


PROCEEDINGS 

Com putation 
Seminar 

AUGUST 

1951 

EDITED BY IBM APPLIED SCIENCE DEPARTMENT 

CUTHBERT c. HURD, Director 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

NEW YORK + NEW YORK 



P R I N TED N 

Copyright 1951 
International Business Machines Corporation 
590 Madison Avenue, New York 22, N. Y. 

Form 22-8705-0 

THE U NIT E D S TAT E S o F AMERICA 



FORE WORD 

A COMPUTATION SEMINAR, sponsored by the International Business 

.I1. Machines Corporation, was held in the IBM Department of 

Education, Endicott, New York, from August 13 to August 17, 1951. 

Participating in this Seminar were ninety research engineers and scien-

tists representing computing facilities which employ IBM Card-

Programmed Electronic Calculators. The discussion centered on the 

mathematical and computational aspects of a variety of important 

problems which have been solved on the Card-Programmed Elec

tronic Calculator. The formal papers of the Seminar and a digest of 

the ensuing discussion are published in this volume. In addition, 

informal papers were presented at several valuable supplementary 

sessions. Dr. W. J. Ec"kert presided at a session on Training of Personnel 

for Computing Laboratories at which Mr. Murray Lesser, Mr. Walter 

Ramshaw and Professor Frank Verzuh led the discussion. Mr. P. M. 

Thompson presided at a session on the Organization of a Computing 

Installation at which Mr. W. D. Bell, Dr. H. R. J. Grosch, and Mr. 

J. D. Madden gave short papers. Mr. E. B. Gardner presided at a 

session in which there was widespread discussion of the subject of 

Data Reduction. More generally, all participants in the Seminar con-

tributed generously in discussions. The International Business Ma-

chines Corporation wishes to express its appreciation to all who 

participated in this Seminar. 
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Application of the IBM 
Card-Programmed Electronic Calculator to Engineering 

Procedures at The Glenn L. Martin Company 

WARREN B. KOCH 

The Glenn L. Martin Company 

THE PUR P 0 S E of this paper is to describe the most 
important engineering problems that have been adapted 
for processing on the IBM Card-Programmed Electronic 
Calculator at The Glenn L. Martin Company. However, 
before starting upon any such discourse, it is advisable to 
consider first the tools of operation-in this case, the type 
of control panels that are in use. 

I t has been found necessary to design only two control 
panels for the CPC, the operations available from one or 
the other proving adequate to cover all needs up to the 
present time. They are a floating decimal type with seven
digit capacity and a fixed decimal with six-digit capacity. 
Of course, it would always be advantageous to program 
jobs on a floating decimal setup, but because of the addi
tional complications involved in wiring such a control panel, 
fewer operations are available than on a fixed decimal 
design. 

The operations programmed on the floating decimal con
trol panel include only addition, subtraction, multiplication, 
division, and square root, while the fixed decimal control 
panel allows for all these operations in addition to that of 
substitution of an argument into a polynomial of at most 
the fourth degree. This latter operation works in conjunc
tion with a selection which makes it possible to select any 
one of a number of polynomials, depending upon the magni
tude of the argument used. This type of operation is par
ticularly valuable when it is necessary to approximate 
graphical data with polynomials, and different equations 
must be used over certain ranges of the curve. 

FLOATING DECIMAL JOBS 

Simultaneous Linear Algebraic Equations 

We shall now consider the more or less routine jobs that 
have been adapted for the floating decimal control panel. 
The first of these is the solution of simultaneous linear alge
braic equations. The method used is essentially the Gauss-
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Jordan method resulting in a unit diagonal matrix. Since 
the floating decimal setup is used, no attempt has been 
made to select the largest terms as divisors; rather, these 
operator coefficients are selected down the main diagonal. 
The solution is substituted back into the original equations 
and, when necessary, the errors thus resulting are operated 
upon to obtain corrections to the original results. 

Flutter Analysis 

The only type of flutter analysis which has been thus far 
investigated is that of determining the critical flutter speed 
of any aircraft; that is, the speed at which the damping 
of the structure is attained. This job is laborious in that it 
involves the expansion of a number of determinants of 
order equal to the number of degrees of freedom for which 
the aircraft is designed. The Dynamics Department has lim
ited the size of these determinants to fourth order through 
various simplifying assumptions, but a setup is now being 
evolved which will handle sixth order determinants on the 
CPC. The result of an expansion of one of these determi
nants is a polynomial with complex coefficients of degree 
equal to the order of the determinant. 

A method has been devised of applying the CPC to the 
solution of any polynomial with coefficients either properly 
complex or real. Because of the limitations of storage, the 
system has been designed for polynomials of degree no 
more than eight. The mathematical technique involved is 
Newton's method. Up to the present time, no difficulty has 
been realized in obtaining any roots-in fact, the number of 
iterations required to obtain six-digit accuracy in the root 
usually has been less than twenty. 

Vibration Frequency Analysis 

A method has been developed in the Dynamics Depart
ment for determining the natural vibration frequencies of a 
beam for either bending vibrations alone or coupled bend-
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ing-torsion vibrations. The calculation is initiated by first 
dividing the beam into sections with discrete masses con
centrated at each station and then describing these stations 
by series of matrices.a 

The matrices are written with the frequency factor, K, as 
a variable. Then, by simply multiplying the proper coeffi
cients by any value of K, the problem may be processed for 
any particular frequency. The routine is simply one of trial 
and error, where a value of K is substituted, and the asso
ciated matrices of successive beam stations are continually 
premultiplied until a final matrix equation is obtained re
lating the boundary conditions on both ends of the vibrating 
beam. The imbalance of any chosen end condition is plotted 
against K and the process repeated for a new value of K 
until a K is found which gives no imbalance. The K result
ing in this balance condition determines the vibrating fre
quency desired. The machine calculations begin after the 
matrices have been written and cover the substitution of the 
K values, the matrix multiplication, and the determination 
of the imbalance between end conditions. 

Transfer Functions 

Quite extensive use of the CPC has been made in the 
formulation and evaluation of transfer functions in the in
vestigation of dynamic stability of guided missiles. The 
transfer function of any component is essentially its equa
tion of motion expressed in differential operator form as 
the ratio of the input to the output. The closed loop stability 
characteristics can be determined from the so-called Nyquist 
diagram obtained from the evaluation of the transfer func
tion. For a sinusoidal input, the phase anJ amplitude of the 
output are plotted in the complex plane as a function of 
frequency. The stability is determined as a function of the 
encirclements of the - 1 point on the real axis. 

For the airframe itself, any transfer function (such as a 
function of elevator, roll as a function of aileron, etc.) is 
completely determined by the flight condition and aero
dynamic properties as determined in a wind tunnel. A CPC 
p~ocedure has been set up to accept this type of data in 
order to formulate any transfer function describing the 
missile dynamics. The transfer functions of other compo
nents (servos, amplifiers, valves, etc.) are determined by 
either analysis or test. 

Given the transfer functions of n consecutive components 
in a control system-call them Ai, where i = 1, ... , n
another procedure on the CPC obtains the response as a 
function of frequency of not only each component Ai but 
also of the products Al X A 2 , Al X A2 X As, ... , 
Al X A2 X ... X An. 

aThe method of developing these matrices has been fully described 
in an article in the October, 1947, issue of the Journal of the Aero
nautical Sciences by W. P. Targoff entitled "The Associated Mat
rices of Bending and Coupled Bending-Torsion Vibrations." 

COMPUTATION 

FIX:eD D:eCIMAL JOBS 

Simultaneous Ordinary Differential Equations 

The most important use of the fixed decimal control 
panel, and in fact of the CPC itself, has been in the solution 
of simultaneous ordinary differential equations. This prob
lem has become one of frequent occurrence with the en
trance into the guided missile field and its attendant prob
lems of automatic control and trajectory computations. Of 
course, this problem occurs within other problems but, by 
far, the preponderance of work done on the CPC at The 
Glenn L. Martin Company has been concerned with trajec
tory calculations. 

A stepwise method is used to solve the equations with 
values of the dependent variables at the beginning of each 
step determined by quadratic extrapolation from previous 
information. These extrapolated values are then improved 
upon later by a single iteration and the difference between 
extrapolated and iterated values compared. This error is 
used to determine the maximum allowable interval into 
which the independent variable may be divided and also 
serves as a check on the machine calculations. 

There is almost no limit on the number of equations (or 
dependent variables) that may be handled simultaneously, 
and there is no problem in taking care of complicated non
linearities in the coefficients. 

Recently, a trajectory has been calculated at The Glenn 
L. Martin Company in which three distinct rectangular co
ordinate systems, each in three dimensions, were handled 
simultaneously. It was necessary to write a set of 76 equa
tions to describe the system completely. Of these, about 
one-third were differential equations, and the rest were 
either simply definition or angular resolution equations. Of 
course, it was impossible to store all values of the dependent 
variables; so it became necessary to summary punch many 
of them and reload them into the machine at various times 
in the following interval. This was done by prepunching 
decks of summary cards with operation instructions and 
then merely running the deck of program cards through the 
402 once, replacing the pertinent cards with newly punched 
summary cards and continuing this process until a com
plete trajectory was calculated. Under this system, it was 
possible to go through one complete cycle of processing 
about 400 cards through the accounting machine, reloading 
the new summary cards and starting to process again in five 
minutes. A complete solution required approximately 80 
machine hours and described 13 seconds of flight time. 
Manually, this job would have taken some 3,000 hours. 

Analysis of a Cabin Conditioning System, 

During the course of a recent investigation of the per
formance of a cabin air conditioning and pressurization 
system, an analytical method for studying this problem was 
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devised. This method, although applied to just this one sys
tem, should have extended application, and it can be tied in 
exceedingly well with CPC methods. This is so because the 
system is basically one of trial and error, where each trial 
involves a lengthy calculation on a small amount of data. 

The system contains essentially a primary compressor, 
secondary compressor turbine unit, two heat exchangers, a 
water separator, two combustion heaters and fans, and vari
ous ducts, valves, and control mechanisms. The primary 
problem is the establishment of criteria for determining an 
unique set of operating points for the various components. 
The only parameter known is the primary compressor im
peller speed. All other compressor variables are unknown; 
furthermore, the performances of the secondary compressor 
and turbine are dependent on each other, and the perform
ances of this entire unit and the primary compressor unit 
are dependent on each other. Therefore. the performance of 
the entire system cannot be predicted by any straightfor
ward method of calculation, and a trial-and-error system 
must be adopted. 

The method most frequently used in this type of problem 
is to assume several values of each of the independent vari
ables, and calculate the performance until the values chosen 
satisfy the equilibrium criteria. However, because of the 
wide variations of the conditions of flight, and because of 
the customary use of various automatic limiting devices 
which arbitrarily change the functional configuration, it is 
felt that this simple trial-and-error method is unsatisfactory. 
Rather, several values of two arbitrarily chosen variables 
are assumed in a systematic relationship so that existing 
trends become apparent. In addition, if the various assumed 
operating points bracket (or nearly bracket) the actual 
operating point, this point can be established with accept
able accuracy. 

The CPC is particularly suited to this procedure, since a 
few points may be computed rapidly and then any desired 
re-trials may be run by simply changing a few load cards. 

Wind Tunnel Data Reduction 

Until recently, all wind tunnel data reductions have been 
calculated on the IBlV[ Type 604 Electronic Calculating 
Punch. It has been found that the CPC can be adequately 
adapted to this calculation with a resultant time saving of 
60% over the 604. 

All computations, with the exception of the correction of 
forces and moments for residual balance readings, are per
formed on the CPC. This initial correction is obtained more 
conveniently on the 604. The remaining calculations in
clude: 

1. Converting the force and moment data to coefficient 
form. 

2. Correcting these coefficients for: 
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a. Tare and interference, which is the influence ex
erted on the model by the supports and support 
fairings. 

b. Alignment, or inclination of the wind stream to 
the balance system. 

c. Effect of the constraint of the wind tunnel walls. 

d. Buoyancy, which is the effect of fore and aft pres
sure gradients in the tunnel. 

All of the data required to apply these corrections are 
determined by exacting wind tunnel testing, and the correc
tions applied in equation form to the aerodynamic coeffi
cients. 

These corrected coefficients lie in a wind axis coordinate 
system with the origin at the point of attachment between 
model and support. The coefficients are finally transferred 
to two other coordinate systems: (1) the wind axes with 
origin at the center of gravity of the model, and (2) the 
stability axes. 

Aeroelastic Influences on Control Surface Effectiveness 

The aeroelastic problem is concerned with the loss of 
effectiveness of comrol surfaces, including ailerons, flaps 
and elevators, because of the elastic deformations of wing 
fuselage and tail. The deformations are brought about by 
both the twisting and bending of these various parts, which 
are due to angle of attack and deflection of the control 
surfaces. 

Twisting is brought about by the fact that the chordwise 
centers of pressure of loads which are due to control surface 
deflections and angle of attack are not located at the elastic 
axis, thus producing powerful torques which tend to twist 
the wing or tail surface and change the effective angle of 
attack. This twisting, in turn, produces loads which further 
influence the elastic deformation of the wing or tail. 

The problem is one of iteration since, to begm with, the 
final spanwise twist distribution cannot be predicted accu
rately. A twist distribution must be assumed, the torques 
which are due to this twist and basic loads must be com
puted, and a new twist distribution is determined from 
these torques. \Vith this new twist distribution, the problem 
is started anew, and the same steps are carried out to find a 
third twist distribution, and so forth, until the solutions 
converge to a final twist distribution. 

Once the nature of the twist curve is determined, the 
problem becomes simple and straightforward. Now the load 
distributions, caused both by the basic load moments and 
the moments resulting from the twist distribution loads, are 
computed accurately by the \N eissinger method. 

This entire computation procedure is programmed by 
approximately two thousand cards, of which half are used 
as many times as necessary (usually three) in the iteration 
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procedure. There are only about two hundred cards con
taining data that must be changed for different configura
tions, and these are specially coded so that they may be 
changed readily between jobs. This system, which takes 
about four hours per configuration, has replaced a proce
dure that usually required three weeks to complete by hand
computing methods. 

DISCUSSION 

Mr. Von H oldt: At Los Alamos we punch out eight dif
ferent numbers and put the instructions in 1 to 10 auto
matically. They are in the instruction deck and go into the 
summary punched card; so it is not necessary to have pre
punched cards. 

Dr. Brown: When you mentioned the 80 hours of run
ning time on the machine, Mr. Koch, how did that compare 
with the number of hours it would have taken by hand 
operations? 

Mr. Koch: It would have taken 3,000 hours. 
Mr. Lowe: If I understood you correctly, you extrapolate 

in your trajectory programming with some quadratic ex
trapolations involving a prior point. Is that correct, or do 
you use two prior points? 

Mr. Koch: We use two prior points. 
Dr. Yowell: I am very much interested in some of the 

systems you say you have handled with more than eight 
differential equations at a time, where you have had to 
punch out the results from one step to the next and put 
them back in again. Has it been necessary to punch more 
than two cards with the same values on them? 

Mr. Koch: Yes, it has. Occasionally we have had to 
punch the same value in a number of different cards to be 
used at different places in the calculation. 

Mr. Lesser: \\lith regard to summary punching multiple 
cards from the same set of data, the technique that we used 
was to bring out the 12-impulse from the digit-emitter in 
the summary punch back through the summary punch X 
control wires to the accounting machine through a latch 
selector on the accounting machine, and then back through 
a second summary punch X control wire to pick up punch 
selectors. On additional summary punch cycles, the punch 
selectors caused the data to be gang punched from the lower 
brushes back to the punch magnets as many times as we 
desired. 

COMPUTATION 

Also I was wondering if you have done any investigating 
so that, instead of having to predict the next stop, you use 
a much simpler form of numerical analysis and just take 
your intervals a little closer together. 

Mr. Koch: No matter how small the intervals are made, 
we always have to predict. 

Dr. Grosch: I would like to suggest the possibility of 
increasing rather than decreasing the interval, for this 
reason: The steps of l\fr. Koch's procedure take him about 
five minutes; so this looks like something of the order of 
1,000 steps he has to go through in his 80 hours. But sup
pose we could decrease the number of steps tenfold by tak
ing the interval ten times as large, at the expense of having 
to store more data for the extrapolation. For instance, if 
you have nine space intervals you might have to store four 
or five extra orders of differences for each one of those nine, 
i.e., 36; and that might mean punching out twenty or thirty 
extra summary cards, which will take up ten or twenty 
per cent extra time per step. But if you have reduced the 
number of steps tenfold, you still have a gain of eightfold 
in your time of running, and cut down from 80 hours to 
ten hours. 

It is true that the programming will be more complex, 
and it is also true that every time you get a discontinuity 
you are going to have more trouble in getting past. But I 
think you are more likely to get more results out of your 
machine by increasing the interval than by decreasing it. 

Dr. Thomas: I would like to warn people that while what 
Dr. Grosch has said is likely to be very true for computa
tions which are carried to great accuracy, like astronomical 
computations, it is not at all likely to be true for calculations 
which do not have to be carried to such great accuracy, like 
trajectory problems. If you are only going to something 
like a tenth of a per cent to start with, then the optimum 
interval for simple formulas is not going to be very greatly 
increased by using more complicated formulas. 

If, however, you wanted to carry the same calculation to 
twice as many decimal places, you would probably do very 
much better by using more complicated formulas than by 
using shorter intervals. But for calculations which are only 
of relatively low accuracy, from the astronomical point of 
view, the very complicated formulas with many differences 
really do not pay. 



Reduction of Six-Component Wind Tunnel Data 

Using the IBM Card-Programmed Electronic Calculator.} 
Model [[* 

MURRAY L. LESSER 

Northrop Aircraft, Inc. 

T EST D A T A taken during a wind tunnel program on 
a scale model of a Northrop airplane, conducted in the ten
foot pressure tunnel at Wright-Patterson Air Force Base, 
were reduced to coefficient form using the IBM Card-Pro
grammed Electronic Calculator, Model II. Six-component 
test dataa for each test point were key-punched into a single 
IBM card (average key punch time was approximately 75 
test points per hour). The data cards were machine collated 
into a prepared program deck, and the results were com
puted and printed in coefficient form for both stability and 
wind axes (simultaneously) in one pass through the calcu
lator at a rate of three test points per minute. Because of 
the nature of the balance system and the small size of the 
model relative to the tunnel, corrections were not required 
for tares or wall effects. 

The programming and wiring of the CPC for this com
putation are discussed in more than usual detail as an illus
trative example of the flexibility available in the CPC 
Model I1.b This flexibility allows parallel-serial operation 
of the calculator where a small number of digits will carry 
the required information. With few exceptions, the compu
tations required are elementary, and no originality is 
claimed for the manner in which they are accomplished. 

It should be pointed out that the machine time for an 
equivalent computation on the CPC Model I would have 
been approximately twice as long. Also, it would have been 
necessary to split the key-punched data for one test point 
into two cards, thus increasing the possibility of error 
through operator mishandling as well as increasing the 
key-punch time. 

aData key-punched into the card consisted of the six wind tunnel 
strain gage readings, the uncorrected angles of attack and yaw, the 
tunnel dynamic pressure, and an identifying run number. 

bIt should be noted that the discussion on machine operation (Sec
tion II) assumes a speaking knowledge of IBM computing tech
niques on the part of the reader; in particular, familiarity with the 
concepts of the CPC Model I is implied. 
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1. DATA REDUCTION FORMULAS 

The test data are recorded, from a strain gage balance 
system located in the sting mount, in the form of readings 
on a Brown self-balancing potentiometer. In order to elimi
nate tares and effects of battery voltage variation, a "zero" 
reading for each strain gage is subtracted from the particu
lar reading before the point is recorded on the key-punch 
form (Figure 1). The recorded values, as entered on the 
form, are the net strain gage readings divided by 100. The 
six-component data are recorded from the balance system 
in the form of forward and rear normal force gage readings, 
nl and n2, respectively; chord force reading, c; forward and 
rear side force readings, Sl and S2; and a rolling moment 
reading, r. The associated loads are obtained from the fol
lowing calibration data: 

Nl = 316.0 nl (lb.) 
N2 80.0n2 (lb.) 
C' = 31.7 c (lb.) 
Sl 44.2 Sl (lb.) (1) 
S2 22.9 S2 (lb.) 
R = 446.0r (in.-lb. ) 

In addition to the chord force determined directly from 
the reading of c, it was found during the calibration tests 
that there existed interaction effects on c because of the 
other loads. Hence, the net chord force, in pounds, is given 
by the folio wing expression: 

C = C' + 0.0116 Nl + 0.0050 N2 + 0.011 Sl 
+ 0.022 R + 0.888 tf! . (2) 

The value of tf! used above is the preset value, tf!u, cor
rected for deflection in the mounting system due to air
loads. Calibration tests provided the following correction 

*The terms Model I and Model II are used in this paper as simplified 
CPC designations for the Type 402-417BB, 604-3, and the Type 
402-417 AA, 604-2, respectively; the terms Model I and Model II 
do not refer to actual machine types.-Editor's note. 



18 COMPUTATION 

10- FOOT WIND TUNNEL TEST DATA 
I 56 1016 2C 21 2f~6 3C 31 3536 4C 41 4546 5051 55 

q RUN NO. 0( It' n l n 2 C 51 52 r 
L i L I L 

I 
L L : L L L 

L L L L L L I L I L 
I 

L L I L L L I L I L L I 

I 
I 

L L I 1- L L L L L 
I 

L L I L L L L L L 

L L I L L 
I 

L L L L 
I 

L L_ I L L L L L L 
I 

I 

L L I L L L L L L 

i L L I L ! I 
L L L L L 

L L I L 
I 

L L L L L 

L L I I- L L L L L 

L L L L L L L L 
I 

L L L L L i L L L 

1- L i L I L L L L I L 
I 

L L L L I L L L L 
: 

L 
1 

L L L L ! L L L 

L L L L L L L L 

L : L L L L L L L 
I 

L L L L L L L L 
i 

L L L L L L L L 

1- L L L L L L : L : 

L L L L L L L L 

L L L L ! L L L L 

NOTE: DECIMAL POINT IN EACH QUANTITY LOCAT.ED BY VERTICAL DOTTE 0 . LINE. IF QUANTITY IS NEGATIVE. PLACE "X" 
IN BOX IN UPPER RIGHT CORNER. FI LL ALL SPACES TO RIGHT OF LEAST SIGNIFICANT FIGU.RE WfTH ZEROS. 

FIGURE 1. TEST DATA FORM 

expressions for the angle of attack, ~, and the angle of yaw, 
""in degrees: 

~ = ~u + 0.0016N2 + f(N1 ) 

feNd = 0.0022 N1 (for N1 > 0) 
= 0.0032 N1 (for N1 < 0) 

t/t = t/tu + 0.0028 S1 + 0.0020 S2. 

(3) 

From the geometry of the model and balance system, and 
the conventional definitions of the aerodynamic forces and 
moments, the following' expressions are derived: 

A. Stability Axes 
(4) 

Lift == Ls = (N1 +N2 ) cos~ - Csin~ (lb.) 

Drag == 

Side force == 
Ds = Ccos~+ (N1 +N2 ) sin~ (lb.) 

Ys = S1 + S2 (lb.) 

Pitching moment == Ms = -0.169 Nl - 9.581 N2 (in.-Ib.) 

Yawing moment == ns = (-1.134 S1 - 10.546 S2) cos ~ 
- R sin ~ (in.-Ib.) 

Rolling moment == ls = (-1.134 S1 - 10.546 S2) sin ~ 
+ R cos ~ (in.-Ib.) 
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B. Wind Axes 

Lift == 

Drag== 

Side force == 

Lw = Ls 
D w = D s cos tf; + Y s sin if; 
Y w = Y s cos tf; - Dssintf; 

Pitching moment == M w = M s cos tf; + ls sin tf; 

Yawing moment == nw = ns 
Rolling moment == lw = l8 cos tf; - M 8 sin tf; 

(5) 

The aerodynamic coefficients are determined from the 
airloads in the conventional manner. 

where 

CL = LjqSw 

CD = D/qSw 
Cy = YjqSw 
CM = JJ1jqSwc 
Cn = njqSwb 

Cz = l/qSwb 

q = Dynamic pressure (lb./ft.2
) 

S w = Model wing area (fL 2 
) 

c = Model mean aerodynamic chord (in.) 

b = Model span (in.). 

(6) 

All numerical values are carried in five-digit (plus sign) 
counters. The lift force and all moments are computed to 
one decimal place, the chord and side forces to two decimal 
places, and the angles of attack and yaw to three decimal 
places. The final coefficients are presented to four decimal 
places (a maximum of five significant figures in all cases). 

II. COMPUTATION PLANNING CHART 

Detailed planning of the computation was carried out di
rectly on the program-deck key-punch form in the normal 
CPC manner. This planning sheet is shown in Figure 2. 
However, before such a planning sheet could be prepared it 
was necessary to establish the desired characteristics of the 
particular computing machine to be used for the problem. 
By this is meant that through proper design of the control 
panel wiring, a card-programmed calculator having the par
ticular arithmetic and transfer properties best suited to the 
problem at hand was constructed from the available units in 
the CPC Model II. The process of design for this problem 
was somewhat as follows. c 

Since all of the numerical values to be computed would 
be limited to five significant figures, the counters of the 
IBM Type 417 Accounting Machine, Model AA, could be 
divided into 12 six-digit counter groups, each having a 
capacity of five numerical digits plus sign. (Note: Four 
counter groups, counters 8A, 8B, 8C, and 8D, each have a 

cSchematic wiring diagrams of the Type 417 circuits are shown in 
Figures 3A and 3B, pages 21 and 22. Definitions of the notation 
used are given in Figure 3B. 
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capacity of seven digits plus sign. The unused digits are not 
wired to the entry or exit chains.) The use of 12 counter 
groups was also suggested by the fact that there are twelve 
items (exclusive of run number) to compute and print for 
each point: ex, tf;, CL , Cn, and two values each of CD, Cy, CM, 
and Cz• Also, twelve is the maximum number of counter 
groups that can be controlled by punchings in a single card 
column, by numbering the counter groups from 0 to 9 and 
X and R.d Thus, control of a given counter group for any 
function desired (read-out, read-in, reset) e could be ef
fected by splitting time pulses from punchings in a single 
card column, for each function, through a coding selector 
(for the digits) and a pair of co-selectors picked up by the 
split column controls (for the X and R impulses). Sche
matic diagrams of the various counter control circuits are 
shown in Figures 3A and 3B, pages 21 and 22. 

Inspection of equations 2, 3, 4 and 5 indicate that most 
of the arithmetic operations involved may be put into the 
forms 

Fl = alX + b1'Y 
F2 = a2't' - b2y, (7) 

where the a's and b's are either constants or trigonometric 
functions of variables, and the x's and y's are the variables 
involved in the equations. Consequently, the entry selector 
chains, i.e., the relay paths or channels over which informa
tion is transmitted from specified 417 AA counter groups to 
the 604 Electronic Calculator (the arithmetic unit of the 
CPC), were designed with these two functions in mind. 
The two built-in channels, A and B, are used only for entry 
of constants from cards in the program deck, or of factors 
from the storage register (where the needed sines and co
sines are stored as computed). Channels D and E are made 
up from selector chains to carry information from the 
417 AA counters. Card read-in (positive numbers only) is 
also available on channel D. 'rhe "normal" control proce
dure for reading information from the storage registers 
(16 registers of ten digits plus sign) over channels A and B 
is modified to allow choice of either the five low-order digits 
(with sign) or the five high-order digits (positive numbers 

(Continued on page 23) 

dOver-punches referred to as X and Rare 11 and 12 punches, re
spectively. 

eAs wired for this problem, numbers stored in 417 AA counters are 
left unchanged when they are read out to the IBM Type 604 
Electronic Calculator. Numbers read in to the counter from the 
604 are added algebraically to the previous value standing in the 
counter. Resetting the counter destroys the number, and leaves the 
counter standing at zero. The control panel wiring is such that only 
one of these three functions may be performed on a given counter 
group during a single card cycle. However, because the read-out 
instructions are obtained from upper brushes and reset instructions 
from lower brushes, read-out and reset may be programmed on a 
single card, the two events occurring on consecutive card cycles. 
It is not possible (as wired here) to read-out and reset on one card 
cycle and have the same counter group available for a read-in on the 
following cycle, i.e., the results of a 604 operation cannot be imme
diately stored in a 417 AA counter group from which one of the 
factors used was obtained. This restriction is recognized in pro
gramming. 
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O. 

O. 

.0 

2 

Channel A ChannelB ChannelD A B D E C CT .. ""~ d ... 
~ '" . Card :>gj "t :-;:: ........ Remarks ..<:: '" . No. Card R.I. Card R.I. CardR.I. Inst. Inst. Inst. Inst. Inst. Inst. C)~ 0' U2 Cl~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 . 56 57 58 59 60 61 62 63 64 65 66 67 68 69 77 78 +- Card Column No. 

+. + Sw + -I- 0 0 0 0 1 7 3 1 X 0 1 Load qSw & Data (1) + 7 

1 8 X 0 2 Load Run No. 5 

3. 1 6 0 0 0 3 9 3 3 1 0 3 Nl 

.8 0 8 0 0 4 0 4 3 1 0 4 N2 

.3 1 7 0 0 0 5 X 5 3 1 0 5 C' 

.4 4 2 0 0 0 6 R 6 3 1 0 6 SI 

.2 2 9 0 0 0 7 3 7 3 1 0 7 S2 

4. 4 6 0 0 0 8 4 8 3 1 0 8 R 

O. 0 0 1 6 0 0 0 1 3 3 0 9 ~al 

0 0 2 2 O. 0 0 3 2 0 0 0 0 9 1 2 3 1 0 ~a2=[F(Nl)1 

0 0 2 8 O. 0 0 2 0 0 0 0 0 R 3 2 3 2 1 1 ~.p 

1 7 4 5 3 1. 0 0 1 2 7 1 X 1 2 cos a, sin a 5 

1 7 4 5 3 1. 0 0 2 2 8 1 X 1 3 cos.p, sin.p 
5 

1 1 6 0 .0 0 5 0 0 0 0 0 0 9 0 X 3 1 1 4 ~Cl 

.0 1 1 0 .0 2 2 0 0 0 0 0 R 3 X 3 1 1 5 ~C2 

2 0 0 0 .8 8 8 0 0 0 0 0 4 2 X 3 0 1 6 ~C3 

1- 1. 0 0 0 0 9 0 5 3 5 1 7 N.l + N2 

.1 6 9 X 9 .5 8 1 X 0 0 0 0 9 0 6 0 3 1 1 8 Ms 0 0 9 

2 7 5 0 3 2 1 9 (N, + N 2) sin a 

2 X X 0 3 1 2 0 Ccos a (Ds) 
7 

2 X 5 8 5 5 1 2 1 (N, + N 2) cos a 
7 

2 7 X 8 X 5 0 2 2 - Csina (Ls) 

1. 1. 0 0 0 0 R 3 X 3 5 2 3 SI + S2 (Ys) 

1- 1 3 X 1 0 .5 4 X 
0 0 0 0 R 3 R 3 1 2 4 - (1.134S 1 + 1O.546S2 ) 4 6 9 3 

2 8 2 X 
8 0 X 1 1 5 1 2 5 Y w 

1 7 8 3 8 4 5 2 6 CL 

2 7 2 X 4 9 R 5 1 2 7 n 
7 

2 X 2 7 4 9 8 4 3 1 2 8 ls 7 9 
C .+ + 1 7 1 6 3 2 2 9 qSwc + 
b + .+ 1 7 1 5 3 3 3 0 qSwb + 

2 X 2 8 6 8 1 2 3 1 3 1 Mw 
8 

2 8 2 X 6 8 1 3 5 1 3 2 lw 
8 

2 X 2 8 0 X 1 4 3 1 3 3 Dw 
8 

1 7 0 4 0 4 4 3 4 CDs 

1 6 6 5 6 4 4 3 5 CMs 

1 7 X 6 X 4 4 3 6 CYs 

1 5 8 7 8 4 4 3 7 Cis 

1 5 R 8 R 4 4 3 8 CII 

1 3 1 5 9 6 4 3 9 Olw 

1 2 1 6 0 6 4 4 0 CMw 

1 4 1 7 X 6 4 4 1 'ClJw 

1 1 1 7 R 6 4 4 2 CYw 

X 4 3 Print 

X 8 0 0 Compare Run No. 
1 

Note 1. The information on program-deck card 1 is gang punched into all the data cards key punched from Figure 1. These 
cards are collated into the series of program decks (using X-59), and become, in turn, card 1 of each program deck. 

FIGURE 2. PROGRAM-DECK KEY PUNCH FORM 

20 



604 ENTRY CIRCUITS 

~ CH. A-

C» 
It) ~ CH. B-
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ci 

DATA CARD ENTRY CIRCUITS 

COUNTER EXIT SUPPRESSION (ALL) 
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f;I;:I 
E-< 
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.... 
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J 
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rJJ 

f;I;:I 
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ci 

CHANNEL E CHAIN 

PS, CS 24 

PS, CS 30 

PS, CS 3.6 
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PS, CS 48 
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PS, CS 23 
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~~ 
0 

~~ 
~ 

~~ 
f;I;:I 

~~ 
0 
t.) 

~~ 
0 
E-< 

~i 
0 

~~ 
d 
c.> 

+ C.G. 
_ COUNTER 

CONTROL 

604 EXIT CIRCUITS 

;:::< 
f;I;:I 
E-< 

~ 
~ co 
!Xi N 
...:i 9 to C.G. 9 ENTRY 

to C.G. 8 ENTRY 

~ 
7 to C.G. 7 ENTRY 

to C.G. 6 ENTRY 
5 to C.G. 5 ENTRY 

4 to C .• G. 4 ENTRY 
...:i to C.G. 3 ENTRY f;I;:I 
rJJ to C.G. 2 ENTRY 
B to C.G. 1 ENTRY 
f;I;:I 

~ 0 to C.G. 0 ENTRY 

C 

z 
0 
~ 

~ ~ '<I' 
t.) 

.,.) ~N ~ 
rJJ N~ 

~O 
f;I;:I 

..... (1 
~~ 

...:I E-<rJJ 
t.) .... ;2i t.)~ 
l>< ~ U rJJ 

Ji ~ 

...:I 

...:: 
rJJ 

t: 
p 

~ 
t.) 

...:I 
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~ z "'!' 0 
t.) co 

.... 
rJJ 
~ 

z 
8 
rJJ 
rJJ 
...:: 

f;; ~ 
C') 

co r;l CS 1 
~ --fL.B. 77 - 78l<AN 1-2 ONLY) g ~ 

N 
co 

~ 

NOTE 1: 12 C. G. CHAIN CONTROL 

~ ~ 
::i ::i J 

NOTE 2: CHANNEL D CHAIN. Since FS 1, 3 requires six digits for complementing negative counter readings, 
take sixth place from C. G. sixth-order position. Carry this digit in unused side of PS chain (sign chain). Note, 
also, there is no provision for negative numbers on channel D card read-in. 

NOTE 3: Data entry sign control pilot selectors picked up by U. B.-X. P. U. X in low order of field denotes 
negative value. 

FIGURE 3A. SCHEMATIC OF TYPE 417 CONTROL PANEL \VIRING DIAGRAM 
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417 COUNTER RESET & PRINT CONTROL CIRCUITS 

INDIV. PTS. 
PS 74, CS 70.71 

PS 73, CS 68, 69 

--I C.G. () NEG. BAL. CONTROL I 

SPACE CONTROL 0 

CS1S 

• t!J 

DIAGRAM NOTATION 

U. B. 73 (UPPER BRUSH - SECOND READING) } { 
L. B. 73 (LOWER BRUSH - THIRD READING) 

BRUSH. READING CARD 
COLUMN 73 (etc.) 

PS 14 (CS 14) PILOT (CO-) SELECTOR 14 
SELECTORS are double-throw relays. 
PILOT SELECTORS are two-pole and have three types of pickup. 

X. P. U. picks on X or R. } ONE-CYCLE DELAY 
D. P. U. picks on any pulse except X or R. 
I. P. U. immediate pickup (and coupling exit). 

CO -SELECTORS are five-pole and have I: P. U. only (usually picked up 
from PS coupling exit). 

CODE SELECTOR: Takes digit (0-9) pulse at common and distributes it 
. according to digit. 

FIELD SELECTOR: Ten-pole, eleven-throw (0-9 plus normal) relay, thrown 
to appropriate level by digit (one-cycle delay). 

SUo CH. 1 (SETUP CHANGE 1): Emits pulse every cycle when toggle switch 
is thrown. 

A CARD COLUMN has 12 possible punches: the digits 0-9, and X and R. 

SYMBOLS: 

SELECTOR 

~
~ PS 14 PMMON 

HUB 

: /( ---TRANSFERRED 

~ NORMAL 

>< --SOURCE OF P. U. PULSE 

SELENIUM RECTIFIER 

--i<J-
---DIRECTION PULSE CAN 

TRAVEL 

NOTE: Only one point shown, but all are wired individually. 

RUN-SPACING CONTROL CIRCUIT 

MIN. PROGRAM START I 

CHANN. HOLD I 

SEQUENCE CONTROL 

Iu. B. 79-S0 I ICOMP. ENTRY I 

ICOMP. EXIT ~ 

IL.B.77-7sl ICOMP. ENTRY I 

MISCELLANEOUS 

JACKPLUG: CALC. 

NBAC 

SPECIAL PROGRAM 

NOTE: Setup change switch number 1 for checking 
only. 

PRINT CIRCUITS 

TYPE BARS 

COUNTER GROUP CTR EXIT CR SYMBOL 

1 2A 4B) AN S-12 AN 13 
2 2B 4B) AN 15-19 AN 20 
3 6A) AN 22-26 AN 27 
4 6B) AN 29-33 AN 34 
5 SA) AN 36-40 AN 41 
6 8B) AN 43-N3 N 4 
7 2C 4C) N 6-10 Nll 
S 2D 4D) N 13-17 NIl! 
9 6C) N·20-24 N 25 
o (6D) N 27-31 N 32 
X (SC) N 34·38 N 39 
R SD N 40-44 N 45 

See also: lower left sectlOn of Data Card Entry 
Circuits. 

FIGURE 3B. SCHEMATIC OF TYPE 417 CONTROL PANEL WIRING DIAGRAM 
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only) under control of X punches over the channels A and 
B instruction columns. The reason for this will be discussed 
below. Accounting machine wiring is such that all read-in 
stations in the 604 reset on every card cycle if no new in
formation is entered. 

Read-out from the 604 to the 417 AA or the storage regis
ter is either from the electronic counter or from general 
storages 2, 4, and 4-sign to the 417 AA channel C shift 
entry, under control of an X punch in the card column con
trolling the shift. The primary purpose of this arrangement 
is so that both the sine and cosine of an angle can be com
puted simultaneously in the 604, the sine being computed 
in general storage 4 (with sign) and the cosine in general 
storage 2 (always positive, as all angles are in the first or 
fourth quadrant). Thus, both the sine and cosine are com
puted and stored in a single storage register on one card 
feed. These two sources are wired into the channel C shift 
entry, through co-selectors, such that a column shift of five 
would match low-order digits at the channel C shift exit. 
Successive low-order digits may be dropped off (and the 
corresponding high-order digits picked up) by calling for 
shifts of 4, 3, 2, 1, or O. Numbers at the channel C shift exit 
are available directly to anyone of the 16 storage registers 
under digit control from the cards to channel C control 
(read-in of a new number to a storage register destroys the 
number previously stored there). These numbers are also 
made available to the various counter groups through the 
channel Ct selector chain, along with an "add" instruction 
to the counter group receiving the number. As the 604 reads 
out true numbers plus sign, the counter reversal controls 
were wired to the channel C exit sign through the same 
chain. As shown, the field selector was used for the major 
portion of this chain. There are no provisions for alge
braically subtracting the results of a 604 computation from 
a counter group. 

Provision is made for direct read-in of the test data to 
eight counter groups (au, tfu, nl, n2, C, Sl, S2, and r) from the 
key-punched data card under control of an X in card col
umn 69. Negative values are indicated by an X punched 
over the low-order digit of the specific number; the X picks 
up a pilot selector, which causes "counter minus" instead of 
"counter plus" to be pulsed for that counter group. The run 
number is printed directly from the card, and is also stored 
in the 604 for later transfer to a storage register. The dy
namic pressure, q, is multiplied hy the wing area, S w, dur
ing the data read-in cycle, and the product is stored in a 
storage register. 

The 604 operations are as follows. The operation num
bers are those called out by card control and refer to the 
calculate selectors used. The detailed planning sheet for the 
604 is shown in Figure 4, page 24. 
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Operation 1: sin .r, cos % 

Noting that 

• %3 %5 

sm % = % - TI + 5! - ... 

and 
%2 %4 

cos % = 1 - 2! + 4! - . .. , 

%2 %3 %4 %5 

sin % + cos % = 1 + % - 2! - 3! + 4! + 51 - ... 
00 

or sin % + cos % = L Y n , 

n=O 

where Yn = Yn-l(:;) [f( -1)1 

Yo = 1 

and f ( - 1) = - 1 for a sin % term 

+1 for a cos % term 

Thus, both sin % and cos ~t" may be computed simultane
ously by alternating the sign of the multiplication and the 
location of the summed quantity on each sweep of the 604, 
continuing until Y n tests out to O. In this process, use is 
made of the fact that the 604 group suppress triggers act as 
flip-flops; i.e., if both sides are pulsed simultaneously, the 
group suppress will take on the condition (on or off) oppo
site to that previously held. It should be noted that a "one" 
must be read into channel D (initial value of n) and 
"17453" into channel B (to convert degrees to radians) 
from the card in order to compute sin % and cos %. 

Operation 2: feNd (see equation 3) 
0.0022 is read into channel A and 0.0032 into channel B. 

This operation discriminates on the sign of the number read 
into channel E, and uses the proper multiplying coefficient. 

Operation 3: BE + AD 
This is the F 1 of equation 7. Note that there is no round 

off, as all digits appear in the 604 counter. Unnecessary 
decimal places are dropped off in the channel C shift. Note 
also that D + E may be formed by reading "ones" into 
channels A and B from the card, and that AD may be com
puted by leaving either B or E blank. 

