration L:

Figure 56. Lock Command

This command is privileged and is only accessible when the segment register privileged bit
is set to a value of 0. Attempts to run this command when the segment register privileged bit
is set to a value of 1 cause a Data Storage interrupt to be posted and invalid operation error
status to be set in Channel Status register 15.

This instruction must be a Store instruction. The results of a Load instructions are
implementation—dependent (see “Implementation Details” on page 4-80). On a Store
instruction, the data is ignored.

Note: Use of this command requires extreme care. Failure to use it appropriately can cause
a bus timeout. Therefore, the period of time between the first bus operation and the
second must be absolutely guaranteed to be less than 7.8 microseconds. To ensure
this, all interrupts must be disabled during the entire lock sequence, the lock must not
cause an exception other than a bus exception, and must be restartable. Also, the
kernals non—-maskable interrupt handlers, such as machine check and system reset,
must be programmed to abort the lock sequence and restart the entire lock sequence
upon returning.

Enable and Disable Commands
The enable and disable commands allow system initiation and suspension of DMA slave
and bus master operations for devices attached to the Micro Channel. Each command is
directed to a specific channel as specified by the channel field in the effective address. The
command formats are illustrated in Figure 57. Bits 12 to 15 of the effective address specify
the channel to be started or stopped. ’

Effective Address for the Enable (Load) and Disable (Store) Commands

Seg
00000100
4 7

Reg
olll?;I!llLll

Chnl# |10000000001110000
12 15(16 | 1
TN T T T T T O O

Figure 57. Enable and Disable Commands (Load equals enable and Store equals disable).

The enable command initializes a channel to accept requests by changing the channel
status in the Channel Status register from the disabled (B‘00X0’) state to the enabled
(B'00X1’) state. This command is coded as a Load instruction and returns the original
contents of the selected Channel Status register to the target processor register. The
channel status field must initially be B'00X0’ for this command to update the channel status
to the enabled state. This command always returns a status consisting of the full contents of

4-62 General Information Manual

the associated Channel Status register. The status field is the only field changed by this
command.

The disable command disables operation for a particular channel by changing the channel
status from the enabled state (B'00X1’) to the disabled (B'00X0’) state and is coded as a
Store instruction (data is ignored). It does not disrupt any other data in the channel registers,
allowing restart of the operation if the device is designed accordingly. The channel status
field must initially be B‘00X1’ for this command to be run. If it is not B‘00X1’, a no operation
(NOP) instruction occurs when this command is issued.

The X in the preceding paragraph does not indicate a do not care, but indicates that the
enable and disable commands do not change the current state of the status bit 2 (mapped
or not-mapped).

A request from a DMA slave when the channel is disabled is considered to be an error and
sets an extra request error code in the Channel Status register associated with that device.
The ‘tc’ signal is pulsed in an attempt to shut off the device.

If a bus master makes a request to a disabled bus master channel, the IOCC will not
activate the 'sfdbkrtn’ signal and synchronously activates the ‘chck’ signal, but does not
update the error status.

Notice that an enable or disable command to channel X'F’ results in an NOP. Channel X'F’
is dedicated to the default master and remains enabled at all times.

These commands are protected system functions and are only issued when the segment
register privileged key is set to a value of 0. Attempts to issue these commands when the
privileged key is set to a value of 1 will cause a Data Storage interrupt to be posted and
invalid operation error status to be set in Channel Status register 15.

Buffer Flush Commands
The buffer flush commands are provided for implementations which support IOCC buffers.
These commands will result in a NOP (data ignored on a Store instruction, indeterminate on
a Load instruction) if the buffers are not supported. For more information see
“Implementation Details” on page 4-80.

If the buffers are supported, the IOCC buffers must be flushed to system memory at the end
of a transfer. The buffer flush commands provide the flush and invalidate functions.

The buffer flush commands are protected system functions and may only be issued when
the segment register privileged key is set to a value of 0. Attempts to issue these commands
when the privileged key is set to a value of 1 causes a Data Storage interrupt (DSI) to be
posted and invalid operation error status to pe set in Channel Status register 15.

Bus Master Buffer Flush Command
IOCC bufters for bus master transfers are managed similar to the CPU cache, and a flush
operation is performed by the address. To improve performance, the buffer flush command
is defined so the buffer flush can be performed simultaneously with normal TCW
maintenance. The command utilizes a bit in the effective address to optionally flush the
buffer while accessing a TCW table entry. Figure 58 illustrates the effective address format.
The buffer associated with the TCW is conditionally transferred to system memory if the
buffer data has been changed (Only flushed if dirty and valid). The IOCC remains busy until
the buffer transfer is completed and does not accept any new commands. Independent of
whether the transfer takes place or not, the buffer is invalidated by setting Buffer Control
register 8 to 0 including the D and B bits, the TCW number and the offset, and the invalidate
bit () equal 1. This causes any subsequent accesses to this buffer to have to reaccess the
TCWSs and system memory. If on, the dirty bit is turned off, so any subsequent flush
commands will not cause a buffer transfer.

System I/O Structure 4-63

Effective Address for the Bus Master Buffer Flush Command
Se
Reg #[RClctr[11 TCW Number FW| Bus Master
LS S P L R L TR & A A el Flush
v4 |1T1— Replace
Mask Flush

Figure 58. Bus Master Buffer Flush

Bit 30 of the effective address causes any buffers associated with this memory page to be
flushed, while bit 31 causes the 4-bit mask value to replace the reference, change, and
control bits in the TCW. The following list shows what happens for the various combinations
of the Flush and Replace bits:

» Flush equals 0, Replace equals 0.
This is just a Load or Store instruction to the TCW table.
o Flush equals 0, Replace equals 1.

