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FOREWORD 

ASCIENTIFIC COMPUTATION FORUM, sponsored by the 

International Business Machines Corporation, was 

held in the IBM Department of Education, Endicott, 

New York, from August 23 to August 26, 1948. The 

Forum concluded with two sessions held in New York 

City on August 27. 

Earlier meetings in this senes, which began in 

1940, were devoted largely to statistical procedures. In 

the 1948 Forum, for the first time, an attempt was made 

to cover many of the fields in which large-scale com

puting methods have proved important. The exchange 

of ideas between workers in fields as diverse as aero

dynamics and physical chemistry proved fruitful from 

the very beginning, yet specialists in the same field also 

found time for intensive discussions. 

It is hoped that the contributions printed here 

will prove of value not only to the participants but to 

other members of the growing group engaged in tech

nical calculations on punched card equipment. 
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Evaluation of Higher Order Differences on the 
Type 602 Calculating Punch 

FRANK M. VERZUI-I 

Massachusetts Institute of Technology 

SO M E of the uses of the higher differences of a given 
function are: 

1. Numerical integration using finite differences, 
2. Numerical differentiation using finite differences, 
3. Subtabulation or interpolation to a fixed interval, 
4. Location of errors in a given set of data, 
5. Smoothing the irregularities in experimentally ob

tained data. 

This method of evaluating higher differences on the 
p02 was originally utilized to detect the presence of errors 
in a computed table of the function x tanh x. 

In this circuit, one card containing the value of the func
tion is used for each given value of the argument. As 
each function card passes through the 602, it has' the 
higher differences as ~ell as the recomputed function 
punched upon it. Since the values of the function and its 
higher differences at preceding ordinates are required in 
each computation, the cards must be arranged in their 
proper sequence. At the beginning of each set of cards, 
the higher order differences are not directly available. We 
merely assume that they are equal to zero and therefore 
the first few values ot these differences will be in error. 

The recomputed function provides a complete check 
upon the entire operation of the Type 602 Calculating 
Punch. The recomputed function will be identical with the 
given function only if all the cross footing operations re
quired to solve the set of algebraic equations are correct. 
This agreement is definite proof that all the calculations 
are correct. 

The comparison circuits of the accounting machine are 
used to indicate any discrepancy between the given func
tion and the recomputed function. An asterisk is printed 
adjacent to the error each time a discrepancy occurs. Any 
machine errors in the differencing process are immediately 
detected by visually scanning the printed record for the 
presence of asterisks. 

The presence of errors in the given function are also 
quite evident. An error of magnitude E in the function 
will affect (n + 1) consecutive values of the nth differ-
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ence by an amount E times the binomial coefficients of 
(a - b )n. An error of + 1 affects five fourth differences 
by amounts of + 1, -4, +6, -4, + 1. An error of +.1 
affects three second differences by + 1, - 2, + 1. This 
characteristic variation of magnitude and sign serves to 
locate errors immediately. 

Mathematical Basis of This Differenc,ing 1\11 ethod 

The tabulation of a function and its higher differences 
shown in Figure 1 illustrates the derivation of the equa
tions used'for the computation of the fourth differences. 

FUllction Differences 
First Second Third Fottrth 

!-2.0 
6,'-1.5 

!-1.0 l1i
1.0 

6,i_0.5 l1ii -0.5 
fo.o 6,i~.o tlv 

0.0 

tlO. 5 
l1ii 0.5 

f1.0 l1~.o 6,iy'o 
fl1.5 flii 1.5 

f2.0 fl~.o 
6,i2.5 

f3.0 

FIGURE 1. TABULATION OF A FUNCTION AND 

ITS I-IIGHER-ORDER DIFFERENCES 

The first difference may be defined, for instance, by 

6,i2 . .., = f3.0 - f2.0 ; (la) 
the second difference by 

.6i~.O = 6,i2.5 - fl1.5 

the third difference by 

.6'1~5 = .6to - .6i~.o 
and the fourth difference by 

(lb) 

(Ic) 

(Id) 

Higher order differences may be expressed by equations 
of several different forms which are some combination of 
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the formulas given in equations (1). The derivation of an 
equation for the fourth difference may be given in terms 
of the function at two given points and the backward 
diagonal differences from the first point: 

In addition to the basic equation given for the fourth 
difference, the corresponding equations for the differences 
of lower order may be given: 

L~H~5 = 6 ii.o + 61~~5 
6i~.0 = 6i~~5 + 6 i1.o 
6 i

2. 5 = 6 iJ.o + 6\.5 
13.0 = 6 i

2. 5 + 12.0 . 

(2b) 

(2c) 

(2d) 

(2e) 

These equations are so arranged as to utilize the results 
of the preceding equation in the computation of the suc
ceeding equation. 

Customer ~~ZtLt:f. Prob. No. 

SCI E N TI FIe COM PUT A T ION 

Figure 1 and equations (1) and (2) have illustrated the 
origin and derivation of the formulas which are necesspry 
in the computation of the fourth order differences. How
ever, the principle of this differencing technique may be 
obtained by a consideration of the simpler equations used 
for the computation of second order differences which are 
indicated below. The succeeding description will be de
voted to a discussion of these second order difference 
equations: 

6i~.0 = 13.0 - (/2.0 + 6 i
1 .5) 

6~.5 = 6 iro + 6\.5 
13.0 = 6~.5 + 12.0 

Operation of the Differenci,l'l.g Circuit 

(3a) 

(3b) 

(3c) 

The time-sequence chart shown in. Figure 2 illustrates 
the flow of information in.the Type 602 during a compu
tation of the second order differences. Assuming that the 
value of the function and its first difference at the 
preceding argument are available, i.e., if 12.0, 6\.5 and 
- ({2.0 +6\.5) are in the. indicated counters, the second 
difference is computed as follows: 

Ed. No. Date 4../II)/4A 
I / 

Discussion F VA / 11.4 T/()N ()F 2@ {)RrJFJ? D/EF£RFNr;.-.<, lAI/TH THE 

TYPE ?tJ2 r; PL rIlL ArnR 

~ultiplier Multiplicand LHC RHC Summary Resul t Storage 

1 - 2 3 - 4 9 - 12 10 - 11 5 - 6 - 7 13 - 16 14 - 15 

X 60 [f2.+~/.5] /1' 1.5 
I 

~ I 
I 

MJlST£/? RC RC I RC RC 
/rEADING 

ADO-SlleT. : 
CYCL.E 13 I 

~ I 

~ 
I 

MULTIPL.Y ~ 
I 

+--- ~ I 
_I 

Ptf'OG. /lDo 
RO-RC 

I/I)D I 
en .. J !::/.'Z f1"Z I 

./ I 
/1' I 

----~ r--t----+ 
PR06. $U81:' ; /100 

CrL.Z /J'2S RO I .1' Z.5 
I -;:-----

~ 
---1---~ r-...+ -=-- I 

PROG. SUST. 
I 

liDO I RO 
CTL.3 £,3 I £.3 

I 

TRAIIISFER - ---r-- ---
----------

TO. tf'O-RC t-RO- ---- RO-RC :::::----STOR.llG£ I =-=--- f.t... 

FIGURE 2. FLOW CHART OF 602 COMPUTATION 
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CALCULATING PUNCH-TYPE 602-CONTROL PANEL 

234567. 

--------5--C~O~N~~~~~~ 
23 24 25 26 27 28 29 30 31 32 33 
TORS

C
5------CARD 

0000000000 
1 25 
0000000000 

45 
0000000,00 

65 

40 41 42 43 44 

201 _ -.......... ~ ...... -·R 
35 40 £ 

o 0 0 0 OA 

6O~ 
o 0 0 0 ON 

75 10 G 
o I 

FIGURE 3. WIRING DIAGRAM FOR EVALUATION OF SECOND-ORDER DIFFERENCES 

1. The value of 13,0 is added to - (/2,0 + 6\,5) in 
counters (9, 12) to provide 6~.0 in accordance with 
equation (3a). 

2. This value of 6~.0 is stored in the MP counters 
(1, 2) and simultaneously added to 6\.5 in counters 
(10, 11) to provide the new first difference 6 1

2. 5 111 

accordance with equation (3b). 

3. The value of 6 1
2 . 5 is subtracted into counters (9, 12) 

where it will be available for the computation of the 
next card. In addition, 6 1

2.5 is added to 12.0 in 
counters (13-16) to provide the recomputed value 
of 13.0 as indicated in equation (3c). 

4. The value of 13.0 is subtracted from - 6\!.5 in 
counters (9, 12) to provide - (/3.0 +. 6 i

2 . 5 ). This 

quantity is required for the computation of the next 
card; 13.0 is stored in summary counters (14, 15). 

5. During the transfer-to-storage cycle the values of 
6 ito, 6 i

2 .'J and the recomputed /3. 0 are punched on 
the card containing the original function 13.0' 

Since this computation is a sequential operation, i.e., the 
terminal values of the computation of the first card become 
the initial values for the computation of the next, counters 
(9, 12), (10, 11), and (13 -16) are not reset during the 
card feed cycle. A master X60 card is used to clear the 
machine after the differencing of an entire set has been 
completed. The actual 602 wiring diagram used in the 
computation of the second order differences is shown in 
Figure 3. 
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SERIAL #" f. 1Ja' t:!.' ~/l ~v i' 
1 689 6245 689 6245 689 6245 689 6245 689 6245 689 6245 

2 695 6388 6 0143 -683 6102 .... 373 2347 -062 8592 695 6388 

3 701 6543 6 0155 12 683 6114 56 8461 701 6543 

-4 707 709 6 0256 101 89 -683 6025 707 6799 

5 713 6887 6 0088 168 -000 0269 -000 0358 713 6887 

6 719 7076 6 0189 101 269 538 719 7076 

7 125 7278 6 0202 13 -000 0088 -000 0357 725 7278 

8 731 7491 6 0213 11 -000 0002 86 731 7491 

9 737 7715 6 0224 11 2 737 7715 

10 743 7951 6 0236 12 1 1 743 7951 

___ 11 749 8199 6 1260 0 1024 1012 1011 749 9211 

12 755 8459 5 9248 0 2012 -000 3036 -000.4048 755 8459 

13 761 8736 6 0277 0 1029 3041 6077 761 8736 

14 767 9013 6 0277' -000 1029 -000 4070 767 9013 

15 773 9308 6 0295 18 18 1047 773 9308 

16 779 9614 6 0306 11 -000 0007 -000 00.25 779 9614 

17 785 9932 6 0318 12 1 8 785 9932 

18 792 0262 6 0330 12 -000 0001 792 0262 

19 798 0603 6 0341 11 -000 0001 -000 0001 798 0603 

FIGURE 4. ResuLTs OBTAINED DURING EVALUATION OF FOURTH-ORDER DIFFERENCES 

The accounting machine is used to provide the printed 
record shown in Figure 4. This record illustrates the in
formation present on each punched card after it leaves the 
602. This record contains a serial number, the given 
function, the higher order differences in increasing order, 
and the recomputed function. The two errors present in 
the functional data are quite evident because of the char
acteristic appearance of the higher differences. 

The flow chart diagram shown in Figure 5 illustrates 
the flow of information within the 602 during the evalu
ation of the fourth order differences. The solution of the 
set of simultaneous equations (2) is effected by theindi
cated crossfooting operations. 

Lim#ations and Advantages of This Differencing Method 

The Type 602 Calculating Punch has been wired to 
obtain fourth order differences as well as second order 
differences. Whenever the given function is quite irregu
lar, the higher differences are of appreciable magnitude. 
In such cases, the available twenty-four positions in the 
result storage counter are not adequate to punch all of the 
computed differences. Occasionally, the punching of the 

first and second differences is omitted, and the available 
result storage positions are used to punch the large-size 
higher order differences. 

The second order difference board is used for many 
applications. Whenever the second differences are too 
large for proper interpretation, the cards are reinserted 
and the operation is repeated. In such a case, the second 
order differences are used as an input function, and the 
fourth order differences are then obtained. 

This method of differencing is quite rapid, as differences 
may be obtained at a rate of 1500 an hour. This number 
varies slightly with the number of columns punched. 

In addition to the error detection properties of this 
method, it may be easily used for subtabulation, i.e., inter
polation to fixed intervals. The 602 may be wired to 
perform integration using the given value of the function 
and its backward differences. 

Since this method does not require any blank cards for 
operation, it is capable of a higher operating speed than 
the methods which do use blank cards. 

DISCUSSION 
[This paper and the following one by Dr. Gertrude Blanch were 
discussed as a unit.] 
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TYPE ~n2 r .4 L r: {II AT J Nc, PIINr:1-I 

Multiplier Multiplicand LRC RRC Summary Result Storage 

1 - 2 3 - 4 9 - 12 10 - 11 5 - 6 - 7 13 - 16 14 - 15 

[f +11' +/J.'+/1' fJ."1 iii I 
~'1.5 £2 Z. 1.5 ID 0.5 I 

0.5 1.0 I 

X-GO 
I 

I 

MASTER 
RC RC RC I RC RC 

i 

I 
I 

RERD 
/lDD -JUST I 
.... [$ ., I 

DETAIL fJ.'V,.. I 
.~ I 

~ 
I 

--..+ I 

PROG. /lOD ADD I 
RO-RC L1'V .6'V 

CTL..1 1.0 I 
1.0 ~ 

~ 
I 

~ 
I ---- ~+ I 

P~OG-. SUST. ADD I 

11'" RO Ll.'" I 
CTL.2 0.5 I 

0.5 ~ L 

LJ.~O I 

~ 
r-- -r--t-----=---=== r--.-+ 

PROG. 
SUBT. I IIDD 

/1" RO I 
£J.II 

C-rL.3 2.0 
2.0 ~ 

I ~z....5 

I ............... 

~+ I 

FROG. OUST I /IDD 

CTL.4 .1'2.5 I RO Ak.5 
I -;:-----' 

I .!;,3 
I 

I 

PI('OG. SUBT. 
I 
I 

en .. 5 £3 I RO 
I - --= ~ ~ 

--.. 
~ - ~::: r----I ~- t-=--- --TRIINSFER 

I 

RO-RC RO I RO flv 6/1' f3 To I 
5TO~IIG£ I 

I 
I 
I 
I 

FIGURE S. EVALUATION OF FOURTH-ORDER DIFFERENCES WITH THE 602 

13 



Differencing on the Type 405 
Accounting Machine 

GER TR UDE BLANCH 

Institute for Numerical Analysis, National Bureau of Standards 

D IFF ERE N C E S have to be taken frequently, not 
only for the purposes of integrating and differentiating 
but for the purposes of checking data in the process of 
computation. I f functions are given at uniformly spaced 
intervals, the process of differencing at strategic stages of 
the computing process offers a very satisfactory check on 
the operations. 

N ow, since differencing has to be done so frequently, it 
is important to be able to do it on many machines. 
Sometimes the 602 is tied up on other work and you 
want to do it on the accounting machine. The 405 was 
used for differencing long before any other IBM machine. 
Everybody knows how to take a first difference, summary 
punch it, and then take the second difference. In this 
manner successive differences of any order can be built 
up. But you can also take a sixth difference or fifth differ
ence or fourth difference without taking intermediate 
differences. This is valuable if you want the differences 
mainly for checking data. For when you take a high 
enough difference-the sixth difference for instance, if it 
is small-you can generally detect the errors by the differ
ence pattern and actually takeout the card where the 
error occurs. 

In the summer of 1947, Dr. E. C. Yowell spent his time 
in our New York laboratory. Dr. Abramowitz had picked 
up Comrie's paper on getting higher order differences on 
the National bookkeeping machine, and he asked Dr. 
Yowell to do something similar on the accounting machine. 
Dr. Yowell wired a control panel which has been used 
very successfully, and I will try to give you the wiring of 
that panel. 

(Since the rest of the talk depended heavily on black
board diagrams and slides, r have taken the liberty to sub
stitute in its place Dr. Yowell's own lucid description of 
the wiring. It goes into greater detail than my own talk 
did, and will be much easier to follow for anyone who 
wants to reproduce the wiring.) 

Sixth Differences on the 405 

EVERETT C. YOWELL 

Institute for Numerical Analysis, 
National Bureau of Standards 

THE MET HOD used. in computing the sixth differ
ence is that given by Comrie.1 The first six functions are 
used to compute the first through the fifth difference. 
There is then available in the machine 

The sum of these six quantities is an approximation to f7 , 
and the difference between f7 and the sum of these terms 
will be 6.6

4 • This can be verified by writing 

/7 = /6 + 6.
1
1312 

Hence 

/7 = /6 + 6i1/2 + 6.~ , 

Hence 

This process can be continued until the fifth difference is 
written as the sum of the previous fifth difference and a 
sixth difference. Then transposing the equation gives 

6 64 = f7 - (f6 + 6.~112 + £S5 + !i~/2 + 6.~ + 6.57/2) . 

The machine process is as follows: we assign one 
counter to the function and one to each difference-seven 
counters in all. Let us suppose the machine is set up with 
6.~ in Counter 1, 6.~/2 in Counter 2, 6.44 in Counter 3, 
6.39/2 in Counter 4, 6.~ in Counter 5, 6.\1/2 in Counter 6 
and f7 in Counter 7. In the next eight card cycles we will 
compute 6.65 , 

14 , 
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During the first card cycle, 6.64 is rolled out of Counter 1 
into Counter 2. This addition of 6.~ t.o 6.~/2 gives 6.~/2 in 
Counter 2. At the end of this cycle, a total is taken, printing 
6.64 out of Counter 1 and resetting this counter. During the 
second card cycle, 6,59 / 2 is rolled out of Counter 2 and 
entered positively int.o Counter 3 and negatively into 
Counter 1. This addition of 6.~/2 to 6.44 gives 6.45 in 
Counter 3, while - 6.5912 stands in Counter 1. During the 
third card cycle, 6.~ is rolled out of Counter 3 and entered 
positively into Counter 4 and negatively into Counter 1. 
This addition of 6.45 to 6.~12 gives t111/2 in Counter 4, 
while - (6.5

912 + 6.\) stands in Counter 1. During the 
fourth card cycle, t111/2 is r.olled out of Counter 4 and 
entered positively into Counter 5 and negatively into 
Counter 1. This addition .of t11112 to 6.; gives 6.2

6 in 
Counter 5, while - (6.5912 + 6.45 + 6.31112) stands in 
Counter 1. During the fifth card cycle, 6.26 is rolled out 
of Counter 5 and entered positively into Counter 6 and nega
tively int.o Counter 1. This addition of 6.26 to 6.\1/2 gives 
6.113/2 in Counter 6, while - (6.~12 + 6.45 + 6.31i/2 + 6.26 ) 

stands in Counter 1. 
During the sixth card cycle, only the negative transfer 

into Counter 1 is needed. In the previous cases, we have 
had to build up our difference order of n from a higher 
order difference and the previ.ous order of difference n. 
But the function has been read from the card, so that the 
function does not have to be built up from the previolls 
function and first difference. Hence, during the sixth card 
cycle, 6.113/2 is rolled out of Counter 6 and entered nega
tively into Counter 1, thus giving - (6.5

9 / 2 + 6.~ + 6.31112 
+ 6.2($ + 6.\312) in Counter 1. During the seventh card 
cycle, i1 is rolled out of Counter 7 and entered negatively 
into Counter 1. This gives - (6.5

9 / 2 + 6.~ + 6.311 / 2 + 6.26 

+ 6.i312 + i1) in Counter 1. During this cycle, i1 is reset 
as it rDlls, leaving the counter .open for receiving the next 
function. This process will be explained later. 

During the eighth cycle, is is read positively intD Counter 
1 and Counter 7. This leaves is in Counter 7 for use in com
puting the next difference and completes 6.65 in C.ounter 1, 

fDr 6.65 = is - (6.5
9 / 2 + 6.~ + 6.\112 + 6.26 + 6.\312 + i1)· 

During the eight-cycle operation, each counter has ad-
vanced from one difference to the succeeding difference .of 
the same order. Hence we are ready to repeat the cycle 
again and compute 6.66. Since .one function card is read 
every eight cycles, seven blank cards must f.ollow every 
function card. 

The first thing to be done is to set up an eight-cycle 
control panel. This is done by lacing together seven X 
distributors (Figure 1). 

As the first card is fed into the machine, the VCI hubs 
emit impulses at every digit position. The X impulse is 
selected by the digit selector and passed on t.o the common 
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hub .of Distributor 7. Since 7 is not energized, the impulse 
comes out of the NX hub and into the common hub .of 6. 
Since this is not energized, the impulse comes .out of the 
NX hub of 6 and enters the common hub of 5. Since 5, 4, 
3, 2 are all unenergized, the impulse finally goes from the 
NX hub of 2 to the common hub of 1. This distributor is 
unenergized, so the impulse comes out .of the NX hub and 
picks up Distributor 1. Once picked up, the distributor 
holds for one cycle. 

As the second card is fed, the VCI hubs emit impulses 
fDr all digits, and the digit selector passes the X impulse 
along to the distributor chain. It passes along the lacing, 
as the first impulse did, until it reaches Distributor 1. 
Since this is still energized, the impulse is shunted t.o the 
X hub .of the distributor, and from here to the pickup .of 
Distributor 2. Once picked up, this als.o holds during the 
next card cycle. As the third card is fed, the VCI hubs 
emit impulses for all digits, and the digit selector iSDlates 
the X impulse and passes it along tD the distributor chain. 
It passes along the lacing until it reaches Distributor 2. 
Since this is energized, the impulse is directed to the X 
hub .of DistributDr 2, from whence it picks up DistributDr 
3. Notice that the impulse never reaches Distribut.or 1, 
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since its path is broken by Distributor 2. As the fourth 
card is fed, the VCI hubs and the digit selector pass an 
X impulse along to the distributor chain. The impulse 
passes along the lacing until it reaches Distributor 3. Since 
this is energized, the impulse is diverted to the X hub of 
3, from whence it picks up Distributor 4. 

In a similar manner, the fifth card picks up Distributor 
5, the sixth card picks up Distributor 6, and the seventh 
card picks up Distributor 7. As the eighth card is fed, the 
VCI hubs emit impulses for all digits, and the digit se
lector passes the X impulse on t.o the common hub of 
Selector 7. Since this selector is energized,! the impulse is 
shunted to the X hub of this distributor. As this hub is not 
wired, the impulse has no effect on the machine, and all 
selectors are unenergized as the ninth card starts to feed. 
This is the same condition that we had when the first card 
started to feed. Thus we have wired a sequence of events 
which repeats itself every eight cycles. 

Seven counters are necessary for a sixth difference com
putation. This permits handling ten-digit numbers. We 
shall assign Counter 4A-6A to the function, 4B-6B to the 
sixth difference; 4C-6C to the fifth difference; 2A-8A to 
the fourth difference; 2C-8C to the third difference; 2B-8B 
to the second difference; and 2D-8D t.o the first difference: 
All counters are balance coupled, that is, t~e CI from the 
highest position is wired back into the C hub of the units 

position and the "hot 9" is jackplugged to the SVP hub. 
An analysis of the desired counter additions and sub-

tractions shows that the following counters must be acti-
vated on the indicated cycles. 

Roll 
Negatively 

Roll Into the 
Cycle Positively Onto 6,6 Counter Counters 

1 6,6 6,5 4B-6B Subt. (1) 
4C-6C Add 

2 6,5 6,4 6,5 4C-6C Subt. 
2A-SA Add (2) 
4B:-6B Subt. 

3 6,4 6,3 6,4 2A-8A Subt. 
2C-SCAdd (3) 
4B-6B Subt. 

4 6,3 6,? 6,3 2C-SC Subt. 
2B-SB Add (4) 
4B-6B Subt. 

5 6,2 6,1 6,2 2B-SB Subt. 
2D-SD Add (5) 
4B-6B Subt. 

6 H.oll 6,1 2D-SD Subt. (6) 

7 Roll the function 4A-6A Subt. (7) 
4B~6B Subt. 

S Read the new function into the 4A-6A Add (8) 
function counter and the 6, 6 counter 4B-6B Add 
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One cycle of Plug to C impulses is sufficient to control 
all but the 6 6 counter. Since any difference counter adds 
as the next higher difference counter subtracts, only the 
subtraction needs to be wired to the Plug to C. The addi
tion can be taken care of by wiring 2A-SA add to 4C-6C 
subtract; 2C-SC add to 2A-SA subtract; 2B-SB add to 
2C-SC subtract; 2D-SD add to 2B-SB subtract. The sub
traction impulses are generated as shown in Figure 2. 

It is at this stage of the wiring that the differencing 
cycles must be correlated with the card feed cycles. Since 
we wish to read from the first card, this step must take 
place as the first card is under the lower brushes. This is 
the last step in the differencing cycle. As the first card 
feeds, an X impulse picks up Distributor 1. As the first 
card passes the upper brushes, the X impulse picks up 
Distributor 2. Hence this distributor is energized as the 
first card passes the lower brushes, and the Plug to C 
impulse causing Counters 6A and 6B to read must come 
from the X hub of Distributor 2. This fixes the end of the 
differencing cycle, and the remaining Plug to C impulses 
are wired in sequence from this point. 

Selector F is used for algebraic sign control. Only the 
reading of the function depends on the punched sign. Once 
it is entered into the counters as a complement, if negative, 
or a true figure, if positive, it will always be transferred 
as a complement or a true figure. Another position of the 
selector will be used to indicate the sign of the function in 
the listing process. 

The entry of digits into all but the function and sixth 
difference counters is made by using the card cycle total 
transfer device. We have already wired the counters to 
subtract on the cycle when they transfer, and to add on the 
cycle when they receive. The wiring of the counter exit 
and counter entry circuits is as follows: 

from 4B-6B Counter total exits. 
to 4C-6C Counter entries. 

from 4C-6C Counter total exits. 
to 2A-SA Counter entries. 

from 2A-SA Counter total exits. 
to 2C-Se Counter entries. 

from 2C-SC Counter total exits. 
to 2B-SB Counter entries. 

from 2B-8B Counter total exits. 
to 2D-SD Counter entries. 

The function counter receives impulses only from the 
brushes: 

from Lower brushes. 
to 4A-6A Counter entries. 

The sixth difference counter must receive impulses from 
all difference counters, the function counter, and the 
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brushes. This demands the use of several selectors. Only 
five positions will be shown in each selector, but each is to 
handle the full ten digit field. 

Selector A is picked up on the card reading cycle by an 
X control shot from the pickup hub of Distributor 2 to 
the X pickup hub of the selector. Selector B is picked up 
by an X control shot from the pickup hub of Distributor 1 
to the X pickup hub of the selector. Selector C is picked 
up twice; once by an X control shot from the pickup hub 
of Distributor 4 to the X pickup hub of the selector, and 
the second time by an X control shot from the pickup hub 
of Distributor 6 to the D pickup hub of the selector. Se
lector D is picked up twice; once by an X control shot 
from the pickup hub of Distributor 5 to the X pickup hub 
of the selector and once by an X control shot from the 
pickup hub of Distributor 7 to the D pickup hub of the 
selector. These impulses are taken from the pickup hubs 
of the distributors. It must be remembered that the pickup 
hubs of the selectors and distributors are double hubs so 
that an impulse wired into one hub is automatically emitted 
from the other. Hence the selectors and the corresponding 
distributors will pick up at the same time. 

Wiring from the counter list exits is done to avoid the 
use of split wires from the counter total exit hubs. When
ever a counter is impulsed to add or subtract, the counter 
list exits and the counter entry hubs are internally con
nected. Thus, whenever Counter SA is impulsed to add or 
subtract, any number reaching the counter entry hubs will 
also reach the X hubs of Selector C by ~ay of the SA 
counter list exits. 

The read-in to Counter 6B will proceed as follows: as 
Distributor 2 picks up, the first card feeds under the lower 
brushes. Selector A also picks up, so that the entries to 
6B are connected by way of the double entry hubs of 6A 
to the brushes. This reads f into the counter. As Dis
tributor 2 picks up, Distributor S picks up also (Figure 2) 
and the new f is added or subtracted into 6B according to 
the sign of the function. On the next cycle, Distributor 3 
is picked up, but no selector is energized. Hence the 6B 
entry hubs are connected to the 8B total exit hubs. As only 
the 6C counter is impulsed on this cycle, no impulses are 
emitted from 8B into 6B. Also 6B subtracts, sO' that the 
difference in 6B is transmitted out through the total exit 
hubs intO' the entry hubs of 6C which adds the sixth dif
ference onto the previous fifth difference. On the next 
card cycle, Distributor 4 is picked up. Hence 6C subtracts 
and SA adds, and 6B subtracts through the NX hub of 
Distributor 8. Selector C is also picked up. TherefO're, any 
information reaching the SA entry hubs is emitted from 
the SA list exit hubs and transferred to the 6B entry hubs. 
The SA entry hubs are connected to the 6C total exit hubs. 
As 6C subtracts, the fifth difference is emitted from the 
total exit hubs and added into the previous fourth differ-
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ence in SA. It also passes through SA and is subtracted in 
6B. On the next card cycle, Distributor 5 picks up. Hence 
SA subtracts and SC adds and 6B again subtracts through 
the NX hub of Distributor S. Counter SA transfers the 
f.ourth diff~rence into the SC entry hubs where it is added 
to the previous third difference. 

The fourth difference also is emitted from the list exit 
hubs and reaches the X hubs of Selector D. Since this dis
tributor is energized, these digits reach the entry hubs of 
6B and subtract on top of the fifth difference. On the next 
cycle, Distributor 6 and Selector C are energized, SC sub
tracts, and SD adds; 6B still subtracts through the NX 
hub of Distributor 8. Since se subtracts, it transmits the 
third difference to SB, where it adds t.o the previous second 
difference. The third difference is emitted from the SB list 
exit hubs. From there, it passes through the X hubs of 
Selector C into Counter 6B. Note that SA is not active in 

this cycle. Hence the SA list exit hubs are dead, and no 
confusion can result from double wiring the SB and SA 
list exit hubs to the X hubs of Selector C. On the next 
card cycle, Distributor 7 and Selector D are energized. 
Counter SD adds, while SB and 6B subtract. Counter SB 
emits the second difference, which enters SD and adds onto 
the previous first difference. It is also emitted from the SD 
list exit hubs and passes through Selector D into 6B. 
Again the double wiring of the SC and 8D list exit hubs 
t.o the X hubs of Selector D causes no confusion as 8e 
and 8D are not active at the same time. 

On the next card cycle, as no distributor or selector picks 
up, SD subtracts and 6B subtracts (Figure 2). Thus SD emits 
the first difference from its total exit hubs, and this passes 
through the NX hubs of Selector D to Counter 6B. On the 
next cycle, Distributor 1 and Selector A are energized and 
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6A and 6B subtract. The function is emitted from the 
total exit hubs of 6A and passes through the X hubs of 
Selector A into Counter 6B. The next cycle feeds another 
function card past the brushes and starts the operation all 
over again. 

All counters are to accumulate the numbers read into 
them except the function and the sixth difference counters. 
The sixth difference counter should reset after the differ
ence has been rolled out. This is controlled as shown in 
Figure 4. 

The function counter is to be reset after it has trans
ferred its value to 6B. This is best done by rolling the 
function out of 6A back into 6A (Figure 5). 
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The pickup hub of Selector E is wired to the pickup hub 
of Distributor 2. This is to prevent a reset when a nega
tive function is read into 6A. The resetting principle is as 
follows: 6A is subtracting in order to transfer the infor
mation. Hence all its counter wheels are turning. As each 
wheel passes 9, it emits an impulse which enters the 
counter through the list exit hub. When an impulse enters 
a counter position while that counter is subtracting, it 
stops the wheel. Consequently, the counter wheel is stopped 
as soon as it emits an impulse-when it stands at 9. A 
counter with 9 in every position is a counter containing 
zero, if a "nines complement" system is used. Thus the 
function counter is reset as it transfers~ 
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To print the sixth difference and list the argument and 
function, the following wiring is used (Figure 6) : 

FIGURF; 6 

Counters 4B-6B are wired for balance conversion (Fig
ure 7): 
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The argument and function are listed (Figure 8) : 
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This will list an N after each negative function. If a 
numerical type bar is used for the sign of the function, 
read one Subtract Units Position into Selector F instead 
of a "hot 5." 

To get the listed numbers printed, a list cycle must be 
introduced before the function card reads, This is done by 
wiring the pickup of Distributor 2 to a control position of 

SCIENTIFIC COMPtJTATION 

the comparing relays, and connecting the unequal impulse 
to the minor control hubs. 

When there is one intermediate and one final total 
each cycle, the paper is spaced three times. In order to 
bring all the listing and total printing for a single step 
onto a single line, the upspace suppress is wired from first 
card control intermediate. This wiring kills spacing on the 
intermediate total cycle and allows ,only the single upspace 
on the minor listing cycle. 

In order to compute an nth difference, an (n + 2)-cycle 
panel is needed and (n + 1) blank cards must be inserted 
between function cards. Higher differences than the sixth 
can be computed on this same scheme if counter capacity 
and distributor capacity are available. No extra selector 
capacity is needed, as Selectors C and D can be multi wired 
on the same scheme as indicated here. 

If the function and argument are read into counters 
instead of being listed, they can be summary punched 
together with the highest order difference. An interme
diate summary punch control will be sufficient. Since the 
argument and function can be total printed at the same 
time as the difference, the listing cycle is not necessary 
and the minor control break can be eliminated. The inter
mediate control can then be shifted to minor control, sav
ing one cycle for each difference. 

The machine is cleared on the last card by wiring all 
differencing counters to major total. Since a last card 
causes all these total breaks, this will reset all counters 
and clear the machine. 

RF;I<'F;RF;N CF; 

1. L. J. CoMRU:, "On the Construction of Tables by Interpolation," 
Mon,thly Notices Royal Astroft. Soc., 88 (1928), pp. 447-59 and 
518-22. 

DISCUSSION 

Mr. Ferber: Do you insert blank cards? 
Dr. Blanch: Yes, seven blank cards behind every func

tion card, otherwise you couldn't do the operation. The 
cards are put in by the collator. 

};Ir. Bisch: Are they absolutely blank cards? 
Dr. Blanch: Absolutely blank, and they come out blank. 

You can use them over and over again. You are really 
programming the accounting machine. 

Dr. Abramo'lvitz: I would like to mention that the sixth 
difference control panel described by Dr. Blanch may be 
used for the computation of differences of lower order if 
so desired. To illustrate this property it is instructive to 
consider the following operations which take place to pro
duce the successive differences. Let us consider a table of 
values tv ,,~, ... in which we have interspersed seven blank 
cards between successive function cards. I f the cards have 
been fed into the machine and the 11 card is at the lower 
brushes, we then compute as shown on page 21. 



6" 6' 6' 6 3 6' 6' Function 
Coullter Coullter Counter Counter Counter Counter Counter 

I, card +1, ° ° ° ° ° +1, 

Blank card 1 Clears +1, 

Blank card 2 -I, +1, 
Blank card 3 -21, +1, 
Blank card 4 -31, +£, 

Blank card 5 -41, +£, 

Blank card 6 -51, 

Blank card 7 -61, Clears 

I. card 1.-61, +1. 
Blank card 1 Clears I.-51, 

Blank card 2 - 1.+ 51, 1.-41, 
Blank card 3 -212+ 91, 1 • .,--31, 

Blank card 4 -31.+121, 12-21, 
Blank card 5 -41.+141, 

Blank card 6 -51.+151, 1.-1,=6',* 
Blank card 7 -61.+ 151, Clears 

I, card 13-61.+151, +1. 
Blank card 1 Clears 13-5/2+ 10/, 
Blank card 2 - 13+ 5/.- 101, 13-41.+61, 
Blank card 3 -213+ 912-16f, I, ·-3f.+3I, 
Blank card 4 -3f.+ 12f2- 19f, f.- 2f.+f,=62, 
Blank card 5 -4f.+ 14f2- 2Of, il,+6', = 6'. 

Blank card 6 - 5f3+ 15f.-2Of, 

Blankt:ard 7 -6f.+ 15f2- 2Of, Clears 

f. card f. -6f3+ 1512-2Of, +1. 
Blank card 1 Clears f.-5f.+1012- lOf, 
Blank card 2 - f.+ 513- 1Of.+1OI, f.-4f,+6f.-4f, 
Blank card 3 -2f.+ 9f3-16f2+14I, 1.-3f,+3f.-f, =6', 
Blank card 4 --3f.+12f3-19f2+15f, IS, + /'i" = 6'. 
Blank card 5 -4f.+ 14f,-20f.+ 151, 6'2+62.=t};. 
Blank card 6 - Sf. + 15I,-20f,+ lSI, 

Blank card 7 -6f. + 15f3 -2°f. + 15f, Clears 

f, card f,-6f.+ 15f3-20f2+ lSI, +1. 
Blank carel 1 Clears f5- 5f.+1013- 1Of2+5f, 
Blank card 2 - f5+ 5f.- 1Of.+lOf.-5f, f,-41.+6f.- 4f2+I, = 6\ 
Blank card 3 -21,+ 91.-1613+141.-61, 6"+6',=6'. 
Blank card 4 -3f5+121.-1913+15f.-6f, IS, + 6', = 6~, 

Blank card 5 -4f,+ 14f. -20f3+15f,-6f, 6\+6'3=6~ 

Blank card 6 -51,+151. -20f3+ 1512-6f, 

Blank card 7 -6f,+15f. -2°f, + 151.-6f, Clears 

f. card f. -6f,+ 15f. -20f3+ 15f.-6f, +f. 
Blank card 1 Clears f. -5f5+ lOf. -lOf3+5f2-f, = IS, 
Blank card 2 - f.+ 5f.-lOf.+1Of3- 5f.+f, 6"+6",=6'. 
Blank card 3 -21.+ 915-16f.+14f3-6f.+f, 1S.+6;=IS, 
Blank card 4 -3f.+ 12f,-19f.+15f3- 6f.+f, 6 2

3 + 63
3 = 6'. 

Blank card 5 -41.+ 1415-20f.+ 15f3-6f.+f, 6'.+ IS. = 6'. 
Blank card 6 -51.+ 15f,-20f.+ 15f3-6f.+f, 

Blank card 7 -6f.+ lSI. - 2°f, + 15f3 -6f2+f, Clears 

I, card f,-6f.+ 15f, -20f,+15f3-6f,+f, = 6·, +f, 

*The subscript convention used here differs from that of Yowell in Dr. Blanch's paper.-Ed, 
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To explain the foregoing techniques, let us confine 
our attention to the sequence of operations occurring 
with the fs card. When the fs card is at the lower brushes, 
it is added into the 6. s counter and function counter. On 
blank card 1 the 6. s counter adds to the 6. 5 counter, the 
amount in the 6. s pririts, and the counter is cleared. On 
blank card 2 the amount in the 6. 5 adds to the 6. 4 counter 
and subtracts from the 6. s counter. A similar process takes 
place on blank cards 2 to 5. On blank card 6 the 6.1 counter 
subtracts from the 6. 6 ~ounter. On blank card 7 the func
tion subtracts from the 6. 6 counter. The function counter 
is cleared on this card by having the amount stored in the 
counter subtract from itself. This method of clearance 
eliminates the necessity of having to stop to take a total. 

From this point on the pattern described above continues 
to produce the successive values of the sixth difference. 
I have only indicated the changes which take place in the 
various counters. It is clear that if the add impUlse to the 
6,1 counter is eliminated we will transmit a zero balance 
on blank card 7 and the order of the differences in the 
remaining counters will be reduced by one. Similarly, if 
the add impulse to the 6. 3 counter were removed, the 
process described would generate second differences only. 
I f only fourth differences are desired a minor modification 
of the above process (using six blank cards) will print all 
the columns of differences 'as true figures. In the sixth 
difference control panel only the quantities in the 6. 6 

counter print so that the differences in the other counters 
are carried as complements. If one wishes to list all col
umns of differences it is necessary to i~troduce additional 
counters from which the amounts may be printed as true 
figures with appropriate sign indication. 

In both cases just described it is possible to difference 
ten-digit function values taking account of algebraic signs. 
If only fourth differences are desired, the capacity of the 
counters may be extended to sixteen digits. It is also pos
sible to take second differences of three functions (using 
four blank cards), or third differences of two functions 
simultaneously (using five blank cards). 

It is clear that the Type 602 Calculating Punch is a 
superior machine for the calculation of tabular differences 
since it is faster and the results are punched on cards. 
Although the results can be punched on cards when dif
ferencing on the accounting machine, this procedure in
volves summary punching. However, when only a printed 
record of the differences are wanted for the purpose of 
checking tables, the. accounting machine method is desir
able. Comparison of the speed of the accounting machine 
method with that necessary for differencing oh a National, 
Burroughs or Sundstrand machine shows that it is ap
proximately four times as fast except for time consumed 
in punching the cards. However, once a card file has 
been prepared, further computations can be made with 
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it, and this usually compensates for the time spent in key 
punching. The time necessary for interspersing blank 
cards is never appreciable, and this operation can usually 
be done at the same time that the differences are being run. 

I would like to mention that at the present time we can 
compute tables on IBM equipment and type them on the 
card-controlled typewriter. From our experience, this type
writer made one error in typing 35,000 ten-digit numbers. 
This is work of a high order of accuracy, but for a table 
maker there is no compromise with perfection. The result
ing manuscript must be subjected to various tests. It would 
be highly desirable if there were a means of preparing a 
card file from the typed manuscript. This would obviate the 
necessity of checking by hand, proofreading or repunching 
a new set of cards to be compared with the original files. 

111 r. Hollander: I would like to suggest something about 
the notation on the diagrams. There ought to be more detail 
about where the information is coming from. When a 
counter is indicated by a column, it requires little more 
writing to indicate in that column that the counter is being 
impulsed plus or minus. The flow of information through 
the machine can then be more easily determined, because 
one knows something is happening in that column. 

Dr. Herget: I would like to point out that the chain of 
X distributors Dr. Abramowitz showed might better be 
activated by a punch on one of the function cards, be
cause, if at any time there is a machine failure, the 405 
will go on with an out-of-phase cycle of eight. If started 
by the card, each cycle would be independent. 

lV/r. J-lollander: The blank cards could all carry control 
punches. 

Mr. Bell: Another advantage of that is that the board 
can be used as a general purpose difference computer with 
the order of the highest difference determined by the con
trol cards used. 
- Dr. Eckert: There is one comment I would like to make 
about Dr. Abramowitz' point that we should have auto
matic means of reading tables so as not to have to key 
punch them. If you consider the value of a table and the 
amount of work you put into computing, it doesn't seem 
excessive to have such a machine. But to key punch the 
figures from a paper you publish for posterity is a com
paratively cheap method of proofreading. Even though 
you check the plates perfectly the printing may have been 
bad, so it is very useful to have at least one copy of the 
tables looked at by individuals as it comes from the press. 

Dr. Abramowitz: The difficulty in the printing doesn't 
detract from the value of a machine for reading back and 
checking. You want to be able to read back accounting 
machine records, too. 

Dr. Grosch: I think many people here already know it is 
possible to take second differences on a two-brush account
ing machine by ~ip-flops, without interleaving blank cards. 
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THE ART of constructing printed tables of mathemati
cal functions is not by any means static. Indeed, of the 
half dozen great table makers, two have flourished in our 
time: the late Jean Peters and L. J. Comrie. The require
ments of a good printed table are not often explicitly for
mulated, but most of the Forum members have worked 
with "good" and "bad" specimens. Not only must a com
puter constructing a printed table worry about interpola
tion methods, tabular intervals, and the detection and 
elimination of errors, but he must consider very carefully 
the typography, page format, paper quality, and binding. 
Discussion of these latter items is not often found in the 
literature; aside from notes in MTAC reviews and the 
introductory material in the new Chambers tables, l the 
only discussion I have referred to recently is in the Napier 
Memoria1.2 

Naturally the aim of the table maker is to facilitate the 
use of his product. In specifying a figure of merit for use
fulness, however, one runs some risk of controversy in 
assessing a "design" in terms of speed of use, reduction 
of ocular fatigue, and protection against misreading; the 
relative weighting of these estimates is even more uncer
tain. The human element is the vital one in hand comput
ing, and it is not su,rprising that attempts to predict what 
computers wi1llike have led to rather varied results! 

The situation is far different when we turn to automatic 
digital computing equipment on the level, say, of the Type 
602. For a given system of input, storage, and output the 
variables of typography, format, and binding disappear; 
estimates of the usefulness of a particular table can be 
made with almost the precision of cost accounting; and 
machine characteristics become more important than 
human foibles. It is not surprising that machine methods 
of calculatimi have led to a very different formulation of 
the problem of table design, nor is it surprising that the 
formulation can be much more exact than opinions about 
printed tables. 

A problem involving table lookup should be specified as 
completely as possible. As always, one needs to know the 
function and range of arguments required. An exact state
ment of error requirements is needed: not just "five fig-
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ures," but a detailed analysis of the permissible error as a 
function of the argument. Thus a typical specification 
might be "no error greater than 2.6 X 10-8 for x < 1, nor 
greater than 2.6% X 10-8 for % > 1; average error of 
random interpolated values to be zero." The average num
ber of values to be taken from the table at each use should 
be known, as should the probable number of times the 
table will be used (on the work to which its construction 
cost will be charged). 

In addition, the speed and operating cost of the machines 
involved both in using and in constructing the table must 
be given, and their storage and sequence capacities. Fin
ally, some sort of estimate may be made of the value of 
the table designer's own time; this is the factor which 
makes it unwise to spend a month planning how to save a 
total of three or four hours of 604 time! 

The most satisfactory type of table, given requirements 
permitting its use, is the critical table. No interpolation is 
required; final answers are obtained by sorting or collating 
and gang punching. In printed critical tables, one line is 
required for each possible value of the function (more if 
the function is not monotonic in the range tabulated). 
Values of the argument are constructed so as to correspond 
exactly to values of the function midway between those 
actually printed. In the optimum interval methods I have 
developed, a general form of critical table arises from 
setting the degree of polynomial approximation equal to 
zero~general in the sense that the maximum tabular error 
need no longer be exactly one-half in the last place. 

Critical tables, however, are indicated only if the num
ber of values of the function required from each use of 
the table is large compared to the size of the table. Thus a 
critical table of the sine function from 0° to 80°, with 
maximum allowable error 1.5 X 10-'*, will consist of 3283 
cards. It obviously would be a good choice if more than a 
thousand values were required each time the table was 
used, and it obviously would be a poor choice if less than 
a hundred values were required. 

A table requiring linear interpolation usually is consid
ered next. It is far easier to construct than higher order 
tables, and much smaller than a critical table. But machine 
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characteristics may be an important factor; if the multi
plications involved in the interpolatory process are per
formed on the 604, for example, quadratic or cubic 
formulas take no longer to evaluate than linear ones, and 
it is possible to save table bulk subject to limitations im
posed by the storage capacity of the 604 and by the 
extra cost of computing more complicated tables. On the 
602, extra multiplications slow down the operational 
speed, and a different balance must be struck. On the 
601, extra card passes are required; for quadratic inter
polation Herget's card reversal technique eliminates the 
extra control panel, but not the second pass. 

There is no point in belaboring this subject of economic 
decisions too far. I will close this section of my paper by 
giving one very detailed example of the process, and then 
pass on to more technical matters. Suppose the estimation 
procedures to be explained later have been applied to a 
certaIn problem, and that the following approximate table 
sizes resulted: 

Critical 18,000 cards (12) 
Linear 1,400 cards (17) 
Quadratic 340 cards (23) 
Cubic 110 cards (29) 
Quartic 60 cards (35) 
Quintic 30 cards (42) 

The numbers in parentheses indicate the number of digits 
punched on each card of the table, including the argument. 
The arguments on the detail cards are six-digit numbers. 

Further suppose that the equipment available includes 
sorter, collator, reproducer; and 602A and 604 punches. 
The relative cost of using these machines is taken as 
2, 3, 4, 8, and 16 including operator and overhead (these 
figur.es will of course differ from installation to installa
tion, and also will be changed for different machine models 
and extra accessories). Finally, suppose that an average of 
250 values is needed for each use of the table. 

In the critical case, we shall do best to use both sorter 
and collator. First we sort the detail cards on six columns, 
then we collate these on all six columns with the 18,000-
card table, selecting out unnecessary table cards. The 
merged deck, not much under 500 cards, is passed through 
the reproducer and gang punched. A final collator run re
moves the. detail cards and reassembles the big table. The 
costs, in arbitrary units, are respectively 0.3, 3.9, 0.4, and 
4.0; the total, 8.6. Because of excessive card handling 
problems we will adopt 9.0 as our reference figure. 