Operation 4: E/B (B>E/10) 
This is used to compute the stability-axes coefficients. 

The various denominators (qS w, qS we, and qS wb) are com
puted and stored in appropriate storage registers, available 
through channel B. 

Operation 5: BE - AD 
This is F2 of equation 7. E - D may be formed from 

this. It should be noted that this is the only operation in 
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which a choice of a particular counter group to channel D 
is necessary. Thus, channel D is not wired to all counter 
groups, but only to those requiring this operation. 

are wired for conversion at print-out time. The manner in 
which this is accomplished is shown in Figures 3A and 3B. 

The only other 417 AA control of interest is the spacing 
control between runs. Prior to the calculation of each test 
point, the run number on the data card is compared to that 
stored from the previous point. If they are different, an 
automatic total cycle is initiated, which causes the tape to 
skip four spaces before starting the new calculation. The 
only purpose of this is to separate the different runs for 
ease in reading. 

Operation 6: AjB (B>Ajl0) 
This is used to compute the wind-axes coefficients, as 

the wind-axes airloads and moments are stored in registers 
and are available only to channels A and B. 

Operation 7: B~ General Storage 4 
This is used in the initial data read-in to hold the run 

number in the 604 for transfer to a storage register on the 
next card cycle. The denominator term, qSw, is also com
puted on this card cycle by picking up both calculate selec
tors 3 and 7 (q in A, run number in B, Sw in D, and noth
ing in E). 

It should be noted that the 417 AA counters are not con
verted prior to resetting except during checking runs 
(checking runs are made by listing all cycles through use 
of setup change switch number one). However, all counters 

There is also a sequence control to stop the machine if 
cards in the program deck should be out of proper sequence. 
The wiring of this is obvious from the schematic diagram 
(Figure 3), and the fact that each card carries its own num
ber in columns 77-78, and the number of the preceding card 
in columns 79-80. Cards are numbered from 0100 (columns 
77-80) to 0041, 0100 being the data card, and the remaining 
41 cards being the associated program deck. 

Card-column assignments for factor read-in and the vari
ous control operations are shown in Table 1. 

TABLE I 

CARD COLUMN ASSIGNMENTS 

Column 
Numbers Item Valtte on Data Card 

1-5 Channel A read-in (X-5, negative) ...... Dynamic pressure, q 
6-10 B (X-lO, ) ...... Run number 

11-15 D .................... Wing area, Sw 
16-20 Counter group 1 read-in (X-20, negative) .......... au 

21-25 2 (X-25, ) .......... Y;u 
26-30 3 (X-30, ) .......... n1 
31-35 4 (X-35, ) .......... n2 
36-40 5 (X-40, ) .......... c 
41-45 6 (X-45, ) .......... Sl 

46-50 7 (X-50, ) .......... S2 

51-55 8 (X-55, ) .......... r 

Column 
Numbers Item Value on Program Card 

1-5 Channel A read-in (X-5, negative) ...... Constant 
6-10 B (X-lO, ) .... .. 

11-15 D ................... . 
56-57 A instructions ................. Choose card or storage register 
58-59 B ................ . 

60 D ................. Choose card (blank) or counter 
61 E ................. Choose counter group 

62-63 C to storage instructions ........ Choose storage register 
64 Ct to counter ........ Choose counter group 
65 Reset counter group (or groups) ........ Digit to reset specified group 
66 Operation ............................ Choose 604 operation 
67 Shift ................................ Channel C shift control 
68 Print ................................ X prints out counters 
69 Data read-in .......................... X loads data in all counters 
70 Clear all counter groups ............... (not used) 

77-80 Sequence control 
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ApPENDIX 

The procedure used to design the control panel wiring 
described in the body of the paper may be extended to apply 
to any problem within the selector capacity of the machine. 
In a similar manner, general-purpose panels may also be 
built. The distinguishing feature of a general-purpose panel 
is that the numbers in any 417 AA counter group are avail
able, under card control, to any of the read-in stations being 
used in the 604. There are a variety of such panels in use 
at Northrop, varying in the manner in which numbers are 
presented to the type bars, the use of net-balance conver
sion, whether or not the 417 AA counter "read out and 
reset" feature (an 80 code on the CPC Model I) is wired, 
the manner, if any, in which numbers on cards may be read 
directly into 417 AA counters, and in the number of counter 
groups available and the number of digits in each. Use of 
one of these general-purpose panels, together with a gen
eral-purpose 604 panel, allows card programming of the 
simple, infrequent problem in a manner similar to that used 
for the Model 1. Problems worked on such panels include 
solutions of sets of simultaneous differential equations, in
version of low-order matrices (within the storage capacity 
of the machine), calculation of the matrix for the spanwise 
airload distribution on a swept wing, etc. 

However, if a problem is very complex or if the problem 
is to be repeated time after time, it is usually found that the 
additional planning time involved in a special set of panels 
is more than paid for by the decreased running time. As an 
example, a more sophisticated version. of the Monte-Carlo 
problem described by W. W. Woodbury at the November, 
1949, Seminar was run using a single card per process. In 
this problem, on each card two types of "scattering" were 
considered, two sets of "capture" probabilities were com
pared, two different mean free paths were considered, and 
tests were run on the geometrical limits on the problem. 
A choice was made of each of the alternatives as a function 
of the location of the particle within the space considered 
by the problem. The necessary tests were about evenly di
vided between the 417 AA and the 604. Almost every selec
tor in the machine was used. This problem was literally 
impossible to perform on the Model I because of card han
dling difficulties, lack of counter flexibility, and elapsed time 
limitations. 

COMPUTATION 

Probably the most spectacular examples of elapsed time 
savings due to the use of special panels on the Model II are 
in the field of structural calculations. A typical ratio for 
most routine calculations, such as wing and fuselage section 
properties, show an elapsed time savings of about 15 to 1 
over the equivalent computations using the maximum effec
tive number (usually about four) of operators at desk cal
culators. The ratio over the same problem on the Model I 
is about 3 to 1 in favor of the Model II, including consider
ably less card handling with its associated possibility of 
accidental error. The elapsed time savings have allowed us 
to compute structural analyses, rather than to use "best 
guesses" for early preliminary design purposes. 

DISCUSSION 

Afr. Bell: We have had some experience in doing wind
tunnel work, and have done. several things to help remedy 
the problem of getting enough numbers in the machine. By 
spread loading, seven numbers can be put in the seven 
counters. Also, two more numbers can be read into channels 
A and B, and hence into the 604. The two numbers in the 
604 can then be added and their sum stored. On the follow
ing card cycle one of the numbers is wiped out by reading 
nothing in and storing the one number. Then, a little later, 
that one number can be subtracted from the sum, thus giv
ing the remainder. 

Mr. R. W. Smith: vVe have the Model I CPC, and we 
find by using a digit selector as a shift unit we can load in 
13 numbers on one card, loading two five-digit numbers 
into a counter at a time. To avoid difficulty with negative 
numbers, we add a constant to the numbers so that they 
will all be positive. 

Mr. Lowe: I wonder if Mr. Lesser has made an analysis 
as to just how much time was saved in this wind-tunnel 
problem by wiring this Model II control panel versus using, 
let us say, the simplest sort of general-purpose setup. 

Mr. Lesser: Actually it is about a two-to-one saving. 

Dr. Grosch: How many cards are in a program deck? 

Mr. Lesser: Forty-one, including two blank cards that I 
found necessary afterward. 



IBM Card-Programmed Electronic Calculator Operations 
Using a Type 402-417BB and 604-2 

MARTHA KENYON BRUCE OLDFIELD HARLEY E. TILLITT 

u.s. Naval Ordnance Test Station, Inyokern 

D URI N G the past few years, the art of technical compu
tation using punched card methods has advanced very rap
idly, and the fact that the International Business Machines 
Corporation has sponsored five Seminars on Computation 
in the last three years is evidence of this advancement. 
Further evidence no doubt is in the minds of many of the 
members of this 1951 Seminar, devoted to the IBM Card
Programmed Electronic Calculator, who were in 1948 per
forming calculations with the IBM Type 601 Electric Mul
tiplier. In the space of three years most IBM installations 
have made several changes in equipment, and are very 
pleased with the rapid progress in the development of elec
tronic computing equipment. 

In rather rapid succession the IBM Type 602 Calculat
ing Punch, the Type 603 Electronic Multiplier, the Type 
602-A Calculating Punch, the Type 604 Electronic Calcu
lating Punch and, finally, the Card-Programmed Electronic 
Calculator were each the "latest thing" in IBM computing 
machinery. In a comparatively short time after the CPC 
was introduced, increased storage was available, and now 
improved machines known as the Model AA 402-417 and 
Model 2 604 are being manufactured. 

In December, 1950, a CPC using a Model 2 604 was put 
into operation at the Naval Ordnance Test Station, Inyo
kern, California, and has been found to be superior to the 
standard CPC for many problems. It is the purpose of this 
presentation. to describe the special features of the Model 
2604 and to demonstrate how these have been employed in 
two computational problems. The first is a data reduction 
method for which the required computational time on the 
standard CPC was reduced by one-half, using the Model 2. 
The second is the solution of certain differential equations, 
the numerical methods for which were found to be better 
suited to the l\10del 2 than the standard 604 (Model 3).a 

DATA REDUCTION PROBLEM 

As one might expect at an establishment where rockets 
and guided missiles are tested, efficient and rapid data re-

aThe first problem to be discussed was the responsibility of Mr. 
Bruce Oldfield, the second was that of Miss Martha Kenyon. 
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duction procedures are very important aspects of the devel
opment program. One particular reduction procedure for 
which the Model 2 604 was best suited was that of deter
mining the space coordinates of a missile in flight, making 
use of elevation and azimuth angles as recorded by cine
theodolites. 

The particular mathematical procedure was such that the 
CPC method which appeared to be the most efficient in 
terms of computation time per point made it necessary to 
break the procedure into mor~ than one part. In addition, 
the 604 control panels as used in each CPC run were so 
laden with wires that it was time-consuming for checking 
purposes. Although fully wired control panels are certainly 
nothing new to CPC and 604 users, it may be interesting to 
note that one of the 604 control panels originally used in 
this problem contained approximately 330 feet of wiring. 

In an effort to improve the CPC procedure for the data 
reduction and other problems, modifications of the basic 
604 were undertaken. The modifications were based on 
operational experience gained at Inyokern, as well as at 
other CPC installations. The Model 2 604, as the advanced 
version has been designated, differs from the basic CPC 604 
in the following ways: 

1. Three program levels. 
2. Program pickup. 
3. Additional calculate selectors. 
4. Program repeat selectors. 
5. Repeat delay. 
6. Program expanders. 
7. Program source filters. 
8. Program suppression filters. 
9. Channel C shift. 

Before indicating how the special Model 2 features were 
used in the data reduction work previously mentioned, it 
should be emphasized that this discussion is not intended to 
evaluate the mathematics of the method but to demonstrate 
how a particular procedure was actually fitted to the ma
chine. Several mathematical approaches to the problem are 
possible, and different ones have been used at the Naval 
Station, depending in part upon the available facilities. For 
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example, the method used with a 602 was different from 
that using a 604. Likewise, the CPC permits the use of a 
different mathematical approach than the 604 alone because 
of the possibility of sequencing calculations. 

The method now in useb is a multi-station solution where 
in our work, elevation and azimuth angles from three cine~ 
theodolites located along the range line are given for dif
ferent times during the missile's flight. Each of the three 
cinetheodolites, therefore, establishes a line ill space, and 
the missile is at their intersection. Actually, two lines are 
sufficient to locate the point in space, but an intersection is 
rare in practice because the data are not exact. There are 
several reasons for errors in data, including those associated 
with the many components of the system, the misalignments 
of the theodolites and the measurement of the film. The 
CPC solution corrects the angles for certain errors of the 
type just mentioned and makes use of a method of least 
squares to locate the most likely point in the region where 
the three lines nearly intersect. 

As a check on the machine computation, on certain con
stants associated with the station coordinates, as well as on 
the original data, residual angles are determined. From the 
point just located, the problem is done in what might be 
called the reverse order, and the elevation and azimuth 
angles are computed for each of the three stations which 
would be required to determine that point. The residuals 
are the differences between these recomputed angles and 
the corrected original angles. 

The present method, which is designed for a computer 
capable of considerable sequencing, such as the CPC, makes 
use of certain weighting factors in the computation. The 
cinetheodolite stations are widely separated from each other 
along the range line; hence, the three missile-to-station dis
tances are different. Since for anyone point in space the 
data from far stations does not have the same importance 
as that from near stations, weighting factors, which are 
functions of the missile-to-station distances, are determined 
from the space coordinates of the missile at the last com
puted point and are introduced into the computational 
procedure. 
bThis method was submitted to the IBM Section by Dr. John Titus 
of the Station's Assessment Division. 

COMPUTATION 

The computation cycle accomplishes four steps: 

1. Applies corrections to original elevation and azimuth 
angles. 

2. Determines the space coordinates of the missile. 

3. Computes residual angles. 

4. Stores results as required to weight data for the next 
point. 

The equations used in the first three steps of this reduc
tion process are shown in Figures 1,2, and 3, respectively. 

As previously mentioned, using the original equipment, 
the most rapid and efficient method developed at the Naval 
Station required four runs on the CPC. The first CPC run 
computed certain corrections and converted the original 
angles to their first quadrant equivalents. On the second 
CPC run, a card for each point which contained the sines 
for each of the six angles as recorded at the three cinetheo
dolite stations was computed and punched out on the Type 
521 Punch Unit. The third CPC run computed the cosines. 
These sine and cosine cards were then placed in an instruc
tion deck, and computations as. described in Figures 2 and 3 
were completed. The corrections which were made to the 
angles in this original procedure were not so complete as 
those now employed. 

Although this original CPC procedure was superior to 
that used previously, which required nearly twenty 604 con
trol panels or about forty 602 panels, it was preferable to 
make only one run since such a procedure not only saves 
time but decreases the chances for errors. By using the 
greater capacity of the Model 2, only a single run is neces
sary. Figure 4 shows the operations which were wired in 
the 604 control panel. 

The total machine time for the Model 2 procedure is ap
proximately 2.5 minutes, and uses a 295-card instruction 
deck which includes three data cards. This time is much 
better than that obtained with the former CPC method 
using the Model 3 604, which required about 5.5 minutes 
per point and, as previously mentioned, did not compute all 
of the corrections currently used. A breakdown of the prob
lem in terms of groups of instruction cards is shown in 
Figure 5. 

A = A' + d sin A' tan E' + () 
X2 tanE' 

E = E' + dcosA' _. 114.6 - 2.22(10-7) V(Z-Xi )2.+ (Z- Zi)2 (1-.0106E') 

where 

A' = So + ASCI + [(Xp-Xo)Cg + C] sec E' [1 + (Yp- ~0)C4 tan E'J + eo cos (So+4» + Os 

d 
7~ 

an 

FIGURE 1. EQUATIONS FOR CORRECTIONS 



where 

AuX + A 12Y + A 13Z = C1 

A 21X + A 22Y + A 23Z = C2 

A 31X + A 32Y + A33Z = C3 

3 

I l- a? 
Au = --2-

t
, 

Pi 
i=1 

3 

'\' 1 - b? 
A22 = L..;~, 

i=1 

3 3 

I I - c? 
A33 = --2-~ , 

Pi 
_ '\' bpi2C~ i A 32 = A 23 = L..; . 

i=1 

ai = -cos Ei cos Ai 
bi = sin Ei 
Ci = -cos Ei sin Ai 

i takes the values 1, 2, and 3. 

i=1 

! x.C ;1a1
) - ! y. ~;i 

i=1 i=1 

_ ~X~ aiCi 
C 3 = L..; .---pr-

i=1 

FIGURE 2. EQUATIONS FOR DETERMINATION OF COORDINATES 

RA. ::::: 3432 tan AIm) - tan A?) 
~ - 1 + tan AIm) tan A/O) 

tan E5m ) - tan Ef o) 

REi;;E 3432 1 + ta~ Efm ) tan E.(O) 
~ ~ 

tan A~m) = Ci 
~ ai 

z- Z· tan A5o) = ~ 
t % - Xi 

where 
(m) means "measured angle" 
(c) means "computed angle" 

FIGURE 3. EQUATIONS FOR COMPUTATION OF RESIDUALS 
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Operation 

1. A+B C 
2. A - B C 
3. -A + B = C 
4. A· B = C 
5. -A . B C 

Program 
Level 

A 
A 
A 
A 
A 

Remarks* 

6. (Al·Bl ) ± (A 2 ·B2 ) ± (Aa·Ba) = C A Uses; results of previous step ( s ) . 
A May drop high-order digit if 7. Transfer: 

Result in C to A 
Result in C to B 
Result in C to 604 storage 

8. 1 - B2 = C 
9. AlB = C 

10. VA = C 

A 
B 

desired. 

B Final answer in B if needed. 
11. Reduction of angles to first quadrant B Program level change to compute 

sine or cosine. 
12. Convert degrees to radians, keep 

correct sign for sine or cosine and 
compute function 

C Functions to 7 decimals. 

* All operations are 10 X 10 except computation of sine and cosine. 

FIGURE 4. OPERATIONS WIRED IN 604 PANEL 

Card 
Group Numbers Operation 

A 1- 40 Make corrections. Compute sine and 
cosine for angles at first station. 

B 41- 80 Same as Group A but for second 
station. 

C 81-120 Same as Group A but for third station. 
D 121-126 Compute direction cosines. 
E 127-129 Compute tangents of measured eleva-

tion angles to be used in computation 
of residuals. 

F 130-139 Compute weighting factors, pr. 
G 140-206 Compute coefficients of matrix. 
H 207-210 Compute tangents of measured azi-

muth angles to be used in computation 
of residuals. 

I 211-237 Solve matrix. 

J 238-287 Complete computation of residuals. 
K 288-295 Print results and store quantities as 

required for next point. 

FIGURE 5. CARD-PROGRAMMED OPERATIONS 
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DIFFERENTIAL EQUATIONS PROBLEM 

Whereas the work just presented is a routine data reduc
tion operation, the second problem is of a theoretical nature 
in which it was required to solve some differential equations 
by numerical means in order to determine the desired geom
etry for certain components of an ordnance item. 

The sequential nature, the accuracy requirements and 
the comparative simplicity of each particular step suggested 
that it was a very good problem for the CPC. The main 
difficulty was associated with the number and length of 
operations involved. The problem was considered for a 
CPC with a standard 604 but was found to be much more 
easily set up for the Model 2. The operations which were 
required on the 604 are shown in Figure 6. 

The 180 program steps were treated as three separate 
sets of 60, and there was no attempt to go through all 180 
at once, but instead to pick up the appropriate program 

1. Addition. 

2. Subtraction. 

3. 8· 8 multiplication. 

4. 8· 8 division. 
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level. Operations which were used together were grouped 
together. However, it was not necessary to have consecutive 
operations on the same program level, provided the same 
program steps were not required on both levels. The usual 
wiring was to plug the program pickup source into the com
mon of the controlling calculate selector and the transferred 
side connected to the program pickup. 

Much use was made of the program suppression filtet~,. 

Programs were frequently suppressed on plus, minus, zer~' 
or non-zero balance or on pairs of these. Some programs 
were also suppressed without balance test through the nor
mal points of calculate selectors. To prevent back circuits, 
the suppress on minus, for example, was wired to one "in" 
hub of a program suppress filter and suppress on zero to the 
other "in" hub. The "out" hub was then wired to program 
step suppress to control suppression of that particular step 
on either of the above conditions, without affecting any 
other step wired to those suppress sources. 

5. v-X to 5 decimal places with the requirement that Vo-% = O. 
6. Transfer C to A. 

7. Transfer C to B. 
8. i adjust. 

9. aX for 0.1 <a< 1.8 with % having one of three values: 
1.25, 1.60, 1.80. 

10. 

11. 

12. 

13. 

X 1 I + (% log a) 2 + (% log a) 3 + 
a = + % og a 2 ! 3 ! ... 
where: 
log a = (a-I) - !(a-l)2 + i(a-l)3 - .,. 2>a>0. 

A = 10.29 B( h' h . I 
A = 500.00 S W IC ever IS arger. 

C = [10 (%-1.6 - %-1.8) P if %<b 
C = .6581 if %>b 

D = .7225 [1 + (%-1)3] if 0<%<1 
.7225 

D = 1 + 2 (%-1)2 if 1<%< 00 

Test to check agreement between the first and second approxima
tions for a variable, with non-agreement to cause the accounting 
machine to stop, allowing an additional deck of iteration cards to 
be inserted. 

FIGURE 6. OPERATIONS WIRED IN 604 CONTROl, PANEL 
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A feature of the machine mentioned previously, but not 
used in the first problem described, is the channel C shift. 
This feature is essentially a single-position, five-level '~field 
selector." The level to which this selector transfers is de
pendent on the digit punched in the channel C shift control 
column of the instruction card read in the accounting ma
chine. For this particular problem each of the channel shift 
hubs was wired to the appropriate position of the usual 604 
;;~hift unit, and by this means the instruction card could be 
made to control a shift for transfer from C to A or C to B 
within the 604. 

The initial values for any point were determined during 
the previous point's calculation. If desired, the intermediate 
results for any point, which were ordinarily stored to be 
used for the next point's calculation, could be punched out 
on the 521 by inserting a special deck at the end of the 
regular deck. This was a very useful part of the initial plan-
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ning, for in cases of machine error it was not difficult to 
return to some previously computed point and begin again. 
The frequency of punch-out depended upon the expected 
machine error rate at the time. 

DISCUSSION 

Mr. Lesser: How many cards did you end up with? 
Mr. Tillitt: One hundred eighty. 
Dr. Yowell: I notice Mr. Tillitt says he has obtained a re

duction in time of a factor of two with his half of the ma
chine. Mr. Lesser reports the same. Does that mean that the 
rest of us can expect a reduction of a factor of four with a 
full machine? 

Dr. Hurd: I think we need more experience to answer 
that question. 



The Combomat 

JOHN D. MADDEN 

The RAND Corporation 

THE COM B 0 MAT is a system installed at RAND 
whereby customers with computation jobs which fit into a 
certain loosely-defined class may program the calculations 
directly for the IBM Card-Programmed Electronic Calcu
lator. That is, any person in the company who has a job in 
this category may code it for one of the CPC setups and 
submit it directly to the IBM Section for processing, by
passing the procedure preparation which normally takes 
place within the Numerical Analysis Department. This class 
of jobs considered appropriate for the Combomat will be 
discussed later. 

Briefly, the process works as follows: 
1. The customer marks mark-sense cards to accomplish 

the calculation he requires. These cards are printed 
for Combo mat use. 

2. He submits these, along with a form which describes 
the order in which the cards are to be used, to the 
IBM Section. 

3. A machine operator who is familiar with Combomat 
work "senses" the cards and expands the deck to a 
convenient size. 

4. The cards are run through the CPC and the printed 
results delivered to the customer along with his origi
nal cards. 

In theory, the customer obtains all the information required 
concerning machine operation and coding from a 14-page 
manual prepared by the Numerical Analysis Department. 
However, in practice a consultation is usually necessary be
fore a customer's first job is in shape for IBM processing. 
Quite often the single briefing suffices, and the ideal ar
rangement is reached where the customer submits the cards 
directly to the IBM Section and no analysis time is required 
by the Numerical Analysis Department. 

The derivation of the name Combo mat is somewhat in
teresting. Several years ago when Northrop Aircraft had 
the prototype machine, it was sometimes called the 
"Combo." The "mat" suffix comes from words like "laun
dromat." Instead of paying for both the use of laundry ma
chinery and the services of people who work in the laundry, 
in a "laundromat" one pays only for the use of the washing 
machine and the clothes drier. In using the Combomat, 
rather than employing the services of an analyst plus the 
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"Combo," one buys only the use of the CPC plus a mini
mum of operator time. Thus, a Combomat system makes 
possible the handling of a tremendous number of machine 
jobs without putting any additional strain on an analysis 
staff. 

At RAND there is a particular need for this kind of 
service. Not many of the various research divisions have a 
relatively steady hand-computing work load throughout the 
year. The load is apt to be light much of the time but ex
tremely heavy at several times during the year. Hence, few 
of the divisions can afford to keep a large staff of hand 
computers. The Combo mat provides a solution to this prob
lem. It is believed that the Combomat is, in any case, much 
more economical than a central pool of hand computers be
cause the CPC's are installed at RAND, and the regular 
continuing machine work suffers very little by interrupting 
it to do Combomat jobs. Every effort is made to get Combo
mat work done in 24 hours. Generally, jobs which are sub
mitted in the afternoon are processed and out by the next 
morning. This is made possible by the fact that the RAND 
IBM Section works three shifts and has two CPC's with 
two identical Combomat setups. 

The setup currently in use employs an eight-place floating 
decimal, where the power of ten is stored beside the num
ber; that is, the actual power of ten plus fifty is stored beside 
the number. The power of ten is translated fifty units to 
make certain that any algebraic sign associated with the 
number and its power of ten represents the sign of the 
number. This limits the true powers of ten to the range 
-50 to +49. 

For Combo mat work the CPC is represented as having 
only sixteen words of storage. The manual does not men
tion the accounting machine storage. This omission is made 
for two reasons. First, the instructions for use of the system 
would be somewhat more complicated if an explanation of 
the two kinds of storage were required. Also, some storage 
positions must be available to take care of sub-routines 
which the customer may need. 

Operations available to the Combomat customer are mul
tiplication, division, addition, and transfer. The last opera
tion is used for shuffling numbers from one storage to an
other or from a card to storage. Allowance is made for 
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reading the answer from one card into channel A, channel 
B, or both for the succeeding card. The setup actually has 
several other operations, but it was deemed wise to restrict 
the operations allowed in Combomat work in the interest of 
simplicity. In addition to the. four Combomat operations, 
some additional functions of the setup are: 

1. Operations which compute CAB + K), (KB + A), 
(AjB + K), and (KjB + A), where A and B refer 
to the conventional channels, and K must be read 
from the card. 

2. Two special operations which are used in obtaining 
common logs and antilogs, respectively. One of them 
puts the power of ten associated with a number on 
the number part of channel C, and the other takes a 
number out of scientific notation separating the whole 
number and decimal parts. 

3. Provision for switching from the ordinary control 
field to an alternate control field on the basis of a 
negative balance obtained in the 604. Some means of 
making a decision is the operation requested most 
frequently by customers. With this current method of 
decision-making, a seven-column alternate control 
field is required to make use of the decision. This is 
not possible with the system of submitting data now 
in use. 

By far the knottiest problem associated with installing a 
Combomat system is that of writing a usable manual to be 
distributed to prospective customers. It is extremely diffi
cult for one familiar with the machines to write a manual 
using language which will be understandable to the layman; 
and yet, unless the writer understands the functions of the 
setup, he is not really qualified to do the job. The current 
manual is a third attempt and is still a "preliminary draft." 
The first draft was tried on some selected members of the 
Numerical Analysis Department. They prepared a lengthy 
list of suggested additions and criticisms, all of which were 
then incorporated into the second version. This one re
ceived a more general distribution throughout the company, 
and a second list of additions and criticisms was obtained. 
This second list was screened carefully, and all of the 
changes considered desirable were made. This gave the 
present manual. 

Several questions arise in installing the system. Perhaps 
the first is how the raw data are to be submitted. Three 
methods of presentation were considered: mark-sense cards, 
cards key punched by the customer on punches spotted in 
the various departments, and manuscripts prepared· by the 
customer for key punching by IBM Section card punch 
operators. Each of the methods has its advantages and dis
advantages. The mark-sense card system was chosen be
cause it was felt that this would require a minimum of effort 
on the part of the IBM Section and disrupt least the flow of 
regular work. One disadvantage connected with using 
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mark-sense cards is that on the first job submitted by a 
particular customer difficulty with the "sensing" is often 
encountered-his marks are either too light or he fails to 
put some of his marks in the ovals provided. This is a prob
lem which resolves itself as the customer submits more and 
more jobs. Also, mark-sense cards effectively add a restric
tion of using only 27 columns. It was found necessary to 
restrict reading in from the card to only one channel be
cause of this. Requiring one and only one mark per mark
sense column,so that blank column and double punch de
tection may be used, further restricts the system. The idea 
of spotting card punches around the RAND building was 
eliminated because it was suspected that too much time 
would be consumed in instructing people in the use of the 
punch and in removing cards jammed in the machine by 
inexperienced operators. Further, it was felt that customers 
would make more errors key punching than card marking. 
The manuscript approach was discarded because it did not 
seem in keeping with the aim of placing as little of the 
burden of the work on the IBlYI Section as was absolutely 
necessary. 

Another question is how the answers are to be presehted. 
Detail printing is a natural product of CPC computation so 
that it is certainly one "painless" method of returning re
sults. Selective listing may prove more useful than listing 
all cards, however. This has been handled informally 
through notes on the expansion form. Another possible way 
of transmitting answers is by summary punching. It was 
decided to install the system without mentioning this possi
bility and to see if there was much demand for it. To date 
the demand has been slight. 

Another problem which arises is that of devising a sure
fire, completely mechanical system whereby the user can 
communicate to the operator the order in which the cards 
are to be used. At the outset this sounds like a trivial prob
lem, since one might argue that a sequence number will 
suffice. In practice, however, to minimize card marking 
some of the sub-decks are used over and over again, while 
some are used less frequently, and some may be used only 
once. This makes it imperative to have a communication 
scheme which is completely flexible. It was found that the 
section of the manual which explains this scheme, the ex
pansion form section, was the most difficult to write. The 
word "expansion" is used because the form gives the opera
tor a clue on how many copies of which sub-decks to pre
pare in order to have a deck of convenient size for running 
the job. This form actually constitutes a translation of the 
flow diagram which shows the structure of the calculation. 
Concentration on making this section clear "mushroomed" 
it into the longest section in the manual. Further, more 
comments of "unclear" have been received from users re
garding this than regarding any other section. It is hoped 
that this is due to the content of this portion of the paper 
rather than to how it is written. 
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A final consideration in installing the system is to what 
extent sub-routines are to be used. By sub-routines are 
meant decks already prepared to compute particular func
tions. The use of these decks is encouraged. In fact, almost 
every Combomat job processed uses at least one of the sub
routines. The library of such decks was started with a few 
very basic ones, and some have been added as the need has 
arisen.a Sub-routines currently available to Combomat cus
tomers include loglox, logex, lOX, eX, V x, --{Yx, sin x (x in 
degrees), sin x (x in radians), cos x (x in degrees), cos x 
(x in radians), sin- l x (degrees), sin-lx (radians), COS-lX 
(degrees), COS-lX (radians), tan-lx (degrees) and tan-lx 
(radians) . 

A few random observations about the system follow. 
It is emphasized that the name, Combomat, refers to a 

system rather than to a particular machine setup-that the 
setup used may be as simple or as complex as necessary to 
meet the needs of the installation using the system. One 
group may feel that a floating decimal with its coding sim
plifications is necessary, while another may feel that it is 
willing to substitute log and exponential operations for the 
floating decimal features. A Combomat system may be used 
equally well with either setup. 

Just as some jobs are better suited for a parallel type of 
calculation rather than a serial type, some jobs are better 
suited for Combomat work than others. The ratio of the 
amount of input required to the amount of arithmetic re
quired is a good index of the suitability of the job for 
Combomat computation. If this ratio is small, the job prob
ably may be done efficiently using a Combomat system. Of 
course, this is a fairly good index for judging all CPC jobs, 
but its value is even more critical in Combomat work, be
cause only one number enters the machine at a time. Pilot 
studies for large machine computations, iterations, and 
some kinds of small parameter studies are best suited for 
the Combomat. As far as volume of work is concerned, it is 
felt that jobs which fit in the large hand computation or 
small machine computation categories go most efficiently in 
the Combomat system. 

It has been observed that on some Combomat jobs, espe
cially the smaller ones, it pays to do the job "stupidly." 
That is, it pays in elapsed time with negligible loss in ma
chine time to use the first workable program which occurs 
.to the coder. He may well waste considerably more time 
than the job warrants in searching for an optimum pro
gram. This is emphasized in the manual. 

It is felt that the system would be very worthwhile even 
if jobs were accepted from members of the immediate de
partment only. Many jobs are received which in the past 
have been considered border-line cases where the calcula
tions may be done about equally efficiently on either desk 

aMr. Cecil Hastings, Jr., of The RAND Corporation has been of 
invaluable aid in developing efficient approximations for needed 
sub-routines. 
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calculator or IBM machinery. At present, more and more 
of these jobs are finding their way to the CPC within the 
framework of the Combomat. This occurs because the 
analyst may do a little rapid coding and "wash his hands" 
of the job until he is presented with the results. 

In April, 191 hours of CPC time were logged on Combo
mat jobs exclusive of the time logged on work for members 
of the Numerical Analysis Department. Note that this is al
most eight full 24-hour days. In May, only 6S hours of such 
time were logged. The 191 hours were due largely to only 
two contributors, while the 6S hours represented work from 
more customers. 

An example of a small parameter study which was done 
efficiently with the Combomat is the following. It was re
quired to compute 

F = PI [l - (1 - Cl Fl F2 )P2] , 

-PaFa 

h F 
c;--

were 1 = e 

-P l P 4 

F2 = e CaFl 

and where Fa is a polynomial function of Pl. Here the C's 
indicate constants, the F's indicate computed functions, and 
the P's indicate parameters. The routine involved evaluat
ing Fa, then Fb then F2 , and finally F. This was done for 
3,660 parameter combinations. The job as coded by the cus
tomer took about thirty machine hours. A similar job done 
by hand computers in the user's division took 280 man 
hours. This job was longer than what is believed to be the 
optimum length for a Combomat job, although it does show 
a very favorable ratio of Combomat time to hand-comput
ing time. 

Another example of an efficient Combomat job is the 
following. The customer required calculation of 

00 

and c/>L = L j Aj pj-L-l 

j=L+l 

where Aj = (27JA j - l - A j - 2 ) (j + L) -l(j-L-l) -1 , 

AL = 0, andAL +l = 1 . 

Here 16 combinations of 1], p, and L were used. The cus
tomer set up the problem so that the inputs were read in, 
and then a computation deck was run over and over again, 
each time computing terms for each of the summations. This 
process was continued until a final term was less than a 
specified value. Summations for each parameter set took 
approximately ten terms to reach the desired accuracy. One 
hour of CPC time was logged on this job, and it is believed 
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that it would have taken much longer doing the work on 
desk calculators. The fact that this calculation was of a 
recursive nature made it extremely easy for the customer to 
code as well. 

DISCUSSION 

Dr. Hurd: This paper represents a great contribution to 
the art of automatic computing. 

Mr. Tillitt : You remarked about running out of space in 
the mark-sensed card. You might consider turning it over 
and getting 27 more spaces. 

Mr. Madden: That is a good point which we haven't 
considered. 

Dr. Berkowitz: What is the cost to the research people in 
this setup? In other words, how does the time they spend 
writing up a program compare with the time that they 
would spend giving a problem to the analysis group to pro
gram? The customer has two choices: he can either code it 
himself or come to you and let you code it. It is going to 
take him some time to explain the problem to you. Is this 
time of the same order of magnitude as the time it would 
take him to encode the problem for himself? 

Mr. Nladden: I think that is likely. 

COMPUTATION 

Dr. Hurd: Is there anybody else who is using similar 
ideas and would like to discuss them at this time? 

Mr. Cheydleur: We are not using mark-sensed cards, but 
we are using more and more systems that are flexible and 
that enable our customers to do more of their own coding. 

Professor Verzuh: At MIT "A Guide for Coding" has 
been prepared and distributed to allow users to prepare 
their own sets of instructions for the Whirlwind. The ma
chine is arranged in such a fashion that codes can be 
printed out. 1''his has facilitated detecting errors in coding. 

Dr. Hurd: Thank you. As you know, it is standard oper
ating procedure to print operation codes and intermediate 
results on the CPC while the calculation is in progress. 

Mr. Lowe: It has been our practice to select out those of 
our accounting machine operators in different divisions 
who evidence particular interest in the computing work. We 
then bring these people into our computing group and have 
them work with us for a few days to a week. In that period 
they actually come to understand quite a bit about the way 
we normally code for the machine and the use of the ma
chine; they go back and code their problems for us from 
then on. However, under these circumstances we always re
serve the right to edit, audit and check over their programs. 

Mr. Lesser: It is easy to train a selective few of the cus
tomers so they can get the "feel" of the machinery. 



The IBM Type 604 Electronic Calculating Punch 
As a Miniature Card-Programmed Electronic Calculator 

PAUL T. NIMS 

Chrysler Corporation 

I N ENG I NEE R I N G work there are a great many 
computations carried out to slide-rule accuracy which re
quire the repeated evaluation of rather simple formulas. If 
an IBM Type 604 Electronic Calculating Punch is avail
able, there is a possibility of adapting it for this work and 
making a small sequence-controlled calculator with storage 
and all the other features of larger machines. With the co
operation of the Statistical Department of the Chrysler 
Corporation, we, in the Engineering Division, have wired a 
special set of control panels for their machine to use as an 
interim calculator until a larger card-programmed machine 
is delivered. Besides doing useful problems, this machine 
has served as a training ground for programmers and oper
ators. This training was a necessary preliminary to the use 
of the Model II Card-Programmed Electronic Calculator, 
which was recently delivered. 

Card Programming 

The IBM Type 604 Electronic Calculating Punch is nor
mally used to perform identical simple arithmetic operations 
on data in a series of cards placed in the hopper. However, 
the flexibility of the control panel wiring is such that it is 
possible to operate "card-controlled," that is, to perform a 
different arithmetic operation on each card, depending on 
operation codes punched in the card. Such operation per
mits sequential calculation, i.e., following in order all of the 
arithmetic steps required for the evaluation of a quantity 
given by a complicated algebraic formula with given param
eters. The sequence can then be repeated for other values of 
the parameters. 

As wired for this purpose, the 604 is capable of receiving 
(at one time) 7 five-digit numbers. These numbers are en
tered in storage registers A, B, D, E, F, G, and H but not 
in the output register C. When an operation code is punched 
in a card, the factors in A and B are operated upon and the 
result placed in the output register C as well as in storage 
register B. The result in B is thus immediately available 
for the next calculation. The result in C may be punched in 
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the card or stored in one of registers D, E, F, G, or H but 
not both at the same time. 

On the next card, a new factor may be entered in A, or 
transferred to A from a storage unit, another operation per
formed on it and the quantity in B, and the result punched 
or stored. 

Operations 

The four fundamental operations are addition, subtrac
tion, multiplication, and division, and they are performed 
with due regard for the location of the decimal point (to be 
discussed later) and for the signs of the quantities. In addi
tion, it is possible to shift, i.e., multiply the result of the 
above operation by 10 without using another card cycle; to 
look up entries in a table of functions punched on successive 
cards; to obtain square roots by an iterative process; to stop 
the machine when unwanted negative answers occur; and 
to stop the machine if a check quantity is greater than 9 in 
the last digit. The control panel wiring for all of these func
tions is given in an appendix and need not be rearranged 
from problem to problem. 

This control panel wiring of the machine is set up on the 
assumption that all numbers are less than 1. That is, .99999 
is the largest number used in a calculation, and powers of 
ten are cared for by the programming of suitable shift 
operations. Note that the operating codes give .1 (A + B) 
and .1 (B -7- A) unless a shift is called for. 

Probiem-S oiving Procedure 

The proposer of a problem for solution will have first to 
reduce his problem to a sequence of the elementary arith
metic and other operations listed above. Presumably, the 
formula is to be evaluated for a number of values of the 
parameters, and a trial calculation should be made by hand 
for one set of values of the parameters. This will give the 
order of magnitude of the quantities involved and permit 
keeping track of the decimal point in the programming. 
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1/10 of Answer on (13) 12 
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FIGURE 1 

Programming is worked out on forms like that of Fig
ure 1. The 80 narrow columns represent the 80 columns in 
the cards to be punched. Each line represents one card, and 
the programmer writes in the squares the digits he wants 
punched on the card. 

Organization of the e alculator 

As stated, the variotls operations of the machine were 
obtained by special control panel wiring. The procedure set 
forth in this paper is for a minimum capacity 604; i.e., 20 
program steps. In this section the features of the machine, 
as wired, are taken up in some detail, in the order in which 
the card is punched to control them. 

e ard Number. This punching is not read by the machine 
but is used to sort and collate the cards in preparation for 
the machine run. Enough columns could be included to 
permit two independent numbering schemes on the same 
deck of cards, which is of use with certain subsequence 
operations, like square root or table look-up. 

Transfer to A. As all operations involve only the num
bers in registers A and B, these three columns, 3-5, provide 
a means of transferring numbers during calculate time from 
storage registers B through H into register A. Control or 
"11" punches are used in this fashion: 

REGISTER TO READ INTO A CARD COLUMN 

3 4 5 

B 11 11 
D 11 
E 11 11 
F 11 
G 11 11 
H 11 11 11 

These control punches are put in the same card as the 
punching for the operation to be performed on the data 
transferred to A. Transfer of data from storage units D 
through H into B takes one card by itself. On this card the 
data are transferred to A, 00000 is entered in B, addition is 
performed, and the result multiplied by 10 to preserve the 
decimal location. On the next card, another factor can he 
entered in A and an operation performed. 

Operations. A single digit in column 6 controls the basic 
machine operations. The digit 1 calls for 1/10 (A + B) 
and 2 for 1/10 (A - B). The reason for the 1/10 factor is 
to insure that the sum has no more than five digits and 
hence does not run over the digit capacity of the registers. 
Normally the sum of two 5-digit numbers might be six 
digits, but the 1/10 operation drops the last digit. In the 
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event it is known that the result will not exceed 5 digits, a 
"5" punch in column 10 will prevent the 1/10 operation 
and preserve all the digits of the sum. 

The digit 3 calls for multiplication A X B and the result 
retained is the first five digits. For example, .90000 X 
.90000 = .81000. 