On a Load instruction. return the old value of the TCW. On a Store instruction, data is
ignored. The TCW is updated based on the R, C, and CTL bits in the mask field.

o Flush equals 1, Replace equals 0.

On a Load instruction. return the old value of the TCW. If operating in buffered mode, flush
the buffer, update the Buffer Control registers, and on a Store instruction, ignore the data. In
unbuffered mode, the Store instruction is a NOP.

¢ Flush equals 1, Replace equals 1.

On a Load instruction. return the old value of the TCW. On a Store instruction, data is
ignored. If operating in buffered mode, flush the buffer, update the Buffer Control registers.
The TCW is updated based on the R, C, and CTL bits in the mask field.

DMA Slave Buffer Flush Command
The IOCC bufter for the DMA slave is managed as simple buffers, and the flush operation is
performed by channel number. The DMA Slave buffer flush command is illustrated in
Figure 59 and is issued by way of an I/O Store instruction. Bits 12 to 15 of the effective
address specifies the buffer that the command is directed to.

Effective Address for the DMA Slave Buffer Flush Command
Se
Reg# 00000100/ Bfr# [000000000111100 0] DMA Slave

ol | |34l l |7|81 |11 1?L15 1Isl 111 |%3|2|4I || Iq1 Buffer Flush

Figure 59. DMA Slave Buffer Flush

The DMA Slave buffer flush command conditionally causes the buffer associated with the
specified DMA channel to be transferred to system memory if the buffer data has been
changed, that is, the dirty bit is on. The IOCC remains busy until the buffer transfer is
completed and does not accept any new commands. Following the data transfer, the dirty
and buffered bits are reset and the invalidate bit (1) is set.

On a Store instruction, the data is ignored. A Load instruction causes a DSI. In the
unbuffered mode, a Store instruction is a NOP and a Load instruction returns indeterminate
data.

4-64 General Information Manual

Buffer Invalidate Command
Figure 60 illustrates the effective address format for this command.

Effective Address for Invalidate Command

Se
Reg# 0000/0100 Buf#{0000000001101000
0Lll 4I | I78I (Il | I|151I6I L1 1 |%3|2?I L 11 I§1

Figure 60. Buffer Invalidate Command

The buffer invalidate command assists in the management of DMA slave and bus master
operations.This command forces the hardware to reload the buffer on the next DMA slave
operation or bus master operation. On bus master operations, the Buffer Control register 4 is
also reloaded. A Load instruction returns the state of the bits. On a Store instruction, the
data must be X‘20000000'.

If operating in the unbuffered mode, this Store instruction is a NOP, and a Load instruction
returns zeroes.

This command is privileged and is only accessible when the segment register privileged bit
is set to a value of 0. Attempts to use this command when the segment register privileged bit
is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation error
status to be set in Channel Status register 15.

I/O Interrupts
The IOCC supports 11 bus I/O interrupts, 3 native I/O interrupts, 1 miscellaneous interrupt,
and 1 reserved interrupt level. The miscellaneous interrupts are collected together and are
presented as one logical level. This results in a total of 16 IOCC interrupt levels.

The architecture supports both a direct and a coded mapping of the I/O interrupt requests
(IRQ’s) to the EIS register. The specific approach supported is implementation dependent
(See “Implementation Details” on page 4-80). When the direct mapping approach is
supported, the mapping is a direct one for one map (Interrupt level 0 maps directly to EIS
Bit 0, level 1 maps directly to EIS Bit 1 and so on).

The following information describes the coded mapping approach in detail including a
description of an Interrupt Vector table used in the mapping.

When the coded mapping is supported, the 16 interrupt levels are coded and are mappable
to any EIS bit between 0 and 63. Figure 61 illustrates the interrupt mechanism.

System /O Structure 4-65

Interrupt 16 L)
Enabl - Interrupt
nable J_’AND 16 > Request
Data — 16 R 16
eg i Lookup| System
Write AND|Enc |- 4= pay - [6 | ierrupt
‘ s [16—¥
End Of r- Reg
Interrupt R
L16_ Dcd

Iinterrupt Enable Register 80
L1 [B B L1 1 1 1
MisgKbd|Ser| Bus Interrupt — | Bus Interrupt |Par|Bus Int| 84 Interrupt
ABI3 4 5 6,7|8]|9 10 11 12 14 15 Request
Register
0 7 8 15
Encoding And Mapping

0 0 Interrupt Vector 80
I I N N N |
8 15

Figure 61. Interrupt Mechanism

Interrupts are presented to the system with a special sequence, setting a bit in the system
EIS register corresponding to the vector code presented. Refer to the “Processor
Architecture” section of IBM RISC System/6000 POWERstation and POWERserver
Hardware Technical Reference — General Information Manual for additional details.

The presentation cycle begins when an interrupt occurs. If the interrupt is enabled, its
corresponding bit in the interrupt request field is set to a value of 1. An IOCC sequence then
codes the interrupt, looks up a vector value, and presents that value to the system as an
interrupt. If multiple interrupts occur simultaneously, the hardware resolves which interrupt is
presented first. Following the presentation of each interrupt, a special hardware mask bit is
reset to ensure that each interrupt is presented only once.

When the system responds to the interrupt, the current processor state is saved, and a
device—specific interrupt handler is invoked. As part of that service, the interrupt source is
reset. When the device service is complete, an end of interrupt command is issued, which
sets the special hardware mask, reenabling the presentation of interrupts on this level. If
another interrupt is pending at this level, the EIS register in the system is set again.

Interrupt registers are illustrated in Figure 62 on page 4-67. These registers are a protected
system resource located in the IOCC address space between addresses X'-0 40 00 80’ and
X'—0 40 00 9F’, and are only accessible to Load and Store instructions from the system
processor when the segment register privileged key is set to a value of 0. Attempts to
access this address space when the privileged key is set to 1 results in a Data Storage

4-66 General Information Manual

interrupt to be posted and invalid operation error status to be set in Channel Status register
15.