In linear interpolation, collating will still pay in spite of 
the drastic reduction in table size. We sort the 250 detail 
cards on {our columns, collate on four columns with the 
1,400-card table, selecting unnecessary table cards, run the 
merged deck of say 400 cards through a gang punching 
operation, separate and restore the table as before, and 
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finally make a multiplication of simple A X B + C form 
on each- detail card. The costs are 0.2, 0.4, 0.4, 0.4, and 1.4 
(Type 602A) or 0.8 (Type 604). Choosing the 604, the 
total cost is 2.2 units, a considerable saving over the pre
vious critical table. 

In quadratic interpolation, it is no longer economical t.o 
select out unwanted table cards, since it is cheaper to pull 
apart the table and detail cards on a single pass through 
the sorter than to reassemble the table deck by collating, 
while the extra cost of running a few unnecessary table 
cards through the reproducer is negligible. Hence, the 
operations are sorting on four columns, collating without 
selection (340 + 250 cards), gang punching the whole 
590-card merged deck, sorting once for separation, and 
repeated multiplication of the form (A X B + C) X 
A + D on either 602A or 604. The costs are 0.2, 0.2, 0.5, 
0.1, and 2.2 (Type 602A) or 0.8 (Type 604). The total is 
1.8 if the 604 is used. 

In the cubic case the collator is no longer used, and this 
will be true for the still smaller tables in higher-order in
terpolation. The costs are 0.3 for sorting, 0.4 for gang 
punching, 0.1 for separating, and 3.0 (Type 602A) or 0.8 
(Type 604) for interpolation. The total cost is therefore 
1.6 units. 

The quartic case costs 1.4 units, using the Type 604, 
since the initial sorting cost drops to 0.2 again and the 
gang punching drops to 0.3. This total cost of 1.4 arbitrary 
units will not be substantially reduced by going to higher 
.order interpolation, and in fact the Type 604 has to stop 
here, as its capacity for storing the multiple coefficients of 
the quintic and higher tables, reading the detail card and 
punching the answer is exceeded. 

N.o consideration was given to passing the merged deck 
through the 604, omitting the gang punching opera
tion. Passing a table card through the 604 costs four 
times as much as passing either a table or a detail card 
through the repr.oducer; therefore gang punching should 
be omitted only if the size of the table is less than one
third the size of the detail deck. This just begins to be the 
case for the quartic, and the costs for that case figure 
0.2 + 1.0 + 0.1 = 1.3, undoubtedly the very best that can 
be done. 

If the number of ~imes the job is to be done is great 
enough to warrant constructing the very complicated quar
tic table, we may claim that this latter case is the most 
economical. If figures amortizing the cost of constructing 
the various tables are added to the above, a final choice 
can be made. 

So much for the economics of special tables; now I 
want to tell you about the methods we use to design and 
construct optimum interval tables of various order;;. 

The idea of expanding the interval is not new.3 ,4 The 
exigencies of hand computation prevented adoption in the 
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past, but the advent of punched card equipment in tech
nical computation immediately brought the matter to the 
fore. The linear univariate case was discussed in some 
detail, 5 but even at this level it is possible to increase the 
permitted interval by 40 per cent.G The material for the 
general case is new. 

Let us consider the Besselian interpolation formula 

. n(n-1) ,,00 
f = i£ + n . LYi+1/2 + 2 . L::/l+1/2 + ... 

involving odd and mean even differences. The error of 
neglecting the third difference is 

n (n - 1/2) (n - 1) "iii 
6 . Ui+1h • 

This error is zero at n = 0 and n = 1, and has two ex
trema of equal size and opposite sign at n = 1/2 ± vT7f2~ 
The extreme error is y3 iii/216, or about ~i/125. If this 
kind of quadratic interpolation is adopted, the rule for 
interval would be L1ii= 125 £, where £ stands for the maxi
mum allowable error due to neglect of third and higher 
differences. 

If we define the error of approximation of the jth line 
of a table as 

p 

f(x) - L Aij Xi, _t'j < X < .t'j+1 , 
i=O 

(1) 

where the A's are the coefficients of the approximating 
polynomial of degree p, we can write this in n-measure as 

with 

<, 0 

f ( n) - Li aij n~ , 0< n < 1 , 
i=O 

.1:" - .1:"j 
n= 

Xj+1 - Xj 

(2) 

This is ordinarily a polynomial of degree p + 1; taking 
out £ we write it as 

(3) 

Of course £ may vary from line to line of the table. In the 
example of p = 2 Besselian interpolation, Ep(n) was 
n/12 - n2/4 + n3/6. 

Without further ado, I will simply state that the maxi
mum possible interval is obtained when the error poly
nomial Ep (n) is chosen from 

Eo(n) = 1 - 2n 

E1 (n) = 1 - 8n + 8n2 

E2(n) = 1 - 18n + 48n2 
- 32n3 

Ea (n) = 1 - 32n + 160n2 
- 256n3 + 128n4 

or in general 

P+1 ( 1)" 
1 + (p + 1) L ~i 1. 

'i=o 

2::!H (p+i)! 
(2i-1)!·(P-i+I)! 

• ni 

( -1 )P+1 cos [2 (p + 1) cos-1 yin] 
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(4a) 

(4b) 

The identification with Chebyshev polynomials is due to 
Dr. C. C. Bramble. 

The error of approximation is therefore + £ at n = 0, 
passes through p extrema (alternately - £ and + £), and 
is ( -1 )P+1 .£ at n = 1. This is the error distribution which 
maximizes the interval w = Xj+l - Xj' Note that the tabular 
values ~Aij:vJ are no longer' exact except for rounding 
error. Instead they are wrong by the maximum allowable 
amount + £. 

This material is sufficient to handle certain simple cases. 
For example, consider the sine function near the origin, 
and quadratic interpolation. We can replace the sine by the 
first terms of its series, and write, 

(x - x 3/6) - (Ao + A1_'l: + A2x2) = 
£ • (1 - 18n + 48n2 

- 32n3
). 

Then using .t' = l1w and equating like powers of n we find 

-1/6n3w 3 = -32n3
£ 

or 

the remaining equations can be solved for the A's and the 
first line of our table is complete. Next we could write the 
Taylor series expansion about -1:"1 and repeat the above to 
get the next interval -1~2 - x] and the next set of A's; this 
would go along finely until the term +.1,-5/120 began to 
bother us. 

H one tries this process with a more slowly convergent 
series for f (x), even the first line of the table will give 
trouble. The square root function is a case in point; I tried 
very early in my experiments to construct a table of 
~ to be used in going from sines to cosines, but 
found thatfC.'\:) = 1 - .1,'/2 - _1:":l/8 - .1,'3/16 - ... con
verged too slowly for even the first line of a ten-decimal 
p = 3 table. 

The clue to a more general approach comes from pictur
ing the error polynomial after it is slightly distorted by the 
presence of terms of degree greater than p+ 1. The shape 
is different; the extrema are no longer exactly -lor + 1 ; 
the positions of the extrema have shifted, but not much! 
Therefore, if we insist that the error be + £ at n = 0, 
(-ly£ at 11. = nk, and (-1)p+1 £ at 1l = 1, where the nk are 
the p roots of 

dEp(n) = 0 , 
dn 
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errors very slightly larger than € may occui' in the neigh
borhood of the nk; this excess error may be taken care of 
by making the interval very slightly smaller than theory 
might indicate. 

In general, then, after an interval has been adopted, we 
compute the function for the p+2 arguments correspond
ing to 11, = 0, the nk's, and n = 1. This is done with the 
usual table-making precaution: two or three extra decimal 
places are carried. \Ve then write p+2 simultaneous equa
tions in the unknowns ao, a l , ••• , ap, and €: 

ao + 
ao + n1a1 + n2G2 + ... + J:.Gp -

ao + 1'i2a1 + n~G2 + ... + n~ap + 

€ = f(O) 

€ = f(n1 ) 

€ = f(n2) 

Go + npa1 + 1t~a2 + ... + n~ap + (-l)p € = f(np) 

ao + a1 + a2 + ... + Gp + (-l)P+l f = f(l) 

These equations are solved for the a's and for €. If € is less 
than but nearly equal to its desired value, the interval has 
been chosen correctly. 

Due to the nature of the polynomials Ep (n), we are able 
to write a general rule for the positions of the extrema: 

1lli, = sin2 2(;~1) ; k::::; 1,2,3, ... p. (5) 

Thus there are no extrema for p = 0; for p = 1 there is a 
minimum at 11,1 = 1/2; for p = 2 there is a minimum at 
n1 =1/4 and a maximum at n2 = 3/4; for p = 3 there are 
minima at n1 = 1/2 - Y 1/8 and 113 = 1/2 + Y 1/8, and 
a maximum at 112 = 1/2. 

It is evident that if we write the above system in matrix 
notation 

N·A=F, 

N is a square matrix of order p+2 whose elements depend 
only on the choice of p. The inverse of N may therefore 
be computed once and for all, for the various values of p, 
and the unknown column matrix A formed from 

A = N-1. F . (6) 

The bottom element of A is €; from the top down, the 
others are ao, av a2 , ••• , ape Having obtained the a's, the 
linear transformation to the desired A's is obvious but 
laborious, since each line of the table requires a different 
transformation. Values of N-1 for p = 0, 1, 2, and 3 are 
given in Table 1. 

[

, +1/2 

+1/2 

+5/6 

-10/3 

+8/3 

+1/6 

+7/8 

-7 

+14 

-8 

+1/8 

SCI E N T IF I C CO M PUT A T I ON 

TABLE I 

+1/2 

-1/2 
] [ +3/4 

~~/4 
+1/2 

o 
-1/2 

+1/3 

+2 

-8/3 

-1/3 

+1/4 

+ 4y2 

...c..12y2 

+ 8y2 

-1/4 

-1/4 

+4 

-4 

0 

+1/4 

-1/3 

+10/3 

-8/3 

+1/3 

+1/4 

- 4y2 

+12y2 

- 8y2 

-1/4 

-1/4 -J 
+1 

+1/4 

+1/6 

-2 

+8/3 

-1/6 

-1/8 

+3 

-10 

+8 

+1/8 

A very important feature of the matrix presentation is 
that the bottom row of N-t, which is the one used in cal
culating € from F, has the general form 

[ + 2(P~1) 1 
+ p+1 ... 

( -l)p 
p+1 

( -1)P+l] 

2(p+ 1) . (7) 

This furnishes the definitive estimation process required 
in choosing an interval, and is a powerful tool in poly
nomial approximation theory. 

While these matrix methods serve well in the final 
stages of table design and in the actual construction, 
rougher procedures are valuable in the preliminaries. If 
we consider the term i == P + 1 in (4a), put n = 1, and 
equate it to the (p+ l)th term of the Taylor expansion for 
f(x+w) we get 

w P+1 f (P+l) /(p+ I)! = (-1) PH • 2:W+1 • € • 

Absorbing the sign' into €, and remembering the relation 
between differences and derivatives, we can write 
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The more usual cases are as follows: 

p=o L,1 = 2£ 

P = 1 L,ii = 16 £ 

p=2 L,iil = 192 £ 

p=3 L,iv = 3072 £ 

Suppose we wish to make a linear table of In x, 1.0 < 
x < 5.0, with an overall accuracy of 1.8 X 10-6 through
out, and no requirement on the mean error. First we have 
to consider the form of the table. I have found from expe
rience that in this sort of problem there is a real gain in 
making the Ao's seven-decimal numbers, but not more. 
The A/s will also be seven decimals. The rounding error 
of the worst Ao will not exceed 5 X 10-8, the rounding 
error of A1x (assuming % to be exact) will not exceed 
5x X 10-8

• The final rounding of an interpolated answer f 
may introduce errors as large as 5 X 10-7 if the answer is 
given to six decimals only. Therefore £, the maximum al
lowable error due to the degree of approximation, must be 

£ = (125 - 5x) X 10-8
• 

From (8) we have 

00
2 fii = (20 - 0.8x) X 10-6 

; 

if it is desirable to squeeze the final table down to the very 
smallest size, this equation may be used to calculate the 
intervals. Usually, however, we would take the worst case 
(x = 5.0) and simply use 

00
2 fii = 16 X 10-6 

or 
002 = 0.004(fii)-1/2 

as the interval rule. For the natural logarithm, fi = -x ~ 
and hence the very simple result, giving £ a negative sign, is 

w = 0.004% . 

As a test we take the last interval, with argument 4.980 
and interval 0.020. The column matrix F is 

[ 

1.60542989 ] 
1.60743591 
1.60943791 

and application of (7) gives £ = -1.005 X 10-6
• At x = 5.0 

the maximum rounding error from all sources will be 
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0.80 X 10-6
, so the above value of £ is exactly as it should 

be. The actual tabular values turn out to be 

Ao = +0.6074339 

Al = +0.2004010 , 

and the errors at n = 0, n1 = 1/2, and 1Z, = 1 are respec
tively -0.99, + 1.02, and -0.99 in units of the sixth 
decimal. These errors are small because there happens to 
be no error in Al (at least to eight decimals), the rounding 
error of Ao was only 1.5 X 10-8

, and the final results were 
not rounded at all. This favorable combination of circum
stances will not hold throughout the table. 

As for the size of the whole table, detailed examination 
using values of 00 from 0.004 to 0.019 will show that 430 
cards are required. For rough estimates, I use 

fd~/w = 250 f d:/x = 250 In 5.0 = 403 J1.O J1.0 

This, of course, assumes a smooth change of interval, and 
is usually ten or fifteen per cent low. 

It is not practical to describe here the extension of these 
methods to other problems. I have worked out approaches 
to such variations as cases with error terms of order p+2 
instead of p+ 1, cases where the mean error must be zero 
and p is odd (for p even the above methods suffice), and 
even the bivariate problem. In general, it is fair to say that 
optimum interval methods in the latter case are warranted 
only if the table is to be referred to many hundreds of 
times, for the work of design and construction is enormous 
even for the linear ca~e. 
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Punched Card Techniques for the Solution of Simultaneous 
Equations and Other Matrix Operations 

WILLIAM D. BELL 

Telecomputing Corporation 

ELECTRICAL punched card equipment has been used 
for matrix calculations of various sorts for some time. 
There have been wide discrepancies in the operational 
methods, efficiency and general utility of the procedures 
being used. From the widespread interest in this subject, 
it is evident that there is a genuine need for a good basic 
approach to the problem, particularly in terms of actual 
machine operations. 

The method explained below has been successfully used 
for a wide variety of problems over an extended period 
of time. Among the advantages of the system are the fol
lowing: 

1. Both card handling and machine operations have 
been reduced to a minimum. This results in a definite 
time advantage, as well as simplicity from the oper
ator's standpoint. 

2. Among the basic matrix operations to which the 
same procedure is directly applicable, are the fol
lowing: 
a. Solution of systems of simultaneous equations. 
b. Computation of determinants. 
c. Calculation of inverse matrices. 

3. The same method, procedure, and control panels can 
be used for either real or complex numbers.1 

The equipment described is that made by the Interna
tional Business :Machines Corporation. 

Mathematical Basis of M etlzod 

There is a systematic method of operating on a matrix 
in such a way as to make all of the elements of a given 
column, except one, equal to zero. 'I'he method consists of 
subtracting some multiple of a given row from each of the 
other rows in such a way as to make one column zero in 
'all except one element. The process has been well described 
in the literature2

, 3 and is often called the "starring proc
ess." A simple numerical example follows. 
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Given a set of simultaneous linear equations 

3X + 12Y - 7Z = 6 
2X - 8Y + 8Z = 10 
6X - 2Y -- 3Z = -7 

write the matrix 

3 
2 
6 

12 
-8 
-2 

-7 
8 

-3* 

6 
10 
-7 . 

The first reduced matrix, by "starring" on the A33 term, 
becomes 

3 _ (-7)(~ -12 _ (-7)(-2) (-7)(-3) (-7)(-7) 
-7---- 6-<=3) (-3) (-3) (-3) 

2-~-~ 
(-3) 

_ 8- (8)(~ 
(-3) 

8- (8)(-3) 
(-3) 

10 _ (8)(-7) 
(-3) , 

which reduces to 

-11 50/3 0 67/3 
18 -40/3 0 -26/3 
6 2 -3 7 . 

Repetitions of this pattern, working each time with the 
transformed matrix from the previous operation and 
starring on one of the remaining main diagonal terms, will 
produce a diagonal matrix from which the unknowns or 
the determinant can be computed directly. The basic oper
ation is thus of the form 

A .. _ A'im A'III} - 'A .. 
'tJ Arnrn - 'tJ 

where' Aij is the A'ij term in the transformed matrix and 
Ainrn is the starring term in a matrix of order n. 

IBA1 M etlzod 

The major problem in matrix work is that a given card, 
representing a certain element of the matrix, must be 
handled in a different manner at different steps in the 
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procedure. As an example, what is an answer from a pre
vious transformation might become a multiplier in the 
next reduction. An obvious solution is to use a master deck 
which knows the factors to be used, the operations to be 
performed, and the identity of the resulting term. The 
actual numerical values for a particular problem are then 
transferred to the master cards by a relating and gang 
punching process. A method of this type has been pub
lished.4 The disadvantages of such a process are the neces
sity of constructing the master files, and the number of 
unnecessary operations involved. 

The key to the procedure explained here lies in a very 
simple way of causing a machine to differentiate auto
matically between two identical cards. The usual method 
of identifying a type of IBM card is with an X punch in 
all cards of that type. This is a high punch placed in some 
column of the card and falling at the upper edge. It can 
be used for controlling the various functions of the dif
ferent machines through which the card passes. If a card 
goes through a machine face up rather than face down, 
all punching in the card is transferred to a mirror image 
position with right and left transposed. It becomes, to all 
intents and purposes, a different kind of card. The fact 
that this requires the machine to read each amount from 
different columns and from right to left instead of left to 
right imposes no restrictions. The card form used is shown 
in Figure 1. The card is in its normal reading position; 
when the card is in its reversed or mirror image position, 
the machines sense X58. 

I 
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Control Panels 

The control panels required are as follows: 

1. A gang punching control panel which transfers the 
factors of the starring row into all related cards. The 
starring row becomes gang punch master cards 
which are used in the "turned" position. This func
tion is performed automatically by a Reproducing 
Punch, Type 513 or Type 519, at a constant speed 
of one hundred cards per minute. 

2. A Type 602 Calculating Punch control panel which 
performs the operation 

'Ai' - A .. _ Aim Am; 
J - IJ Amm 

The factors Aim and Amm are in "turned" cards 
which are recognized by the machine by a common 
X58. The ratio of these terms is computed by a 
division operation and the result stored within 
counters in the machine for use on all terms in a 
particular row of the matrix. This eliminates any 
redundancy in the division operation, which is the 
slowest operation performed, requiring approxi
mately four seconds per card. 

On an X23 card (normal position) the machine 
multiplies the ratio by Amj and subtracts it from Aij 
to form the new term' A ij , which is punched into 
each detail card. The order number of the new 
matrix term is simultaneously calculated and re-

I GANGED 513 REPRO. FROM PREVIOUS ORDER 602 

~ 
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!~~ ~~ ~~~ ~~ 0 -' 

...... ::> 

ct: :; :!: ~~ 
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I I 

22222222222222222222222 2222222222 22 2 2 222 222 2 2 22 2 2 2 2:2 2 2 2 2 2 222 2 2 2 212 2 2 2 2 2 2 2 22222222 
I 

I 

3 3 3 3:3 3 3 3 3 3 33333333333333333333333 3333333333 3 3 3 3 333 333 33 3 3 3333:333 333 333 3 3 33333333 
I -

44444444444444444444444 4444444444 44 44 444 444 44 44 4 4 4 4:4 4 4 4 4 4 444 4 4 4 4:4 4 4 4 4 4 44 44444444 
I I 
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FIGURE 1 
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corded. The speed here is about twenty-five cards 
per minute. All of these mathematical manipulations 
are completely automatic, with the 602 sensing the 
type of card, determining what is to be read, and 
performing the proper operations. 

3. A reproducing control panel which at a hundred 
cards per minute will make a new deck with the 
newly computed transformed elements returned to . 
the original locations in the new cards in readiness 
for the next starring operation. 

Procedure 

The detailed steps followed by the operators are ex
ceedingly simple. A complete operating procedure is given 
below. This covers the calculation of the diagonal matrix. 
This method, as explained above, will give the solution of 
simultaneous equations, inverse matrices and determinants. 

1. Sort the cards to column 44-45. 

2. When column 44-45 equals 59-60, reverse the se
lected cards, place in front and sort: 

46-47 minor 
41-43 major 

3. Gang punch using control panel (1). 

4. Select the X58 (turned) cards and hold aside. 

5. Sort remaining cards to 46-47. 

6. When 46-47 equals 59-60, reverse the selected cards, 
place in front and sort: 

44-45 minor 
41-43 maj.or 

7. Calculate 'Aij , the elements of the transformed 
matrix, using board (2). 

8. Select X58 cards and hold aside. 

9. Reproduce the balance of the cards on control panel 
(3). 

This completes one starring operation. Using the new 
cards from (9), begin again at step (1) and repeat. 
Usually it will be adequate to select the "starring" terms 
by· going up the main diagonal. 
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SCIENTIFIC COMPUTATION 

DISCUSSION 
Mr. HaY11'tan: When you use the cards face up, don't 

you have trouble with curvature? 
Mr. Bell: No trouble at all. 
Dr. Caldwell: What kind of climate do you have? 
,lllr. Bell: Los Angeles. 
Dr. Herget: We could do it at Washington. 
Dr. Grosch: We did it in New York. 
Mr. Bell: This approach of reversing the cards will 

work in many problems. When you reverse the cards in 
the matrix work, the identification field is reversed also, 
so it is necessary to have another field where the identifi
cation is punched as a mirror image. Then when you turn 
them over and sort you do not have to invert the sorting 
procedure or change the sorter brush setting. 

MI'. Ferber: Are your elements real in this case? 
Mr. Bell: Complex. 
.Alr. Ferber: In finding characteristic roots, you make a 

guess from previous experience? 
Mr. B ell~' Right. 
Mrs. Rhodes: You have been very lucky with fiftieth 

order linear equations. What did you do about loss of 
accuracy, go on faith? 

Mr. Bell: Yes, I went on faith. 
Mrs. Rhodes: Did you position for division? If so, how? 
Mr. Bell: You are talking about a very real problem. 

Occasionally we get a matrix that doesn't want t.o come 
out. I have yet to find a way by which you can easily and 
quickly predict that you are about to get into that situa
tion. And we have been working with relatively small 
problems. 

In working large problems the gang punch master cards 
can be deleted at each stage. Then a straightforward back 
solution is used after the first unknown is obtained. This 
does not work well if you have just a few equations. It is 
more work to do the special back solution than to carry 
the extra terms along as you go. 

Dr. Grosch: There are still only a few installations 
which have had experience with problems of very large 
order. We did a problem with forty-one unknowns, carry
ing the full eight figures permitted by the 601. Our 
procedure for size was simply that we never starred a 
number which was less than one-tenth as large as the 
largest element in its row. We looked at a printed record 
produced by the 405 while applying the usual check 
sums. In mass production one could suppress listing for 
all but the starred row to save paper. 

Following that rule, we had to rearrange only once in 
forty reductions. We lost only two significant figures. How 
many figures did you lose in your fiftieth order problem? 

Mr. Bell : We had four or five decimal accuracy. 
Dr. Caldwell: That is about our experience in large 

cases. 
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Mr. Ferber: If you want to solve a small set of equa
tions with seven or eight unknowns, the machines aren't 
adapted to working with such a small number of cards 
and one comes to the point where it is quicker to do them 
some other way. Then again, since the work goes up very 
rapidly with increasing order, you soon come up against a 
blank wall in that the work is prohibitive. How do you 
handle the problem? 

Mr. Bell: We do enough matrix work to keep the basic 
602 panels wired up ; so we need not allow time for that. 
Our operators are familiar with the job, and they handle 
it efficiently even with only seven or eight unknowns. 
Everything is kept ready for them. To give you some idea 
of time, it requires between one and two hours to evaluate 
an eighth order complex determinant. I f there are enough 
problems, you can split them up so that some are mUltiply
ing while others are being sorted and gang punched, with 
no idle machines. 

We have tried to handle special cases by special proce
dures, but have lost on it. I feel it is better not to use 
special procedures. Instead we stick to methods that all of 
our people understand; then we are more certain of com
ing out with a good answer. 

Mr; Harman: I was wondering if you could get around 
the division step in your formula by the expansion of a 
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second-order minor, which involves the difference between 
two multiplications. 

Mr. Bell: We have tried doing that, and here is the.prob
lem we got into: the numbers change tremendously in 
size, and it is necessary to stop for inspection. That takes 
longer than the regular method. 

Dr. Tukey: The thing is to get away from division by 
small numbers. 

Mr. Bell: Yes. 1\1:ost of our work is brought in to us. 
Sometimes we know what is behind the problems, and 
sometimes we do not. Most of the work is in engineering 
fields where extreme accuracy is not required. But we do 
have to calculate with expanded accuracy occasionally. 

Dr. Tttkey,' As I understand the situation, the pessimists 
thought-and I was one of them-that you lost, roughly 
speaking, a constant number of significant figures for each 
new equation. Now it has been proved! that it doesn't go 
like that; the loss goes like the logarithm of the order. 
If you are thinking of big equations that is a tremendous 
improvement. I think that size ought not to be taken as 
grounds for pessimism. 
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Two Numerical Methods of Integration Using 
Predetermined Factor s 

LELAND W. SPRINKLE 

Bethesda, Maryland 

V AR IOU S systems have been proposed for numerically 
integrating expressions for which no formal method has 
been found. Although many of these systems are highly 
accurate, the adaptability of some of them to mechanized 
methods of computing has not been fully explored. 

The central-difference formula subsequently referred to 
offers an unusually accurate method of determining the 
definite integral but at the same time presents practical 
difficulties in the calculating and handling of differences 
through the seventh order. The following discussion, with 
corresponding examples, will show two ways of overcom
ing the practical difficulties involved. 

A simple, accurate, flexible method of determining the 
value of the definite integral may be described as follows: 

1. Determine the ordinates between and including the 
specified limits of integration, maintaining a constant 
interval. 

2. Multiply the first nine ordinates respectively by the 
following nine factors: 

0.3338047013 
1.328926091 
0.6872208443 
1.261894566 
0.8333333333 
1.071438767 
0.9794458223 
1.004407242 
0.9995286325 

3. Multiply the last nine ordinates respectively by the 
same factors in reverse order. 

4. Add all the eighteen products formed in the above 
steps to the unmultiplied remaining ordinates. 

5. Multiply this sum by the constant interval; the re
sulting product is the definite integral between the origi
nally specified limits of integration. 
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Example: Find the value of S~' X'dX 

x Ordinate Factor Pro.dltct 

.40.0. .0.0.163840.0.0.0.0. .33380.470.13 .0.00.54690.56 

.425 .0.0.250.450.850.2 1.3289260.91 .0.0.332830.67 

.450. .0.0.3736694531 
""' 

.687220.8443 .0.0.25679344 
.475 .0.05455760.125 ~ 1.261894566 .00.68845941 
.50.0 . .0.0.781250.0000 ~ .8333333333 .0065104167 .., 
.525 .01099297205 ~ 1.071438767 .0117782964 

"-
.550 .01522435234 .9794458223 .0.149114283 
.575 .0.2078140.531 1.00.4407242 .0.208729940 
.60.0. .02799360.0.0.0 .9995286325 .0.27980.40.47 
.625 ""' .03725290.298 .0372529030. .... 
.650. ~ .0.490.2227891 .0490222789 
.675 ~ .06384492921 .0638449292 V, 
.700 "- .0.8235430.0.00. .9995286325 .0823154809 
.725 .1052848896 1;00.4407242 .10.57489056 
.750 .1334838867 

""' 
.9794458223 .1307402352 

.775 .1679236701 to:> 1.071438767 .1799199300 

.800 .2097152000 ~ .8333333333 .1747626667 .., 

.825 .2601223326 ~ 1.261894566 .3282469580 "-

.850. .3205770883 .687220.8443 .2203072573 

.875 .3926959038 1.328926091 .5218638324 

.900 .47829690.0.0 ,33380.470.13 .1596577538 

2.149064412 (Step 4) 

Step 5. The sum in Step 4 mUltiplied by the constant 
interval (.025) of the example equals .05372661030 which 

is the value of the integral 1: X'dX, with an error of 

only .00000012905. 

In the event that four extra ordinates can be accurately 
determined at each end of the original group of ordinates, 
the following even more accurate method is applicable: 

1. Determine the ordinates between and including the 
specified limits of integration, maintaining a constant in
terval; then determine four more ordinates at each end of 
the group, still maintaining the constant interval. 

2. Multiply the first nine ordinates of the entire group 
respectively by the following nine factors: 
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0.0004713679453 
- 0.004407242063 

0.02055417763 
-0.07143876764 

0.5 
1.071438767 
0.9794458223 
1.604407242 
0.9995286325 

3. Multiply the last nine ordinates of the entire group 
respectively by the same factors in reverse order. 

4. Combine all eighteen products with the unmultiplied 
remaining ordinates. 

5. Multiply the aboye sum by the constant interval ;,the 
resulting product is the definite integral between the origi
nally specified limits .of integration. 

Example: Find the value of S:' X' dX 

X Ordinate P,actor Product 

1 
.300 ~ 1.0002187000000 ~ .0004713679453 .0000001031 

.325 .0003829865538 - .004407243063 -.0000016879 

.350 .0006433929688 .02055417763 .0000132244 

.375 '.001042842865 ~ - .07143876764 -.000-0744994 

. 400 .001638400000 ~ .5 . 0008192000 
'" 1.071438767 .0026834275 .425 .002504508502 ~ 

.450 .003736694531 '- .9794458223 . 0036598898 

.475 .005455760125 1.004407242 . 0054798050 

.500 .007812500000 .9995286325 .0078088174 

.525 .01099297205 .0109929721 

.550 .01522435234 .0152243523 

.575 .02078140531 .0207814053 

.600 .02799360000 .0279936000 

.625 ::;- .03725290298 .0372529030 

.650 ~ .04902227891 .0490222789 

.675 ~ .06384492921 .0638449292 V) 

.700 '- .08235430000 .0823543000' 

.725 .1052848896 .1052848896 

.750 .1334838867 .1334838867 

.775 .1679236701 .1679236701 

.800 .2097152000 .Y995286325 .2096163471 

.825 .2601223326 1.004407242 .2612687547 

.850 .3205770883 '""' .9794458223 .3139878899 
% 

1.071438767 .4207496150 .875 .3926959038 ~ 

.900 .4782969000 '" .5 2391484500 
~ 

r5~ 
1.5794181954 ! '- - .07143876764 -.0413929218 

.950 .6983372961 .02055417763 .0143537488 

.975 .8375915935 - .004407242063 -.0036914689 

1.000 1.000000000 .0004713679453 .0004713679 

2.149059250 (Step 4) 
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Step 5. The result of Step 4 multiplied by the constant 
interval (.025) of the example equals .05372648125 and 

is the correct value of the original integral, S: X'dX, 

to the number of places shown. 

In either of the foregoing numerical integration systems 
the number of ordinates chosen may be either even .or odd. 
Also, advantage is gained in an extended calculation since 
the majority of the ordinates are simply added without 
change. Further, there is no limit to the number of ordi
nates that can be used although only nine at each end of 
the group are multiplied by factQrs. 

In view of these advantages, the establishment of two 
permanent factor files of only eighteen cards each is all 
that is necessary to make both systems readily adaptable 
to punched card equipment. 

The two preceding systems of integration are based on 
a central difference formula carried through the fi fth 
differences by Scarborough.1

•
2 The author is indebted to 

Dr. J. W. Wrinch of the David W. Taylor Model Basin 
for deriving an additional term containing the seventh 
differences.3 
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DISCUSSION 
Dr. Blanch: These factors are related to those 111 our 

volume of Lagrangian coefficients.1 

Dr. Grosch: It is possible to generate integrati.on coeffi-
cients of this sort based on other than polynomial approxi-
mation. Unfortunately in most cases the weighting factors 
become functions of the limits .of integration, but if the 
latter are fixed for a large group of problems one may find 
it economical to derive factors based on an approximating 
function that suits the physical situation . 

REFERENCE 
1. MATHEMATICAL TABLES PROJECT, Tables of Lagrangian Inter-

potation Coefficients (Columbia University Press, 1944), pp. 
390-92. 



Integration of Second Order Linear Differential Equations 
on the Type 602 Calculating Punch 

N. ARNE LINDBERGER 

Royal Institute of Technology, Stockholm 

T R I SPA PER is concerned with the numerical 
solution by means of punched cards of the equation 

dd2~ = g(%)S + p(%) with initial value conditions. In the 
%~ 

second section, the special case of p = 0 is treated. By 
approximation to a difference equation, a step-by-step 
procedure is derived which has been set up for automatic 
integration on the Type 602. The machine operation is 
described in the third section. In the fourth section, the 
method is extended t.o the general second-order linear 
differential equation which can be reduced to the case 
above, where P =F O. This can be set up on the Type 602 
with a slight change of the control panel described in the 
third section. 

Appro%i11wtion by Finite Difference$ 

Consider the second-order linear differential equation 

(1) 

where 9 is a given function over the integrati.on interval. 

Suppose that in the neighborhood of an arbitrary point 
Xn of the integration interval, a solution S and its second 
derivative can be developed into a Taylor series. Let the 
constant step in % be h. The value of the function S at the 
point X n+1 = Xn + h, is then 

Here S,! = (dd
S

) and so forth. 
x Xn 

The same development of the second derivative gives 

S·· S" hS .. h
2 

Siv h
3 

sv ~~1 = ~ + Jl+ 2T n + TI n + ... (3) 
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In order to eliminate the fourth derivatives, a modified 
function y can be defined 

h2 

y=S-l2"Sii (4) 

Insertion of (2) and (3) gives the value of y at the 
p.oint %n+1 

and by reversing the sign .of h 

(6) 

The central difference of y around the point Xn is now 

~2Yl~ = }'1I+1 - 2Yn + Yn-1 . (7) 

Insertion of (5) and (6) yields 

~., h') Sii h
6 svi+ O~Yn = ~ n - 240 n ••• (8) 

Terms of the sixth and higher orders are going to be 
neglected and thus form the truncation error. The approxi
mation gives 

Insertion of (1) in (9) and (4) yields 

~2Yn = gn h2 Sn 
and 

After rewriting equati.on (11) 

where 
Sn = (1 + P-n) Yn 

gnh2/ 12 
p,n= 1 - gnh2/12 

(9) 

(10) 

(11). 

(12) 

(13) 
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Now the approximation of the difference equation 
(10) will be 

with 
Yn = 12p.n 

(14) 

(15) 

The derivation given here* is essentially the method 
used in a paper by Feinstein and Schwarzschild.1 The 
main machine used in their work was a special multiplying 
punch. 

In order to apply equation (15) for computation on the 
Type 602, it will be written in a different manner. With 
the advancing difference notation 

~'Yn = Yn+l - Yn , (16) 

equation (14) is 

~'Yn = .6.}'n-1 + YnYn . (17) 

The initial values are YI and D.Yo' In (17), putting n = 1, 

~YI = .6.Yo + YIYt . (18) 

From (17) it is evident that every difference .6.Yn is com
puted from the previous one by adding YnYn. This proce
dure will give 

n 

~Yn = ~'Yo + 2: YiJ'i • (19) 

i=1 

After having used (19), the next value of }' is computed 
from (17) 

(20) 

The Jvl achine Set-up 

In order to describe how the equations (12), (19) ,and 
(20) are set up for automatic integration on the Type 602, 
a flow chart will be used. In this, the first eight columns 
represent the eight counters MC, MP, RHC, LHC, Sum
mary Counters 13, 14, 15 and 16. The chart is divided into 
ten rows, indicating machine cycles, which are shown in 
the ninth column. 

Suppose that the integration has proceeded up to the nth 
integration cycle (not to be confused with machine cycles). 
This means that n -1 cards have been run through the ma
chine, each one of them carrying the functions Y and p.. 

Every card carries the integration one step forward and 
is punched with the computed values of y and S. 

The machine has computed Yn during the (n - 1) th inte
gration cycle and keeps the absolute value of this number 
stored in the MP counter during the reading of the nth 
card. In order to perform its function correctly, MP must 
contain a true number. The sign of Yn has to be stored else
where, for which purpose SC 13 is reserved. I f the con-

*From lectures by Dr. L. H. Thomas. 
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tents of this counter are zero or a true number, it is inter
preted as a positive sign in Yn' If the contents are a com
plement number, it means that Yn is less than zero. 

Moreover, the machine stores the progressive differ
ences of Y in SC 14 and 16 which are coupled together. 
In the beginning of the nth integration cycle, the stored 
difference is fI, 1 

.6.YIH = .6.Yo + 2: YSi (21) 

i=1 

as indicated in the flow chart (Figure 1, page 36). 
The essence of the procedure is the following. During 

the nth card operation, the machine is going to compute 
the product YII)'n and add it to .6.Yn H thereby yielding .6.YM 
according to equation (19); .6.Yn is added to Yn, giving 
l' • Y is multiplied with 1 + lin which gives Sn by (20) .)'1£+1, n r 

and (12). Finally Sn and Y,HI are punched out on the nth 
card. 

The details of the operation appear in the flow chart. 
During the card reading cycle, the precomputed numbers 
"'In and 1 -I- p'n are fed from the card into MC and SC 15. 
The numbers in the MC and MP counters are then mul
tiplied. The rounded product comes out in LHC. This 
product is transferred to SC 14 and 16 on the first pro
gram cycle. As it appears positive in LHC, the sign has to 
be taken care of by adding the product intO' SC 14 and 16 
if it is positive, and subtracting it, if negative. This is 
accomplished in the following manner: an eventual sign 
in "'In appears as an X punch in the card, wired to pick up 
an entry control selector. A negative sign in Yn appears as 
previously mentioned in SC 13 which therefore is balance
tested during the first program cycle. If Yn is negative, the 
test impUlse will get through the balance control. From 
there it is wired to pick up a selector. By coupling the 
above-mentioned selectors in series, a plus or a minus 
shot will be available from them, due to the sign of the 
product. The impulses are then fed into the appropriate 
control hubs of SC 14 and 16 which will take care of enter
ing the product into the counters with the correct sign. 
The details of the wiring are shown in the control panel 
diagram. 

The quantity 1 + P.n is transferred into lVIC on the sec
ond program cycle and multiplied with J'n during the third 
program cycle. The product Sn will appear in LHC where 
it is stored until the transfer-to-storage cycle. The sign is 
taken care of by balance-testing SC 13, as the sign of Sn 
is always the same as that of Yn. That sign will now be 
stored in LHC; SC 13 can be used for other purposes 
and is reset on the fourth program cycle. 

On the fifth program cycle, MC reads out Yn to SC 13 
and 15, coupled together. lVIC is reset on the same cycle. 
As MC always stores true numbers, the sign is taken care 
of by balance-testing I~HC, picking up a selector and feed-
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MC MP i RHC LHC sc 13 sc 14 sc 15 sc 16 SEQUENCE 

tn I Ynl 
Contains sign ~Y + t)'iYi 1 + fn ~Yo + r'tiYi Read card of Yn 

{ Yl} 
1=1 1"'1 

I [A Yo] [A Yo} 

RC RC ot1n Multiply 

RO to SC 14 &- 16, Balance Test Yn Yn 1st Program 
RC SignCtrl. by Bal. Cycle 

I Test of SC 13 and 
Entry Ctrl.Sel. 2 

1 + j-lh RO to MC 2nd Program 
Cycle 

I RC (1 + j1h) Yn = Sn Balance Test 3rd Program 
Cycle 

RC RC 4th Program 
Cycle 

RO to sc 13 
& 15, RC Balance Test Yn Yn 5th Program 

Cycle 

Yn + b,.Yn RO to sc 13 Yn + b,.Yn RO to sc 15 6th Program 
Cycle 

Iyn+d RO to MP RO to MP 7th Program 
Balance Test Cycle 

RO Sn R~o Storage, RO Yn + 1 to RO Yn + 1 
to 

Transfer to 
Storage Storage RC Storage Cycle 

1 + j!h+1 Read Next 

Dn+1 Card 

FIGURE 1 

ing an appropriate impulse to the plus or minus hubs of 
SC 13 and 15. As distinguished from MC and MP, the 
summary c.ounters and LHC are used to store negative 
numbers as complements. 

On the-sixth program cycle, 6Yn is read out from SC 14 
and 16 and accumulated in SC 13 and 15. This means that 
the operation (20) is carried out. 

During the seventh program cycle, Y1£+1 is read into MP. 
For reasons previously mentioned, it has to be subtracted 
into MP if negative or added if positive. This is again 
taken care of by balance-testing SC 13. 

The program cycles are now finished and the machine 
transfers to storage. Sn is read out and punched from 
LHC,3'n+1 from SC 13 and 15. By using the balance punch 
feature, negative signs will appear as X punches. 

LHC and SC 15 are reset, as distinguished from SC 13 
which has to store the sign of Yn+l for the next card. If the 

sign is negative, there will be a nine in the left-most posi
tion of SC 13 that will be detected during the balance tests. 
The allowed number .of digits in the function Y must be 
limited to nine as there are ten positions in SC 13 and 15 
together and the left position has to be left free. 

The initial values Yl and 63'0 are fed into MP and SC 
14 and 16 from the first card. In the flow chart they ap
pear within braces. As all counters are reset before the 
starting of a new integration, the zeros in SC 13 will indi
cate the positive sign .of the initial value Y1-

The control panel has been wired as shown in the wir
ing diagram (Figure 2) and the procedure has been found 
to work satisfactorily_ The coefficients of integration, 
yand 1 + p, are conveniently computed with punched card 
machines_ In the mentioned set-up p was calculated in .one 
run of the 602 ; y and 1 + p came out together in one run 
on the 601. 
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The General Case 

Any linear second-order differential equation can be 
reduced to the form2 

(22) 

where the first derivative is lacking. This equation, inserted 
in (9) and (4), will give recurrence formulas correspond
ing to (12), (19) and (20) : 

(23) 

fI, 

~Yn == ~yo + L. ( "tiYi + q'i) (24) 
i=l 

(20) 

The addition of qn = h2 Pn (1 + /J-n) in each step is what 
makes (24) differ from (19). It can be done in the setup 
of Section 3 by feeding qn from the nth card into SC 14 
and 16 which accumulate the difference ~Yn-l' 

As for (23), there is no counter storage left for the 
additional term qn/12. This can be overcome, however, by 
letting the machine compute (1 + /J-n) Yn in the integration 
run and then add the above-mentioned term in an extra 
run. The calculation of S can be split in this manner be
cause it is not part of the progressive computation of Y; 
qn and qn/12 can be computed in one run on the 602. 

Another way of relieving the situation is the following~ 
Define an auxiliary function 

Z = Y + h2 P /12 . (25) 

SCIENTIFIC COMPUTATION 

After insertion of z, the equations (23), (24) and (20) 
will be 

Sn = (1 + /J-n) Zn 

n 

~zn = ~zo + L.( "Ii Zi + Pi) 
i=l 

Here 

(26) 

(27) 

(28) 

(29) 

Equations (26) and (28) are basically the same as (12) 
and (20) of Section 2. Equation (27) is taken care of in 
the same manner as (24), by feeding the additional term 
P n from the nth card into the counters that accumulate the 
difference in z. As P can be precomputed in one run on 
the 602, the extra run of equation (23) is saved. 

Thus it has been shown that the general second-order 
linear differential equation can be automatically integrated 
on the 602. Reduction to the form (22) has not been 
treated here. It will probably imply the same amount of 
work as the rest of the procedure. 
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DISCUSSION 
[This paper and the following one by Dr. Paul Herget were dis
cussed as a unit.] 



Integration of the Differential Equation ~:f = P'P(r) 

Using the Type 601 Multiplying Punch 

PAUL HERGET 

Cincinnati Observatory 

d 2P 
THE EQU ATION dr~ = P·F (where F is a pre-

determined function of r), arises in the computation of 
the wave equations for atoms in various stages of ioniza
tion. In that case it is necessary to replace F by (F + E), 
where E is such a constant as will cause P to vanish when 
r approaches infinity. In practice the correct value, of E 
must be determined by trials, and hence it is necessary to 
run through this kind of a solution many times. 

From the calculus of finite differences we have the fol
lowing relationships: 

d2P 
( 6.r)2 -. = (6.r)2 P (F + E) = f 

:1r~ . 

6. iip = f + 6. iifJ12 - 6. ivf1240 + 

The ultimate objective of our computations is to obtain a 
table of numerical values of P (r) which satisfy these two 
conditions and which may be illustrated by the following 
arrangement of the intermediate results: 

r P f::.ip f::.iip f f::.if f::.iif f::. iiif 
0.0 1.000 000 -0.000 012 0.000 000 -146 

-0.072 712 +927 + 3 
0.1 0.927 288 +0.000 915 0.000 927 -143 

-0.071 797 +784 +4 
0.2 0.855 491 +0.001 699 0.G01 711 -139 

-0.070 098 +645 + 9 
0.3 0.785 393 +0.002 345 0.002 356 -130 

-0.067 753 +515 +8 
0.4 0.717 640 +0.002 861 0.002 871 -122 

-0.064 892 +393 +12 
0.5 0.625 748 +0.003 255 0.003 255 -110 

This illustration represents the solution of the simplified 

d2P 
equation (1;:2 = Pr, where P(O) = 1, and P (00) = 0; the 

problem is to find dP / dr at r = 0 such that the condition 
P ( 00) = 0 will be fulfilled. 

The only numbers which can be entered directly into 
the table are in the f column, when they are computed 
according to the first equation above. vVhen these are di f-
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ferenced, it becomes possible to compute 6. iip and build 
up the 6. ip and P columns by addition. It is necessary to 
proceed step by step and by successive approximations. 

In the solution of the original, more general, equation 
it was possible to employ a Type 601 MUltiplying Punch 
equipped with sign control and a net balance summary 
counter. The board wiring may be illustrated schemati
cally: 

Reading hrushes 

Multiplier Multiplicand 

LH Counter (5) = 0 Pickup 

Sum. Counter 

Punch 

The first position in the punched field receives an X punch. 
The group multiplier switch is wired oFF and ON at the 
same time. The OFF switch permits the multiplier to reset 
on every card. The column in which the X is punched is 
wired to read as if it were the group mUltiplier master 
card indication. This has the effect that when any card is 
punched and thei1 fed through the machine a second time 
it will be skipped out as a master card, without punching. 

The field A is always cross footed into the LHC and it 
transfers to the SC with sign control. The only multiplier 
is (6.r) 2 F, which is prepunched into a set of salmon cards. 
The multiplicand is wired reversed from the positions 
where the punched field is "reflected" through the center 
of the card. All cards have their index numbers pre
punched. The P's are manila cards, the 6. ip'S are green 
cards, and the 6. iif 112's are blue cards. These must be 
obtained from a previous approximation and have the 
above mentioned X punch. 
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One cycle of operations' consists of the following (the 
index i refers to the ith hori:;onial line in the numerical 
table): 

Card Color 

Salmon (i) 
Blue (i) 
Green (i- 0) 
Green (i+ 0) 
Manila (i) 
Manila (i+ 1) 
Salmon (i + 1) 

1\,[ achille Operation 

Multiply F by P (i.) 
Add 6,iif/12 
Add 6,lP (i - 0) 
Blank 
Add P (i) 
Blank 
Blank and reversed 

Result -in Sum. Counter 

Punch f 
NOll punch 6,liP (i) 
Non punch 6,lP (i + 0) 
Punch b,iP (i +0) 
Non punch P (i + 1) 
Punch P (i + 1) 
Punch P (i + 1) 

The operator has the cards of different colors piled 
separateIybefore him, each pile in order of the index i. 
On one cycle he performs the following sequence of 
operations: 

1. The salmon card is allowed to fall into the stacker. 

2. The blue card is allowed to fall into the stacker. 

3. The top card from the blue pile is picked up and 
held in one hand. 

4. The first green card is allowed to fall into the 
stacker. 

5. The second green card is placed behind the blue 
card being held in one hand. 

6. The top card from the green pile is picked up and 
placed behind the other cards being held in one 
hand. 

7. The first manila card is allowed to fall into the 
stacker. 

8. The second manila card is placed behind the other 
cards being held in one hand. 

9. The top card from the manila pile is picked up 
and placed behind the other cards being held in 
one hand. 

10. The top card from the salmon pile is picked up 
and placed in the 1'eversed, position behind the 
other cards being held in one hand. 

11. The last salmon card is placed (in the direct posi
tion) ahead of all the cards being held in one hand, 
and 

12. This deck is now placed in the feed hopper to begin 
the next cycle. 

The operator may be illiterate, so long as he is not color 
blind! The work proceeds at the rate of thirty seconds per 
step in the table, which is nearly the speed at which the 
cards can pass through the machine. 