The digit 4 calls for division 1/10 (B/A). Here again 
the 1/10 factor is intended to keep the answer within 
the digit capacity of the registers. For example, 1/10 
(.90000;'20000) = .45000. However, care must be used 
in programming division, as too small a denominator will 
cause too large a quotient to be attempted. For example, 
1/10 (.90000;'02000) = 4.50000 and the answer will 
overflow the B register. In such a case, zeros are punched 
and stored for an answer, and all subsequent calculations 
with this data will be in error. 

The digit 6 calls for the basic step for the extraction of a 
square root; that is, it is one step of the iteration process 
used. The actual operation is: 

and the use of this operation is taken up in a later section 
headed Examples of Programming, part 3. The X 10 oper
ation may not be used with operation 6. 

If no code is punched in column 6, the answer storage 
unit C will be cleared, but the numbers in the other storage 
units are undisturbed. 

Transfer from C. The result of an operation is always 
stored in B and in C. Normally, on the next card cycle, the 
number stored in C is punched in columns 75-80, and C is 
reset to zero. However, if a set of "11" punches is put in 
columns 7-9, then at punch time, the number in C is trans
ferred to one of the storag,e units D through H instead of 
being punched. The code used is the same as that for read
ing into A from the storage units except that there is no 
need for transferring from C to B. 

X 10. A "5" punch in column 10 will multiply the result 
of any arithmetic operation by 10. For example, if operate 
code 2 were used (subtraction) and a "5" punched in col
umn 10, the answer developed in Band C would be A - B 
with no shifting of the decimal. If operate code 3 (multipli
cation) were punched in column 6 and "5" in column 10, 
the result developed in Band C would be 10 (A X B). If 
no operation code is punched, a "5" in column 10 will trans
fer ten times the number in B into C, without changing the 
number in B. The larger number in C can be transferred to 
storage D through H for further use. The digit "5" was 
used instead of an "11" punch to prevent any possibility of 
early transfer of calculate selector 5 interfering with the 
last program step of the calculation for the previous card. 
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Punch Suppress. Quite often it will be desirable not to 
punch intermediate results in order that the program cards 
can be used over and over with new data. An "11" punch in 
column 11 will suppress punching without affecting other 
operations. 

Table Look-up. An "II" punch in column 12 is used on 
each card of a sequence forming part of a table of trigono
metric or other functions. This prepares the machine for the 
look-up operation which will be described later under Ex
amples of Programming, part 5. When the proper table 
entry is found, storage units E, F, G, and H are impulsed 
to reset and to read in the information punched in their 
fields on the card. If no information is punched, the storage 
unit is simply reset. On every table card an "11" must be 
punched in column 11 to protect the card. 

Negative Balance Stop. Every result developed in stor
age C is examined for sign and, if an "11" punch is in 
column 48 of the following card, the machine will stop 
when the quantity is negative. This is useful in checking 
operations of various types where, for example, it is known 
that the difference of two quantities, or some other result, 
cannot be negative. 

Check Stop. In certain other checking operations, it is 
known that the check quantity should be ± .00009 or less. 
If an "11" punch is in column 49 of the card, the machine 
will stop if the result in C is greater in absolute value than 
.00009. This test is actually made on the second and third 
digits from the right so that a large error like .01000 or 
.11000 will not be found. 

Punch D, E, F. An "11" punch in column 50 will cause 
the contents of registers D, E, and F to be punched in the 
same card in columns 61-75 without clearing these registers. 
This operation may not be performed if any number is being 
transferred from C to a storage register on the same card. 
That is, nothing must be punched in columns 7, 8, and 9 of 
the same card. 

Double Punch Stop. The machine is wired to stop if it 
senses two numbers punched in the same column in the field 
76-79. This is of use when the accuracy of machine calcula
tion is being checked by running the same cards twice. 

Card Entry into A and B. Numbers punched in columns 
13-17 will be entered in storage A provided a "12" control 
punch is also punched in column 13. They will be entered 
as a negative quantity if an "11" control punch is also 
punched in column 17. Likewise, numbers in columns 18-22 
will enter storage B if there is a "12" in column 18, and will 
be negative if there is an "11" in column 22. These numbers 
enter the storage units before the calculation or transfer to 
A, called for on the card, takes place and, hence, will be 
used in the calculation and transfer. If the "12" code for 
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entry is punched but there are no digits, the storage unit is 
cleared. A "12" code was used for entry to insure reading 
the "11" code for negative numbers. 

Card Entry into D through H. The entry and sign codes 
are the same as forA and B, that is, a "12" punch in col
umns 23,28,33,38 and 43 controls entry, and an "11" punch 
in columns 27, 32, 37, 42 and 47 makes the quantity nega
tive. However, the quantities are entered into the storage 
units on the third card cycle and hence may not be trans
ferred to A for use until the third card after the one on 
which they are punched. Because of this, the second and 
third cards in a program sequence are often blank except 
for their card number, and computations are made with the 
first, fourth, and succeeding cards. It is hot possible to read 
into D through H if the following card has a transfer from 
C to D through H, as these two operations would occur 
sim ul taneousl y. 

Punch Exit from D, E, F, and C. Answers from Care 
usually punched in columns 76-80, but the contents of regis
ters D, E, and F may be punched in columns 61-75 as men
tioned above. These columns are never read and can also 
be used for identifying data if necessary. 

Examples of Programming 

1. First, as a simple example, consider the problem of 
finding the average of 12 three-digit numbers punched in 12 
successive cards (see Figure 1). Card number one would 
carry the first number punched in card entry A (cols. 
13-17) and would have zero punched in card entry B 
(18-22). To make the machine read these numbers, col
umns 13 and 18 would have, in addition to the digit punch, 
a "12" or special control punch. To make the machine add, 
a 1 would be punched in column 6. As the numbers are 
small, of the form .00369, there is no need to allow the ma
chine to divide the sum by 10 as it usually does. Hence, 
shift or "X 10" is ordered with a "5" punch in column 10. 

The second card carries the next card entry into A, but 
no entry into B as it now has the first partial sum in it. Suc
ceeding cards continue to enter numbers in A and add them 
to the amount in B. Card 13 is coded to divide the sum 
(about .09999) by .12 and to retain 1/10 of this quotient. 
This is equivalent to dividing by 1.2. As we wanted division 
by 12, card 14 is coded to add zero to the quotient, and this 
divides the sum by 10 again, as nothing is punched in col
umn 10. This gives the same result as originally dividing 
the sum by 12. 

2. The greatest use of the machine is in more compli
cated sequences. These sequences are built up of simple sub
routines. Let us consider the evaluation of 

Z(X + Y) + VT 
W 

for values of the parameters in the neighborhood of Z = .2, 
X = 300, Y = - 20, V = 3, T = - .5, and W = .01. 

COMPUTATION 

There are six quantities to enter into the seven registers so 
that we can enter them all on card one, as shown in Figure 
2. This is convenient, as re-evaluation of the formula for 
other numerical values will involve changing only card one 
(the entry card) and the last card (the answer card) . 

As a general rule, the quantities within parentheses 
should be evaluated first, because the result is then ready 
for further multiplication or division. Hence, X and Yare 
entered in registers A and B. To locate the decimal point in 
a handy place, we write 10-3 X = .30000 and 10-3 Y = 
- .02000. Addition can be performed on the next card, and 
we can form 10-3(X + Y) without fear of overflowing the 
storage registers. Hence, X 10 is punched. Punching is 
suppressed, as only a final result is needed, and this inter
mediate result appears in B. A blank card is inserted to give 
the storage registers time to read in. 

On the third card we can multiply by Z; the decimal point 
needs no adjustment, so that 10- 3Z (X + Y) is developed 
in B. This result is stored in E, as the number there pre
viously is no longer needed. 

Card 4 is used to bring T into register B by adding it to 
zero, read from the card, and ailowing division by 10 to save 
trouble later on. Card 5 multiplies V by T and the product 
is 10-3 V T. Card 6 adds this to 10-3 Z (X + Y) to give 
10-4 [Z(X + Y) + V T]. Card 7 divides by W to give 

which is 

10-4 [Z(X + Y) + V T] 
(lOW) 

10- 5 [Z(X + Y) + V T] 
W 

and the result is punched in columns 76-80. The decimal 
point is after column 80, i.e., the number punched is a whole 
number. 

3. Another example is programming for square root, as 
shown in Figure 3. The number whose square root is 
wanted, N, is usually developed in some previous sequence 
of calculations so that it will be in storage B normally. VVe 
can, on the same card in the development, put it also in 
storage D for future reference. In what follows, it is as
sumed that we start with N in D and develop -V N in B by 
successive approximations. N is, of course, of the form 
.64000 X 1()2 so that when -V .64000 is found then -V 102 = 
10\ and there is no decimal trouble. 

For the purposes of the example in Figure 3, the number 
.64000 is loaded in storage D, and the loading card is fol
lowed by two blank cards. The fourth card assumes an ap
proximate root of .5 (midway of all probable roots) and 
makes the first iteration, storing the result in B. Card 5 is 
the second iteration so that this result is transferred to A 
in the usual way. Card 6 is the third iteration and is identi
cal wIth card 5. As many iterations as are needed can be 
used, but 7 seems to be enough, based on some test runs. 
The result will be in B. 



[Z(X+y)+ VT] W (Load) 

1O- 3 (X+Y) Add 

Blank 

10-8 Z(X+Y) 

1/10 T 

10-3 VT 

10-4 [Z(X+Y) + VT] 
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Square Root (Load) 

Blank 
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1 2 3 4 5 6 7 8 9 10 11 

Load 0 1 11 

1/101/c 0 2 4 11 

1/100 (l/c) 2 0 3 11 11 3 11 11 11 11 

l/1Oh 0 4 11 1 5 11 

1/100 h2 0 5 11 11 3 11 11 

l/1Ok 0 6 11 11 1 5 11 

1/100 k2 0 7 11 11 3 11 11 11 

1/100 hk 0 8 11 3 11 

1/100 (h2+hk) 0 9 11 1 5 11 

1/100 (h2+hk+k2 ) 1 0 11 11 1 5 11 

10 X .13333 X 1/100 (h2+hk+k2 ) 1 1 3 5 11 

1/100[4/3(h2+hk+k2 ) + (l/c)2] 1 2 11 11 11 1 11 5 11 

v-"- 1 3 6 11 

V-,-, 1 4 11 11 6 11 

Transfer V- toA 1 9 11 11 11 

Answer 2 0 4 

4. The program for another actual problem is shown in 
Figure 4.a 

S. As a final example, we consider the programming for 
table look-up (sin %). The table look-up wiring permits 
subtracting the argument on each table card from an argu
ment stored in A. When the. difference is negative, i.e., 
when the table card next above the wanted argument is 
sensed, the previous card is read into storage units F, G, 
and H. This means the card for an argument next below 
the wanted argument is read. Figure 5 shows the program. 

The procedure for quadrant selection is as follows. If the 
angle is not in the first quadrant, then we must put a plus or 
minus sign on the result of a table look-up, depending on the 
quadrant. This can be done with a small preliminary table 
look-up operation, where the table consists of quadrants and 
signs. This operation should be performed before looking 
up the sine or other function. It is assumed that % is in A to 
start the sequence. The sign is carried along by reading in 

a This problem was proposed by the Physics Research group at the 
Chrysler Corporation and is concerned with some work with the 
X-ray spectroscope. 
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COMPUTATION 

~ &Xl f%.< 0 
B B B B 
t- t-
15 15 
~ ~ 

t- E 
~ I:: 

~ 

'E 'E 
8 8 ~ 

"0 

U 8 
13 14 15 16 17 18 19 20 21 22 33 34 35 36 37 38 39 40 41 4~ 

12 12 12 12 
6 6 9 0 0 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

12 
0 0 0 0 0 

12 
0 0 0 0 0 

12 
1 3 3 3 3 

12 
3 0 0 0 0 

12 
2 4 5 5 0 

.99999 with the appropriate sign to use as a multiplier for 
the fUnction to be determined later. On card 6 we transfer % 

to B. On card 7 we form %0 - %, and on card 8 we transfer 
it to E for future use. On card 9 we transfer the sign to D. 
In the main portion of the table look-up which follows, 
three quantities are read to permit second-order interpola
tion if desired. For this example, we assume the sine read 
into F, modified first difference into G, and modified second 
difference into H. The interpolation formula is an adapta
tion of Stirling's formula:b 

. '. (-% + %0) [8-1/2 + 8+1/2 SIn % = sIn %0 - 2 %1 - %0 
-(-%+%0)8~J . 

Xl - %0 2 
-%+%0 Here %1 - %0 = 10 degrees, so that = p. %1 - %0 

is obtained simply by subtracting and dividing by 10. 

bThis method of interpolation is explained in a paper by Eleanor 
Krawitz entitled "Punched Card Mathematical Tables on Standard 
IBM Equipment," published by IBM in Proceedings, Industrial 
Computation Seminar, September, 1950. 
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8-1
/

2 t 8+ 1
/

2 is the average of the adjacent first differences 

or the modified first difference which is punched in field G. 
8~/2 is half of the second difference or the modified sec
ond difference and is punched in field H. Therefore, our 
formula is: sin x = sin Xo - p.(G - ftH) . 

Card 11 begins evaluation by putting x in B. Card 12 forms 
1/10(xo - x) = ft with the decimal shifted and puts the 
result in E. Card 13 forms ftH with another decimal shift, 
and card 14 forms G - ftH. Card 15 gives /L(G - /LH), 
card 16 gives the sine, and card 17 gives the proper sign. 
A similar procedure is used for any other function. 

QUADRANT LOOK-UP 

Search 

Transfer % to B 

Shift 

Transfer Sign to D 

TABLE LOOK-UP 

Transfer to A 

Search 

Transfer 

1/100 (+ %0-%) = fL/lO 

G-pH 

Adjust Sign 

ci 
z 
"E 
t3 

o 1 

o 2 

o 3 

o 4 

o 5 

o 6 

< 

51111 

5 11 11 

51111 

51111 

51111 

5 11 

o 7 11 11 1 5 11 

08 11 11511 

09 11 111 5 11 

0111 112 51111 

o 2 2 51111 

o 3 2 51111 

o 4 2 51111 

o 5 2 51111 

o 6 2 51111 

o 7 2 51111 

o 8 2 51111 

o 9 2 51111 

1 0 2 51111 

1 1 5 11 

1 2 11 11 2 11 11 5 11 

1 3 11 11 11 3 5 11 

1 4 11 11 2 5 11 

1511 113 5 11 

1711 

12 11 
o 0 0.0 0 o 0 0 0 0 999 9 9 

12 11 
o 9 0.0 0 o 9 0 0 0 9 9 9 9 9 

12 11 11 
1 8 0.0 0 1800099999 

12 11 11 
2 7 0.0 0 2 700 0 9 9 9 9 9 

12 11 
3 6 0.0 0 3 600 0 9 9 9 9 9 

12 
o 0 0.0 0 

12 
o 0 000 

12 
o 0.0 0 0 00000000001736500000 

12 
1 0.0 0 0 10000173651710100264 

12 
2 0.0 0 0 20000342021631700519 

12 
3 0.0 0 0 30000500001503800759 

12 
4 0.0 0 0 40000642791330200977 

12 
5 0.0 0 0 50000766041116201163 

12 
6 0.0 0 0 60000866030868201316 

12 
7 0.0 0 0 70000939690593901427 

12 
8 0.0 0 0 80000984810301501497 

12 
9 0.0 0 0 90000999990000001518 

12 
o 0.0 0 0 

FIGURE 5. TABLE LOOK-UP, SIN x (x IN A) 
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APPENDIX 

Wiring Diagrams 

The diagram in Figure 6 gives the read-in wiring, but the 
selector diagrams are repeated in Figures 7 to 11. The cal
culate control panel is not diagrammed, but the connections 
are listed in detail in Table 1. 

The basic operations are obtained by wiring them all on 
the calculate panel but suppressing all steps (except step 1) 
until one or more calculate selectors pick up. This permits a 
complete assortment of operations from one panel with no 
setup changes between problems. There are other possible 
arrangements of the various functions which might save 
some program steps in Table I; for example, step 5 is iden
tical with step 11. 

The various units of electronic storage are assigned to 
the storage registers mentioned under programming as 
follows: 

FS2 ...................... A 
MQ ...................... B 
Counter.... . ..... ......... C 
GS1&3 .................. D 
G S 2 ..................... E 
G S 4 ..................... F 
F S 4 ..................... G 
FS1&3 .................. H 

COMPUTATION 

Read-in to A and B (F S 2 and M Q) is at first reading, 
as are all transfer and operation codes except table look-up. 
A "12" punch is used to control read-in to permit reading 
of the "11" punches for sign control. Most of the rest of 
the control punches (transfer operations, table look-up, 
stop, etc.) are "11" punches. However, a "5" punch is used 
for X 10 (column 10) because this picks up calculate se
lector 5, and a "12" punch might transfer it early enough to 
affect the previous electronic cycle; The timing chart, Fig
ure 12, explains this. 

Read in to D through H (all of the remaining electronic 
storage units) is at second reading. While this may be 
slightly inconvenient for spread entry of quantities into 
storage, it permits the table look-up operation to occur as 
neatly as it does, the same second-reading brushes being 
used in table look-up. A "12" punch is normally used to 
control read-in (through a column split) but storage E, F, 
G, and H also obtain a card cycle read-in pulse when the 
negative balance selector picks up and an X is punched in 
column 21 of the card. 

Product Overflow Stop. An X punch in column 49 trans
fers pilot selector 2 at punch time and makes a product 
overflow check of the second and third digits. This is of use 
in checking that the difference of two quantities is nearly 
zero. For example, it may be used in checking the result of 

FIGURE 6. TYPE 604 CONTROL PANEL WIRED FOR CPC OPERATION 
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a square root operation by squaring the root and subtract
ing from the original number. 

Negative Balance Stop. An X punch in column 48 of the 
following card will go through a set of negative balance 
selector contacts, if the number in C is negative at the end 
of a calculation. This stops the machine and is used to check 
results which cannot be negative. 

Punch Selectors. The punch selector wiring of units 4-8, 
as shown in Figure 10, is intended to permit punching or 
transfer to a particular storage unit as shown. The pickup 
wires for these selectors are wired to pilot selectors 3, 4, 
and 5, as shown in Figure 9. Read-in pulses are supplied 
through punch selector 3 from the same digit pulses used 
to pick up punch selectors 4-5. 

Square Root vViring. As the square root iteration 
1/2 [ (D / A) + A] is compounded of simple arithmetical 
operations, the regular calculating steps are used by arrang
ing the various operations in the proper order. Table I 
shows that, after transfer to A and addition, there are in 
sequence a division, a special set of steps for square root, 
and a multiplication. Thus, if calculate selectors 3, 4, and 5 

TABLE I 
VVIRING OF ELECTRONIC CALCULATING STEPS 

Operation Step Wiring 

Clear 

Transfer 

± 

1 .... Read out and reset counter. 

1

2 .... Read out general storage 1 and 3 or general 
storage 2, as selected; read in factor stor
age 2. 

3 .... Read out general storage 4 or factor storage 
4, as selected; read in factor storage 2. 

4 .... Read out factor storage 1 and 3 or multiplier 
quotient, as selected; read in factor storage 2. 

{ 

5 .... Read out factor storage 2; read in counter +. 
6 .... Read out multiplier quotient; read in counter 

+ or -, as selected. 
7 .... Read out and reset counter, out of 2nd or 1 st, 

as selected; read in multiplier quotient. 

{

8 .... Read out multiplier quotient (or general stor
age 1 and 3, as selected) ; read in counter +, 
into 5th or 6th, as selected. 

9 .... Read out factor storage 2; divide. 
L 10 .... Read out and reset counter. 

12 .... Read out multiplier quotient; read in counter 

{

II .... Read out factor storage 2 ; read in counter +. 

V +, into 1st. 
13 .... Read out and reset counter, out of 2nd; read 

in factor storage 2. 
L 14 .... Emit 5; read in multiplier quotient, into 5th. 

r 15 .... Read out factor storage 2; multiply +. 
X 16 ... . 112 adjust, into 5th or 4th, as selected. 

1 17 .... Read out and reset counter, out of 6th or 5th, 
L as selected; read in multiplier quotient. 

±, X, +, V-18 .... Read out multiplier quotient; read in 
counter +. 

X 10 19 .... Read out multiplier quotient; read in 
counter +, into 2nd. 

20 .... Balance test for selector pickup. 
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are picked up by punch selector 2, all the parts of one 
square root iteration are performed. The coding is shown in 
Figure 3. 

Calculate Selector Wiring. The wiring of suppress pulses 
and of read-in pulses is shown in Figures 7 and 8. This 
wiring is fairly complex because few selectors were avail
able. Note that the logic of switching suppress pulses is the 
inverse of Shannon's logic of relay and switching circuits. 

ADDITION AND SUBTRACTION 

E
Step 5 

Sup. without 0-0 --.cP="j'ii'--Oo---2:.;=----;--~ Step 6 
bal. test Step 7 

Step 6 o-----a.=odSodS'-------~O R.1. ctr. + 
2 0-0 ---------00 R.1. ctr. -

MULTIPLICATION 

E
Step15 

Sup. without 0-0 --~:F:-=--------+---...() Step 16 
bal. test Step 17 

DIVISION c=::::: Step 8 

~~r.' t:~:hout c----o,==.r~-------Ic::::::;;I--~ ~::~ lb 
SQUARE ROOT ITERATION 3

W 
§ Step 11 

Sup. without ~r'--4:=-'---l.-----+--"";' Step 12 
bal. test L...., Step 13 

Step 14 
Step 8 

SHIFT (X 10) 
Step 7 
Step 8 

Step 16 

Step 17 

Sup. without 
bal. test 

Sup. without 
bal. test 

0.-----..a.-...,3 ....Q;""'o!l:------~O R.O. MQ 
0-_ ------<>0 R.O. GS 1 & 3 

o--_--a=5==i?=ts=-___ -oo Read units out of 2nd 

<>-----<>O;====l=='l;;l;;-----oo Read units into 5th 
5 0-0 ----00 Read units into 6th 

5 -..!S, 0 Read units into 5th 
0-" ----00 Read units into 4th 

o------"'5==-odSdoS------oO Read units out of 6th 
0-____ -00 Read units out of 5th 

o---oo=-=:=ti'7"1 'lS-----=a'-:::2"t5'---===:3:'<1~'---<F'==<i!=4"'5'---oO Step 18 

FIGURE 7. CALCULATE SELECTOR \VIRING 

Sup. 
without 
bal. test 

Step 2 
0 

Step 3 
0 

Step 4 
0 

8 
C.....Q; 

0 

8 
o-Q; 

0 

8 
'h:mQ; 

0 

Step 2 

Step 3 

Step 4 

o GS 1&3 (D) 

o GS 2 (E) 

o GS 4 ( F) 

o FS 4 (G) 

o MQ (B) 

o FS 1 & 3 (H) 

FIGURE 8. CALCULATE SELECTOR WIRING 
FOR TRANSFER TO A 
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DIGIT 
IMPULSE 

PILOT SELECTORS PUNCH SELECTOR 

4 3 PICKUPS 

""= lao&: l-to 

! l 1

1
L.---4-(0) 

I L---~I~--------6~(F) 
I I 
I I 

5 (E) 

.,L __ ~.~l~~----------
7 (G) 

.,1.-__ _ 
8 (H) 

FIGURE 9. PUNCH SELECTOR PICKUP WIRING 

secondRea~ 

FIGURE 10. READ-IN AND PUNCH WIRING 

12th 2nd 
Rdg. Brush 

Neg. Balance Sel. 

~ ......... ______ --oPiiot Sel. 1 XPU 

I PII., 5,1. I : 
. ==cePunch Sel. 1 PU 

GS 2 R.1. (E) c 
Punch se~ 

I 

GS 4 R.1. ( F)o ~ 
I 
I 

FS 4 R.1. (G)c ~ 
I 

FS 1 & 3 R.1. (Ht ~ Card Cycles 

FIGURE 11. TABLE LOOK-UP WIRING 

DISCUSSION 

COMPUTATION 

Mr. Ferber: Did you at any time try to use the card 
itself for memory by ganging and then suppress ganging? 

pilot selectors. We had no way of getting this stored in
formation back into channel A conveniently. 

Mr. Ferber: We do that by setting it up to read from 
different places on the card, either from first reading or 
second reading, but we also used a temporary memory. 

Mr. Nims: So-called dynamic storage? We thought about 
it, but the chief difficulty was that we were running out of 
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c:J ENTRY 
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FIGURE 12. TYPE 604 TIMING CHART 

When we needed one more memory than we had, we would 
punch it out and then read it back at the second reading as 
an additional memory, although we used, of course, the 
principle of reading it electronically, just as you do. 

We also set up the possibility of doing A times B plus or 
minus one of the electronic memories, using the calculate 
selectors, which might still be open. 

Dr. Herget: Have you considered using Cecil Hastings' 
series for any of your functions? Would that be less eco
nomical than what you do? 

lWr. Nims: It might be, because you would need simple 
instructions for each term in this series, which would also 
use many cards. The real reason we were interested in table 
look-up is that we have considerable empirical data that we 
want to consult, and it could be represented by a table with 
first or second differences, but it would be quite a chore to 

get a series to cover the whole range, test data, and so on. 
Mr. Feigenbaum: At Cornell Aeronautical Laboratory 

we did a sort of backward operation. "''-Ie used the CPC as 
a 604 because we wanted printed results rather than 
punched results. We found it was much quicker to feed 
the numbers through the CPC and print them out right 
away, rather than punch and then print them later. 

Dr. Brinkley: vVe have occasionally used the general
purpose 604 control panel that goes with the general-pur
pose CPC setup for pure 604 operations. If you want to do 
one or two operations and then punch the result, this will 
save time. 

Mr. Lowe: I understand that at the Watson Laboratory 
they have set up a 602-A in somewhat the manner that Mr. 
Nims describes, to form a miniature CPC. This may be of 
interest to our 602-A users. 
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THE DES I G N of control panelsa for the operation of 
the IBM Card-Programmed Electronic Calculator on num
bers expressed in floating point notation was undertaken 
for two basic reasons: first, to expedite the solution of cer
tain non-linear algebraic equations, notably those defining 
gas-phase chemical equilibria; and second, to reduce the 
programming time for short problems or for problems in 
which scale factors are impossible or, at least, difficult to 
predict. In the case of the calculation of chemical equilibria, 
for example, a single routine may be used for almost the 
entire range of possible parameters if the calculations are 
performed in floating point notation. With fixed point com
putation, however, approximately thirty-five different rou
tines may be required for the carbon-hydrogen-oxygen
nitrogen system. 

There are many significant disadvantages of floating 
point notation. These are principally the difficulty of inter
pretation of a listing of the results, the virtual impossibility 
of carrying out multiple precision operations, the false sense 
of precision that may be created, and the increase in com
puting time that appears to be unavoidable. These facts 
were used as a basis for the initial requirements that the 
arithmetic operations be as precise as logically possible, that 
the notation be as natural as possible, that the operation of 
the calculator be as flexible as possible, and that lost motion 
be largely eliminated. 

After a considerable period of evolution the computer 
now has the following general facilities: 

1. Basic arithmetic operations of add, divide, multiply, 
reverse the sign of operand B, and suspend round-off 
in the command "A operation B equals c." Round
off, "vhen carried out, is almost always exactly correct. 

2. Three complete independent program fields. 
3. Four numerical fields with conditional or semi-condi

tional entry from all fields. 

aThese control panels were designed at the Lewis Flight Propulsion 
Laboratory during the summer of 1950 and first placed in operation 
in early September, 1950. Since then the control panels have been 
gradually modified to provide increased flexibility and have only 
recently achieved their present, and possibly final, forms. 
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4. Automatic extraction of integral roots from second to 
seventh. 

5. Eight kinds of conditional operations including trans
fer of control among the three program fields which 
may be based either on the sign of the number or on 
the sign of its exponent symbols (negative exponents 
correspond to a zero result). 

6. Zero results are stored as zero, and all improper oper
ations-such as an unintentional division by zero or 
the formation of a result too large for proper storage 
-cause a machine stop with an automatic list cycle. 

The extraction of integral roots, rather than other func
tional operations, was chosen as the basic wired subse
quence because of the interest in aerodynamics of second, 
fifth, and seventh roots, the fact that it is not generally pos
sible to predict the length of a routine for root extraction, 
and partly because it could be done fairly easily. 

The notation was chosen for ease of interpretation within 
the limits of the storage capacity of the CPC. A number is 
represented by eight numerical digits with the decimal point 
to the left, and a pair of exponent digits whose value is 50 
greater than the power of 10 by which the numerical digits 
are to be multiplied. The exponent digits are stored to the 
left of the numerical digits. Unity has the representation 
(51; 1), and in general, a number is interpreted by moving 
the decimal point to the right by a number of places equal to 
the excess of the exponent digits above 50 or by prefixing 
the numerical digits with a number of zeros equal to the 
defect of the exponent digits below 50. Zero has the normal 
notation 00;00000000. Any result for which the exponent 
digits exceed 99 is treated as infinity, and the computation 
is stopped. 

The 604 control panel executes only the basic arithmetic 
operations. The choice of the median exponent digit, a part 
of the calculation of exponents for multiplication and divi-
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sion, and the sensing of the existence of a zero result are 
partly controlled from the accounting machine control 
panel. 

All other features, including the management of limiting 
cases, impossible problems, conditional operations, provi
sion for the immediate use of results as factors in calcula
tion, and root extraction are wired in the 402-417 control 
panel. 

THe 604 CONTROL PANeL 

Operation Codes. The operation codes of the symbolic 
operation "A op B = C" are 

1: Add A and B. 
2: Divide A by B. 
3: Multiply A by B. 
4: Cancel normalization of result with initial zeros. 
5: Reverse sign of operand B. 
8: Cancel round-off (0 adjust). 

For completeness: 
X: List. 
9: Summary punch. 
6: Equivalent to 1 code. 
7: Causes division and simultaneously multiplies the re

sult by 105 • (The use of codes 6 and 7 is generally not 
recommended. ) 

Factor Entry. The numerical portion of operand A enters 
into factor storage 1 and 2. The numerical portion of operand 
B enters into factor storage 3 and 4. The exponent portions 
of A and B enter general storage 1 and 3 which are given 
an 8-6 assignment but are not coupled on the 604 control 
panel to any of the five-digit storage units. This wiring 
causes read-in and subsequent use of the exponent digits as 
their positive absolute value. For division, 52 is read into 
the multiplier quotient and for multiplication, - 50 is read 
into the multiplier quotient. The 2 of the number 52 is ob
tained from the code 2, and the minus of the number - 50 
is obtained from the code 3. 

Analysis. The operation of the 604 is divided into two 
parts: on the first 44 program steps the arithmetic opera
tions are completed; the last 16 programs, which are active 
on program repeat, are used to shift the result into its nor
mal notation. One program repeat is always required. The 
wiring of the 604 control panel is quite tight; there are 95 
logically different operations which were condensed into 60 
through the use of calculate selectors and the use of two 
6H6 diode circuits. Details of analysis and wiring of this 

. feature of the 604 control panel and all other control panels 
are described in the Appendix. 

The first two program steps reverse the sign of the 
numerical digits of operand B if calculate selector 5 is trans
ferred. This step is placed first, in order that subtraction 
may be converted into an addition, which is symmetrical in 
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its operands. Program steps 3 to 8 manipulate exponents so 
that for the process of multiplication or division the trial 
exponent of the result is computed, and for the process of 
addition the larger of the two exponents is placed in general 
storage 1 and the absolute value of their difference in gen
eral storage 4. The final calculation of the trial exponent 
digits for the addition process is deferred to program steps 
21 to 23. 

The equivalent of five program exits is obtained in pro
gram step 6. One exit is expanded into two by the use of 
diodes to drive both emit 1 and counter plus. Use is made 
of the fact that the "read units into 6th" is inactive on 
"counter read-out" in order to couple "in 6" to "general 
storage 3 read-in." 

For addition, the decision as to whether to interchange 
operands A and B prior to alignment of the decimal points 
is made by a balance test for step suppression on program 
step 4. If this interchange is required, it takes place on 
program steps 9 to 11. 

Decimal point alignment is done in three steps. If the 
difference of the exponents is greater than four this differ
ence is reduced by four, and operand B is shifted four places 
to the right (program steps 12 to 19). The next part of the 
alignment is done by multiplying B by an appropriate fac
tor. Unity is successively subtracted from the amended 
difference of the exponent digits, and unity is emitted into 
the multiplier quotient in successive positions until a nega
tive balance is obtained (program steps 24 to 36). Finally, 
if a shift of more than eight places is required, a negative 
balance does not occur, and operand B is set equal to zero 
on program step 37. The addition is completed on program 
steps 38 to 46, with program steps 41 and 43 inactive. 

Multiplication and division are carried out by conven
tional programs interspersed among the addition programs. 
On program step 46 each of the possible results, as yet un
rounded, is similarly placed, with the numerical digits in 
the electronic counter and with the appropriate exponent 
digits in general storage 4. The 11th counter position is the 
overflow place for addition or division, or the 16th place 
when a full 16-place product is formed in multiplication. 
The two right-hand positions are the two possible round-off 
positions. Round-off (0 adjust) occurs only on the last 
program repeat. 

The overflow position is zero tested, and if the result of 
the test is zero, the exponent digits are reduced by one and 
the computed result shifted one place to the left. The expo
nent digits are reduced, and a balance test for selector 
pickup is ordered on program step 57. The previous process 
is repeated until a non-zero is found, which suppresses 
further program repeat pickup, or until transfer of the 
negative balance selector, which is wired on the 402-417 
control panel to transfer calculate selector 4. (Program re
peat is initially picked up on program step 3 but further 
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pickups occur on program step 49 which is wired through 
the common to the normal points of calculate selector 4.) 

When a non-zero digit is found (program step 55), re
duction of the exponent digits (program steps 56 to 58) is 
suppressed, and further pickup of program repeat is also 
suppressed. On the final 60 program steps the result is 
rounded, and a final zero test is performed to determine 
whether round-off caused an overflow. If no overflow 
occurs, the exponent digits are again reduced by unity. If 
an overflow does occur, the exponent digits are not reduced. 
This last is provided to take care of the special case in 
which the unrounded result consists of eight 9's with a 
ninth digit greater than or equal to 5. Program step 59 is 
suppressed on non-zero, because if overflow occurs the cor
rectly rounded result is in factor storage 3-4; otherwise, the 
result is in factor storage 1-2. 

The suppressions are described in detail in the Appendix. 
The only unusual feature of the suppressions is the use of a 
pair of diodes to provide for suppression either by group 
suppressor 4 or by suppress on minus balance. 

THE 402-417 CONTROL PANEL 

The 402-417 control panel used at the Lewis Flight Pro
pulsion Laboratory of the N ACA is wired to correspond to 
the card diagram shown in- Figure 1 and the table of codes 
shown in Figure 2. Three independent ten-column program 
fields, card columns 4-13, 54-63, and 64-73, are provided. 
Four numerical fields (a, b, t and s) are provided in card 
columns 14-23, 24-33, 34-43, and 44-53, respectively. Card 

i- i- -i 
I I I 
I I I 

CARD PROGRAM FACTOR FACTOR TABLE 

COMPUTATION 

columns 1-3 and 80 are used for card numbering. Card col
umns 41-47 are wired from second brushes to counter 
minus for the purpose of clearing the counters of the ac
counting machine. Card column 48 is wired to the X hub of 
storage clear. Card column 74 is used for carriage control 
and card column 75-79 for listing of identification of results 
with alphabetical or numerical designations on a 402, or 
numerical codes on a 417 accounting machine. 

The three program fields 4-13,54-63, and 64-73 are iden
tical in function. Their wiring, which involves co-selectors 
5 and 6, 9 and 10, and 11 and 12, is shown in the Appendix. 
Co-selectors 11 and 12 are required to permit subsequenc
ing on special program for the calculation of integral roots. 

The program field is subdivided as follows: 

Card columns 4 and 5 Channel A address, symbol A 
Card column 6 Operation code, symbol op 
Card columns 7 and 8 Channel B address, symbol B 
Card columns 9 and 10 Channel C address, symbol C 
Card column 11 Shift, symbol S 
Card column 12 "N ormal" column for special 

codes, symbol N 
Card column 13 "Transferred" column for 

special codes, symbol T. 

The regular channel A, B, and C codes perform in the 
normal manner as do the operation codes and the shift code. 
A shift of two has been taken as "normal." The special code 
columns 12 and 13 are read conditionally. Discussion of 
their significance is deferred. 

I CLEAR X's J I-
(11zl3 4j5 1617M I 

I 

SUBSTITUTION PROGRAM PROGRAM LIST 
NO. FIELD FIELD, a FIELD, b FIELD, t FIELD, s FIELD 50 FIELD 60 !DENT. 

0 0 0 
A P B C S NT A P B . C S NT A P B C S NT 

000 00 000 00 00 00000000000 0000000000 0000000000 0000000000 o 0 000 00 00 000 000 00 00 00 000000 
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~ 45 46 47 48 49 50 51 52 53 ~55 56 57 58 5960 6162 63 64 65 66 67 68 69 70 71 72 73 4 57677787980 

1 1 1 1 1 1 1 1 11 1 1 11111111111 1111111111 1111111111 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111 

222 22 222 22 22 22222222222 22,22222222 2222222222 2222222222 2 2 222 22 22 222 222 2 2 22 22 222222 

333 33 333 3 3 3 3 33333333333 3333333333 3333333333 3333333333 33 333 33 33 333 333 3 3 33 3 3 333333 

444 44 444 44 44 44444444444 4444444444 4444444444 4444444444 44 444 44 44 444 444 44 44 44 444444 

555 55 555 55 5 5 55555555555 5555555555 5555555555 5555555555 5 5 555 55 5 5 555 555 55 55 55 555555 

666 6 6 666 66 66 66666666666 6666666666 6666666666 6666666666 6 6 666 66 66 666 666 6 6 66 6~ 666666 

7 7 7 7 7 7 7 7 7 7 7 7 77777777777 7777777777 1777777777 7777777777 7 7 777 7 7 7 7 777 777 7 7 77 77 777777 

888 8 8 888 88 8 8 88888888888 8888888888 8888888888 8888888888 88 888 88 88 888 888 8 8 88 88 888888 

999 9 9 999 99 99 99999999999 9999999999 9 9 9 99 999 9 9 9999999999 99 999 99 99 999 999 99 9 9 9~ 999999 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1b 19 20 21 22 23 ~4 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5455 58 57 58 5960 6162 63 64 65 66 67 68 6970 71 72 73 4 75 76 77 78 79 80 

LICENSED FOR USE UNDE ATEN 1,772 49 

FIGURE 1. CARD DIAGRAM 
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Channels 
AandB 
(columns 4-5 
or 7-8) 

Code 

7n 
8n 
00 
Nn 

j[ 
Channel C 7n 
(columns 9-10) 8n 

00 

Operation 
Codes 
(column 6 
or 56 
or 66) 

Conditional 
Codes 
(column 12 or 
13 or 62 or 
63 or 72 or 
73) 

Nn 

1 
2 
3 
4 
5 
8 
9 
X 

*X(N) 
*X(T) 
o 
1 
2 

3 
5 
6 
7 
8 
9 

*Read unconditionally. 

Function 

Read out counter group n 
Read out and reset counter group n 
Read factor from card 
Read out storage unit n, bank N 

Re-read result of previous calculation 

Re-read previous result and clear counter group n 

Read in counter group n plus 
Read in counter group n minus 
Read out and reset electronic counter but do not store 

result 
Read in storage unit n, bank N 

Add A andB 
Divide A by B 
Multiply A by B 
Suspend normalization of result 
Reverse the sign of element B 
Suspend round-off 
Summary punch 
List 

Ignore abnormal notation of factor A 
Ignore abnormal notation of factor B 
Cause discrimination to be based on "zero-not zero" 

result 
Start total program for Nth Rooting 
Substitute number in "s" field for result of previous cal-

culation retaining sign of result 
Add number in table field to counter group 7 
Read next line of instruction from program field 50 
Read next line of instruction from program field 60 
Store previous result with sign punched in "s" field 
Stop 
Summary punch 

FIGURE 2. TABLE OF CODES 
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Additional channel A and B codes have been synthesized 
by the use of an X punch in card column 4 or 7. This X 
punch causes the result C of a calculation with its sign to be 
re-used as the corresponding A or B factor in the next calcu
lation. For convenience in listing, an 8 or 9 is also punched 
in order to list as Q or R. If the code Q is used and a 
digit 1 to 7 is punched in the units digit of the channel A or 
B code fields, the result of calculation may be re-used and 
the counter group n( n = 1, ... , 7) is simultaneously 
cleared, subject to the usual prohibition against attempting 
to read in and read out of a counter at the same time. The 
counter complement 9's are prevented from entering the ex
ponent registers, general storage 1 or 3, by the wiring in 
the lower half of pilot selectors 2 and 3. In addition to wir
ing the factors through selectors it is necessary to wire the 
signs of channel C to channel A or B as desired. To prevent 

accidental setup of a false sign when an R or Q code is used, 
the channel C sign is wired through pilot selector 13 which 
is transferred only on electronic all-cycles. The sign is also 
wired through pilot selector 14 so that positive or negative 
absolute values may be formed conditionally. 

The wiring of the 604 control panel requires that the 
electronic counter and electronic A and B be cleared of all 
numbers left from the previous calculation. In order to sim
plify card punching and to provide selective reading of con
stants from card fields A or B, the electronic counter read
out and reset and the storage units read-in and read-out 
are wired from electronic all-cycles rather than from chan
nels A, B, and C commons. 

The correction required for the exponent digits is read 
into the multiplier quotient unit by emitting a 5 into the 
second position from the C emitter. The pickup of calculate 
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selector 2 is wired to the units digit to provide 52 for divi
sion, and the pickup of calculate selector 3 is wired to multi
plier quotient minus to provide the - 50 required for ex
ponent correction during multiplication. 