Processor Effective Address

Seg
Reg#ooooowooooooooo0000100rrroo

i NN RS RN RN N NN RN SN
0 34 78 15 16 23 24 31

Control Registers

Interrupt Enables 80
I T I T I | N T T T T | .
Interrupt Requests 84
IO OO T O O I Reserved N
Miscellaneous Interrupts 88
| T | | N T T |
0 34 78 15 16 2324 31
Vector Table
Miscellaneous| Keyboard Ser Port A/B IRQ 3 90
I T T | I T T T I | I T T T O | T I I"
IRQ 4 IRQ5 IRQ 6 IRQ7 94
I T I | I T O T T | | I T T I | N T I T |
IRQ 8 IRQ 9 IRQ 10 IRQ 11 98
| F?elselr‘{e‘lj | I T T | N T O T T B I O I
IRQ 12 Parallel Port IRQ 14 IRQ 15 9C
| | I T T T I O T T T | N T Y T I |
0 34 78 15 16 23 24 31

Figure 62. Interrupt Registers
o Register 80 — Interrupt Enable Register

This register provides the ability to enable or disable any of the primary 16 interrupt
requests. Bits 16 to 31 are reserved and should be set to a value of 0 on a Store instruction.
On a Load instruction, bits 16 to 31 are indeterminate. No dynamic management of this
register is necessary during interrupt service. It is provided primarily to allow disabling of
inactive, potentially noisy interrupts.

System I/O Structure 4-67

o Register 84 — Interrupt Request Register

This register provides access to the device interrupt sources and can be read using an 1/0
Load instruction. Bits 16 to 31 are reserved and on a Load instruction are indeterminate.
A Store instruction to this address is a NOP. A detailed description of each bit follows:

Bits Description

0 Miscellaneous Interrupt: miscellaneous interrupts are not directly
vectored to the EIS register. The RISC System/6000 unit provides one
EIS register with 64 interrupts, of which the IOCC is allocated 16 levels.
To fit within this maximum, the IOCC presents miscellaneous interrupts
as a class interrupt, consuming one logical level. This appears in bit 0
(vector lookup 0), and is an OR of all the bits in register 88. If this
interrupt is posted, the system is required to read IOCC register 88 to
determine the cause of the interrupt. Bit O is set to a value of 1 when any
miscellaneous interrupt occurs and bit 0 in the Enable register is set to a
value of 1. This bit is a summary OR of register 88 and cannot be written.
During an I/O Store instruction to this register, bit 0 is ignored. This bit is
reset when register 88 is reset.

1 Keyboard Interrupt: This bit is set to a value of 1 when a keyboard
interrupt occurs and bit 1 in the Enable register is set to a value of 1. This
interrupt is level-sensitive and must be reset within the device prior to an
interrupt return.

2 Serial Port Interrupts: This bit is set to a value of 1 when a board serial
port A or serial port B interrupt occurs (Shared Interrupt) and bit 2 in the
Enable register is set to a value of 1. This interrupt is level-sensitive and
must be reset within the device prior to an interrupt return.

3-7,9-12, 14-15
I/0 Bus Interrupts: These bits are set to a value of 1 when I/O bus
interrupts occur and their corresponding bits in the Enable register are
set to a value of 1. These bits reflect the current signal level of each of
the Micro Channel interrupt lines and are not latched. It is not necessary
to reset these bits as part of interrupt service.

8 Reserved: This bit is reserved and must be set to a value of 0.

13 Parallel Port Interrupt: This bit is set to a value of 1 when a Standard I/O
parallel port interrupt occurs and bit 13 in the Enable register is set to a
value of 1. This interrupt is level-sensitive and must be reset within the
device prior to an interrupt return.

16-31 Reserved: These bits are reserved and must be set to a value of 0.

4-68 General Information Manual

o Register 88 — Miscellaneous Interrupts Register

The first two bits of this register contain IOCC errors not reported in the Channel Status
registers. These errors are caused by asynchronous events or are associated with
situations where no device interrupt is posted. As such, the IOCC reports these errors by
way of its own interrupt.

The third bit of this register provides an interrupt for the Standard 1/0 keyboard
Ctrl-Alt—Anything sequence and is called a Keyboard External Interrupt.

The summary OR of this register is presented as bit 0 of register 80.

This register is both read and written using /O Load and Store instructions. Store
instructions function only as a masked reset. Writing a value of 0 to a bit position resets
that bit, while writing a value of 1 does nothing. A detailed description of each bit follows:

Bit Description

0 Channel Check: This bit is set if the I/O bus ‘chck’ line is active during a
Micro Channel operation (PIO or DMA slave) at the beginning of a cycle
(after ‘arb/gnt’ signal falls and before the first time the ‘cmd’ signal falls).
There should be no devices that asynchronously report errors by
activating the ‘chck’ signal. However, if this occurs, the channel check
posts an asynchronous IOCC error interrupt. Normally, in the RISC
System/6000 unit, the ‘chck’ signal is presented as a synchronous
exception and a Data Storage interrupt is posted instead. Refer to
“Exception Reporting and Handling” on page 4-80 and “Channel Check”
on page 4-22 for more information.

1 Bus Timeout: This bit is set if an I/O bus timeout occurred. See “Bus
Timeout” on page 4-22 for additional details. While this bit is active, the
‘arb/gnt’ signal is forced high, bus arbitration is suspended, and control of
the 1/0 bus is unconditionally given to the IOCC.