The SC does not reset except under control of the class 
selector. The selector transfer is obtained only from a pre-

SCI E N T I FIe COM PUT A T 1·0 N 

punched Xon the salmon card when it is fed in the re
versed position. This automatically clears the counter at 
the end of each cycle of operations. 

I f we undertake to apply these 'principles to the solution 

of the first order differential equation, (6r )~p = f, it 
works out as follows: r 

P(i) == 'f(i) - D,if(i)/12 + 11 6 ii1f(i)/720 - ... 

where it will be noted that all the quantities on the right 
side are "on the line" in odd difference columns, so that 
they are actually the means of the quantities on the half 
lines above and below. Then 

6 iP(i + 1/2) = 4f(i) - 2~ 6 Hf(i) + 1;;o6ivf(i) .. . 

+ 4 f(i + 1) - 2~ 6 uf(i +1) + 1!!0 6 iVf(i +1) .. . 

Now, f may consist of the algebraic sum of any number 
of cards, and if the higher order difference cards are 
already available from a previous approximation,it is only 
necessary to include one control card in each control group 
and to use two counters in order to build up the table of 
numerical values of P. All the cards representing quan
tities on the ith line are entered into both counters. The 
control change causes an intermediate (progressive) total 
This gives the value of the integral, P ( i), on the ith line. 
As the next control group starts through the machine, the 
first card is the control card, and this rolls the second 
counter into the first counter, then causes a minor total 
which clears the second counter. This enters all of 
the quantities from the ith line which are needed for 
6 iP(i + 1/2) into the first counter. Then the remaining 
cards in that. control group enter the quantities from the 
(i + 1) th line into both counters, as before, and the re
sultant progressive total in the first counter is P (i + 1). 

DISCUSSION 

Dr. Grosch: I would like to make the general remark 
that Dr. Herget has a big point in using the human element 
in his cycle. We can all make use of the tricks that Mr. 
Bell and Dr. Herget have described. If you reduce the 
number of 601 or 602 control panels that are kept wired 
up by thirty or forty percent, you have effected a sub~ 
stantial saving. We did an optical calculation two years 
ago which required twenty-eight· boards. I don't think 
we had heard of the reversed card at that time. That 
one idea would have released eight 601 control panels for 
other work. 

Dr. Stanley: I have one question. Notice that in Mr. 
Lindberger's equation (22) 
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g(x) is a function of one variable only. The equation is 
linear and of the second order. Now a more general equa
tion of the second order in the normal forn) may be 
written 

d
2

S = g(xJ S) S + p(x) 
dx2 

This equation is non-linear. You might conceivably treat 
it in the same manner as the speaker has suggested, except 
that you would obviously run into the difficulty of .com
puting the quanties Yn. We might construct some sUltable 
program beforehand and use it to estimate the Yn. I wonder 
if either of you gentlemen have tried such a method. . 

Dr. Thomas: This is exactly the thing that Hartree dId 
in his so-called "Self-consistent Field" computations. 
There are two ways you can do it. vVith the notation: 

where 
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He used V and any numerical approximation to t/ln to get 
V then solved the differential equation to get t/lnJ these to nJ 
get new V and VnJ and so on until you come out with 
what you put in. A somewhat different trick was one we 
tried a few years ago. Instead of assuming Vn we assumed 
V and put o/n to get Vn continuously as t/ln was being com
puted. I don't think you gain anything by that, except that 
every answer you get is a solution of the differential 
equation. 

Dr. Caldwell: It might be possible to do that kind of 
thing with the 602 provided the functions were not too 
complicated. 

Dr. Thomas: It was the double integral that I had in 
mind. You can do two of them simultaneously on the 
405 as well as the constant. You go all through an 
integration to get preliminary values for t/ln. These must 
be normalized. These integrals must be obtained to get an 
"energy" to put in on the right-hand side before repeating 
the integration. 



Some Elementary Machine Problems in the 
Sampling WJrk of the Census 

A. ROSS ECKLER 

Bureau of the Census 

PER HAP S I have a definite advantage over most of 
you in being able to recognize the value of this kind of 
meeting. I do not come here as a mathematiCian nor as an 
expert in machine accounting; so perhaps I am peculiarly 
able to see the advantages of bringing together these two 
types of people. In my opinion the International Business 
Machines Corporation is to be commended for its vision 
in making possible meetings of this kind. The advantages 
for both groups are very great, and I have been much im
pressed with the gains from this sort of meeting even 
though much of the material is highly technical. 

Most of you are familiar with the long-run interest of 
the Census in large scale accounting equipment. Weare 
very proud of the fact that in the early years men like 
Hollerith and Powers were employees of the Bureau of 
the Census, and we have for many years used equipment 
specially developed for our needs. We have used that as 
well as very large quantities of the different types of IBM 
equipment. 

I shall speak primarily of our work in the field of sam
pling, which involves certain applications of equipment 
somewhat different from what we get in our complete 
tabulations, and which illustrates some areas in which the 
present equipment fails to meet the requirements that we 
would like to see met. 

It is unnecessary to inform this group about the ad
vantages of sampling. Most of you are familiar with the 
theoretical work to a far greater degree than lam. You 
doubtless know that through the application of sampling 
we have been able to save very large sums of money in our 
tabulating work. Moreover, we have been able to speed up 
results so that we have been able to carry out many types 
of detailed tabulations which would be far too expensive 
to carry out on the basis of complete coverage. 

There are several directions in which we apply sampling. 
One· is the use of sampling to serve as a supplement to a 
complete census, asking certain questions on a sample basis 
only. In this way, we have been able to increase very 
greatly the number of subjects covered. 
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The second way in which we use sampling is to carty 
out independent field surveys based upon a sample of the 
population from which we can estimate the total popula
tion of the country and the population in various economic 
and social groups. 

The third way in which we use sampling is in connec
tion with measuring or controlling the quality of statistical 
operations. I will refer to each of these uses very briefly 
in some of the applications I will mention. 

First of all, I should like to refer to' an application of the 
machines which is a very happy one. This use is in connec
tion with drawing samples of blocks for certain types of 
surveys. We want to determine certain blocks in which we 
are going to collect information. We have put in punched 
cards certain facts relating to each block in all of aUf cities. 
That information, among other subjects, includes the 
number of dwelling units, the number of stores, and the 
number of various types of institutions. As we take our 
population sample, we want· to select certain blocks in 
which we will do our sampling. 

We have determined that under many circumstances an 
efficient procedure of drawing the sample of blocks is to 
draw it on the basis of probability proportionate to size, 
i.e., the number of dwelling units, or number of stores. 
VvT e have been able to develop a procedure for selecting 
blocks by the use of the Type 405 whereby we run through 
the cards, accumulate, and select every nth dwelling unit. 
The machine can be wired so that if in a very large block 
there are two or more units which are to be included in 
the sample, this fact will be indicated by the machine. If 
any of you are interested in that, we would be glad to have 
you write to inquire about the method. 

Another area in which we have made use of sampling is 
in connection with the processing of data. Weare particu
larly interested in the development of better equipment to 
handle sample materials because it will give us a possibility 
of increasing the use of sampling, thereby taking greater 
advantage of the benefits it offers. We are anxious to ex
tend the use of this tool as far as possible, and in certain 
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areas the mechanical equipment is a limiting factor. We 
could go further with it if we had equipment which fitted 
the needs more precisely than the present equipment does. 

Just as we depend upon equipment to expand the use of 
sampling, we also use sampling to improve the use of 
equipment. We are carrying out a great many of our 
processing operations on the basis of sample verification. 
This takes place in a great many fields; one example is 
our foreign trade statistics, which involve tabulations of 
information on imports and exports by country of origin, 
country of destination, etc. vVe have developed a system 
of sample verification, which usually provides for a sample 
of one card in fifty. We continue with that sample as long 
as the operator is making fewer than sixteen errors per 
400 cards sample verified. When she exceeds that rate of 
err:or, we shift over to 100 per cent verification for a short 
time. Then, when the evidence is available to show that the 
person has come back down to a lower error rate, we shift 
back to a five per cent sample and after a period of that, 
if the rate still continues low, we go back to the two per 
cent sample. 

Through the use of that type of sample operation, we 
have been able to have the verification of the work of 
thirty operators handled by three. This achieves a very 
considerable saving in the verificat~on operation, and still 
provides control of the work so that we can be sure that 
our error rate is under two per cent. 

N ow I should like to mention the major applications of 
sampling which take place in a number of fields in the 
Bureau. In the field of current population surveys we are 
carrying out samples on a monthly basis. Weare doing 
somewhat the same kind of work in the field of business 
statistics for retail and service firms, and generally similar 
work in government statistics, where we collect employ
ment data for state and local government units. 

In the first field I mentioned, our current population 
surveys, we interview a sample of about 25,000 households 
once a month. vVe get information from them on the 
number of people who are employed, the number unem
ployed, the hours worked, the occupation, industry, and 
so forth. The households are selected by the use of area 
sampling, a method probably familiar to most of the people 
in this room. It is based upon units which are selected 
from sixty-eight different sample areas scattered around 
the country, scientifically determined so as to give a good 
cross section of the country as a whole. We insist that all 
of our samples have measurable accuracy; in other words, 
that the design be such that we can determine the degree 
of error in the results. 

In this current survey of 25,000 households we estimate 
that the figure on the total labor force will be within one 
per cent of that which would be obtained from a complete 
census nineteen times out of twenty. vVe achieve that very 

43 

high degree of accuracy partly by virtue of the fact we 
have control totals for various groups to which we can 
adjust the sample results. Obviously, in a sample survey 
of this sort giving monthly information, speed is of great
est importance. These data are highly perishable and it is 
important we make them available as rapidly as possible 
because they are widely used. The information we get for 
these 25,000 households is punched in about 65,000 cards 
for individuals and those cards are weighted according to 
the sampling ratios that were used. As each card gets a 
weight which depends upon the age, sex, and residence 
group of the population from which it is drawn, a con
siderable number of weights must be applied. There is 
nothing about that job which can not be handled by 
standard equipment. The difficulty is that it takes quite 
a while to carry it out. 

It is necessary first of all to sort the cards into these 
sub-groups, to determine the total number in each, and 
then to determine the weight which has to be applied to 
each type of card. Even after considerable experience, we 
found ourselves unable to do the whole job in less than 
about thirty days, which meant that the data collected in 
one month would appear fairly late in the next month. 

After some experimental work we shifted over to a 
Census-built machine, the unit counter, which has the 
advantage of somewhat greater speed of operation; for 
this particular kind of job, it can count in a considerable 
number of categories-sixty-at the rate of 400 per 
minute. 

This procedure has certain disadvantages, however; in 
order to use this machine we are forced to use a less pre
cise weighting system than we could use on the 405. We 
accomplish the weighting by classifying our cards in 144 
different groups and then rejecting some cards by random 
methods and duplicating some others by random methods 
so as to get our results weighted according to the pre
determined weights. 

With that slight sacrifice of precision we were able to 
speed up results a great deal and I believe, at the present 
time, we use about fifteen days. I think it is pretty clear 
we don't yet have ideal equipment for meeting this par
ticular problem. 

One other area of work I will mention briefly in closing. 
In connection with our sample work, we attempt to estab
lish a very careful measure of the degree of accuracy of 
the results so that we have to compute large numbers of 
variances and, as you well know, that involves calculating 
very large numbers of sums of squares and sums of prod
ucts. In fact, for the measurement of accuracy of just one 
item, it is necessary to get the squares of more than three 

/thousand numbers, to weight them by certain factors, and 
then to combine them. It is possible to get these sums of 
squares and Stul1S of prodl1cts through a rather compli-
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cated series of operations, but the time required for that 
is considerable. It is not a .very efficient procedure. Some 
consideration has been given to the extent to whiCh some 
of the new high-speed multipliers will meet the problem, 
but study of the situation so far indicates that we are still 
considerabl y handicapped in the direction of getting these 
measures of the accuracy of the results of sample data. 
There is a need for further development which will in
crease the use of sampling by making it possible to meas
ure the accuracy of the results more speedily. 

I have brought several types of exhibits in which some 
of you may be interested, a number of pamphlets and 
bulletins which show cases in which we have made direct 
use of machine tabulation sheets for publication: some of 
our housing reports, some of our foreign trade reports, 
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and a job we did for the Air Forces, on all of which we 
printed the 405 sheets directly. If there are questions you 
want to ask about them, feel free to write in. There are 
also several copies of the booklet on work of the Census 
Bureau-Fad-Finder for the Nation. If any of you want 
a copy of that, I would be very glad to furnish it. 

DISCUSSION 

Mr. Tillitt: At one time the Bureau of the Census 
turned out a little sheet called "Tab Tips." Is that dis
tributed any more? 

Mr. Eckler: I think I have the first forty. If anything of 
that sort is being distributed now, it has not come to my 
attention. 



IBM Applications in Industrial Statistics 

CUT H B E R T C. HURD 

Carbide and Carbon Chemicals Corporation* 

THE N U:NI B E R of IBM applications in Oak Ridge is 
great, partly because of the variety of activities in which 
Carbide and Carbon Chemicals Corporation engages there, 
and partly because of the fundamental. import~n?e ~f 
methods of probability and of mathemabcal statistics 111 

the atomic energy field. Thus, on the one hand, Carbide 
and Carbon, an Atomic Energy Commission contractor, 
operates the Oak Ridge N ati.onal Laboratory, the Mag
netic Separation Plant, and the Gaseous Diffusion Plant, 
the first of these being devoted to fundamental research, 
the second and third to development and to production. 
On the other hand, atomic energy problems in whatever 
state of development are problems which require the most 
careful kind of statistical analysis both in the design of 
experiments, in the interpretation of experimental results, 
and in maintaining statistical quality control in various 
production and measurement programs. \iVhen the size of 
a problem, as measured by the number of measurements 
to be made, has been great, we have f.ound IBM methods 
advantageous and in some cases almost indispensable. 

Originally I had thought to give a survey of the type of 
statistical problems encountered in Oak Ridge and to de
scribe the machine methods which are used in their solu
tion. However, in view of the previous papers .of this 
Forum and particularly in view of informal discussions 
with other participants I have now decided to describe 
only two types of problems and on one of these I should 
like to ask your advice. These problems are: one, that of 
curve fitting; two, calculating approximate solutions to 
partial differential equations. 

THE PROBLEM OF CURVE FITTING 

The Straight Line (One Fixed Variate) 

The pr.oblem of curve fitting is as old as experimental 
science and it is familiar to each of you in one connection 
or another. As a beginning, suppose that we are able to 
measure each of two variates x and y and that we postulate 

*Since appointed Director of Applied Science, International Busi
ness Machines Corporation. 
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a linear relation between x and y. That is, we assume that 
there exists a relation of the form 

y=aX+f3 . 

I f the assumption is now made that measurements o? x 
can be made with perfect precision, that is, that x 1S a 
fixed variate, we set x at the values xi' ~t·:!, .•. , Xn, say, 
and measure the c.orresponding values of y: .Yl1 )'2' ... , Yn. 
We realize that the set of n value pairs represents only a 
sample of all possible value pairs and consequently we are 
confronted with this problem in statistical inference: 

On the basis of the 11, sample values (Xl' 3'1), (.r2, Y2)' 
... , (.rnJ )'n), required to estimate the parameters a and f3 
of the equation above. N.ow, mathematical statistics is a 
pure science in the sense that conclusions follow inescap
ably from assumptions; and, in certain fields, investigators 
believe that a reasonable assumption for the present prob
lem is that of normality of distributi.on with fixed variance 
in y corresponding to each fixed value of x. More specifi
cally it is assumed that if x is fixed at Xl' say, and the 
corresponding y measured repeatedly then these y values 
will be normally distributed about a mean value given by 
a + f3 Xv and a variance of (J'2, say. Similarly repeated 
measurements of y corresponding t.o fixing X at X 2 would 
result in a normal distribution about a mean value of 
a + f3 ~t'2 with the same variance, (J'2. 

Under these conditions it is not difficult to show that the 

" optimum estimates ~, f3 of a and f3 are given as solutions 
.of the simultaneous equations 

I will not define optimum, but will only say that in the 
case considered this procedure leads identically to the 
least squares solution and the maximum likelihood solu-

" tion. As such the estimates ~ and f3 have the properties of 
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consistency, efficiency, and sufficiency. More.over they are 
unbiased. 1 

N ow it is clear that the requisite sums and sums of 
products n, ~x, ~X2, ~Y, ~xY in the above equations can 
be computed on a desk calculator. Also, it is well 
known that the accounting machine provides, with the 
use of progressive digiting,2 an extremely fast meth.od 
for computing these sums. A third method would be 
to use the 602, punching individual products as the calcu
lation proceeds. I will not attempt to describe completely 
the conditions under which we ch.oose one of the three 
methods described above. 'these general observations can 
be made, however: because of the increased opportunity 
for checking we generally prefer to use a punched card 
method even when the amount of data is small; second, 
since the calculation in the linear case is frequ'ently only 
preliminary to later work, we are inclined to use either the 
602 method or a combined 602 and 405 method. In this 
way we calculate individual products and save them in the 
card, and toward this end we have permanently wired 602 
control panels for some of the curve fitting problems 
which we encounter frequently. 
Several Fixed Variates 

I will now discuss a more general case of curve fitting 
and in so doing I will indicate that in an important class of 
statistical problems it is necessary not only to compute the 
value of the inverse of a matrix but to compute explicitly 
the elements .of the inverse matrix. We shall see, then, that 
the Type 602 methods of equation solving which Mr. Bell 
described are important in statistics and we wi11note also 
that it is convenient to augment the matrix of coefficients 
with the unit matrix in order that the elements .of the in
verse matrix may be obtained explicitly. 

One example of curve fitting in several dimensions arises 
in the plastic industry. We denote by y the molecular 
weight of a plastic. We denote the operating conditi.ons 
of a production process as follows: temperature, Xl; 

pressure, X 2 ; amount of agitation, X 3 ; time, X 4 ; amount of 
stirring, Xo; amount of monomer,xs. We assume that 
Xl> X 2 , ••• , Xs can be measured with perfect precisi.on 
and that they can be fixed at prescribed values. We 
then perform an experiment in which n sample values 
(Yj; Xlj, X 2j) ••• ,xsj), j = 1, 2, ... , n > 6, are obtained. 
If a linear relati.on of the form 

Y = ao + al ·1'1 + ... + as X 6 

is postulated, then the problem becomes that of estimating 
the parameters ao, aI' .•• , as' 

Another example arises in the field of industrial medical 
statistics in which it is desired to predict the size of the 
dispensary staff and the amount of dispensary equipment 
needed in a new plant on the basis of knowledge of char
acteristics of employees; age, sex, race, occupati.on, educa-
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tion, salary, kind of chemicals worked with, etc. The 
medical aspects of this problem are under the direction of 
Dr. J. S. Felton, the mathematics under Dr. A. S. House
holder, both of Oak RidgeN ational Laborat.ory, and the 
calculations include the inversion of a matrix of order 
fifty-five, these calculations now being performed on IBM 
equipment under J. P. Kelly and B. Carter at the K-25 
Plant. 

In general, we suppose that we have fixed variates 
.1'1' X 2, ••• , Xk, in which, for convenience of notation, 
we define Xl to be identically equal to one. I will not formu
late the problem in detail but rather will refer you to an 
excellent discussion of the problem by vVilks.3 We make 
certain assumptions about normality of distribution of re
peated measurements of y corresponding to fixed values of 
the %'s, and we assume that there is a relation of the form 

y = a1 Xl + a 2 X 2 + ... + ak Xl.; • 

On the basis of a sample of size n 

the maximum likelihood estimates and likewise the least 
. "" "f h squares estImates al> a 2, ••• , ak 0 t e parameters are then 

given as s.olutions of the simultaneous equations 

fI, fI, fI, 

+ a 2 L. Xlj X 2j + ... +ak L. 'xl} Xkj = L. Xlj Yj 

}=1 }=l j=l 

fI, fI, 

+ ... + akL. %2j Xlcj = L. %2j Yj 

j=l j=l 

fI, fI, fI, 

al L. Xkj X Ij + a2 L. Xkj X 2j + ... + ak L. X1Zj 

j=l j=l j=l 

Computationally, the first problem is that of computing 
the k(k + 3)/2 sums of products which are exhibited 
above. Second, we wish to solve the equations themselves. 

We thus arrive at estimates for the parameters which 
are optimum in a certain sense but these estimates are 
single estimates or point estimates. I f pressed for a single 
estimate we would give ~l as an estimate of al> etc. But 
statisticians prefer to give also a range of values for aI' 

a range of values for a2 , etc., and to associate this range 
of values with a probability statement. For example, ~e 
might choose a confidence level of 95 per cent and then 
arrive at statements such as: 
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vVe assert with 95 per cent confidence that 

a1 lies in the interval (a~, aD 

a2 lies in the interval (ag, a~) 

ak lies in the interval (aIL al) . 

I do not intend to describe either the theory of confi
dence intervals as developed by Neyman, Pearson and 
others or the theory of fiducial probability as developed 
by Fisher. Rather, I will say only that, in order to arrive 
at statements of this kind, it is essential to c.ompute ex
plicitly the elements of the inverse of the matrix of the 
coefficients of the equations exhibited above. In concluding 
this section, let me say that all of us have rule of thumb 
methods for deciding when to use hand methods and when 
t.o use IBM methods for solving linear equations. These 
rules must be modified in curve fitting problems because 
we must not only solve the equations but also compute the 
coefficients of the equations and we must compute ex
plicitly the elements of the inverse matrix. Consequently, 
IBM methods are efficient for a lower value of k (number 
of equations) in the statistical problem than in the straight
forward linear equation solving problem. 

More Ge'neral Forms 

It should be mentioned that the mathematical models 
assumed in the previous sections can be thought of as 
including many, but not all, of the situations which one 
encounters in science and industry. For example, we note 
that parabolic forms can be obtained from 

by setting 
Xl = 1, .t'2 = x2, X3 = xi, ... ,Xk = X£,;-1 • 

However, there is another type of curve fitting problem 
whose solution requires a more complicated procedure 
than that given above but for which accounting machine 
equipment can still be used advantageously. I refer to a 
problem such as that of fitting an equation of the form 

fi1% fi2% fik% 
y = a 1 e + a 2 e + ... + ak e 

In this case the equations to be solved in order to minimize 
the sum of the squares of the deviations of the observed 
from the calculated are not linear. Hence the method 
of successive approximation described, for example, by 
Deming4 must be applied. But by this method we arrive at 
a set of linear equations whose solution leads to the num
bers by which to adjust our first appr.oximations. Conse
quently, what has been said above concerning the use of 
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accounting machine equipment applies also to the present 
case. 

ApPROXIMATING SOLUTIONS 

To PARTIAL DIFFERENTIAL EQUATIONS 

I shall only describe a problem on which we are working 
for Dr. A. S. Householder and Dr. B. Spinrad at the Oak 
Ridge National Laborat.ory. I should then like to ask for 
comments arising from your experience with problems of 
this sort. 

vVe have the Laplacian partial differential equation in 
two dimensions with boundary conditions given on two 
squares, one square being l.ocated within the other. Be
cause of certain symmetry conditions we need to consider 
the problem over only a triangular region. We then con
struct a lattice and replace the differential equation by a 
difference equation which relates the value of the solution 
at one point to the value of the solution at each of four 
neighboring points. By punching cards on which are desig
nated the coordinates of the lattice points and the bound
ary values 'we then proceed in a combination of the 
operati.ons of collating, reproducing, and calculating. The 
process is that of Gauss-Seidel and we find that, for one 
thousand points, we can perform an iteration in about two 
hours and a half. 

Now the questi.on which I have is whether any of you 
have a criterion as to when sufficient convergence has been 
obtained. Do you continue to iterate until there is no 
change in the final digit carried in your machine? Do you 
prescribe in advance an upper bound to the sum of squares 
of deviations from one iteration to the next? What is a 
good criterion? 

In concluding this section I should say that many prob
lems in industry can be attacked either by curve fitting 
methods or by analysis of variance methods. F. C. Uffel
man and E. W. Bailey of the Y-12 Plant in Oak Ridge 
have devel.oped efficient machine methods for applying 
analysis of variance techniques. I am sure that l\fr. Bailey, 
who is at the Forum, would be glad to discuss that particu
lar problem with you. 
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DISCUSSION 
Mr. Stanley: In regard to that last problem and the 

criterion required, I notice that the problem seems to be 
one which could be very easily adapted to the relaxation 
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method of Southwell. I might mention a paper which gives 
a very good criterion in that case.1 Offhand, I can't state 
whether the criterion can be easily adapted to the Gauss
Seidel method, but in view of the close similarity between 
the two methods it is quite likely that it can be. 

In reference to Dr. Hurd's first problem: in that fitting 
of exponentials, I suppose by using least squares, the idea 
was to take a number of ordinates and, with the assump
tion that there were perhaps three terms in its series, to 
fit a least squares system to them. You arrive at a cubic 
equation and solve it for the three unknowns, whence the 
required values. The alphas are relatively easily derived. 

However, I wonder how you attack that problem when 
the number of dimensions is very great-say twenty or 
thirty. Then least square fitting becomes very laborious. 

Dr. Hurd: Your first comment, as I understand it, is 
about whether the Gauss-Seidel method is a relaxation 
method. They are usually talked of as being one and the 
same. 

Dr. Thotlws: I should like to say that while many people 
use the names indifferently, I think it is well to make the 
distinction that if you iterate regularly you are using the 
Gauss-Seidel method; if you always improve the worst 
point you are using the relaxation method. 

Dr. Hurd: In reply to Mr. Stanley's second question, 
we wouldn't have ten ordinates. We would probably have 
a thousand or perhaps two thousand. Actually the least 
squares method is the way we would approach the problem. 

Dr. T'ltkey: With regard to this problem of fitting the 
exponentials, there is an old paper in the Vienna Academy 
Proceedings,2 when people were first starting to untangle 
radioactive chains, which I think probably isn't as well 
known as it should be. It amounts to this, that if you take 
your % values, as if you had taken a square network and 
projected it down in a slanting manner, then you can solve 
these in a particularly simple fashion. 

Now where you have a thousand values, you ought to 
be able to sort out one hundred which approximately meet 
these conditions, and get a rather simple and accurate first 
set of values. 

Afr. Stanley: As for this relaxation method, I wonder if 
you have had any experience in trying to adapt it to 
punched card equipment. 

As Dr. Thomas has pointed out, the relaxation method 
is not well suited to this equipment, as it goes from one 
point of the net to another in what might be considered 
a haphazard manner. Possibly punched card machines can 
be used in a satisfactory manner in conjunction with a 
system of block or group relaxations. 

Dr. Thomas: In regard to using relaxation methods, it 
is more advantageous, at least for convergence, to go over 
the network by hand, make the adjustments directly, and 
then compute the residuals on the machine. That is the 
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main advantage of the relaxation method; adjusting the 
worst points gives more rapid convergence. 

Mrs. Rhodes: Did you try the harmonization scheme? 
I have never tried it on the IBM equipment, but I have an 
idea with the Type 604 we might save a great deal of time 
using this scheme. Moskovitz3 and Frocht4 gave this 
scheme for just such areas as Dr. Hurd described; it 
yields a first approximation in no time at all. Emmons5 

gives a problem very similar to the one Dr. Hurd showed, 
as an illustration of the superiority of the relaxation 
method over the Liebmann transit method of solution. As 
I recall, the times for the respective solutions were given 
by him as 20 and 11 hours. 

Dr. Grosch: To do single point relaxations, one can use 
both feeds of a collator to search for the largest residual 
in a deck of cards. That means it is possible to survey 
eight residuals a second: faster than a human operator by 
almost a whole order of magnitude. A twenty by twenty 
mesh could be reviewed in two minutes. The catch is that 
the machine does not skip right to the troublesome areas 
of the mesh in the way the human eye does. 

.lllr. Stanley: It really seems that, because of the time 
consumed, a system of single point relaxation is out of the 
question. Group relaxation might do for a part of the 
problem. 

Dr. Grosch: Unfortunately, group relaxations don't 
work out too well in terms of standard equipment. I am 
afraid it requires a sort of human thinking that the 604 
and the collator won't do. The SSEC, perhaps, might. 

Dr. Thomas: I would like to remark that just as in the 
problem of ordinary differential equations we talked about 
earlier, you can get a simple formula. The error term is in 
the sixth order and actually computing is no more com
plicated. The same thing is also true of partial differential 
equations in two or three or more dimensions; in two, if 
you take an improvement formula that involves only the 
four values at the corners of the square in addition, you can 
get a formula which is accurate to error terms in the sixth 
differential coefficients; it will enable you to get accurate 
results with a much coarser mesh and will save an enor
mous amount of time where you have a large number of 
points. 

Mr. Bell: Getting the inverse of a sixty by sixty matrix 
is a big problem any way you look at it. 
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Some Engineering Applications of IBM Equipment 
at the General Electric Company 

FRANK J. MAGINNISS 

General Electric Company 

W HEN I was asked to give this talk, it was suggested 
that I describe one of the problems for which we had em
ployed our IBM machines. Since we have two sets of these 
machines being used for engineering calculations on which 
some variety of problems has been worked out, I thought 
it might be of interest to give a more comprehensive pic
ture of what use we are making of these machines, without, 
however, going into much detail for anyone application. 

Our two groups of machines are operated by the Tur
bine Engineering Division and by the Central Station En
gineering Divisions. The former set is used for the calcu
lation of shaft critical speeds and for the solution of a 
problem which will be described by Mr. Kraft in his talk. 
The other set has been used for a greater variety of prob
lems. I shall try to describe these problems (with the ex
ception of Mr. Kraft's) to indicate why we felt IBM 
machines would be useful to us at the General Electric 
Company. 

Critical Speeds of Turbine Shafts 

One of the important problems facing the designer of 
large turbine sets is that of determining the critical speeds 
of the set. Critical speeds are those rotative speeds which 
coincide with the natural frequencies of transverse oscilla
tion of the shaft. A better set from a vibration standpoint 
is obtained if the critical speeds are not too close to the 
running speed. 

In the past, these criticals were approximated by con
sidering that each unit between bearings (the high pres
sure turbine, the low pressure turbine, and the generator) 
was (l separate entity, and the lowest frequency critical 
speed of each of these single spans was calculated under 
this assumption. This method was used only because no 
other method was available which would give results in a 
practical length of time. 

Recently, our Turbine Engineering Division decided 
that a more accurate determination of the critical speeds 
of the multiple-span shaft involving a large number of 
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calculations could be made in a satisfactory length of 
time by using IBM machines. Accordingly, a set of these 
machines was installed, and for the past two or three years 
every new turbine set which has been built at the General 
Electric Company has been previously analyzed for the 
location of the critical speeds of the shaft. Moreover, all 
sets which have been built in the past and are now in 
service are being analyzed. In all cases in which test re
sults are available, they agree very closely with the results 
of calculation. 

Briefly the method of calculation is this: the shaft (and 
by shaft is meant the shaft and the units on it) is assumed 
to be made up of a definite number (about thirty) of con
centrated masses. Equilibrium equations are written for 
each of the masses for the forces and moments, on it due 
to the reaction of adjacent masses and the centrifugal 
force due to rotation about the unstressed axis of the set. 
A speed of rotation is assumed, and starting at one end 
the deflection, slope, shear, and moment are calculated for 
succeeding sections until the far end of the shaft is 
reached. Unless the speed assumed is exactly a critical 
speed, it will not be possible to have both the shear and 
moment zero at this point. I f the shear is made zero, there 
will be a residual amount which may be positive or nega
tive. When a number of such calculations as described 
above has been made for a number of speeds of rotation 
(at about 200 rpm intervals for a 3600 rpm machine) the 
curve of residual moment vs. shaft speed will indicate by 
its zeros the desired critical speeds. 

Correlation of Data on Electrical Steel 

Obviously a factor of ,great importance to the manu
facturer of electrical equipment is the magnetic charac
teristics of the steel he receives from various fabricators. 
Any significant departure from a standard may have seri
ous consequences in its effect upon the performance of a 
rotating machine or a transformer. It is therefore a ques
tion of some interest to the people in our laboratories 
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what factors are responsible for such deviations from 
standard. Are they caused by small variations in the 
amounts· of carbon, manganese, cobalt, silicon or other 
elements which enter into the composition of the steel? 
Or are they caused by slight differences in the heat treat
ment the steel may be given by different manufacturers or 
by the same manufacturer at differe,nt times? 

An attempt was made to answer the first of these ques
tions by determining the correlation between the percent
age of each of the elements present in the composition of 
the steel with certain magnetic properties and by making a 
multiple correlation between overall composition and the 
magnetic properties. This particular study showed only a 
small correlation between chemical composition and mag
netic properties. 

This problem afforded an excellent opportunity to use 
the technique of progressive digiting on the accounting 
machine. 

Multiple C ond1utor Circuits 

A recent trend in the field of transmission of electric 
power has been in the direction of higher voltages. A 
reason for this is the increased distance between power 
source and load center. Tests up to 500 kv are being con
ducted to determine the feasibility of higher voltage trans
mission. 

When high voltages are to be used, there appear to be-t 
certain advantages in using more than one conductor per 
phase. For example, the line inductive reactance will be 
lowered as multiple conductors per phase are used and the 
capacity susceptance increased. These result in an in
creased load-carrying capacity of the line for the same 
voltage. It is of interest to determine the spacing and ar
rangement of conductors in one phase and between phases 
which will prevent excessive corona loss. In order to deter
mine these it is necessary to know the maximum value of 
the voltage gradient which will occur at any of the con
ductors. This in turn depends on the instantaneous value 
of the charge on the conductors. 

The problem is to set up and solve the equations relating 
the charges appearing on each of several conductors with 
the voltages on the conductors. In the general case there 
will be as many such algebraic equations as there are con
ductors. Moreover, in order to determine the maximum 
gradient it will be necessary to know the charge distribu
tion for several values of the voltages. For a two conductor 
per phase, three phase line with two ground wires, we are 
faced with eight algebraic equations. Each variation of 
conductor size or spacing which is to be investigated will 
require a new set of equations with different coefficients. 
The coefficients are Maxwell's potential coefficients and 
the equations may be readily set up. It then becomes a 
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question of matrix inversion· for the reason mentioned 
above. An interesting and significant result of the study 
was the fact that the maximum voltage gradient can actu
ally be decreased for a two conductor per pha~e line over 
that for a single conduetor of the same total area per 
phase. 

Incompressible Fluid Flow 

For many field problems it is possible to obtain a very 
close approximation to the stream lines and equipotential 
lines by using some sort of network calculator such as the 
AC Network Analyzer or the DC Calculating Board. As 
an example, Concordia and Carter! determined the fluid
flow pattern in a centrifugal impeller by this method. 
However, most network devices are inherently limited in 
range and accuracy (as are all simulator type calculators) . 
I f, therefore, it is required to determine flow. lines to a 
high degree of accuracy in a region of great curvature, a 
digital method of solution is necessary. 

The reported results of the problem of the centrifugal 
impeller study just mentioned were further refined, using 
IBM machines to improve their accuracy. A small region 
around the trailing edge of the blade was subdivided into 
a fine mesh of points, values of the stream function of the 
boundaries of this region were assumed to be fixed at the 
values obtained from the DC Board study, and values of 
the stream function at interior points of the region were 
improved by a relaxation method. 

Incidentally, we believe that the only way to study a fine 
mesh relaxation problem is to start out by setting it up 
first on the AC or DC Network Analyzers using as many 
units as possible to give reasonably close starting values. 
If such a device is unavailable, it would be necessary to 
start with a very coarse network and gradually increase 
the number of points until the required fineness of the 
mesh is obtained. 

In addition to the work done on the centrifugal impeller, 
a study is at present being carried out to determine the 
flow lines around a turbine bucket. In principle the two 
problems are identical. 

Some other problems we have been or are at present 
studying by means of our IBM machines are: 

1. A study of the distribution of flux density in the 
interior of a steel lamination under conditions of iron 
saturation. Such a study could be valuable in predicting 
transformer losses to be expected from a new steel. This 
problem involved solving one of Maxwell's equations in 
the steel subject to the condition that the total flux in the 
steel be sinusoidal in time. This is a rather tricky condition 
and difficult to satisfy since the best we could do was to 
assume the flux density at a given point, for example at 
the center of the lamination, as a function of time and by 
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means of a difference equation determine the flux density 
at successive points from the center out to the edge. If the 
total flux was not sinusoidal in time, a different central 
flux density was assumed and the procedure repeated. 
Actually, of course, we did a number of cases at the same 
time. This pr.oblem also led us to develop a method for 
harmonic analysis for odd harmonics only. 

2. A study to determine crystal structure is being car
ried on at the present time. The method we are using has 
been described by Shaffer, Schomaker and Pauling. 2 

3. Finally, we endeavored to solve a small but com
plicated circuit problem involving complex voltages, cur
rents and impedances t.o which several different fre
quencies and values of load were applied. Our conclusion 
from this study was that the ratio of the number of steps 
involved in the solution to the number of cases considered 
was so large as to make this particular problem unsuited 
t.o IBM machine solution. 

I think I may state our conclusions as to the use of these 
machines as follows. Our set of machines on which the 
critical speeds are being calculated is being used very effi
ciently. Although there are not many cases (that is, values 
of frequency) for each turbine set studied, the successive 
steps are identical, control panels are permanently set up, 
the operators are th.oroughly familiar with the procedure, 
and the work grinds out day after day. 

The other set 0 f machines on which the remaining 
problems I have mentioned have been worked out cannot, 
obviously, be used so efficiently, since we must be prepared 
to solve many different kinds .of problems. Of the types of 
work we have carried out we believe the most fruitful use 
of the machines compared to other means of performing 
the same calculation has been in the field of solving alge
braic equations or matrix inversion. 

REFERENCES 
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DISCUSSION 
Mr. Stevenson: On the turbine blade problem, we have 

worked a somewhat similar problem using basically the 
method of Theodorsen and Garrick1 for arbitrary airfoils. 
By means of a prepared table, we are able to get pressure 
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distribution on an arbitrary airfoil in approximately fif
teen minutes' work with a 405 only. That meth.od can be 
further expanded to give you either the velocity potential 
or any streamline you wanted to specify. I would be glad 
to let you know about the method as I think it would re
duce your machine time. 

Dr. Caldwell: I w.ould like to mention two points. Mr. 
Maginnis briefly touched on a subject which I believe has 
considerable possibility in many of these jobs, and that is 
the possibility of using a DC board to get a start on a 
numerical solution. Likewise, one can use electronic analog 
machines of lew precision but high speed to get a rough 
approximation, and then jump off from there. I think that 
is a very powerful type of combination. I f any of you are 
doing this, and making it work, I would be interested in 
knowing it. 

Dr. Fe1'l1't: In some work which I may describe later at 
these sessions, precisely that was done. We have converted 
a gun director into an analog machine, and sets of suitable 
approximate solutions for certain iterative digital proc
esses are actually worked out in large numbers. It is, as 
you say, a very powerful method and saves a tremendous 
amount of time. 

Dr. Caldzoell: An.other thing I would like to see some
body do some day is to work some fundamental improve
ment on the method of crystal structure analysis that has 
been described. It isn't too happy, the way you have first 
to draw out a lot of cards-picking them by hand is about 
the only practical scheme-and run aro.und the place 
juggling little groups of cards. Unless you have a very 
conscientious clerical job done, you are going to get some
thing mixed up. At least I haven't seen it work yet without 
depending a great deal on the human element to keep 
things straight. 

Dr. Th01nas: I would like to say we have been develop
ing much smaller files of cards for these various harmonic 
analysis calculations, and we are proposing to do it entirely 
by sorting, collating, gang punching and tabulating. It can 
be done that way, and in many cases is quite as fast as 
using many cards. If you have a really fast multiplier, such 
as the 604, you could probably do it quicker with that, but 
with only the 601 or even the 602 available, it is quicker 
to do. the mUltiplying by progressive digiting. 
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Planning Engineering Calculations 
for IBM Equipment 
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CON SOL I D ATE D V U L TEE started back in 1942 
to use standard IBM equipment to help solve engineering 
problems. The first use was on electrical load analysis. The 
solution of electrical load problems continued until about 
1944, when the use was extended to structural problems. 
Because of the saving in time and money, the equipment 
has been in use continuously since that time, and has been 
applied to a wide variety of engineering problems. 

We have found that it is a good idea to get an estimate 
from the person whO' wants a job done as to how long it 
would take to do it manually. Then we put it on IBM 
machines if we are sure that we can at least hetter his 
cost estimate; Another important point to consider is the 
advantage of having the engineer cooperate and assist in 
getting the job on the equipment. We must replan his. job 
to suit the equipment. In fact, with his assistance we might 
discover new techniques and provide him with a better 
service than he requested or anticipated. 

For a particular problem the first two columns of the 
card are used to identify the problem. The card layout 
form with the card code is filed for possible later use on 
a new problem of the same type. The card code was very 
helpful to us in looking back to find the cards that repre
sented a particular job. It could also be used to sort cards 
into sequence, or for control on various machines both as 
to its digit and as to its zone punch. 

After the war we had a large supply of control panels, 
so we used a large number of permanent control pan~ls. 
When the time came that we ran short of permanent 
panels, we have gone to semi-permanent panels. For a 
602 where we have a great deal of basic wiring that does 
not change, we use a few manual wires. Perhaps some of 
you have considered such a possibility for a 405 differenc
ing control panel, using manual wires to make minor 
changes. 

Another use of manual wires combined with permanent 
wires might be in wiring a panel for the first time. Testing 
the panel' after a few steps and substituting permanent 
wires for the manual wires enables us to see what we are 
doing. 
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Many of our jobs use relatively small quantities of 
cards but many steps. For these jobs it is often a time 
saver to wire a few simple control panels rather than a 
single one that is very complicated. Of course, we can 
afford to spend more time on the wiring of a complicated 
board if it is to be a repetitive job, or if it is very large. 

We have very good cooperation with our accounting 
machine installation. Having our installations together 
does have certain advantages. We can have our multiply
ing done on one machine and checked on another. 

Although the actual procedure used to solve a given 
problem would to a large extent be a function of the type 
of machine that is available, the following approach to a 
common structural problem may prove interesting to some 
of you. Let 

where 

(MyIilJ - MilJK) x 
IilJIy - K2 

(JlfilJ Iy - My K) Y 
IilJIy - K2 

fb = stress at any point whose coordinates are 
x and )'J measured from· any pair of rec
tangular axes passing through the centroid 
of the cross section 

M ilJ and My = bending moment about the x-axis and 
y-axis, respectively, 

If 

Ia: and Iy = moments of inertia of the cross-section 
about the %and yaxes 

K = product of inertia of the cross-section 
about the % and y axes. 

1 
C1 = IilJ1 y _ K'J 
C2 = C1 K 
Cg = C1IilJ 
C4 = C1Iy 
Dm = xC2 - Y C4 

Dy = Y Cli - % Cg 

then 
fb = MmDm + J.l1yDy • 

What we did was simply to put % and y inside the 
parentheses and take out the bending moments. Most of 
the time we wish to hold the section constant and solve 
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stress for various combinations of bending moments. If 
we wish to continue and solve for shear flow, the basic 
formula for shear flow q due to vertical and side shear 'in 
an open section is 

where 

VilJ and Vy = shear forces perpendicular to the x and y 
axes 

QIl) and Q'Y = static moments about the x and y axes 

QIl) = ~AiYi 
i 

Q'Y = ~A'iXi 
i 

Ai = area of the cross-section of the ith item 
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DISCUSSION 

Dr. Caldwell: I especially appreciate Mr. Ferber's idea 
of getting the customer to estimate how long it would take 
to do the job. It is very common to find a customer arriv- . 
ing at one of these installations that are supposed to do 
mass production computations with his eyes bigger than 
his stomach. He says, "Well, we can get a lot of work 
done here for practically nothing," so he specifies a lot of 
work. Later he says, "vVhy do you say this is going to 
cost thousands of dollars? I could do it for a hundred 
dollars. " You investigate a little further and find he is 
going to do one per cent of the work for one hundred 
dollars 1 

Mr. Ferber: I might add that when a problem is worked 
on standard IBM equipment with no extra devices other 
than those normally available, one operator does about 
twelve machine-hours of work per day. 

Mr. Bell: The indirect saving resulting from the elimi
nation of rework in production can be a very important 
result of using IBM equipment for engineering design. 
This follows directly from the ability to investigate many 
design conditions quickly and completely, so that all design 
parameters are well in hand before construction begins. 
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THE PRESENT PAPER is intended to describe 
some important problems being solved by the IBlYI in
stallation in the engineering department of the Beech 
Aircraft Corporation. Emphasis is placed .on the various 
types of jobs processed by the IBM group for our engi
neering and sales departments. Consistent with the stated 
objective of the Forum, particular emphasis is placed on 
problems which arise frequently in structural engineering. 
It is hoped that the ideas contained herein will help stimu
late discussi.on and thereby foster a mutual exchange of 
ideas. 

INTRODUC1.'ION 

At the present time the computing installation in Beech's 
Engineering Department includes one each of the follow
ing International Business :Machines: 

Type 601 Multiplier 
Type 513 Reproducing Punch 
Type 080 Sorter 
Type 405 Accounting Machine 
Type 552Interpreter 
Type 031 Alphabetic Key Punch 

The need for such an installation was envisioned during 
the war as a practical solution to some problems arising 
from critical manpower shortages. It was considered that 
the IBM group would function in the following ways: 

1. Accammodate certain types .of periodic and inter
mittent wark-loads of our engineering department. 

2. Alleviate shortages and losses toO the armed forces of 
skilled technical personnel. 

3. Help relieve engineering personnel of routine calcu
lations, thereby providing time far more important 
duties. 

To date our IBM group has handled a cansiderable 
amount of w.ork relating to airplane weight cantrol, struc
tural analyses, sales research, time-labor studies, field 
service engineering, library records, and other engineering 
problems. Some of these projects are discussed herein. 
Consistent with the stated area of discussion, however, 
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particular emphasis will be placed on technical prablems 
of aircraft engineering. 

"VEIGHT CONTROL PROBLEMS 

Of impartance is the current usage.of machine methods 
in weight contral calculations. In much of this type of 
work the machines are required to shoulder intermittent, 
heavy work-loads, and have demonstrated appreciable sav
ings in time and labor. In a general sense, our weight con
trol graup determines the c.onditions of weight and balance 
of the variaus Beech airplanes. In particular, this group 
investigates the weights and center of gravity locations of 
campasite airplanes far various loading canditions. Such 
informati.on usually is obtained by cansidering the weights 
and centroid lacatians of all fixed and movable items of 
mass in the airplane. Punched card methods are readily 
adapted to handle the large volumes of weight and bal
ance calculations associated with this type .of wark. 

SALES RESEARCH PROBLEMS 

Our computing installation was used recently in a sales 
research pr.ogram ta determine potential markets far Beech 
praducts. This pragram was essentially a statistical survey 
.of numeraus parameters relating to sales patentials in 
various geographical areas. The labar entailed in the 
mathematical manipulatian of these parameters was con
siderable. However, many basic operations were repeated, 
and therefore adapted to punched card meth.ods of solu
tion. The machines relieved the sales research group of 
many haurs of "donkey wark." 

STRUCTURAL PROBLEMS 

Weare set up to handle the fallawing structural engi
neering problems by machine methads: 

Three-dimensional flutter analyses .of aircraft 
structures. 

Harmonic analysis. 
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SQlution of linear simultaneous equations. 

Solution of complex matrix equations. 

Computation of section properties of aircraft 
structures. 

For each of th~se problems we have provided our IBM 
group with a master deck .of precoded cards, wiring dia
grams, and a set of written instructions. The master decks 
are considered as permanent equipment, that is, they are 
not processed in the solution of a particular problem. For 
specific problems, the master decks are reproduced to 
obtain working decks of cards which are prQcessed in 
accordance with the written instructions. The instruction 
sheets we use at Beech avoid, wherever possible, reference 
to technical significances of the steps being performed. 
This divorcing of engineering aspects of a problem from 
the required machine operatiQns enables the IB:M operator 
to concentrate mainly on manipulation of the cards. 

Flutter 

The punched card method of flutter analysis we use is 
based on the theory given in ACTR No. 4798.1 Standard 
procedures have been set up for the following basic flutter 
modes: 

1. Fixed surface bending vs. fixed surface torsiQn vs. 
rotation of control surface (with or without geared 
tab). . 

2. Fixed surface bending vs. fixed surface torsion vs. 
airplane roll or vertical translation. 

3. Fixed surface bending vs. fixed surface torsion vs. 
rotation .of control surface (with or without geared 
tab) vs. airplane roll or vertical translation. 

These flutter modes are solved entirely by the machines, 
except that a few manual operations are required during 
the final stages of solution. 