One of the major problems in floating point operation is 
to provide for the correct management of commands or 
computation that involve zero factors or zero results. The 
desired treatment of commands with zero factors IS as 
follows: 

Operation A B Results 

Addition o #0 #0 
#0 0 #0 

o 0 =0 
Multiplication o #0 = 0 

#0 0 =0 
o 0 = 0 

Division o #0 = 0 
# 0 0 Impossible; stop 

o 0 Impossible; stop. 
r t is also desired to treat as zero any result for which the 
exponent digits become negative, and it is necessary that 
the division of a number in normal notation by a non-zero 
factor in abnormal notation-that is, by a factor with one 
or more of its initial numerical digits equal to zero-be 
classed as an impossible operation. In practice these condi
tions are realized by treating any number as zero whose 
first numerical digit is zero. This action can be prevented by 
suitable coding in the program columns N or T (card col
umns 12 or 13, etc.). 

The existence of a non-zero initial numerical digit is de
tected by wiring these digit positions to comparing, and 
picking up pilot selectors 4 and 5 (for A and B, respectively) 
from the corresponding unequal impulse. Discrimination 
against zero factors may be prevented by punching XN or 
XT which causes pickup of pilot selectors 4 or 5, respec
tively, from second reading. Pilot selector 4 is also picked 
up on its digit pickup for the operation of root extraction on 
special program in order to assure a "zero-not zero" dis
crimination by which special program is terminated. 

Pilot selector 6 is transferred on immediate pickup if 
there is a 2 code (division), and pilot selector 7 is simi
larly transferred if there is a 3 code (multiplication). 

These four pilot selectors cause the following results: 
a. If there is neither a 2 or a 3 code, a 1 (addition) code 

is formed as a true 1 impulse. 
b. For multiplication or division, if either or both factors 

are zero-and, for addition, if both factors are zero
calculate selector 4 is picked up by a 0 impulse which 
lists as 0 on a 402 when wired to the alphamericallist 
entry. In any of these cases pilot selector 9 is picked 
up on its X pickup. Pilot selector 9 is coupled to co
selectors 7 and 8 which actually cause the result to be 
zero in case the "zero result command" was generated 
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by the attempt to carry out computation with non
zero factors in abnormal notation. 

c. In division, if factor B is zero, a "half-after-ll" im
pulse picks up pilot selector 8 through its X pickup. 
Pilot selector 8 is wired to cause a machine stop when 
transferred. (This pilot selector is used for all of the 
various kinds of machine stops which can occur dur
ing calculator operation.) 

The effective portion of the wiring of pilot selectors 4, 5, 
6, 7, 8, 9, 13 required for each of these operations is indi
cated in the successive parts of Figure 3, pages 53 and 54. 

The five high-order positions of the electronic counter 
and the three high-order positions of general storage 4 are 
wired to comparing inlet to synthesize a product overflow. 
The unequal impulse hubs are wired to the digit pickup of 
pilot selector 8 to provide a stop. This feature terminates 
computation if the exponent digits of a computed result ex
ceed 99 or if digits other than zero are read out of any of 
the positions so wired. To avoid split wiring, a condition
ally programmed stop code (8 digit) is also wired to pilot 
selector 8 by the use of a position of comparing. 

The previous wiring prevents the use of a large number 
of program repeats in the 604 to detect a zero result which 
would occur with blank cards and also provides for the 
transfer of calculate selector 4 when the occurrence of nega
tive exponent digits causes negative balance selector 1 to 
transfer. For this purpose it was necessary to synthesize an 
impulse that was available only on idle cycles. This impulse 
is available at the lower normal point of pilot selector 13 
which transfers only on electronic all-cycles. The transfer 
of the negative balance selector also causes co-selectors 7 
and 8 to be transferred, thus storing a zero result. 

Conditional Operations and Special Numerical Fields. 
The special program fields Nand T contain eight condi
tional commands. One of the fields N or T is always read: 
N for a positive sign, and T for a negative sign. Conditional 
code 0, if read, causes the choice to be based on the sign of 
the exponent digits which thus forms a "zero-not zero" dis
crimination. If no 0 code is read, the choice is based on the 
sign of the numerical digits of the result. This alternation is 
effected by wiring 0 from a digit selector to the digit pickup 
of pilot selector 15 by which the sign exit of the electronic 
counter or of general storage 4 is wired to the coupling exit 
of negative balance selector 2. Card column N is wired to 
the normal point of this selector and card column T to the 
transferred point. The common is wired to the common of 
the previously-mentioned digit selector. 

Code 1 is used to pick up special program in connection 
with the Nth rooting subsequence. 

Code 2 causes the value punched in the substitution field, 
"s" (card columns 44-53), to be stored in place of the com
puted result with the sign of the computed result, unless 
code 7 (below) is also used, in which case the sign of the 
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Pickup wiring for selectors 4, 5, 6 and 7, and generation of a 1 code in the absence of both 2 or 3 
codes. Selectors 6 and 7 are both normal. 

FIGURE 3A 
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Multiplication: Factor A zero or Factor B zero (dotted 
line), but not both zero. Selectors 4 and 6 (or 5 and 6) are 
normal. Selectors 5 and 7 (or 4 and 7) are transferred. 
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Factors A and B zero on addition, multiplication or division. 
Selectors 4 and 5 are both normal. 
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Division: Factor A zero. Selectors 4 and 7 are normal. 
Selectors 5 and 6 are transferred. 
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Division: Factor B zero. Selectors 4 and 5 are transferred. 
Selectors 5 and 7 are normal. 

FIGURE 3C 

"s" field is stored. The reading of the "s" field is effected by 
wiring a 2 from the digit selector to the digit pickup of pilot 
selector 9 which in turn transfers co-selectors 7 and 8. It is 
noted that the numbers punched in the "s" field will replace 
any zero result. Therefore, care must be exercised in the 
use of the "s" field. Miscellaneous examples of its use are 
shown in the Appendix. 

Code 3 causes entry of a factor punched in the "t" field 
(card columns 34-43) into counter group 7. The 3 digit is 
wired to the digit pickup of spread read-in and also to the 
pickup of the field selector so that the sign X (card column 
34) is read to counter group 7 minus. Since this is a condi
tional operation, accidental read-in of digits to counter 
group 7 is prevented as follows: the card field is wired to 
counter exit, and counter exit suppression is wired through 
position 4 of the field selector to an all-cycles impulse. 
When the field selector is transferred to position 3, the all
cycle impulse fails to reach the exit suppression hubs. Care 
must be exercised 'in the use of 3 codes so that no cQunter 
storage is ordered on the card for any program field in 
which a 3 might be read. As long as there is no 3 code on a 
card, columns 34 to 40 may be used for any punching de
sired. This field has been found useful for codes to identify 
special cards. 

Codes 5 and 6 are used to control reading of program 
instructions from the alternate program fields. If a 5 is 
read, the instructions on the next cycle will be read from 
program field 50, so named because its card columns are 50 
in excess of the basic field, card columns 4-13. If a 6 is read, 
the next commands will be read from program field 60. It is 
noted in passing that since the Nand T fields are read at 

second reading, the channel A and B codes are read from 
the same program field, while the operation code, channel C 
code and shift instruction are read from the transfer field. 

Code 7 causes the sign of the "s" field to be substituted for 
the sign of the computed result. This code permits the con
ditional formation of positive or negative absolute values. 

Code 8 causes a stop. 
Code 9 causes summary punching. 
As previously noted, each of these codes is conditionally 

read, but may be made unconditionally read by punching 
the code in both the Nand T columns. Each program field 
has separate Nand T columns. 

NTH ROO'rING 

The process of root extraction was chosen as the basic 
subroutine for several reasons: 

a. In aerodynamics, second, fifth, and seventh roots 
occur quite frequently. 

b. The number of iterations required for the extraction 
of a root is difficult to predict. 

c. The calculation of the elementary transcendentals can 
always be programmed in a sequence of fixed length 
and if done on a subsequence would require five stor
age addresses and roughly three times as many cycles 
as the known fixed routines. 

The programs for root extraction are emitted in part 
from the C emitter through the field selector. The specifica
tion of the root to be computed is controlled by modifying 
the order of pickup of the field selector which is in turn 
controlled by storing an appropriate code number in stor-
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age unit 28. To carry out this operation it is necessary to 
store the number whose root is desired in storage unit 26 
and to store an estimate of the root in storage unit 22. The 
result appears in storage unit 22. The code number stored 
in unit 28 serves as the divisor n in the iterative formula 
below for va. Let X,;; denote the kth approximation to \la, 
then 

Codes Emitted to Field Selector 

55 

The four low-order digits of the code number also serve to 
control the field selector. Storage unit 28 is read out over 
channel B, and the program is arranged so that an imme
diate pickup H. code is provided on every cycle except when 
the content of 28 is used as a divisor. The low-order posi
tions of channel B are wired to appropriate transfer posi
tions of the field selector and hence through the transferred 
points of co-selector 12 to the pickup of the field selector. 
Co-selectors 11 and 12 are transferred on all total cycles. 

Order of Pickup of Field Selector 
Field Selector Field Selector Root~ 2 3 4 5 6 7 

Position A op B C S Pickup 1) 4 4 4 4 4 4 
X 2) 6 6 6 6 6 6 

0 2 2 2 2 2 5 3) 0 1 3 3 1 3 
X X 4) 5 0 2 1 3 2 
2 6 3 2 8 2 *b5 5) 7 5 0 0 2 1 

X 6) 8 7 5 5 0 0 
2 2 6 3 2 8 2 *b6 

7) 9 8 7 7 5 5 

X X 
8) 4 9 8 8 7 7 

3 2 2 3 2 8 2 *b7 
9) 4 9 9 8 8 

10) 4 4 9 9 
X 11) 4 4 

4 2 5 2 8 2 2 2 6 
X 

5 2 5 2 8 2 7 
X 

6 2 6 1 2 8 2 bs 
X 

7 2 2 2 2 2 8 
8 X 

8 2 2 5 2 2 9 
X 

9 2 2 5 2 2 4 
*b i = ith numerical digit of factor B 

. Equivalent Card Programming for Square Root 

Field Root Code Number 
Selector 2 51 ;20000000 Position A op B C S Result 3 51 ;3000000 1 

4 1 R 2 X k 4 51 ;40000023 

6 2 6 2 R 2 a/Xk 
5 51;50000013 
6 51 ;60003021 

1 7 51;70000123 
0 2 2 5 R X k - a/Xk 
5 R 2 2 8 2 l(Xk-~) 2 X k 

1 
X k + l(~ - Xk) 7 2 2 5 R 2 

8 2 X k 

1 
8 2 2 5 R 2 X k - X k+1 

1 
9 2 2 5 R 2 2 2 X k - (Xk - X k+1 ) 

4 1 R 2 X k+1 

FIGURE 4. NTH ROOTING 
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This is necessary to isolate channel A and B from the sec
ond reading contact roll and also to permit forming a chan
nel C address with a single 2 digit. 

The wiring of the field selector for the extraction of a 
root is diagrammed in the Appendix. The order of pickup of 
the field selector and the equivalent card coding produced is 
shown in Figure 4, page 55. The process is terminated by 
the occurrence of a zero result order on field selector posi
tion 9. To obtain the required zero result in all possible root 
extractions, it is necessary to suspend round-off on step 8. 

The general process of root extraction consists of 

a. computing X%-l, 
b. forming a/X%-l and subtracting this quotient from 

X k , 

c. dividing this difference by n, using the code number 
(see Figure 4) as an approximation to n, 

d. subtracting this difference 'from X k to form X k +1 

(with round-off suspended), 
e. forming X k -- X k + 1 for a "zero-not zero" test, and 

finally, 
f. recomputing X k + 1 by subtracting the above differ

ence from X k, and sto'ring it at storage address 22 to 
be used as the next estimate. 

The card-programming necessary to begin the Nth root
ing procedure is shown with the examples of programming 
in the Appendix. 

eALc.SH. 
oTO 0 OTO 

o NO 0 o NO 

oeD 0 OeD 

o T 0 0 OTO 

o NO 0 oNO 

oeD 

0 oTO 
3 
0 ONO Type H 

0 OeD Type J 

OTO 

o NO 

oeD 

OTO 

oNO Type A 

OeD 

OTO 

oNO Type G 

OeD 

oTo 

o NO Type D 

OeD 

0 o TO 
8 

ONO 

OeD 0 oeD 

COMPUTATION 

ApPENDIX 

The Appendix is devoted to the explanation of wiring 
diagrams not fully covered in the text and to the presenta
tion of a few examples of programming which serve to il
lustrate the use of certain of the special functions. 

Suppressions. The diagrams of the various types of sup
pressions (Figure 5) are self-explanatory. Type 6H-6 ther
mionic duodiodes are used. 

604 Analysis. The following notes on the 604 analysis 
give most of the information required to wire the control 
panel. The details of the analysis and wiring are shown in 
Figure 6. 

1. All three-position storage units are given an 8.-6 as
signment. Read-in and read-out of factor storage 1-2 and 
factor storage 3-4 are coupled, respectively. 

2. Factor storage 1, 2, 3, and 4, general storage 1 and 3, 
and the multiplier quotient read-in are coupled to electronic 
all-cycles. 

3. General storage 4 read-out and counter read-out and 
reset are coupled to electronic all-cycles. 

4. On a 3 code, - 50 is read into the low-order positions 
of the multiplier quotient, and on a 2 code, + 52 is read in. 

5. One of the calcuJate selectors 1, 2, or 3 must be trans
ferred on every calculate cycle. Calculate selector 6 is 
coupled to calculate selector 1, and calculate selector 7 is 
coupled to calculate selector 2. 

---GROUP SUP PU--- eALe.SH. 

II I I 4I I I I 8I 
OTO 0 o TO 1 
o NO 0 ON 0 

DROP OUT 

11 I I 41 I I I 81 
oeD 0 oeD 

o T 0 0 o TO 
EXIT 

11 
<j> I I I I 81 

o NO 0 ONO 

~ 
4 

oeD 

o TO 

ONO Type F 

oeD 

oTO 

o NO Type M 

OeD 

OTO 

Type E 
0 ONO 

0 oeD 

0 oTO 
6 

Type C 

SAL TEST FOR SEl PU 

o-l-o o---Lo o--Lo o-!-o 

... , ""~''''' "" 0---0----0---0 ~ 0 o NO Type I 
SUP ON + SUP ON ZERO 

0---0----0---0 0---0----0---0 0 oeD 

SUP ON- S~O 
o T 0 0 o TO 

SUPPRESS WITHOUT BAL. TEST 
ONO 0 ONO 

OeD 0 OeD 

FIGURE 5. SUPPRESSION \iVIRING 



Shift Emitter !~~~t Functions Ctr.control M.Q. General storage Factor Storage Misc. 

s ~~I~~ ~ I 0.1,- ~% C\J .q< C\J .q< bO (/) (/) 

ct! LI)~ 
;=j ri + UJ • UJ_il pc; 0 0 0 0 H H H H 0 till"-< til til 

I"-< tD ~lDl tD (/) 'UJ '"d • ....., 
~p: 08 

+ I P:; P:; P:; P:; P:; P:; P:; P:; 08 08
0 

08 08 I"-< • p.UJo UJ UJ UJ 
bO '(/) ·rl '"d 0 H 0 0 H H p... ~o ;::Sl"-< '0 I"-<p. ~ 
a ~) ~c il->c~c ~ c C lD .q< C\J ri 0.1 'ri -I-' :> ct! 2~p:; P:; H H P:; P:; ri C\J ~ .q< ri C\J ~ .q< riP:; ~P:; riP:; ~P:; 'p' o p.:::> • p.:>o a ,., ;=j gH ~HgH gH;H ~ ~,., ri 'rl P:; P:; (/) (/) (/) (/) (/) (/) (/) (/) (/) (/) (/) (/) :::>P:; 1"-<p.'Q p.E-< Z 
p... 0 ~ QriC\J It%t 0 0 0 0 0 0 0 0 !L. !L. !L. !L. ~\~p... g p... 

1 X X A 

2 X X A 

3 iL4 l.i± X X B 
4 T £14 rc .. 

T X B 

5 X X C 7 

6 X Prr:.i ~~T 1.i X D 6 
7 l.iff X NO I-¥~ B 

8 X X X B 

9 ±'" X X E 
10 B N X .iT':' F 

11 ~ X 71'2 \/ F 
12 

a,., 
X X G 0 

13 00l X Xl X ~ .nl 

14 QI"-< IX X G p. 
15 ~5' X X C 

~p. 
'--I-' 

16 X X .n G 
17 P.O X X c H 
18 00 X X X C 0 

19 X I X ~1 -I-' 0rp.L I 

20 X X X ~ G 

21 X X 
p. 

G ;=j 

22 X I'IN X 2:) 71'1 J 

23 X X X G 

24 X X G 

25 X X X G 
26 X X X C 

27 X X X C 
28 X X X C 
29 X X X C 

30 X X X C 
31 X X X C 
32 ;f N.i . <ON!:) ~¥ I±.5 F 

33 X X X C 
34 X G 
35 2N.5 ~ T X P.U.3 B 

36 X X X G 

37 X X X C 
38 X X .512 .51/ B 

39 X °N.5 °1.5 D 
40 X X X G 

41 X X H 
42 X X X ~ 

43 X X H 

44 X ~.2 612 
X D 

45 X X X 

46 X X X 
47 X 1M K 

48 X X 1l 
49 X X 4N L 
50 X X P.U.4 L 
51 X X X 

52 X X P.U.2 
53 X X X K 
54 X X X K 

55 X X 

56 X X D.0.3 
57 X X L 

58 X X 
59 X X P.U.3 L 
60 X X M 

(n.m means calculate selector n, mth point) 

FIGURE 6. WIRING DIAGRAM FOR NACA FLOATING-POINT CPC CONTROL PANEL 
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6. One of the program exits of program step 6 is made 
equivalent to two exits by the use of 6H6 diodes. The diode 
wiring is as follows: 

Counter plus 

Emit 1 

T 

N 
o 
C 

Calculate 
Selector 3 

0--0 Program step 6. 

7. The use of diodes in suppressions type C, E, F, and I 
IS shown in the suppression diagram (Figure 5). 

8. General storage 3 read-in is coupled to "read units 
into 6th." On program step 6, with calculate selector 3 nor
mal, counter read-out and reset prevents "in 6th" from 
being effective, and the read-in to general storage 3 is not 
affected. 

9. "Drop-out of group suppressor 4" is coupled to "read 
units out of 6th." 

402 Diagrams. To simplify wiring and discussion of the 
402 control panels, the wiring has been illustrated in three 
parts (Figures 7-9). 

COMPUTATION 

Wiring of Numerical Input and Clearing (Figure 7). 
Co-selectors 1 and 2 control the input of a factor from 
storage or a card, or the re-use of the previous result to 
channel A. Co-selectors 3 and 4 perform the same function 
for channel B. Co-selectors 7 and 8 permit the uncondi
tional substitution of a number in the "s" field of a card for 
a zero result, or the conditional substitution of a number in 
the "s" field for a non-zero result. Counter group 7 of the 
accounting machine is used for the entry of a factor from 
the table field by use of spread read-in. Pilot selector 1 con
trols detail printing of the 402, and pilot selector 8 controls 
"machine stop" and causes a list cycle for each stop. 

The early field selector controls entry of the table field 
sign. The sign impulse for the number in the "s" field is syn
thesized by combining a "hot 10" with the coupling exit 
impulse of pilot selector 10 which transfers when "s" is nega
tive (that is, there is an X in column 53). This sign is 
wired to the transferred points of pilot selector 14 which 
transfers on a conditional 7 code. 

Operation Control (Figure 8). Co-selectors 5,6,9,10, 
11, and 12 control which of the three independent program 
fields is to be read. Negative balance selector 2 controls 
which of the conditional code columns will be read. When 
this selector is normal, the N column is read; when trans-

1 2 3 4 .s 6 7 B 9 10 11 121314151617 J8 19 20 21_2:21--1~23=24=2S=26=27=28=29~3~O=3=':3:2:3:3:3:4:3~S:3:6:3:7:3:8:3:9:40f,~~~:u~fFnnn~49;SO~S'~S2:IS3~S4~SjS:;:S~6:;;St7~S~8~S~9~6~O:6~'~6~2~6~3:6~4~6~S~6~6~ FIELD SELECTORS _ 

'FIGURE 7. NACA FLOA'fING-POINT CPC CONTROL PANEL, WIRING OF NUMERICAL INPUT AND CLEARING 
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I '1 3 4 .5 67 8 910" 121314151617 J8 19 202122 232425 '16 '17282930 31 3'23334353637383940 

I 0 

I : 

I : 
I 0 0 

I 0 0 

FiElD SElECTORS 

o 0 00 0 

COMMONS 

'0 

1 0100 '0 1 020 

10 1 00 1 0 1 0200 

3'" .5 6 7 8 9 10 JI 12 13141516 23242526272829303132333435363738394041424344 50515253545556 5960616263646566 

FIGURE 8. NACA FLOATING-POINT CPC CONTROL PANEL, OPERATION CONTROL 

ferred, the T column is read. The pickup of this negative 
balance selector is controlled by pilot selector 15. When this 
pilot selector is normal the pickup impulse comes from the 
counter sign; hence, the discrimination is "negative-posi
tive." Pilot selector 15 is transferred by a conditional 0 
code. When this occurs the general storage 4 sign provides 
the pickup impulse, and the discrimination becomes "zero
not zero." 

Nth Rooting Routine (Figure 9). The transferred posi
tions of the field selector accept the emitted programming 
which controls the Nth rooting routine. At a specific field 
selector position the channel A and B addresses for the fol
lowing calculate cycle are read as well as the R codes for the 
channel C address, and the shift code for the previous calcu
late cycle. 

The order of pickup of the field selector is ordered by the 
code word by \viring the last four positions of channel B to 
the pickup control. 

Special program is begun by a 1 code read conditionally 
or unconditionally. 

Also shown on this diagram is the method used to obtain 
the correct factor in the multiplier quotient for exponent 
adjustment. Calculate selector pickup 2 is wired to the units 

position of the multiplier quotient, an emitted 5 is wired to 
the ten's position, and calculate selector pickup 3 is wired to 
the sign position. 

List Wiring. The list wiring appears in all three dia
grams. The operation codes list from the calculate selector 
pickup hubs. Pilot selectors 11 and 12 are wired so that a 5 
or 6 will list to indicate when one of the transferred pro
gram fields has been read. 

Examples of Progrmnming. The programming shown on 
the CPC program code sheet (Figure 10) is that re
quired for the calculation of the nth root of a when no initial 
estimate is available. The functions of the card coding are 
as follows: 

Card 
Number 

001 
002 
003 

004 

Function 
Read a into storage unit 26. 
Read code number into storage unit 28. 
Cause one card cycle delay before storage 26 may 
be read out. 
Form the "sgn of a." (If a is negative, sgn of 
a -1; if a is positive, sgn of a = + 1; if 
a = 0, sgn of a = 0.) The 0,2 punch in column 
4 and the 6 in column 5 cause storage unit 26 to 
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0
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~O 0 1 0 1 020 0 

2324 252627282930313233343536373839 

FIGURE 9. NACA FLOATING-POIN'1' CPC CONTROL PANEL, NTH ROOTING ROUTINE 

Card Program. Field 

no. A. O. B. C. S.N.T. 
1 2 3 4 510 7 8 91 11 

o 0 1. 0 0 2 62 

o 0 2 0 0 2 S 2 

Clear X I s 11 I 2 I 3 4 15 16 I 7 1St! 
Factor Field A Factor Field B Table Field Substitution Field Program Field 50 

a b t S A!'; fUE liS "s "'~ 
19'20ii:. 2~123 24125ji::J:t27 28 29;3 3132133134135301373839:404114243 4145!4bI4748 49 51l')2fS3 45 5657158 5 

I 1 I I I 

a l :: 1 i 1 
1 I I I 

code nrmber: :: 
I I 

o 0 3 (1 t r;lc~ed Operatirm) I i 
0 2 o 0 4 2 65 2 6 

o 0 5 5 ~ 6 

0 o 6 o 0 ~ 
o 0 7 0 0 ~ 
o 0 S R 210 0 

3 
009R 522 

o 1. 0 

o 1. 1. R 

o 1. 2 

2 2 2 X X 

o 

2 X Sp 7 :0 0 0 0 0 0 1. 0 

2 1. 1. 

2 
! 
i 

I 

: 
I 
I 

I 
I 
I 
I 
I 
I 

: 
I 
I 
I 
I 
I 
I 
I 
1 

I 

i 
I 
I 

I 

: 
I 
I 
I 

1 
1 
1 

I 
I 

N 

-. 

.• 

: 

FIGURE 10. CALCULATION OF 'tHE NTH ROOT OF a 

60 

Program Field 60 ~ I~~~. 
"6 1-'11"'6 -"6 i""t!Nfri't r-. 

7 nm 73 7517f 77 78 7 
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Card 
Number Function (continued) 

be read out with the sign punched in column 23. 
That is, we obtain -Ial over channel A. This is 
divided by -a, giving the sgn of a. The X's in 
columns 12 and 13 prevent a machine stop in 
case a = 0, and the division % gives a zero 
result. 

005 Form lal to use in calculating the initial estimate. 
The channel B address code causes a to be read 
out over channel B with the sign punched in 
column 33 The 0 shift code brings the factor in 
with the first exponent digit placed as the 
first numerical digit and numerical digits 7 and 8 
dropped. 

006 Add 07;00000010 to the result of card 005. When 
this is done all the numerical digits of a are 
dropped, and a number 01;lele2 is obtained, 
where el and e2 are the first and second exponent 
digits of a, respectively. The X in column N in
structs the caJculator to treat 07;00000010 as a 
number in normal notation. The 8 in column T 
is required only when even roots are being ex
tracted. If the sgn of a, calculated on card 004, 
is negative, column T will be read on card 006, 
causing a machine stop. 

007 A.number 1n is added to the exponent digits. The 
number m has been calculated to give a good first 
estimate of the desired roots and has the follow
ing values for the different roots: 

Root m 
2 -00;4854 
3 00;0260 (X in column 12) 
4 00;5340 
5 01;1045 
6 01;1556 
7 01;2067 

The presence of an initial numerical digit of zero 
in m for the cube root requires .an X in column 
12 when this estimation is used. 

008 Divide the sum from the previous card by n, the 
order of the root (that is, 51;2 for square root), 
and shift the result 4 places to the left. This puts 
the exponent digits of the estimate in their cor
rect position. 

009 Multiply the estimate by the sgn of a. This is 
necessary to obtain a negative estimate of the 
odd root of a negative number. 

010 The 1 codes in column 12 and 13 start the nth 
rooting procedure unconditionally. 

011 List the nth root. 
Some of the steps described above, obviously, are not 

always necessary. If an estimate of the root is known, it is 
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only necessary to read it out over channel A or B on the 
card (009) preceding the 1 code which starts special pro
gram. If the number a is known to be positive, formation of 
the sgn of a is unnecessary. 

Use of Auxiliary Program Fields and Conditional Codes. 
Examples of the use of the auxiliary program fields and 
some of the conditional codes are shown in Figure 11. The 
first six cards illustrate a transfer of control to program 
field 50 under the control of the sign of a result. In the fol
lowing example it was desired to approximate the operation 
ak+l = ale eda/a by the use of only a few terms of the Taylor 
series for eda/a. It is known that the Taylor series for eX 
converges more rapidly for positive x than for negative x; 
therefore, for positive da/ a, the operation is approximated 
by 

[ 
da 1 (da)2] ak+l = ak 1 + a +"2 a ' 

and for negative da/a, by 

ak+l = [1- d£:H:an 
The machine operation forms the absolute value of da/ a, 
and computes the first three terms of the series for elda/al. 
A transfer of control is used to "remember" the sign of 
da/a and thus carry out a multiplication if da/a is positive, 
or a division if da/a is negative. 

This program illustrates the timing of conditional codes 
relative to the command whose result controls the condi
tional. operation. Conditional codes are read from second 
reading and are effective on the cycle following their read
ing. Therefore, it follows that the quality of the result of 
the command on card n controls the reading of conditional 
codes on card n+2 which in turn modifies the results of the 
command ordered on card n + 1. 

Card by card the programming for this example is as 
follows: 

Card 
Number Function 

001 Simulate the calculation of da/a by reading it 
from a card. The 7 codes in columns 12 and 13 
on card 002 cause the result da/a to be stored 
unconditionally as its absolute value. 

002 Form Id:12 . The R codes for the channel A and 

B addresses, and the 3 operation code causes 
re-use of this factor. 

003 Form 4l d:r . The 5 code in the Tcolumn causes 

a transfer to program field 50 if the result of 
card 001, da/a, was negative. The same calcula
tion occurs on either program field. 
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Clear XiS 111213 415 6171stl 
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FIGURE 11. USE OF AUXILIARY PROGRAM FIELDS AND CONDITIONAL CODES 

Card 
Number Function (continued) 

004 Form I d: I + ~I d: r by adding the content of 

counter group 2 to the previous result. Reset 
counter group 2. If program field SO is being 
read, the same operation is performed, and the 
5 codes in the N 5 and T 5 columns cause the con
tinued reading of program field SO. 

005 Form 1 + \d:l + ~ld:r by adding 1 to the pre

vious result. 

006 Form the product ak( 1 + I ~I + ~I :ar ), or the 

quotientak / ( 1 + Id:1 + ~ld:12) , and store in 

storage unit 11. The first instruction comes from 
the basic program field which is read if da/ a is 
positive. The second instruction comes from pro
gram field SO which is read if da/ a is negative. 
( Normally, ak would have been a computed 
quantity, but for purposes of illustration it has 
been entered from a card.) 

Cards 07-09 are blank. The programming in cards a 1 a to 
025 illustrates the use of a "zero-not zero" discrimination, 
and the use of an involuntary reference to the "s" field to 
store the sign of a "computer zero." The timing of condi
tional codes is again illustrated; the reading of codes 3N 
and 2T on cards 012 and 015 depends on the quality of the 
results commanded on cards 010 and 013, respectively. The 
control is made to depend on the "zero-not zero" condition 
of the results by ON and aT punches on cards all and 014. 

Card by card the programming for this example is: 

Card 
Number Function 

010 Form A - B (which in this case is an exact 
zero) and store the result in storage unit 11. 

all Re-read the result of card 010. If it is non-zero, 
store it in storage unit 12. If it is zero, store the 
number punched in the "s" field on the next card 
in storage unit 12. 

012 Read the "s" field conditionally (see card 011) and 
also read the conditional codes in the T and N 
columns. Because the result of card 010 is zero, 
the T code 2 is read, and the N code 3 is ignored. 
(N 0 operation code is used on this card.) 
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Card 
Number Function (continued) 

013-015 Repeat the preceding operation for a non-zero 
result. 

016-020 Cause read-out of the stored results to illustrate 
the effectiveness of the controls. 

Cards 021 to 024 illustrate involuntary reference to the 
"s" field. 

021 Multiply A times B. The numbers chosen in card 
fields a and b produce a negative result which 
is treated as zero because its exponent digits are 
negative. The stored result is a 1 in the low order 
position of channel C. This 1 is read from the 
"s" field of card 022 and is stored with the sign 
of the zero result. 

022-023 Mark time to allow the result of card 021 to be 
stored in storage unit 15. 

024 Form sgn of the content of storage unit 15. This 
is done by punching X -23 which ~auses A to be 
- I content of storage unit 15 I, and by perform
ing a negative division with the 2 and 5 codes. 
The XN and XT punches suspend the automatic 
formation of a zero result, and the machine stop 
that would ordinarily result from division with 
both factors in abnormal notation. 

DISCUSSION 

Mr. R. W. Smith: Why did you use a calculate selector 
rather than zero test in order to stop indefinite program 
repeating? 

Mr. Patton: A non-zero result of a zero test is used to 
suppress program repeat when the high-order digit is non
zero. In the case of an identically zero result, left shifting 
and program repeating would occur indefinitely so that the 
negative balance selector of the 402 is used to pick up a 
calculate selector to suspend 604 calculation in such cases. 

Dr. Yowell: These floating decimal control panels are 
very fine, but I am a basic unbeliever! I think the floating 
decimal drives problems underground in many instances, 
and J\1r. Patton's first remarks as to the disadvantages of 
the floating decimal must be taken very seriously. There 
are times when one runs into trouble with a fixed decimal 
control panel, and when a floating decimal panel is useful
in cases where one has decimal troubles. If one is trying to 
solve a system of equations and obtains wide fluctuations 
over the numbers, it generally means there is a near zero 
determinant and one is "getting back" accuracy out of the 
solution, no matter what is done. It is the problem of analy
sis of results of a floating decimal panel that causes a great 
deal of trouble. One can get out of a floating decimal pro~ 
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cedure eight digits which look very good and may mean 
absolutely nothing. 

So the fact that it is convenient to use floating decimal 
panels at times does not avoid the basic difficulty of sitting 
down and thinking about results from the very beginning. 
I would like to stress at this time that the convenience of 
the floating decimal panel does not, in most cases, really 
help out in critical numerical cases of small determinants in 
matrices where the scale factors fluctuate widely. One has 
to think about them sooner or later; the floating decimal 
panel just glosses over this point and is deceptive to some
one who is uninitiated in computing procedures. 

Mr. Patton: However, if we have a problem in which 
great accuracy is required, the floating point panel turns 
out to be wonderful for finding the magnitudes of the num
ber that will occur in the subsequent fixed-point operation 
which will give the accuracy desired. We do not use the 
floating point panel indiscriminately. 

Dr. Arnold: Very briefly, the 604 control panel that we 
have has only addition, multiplication, and division, with the 
change of sign of one of the factors. Previous results are 
read back into the 604 through the use of the selectors on 
the 417. One feature of our panel is the manner of shifting 
before addition, which we do essentially through repeated 
division -by two. The difference in the exponents is divided 
three times by two to give one additional shift in another 
way. 

Addition is handled entirely without program repeat
addition with or without carry-over or addition with loss 
of digits. The zero prints nothing. We have two operations 
on the 417 panel to convert an exponent to a number or a 
number to an exponent. 

Dr. Thomas: As to Dr. Yowell's remarks on the use of 
floating decimal techniques, I think there is really quite 
general agreement as to what they will accomplish. If there 
are as many significant digits in the floating decimal num
bers as in the fixed decimal numbers, nothing is ever lost 
by using the floating decimal. But, of course, one may get 
results which have no sense! However, any result obtained 
using a fixed decimal can be obtained using the floating 
decimal with the same number of digits; and a floating deci
mal system would eliminate the headache of deciding exactly 
where overflow would occur and where to program shifts. 

Of course, it is necessary to store the index; so there are 
fewer digits in a floating decimal than in a fixed decimal. 
Hence, the decision of which is preferable, in any case, de
pends upon the accuracy desired in the particular problem. 

The only danger in using the floating decimal, in general, 
is that one may attach significance to results which have no 
accuracy left. The disadvantage is not having spent time 
working out exactly where overflow will occur. 

I think that when we have stored-program machines in 
which arbitrary changes of program can be made, one will 
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normally work nine-tenths of the time with fixed decimals. 
But they will be placed within a longer computation where 
floating decimal will be used. 

Dr. Hamming: I have been using floating decimal on ma
chines at Bell Telephone Laboratories for about five years, 
and my response to Dr. Yowell is this: To use floating deci
mal is like playing with fire! On the other hand, that is no 
argument at all against fire, which is a very useful device 
to humanity. 

Mr. Madden: To overcome the annoyance of intermittent 
machine errors, we at RAND have developed a general
purpose setup, which uses the familiar principle of casting 
out nines. However, we cast out 99's and carry a count of 
the number along beside the number itself on the channel 

COMPUTATION 

and in the storage. We have to sacrifice an operation in 
order to accomplish this. We have addition, subtraction, 
multiplication, and division. 

Dr. Hurd: There are eight-digit numbers? 

Mr. Madden: Eight-digit numbers, two-digit counter. 
'Ale divide by 99. All the numbers coming into the 604 are 
checked against their counters to make sure there hasn't 
been a failure in the reading. All of the operations taking 
place in the 604 are also checked by this casting-out-99's 
principle. 

Further, we carry the count plus one; if there is complete 
failure to read so that there are zeros in the number and 
zeros in the count, this error is detected. 



Catapult Takeoff Analysis 

JOHN R. LOWE 

Douglas Aircraft Company, Inc. 

DURING World War II, the load-carrying ability of 
naval carrier aircraft was exploited to the fullest. Obvi
ously, any increase in bombs, ammunition or fuel capacity 
was an increase in striking power for an airplane capable 
of becoming airborne. In fact design overload conditions on 
combat aircraft were exceeded continuously; the only re
quirement on the resulting combination flying arsenal and 
tanker was that it take off from a carrier deck. 

These increases in airplane gross weight required in
creased takeoff distances. Eventually it became necessary 
to assist heavy airplanes to attain flying speed, and the car
rier catapult, as it is known today, came into being. 

\Vith the advent of jet propulsion, shipboard catapults 
became even more important. Jets, with their slow accelera
tions and necessarily high fuel capacity, required catapult
ing from their inception. At the present time, nearly all 
carrier based aircraft are catapulted from the carrier deck; 
pilots no longer are required to "lift off." 

A carrier catapult derives its force from air, under pres
sure, stored in an air-oil accumulator. The air acts on a 
column of oil and forces it into a hydraulic cylinder. The 
force and motion of the hydraulic ram are transmitted 
through a cable system to a shuttle in a slot on the carrier 
deck. Another cable-or bridle as it is called in this case
connects the shuttle to the airplane. 

The firing operation of a catapult consists of opening a 
valve which allows oil, backed up by air pressure, to enter 
the hydraulic cylinder. The hydraulic ram moves the shut
tle which, in turn, pulls the airplane along the deck for the 
length of the catapult power stroke. At the end of the power 
stroke, the ram and shuttle are braked, allowing the air
plane to drop the bridle and pass on over the edge of the 
deck. 

Prior to each catapulting the airplane must be "tensioned" 
in order to remove all slack in the bridle and cable system. 
In the "tensioning" operation a small force is applied to the 
shuttle which, through the bridle, pulls the airplane for
ward and tensions a restraining link which connects the 
airplane to the carrier deck. When fun catapult power is 
applied, this restraining link-or "holdback unit" as it is 
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called-breaks, and the airplane starts its accelerated take
off run. 

Catapult end speed is not the only requirement for flight. 
Lift is proportional to the aerodynamic angle of attack; 
hence, there is the additional requirement that the airplane 
rotate to the correct angle of attack· in the vicinity of the 
end of the power stroke. Since the airplane is pulled only 
by the catapult shuttle, provisions for rotation to the 
nose-up angle necessary for flight must be accomplished in 
the design stage of the airplane. 

There is one more serious problem concerned in the cata
pulting phase of aircraft takeoff. The problem is that of ex
cessive "porpoising" or oscillating of the airplane both ver
tically and rotationally during the catapult power stroke. 
Oscillations of this sort are objected to strongly by pilots 
and in addition are usually damaging to the airplane. 

The purpose of the catapult analysis is to determine, dur
ing the design stage of the airplane: (1) proper location of 
the airplane's catapulting accessories, (2) loads imposed 
during the catapult operation, and (3) the effect of the 
many variables (gross weight, center of gravity [c.g.], loca
tion, wind over carrier deck, etc.) on the flight path of the 
airplane. 

Basic Equations 

The flight path of the airplane can be described by two 
simultaneous second-order ordinary non-linear differential 
equations. 

The basic equations of motion are shown in Figure 1. 
The catapult operation may be considered in two phases. 

The first phase covers the period from the end of tensioning 
to holdback release. It is assumed that 0.15 seconds are 
necessary for the horizontal component of the load in the 
holdback unit to increase lineally from the value obtained 
statically with full thrust and 1500 pounds tensioning force 
to the load required to break the holdback unit. This period 
is represented by negative time, -.15 sec. to 0 sec. The sec
ond phase deals with the period from holdback release to the 
end of the catapult power stroke. This period is represented 
by positive time. 



SIGN CONVENTION (ORIGIN AT CENTER OF GRAVITY, C.G.) 
IF x - positive to the right 
lFy - positive up 

lM e,g, - positive nose-up 

lFx = mX + fR1 + D - Tcos (~+L3) + RB cos </> - FBcos(J = 0 (1) 

lFy = Rl + R2 +Rs + L+ Tsin (~+L3) - W - FBsinfJ - RBsin</> - mY = 0 (2) 

lMc,g, = bT + cR2+ dFB - M - IRs - aRl - efRl + h(RB) - Jri = 0 (3) 

FIGURE 1. CATAPULT TAKEOFF FORCE AND MOMENT ARM DIAGRAM 

Definition of Symbols for Basic Equations of ]yf. otion in Figure 1 

'm = Airplane mass 
X = Horizontal acceleration of airplane at center of gravity (c.g.) 
f = Main gear wheel drag coefficient 

D = Aerodynamic drag 
T = Engine thrust 
a = Angle of pitch of fuselage reference line 

1.3 = Angle of engine thrust vector with fuselage reference line (f.r.1.) 
H B = Catapult holdback unit force 

if> = Angle of catapult holdback unit with deck 
F B = Catapult bridle force 

o = Angle of catapult bridle with deck 
L = Aerodynamic lift 

W = Weight of airplane 
y = Vertical acceleration of airplane at c.g. 

b = Engine thrust moment arm about c.g. 
c = Nose gear ground reactiGm moment arm about C.g. 
d = Catapult bridle force moment arm about c.g. 

M = Aerodynamic moment 
I = Tail bumper ground reaction moment arm about c.g. 
a = Main gear ground reaction moment arm about c.g. 
e = Main gear drag force moment arm about C.g. 
h = Catapult holdback unit force moment arm about c.g. 
I = Airplane moment of inertia in pitch 
(i = Angular acceleration of airplane about C.g. 

Rl = Main gear ground reaction 
R2 = Nose gear ground reaction 
Ra = Tail bumper ground reaction 

X of equation 1 is assumed to be a known function, and equations 2 and 3 remain as our two differential equations to be solved. 