2 Keyboard External: This bit is set when the Ctrl-Alt—Anything sequence
is pressed at the Standard 1/0O keyboard and is called a Keyboard
External Interrupt. It is presented to the system as an external interrupt.
Software is then able to determine which key caused the interrupt and
takes the appropriate action. This bit is implementation dependent (See
“Implementation Details” on page 4-80).

3-31 Reserved: These bits are reserved and must be set to a value of 0.
¢ Register 90 to 9F — Vector Table

This set of registers contains the interrupt vectors to be presented to the system EIS
register. One vector is provided for each bit in register 84. The operating system loads
this table with a set of 6-bit values corresponding to the interrupt priority desired.

Note: The vector table is implementation—specific (See “Implementation Details” on
page 4-80). Implementations that support a single I/0O bus can fix the conversion
of interrupt level to the EIS bit. This fixed conversion will be the identify transform
(that is, interrupt O to EIS bit 0, interrupt 5 to EIS bit 5, and so on.) When the
vector table is not supported, a Load or Store instruction to the vector table
addresses results in a Data Storage interrupt (invalid operation).

System 1/O Structure 4-69

Special Facilities

Figure 63 illustrates the register organization within the IOCC. (For implementation details,
see “Implementation Details” on page 4-80.)

Address
From To PoTToTToooTomoooomsmosmmooenoes ¥
0400000 04F0000[Board Idelntification Device rIJependent ¥ 22?,;%
0400004 04F0004| Device l|)ependent Sub—Ad'dressing . Registers
- locC
04000 10 | Conflurlaiion Data | Config
Register
B Bus
0 40 00 20 Reselrved | us Status Status
Register
. TCW/Tag
040 00 24 (Implementation Dependent) Anchor
L L 1 Address
{ Component
04000 2C Slot Reserved N| Reset
Register
040 00 40 Low Limit High Limit Load/Store
| | | Limit
|
04000 60 0 4F 00 60 Channel Status Register Channel
| | | Control
0400064 0 4F 0064 Reservef - (Implem?ntation De;l)endent) Registers
0400068 0 4F 0068 Reservef - (Implem?ntation Deqendent)
0400080 Interrup} Enables
040 00 84 Interrupt Requests Reserved | Interrupt
l 4 Control
040 00 88 Misc Interrupts Registers
]
04000 90
i 7 Interrupt
naoonse - (Implementation Dependent) yector
mplementation Dependen . |
0 40 00 98 Table
040009C
| | |

Figure 63. 10CC Registers

4-70 General Information Manual

Board Configuration Data
The Micro Channel defines a slot select mechanism for accessing board—unique
configuration data (byte—only access). Eight bytes of addressing is provided per board,
which includes a unique 2-byte board identification and up to 4 bytes of programmable
parameters. This mechanism is called setup, and is used at startup time to determine the
boards in the system and to set configuration parameters on each board. Support is
provided for up to 16 boards.

The Board Configuration registers are illustrated in Figure 64. They are a protected system
resource located in the IOCC address space. These registers are only accessible to Load
and Store instructions from the system processor when the segment register privileged key
is set to a value of 0. Attempts to access these registers when the privileged key is set to a
value of 1 causes a Data Storage Interrupt and an invalid operation status to be set in
Channel Status register 15.

Processor Effective Address

Seg ooooo1oo| Slot {0000000X00000|rrr

R

|e|g|#||||||||||||||||1|||||||
0 34 78 15 16 23 24 31
Data

Board ldentification D i E i

LS Byte (X0) MS Byte ev UmqueN Dev Unique | 0
I T O T T O A T O O O I A B |
Dev Uni D i Sub-Addressing 4

v Unique |Sta|lDev Umquel LS Byte | MS Byte (X7)

| | | | I | I T Y T T | Y T
0 34 78 15 16 23 24 31

Figure 64. Board Configuration Registers

Refer to the/BM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Micro Channel Architecture manual for a description of the setup mechanism.
Even though the architecture specifies that only address bits 0 to 2 are to be used in the
address decode operation, some boards are developed with a dependency on setup
addresses being between X'01 00' and X'01 07'. To accommodate these boards, bit 23 is
allowed to be a value of either a 1 or 0. The small rin bit positions 29 to 31 are variables
designating the byte being addressed within the 2-word field.

Board configuration data is unique to each specific board. Refer to each board specification
for details.

Note that the software should do a byte reversal on 2-byte entities that are targeted for the
Board Configuration registers used during setup cycles; for example, the most significant
byte of the board identification should be placed in the register as shown ip-Eigure 64.

IOCC Configuration Register Ox<00010Q]
The IOCC design allows for certain variations of function and performance that optimize its
usage across multiple machine environments. The specific personalization is established
with the contents of the IOCC Configuration register. For the contents of this register for
specific implementations, see “Implementation Details” on page 4-80.

This register is a protected system resource located in the IOCC address space at address
X'-0 4000 10'. It is only accessible to Load and Store instructions from the system
processor when the segment register privileged key is set to a value of 0. Attempts to

System /O Structure 4-71

access this register when the privileged key is set to a value of 1 result in a Data Storage
Interrupt and an invalid operation error status set in Channel Status register 15.

This register is set up by hardware and ROM code and is treated as a read—only register by
the operating software with the exception of the master enable bit.

Figure 65 illustrates the organization of the configuration register. Bit 0 in this register is
initialized to a value of 0 at startup.