Usually, flutter analyses are conducted to determine the 
critical flutter speeds and frequencies and the associated 
values of damping coefficients. In SQme cases, additional 
information such as mode shapes and amplitude ratios of 
the component degrees of freedom also may be required. 
The problem of determining these items may be resolved 
into the two rather distinct phases of formulating and 
solving the stability determinant. We formulate the de
terminant by straightforward operations on matrices, then 
solve the determinant by trial-and-error iteration. Some 
discussion on these important steps is considered desirable. 

For any mode of flutter, the stability determinant is 
composed of complex elements. The numerical value of 
each element may be determined by evaluating and sum
ming up certain aerodynamical and mechanical integrals. 
Careful study has shown that: 
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1. Each of these integrals may be expreSsed as a sum
mation of products of finite quantities. This would 
be equivalent to considering that the wing is divided 
into a finite number .of chordwise strips. 

2. Multiplication and summation of these products may 
be accomplished readily using methods of matrix 
algebra. 

3. The llumerical value of each element of any stability 
determinant may be expressed as the product of four 
matrices. 

On the basis of these observations, we form stability de
terminants entirely by machine·methQds. 

As previously mentioned, we solve the flutter determi
nant by trial-and-error iteration. It has been determined 
that this process will converge at a practicaJ rate, since the 
preponderant elements usually lie on the principal diagonal. 
In most cases the iteration stabilizes satisfactorily in two 
or three trials. However, in some cases fQur or more trials 
may be required. In general the iteration process is carried 
out in the following way: 

1. First a trial value of w is substituted in all but one of 
the elements along tli.e principal diagonal. 

2. The determinant is reduced to the third order, if 
necessary, then expanded to obtain a linear equatiQn 
in one unknown. 

3. The linear equation is solved to obtain the second 
trial value 0 f w. 

4. Steps 1, 2, and 3 are repeated until the trial value 
of w agrees with the solution. 

5. The entire process must be repeated a number of 
times equal to the number of degrees of freedom 
considered. 

Practically all of the labor of solving the stability determi
nant is done by the machines. However, some manual 
operations are required to estimate initial trial values of (J) 

and calculate flutter speeds, frequencies and damping co
efficients at the final stage of solution. 

Estimates of the time required for the solution of a 
three-degrees-of-freedom flutter mode by manual methods 
as compared with our punched card method, based on the 
assumption that five values of (v/bw) are investigated f.or 
each mode, are as follows: 

IBM lIfanual 
Time Operation Time 

35 hours Computation of 30 hours 
elements of the 
stability determinant 

26 hours Solution of the 44 hours 
stability determinant 

61 hours/mode Tot~l time 74 hours/mode 
(1 operator) (1 person) 
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Wave/orm. Analysis 

Complex periodic waveforms frequently occur on vibra
tion records of structural investigations such as flight test
ing, fatigue testing and vibration tests of power plant 
installations. It is impossible to analyze many of these 
waveforms by ordinary inspection methods. However, any 
complex periodic wave may be represented by the super
position of a number of simple .sine and cosine waves. It 
might also be mentioned that aperiodic curves, continuous 
in a finite interval, also can be represented by assuming 
that the given curve represents a single cycle of variation. 

The problem of waveform analysis is primarily that of 
determining the amplitudes and frequencies of the sine 
and cosine components present in the synthesized wave. 
At any point along the reference axis, the ordinate of a 
composite waveform is equal to the sum of the ordinates 
of the component harmonics. 

At Beech, we have expanded the Fourier series to obtain 
the general equations corresponding to five, eleven, twenty
three and forty-seven harmonics. Particular solutions may 
be obtained by substituting into these expansions the nu- ' 
merical values of the ordinates of a given curve. 

We have transferred the trigono.metric. constants of 
these expansions into. a master deck of 4704 coded cards. 
Solution of a, specific problem may be obtained by punch
ing into a working deck (reproduction of the master deck) 
the measured values of the ordinates. The cards are then 
pro.cessed in accordance with standard instructions. Solu
tion is accomplished almost entirely by th~ machines; some 
divisions and extractions of square roots must be per
formed manually. 

A comparison of time required by manual and punched 
card techniques for waveform analysis is of interest. 

Numberof Corresponding Est. llf allual Est. Machine 
Ordinates Number of Time_ Time-
to Curve Harmonics Hour{ Hours, 

r~ 5 2.0 1.0 
24 11 7.5 2.5 
48 23 28.0 7.5 
96 47 110.0 26.0 

Linear Simultaneous Equations 

Our IBM group now is set up to solve systems of fifty 
linear equations in fifty unknowns. While this number 
accommodates our preseilt needs, it can readily be ex
panded to any practicallil11it. 

In general, we utilize a modified Gauss method. Here, 
the linear equations are converted into matrix fo.rm. The 
matrix equation, on the left side, contains a square matrix 
of constant coefficients postmultiplied by a column matrix 
of the unknowns. The right-hand side of the equation has 
only one column matrix of constants. The square matrix 
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of coefficients is operated on by rows and by columns until 
all terms below the principal diagonal are zeros and each 
term along the diagonal is unity. During operations on 
rows, the· column matrix on the right side of the equation 
is also modified. It is clear that the value of the nth un
known is immediately given on completion of these opera
tions. The value of the nth unknown then is employed in 
a back-tracking process to determine the (11-1) th un
known, and so on. 

It has been determined that time saved by machine 
methods over manual methods increases appreciably with 
increasing numbers of equations and unknowns. This may 
be seen from the following comparisOli: 

Number 0/ 
Equations 

and Unknowns 

ApproJ;imate TI~me for Soluti011i-7ManHouys 
IBM IBM 

by Decimals by Powers Manual 

10 
30, 
50 

Approximately Same 
39 50 
78 148 

Matrz'J,' Manipulation 

8.5 
74 

418 

Weare equipped to handle certain types of matrix 
equations by the Kimballmethod.2 It is particularly useful 
,in performing the basic operations of matrix algebra on 
matrices with complex elements. The method is also useful 
in manipulating matrices with variable elements when the 
solutions are approximately known or when the prepon
derant elements lie along the principal diagonal. This latter 
feature is a reasonable guarantee that trial-and-error iter
ation will converge at a practical rate. 

Other Projects 

At the present time we are investigating the feasibility 
of solving the following structural problems by punched 
card methods: 

1. Spanwise airload distribution for monoplane wings. 
2. Natural torsional frequencies of crank..,systems using 

Holzer's technique. 
3. Natural uncoupled frequencies of beams using Sto

dola's iteration procedure. 
4. Analysis of shear lag in aircraft structures. 

TIME ASPECTS 

The time estimates previously given for several struc
tural problems were based on actual performances. They 
were determined by solving given problems manually and 
by machine. Now the approximate average rates of, our 
machines are as follows: 

Multiplier-15 cards per minute 
Reproducer-lOO cards per minute 
Sorter-450 cards per minute 
Accounting Machine-' 80 cards per minute (detail print) 

150 cards per minute (group print) 
Interpreter-60 cards per minute 
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Processing time for most problems can definitely be im
proved through usage of faster calculating punches. We 
probably will consider faster machines when the need for 
more rapid processing becomes manifest. 

RECOMMENDA'tIONS 

Usually, punched card procedures can be adapted to a 
given engineering problem in a number of ways. From 
time and labor standpoints some procedures will be more 
efficient than others. Among other factors, a determination 
of the optimum procedure depends on a knowledge of the 
full capabilities of the machines available for our use. For 
this knowledge we rely to an appreciable extent on the 
Wichita staff of International Business Machines Corpo
ration. We have always found them highly cooperative. 
However, in some cases they were unable to provide us 
with enough information on specialized capabilities of the 
machines, particularly our Type 601 Multiplier. 

We recommend that local IBM offices be provided with 
up-to-date information on the full computing capabilities 
of the machines in their region. It may be possible to estab
lish, on a current basis, the flow of such information from 
the various IBM research laboratories and computing 
centers to branch offices. This would help people like our
selves to realize the maximum potential utility of IBM 
installations and avoid needless duplication of effort. 

REFERENCES 
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DISCUSSION 
Dr. Eckert: I might point out that the use of IBM ma

chines for technical computation grew very slowly for a 
number of years. It was very easy for two or three people 
to keep in touch with each other. Within the last two or 
three years, there has been such a sudden cloudburst that 
to have people everywhere supplied at the right time with 
the right information is a little difficult. Steps are' being 
taken; IBM has now, among other things, special repre
sentatives in the Sales Department who understand what 
you are trying to accomplish. They know what is available 
in IBM, and they are at your call. 

With respect to the local manager, he also has a very 
tough assignment when you ask him for methods ,of doing 
things he has never heard of. That gap has to be bridged, 
and I am sure it will be in a very short time. 

There is still another way which is open at the moment, 
and that is to call on us at the Watson Laboratory or write 
us a letter. Weare always glad to hear from you. I think 
about half of the people in this room have already done 
that. 
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Mr. Kintas: You probably know Mr. K~mball of the 
IBM office in Dallas. Would it be possible for him, or 
others like him, to circulate periodically as good-will am
bassadors? A person like that could not only convey in
formation fro111 your laboratory to our installations, but 
could pick up ideas from us to be passed on. Such repre
sentatives would be very valuable. 

Dr. Eckert: That is the intention. The difficulty is to get 
the right man, get him trained in a very difficult field, and 
get him to you. 

Dr. Kortz: Why not send Dr. Grosch? 

J.\:lr. Schroedel: 1\ir. Kimball, Dr. Grosch, and I par
ticipated in a rather successful experiment along those 
lines recently. Lectures were given at the Cornell Aero
nautical Laboratory in Buffalo, and people from other 
computing groups in the vicinity also attended. We learned 
a good deal from the meeting. But there are fifty or sixty 
installations in various parts of the country, and it is not 
easy for all of us to visit every locality and work with you 
long enough to really make a contribution. We hope to 
have more technically trained representatives in the Sales 
Department as time goes on. 

Mr. Bisch: Several points, which could stand some com
ment and emphasis, were picked out of the very interest
ing talks of our aircraft representatives, Messrs. Ferber, 
Bell and Kintas. Instead of taking one point at a time, it 
seems more constructive and brief to present all my com
ments as a whole. 

Many engineering organizations are looking today for 
powerful means of calculation. What the Engineering De
partment of North' American did four years ago was to 
look to IBM for the main answer to this need, after a 
general survey of the field. Fast progress was desired, 
and to this end production methods were used in the crea
tion and the development of our Engineering Section of 
accounting machines. 

Such methods call mainly for extensive specialization 
and perfect coordination. To be concrete, we select the 
structures section, although the following would be true 
for the aerodynamics section as well. 

An engineer with a long acquaintance with problems of 
structures, company policy, and organization methods was 
asked to select the problems and among their various solu
tions those which result in speed and efficient use of the 
IBM machines. This engineer familiarized himself with 
the various functions of the IBM equipment and the pat
tern of calculation most suitable for it, but he made no 
attempt to learn how to operate it. As a result, he was able 
to increase the contribution of the machines and he 
promptly reached the conclusion that for a given standard 
problem, the machines can do everything from the punch
ing of the initial data to the final report printing. It is 
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important to remark that he was the only engineer in direct 
contact with the accounting machine section. 

On the other hand, an IBM operator with several years 
of experience and a mathematical knowledge equivalent to 
a master's degree was assigned to program for the ma
chines the problems offered by the structural engineer, to 
propose profitable changes in the mathematical processes, 
to suggest further use of the equipment, and to select the 
type and the number of IBM machines. In no case did 
he Concern himself with the engineering aspects of the 
problems. 

When this work was sufficiently under way to call for 
more than two operators, an experienced operator was 
selected as supervisor of this group. This group is an inde
pendent section of the main accounting section with its 
own machines, and it derives many obvious advantages 
such as readily available service for the machines and the 
incidental facilities of a large. installation, by not being 
separate from the main IBM body. The two men at its 
head, the mathematician and the supervisor, form a per
fect team for the dual purposes of large volume and con
tinuous improvement. 

The Engineering Section is therefore made of two parts: 
the engineering part and the accounting machine part, 
through which a perfect coordination is possible by a one
man contact. It is now opportune to detail further the 
duties and achievements of each component. 

The engineering part, which is also assigned to seek 
new technical and experimental solutions of aircraft engi
neering problems, to write reports on the algebraic and 
tabular solutions of problems and to conduct experimental 
work, keeps an accounting of the approximate number of 
arithmetical operations required by every job sent to the 
IBM section. This number is easily arrived at for standard 
problems, using simple algebraic formulas. On the other 
hand, an extensive survey has shown that an engineer can 
perform an average of one hundred arithmetical opera
tions for each remunerated hour. As shown by two years 
of coverage, an IBl\1 operator performs on the average of 
one thousand such operations per hour; therefore his 
speed is ten times greater. 

Finally, last year's operations show an average of seven 
thousand engineer-hours per month performed by an IBM 
Section of four operators, which would cost a minimum 
of twenty-one thousand dollars per month, if performed 
by engineers, against an over-all cost of six thousand dol
lars by the IBM group, thus effecting a saving of fifteen 
thousand dollars per month. This approximate saving of 
seventy-five per cent which was evidenced at the very be
ginning was the real selling point to our management. 

However, the engineering management has become con
scious of other less tangible although equally important 
advantages. They are: 

SCIENTIFIC COMPUTATION 

Unprecedented dependability from the point of view 
of time and accuracy. 

An average speed ratio of ten resulting also in cutting 
down waste in fabrication, as peinted out by 
Mr. Bell. 

Availability of solutions of problems, previously 
prohibitive on account of cost and time. 

I should like to conclude by giving a list of several ques
tions frequently asked, and brief answers. 

What is the accuracy generally 'used? Eight, sometimes 
ten, significant figures. 

T¥hy would slide rule accttracy not be a factor in th4 
selection! Because in extensive calculations,even when 
performed in tabular form and on desk machines, there is 
a need for mathematical and engineering checks, which 
would be meaningless with slide rule accuracy. In some 
problems, such as the solution of systems of -linear equa
tions, more accuracy sometimes means the only chance of 
getting a correct answer. 

~Vhy not ask every engineer the esti'mate of engineering 
ti'N'te, as practiced by Mr. Ferber? Because it is easier to 
gather in one room all the supervisors and experienced 
stress men and have them propose once and for. all a sober 
rounded-off average. 

Why not teach engineers how to operate the machines! 
Although they are all welcome to visit the installations 
and to see the machines performing, they only are inter
ested in the relief in their task provided by use of the 
equipment. Maximum efficiency is obtained by showing 
them concrete types of calculations suitable or unsuitable 
to these machines; even this is not necessary for the stand
ard problems. Finally, all the past experience being avail
able to the contact engineer, it can be poured into every 
new problem. 

What is the criterion for a solution by the l11a.chines! 
The IBM section can solve a mathematical problem in any 
way selected for efficiency, provided the final answers 
would coincide with the answer found by engineering 
methods. 

Is the most efficient method reached the first time? Far 
from it. First of all, any substantial increase of efficiency 
is worthwhile at any time because the gain will be repeated 
many times and will outweigh the cost of the changes. 
Moreover, the survey of the first numerical application of 
a method always suggests other improvements. 

Wouldn't the IBjI! section soon be confttsed by a maze 
of various methods? On the contrary; thanks to the spe
cialization of the engineering group, it has been possible to 
restrict them to a few general solutions from which many 
problems can be derived as simple cases without change of 
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procedure. For instance, the bending and shear stress dis
tribution of shell structures can be obtained by the same 
process, regardless of the type of cross-section and the 
part of the airplane. Several obvious advantages are at
tached to such generalization. 

What types of solutions are preferred, the type which 
is short but inefficient on the machines, or the long but 
efficient type? The first type is generally adapted to desk 
machines. Our experience shows that the last type is pref
erable, because it taxes the operator less, and usually the 
answer is reached sooner. 

What aeronautical problems were found to be solved 
efficiently! 

1. Conventional and elastic determinations of stresses 
and rigidity of shells. 

2. Weight balance, static and dynamic. 
3. Airplane performances. 
4. Determination of design loads, magnitude and dis

tributions. 
S. General problem of arch analysis, stresses and de

flections. 
6. Redundant structure analysis. 

What mathematical problems? 
1. Solution, by iteration methods, of characteristic 

equations such as in vibration problems. 
2. Direct solution of systems of linear equations up to 

seventieth order. 
3. Solution, by Galerkin's method, of systems of linear 

differential equations with variable coefficients. 

What is our trend with respect to wiring control panels? 
It may be that the nature of our work calls for flexibility. 
In any event, more efficiency is attained by breaking the 
process of solution into simple steps which are made with 
standard control panels, than with special panels aimed at 
shortening such processes. 
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Are we trying to use a minimum of caras! In general, 
one card is used for one machine operation. The cost and 
inconvenience of more cards is outweighed by the ad
vantages of simpler procedures. 

vVhat is the fut'ltre of such machines in aeronautical 
engineering? As long as this industry secures experimental 
contracts an increasing need for their use will exist. 

Has use of IBM machines contributed to the progress 
of aeronautical engineering? Very much. Experimentally, 
thousands of stresses are daily recorded directly in cards 
from a specially wired stress rosette recorder. Technically, 
modern airplane structures can now be correctly analyzed 
at reasonable cost, whereas before the advent of the ma
chines, this would have been impossible. M-oreovcr, the 
mentioned recorded stresses can be rapidly transformed, 
through matrix calculations, into information valuable for 
future designs. 

Could the progress in 'ltse of IBM equipment for aero
nautical engineering be readily used for other engineering 
specialties ? For problems with identical mathematical 
equations the answer is obviously yes. As to engineering 
problems such as all general structure calculations (like 
shell and arch analysis), their IBM solution can readily be 
used in civil engineering, when presented under the general 
form which is desirable in aircraft. 

Finally, I might remark that none of our existing or 
planned reports mentions the use or the wiring of the con
trol panels. 

Dr. Kortz.: Do you have those figures available? I have 
to work a little on administration, too, in that respect. 

Mr. Bisch: Every month we add to our little book sev
eral pages about new jobs; I can show you that. We make 
entries for every job we send to the IBM machines which 
involves at least a hundred man hours of engineering 
time. Many jobs are in the thousands of hours. We keep 
a close record all the time, and every two or three months 
I send in a progress report. 



Aerodynamic Lattice Calculations 
Using Punched Cards 

HANS KRAFT 

General Electric Company 

W HAT I am going to present to you is by no means a 
finished product. It is riot ev·en something I am exceedingly 
pr.oud of. I would like to show it to you in some detail, 
and hope that I will receive from you some criticisms and 
help on how we could have this computation done in a 
much shorter time than it takes us now. It is possible that 
we are on the wrong track entirely. 

The problem of the turbine engineer with all its com
plications is essentially as shown in Figure 1. 

Relative 
Bucket Velocity 

Nozzle Velocity 

FIGURE 1 

Momentary 
Streamlines 

Most of you know that a turbine is essentially a wind
mill. A very fast flow .of steam or gas issues from station
ary passages which are called nozzles. The moving blades 
we of the General Electric Company call buckets. The 
steam flow streaming from the nozzles passes between 
them and is deflected. This process generates mechanical 
power which is removed by the rotating shaft. 

We have had a long history of experimentation. We 
have experimented very intensively since 1920. We would 
like to do some theoretical computations in addition. We 
feel that we are somewhat against a blank wall with only 
experimental approach. It is my own honest, private opin
ion that further improvement in the performance of the 
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modern turbine-and it performs very well already-will 
be made when, and only when, we are able to follow by 
calculation the flow through this nozzle and bucket com
bination with the buckets moving at high speed. 

This means that we have to compute a flow through a 
row of nozzle profiles. In aerodynamic language such a 
row of equally spaced profiles is called a lattice. We will, 
in addition, need to kn.ow the flow through the bucket lat
tice. Furthermore, there is an interaction between these 
nozzles and buckets. This interaction appears as a time 
variation. As the buckets move past the nozzles, different 
configurations of the available flow space result. 

\Ve cannot rely much on the well-known approximati.on 
of the flow by that of an incompressible fluid. Our ve
locities are such that we always have to consider the fluid 
as compressible. Thus, we must first of all learn to com
pute compressible flow through a stationary, two-dimen
sionallattice ; later on we must study interference between 
the two lattices as one passes by the other. Theoretically, 
we think We know more or less how to handle the problem, 
although as far as actual computation is c.oncerned, we 
still have a long distance to go. 

I should like to discuss some of the initial work which 
we have done to describe a simple flow through a row of 
buckets. It has been performed for flow of an incompres
sible fluid, but was done in a manner identical to that to 
be followed to give us the compressible counterpart of 
this incompressible calculation. The compressible compu
tation still awaits the completion of a set .of input func
tions before it can be performed. 

To solve the incompressible problem Laplace's equation 
must be solved. We do not attempt, however, to solve a 
boundary value problem. \Ve try to learn to build up pro
files from given functions and accept the resulting shape 
if it seems to be one which we actually do want, i.e., a 
shape which will perform well. 

We use the representation of a flux function t/t given as 
a function over a field with the coordinates..X' and y. In the 
compressible case we will not have this simple Laplace's 
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equation to deal with. Instead we must solve a rather for
bidding non-linear equation if the problem is written in 
terms of the physical coordinates % and y. To evade this 
situation the equation is written in other variables, those 
of the "hodograph" plane. 

Figure 2 shows a streamline in the %-y plane. At any 
point along any streamline there exists a velocity vector 
given by magnitude and direction. The sequence of these 
velocities along a streamline can be represented ina co
ordinate system such that the ends of vectors existing 
along a streamline are connected. The result is a map 0 f 
the true streamline. The map of all streamlines so pictured 
is called the hodograph representation. It describes the 
flow as well as does the original picture. 

In the case of incompressible flow Laplace's equation 
describes also the field in this hodograph plane. In the case 
of compressible flow the differential equation applying to 
the hodograph plane is linear. The important consequence 
is that in this plane, solutions can be superimposed. 

In our actual computations we are not using the true 
hodograph plane. \iVe use the logarithm of the vector and 
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Physical Plane 

Hodograph 

FIGURt 2 

4 
o 

A- () PATTER.N 
WITH SINGULARITIES 

61 

VORTE)C. SOU~CE 

FIGURE 3 

thus have a Cartesian system. Figure 3 depicts these rep
resentations for the case of relative flow through a row of 
turbine buckets. In the physical ~t"-y field the flow comes 
from infinity to the left and disappears to infinity at the 
right. In the hodograph map all flow must come from the 
upper singularity within the closed curve and disappears 
into the lower singular point. A number of singularities 
correctly placed outside the closed curve is needed to gen
erate this pattern. These singularities are not shown here. 
The streamlines within the closed curve describe all flow 

o 
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through the bucket lattice. The two saddle points· at the 
left infinity of the logarithmic hodograph represent the 
entrance and exit of the buckets. 

The object of the computation is to generate closed fig
ures of this topology. They are generated by a vortex 
source representing upstream infinity and a vortex sink 
representing downstream infinity, combined with logarith
mic singularities located outside the closed curve. Their 
location and strength distribution will ultimately deter
mine the contour of the profiles. 

The mathematical background of the method is shown 
for the more complicated case of compressible flow. The 
basic ingredients for the final differential equation are 
rather well known: continuity, irrotationality, gas law (in 
this case for isentropic flow). Flux function", and poten
tial cp appear as mathematical tools. 

Phys£cal Lam!s 

Continuity 

Irrotationality 

aept{,) + a(pv~ = 0 
ax ay 

au _ av = 0 
ay ax 

Gas Law (isentropic) Py = constant 
P 

Mathel1wtical Tools 

Potential It = acp ,v = a", 
ax ay 

Stream Function - Pl V = ~"', 
(JX 

a", 
Pltt = ay 

H odograph Coordinates 

dx = dcp cos 0 - d", sin 0 
~u Pivu 
dcp . d", 

dy = - sm 0 + - cos 0 
W PlVU 

dcp = ds 
~u 

Relations Betvueen cp and '" 

ocp = _ ~(1 _ W2)~ a", 
avu Pl a2 w ao 
ocp 1 0'" ao = - Pl ~u OVU 

Differential Equation in H odograph Variables 

1 -.,M2 02~ + ~~(W at/!) = 0 
P-I dO- PI dVU PI dW 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

SCIENTIFIC COMPUTATION 

Equations (6) show the important conversion from hodo
graph variables to the physical flow picture. The linear 
hodograph differential equation is Equation (8). 

The linear fields so represented can be considered as 
arrived at by the intelligent addition of logarithmic singu
larities. Additional non-logarithmic singularities may also 
be added. In general, the desired results can be obtained 
from logarithmic singularities alone. So much for com
pressible flow. 

Here we are considering the far simpler case of incom
pressible flow. It serves as a pilot process for the really 
desired more complicated compressible case. The differ
ence appears in the computation of the logarithmic singu
larities which serve as input functions. This computation 
which is desperately difficult in the compressible case is 
much simpler for incompressible flow. 

The only input function needed is given by the equation 

F = cp + i", = In (1n vu + iO) , 
where 

tan 0 = viu . 

(9) 

(10) 

( 11) 

F is the logarithmic singularity called a source. Multiplied 
by i it is called a vortex. This is well known to everybody 
reasonably familiar with conformal mapping. The source 
in the hodograph plane represents the axial flow compo
nent emanating from infinity of the .r-y plane. The vortex 
furnishes the tangential component of the flow jlt infinity. 
Added together in proper proportion, i.e., with one multi
plied by the correct factor to depict the flow vector at 
infinity, they furnish in the hodograph plane a map of the 
physical infinity conditions. What has been said here for 
the upstream infinity repeats itself at downstream infinity. 
Here the source is negative, in other words, a sink. 

We must realize that what is desired in the end is a 
picture of the flow in physical space. The conversion from 
the hodograph map to physical flow is linear, as is clear 
from Equation (6). Hence x and y values can also be 
superimposed. If they are known over the whole field of 
the logarithmic singularity they can be added in exactly 
the same manner as can the cp jlnd t/! values themselves. 

In other words, if a field is composed of CP1 and o/H 
CP2 and "'2; its physical coordinates are added from the 
X 1 ,X2 and YVY2 of the individual singularities. 

We calculated this x,y field for one singularity, but we 
did not obtain very good accuracy (Figure 4). The equa
tion for this field is shown on the figure. One-half of this 
field has been computed to great detail and accuracy by the 
National Bureau of Standards Computation Laboratory in 
N ew York. The field as shown is for a vortex. To find 
x and Y for a source, the relations are 

(12) 
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Hodograph of Simple Turn 
with Constant Velocity 
on Suction Side 

SCIENTIFIC COMPUTATION 

Simple Turn with Constant Velocity 
on Suction Side 

FIGURE 5 

We now have four sets of numbers cp, 1/1, x, y known at 
every point of the In w-() plane. We cover this plane by 
a close square mesh of numbers, always four at every in
tersection. This number system we can reproduce as often 
as needed. These systems then can be moved bodily with 
respect to each .other. The numbers cp, 1/1, ~t", Y then can be 
added at every location and a new combined solution 
emerges. Obviously, it is best to move always in straight 
multiples of the mesh interval. 

Before addition each system can be multiplied by a 
common multiplier. In view of what has been said before 
such multiplication is necessary in the case .of the singu
larities representing the flow of infinity. Another multi
plication is needed for the .;r-y system every time the 
singularity is moved. A motion in the In w direction rep
resents a relative shortening of physical dimensions, and 
one in the () direction means a rotation .of the physical 
system. 

The equations for thiscorrectian are: 

.;r = e-1n w (.t" cos 0 - y sin 0) 

y = e-1n w (y cos 7i + x sin 0) 

(13) 

(14) 

where .r,Yare the physical coordinates of the singularity 
displaced by In 'W,. if in the hodograph plane. These multi
plications and additiDns must be performed for each dis
placed singularity before it is added to the .others. 

Procedure of Computation 

One master stack of cards holds the four-value . table. 
It can be reproduced onto as many stacks as singularities 
are needed. This reproduction can already be guided in 
such channels that the character of the singularity as 
source, sink, positive .or negative vortex is taken care .of. 
Nothing but a control of the signs is needed for this. 

N ext the singularities must be moved to their predeter
mined place. This means a displacement of the origin of 
each stack, in other words a change of identification. A 
constant is added to either independent variable. This new 
identification .orients the singularities with respect to each 
other. Then we must multiply for strength and CDrrect the 
.;r's and y's as shown above. 

The field of interest for a particular computatian will 
be smaller than that of the master table. The overflow 
cards are now remaved. This involves .one sDrting. 
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In this manner we finish with as many stacks as there 
are singularities. They are properly coded with respect to 
each other. Next they are fed through the collator. Here 
all cards belonging to the same coordinates are stacked to
gether. This new total stack enters the accounting machine 
where the values cp, tf' x, yare added together for each 
coordinate. A new card is summary punched for each addi
tion. The new resulting stack is the solution. Other singu
larities can be added to it if a modification of it is desired. 

The solution is not yet in the fon11 in which we need it. 
We must find the points for a number of (equally spaced) 
constant values of tf (stream lines). The .t' and y values 
appearing along these lines furnish coordinates of the 
physical stream lines. One of these is the profile. What is 
needed is a fast and simple inverse interpolation for tf and 
a direct interpolation for .t' and y. In the absence of a fast 
method, we use the old and time-honored method of cross 
plotting. We hope to be able some day to do this part by 
machine. As long as machines become faster there is hope. 

60· - 60· Bucket Turn 
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Here are some of the more simple examples which we 
have done. We are collecting experience about the most 
promising combination of singularities. Figure 5 shows· a 
very simple flow turn which has a constant velocity on the 
inside of the turn. By the addition of two singularities, one 
source and one sink, we arrive at turning streamlines, one 
of which has constant velocity throughout. The other 
streamlines decelerate first and then accelerate. None of 
these streamlines generates a closed profile. 

The simplest closed curve we could generate is shown 
in Figure 6. A vortex source flows into a vortex sink and 
both are 0pP9sed by equal and opposite singularities. This 
results in a closed curve in both hodograph (circle) and 
physical plane. Here we have a saddle point which is not 
situated at minus infinity. As a result, the profile does not 
have a finite entrance angle at its nose. The velocity there 
is not zero. There is, by the way, a very simple condition 
which assures that if you have a closed curve in the hodo
graph map you will also get a closed physical flow curve. 

FIGURE 6 
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All that is necessary is that the strength of the infinity 
singularities matches the components of the velocity at 
which they are situated, and that the residue in the closed 
hodograph figure be zero. 

I may add that the fate of the compressible counterpart 
of this computation is now entirely in the hands of IBM. 
IBM is willing to perform the very complicated calculation 
of the compressible singularities on the Selective Sequence 
Electronic Calculator. After these tables are available we 
can calculate subsonic compressible flow. Supersonic flow 
is of small interest to us. \Ve leave that to the artillery ! 

Nothing will help us much, except being able to do two 
things. One is to compute with a great deal of accuracy. 
If we could sacrifice accuracy, we could proceed along 
cheaper ways by experiment alone. The other is to be able 
to mass. product theoretical results, because what we pri
marily are after are not solutions for production, i.e., for 
the immediate turbine that goes into the shop. VYe want 
series of solutions for experimental purposes. vVe want to 
get experimental parameters which are related to blade 
shapes, to the interaction between blade shapes, and to a 
number of additional variables which now rather obscure 
a clear conception of the working process of a turbine. If 
this computation can help here we shall be able to produce 
a still better performing machine than we have now. 

SCIENTIFIC COMPUTATION 

DISCUSSION 

Dr. Fenn: How justified is your irrotational flow with 
the blades moving past each other? 

Mr. Kraft: The flow can be considered completely ir
rotational as long as it is considered as a two-dimensional 
problem. Even in three dimensions, when the turbine is 
designed for constant circulation, you still would have an 
irrotational problem. It becomes rotational only when you 
take the boundary layer into account. This must come 
necessarily after we can calculate irrotationally. We have 
to follow the procedure which the great'masters of aero
dynamics have laid down. \Ve do not think we know any
thing better. 

Mr. Stevenson: Have you ever tried the classical aero
dynamic scheme using conformal transformation? 

Mr. Kraft: As I emphasized at the beginning, if it were 
only the incompressible solution we were after, we would 
not do this computation as I described it. We do it in this 
manner only because we can replace it by the compressible 
calculation as soon as the additional logarithmic singularity 
tables for compressibility are available. We are well aware 
that incompressible lattice computations can be performed 
by simpler procedures. 
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I N HIS C LAS SIC A L investigations on the dynamics 
of elliptical galaxies, Sir James Jean has said, "We have 
seen that the density of matter in the central lenticular 
masses of nebulae is of the order of 10-21 g/cm3 • The free 
path in a gas of this density is 1014 cm., whereas the 
diameter of the central mass of Andromeda nebula is 
about 1.6 X 1021 cm .... It follows that the various 
nebular configurations may legitimately be interpreted as 
configurations of masses of rotating gas."1 He further 
calculates the free path of a star, allowing for its gravita
tional interactions with other stars of the cloud, and finds 
that for the same mean density it is equal to 10:.l9 cm. 
(about 50,000,000 times the diameter of the nebula). He 
concludes that the concept of gas pressure cannot be legi
timately used in connection with nebular dynamics when 
the nebula is supposed to be a cloud of stars, and that 
clouds of stars should not assume the special shapes of 
observed nebulae. 

Today we know that the elliptical galaxies and the cen
tral bodies of the spirals are made up entirely of stars. 
This fact, first suggested by the stellar type of their spec
tra, was established beyond any doubt by the recent work 
of Baade2 who was able to resolve the celestial objects into 
a multitude of individual stars. 

To -reconciliate Jeans' theoretical consideration with the 
observed fact, George Camow suggests that the regular 
shapes of elliptical galaxies were established in some past 
epoch when they were entirely gaseous, and are now re
tained as "dead skeletons" after all the original gaseous 
material was condensed into stars. This sttggestion agrees 
with the recent theory of the evolution of the expanding 
universe proposed by Dr. Camow,3 according to which the 
masses and sizes 0 f galaxies can be predicted on the as-
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sumption that they originated as the result of "gravita
tional instability" of the expanding primordial gas. These 
gaseous clouds would tend to assume spherical or ellip
soidal forms depending upon the amount of angular mo
mentum, and their internal density distribution was pre
sumably that of the rotating isothermal gas-spheres. The 
linear velocities of gas-masses at each point were pro
portional to the distance from the rotation axis. As the 
star forming condensations took place under the forces of 
gravitation and radiation pressure, the net outward force 
due to the difference in gas (and radiation) pressure be
tween the surfaces toward and away from the center of 
the galaxy was reduced as a result of the reduction in the 
volume and surface area. Consequently, the stars were 
accelerated toward the center under the influence of un
balanced gravitational force, assuming that at no time dur
ing the history of the galaxy do the stars exchange any 
appreciable amount of energy with their immediate neigh
bors as a result of close encounters. 

The only overall forces acting on a star will be: 1. The 
resistance of the gas to its motion, which will be a radial 
force as long as the motion is radial and which will dimin
ish in importance as the gas is consumed in the star forma
tion process. 2. The radial force exerted by the smoothed 
gravitational potential of the remainder of the stars. Then, 
the stars will tend to oscillate radially through the center 
of the galaxy. The amplitude of oscillation or the points 
of maximum elongation of the newly acquired elongated 
elliptical orbits of the stars should correspond to the dis
tances at which they were originally formed. As more and 
more stars were formed, the major axes of original ellip
tical orbits were gradually changing due to the gravita
tional action of other stars which have originated outside 
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of them, but are now penetrating during a certain fraction 
of their motion into the interior regions. As a result of 
these interactions, the stars acquired an altered distribu
tion. It is expected, however, that the stellar orbits were 
not shuffled; i.e" the stars which were formeda-t larger 
distances from the center and therefore with larger angu
lar moments' will also have their points of maximum elon
gation farther out from the center. In observing mean 
radial velocity of stars at different distances from the 
original rotation axis, with respect to an observer, we will 
essentially obtain the tangential velocities of those stars 
which pass through their point of maximum elongation at 
that distance. Since the stars whiCh move beyond that 
point will be much smaller in number and will also present 
us only with the projection of their actual velocity, it can 
be expected that the observed rotational velocities will in
crease with the distance from the center (linearly in the 
first approximation), giving the impression that the entire 
galaxy is rotating approximately as a solid body. This 
"solid body" rotation is actually observed in elliptical 
galaxies and in the central bodies of spirals, and was con
sidered an unexplainable phenomena in view of the large 
free passes of individual stars. 

In the present work we. plan to analyze the observed 
density distribution in the elliptical galaxies which was 
very carefully measured by Dr. Hubble.' 

Computation of the initial density distribution in a spiral 
galaxy before formation of stars: 

Let p (r) dr = the present mass in the shell between radii 
rand l' + dr 

f3(a)da = the initial mass between the shells of radii 
a and a + da 

per) = the present potential at r. 

A stellar mass starting at a and dropping inward t.o r will 
lose the potential energy 

1'1'llP(a) -.; P(r)] = 11tV2/2 

and hence acquire the velocity 

v = y'2[P(a) - per)] . 

The time which the star will spend in the shell of thick
ness dr will be dr Iv (on the inward trip), and the frac
tion of all its time which it spends in this shell will be 
dr/uT(a), where T(a) is the time required for the mass 
to drop from a to the center. The contribution to the mass 
observed now between rand r + dr arising from the mass 
which started to drop from between a and a + do. is 

,8(a) da dr 
T(a)v 

SCIENTIFIC COM PUT A T I ON 

Then the total mass between rand r + dr is 

( )d 
_ rR p(a)da dr 

p r r - Jr T(a)v . 

Therefore 

_~ rR pea) da 
pCr) = y'2Jr T(a) [pea) -- P(r)]I/Z' 

dA 1 
-=lM·-
da a 

dQ 1 
- = .. ~:f·--
dr r 

M = modulus = .434 

then pea) = 

2y'2. M T(a) ~[S~~(r) -pea) dPd(g) dQJ. (1) 
7r a . dA A. 

For integration, the Gregory formula is suggested, since 
the errors of integration are readily estimated: 

IJ.a+nw (1 . 1) W af(x)dx = 2 fo + fl + f2 + ... + fn-l + 2,fn . 

1, 'f ) 1 (A iif . A iif ) - 12 (I::::.l!n_l - 1::::. 1 0 - 24 W n-2 - W 0 

19 (A iiif A iiif' ) _ - 720 W n-3 - W ,0 ••• 

For obtaining derivatives near the end of the tabular se
quence we use the following: 

'lV/'(a) = I::::.if(a) - ~ I::::.iif(a) + j I::::.iiif(a) 

-* I::::. iv f (a) + ... 
Away from the ends of the tabular sequence the following 
central difference formula converges more rapidly: 

wf'(a) = ~ (I::::.ia 112+ l::::. ia1/Z) 

1 ( A ". Ai") - 12 W llla 1/~ + W Ila1/2 + 
~O (I::::. va_11:l + I::::. va1/2) - 2!0 (I::::. vila_liz + I::::. viia1/2 ) + ... 

By definition 

T(a) '" f ~ = ~2f [Pea) !rp (r)]lI' 

dr 1 r r 
Q = log1or ;dQ = dQ/dr = M = .434 

T a __ 1 __ r-a rdQ 
( ) - My'2 JA [Pea) - Per) ]1/2 (2) 
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Near r = a, P (r) becomes nearly equal to P (a) and the 
integrand diverges. To overcome this a series approxima
tion in the neighborhood of r = a is suggested. 

Let h = (a - r). Hence the first term is 

~/-2- -
a'JMaX yh (3) 

For small a the first term approaches zero, and in the 
second we may set 3Ma = %-a3 p (0), and pea) = p(O). 

Let h = a; then to the first approximation 

1 ~ I 1 
TCa) = 4'J 6rrG p(O) . (4) 

The third term of the series should be calculated if greater 
accuracy is desired. 

The equations (1), (2), (3) and (4) with which we are 
here concerned, lend themselves readily and very con
veniently to solutions on standard IBM equipment. It is 
gratifying that a computing laboratory of this nature is 
available for these investigations. Although to date no con
clusive results are available, a more thorough investigation 
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of the problem is possible. It is the hope of the authors 
that in the near future they will be in a position to publish 
results of these investigations which will conclusively de
cide whether this theory is valid. 
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DISCUSSION 
Mr. Hollander: Do we have any proof that stars are 

moving radially, either in or out? 
Mr. B elzel': It would take very many years to notice any 

motion in the stars. I think that according to Dr. Gamow's 
theory of the evolution of the universe, in a period of 
about 200,000,000 years the stars might have made seven 
or eight oscillations. 



Application of Punched Cards 
in Physical Chemistry 

GILBERT W. KING 

Arthur D. Little, Incorporated 

THE F 0 L LO WIN G concep~s of the application of 
punched card machines are the conseq.ucmce of the particu
lar problems in which the author is interested, but proba
bly the examples are typical of present-day theoretical and 
physical chemistry. 

The Hollerith machine was invented for scientific work, 
but reached the present stage of refinement because of its 
application to commerce, and in the field of chemistry it 
will return to science because of its bookkeeping facilities. 
The chemical literature has reached such an enormous 
volume that the tremendous burden of bookkeeping is a 
serious detriment to efficient research. The application of 
punched card techniques to indexing is the center of in
terest in chemistry today, and outweighs the other possibly 
more important applications. One is tre recording, storage 
and handling of experimental data. Next, there is as a rule 
an opportunity for machine methods in the calibrating and 
correcting of these data. After this there is the analysiS of 
the data, various correlations to be searched for and other 
statistics to be extracted. Finally, there are purely theoreti
cal calculations. 

Recording Experimental Data Digitally 

Today, the recording of data is extremely widespread. 
Almost always continuous variables are used to measure 
quantities in an experiment or industrial process; the most 
primitive is the visual reading of a meter scale, and re
cording of the nearest number on the scale. Recording 
potentiometers are commonplace. Photographs of oscillo
scope patterns are used in transient phenomena. Such rec
ords are rarely useful in themselves. Even if the primary 
data on the record is sufficient by itself (for example, the 
temperature recorded as a function of time), the study of 
more than a few dozen charts by eye is almost impossible. 
Usually the primary recorded data have to be converted to 
some absolute quantities. An example is the. recording of 
infrared spectra. The actual conventional record consists 
of the distance a pointer is deflected for various angular 
displacements of the paper roll. From a knowledge of the 
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parameters of the instrument the deflection can be con
verted to an absorption coefficient and the distance along 
the· paper converted to wavenumbers. The absorption co
efficients at a given wavenumber are invariant to the par
ticularexperimental conditions; it is these quantities, not 
the original record, which have universal interest. This 
conversion and calibration can only be done after a first 
step of visual "reading off" the charts, point by point. This 
is a process of conversion from a continuous physical 
variable to an abstract digital number. The conversion and 
calibration now proceeds by digital calculations. Clearly, it 
would be most desirable to record the original physical 
variable (often a voltage )as a digital· number. At first 
sight, it might seem that such a process is less accurate. 
However, this is what the eye ultimately does in "reading 
off" the chart. Furthermore, every good experiment should 
be done with equipment that has a definite "noise" level 
(in a general sense) just visible. Even measuring a dis
tance should be done with a scale, or a micrometer eye
piece, or a cathetometer whose accuracy is just sufficient 
to meet the requirements, or if a limiting factor, at its 
extreme of sensitivity, so that each reading has a few 
percent of "noise." The magnitude of the noise can be 
taken as the unit in the digital scale; and a digital reading 
is as accurate as the experiment, even though the con
tinuous trace may look more precise. 

If th~ readings are to be made digitally, the binary sys
tem is the· pest. First, a punched card works on a binary 
system. There are two and only two "digits"-a hole or 
no hole. Secondly, the binary system is most economical in 
number of required digits per number (above eight). Fin
ally, as a practical matter only one punching time is re
quired to (multiply) punch a binary number <1024 in a 
single column of a standard card, in contrast with the four 
punching times for a four-digit decimal number. 

The problem of recording data has been solved by a 
Digital Reader, which reads a voltage, converts it to a 
digital binary number and punches this in a card. An ac
curacy of one percent has been achieved with a very simple 
circuit. The resulting seven digit « 128) binary number 
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is punched in one column of a card at the fastest punching 
speed of IBM equipment, namely twenty-five a second. 

Processing of Data 

With the original measurements directly punched 011 

cards as primary data with the original "noise" retained, 
the conventional processing of the data can proceed with 
machine methods. The example of infrared spectra brings 
out the power of punched card methods in extracting more 
information from experimental data than can be done by 
continuous record. Hundreds of new spectra are being 
taken every day. For the most part they are compared 
with spectra taken in the same laboratory, and in almost 
all cases, with spectra already extant in the literature. Sev
eral thousand infrared spectra are now generally available, 
but their comparison is a difficult matter. In addition to 
the various scales used in reducing drawings for publica
tion, there are several conventions of plotting wavelength 
or wavenumber, increasing or decreasing to the right. Fin
ally, even with two records on the same scale, there are 
some rather subtle comparisons to make. In general, the 
problem is not whether two spectra match at every point, 
but whether they have certain peaks in common, and to 
what extent. This is similar to the problem of weather pre
diction carried out by punched card methods, based on the 
matching, within tolerances, of today's weather map with 
a file of the last forty years' maps. This is an ideal situa
tion for a collator. Methods of calibrating the data, and 
extraction of statistical information, are relatively conven
tional and are to be found in the literature. 

There is a converse of the above problem, namely the 
plotting of results of calculations done on cards. There is 
no question that a plot is more readily understandable 
than a table of values. It would be very desirable to have 
an instrument which would take the impUlses from an 
accounting machine and convert them to a continuous 
quantity, presumably a voltage, which would drive a re
corder. Lacking such equipment, we have derived a method 
of using the type bars of a 405 to plot points.1 

Theoretical Calculations 

At first sight, one might be' sure there are many oppor
tunities for punched card methods in theoretical chemistry. 
There are, however, several.arguments against their use. 
The cost, if not the very presence, of a battery of IBM 
machines in a chemical laboratory will have an undue in
fluence on the type of work done there. There will be 
emphasis on the ponderous data collecting and large scale, 
poring over of material notable for its quantity rather than 
quality, away from the elegant simple experiment. On a 
more theoretical level, the interests and, ultimately, train
ing of the research worker will be away from analysis and 
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be likely to get in a rut of conventional punched card ap
proaches. There is no time to read Whittaker and Watson 
when machines stand idle! 

Another difficulty in the introduction of standard ma
chine methods is the fact that IBM equipment is a parallel 
type of computer. The scientific approach inherited from 
pre-machine days is sequential. For example, many prob
lems are developed with the aim of finding the solution as 
the root of a polynomial. Now there are no analytical ways 
of finding roots of polynomials. But IBM machines are not 
suitable for the numerical solution of a single polynomial, 
because they are efficient in parallel and not in sequential 
calculations. If, however, the problem, perhaps by gen
eralization, requires the solution of a few thousand poly
nomials, the process could be run in parallel even though 
it required very many sequential steps. The' best known 
numerical method of solving polynomials involves con
tinued fractions, which are known to converge, a.nd hence 
behave better than many approaches in which the root has 
to be raised to a high power. The recent development of 
the 602 and 604 which can divide has opened up the field 
of extraction of roots to machine methods. 

The repetitive feature of punched card machines is a 
possible advantage to physical chemists, especially in the 
construction and tabulation of functions. One example 
would be the tabulation of the free energies of all sub
stances for which information is available, from empirical 
constants. This could be done to great advantage at every 
degree from -273°C. to 5000°C. and thus save a great 
deal of interpolation. Another application is the direct 
calculation of the thermodynamic functions from funda
mental frequencies from spectroscopic analysis, without 
the forcing of such data into simple empirical formulas in 
order to sum or integrate. 

The purely theoretical problems of chemistry lie ina 
field in which the role of machines, although certain, is 
quite obscure. Chemists deal with molecules, and except 
for hydrogen, a rigorous quantum mechanical approach is 
beyond the power even of the most advanced machines 
today. One difficulty with the quantum mechanics of a 
molecule is that it is'many-dimensional, and integration 
even in three dimensions in general involves astronomical 
numbers of unit operations. It may be possible to approach 
these problems with some sort of statistics, as Dr. Thomas 
did so well for atoms. Another difficulty in theoretical 
chemistry, as contrasted with fundamental physics per
haps, is that the solutions of problems do not involve 
analytical functions. This appears even in the simplest 
problems, such as the interpretation of infrared spectra. 
The spectrum of water, for example, consists of several 
thousand lines which are differences of a fewer number of 
energy levels. The latter, however, are not spaced accord
ing to any elementary function. 
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They are roots of polynomials, and are non-elementary 
functions of the moments of inertia, so can only be ex
pressed as tables. Thus, advanced spectrum analysis can 
only be approached by machine methods. 