[
Y - K 25 + K7 COS a - Ka sin a + K14 sin (L4 + a)J\ K _ K Y _ y2 _ [81 - Y cos (L4 + a)J2 

sin (L4 + a) 50 - 51 sin (L4+ a) 
2[Y - K 25 +K7cosa - Ka sin a + K 14 sin (L4 +a)] [81 - y cos (L4+ a)] 

sin2 (L4+ a) 

FB = K4 + Ks (K~) - K 2cos (a + L3) + HB cos<f> + K1 [Kg + Kot)2 
cos fJ 

y=K5+Ki5+K1S[(Ks+Kgt)2(a+ 0) -K29(Ks+Kgt) (Y)] +K2sin(a+ L3) -Kls -FB sinO-HBsin<f> 
K17 

ii = K 20 + [Y cos 0 - sin 0 (K12 cos,O + Ku sin a + K)o cosa)] [FH] - [K7 sin a + K 19 cos (X - 17 sin «(X + L 5) + cot ( ~54+ (X)J [K{s] 

K22 

- [K7 sin a + Kocos(X - K 14 cos (L4 + (X) - K21 sin (L4+ (X) + KS2cos (L4 + a + T)] [K~] - [Y - (K25 - 81 )] [Ks][K~] + [HB] [111 
K22 

- K2S [(Ks + Kgt)2 (a - L2) - K 29 (Ks + Kgt) CY)] - Ka1 (Ks + Kgt) (Ii:) 
K22 

o = sin-1 [Y - Kll cos (X + K 10 sin (X] 
K12 

, -1 [Y - K 26 sin (X - K27 cos (X] <f> = sm K
28 

-

p _ K7 cos a - K 19 sin a + Y 
- cos(L5+a) 

y _ K 1S sin (X + K7 cos a + Y 
- cos(L6+a) 

HB cos <f> = Kso + K34t 

K!s = Ks (1 ± K S5 ) { WHEN ~n < ~"-l KS5 IS POSITIVE 

WHEN ~n > ~';-1 KS5 IS NEGATIVE 

Kl5 = K15 (1 ± K
36

) { WHEN ~ < ~-1 KS6 IS POSITIve 

WHEN Y" > Y,,-l KS6 IS NEGATIVE 

- -
K 1s = K60 (K52 - Y) + Ka1 WHEN Y < K52 

f3 = (X _ Y(I{29) 
(Ks+Kgt) 

sin T = Y - K21 
K32 

, '<X" (tot) 2 

(Xn+1 = a,,+ a"t:.t + -2-

(x,,+) = an + an tot 

• Y,,(t:.t)2 
Y,,+l = Y"+Y,,t:.t+-2-

Y n+ 1 = Y n + Y n t:.t 

FIGURE 2. DETAILED EQUATIONS FOR CATAPULT TAKEOFF ANALYSIS 
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(4) 

(5) 

(6) 

(7) 



Definition of Symbols for Detailed Equations in Figure 2 
UNIT 

Kl = Aerodynamic drag coefficient (polynomial in fJ) ........................................ (f l/bs. )2 
t. sec. 

K 2 = Engine thrust ...................................................................... lbs. . 
Ka = Main gear drag coefficient (= 0 for t<O) .............................................. lbs.!lb. 
K.l = Horizontal inertia force (= 0 for t<O) ................................................ lbs. 
K5 = Main gear ground reaction (polynomial in Y) ................ ......................... lbs. 
K6 = Distance along fuselage reference line (f.r.1.) from c.g. to intersection of main gear strut. .... in. 
K7 = Perpendicular distance from c.g. to f.r.! ................................................. in. 
K 8 = Velocity of carrier ................................................................. ft.1 sec. 
Ko = Horizontal airplane acceleration (three different linear functions of t) ... .................. ft.!sec. 2 

K 10 = Distance parallel to f.r.!. from c.g. to catapult hooks ..................................... in. 
Kll = Distance perpendicular to f.r.1. from c.g. to catapult hooks ................................ in. 
K 12 = Catapult bridle length ............................................................... in. 

K IS = Aerodynamic lift coefficient .......................................................... --:-de-g-.-(-:-:lfb'-t~--:-i s-e-c""". )-:2 

K14 = Perpendicular distance from main gear strut center line.!? offset .......................... in. 

K15 = Tail bumper ground reaction (normally, polynomial in Ji') ............................... lbs. 
K 16 = Gross weight of airplane ............................................................ lbs. 
KIt = Mass of airplane .................................................................. ,lbs: sec.

2 

111. 
Kl8 = Distance along f.r.I. from c.g. to intersection of nose gear strut. ........................... in. 
K 10 = Distance along f.r.I. from C.g. to intersection of tail bumper strut .......................... in. 
K 20 = Engine thrust moment about C.g ..................... " ................................ in. lbs. 
Km = Distance fr~m f.~.t.. to I?Jain gear strut offset in line of action of main gear strut ............. in.. ., 
K22 = Moment of 111ertla 111 pttch ........................................................... lbs. 111. sec.-

K A d · ffi . in. Ibs. 
23 = ero ynamlc moment coe clent ....................................................... d (f I ) ., 

ego t. sec. -

~: ~ ~~lnb~~!re~i;~er~d~~~ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~~: 
K 26 = Distance parallel to f.r.I. from c.g. to holdback pivot point ................................ in. 
K27 = Distance perpendicular to f.r.t. from c.g. to holdback pivot point. .......................... in. 
K 28 = Length of holdback unit ............................................................. in. 
Kso = First term in equation for H B cos tP • •..••••••......••.•••.••••..•••••..••••••••••••••. lbs. 

in.lbs. 
KS1 = Coefficient of aerodynamic moment due to ci ............................................ (~)2 (rad.) 

sec. sec. 
KS2 = Radius of main gear arc as strut extends ............................................... in. 
K34 = Second term in equation for H B cos tP ••••.•..••••••••.••••••.•.•••••••••••••••.••••.•• lbs.! sec. 
K86 = Main gear strut friction ............................................................. lbs.!lb. 
KS6 = Tail bumper strut friction ........................................................... lbs.!lb. 
K50 = Kil - Kia ...........................................•........•.................... in.2 

K61 = 2K2l ....•.................................................... , ...... , ............. in. 

K 52 = Y for tail bumper bottomed .......................................................... in. 
K60 = Spring rate of fuselage in vertical bending ............................................. lbs.!in. 
K61 = Bottoming tail bumper ground reaction ................................................ lbs. 
L 1 = Horizontal intercept of CL versus a curve ............................................. deg. 
L2 = Horizontal intercept of CM versus a curve ............................................. deg. 
L 3 = Angle of engine thrust vector with f.r.! ................................................. deg. 
L 4 = Angle between perpendicular with f.r.!. and main gear strut .............................. deg. 
L 5 = Angle between perpendicular with f.r.!. and tail bumper strut ............................. deg. 
L 6 = A?gle. between perpendicular with f.r.t. and nose gear strut .............................. deg. 
Ilt = Time Increment .................................................................... sec. 
:!: = Distance from f.r.t. to ground in line of action of main gear strut .......................... in. 

~ = Distance from f.r.t. to ground in line of action of nose gear strut. ......................... in. 

Y = Distance from f.r.I. to ground in line of action of tail bumper strut ........................ in. 
a = Angle of pitch of f.r.! ................................................................ deg. 
Y = Vertical distance from c.g. to deck .................................................... in. 
tP = Angle of catapult holdback unit with deck .............................................. deg. 
8 = Angle of catapult bridle with deck .................................................... deg. 
al = Main gear tire deflection (rational function of Y) ...................................... in. 

F B = Catapult bridle force ................................................................ lbs. 
J-l B = Catapult holdback unit force (= 0 for t ~ 0) ............................................ 1bs. 

Y = Vertical acceleration of airplane at c.g ................................................. in.!sec.2 

j;" = Vertica! velocity of airplane at c.g ..................................................... in.! sec. 
a = Angular velocity of airplane about c.g ................................................. rad.! sec. 
a = Angular acceleration of airplane about c.g .............................................. rad.! sec.2 

T = Angle between perpendicular to main gear strut through offset and main gear radius of extension. deg. 
It = Catapult holdback unit force moment arm about c.g ...................................... in. 
{3 = Angle of attack .................................................................... deg. 
t = time .............................................................................. sec. 
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Method of Static Balancing to Establish 
B oundary Conditions 

I t is desirable that the airplane be in its static attitude 
for the first point of the analysis; that is the IF and lM 
should equal zero when the airplane is at rest. One may see 
from the equations that it would be very difficult to express 
Y and a explicitly so that they may be determined such that 
Y and a would equal zero. For this reason, a trial-and-error 
method of static balancing the airplane is used. This 
method is accomplished by successive changes of Y and a 

until the values of both iT and (i are of such magnitude that 
they may be neglected. The values of Y and a so deter
mined then become the boundary conditions. 

Determination of Time Increment 

As in any step-by-step integration problem, the choice of 
time increment is very important. After a preliminary in
vestigation of the effect of varying the time increment, it 
was decided that a .01 second increment was necessary to 
maintain the desired accuracy. This time increment was de
termined by computing approximately one-third ofa case 
at various time increments. When two different time incre
ments produced approximately the same results, the larger 
of the two was selected as the time increment to be used in 
the final analysis. 

The problem is afflicted with several discontinuities such 
as change in sign of coefficient of friction as the main gear 
changes from extending to compressing. The most severe 
of these discontinuities is occasioned by the bottoming of 
the tail bumper. When this happens, a change from the 
spring rate of the air pressure in the tail bumper to the 
relatively enormous spring rate of the fuselage itself is 
occasioned. 

To minimize the effect of tail bumper bottoming, the 
time increment is reduced to one-tenth of its normal value 
during this critical time in this manner: 

= 
(a) Extrapolate for Y and a. Compute Yn+1 • 

= 
(b) Check sign of (Yn- K 52) (Yn+1-K52 ). 

( c) If positive, proceed with calculation. 

(d) If negative, extrapolate again, using .1b.t and con
tinue from that point. 

COMPUTATION 

Determination of V 

From Figure 1, it may be seen that the main gear extends 
by rotating on an arm offset from the strut centerline. Be
cause of this condition, it is possible to express Y as shown 
in equation 4. Because of the complexity of the expression, 
Newton's method of iteration was used to determine Y 
rather than to attempt to express Yexplicitly in terms of 
Y and a. Y n-l is used as a first approximation to Yn• 

Approximations of Empirical Functions 

Four of the quantities involved in the equations are 
known only as empirical functions of other quantities which 
can be computed directly. They are given graphically. 
These functions are approximated by Gram-Tschebycheff 
polynomials of degree five or less. Computing the coeffi
cients of one such polynomial requires about two minutes 
on the IBM Card-Programmed Electronic Calculator. 

Some of these functions exhibit large change of slope. 
A device to make them easier to fit is to transform the inde
pendent variable, x, as follows: 

x+a 
z = bx + c' 

where a, band c are chosen so as to make the function as 
nearly as possible linear in z. 

No attempt was made to find optimum approximations 
as it was felt that time so expended would delay the job out 
of all proportion to the possible saving in CPC time. 

Printing Form 

The following results are printed in the arrangement as 
shown in Table 1. 

, 
Sequence of Computation 

The sequence of computation used in the solution of the 
problem is as follows: 

1. Evaluate differential equation. 

2. Print. 

3. Extrapolate. 

TABLE I 

fCy) f'(Y) 
iCy) 
f'(y) 

t-sec. a-rad. Y-in. Y-in. sin 0 HB 

a-deg. a-rad./sec. Y-in.jsec. V-in. sin 4> FB 
a-rad.j sec. 2 Y-in./sec.2 Y-in. K!5 
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FIGURE 3. F3D-1 CATAPULT TAKEOFF ANALYSIS PATUXENT TEST RESULTS 

Typical Results 

The curve on Figure 3 shows typical test results obtained 
on the Douglas Model F3D-1 airplane and the predicted 
results obtained by the method outlined herein. 

C amputation 

It required about two weeks to accumulate the detailed 
information necessary to write the equations and evaluate 
the constants. Several hours were spent in finding approxi
mations to the empirical functions. Next, a sequence of 
computation was planned, storage units assigned, and the 
number of decimals to be carried in the various quantities 
established. This planning took about a day. Then the ac
tual coding and checking required about two days. Several 
errors were passed, so a check against the hand calculation 
took most of another day. Finally, it was determined that 
three iterations were required for Y, the time interval was 
established and computation started. The final program deck 
contains 311 cards and requires about seven hours to run. 

I t is perhaps of interest to note that tabulating plays sev
eral roles in this problem which are not obvious. The mass, 
center of gravity and moments of inertia are derived from 
weight control card records. The aerodynamic characteris
tics come from wind tunnel tests, the results of which are 
recorded directly on cards and reduced to final form by 
punched card computing. 

OTHER PROBLEMS 

1. Complex Eigenvalues of fourth-order matrices of com
plex elements. Since our machine is equipped with two 
storage units, we can store all the elements of such a 
matrix directly. The characteristic equation is then 
formed by expanding the determinant. The first two 
roots, usually those of smallest modulus, are then found 
by Newton's method, and the residual quadratic solved 
by formula. Usually these matrices are flutter matrices, 
and in this case velocity, damping and frequency are cal
culated from the roots. Presently, this process requires 
about fifteen minutes per matrix; however, we are work
ing on a new scheme involving the direct solution of the 
fourth degree equation which should cut this time to five 
minutes. Also being coded is a scheme for the direct 
solution of fifth-order complex matrices. 

2. Trajectories of various kinds. Some of these are: 
a. Two-dimensional trajectories of long-range guided 

missiles, taking into account variation of atmos
pheric pressure and speed of sound with altitude, 
variation of lift and drag coefficients with Mach 
number and angle of attack, and turning rate as a 
function of anyone of several variables. 

b. Tactical trajectories, where the flight characteristics 
of the missile, a programmed course of evasive ac
tion by the target, and the characteristics of a com
puter are simulated. 
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c. Beam rider trajectories, in which the missile carries 
a control unit, guiding it always toward the center of 
a radar beam. 

d. Short range trajectories, in which the effects of such 
random disturbing factors as thrust misalignment 
and winds are studied. 

e. Trajectories of an escape capsule exploded from an 
airplane traveling at high speed. This study is to 
insure that the aerodynamics of the capsule are such 
that it will not fall into the empennage of the air
plane or gyrate so wildly as to injure the pilot. 

3. A study of an air conditioning system for a small, high
speed airplane. This involved the solution of three si
multaneous algebraic non-linear equations, with several 
hundred different sets of coefficients. The unknowns in 
these equations occurred with eleven different fractional 
exponents. These equations were solved by successive 
substitution, which required about fifteen minutes per 
case. 

4. A study o.f the initiation of an airplane turn. This in
volved the solution of eleven simultaneous, non-linear 
differential equations. This problem was solved while 
only one storage unit was available-and required some 
juggling to keep within the storage limitations. 

5. Differential equations describing the action of a hy
draulic servomechanism, with valve overlap and friction 
taken into account. These were especially interesting be
cause about fifty determinations of alternative courses of 
computation were made at each point. 

6. Polynomial equations with complex coefficients of the 
eighth and lower degree are solved by Newton's method. 
Polynomials with real coefficients of the twelfth and 
lower degree are solved by a combination of Lin's and 
Bairstowe's methods. In this work it is often necessary 
to do some computing with the roots, or to determine 
the coefficients. 

7. Other differential equations: 

a. Maneuvering tail loads. 

b. Landing gear spin-up. 

c. Supercharger vane design. 

d. Aircraft stability analysis. 

8. Miscellaneous: 

a. Calculation of transfer functions of dynamic systems. 

b. Optical properties of radomes of one, two or three 
sandwiches. 

c. Aircraft and engine performance calculations. 

d. Wind tunnel data reduction. 

e. Calculation of loft lines. 

f. Studies of the propagation of sound. 

COMPUTATION 

g. Heat transfer equations. 

h. Radar data reduction. 

1. Flight test data analysis. 

j. Studies of the aeroelastic properties of airfoils. 

METHODS 

In my opinion it is seldom profitable to wire a CPC con
trol panel for a particular problem. Almost all of our work 
is done with a few general-purpose panels. We usually find 
that if the CPC is not an economical machine to use for a 
particular problem with these simple control panels, then 
the problem is most likely a good application for the IBM 
Type 604 Electronic Calculating Punch': or the IBM Type 
602-A Calculating Punch. Of course, some of our thinking 
has been conditioned by the fact that we have had only one 
CPC and have, therefore, used it only for problems where 
it shows an enormous advantage over standard equipment. 

Our 604 CPC control panels are very simple. The one 
we use most handles -all numbers as four whole numbers 
and six decimals, and provides addition, subtraction, multi
plication, division and square root. 

To enable the CPC to use alternative procedures, we 
have two complete sets of instruction codes in the program 
card form. Field 1 is normally read, but on a special code 
the machine tests the sign of the result for that card, 
and if it is negative starts reading its instructions from 
field 2. A following test command will cause the machine 
to shift back to field 1, if negative, or stay in field 2 if posi
tive. Another special code transfers control to field 1 un'" 
conditionally. We have found this device extremely useful. 

Printing from anyone of eight sets of type bars directly 
from channel C through the field selector is under the con
trol of a special code field and can take place at any time. 

Certain other special codes are used, such as absolute 
value and spread read-in. We have found that a second 
storage unit makes the machine much more useful than one 
storage unit. On the other hand, we have seldom felt the 
need for three storage units, and have not encountered 
problems absolutely requiring a third unit, excepting those 
of large matrices. 

\Ve use a 604 panel which checks CPC program decks 
for errors such as: 

1. Calling a number from 941 storage sooner than two 
cards after it was sent to storage. 

2. Calling a number from a 417 counter on the card after 
a number was sent to the counter. 

3. Sending numbers to the same 941 storage unit on two 
successive cards. 

4. Cards out of sequence. 

This panel has proved to be valuable in reducing the time 
required to check out new programs. 
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DISCUSSION 

Mr. }l.1 aginniss: Did you consider a differential analyzer 
such as those at MIT, the University of Pennsylvania, or 
General Electric for this problem? I would roughly estimate 
that fifteen or twenty minutes per parameter would be 
required. 

Mr. Lowe: We tried several approaches to the problem: 
a graphical solution, building a model with rubber bands 
for the catapult, and two different differential analyzers. 
Being pressed for time, we solved the problem on our own 
CPC in seven hours. Perhaps we should also investigate the 
MIT machine. 

.Allr. Bell: When you change your time scale, does the 
machine or the operator make the change? 

Mr. Loure: The machine. 
Mr. Bell: You mentioned checking coding. Mr. Lowe has 

developed a very clever setup for checking a program before 
it gets near the CPC. 

Mr. Lowe: There is really not too much to say about it. 
I don't have a copy of the programming with me, but would 
be very happy to send a copy to anyone who is interested. 

Mr. Thompson: We have a panel for the 402 that has 
approximately the same functions, and we would also be 
happy to supply information to anyone who is interested. 

Mr. Patton: To make sure the operator has the cards in 
order, we do the following: We have several large decks in 
which only the loading cards are changed and onto which 
information from a master code deck is directly reproduced. 
Then, when the cards are collated and passed through the 
CPC, the serial number of both cards nand n+ 1 appears. 
We use the comparing brushes of the 402 to ensure that the 
cards are in sequence, comparing from third reading on 
card n and from second reading on card n+ 1. Then, if any 
cards are missing or out of order we can automatically stop 
the machine. 

Mr. Lowe: We do the same thing. It is a very good point. 
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Mr. Lesser: We, too, do this, but that still brings up a 
problem where multiple decks are involved. Depending 
upon the type of problem, these decks are exposed in a par
ticular order. In general, in order to keep them straight, one 
will want to start the sequence order each time with the 
multiple deck, because it is never known which one of the 
others is also included. Hence, there is still a problem, even 
with a sequence control, of making sure that the problem 
the machine is working is still the particular problem. 

Mr. Lowe: Not that it is any panacea, but we also in
corporate the deck number as well as the card number in 
our sequence control. This immediately raises the question: 
What happens when you interchange the sequence of decks? 
Usually we simply change the n+ 1 deck number in the last 
card of the deck. 

Dr. Evans: \Nhen there are groups of instruction decks, 
we .program the accounting machine in order to avoid oper
ator trouble. The general idea is to digit-emit the operations 
from the digit-emitter and run them through the field se
lector so that the field selector acts as the various programs 
for the accounting machine. We usually run with instruc
tion decks of four cards, and thereby can use a major pro
gram level on the accounting machine and cut out these 
instruction decks altogether. Lately we have done such 
things as pick up a special program device and sometimes 
have instruction decks of up to six cards replaced by digit
emission by picking up the special program control on cer
tain cards to bring in the extra programs. 

Dr. Grosch: One might think of setting up restricted sub
programs (this, by the way, is someone else's idea) where, 
instead of having access to a large number of storage units 
and counters, one would restrict oneself to just three or four 
of them and very few operations. In this way, the total size 
of the code required on a card could be decreased from per
haps eleven to five columns; then two instructions could be 
obtained from one level of the field selector. This would 
effect a 22-card sequence on a Model I. 



Computation of Loan Amorticzation Schedules 
on the IBM Card-Programmed Electronic Calculator 

CHARLES H. GUSHEE 

Financial Puhlishing Company 

I NTH I SPA PER I am not concerned with any com
plicated problem of analysis, but with the contrasting prob
lem of mass production of relatively simple results. In 
approaching such problems I bring to you the experience 
of twenty-five years as director of what I call a "number 
factory" as distinguished from the "computing laboratory" 
with which you are all familiar. In other words, I have been 
concerned with the production of a very large volume of 
mathematical results of a low order of difficulty (but a high 
order of accuracy). In this effort I have used just about all 
the commercially available computing equipment, up to 
and including the IBM Card-Programmed Electronic Cal
culator. 

My subject is the problem of schedules for the amortiza
tion of loans. The equal payment necessary to amortize a 
loan of 1 is represented by 

i 
1 

1 - (1+i)n 

where i is the interest rate per period and n is the number 
of periods. Tables of the function have long been published. 
However, in the decades of the 1930's and 1940's this 
method of payment was widely popularized for home loans 
by the Federal Housing Administration and by the Vet
erans Administration. This resulted in a widespread de
mandfor complete schedules showing the allocation of each 
payment, and the unpaid balance at the end of each period. 

The payment can alternatively be expressed as 

• t 

t + (1+i)n - 1 

where i is the interest on 1 or the amount of the loan, and 
the second item is the first term of a geometric progression 
in the ratio (1+i) whose sum is unity. This fact was taken 
advantage of by the FHA whose amortization schedules 
showed the successive payments of principal computed as a 
geometric progression. 

However, in my own approach I felt it important to 
duplicate the procedure of the typical lending institution. 
Interest is calculated on the amount of the loan. This inter-
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est is subtracted from the payment. The difference is the 
amortization, to be subtracted from the old balance of loan 
to produce the new balance. This sequence of simple opera
tions is repeated until the loan is fully paid. 

Perhaps an historical review of our methods will be of 
interest. In the early 1930's such a schedule would have 
been prepared by two computers working together, one 
with a rotary calculator and the other with a two-cross
footer adding machine. One computer read the interest 
from the rotary calculator and the other subtracted to ob
tain amortization and new balance. The results were then 
typewritten. A great advance occurred in 1939 when we 
received our first multi-register bookkeeping machine with 
motor repeat lugs. Thereafter a single computer obtained 
the amortization (as payment minus interest) on a rotary 
calculator and entered it in both the bookkeeping machine 
and the calculator. The bookkeeping machine completed the 
line automatically, and the rotary calculator contained the 
amortization figure for the next line. The speed of this 
operation is remarkable, the mechanical operation requiring 
only five seconds per line, plus the time for entering the 
amortization on the keyboard. W-e still operate six units of 
this equipment, primarily for loans with frequent changes 
of payment or interest rate or other irregularities where the 
control panel wiring time would be excessive for the unique 
problem. 

In fact, in some problems we now have a single computer 
operating two rotary calculators with the left hand and 
entering results in a bookkeeping machine with the right 
hand. In textile mills the vernacular would call this the 
"stretch-out," and it is admittedly not a happy condition 
for the human computer. 

We first came to punched card computing with the IBM 
Type 602 Calculating Punch. This gave us the advantage of 
punched-card computing and minimized the human ele
ment, but the cost was not significantly lower than previous 
methods, the 602 requiring four or five seconds per line, 
with later tabulation on an IBM Type 405 Accounting Ma
chine. Our 602 has been supplanted by an IBM Type 602-A 
Calculating Punch which still is turning out schedules, but 



SEMINAR 

especially for large loans, up to balances of 99 millions or 
10 digits, multiplied by an interest rate to 12 digits. 

The next advance was the IBM Type 604 Electronic 
Calculating Punch. This produced 100 lines per minute, as 
compared with 12 or 15 by previous methods, but our card 
cost was large. With a theoretical capacity of 48,000 cards 
in an eight-hour day, and with each card only used twice, 
we were using perhaps six or seven million cards a year at 
a cost of around $7,000 to feed this one machine alone. 

Finally the CPC arrived, and immediately took over the 
job virtually without the use of cards. In the simplest ap
plication, a speed of 150 lines per minute is obtained. (By 
this time you may have noticed my preoccupation with 
speed, the typical outlook of the factory manager.) All the 
data are retained in electronic storage in the 604 and read 
out, not via channels, but by direct outlet wires to the type 
bars. The IBM Type 941 Auxiliary Storage Unit is used 
only for storage of identifying data, such as rate, term, etc., 
for use in printing page headings. Incidentally, on this form 
we were able to print two schedules side by side within the 
89 type bar limit, thus obtaining two original copies instead 
of one original and one carbon copy. Clarity is improved 
and form cost reduced. 

The versatility of the CPC on the problem is illustrated 
by one of those trivial conditions which stimulate ingenuity. 
Our standard amortization schedule (an example is shown 
in Figure 1) contained two sets of columns on a single 
page, 60 lines for each column. In other words, line 61ap
peared on the same line as and to the right of line number 1. 
It is the solution to this peculiar, and perhaps trivial, prob
lem which I will give in greater detail as illustrating the 
versatility of the CPC. 

A single card is key punched with the data for the loan, 
including the amount (8 digits), payment (6 digits), inter
est factor (8 digits); and for use in printing headings only, 
the years, months and annual interest rate. 

To explain the "interest factor," in our early control 
panels: for a 4% loan with monthly payments we multiplied 
by the annual rate of .04 and divided by 12 (via digit emis
sion). Quarterly loans were handled by setup change. 
However, the method broke down for loans with weekly 
payments, fortnightly, bimonthly, etc.; and especially for 
loans with odd decimal rates. Therefore, we now key punch 
the interest on "1" for the period at which payments are to 
be made. That is, for 4% and monthly payments we key 
punch .0033333334. (Note the final digit to assure up
rounding of critical half-cents of interest.) 

Our detailed procedure is as follows: The first card resets 
all the counters in the IBM Type 417 Accounting Machine. 
The second card loads by spread entry. The next five 
cards transfer the five elements on the loading card to the 
941 for subsequent use. The next is a cycle card necessarily 
preceding the next four cards which print the heading in-
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formation for the 941 on channel B. Printing is facilitated 
by wiring channel B exits to the common of the field se
lector, thus avoiding much split wiring. 

Since our special problem is to print line 1 and line 61 on 
the same line, our next card throws us into program repeat 
on the 604, stopped by negative item count against a "59," 
set up by our loading card in the seventh and eighth posi
tions of factor storage 1 and 2 containing the payment. In 
about seven seconds the 604 completes 60 steps and con
tains the 60th balance. It is now prepared both to compute 
line 1 and line 61 and so proceed alternately left and right 
down the page. 

This is accomplished by retaining the earlier balance in 
general storage 1 and 2 and the later balance in general 
storage 3 and 4, from which we read out alternately by split 
wire to channel C shift entry. 

Lacking electronic storage capacity we read the interest 
factor on every line from the 941 into factor storage 3 and 4 
by channel A controlled by the special program. However, 
on the program repeat operation, we could not do this and 
maintain electronic speed. Therefore, on program repeat 
we do not alternate but use general storage 3 and 4 only, 
transferring the interest factor back and forth from factor 
storage 3 and 4 to general storage 1 and 2. 

Thus, we produce a full page of an amortization schedule 
at a speed of 150 periods per minute, or 75 double lines per 
minute, on special program using only one card key
punched with data and 16 control cards. 

The end of the page is signalled by a negative balance 
condition in counter group 1 of the 417. At spread entry 
a "119" has been entered and "1" subtracted on each spe
cial program step. 

The control cards for the second and subsequent pages 
are essentially the same as for page one, but omitting 
spread entry of new data, and inserting a special 604 pro
gram to rearrange data in the 604 (e.g., balance 60 being 
no longer needed, and balance 120 being shifted to balance 
60 position) . 

The ending of the schedule, upon completion of the num
ber of payments necessary to pay the loan in full, is tJ:e 
most intricate problem. Observe that the schedule may end 
at the bottom of the left-hand column, or at the bottom of 
the right-hand column, or at some intermediate point in 
either. If the schedule ends in the middle of the left-hand 
column we must not print the right side; but if it ends in 
the middle of the right-hand column, then the left-hand 
column must continue to be printed for the entire page. 

We can readily determine whether the schedule ends in 
the left-hand column. If the negative balance selector is 
picked up during the program repeat operation, the sched
ule must end in the left-hand column. By using the negative 
balance selector to pick up a pilot selector which is held 
transferred, we have a continuing means of control. 



Schedule of Direct Reduction Loan 

RATE %- PAYMENT $ LOAN $ TERM: YEARS MONTHS PERIODS 

400.00 112.77 8,250.00 7 .84 
Prepared by Financial Publishing Company, Boston 

PAYMENT I PAYMENT ON I BALANCE I PAYMENT I PAYMENT ON ,I BALANCE 
NUMBER INTEREST PRINCIPAL OF LOAN NUMBER INTEREST PRINCIPAL OF LOAN 

, 27.50 85.27 8.164.73 6, 8.66 104.11 2.492.56 
2 27.22 85.55 8.079.18 62 8.31 104.46 2.388.10 
3 26.93 85.84 7.993.34 63 7.86 104.81 2.283.29 
4 26.64 86.13 7,907.21 S4 7.61 105.16 2.178.13 
5 26.3 6 86.41 7,820.80 S5 7.26 105.51 2. 072.62 
s 26.07 86.70 7.734.:t 0 Ss 6.81 105.86 1.966.76 
7 25.78 86.99 7.647.11 67 6.56 106.21 1.860.55 
a 25.4 9 87 . .2 8 7.559.83 6a 6.20 106.57 1.753.98 
9 25.20 87.57 7.472.2 6 S9 5.85 106.92 1.647.06 

10 24.91 87.86 7.384.4 0 70 5.49 107.28 1.539.78 
1 1 24.61 88.16 7.296.24 71 5.13 107.64 1.432.14 
12 24.3 2 88.45 7,207.79 72 4.77 108.00 1.324.14 
13 24.03 88.74 7.119.05 73 4.41 108.36 1.21 5.78 
14 23.73 89.04 7.030.01 74 4.05 108.72 1..107.06 
15 23.4 :; 89.34 6.940.67 75 3.69 109.08 997.98 
1 s 23.14 89.63 6,851.04 7S 3.33 109.44 888.54 
17 22.84 89.93 6.761.11 77 2.96 109.81 778.73 
1a 22.5 4 90.23 6.670.88 76 2.60 110.17 668.56 
19 22.24 90.53 6.580.35 79 2.23 110.54 558.02 
20 21.9 :; 90.84 6.4 89.51 ao 1.86 110.91 447.11 
21 21.6 :; 91.14 6.398.37 a1 1.49 111.28 335.83 
22 21.33 91.44 6,306.93 a2 1.12 111.65 224.18 
23 21.02 91.75 6.215.18 93 .75 112 .02 112.16 
24 20.72 92.05 6.123.13 64 .37 112 .16 112.53* 
25 20.41 92.36 6.030.77 
2S 20.10 92.67 5.938.10 
27 19.79 92.98 5.845.12 
2a 19.48 93.29 5.751.83 
29 19.17 93.60 5.658.23 
30 18.86 93.91 5.56432 
31 18.55 94.22 5.470.10 
32 18.23 94.54 5.375.56 
33 17.92 94.85 5.280.71 
34 17.60 95.17 5.185.54 
35 17.29 95.48 5.090.06 
36 16.97 95.80 4.994.26 
37 16.65 96.12 4.898.14 
3a 16.3 3 96.44 4.8 0 1~7 0 
39 16.01 96.76 4.704.94 
40 15.68 97.09 4.607.8 5 
41 15.3 6 97.41 4.510.44 
42 15.03 97.74 4.412.70 
43 14.71 98.06 4,314.64 
44 1 4.3 8 98.39 4.216.25 
45 14.05 98.72 4,117.53 
46 13.73 99.04 4.018.49 
47 1339 99.38 3.919.11 
4a 13.06 99.71 3.8.19.40 
49 12.7 :; 100.04 3.71936 
50 12.4 0 100.37 3.618.99 
51 12.06 100.71 3.518.28 
52 11.7 :; 101.04 3,417.24 
53 11.39 101.38 3.315.86 
54 11.05 101.72 :;,214.14 
55 10.71 102.06 3.112.08 
ss 10.37 102.40 :;,009.68 
57 10.03 102.74 2,906.94 
sa 9.69 103.08 2,803.86 
59 9.3 5 103.42 2,700.44 
so 9.00 103.77 2,596.67 

The final payment is usually somewhat different from the regular 

payment, and is shown either starred on the last line, or on the follOWing line. 

366,735.61 

Sum of 
Balances 

FIGURE 1 
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1. 2 2 2 .4 4 8, 2 5 0 .00 8,.250.00 

Sum of 
Interest 

Sum of 
Principal Payments 
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If the schedule ends on the left, we suppress both control 
impulses and output on program levels 1 and 3 which are 
used for the right-hand side, and thus suppress all printing 
on the right. 

If the schedule ends on the bottom line of the left, it stops 
automatically by negative item count. Otherwise it stops 
from the negative balance selector picked up on special pro
gram impulsed to minor program stop. 

If the schedule ends on the right on the bottom line, no 
special wiring is necessary, as we shall have a full page like 
any other. If it ends earlier, the negative balance selector 
will pick up and suppress program levels 1 and 3, thus pre
venting printing on the right side but not stopping the left
hand side until the bottom line has been completed. 

One important step is a proof for accuracy. The interest, 
amortization and balances are all accumulated in counters 
of the 417, and final totals are printed manually at comple
tion of each schedule. Obviously, the total of the amortiza
tion column must equal the original amount of the loan. 
Since each item of the interest column is the interest on a 
single balance, the total of the interest column is the inter
est on the total of the balance column, with a minor varia
tion which is due to possible random rounding up or down 
of fractions of a cent in each interest item. The proof at 
present is done on a rotary calculator by an inspector. 

'lvT e use continuous forms, with a tape-controlled carriage 
for heading, first body line, advance to proof line at the end 
of each schedule or advance to subsequent page. The hopper 
will hold sufficient cards for continuous automatic operation 
for about forty-five minutes. Thus, the CPC constitutes an 
automatic production unit running continuously all day 
with no human intervention other than loading new instruc
tion cards about every half-hour. 

I believe the details of this unique commercial applica
tion of the CPC indicate the applicability of this type of 
equipment to the problem of mass computation of large vol
umes of relatively simple work. The CPC every day turns 
out several hundred amortization schedules at a lower unit 
cost than ever before achieved. 

Perhaps a few general remarks on commercial table
making would be useful. We like to use progressive calcu
lations where each element is computed from its predeces
sor. If the final result is correct, it is an excellent proof of 
the intermediate results. Where multiple solutions of a 
function are needed, as in table-making, it is often possible 
to develop methods for progressive calculation well adapted 
to punched card computing. 

In commercial work there is usually no demand for an 
optimum interval table. The desired interval is the com
mercial unit involved. Thus, if the unit of price for trading 
bonds on the New York Stock Exchange is Ys point, the 
trader wishes a table showing the price argument in Ys 
point, regardless of the number of orders of differences in 
various parts of such a table. 
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However, the "critical" table is growing in acceptance. 
In many cas(;s for limited applications a critical table can 
be made in a small fraction of the bulk of the usual table. 

The critical table also can be used on a large scale in
stead of methods of iteration or subtabulation. As an ex
ample, we are now making a critical table of mortgage yields 
at 502 rates from 2.495% to 7.505% at intervals of .01 % 
from which a table of yields to the nearest .01 % can be read 
directly by inspection. The actual 604 time may be two or 
three days, which is very much less than by using more re
fined methods perhaps less suited to machine calculation. 

Iteration with us is still a neglected field. Prior to elec
tronic computation we could always get results cheaper 
some other way. In table-making there is frequently part 
of the area where convergence diminishes, and a uniform 
procedure may not be appropriate. 

In the old days, we would even prefer, where possible, to 
form the inverse table and use Lagrangian interpolation 
itself iteratively to approach a result. Iteration is on our 
program for future study. 

Subtabulation likewise is a field not exactly neglected 
but still not fully exploited. In the simpler table it works 
well. For tables with higher order of differences, involving 
"throwbacks" or similar devices, we have not operated effi
ciently with bookkeeping machines, but we have not tried 
the CPC. 

To summarize, I have reported to you the manner in 
which the CPC is used to compute a large volume of rela
tively simple work. I expect that the CPC will alter greatly 
our approach to the computation of financial tables, as well 
as make the production of many new tables commercially 
possible. 

DISCUSSION 

J1r. Ferber: On the first line of your loan amortization 
schedule, do you know in advance that the period is going 
to be equal to 84 ? You must look that up. 

Mr. Gushee: We usually compute this in advance as a 
check on the machine. In spite of this completely automatic 
operation, we find it desirable to have a human inspector 
look at things. One of the tests of error would be the failure 
to come out in a predetermined term, and so we usually 
predetermine the term and include that in our data; our 
inspector will make sure that the term will be that which 
is given. This will help catch egregious errors, such as the 
wrong interest rate punched in the master card. 

Mr. Ferber: To be sure that you obtained the even penny, 
do you adjust the interest rate in advance? Can you carry 
more places, for example, than the nearest cent in your 
calculation? 

Mr. G ushee: Oh, yes; the interest factor is punched in 
the card to ten decimals; in this case, it is .0033333334. We 
adjust by rounding up or down in all critical offsets, round-
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ing up in accordance with interest practice. Our interest is 
always perfect to the nearest cent. 

Mr. Ferber: Suppose your interest rate were divided by 
12 and were an even amount. Would you adjust that at all 
when you start multiplying? I notice you put a 4 at the end 
of the 3333 ... 's. 

Mr. Gushee: That is to ensure that the interest will be 
rounded by a 5 when the interest is an exact half-cent; 
commercial practice is to round half-cents up. Banks will 
usually round up any half-cent that is even. 

Dr. Brown: Do you not round off at each stage of the 
game in these computations? 

Mr. Gushee : Yes, we do. 
Dr. Brown: Then I would merely like to point out as a 

matter of interest from a strictly mathematical point of 
view your table may be in error all the way down the line. 

Mr. Gushee: That is right. It would be much more desir
able to compute some other element to a great number of 
decimal places and round off. Admittedly this is a commer
cial application. The original FHA method was theoreti
cally far superior to ours. 

Dr. Herget: If you just multiply the monthly payment by 
the number of payments and subtract from the totals at the 
bottom, there isa difference of $.24. 

Dr. Hurd: He has to calculate this and have it pay on 
the basis of a month. So he has no opportunity to avoid the 
bias which Dr. Brown mentioned. 

COMPUTATION 

Mr. Gushee: This $112.77 is necessarily an inaccurate 
figure. It is rounded up in all cases; so as to be sufficient. 
The theoretical figure might be $112.76629. 

Dr. Herget: But is it not what the customer pays? 

Afr. Gushee: No. The final payment is different from 
the others and is tabulated separately at the end. 

Dr. Herget: But the sum of all the interest and the sum 
of the principal should equal the sum of the payments that 
were made. 

Mr. Gushee: Yes, and they do, because instead of multi
plying the payment by 84, it should be multiplied by 83 and 
the odd final payment of $112.53 added to it. 

Afr. Bell: I would like to ask a question. The question is 
whether you have considered internal programming on the 
417 with only 16 program levels. I do not think there wou.ld 
be much difficulty in eliminating the insertion of cards. 

AIr. Gushee: \1\T e have not considered it. 

Dr. Petrie: I have one suggestion I might offer for con
sideration: Instead of punching the rate in decimal form, 
punch it in fractional form and have the machine actually 
make the change. As the cards are processed, the interest 
rate is calculated, the amount deducted from the payment, 
the deduction from the principal, and the new balance of 
the loan punched on the card. In this way, it can always be 
kept current. 



Techniques for Handling Graphical Data 
on the IBM Card-Programmed Electronic Calculator 

WILLIAM D. BELL 

Telecomputing Corporation 

MAN Y I lVI P 0 R TAN T forms of engineering compu
tations utilize data in the form of graphs. Often this data is 
empirical in nature and not amenable to analytic represen
tation. Such calculations have usually been considered im
practical for punched card computing techniques. 

The field of aviation presents many excellent examples 
of problems of this type. Particular examples are jet engine 
performance and aerodynamic performance for power avail
able and power required. Jet engine analysis methods for 
a single data point-that is, a given altitude, velocity, and 
power setting-require relating the data from six to fifteen 
graphs and involve one-half to one hour per point for 
manual solution. We have evolved techniques for the IBM 
Card-Programmed Electronic Calculator which efficiently 
cope with this type of problem, and require two to three 
minutes in which to complete a solution. 

Setting up such problems on the Card-Programmed Cal
culator involves representing the graph by a mesh of points. 
Since typical graphs are either two- or three-dimensional, 
the associated mesh of points may also be two- or three
dimensional. These data must be placed upon cards which 
are introduced into the program deck. The calculator should 
then be capable of locating the closest point in the mesh 
and calculating the corresponding value of the function by 
interpolation. 