Processor Effective Address

Sed 10000[010000000000000000010000
Reg # L |
L1 1 11 [| L1 1t 111 | I IO T I T |

0 34 78 15 16 23 24 31

Configuration Data

E|_|Bur|Dis|Ref|-| RAM|_| Arb - |s|-|T|Blc| # of

N | Ctrl |Size | | Time Chnl’s
1 1 L1 L1 l | | 111

0 34 78 15 16 23 24 31

Figure 65. I0CC Configuration Register
The various fields in the Configuration register are described as follows:
Bits Description

0 Master Enable: This bit functions as a master enable control for channel and
interrupt operations only. It is intended to disable channel operations until
the system has initialized the Channel Control registers, tag table, and TCW
table, but also could be used following startup to assist recovery from
catastrophic errors. Normally, this bit is set to a value of 1 following initial
program load (IPL) and is never changed thereafter.

1 Reserved: This bit is reserved and must be set to a value of 0.

2-3 Burst Control: Programmable burst control is an optional implementation. A
Load instruction to these bits indicates the state implemented or currently
assigned (see also “Implementation Details” on page 4-80). If not supported,
a Store instruction to these bits is a NOP. These bits control the maximum
time that the IOCC continues to utilize the 1/0 bus by way of the Load and
Store instructions under bursting protocol following a bus request from
another device. This set of controls is provided as a protective measure to
retain reasonable interrupt response time in the presence of an I/0O bus hog.
The Micro Channel architecture places few restrictions on device bursting,
and it is possible for a device to be designed with long (non—preemptive)
burst sequences, even if operating in the fairness mode. The device then
receives a disproportionate number of bus cycles if the IOCC does not also
utilize non—preemptive burst sequences to increase the blocking factor. It is
the responsibility of the IOCC to ensure that the 7.8—-microsecond bus
timeout constraint is adhered to.

4-72 General Information Manual

Complete Current Cycle
1.6 microsecond

3.2 microsecond
6.4 microsecond

- 00 N
-0 -0 |W

Figure 66. Bit 2 and 3 Burst Control Setting

The IOCC normally uses a Preemptive Burst protocol when executing Load
and Store instructions. Under normal bus loading, this provides high
statistical data rates while also providing the lowest latency to DMA slave
and bus master devices.

4-5 Disable Control: These two bits are implementation dependent (see
“Implementation Details” on page 4-80).

6-7 Refresh Control: These bits allow specification of bus refresh periodicity and
the number of (burst) refresh cycles taken. This provides for a certain
amount of flexibility to handle new memory technologies with different
refresh rate requirements. The refresh control setting is defined as follows
(rates are maximum times allowed):

6 7 Rate # Cycles
o o| Off -
0 1| 60 microsecond 4
1 0| 30 microsecond 4
1 1| 15 microsecond 4
Figure 67. Refresh Control Setting
8 Reserved: This bit is reserved and must be set to a value of 0.
9-11 RAM Size Specification: These bits allow specification of the amount of

control RAM to be packaged with the IOCC. Different applications require
different amounts of TCW table, and the IOCC design allows this size to be
varied. This provides the flexibility to optimize cost and function across a
wide range of system applications. These bits should be personalized to
match the size of the RAM provided with the IOCC. The following table
shows the net sizes of the TCW table and Tag table resulting for each size
provided:

: I1t 011 RAM Size TCW Table Tag Table
000 128K-byte = 96K-byte 32K-byte
001 256K-byte 224K-byte 32K-byte
010 512K-byte = 480K-byte 32K-byte
011 1M-byte 992K-byte 32K-byte
100 2M-byte 2016K-byte = 32K-byte
101 4M-byte 4064K-byte = 32K-byte

Note: Tags used for DMA slave operation (Bit 25 equals 0).
Figure 68. RAM Size Specification for Combination TCW and Tag Table

System /O Structure 4-73

Bit RAM Size
910 11 TCW Table
000 32K-byte
001 64K-byte
010 128K-byte
011 256K-byte
100 512K-byte
101 1M-byte
110 2M-byte
111 4M-byte
Note: TCWs used for both DMA slave and bus master operation (Bit 25
equals 1).

Figure 69. RAM Size Specification for TCW Table

The Tag table has 32K bytes, and the remainder is allocated to the TCW
table. If both the DMA slave and the bus master operations are handled
using TCWs, all of the RAM is available for the TCW table. Due to the
mapping of bus /O and bus memory into one address space, there is no
bus memory allowed between 0K and 64K-bytes, and the first 16 TCW
entries are never accessed.

12 Reserved: This bit is reserved and must be set to a value of 0.

13-15 Arbitration Time: These bits allow specification of the arbitration time on the
Micro Channel I/O bus. Different systems applications have different bus
configurations and loading, and require different arbitration values. These
values can be varied from the architected minimum to a value greater than
that provided by the RT system bus application. Each arbitration value in the
table represents a range, for example, 100 nanoseconds equals 100 to 200

nanoseconds.

Bits Arbitration Time
13-15 (nanoseconds)
000 100
001 200
010 300
011 400
100 500
101 600
110 700
111 800

Figure 70. Arbitration Time Configurations
16-22 Reserved: These bits are reserved and should be a value of 0.

4-74 General Information Manual

23

24
25

26-27

TCW and Tag Tables in System Memory: A value of 1 in this bit indicates
that the TCW and tag tables are in system memory. The register for
anchoring the address of a system memory based TCW and tag table is at
X'0400024'.

All pages in system memory provided for TCW and tag tables are
continuous in real memory and permanently pinned. The TCW and tag
tables are only accessed through the IOCC space and are not mapped into
the PFT. Any error while accessing this memory results in a TCW or tag
access error. This area is not scrubbed.

A value of 0 in this bit indicates that non—system memory is used for the
TCW and tag tables.

Reserved: This bit is reserved and must be set to a value of 0.

DMA Slave TCW and Tag Bit: This bit indicates whether the DMA supports
the use of tags or TCWs for DMA slave operations. A value of 0 indicates
tags are supported.