Still a further difficulty arises in the real problems of 
physical chemistry from the nature of experimental data 
themselves. The unravelling of the rotational structure of 
an infrared spectrum has been described above as being 
very complex. One might infer that, with machine methods 
and enough time, a unique interpretation could be made. 
This is true when the spectrum is completely resolved, as 
in the photographic infrared. In the main infrared region, 
lines are not completely separated. The spectrum consists 
of a continuous record consisting of a number of peaks, 
each of which contains a number of more or less resolved 
"lines" which are not mathematical lines, but Gaussian 
curves. Thus, the conventional analysis by finding a set of 
constant differences between the various lines fails, be
cause the overlapping of lines in peaks leads to uncer
tainties in their position of the order of magnitude of 
significant differences in the differences. 

There is an analogous situation in many x-ray and elec
tron-diffraction spectra. The classical approach of deduc
ing a unique structure from its observational data cannot 
be carried through. Modern spectrum analysis almost 
always is achieved by the stochastic process. A structure 
of the molecule is assumed. Certain theoretical expressions 
are used to calculate the appearance of the spectrum in 
which such a structure would result. The calculated spec
trum is compared with the observed. Successive trial struc
tures are assumed until a satisfactory agreement between 
calculated and observed spectra is achieved. There is no 
proof the final fit is unique, but as a rule the observed 
spectra have sufficient complexity that the probability of 
any other structure giving rise to the same or better fit is 
remote. The application of the stochastic method to the 
analysis of rotational structure of infrared spectra has 
been described in detail elsewhere.2 

It is appropriate to review briefly the wiring of the vari
ous IBM machines in this work.* Many of the calculations 
are straightforword. The only unusual feature in the 
collator is the" effective use of splitting up the comparing 
magnets into nine fields. This allowed comparing, and 
hence merging on three fields of quantum numbers simul
taneously, two of which increased and one decrea~ed. 

The whole process consisted of forty steps, of which 
seventeen were done on the accounting machine. It might 
be interesting to point out that all calculations were done 
on the same control panel. The most noteworthy single 
calculation done on this control panel was the calculation 

*Complete wiring diagrams will be presented in a report to the 
Office of Naval Research who supported some of the spectrum 
analysis with punched card equipment. 
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of the expected spectrum with a finite slit. A deck of cards, 
one for each small absorption line in the spectral region 
( 300 cm-l wide) is made as the final step in the purely 
theoretical treatment. Each line is represented by a card 
giving its position in wavenumbers and its intensity. These 
cards are summary punched over a small interval (0.5 cm-l) 
of the spectrum, so that lines less than 0.5 wavenumbers 
apart are combined in intervals. This deck of summary 
cards is made complete with blanks, to give a final deck, a 
card appearing for every 0.5 cm-l interval in the whole 
region. This deck then represents the appearance of the 
spectrum if the resolving power were 0.5 cm-l. In actuality 
it is higher. A region of wavenumbers is seen by the slit 
of the spectrometer at anyone time. It is desirable then 
to compute the actual transmission at each wavenumber v 

+2 

T ( v) = 2: P(}" • 1 (v + (}") , 
(}"=-2 

where P-2' P-l1 Po, Pv P2' are weight factors describing how 
much on either side of v the slit sees. This summation is to 
be carried out for each l', proceeding by intervals of 0.5 cm-l 

along the region of 300cm-l. It was found that values of 
P = 1,2,4,2,1 or 1,2,1 satisfactorily expressed the experi
mental slit shape function. Summary cards T(v) were ob
tained . in one pass through the accounting machine, using 
progressive totals in five counters, where counter entries 
were fed the number 1 (v) by a permuting switching ar
rangement. A minor total cycle occurred every card,. One 
counter has tn be cleared every card. This was done con
necting the counter exit to entry through the permuting 
class selectors. 

It should be mentioned that some calculations were 
made possible on the single accounting machine control 
panel by the use of external manually controlled gang 
switches which connected different fields of the cards via 
brushes to different counters, which were too few in num
ber. The well-known "Octal" tube socket was used for 
additional hubs, the standard IBM wire fitting the holes 
in these sockets somewhat better than the hubs in the con
trol panel! 

Another large field in physical chemistry where large 
scale computing machinery will playa great role is statis
tical mechanics. The properties of a single molecule have 
to be determined from experimental measurements by a 
stochastic process as outlined above. But the macroscopic 
behavior of materials is an average of certain quantities 
of an extremely large number of molecules, each one mov
ing, vibrating, rotating with different velocities, or in a 
different configuration. A very simple example is the 
theory of rubber-like elasticity as based on a simple theory 
of the statistical mechanics of high polymers. Rubber 
molecules are long chains of ten thousand or more seg-
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ments. A molecule can therefore exist in very many dif
ferent configurations, and as a consequence has high 
entropy. On stretching, the molecules become less random, 
and the chains tend to become parallel. The decrease in 
entropy is responsible for the strong force in a piece of 
stretched rubber which attempts to contract it to its origi
nal state of maximum randomness. Clearly the force, and 
hence the modulus of elasticity of a plastic made of long 
chain molecules, could be calculated if we could enumerate 
the possible configurations of such an assembly of chains. 
This can be done in a simple way and leads to results in 
rough agreement with experiments, at least for highly 
elastic substances. The simple theory has a number of de
fects, principally the fact the molecules have volume and 
can only occupy the same volume of space once. The prob
lem of this effect of "excluded volume" on the number of 
configurations is a topological one of great difficulty. We 
have set out to solve this topological problem by a straight
forward enumeration of the configurations of chains. In 
essence, we have investigated the famous "random walk" 
problem, in a tetrahedral lattice accounting for the effect 
of excluded volume. 

This, then, is an example of the use of punched cards in 
sampling a Gibbsian ensemble, in which each system is 
described appropriately on a set of cards. The required 
statistical averages can be very readily made by arithmeti
cal means by conventional processing of these samples 
on cards. 
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DISCUSSION 

Mr. Bell: What mechanical or electrical system is be
tween your prism and the punch? 

Dr. King: A whole bunch of relays; it took me a day to 
wire them up. The method is not very complicated. 

Dr. Caldwell: This problem of converting a voltage to 
a number on punched cards is going to occur more fre
quently and in more difficult form than is described here. 
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One case involves the fact that the voltage is coming from 
a device over which you have no control. I think the gen
eral approach is that you can apply the pulse code modu
lation system. Within the last year and a half, the Bell 
Technical Journal has contained several papers on that 
subject, the general principle being to compare voltage 
patterns against a standard voltage. That means that you 
can easily produce these binary digits; the real problem is 
that they are coming too fast for any punch to record 
directly. 

Dr. King: vVe don't have a storage problem because we 
get all the digits out more or less simultaneously. We take 
a new reading as soon as the old one is punched. 

Dr. Grosch: lVIay I make a remark about this question 
of finding the roots of a polynomial? There is a class of 
problems which can be handled in parallel fashion-poly
nomials of degree, say, five to twelve. If you have several 
to do at once, so much the better. The process is to evalu
ate the nth degree polynomial for n + 1 equal spaced val
ues of the variable x, without rounding. This is a severe 
limitation, since it involves large multiplications toward 
the end; the answers will usually be about n + 6 significant 
figures for n<20. These exact answers are then differ
enced n times; the single nth difference should equal n !wn 

times the original coefficient of x n, where w is the interval; 
this is used as a check. Further values of the polynomials 
can then be built up from the constant nth difference on 
the 405 three or four orders at a time, with summary 
punched intermediate results. The tabulation of the poly
nomial can be extended to cover all real roots, or restricted 
to the neighborhood of a single root. Inverse interpolation 
for the exact root is the final step; usually this is hand 
work. 

I f the above procedure seems too complicated, another 
trick worth trying on the 602 or 604 is to prepare a deck 
of n + 1 cards carrying the coefficients of the polynomial, 
highest degree coefficient first. A card carrying a guess at 
the root is placed in front of the deck, and one pass through 
the calculating punch evaluates the polynomial. A new 
guess is made, key punched on a fresh card, and the 
process repeated. The 602 or 604 is here used as a special
ized desk calculator. 



Application of Punched Card Methods to the Computation 
of Thermodynamic Properties of Gases from S pectra* 

LYDIA G. SAVEDOFF JACK- BELZER 

HERRICK L. JOHNSTON 

Ohio State University 

THE P R INC I P L E S of the statistical calculation of 
thermal functions of gases from spectroscopic data have 
been used for many years with a large degree of success. 
The basis for much of this work is the so-called "summa
tion method" which was first used by Hicks and Mitchell.1 

From the distribution of the molecules of a gas among 
the various energy levels of the molecule, the energy and 
other thermal properties of the gas can be found through 
the evaluation of the partition functions. In the summation 
method, this summing takes place over the actual energy 
levels of the gas. When there are large numbers of energy 
levels, as in all but the simplest molecules, the direct appli
cation of this method becomes impractical and labor sav
ing devices must be used. In the past, these have taken the 
form of substitution of integrals. for the series involved as, 
for example, in the extended Mulholland treatment.2 The 
present paper introduces a method whereby the original 
summation method is adapted to use of punched cards. 

The energy levels of the molecule may be obtained 
through a study of the band spectrum of the gas. In the 
equations for the thermodynamic properties for the gas 
from these energy levels, the contributions due to trans
lation may be separated from the effects due to rotation 
and vibration, thus simplifying the expressions to be evalu
ated. Johnston and Chapman3 have introduced the follow
ing notation whereby the contributions of the rotational 
and vibrational energy of the molecule may be expressed 
simply in terms of three basic quantities: 

!A = !Pi e-f.i/kT 
i 

!B = !Pi f.i e-f.t/ kT 
i 

(la) 

(lb) 

(lc) 

*This work was supported in part by the Office of Naval Research 
under a contract with the Ohio State University Research Founda
tion. 
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For convenience, these three quantities may be redefined 
in terms of base ten exponentials: 

!A* = !Pi 10-f.i/zkT 
i 

!S*:;:: !Pi f.i/ zkT . 10-f.i/zkT 
i 

!c* = !Pi f.l / zkT . 10-f.-ijzkT 
i 

(2a) 

(2b) 

(2c) 

In the above equations f.i is the energy of the molecule in 
the ith quantum state, Pi the statistical weight of this state, 
k the Boltzmann constant, T the absolute temperature of 
the gas, and z the numerical constant In 10~ 

The thermodynamic functions are given by the follow
ing equations.: 

EO - E~ = 3/2 RT + zRT !B*/!A* (3a) 

C$ = 5/2 R + z2R [!C*/!A* 
- (!B*/!A*)2] (3b) 

SO = 3/2zR 10gA-f + 5/2 zR log T - 2.3140 
+ zR [log!A* - !B*/!A*] (3c) 

FO - Eg = 5/2 R - 3/2 zR log M - 5/2 zR log T 
+ 2.3140 - zR log !A*. (3d) 

The final term in each of the equations (3) gives the con;. 
tribution of the rotational and vibrational states, while the 
preceding terms are due to the translation of the molecules. 
New quantities appearing in these equations are the gas 
constant R, and the molecular weight of the gas M. 

This laboratory, with the assistance of Dr. Thomas of 
the Watson Scientific Computing Laboratory, has set up 
a punched card method for obtaining the quantities !A*, 
!B*, and !C*, once a punched card table of the energy 
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levels is available. These are readily computed in many 
cases. Since the sums are to be computed for a number of 
different temperatures, it becomes c.onvenient to transform 
the exponentials of equations (2) into double exponen
tials. The sums A*, B*, and C* now have the form 

~A* = ~Pi, 10-10$£ 
i 

~B* = ~Pi 10»i 10-10'l'i 
i 

~C* = ~Pi 10:::x i 10-10:"i 
i 

(4a) 

(4b) 

(4c) 

where Xi = log f.i/zk - log T = 'i - l.og T. The advantage 
of this will be apparent when the calculations of these 
sums at different temperature is discussed. For the present, 
the temperature will be set at 10 K., so that Xi = Ct. A 
master deck of the functions 10-10; lOX 10-1°:'10:::x 10-10Jiwas 
prepared for the argument x = - 8.00 (.02) + 1.00. This 
set includes all tht; significant values of the three functions 
(which vary between zero and one). Before thi~ table can 
be utilized, it is first necessary to obtain the logarithms 
of the quantities f.il zk and reduce these to the arguments 
of the master table. To achieve the former of these objects, 
a six place optimum interval logarithm table is used, 
whereby Xi is obtained to six decimal places and one whole 
number. Four point Lagrangian interpolation coefficients4 

are used to distribute the statistical weights P'i of the 
energy levels f.i to the appropriate arguments of the master 
deck. 

The. punched card Lagrangian interpolation table built 
up for this purpose consists of 5000 cards at intervals of 
0.0001 in the argument, P = 6x/h, for the range 0.0001-
0.5000. Since the table reflects itself for the range 0.5000-
1.0000, the table is punched in a symmetrical manner 
around the centeri.of the card, with the right half reading 
in reverse from right to left.. Tumbling the cards puts 
them in position for use in the upper half of the interval 
range. A secondary argument, q = 2p, is also punched on 
the table so that the table may be collated directly with 
the last four digits of Xi. To accomplish this most readily, 
the detail cards. are first divided int.o odd and ev.en groups 
on the second decimal digit of .~'i to determine which half 
/of the table is to be used. 

The use of the .interpolation coefficients is shown most 
readily by the following illustration. Suppose that for an 
energy level f.i of statistical weight Pi, the log f.i/ zk is equal 
to 0.498306. The distribution .of the statistical weight 
among the four adjacent arguments is given in Table 1. 

TABLE I 
X n -1 = 0.46 
Xn = 0.48 
X n+1 = 0.50 
X n+2 = 0.52 

P~-l = PiA-l 
p~ = PiAo 
P~+1 = P·iA l 

P~+2 = piA: 
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The four coefficients, A_i' Ao, Ai' and A2 are those corre
sponding to the argument q = 1.8306. A prepared table of 
~. ~..... and X with the argument Xn is also repro-""n-H ·~1h """+1 1H2 

duced .onto these same detail cards so that the proper 
argument may be matched with the new weights P~t. In 
general, there will be a considerable amount of over
lapping, and so the P~t's are next summed for each value 
of Xn such that a total weight, W,t = ~p~, is obtained for 
each different value of x". In practice, it has been found 
most convenient to make up three additional sets of cards 
so that the arguments ,t'n and the products P:t = p.tA always 
appear in the same fields and the new weights are obtained 
easily on the accounting machine. 

The advantages of the procedure described above are 
twofold. In the first place, there is a great reduction in the 
total number of terms over which the sums are to be 
taken. Even in a relatively simple gas, the total number of 
thermodynamically important energy levels lies in the 
thousands, whereas the master deck of functions for these 
new arguments contains at most 400 cards. Secondly, the 
functions 10-10~ lOX 10-10: 102.v 10-1O'

v forthe arguments X at 
intervals of 0.02 are available in a permanent file and need 
only be reproduced into the detail cards to .be multiplied 
and summed. 

Up to this point, the temperature has been neglected. 
However, by shifting the table cards one value (0.02) of 
x, the detail cards may be prepared for a new temperature. 
The entire temperature range may thus be covered in this 
way in logarithmic increments of 0.02 in T. This is the 
major advantage of the double exponential form adopted 
for the problem. The range of log T from 0.00 to 3.84 is 
sufficient to c.over all temperatures up to 6OOO0 K. The 
manipulation of the sets of cards to take account .of the 
temperature shifts is more clearly shown by the following 
numerical example, taken from an actual calculation. The 
symbol 'n has been introduced for the Xn used earlier to 
av.oid confusi.on. The smallest value of 'n is 0.24, and the 
first set of cards prepared is that for the highest value of 
log T which is equal to 3.84 if the computations are to be 
carried up to 6000 0 K. Successive cards in this set will 
have arguments and weights as given in Table II. 

TABLE II 

W 1 '1 = 0.24 Xl = 0.24 - 3.84 = -3.60 = 4.40 

w 2 '2 = 0.26 .1:'2 = 0.26 - 3.84 = -3.58 = 4.42 

Wa '3 = 0.28 Xa = 0.28 - 3.84 = -3.56 = 4.44, etc. 

The last card in the set should have the argument X = 1.00. 
At this point, the functions have dropped to zero and any 
left .over cards may be discarded. 

The second set of cards will be for the next lower tem
perature, log T = 3.82. The master set is shifted up one 
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value, thus wand the X 2 are matched. The last value of Wn 

will not match any table card and may be discarded. This 
is shown in Table III. 

TABLE III 

W 1 '1 = 0.24 "t'2 = 0.24 - 3.82 = - 3.58 = 4.42 

'W2 '2 = 0.26 Xg = 0.26 - 3.82 = - 3.56 = 4.44 

Wg '3 = 0.28 "t'4 = 0.28 - 3.82 = -3.54 = 4.46, etc. 

The process is repeated until the entire temperature range 
has been covered. It has been found possible to condense 
the number of individual temperature sets to one third by 
including all the necessary data for three temperatures on 
one set. The sums A*, B*, and C* may now be obtained 
according to equations (4). Since the individual products 
were not required, this was done by progressive digiting. 
There may be as many as thirteen digits in W n, so that this 
is quite a prodigious task. It is particularly unpleasant to 
handle since the individual groups are so small. 

Once the sums have been obtained for the arbitrary 
temperatures, they in turn are interpolated using the four 
point coefficients, yielding the results for the desired tem
peratures. From these, the thermodynamic properties 
may be readily computed by using the relations given in 
equations (3). 

A comparison of the hand and machine computed 
results is made in Table IV. The data is quoted from a 
forthcoming paper on the thermodynamic properties of 
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hydrogen by the authors. The major error in the above 
procedure is due to the use of the four point interpolation 
coefficients. The maximum error in each of the sums is of 
the order of 2X 10-1 "$.Pi. In cases where the "$.Pi and hence 
this absolute error might seem to become unduly large, the 
values of the sums themselves are large ·and the relative 
error remains within reasonable limits. It might also be 
pointed out that this error is approximately half the maxi
mum error attained by the hand computing procedure used 
previously for the direct summation method. The agree
ment of the results as given in Table IV is quite satis
factory. 

The authors wish to express their thanks to Dr. W. ]. 
Eckert, Dr. L. H. Thomas, and other members of the staff 
of the Watson Scientific Computing Laboratory for their 
invaluable assistance in getting this program started. 
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DISCUSSION 
[Discussion of this paper was omitted because of time limitations.] 

TABLE IV 
COMPARISON OF THERMODYNAMIC FUNCTIONS 

COMPUTED BY HAND AND MACHINE METHODS 

Hand Machine PerCent 
Temperature Function Computed Computed Deviation 

1500 0 K '2A* 18.76256 18.76255 .00005 
};B* 8.86564 8.86569 .0006 
'2C* 9.07780 9.07783 .0008 

EU-E~ 7711.5 7711.51 
Cpo 7.7103 7.71025 
SJ 42.702 42.7018 

-(Fo_ Eg)IT 35.574 35.5743 

5000 0 K '2A* 95.79684 95.80611 .0096 
};B* 69.60681 69.62325 .024 
};C* 90.85673 90.87847 .024 

EO-Eg 31516.1 31518.3 .0070 
CO 

l' 9.39459 9.39447 .0013 
SO 53.0818 53.0823 .0013 

-(Fo-E~)/T 44.7921 44.7923 .0004 
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of Systems of Many Constituents 

STUART R. BRINKLEY, JR. ROBERT W. SMITH, JR. 

U. S. Bureau of Mines 

THE COMPOSITION of a system at chemical 
equilibrium is easily calculated when there is only a single 
reaction to be considered. In this case, the concentrations 
of each constituent can be related to a single variable, "the 
degree of reaction," and the solution of the mass-action 
equation is straightforward. Difficulties are encountered 
if this method is extended to a consideration of two simul
taneous equilibria, and when the number of such simulta
neous equilibria becomes large, the ordinary methods 
become very laborious. 

There is need for a systematic procedure designed to 
provide a method for writing down the necessary relations 
in the form most appropriate for numerical computation. 
When the number of constituents is large, the relations 
must usually be solved by an iterative procedure. In the 
course of an extended program of such calculations, it is 
usually necessary to formulate a number of computational 
procedures, in order to assure sufficiently rapid conver
gence. If the calculations are to be carried out by punched 
card methods, it is desirable that the smallest possible num
ber of arithmetical operations of different kinds be in
volved in order to minimize the number of different con
trol panels required. In a recent publication,! a systematic 
procedure for calculating the equilibrium composition of 
a system of many constituents was presented. This method 
presents a simple rule for formulating the work program 
of such calculations, with the result that very little time is 
required for setting up a particular problem. The sys
tematic nature of the computational procedure makes 
the method well-adapted to punched card methods. The 
method has been routinely employed in this laboratory in 
a long series of such calculations. The method is as easily 
applied to a mixture with a very large number of con
stituents as to a mixture with a small number of constitu
ents, although the time required to obtain the solution 
would be greater for the former case than for the latter. 

In the publication cited, the method was developed for 
systems of a very general nature. In the present communi
cation, we restrict application of the method to the calcu-
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lation of the equilibrium composition of mixtures consist
ing of a single homogeneous gas phase, and we assume 
that the gas phase is adequately described by the ideal gas 
equation of state. By taking advantage of these restric
tions, we are able to formulate a computational method, 
applicable to these particular cases, which is substantially 
simpler and more systematic than the more general 
method. A large number of systems of industrial and 
academic importance is included in this category. 

THE COMPONENTS 

In a system containing many constituents, it is possible 
to select certain constituents which are sufficient to de
scribe the composition completely. By this it is meant that 
if the system is conceived to consist of the selected con
stituents only, its gross composition (in terms of the 
amounts of each chemical element present) is completely 
defined. The constituents thus sufficient to describe the 
composition are called the components of the system. An 
analytical criterion has been published2 for the choice of 
the components. In terms of this criterion, the conditions 

, for equilibrium may be written in a form which has a high 
degree of symmetry and is particularly well adapted for 
formulating a computational method for the calculation of 
the equilibrium composition. 

The number of constituents of any system depends upon 
the accuracy with which it is desired to describe its com
position. The constituents to be considered must be chosen 
a priori, and this choice usually will imply the neglect of 
certain equilibria that may be expected to exert a negligi
ble effect on the composition of the system at equilibrium. 

Consider a closed system containing s different sub
stances, which are assumed to be in chemical equilibrium. 
The molecular formula of the £th substance may be repre
sented by 

(1) 

i = 1,2, ... s, where X(k) is the symbol of the kth element, 
ail,; is the subscript (which may be zero) to this symbol in 
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the formula of the ith substance, and m is the total number 
of elements represented in the system. For every i, the 
array of sUbscripts ail., k = 1, 2, ... , ln, may be said to 
define a vector 

(2) 

which may be called the formula vector of substance i. If 
the rank of the matrix of the vector elements ail. is c, it 
follows from a well-known theorem of algebra that there 
are c linearly independent vectors, and if c<s there are 
(s-c) linearly dependent vectors which may be expressed 
as linear combinations of the independent vectors. It may 
be assumed that the independent vectors are designated by 
the values 1, 2, ... , c of their index. Then the dependent 
vectors may be expressed as linear combinations of the 
form 

t VI, y, = YI , (3) 
.1=1 

i = c + 1, c + 2, ... , s. To equation (3) there correspond 
(s-c) conceivable chemical reactions 

c 2: 'Vij y(j) = Y(i) 

j=l 

(4) 

resulting in the formation, from the c substances with 
linearly independent formula vectors, of the (s-c) sub
stances with linearly dependent formula vectors. It follows 
that the specification of c substances such that their for
mula vectors are linearly independent is sufficient for a 
description of the composition of the system. Therefore., 
the number of components of the system equals the rank c 
of the matrix of the subscripts to the symbols of the ele
ments in the formulas of the substances comprising the 
system. It may be noted that the choice of independent 
vectors is not, in general, unique and that, in consequence, 
the choice of c substances as components and the expres
sion of the remaining (s-c) substances as products of 
reactions involving only the chosen components is usually 
not unique. 

This discussion has demonstrated the possibility of a 
choice of components which makes it possible to express 
each of the dependent constituents as products of reactions 
involving components only. Our computational procedure 
is based upon the possibility of writing down for the case 
of interest the reactions that are expressed by equations 
(4). In many cases, it is possible to write these reactions 

-immediately by intuition. In some cases, it may be neces
sary to formulate the reactions of equations (4) by apply
ing to the system under consideration the steps indicated 
by equations (1) to (3). 

SCIENTIFIC COMPUTATION 

THE BASIC EQUATIONS 

According to the phase rule of Gibbs, a system defined 
by c components existing as an homogeneous gas phase 
has (c + 1) degrees of freedom. The thermodynamic state 
is defined by the specification of two state variables, the 
temperature and pressure being an appropriate choice. The 
gross composition is uniquely defined by the specification 
of (c - 1) composition variables, giving the relative 
amounts of each element available to the system.* We 
denote the gram-atom fraction of the kth element by Qk, 
and the number of moles of the i-component in the hypo
thetical mixture consisting of components only (the mole 
fractions of the dependent constituents being zero) by qj. 
The conversation of each element requires that 

(5) 

k = 1,2, ... , c - 1, where ajk is the SUbscript to the sym
bol of the kth element in the molecular formula of the jth 
component. It will be convenient to employ the normaliza
tion relation, 

(6) 

Equations (5) and (6) consist of c independent, non
homogeneous, linear equations that can be solved for the 
quantities qj. The conservation of each element in the re
actions (4) for the formation of the dependent constitu
ents from the components can be expressed in the form 

8 

Xj + 2: VijXi = qiln , (7) 
i=C+1 

j = 1, 2, ... , c, where Xi and Xi are the mole fractions in 
the equilibrium mixture of the ith dependent constituent. 
and the jth component respectively, Vij is the coefficient of 
the formula of the jth component in the equation for the 
reaction leading to the formation of the ith dependent 
constituent, and n is the total number of moles of gas in 
the equilibrium mixture corresponding to the normalized 
constants qj. In view of equation (4), 

C 8 2: ~1:j + 2: Vi Xi = lin, (8) 
i=l i=C+1 

*Since the composition of the system at eq!lilibri~m is expr~~sec;l in 
terms of the mole fraction of each constituent m the eqUIlIbrIum 
mixture the result is independent of the total size of the system, 
which ~ay be taken to be any convenient value. :from !he point of 
view of thermodynamics, the molecu!ar form m w~lch. the ele
ments are introduced to the system IS a matter of mdlfference. 
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where 
C 

Vi = 2: Vij 

j=l 

The mole fractions are subject to the identity relation 
C 8 

2: Xj + 2: ''V'i = 1 . 
j=l i=C+l 

Therefore, equation (8) becomes 
8 

lin = 1 + 2: (V'i - 1) Xi (9) 
i=C+l 

and equations (7) may be written 
8 

Xj=qj- 2: [Vij-qj(Vi- 1)]Xi, (10) 
i=C+1 

J 1, 2, ... , c. 

The conditions for chemical equilibrium in an ideal gas 
mixture obeying Dalton's law may be written in the form 

(11) 

where 

k i = KiPVi- 1 , 

i = c + 1, ... , s, and where p is the pressure and k i is 
the thermodynamic equilibrium constant for the reaction 
leading to the formation of the ith dependent constituent 
from the components. The equilibrium constants Ki are 
independent of the particular system under consideration 
and are functions of the temperature T only. 

The computation of the equilibrium composition re
quires the simultaneous solution of equations (10) and 
(11). If Xi< <x for all i and j, the solution may be car
ried out by the simple iteration method.3 An approximate 
set of values is chosen for the .t'j. (In the absence of any 
criteria for the choice of the initial set, one may take 
Xj = qj.) Equations (11) are employed in the computation 
.of corresponding values of the ''Vi. These in turn are em
ployed with equations (10) for the determination of an 
improved set of values for the Xj. This iterative process is 
continued until the difference between successive approxi
mations to the Xj is less than the desired precision of the 
computation. 

The c.onvergence of this simple iteration method is very 
slow for larger relative values of the X'i, and when the Xi 

and Xj are of the same order of magnitude, this method 
may not converge at all for any choice of components. 
A more powerful computati.onal procedure is provided by 
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the N ewton-Raphson method. 4 Equations (10) may be 
written in the form 

8 

P j = qj - .'Vj - 2: [Vij - qj (Vi - 1)] Xi , (12) 
,i=C+l 

j = 1,2, ... , c. We seek the solution of the equations 
Pj = 0, subject to equations (11). If the functions F j are 
expanded in Taylor series about an approximate set of 
values of the variables Xj with neglect of terms involving 
derivatives of second and higher orders, there results a 
set of c linear equations which can be compactly repre
sented in the notation of matrices by 

[Aj?] [hjt)] = [Fy")] , (13) 

where the rth and (r + l)th approximations to the com
position are related by 

.~1'+1) _ .,(1')(1 + 1(1'» .x J -.t J IJ' (14) 
and where the elements of the matrix are given by 

8 

Aji' = .'fj Sji' + 2: Vii' [Vij - qj (Vi - 1)] Xi • 

i=C+1 

(IS) 

The superscript r indicates that the designated quantity is 
to be evaluated with the rth approximation to the com
position of the system, and Sjj' is the Kronecker delta. 

Criteria for the choice of components that results in the 
most rapid convergence of the iteration process can be 
developed from the remainders to the two-term Taylor 
series expansions of functions F j • However, the resulting 
expressions are too cumbersome for practical utility, and 
in practice the convergence will be found to be satisfactory 
if the components are selected so as to minimize the quan
tities ki' i = c + 1, ... , s. 

NOTES ON COMPUTATIONAL PROCEDURE 

In this present section we will describe in some detail 
the computational procedure based upon the basic equa
tions developed in the preceding sections. In this labora
tory an extensive program of such calculations is being 
carried out with punched card equipment which includes a 
Type 602 Calculating Punch. The calculations could be 
very easily performed utilizing a Type 604 Electronic 
Calculating Punch and programs similar to those described 
in another contribution to this Forum.* The procedure 
for setting up a particular problem will be found to be 
quite routine in nature. This procedure will involve the 
following steps: 

*It may be noted that these methods have been successfully em
ployed in an extended series of computations performed by the 
Bureau of Mines on the Electronic Numerical Integrator and 
Calculator (ENIAC) at the Aberdeen Proving Ground. 
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1. Select a suitable set of components. This selection 
can usually be made by intuition. In some cases it may be 
necessary to follow the formal procedure previously out
lined. Subject to the requirement that the components be 
linearly independent in the sense defined above, it is usu
ally desirable to select those constituents that are most 
abundant in the equilibrium mixture. 

2. Write the chemical equations in the form of equa
tions (4) which express the formation of the dependent 
constituents from the components. These equations can 
usually be written by inspection. In some cases it may be 
necessary to employ the formal methods previously de
veloped. 

3. Construct a table of the coefficients of equations (4) 
Vij; j = 1,2, ... , c; i =' c + 1, c + 2, ... , s. Tabulate 
the quantities (Vi -1). If the solution is to be by the N ew
ton-Raphson method, form the products 
Vij Vij' and Vij (Vi ~ 1); j, j' = 1, 2, ... , c; i = c + 1, 
c +. 2, ... , s. 

4. If the solution is to be by the iteration method, write 
the explicit form of equations (10) and (11) applicable 
to the problem under consideration, using the table of co
efficients. I f the solution is to be by the N ewton-Raphson 
method, write the explicit form of equations (11), (12), 
and (15) applicable to the problem under consideration, 
using the table of coefficients. 

5. In the usual problem a relatively small number of 
different gross compositions is consi<lered and computa
tions are performed for a variety of different temperatures 
and pressures. Under these conditions the values of the 
stoichiometric constants qf are most easily obtained from 
the specifications of the problem by desk calculations based 
upon equations (5) and (6). If a large number of dif
ferent mixtures is to be considered, it may be desirable to 
formulate a routine involving punched card methods for 
these calculations. 

The computational procedure that has been developed 
appears to be particularly well adapted to the application 
o"f punched card methods. The procedure involves several 
instances where a number of arithmetical operations of 
the same general kind are performed. In each instance, 
these operations can be performed with a single control 
panel that requires only modification of the factor wiring. 
The notes that follow are based upon experience gained 
in this laboratory in calculating equilibrium composItion 
and are presented in the hope that they may be useful to 
other investigators confronted with the same type of 
problem. 

1. Select a first approximate set of values of the mole 
fractions of the components Xj. In the absence of data by 
which a more precise set may be estimated, one can adopt 
the values .rj = qj for all j. 

SCIENTIFIC COMPUTAT10N 

2. Compute the quantity, 

The operations involved in this computation are peculiar 
to the specific problem at hand. The design of control 
panels for these steps is routine. The coefficients Vij are 
small integers or simple fractions. 

3. Complete the calculation of the values of the mole 
fractions of the dependent consti~uents. Xi corresponding 
to the approximate values of the X'j by means of equation 
( 11). For this purpose it is useful to sort the cards into 
groups according to the temperature and ,pressure and to 
file each such group behind a master card containing the 
equilibrium constants ki' which are employed as group 
multipliers. It is also useful to punch the answers Xi on 
trailer cards which contain a suitable identification code 
and are prepunched with the quantities 
Vij, V'ij Vij', (vi-I), Vij (vi-I); j,j' = 1, 2, ... , c. 
A separate set of these trailer cards is employed for each 
value of i. The appropriate set of trailer cards is inserted 
by means of the collator prior to the calculation of a par
ticular Xi and withdrawn by selection after the calculation. 

4. Calculate the quantities Fj , j = 1, 2, ... , c. For 
this purpose we rewrite equation (12) in.the form. 

8 8 

Fj = qj - Xj - L. VijXi + qj L. (Vi -1) Xi· (16) 
i=C+l i=C+l 

In this calculation we have employed the control panel 
illustrated in Figure 1. The trailer cards from the previous 
step are sorted into groups with constant values of the qj, 
and each such group is filed behind a master card contain
ing theqj. The figure assumes that the cards containing 
the Xi are identified by an X punch in position to be read 
by the fourth control brush, and the master cards are 
identified by an X punch in position to be read by the fifth 
control brush. Each group of the cards containing the Xi 

is followed by an appropriately identified trailer card that 
contains the quantities Xj and an X punch which we here 
assume to be in position to be read by the first control 
brush. The quantity qj is read from the master card and 
held in the summary counter until the next master card is 
read. The master cards are ejected without punching. 
For each card containing the XiJ the products Vij Xi and 
(v'l-I) Xi are formed and accumulated in the left com
ponents counter. These cards are ejected without punch
ing. The computation is completed on the trailer card and 
F j is punched in this card. 
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b b b b b 0 030 010 0 040 0 0 
READING CYCLES r:-M'CAND--,-EXIT-LHC-N--

: ; ~ I 0 0 ~HIF~ 0: { {NT{Yf-HE{ ( ( ( I 
~11-12,---M'CAND--·I-EXIT-LHC-T----, 
o 0 ~~I 0 0 0 0 I 0 0 0 0 0 0 t 

~ R- R+ rrrLl ! Il 
10~010 OIOIOP 
I SC P-: S IPX+IPX_1 SC U 

o 0'0 1 0 0 O~ 
~ \B ~H 

o 0 0 0 0 ·0 I 
40 ~ 

o 0 0 0 0 0 O~ ... •• " •• 0 0 0 0 0 I 
~ 50 ~ ~ 

010 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 
~ ro ~ ~ 

0 1 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 0 

FIGURE 1. TYPE 602 CONTROL PANEL FOR CALCULATING THE CO(F'FICIENTS OF EQUATION (13) 
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5. Examine the absolute values of the Fj , and sort out 
those cases that fulfill a convergence criterion of the form 

o 

l:IFjl<€, (17) 
j=l 

where € is a preassigned small number measuring the de
sired precision of the calculation. I f the calculation is being 
made by the iteration method, determine an improved set 
of values of the .,,,OJ according to the relation 

(18) 

j = 1, 2, ... , c, where xy") and xY+l) denote the rth and 
(r + l)th approximation to the composition of the system. 
The computational sequence beginning with step (2) is 
then repeated. I f the calculation is made by the N ewton
Raphson method, proceed to step (6). 

6. Calculate the coefficients A jr of equations (13) by 
means of equations (15) which may be written in the form 

A jj , = Xj 8jr + ~i V-ij V-ij' :ri - qj ~i V-ij' (Vi - 1) Xi, (19) 

where 8jj, is the Kronecker delta which equals one for 
j' = j and zero for j' =F j. The control panel illustrated in 
Figure 1 may be employed in these calculations. In these 
calculations the control panel is modified in the following 
manner: the quantity qj is read out from the summary 
counter to the multiplicand, but not to the right compo
nents counter; the brushes which are shown reading the 
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quantities Vij and (Vi -1) are employed to read v.£j Vir and 
Vij (Vi -1), respectively. In addition, when j' =F j the quan
tity Xj is not read into the left component counter. 

7. Solve equations (13), and employ equations (14) 
to determine an improved set of Xj' The computational 
procedure beginning with step (2) is then repeated. In solv
ing equations (13), we have employed Cramer's method 
for cases where the rank of the matrix is less than four. 
Under these circumstances, we have found it easy to pro
gram the evaluation of the necessary determinants, and 
the method has the advantage that only a single division is 
required. Since the number of multiplications required by 
this method increases rapidly with the rank of the matrix, 
it is desirable to employ more systematic procedures for 
the reduction of the matrix when the rank is greater than 
or equal to four. Reference is made to the method pre
sented by Mr. Bell. 
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Punched Card Calculating and Printing Methods 
in the Nautical Almanac Office 

FREDERICK H. HOLLANDER 

U. S. Naval Observatory 

THE IBM EQUIPMENT at the United States Naval 
Observatory is used primarily to serve the needs of astron
omers, navigators, and aviators .. We publish annually the 
American EpheHteris and Nautical Almanac) the American 
Nautical Almanac) and the American Air AI1Jwnac. 

The Ephemeris supplies data with the highest degree of 
accuracy. It contains theoretical positions of the sun, 
moon, planets and stars, with an accuracy of a tenth of a 
second of arc. Astronomers compare their observations 
with these data. The Air Almanac) on the other hand, is 
very rough by these standards, giving to the nearest min
ute of arc positions of the sun, three chosen planets and 
the moon for every ten minutes of the day. In other words, 
it is a highly interpolated table of relatively ·low accuracy 
to enable an aviator to determine his position rapidly dur
ing a flight. 

The Nautical Almanac stands halfway between the other 
two, with an accuracy of a tenth of a minute of arc, and 
values given for every hour. The new form of the N auti
cal Almanac) which will be published beginning with the 
year 1950, is designed to facilitate use by having all the 
essential data for three days at one opening of the book. 
The Air Almanac was designed similarly; all the informa
tion necessary for the aviator except a few tables is avail
able on one page opening. This includes corrections for 
the parallax of the moon, tables of moonrise and moonset, 
and sunrise and sunset, in addition to the values of the' 
Greenwich hour angle (GHA) and declination for various 
objects. The star tables are not included on the daily page 
of the Air Altnanac) because, to this accuracy, a star's 
position remains practically the same from day to day 
throughout the year. 

All these data for the two almanacs are prepared 
by IBM machines from the accurate material of the 
Ephemeris. In addition, all the information is arranged on 
cards so that it may be printed on a special model card
operated typewriter, of which there are only two in ex
istence. The U. S. Naval Observatory has the first of these 
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machines;l the other is at IRM W orId Headquarters in 
New York City. They are modifications of the st9-ndard 
card-operated typewriter, special as to keyboard, and as 
to the type of work they can produce. 

r am going to devote some attention to the typewriter 
and attempt to demonstrate the versatility of its output by 
means of illustrations, but I want to show also how the 
rest of our IBM equipment fits into the picture, in supply
ing material for the typewriter. 

There are some special problems in setting up the cards, 
and that is where the other machines come in. For one 
thing, in a table which is published for a navigator or 
aviator, accuracy is essential. That means the methods of 
checking the results must be practically fool-proof. It is 
necessary that the typewriter prepare the copy from single 
punched cards. By that I mean each column containing 
numerical information must have just one punch, because 
our method of proofreading is to take the printer's proof 
as it is returned after a photo-offset plate has been made 
and punch the material again line for line on a new set of 
cards. Then those cards are compared on the 513 with the 
cards which had been used to prepare the copy. 

That sounds like a painful process when you consider 
that the Air Almanac each year consists of 730 pages of 
72 lines, each line consisting of a solid row of fi~ures. It 
requires a considerable amount of punching to duplicate 
all that. Yet that is the most accurate, and even turns out 
to be the fastest, operation. The method is applied also to 
the other publications, and so for any job we do, the first 
requirement is that the numerical data occupy single 
punched columns. The only double punches permitted on 
the detail cards are code punches, which are not puriched 
in proof. 

In addition to the comparison with the original copy 
cards, a further proof against errors is made by differ
encing the fUllctions. This is carried out .on the 405. 
Since we have several functions on a card, the method is 
limited to forming first differences, and summary punch-
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ing these to get second, and so on. I t is a slow process to 
get sixth differences this way, but that is what is done, for 
example, in the case of the ephemeris of Mercury. 

The work is by no means all proofreading. As an ex
ample of computational work I should like to explain the 
moonrise and moonset tables which are computed every 
year. 

The lunar ephemeris, which gives the position of the 
moon for every hour of every day, is combined with a 
permanent table of cards which need be made up only 
once on the collator so that from the ephemeris are ex
tracted those times of each day at which a moonrise or a 
moonset is possible at certain selected latitudes. The data 
from the eph~meris are then reproduced into new cards, 
and these in turn form the basis for an inverse interpola
tion to find the exact time of th~ phenomenon. Values of 
an hour angle preceding and of an hour angle following 
the moon rise or set are obtained in the 405 and summary 
punched. An interpolation on the- 601 or 602 gives the 
accurate time. Corrections are applied to the hour angles 
for the moon's parallax and for its motion in declination 
before the interpolation is made. Except for the original 
hand punching and checking of the various, permanent 
tables, everything is done by the IBM machines. The 
only hand work is a spot check every year on a few of 
the computed values. Other checks include differencing 
day by day for each latitude, and differencing values for 
the corresponding day with respect to latitude. The latter 
is a most powerful check, for if one adds the moonrise 
time to the moonset time for each latitude for agiven day, 
the sum is practically a constant for all latitudes. This 
check is applied also to the sunrise and twilight tables of 
the Nautical Almanac. 

The only fault to be found with this whole procedure is 
that a great deal of hand manipulation of large decks of 
cards is required because there is no way of moving cards 
from one machine to another except by hand. Considerable 
care is necessary to prevent disarrangement of the cards. 
At some stages in the process, any such disarrangement 
could go undetected long enough to cause serious damage. 
The magnitude of the task is obvious when you consider 
that we compute moonrise and moonset for thirty-four 
selected latitudes from -60 0 to +73 0 for every day of 
the year. 

Another major task is, of course, the computation of 
the Greenwich hour angles and declinations in the N auti
cal Almanac and Air Almanac. 'fhese are subtabulated 
from the daily values in the A11'lerica'1'z, Ephemeris) by com
puting the hourly differences, and. by progressive totaling 
these differences with appropriate starting values, thereby 
building up the required functions. The data for the N au-
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tical Almanac are further subtabulated to give the ten 
minute interval of the Air Almanac. 

The original installation of the IBM machines at the 
Observatory was for the purpose of preparing the Air 
Almanac for publication. Since that time, more and more 
work has been transferred from the computers' desks to 
punched cards. Among such jobs I might mention the 
computation of occultation elements: the time when the 
moon will occult a star; apparent star places; precession 
and reduction to mean places of stars; heliocentric co
ordinates 0.£ the major planets; research in the theory of 
the motions of the major planets and their satellites. Much 
of this work is annual, but some of it has been done just 
once. 

The methods we use do not equal the complexity dem
onstrated in the solutions to some of the problems which 
have been presented earlier. As I have mentioned, we 
form differences of the first order and summary punch 
them to get second differences. We subtabulate wherever 
possible, rather than interpolate, because subtabulation 
goes faster and more automatically and, once it is set up, 
several functions can be done simultaneously. Checking is 
made easier by this method, also. Our intervals are usu'ally 
uniform, and we have no proble111s involving complex 
quantities or matrices. 

We make one principal demand, and that is the utmost 
in accuracy to a large number of decimal places. In the 
integration of planetary orbits, ten decimal place accuracy 
is common. In our almanac work, extra decimals are 
needed to prevent accumulated rounding errors. Both the 
large capacity counters and the accuracy. are supplied in a 
satisfactory way by the Type 405 Accounting Machine 
and the Type 602 Calculating Punch. One handicap is the 
limited punching capacity of the Type 602. 

N ow I would like to tell you a little about the card
operated typewriter. Perhaps the best way is to refer to 
the illustrations; then a few comments will give you a 
good idea of its capabilities. Figure 1 is a page of the Air 
Atmanac. It represents the time from noon to midnight of 
the same day for every ten minutes of time, giving for 
those times the GHA's and declinations of the sun,moon, 
and three planets, and in addition, tables of sunrise and 
moonrise. The summary punching which produces the 
GHA's also produces the cards which will go through the 
typewriter; the declinations and miscellaneous tables are 
reproduced into these cards in their proper line relation
ship. The typewriter prints the numbers from these detail 
cards, and the control of the spacing from column to 
column is taken care of by a master card which is read 
over again for each new line. 



478 GREENWICH P. M. 1948 AUGUST 26' (fHURSDA y) 

JUPITER -1.9 
GHA Dec. 

() MOON 
GeT o SUN 

GHA Dec. GHA 
VENUS-4.0 
GHA Dec. 

Lat. Sunrise TwIt, ~~n. Diff. 
Dec. 

MARS 1.5 
GHA Dec. GHA 

hm 0/0/0/010/0/0/0/0/0101 

12 00 359 34 NI0 22 154 39 46 07 N18 55 311 485 9 44 256 18 522 46 109 24 N18 08 N 
10 2 04 157 09 48 37 314 18 258 48 111 49 10 0 h m m h m m 

20 4 34 159 39 51 07 316 48 261 18 114 14 12 70 3 48 88 18 04 * 
30 7 04 . 162 10 53 37 . 319 18 • 26349 . 116 40 14 68 4 02 73 1855 * 
40 9 34 16440 56 07 321 49 266 19 119 05 16 66 14 63 19 27 * 
50 12 04 167 11 58 37 324 19 268 49 121 30 18 64 24 57 19 52 * 

13 00 14 34 NI0 21 169 41 61 07 N18 55 326 49 5 9 45 271 20 522 46 123 55 N18 19 62 32 51 20 11 * 
10 17 04 172 11 63 37 329 19 273 50 126 21 21 60 39 46 27 06 
20 19 34 174 42' 66 07 331 49 276 21 128 46 23 58 46 42 40 12 
30 22 05 • 177 12 68 37 . 334 19 • 278 51 • 131 11 25 56 51 39 2052 16 
40 24 35 179 43 71 07 33649 281 21 133 36 27 54 457 38 21 02 20 
50 27 05 182 13 73 37 339 20 283 52 136 01 29 52 5 01 36 11 23 

14 00 29 35 NI0 20 18443 76 07 N18 55 341 505 9 46 28622 522 46 138 27 N18 31 50 05 34 19 26 
10 32 05 187 14 78 37 34420 288 53 14052 33 45 14 30 37 31 
20 34 35 189 44 81 07 346 50 291 23 143 17 34 40 21 28 21 51 35 
30 37 05 . 192 15 83 37 • 349 20 . 29353 . 145 42 36 35 28 26 22 03 38 
40 39 35 194 45 86 07 351 50 296 24 148 08 38 30 33 24 14 40 
50 42 05 197 15 8837' 354 21 29854 15033 40 20 43 23 33 44 

10 51 22 22 49 48 
15 00 44 35 NI0 19 199 46 91 07 N18 55 356 51 5 9 46 301 25 522 46 152 58 N18 42 

10 47 05 202 16 93 37 359 21 303 55 155 23 44 0 5 58 21 23 05 51 
20 49 35 204 47 96 07 1 51 306 25 157 48 46 
30 52 05 • 207 17 98 37 . 4 21 • 308' 56 • 160 14 48 10 6 06 22 20 55 
40 54 35 209 48 101 07 6 51 311 26 162 39 49 20 14 23 36 59 
50 57 05 212 18 103 37 9 22 313 57 165 04 51 30 23 25 23 55 63 

16 00 59 35 NI0 18 214 48 106 07 N18 55 11 52 5 9 47 316 27 522 46 167 29 N18 53 35 28 26 24 07 65 
10 62 05 217 19 10837 1422 31857 16954 55 40 33 28 20 68 
20 64 35 219 49 III 07 16 52 321 28 172 20 57 45 40 31 35 72 
30 67 05 . 222 20 113 37 • 19 22 . 32358 . 17445 1859 50 48 34 2454 78 
40 69 35 22450 116 07 21 52 326 29 177 10 19 01 52 52 36 25 03 80 
50 72 05 227 20 118 37 2422 328 59 179 35 02 54 656 38 25 13 84 

17 00 74 35 NI0 17 229 51 121 07 N18 54 26 53 5 9 48 331 29522 46 182 00 N19 04 56 7 00 40 000 85 
10 77 05 232 21 123 37 29 23 334 00 184 26 06 58 05 42 09 89 
20 79 35 234 52 126 07 31 53 336 30 186 51 08 60 7 11 44 0 20 94 
30 82 05 . 237 22 128 37 • 34 23 . 339 01 • 189 16 10 S 
40 84 35 239 52 131 07 36 53 341 31 191 41 121---'--_-'------1"-_1----
50 87 05 242 23 133 37 39 23 344 01 194 06 13 

1800 
10 
20 
30 
40 
50 

1900 
10 
20 
30 
40 
50 

2000 
10 
20 
30 
40 
50 

2100 
10 
20 
30 
40 
50 

2200 
10 
20 
30 
40 
50 

2300 
10 
20 
30 
40 
50 

89 35 NI0 16 244 53 136 07 N18 54 41 54 5 9 48 346 32 522 46 196 31 N19 15 
92 05 247 24 138 37 
94 35 249 54 141 07 

4424 34902 19857 171---r----r--...,.....,.-.-r--
46 54 351 33 201 22 19 Lot. Sunset TwIt. M~n- Iolli. 