Experience gained over a period of time using a number 
of different procedures and methods has indicated that 
necessary conditions for a useful method of setting up and 
handling graphical data should include the following re
quirements: 

1. It should not be necessary to compute a fictitious ar
gument for the purpose of table look-up. It is possible 
to transform the arguments to a new set of variables 
consisting of a series of sequential integers, n, n + 1, 
n + 2, ... ,m. The comparing unit of the IBM Type 
417 Accounting Machine can then locate a desired 
mesh point. The disadvantages of the method include 
the additional computing time and, more important, 
the restriction placed on the location of the mesh 
points when reading the initial graphical data. 
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2. The interval chosen for the argument should not be 
restricted; in particular, a constant interval in the ar
gument should not be necessary. 

3. The general procedure should be set up for three
dimensional graphs, treating two-dimensional data as 
a simplified case. The interpolation procedure should 
be the same regardless of the number of variables and 
sensibly independent of the size of the numbers in 
the various arguments, and functions. 

4. There should be no necessity of an artificial phasing 
so that arguments in one card pertain to data in fol
lowing cards. Such methods can simplify the machine 
setup but complicate setting up the data. 

5. A minimum number of points for a required accuracy 
should be used to establish a mesh. Since these data 
are included in the program deck and must go through 
the CPC once for each data point, an excess number 
of data points can greatly lengthen the time required 
for calculation. 

The CPC method described below meets the above re
quirements. It has three logical parts-reading the graphi
cal data to establish mesh points, preliminary calculations to 
set up interpolation data, and the basic CPC operation. Only 
one restriction is inherent in the method, and that is a re
quirement that all arguments be positive. No actuallimita
tion is involved, since a negative argument can always be 
translated by adding a simple constant. 

Setting Up Graph Data 

Two-dimensional graphs are usually presented as 
z = f (% ). More complicated three-dimensional relation
ships, z = f(%, y), are plotted as families of curves on a 
two-dimensional graph. The interpolation process utilizes a 
second degree equation for the variation in % (the abscissa 
on the graph) and a linear interpolation for the y variation 
(the family variation). Since the intervals in the argument 
are not constant, divided differences are necessary for the 
interpolation formula. The usual forward interpolation 
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process requires knowledge of the n + 1 point as well as 
the nth. By using a backward interpolation formula, the 
machine can identify a point as it goes by and then inter
polate back into the correct region. To fix these ideas and 
clarify the mathematics, the formulas involved are shown 
below. 

Considering the general case of z = f (x, y) for a constant 
value of y, we can define divided differences as: 

%0 Yi Zo 
[Xo Xl] 

Xl Yi Zl [Xo Xl X2] , (1) 
[ Xl X2] 

%2 Yi Z2 
where 

[%0 %d 
Zo - Zl 
%0 - %1 

(2) 

[%1 %2] 
Zl - Z2 

= 
%1 - %2 

(3) 

[%0 %1 %2] = [%0 %d - [Xl %2] 

%0 - %2 
(4) 

Similarly, for constant %, 

%i Yo Zo 
[Yo yd , (5) 

%i Y1 Zl 
where 

[Yo yd Zo - Zl (6) 
Yo - Y1 

Combining 2, 3, 4 and 6 in the form of Newton's back
ward interpolation formula, we have 

z(%,y) = Z2 + [Xl %2] (% - %2) (7) 
+ [xo %1 %2] (% - %2) (% - xd + [Yl Y2] (y - Y2), 

with 
%1<%<%2 

Y1 <Y<Y2 . 

When reading the graph data, it is necessary to select 
points for intervals over which the interpolation formula 7 
will produce adequate accuracy. It is also necessary to hold 
one variable constant for reading data at varying intervals 
of the second argument. Both the arguments and function 
are written so that the numbers will be as close to the region 
of 1 to 10 as possible with an associated power of 10. By 
this means, the size of the divided difference is also fairly 
well controlled. 

Some experience is necessary in learning to evaluate the 
intervals over which interpolation will hold. The principles 
are simple, and with a little practice the necessary points 
can be quickly read and listed. Typical two-dimensional 
graphs are represented by 10 to 15 points or even as few as 
two for linear functions. For three-dimensional graphs, 50 
or 60 points may be required. 

For small jobs, we read and record the points manually. 
For larger jobs which may involve a large number of 
points, we utilize a Telereader-Telecorder of our own man-

COMPUTATION 

ufacture to read and record data points rapidly and directly 
into IBM cards. This machine is a projection reader utiliz
ing an electronic counter which makes possible a high de
gree of accuracy at a considerable saving in time and effort. 

Preliminary Calculations for Interpolation Data 

One IBM card is required for each data point. These are 
either key punched from the manual list or prepared auto
matically by the Telecorder. Each graph is assigned a dif
ferent identification number. By sorting the cards to the 
proper sequence, it is possible to compute the first and sec
ond divided differences in x. Then the cards are rearranged, 
and the first divided difference in Y is computed. The IBM 
Type 604 Electronic Calculating Punch is used for these 
operations. Each final card has seven necessary pieces of 
information, which are: 

Xl 

%2 

Y2 
Z2 

[xo xd 
[%0 %1 %2] 

[Yo yd 

Card-Programmed Calculator Operations 

The program card deck used in the CPC consists of the 
necessary intermediate computing steps with the graphical 
data interspersed through the file. It would appear obvious, 
knowing a value of % and y, to recognize one data card from 
a group of cards representing a particular graph, and by 
control of the spread read-in hub on the 417 control panel, 
cause the desired interpolation data to add into the mechani
cal counters. However, the circuit of the spread read-in 
function unfortunately precludes this method of operation. 
If the spread read-in impulse is absent but the sign X of a 
field is present, the associated 417 counter group will be 
cancelled to zero. This circuit deficiency could be corrected 
by elementary changes within the CPC all(~ make possible 
much simpler three-panel control wiring than is now re
quired for the system described here. 

The 604 control panel contains these operations: 
Code 1 ..... 0 o. 0 0 .Add 
Code 20 0 ,0 • 0 0 •••• Subtract 
Code 3 ..... 0 ••••• Multiply 
Code 4 ...... 0 •••• Divide 
Code 5 ..... 0 ••••• Store % and y arguments 
Code 6 ...... 0 •••• Table look-up 
Code 8 ...... 0 •••• Square root 

Codes 5 and 6 require explanation. When a value of x 
and y have been computed, and are to be entered into a table 
look-up operation, they are routed over channel A and B, 
and operational code 5 transfers them to two eight-place 
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general storage units for storage. A code 6 table look-up 
operation is then called out on all of the data cards, repre
senting the mesh points which define the graphical data. 
Values of %2 and Y2 from each mesh point are read from the 
second reading brushes on the 417 on channel A and B into 
the electronic computer. Differences are calculated between 
the stored % and the stored y and the data point (%2, Y2) . For 
a particular table look-up, the first card for which the two 
comparisons indicate that the table data are greater than or 
equal to the arguments, a test energizes the negative test 
relay, which, in conjunction with 417 wiring, makes all 
counters of the 417 operative on the following card cycle. 
Thus, as the same card reaches the third reading brushes, if 
it is the desired point, all interpolation data are set up 
within the machine. Only the first table card which satisfies 
the test conditions is permitted to add into the counters, 
since, obviously, all following cards will also satisfy the 
conditions. 

Four program cycles are then necessary to complete the 
interpolation calculation, using the formula of equation 7. 
As particular arguments are computed, they are set up with 
the power of 10 required by the table data. The decimal 
position of the interpolation formula is, therefore, constant 
for every look-up operation. 

The method which has been described here for handling 
graphical data for engineering calculations has proved sim
ple to apply and has had important results in application. 

DISCUSSION 

Mr. AI aginniss: I should like to ask two questions: First, 
about how many cards do you need for an average table? 
Second, can you always arrange your variables in such a 
way that linear interpolation is good in one direction, while 
quadratic interpolation is needed in the other direction? 

Mr. Bell: Answering the second question, when linear 
interpolation does not hold, more points are read to get the 
grid closer together. 

As to the number of points required, we have very rarely 
ever had to use more than 60 or 70 points for three-dimen
sional cases. 

Mr. Koch: We handle graphical data on the 604 by writ
ing equations for all the data and using sums of products of 
polynomials of second order. We find that we can get about 
one per cent accuracy on the graphs, which is certainly good 
enough, because, as Mr. Bell pointed out, the graphs them
selves are only accurate to about five per cent. 

At times, particularly at the points where a graph starts 
out with a sharp curvature and ends up a straight line, we 
have arbitrarily to break the graph in two parts and write 
an equation for each part, controlling our setup to pick out 
the correct set of equations. It required approximately 100 
hours to write the equations for about 30 graphs. Weare 
now programming the setup for the CPC and hope that we 
can write equations for three-dimensional graphs of this 
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nature in one to two minutes on the CPC. If this can be 
done, it will mean an hour on the CPC as compared to 100 
hours on the 604. 

Dr. Herget: Considering the number of cards which 
must be put in the table and . the number of operations 
needed for the interpolation, what is the possibility that you 
could write a quadratic expansion in two dimensions, have 
fewer cards in the table and still get the same accuracy? In 
other words, a Taylor series expansion of about six points 
would cover what you cover with sixty points. 

Mr. Bell: If you try to do it analytically, you may run 
into trouble. There will be special problems where it will 
be better to use other means. 

I agree with Mr. Koch that you should use a 604 for 
small programs, but the CPC will be faster for 100 cases 
because of control panel wiring for machine setup. 

Mr. Porter: If you have a problem where data curves 
initially are not going to change, which is very rarely, then 
the analytical approach offers advantages, unless you have 
to discriminate at too many breaks. Here your card deck 
would run up to quite an excessive amount per point on 
any kind of large-scale problem. 

JJ1r. Lesser: Most of the problems that we have tackled 
in aerodynamics for the machine have been those for which 
it was fairly easy to find analytical approximations. In 
other words, you could look at the curve and practically 
tell whether or not it will fit your backlog of analytical 
approximations. However, in the case of jet-engine power 
data where most of the curves have a bad hook down at the 
left-hand corner, it is very difficult to approximate this part 
of the curve analytically; and it is this area of the curve 
that is the most important to us. 

Mr. Horner: vVe have done a good many of the problems 
that have been described, and the best approach to me seems 
to mix the detail cards in with the table points and calculate 
the result on the CPC. 

Where iteration is to be run over and over again, analyti
cal representation is useful, because the number of detail 
cards would be decreased. 

Mr. Bell: These methods can be combined to give one 
that is sometimes quite superior. Suppose that one has set 
up his program to do problems of the order of 100 pieces of 
data. Then he is given 1400 to do. He can set up the 1400 
data points and expand them by the number of table look
ups. He would then sort this deck of cards into his table 
look-up cards and gang punch the data; this is done as an 
independent operation. When these cards are put into the 
program and are run, the card volume will have been de
creased to where it is now fractions of a minute instead of 
two or three minutes. This employs the same procedure, the 
same methods. 

Dr. Brinkley: The thermodynamic properties of a work
ing fluid are conventionally represented by a Mollier chart, 
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in which the enthalpy, II, is plotted as a function of the 
entropy, S, for specified values of the temperature, T, and 
pressure, p. 

H 

Ta 

s 

The punched card analogue consists of a table containing 
H (p, T), S (p, T) as well as certain other functions of the 
state variables. 

COMPUTATION 

Power cycles are analyzed by a routine consisting ofsuc
cessive inverse interpolations in the table for given values 
of Hand p or of Sand p. The tables are 'in such form that 
linear orthographic interpolations are unavailable. 

At our laboratory, we routinely use a standard card-pro
gram, consisting of about 50 cards, with general-purpose 
panels to compute Lagrangian five-point interpolation co
efficients. This deck is followed by a standard program to 
carry out the interpolation of each of the functions tabu
lated on the card, six in number, to the required value of 
the specified variables. This program also contains about 
50 cards. The proper table cards for a given interpolation 
are independently selected by a standard collator routine. 

This procedure has proved to be more efficient than 
methods based on special control panels for the problem at 
hand. 

\Ve believe strongly in the general utility of interpolative 
formulas of Lagrangian form as opposed to formulas involv
ing differences. Such formulas are generally most economi
cal as regards program length and storage requirements. 



Calculation of the Flow Properties tn an 
Arbitrary Two-Dimensional Cascade 

JOHN T. HORNER 

Allison Division, General Motors Corporation 

THE GENERAL PROBLE11 of cascade flow may 
be stated as follows: Given the initial conditions of flow en
tering a cascade and the cascade geometry, determine the 
properties (velocity, pressure and density) of the flow 
field at every point. From this information, the circulation 
around a given blade and the blade lift may be calculated. 
The possibility of flow separation from the boundary layer 
may also be detected by comparison of the results with 
parameters derived from experimental data. 

The inverse cascade problem determines the blade geom
etry when the entrance conditions are given and the varia
tion of some property of the flow field (velocity, pressure, 
or density) over the blade surface is postulated. This prob
lem may be solved in much the same way as the direct 
probl~m. The two calculations enable the designer to (1) 
derive families of blade shapes based on established param
eters and (2) find the useful operating range of blades 
within those families. 

DEVELOPMENT OF FLOW EQUATIONS 

Consider an arbitrary blade cascade as shown in Figure 1 
where the flow pattern has already been constructed. The 
lines parallel to the blade surfaces represent streamlines; 
those normal to the streamlines are velocity potential lines. 
The streamline spacing is determined by satisfying con
tinuity of flow across a potential line and then dividing the 
total flow into a number of equal portions which pass be
tween the streamlines. The spacing between the velocity 
potential lines may also be arbitrarily selected. Certain re
strictions should be imposed here, however, as will be shown 
later. The present method of calculation determines the lo
cation of mesh points, using the selected mesh spacing, and 
finds the velocity at every point of the mesh. From this 
information, as was previously mentioned, the blade circu
lation, lift and other physical properties may be immediately 
calculated. 

To facilitate the study, several assumptions are made re
garding the behavior of the fluid throughout the selected 
region. It is assumed that at some point sufficiently far re-
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moved from the entrance to the cascade, the flow is moving 
with constant velocity in a given direction with respect to 
the cascade and that the fluid obeys the adiabatic law for a 
perfect gas. These conditions are sufficient to ensure the 
existence of a velocity potential function l which may be 
defined by: 

a<l> _ V 
as -

a<l> = 0 . an 
Steady state flow conditions are also assumed, or 

In addition, a laminar boundary layer is assumed to cover 
the entire surface of the blade so that flow separation does 

FIGURE 1. BLADE CASCADE<: 
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not occur. The nomenclature used in the following study is 
defined in Table I. 

The flow equations are developed in terms of the flow 
field coordinates s, n. Consider a fluid element moving be
tween two streamlines as shown in Figure 2. Since a veloc
ity potential exists, the circulation around this fluid element 
must be zero, or 

r = f Vd" = 0 . (1) 

This equation may be applied whenever (J' is any path in a 
simply-connected region of the flow field. Summing con
tributions to the circulation around the fluid element alone, 

( V + ~~ dn )( dS + a ~~) dn ) - V Lls = 0 

or, upon dropping second order terms, 

av = -V~ a(dS) = +VC 
an D.S an ' 

(2) 

where C is the curvature of the streamline. Equation 2 may 
be integrated immediately to yield 

(3) 

TABLE I 

NOMENCLATURE 

z, y . ... Cascade coordinates, inches 
s, n . ... Flow coordinates, inches 

V . ... Velocity, feet per second 
T ... . Temperature, OR. 
p • ••• Density, pounds per cubic foot 

P .... Pressure, pounds per square foot 
W . ... Weight flow, pounds per unit length per second 
C .... Curvature, inches-1 

y .... Ratio of specific heats 
cf> •••• Velocity potential, feet2 per second 
() .... Ratio of total temperature to standard tempera

ture, Tstan = 518.4°R. 
8 .... Ratio of total pressure to standard pressure, 

Pstan = 2115.9 psf. 
r .... Circulation, feet-inches per second 
t . ... Subscript indicating stagnation temperature 

Cp • ••• Specific heat of air at constant pressure, BTU 
per pound per ° R. 

R . ... Gas constant, feet per OR. 
J . ... Conversion factor, 778.16 foot-pounds = 1 BTU 
g . ... Gravitational constant, feet2 per second2 

COMPUTATION 

A + iJ(An) 
n --As 

iJs 

FIGURE 2. FLOW ELEMEN1' 

Equation 3 relates the velocities to the mesh geometry at 
all points along a velocity potential line. Physically it means 
that fluid elements may not cross the streamlines. The fluid 
element moving between the streamlines may be accelerated 
in the S direction only by a difference in pressure acting on 
the two ends of the element. Equating the differences in 
pressure forces, to the product of the mass and accelera
tion, the equation of motion for the fluid element is obtained. 

This is 

(4) 

Upon applying the condition that av jat = 0, this becomes 

V dv _ -g dp 
ds - p ds . (5) 

For adiabatic expansion or compression, the pressure· and 
density are related as follows: 

P (p )'Y 
P t = PI • (6) 

Substituting from equation 6 into 5 and integrating along a 
streamline, Bernouilli's equation is obtained which may be 
written as 

(~) = (1 - 2g;;:TJ~1 (7) 

in which the equation of state 

P 
- = RT (8) 
p 

is used. The weight of the fluid per unit blade length per 
unit of time passing across a velocity potential line is given 
by 

dW = pV dn . (9) 
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Introducing now a new variable, V Ive, the weight flow 
across a velocity potential line becomes 

W VfJ = Pstan /[(1 _ (V/VO)2)'Y~1. vivo] dn 
8 RTstan 2gJcpTstan . 

= /f(VN 8, T,)dn. (10) 

All other equations may now be redefined in terms of 
V I VB, merely by substitution of this quantity in place of V. 

The calculating procedure can now be readily under
stood. In order to obtain the cascade geometry, a large scale 
plot must be drawn showing two or three blades in a cas
cade. Sketch velocity potential lines and streamlines upon 
this plot. Choose a line of zero velocity potential far enough 
in front of the cascade that the velocity remains constant 
across every part of this line. Then integrate along each 
potential line using equations 3 and 10 and iterating until 
WVfJI8 agrees with the given value. After this is complete, 
interpolate, shifting coordinates to get equal weight flow 
between each pair of streamlines. Then, integrate along the 
streamlines from the zero velocity potential line to get a 
value of cp for each potential line where 

(11) 
Another interpolation is now performed, where the coordi
nates are shifted to get lines of equal velocity potential. The 
entire procedure is repeated until the mesh points cease to 
shift. The third trial ought to yield values sufficiently close 
for engineering purposes. 

The procedure outlined above determines the flow mesh, 
assuming fixed gas boundaries entering and leaving the 
cascade. This procedure must be modified in order to locate 
the front and rear stagnation points on the. blade and to find 
the actual outflow pattern of the gas. One method of relax
ing the boundaries is to carry out the weight flow integra
tion along the velocity potential line across two spaces at 
the cascade entrance and exit, adjusting the upper and 
lower boundary to correspond with the middle. This is the 
method used in the present procedure. In carrying this out, 
it is convenient to determine the velocity potential spacing 
in the following manner. First find the velocity potential 
from the zero potential line to the leading edge of the middle 
blade in the cascade. Then divide this value of the velocity 
potential by the number of assumed spaces used in finding 
it. This is the value used to obtain the velocity potential 
spacing, and it ensures that the mesh pattern is the same at 
the leading edge of all three blades when the final mesh is 
determined. 

MODIFICATION OF EQUATIONS FOR 

MACHINE CALCULATIONS 
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The actual calculation uses cascade coordinates x, y in
stead of the flow coordinates. In carrying out the integra
tion for cp, the curvature C and the absolute value of the 
secant of ~, the angle between the x axis and a tangent to 
the streamline, are obtained. These equations are: 

(12) 

sec ~ = "1 + (:~)' (13) 

</> = / ~7/ec adx (14) 

The equations for the weight flow integration along a ve
locity potential line become 

l
Y2 

(VlVOh = (Vlv7Jh exp C sec ~ dy 

Yl 
(15) 

WVe f --8- = f (Vlv fJ, T t ) sec ~ dy . (16) 

The indicated differentiations and integrations were pro
grammed by using the Lagrangian interpolation formula for 
a three-point interpolation. 

Letting: 

then: 

+(x) = +(xo) (X-Xl) (X-X2) 
(XO-X1) (XO-X2) 

+ +(X1) (X-Xo) (X-X2) 
(Xl -Xo) (X1- X2) 

(X-Xo) (X-Xl) 
+ +(X2) (X2- XO) (x2- xd ' 

d+(x) = +(xo) (X-X1)+ (X-X2) 
dx (XO-X1) (XO-X2) 

+ +(X1) (x-xo)+(X-X2) 
(X1-XO) (X1- X2) 

+ +(X2) (z-zo)+(X- Z1) 
(X2- XO) (x2- x d 

d2+(x) _ 2+(zo) + 2+(xd 
dx - (XO-X1) (XO-X2) (X1-XO) (Xl -X2) 

+ 2+(X2) 
(X2- XO) (z2- x d . 

(17) 

(18) 

(19) 
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Carrying out the indicated integrations for two spaces, 

(20) 

Equations 12, 13 and 14 are programmed in one deck con
taining 43 cards for each point. The integration is taken 
over two spaces at a time; thus, two values of the integral 
are rotated in storage as the integration proceeds. A pre
liminary calculate deck into which the values of the first 
three points are entered precedes this calculation. After 
this calculation is completed, an interpolation for equal 
values of cf> is carried out in two parts, the first part getting 
interpolated values for x, y and VIVO, the second part 
getting interpolated values for C and sec cx. 

Equations 15 and 16 are programmed in a second deck 
containing 41 cards together with an 18-card table. The in
tegration is carried out in the same manner as the previous 
one, with f( V IVO,T t ) being found by a table look-up. Sec
ond degree interpolation is used, with T t being held con
stant for a particular problem and given by the entrance 
conditions. This calculation is followed by a final deck 
which computes a better value of VIVO for the first stream
line to enter in the next iteration. When this calculation is 
complete, an interpolation for equal weight flow between 
the streamlines is carried out, interpolated values being ob
tained for x, yand V IV(). 

COMPUTATION 

By choosing 320 points, the entire calculation may be 
carried out in 18 hours, assuming an average of three itera
tions for the weight-flow integration and assuming that 
three runs are necessary for convergence. The flow sheets 
for the calculation and the calculate instructions are given 
in the Appendix. 

NOTES ON THE 

IBl\1 CARD-PROGRAMMED ELECTRONIC CALCULATOR SETUP 

The ability of the IBM Card-Programmed Electronic 
Calculator to handle the problem outlined cannot be com
pletely understood without a description of the manner in 
which the machine is programmed for the problem. Basic 
setup 2 is used. For this setup the 604 Electronic Calculator 
is scheduled as follows: 

Operation 

Add 

Subtract 

Multiply 

Divide 

Square Root 

eX 

loge.t" 

e'ix 

logeix 

Code 

1 

2 

3 

4 

5 

6 

7 

6-8 

7-8 

Notes 

Round-off .Drop 5 digits. 

Round-off. Add 5 digits 
to dividend in dividing. 

- 6.70000< x < 6.70000 

.01000<x< 1.99000 

- 6.70000 < x < 6.70000 

.01000<x< 1.99000 

The IBM Type 402 Accounting Machine is instructed to 
perform the special operations as shown in Table II. 

TABLE II 
OPeration Code Column Notes 

Counters clear 1 12 
Auxiliary storage clear 2 12 
Spread read-in 3 12 
Arctangent shift 4 12 Divides tan x into 1 and adds '1f" 

into counter if tan x < 1.00000. 
:Machine stop-Negative balance 5 12 
Machine stop - Two successive 

negative balances 6 12 
Select one of two factors 7 12 Compares two factors, selecting 

larger or smaller as desired. 
Decimal shift for logex 8 12 Shifts z one unit to right and adds 

loge 10 for x> 1.99000. 
Absolute value 9 12 
Table look-up 9 13 
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CARD NO:\' CH. A OP. -I CH. B -\- CH. C SH.-!-SP. IN:! 
I I \ 

CHAN. A I CHAN.B I 

~o i Illi ~O ~ 'Ill 
CARD CARD COUNTER GROUPS o~ ENTRY ENTRY 

<z ~< ~~~ :t: ~C12 INTO INTO 
0 0 00 0 CI2 CI2~ CHAN. A CHAN.B 1 

2 ~ 3 
4 5 6 7 

000 00 000 00 000 00000000 00000000 0000000 00000000000000 0000000 0000000 00000000 00000000 
1 2 3 4 5 6 7 8 9 10 11 213 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ~5 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

222 22 222 22 222 22222222 22222222 2222222 12 2 2 2 2 2 2 2222222 2222222 2222222 22222222 22222222 
ALLISON 

333 33 333 33 333 33333333 33333333 33333333333333 3333333 3333333 3333333 33333333 33333333 
CPC 

444 44 444 44 444 44444444 44444444 44444444444444 4444444 4444444 4444444 44444444 44444444 
INSTRUCTION 

555 5 5 555 55 555 55555555 55555555 55555555555555 5555555 5555555 5555555 55555555 55555555 
CARD 

666 66 666 66 666 66666666 66666666 66666666666666 6666666 6666666 6666666 66666666 66666666 

77 7 7 7 7 7 7 7 7 777 77777777 77777777 7777777 7777777 7777777 7777777 7777777 77777777 77777777 

888 8 8 888 88 888 88888888 88888888 8888888 8888888 8888888 8888888 8888888 88888888 88888888 

999 9 9 999 9 9 999 99999999 99999999 9999999 9999999 9999999 9999999 9999999 99999999 99999999 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 12 73 74 75 76 77 78 19 80 

IBM 

FIGURE 3 

All factors are entered originally into the standard card 
form shown in Figure 3 and, in summary punching, are 
punched ordinarily from a given counter field into the cor
responding counter read-in field. Read-in and other in
structions are emitted during punching. 

ApPtNDIx 

CALCULATE INSTRUCTIONS 

1. Sort initial data cards in ascending order of cp and 
then in ascending order of Wa v7i/'6 using identity 
numbers in counter 7. Merge cards of same W aVO/8 

COUNTER 1 

Initial data % 

Summary punch from Deck 1 x 

Interpolate Deck 

Summary punch from Interpolate 
Deck (two runs) 

(Initial data for Deck 2)t ..F 

Summary punch from Deck 2 % 

Interpolate Deck 

Summary punch from Interpolate 
Deck (initial data for Deck 1) x 

*Omit punching of cp for first calculation. 

2 

y 

y 

Y 

Y 

y 

with Calculate Deck 1, merging the first three cards 
into the preliminary deck. 

2. Calculate C, sec rt, and cp, punching yalu~s as shown in 
Figure 4. Emit and punch 3 in column 12 (spread 
read-in instruction). 

3. Sort summary punched cards in descending order of cpo 
Gang punch cpn+l on CPn cards. Merge with cp Interpo
late Deck A. 

4. Calculate x, y and V Ive and punch these together 
with Ident and 3 in column 12. Omit punching in 
counters 5 and 7. 

3 4 5 6 7 

VIVO Ident 
WaVO/8 cp 
X% %% 

VIVO C sec rt cp* Ident 

C{) Ident 

vIV7i C sec rt Ident 

VIVO WaV6/8 Ident 

Wa V6/8 Ident 

VIVO Ident 

tOmit this interpolation for first calculation. 

FIGURl~ 4. FLOW SHEET 
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5. Merge first summary punched cards with cp Interpo
late Deck B. 

6. Calculate C and sec ~ and punch these together with 
Ident. 

7. Gang punch E and sec ~. o~ firs~group of interpolated 
cards containing %, yand V Iv' (). 

8. Sort cards in ascending order of Wa v' () 18 and then in 
ascending order of cp, using identity numbers in counter 
7. Merge cards of same cp with Calculate Deck 2, 
merging the first three cards into the preliminary deck. 

9. Calculate VIy'O and W av'OI8. Follow last calculate 
deck by final deck to get a better approximation for 
(V /v'0). Repeat calculation using new value and con
tinue until convergence occurs. Emit and punch 3 in 
column 12 when punching. 

10. Sort summary punched cards in descending or~r of 
W av' ()18. Gang punch (Wav'8;8)n+l on (Wav'()18)t~ 
cards. Merge with Wa VO 18 Interpolate Deck. 

11. Calculate x, y and VIy'O and punch these together 
with Ident and 3 in column 13. 
For first run, omit steps 3,4, 5, 6 and 7 from the cal
culating procedure. 

NOTE: The instructions to handle the relaxation of the en
tering and exit boundaries are· omitted here. The 
above instructions, however, are used for the general 
calculating procedure. 

REFERENCE 

1. HORACE LAMB, Hydrodynamics, 6th Edition (Dover Publications, 
Inc., 1945), Chapter II. 

COMPUTATION 

DISCUSSION 

Dr. Hurd: Here is an example of a mathematical model 
at which Mr. Horner has arrived on the basis of certain 
assumptions followed by a calculating procedure to get 
specific results. Have you confronted this procedure with 
some experimental results to gain a notion as to what is the 
accuracy, the adequacy of the model, etc.? Is this possible? 

Mr. Horner: It is possible to check this by experimenta
tion. In fact, the object of this calculation originally was to 
remove many of the experimental procedures that were 
necessary. We spend much time and money checking our 
design of the blade for an engine to see whether it is satis
factory. We can design blades that are between 80 and 90 
per cent efficient. We think that using the difference made 
by the compressibility of the fluid will enable us to design 
more efficient blades. :Most blades are designed now from 
profiles derived from flow in an incompressible fluid. 

Mr. Patton: At the Lewis Flight Propulsion Laboratory 
we run into similar problems, but we Use a completely dif
ferent method of attack. We set up the non-linear elliptic 
difference equation that defines the flow and develop a set 
of simultaneous equations from the difference coffiecients. 
So far, we have solved three problems of that type. One in
volved 385 simultaneous equations; another, 379; and the 
latest one, 191. We used a three-point formula for the first 
two and a five-point Lagrangian formula for the third. We 
put all our non-linearities on the right-hand side and start 
out with the incompressible case; from that, we develop the 
compressible cases. 

Dr. Hurd: Is this a factorization process? 
1111'. Patton: Yes, it is. 



Automatic Calculation of the Roots of 
Complex Polynomial Equations Using the IBM Card

Programmed Electronic Calculator 

JOHN GALLISHAW, JR. 

Chance Vought Aircraft 

COM P LEX polynomial equations. up to the seventh 
degree, are currently being solved entirely automatically on 
an IBM Card-Programmed Electronic Calculator which 
has the special program device, and a total of twelve co
selectors, two digit selectors, and sixteen pilot selectors. 
The method normally requires no card handling from the 
time the coefficients are loaded into the machine until all the 
roots have been found. 

The solution process is the well-known iterative scheme 
involving synthetic division and Newton's method. For 
each root the machine performs only enough iterations to 
produce the root to the desired accuracy and then proceeds 
automatically to the calculation of the next root. If any, or 
all of the roots are approximately known in advance, these 
values can be introduced as first trials; otherwise, standard 
trial values are used. Using standard trial values, the CPC 
takes from twenty to twenty-five minutes to obtain all the 
roots of a complex seventh degree equation. Equations of 
lower degree require correspondingly smaller amounts of 
time. 

The process uses eight-digit arithmetic throughout. With 
proper size adjustment of the coefficients of the original 
equation the calculations seldom run out of field. The size 
adjustment is also done on the CPC with a separate set of 
control panels. No data are required except the unadjusted 
coefficients, and the process is entirely automatic, taking 
about thirty seconds for each seventh degree equation. 

THEORY 

If a polynomial f (z) is divided by a trial linear factor 
(Z-zn) and the quotient ql (z) is again divided by (z-Zn) 
the successive remainders are f (Zn) and f' (Zn). We give 
below the identities involved and at the same time intro
duce our notation. Note that the degree of f (z) is N - 1. 

Z = .t' + iy . (1) 
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N 

fez) == 2: (ap+ibp)zP-l . (2) 
p=l 

N 

fez) == (Z-Zn) 2: (cp+idp)zP-2 + (cl+idd· (3) 
p=2 

N 

ql(Z) == 2: (cp+idp )zp-2. (4) 
p=2 

N 

ql(Z) ==(Z-Zn) 2: (ep+ifp)zP-3 + (e2+ if2) . (5) 
p=3 

f(Zn) = Cl + id1 • (6) 

f' (Zn) = e2 + if2 . (7) 

If Zn is a trial root, then the "improved" trial root Zn+l 
given by Newton's method is 

f(Zn) 
Zn+l = Zn - f'(zn) = Zn + ~zn (8) 

U sing the notation of (1), (6), and (7), the real and imag
inary parts of (8) are 

(e2Cl + f2dd _ 
.t'n+l = Xn - (e2)2 + (f2)2 = .t'n + ~-tn , (9) 

(d1e2 - clf2) 
Yn+l = Yn - (e2)2 + (f2)2 = Yn + ~Yn : (10) 

Synthetic division is used when the two divisions by 
(z-Zn) are carried out with a desk calculating machine. 
The computation form is as shown in Table I, page 88. 



(A) 

TABLE I 

(aN+ibN) (aN-l+ibN-l)" . (a2+ ib2) (al+ibl)IZn + iYn 
(cN+idN) (CN-l+idN-d .. · (c2+id2) (cl+id1 ) 

(eN+ifN) (eN-l+ifN-l)'" (e2+if2), 
where (cp+idp) = (ap+ibp) + (Cp+l +idp+1 ) (zn+iYn) , 

{p = N, N - 1, ... , 2, 1; CN+l = dN+1 = O} , 
and (ep+ifp) = (cp+idp) + (ep+l +ifp+l) (zn+iYn) ' 

{p = N, N - 1, ... ,2; eN+l = fN+l = O} . 

The calculations performed by the CPC to obtain (Cl +id1 ) and (e2+if2) are: 

(cN+idN) = (aN+ibN) + 0 . (zn+iYn) 
(eN+l+ifN+l) 0 + 0 . (zn+iYn) 

(CN-l+idN-l) = (aN-l+ ibN-l) + (cN+idN) . (zn+iYn) 
(eN+ifN) = (cN+idN) + (eN+l+ifN+l) . (zn+iYn) 

(CN_2+idN_2) = (aN-2+ibN-2) + (CN-l+ idN-l)' (zn+iYn) 
(eN-l+ ifN-l) = (CN-l+ idN-l) + (eN+ifN) . (zn+iYn) 

(c2+id2) = (a2+ib2) + (ca+ida) · (zn+iYn) 
( ea+ifs) = (cs+ids) + (e4+if4) · (zn+iYn) 

(Cl +id1 ) = (al+ibl) + (c2+id2) · (zn+iYn) 
(e2+i!2) = (c2+id2) + (es+ifa) · (zn+iYn). 

It will be noted that the machine goes through a small number of "zero" calculations. 

TABLE II 

Field CPC Codes 
Selector Special ,-Channel-., 

Cycle Level Operation 402 Control A B C Operation 

1 9 Total2~ +4 

2 8 {Total ~ +2} 72 73 
Total7~ +3 

3 7 (c.+, .... ) - (d. HYn )} l(p) 2 
Cp 

4 6 ap 73 72 76 3 

5 5 (dp+, .... ) 1- (CP+'Yn)} 2(P) 1 
dp 

6 4 bp 74 75 77 3 

7 3 ( ep+2Zn) (fp+ 2Y.) } 82 2 
ep+l 

8 2 Cp+l 85 84 72 3 

9 1 (fp+2Zn) + (e.+2Y.) } 83 1 
fp+l 

10 0 dp+1 75 3 

88 
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TABLE III 
(B) 

Field 
Selector 

Cycle Level Operation 

1 9 

2 8 

3 7 ( e2)2 

4 6 (f2)2 

5 5 - (e2cl) 

6 4 - (f2d2) 

7 3 
(e2c1+f2d1) 

Xn - (e2)2+(f2)2 = Xn+1 

8 2 - (d1e2) 

9 1 + (c1f2) 

10 0 
(d1e2 - c1f2) 

Yn - (e2)2+ (f2)2 = Yn+1 

MACHINE PROCEDURE 

First, the coefficients are loaded into the auxiliary storage 
by means of precoded loading cards. A "first guess" card is 
now read to supply Xn + iYn. Next, an iteration card is read 
to cause a series of special program cycles, and to supply 
the first value for p, i.e., p = N. Instruction codes are 
emitted from the field selector and p is emitted from a 
counter of the IBM Type 402 Accounting Machine. 

The two basic series of cycles are shown in Tables II 
and III. 

Cycle series (A) is repeated once for each complex co
efficient of the equation, reducing the value of p by one in 
each series. When p = 1, the following series is of type 
( B ). This performs Newton's correction, zero tests ~X n 

and ~Yn, and replaces Xn with Xn+1 and Yn with Yn+1' This 
completes one iteration. 

Another iteration card is read, and the whole process is 
repeated until 6.x and ~Y are zero to the desired degree of 
accuracy. The unused iteration cards are passed through 
the machine, and the root is divided out by synthetic divi
sion with precoded cards which load the coefficients of the 
depressed equation in place of the old equation. The root is 
summary punched, and the whole process repeated until all 
the roots are found. 

CODING 

For a complete solution of one equation, coefficient load
ing cards and a prepunched master deck are required. The 

CPC Codes 
Special ,-Channel-..., 

402 Control A B C Operation 

Total2~ +4 

{Total ~ 
Total7~ 

+2} 
+3 

74 74 

75 75 5 

74 72 76 5 

75 73 6 

76 6 

84 83 7 

85 82 6 

86 5 

75 8 

loading cards, of course, are different for each equation. 
The master deck differs only with the degree of the equa
tion. 

Each root of an equation requires three types of pre
coded cards-a first guess card, iteration cards, and a set 
of depressed equation cards. 

It should be noted that the channel A and B instructions 
must be punched in the card preceding the one on which 
they are to take effect. This is because the wiring is from 
the lower brushes instead of the upper brushes. 

ADDITIONAL CODES 

As well as the usual CPC codes, the following additional 
codes are required: 

1. A code to set up the field selector for emitted instruc
tions and start special programming. This is a 9 
punch in a column not used for anything else. 

2. A code to allow the machine to go into special pro
gram. This is a 9 punch in a column not used for any
thing else. 

3. A code to identify the initial value of p. This is a digit 
in a column not used for anything else. 

4. A code to identify "first guess" cards. This is an X 
punch. 

5. A code to clear storage, counters and the 604 at the 
beginning of each equation. This is an X punch. 

6. A code to cause the results to list. This is an X punch. 



OPERATIONS 

I AD+8E-C 
2. AD-8£-- C 
3. Il--C 
4:8-C 

5I1B-C 
6. -118- c 

~ ~ ~f; :~::/ 

PROGRAM FACTOR STORAGE COUNTER GENERAL STORAGE 
CONTROL TESTS MULT. 

Sup. I :::~ 
QUOT. 

sup. Idnd 2 3dnJ4 RI RO Idnd 2 3dncf4 

R II B ! ill KJ gj 

9 1 1.2 IMWT [+lD] RO 
10 RO ~ 

Ii aD RR 
IZ IMuLT .... [+4/)] RO 

13 RO f-@) +:1D=£I1Dl 

14 ~,JtJ 
/5 liD RJJ 

16 RO -f-B 

17 b RR@ 

18 VvULT!~ {:t6E] RO 

~ RO iJ 
20 rbE RR 

21 jMuLT!l [ridl RO 
22 RO f-~ r6£=[8ij 

23 ~,Jf' 
24 rBE RffiJ 

25 RO + +flD 

26 1 12 RO + rBE 

30 II 3 RO + +11 

34 .DI 4 RO + +B 

138 lrr 5..6 RO MVLT!~ [rilS] 

139 RO d 

140 ~R+r- RR 
14J RO Wu~>::'t ~gBJ 

142 f:uJ,@ 

143 RO +@ raB+C 

144 t1l8+C RR@ 

145 IN 5.6 RO + :t:IIB+C 

14&', Jl IZR RO !%] 
147 Rem RR 
48 RO 1-

~ 
+Rem 

149 +% RO 
Iso RO l%l 
51 RR 
fi2 RO +~ +% 
53 RO + +C/.=[C/;;l 
54 % RO 
55 ZT <&> 

R.'\ 

5" RO + % 
57 + == f,,+: O~ Y,,+'f; R07 ROB 
513 Y RR Xh • 7 Yn+18 

~ I(~ YI 
87/*,7 

72 0 ,,8 - -",. 
IhO NZ Iw Z8 RR 

If C LEFT IN COUNTER FROM PREVIOUS CI1LCULI1TION 

FICURE 1. TYPE 604 PROGRAM CHART 

Figure 1 shows the programming used in this solution process. The following notations and abbreviations are used: 
A is the entry from channel A into FS 1,2. [£]means quantity. C was not entered on the read cycle, but 
B is the entry from channel A into FS 3, 4. ___ was there previously. . . 
C is the counter with exit into channel C. GS 1 and 2 means 9S. 1 and 2 are given an 8-6 asslgn~ent. . 

. ... .. [term] means It IS a natural result of a calculation; without 
IS the real part of the t~la~ root m GS 1, 2 with eXit mto the bracket it means the unit must be wired to read in. 

40.2 type bar for prmtmg purposes. RS means reset. 
is the imaginary part of the trial root in GS 3, 4 with exit into l means. multiply + when calculate selector 1 is trans-

the 402 type bar for printing purposes. M 1 + 1 ferred. = a + aut -2 means multiply - when calculate selector 2 is trans-

h- - 00000 ferred. 
were a = xxx. , BTl means balance test to pick up negative balance selector 1. 

l! = OOO.XXXXX. NZ means non-zero. 