Cache Buffer Support and Cache Coherency: These bits have the following
meanings:

26 27

0 o | Buffered Mode, Software Enforced Consistency
0 1 | Unbuffered Mode

1 0| Reserved

1 1| Reserved

Figure 71. Cache Mode Bits

28-31

Bus Status Register

In the buffered mode, the IOCC buffers exist, and PIOs to system memory
are allowed. In the unbuffered mode, there are no IOCC buffers and PIOs to
system memory are not allowed.

Number of DMA Slave Channels: These bits indicate the number of DMA
slave channels (that is, the number of DMA Slave Control registers) that are
supported. Both B'0000’ and B‘1111’ indicate that 15 channels are
supported. Also, B‘0001’, B‘0010’, B‘0011’ indicate that one, two, and three
channels are supported, respectively. The number of channels supported is
implementation—specific However, the number of arbitration levels
supported is not implementation—dependent, and must be equal to 16. (See
“Implementation Details” on page 4-80). If the implementation supports
tag’s, then all 15 DMA slave channels must be supported. The minimum
required by the Micro Channel architecture is 2. The minimum required by
the RISC System/6000 architecture is the number of slots plus the number
required by the Standard 1/O devices. If buffers are supported, the number
of buffers must equal the number of channels supported.

The Bus Status register (BSR) is a diagnostic facility that aids in I/O error isolation. It is
comprised of one R/W register and provides the ability to set and sample signals on the 1/O

bus.

The BSR is a protected system resource located in the IOCC address space at address X'-0
40 00 20'. It is only accessible to Load and Store instructions from the system processor
when the segment register privileged key is set to a value of 0. Attempts to access these
registers when the privileged key is set to a value of 1 causes a Data Storage Interrupt and

System /O Structure 4-75

an invalid operation error status to be set in Channel Status register 15. Figure 72 illustrates
the Bus Status register .

Processor Effective Address

Sed 10000010000000000000000100000
Reg # | |

1 11 I T T Y T O T | Lidt 1111 | I I T I I |
0 34 78 15 16 23 24 31

BSR Data

Reserved Arb Bus SD
||||||||||||||||||||||2F 1J||0|1
‘0 31

— Burst

— Cd Chrdy
— SDR (0)
— SDR (1)

Figure 72. Bus Status Register

The ‘arb’ bus lines, ‘burst’ signal, ‘cd chrdy’ signal, and ‘sdr (0)’ and ‘sdr (1)’ signals are
latched in the BSR latches when a bus timeout error occurs. The ‘arb’ bus bit 0 is the least
significant and bit 3 is the most significant bit. If a bus timeout error occurs during an 1/0
cycle, further bus errors will not be trapped until the error interrupt is cleared out of the
Miscellaneous Interrupt register. As such, the BSR contains a copy of the sampled I/0 bus
signal lines at the time of the first error. No provision is made for saving bus states for
successive errors.

Results of a Store instruction are implementation—dependent (see “Implementation Details”
on page 4-80). On a Load instruction, the data returned is the contents of the register as
described, if an error has occurred (bit 1 of the Miscellaneous Interrupt register is on); the
contents of bits 0 to 23 are indeterminate.

TCW/Tag Anchor Address Register
This register specifies the starting address of the TCW/tag table when that table is in system
memory (as indicated by bit 23 of the IOCC Configuration register). This register is
undefined when bit 23 of the IOCC Configuration register is a 0, and a Store instruction to
this register when bit 23 is a 0 will cause a Data Storage Interrupt, and an invalid operation
status to be set in Channel Status register 15.

The TCW/Tag Anchor Address register is a protected system resource located in the IOCC
address space at address X'-0 40 00 24'. It is only accessible to Load and Store instructions
from the system processor when the Segment register privileged key is set to a value of 0.
Attempts to access these registers when the privileged key is set to a value of 1 causes a
data storage interrupt and invalid operation status to be set in Channel Status register 15.
Figure 73 on page 4-77 illustrates the TCW/Tag Anchor Address register.

4-76 General Information Manual

Processor Etffective Address

Sed 10000010000000000000000100100
Reg # | |

111 IO N T T A O O O O | | I I T O I | I O O |
0 34 78 15 16 23 24 31

Anchor Address Register Data

Start of TCW/Tag’s in System Memory
NEEEENEENENEREE SNENEN N AN
0 78 15 16 2324 31

Figure 73. TCW/Tag Anchor Address Register

Software must guarantee that the table starting address is on a boundary which is equal to
the size of the table. For example, for a 128K-byte table must start on a 128K- byte
boundary.

Component Reset Register
The Component Reset register (CRR) is comprised of one register and provides the ability to
individually drive the resets to each I/O slot. Writing a value of 0 into a bit position resets that
slot, and writing a value of 1 removes the reset. All Standard I/O adapters are reset by one
‘reset’ signal controlled by bit position 31 in the CRR.

The CRR is a protected system resource located in the IOCC address space at the address
X'—0 40 00 2C'. It is accessible to Load and Store instructions from the system processor
when the segment register privileged key is set to a value of 0. Attempts to store into this
register when the privileged key is set to a value of 1 causes a Data Storage Interrupt and
an invalid operation error status to be set in Channel Status register 15.

Figure 74 shows the Component Reset register. The actual number of slots supported is
implementation dependent (See “Implementation Details” on page 4-80) and is consistent
with the IOCC configuration definition. On a Load instruction to this register, the value of bits
16 to 30 and the unused bits in the slots field are implementation dependent.

Processor Effective Address

Seg 10000010000000000000000101100
Reg # I |
L1 1 ettt | T T O T | | T O |
0 34 78 15 16 23 24 31
Component Reset Register Data [—* Standard I/O
Slots Reserved NI
ol Lt 11 |7|8| Ll 111 ‘!5 T T T I I | | | I |
0 34 78 15 16 23 24 31

Figure 74. Component Reset Register

The CRR is initialized to a value of 0 at startup. This sets and holds a bus reset to all the /0
boards until explicitly enabled by a startup diagnostic utility.