97 05 . 252 25 143 37 . 49 24 • 354 03 . 203 47 21 
99 35 254 55 146 07 51 54 356 33 206 12 23 N 

102 05 25725 148 37 
104 35 NI0 15 259 56 151 07 N18 54 
107 05 262 26 153 37 

54 24 359 04 208 37 24 0 h m III h m m 

56 55 5 9 49 1 34522 46 211 02 N19 26 70 20 12 86 15 21 * 
59 25 4 05 213 27 28 68 1958 72 1431 * 

109 36 264 57 156 08 61 55 6 35 215 53 30 66 47 62 14 00 144 
112 06 . 267 27 158 38 . 64 25 • 9 05 . 218 18 32 64 37 56 13 37 118 
114 36 269 57 161 08 66 55 11 36 220 43 33 62 29 51 18 105 
117 06 272 28 163 38 69 25 14 06 223 08 35 60 23 47 13 04 96 
119 36 NI0 15 274 58 166 08 N18 54 71 56 5 9 49 1637 522 46 225 33 N19 37 58 16 44 12 51 90 
122 06 277 29 168 38 74 26 19 07 227 58 39 56 11 41 40 86 
124 36 279 59 171 08 76 56 21 37 230 23 41 54 06 38 30 82 
127 06 . 282 29 173 38 • 79 26 . 24 08 . 232 48 42 52 19 01 36 22 79 
129 36 285 00 176 08 81 56 26 38 235 14 44 50 18 57 34 12 14 77 
132 06 287 30 178 38 84 26 29 09 237 39 46 45 49 31 11 58 71 

40 41 28 45 67 
35 35 26 341 64 
30 30 25 24 61 
20 20 23111 07

1

57 
10 12 22 10 53 52 

o 18 05 211 39 49 

10!1758' 211 261 45 
20 50 23110121 41 
30 41 24 9 56

1

' 36 
35 36 26 46 34 

134 36 N10 14 290 01 181 08 N18 54 86 56 5 9 50 
137 06 292 31 183 38 89 27 
139 36 295 02 186 08 91 57 
142 06 . 297 32 188 38 . 94 27 . 
144 36 300 02 191 08 96 57 
147 06 302 33 19338 99 27 
149 36 NI0 13 305 03 196 08 N18 54 101 57 5 9 51 
152 06 307 34 198 38 104 28 
154 36 310 04 201 08 106 58 
157 06 . 312 34 203 38 • 109 28 . 
159 36 315 05 206 08 111 58 

31 39 522 46 240 04 N19 48 
34 09 242 29 50 
36 40 244 54 51 
39 10 . 247 19 53 
41 41 249 44 55 
44 11 252 09 57 
46 41 522 46 254 34 N19 59 
49 12 256 59 20 00 
51 42 259 25 02 
54 13 . 261 50 04 
56 43 264 15 06 

162 06 317 35 208 38 114 28 59 13 266 40 07 40 31 28 35 31 
164 36 NI0 12 320 06 211 08 N18 54 116 58 5 9 51 61 44 522 46 269 05 N20 09 45 24 30 23 26 
167 06 322 36 213 38 119 29 64 14 271 30 11 50 16 32 08 21 
169 36 325 06 216 08 121 59 66 44 273 55 13 52 13 34 9 00 20 

54 09 36 8 53 16 
56 04 39 44 13 

172 06 . 327 37 21838 . 12429 . 
174 36 330 07 221 08 126 59 

69 15 - 276 20 14 
71 45 278 45 16 

177 06 332 38 223 38 129 29 74 16 281 10 18 58 17 00 41 34 09 
60 16 54 43 8 23 03 

24 00 179 36 NI0 11 335 08 226 08 N18 54 131 59 5 9 52 76 46 522 46 283 35 N20 20 S 

FIGURE 1 
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LA TITUDE eso 157 

g JULY AUGUST SEPfEMBER ocrOBER NOVEMBER DECEMBER 

Rue I ~ Set Rue I :y Set Rile I :y Set RI. I :y Set Rue I :y Set RI. I :y Set 

1 CJ .. .. CJ 0213 +20 -5 2155 0425 +5 -5 1933 0612 -2 -4 1726 0810 - 9 -4 1516 1035 -64 - 5 1302 
2 CJ .. .. CJ 0219 +19 -5 2150 0429 +5 -4 1928 0616 -2 -5 1722 0814 -10 -4 1512 1041 •• - 61257 
3 CJ .. .. CJ 0224 +17 -5 2145 0432 +5 -4 1924 0619 -1 -4 1717 0818 -10 -5 1508 1048 •• - 51251 
4 CJ .. .. 0 0229 +17 -5 2140 0436 +4 -5 1920 0.623 -2 -4 1713 0823 -10 -4 1503 1054 •• - 71246 
5 0 .. .. 0 0233 +16 -5 2135 0440. +5 -4 1915 0.626 -2 -4 1709 0827 -11 -4 1459 1101 •• - 71239 

6 0 .. .. 0 0238 +15 -5 2130 0443 +4 -4 1911 0.630. -2 -4 170.5 0831 -11 ,-4 1455 1109 •• - 71232 
7 0 .. .. 0 0.243 +15 -5 2125 0447 +4 -4 1907 0633 -3 -4 1701 0836 -12 -4 1451 1118 •• -101225 
8 0 .. .. 0 0.247 +14 -5 2120. 0451 +3 -5 190.3 0637 -3 -5 1657 0840 -IS -5 1447 1129 .. ·'1215 
9 0 .. .. 0 0.252 +14 -4 2115 0454 +4 -4 1858 0.641 -3 -4 1652 0844 -12 -4 1442 -.. . . -10. 0 .. .. 0 0257 +13 -5 2111 0458 +3 -4 1854 0644 -3 -4 1648 0.849 -13 -4 1438 • .. . . -11 0 .. .. 0 0.301 +12 -5 210.6 0.50.1 +3 -4 1850 0.648 -3 -4 1644 0.853 -14 -5 1434 -.. . . -12 0 .. .., 0 0.30.5 +12 -4 210.1 050.5 +2 -5 1846 0.652 -4 -4 1640 0.858 -14 -4 1429 -.. . . -13 0 .. .. 0 0.310 +11 -5 2057 0.50.8 +3 -4 1841 0.655 -4 -4 1636 090.3 -15 -4 1425 -.. .. -14 0 .. .. 0 0.314 +11 -4 2052 0.512 +2 -4 1837 0.659 -5 -5 1632 0.90.7 -16 -5 1421 -.. . . -15 0 .. .. 0 0318 +10 -5 20.48 0.515 +2 -4 1833 0.70.3 -4 -4 1627 0912 -16 -4 1416 - .. .. -16 0 .. .. 0 0322 +10 -4 20.43 0.519 +1 -4 1829 070.7 -4 -4 1623 0.917 -17 -4 1412 -.. .. -17 0 •• -172348 0326 + 9 -5 2039 0.522 +1 -5 1825 0.710. -5 -4 1619 0.921 -18 -5 140.8 -.. .. -18 0.0.25 •• -11 2331 0331 + 9 -4 20.34 0.526 +2 -4 1820. 0.714 -5 -4 1615 0.926-18 -4 140.3 -.. .. -19 0.0.42 •• -102320 0.335 + 8 -5' 2030. 0.529 +1 -4 1816 0.718 -6 -5 1611 0.931 -20 -5 1359 -.. .. -20 0054 •• - 82310 0339 + 9 -4 2025 0.533 +1 -4 1812 0722 -5 -4 1606 0.936 -20 -4 1354 -.. .. -21 0103 •• - 82302 0.343 + 8 -5 20.21 0.537 0 -4 180.8 0726 -6 -4 1602 0.941 -22 -5 1350 - .. .. -22 0112 •• - 72254 0.347 + 8 -4 2016 0.540 0 -5 180.4 0729 -6 -4 1558 0.946 -23 -4 1345 - .. .. -23 0119 +46 - 6 2247 0351 + 7 -5 2012 0.544 +1 -4 1759 0733 -6 -4 1554 0951 -25 -5 1341 - .. .. -24 0126 +38 - 7 2241 0355 + 8 -4 200.7 0.547 0 -4 1755 0737 -7 -4 1550 0956 -26 -4 1336 -.. .. -25 0133 +34 - 6 2234 0.359 + 7 -4 200.3 0.551 0 -4 1751 0.741 -7 -5 1546 100.2 -29 -5 1332 -.. .. -26 0140 +31 - 6 2228 040.2 + 6 -5 1959 0.554 -1 -4 1747 0745 -7 -4 1541 10.0.7 -30 -5 1327 - .. .. -27 0.146 +28 - 62222 0.40.6 + 7 -4 1954 0.558 -1 -5 1743 0.749 -7 -4 1537 10.12 -33 -5 1322 -.. .. -28 0152 +26 - 5 2216 0.410. + 6 -4 1950. 0.60.1 0 -4 1738 0.753 -a -4 1533 10.18 -36 -5 1317 -.. .. -29 0.157 +24 - 62211 0.414 + 5 -5 1946 060.5 -1 -4 1734 0.758 -a -4 1529 10.24 -41 -5 1312 -.. .. -30 0.20.3 +23 - 5 220.5 0418 + 6 -4 1941 0.608 -1 -4 1730. 0802 -9 -5 1525 10.29 -48 -5 130.7 -.. .. ... 

31 020.8 +21 - 5220.0 0421 + 5 -4 1937 ... . . ... 080.6 -a -4 1520 ... .. 0 . .. -.. . . • 
TwilI9ht Da,o TwIlloht Da,o TWilIqht Da,~ Tw\liQht Da,o Tw\liQht Do,o TwIlloht Dar-

Ct.,. Nt. ~ 119ht Ct.,. Nt. AIL 119ht Clv. Nt. AsL li9ht Ctv. Nt. AIL lIoht Ctv. Nt. AIL lIoht Ctv. Nt. AIL lIoht 

1 0 00 0 1/11 1111 1111 1942 10.5 251 1/11 1508 '0.55 '201 316 1114 IDS 212 316 0706 152 314 423 0227 
3 C1 C1 Cl Cl "" //1/ 1111 1921 10.4 242 1//1 1452 055 201 313 1058 106 214 318 0650. 159 322 432 0203 
5 0 Cl CJ 0 "" 1111 lin 1902 10.2 235 1111 1435 0.55 200 311 1043 10.8 216 321 0632 20.8 332 442 OU8 

7 0 Cl Cl 0 "" /1/1 "" 1842 10.1 229 1111 1420. 056 200 :no 10.28 110 219 323 0615 219 344 455 010.7 
9 0 DO 0 211 /111 "" 1823 10.0 224 "" 140.4 056 200 309 10.11 112 222 326 0.558 249 416 526 -11 0 DO 0 152 /111 /1/1 180.5 0.509 220 /111 1349 056 200 308 0956 114 22S 330 0.541 246 413 524 -13 0 DO 0 141 /111 /1/1 1747 0.58 216 431 1333 0.57 201 308 0941 116 228 333 0.522 244 412 523 -15 0 DO 0 133 1//1 1/11 1730 058 213 408 1318 057 201 307 0.924 119 231 337 0504 242 410 522 -17 /11/ III/ 111/ 2348 127 /11/ 1/1/ 1713 057 211 355 130.3 0.58 202 307 0.909 121 235 341 0.447 240. 409 521 -19 1/1/ 1/11 1//1 2238 123 1/1/ /111 1655 057 209 345 1247 058 203 308 0853 125 240 346 0428 239 409 520 -21 /!II /11/ 1/1/ 2159 119 1/1/ /111 1638 056 207 337 1231 0.59 204 308 0.836 128 244 351 0.409 239 408 520 -23 1/11 III/ /III 2128 115 1//1 /11/ 1621 0.56 205 331 1215 100. 205 309 0.821 132 249 356 0350. 239 408 520 -25 /111 /11/ /111 210.1 112 /Ill III/ 1604 055 204 326 120.0 10.1 206 310 0.80.5 136 254 4'1 0330. 240 409 520 -27 /11/ /1/1 /1/1 20.36 110. 342 /111 1548 0.55 203 322 1145 102 207 312 0748 141 300 408 0310 241 410 521 -29 III/ /111 /11/ 20.14 108 312 /111 1532 0.55 202 319 1129 10.3 209 313 0.731 146 )(11 415 0248 243 411 522 -31 /11/ /1/1 "" 1952 106 2S1 /III 1516 . .. ... . .. . .. 10.4 211 315 0714 . .. ... . .. ... 245 413 524 -

To obtain the values for other than integral degrees of latitude, see pages 14-15. 

With the dates as given, all values are for northern latitudes. For 80'Ulkem latil1.UUa, see 
page 15. 

FIGURE 2 
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FORUM PROCEEDINGS 

Figure 2 is a sample of the sunrise and sunset table 
which was computed by Dr. Herget. It was published by 
the Naval Observatory in 1945. The open squares repre
sent continuous sunshine, the black squares continuous 
night, and the four diagonal strokes continuous twilight. 
Choosing the small type in printing is done by the master 
card; the numbers punched on the detail cards have no 
special code punches. What this means is that a variety of 
type styles and formats is available for any set of detail 
cards. 

In this case, a complication arose from the fact that the 
three blocks July, August, and September, on the left-hand 
side of the page, were on one set of cards, and the blocks 
October, November, and December were on another set. 
The combination totaled more t~an eighty columns, so 
that it wasn't possible to put both these fields on one card. 
The solution was simple but tedious. The first quarter of 
the page was run down to the first heavy line, and then 
the' page was rolled back. With a new master card in the 
reading unit, the second set of cards was read. The type
writer skipped over the previously printed matter and 
placed the data in their proper place on the page. When 
the heavy line was reached a. second time, the whole process 
was repeated for the twilights printed below the line. 
Thus, each page was done in four parts without removing 
it from the typewriter. The present day solution would be 
simpler still: the typewriter is able to read a card and print 
informatian from it, then eject the card without returning 
the carriage and continue with the next card on the same 
line; finally it ejects that card and returns the carriage for 
a new line. 

The planet page (Figure 3) of the 1950 Nautical Al
manac is radically different from the star page (Figure 
4), yet both are done with the same control panel with 
six changes of wiring. Six jackplugs are removed to do 
the planet page, and inserted to da the ather. 0 f caurse, 
the master cards are radically different. I am often 
tempted to think of a super control panel for this machine, 
with which any printing job could be done merely by 
punching up the proper master card. One could' wire a 
permanent control panel and with a master card to suit 
eachjob do perhaps 95 per cent of all the work demanded. 
There is a practical limit, of course, which comes from the 
finite size of the control panel and the number of available 
selectors. Beyond this point back circuits are bound to 
occur. 

The interpolation table of the lVautical Alrnanac (Fig
ure 5) was canstructed on the accaunting machine from 
blank cards by using suitable rolling counters. These pages 
give, for the objects on the planet and star pages, a pro
portional parts table which enables the navigator to inter
polate without multiplying. We do his multiplying for him, 

87 

making it simple for the navigator to use the data ta find 
his position. 

Figure 6 is a good sample of the versatility of the type
writer.The apparent positions of selected pairs of stars 
were computed on the IBM machines for the International 
Latitude Service. The valume was to have very small cir
culation. It was to consist of perhaps a hundred copies, 
and we were not prepared to print it. The obvious thing to 
do was to mimeograph it, and that is what was done. The 
typewriter did all the stenciling except the heading lines. 
The remainder, from the star numbers through the sym
bols and the data, was read from cards and automatically 
printed. The mimeograph stencils were extremely uniform, 
due to the electric typewriter action. 

The extra upspaces between lines are produced auta
matically at the proper intervals by code punches in the 
detail cards. No blank cards are needed. This saves time 
in printing as well as in arranging the detail cards. Such 
code punches can be used to suppress unwanted printing 
or force desired numbers on certain lines. Thus, it is not 
necessary to make sure that the detail card is blank where 
no printing is desired. 

The Minor Planet Ephe1nerides (Figure 7) are a mas
terpiece of typing. They illustrate most of the capabilities 
of the typewriter on one page. The only printing not done 
by the card-operated machine was the planet names. They 
were typed in by hand on an IBM proportional spacing 
typewriter. 

Figure 8 is another portion of that table. It gives the 
elements of the minor plane/ts. In the fourth column 
Roman numerals denote the month.· These were not 'Only 
printed but spaced from the detail card. The master card 
couldn't predict ahead of time which of the numerals was 
going ,to appear; therefare the detail card had to take aver 
the spacing. That is the closest approach to proportional 
spacing that the machine has. The typewriter itself con
tains no direct connectian between the key pressed and 
the space obtained; the spacing is controlled from the 
reading unit. It supplies as much as eighteen unit spaces, 
or 9/16 'Of an inch, from one card column. In general, the 
amount of space allotted to a character is determined 
beforehand from the reading unit and the master card, 
except, of course, in such special cases as the Roman 
numerals. 

It would be appropriate to mention here the problem of 
point plotting, as it has already arisen in same earlier dis
cussions. Choose one coordinate as the upspace of the 
platen, and the ather as a motion of the carriage along the 
line. It is possible to arrange a deck of cards which will 
determine how far the carriage moves before a symbol is 
printed. I f ten inches is the width of the page, then, with 
320 unit spaces, the accuracy of the plot will be 0.3 per 
cent of full scale. Several passages 'Of the same page 



168 
G 
C 
T GHA 

h 0 , 

o 34232.7 
1 357 35.2 
2 1237.6 
3 27 40.1 
4 42 42.6 
5 5745.0 
6 72 47.5 
7 87 49.9 
8 10252.4 
9 117 54.9 

10 132 57.3 
11 147 59.8 
12 163 02.3 
13 17804.7 
14 193 07.2 
15 20809.7 
16 223 12.1 
17 238 14.6 
18 253 17.1 
19 268 19.5 
20 283 22.0 
21 298 24.4 
22 313 26.9 
23 328 29.4 

o 343 31.8 
1 358 34.3 
2 13 36.8 
3 28 39.2 
4 43 41.7 
5 58 44.2 
6 73 46.6 
7 88 49.1 
8 103 51.6 
9 11854.0 

10 133 56.5 
11 14858.9 
12 164 01.4 
13 17903.9 
14 194 06.3 
15 209 OS.S 
16 224 11.3 
17 239 13.7 
18 254 16.2 
19 269 18.7 
20 28421.1 
21 299 23.6 
22 31426.0 
23 329 28.5 

o 34431.0 
1 359 33.4 
2 1435.9 
3 29 38.4 
4 4440.8 
5 59 43.3 
6 7445.8 
7 89 48.2 
8 10450.7 
9 119 53.2 

10 13455.6 
11 149 58.1 
12 165 00.5 
13 180 03.0 
14 19505.5 
15 210 07.9 
16 225 10.4 
17 240 12.9 
18 255 15.3 
19 270 17.8 

·20 285 20.3 
21 300 22.7 
22 315 25.2 
23 330 27.7 

1950 SEPTEMBER 4, 5, 6, (MON., TUE., WED.) 

VENUS -3.3 
GHA Dec. 

o , 

19720.3 +1456.3 
212 19.7 55.4 
227 19.1 54.4 
242 18.6 •• 53.5 
257 18.0 52.6 
272 17.4 51.6 
287 16.9 +14 50.7 
302 16.3 49.7 
317 15.7 48.8 
332 152 •• 47.9 
347 14.6 46.9 

2 14.0 46.0 
17 13.5 +14 45.1 
32 12.9 44.1 
47 12.3 43.2 
6211.8 •• 422 
77 11.2 41.3 
92 10.6 40.3 

107 10.1 +14 39.4 
122 09.5 38.5 
137 09.0 37.5 
152 08.4 •• 36.6 
16707.8 35.6 
182 07.3 34.7 

19706.7 +1433.7 
212 06.1 32.8 
227 05.6 31.8 
242 05.0 •• 30.9 
257 04.5 29.9 
272 03.9 29.0 
287 03.4 +14 28.0 
302 02.8 27.0 
317 02.2 26.1 
332 01.7 •• 25.1 
347 01.1 24.2 

2 00.6 23.2 
17 00.0 +14 22.3 
31 59.4 21.3 
4658.9 20.4 
61 58.3 •• 19.4 
76 57.8 18.4 
91 57.2 17.5 

106 56.7 +14 165 
121 56.1 15.5 
136 55.6 14.6 
151 55.0" 13.6 
166 54.5 12.7 
181 53.9 11.7 

19653.4 +14 10.7 
211 52.8 09.8 
226522 OS.8 
241 51.7 •• 07.8 
256 51.1 06.9 
271 50.6 05.9 
286 50.0 +1404.9 
301 49.5 03.9 
316 48.9 03.0 
331 48.4 •• 02.0 
346 47.9 01.0 

1 47.3 14 00.0 
16 46.8 +13 59.1 
3146.2 58.1 
46 45.7 57.1 
61 45.1 •• 56.1 
76 44.6 55.2 
91 44.0 54.2 

106 43.5 +13 53.2 
121 42.9 52.2 
136 42.4 51.3 
151 41.8 •• 50.3 
166 41.3 49.3 
181 40.8 48.3 

MARS 1.1 
GHA Dec. 

120 02.0 -17 20.8 
135 02.8 21.3 
150 03.6 21.8 
165 04.5 •• 22.3 
180 05.3 22.8 
195 06.1 23.3 
210 07.0 -17 23.8 
225 07.8 24.3 
240 08.6 24.8 
255 09.5 •• 25.3 
270 10.3 25.8 
285 11.1 26.3 
300 12.0 -17 26.8 
315 12.8 27.3 
330 13.6 27.8 
345 14.5 •• 28.3 

o 15.3 28.8 
15 16.1 29.3 
30 16.9 -17 29.8 
45 17.8 30.3 
60 18.6 30.8 
75 19.4 .. 31.3 
90 20.2 31.S 

105 21.1 32.3 

120 21.9 -17 32.8 
135 22.7 33.3 
150 23.5 33.8 
165 24.4 •• 34.3 
180 25.2 34.8 
195 26.0' 35.3 
210 26.8 -17 35.8 
225 27.7 36.3 
240 28.5 36.8 
255 29.3 .. 37.3 
270 30.1 37.8 
285 30.9 38;3 
30031.8 -1738.8 
315 32.6 39.3 
330 33.4 39.8 
345 34.2 •• 40.3 

o 35.1 40.8 
1535.9 41.3 
30 36.7 -17 41.8 
45 37.5 42.3 
60 38.3 42.8 
75 39.1 •• 43.3 
90 40.0 43.8 

105 40.8 44.3 

120 41.6 -17 44.8 
135 42.4 45.2 
150 43.2 45.7 
165 44.0 •• 46.2 
180 44.9 46.7 
195 45.7 47.2 
210 46.5 -1747.7 
225 47.3 48.2 
240 48.1 48.7 
255 48.9 •• 49.2 
270 49.7 49.7 
285 50.6 50.2 
300 51.4 -1750.7 
315 52.2 51.2 
330 53.0 51.7 
345 53.8 •• 52.2 

o 54.6 52.7 
15 55.4 53.1 
30 56.2 -17 53.6 
4557.1 54.1 
60 57.9 54.6 
75 58.7 •• 55.1 
90 59.5 55.6 

106 00.3 56.1 

JUPITER - 2.4 
GHA Dec. 

8 41.4 -12 13.3 
23 44.2 13.4 
3847.0 13.5 
53 49.S •• 13.6 
6852.5 13.8 
83 55.3 13.9 
98 58.1 -12 14.0 

114 00.8 14.1 
129 03.6 14.2 
144 06.4 •• 14.3 
159 09.1 14.4 
174 11.9 14.6 
189 14.7 -12 14.7 
204 17.4 14.8 
219 20.2 14.9 
234 23.0 •• 15.0 
249 25.8 15.1 
264 28.5 15.3 
279 31.3 -12 15.4 
294 34.1 15.5 
309 36.8 15.6 
324 39.6 •• 15.7 
339 42.4 15.8 
354 45.1 15.9 

9 47.9 -12 16.1 
2450.7 16.2 
39 53.4 16.3 
54 56.2 •• 16.4 
6959.0 16.5 
8501.7 16.6 

100 04.5 -12 16.7 
115 07.3 16.9 
130 10.0 17.0 
145 12.8 •• 17.1 
160 15.6 17.2 
175 18.3 17.3 
190 21.1 -12 17.4 
205 23.9 17.5 
220 26.6 17.7 
235 29.4 •• 17.8 
250 32.2 17.9 
265 34.9 18.0 
280 37.7 -12 18.1 
295 40.5 18.2 
310 43.2 18.3 
325 46.0 •• 18.5 
340 48.8 18.6 
355 51.5 18.7 

10 54.3 -12 18.8 
25 57.1 18.9 
40 59.8 19.0 
56 02.6 •• 19.1 
71 05.4 19.2 
8608.1 19.4 

101 10.9 -12 19.5 
116 13.6 19.6 
131 16.4 19.7 
146 19.2 •• 19.8 
161 21.9 19.9 
176 24.7 20.0 
191 27.5 -12 20.2 
206 30.2 20.3 
221 33.0 20.4 
236 35.8 •• 20.5 
251 38.5 20.6 
266 41.3 20.7 
281 44.1 -12 20.8 
296 46.8 20.9 
311 49.6 21.1 
326 52.3 •• 21.2 
341 55.1 21.3 
356 57.9 21.4 

SATURN 1.3 
GHA Dec. 

169 53.3 + 5 16.6 
184 55.5 16.4 
19957.7 16.3 
214 59.9 •• 16.2 
230 02.1 16.1 
245 04.2 16.0 
260 06.4 + 5 15.8 
275 08.6 15.7 
290 10.8 15.6 
305 13.0 •• 15.5 
320 15.1 15.3 
335 17.3 15.2 
350 19.5 + 5 15.1 

5 21.7 15.0 
20 23.8 14.9 
35 26.0 •• 14.7 
50 28.2 14.6 
6530.4 14.5 
80 32.6 + 5 14.4 
9534.7 14.3 

110 36.9 14.1 
125 39.1 •• 14.0 
140 41.3 13.9 
155 43.5 13.8 

170 45.6 + 5 13.6 
185 47.8 13.5 
200 50.0 13.4 
215 52.2 •• 13.3 
230 54.3 13.2 
245 56.5 13.0 
260 58.7 + 5 12.9 
2.76 00.9 12.8 
291 03.1 12.7 
306 05.2 •• 12.5 
321 07.4 12.4 
336 09.6 12.3 
351 11.8 + 5 12.2 

614.0 12.1 
21 16.1 . 11.9 
36 18.3 •• 11.8 
51 20.5 11.7 
66 22.7 11.6 
81 24.8 + 5 11.5 
9627.0 11.3 

111 29.2 11.2 
126 31.4 •• 11.1 
141 33.6 11.0 
156 35.7 10.8 

MOON 
GHA code Dee. code 

280 55.0 114 +25 47.4 + 67 
295 25.4 114 25 54.1 + 65 
309 55.8 113 26 00.6 + 64 
324 26.1 112 • 26 07.0 + 6) 

338 56.3 III 26 13.3 + 61 
353 26.4 III 26 19.4 + 61 

7 56.5 110 +26 25.5 + 59 
22 26.5 110 26 31.4 + 58 
36 56.5 109 26 372 + 57 
51 26.4 108 • 26 42.9 + 56 
65 56.2 100 26 48.5 + 54 
80 26.0 107 26 53.9 + 53 
94 55.7 107 +26 592 + 52 

109 25:4 106 27 04.4 + 51 
123 55.0 lOS 2709.5 + 49 
138 24.5 lOS • 27 14.4 + 48 
152 54.0 104 27 19.2 + 47 
167 23.4 103 27 23.9 + 45 
181 52.7 103 +27 28.4 + 44 
19622.0 103 27 32.8 + 43 
210 51.3 102 27 37.1 + 42 
225 20.5 101 • 27 41.3 + 40 
239 49.6 101 27 45.3 + 39 
254 18.7 100 27 49.2 + 38 

268 47.7 100 +27 53.0 + 36 
283 16.7 99 27 56.6 + 3S 
297 45.6 99 28 00.1 + 34 
312 14.5 98 • 28 03.5 + 32 
326 43.3 98 28 06.7 + 31 
341 12.1 97 28 09.8 + 30 
355 40.8 97 +28 12.8 + 28 
10 09.5 96 28 15.6 + 27 
24 38.1 96 28 18.3 + 25 
39 06.7 96 • 28 20.8 + 25 
53 35.3 95 28 23.3 + 22 
68 03.8 94 28 25.5 + 22 
82 32.2 94 +28 2"7.7 + 19 
97 00.6 94 28 29.6 + 19 

III 29.0 93 2831.5 + 17 
125 57.3 93 '2833.2 + 16 
140 25.6 93 28 34.8 + 14 
154 53.9 92 28 36.2 + 13 
169 22.1 92 +28 37.5 + 11 
183 50.3 91 28 38.6 + 10 
198 18.4 92 28 39.6 + 9 
212 46.6 90 • 28 40.5 + 7 
227 14.6 91 28 41.2 + 6 
241 42.7 90 28 41.8 + 4 

171 37.9 + 5 10.7 256 10.7 90 +28 42.2 + .) 
90 28 42.5 + 1 
89 28 42.6 0 
90 '28 42.6 - 2 
88 28 42.4 - .) 
89 28 42.1 - S 
89 +28 41.6 - 6 
88 28 41.0 - 7 
88 28 40.3 - 9 
88 • 28 39.4 - 11 
88 28 38.3 -12 
88 28 37.1 -1) 

87 +28 35.8 -15 
88 28 34.3 - 16 
IJ7 28 32.7-18 
IJ7 '28 30.9 -20 
IJ7 28 28.9 -20 
87 28 26.9 - 23 
IJ7 +28 24.6 - 24 
IJ7 28 22.2 -25 
IJ7 28 19.7 -27 
IJ7 '28 17.0 -28 
87 28 14.2 -)0 

IJ7 28 11.2 -31 

186 40.1 10.6 ·270 38.7 
201 42.3 lOS 285 06.7 
216 44.4 •• 10.4 299 34.6 
231 46.6 10.2 314 02.6 
246 48.8 10.1 328 30.4 
261 51.0 + 5 10.0 342 58.3 
276532 09.9 357 26.2 
291 55.3 09.7 11 54.0 
306 57.5 •• 09.6 26 21.8 
321 59.7 09.5 40 49.6 
337 01.9 09.4 5517.4 
352 04.1 + 5 09.3 69 45.2 

7 06.2 . 09.1 84 12.9 
2208.4 09.0 98 40.7 
37 10.6 .. 08.9 113 08.4 
52 12.8 08.8 127 36.1 
6714.9 08.7 142 03.8 
82 17.1 + 5 08.5 156 31.5 
97 19.3 08.4 170 59.2 

112 21.5 08.3 185 26.9 
127 23.6 .. 08.2 199 54.6 
142 25.S 08.0 214 22.3 
157 28.0 07.9 228 50.0 

24 34530.1 19640.2 +13 47.3 121 01.1 -17 56.6 1200.6 -12 21.5 172 30.2 + 507.8 243 17.7 86 +28 08.1 -33 

-6 - 10 + 8 - 5 + 28 - 1 + 22 - 1 

FIGURE 3 
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1950 SEPTEMBER 4, 5, 6, (MON., TOE., WED.) 169 
G SUN STARS Lat S rise Twit. Moonrise 
C Transit J--' J-un_~begi..;..:".;ns+~--r_~.--~-r-~~ 

ADDITIONAL 
ALTITUDE 

CORRECTIONS _T~_G~H~A _____ ~_-+N~o~'_~~~_~~~._~M~e~r.~Gr~. 4 5 6 7 
h 0'0, 0' 0' hm~ hmhmhmhmhmhm 

o 180 10.6 + 7 29.0 
1 195 10.8 28.1 
2 210 11.0 27.2 
3 225 11.2 •• 26.3 
4 240 11.4 25.4 
5 255 11.6 24.4 
6 270 11.8 + 7 23.5 
7 285 12.0 22.6 
8 300 12.2 21.7 
9 315 12.4 •• 20.8 

10 330 12.6 19.8 
11 345 12.8 18.9 
12 0 13.0 + 7 18.0 
13 15 13.2 17.1 
14 30 13.4 16.2 
15 45- 13.6 •• 15.2 
16 60 13.9 14.3 
17 75 14.1 13.4 
18 90 14.3 + 7 12.5 
19 105 14.5 11.6 
20 120 14.7 10.6 
21 135 14.9 •• 09.7 
22 150 15.1 08.8 
23 165 _15.3 07.9 

o 180 15.5 + 7 06.9 
1 195 15.7 06.0 
2 210 15.9 05.1 
3 225 16.1 •• 04.2 
4 240 16.3 03.2 
5 255 16.5 02.3 
6 270 16.7 + 7 01.4 
7 285 16.9 7 00.5 
8 300 17.1 6 59.5 
9 315 17.4" 58.6 

10 330 17.6 57.7 
11 345 17.8 56.8 
12 0 18.0 + 6 55.8 
13 15 18.2 54.9 
14 30 18.4 54.0 
15 45 18.6 •• 53.1 
16 60 18.8 52.1 
17 75 19.0 51.2 
~8 90 19.2 + 6 50.3 
19 105 19.4 49.3 
20 120 19.6 48.4 
21 135 19.8" 47.5 
22 150 20.0 46.6 
23 165 20.3 45.6 

1 358 32.3 +28 49.2 1 12 
2 358 21.7 +58 52.6 1 12 
3 349 42.9 -18 15.2 1 47 
4 339 21.2 +59 58.7 2 28 
5 336 01.1 -57 28.9 2 41 

6 332 36.5 +89 01.8 2 55 
7 328 54.0 +23 13.9 3 10 
8 315 53.9 -40 29.7 4 02 
9 309 48.1 +49 41.2 4 26 

10 291 43.7 +16 24.9 5 38 

11 28157.5 - 8 15.1 6 17 
12 281 44.5 +45 57.0 6 18 
13 279 22.8 + 6 18.6 6 27 
14 279 12.5 +28 34.2 6 28 
15 276 34.4 - 1 13.6 6 38 

16 271 52.6 + 7 24.2 6 57 
17 264 17.4 -52 39.6 7 27 
18 259 15.5 -1638.5 7 48 
19 255 49.9 -28 53.8 8 01 
20 245 49.4 + 5 21.4 8 41 

21 244 25.7 +28 09.0· 8 47 
22 23438.1 -59 20.7 9 26 
23 223 27.8 -43 13.7 10 10 
24 221 51.1 -69 30.6 10 17 
25 218 42.9 - 8 26.4 10 29 

Sun's 
Alt. Low'r Venus Mars 

Limb 70 432 1111 CJ 0 0 c:J 
68 4 41 1111 CJ 0 0 0 1--0 -+--,-+--, +--, 
66 4 48 1111 0 0 0 0 0 
64 4 54 1 13 0 0 0 0 30 0.2 0.1 0.1 
62 4 59 1 51 18 44 0 0 22 02 45 0.2 0.1 0.1 
60 5 04 2 16 19 38 20 05 21 08 22 42 60 0.2 0.1 0.1 
58 5 08 2 35 20 11 20 46 21 47 23 10 75 0.2 0.0 0.0 
56 5 12 2 51 20 35 21 14 22 13 23 31 90 0.2 0.0 0.0 
54 5 15 ·3 04 20 55 21 36 2~ 35 23 49 .............. _I...---&._ 

52 5 18 3 15 21 11 21 54 22 52 24 04 
50 5 21 3 24 21 25 22 09 23 07 24 17 Moon's Lower Limb 
45 5 27 3 43 21 54 22 41 23 37 24 44 Add 
40 5 31 3 57 22 17 23 05 ~4 01 0 01 All. 4 5 6 
35 5 35 4 08 22 36 23 25 24 20 0 20 0 I I , 

30 5 39 4 17 22 52 23 41 24 37 0 37 0 
20 5 45 4 31 23 20 24 10 0 10 1 05 4 12.1 12.5 13.0 
10 5 51 4 41 23 43 24 35 0 35 1 29 8 12.1 12.5 13.0 
o 5 55 4 46 24 06 0 06 0 58 1 51 12 12.2 12.5 13.0 

10 6 00 4 50 24 28 0 28 1 21 2 14 16 12.2 12.6 13.1 
20 6 05 4 52 24 52 0 52 1 46 2 38 20 12.2 12.6 13.1 
30 6 11 452 0 22 1 20 2 14 3 06 24 12.3 12.7 13.2 
35 6 14 4 50 0 37 1 36 2 32 3 22 28 12,4 12.7 13.2 
40 6 17 4 47 0 55 1 55 2 51 3 41 32 12.5 12.8 13.3 
45 6 21 4 43 1 16 2 19 3 16 4 04 36 12.6 12.9 13.3 
50 6 26 4 38 1 43 2 49 3 47 434 40 12.7 13.0 13.4 
52 6 28 4 35 1 56 3 04 4 03 4 49 44 12.8 13.1 13.5 
54 6 31 4 33 2 11 3 22 4 21 5 05 48 12.9 13.2 13.6 
56 633 4 29 2 28 3 43 4 43 5 26 52 13.1 13.4 13.7 
58 6 36 4 25 2 50 4 10 5 12 5 51 56 13.2 13.5 13.8 

26 208 34.1 +12 12.7 11 10 60 6 39 4 20 3 17 4 49 5 56 6 26 60 13.4 13.6 13.9 
27 194 49.9 +62 01.2 12 05 S 64 13.5 13.8 14.1 
28 183 22.1 +1451.0 1250 1---i.-+----+-T-w-lt.+-.....L---IL..--..L---I68 13.7 13.9 14.2 
29 174 03.3 -62 49.7 13 27 Lat. Sunset ends Moonset 72 13.9 14.1 14.3 
30 172 54.5 -56 50.3 13 32 N 4 5 6 7 76 14.1 14.2 14.5 

31 168 48.4 -59 25.3 13 48 0 
h m h m h-h-=--m+-:h":!"-m4-":"'h'::'-m+-:h":-m-l 80 14.3 14.4 14.6 

84 14.4 14.6 14.7 
88 14.6 14.7 14.9 
90 14.8 14.9 15.0 

32 16702.3 +5613.8 13 55 70 1923 /111 0 0 0 0 
33 159 31.1 +5511.1 14 25 68 19 14 II/l 0 0 0 0 
34 159 21.4 -10 54.2 14 26 66 1907 1111 0 CJ 0 0 Addlola"/" 
35 153 36.2 +49 33.7 14 49 64 19 01 22 42 0 CJ 0 0 "ade (00" 

36 149 03.8 -36 07.8 15 07 
37 14639.0 +19 26.4 15 17 
38 140 57.1 -60 38.3 15 40 
39 137 17.8 +14 21.6 15 54 
40 126 51.1 +26 52.9 16 36 

62 18 56 22 04 16 55 CJ 0 19 08 I---~~':""--
60 18 52 21 40 16 01 17 22 18 10 18 27 Moon's Upper 1.1mb 
58 18 48 21 21 15 28 1641 17 31 17 59 Subtrad 
56 18 44 21 05 15 04 16 13 17 04 17 38 I-A--U--. ~4;;';;:':~5--6-54 18 41 20 52 14 45 15 51 16 43 17 20 0 

52 18 38 20 41 14 29 15 33 16 25 17 04 ", 
50 18 35 20 32 14 15 15 18 16 10 16 51 ~ 17.5 17.3 17.0 

41 120 38.9 -22 29.1 17 00 45 18 30 20 14 13 47 14 47 15 39 16 23 8 17.5 17.3 17.0 
42 113 24.4 -26 19;6 17 29 40 18 25 19 59 13 24 1423 15 16 1602 12 17.5 17.3 17.0 

o 180 20.5 + 6 44.7 43 109 08.8 -6856.8 17 46 35 18 21 1948 13 06 1403 14 56 15 44 16 17.4 17.2 16.9 
1 195 20.7 43.8 44 10306.8 -1540.0 18 10 30 18 18 1940 1250 1346 1439 1528 20 17.4 17.2 16.9 
2 210 20.9 42.8 45 97 26.1 -37 04.4 18 33 20 18 12 19 26 12 23 13 18 14 11 15 02 24 17.3 17.1 16.9 
3 225 21.1 •• 41.9 10 18 07 19 17 12 00 12 53 13 46 14 38 28 17.2 17.1 16.8 
4 240 21.3 41.0 46 96 50.3- +12 35.7 18 35 0 18 02 19 11 11 39 12 30 13 24 14 17 32 17.2 17.0 16.7 
5 255 21.5 40.1 47 91 07.9 +51 29.8 18 58 10 17 57 19 07 11 18 1208 13 01 13 55 36 17.1 16.9 16.7 
6 270 21.7 + 6 39.1 48 84 46.3 -34 24.8 19 24 20 17 53 19 06 10 55 11 43 12 36 13 32 40 16.9 16.8 16.6 
7 285 21.9 38.2 49 81 10.8 +38 44.3 19 38 30 17 47 19 06 10 29 1115 1207 13 05 44 16.8 16.7 16.5 
8 300 22.1 37.3 50 7656.7 -2621.7 19 55 35 1744 19 08 1013 1058 11 50 1249 48 16.7 16.6 16.4 
9 315 22.3 •• 36.3 40 17 41 19 11 9 55 10 38 11 30 12 31 52 16.6 16.4 16.3 

10 330 22.5 35.4 51 62 54.1 + 8 44.2 20 51 45 17 37 19 15 9 34 10 15 11 06 12 08 56 16.4 16.3 16.2 
11 345 22.8 34.5 52 54 33.0 -56 53.9 21 24 50 17 32 19 20 9 06 9 44 10 35 11 39 60 16.2 16.2 16.1 
12 0 23.0 + 6 33.6 53 50 03.5 +45 06.3 21 42 52 17 30 19 23 8 53 9 29 10 19 11 24 64 16.1 16.0 15.9 
·13 15 23.2 32.6 54 34 :33.3 + 9 38.9 22 44 54 17 28 19 26 8 37 9 11 10 01 11 08 68 15.9 15.9 15.8 
14 30 23.4 31.7 55 2842.4 -47)2.1 23 07 56 17 25 19 29 8 19 850 938 10 48 72 15.7 15.7 15.7 
15 45 23.6 •• 30.8 58 17 22 19 33 7 58 8 22 9 09 10 23 76 15.6 15.6 15.6 
16 60 23.8 29.8 56 16 15.6 -29 53.0 0 01 60 17 19 19 38 7 29 743 8 26 9 48 80 15.4 15.4 15.4 
17 75 24.0 28.9 57 14 25.2 +14 56.5 0 08 S 84 15.2 15.2 15.3 
18 90 24.2 + 6 28.0 t-;::G:-r--::F.q:-u-a~ti~on-o"';"f =Ti-m-e ":":(A:-p-p.---:-M~ea"'n"') ~ __ '--_...L-_..J.._-L_--IL..-_-I 88 15.0 15.1 15.1 
19 105 24.4 27.0 c Meri~ ~ IJ~:~~ich 90 14.9 14.9 15.0 
20 120 24.6 26.1 r T:+-:::4.;;.....:+_;:.5 ~+-~6~_+-::~~:-:----r-::---,1"'"!"!';.:;.;.:..;,.;.;.~~ __ --I 
21 135 24.9 •• 25.2 h . m 5 m 5 m 5 DAY Moon Venus Mars Jupiter Soturn Subtrll(t/rom 
22 150 25.1 24.2 0 + 0 41.9 + 1 01.6 + 1 21.4 h m h m h m h m h m lab/" bad: (00" 

23 165 25.3 23.3 6 + 0 46.8 + 1 06.5 + 1 26.4 4 5 27 10 51 15 59 23 21 12 39 I-....-;..;.;.:.;..~;;.;.;.;...-
12 + 0 51.7 + 1 11.5 + 1 31.4 5 6 18 10 52 15 58 23 17 12 35 

24 180 25.5 + 6 22.4 18 + 0 56.6 + 1 16.4 + 1 365 6 7 11 10 53 15' 56 23 12 12 32 

code - 9 24 + 1 01.6 + 1 21.4 + 1 41.5 7 8 04 10 54 15 55 23 08 12 28 

FIGURE 4 
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264 12m 13m 

Sec. SUN 'Y' MOON ;]>0 ~.r:- }>0 
• .r:- ;]>0 • .r:- Sec. SUN 'Y' MOON ,jf ~.r:- ;]>0 

.• .r:-
;]>0 • .r:-PLANET f. ... f. ... PLANET f. ... f. ... 