D 

E 

A 
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N.B. SEL. CO -SELECTORS 

"4" "41t "7" "5" "7" "5" US" "4" "S" "711 "5" "7" 11311 "6" "6" 1
16" 

TO 0 • • • • • • • • • • • • • • • 0 0 0 0 .T 

nZ" "3" "1" P9Nl "2ft "3" 1f3" "2" P9Nl "1" "4" "1" "5" "7" "7" "3" 
NOlO •• 1 •• 00.2 •••• 030 •••• 4 ••• N 

cO 
o FS.5 F,,7 F.,4 F~5 F~6 F~7 ~10 Fi'S Fa.l0F~4 F5,S F~6 F~7 FS,10 F~S F~6 F1I7 F1IS F~ F411g 

"4" "8" "3" "7" "2" "6" u6n "Sn "8n PIS! P6Cl 
• • • 0 0 • • • ., 0 0 • 0 0 0 0 • OT 

F7,2 

"i' F~7F~2 0 
PIC2 
• 0 

"2" "4" "71
' • • • "2" "3" "3" "1" .6. . . o S 0 o ON 

n,s F2,9 F2,10 Fl,S Fl,10 FO,10P13,I P14,I FO,2 FO,l ELAC 
• • • • • • • • • .0 0 0 • OC 

n,s 
NO 2 0 • 

~----------~~--4------------------r-----------------+-----------------
Itlct' "10" 
C. • 0 0 0 

PlSC2 
0--0 • 090 

NB - AC CIIC2 
~ .00 

o 

o 

o 

o 

o 0 

o 100 

o 

o 

o 

o 

o ":1 Fi 3 0 F'i4 Fi s Fi 6 Fi,7 F~8 F'i9 F<i~O 
LB LB LB LB 

LB(1) Cli.A lNST CH.B INST Cli.C lNST OPEa 
o 0 ~ •••• 12 ••• N 

NON OPEa 
PlllNT C9Cl PSC2 CH. A CONT Cli. B CONT Cli. C CONT. CONT 

o • • • • • • • • • .C 
U8(4)· UB",," U8(6) U8(S) LB(s) UB"X" 

o .- • • 0 0 • • 0 0 0 eX 

o 0 0 0 0 0 0 0 0 0 OD 
SU 

CliG 1 C7C2,C3 C7T4 
o 0 • 0 ... • • 01 

5 GSl-4 
1U "10" UST • • • 

o 0 0 
PROG 

AC AC "9" AC "10" . • . . .T 
o o 

LB(3) 

.' 0 
ON 

TOT 2A TOT SIGN 
~ ~1 ~ GS:C4 

PROG 
AC AC STOP 

o • • • OT 
FIELD 

CDCY STAaT P2C2 SEL.PU 
o 0 • 0 0 • 0 o 0 0 • • ON 

C7NS Pl4N2 NB2Tl CllC3 

o • • 0 '.'. 0 
+2A +2A C9Nl 

o 0 • • • OC 

o 09 

"8" "7" "611 liS" "4" "3" "Z" "III Cjl "it' Clj2 0 0 OS • • • • • • • • 0 0 0 

CIC3 CIC4 CICs C2Cl C2C2 
• • • • 0 0 .7 

"5" "7" C2C3 "7" "2" "7" "6" C2C4 
o • • -~ • • • • .6 

C7N2 "4" C2CS C3Cl C3C2 C3C3 C3C4 
o 0 0 0 0 000 • • • • • • 0 0 .5 

C TO 
X+ X+ 
• • 0 

X+ x+ 
• • 0 

C7N3 "3" "7" C3CS C4Cl C4C2 C4C3 C4C4 C4CS · . . . . . . . .4 o 
A 

L I 11 IV V 
cN.I0 03 •• 500. 

C 
T 
o 
a SUP 
S C. 

@ @ 
• • 

SUP SUP 

• • 
@ @ SUP VI 

• • • • 
® @ "9" 

• • • 

"2" "S" CSCI CSC2 CSC3 CSC4 
o • • • • • 0 0 .3 

"1" "S" "5" "S" CSCS C6Cl C6C2 C6C3 o • • • • • • • .~ 

"0" "S" C6C4 C6Cs 
o • • • 0 0 0 0 .1 

"9" "7" "5" C7Cl 
• 0 0 0 0 • • .0 

ELAC Cll-TRANS-C12 

• r-t-f .'--4'~_'--4'~_' C 

FIGURE 2. DETAILS OF SELECTOR VVIRING FOR TYPE 402 

Figure 2 is a wiring diagram of some unusual portions of the 402 control pane1. In this diagram the notations and abbreviations are as follows: 
F 9,2 means field selector level 9, column 2. NB2Tl means negative balance selector 2, transfer of point 1. 

"4" means digit 4 is emitted from the digit emitter. NBIP means negative balance selector I, pickup. 
P9Nl means pilot selector 9, normal of upper point. CDCY means card cycles. 
P9N2 means pilot selector 9, normal of lower point. LB (1) means to wire additional code 1 (see previous section on 
C9Cl means co-selector 9, common of point I, numbered from Additional Codes) from lower brushes. 

left to right. !~ X means half after X time. 
PI-I means the immediate pickup of pilot selector 1. @ means program step 58. 
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DISCUSSION 

Mr. C. V. L. Smith: How do you determine the first 
approximation? 

Mr. Gallishaw.~ Actually, we do not even try to deter
mine it. Because of the transformation which we performed 
originally on the coefficients, we know that the product of 
the roots is going to be somewhere in the vicinity of 1; so 
we choose a trial root. Actually, we choose the trial root, 
.8 + i (.6), which has a modulus identical to the 1 which is 
usually attached to one of the middle roots. 

We have been equally successful in trying to attack the 
smallest root by studying an initial trial root of zero. 

Dr. Brown: You mentioned that after the first root is cal
culated, the machine goes on to the second root. Do you 
get the second root by using the same equation, or do you 
reduce it to a sixth-degree polynomial from a seventh, etc. ? 

Mr. Gallishaw: We reduce it to a sixth from a seventh, 
and replace the coefficient to the seventh with the coefficient 
to the sixth as we go alo'ng. 

Dr. Welmers: Recently I was attempting to teach a class 
in matrix theory that the roots of a polynomial equation 
could be obtained as characteristic roots of a matrix. I was 
wondering if this particular scheme has found any very 
widespread calculational use, or how it compares with the 
more direct method indicated here. 

Dr. Gross: I once had a problem on the CPC involving 
many cubics with complex coefficients. When I tried to 
iterate the roots by putting the equation in a matrix form, 
it sometimes worked out fairly well. In one example, we 
had to iterate 200 times to get the roots to separate, even 
though the ratio was distinctly different from 1. Only if you 

COMPUTATION 

knew the absolute values of the roots beforehand, could you 
calculate approximately how many iterations would be 
needed. 

Mr. Lowe: We use quite the inverse process. We derive 
by setting up the characteristic function of the matrix and 
then get the roots of the matrix. 

Mr. Carter: Do you find it better to start with the smaller 
root? When you divide out the smaller root to get the poly
nomial of degree one less, it seems to me your coefficients 
are going to be more accurate. Consequently, do you not 
find it better to start with zero? 

Mr. Gallishaw: Generally speaking, we have found that 
to be true. Not only does it help in achieving greater accu
racy in the roots but it also tends to make the coefficients of 
the depressed equation slightly more workable in size. 

Mr. Lesser: In connection with programming from 
counters, I would like to point out that it is probably easier 
on a Model II CPC, because top counter read-out elimi
nates the trouble of getting too many digit impulses out of 
the counters for instruction. One can obtain many more 
instructions on the field selector than he can when he has to 
separate the digit impulses. 

Dr. Evans: When digit impulsing as instructions from 
the counter, do you get all of the half-after impulses from 
the column split control? 

Mr. Gallishaw: In this particular case I did not take it 
from the column split control, but rather from the emitter 
into the comparing unit, comparing it against nothing. 

One last comment is that this control panel is also very 
useful in evaluating an equation of constant coefficients for 
a very large number of values of the unknown, say 1,000. 



A Recursion Relation for Computing 
Least Square Polynomials over Moving-Arcs 

GEORGE R. TRIMBLE, JR. 

Aberdeen Proving Ground 

A MET HOD of computing least square polynomials 
over moving-arcs is here presented; it requires the retention 
of a relatively small number of variable factors in the com
putations over moving-arcs when advancing from one value 
of the independent variable to the next. The method is 
based upon a recursion relation which is derived herein. 
One consequence of this method is the reduction of the 
number of storage registers required. 

LEAST SQUARE POLYNOMIALS OVER MOVING-ARCS 

Given the finite set of redl points (X)', Yj ) in a plane, 
j = 0, 1, 2, ... , N, with equally-spaced arguments Xj, it is 
required to fit an rth degree polynomial, 

Yi = y(Xi ) = Ap,o + A p,! Xi 

+ A p ,2 X7 + ... + A p,,. X~ , (1) 
to the subset of 2n -j- 1 points (Xi, Y i ), i = p - n, 
p - n + 1, ... ,p - 1, p, P + 1, ... ,p + n - 1, P + n, 
by the least square procedure and to evaluate this poly
nomial at Xp, the midpoint of the interval (Xp_ n , X p +n ) all 
abscissae of which are on the polynomial given by equation 1. 
The arcs of equation 1 thus defined depend upon p and will 
be referred to as moving-arcs. Each interval (Xp _ n , X p+n ), 

p = n, n + 1, ... , N - n, determines a polynomial; the 
first subscript in the coefficients A p,q, q = 0, 1, 2, ... , r, 
indicates the polynomial associated with the interval con
sidered (Xp_ n, Xp+n). A series of such polynomials 

yp = Ap,o + A p,! Xp + A p,2 X£ + ... + A p,,. X;, (2) 

(p = n, n + 1, ... , N - n) 

is obtained. The N + 1 - 2n polynomials of equation 2 are 
the minimizing polynomials over moving-arcs of equation 1 
in the least square sense. 

Since the X/s are equally spaced, they can be written as 

X j = Xo + jh, (j = 0,1,2, ... ,N) 

where h is a constant. Then, 
Xj - Xp = X 0 + jh - X 0 - ph 

or 
X,=Xp+(j-p)h. (3) 
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In the interval (Xp _ n, X p +n ), consider the variable, 

x p,-£ = i - p, (4) 

(i = P - n, P - n + 1, ... , P + n - 1, P + n). 

By means of equation 4 we can rewrite equation 3 as 

(5) 

Substituting the expression for Xi as given by equation 5 
into equation 1, the polynomial becomes 

Yi = ap,o + o.p,l·t'p,i + ap,2 X'~,i+." + ap,1' X'~,i,(6) 

(i = P - n, P - n + 1, ... , P + n - 1, P + n) 

where, as above, the interval over which this polynomial is 
being considered is (Xp- n , Xp+n). In terms of the new 
variable Xp,i this interval becomes, (X'p,p-n, X p,p+n)' The 
value of X'p,i at the midpoint of the interval (xp,v-n, Xp,p+n) 
IS 

1 
xp,p = Ii (Xp - Xp) = 0 ; 

consequently, the polynomial in equation 6 when evaluated 
at X' p,p becomes 

(7) 

From this it is seen that only ap,O needs to be computed for 
the moving-arc procedure. 

The least square procedure requires that 

p+n 

F = L (Yi - Vi) 2 

i=p-n 

p+n 

= L(ap,o + ap,l Xp,i +ap,2 .xIi + ... + ap,,. X~,i - Y i )2 

i=p-n 

be minimized. The well-known necessary condition for F to 
be a minimum is 

(8) 
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Taking partial derivatives, it is found that 

,+n 
of - L2 ( 2 :1- - ap.O + ap.l .x,.i + ap.2 .xp.i 

vap.O 
i=,-n 

+ ... + ap•r .xp.i - Yi ) (9) 

,+n 
aF _ L2 r (+ +.2 aa- - .xp,i ap.O ap,l.xp,i ap,2.t p,i ,.r 

i=p-n 
+ ... + ap,r .xp.i - Y i ). 

Define Sm as 

(m=I,2, ... ,2r). 
I t is seen that 

S28+1 = 0, (s = 0, 1,2, ... , r - 1), (10) 

(s=I,2,3, ... ,r), 

where So is defined as 
So = 2n + 1. 

Simplifying equation 9 by means of equation 10 and 
applying condition 8 we obtain the normal equations, 

p+n 

Soap,o + O· ap.l + ... + Srap,r = LYi 
i=p-n 

p+n 

o . ap,o + S2 ap.l + ... + Sr+rap,r = LXP'i Y i 

i=p-n, 

p+n 

Sr ap,o + Sr+l ap,l + ... + S2r ap,r = L .xP,i Y i • 

i=p-n 

In matrix notation, equation 11 becomes 
MAp = Kp, 

(11) 

(12) 

C OM PUT A T I ON 

where 

So 0 S2 ... Sr 
0 S2 0 ... Sr+l 

M= 

Sr Sr+l Sr+2 ... S2r 

ap,o 
ap.1 

Ap = 

ap,r 
p+n 

LYi 
i=p-n 

p+n L .xp,i Y i 

i=p-n 

K, = 

p+n L .xp,i Y i 

i=p-n 
Similarly, equation 7 may be written 

yp = BAp , (13) 
where 

B = (1 0 0 ... 0). 
Denote the determinant of AI by A(M) and the adjoint 

of M by F(M). It follows that 

M-l _ F(M) 
- A(M) . 

Solving for Ap in equation 12, we obtain 

-1 F(M) 
Ap = M Kp = A (M) . Kp . (14) 

Substituting into equation 13 the expression for Ap given 
by equation 14, we have 

F(M) /' 
YP = B . A(M) . A. p • (15) 

Examination of F(M) shows that it has the form, 

fo,o 0 fO,2 fo.r 
o /I,I 0 fl,r 

F(M) = 

fr,o fr,1 fr,2 jr,r , 

that is, fk,l = 0 when k + l is odd. Also, F(M) is sym
metric (/k,l = !z.k). Evaluating the matrices in equation 15, 
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or 

/0.0 0 ... fo.r 

o f1.1 .. ·h.r 

fr.o fr.] ..• fr.r 

~Yi 
i=p-n 

p+n 

L%P.i Y i 

i=p-n 

~Y' 
i=p-n 

p+n 

1 
YP = ~(M) (fo.o 0 fO.2 ... fo.r) 

LXP.i Yi 
i=p-n 

or 

p+n fJ+n 

~ "y + fO.2 "2 Y + YP = ~(M) Lt' ~(M) Lt %p.. i ..• 

i=p-n i=p-n 

fJ+ n 

+ fo.r ",7' Y ~(M) Lt,t p•i i· 

i=p-n 

(16) 

This result given by equation 16 will be utilized later in 
the derivation of a useful recursion relation. For use in 
hand computations it will be convenient to express equation 
16as 

(17) 

where 

H - fo.o + fO.2 2 + + fo.r /' 
i-p - ~(M) ~(M) %p.i • • • ~(M) %p.i 

-~+~(i_P)2+ +~(i-PY - A(M) A(M) ... A(M) . 
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Two cases must be considered: (a) r = 2t, (b) r = 
2t + 1. If r = 2t, the coefficients H.i - P become 

H fo.o + fO.2 (. )2 + + fO.2t (. p)2t 
i-p = ~(M) ~(M) ~-p ... ~(M) ~- . 

If r = 2t + 1, the coefficients Hoi _p become 

H fo.o + fO.2 (. p)2 + + fO.2t (. )2t 
i-p = ~(M) ~(M) ~- ... A(M) ~-p , 

since fO.2t+1 = O. This means that the coefficients H i - p are 
exactly the same for a (2t+ 1 )th degree polynomial as they 
are for a (2t) th degree polynomial. 

The form of equation 17 is convenient for hand comput
ing in that when the observed values Y i are listed in one 
column and the coefficients H i - P are listed in the column 
next to it, the computing consists of multiplying each term 
in one column by its corresponding term in the other col
umn and summing the 2n + 1 products obtained to deter
mine the fitted value yp. 

THE RECURSioN RELATION 

The recursion relation provides a method by means of 
which results obtained at one value of the independent vari
able are utilized in the computations for the immediately 
following value. 

Equation 16 is rewritten as 

fo.o D + fO.2 D + 
yp = ~(M) P.O A(M) p.2 ••• 

+ fO.2t D (18) 
~(M) p.2t, 

where D p•k is defined as 

p+n 

Dp •k = L (i_p)k Y i (k = 1,2, ... ,2t), 

i=p-n 

(k = 0), 

and where r = 2t or r = 2t + 1 as previously observed. 

At the point X p+b equations 18 become 

fo.o D + fO.2 D 0 + 
Yp+1 = ~(M) p+1.0 ~(M) p+1.2 ..• 

with Dp+1•k being defined as 

p+1+n 

D p+1.k = L (i_p_1)k Y i , 

i=p+1-n 

p+1+n 

Dp +1•O = L Yi , 

i=p+1-n 

fO.2t D + A(M) p+l.2t, 

(k = 1,2, ... , 2t), 

(k = 0). 
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But, 
p+n 

Dp+1,o = LYi - Y p- n + Y p+1 +n 
i=p-n 

= Dp,o - Y p- n + Y p+1 +n . 