After a reset operation occurs, the software removes the reset by writing a value of 1 to the
board slots. To ensure proper timing relationships, the software must make sure the reset is
held a minimum of 100 milliseconds before removing the reset.

System I/O Structure 4=77

Software can determine if a slot exists and contains a board by removing the reset to the siot
and reading the board identification. A board identification of X'FFFF’ means that no slot
exists, or that the slot is empty. '

On a bus timeout error, hardware sets the implemented CRR bits to a value of 0.

System I/O and Standard I/0

Two classes of devices are described in this section, the System I/0 and Standard 1/O.

System I/O is defined as facilities in the 1/O space intrinsic to the system but not normally
considered I/O devices. Included in this category are NVRAM, clock and calendar, operator
panel, system registers, and on card sequencers (OCS). System |/O, though in the I/O
space, is isolated from the I/O bus by way of an internal bus and is a protected resource.

Standard I/O devices in the RISC System/6000 unit are defined as those I/O devices
intrinsic to a basic workstation, and as such, are included as part of the base machine. Not
being optional features, these devices do not necessarily occupy feature slots. The list of
items which fall into this category is implementation specific (see “Implementation Details”
on page 4-80).

System 1/0
System 1/O is located in the IOCC control space, is privileged, and is only accessible when
the segment register privileged bit is set to a value of 0. Attempts to access this address
space when the privileged bit is set to a value of 1 causes a Data Storage Interrupt to be
posted and an invalid operation error status to be set in Channel Status register 15. The
remainder of this section contains information describing System 1/O.

System Registers
System Registers are located in the IOCC control space between the addresses X'0 40 00
CO0’ and X'0 40 00 FC’ defining a contiguous space of 64 bytes. These registers are
implementation—dependent (See “Implementation Details” on page 4-80).

Nonvolatile RAM
The Nonvolatile Random Access Memory (NVRAM) is located in the IOCC control space
between X‘0 A0 00 00’ and X'0 BF FF FF' and occupies 2 M-bytes of address space. The
amount of NVRAM in the system is implementation—specific (see “Implementation Details”
on page 4-80).

Standard 1/0

The Micro Channel provides for a 16-bit bus I/O address. To access a device within this
address space, effective address bits 4 to 15 and segment register bits 28 to 31 must all be
a value of 0. /O addresses between X‘00 00’ and X'00 FF’ are reserved for the Standard
I/O. Figure 75 on page 4-79 illustrates the Standard 1/0 addressing.

Accesses to the I/0 bus are checked for proper access authority by way of an address range
check, restricting user programs to access only authorized devices. However, since the
IOCC cannot intercept or stop accesses to bus attached memory or bus I/0 devices by a
bus master on the 1/0 bus, no access checking is performed when a bus master addresses
these devices.

Actual Standard I/O address assignment are implementation dependent (see
“Implementation Details” on page 4-80).

4-78 General Information Manual

Processor Effective Address

T=1,Il=x,M=x,B=x

Seg

Reg #

1|

000000000000
I T T O O O

IIIlIIIIIlIIJII

Address

0

34 78 15

16

23 24 31

I/0 Bus Address

NN T T T T T T N T T Y o |

I/0 Device Address

0000000 0] Device Addr
I T T T O O T A

Figure 75. Standard I/0O Addressing

15

87 0

System I/O Structure

Address
> 255

Standard
10

4-79

Exception Reporting and Handling

The IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Micro Channel Architecture manual contains a section entitled “Exception
Condition Reporting and Handling” that defines the data and address parity on the Micro
Channel.

The following are general guidelines that were followed in designing the RISC System/6000
units and adapters, and should be followed in designing new adapter boards for the RISC
System/6000 machines:

o Full parity support is recommended for all address and data buses for all RISC
System/6000 adapter boards, internal boards, and internal devices (such as Standard I/O
devices, NVRAM, and System registers). Full address and data parity support is defined
as traversing the complete paths of the address and data busses (generate parity at the
signal source and check parity at each destination point where the address and data will
be used).

¢ Internal RISC System/6000 boards (Standard 1/0 and I/O Boards) provide both address
and data parity support to each of their devices.

e Adapter boards to be supported for RISC System/6000 units should provide both address
and data parity support at the board connector and on all infernal data and address
buses.

-~ 8- and 16-bit devices should provide the 32 bit board connector to gain access to all
the required parity signals.

- 8- and 16-bit devices, should also implement a notch in the board tab so they can be
installed in a 16-bit board slot.

Note: Suitable pull-up resisters should be utilized as appropriate.

o Adapters that do not use the 32-bit board connector (8~ and 16-bit data), should support
data parity as a minimum. The objective is to include the 32-bit connector described
previously to allow address parity, also, if possible.

¢ Devices and boards should meet the signal timing specifications described in the
“Exception Condition Reporting and Handling” section of the /BM RISC System/6000
POWERstation and POWERserver Hardware Technical Reference — Micro Channel
Architecture.

Implementation Details

This section provides specific implementation details for all RISC System/6000 units.

I0CC Configuration Register
Some of the bits in the IOCC Configuration register indicate support or non—support of
various implementation dependent features. The following is a summary of the definition of
the RISC System/6000 IOCC Configuration register implementation. In the case of read only
memory (ROM) code initialized bits, the value that the ROM must initialize these bits to is
shown.

4-80 General Information Manual

Bits Description

2-3 Burst Control: RISC System/6000 units support the use of the
programmable burst control as indicated in bits 2 and 3 of the IOCC
Configuration register. These bits are set to B‘11’ by the ROM code.