CI ,,0 ,,0 CI ,,0 Ci ,,0 CI ,,0 CI ,,0 
0 , 0 I 0 I , I I 0 , 0 , 0 , I , , 

0 3 00.0 300.5 251.8 o 0.0 60 1.3 120 2.5 0 3 15.0 3 15.5 306.1 o 0.0 60 1.4 120 2.7 
1 3 00.3 3 00.7 252.0 1 0.0 61 1.3 121 2.5 1 3 15.3 3 15.8 306.4 1 0.0 61 1.4 121 2.7 
2 3 00.5 3 01.0 252.3 2 0.0 62 1.3 122 2.5 2 3 15.5 3 16.0 3 06.6 2 0.0 62 1.4 122 2.7 
3 3 00.8 301.2 252.5 3 0.1 63 1.3 123 2.6 3 3 15.8 3 16.3 3 06.8 3 0.1 63 1.4 123 2.8 
4 301.0 301.5 252.8 4 0.1 64 1.3 124 2.6 4 3 16.0 3 16.5 3 07.1 4 0.1 64 1.4 124 2.8 

5 301.3 301.7 253.0 5 0.1 65 1.4 125 2.6 5 3 16.3 3 16.8 3 07.3 5 0.1 65 1.5 125 2.8 
6 3 01.5 302.0 253.2 6 0.1 66 1.4 126 2.6 6 3 16.5 3 17.0 307.5 6 0.1 66 1.5 126 2.8 
7 301.8 3 02.2 253.5 7 0.1 67 1.4 127 2.6 7 3 16.8 3 17.3 3 07.8 7 0.2 67 1.5 127 2.9 
8 3 02.0 3 02.5 253.7 8 0.2 68 1.4 128 2.7 8 3 17.0 3 17.5 308.0 8 0.2 68 1.5 128 2.9 
9 3 02.3 302.7 253.9 9 0.2 69 1.4 129 2.7 9 3 17;3 3 17.8 3 08.3 9 0.2 69 1.6 129 2.9 

10 3 02.5 303.0 254.2 10 0.2 70 1.5 130 2.7 10 3 17.5 3 18.0 3 08.5 10 0.2 70 1.6 130 2.9 
11 3 02.8 3 03.3 254.4 11 0.2 71 1.5 131 2.7 11 3 17.8 3 18.3 3 08.7 11 0.2 71 1.6 131 2.9 
12 303.0 3 03.5 254.7 12 0.3 72 1.5 132 2.8 12 3 18.0 3 18.5 3 09.0 12 0.3 72 1.6 132 3.0 
13 303.3 3 03.8 254.9 13 0.3 73 1.5 133 2.8 13 3 18.3 3 18.8 3 09.2 13 0.3 73 1.6 133 3.0 
14 3 03.5 3 04.0 255.1 14 0.3 74 1.5 134 2.8 14 3 18.5 3 19.0 3 09.5 14 0.3 74 1.7 134 3.0 

15 ' 3 03.8 304.3 255.4 15 0.3 75 1.6 135 2.8 15 3 18.8 3 19.3 3 09.7 15 0.3 75 1.7 135 3.0 
16 3 04.0 3 04.5 255.6 16 0.3 76 1.6 136 2.8 16 3 19.0 319.5 3 09.9 16 0.4 76 1.7 136 3.1 
17 3 04.3 3 04.8· 255.9 17 0.4 77 1.6 137 2.9 17 3 19.3 3 19.8 3 10.2 17 0.4 77 1.7 137 3.1 
18 3 04.5 305.0 2 56.1 18 0.4 78 1.6 138 2.9 18 3 19.5 3 20.0 3 10.4 18 0.4 78 1.8 138 3.1 
19 3 04.8 3 05.3 256.3 19 0.4 79 1.6 139 2.9 19 3 19.8 3 20.3 3 10.7 19 0.4 79 1.8 139 3.1 

20 3 05.0 3 05.5 256.6 20 0.4 80 1.7 140 2.9 20 3 20.0 3 20.5 3 10.9 20 0.5 80 1.8 140 3.2 
21 3 05.3 305.8 256.8 21 0.4. 81 1.7 141 2.9 21 3 20.3 3 20.8 3 11.1 21 0.5 81 1.8 141 3.2 
22 3 05.5 3 06.0 257.0 22 0.5 82 1.7 142 3.0 22 3 20.5 321.0 3 11.4 22 0.5 82 L8 142 3.2 
23 3 05.8 3 06.3 257.3 23 0.5 83 1.7 143 3.0 23 3 20.8 3 21.3 3 11.6 23 0.5 83 1.9 143 3.2 
24 3 06.0 306.5. 257.5 24 0.5 84 L8 144 3.0 24 32LO 3 21.6 3 11.8 24 0.5 84 1.9 144 3.2 

25 306.3 306.8 2 57.8 25 0.5 85 1.8 145 3.0 25 3 21.3 3 21.8 3 12.1 25 0.6 85 L9 145 3.3 
26 3 06.5 3 07.0 258.0 26 0.5 86 1.8 146 3.0 26 3 21.5 3 22.1 3 12.3 26 0.6 86 1.9 146 3.3 
27 3 06.8 307.3 2 58.2 27 0.6 87 1.8 147 3.1 27 3 21.8 3 22.3 3 12.6 27 0.6 87 2.0 147 3.3 
28 3 07.0 3 07.5 258.5 28 0.6 88 1.8 148 3.1 28 3 22.0 3 22.6 3 12.8' 28 0.6 88 2.0 148 3.3 
29 3 07.3 3 07.8 258.7 29 0.6 89 1.9 149 3.1 29 3 22.3 3 22.8 3 13.0 29 0.7 89 2.0 149 3.4 

30 307.5 3 08.0 259.0 30 0.6 90 1.9 150 3.1 30 3 22.5 3 23.1 3 13.3 30 0.7 90 2.0 150 3.4 
31 3 07.8 3 08.3 2 59.2 31 0.6 91 1.9 151 3.1 31 3 22.8 3 23.3 3 13.5 31 0.7 91 2.0 151 3.4 
32 3 08.0 308.5 2 59.4 32 0.7 92 1.9 152 3.2 32 3 23.0 3 23.6 3 13.8 32 0.7 92 2.1 152 3.4 
33 3 08.3 3 08.8 259.7 33 0.7 93 1.9 153 3.2 33 3 23.3 3 23.8 3 14.0 33 0.7 93 2.1 153 3.4 
34 3 08.5 3 09.0 2 59.9 34 0.7 94 2.0 154 3.2 34 3 23.5 3 24.1 3 14.2 34 0.8 94 2.1 154 3.5 

35 3 08.8 3 09.3 3 00.2 35 0.7 95 2.0 155 3.2 35 3 23.8 3 24.3 3 14.5 35 0.8 95 2.1 155 3.5 
36 3 09.0 3 09.5 3 00.4 36 0.8 96 2.0 156 3.3 36 3 24.0 3 24.6 3 14.7 36 0.8 96 2.2 156 3.5 
37 3 09.3 3 09.8 300.6 37 0.8 97 2.0 157 3.3 37 3 24.3 3 24.8 3 14.9 37 0.8 97 2.2 157 3.5 
38 3 09.5 3 10.0 3 00.9 38 0.8 98 2.0 158 3.3 38 3 24.5 3 25.1 3 15.2 38 0.9 98 2.2 158 3.6 
39 3 09.8 3 10.3 3 01.1 39 0.8 99 2.1 159 3.3 39 3 24.8 3 25.3 3 15.4 39 0.9 99 2.2 159 3.6 

40 3 10.0 3 10.5 3 01.3 40 0.8 100 2.1 160 3.3 40 3 25.0 3 25.6 3 15;7 40 0.9 100 2.3 160 3.6 
41 3 10.3 3 10.8 3 01.6 41 0.9 101 2.1 161 3.4 41 3 25.3 3 25.8 3 15.9 41 0.9 101 2.3 161 3.6 
42 3 10.5 3 11.0 3 01.8 42 0.9 102 2.1 162 3.4 42 3 25.5 3 26.1 3 16.1 42 0.9 102 2.3 162 3.6 
43 3 10.8 3 11.3 3 02.1 43 0.9 103 2.1 163 3 .. 4 43 3 25.8 3 26.3 3 16.4 43 1.0 103 2.3 163 3.7 
44 3 11.0 3 11.5 3 02.3 44 0.9 104 2.2 164 3.4 44 3 26.0 3 26.6 3 16.6 44 1.0 104 2.3 164 3.7 

45 3 11.3 31L8 3 02.5 45 0.9 105 2.2 165 3.4 45 ·326.3 3 26.8 3 16.9 45 1.0 105 2.4 165 3.7 
46 3 11.5 3 12.0 3 02.8 46 1.0 106 2.2 166 3.5 46 3 26.5 3 27.1 3 17.1 46 1.0 106 2.4 166 3.7 
47 3 11.8 3 12.J 3 03.0 47 1.0 107 2.2 167 3.5 47 3 26.8 3 27.3 3 17.3 47 1.1 107 2.4 167 3.8 
48 3 12.0 3 12.5 3 03.3 48 LO 108 2.3 168 3.5 48 3 27.0 3 27.6 3 17.6 48 1.1 108 2.4 168 3.8 
49 3 12.3 3 12.8 3 03.5 49 LO 109 2.3 169 3.5 49 3 27.3 3 27.8 3 17.8 49 1.1 109 2.5 169 3.8 

50 3 12.5 3 13.0 3 03.7 50 1.0 110 2.3 170 3.5 50 3 27.5 3 28.1 3 18.0 50 1.1 110 2.5 170 3.8 
51 3 12.8 3 13.3 3 04.0 51 1.1 III 2.3 171 3.6 51 3 27.8 3 28.3 3 18.3 51 1.1 III 2.5 171 3.8 
52 3 13.0 3 13.5 3 04.2 52 1.1 112 2.3 172 3.6 52 3 28.0 3 28.6 3 18.5 52 1.2 112 2.5 172 3.9 
53 3 13.3 3 13.8 3 04.4 53 1.1 113 2.4 173 3.6 53 3 28.3 3 28.8 3 18.8 53 1.2 113 2.5 173 3.9 
54 3 13~5 3 14.0 3 04.7 54 1.1 114 2.4 174 3.6 54 3 28.5 3 29.1 3 19.0 54 1.2 114 2.6 174 3.9 

55 3 13.8 3 14.3 304.9 55 1.1 115 2.4 175 3.6 55 3 28.8 3 29.3 3 19.2 55 1.2 115 2.6 175 3.9 
56 3 14.0 3 14.5 305.2 56 1.2 116 2.4 176 3.7 56 3 29.0 3 29.6 3 19.5 56 1.3 116 2.6 176 4.0 
57 3 14.3 3 14.8 3 05.4 57 1.2 117 2.4 177 3.7 57 3 29.3 3 29.8 3 19.7 57 1.3 117 2.6 177 4.0 
58 3 14.5 3 15.0 3 05.6 58 1.2 118 2.5 178 3.7 58 3 29.5 330.1 3 20.0 58 1.3 U8 2.7 178 4.0 
59 3 14.8 3 15.3 305.9 59 1.2 119 2.5 179 3.7 59 3 29.8 330.3 3 20.2 59 1.3 119 2.7 179 4.0 

60 3 15.0 3 15.5 306.1 60 1.3 120 2.5 180 3.8 60 330.0 3 30.6 3 20.4 60 1.4 120 2.7 180 4.1 
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APPARENT DECLINATIONS OF STAR-PAIRS 

For the upper transit, meridian of La Pla.ta 

Greenwich mean astronomical dates 

Group X 

55 56 57 58 59 60 

0 , 0 , CI , 0 , 0 , CI I 

1947 -3451 -'3452 -3457 -3454 -3451 -3451 

" " " " " " 
6 5 41.85 5 5L!·.44 5 16.82 3 41.37 2 26.21 0 15.35 1 

6 41.90 
8 54.49 6 16.85 6 41.39 4 26.21 3 15.34 0 7 4198 9 5455 8 16.91 5 41.43 4 26.24 3 15 .. 34 1 

8 42.07 q 54.63 8 16.96 B 41.47 6 26.27 5 15.35 3 9 4216 9 54.71 B 17.04 7 41.53 6 26.32 4 15.38 3 

10 42.25 9 54.79 8 17.11 
7 41.59 6 26.36 5 15.41 3 11 42.34 7 54.87 6 17.18 
5 41.65 5 26.41 4 15.44 3 12 42.41 4 54.93 3 17.23 
3 41.70 2 26.45 1 15.47 1 13 42.45 2 54.96 2 17,26 1 41.72 0 26.46 1 15.46 1 14 42.47 2 54.98 2 17.27 0 41 .. 72 1 26.45 2 15..45 4 

15 42.49 2 55.00 0 17.27 1 41.71 2 26.43 4 15.41 5 16 42.51 1 55.00 0 17.26 0 41.69 2 26.39 2 15.36 4 17 42.52 4 55.00 3 17.26 2 41.67 1 26.37 2 15.32 4 18 42.56 8 55.03 6 17.28 4 41.68 3 26.35 2 15.28 0 19 42.64 8 55e09 7 17.32 7 41.71 
5 26.37 4 15.28 2 

20 42.72 11 55r16 11 17.39 9 41.76 8 26.41 6 15.30 4 21 42.83 12 55·27 11 17.48 10 41.84 q 26.47 7 15.34 6 22 42.95 12 55,38 11 17.58 10 41.93 q 26.54 8 15.40 6 23 43.07 9 55.49 8 17.68 B 42.02 7 26.62 7 15.46 6 24 43.16 7 55.57 7 17.76 6 42.09 6 26.69 
5 15.52 4 

25 43.23 6 55.64 5 17.82 5 42.15 4 26.74 ) 15.56 , 
26 43.29 4 55.69 ., 17.87 3 42.19 :3 26.77 2 15.59 1 27 43.33 

3 55.73 2 17.90 2 42.22 1 26.79 ] 15.60 0 28 43.36 
:3 55.75 3 17.92 2 42.23 1 26.80 0 15.60 1 29 43.39 
4 55.78 3 17.94 3 42.24 2 26.80 0 15.59 1 

30 43.43 
6 55.81 5 17.97 ., 42.26 (j 26.AO 3 15.58 1 7 1 43-49 7 55.86 6 18.01 6 42.30 4 26.83 3 15.59 3 2 43.56 B 55.92 8 18.07 6 42.34 6 26.86 4 15.62 ) 3 43.64 10 56.00 9 18.13 q 42.40 8 26.90 7 15.65 5 4 43.74 11 56.09 10 18.22 q 42.48 q 26.97 8 15.70 7 

5 43.85 11 56.19 11 18.31 11 42.57 9 27 .. 05 8 15.77 8 6 43.96 11 56.30 11 18.42 10 42.66 10 27.13 9 15.85 8 7 44.07 56.41 18.52 42.76 27.22 15.93 
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OPPOSITION EPHEMERIDES 

1947 

917 Lyka 
h m 

3 4 12 36.0 
12 12 29. 7 ~.~ 
20 26 12 22.5 7'8 
28 12 14.7 7'7 

4 5 12 07.0 7'0 
13 12 00.0 . 

o 

- 6 23 24 
- 5 59 31 
- 5 28 
- 4 52 36 

38 
- 4 14 37 
- 3 37 

278 Paulina 
h m 

3 4 12 39.1 
12 12 33.8 ~.! 
20 27 12 27.4 7'0 
28 12 20.4 7'0 

4 5 12 13.4 . 
13 12 07.2 6.2 

o 

+ 8 32 39 
+ 9 11 36 
+ 9 47 
+10 17 30 

+10 37 2~ 
+10 44 

217 Eudora 
h m 

3 4 12 39.7 
12 12 34.9 ;.: 
20 27 12 29.3 6'1 
28 12 23.2 6'0 

4 5 12 1 7.2 5' 9 
13 12 11.3 . 

o 

+ 0 32 55 
+ 1 27 59 
+ 226 60 

+ 3 26 58 
+ 4 24 53 
+ 5 17 

1486 Marilyn 
h m 

3 12 12 39.7 
20 12 32.5 ~.! 
28 28 12 24.6 8'0 

4 5 12 16.6 . 
13 12 09.1 7.5 
21 12 02.7 6.4 

1485 Isa 
h m 

3 4 12 41.4 
12 12 36.0 ~.: 
20 28 12 30.1 6'2 
28 12 23.9 6'4 

4 5 12 17.5 . 
13 12 11.6 5.9 

o 

- 4 19 44 
- 3 35 50 
- 2 45 52 
- 1 53 49 
- 1 04 40 
- 0 24 

o 

-16 38 7 
-16 31 17 
-16 14

26 
-15 48 34 
-15 14 38 
-14 36 

1496 1938 SAl 
h m 

3 4 12 44.3 
12 12 38.6 ~. ~ 
20 28 12 31.5 8'0 
28 12 23.5 8:2 

4 5 12 15.3 7 7 
·13 12 07.6 • 

o 

- 8 53 23 
- 8 30 34 
- 7 56 43 
- 7 13 49 
- 6 24 50 
- 5 34 

Misc. 

14~5 

214
0 

0.448 , 
-66 
~3 

0.260* 
1 

12~0 

346
0 

0.381, 
-7. 6 

0.153* 
2 

13~8 

260
0 

0.514, 
-3. 6 

0.357* 
2 

15om6 

235
0 

0.376 
-6.' 5 

0.139 
13 

15!"5 

220
0 

0.520 , 
-47 
6'!'6 

0.368* 
7 

16.m2 

272
0 

0.352 
-6.'7 

0.098* 
12 

1947 

511 Davida 
h m 

3 12 12 39.6 
20 12 34.0 ~.: 
28 29 12 28.1 5'9 

4 5 12 22.2 . 
13 12 16.7 5.5 
21 12 12.0 4.7 

o 

+18 45 55 
+19 40 44 
+20 24 32 
+20 56 18 
+21 14 5 
+21 19 

.385 nmatar 
h m 0 

3 12 12 414 -12 50 M 
20 12 36.3 7.1 -13 06 6 

28 29 12 28.3 :.~ -13 12 3 
4 5 12 2~3 • -13 09 8 

13 12 12.8 7.5 -13 01 11 
21 12 06.3 6.5 -12 50 

929 Algunde 
h m 0 

3 12 12 41.8 -10 15 44 
20 12 35.6 ~.~ - 9 31 
28 29 12 28.4 7'4 - 8 36 !~ 

4 5 12 21.0 . - 7 33 
13 12 14.1 6.9 - 6 28 65 
21 12 08.4 5.7 - 5 26 62 

1291 Phryne 
h m 

3 12 12 40.2 
20 12 35.1 5.1 

28 29 12 29.4 ~. ~ 
4 5 12 23.6 5'5 

13 12 18.1 • 
21 12 13.3 4.8 

o 

-11 15 42 
-10 33 
- 9 44 49 

- 8 50 54 
- 7 54 56 
- 7 00 54 

1530 1938 SG 
h m 

3 12 12 44.6 
20 12 37.5 ~.! 
28 29 12 29.7 7'9 

4 5 12 21.8 . 
13 12 14.4 7.4 
21 12 07.8 6.6 

o 

-12 02 33 
-11 29 42 
-10 47 49 

- 9 58 52 
- 9 06 50 
- 8 16 

1549 Mikko 
hm 

3 12 12 45.3 
20 12 38.1 7.2 

28 29 12. 30.2 ~.: 
4 5 12 22.3 7' 1 

13 12 15.2 5'9 
21 12 09.3 . 

o 

+ 5 47 53 
+ 6 40 4'1 
+ 7 29 39 
+ 8 08 26 
+ 8 34 12 
+ 8 46 

FIGURE 7 
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Misc. 

cr.7 
85

0 

0.510 , 
-37 

f!16 
0.360* 

1 

13
0 

0.399, 
-9. 8 

0.180* 
2 

13~3 

307
0 

0.324 , 
-107 
lef.16 

.0.046* 
1 

13~8 

229
0 

0.507 , 
-4. 3 

0.347 
13 

11."7 

180
0 

0.431, 
-6. 5 

0.232* 
12 

15?'2 

85
0 

0.349 
-6.' 8 

0.095* 
12 



ELEMENTS 13 

Epoch OIlUT M 
w !J i 

~ No. m g 1950.0 
n a 

0 0 0 0 0 " m m 
601 12.6 8.5 1943 III 17 178,170 158,150 170.066 16.101 6.262 639.412 3.1344 
602 12.1 ao 1938 I 20 71.960 41.999 33~805 1~215 13.647 649.958 3.1003 
603 13.9 10.9 1900 I 0 182.506 154.127 3.44.283 8.028 9.822 871.097 2.5505 
604 12.4 8.2 1945 I 25 67.547 26.630 12.980 4.433 10.421 630.418 3.1641 
605 12.9 9.0 1937 X 24 38.853 1~440 341278 1~666 7.769 682.398 3~0013 

606 12.9 9.8 1900 I 0 134.016 54.312 319.949 8.683 12.681 852.425 2.5877 
607 12.6 9.0 1918 II 19 280.374 288.700 286.257 10.088 4.475 736.802 2.8517 
608 14.1 10.2 1942 VII 20 297.605 67.437 294.668 .9.374 6.790 674.113 3.0259 
609 12.8 8,8 1934 V 31 112.365 122.275 166.265 4.147 2.026 653.676 3.0886 
610 15.6 11.6 1942 V 1 209.601 350.997 20.990 13.088 14.763 656.500 3.0797 

611 12.3 8,4 1939 II 22 51.990 25~359 19~333 1~407 6.973 689.747 2.9800 
612 14.6 10.4 1906 X 9 24.381 116.310 205.785 20.492 15.462 636.959 3.1424 
613 13.0 9.3 1945 VIII 13 254.689 63.224 355.185 7.670 3.583 711.389 2.9192 
614 13.7 10.4 1919 IX 3 299.931 206.582 218.019 6.996 6.299 802.264 2.6944 

A 615 12.6 9.4 1900 I 0 270.150 242.400 14.650 2.770 6.390 831.146 2.6316 

616 12.7 9.7 1900 I 0 49.570 10~860 356~60 1~000 3.410 869.943 2.5527 
S 617 12.6 5.9 1940 X 9 353.645 303.410 43.934 22.103 8.130 299.717 5.1943 

618 12.4 8.2 1945 VII 20 307.744 244.184 111.473 17.007 4.739 623.700 3.1868 
619 12.1 9.2 1900 I 0 142.400 174.600 188.420 13.740 4.370 886.799 2.5203 
620 13.6 10.9 1900 J 0 129.740 333.090 0.860 7.770 7.660 933.328 2.4358 

621 13.9 9.8 1942 V 1 129.029 30.373 67.485 2.357 7.883 641.457 3.1277 
622 12.8 10.1 1917 IX 15 329.798 254.035 142.956 8.641 14.032 945.316 2.4152 
623 12.8 10.0 1900 I 0 111.540 123.030 309.120 14.170 6.550 919.333 2.4604 

S 624 13.2 6.4 1940 XII 19 293.458 17~001 34~152 18.267 1.613 304.721 5.1373 
625 12.1 8.9 1950 I 0 168,883 198.759 12~748 1~O93 12.977 823.989 2.6469 

626 11.4 8.4 1922 XII 15 3~555 42.387 342.021 25.454 14.041 859.549 2.57.33 
627 ·13.1 9.3 1933 V 21 293.478 177.613 143.053 6.449 3.383 718.676 2.8995 

A 628 12.2 9.2 1900 I 0 294.050 201.720 11~690 11.541 2.453 855.232 2.5820 
629 1.3.8 9.7 1946 I 20 23.677 31.984 87.746 9.322 8.819 641.364 3.1280 
630 13.5 10.3 1950 I 0 35.080 37.780 10~710 13.900 6.500 834.894 2.62.37 

631 12.3 8.8 1921 IV 28 68.920 276.906 225.621 18.8.30 4.811 760.172 2.7929 
632 14.5 11.3 1900 I 0 97.310 247.060 358.770 2.262 11.080 816.653 2.6626 
633 12.9 9.0 1937 II 1 153 • .372 188.894 14~937 1~906 4.947 676.596 3.0184 
634 13.1 9.1 1937 II 1 113.825 220.407 134.084 12.288 10.494 666.462 3.0489 

S 635 12.6 8.5 1944 I 19 58,589 22~295 18~961 1~979 4.688 637.307 3.1413 

636 12.4 8.7 1937 III 10 18~976 296.589 35.429 7.939 9.975 714.847 2.9098 
637 14.0 9.8 ·1941 III 21 12.612 164.666 357.000 0.324 6.799 631.934 3.1591 
638 13.5 10.1 1943 III 28 337.124 127.194 103.655 7.708 9.182 784.808 2.7342 
639 12.1 8,2 1943 V 25 271.534 65.216 280.666 8,559 6.327 678,516 3.0127 
640 13.0 8.8 1936 XI 13 149.283 18.737 236.156 13.374 3.923 630.670 3.1632 

641 14.5 12.3 1925 I 1 30.102 16.416 41.106 1.733 7.392 1072.666 2.2200 
642 13.5 9.3 1934 I 13 122.898 110.525 7.776 8.193 8.481 627.618 3.1735 

S 643 13.9 9.4 1945 XII 16 352.206 21~628 255.110 11902 5.485 581.259 3.3401 
644 13.1 10.0 1900 I 0 66.090 267.510 108.940 1.040 8.980 846.504 2.5997 
645 13.5 9.3 1939 V 5 119.839 87.782 0.990 7.063 9.920. 623.667 3.1869 

646 14.5 12.1 1950 I 0 346.145 36.155 303.047 6.945 12.327 1000.813 2.3251 
647 13.5 10.8 1939 I 15 24.619 173.639 254.826 7.299 10.956 928. 740 2.4439 
648 13.1 8,9 1938 IV 7 72.117 168.389 292.933 9.989 13.102 628.555 3.1704 
649 15.1 12.1 1900 I 0 44.768 347.088 357.887 12.680 16.053 87L566 2.5495 
650 14.7 11.9 1907 X 5 3.071 175.990 216.357 2.555 10.770 918.478 2.4620 

FIGURE 8 
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through the typewriter would permit the superposition of 
several curves, if desired. This problem has been solved 
in a general way, but some details remain to be worked 
out. It will be possible to process data in a Type 602, so 
that the resulting punches will operate in the typewriter 
to produce the desired plots. Possible uses of such a curve 
plotter, with accuracy of this order, may occur to some 
of you. 

This has been a very brief summary of the machines 
and methods in use at the Nautical Almanac Office. As I 
have indicated, the scope of our work is continually in
creasing. There is considerable satisfaction to be derived 
from the fact that every astronomical problem to which 
the machines have been applied so far has been success
fully solved. I have no doubt that this will continue to be 
the case. 

REFERENCE 

1. W. J. ECKERT and R. F. HAUPT, "The Printing of Mathematical 
Tables," MTAC, II (1947), pp. 197-202. 

DISCUSSION 
Dr. Eckert: I would like to point out that copy for the 

Air Almanac has been prepared on the typewriter for 
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three and a half years. In that time about ten million fig
ures were computed, typed, proofread as Mr. Hollander 
described, and printed in editions running as high as two 
hundred thousand copies. Thousands of aviators used 
these volumes day after day. And to date there has not 
been one single error reported. 

Mr. Hollander: Regarding the accuracy of the type
writer, it has never been known to replace one figure with 
another. The worst it has ever done is fail to read the hole 
in the card and thus leave a blank space; this can be de
tected by inspection. 

Dr. Eckert: This proofreading business may sound la
borious, but you must remember you are putting out a 
publication that is going to be studied, used, and sweated 
over; whether the production of a figure takes ten seconds 
or eleven doesn't make too much difference. One girl, 
completely inexperienced in technical matters, holding the 
lowest grade clerical rating in the Civil Service, can learn 
in two weeks to proofread fifteen pages a day by punching 
it up. When one error is so important, you certainly can 
afford these checks. 



Programming and Using the Type 603 -405 Combination 
Machine in the Solution of Differential Equations 

GEORGE S. PENN 

Northrop Aircraft, Incorporated 

FOR THE PAS T two years Northrop Aircraft has 
used a small installation of International Business Ma
chines equipment for engineering calculations. While much 
of the work was and is routine-stress distribution, reduc
tion of wind tunnel results, and the multiplication and 
inversion of matrices-considerable miscellaneous work 
in connection with research projects has appeared from 
time to time. Last winter two despairing men brought us 
a system of differential equations for step-by-step inte
gration. 

The differential analyzer at the University of California 
was unable to solve the problem because of the presence of 
a term a¢ + cf> where a is of the order of 107

• The turn 
ratio for the ci> and cf> shafts made the time of solution run 
into centuries. Large scale digital computers were consid
ered but the earliest schedule times Were remote and the 
probability of needing additional work after the first set 
of solutions were completed introduced the possibility of 
another schedule delay-two years if we were lucky. After 
telling us this story they presented us with the system 

z = ax + by - efl (t) 
y = dy + ef2(z) 
Z = fz + g:c + h% 

z> +~ 
-~<z<+~ 
z< -8 

which is not impressive except for the discontinuity intro
duced by the f2(Z) term, which prevents analytic integra
tion other than piece-wise. Since there are no products in 
which both factors vary, the problem could be integrated 
in the accounting machine, using repeated counter trans
fers for the coefficient multiplications. 

Once we had this problem under way, we were given 
the full two dimensional problem and were impressed. It 
had almost everything-circular functions of a dependent 
variable as coefficients, products of variables, a couple of 
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arbitrary input functions, and two of everything like the 
f2(Z) in the case just described. We needed something 
that would read factors from the accounting machine on 
one cycle, multiply, and enter the product in the account
ing machine on the succeeding cycle. For example, a Type 
603 Electronic Multiplier hooked to the accounting ma
chine could do the job. In addition, we needed a great 
many selectors for controlling counter connections; a 
means for converting counters for true figure read-in to 
the multiplier; and a balance test impulse available for 
every cycle for algebraic sign discrimination. 

We asked the local IBM representatives for such a 
machine. Mr. A. B. Kimball of IBM was called in. He 
suggested, on first sight, going after the answer "hammer 
and tongs" style. For some possible time saving ideas he 
referred us to an account of step-by-step integration done 
at the Thomas J. \Vatson Astronomical Computing Bureau 
in New York by Dr. Eckert. As the problem would require 
more than 200,000 steps with at least six function products 
punched, carried to the multiplier, to the collator, and 
then back to the accounting machine for each cycle, this 
was prohibitive. The problem was then taken to IBM 
Headquarters in New York where Mr. J. C. McPherson 
went over the problem requirements in detail and agreed 
with our conclusion with respect to machine requirements. 
The machine was built. In fact, we received much more 
than we expected. The request was for a bare minimum of 
the items noted above. vVe received a machine comparable 
in programming technique to current large computer de
sign-a poor man's ENIAC. Only eighty decimal digits 
of memory, only six-by-six multiplication, and only 150 
computing cycles per minute, but sequence controlled com
pletely. Our experience indicates this program power is 
fundamental. 

A description of specific machine features is not amiss. 
First, I assume you are familiar with the IBM manuals 
on the Type 603 Electronic Multiplier, Type 405 Account
ing Machine and Type 517 Summary Punch. Just about 
all available extras are included. 
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The first addition of note is the extra connector cable. 
This provides for the connection from power supply to 
electronic unit via the accounting machine. By disconnect
ing the extra cable at the power supply and transferring 
the accounting machine end of the accounting machine-to
multiplier connection to the power supply the machines 
may be .operated independently. This is done now and 
again for listing work on the accounting machine, but we 
rarely use the multiplier alone as few problems involve 
just a product of two factors with no additional calcu
lations. 

The nerve center of the combination is the two-section 
auxiliary control panel which has been added to the ac
counting machine. This panel is located just above the 
original three-section standard panel. The mUltiplier c.on
trol panel located on the power supply unit is not used for 
combined operation. A description of the auxiliary panel 
and the additions to the standard panel will tell in detail 
what can be done with the machine. 

The top six rows of the auxiliary panel require little 
description. The first two rows of hubs are the upper card 
reading brush hubs and are common to the corresponding 
lower panel hubs. These are used mainly for reading pro
gram X impulses for control and selection. The next tW.o 
rows are the selector and chain pickup hubs and below 
these are two rows for the lower card reading brushes. 
Some program controls are wired from these brushes but 
mostly they are used to enter numbers into the counters 
or multiplier. 

The truly new features of the machine begin with two 
rows of hubs which are counter exits. These counter exits 
are common to the summary punch counter exits. An extra 
emitter has been provided in the accounting machine 
parallel to the summary punch emitter to provide impulses 
in acc.ounting machine time fro.m these exits in accordance 
with the digit in each counter position. Also provided is 
the balance test impulse in the "nines" position. The use 
of this impulse is described below. 

In the next row are column shift pickup hubs, the prod
uct exit, the product sign exit, and eight pickup hubs for 
eight single position selectors. The column shift arrange
ment requires description. It is impUlsed for a specific shift 
position up to six places by an X impulse. The product is 
shifted to the right in the product exit accordingly. This 
saves selector wiring for varying multiplications and per
mits floating-decimal multiplication. The, product sign is 
an impulse used for internally reversing the accounting 
machine add and subtract connections as made on the 
lower panel. I f a counter is wired to add and a negative 
product sign impulse enters the counter reversal hub on 
the upper panel, the counter automatically subtracts. In 
case the product is to be used as a multiplier in the next 
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cycle, this sign can be entered as the multiplier sign and 
the next product sign controlled accordingly. 

Set apart by two blank rows above and below are seven
teen rows of selector and chain entries. There are sIxteen 
eight-position, four four-position and eight single-position 
selectors, as well as five chains each having four eight
position sets of entry hubs. Three of the entries are con
nected in accordance with program impulses; the fourth 
is connected when the chain is not impulsed. These five 
chains are equivalent to fifteen eight-position selectors as 
they are usually wired for a problem. 

The remaining five rows are multiplier inputs and con
trols, counter reversal hubs, and counter entries. The mul
tiplier inputs consist of two sets of six hubs for entering 
multiplier and multiplicand. For multiplier control there 
are hubs for group multiplier, half entry, multiplier and 
multiplicand subtract, and multiplier and multiplicand 
sign. When the group multiply hub is impulsed, the multi
plier is retained for use with another multiplicand. J ack
plugging the half entry hubs rounds the last digit of the 
product in accordance with the column shift position. 
When the column shift switches are not wired, they can 
be used in lieu of selectors for accumulating partial prod
ucts in over-capacity multiplications. The multiplier sub
tract controls are impulsed by the balance test impulse 
mentioned above. The left-hand position of the counter 
being read in is connected to the proper subtract hub. 
When a nine is standing in this position indicating a com
plement, the balance test impulse reverses the read..:in cir
cuit and the absolute value appears in the multiplier 
counter. At the same time the sign control relay is im
pulsed so that the product sign is set up accordingly. The 
multiplier sign hubs are used when subtractive entry is not 
required but the factor is negative. This happens when a 
product is returned to -mUltiply or when a factor is read 
from a card. The X impulse just following read-in time is 
used for this sign. Absolute values are always used in the 
multiplier. The counter reversal hubs have been men
tioned. In addition, the balance test impulse from a counter 
may be used to transfer its absolute value to another 
counter by impUlsing the appropriate reversal hub. The 
counter entry hubs are common to the counter list exits 
on the lower panel and are just what their name indicates. 

The lower panel is just about the same as the original. 
The principal change is the addition of thirty-two single
position selectors for control of the counter add and sub
tract shots. Balance test hubs for the left-hand position of 
each counter with exception of the two-position counters 
have been added. These hubs are used when operati.ons 
must be discriminated by algebraic sign for lower panel 
wiring and are wired to immediate pickup when used for 
selection. . 



FORUM PROCEEDINGS 

Needless to say, all work must be done in "nines com
plement" arithmetic. As list-out is most easily obtained 
through a total stroke, the progressive total device is almost 
always left unwired except for last card clearing. Counters 
are cleared during a program through card cycle total 
transfer. 

In wiring the control panel there are two basic ap
proaches. One is to wire for everything and program the 
problem on cards, the other is to wire for the specific 
problem. Wiring "everything" is accomplished by connect
ing the selectors into three chains which provide for taking 
amounts from any counter to the multiplier, the mUltipli
cand, or to another counter entry. All counter entries are 
paralleled together in groups 0 f eight and the counter ac
tually entered is controlled by the add or subtract impUlse. 
With such wiring a set of standard program instructions 
can be drawn up and the construction of program cards 
for a specific problem is mechanical. However, this is 
usually wasteful of time. Nearly all problems require some' 
direct transfers of information, or multiplication by pow
ers of ten where rounding of the final digit is not required. 
Such transfers may be made simultaneously' with other 
computations provided the counter entries are not paral
leled as is necessary for a standard panel. An example of 
this saving is shown in integrating the equation 

if = aij, + btjl + c ( t/I- d) , 

which is related to the zeros of z in the problem above. 
We required only the approximate time from the initial 
condition 

to the first zero of t/I thereafter. \Vith some labor it could 
be calculated from the analytic expression 

t/I = Ae-at + Be-f3t + Ce-yt -A - B - C 

but integration is much easier. Mechanical programming 
yields the following: 

Mult ~. ~ ~ t/I 
1 RO 

~'6t 
2 

6t 
~'6t Reset 

cd 
3 -cd RO 

~6t 
4 RO ~6t 

a1/t 
5 RO 

~6t 
6 

b~ 
RO ~6t 

7 RO 
ct/l 

8 
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This program was used to explore the effect of varying 
the value of 6 t. It was found that coefficient values of 
interest could be explored sufficiently well at 6 t = 0.1. 
A board for the specific problem was then wired to use the 
following program: 

Mult t/I-d if Ip t/I 

1 -d RO t/l6t 6t 
a~6t 

~6t a~6t RO ~6t 2 
b~6t 

ROand b~6t 3 reset 
c(t/I-d)lJ.t 

4 t/I c(t/I-d)6t RO 

It is seen that four cycles suffice for an adequate com
putation-just half those required for the standard pro
gram setup. 

Naturally all such methods necessitate a study of the 
accuracy required, and for rapidly changing variables the 
use of higher order differences rather than a smaller 6t 
should be considered. At this point the counter capacity 
may limit the possibilities. With respect to accuracy, we 
often save time by inquiring about the physical nature of 
the problem. Requests for six and eight figure accuracy 
are often tied to mechanisms which already rattle in the 
fourth significant digit. 

The machine has been used almost exclusively for study 
of the differential equation system. However, some time 
has been available for other work. Wind tunnel results 
are computed completely at the rate of two lines of com
plete results per minute. The raw data are ).<:ey punched, 
checked, and collated into a program file. The final results 
come out. It is hard to be enthusiastic about going back 
to the former chop-and-grind method between reproducer 
and multiplier, so the wind tunnel man waits for time on 
the machine when it is busy rather than start the many 
times longer step-by-step process. Eight by eight singular 
matrices iterate at a rate of one iteration in seventy sec
onds, a ratio of thirty to one over the older technique. 
Stress distribution analyses for final reports which used 
to take over a month can be calculated twice now in proof 
form, and the summary cards listed on final vellum in a 
day. The proofs are made to check for identical calcula
tion. Sample calculations are made to be assured the pro
gram is correct. 

Some miscellaneous items of interest to those who think 
in terms of individual calculations in the standard ma
chines are twelve by twelve multiplication, long division, 
and extraction of square roots. For twelve by twelve mul
tiplication the speed is about twenty products per minute 
if the results are punched, or twenty-five per minute for 
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listing only. Using the desk calculator, long division can 
be performed and square roots can be extracted to six 
places in about half a minute and a minute, respectively. 
This is, of course, tedious. An iteration formula 

selecting automatically the first digit .of the first trial re
ciprocal root, will converge to six places in twenty-eight 
card cycles. One cycle must be added for multiplication by 
N for Nl/2 or squaring for 1/ N to complete the process. 
This gives a rate of five calculations per minute. 

Future possibilities, if and when we have time, are in
teresting. At present we iterate matrices f.or solving vibra
tional problems. Considerable work has been done manu
ally before we get the matrix and considerable more when 
we are through. The integral equations for the various 
vibrational modes and the ease of entering just any old 
function f.or beam characteristics appear to make iteration 
of the integral equation in the machine a much easier 
solution. 

In aerodynamics our theoretical group has derived some 
analytic approximations to three dimensional flow in both 
sub- and supersonic d.omains. We have done a variety of 
computing on these. Now we feel perhaps we can just 
settle for the wave equation and some boundary condi
tions together with required mesh fineness and arrange
ment. Iteration will do the rest, possibly not in record time 
but far faster than attempting to compute from the very 
complicated analytic expressions. 

The question of error rate should be mentioned. N atu
rally the machine was subject to considerable trouble at 
first. For this reason the initial two or three months, when 
we were lucky to get fifty per cent operating time, should 
not be included. At present we spend less than a day a 
week fishing for trouble. The machines separately are 
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IBM's most dependable. The accounting machine is an 
old work horse of many years' proving. The Type 603 
Multiplier of itself is much more dependable than the 
Type 601. To get back t.o error rate: we have operated 
continuously for as long as a week at a time with no errors 
shown in sample repetitions or manual checks of the inte
gration problem. This is a great deal of calculating. The 
actual useful time available is better than eighty per cent. 
The principal source of lost time is in perfecting a pr.o
gram and in making tests and correcting wiring. 

Work with the machine has also suggested some addi
tions, not necessary but highly convenient. One such 
would be internal counter clearing circuits impulsed by an 
X. This should isolate the connter during the operation as 
well as make the transfer impulses available at the aux
iliary panel c.ounter exits in place of the top counter 
emitter impulses. Another improvement, since the eighty 
program card positions barely suffice, would be X-R splits 
between upper card brush hubs on the auxiliary and 
standard panels. With such an arrangement digit impulses 
would be available on both panels, but only X impulses on 
the auxiliary panel and R impulses on the standard panel. 
Arrangement of the auxiliary panel can be improved. We 
have already reversed the position.of the N and X points 
of the selectors to permit jackplugging for chain connec
tions but the miscellaneous single- and four-position se
lectors should be in the top corners with the eight-positi.on 
selectors blocked solidly above the chains as well. 

Increased capacity requires only more memory and se
lectors. With eig-hty computing counter positions, the 
memory need only store, not accumulate. Summary cards 
can be used, Df course. Added selectors are only necessary 
to select from the memory. For eighty counters the selec
tors at present are sufficient. 

DISCUSSION 
[Discussion on this paper was omitted- because of time limitations 
A short general discussion follows Dr. Levin's paper;] . 



Applications of Punched Card Equipment 
at the Naval Proving Ground 

CLINTON c. BRAMBLE 

u. S. Naval Proving Ground 

I WAN T to make a few remarks about some of the 
computations that we have undertaken at the Naval Prov
ing Ground. We are responsible to the Bureau of Ordnance 
for a good deal of ballistic computation work: the pro
duction .of firing tables for guns, rockets, and projectiles. 
Our department covers other agenda, but I will speak 
merely of our computation work. 

We have at the Proving Ground a set of the usual IBM 
machines, including the collator, the Type 601 and the 
Type 405, of which much has been said. We put in those 
machines as soon as IBM w.ould furnish them to us after 
a conference that I had with Dr .. Eckert at the Naval Ob
servatory. I think that must have been back in 1943. We 
found them very useful, particularly at times when our 
manpower was very short, and our work load was very 
large. Sometimes we were operating under a contract 
with MIT, so that we had the output of their differential 
analyzer. We t.ook the output of the differential analyzer 
and digested the results at the Proving Ground. A great 
deal of our processing was done on the IBM machinery. 

Our ideal has been to produce range tables with very 
little being touched by human hands. Weare far from 
that ideal at the present time. We think that in time we 
will approach that with our IBM machines and our 
Mark II Calculator as well as our battery of desk type 
machines. A point that I think should be made in connec
tion with any computation laboratory is that you need a 
certain balance and that one type .of machine does not in 
general render the other types unnecessary. 

In addition to the machines that I have mentioned, we 
have one of the IBM Relay Calculators, .of which five 
have been manufactured. Two are at Aberdeen Proving 
Ground, and I believe two are at the Watson Laboratory. 
I am not sure whether any more have been manufactured. 
We have just one of them, and we have put it to consid
erable use. 

Among the vari.ous projects that we have carried out on 
this piece of apparatus has been the computation of sine 
functions to seventeen significant figures for each ten min-
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utes of arc. This was done for a special purpose as we 
were about to do a job for which the m.ost appropriate 
table did not seem immediately available. We have also 
for our own purposes calculated tables of ere and e-re to 
eighteen significant figures. We have also prepared density 
log tables for our .own use, and we have done a great deal 
of auxiliary work in connection with production of range 
tables. The 601 has been particularly useful in the cal
culation of bombing tables inasmuch as these tables are 
produced by four term interpolation f.ormulas from a gen
eral ballistic table. Among other projects that we have 
carried through have been the reductions of field observa
tions of flight of bombs; we have reduced the work a go.od 
deal so that we are now in the process of eliminating 
graphic procedures almost entirely. 

To return to the IBM Relay Calculator, we have calcu
lated a number of soluti.ons of a differential equation, a 
special case of the type that was discussed twice yesterday. 
Our special formula involved the calculation of the par
ticular solution of the differential equation, and was espe
cially concerned with the determination of a parameter in 
the equation so that the soluti.on would fit a given con
dition. 

One other piece of apparatus I should mention we have: 
a card-operated typewriter in which the keyboard was set 
up for our own special purpose. I have with me a copy of 
a density table which was made by the use of duplimat 
papers in the typewriter and directly produced from the 
duplimat; this is a very nice job. The heading, of course, 
was typed with another typewriter. 

By the use of our accounting machine, range tables are 
also printed on specially preprinted forms. \Ve not only 
print .on the 405, but also use it for differencing pur
poses. On this density table there is a sample of six differ
ences so produced. We can, by use of a properly set up 
control panel, run off the cards which contain the data on 
our range tables, select any two columns and get first, sec
ond, and third differences simultaneously. \Ve use this as 
our check process and we find it very satisfactory. Various 
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schemes for integrating our differential equations have 
been tried. I am not sure how generally these are known, 
but they are to be found in any books such as Bliss' M athe
matics for Exterior Ballistics. 

The differential equations of ballistics are rather trouble
some; we have manipulated them many ways and intro
duced all sorts of independent variables for purposes of 
integration. We have studied integration with respect to 
different variables and are in the midst of exploring the 
possibility of doing this on the IBM Relay Calculator. 
I don't believe enough time studies have been made to 
determine whether it is going to payoff, but it is an inter
esting possibility. 

In dealing with a network of trajectories, you first com
pute the slant range R and the sight angle p; that is, Rand 
p are the polar coordinates of the projectile. These are 
functions of initial angle and time. Then the gunner wants 
the table turned inside out. He needs to know what his 
time of flight is going to be in terms of slant range and 
position angle as well as the angle of elevation for slant 
range and the position angle. That means that we have a 
tremendous amount of inverse and direct interpolation to 
perform. I will not bore you with the details, but the IBM 
equipment is very useful in that connection. 

I should like to make a few more remarks which are 
somewhat general. In a computation section, I commented 
that there should be a balanced organization; that there 
should be a group concerned with analysis. That is the 
group that should have on its desks the IBM motto! 

I would like to give just an example from our own work. 
~problem was sent to us that was concerned with pro
j ectile motions under certain specified circumstances, and 
it looked like a difficult problem in gyroscopic motion. It 
appeared on the surface to have three or four physical 
parameters, but by a little manipulation, the mathematician 
soon saw that there was only one essential parameter in
volved. That reduced the amount of computation from 
what the physicist expected to be a library when he sent 
it to us, to a single book. The next thing we discovered 
was that the motion was periodic. That meant that we 
could calculate merely one cycle of the motion and we had 
the job done. We then discovered that the motion was 
symmetrical with respect to a half period and that cut it 
down again by SO per cent, so that in the end the amount 
of computation necessary was perhaps one-half of one 
per cent of what was contemplated by the people originally 
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submitting the problem. That kind of analysis pays off, 
and I don't see how you can set up a machine and proceed 
to do your problems by brute strength and awkwardness. 
You must have them digested by an analytical group. 
Equations must be transformed into the most efficient sys
tem possible. Then the programming· should at least be 
outlined by the mathematician, who breaks it down into an 
efficient program. It is hoped that later on coding will be 
entirely unnecessary, so that when the mathematician fin
ishes his programming the job is thepretically finished. 

One observation about this meeting that I would like to 
make, at the risk of pointing out something which you all 
perhaps have noticed, and that is the prevalence of prob
lems that are common to so many different interests. Dr. 
King, in speaking of his. problems in connection with 
physical chemistry, finally came around to mentioning 
such things as statistics. 

I should like to go back and say that, when I was a 
graduate student and took my degree, I came through with 
very considerable mathematical purity; by force of cir
cumstances in the first W orId War, I was driven into 
applied mathematics, and to my own surprise, I found it 
just as fascinating as pure mathematics. In fact, I was 
weaned away from pure mathematics, because you can't 
do too many things in one lifetime and do them all well. 
This experience has been duplicated by many people forced 
into applied mathematics in the last war who have found 
that the problems they got into were just as intriguing, 
offered just as much challenge, were just as hard to do, 
and in fact, had something about them that is not gener
ally suspected. I f you go· into this computation game suffi
ciently, just when you feel that you are getting away from 
pure mathematics, you find. that the problems have led 
you into analy~is and have forced you right back to pure 
mathematics again. I think that no young man who is 
going into scientific work at. the present time should have 
any idea that he is misusing his talents in any way by 
going into this particular field. 

I want to say in conclusion, I appreciate very much being 
a member of this group and this meeting. I have met some 
old friends here, and I have become acquainted with many 
people whom I knew by name only and whose acquaintance 
I hope to keep in the future. 

DISCUSSION 
[Discussion of this paper was omitted because of time limitations.] 



Use of the IBM Relay Calculator s for Technical 
Calculations at Aberdeen Proving Ground 

JOSEPH H. LEVIN 

Aberdeen Proving Ground 

THE TWO IBM Pluggable Sequence Relay Calcula
tors at the Ballistic Research Laboratories, Aberdeen 
Proving Ground, are only part of a battery of computing 
facilities. In addition to these machines and an assortment 
of standard IBM equipment, the Laboratories have at the 
present time a differential analyzer, the ENIAC (Elec
tronic Numerical Integrator and Computer), and a Bell 
Relay Computer. In an installation of this sort the first 
decision to be made when a new problem comes in is not 
how to program it, but where to assign it. This decision is 
largely a question of economics. The relay calculators have 
neither the speed of the ENIAC nor the versatility of the 
Bell computer. For programs of lesser or intermediate 
difficulty the IBM relay calculators are highly valuable. 
For long and intricate programs use of the Bell machine 
or the ENIAC would be indicated. To assign a simple cal
culation involving only a few operations to either of these 
machines would clearly be a waste of talent. Of course, 
the decision as to where a problem is to be assigned must 
also be controlled by such other considerations as urgency 
of the problem, current work loads, and so on. 

As is generally true of machine calculations, in order 
that a problem be adaptable to the relay calculators, it 
must be reducible to a routine. For the problems handled 
on the Aberdeen relay calculators, the number of arith
metic . operations involved per routine has ranged from 
perhaps five or six in the simplest cases to somewhere in 
the neighborhood of a hundred in the most complex. The 
latter are probably beyond the capacity that the machines 
were originally designed to accommodate. 