4-5 Reserved: These bits are reserved and must be set to B‘01'.

6-7 Refresh Control: These bits are set to B‘01’ (60 microsecond refresh) by the
ROM code.

9-11 RAM Size Specification: These bits are set to B‘'010’ by the ROM code.

13-15 Arbitration Time: These bits are set to B‘011’' (400 nanoseconds) by the
ROM code.

23 TCW/Tag Tables in System Memory: RISC System/6000 units support the
use of non—system memory for TCW and tag tables as indicated by a 0 in
this bit.

25 DMA Siave TCW/Tag: RISC System/6000 units support the use of tags for
DMA slave operations as indicated by a 0 in this bit..

26-27 Buffer Support/Coherency: RISC System/6000 units support the use of

buffers for bus master and DMA slave operations that are managed by
software, as indicated by a B‘00’ in these bits. This also indicates that RISC
System/6000 units support PIO operations to system memory.

28-31 Number of DMA Slave Channels: RISC System/6000 units support the use
of 15 channels for DMA slave operations as indicated by B‘0000’ in these
bits.

System Registers
Figure 76 on page 4-82 shows the register assignments within this area.

Software polls the Power Status and Keylock Decode register (address X‘0 40 00 E4’) to
determine if any bit within that register changes state, and then tests to determine the bit that
caused the state change in order to take the proper action. Bits 28 to 31 in this register are
the cover keylock switch position decode bits and are used by ROM and software to
determine proper IPL procedures based on the switch position (The keyboard lock in the
RISC System/6000 units is a software function).

System I/O Structure 4-81

Address Data

04000 CO Time of Day Clock and Alarm
04000 C4 Ti:'ne of Day C|lock and AlTrm
04000Cs8 Time of Day Clock and Alarm
04000 CC Time of Day Clock and Alarm
04000 DO Tilme of Day Cllock and Alarm
04000 D4 Time of Day Clock and AI.'Iaurm
04000 D8 Ti.me of Day C'Iock and Alarm
04000 DC Ti!me of Day Cllock and Alarm
04000 EO System Reset Count
04000 E4 Powe!r Status ancli Keylock Decode
04000ES8 Power Control and Reset
04000 EC | Diagnostlic Control :
040 00 FO Reserved :
04000 F4 | Restlarved
04000F8 | Res«larved |
04000 FC /O E:ioard Part N:o and EC L('evel

Figure 76. System Registers

Nonvolatile RAM

System
Registers

For the RISC System/6000 units, only 32K bytes of nonvolatile random access memory
(NVRAM) is presently planned and is located in the lower 32K-byte area of this space.
Figure 77 on page 4-83 illustrates the address assignments for the NVRAM area.

4-82 General Information Manual

Address

0 A0 00 00
0 A0 00 04
0 A0 00 08
0 A0 000C
0 A0 0010
0 A0 00 14
0 A0 00 18
0A0001C

0 A0 00 20
0 A0 01 00
0 A0 02 00
0A002FC
0 A0 03 00
0 A0 03 04
0 A0 03 08
0A0030C
0 A003 10
0A003 14
0 A0 03 18
0A0031C
0 A0 03 20
0 A0 03 60
0 A0 03 64
0 A0 03 68
0A0037C
0 A0 03 80
0 A0 04 00

0 AO 44 00 (15,360 Bytes)

(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(224 Bytes)
(256 Bytes)
(36 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(4 Bytes)
(64 Bytes)
(4 Bytes)
(4 Bytes)
(20 Bytes)
(4 Bytes)
(128 Bytes)
(16K Bytes)

Data

Reserved

NVRAM Size

Date and Time NVRAM Initialized

Reserved

| Protected Software
or ROM Access

SCSI Initiator Address Slot 1-16

Only

Reserved

Reserved

Hardware
Prevents OCS
Write To This

Reserved

Area

Memory Control And Error Registers
Mapped From BUID 0 Address 1000-10D0

Memory Error Summary Data

Previous IPL Device Descriptor

Software CRC Value For A0 00 00 - A0 02 FB

LEDs (Mirrored)

LEDs (Mirrored)

Check Stop Count

PTR To OCS Logout Area Lt 00 A0 44 00

OCS Code EC Level

Seeds ROM, EC Level

Manufacturing Control Word

Pointer To Manufacturing Data Area

OCS LED String Output Area

Pointer to OCS Code Exec. Area

Pointer to OCS Work Area

Machine Check Error Save

OCS and RS Command Interface

Reserved for OCS Buffer to RS Proc.

OCS Work and Code Area

Software Data Area

| Shared Access
OCS, Software,
ROM

} OCS Area

Figure 77. NVRAM Addressing

F software Area

System 1/O Structure 4-83

Standard 1/0

Figure 78 is a Standard I/O address map indicating the address assignments for each

Standard I/O device.

Hex Address Range Standard I/0 Device
0000 - 002F Reserved

0030 - 0037 Serial Port 1

0038 - 003F Serial Port 2

0040 - 0041 Serial DMA Registers
0042 - 0047 Reserved

0048 — 004F Mouse

0050 - 0059 Keyboard/Tablet/Sound
005A - 0061 Reserved

0062 - 0067 Diskette

0068 - 0077 Reserved

0078 — 007A Parallel Port

007B - 00DF Reserved

00EOQ - 00E7 Time Delay Command
00E8 — 00FF Reserved

Figure 78. Standard I/O Address Map

Bus Master Transfers

Bus master operations follow the buffered mode of operation (see “Buffered Bus Master” on
page 4-37).

Component Reset Register
The RISC System/6000 units support eight slots plus the Standard I/O. Bits 0-7 of this
register represents the eight slots an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>