Inasmuch as the computing facilities at the Ballistic Re
search Laboratories are available to outside agencies for 
work on government scientific projects, it would be well 
for such agencies to have some idea of the kinds of prob
lems that have been handled on the various types of equip
ment. The following exposition, confined to the IBM 
Relay Calculators, is not intended to be a description of 
the machines themselves, but is a brief account of some 
types of problems carried out on them. However, there 
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are several facts about the machines that should be pointed 
out before launching into a discussion of their applica
tions. The Relay Calculator has two feeds, a reproducing 
feed and a punching feed. Cards may be read from both 
feeds, but can be punched only in the punching feed. Cards 
are fed in each feed at a maximum rate of one hundred 
cards per minute. This rate, however, depends upon the 
complexity of the routine. For purposes of reading in con
stants there are four groups of ten-way switches. The 
machine may be programmed to perform routines of a fair 
degree of complexity consisting of any of the operations 
of addition, subtraction, mUltiplication, division, 'or square 
root. More extensive information on the characteristics 
and principles of operation of this machine is available in 
MT AC, 1 and also in a forthcoming publication of the 
Ballistic Research Laboratories.2 

One rather frequent type of problem is that of sub
tabulating or interpolating in existing tables. For a third 
order interpolation the calculation may be performed as 
follows: 

Fn = F 0 + n [A + n (B + en)] , 

where n is the fractional part of the interval, and A, B, C 
are functions of the tabular differences. A, B, C are pre
computed and punched on the cards, while n may be read 
from the switches or from cards in either the punching 
feed or reproducing feed. The whole operation is easily 
programmed for a single run of the cards. 

An extensive series of calculations has involved the de
termination of a great number of direction cosines from 
point coordinates. There is nothing remarkable about this 
accomplishment. However, it is worth pointing out that it 
is a calculation which would be wasteful of the capabilities 
of the ENIAC or the Bell machine. At the same time, it is 
an awkward calculation on the standard IBM equipment. 
On the other hand, this calculation is ideal for the relay 
calculator, being easily programmed and rapidly accom
plished, and it does not tax the facilities of the machine. 
Another rather extensive series of calculations of the same 
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order of simplicity has been a series of velocity and accele
ration determinations, given the coordinates of successive 
points on a trajectory as a function of time. Again it would 
be wasteful for this work to be carried out on the ENIAC 
or the Bell machine. But the problem is ideally suited to 
the IBM Relay Calculator. 

I shall describe the following problem in somewhat 
greater detail because of its interest both from the the
oretical and computational points of view. We are given 
the following partial differential equation together with 
the indicated boundary conditions: 

fJV/fJt = fJ2V/fJ~'r2 + 111p.(t) fJv/fJx , 
(.'r > 0, m = const.) (1) 

v(x,t)~O as x~oo 

-2fJv(0)/fJs = 1 - pet) 

v(O,t) = l/y; 

(2) 

(3) 

(4) 

(5) 

It is desired to obtain solutions of (1) corresponding to 
assigned values of the constant m and subject to the 
boundary conditions (2) through (4). The usual numeri
cal procedure consists of replacing (1) bya difference 
equation and finding the solution of this equation as an 
approximation to that of the partial differential equation. 
Putting 

x = i6.z, t = j6.t (i,j = 0,1,2, ... ) 

v(i,j) == v(i6.s,j6.t) , pj == p(j6.t), 

and replacing the partial derivatives in (1) by finite dif
ference approximations, the following difference equation 
is obtained: 

v( i,j+ 1) -v( i,j) 
6.t 

v( i-l,j) - 2v( i,j) +v( i+ l,j) 
(6.X)2 

+ 
'l!(i+l,j)-'l'(i-l,j) 

tnpj 26.x . 

Letting b == 6.t/(6.X)2 = !, this equation may be written 

v(i,j+l) = ~(I-~m6.xpj) v(i-l,j) 

+ ~(I+~m6.xpj)v(i+l,j). (6) 
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We also substitute a finite difference approximation for 
the boundary conditions (3). Using Newton's for'ward 
interpolation formula we have 

fJvo (j)/fJZ = 1/6.z (6.vo - 1/2.t{v + l/35v + ... ), 
where vo(j) == v(O,j). For purposes of the present illus
tration we shall not go beyond third differences. W r~ting 
the differences in terms of the functional values and sub
stituting in (3), we obtain the following approximate 
formula for pj: 

36.x pj = 36..'r - 11/y;-
+ [18v(1,j) - 9v(2,j) + 6v(3,j)] (7) 

The solution of (6) with boundary conditions (7), (2), 
( 4 ), and (5) leads to a function v (i;j) defined over a 
rectangular network of points. The procedure for solving 
consists in starting with the function (5) defined for the 
row j = 0, and with Po = 0, and proceeding by means of 
(6) to the row j = 1. The quantity PI is then determined 
by (7) and is used in (6) together with the boundary con
dition (4) to determine v for j = 2, etc. A check on the 
procedure is derived in the following manner: both sides 
of (1) are integrated with respect to x between the limits 
o and 00, giving 

In view of the boundary conditions (2), (4), and (3), this 
may be written 

i CX) 1 [ y-; + 2m ] 
oVt(x,t) dx =2. 1 - Y1r,p(t) . 

That is, 

(8) 

where 

y-;' 
Pf) = --'----

Y1r+2m 

is the steady state value of p. Integrating the two sides of 
equation (8) between the limits 0 and t, interchanging the 
order of integration on the right, and making use of the 
fact that 

f. CX) 1 
o v(.'r,O)- dx = 2' ' 

we obtain 
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By computing fT(t) in the two ways shown in the fore
going equation, a numerical check is obtained. 

The problem described is well suited to a machine of 
the type of the IBM Relay Calculator. The machine 
method conforms to the hand computation procedure in 
that a row of points is computed at a rttn. For any row 
j = constant, the input cards in the reproducing feed con
sist of cards punched with the values v (i,j). In the first 
four of these cards are punched the constants appearing 
in (7) : 3.6% - l1/y-;, 18, -9, and 6, respectively. At the 
beginning of each run the constants 

~(1 - ~m.6.r,,"j), ~(1 + ~'m.6%,,"j) (9) 

are set in two rows of switches. A stack of blank cards is 
fed into the punch feed. As the input data are fed through 
the reproducing feed, the machine uses the values v(i,j) 
to compute the values v( i,j + 1) for the next row by (6), 
and punches them into the cards going through the punch
ing feed. Using the first four values v(O,O), v( 1,0), 
v(2,0), and v(3,0) the machine also CO!:l1putes 3,,"1.6.V by 
(7), and the constants (9) to be used in the next run. At 
the end of the run the output cards are removed from the 
punch stacker, the constants (9) are read and set in the 
switches, the cards are placed in the reproducing feed 
while another deck of blank cards is placed in the punching 
feed, and the process is repeated. 

The interval .6 t must be chosen small to begin with, for 
,,"(t) behaves like 'Vi for small t, so that ,,"'(0) is infinite. 
As the solution progresses and the steady state condition 
is approached, .6 t can and should be increased to keep the 
computation time within reasonable bounds. It must be re
membered that in order to satisfy the condition b = 1/2, 
.6% must be changed whenever .6 t is. In the problems car
ried out on the relay calculators, the interval .6% was 
doubled whenever it was found that the results obtained 
upon using the larger interval were the same as those ob
tained by use of the smaller interval. Solutions were car
ried out for the cases m = 0, 1, 2, 5, and 10. 
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DISCUSSION 
Dr. Herget: I have found it pretty dangerous to use 

b = 1/2. Haven't there been papers showing that the solu
tion may not be stable for the value one-half? 

Dr. Levin: The equation we are dealing with is of para
bolic type. It may be shown that for such an equation the 
condition for stability is .6t/ (.6x) 2 < 1/2. Also a big 
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reason for using b = 1/2 is that it yields a simpler formula. 
Dr. Thomas: May I take two minutes for a statement 

about this sort of problem? 
Suppose you have fixed ranges and even intervals in .r. 

What you are essentially doing in this sort of work in 
going to finite differences is exactly equivalent to using a 
finite number of terms in a Fourier expansion. You have 
terms, for instance, in sin ;r, sin 2x, sin 3x, . . . ; these in 
the exact solution should decay with time at rates e-t , e-4t, 

e-rJt
, ••• The difference formulas, besides only giving a 

finite number of terms of the expansion, make the terms 
given decay at the wrong rates. 

The later terms decay at less and less accurate rates. In 
the simplest case, you can show that if you have n points 
corresponding to n terms of the expansion, the first few 
terms will decay nicely; but as you come to higher terms, 
the end terms decay more and more slowly, and it is usually 
the case that the last term you keep decays a little less 
rapidly than the first. So all you can do is get the limiting 
form; you get nothing exact about the details after some 
time. 

You have to look at this sort of thing fairly closely to 
estimate what is happening, especially if you hope to ex
tend it to more complicated cases with curved boundaries, 
and so on. 

GENERAL DISCUSSION 
Dr. Eckert: We have a few minutes to wind up the 

Endicott part of our conference. With reference to the 
last papers on special equipment, I might say that you will 
see two relay calculators of the type Dr. Levin and Dr. 
Bramble mentioned, and a prototype combination machine 
somewhat like Dr. Fenn's, at the Watson Laboratory. The 
card-operated typewriter at the SSEC is also on display . 

Are there other comments or questions? 
Mr. Kintas: We have been considering solving natural 

frequency problems for free crank systems and compound 
beams. Mr. Mack suggested that both problems could 
probably be handled by a single setup of matrix equations 
using the coefficients and unknown terms which describe 
the conditions of kinetic and potential energy in the sys
tem. Other aircraft men here have investigated that 
problem. 

Mr. lIarntan: What is the maximum capacity of the 
Type 602 in multiplying square matrices of the nth order? 
Suppose the elements are two-digit numbers; how many 
can be handled at once by the 602? 

Dr. BraNtble: If you put one element on a card there is 
no limitation on n. 

Dr. Grosch: But then multiplying two unsymmetrical 
matrices together would require 2n3 cards to pass through 
the 602. I f there were 'an unlimited number of pro
gram steps available, one could store perhaps thirty-two 
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two-digit numbers in the machine, reserving only counters 
1, 3, 6, 9 and 10 for operational use. I am assuming all 
elements are positive. Then every other card passing into' 
the 602 would carry up to sixteen elements of matrix A 
(one row) and the next would carry up to sixteen ele
ments of B (one column) ; one element of A· B would be 
accumulated in LHC 9 and 10 and punched on the B cards. 
Only 2n2 cards would pass into the 602, for tz. < 16. But 
since fifteen recalculation cycles would be required, the 
standard machine would be limited to smaller values of H. 

And many selectors would be needed, especially if negative 
elements did occur. 

I would like to make a statement about the bibliography 
on technical applications of punched card methods we put 
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out at the Watson Laboratory in 1947.1 If any of you have 
not seen it, you can secure copies through the IBM Depart
ment of Education in Endicott. \Ve want to correct, im~ 
prove and expand that first attempt. In the foreword we 
requested suggestions as to format, and especially addi~ 
tions to the list of references. I am sorry to have to report 
that in the first year not one single item has come in except 
through our own efforts. If some of you will help, we 
might revise and expand the bibliography annually. 
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Simultaneous Linear Equations 

FRANCIS J. MURRAY 

Columbia University 

ISH 0 U L D L IKE to discuss linear equations and the 
solution of linear equations more or less in connection with 
the type of machines that we have developed. I am sure 
that you are all familiar with many other approaches, and 
the mathematical basis of what I would like to say is rea
sonably well known. The usual theory of linear dependence 
such as ,one finds in Bacher, and the relatively simple 
vector constructions, are to be considered not absolutely 
but to within a certain accuracy. It seems to me that this 
has to be done as soon as one considers systems in which 
the size of the results is not obvious. 

Now let me briefly describe our objectives i11 building 
the machine which is now in use at the \Vatson Laboratory. 
We set up a machine to solve a system of equations 

(1) 

However at all times the device regards the x/s as well as 
the ai/s and b/s as inputs and evaluates by relatively simple 
means 

(2) 

which it represents on a meter. One finds a solution of the 
equation by manipulating the x/s so as to minimize p.. This 
manipulation process is always convergent, an advantage 
enjoyed by no other adjusting device. If there is a solution, 
we obtain it. 

Another objective was to put in the coefficients digitally, 
and we succeeded in doing this. The use of alternating 
current raised certain phase difficulties and these Mr. 
Walker settled.1 

In attacking a system of equations (1), we begin by 
rounding to three figures. Normally 'any accuracy can be 
obtained by an iterative process which involves merely a 
change of the constants b'i at each step. However, this is 
clearly ineffective when dealing with a problem of this 
sort: 

1.000000 X + 0.999000 Y = 1.000000 
0.999000 X + 1.000000 Y = 0.000000 , 

since the problem is indeterminate relative to the first three 
digits. Nevertheless our machine can be effectively used 
here. Before discussing this method, let us point out that 
the six figure accuracy of the coefficients is only adequate 
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to give about three figures in the result. Eliminating Y 
yields an equation in X 

o.aa 1999 X = 1.000000 

where, due to rounding, the last 9 in the coefficient of X 
may be off by more than one. The first three digits for 
which the matrix of coefficients is singular also corre
sponds to a loss of accuracy in the answer. 

We have a reasonably routine method of handling prob
lems of this type on our three-digit machine. Mathemati
cally this process consists in looking for a linear depend
ence among the columns of the coefficient matrix and by 
a suitable change of variables eliminating them. Notice that 
if in our example we let X = (.'r + y) and, Y = .. 1," - y 
our equations become 

1.999000 x + 0.001000 y = 1.000000 
1.999000 x - 0.001000 y = 0.000000 

By a change of y scale, i.e., y = 1000 z this becomes 

1.999 x + 1.000 z = 1.000 
1.000 x - 1.000 z = 0.000 

This problem can be readily solved on the machine. The 
coefficient of z now has only three significant digits but 
these are all usable in the machine and we can obtain all 
the accuracy the problem justified. 

The advantage of this type of device is that the essential 
linear combinations can be found on the machine. Consider 
our original system of equations 

(~1:l l·t 'l + ... + a12 1:l X 12 = b12t 

In the machine, the b/s appear multiplied by a gauge vari
able t. This has the result that the unknowns Xi are in the 
form xi/f and hence not necessarily between -1 and + 1. 
Suppose that the third column is very nearly a linear com
bination of the remaining columns. We can readily find 
this on the machine as follows: We set t = 0, Xs = 1 and 
minimize 

p. = ~i (ah ·1,"1 + ai:l x:! + ais + ... + ail!! X 12 ):! 

relative to .1,"1' X 2 , X,H ••• , X12• This yields the coefficients 
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YH )'2' •.. , Y12' of the linear combination and we can use 
these to compute digitally the terms 

In this computation all the digits of the a/sare used. We 
then can rewrite our .original system of equations 

al I (Xl - Y1X g) + al 2 (%2 - Y2-t·g) + a1 3 Xg + . , . 
+ a112 (X12 - Y12.t"g) = bIt 

a121 (%1 - )'l.t"g) + au 2 (X2 .....,. Y2%g) + a12 g Xg + ... 
+ a12 12 (%12 -- Y12%3) = bi2t . 

vVe now have a system of twelve equations in the twelve 
unknowns 

:z 1 = %1 - Y l·t" 3' :z 2 = %2 - .Y 2% g, :z g = % g ,... , 

Z12 = X12 - Y12 %g • 

The a column has been obtained by a minimizing process 
relative to the other columns, and if this has been carried 
out completely the a column will be orthogonal to the 
other columns. The a column will have smaller quantities 
in it than the aij and consequently fewer digits. In these 
circumstances, however, we can always change the scale 
of %g and, in the machine, utiliz~ the values of aia to within 
0.1 per cent of the largest aia' The loss of accuracy repre
sented by the fewer digits in the .other a'S corresponds 
precisely to loss of accuracy in these equations themselves, 
i.e., the loss of accuracy involved in passing from coeffi
cients to unknowns. On the other hand, we have elimi
nated a linear dependence among the coefficient columns 
and thus permitted the solution process to proceed. 

When there is only one approximate linear dependence 
among the columns, the above process permits us to elimi
nate it by modifying just one column of the coefficient 
matrix, i.e., just changing one card. I f there are a number 
of these dependencies, a number of these steps must be 
taken. Theoretically, this modification process can be 
pushed to an extreme. vVe begin by minimizing the second 
c.olumn relative to the first. This yields a second column 
orthogonal to the first. Then we can minimize the third 
column relative to these two. This process can be repeated 
until we have a matrix whose columns are orthogonal, and 
this can be inverted immediately with practically no loss 
of accuracy. Let A be the original matrix, T the new 
orthogonal matrix. We have found a matrix C such that 
AC = T and hence A-I = CT-1. Since the columns of T 
are mutually orthogonal, the inverse T-1 of T is very 
simply connected with its transpose. Thus if T is the 
matrix 1 tij r where i is the row index, j the column index 
and Tj = 'tit'i}' then T-1 is simply 1tj,i/Tjr. Note that the 
accuracy of T-1 is essentially that of T and the loss of 
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accuracy for the system is represented by the change of 
scale factors in C. 

These difficulties are present of course in every method 
of solving simultaneous linear equations since we are 
always limited in the number of digits available. Even in 
the elimination process one must always keep in mind 
the retention of maximum accuracy. For instance, the 
von Neumann-Goldstine estimate of the loss of accuracy 
involved in the elimination process is based on the assump
tion that the largest coefficient available is used as a divisor 
in each step.!! Failure to follow this as a policy can lead to 
a serious loss of accuracy. If we merely choose a coeffi
cient which is half as big as the largest, in the twelfth 
order case at each step we will have lost unnecessarily an 
accuracy factor of 211 = 2048. Pyramids have been built 
on factors like this. 

Finally, one should point out that the type of quasi
singularity I have discussed above is by no means un
common. In the majority of practical problems, full digital 
regularity is exceedingly difficult to obtain. Instead some 
aspect of high accuracy may be reasonably available. For 
instance, t.o locate a point in a plane by linear observation, 
two observation points far apart could be used, lines from 
each of these points drawn, and their intersection found. 
This would yield full digital regularity in the correspond
ing linear equation problem. However, this is not always 
practical. Instead one may have to take the observation 
points near together and very accurately measure the di
rection angles of the lines. 

This situation generalizes. Full digital regularity is fre
quently nonobtainable and we must substitute high accu
racy procedures instead. This leads to these quasi-singular 
situations. 
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DISCUSSION 
Dr. Blanch: Are you publishing this, Dr. Murray? 
Dr. Murray: First I am going to write an operational 

manual for the machine; that will be available, anyway. 
Then I plan to publish a general consideration of the rate 
of convergence of the whole process. 

Mrs. Rhodes: Will it be something that will be helpful? 
You know what we go through; we get the highest and 
lowest characteristic values and then divide them to get 
the upper bound of the error. We have to know how close 
the determinant is to zero. I hope you will give us some
thing simple so we can go ahead and make use of it. 

Dr. J.V!·urray: I have been trying to get something as 
simple as possible. I know what you mean; our interest 
dies, and we do not determine the least characteristic root. 



Computation of Shock ~ve Refraction on the 
Selective Sequence Electronic Calculator 

HARRY POLACHEK 

Naval Ordnance Laboratory 

TEe H N 0 LOG I CAL developments in a number of 
scientific fields have reached the stage where the important 
bottleneck at the present time is not the difficulty in for
mulating the mathematical equations involved, but rather 
in obtaining numerical results from these equations which 
are applicable to specific problems. An outstanding illus
tration is the field of aerodynamics. The equations of mo
tion for aerodynamic problems have been derived and 
formulated many years ago, and account has been taken 
of various effects such as compressibility, viscosity and 
heat conductivity. The equations have also been written in 
three dimensions, as well as in two or one dimension. 

However, in applying these equations it is found that 
only a few cases can actually be solved numerically; and 
these special cases are usually not applicable to the phe
nomena that actually take place. For instance, compressi
bility is usually left out, and so is viscosity and thermal 
conductivity, while equations are only solved for one or 
two dimensions because solutions in three dimensions are 
too difficult. 

I would like to cite another example (a problem which 
I had to handle during the war) which illustrates the diffi
culty of obtaining numerical results from mathematical 
equations. This problem arose in connection with the ques
tion of heat sensitivity of an explosive. The question was: 
If a portion of an explosive is heated to a certain tempera
ture, will it explode, or will the heat be dissipated harm
lessly and no explosion take place? 

The equation describing this problem is just a slight 
variation of the ordinary heat equation for which a solu
tion exists and can be obtained numerically ina matter of 
minutes. But there was an extra term involved which ren
dered the equation nonlinear. With the addition of that 
term the solution was so difficult that without access to 
automatic machines we had to spend almost a year to find 
the solution for just one single set of boundary conditions. 

The type of problems that are most difficult, and proba"" 
bly those which will require the greatest use of modern 
calculating machines in the future, are problems involving 
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partial differential equations. However, even in the case 
of systems of algebraic equations, the difficulties may be 
so great that standard equipment cannot be relied upon to 
give sufficient data to enable the scientist to survey the 
problem. As a matter .of fact, the problem which I am 
going to discuss today is a problem which may be repre
sented mathematically as a system of simultaneous alge
braic equations. It is the problem of the refraction of a 
shock-wave at a free surface separating two gases. 

The problem is illustrated in Figure 1. There are two 
media of different physical characteristics. A shock-wave 
originating in one of these media is propagated toward the 
interface which separates the two media, and strikes the 
interface at a given angle w. 

By analogy with the case of normal incidence it may be 
expected that a shock-wave will be transmitted into the 
second medium, while either a shock-wave or a rarefaction 
wave will be reflected into the .original medium. In the first 
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FIGURE 1. TRIPLE SHOCK CONFIGURATION 
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instance, the resulting pattern will be a triple-shock con
figuration; in the second case a refraction configuration 
will be formed consisting of two confluent shocks and an 
angular rarefaction wave. 

The physical formulation of the problem is the follow
ing: we have to satisfy the well-known Rankine-Hugoniot 
relations across the shock-waves. There are three shock
waves in all. (In the case where a rarefaction wave rather 
than a shock-wave is reflected, we must replace the Ran
kine-Hugoniot relations with those governing a Prandtl
Meyer angular rarefaction wave.) In addition, we niust 
satisfy the condition of equality of pressures on both sides 
of the interface, and the condition that the flow on both 
sides of the interface must be parallel, not necessarily of 
the same magnitude. 

If we combine all these conditions we obtain the system 
of equations which is exhibited below. 

G
. ~ c 
lVen: ~, w, y, Yo, -

Co 

A. Compute 

? ( y + 1 ) ~+ ( y ~ 1 ) ( y - 1 ) (1"2 + 2 
(1"-= 2y ,T= (y+l)(1" , 

(y+l)~+(y-l) 
TJ = (y -1) ~+ (y+ 1) 

(1) 

t = T cot w (2) 

h - TV-:;j(~) (3) 
sin w Co 

Ml = V (1"~+t2, 

(}l = _/),+1 tun-1 [-/y-l(AI;-1)] (4) 
'1y-l '1y+1 

B. Find k for which F (k) = 0 

F(k) == [b' (ac'+a'c) +b (a.'e' -ac)] [die' - egc] 

- [b'(a'c'-ac) -b(ac'+a'c)J[efc'+dgc] (1.0) 

where a = sinw, a' = cos w, and 

b = k1f [( 1 + V (M12_1) (k2M;-I) ) . 

sin(O,- 0,) - ( y k'M,'-l - Y M,'-l) . cos (0,-0,) ] 
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b' = k12 [(1 + V(Mi- 1)(k2Mi-l) ). 

cos(O,-O,)+ (Yk'M,'-l- YM,-l)' sin (0,-0,)] 

d = t, e = (J' 

'Y 

f = [ (y - 1) M; + ~-,~ J' y - 1 
( y-l)k2Mi+2 

c - t c' - - V 1 - c~ - It' -

(6) 

(7) 

(8) 

(9) 

This is a rather complicated system of equations. To 
begin with, there is a total of five independent parameters 
that enter the problem: The strength of the shock-wave ~, 
the angle w between the incident shock-wave and the inter
face, and three other constants which characterize the 
gases. Secondly, the unknown quantities are given in im
plicit, rather than explicit, form. Starting with the basic 
parameters, we are able to' calculate directly all quantities 
entering in equations (1) to (4) . We then must satisfy 
equation (10), which is the basic equation, and which rep
resents the equality of direction of flow on both sides of 
the interface. We must find the value of k for which F = O. 
However, the quantities which express the function F 
themselves involve the letter k. 

vVe were obliged to proceed as follows: We chO'se k 
equal to unity, and a second value obtained from the pre
ceding pr.oblem. For these two values we calculated the 
function F. We then determined if these were of opposite 
sign. If they were; we were certain that the solution was 
confined within these two limits; and we proceeded by 
interpolation to obtain a more accurate solution. If the two 
values .of Fwere not of opposite sign we could not ordi
narily apply interpolation, because the process may not 
converge. In that case we chose a different value of k in 
such a manner as to produce twO' values of F ,of opposite 
sign. 

Figure 2 is a compact chart giving the sequence of 
operations on the machine, the coding for which was car
riedout by the staff of the laboratory here, particularly by 
Mr. Skillman and Miss Hanson under the direction of Mr. 
Clark. The main sequence was used to calculate the value 
of F for k = 1, and to test whether (for this value of k) 
F = O. I f this was the case, the machine proceeded to 
sequence K, otherwise to sequence L, which was used t.o 
compute the value of the function F for the value of k of 
the preceding problem. The machine then examined the 
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SEQUENCE K 

MAIN SEQUENCE 

SEQUENCE K 

SEQUENCE K 

SEQUENCE M 

SEQUENCE N 

SEQUENCE N 

SEQUENCE L 

FIGURE 2. PROGRAM CONTROL CHART 

two values of F and determined if they were of opposite 
sign or not. I f they were, the machine was instructed to go 
to sequence N. If they were not, the machine proceeded 
to sequence M, which was used to obtain a new value for k 
and a corresponding value for F. Eventually, when op
posite signs were obtained, the machine proceeded to se
quence N. It then remained on sequence N, interpolating 
between the two last values of k, until the final value of F 
equal to zero was obtained. 

Before proceeding with the actual analysis of the solu
tions which we obtained, I would like to point out that a 
considerable amount of analysis had to be carried out prior 
to the numerical calculations on the machine. In addition 
to the complexity of the system of algebraic equations in
volved, a number of other factors had to be given careful 
consideration. First, the system of equations involved pos
sesses a large number of extraneous mathematical solu
tions. It may be shown that it is equivalent to a twelfth 
order polynomial equation, and thus may have a maximum 
of twelve roots. Some of these are real and some complex. 
Usually there were multiple solutions, and we had to de
termine beforehand which of these were physically plausi
ble. We accomplished this by tying up our solutions with 
the previously known solutions, for an acoustic wave (for 
which Snell's law of refraction holds) and for a wave at 
normal incidence (for which a unique solution exists). 
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Another difficulty is that there are two types of refrac
tion patterns which may occur. One is a refraction pattern 
with a reflected shock-wave, and the second is a refraction 
pattern with a reflected rarefaction wave. We had to be 
able to tell a priori which one of these two phenomena will 
occur. We were able to do that by connecting any solution 
with that of normal incidence and by introducing a so
called transition angle, at which point transition takes 
place from one type of refraction pattern to the other. 

TABLE I 

Problem I' 1'0 (CO/c 1 r:l Gases 

1 5/3 1.4 0.835 Argon -Nitrogen 
2 1.4 5/3 0.120 Air-Helium 
3 1.4 1.4 0.875 Oxygen-Nitrogen 
4 1.4 4/3 0.600 Air-Methane 
5 4/3 1.4 0.600 Carbon Dioxide-Air 
6 1.1 1.4 0.190 Freon-Air 
7 1.1 5/3 0.020 Freon-Helium 
8 5/3 1.1 0.800 Krypton-Propane 
9 5/3 5/3 0.240 Krypton-Neon 

10 1.1 5/3 0.460 Freon -Krypton 
11 1.1 5/3 0.600 Propane-Argon 
12 1.1 1.4 0.013 Freon-Hydrogen 
13 1.4 5/3 1/.835 N itrogen-Argon 
14 5/3 1.4 1/.120 Helium-Air 
15 1.4 1.4 1/.875 Nitrogen-Oxygen 
16 4/3 1.4 1/.600 Methane-Air 
17 1.4 4/3 1/.600 Air-Carbon Dioxide 
18 1.4 1.1 1/.190 Air-Freon 
19 5/3 1.1 1/.020 Helium-Freon 
20 1.1 5/3 1/.800 Propane-Krypton 
21 5/3 5/3 1/.240 N eon-Krypton 
22 5/3 1.1 1/.460 Krypton-Freon 
23 5/3 1.1 1/.600 Argon-Propane 
24 1.4 1.1 1/.013 Hydrogen-Freon 

Table I gives a complete list of all pro1.Jlems considered. 
There were a total of twenty-four problems which involve 
twelve different gas combinations. We chose these par
ticular gas combinations for several reasons. First, these 
are typical of the gases that will be used in any experi
mental work in the future; secondly, they possess prop
erties which exhibit the various types of solutions which 
may occur. vVe wanted to obtain solutions for which the 
refraction pattern is of the shock-wave variety for normal 
incidence, and which go over, at the transition angl~, to the 
opposite type. We wanted also to consider cases for which 
no transition takes place. We also wanted to include prob
lems for which normal incidence produces a reflected 
rarefaction wave rather than a shock-wave. We will dis
cuss several of these cases in some detail. 
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Problems 3 and 15 are both concerned with the same gas 
cornbination (oxygen and nitrogen). These have the same 
values for the gas constants (ratio of specific heats 1.4), 
while the ratio of velocity of sound for the two is 0.875. 

We consider Problems 3 and 15 together for the reason 
given above. For both Problems 3 and 15, as may be 
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seen from Table II, the transition angle Wt exists for all 
strengths ~ of the incident shock. In Problem 15, however, 
the limiting angle WI (for which the material speed behind 
the incident shock becomes sonic) precedes the transition 
anglf! Wt (i.e., W l < Wt for strong shocks, viz., ~ = 0.0 and 
0.1). Thus no transition can take place for these strengths. 

,~=o.o 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 

W = ANGLE OF INCIDENCE IN DEGREES 

TABLE II 

Problem ~ Wt WI WL Problem ~ Wt WI WL 

0 0 0 0 0 

3 1.0 43.089 90.000 69.295 15 1.0 46.911 90.000 unreal 
0.9 44.090 74.146 69.295 0.9 48.059 74.146 unreal 
0.7 46.442 65.457 69.295 0.7 50.779 65.457 unreal 
0.5 49.429 61.945 69.295 0.5 54.295 61.945 unreal 
0.3 53.392 61.439 69.295 0.3 59.110 61.439 unreal 
0.1 59.009 64.272 69.295 0.1 66.410 64.272 unreal 
0.0 62.833 67.792 69.295 0.0 72.009 67.792 unreal 
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For Problem 3 a reflected rarefaction wave solution exists 
at all values of ~ at normal incidence (w = 0) ; whereas 
with the gases interchanged (Problem 15) there is always 
a reflected shock-wave for n.ormal incidence. 

The dependence of the strength f of the reflected wave 
on the angle of incidence w for incident shock strengths 
~ = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1, 0.0 is plotted in Figure 3. 
A pressure ratio greater than 1.0 indicates a reflected 
shock-wave; while a value less than 1.0 indicates a re
flected rarefaction wave. We see, as we said before, that 
for all strengths of the incident shock wave, the type of 
c.onfiguration is of the rarefaction variety for normal in
cidence (w = 0). 

A typical curve begins at a value of f less than 1, and 
continues upward until it reaches Wt, the transition angle, 

at which point the configuration changes from a rarefaction 
to a shock-wave variety. It extends upward until it reaches 
an extreme angle WL beyond which no further solutions are 
possible. The existence of an extreme angle was first dem
onstrated by J. Von Neumann f.or the problem of regular 
reflection from a rigid wall. The similarity of the two 
problems is here illustrated. 

Figure 4 is a plot of w' (the angle of refraction) against 
w (the angle of incidence) for the same problem. For weak 
incident shock-waves Snell's law of refraction holds. This 
is the relati.on used for plotting the curve for ~ = 1. It will 
be noticed that for any other shock-wave strengths (in
cluding infinite strength) the law of refraction does not 
differ appreciably from Snell's law. This is an interesting 
result. 
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W = ANGLE OF INCIDENCE IN DEGREES 

FIGURE 5. PROBLEM 15: f AS A FUNCTION oF' w 

For this problem all configurations are of the reflected shock-wave variety for 
normal incidence, which usually change over to the rarefaction type at larger values 
of w. For ~ = 0.0 and 0.1, however, no transition takes place, as has been pointed 
out previously. In that case, the curves reach an extreme angle WI., beyond which no 
further solutions are possible. 
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We will next consider two other problems (10 and 22) 
which exhibit slightly different properties. In both Problem 
10 and 22 there are no real solutions for the transition 
angle for values of ~ > 0.66. ,This means that for these 
values of ~ there cannot possibly be any transition from 
one type pattern to the other. In other words, the refrac
tion pattern which begins at normal incidence must con
tinue throughout the problem. 

In the case of Problem 10, the starting pattern is always 
of the rarefaction type for values of ~ > 0.66, but of the 
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shock wave variety for the case ~ < 0.66, or where the 
solution for Wt is unreal. For Problem 22 exactly the re
verse occurs. 

Figure 7 is a plot of e (the ratio of pressures across the 
reflected wave) versus (0. In the case of strong shock
waves we start with a rarefaction type of configuration at 
W = 0 and go over to the shock wave variety at Wt, while 
for weak incident shock-waves we start with the shock
wave variety, which persists throughout the entire range 
of w. 
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TABLE III 

~ Wt WI WL Problem ~ Wt 

1.0 unreal 90:000 
0 

42.706 22 1.0 unreal 
0.9 unreal 73.554 43.123 0.9 unreal 
0.7 unreal 65.378 44.009 0.7 unreal 

0 0 

0.5 11.820 62.929 44.972 0.5 16.848 
0.3 20.739 64.065 46.025 0.3 29.476 
0.1 31.192 70.061 47.183 0.1 44.916 
0.0 37.558 77.690 47.807 0.0 55.360 

50 

WI WL 
0 

90.000 unreal 
74.526 unreal 
65.566 unreal 
61.439 unreal 
60.005 unreal 
61.294 unreal 
63.431 unreal 
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A refracted angle of 90° indicates a transmitted wave which is normal to the 
interface. In acoustics this angle is known as the angle of total reflection, and is the 
limiting point beyond which no refraction pattern can take place. For stronger 
shock-waves a refraction angle of 90° does occur mathematically; however, it is 
on a portion of the curve which we believe to be physically unreal. \'1 e must t1ms 
expect other types of limiting angles for shock waves of finite amplitude. 
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In this problem the same gas combination is used as that in Problem 10; however, 
the gases are interchanged. For strong shock-waves, a shock-wave is reflected at 
small values of wand a rarefaction wave is reflected for large values of w. For weak 
incident waves, on the other hand, only rarefaction waves are reflected. The range 
of values of w for which solutions exist is limited by a sonic line, beyond which the 
material velocity behind the incident shock wave becomes equal to the velocity 
of sound. 

70 76 
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In Problems 11 and 23 no real solutions for the transi
tion angles Wt exist at all; hence, the type of pattern which 
occurs at normal incidence persists throughout the entire 
range of permissible values of angle of incidence. Thus a 

shock-wave solution always occurs in Problem 11, while a 
rarefaction wave solution takes place when the gases are 
interchanged (Problem 23). 
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The shock-wave solutions do not exist f.or angles of incidence 
greater thal1al1 extreme angle WL' 
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TABLE IV 

Wt Wl WL Problem ~ Wt Wl 

0 0 0 

unreal 90.000 50.769 23 1.0 unreal 90.000 
unreal 73.554 51.323 0.9 unreal 74.526 
unreal 65.378 52.512 0.7 unreal 65.566 
unreal 62.929 53.821 0.5 unreal 61.439 
unreal 64.065 55.275 0.3 unreal 60.005 
unreal 70.061 56.903 0.1 unreal 61.294 
unreal i7.690 57.795 0.0 unreal 63.431 
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To sum up, the refraction problem was formulated in 
terms of a complex system of algebraic equations. In 
order to solve these equations we first had to carry out a 
number of preliminary investigations. First, we had five 
independent parameters to deal with. To take into account 
all possible variations would probably not be feasible even 
on a large-scale· machine, and would also fill up several 
large volumes which no one would want to read anyway. 
We thus selected typical cases of gas combinations; but in 
each case we obtained solutions for all strengths of the 
incident shock wave and for all possible angles of inci
dence. 

Secondly, we were faced with the problem of finding out 
a priori which ones of the many possible mathematical 
solutions were physically plausible. We have solved this 
difficulty by connecting our soluti.ons with the known solu
tions for the acoustic case, and for the case of normal 
incidence. 

\Ve still had several other difficulties. We had to con
sider the two types of configurations, and we had to pre
dict in each case which type of configuration will occur. 
We also wanted to have a good representation of the vari
ous types of characteristic curves that may occur. We 
wanted to obtain a sufficient number of solutions which 
we can later compare with experimental results. In all, we 
solved a total of approximately 3000 points. If a single 
point were to be solved by hand, it would probably take an 
experienced computer at least one day. If the entire job 
were done by hand, it would take one computer approxi
mately fi fteen years or a staff of ten computers about a 
year and a half. In both cases, I believe, the problem would 
get out of the range of feasibility. It is doubtful if the 
pr()blem would ever have been solved without the use of a 
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large-scale machine. The actual running time on the ma
chine· was approximately sixty hours. Preliminary prepa
rati.ons and coding of the problem for the machine took 
several weeks. Thus, within a month we actually were able 
to obtain a solution to a problem which otherwise probably 
would never have been solved. 

I would like to make a few general remarks about the 
place of machines in the scientific computation field. I do 
not believe that machines will ever replace the necessity 
for analysis, or for scientific investigation; however, the 
automatic calculating machine certainly represents a new 
and powerful tool which the scientist will be able to utilize 
in the future in the solution of many difficult and other
wise unfeasible problems. There are really only two large
scale electronic machines in this country at present in 
actual operation. The EN lAC, at Aberdeen, was the. first 
machine to prove that large-scale computations of compli
cated mathematical problems is feasible. The SSEC is the 
second machine. When we used it, it had been in operation 
for approximately six months, but it had already demon
strated not only that solutions of. complex mathematical 
problems on large-scale electronic machines are feasible, 
but that these are actually practicable. 

In conclusion, I would like to thank the staff of the 
IBM Corporation for the excellent spirit of cooperation 
they have shown throughout all phases of this problem, 
and f.or the valuable assistance they have offered both in 
coding the problem and in preparing the problem for the 
machine. I would also like to mention that this work has 
been carried out in collaboration with my colleague, Dr. 
R. J .. Seeger, and that the work was sponsored by the 
Mathematics Branch of the Office of Naval Research. 
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I PRO P 0 S E not to go into the theory of the problem 
that I am going to talk about, but to write down the equa
tions with as little explanation as possible, and show how 
they were transformed to what seemed to me to be a suit
able form for putting on the machines. Then I will show 
you what the people who coded the problem and put it on 
the machines gave back to me, and how I had to treat that. 
I shall be trying to explain the point of view of the person 
who brings a problem to the machine, to try to show you 
how much that person has to do and how little he has to 
do it with. 

I t happens that in this case the problem is very small 
compared to the capacity of the machine. I do not need 
anything like the number of decimal places that the ma
chine has. I do not need anything like the storage that the 
machine has. The problem could perhaps have been done 
on a smaller sequence computer. It might have been done, 
with considerable inconvenience and taking quite a long 
time, on the relay calculators. However, it is much easier 
to do it on this machine, and much easier-that is, for me
simply because I do not have to worry about capacity at 
all, throughout the problem. I just put the equations there 
and say, "do it," and it turns the solutions out. There is 
everywhere ample capacity. 

1 ( )2 2" P - 2/-rr V'J Z/r 

P = S/2-rr atr = ro 

-r2 d/dr{i-<p-2/1lY} =Z-n atr=ro 

The equation that I want to solve is the above. P is the 
density of electrons. The problem is supposed to be sym
metrical about a single center, the center of an atom; and 
this is the statistical equation for an approximate field, 
including the correction term for exchange. Z is the charge 
of the nucleus, and r is the distance of the electron from 

the nucleus. The boundary conditions are that ~ (P - 2/7r) 2 

shall behave like Zjr as r tends to zero; and that at a cer-
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tain finite distance ro, P shall take the boundary value S/2-rr 
while its derivative satisfies the second condition involv
inz Z - n, where n is the degree of ionization, so that 
Z - n measures the part of the nuclear change unneutral
ized by the electrons around it. 

We then have a problem in which the outer boundary 
is not fixed beforehand. The equation is a non-linear ordi
nary equation, since this is a purely one-dimensional prob
lem. We have one boundary condition at the center; at 
r = ro we have the outside movable boundary. It is known 
from much work on this and on more complicated prob
lems that it is convenient to adopt a logarithmic scale of 
distance, using a finer mesh where r tends to zero. There
fore, we make a number of substitutions directed towards 
a logarithmic independent variable in place of r, while 
leaving a differential equation of the second order without 
a first order term in it. 

The following substitutions were made: 

Going to a logarithmic scale, if r = e-:C, '" = em/ 2 X removes 
the first order term from the resulting equation. It is con
venient also to scale the problem so that the movable 
boundary is fixed, writing % - %0 = y, at y = O. Writing 
X as shown makes the coefficients of the final equation 
simpler. 

This gives us the equations in the following form: 

~ = - (J) + e-5y/ 2 e y / 4 W1/ 2 + y d21 { }3 
dy2 4 

where 
y = 16 e-2i1JJ /31T2 

, 

with 
e-V/2 W + 128 e-3;Co Z /91T2 as y -+ CIJ 

~Yy//: W(l~: =+ ~ e-

2X

)" ~3~~8 _" (Z .)} for y = O. 
e - - W - --e 0 -11 

dy 2 911'2 

Here y -+ CIJ corresponds to the radius going to zero. 
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\Vhat we want are solutions for various values of Z and 
n. If we start integrating the differential equation from the 
outside, y = 0, 1t being known, the value of one other 
parameter y is all that i~ needed to start the solution, and 
we will have for each value of It a one-dimensional family 
of solutions. When we have integrated in sufficiently far 
to see what happens as y -+ 00, we can -compute to what 
value of Z this value of y was appropriate. The total num
ber of solutions required is reduced by this scaling process 
to a manageable number. 

We wish to compute not only the variation of the poten
tial and the distribution of electrons as you go onwards in 
the atom, but also over-all integrals of these expressions 
which can be used to give various physical properties of 
the solution. It turns out that we would like six integrals 
over the solution, which, however, have two relations be
tween them-identical relations if the boundary conditions 
are satisfied. 

One of these is a double integral. It represents the mu
tual potential energy of all the electrons. It is not con
venient to calculate the double integral, but since we have 
two identical relations, if we calculate the other four inte
grals, we can calculate this one from them, and still have 
an identical relation between them, which will act as a very 
good check on the accuracy of the results. 

I will put down the forms of two of these integrals: 

Total Charge E = 3:f p3r2dr , 

. 2f 
Kinetic Energy K = 57r p5r2dr. 

Now P is not given us directly by the solution, but is pro
portional to eY / 4 

W
l

/
2 + y, which will occur in the integrals 

to a whole number power, 3, 4 or 5. It is convenient to 
divide the factors beyond the third power into their terms, 
giving four independent integrals to obtain numerically. 

I then want to get, with a reasonably small number of 
steps, a reasonably accurate solution. I will be quite satis
fied with four digits if I know they are accurate, because 
after all the statistical fieldis only a rough approximation 
to what actually goes on in an atom. However, in this 
machine you do not save anything by using less than a 
nine-digit register, and so things were set up in nine-digit 
registers. It turns out that without taking any special care 
we get five-digit accuracy in the answers. In order to have 
a reasonably small number of steps I decided that we must 
use a more accurate type of integration in which the error 
term is in the sixth order of differences. That somewhat 
complicates the equations. It does not complicate very 
much the work on the machine, because it is necessary 
with this differential equation to carry out an iteration for 
each step, to find the new value of w, in any case. 

SCIENTIFIC COMPUTATION 

If you replace d2w/dy2 by an expression in terms of dif
ferences, you can solve the equation. If you replace it· 
merely by the second difference, you can go straight ahead 
substituting the new value of w in the right-hand side. All 
that you would have to do would be the square root (a sub
sequence on this machine). However, if I make use of the 
more accurate formulas, I do not have values of w in my 
table which I am building up, but values of w - w2/12 . 
d'lw/dy'.!, w being the interval. d2w/dy 2 is related to w by 
the differential equation, and w must be inferred. This is 
done by regarding the table value as an approximation to w, 

substituting this in the differential equation, evaluating 
d'lw/dy'l, and iterating until an accuracy set in a certain 
decimal place is reached. In each iteration it is necessary 
to take a square root. 

Here we have a main sequence; then a sub-sequence to 
get a new value of w by iteration, in each step of which a 
sub-iteration is done to find a square root. When a toler
ance is reached, we go back to the main sequence, ac~u
mulating SUl11S which approximately represent the integrals 
desired. 

It turned out when we first set this up that we, did not 
get sufficient accuracy near the beginning of the solution 
because the interval there was taken too large. So the 
problem was recoded, starting with one-sixteenth this in
tenTal, going the first eight steps with the smaller interval, 
and then doubling the interval; then four steps and dou
bling the interval again~ 'and so on, until we came back to 
the original interval. This gives enough accuracy. It was 
no more difficult to set all these interval doublings than to 
set up orie or two doublings, since the process is the same. 
Of course, it takes a little longer running the problem on 
the machine, but only a small fraction of the total time, 
since the total number of steps is of the order of seventy. 

Well, when this has been done the machine provides me 
with sheets from its tabulation stations. It has two tabular 
outputs, as shown in Figure 1. One is from the first 
printer; this contains the main part of the integration. It 
contains the running sum, w - w 2j12 . d2w/dy2, and the 
result of taking the square root, putting it in (eY / 4 wl./2 + y), 
and cubing it. Those expressions together are enough to 
make it easy to check any line by multiplying a few num
bers together. 

The other printer gives me progressive totals that give 
the sums which I want to compute. Actually, you do not 
need these progressive totals if a uniform interval has 
been used throughout. However, at the places where the 
intervals were changed these sums are simply progressive 
sums. A correction had to be made to the value of the· 
integral. 

I now wish that I had asked for that correction to be 
put in by the, machine. It could have been sequenced and 
would have saved me a good deal of trouble in processing 
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these solutions. It turns out that if you try to make a rough 
check on results by identical relation between the integrals, 
the check is not nearly accurate enough unless you have 
added in these extra terms to the sums. I had hoped that 
I would not have to do this for the originally assumed 
values of y, but it turns out that to get a good check one 
must. 

vVell, then, these solutions were made originally for 
n = 0, for a wide set of values of y. Gamma equals 1, 2, 
3, 4, 5, 6-1 think that is as far as it went. For each of 
these we computed the corresponding value of Z. Actually, 
that was computed as we went along, and we found that 
this covered the whole of the periodic table. We then took 
the part which included the whole of the periodic table and 
took even intervals among these values of y = 2.1, 2.2, 
and so on, up to 5.9. And with the integrations of the dif
ferential equations at this distance apart in y, we found 
the values of Z. That gave a table in which inverse inter
polations gave us new values of y which would lead to 
assigned values of Z accurate to five decimals. So that 
as it turns out, without too much work, it was possible 
to get for any values of nand Z-and we have done this 

SCIENTIFIC COMPUTATION 

also for n = 1 and 2-by an inverse interpolation, the 
corresponding value of y, to put that in as a starting value, 
and to compute the whole field for that particular case. 

To compute the field by integration, once the sequence 
is set up, is a good deal easier than to get the whole field 
at each point by interpolation among the solutions that 
have been made, although that would be perfectly possible. 
I think actually we shall probably tabulate and publish just 
certain selected solutions. However, we hope to be able to 
do enough so that anyone could interpolate to find any 
solution that they might want. 

It should again be realized that the statistical fields only 
give a rather rough order of approximation to the prop
erties of the atomic ion. You really want to use these as a 
starting field to start after the real approximations in any 
particular case in which you are interested. I think it is 
clear that it would be too much work to work out complete 
sets of Hartree approximations for every possible atom. 
I f you have once got a statistical field., that is a good start 
toward obtaining the Hartree field. You could probably get 
the Hartree field with at most two successive approxima-
tions of the Hartree type. ' 