Expanding [( i - P ) -1] k by the binomial theorem, we have 

p+n 

Dp +1,k = L (i_p_l)k Y i - (-n-l)k Yp - n 

i=p-n + nk Y p +l +n 

~~~.[to ( -1 Y(! ) (i-p ) k-r v] 
- (-n-l)k Y p - n + nk Y p+ l +n 

- (-n-l)k Y p - n + nk Y p+1 +n ' 

Thus, one finds a useful recursion relation 

(19) 

- (-n-l)k Y p - n + nk Y p +1 +n , 

where k = 0, 1, 2, ... , 2t. From this equation it is seen 
that D p+1 ,k can be expressed as a function of Dp,n where 
r = 0, 1, 2, ... , k, with the binomial coefficients and the 
two observed values Yp - n and Yp +l +n• By use of this rela-
tion, each Dp+l,k with k = 0, 1,2, ... , 2t can be computed, 
using the values Dp,k, k = 0, 1, 2, ... , 2t, computed for the 
previous value of the independerit variable, and the ob
served values Y p - n and Y p +l +n• 

To see the merits of the method based on equation 19, a 
comparison of the two computing methods must be made. 
The method employing the expression for YP' as given in 
equation 17, requires that each value of Vi, i = P - n + 1, 
p - n + 2, ... , p + n, be remembered explicitly when 
progressing from Xp to X p+ l . The only new value needed 
to compute YP+I is Y p+1 +rt • If an automatic computing ma
chine is used to perform the computations, 2n storage regis
ters are required to store the 2n values of Vi, i = P - n + 1, 
p - n + 2, ... , p + n, which must be remembered. 

The method employing the recursion relation requires 
that Dp,h k = 0, 1, 2, ... , 2t, be remembered when pro
gressing from Xp to Xp + l , where r = 2t + 1. In this case, 
two observed values Y p - n and Y p +1 +n must be introduced 
to compute Yp+l. At most, r + 1 storage registers are re
quired to remember the values Dp,k, k = 0, 1, 2, ... , 2t. 

If it is assumed that the various constants needed for the 
two methods can be generated by the machine and present 
no problem, a comparison of the number of storage registers 

C 0 MP U T. A T ION 

required by the two methods shows that the recursion 
method is best by this criterion, as long as r + 1 is smaller 
than 2n. Since r is the degree of the polynomial and 2n + 1 
is the number of points over which the polynomial is being 
fitted, r is always less than 2n + 1. The values of r for 
which the recursion method is not the best method are 

2n - 1 < r < 2n + 1 . (20) 
Because in practice the number of points used in determin
ing a best-fit polynomial is usually much larger than the 
degree of the polynomial, the cases indicated in condition 20 
will occur infrequently. 

Thus, the recursion method makes it possible to perform 
on automatic computing machines computations involving 
large numbers of points on moving-arcs which could not be 
carried out so effectively using manual methods. 

ApPENDIX 

Illustrative Example of Use of Recursion Method 

For r = 2 (or r = 3), and n = 12, the constants are 
fo,o = 467, fO,2 = -5, and b..(M) = 5175. From Table I, 
the following are obtained: 

TABLE I 25 

D I3,O = LYi i Yi 
121.121 i=1 

2 121.232 = 3067.840 

3 121.279 25 

4 121.341 DI3,l = L (i-13) Y i 

5 121.402 i=1 

6 121.489 = 218.428 
7 121.575 25 

8 121.713 DI3,2 = L (i-13)2Yi 
9 121.845 i=l 

10 121.997 
= 159,774.308 

11 122.163 

12 122.337 1 

13 122.515 
YI3 = 5175 (467DI3,0 - 5D13.2) 

14 122.692 = 122.475 

15 122.884 Dl4,o = D13.0 - Y I + Y 26 
16 123.001 = 3072.198 
17 123.206 

18 123.412 D l4,1 = D13,l - D I3 ,O + 13YI + 12Y26 

19 123.655 = 230.909 

20 123.891 D14•2 = DI3,2 - 2DI3,I + D13.0 

21 124.115 - 169YI + 144Y26 
22 124.352 

23 124.608 = 160,004.819 

24 124.883 1 

25 125.132 
Yl4 = 5175 (467Dl4,0 - 5D14,2) 

26 125.479 = 122.646 
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DISCUSSION 

Dr. Berkowitz: Do you actually compute the coefficients 
of the least square polynomial? 

Mr. Trimble: No, the coefficients of the polynomial are 
in no way determined directly. 

Dr. Herget: This is essentially a smoothing process, is it 
not? 

jVf r. Trimble: Yes. 
Dr. Herget: I don't quite see where we got from 25 to 3. 

Do you mean a polynomial of the third order is supposed to 
go through 25 points? 

.I..'V!r. Trimble: That is correct. 
Dr. Aroian: vVhat do you do if you want to go to higher 

degrees-say 4, 5, or 6? Do you change your degrees or do 
you just decide on 3 and stick with it? 

Mr. Trimble: We decided on 3, for our particular case, 
from experimental data. 
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Dr. Aroian: The point is that you might use orthogonal 
polynomials which permit you to go to higher degrees with
out recomputing equations. There are two types of tables 
prepared for these: either the R. A. Fisher or Gram
Charlier tables. 

Mr. Trimble: We have used orthogonal polynomials for 
this process. But even then you must remember each of the 
25 values observed separately to get the coefficients for the 
polynomials. 

lvIr. Waddell: \Ve have set up this orthogonal polynomial 
problem and use it continually. By means of Fisher's tables, 
we use from 21 to 67 points in remembering all the values 
inside the machine. It works very fast and very neatly on a 
Model II CPC. 

Dr. Hurd: You mean you have one programmed deck 
which applies to either 21 or anything up to 67 points? 

1V1 r. Waddell: Yes, that is correct. 



Numerical Solution of Second-Order Non-Linear 
Simultaneous Differential Equations 

HENRY S. WOLANSKI 

Consolidated Vultee Aircraft Corporation, Fort Worth Division 

S TAB I LIT Y problems in aircraft design often involve 
solution of non-linear simultaneous differential equations. 
For example, the evaluation of the longitudinal stability 
characteristics for a towed airplane involve· the solution of 
equations of motion which are of the type mentioned above. 
Basically, the system can be represented as a compound 
pendulum with two degrees of freedom, i.e., a rigid body 
connected by a cable to a fixed horizontal axis. The rigid 
body has acting upon it not only the force of gravity W, but 
also the aerodynamic forces of lift L and drag D, a thrust 
force T and an aerodynamic moment M. The rigid body is 
so suspended that it is free to rotate about a fixed horizontal 
axis through point 0 and about a horizontal axis through 
point 1-1 and normal to the X - Z plane as shown in Fig
ure 1. The assumption is made that some tension always 
exists in the cable OH; if any slack is allowed in the cable, 
then the aerodynamic characteristics of the rigid body will 

be identical to those in free flight, and the equations derived 
for the system will have no physical significance. The pur
pose of this paper is to present two numerical methods by 
which a solution can be attained. A further aim of this 
paper is to compare the methods used and to show the effect 
of an interval At on the results obtained. 

DERIVATION OF THE EQUATIONS OF MOTION 

In deriving the longitudinal equations of motion for the 
system, the Lagrange equation 1 of force, 

!£[a~J_aT = aWe (1) 
dt as as as 

where, s = generalized coordinate 
T = kinetic energy of the system 

We = virtual work of the system 
t = time 

w 

FIGURE 1. RIGID BODY CONNECTED BY A CABLE TO A FIXED HORIZONTAL AXIS 
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expressed in terms of energy was used, because it was more 
convenient to deal with the energy of the system. From 
Figure 1 it can be seen that the coordinates of the center 
of gravity c of the rigid body are: 

% = -I cos c/> - b cos 0 (2) 

z = I sin c/> + b sin 0 . ( 3 ) 
The velocity of the center of gravity c is then obtained by 
taking the time derivative of these coordinates, i.e., 

% = - i cos c/> + 1;P sin c/> + bO cos 0 

z = i sin c/> + 11> cos c/> + bO cos 0 . 

(4) 

(5) 
Then 

V2 = .i-2 + Z2 

V2 = tZ~2 + b2iJ2 + ]2 + 2lbcj>fJ cos. (0 - c/> ) 

- 2ibO sin (0 - c/» . 

(6) 

(7) 

Now, cable length is defined in terms of constant reel-in 
velocity (I) and time t as follows: 

I = - f 00 dt = -00/ + 10 (8) 

or 
i = - w 

so that the velocity of the center of gravity c can be written 
as 

V2 = 12;P2 + b202 + w2 + 2bwO sin (0- c/» 

+ 21bcf>8 cos (0 - c/» . (9) 

The kinetic energy of the system is equal to 

T -l[mv2 + liP] - 2 YY 

T = ~{ m [/21>2 + b202 + w2 + 2bwO sin (O-c/» 

+ 21b;PO cos (0 - c/> ) ] + 1111102
} • (10) 

By use of the assumption of small virtual displacements, 
the expression for virtual work can be written as 

8We = -L cos y (8z) - L sin y (8x) - D cos Y (8%) 
+ D sin y (8z) + W (8z) + T cos 0 (8%) 

- T sin 0 (8z) + M (80) , ( 11 ) 

where 

8% = I sin c/> (8c/» + b sin 0 (8(J) 
8z = I cos c/> (8c/» + b cos 0 (8(J) . 

Simplifying equation 11 gives the following expression for 
virtual work: 

8We = [-LI cos (y-c/» + DI sin (y-c/» • 
-TI sin (O-c/» + WI cos c/>] 8c/> 
+ [-Lb cos (y-O) + Db sin (y-O) 

+ Wb cos 0 + M] 80. (12) 
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Combining the kinetic energy equation 10 and virtual work 
equation 12 in the Lagrange equation 1 will give the final 
equations of motion. 

For the degree of freedom in, C/>, e.g., s = c/>, 

aT· . 
- ac/> = mwbO cos (0- c/» - 11zlb;PO sin (0- c/» (13) 

and 
aT . 
acb = ml2ep + mlbO cos (0 - c/» , (14) 

from which 

:t (~~) = - 2mwlcP + ml2cp - mlbO sin (O-c/» (O-;P) 

+ mlbO'cos (O-c/» - mwbOcos (O-c/» (15) 

so that the equation of motion becomes 

ml4> = - m [ - 2wep - b02 sin (0 - c/» + b(j cos (0 - c/> ) ] 
+ W cos c/> - L cos (y - c/> ) + D sin (y - c/> ) 

- T sin (0 - c/». (16 ) 

Similarly, the equation of motion for the degree of freedom 
in 0, e.g., s = 0, can be found to be 

[IllY + mb2](j = -m[lbcj>2 sin (O-c/» + Ib;P cos (O-c/» 
- 2bwcf> cos (O-c/»] + Wb cos 0 

- Db sin (O-y) - Lb cos (O-y) + M. (17) 

The induced angle y is defined as 

-z 
y= Vo+.i-' (18) 

whereby, using equations 4 and 5, we arrive at the ex
pression 

w sin c/> - lep cos c/> - bO cos 0 

y = V 0 + w cos c/> + lq; sin c/> + bO sin (} 
(19) 

The values of lift L, drag D and pitching moment Mused 
in the preceding equations are defined as 

L = (CLl/,a. CLO + CLi; 8)qs 

D = (CD a. + CDO)qs 
l/, . 

M = (CMl/,~ + CMO + CMe (})qs 

where 

C L = a~ L = lift curve slope 
l/, ul/, 

C LO = lift coefficient at zero angle of attack 

C LO = ac ~ = rate of change of lift coefficient with 
ao pitching velocity 

CD = ac D = rate of change of drag coefficient with 
l/, aa. angle of attack 

(20) 

(21) 

(22) 
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C DO = drag coefficient at zero angle of attack 

C aC M • I . d' I b'l' M = -- = statIc ongltu ma sta 1 lty 
ex aex 

CMO = pitching moment coefficient at zero angle of attack 

C aCM d . . . h Me = --. = ampmg m Pltc 
a() 

q = 4 pV2 = dynamic pressure 

s = wmgarea 

It can be seen that the equations of motion (16 and 17) 
are second-order non-linear differential equations which 
have to be solved simultaneously in order to obtain a time
history plot of the motion. To express a solution in elemen
tary analytical form would be very difficult, if not impossi
ble. It then becomes necessary to use a series or some other 
approximate method to obtain a particular solution. 

METHODS FOR NUMERICAL SOLUTION 

The two methods used in obtaining a numerical solution 
are based on those outlined in detail in reference 1. Basi
cally, both methods are step-by-step solutions where the 
values of the dependent variables are calculated one after 
another for a sequence of equally-spaced values of the inde
pendent variable t. It is assumed that the functions fl and f2 
satisfy all requirements necessary to insure the existence of 
unique, continuous, differentiable solutions of the form 
() = fI(t) and cP = f2(t) throughout the interval consid
ered. 

The problem consists of a pair of simultaneous differen
tial equations of the second order 

0= !t((), cP, 8, cfo, 4>, t) 

~ = f2((), cP, 8, 1>, 0, t) 

(23) 

(23a) 

in which the dots denote differentiation with respect to the 
independent variable t. The iterative and more accurate 
method of the two consists essentially of predicting the 
values of the first derivatives using the "prediction" equa
tions which are numerical integration formula~ for a fourth
degree polynomial: 

. . 4 .... .. 
()n+I = ()n-3 +3 D..t(2()n - ()n-I + 2()n-2) (24) 

1>n+I = 1>n-3 + ~ D..t(2~n - 1>n-l + 24>n-2) . (24a) 

N ext, the dependent variables are computed by numerical 
integration using the expressions 

1· .. 
()n+l = ()n-l + 3" D..t(()n+I + 4()n + ()n-I) (25) 

COMPUTATION 

(25a) 

which are based on Simpson's rule. It is noted that the solu
tions for the values of ()n+I, CPn+b On+I and cPn+I are ob
tained independently for each of the differential equations 
23 and 23a just as though it were a single equation. But 
now in computing the second derivatives of ()n+I and cpn+I 
from the differential equations, the solutions are carried out 
simultaneously. Having found the values of O~+l and 1>n+b 
the first derivatives are again computed, this time using the 
expressions for numerical integration given by Simpson's 
Rule 

(26) 

(26a) 

These formulas are known as the "correction" equations. 
The values of On+I and 4>n+I obtained by the "prediction" 
equations are subtracted, respectively, from the ones ob
tained by the "correction" equations. If the difference is 
significant within the desired accuracy, the above process is 
repeated using equations 25, 26 and 23 with the exception 
of computing new "predicted" values of On+I and 1>n+I, be
cause the previous values obtained from the "correction" 
equations are used as the new "predicted" ones. This itera
tive process continues until two successive values of the 
first derivatives are the same, that is, until convergence is 
attained. This completes the necessary computations to ob
tain the values of the dependent variables at one value of 
the independent variable t. 

To apply this method to the system represented by Fig
ure 1, it is necessary to have a set of initial values of (), cP, 
(): cfo, 0 and ¢ at some time to and also at the times t-I, t-2 
and t -3. These initial conditions are arrived at as follows: 
the rigid body is displaced from its equilibrium position to 
some arbitrary position where () and cP will have the same 
value and all the derivatives of these functions are then con
sidered to be zero. 

The instant at which the body is released from the arbi
trary position is considered to be the initial time to. There
fore, the initial conditions and those previous to the time to 
are known. For example, in the case under consideration, 
the specified conditions are: 

at n = 0, tn = 0, 
()n = ()n-l = ()n-2 = ()n-3 = .1 radian 

CP1l = CPn-I = cpn-2 = <pn-3 = .2 radian 

()n = On-I = 1>n = 4>n-l = ° 
On = ()n-I = ¢n = ¢n-l = ° 



SEMINAR 

Since this is an iterative process, the assumption of 00 and 
4>0 equal to zero is valid, and convergence to the correct 
values will be attained. The step-by-step computations are 
carried out until a sufficient range of the independent vari
able t is obtained to show the time-history plot of the de
pendent variables () and cp. 

The second method is a much simpler, approximate one 
which is based on the numerical integration equations 

On+l = On-l + 2at On 

ci>n+l = ¢n-l + 2at ¢n 

()n+l = ()n-l + 2at On 

CPn+l = CPn-l + 2at 4>n 

(27) 

(27a) 

(28) 

(28a) 

The computing procedure is self-evident, once the initial 
conditions have been established. The initial conditions at 
the time to are identical to those given for the first method, 
with the exception that the second derivatives of () and cP 
cannot be considered as zero. Using the differential equa
tions 16 and 17, these second derivatives are computed 
at the time to, and then the values for the functions and the 
first derivatives at tn+ 1 are computed using equations 27 
and 28. Thus, at each value for the independent variable, 
the dependent variables and their derivatives are computed 
without involving any iterative process. As in the first 
method the step-by-step calculations are carried out until 
the desired range of t is obtained. 

Control Panels 

The solution of these differential equations involves a 
small card volume and many mathematical operations so 
that the use of an IBM Type 604 Electronic Calculating 
Punch is inadvisable for this problem. The nature of the 
problem is such that it can be readily planned and solved 
using the IBM Card-Programmed Electronic Calculator. 
The mathematical operations necessary are the simple 
arithmetic operations of addition, subtraction, multiplica
tion and division, including the trigonometric functions of 
sine and cositle. A standard CPC-function panel perform
ing these operations using eight-digit factors was availCl.ble 
so that it was not necessary to wire special control panels. 
Thus, setup time for this problem involved only planning 
the equations and method of solution for card programming. 
The design of the CPC-function panel is based on an IBM 
diagram with a modification in computing the sin () / () and 
cos () series. The IBM diagram predetermines the number 
of terms to be computed for each series, while this panel is 
wired to compute as many terms as necessary until the nth 
term is zero. The decimal positioning is such that six deci
mals are obtained in handling eight-digit factors; therefore, 
the sin () / () and cos () functions are accurate to the sixth 
decimal. 
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Discussion of Results 

For the particular condition investigated when the values 
fot force of gravity, aerodynamic forces of lift, drag and 
pitching moment were introduced, the equations of motion 
(16 and 17) become 

18.76iicos (()-cp) 

+ 32.2 cos cP - 175.5 Il cos (cp -y) 

- 2.19 cos (cp-y) - 15.5 Il sin (cp-y) 

+ .3225 sin (cp-y) - 1.862 sin (()- cp) (29) 

o = -.0485 lcf>2 sin (()-cp) - .0485 lii> cos (()-cp) 

+ .097 wq) cos (()-cp)-+ 1.563 cos () - .752.a sin C( 

+ .01567 sin Il - 8.5 Il cos Il - .1061 cos Il 

- .311l + .0531 - .05360, (29a) 

where the term (C LiJ qs) 0 from the lift expression was 
omitted from both equations of motion since CLe -::::::.0. From 
Figure 1, Il is defined as being equal to () - y; it has also 
been introduced in the above expressions. The constant 
reel-in velocity w was considered to be zero so that the 
equation for y was simplified to the form 

-l~ - 18.768 
y = 383 (30) 

with w being zero; the cable length remained a constant. 

To obtain the best possible accuracy, the iterative method 
was tried first. In planning the instruction cards, enough 
iterations were used so that convergence would be attained. 
This amounted to an instruction deck of 625 cards for which 
one data load card for the initial condition was necessary. 

At each tn all the values of (), cp, 0, 4>, 0, and 4> for n, n-l, 
n - 2 and n - 3 were listed so that the computing could be 
stopped at any point for any reason and started again by 
merely reloading the listed values. 

Computations were carried but for intervals of.1 and .01 
seconds for the independent variable t. These results in the 
form of time-history plots of the motion are shown in Fig
ures 2 and 3, respectively. From Figure 2 it is apparent 
that because of too large an interval in the independent 
variable t, the numerical integration of the first and second 
derivatives of () and cp is inaccurate. This is especially true 
when the derivatives approach maximum or minimum val
ues, since three-point integration does not approximate the 
curve well enough. Improvement in the results was ob
tained by decreasing the interval to .01 seconds. These re-
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INTERVAL!:l.t = .01 SEC. 

FIGURE 2 

suIts are shown in Figure 3. Although the curves in Figure 
3 show no scatter, some inaccuracy does exist but is of such 
a small magnitude that it is not detected on the scale to 
which this plot is made. Increasing the accuracy of the re
sults by decreasing the interval is done at the expense of 
increasing the amount of computing tenfold since ten times 
the number of points have to be calculated to cover a given 
range in the independent variable t. At times this may be 
necessary in order to obtain accurate enough results from 
which a period of oscillation and other stability character
istics of the motion can be determined. 

-.2 

INTERVAL!:l.t = .01 SEC. 

-.3 

FIGURE 3 

COMPUTATION 

An alternate approach to increase the accuracy in the 
final results is to use more accurate formulas for integration 
rather than decreasing the interval. Five-term integration 
formulas exist; these are exact if the polynomial is of the 
seventh degree. This approach was not tried because the 
method using the three-point integration equations made 
use of all the storage capacity available in the CPC. Any 
other higher order integration equations would have needed 
more storage capacity than is available. 

Another method which can be used to improve accuracy 
and eliminate any excessive scatter is to apply an averaging 
process to the results. This can be accomplished by one of 
two means. One approach is to stop the calculating and plot 
the results in the region of the·scatter, and then "fair out" 
the inaccuracies. This has to be done for the functions and 
their derivatives. The faired values are then used as new 
initial values, and the computations are continued until 
excessive scatter appears again. The other approach is es
sentially the same with the difference that the "fairing out" 
is incorporated in the instruction cards as part of the com
puting procedure. The method of least squares can be used 
as the means for "fairing out" scatter. The former method 
was used because it was felt that changing the instruction 
cards was not warranted. 

Since the first method for the solution of the second-order 
non-linear simultaneous differential equations used a large 
number of instruction cards, an investigation was made to 
see if a much simpler method could be used which would 
give the desired accuracy and decrease the computing time. 
Computations for the second method were carried out for 
the same two intervals as for the first method. These results 
are shown in Figures 4, S and SA. Although decreasing the 
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interval improved the final results, the simple integration 
equations were still inadequate to give accuracy throughout 
the whole range of the independent variable t. The error is 
inherent in the integration formula used, so that attainment 
of any great accuracy is impossible. Then, too, this being a 
non-iterative process, any error accumulates until the re
sults become of no significance. The second method was 
card programmed in an instruction deck of 110 cards. As in 
the first method, only one data load card for the initial 
condition was necessary. 
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SUMMARY 

Two methods for the solution of second-order non-linear 
simultaneous equations are presented. They are, basically, 
step-by-step solutions where values of the dependent vari
ables are computed at equally spaced values of the inde
pendent variable. One of the methods is an iterative process 
of predicting and correcting the dependent variables and 
their derivatives at a chosen value of the independent vari
able until convergence is attained. The other is a much 
simpler method which involves no iterative process, but 
whose accuracy wholly depends on the interval chosen. 

A derivation for the equations of motion for the case of 
a towed airplane is presented to show how the physical 
system can be interpreted mathematically. Reasons are also 
given for using a particular CPC-function panel and IBlVI 
computer. 

The final results showing the effects of the interval 
chosen and the methods used are presented as time-history 
plots of the dependent variables 0 and cpo From these plots 
it can be surmised that in order to obtain the desired accu
racy it is necessary to use the iterative method which em
ploys at least three-point integration formulas. But then, 
too, it may be necessary to choose a smaller interval for the 
independent variable or use an averaging process to "fair 
out" the scatter of results. Greater accuracy can be attained 
if higher order integration equations are used . 
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DISClJSSION 

Mr. Sheldon: I would like to make a remark about sta
bility. I know of three types of instability which can occur 
when you solve a differential equation step by step. 

One is that the original differential equation may have 
solutions which tend to infinity in the direction in which 
you are integrating, when you want a solution which tends 
to zero. Thus, any small error you make will increase ex
ponentially, and eventually obscure the solution. 

Another type of instability is that which is obtained when 
you replace the differential system by a difference system of 
higher order than the differential system. In this case, the 
difference system may have solutions which have nothing 
whatever to do with the differential system, and these may 
increase exponentially. 

The third type of instability is the type you sometimes 
get in partial differential equations, when you have hyper
bolic and parabolic systems. 

You have to be very careful to make sure that the in
stability you find as a result of your solution is not just due 
to your numerical technique. It may not really be inherent 
in the physical problem. 
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Mr. Carter: I would like to add to Mr. Sheldon's remarks 
that the stability may depend upon different difference 
equations that you might choose. 

Mr. Von H oldt: At Los Alamos we solve quite a few 
differential equations and simultaneous systems. We usu
ally start them off with the Runge-Kutta method of smaller 
intervals, which involves four iterations to get fourth-order 
accuracy. Then we switch to the Milne method. We also 
have a little trick; we know that each of the predicted and 
corrected values has a certain value, which is a particular 
coefficient times the fourth derivative. If the interval is 
assumed small enough so that these fourth derivatives, at 
two intermediate points somewhere, are approximately the 
same point or the same value is obtained, then the error of 
the corrected term is 1/29th in the fourth derivative. This 
error is the difference between the predicted and corrected 
term and can be added to the corrected term to get a still 
more accurate one. If the estimate of the error gets too 
large, we cut down to a smaller interval, and usually have a 
Runge-Kutta deck right at nand to do this. When the in
terval has been cut, we start off again with about four 
points by the Runge-Kutta method and switch into the 
lVIilne method in a smaller interval. To double the interval 
is much simpler, of course. 

Dr. Herget: Taking a look at the number of oscillations 
that there were in the solution, I am quite confident that 
200 points are sufficient to do a good job. The intuition 
with which I approach these things is concerned with the 
radian measure of an interval of time, and what is needed 

COMPUTATION 

is something of the order of magnitude of between a tenth 
and a hundredth of a radian for one of these oscillations; so 
I am confident that 2,000 points were not needed, as against 
200. 

I am always irritated by mathematicians who teach their 
students Simpson's rule and point out how tremendously 
accurate it is, because it is accurate to 1/90th of the fifth 
difference. \iVhat should be pointed out is that there always 
exist completely general formulas, which were known to 
Gauss and to which all those who highly respect Gauss in 
every other field never pay any attention! 

Aside from those remarks, I would like to make another: 
In astronomy it is generally a theorem that the best way to 
solve problems is in rectangular coordinates, the reason 
being that % = r cos () and y = r sin () and it is not neces
sary to look into any trigonometric functions if you deal 
with % and y. 

Mr. 11!ladden: We had a problem a good deal like this 
which gave rise to equations like these, and we had consid
erable trouble working at them blindly. We found that one 
of our angles was oscillating from minus 50,000 radians to 
plus 50,000 radians in a space of five hundredths of a sec
ond. Because of the nature of the problem, we were unable 
to cut down the interval; we had to keep our interval at this 
.05, and in the light of Dr. Herget's remarks we found that 
when we converted to rectangular coordinates, this oscilla
tion dropped out immediately, and apparently a solution 
was quickly obtained. 



Matrix Inversion and Solution 

of Simultaneous Linear Algebraic Equations 
with the IBM Type 604 Electronic Calculating Punch 

GEORGE W. PETRIE, III 

International Business Machines Corporation 

CUR R E N T computational literature is replete with 
many descriptions of methods for matrix inversion (see Ref
erences). Gutshall6 points out the necessity for further sta
tistical study of types of matrices which may be subjected 
to numerical inversion and suggests, also, a comparative 
study of known methods of inversion. Dantzig2 demon
strates in his simplex method a recurring need for obtain
ing the inverse of certain matrices to compute optimum pro
grams.In fact it is his request for a simple, fast procedure 
for inversion of large order Leontief-type matrices that led 
to the technique presented in this paper. The procedure, 
while using the standard elimination method,3,4,9,1l,12,15 al-
lows for simple and continuous processing of cards through 
a reproducer, the IBM Type 604 Electronic Calculating 
Punch, an accounting machine (for checking) , and a second 
reproducer. This cycle is repeated N times to invert an Nth 
order matrix. The size of the matrix is not limited, and the 
four machines are operated continuously without change of 
control panels. 

Consider the matrix equation, AX = I, as describing a 
system of simultaneous linear equations in the x's. By sim
ple operations (multiplying equations by appropriate con
stants and combining with other equations) it is possible, 
provided A is non-singular, to reduce the system to one in 
which the coefficient of X is I. In this case, the right-hand 
member of the matrix equation is reduced to the inverse of 
A. Thus, in the elimination method one starts with an aug
mented matrix composed of the original matrix, A, and the 
unit matrix, I. As the original matrix is reduced to the unit 
matrix, the original unit matrix is simultaneously reduced 
to the inverse of the original given matrix. This reduction 
may be carried out one column at a time. After k - 1 col
umns have been reduced, the procedure involves dividing 
the kth row by akk (to obtain 1 in the kth column) and then 
subtracting the product of this result with the appropriate 
constant, aik, from the ith row so as to obtain zero in the 
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kth column of the ith row. This latter subtraction is carried 
out for all i =F k. ,Columns of the unit matrix numbered 
greater than k are unaffected. The kth column is, in general, 
completely changed. Thus, N2 elements enter the computa
tion at anyone cycle. In the present procedure the kth col
umn (or vector) of the left-hand part of the reduced matrix 
is not written, because its value is known automatically. In
stead, it ,is replaced by the kth column (or vector) of the 
right-hand part of the augmented matrix after this step in 
the reduction. By selecting the appropriate formula to use 
(as listed in step 3 of the next section) , the 604 actually brings 
in vectors from the unit matrix as needed. The same ma
chine is used to allow the matrix elements to be reordered 
after each step in the elimination so that the new pivotal 
row is on top and the new pivotaJ column is at the left. 
Thus, intermediate row and column sorting is entirely 
eliminated. It is through the elimination of all collating and 
this type of sorting that the present more rapid machine 
procedure becomes possible. 

The accounting machine is used for checking purposes. 
The checking operation must be looked upon as occupying 
one step in the continuous flow of cards through the four 
machines. PrQcessing would not be appreciably accelerated 
if this check were omitted, because all machines are running 
simultaneously. It is important to point out, however, that 
the checking procedure augments the original N2 cards to 
N2 +"N cards. 

MACHINE PROCEDURE 

The original Nth order matrix aij is punched on N2 cards, 
one element together with the identifying i "and j to a card. 
An additional row of check sums is appended to the origi
nal matrix. These values are defined by 

Sj = 1-L aij 

oj, 
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A ten-digit fixed decimal system is used (two integers and 
eight decimals). Data are punched as follows: 

Columns Data 

N umbet of row (i) 
Number of column (j) 
Value of element (aij) 

1-3 
4-6 

10-19 
20-29 Value of element (aId-First card only. 

In all cases mmus signs are carried as X-punches over the 
right-hand digit. In addition, elements of the first row are 
identified with X and Y punches in column 1 (denoted 
XYl) to indicate the pivotal row; elements of the first col
umn have XY7 punches to indicate the pivotal column. 
Elements of the row of Sj are identified by XY13 punches. 
The 521 punch unit is used to supply subsequent X and Y 
punches as needed. 

After the cards are prepared and sorted to row within 
column, the first column is gang punched as listed in step 6 
below. After this preliminary step, the following six steps 
are repeated N times to obtain the inverse: 

1. Reproduce the values of i (columns 1-3) and aij (col
umns 10-19) from the leading N+l cards (with identify
ing XY7) into each N+l of the remainingN2-1 cards. 

Read (XY7) 

Digits of 1-3 
Digits of 10-19 

Punch (NXY7) 

1-3 
20-29 

This means. that an element in the ith row of the leading 
column will now appear on the same card with all other 
elements of the ith row of· the matrix. As a variation, the 
value of aij to be reproduced may be read from either col
umns 10-19 of XY7cards or from columns 20-29 of NXY7 
(no XY7) cards which have already passed through the 
punch side of the reproducer for this step. Thus, in practice, 
the operator starts with the N + 1 cards bearing the desig
nator XY7 in the read feed and all others either in the 
punch -feed or immediately available thereto. After repro
ducing the values from the N + 1 cards, both stackers are 
emptied. -The 2 ( N + 1) cards are placed together in the read 
feed and 4 (N + 1) cards are next obtained from the two 
stackers. As soon as a sizable group of cards is generated, 
one may take the cards from the read stacker. to the next 
operation process at the 521-604 while continuing to repro
duce values from the cards which came from the punch 
stacker of the .reproducer. 

In both cases a comparison check is carried on all repro
ductions. In addition, the reproduced value of i (columns 
1-3) is checked fo:r double punches. The reason for the 
reproduction of i is apparent at step 3 following. 

2. Place a blank card having a different distinguishing 
color and X Y 1 punches after the last card processed in 
step 1. 

COMPUTATION 

3. Calculate valu~s of bij and tj according to the follow
ing formulas. For complete generality assume that k-l 
steps in the inversion process have been completed, and 
that the mCltrix is in order of row within column as given in 
the following array: 

• •• Sj 

ak-I.k-I 

V ruues of bij and tj = 1 - 2: bij are computed by; , 
XY -conditions 

pivotal element XYl, XY7 

for i i- k pivotal column NXYl, XY7 

for j =f. k pivotal row XYl, NXY7 

for i:f:. k, j:f:. k NXYl, NXY7 

check, pivotal column NXYl, XY7 

for i :f:. k check, other NXYl, NXY7. 

One observes that the computation for tj is identical with 
that for bi •j where i # k. The values computed are punched 
directly into columns 30-39 on all NXYI cards. For XYI 
cards, however, the values are stored and punched on the 
following XYI card. This results in the array of values 
shown in Table I. 

Notice that no b is punched on the first card. The addi
tional cardof step 2 was added to obtain the last value. In 
addition to the above calculations, the following operations 
are performed simultaneously on the 521: 

a. offset gang punch digits of columns 4-6 into 7-9, 
b. offset gang punch XYI into XY4, 
c. gang punch XY7 into XY7 on the XYI card follow

ing an XY7 card, 
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TABLE I 

bk,k bk,i-l 

bk+1,k bk+1,k+l bk+1,J 

bi,k bi,J 

bN,k 
tk tJ 
b1,k 

bk-1,k bk-1,k+l bk-1,J ... 

d. emit XY10 into cards following the XY1 which fol
lows an XY7; stop the XY10 emission after the next 
XY1 card. 

It will be observed that these operations result in a column 
identification of the last card (the card added at step 2). As 
yet there is no row identification, but this will be supplied 
by step 1 of the following cycle. If needed for a visual check, 
it is easy to remember that the unidentified row is one 
greater than the column number which is already on the 
card. It would also be possible to prepunch the row identi
fication before step 2. This would involve a simple consecu
tive-number deck. 

4. Tabulate and list N lines with the following data: 

k (read from first card of column) 

t.+"b .. J LJ ~,J 

i 

This tabulation is used to check the accuracy of the previous 
steps. The last value should differ from -1 by no more 
than an acceptable rounding error. One has a choice here of 
checking each column separately or else the entire matrix 
as a whole. 

5. Remove the first card, for which no further use is 
made. Take the next N + 1 cards and place them at the end 
of the deck. This leaves the cards in the following array: 

bk,N-l 

bk+1,N 

bi,N 

bk-1,N 

bk,N 

bk+1,l 

bi,! 

bk-1,l 

bN,k+l 

tk +1 

b1,k+l 

b k,k-2 bk,k-l 

bk+1,k-l 

bi,k-l 

t k - 1 

bk-1,k-l 

. . 
bk,k+l bk,N bk,l bk,k 

6. Reproduce into a new set of cards (or tumbled cards 
already half utilized). 

Punch 

Digits of 1-3 
Digits of 7-9 

30-39 

XY4 
XYIO 
XY16 

1-3 
4-6 

Read 

10-19 on all cards and also into 
20-29 from XY 4, XY10 

XYI 
XY7 
XY13 

At the same time, gang punch from columns 10-19 of 
XYl, XY7 card into columns 20-29 on all NXY1, XY7 
cards. 

The new set of cards will be in such order that the 
pivotal row is on top, the pivotal column is to the left, and 
elements of both are marked with proper identifying X and 
Y punches. Thus, these cards are ready to process through 
step 1 of the following cycle. After N cycles the values ob
tained at step 5 give the required inverse. 

SOLUTION OI<' EQUATIONS 

To solve a set of linear simultaneous algebraic equations, 
the procedure outlined above is only slightly modified. The 
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same control panels are used without any changes or addi
tional wiring. The original matrix of coefficients is aug
mented by the vector of constants and row of negative sums 
of column elements for checking. Thus, one starts with a 
matrix of (N + 1 ) 2 elements. After step 1 on each cycle, the 
first N + 1 cards (XY7) are discarded. Therefore, the 
cards, which pass through the 604, number N (N + 1) , 
(N -1) (N+l), (N -2) (N+l), ... ,1 (N+l). At step 4 
the check value is approximately -1, -2, ... , -N on the 
successive steps and should differ from these negative in
tegers by no more than an acceptable rounding error. At 
step 5 the first card is removed. No other rearranging oc
curs. Finally, one obtains the solution of the simultaneous 
equations as a vector accompanied by a check sum. This 
procedure should take approximately half as long as the 
inversion procedure. 

SUMMARY 

The inversion procedure outlined. above is believed to be 
faster and easier to perform than other methods now in 
common practice. Further inquiry should be made of the 
applicability of this procedure to a floating decimal calcula
tion; also to matrices involving complex numbers.a 

For large-order matrices this procedure may be used to 
process cards continuously from one machine to another, 
keeping all machines in operation simultaneously. For 
small-order matrices, the number of cards is insufficient to 
keep all machines running. In this case, all cards would be 
processed on one machine at a time. Several matrices could 
be inverted at the same time. 

It is possible to perform steps 1 and 6 on a single IBM 
Type 519 Document Originating l\!Iachine with only one 
control panel, if a control punch has been emitted onto the 
cards at step 3. This modification would be useful for han
dling low-order matrices. 

If desired, it is also possible to handle a row check similar 
to the column check. In this case, the check sum is defined 
by: 

Si = -1 - L aij • 

j 

The Appendix contains the program for the 604 and the 
wiring diagram for the 521. 
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APPENDIX 

NOTE ON PROGRAM SUPPRESSION: Programs are suppressed 
without balance test through calculate selectors as follows: 

Programs 
1-37 

38-43 
44-56 

Calculate Selector 
6T 
2N 
6N 

On programs marked suppress PB, the wiring is for sup
press on positive balance through calculate selector 6N. 
Suppress without balance test is wired through 6T. Corre
sponding wiring occurs for NB. 



NO SUP. SEL. FACTOR STORAGE ~~'t COUNTER GENERAL STORAGE CONDITIONS 

f:.1 I.~ ('-4-) 12 4 ~ (8-6) ~ (8-6) H!. 
XY7 I:a~~ Nay! 

Xy N'~~ 
READ 101(m.dI)-241 IrJl1 . ?~·/I t'nl.< 10-1l Im.Jql~ 

1 IEMIT J RI-4 X X X 

2 RO R", T"'T RT X X X 

3 RR )( X X 

4 RO RL1L ')( )( X 

5 RO_ RT X X X 

6 121 R1l X X X 

7 PB RR_ RL X X ')( 

8 NR R03 RT ')( ')( X 

9 NR Rr-.3 RO X X X 

10 NR RT RR X X X 

11 RI- R/J )( X )( 

12PB RI RI1 ')( X X 

13'N8 RI.3. Ji'£L X X ~ 

14 PU NE' BAJ lEL R.I? II X )( 

15 PB R16 RO )( X X 

16 iNB RJ 4 RO X X X 

17 'PB RQ R! 4 X X X 

18 NB RO R12 )( X X 
19 DIVIDE RO X X X 
20 RR RT X X X 

21 R! f, RO X )( X 

22 RO Rl X X X 

23 IDIVI1JL RD X X X 
24 RR X X X 

25 NR RO RT .Ii X .x. ~ 
26 !VB Rl RR X X X 

27 NB RO RI6 X X )( 

28 RJ RO X X X 

29 NB DIVIDE RfJ X X X 

30 RR X X X 

31 NB MULT- RO X X X 

32 AIR RR 6 RI X X X 

33 !VB RI RO X X X 
34 AIR RR 2 RT X X X 

35 VR >'jN7NRA RT RO X X 

NB AlTT RI RO X X 

NB NNT R~ RD X J( 

!VB NTN RT- RO X X 

NB TNN RT- RO X 

IVB TTT RT- RO X 

INB TN T RT RO X 

INB TT N RT RD X 
36 5N7NRA RD RT )( l( 

NTT RO RT X X 

NNT RO RT- X X 

NTN RO RT- X )( 

TNN RO RT- X 

TT T RO RT- X 

ITN T R() RT X 

ITTN RO RT X 
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DISCUSSION 

Dr. Aroian: Could you tell us something about the round
off error ? You started with eight significant figures in a 
40-by-40 matrix. What do you have left at the end? 

Dr. Petrie: May I quote von Neumann and Goldstein? 
I believe they state if you start with a 19-by-19 matrix you 
lose eight digits. That appears to be the worst case. People 
who are inverting high-order matrices seem to have better 
luck. I do not know whether it is a matter of luck or some
thing that is not yet known. 

Dr. Brown: What happens when you get eleven digits? 

You say the machine stops. Then what do you do? 
Dr. Petrie: In this case, it would be necessary to perform 

some scaling of the information; that is, divide one column 
by a power of 10, or something of that type. However, it is 
decidedly not a machine procedure. 

lJ,lr. Schlieser: Could you give me an estimate of the time 
required to invert, say, a 30-by-30 matrix, using your 
method? 

Dr. Petrie: This method is quite new and has not been 
fully tested. I wish I could give you specific figures of what 
has been done. Theoretically, the 30-by-30 matrix would 
involve approximately 900 cards which can be processed in 
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anyone machine in nine minutes. We must repeat that 
process thirty times. 

panel. There is a check to see immediately if we do have a 
zero divisor. 

Professor Verzuh: Do you use just one 604 control panel 
for this operation? 

Dr. Petrie: Yes. 

Professor Verzuh: With regard to checking, our experi
ence indicates that it is well to include not only check rows 
but check columns. When you do encounter an error you 
have an indication of the spot that is in error. 

Mr. Tillitt: Sometimes you might get a zero divisor. I 
wonder if it would be worth while to have a 604 "look" 
every time there is division to see if division is being used. 

Dr. Petrie: This is programmed in this particular control 

Dr. Brinkley : You commented that the choice of which 
of the four metric operations you have is determined by X 
punching in the card. At what stage in the procedure are 
those X punches imposed and how is that done? 

Dr. Petrie: Originally the matrix is prepared with the 
first column and the first row with significant X punches. 
Each time in the reduction in passing through the 604, new 
X punches are introduced in the row following the pivotal 
row and into the column following the pivotal column. The 
X punches at step 6 are then reproduced into the new set of 
cards, where they will serve as instructions to the 604 in 
the following cycle. 



The Determination of Eigenvector sand 
Eigenvalues of Symmetric Matrices* 

EVERETT c. YOWELL 
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THE REA R E several basic properties of matrices and 
vectors which underlie all the common numerical methods 
of finding eigenvectors and eigenvalues. It might be advis
able to state these explicitly before examining any of the 
numerical methods. 

The most fundamental property is that a vector remains 
a vector under the operation of multiplication by a matrix. 
If we consider an n-dimensional vector as a one-column 
matrix of order n, then by applying the definitions of matrix 
multiplication we can show that the result of multiplying 
an nth-order square matrix by an n-dimensional vector is 
another n-dimensional vector. We may write this symboli
cally as 

Ay = z. (1) 

(In this and all subsequent equations, capital letters repre
sent square matrices, and small letters represent vectors. 
The letter % will be reserved for eigenvectors, and the sym
bol A will be used only for eigenvalues.) 

Secondly, this process of matrix multiplication is distrib
utive. That is 

A(y+z) = Ay + Az . (2) 

Thirdly, the process of matrix multiplication is associa
tive. If A and Bare. two square matrices, then 

A(By) = (AB)y 

In particular, if k is a constant, 

A(ky) = k(Ay) 

(3) 

(4) 

These first three properties hold for all matrices and all 
vectors as long as the process of multiplication is definable. 

Let us now define an eigenvector. If the resulting vector 
z of equation 1 is parallel to the initial vector y, then y is an 
eigenvector of the matrix A. Or symbolically, if 

A% = A%, (5) 

where A is a constant, then if % is not of zero length, % is an 
eigenvector, and A is its associated eigenvalue. 

*The preparation of this paper was sponsored (in part) by the Office 
of Air Research. 
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From this definition, we can show that every matrix of 
order n has precisely n eigenvalues. Let us rewrite equa
tion 5 by transferring the A% term on the right-hand side of 
the equation to the left side. This gives 

(A-AI)% = 0 . 

Here I is the unit matrix, the matrix with 1's on the main 
diagonal and O's everywhere else. In this form, it is easy to 
see that the matrix equation can be written as a system of n 
simultaneous equations in n unknowns. (We consider the 
components of % as unknown and A as a known parameter.) 
Further, this system is homogeneous. Now a homogeneous 
system of equations can have a non-zero solution if and 
only if the determinant of the coefficients is zero. This con
dition is 

IA - All = 0 . 

If we expand this determinant, we obtain a polynomial of 
degree n in A, and the roots of this polynomial are the values 
of A for· which eigenvectors % can be found. Since a poly
nomial of degree n has precisely n roots, it follows that 
there are precisely n eigenvalues A of the matrix A. 

It can also be shown that associated with each eigenvalue 
of a symmetric matrix is an eigenvector. This is more com
plicated than the demonstration that there are n eigen
values, because of the possibility of two or more eigenvalues 
being equal. If two eigenvalues are equal, then it is not pos
sible to specify the two eigenvectors uniquely, but only the 
plane in which they lie. For any linear combination of the 
two will also satisfy the definition of an eigenvector. Sup
pose we have a case where A1 = A2 and have by some means 
or other found two vectors %1 and %2 which satisfy the 
eigenvector definition. Then we know that A%l = A1%1 and 
A%2 = A2%2. Let us now take a linear combination of 
%1 and %2, 

z = C1%1 + C2%2 . 
Applying our matrix, we obtain 

A (z) = A (C1%1 + C2%2) 
= C1A %1 + C2Ax2 

= C1A1%1 + C2A2%2 . 
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Since Al = A2, this reduces to 
A (z) = Al (C1X1 + C2.1:"2) 

= A1Z • 

Hence, z is just as good an eigenvector as Xl or X2. 

From our basic definition of an eigenvector, it is apparent 
that only the direction of the vector is important. Its length 
is not determined. Therefore, the length can be chosen in 
the most convenient manner. This usually means either 
choosing the length of the vector to be unity, or choosing 
the largest component to be unity. 

\Vhat we can say about the length is how the length 
changes under the matrix multiplication. If we define Iyl to 
be the length of y and define Al as the absolutely largest 
eigenvalue and AN as the absolutely smallest eigenvalue, 
then under multiplication by the matrix A we can show that 

AN < :~: < AI , where z = Ay (6) 

Another property of the set of eigenvectors of any ma
trix is that, if there are n eigenvectors, they span the space 
of the matrix-that is, they can be used as a coordinate sys
tem to express any other vector of the same dimensionality. 
If we let Xi be the ith eigenvector, then any arbitrary vector 
y can be written as a linear combination of the eigenvectors; 
That is, 

(7) 

There is one last property of the eigenvectors. For a 
symmetric matrix, these vectors are mutually orthogonal. 
That is, 

(8) 

N ow that we have briefly surveyed the mathematical 
theory of eigenvectors and eigenvalues, we can examine 
some of the numerical methods for finding them. There are 
three, namely: the power method, the method of the char
acteristic polynomial, and the gradient method that we shall 
now discuss. 

The first of these, the power method, is perhaps the best 
known method for finding eigenvectors. Mathematically, it 
is based on these three facts: 

(B) A(y+z) = Ay + Az 

( c) AXi = AiXi . 

Suppose we choose any arbitrary vector Yo. By statement 
(A), this can be written as a linear combination of the eigen
vectors of the matrix. If we multiply this vector by the 
matrix A, we get another vector Y1 as the result. Now by 
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statement (B), we see that multiplication of Yo (which is a 
linear combination of the eigenvectors) by the matrix A is 
equivalent to taking the same linear combination of the 
products of the eigenvectors by the matrix. By statement 
( c), we see that each product of eigenvector and matrix is 
equal to the product of the eigenvector and eigenvalue. 
Putting this symbolically, 

N 

Ayo = Y1 = 1CiAXi 
i=I 

N 

Ayo = Y1 = 1CiAiXi 
i=I 

\Ve now perform the operation again on the vector Yl. 
The resulting vector Y2 can, by the same arguments, be 
shown to be equivalent to 

N 

" 2 
'-' Ci AiXi 
i=I 

After a large number of iterations, our iterated vector Yn 
can be written 

It is now necessary to show that, for sufficiently large val
ues of n, Yn approaches the absolutely largest eigenvector XI. 

(The short phrase "largest eigenvector" will be used to 
mean the eigenvector associated with the largest eigenvalue; 
the phrase by itself has no meaning as the length of the 
eigenvectors is arbitrary.) Let us divide both sides of the 
equation by A;. This gives 

Since AI is the eigenvalue of greatest absolute value, the 
fraction Ai/AI lies between + 1 and -1. Hence, sufficiently 
large powers of the fraction approach zero arbitrarily 
closely. Thus, for sufficiently high powers of n, Yn/A7 arbi
trarily closely approaches the vector CIX1. And we do not 
have to worry about the constants A7 and c[, for we have 
seen that an eigenvector is defined in terms of its direction 
alone, and any multiplicative constant is admissible. 

It is possible that the original trial vector was chosen in 
such a manner that CI was zero. In this case, the power 
method may converge to the second largest eigenvector 
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rather than the largest. The probability of such an unfor
tunate choice is small, but it has occurred in our experience 
at the Institute for Numerical Analysis. 

The two disadvantages of the power method are apparent 
from this discussion. The first is the need for normalization. 
We saw that the nth iterate of y became, for all practical 
purposes, A;%I. Now if AI is greater than 1, the length of Yn 
will become very large as n increases, thus eventually lead
ing to an overflow. And if AI is less than 1, the length of Yn 
will become very small as n increases, thus eventually lead
ing to a zero vector. It is necessary, then, to normalize the 
length of the vector after every few iterations. For conven
ience, we have generally normalized the largest component 
to unity at each step of the iteration. 

The second disadvantage is the possible slow speed of con
vergence of this method. The fraction (A,/ AI) n approaches 
zero as n increases, but for values of A/AI near to 1, n must 
be very large in order to reduce the contributions of the 
smaller eigenvectors to a preassigned amount. 

The following table gives the smallest exponent n such 
that the nth power of a given ratio r = AIl/AI will be less 
than a preassigned small number f. It will serve as a rough 
guide to the number of iterations needed to change an arbi
trary vector into an eigenvector of a given degree of purity 
when some knowledge is available as to the relative sizes of 
the two absolutely largest eigenvalues. 

( 10-4 10-5 10-8 r 

0.40 11 13 21 
0.50 14 17 27 
0.60 19 23 37 
0.70 26 33 52 
0.80 42 52 83 

0.90 88 110 175 
0.95 181 226 361 

From this table, it is apparent that the power method con
verges very slowly if the ratio of the two absolutely greatest 
eigenvalues is much greater than 0.50. 

This slow rate of convergence makes the power method 
impractical unless some method is available for accelerating 
the convergence. Fortunately, such methods have been de
vised. Let us consider the case of two close eigenvalues. By 
one acceleration schemel three successive iterates, Any, 
An+ly, and An+2y are formed, choosing n sufficiently large 
so that we are reasonably sure Any is a linear combination 
of only two eigenvectors. It should be noted that An+ly and 
An+2y should not be normalized in length. Now choose any 
two vectors sand t and form the scalar products 

a12 = s . Any 
a22 = S 0 An+ly 

a32 = S . An+2y 

a13 = t 0 Any 
a23 = t 0 An+ly 

a3S = t 0 An+2y . 

COMPUTATION 

Then the two eigenvalues that we are seeking are the roots 
of the determinantal equation 

o. 

This can be demonstrated to be true as long as Any is a 
linear combination of only two eigenvectors. In case the 
determinantal equation yields zero coefficients, a different 
choice of sand t will give a solution in nearly all cases. 

This scheme can be easily generalized to cases where 
more than two eigenvalues are close together. If we con
sider the case of three close eigenvalues, we find that we 
need four successive non-normalized iterates, Any, An+ly, 
An+2y, and An+3y. We choose three arbitrary vectors s, t, 
and u. We form the twelve scalar products 

al2 = s . Any a13 = t . Any 
a22 = S • An+ly a23 = t . An+ly 

a32 = S 0 An+2y a33 = t 0 An+2y 

a42= S 0 An+3y a43 = t : An+3y 

au = U . Any 
a24 = U . An+ly 

a34 = U . An+2y 

a44 = U . An+3y 

and solve the following determinantal equation for the three 
close values of A: 

1 a12 al3 au 
A a22 a23 a24 O. A2 a32 a33 a34 
A3 a42 a43 a44 

If one is using the power method, this acceleration scheme 
is only used when some close eigenvalues slow the rate of 
convergence down below a practical level. However, the 
closeness of the eigenvalues is not necessary for the use of 
this scheme. In its most general form, this acceleration 
method leads directly to the method of the characteristic 
polynomial. 

The method of the characteristic polynomial, briefly, con
sists in setting up a polynomial of degree n whose roots are 
the eigenvalues of the matrix. There are several ways of 
setting up this polynomial. One follows the acceleration 
scheme outlined above. Since we are looking for all n eigen
values, we need n + 1 successive non-normalized iterates 
and n arbitrary vectors. As before, we form the scalar 
products 

a12 = soy al3 = t·y al,n+l = z 0 y 

a22 = soAy a23 = toAy a2,n+l = s oAy 

aS2 = so A2y a33 = t oA2y a3,n+l = z . A2y 
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and the determinantal equation 

1 a12 a13 al,n+l 
A a22 a23 a2,n+l 
A2 aS2 ass as,n+1 

O. 

An an+l.2 an+l,S an+l,n+l 

The left~hand side of this equation is expanded by any prac
tical method to give the characteristic polynomial. 

A second way of finding the characteristic polynomial is 
algebraically more straightforward. It is to write down the 
condition (which we have done previously) that a non-zero 
eigenvector exists, namely 

IA - All = 0 . 
This determinantal equation, when expanded by any prac
tical method, again yields the characteristic polynomial. 

Either of these two methods leads to the evaluation of a 
high-order determinant. A method which does not demand 
this is one which makes use of the theorem of Sylvester and 
Cayley which states that a matrix satisfies its own charac
teristic equation. If the characteristic equation is 

then the matrix equation 
n-1 

An+ LaiAi = 0 
i=O 

is also true, as is the equation in any iterated vector 
n-1 

Any + LaiAiy = 0 . 
i=O 

Making use of this last equation, we choose any vector 
and form the n+-l successive iterates y, Ay, A2y, ... ,Any. 
No normalization of length can be used in this sequence. 
Then taking the jth component of each vector, we have a 
set of n equations of the form 

n-1 

Lai(Aiy)j = - (Any)j 
i=O 

This is a set of n linear equations-one for each component 
of the vector-in n unknowns, the coefficients ai. It can be 
solved by standard techniques to give the coefficients of the 
characteristic polynomial. 

Once the characteristic polynomial is found by anyone 
of these proposed methods, the eigenvalues, which are the 
roots of the polynomial, are very easily found. A straight 
solution by Newton's method will produce the roots. The 
eigenvectors are then calculated from the matrices A - AJ. 
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The components of the ith eigenvector are the cofactors of 
any row or any column of the determinant IA - AJI. 

This method of the characteristic polynomial has one 
great disadvantage. It demands that a large number of 
digits be carried throughout the computation. In setting up 
the n+ 1 non-normalized vectors, a large number of digits 
must be carried to insure some significance in the last 
vector. And the coefficients of the characteristic polynomial 
must be carried to a large number of digits in order to in
sure significance in all coefficients and hence in all the roots. 

We have seen that both the power method and the 
method of the characteristic polynomial have certain com
putational difficulties. A method which presents fewer nu
merical difficulties is a gradient method which is applicable, 
however, only to symmetric, or more properly to Hermitian, 
matrices.a 

A gradient approach to a problem is an approach that 
leads to maxima or minima. We look for some function that 
has a maximum or a minimum at an eigenvector. Such a 
function is 

/1-(%) 
%. A% 

When % is the largest eigenvector, p. (%) is a maximum and 
is the algebraically largest eigenvalue. When % is the small
est eigenvector, p.(%) is a minimum and is the algebraically 
smallest eigenvalue. When % is any other eigenvector, /1-(%) 
is a critical value as well as an eigenvalue, and the deriva
tive of /1-(%) is zero at that point. 

If we choose an arbitrary vector y, we can compute p.(y) 
and its derivative, and we shall most probably find that the 
derivative is not zero. Thus, we know that y is not an eigen
vector and /1-(Y) is not an eigenvalue. However, we can 
compute the gradient of p.(y), that is, the direction of 
change of y which produces the largest change in /1-(Y). The 
direction of the gradient is the direction in which p.(y) 
locally increases most rapidly, or it is the direction of steep
est ascent. It can be shown that the gradient of p.(y) except 
for a scale factor, is given by 

Hy) = Ay - p.(y)y 

Knowing the direction of the gradient, we can then con
struct a new vector y which more closely approximates an 
eigenvector. If we change y in the direction of steepest 
ascent, 

Yl = Yo + ~~(y) , 

Yl tends to approximate the algebraically largest eigen
vector. If we change y in the direction of steepest descent, 

Yl = Yo - ~~(y), 

Yl tends to approximate the algebraically smallest eigen
vector. The size of the constant ~ is important. In order to 

aThis method was developed by Dr. M. R. Hestenes and Dr. W. 
Karush2 of the Institute for Numerical Analysis. 
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insure convergence of p,(y) to an eigenvalue and Y itself 
to an eigenvector, ~ must be chosen less than 2/ M, where 
M = Al - An. (Arabic sUbscripts will denote the algebraic 
ordering of the eigenvalues; Al is the algebraically largest 
and An is the algebraically smallest eigenvalue.) It can 
further be demonstrated that if ~ is less than 1/ M, ~ con
verges in direction to the second eigenvector (%2 or %n-l 

according to a positive or negative choice of ~). 
Although this gradient method seems quite different from 

the power method, the two are very closely related. In the 
power method, the relation between a new approximation 
and an old one is 

Yr+l = AYr . 

In the gradient method, the relation is 

Yr+l = Yr + ~ [AYr - P,(Yr)Yr] 

If we choose ~ as [1/ p, (Yr ) ], this becomes 

AYr 
Yr+l = Yr + -(-) - Yr 

p, Yr 

AYr 
= P,(Yr) • 

Thus, the gradient method with this choice of ~ is the 
same as the power method with a normalizing factor of 
[1/ p, (Yr) ]. This equivalence means that the amount of work 
necessary to produce an eigenvector by either of these two 
methods is roughly comparable. 

Since the gradient method is about equivalent to the 
power method, it also demands an acceleration scheme to 
insure convergence for close pairs of eigenvalues. We shall 
first show that the gradient method tends to remove the 
lower eigenvectors early in the iteration. Let us assume that 
we have chosen ~ to be 

f3 
Al - An 

where 0 < < f3 < 1. Our iteration scheme then becomes 

Yr+l = Yr + ~HYr) 
= y" + ~[AYr - P,(Yr)Yr] 

= ~ (~Yr + AYr - p,(Yr)Yr) 

= ~ [ {~ - p, (Yr) } I + A JYr 

After several iterations, P,(Yr) very closely approaches Al 

and can be approximately replaced by A1. Hence, 

If we now replace 1/~ by (AI -An) /{3, we find that 

COMPUTATION 

Since we have chosen ~ so that f3 is close to 1, we can 
approximately replace f3 by 1, getting 

Yr+l = ~ [A - AnI] Yr . 

This is the formula for the power method using the matrix 
A - AnI and the normalizing factor ~. Let Vi be the eigen
values of the matrix A - AJ. Then the relation between 
the eigenvalues of A and those of A - AnI is 

Vi =Ai - An . 

Thus, we have effectively transformed our scale so as to 
make the algebraically smallest eigenvalue about zero. The 
power method then kills off the smallest eigenvector very 
rapidly, since the ratio Vn/Vl will be very small. It should be 
noted that, while the gradient method effectively uses the 
matrix A - kI, the value of k depending on the choice of 
~, the results that it produces are the eigenvectors and 
eigenvalues of the matrix A. 

After some steps of this nature, the lower eigenvectors 
will be removed from the trial vector. We apply our accele
ration process by increasing ~. Suppose we were to choose 
~ = (1/AI-A5)' The gradient process would be equivalent 
to the power method with the matrix A - A5I, and would 
very quickly remove the fifth eigenvector %5. In general, we 
would start with an ~ close to our original limit l/M, and 
increase ~ as the vector converged to an eigenvector. Con
stancy of direction of the gradient HY) would be our cri
terion for increasing ~. 

This acceleration method is not normally applied by in
creasing ~ monotonically; rather, one intersperses a larger 
value of ~ among several smaller ones. The reason for this 
is that large values of ~ tend to magnify the contribution 
from any small eigenvector that may be present, and 
round-off error always introduces small portions of all 
eigenvectors. Hence, one uses several small values of ~ to 
keep the smaller eigenvectors out of the trial vector and 
then uses a large value of a to remove a portion of the larger 
eigenvectors. 

There is a fairly simple geometrical picture that may 
make this acceleration scheme a little clearer. The function 
P,(Yr) has only one maximum and one minimum. The rest 
of the critical points are saddlepoints. We now start our 
procedure by choosing an arbitrary vector }', computing the 
function p, (y) and the direction of steepest ascent ~ (y ) . 
We want to change y by moving in the direction of ~ (y ) , 
but we dare not move too far or we may find ourselves over 
a saddle and down the slope on the other side. So we take 
a small step in the direction of ~ (y ) (we choose a small 
value of ~) , we stop and re-evaluate the direction of steepest 
ascent. When we get to a point where the direction of the 
gradient changes very little from step to step, we know we 
are nearly on a ridge and can follow the ridge a long dis
tance toward the peak. So we take a long step forward (we 
choose a large value of ~). However, our direction was not 
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precisely correct. Although we are much closer to the peak, 
we are now down on the side of the ridge and must slowly 
make our way to the ridge again by small steps and by con
stantly recomputing the direction of steepest ascent. Thus, 
step by step, we make our way to the peak. 

So far, we have talked about finding the largest eigen
value by the power method and the gradient method. To 
find the other eigenvalues and eigenvectors is not difficult 
if the matrix A is symmetric. We make use of the mutual 
orthogonality of the eigenvectors, and seek by either 
method the largest eigenvector which is orthogonal to the 
one we know. It is very easy to make one vector orthogonal 
to another. If x is our known eigenvector, y is any arbitrary 
vector, and y is that component of y which is orthogonal to 
x, then y can be found from the equation 

_ y' x 
y=y- x·xx. 

In either the power method or the gradient method, the 
second eigenvector can be found by choosing any trial 
vector y, and keeping it orthogonal to the first eigenvector 
during the computing process. If y is made orthogonal to x, 
it should theoretically stay orthogonal to it. However, 
round-off error will continuously bring in portions of x, 
and the numerical operations will magnify these small por
tions. Hence, every once in a while the iterated vector must 
be re-orthogonalized to keep out the largest eigenvector. It 
will then converge to the second eigenvector. 

We have spent a great deal of time talking about the
oretical ways of finding eigenvectors and eigenvalues. At 
the Institute for Numerical Analysis, we have tried all 
three of these methods on our IBM Card-Programmed 
Electronic Calculator and have some practical experience 
that may be of value in assessing the relative merits of these 
three methods. 

We have solved quite a few eigenvector problems by the 
power method. Our operating procedure has been as fol
lows. We set up a control deck of four parts. Part one loads 
the 941 storage unit with the components of the trial vector. 
Part two of the control deck orthogonalizes the trial vector 
to all known eigenvectors. Part three normalizes the length 
of the trial vector to unity. Part four multiplies the trial 
vector by the matrix to get the next approximation. 

The loading deck consists of spread-read-in cards which 
carry the components of the trial vector and instruction 
cards which transfer these components to the 941 . storage 
unit. This section of the control deck is used only at the 
start of the run, if the matrix is of low order. It must be 
used at each step if the order of the matrix is large. For it 
is apparent that no component of the old trial vector can 
be thrown away until all but one component of the new trial 
vector has been computed. As the components of the old 
trial vector are used in computing the last component of 
the new trial vector, they can be thrown away. So, if the 
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matrix is of high enough order that two trial vectors cannot 
be simultaneously retained in the storage system of the 
machine, then the components of the new trial vector must 
be punched out and read back into the storage system at 
the beginning of the next iteration. 

The orthogonalization deck is not needed when solving 
for the largest eigenvector. It is needed when solving for 
the smaller eigenvectors, and its size increases as the num
ber of known eigenvectors increases. When finding the sec
ond eigenvector, the trial vector must be orthogonal to one 
known vector; when finding the third eigenvector, the trial 
vector must be orthogonal to two known vectors; when 
finding the nth eigenvector, there are n - 1 known eigen
vectors against which to orthogonalize. Notice that it is 
unnecessary to solve by iteration for the nth eigenvector. 
The orthogonality conditions are sufficient to define its di
rection uniquely. 

The orthogonalization deck first computes the scalar 
product of the trial vector, which is stored in the 941, and 
the known eigenvector, which is punched into the instruc
tion cards. The scalar product is accumulated in one of the 
counters of the IBM Type 417 Accounting Machine. This 
is then divided by the product x . x, which is a constant 
and is punched on one of the instruction cards. The quotient 
repla.ces.t' . y in the counter of the 417. This new constant 
is then used as a multiplier of the components of the eigen
vector x. As soon as the component, which is carried on one 
of the instruction cards, is multiplied by this constant, it is 
subtracted from the corresponding component of y, which 
is in the 941, and the difference replaces the old y compo
nent in the 941. This operation requires only one counter 
in the 417, and hence causes no strain on tight storage 
space. 

It is unnecessary to orthogonalize at every step. We gen
erally print out the product y . x. As long as this product 
is less than a hundred in units of the last place carried, we 
feel that no great lack of orthogonality has occurred be
tween successive orthogonalizations. If the product stays as 
small as three or four units in the last place, then we are 
orthogonalizing too frequently. 

The normalization deck is the first deck that is always 
needed. This deck sums the squares of the components of y 
in one of the counters of the 417. The square root of the 
sum is taken to give the length of y, and this quantity re
places the sum in the 417 counter. This length is then di
vided into the components of y, and the quotients replace 
the old components of y in the 941 storage units. This oper
ation, like the orthogonalization, requires only one addi
tional storage space, a 417 counter, and does not generally 
add to the storage problem. We print out the length of the 
vector as a check on the convergence of the eigenvector. 

The multiplication deck multiplies the elements of the 
matrix by the components of the trial vector. The elements 
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are punched on instruction cards, while the components of 
the vector are stored in the 941. The components of the 
new vector are accumulated in the counters of the 417. If 
the matrix is of sufficiently low order, the new elements are 
transferred to blank spaces in the 941 until all elements are 
computed and available in storage. They are then all trans
ferred to the spaces of the 941 occupied by the correspond
ing elements of the old vector. If the matrix is not small 
enough, the elements of the new vector are punched out of 
the 417 counters as soon as these counters are full. 

vVe have used this method successfully in some cases of 
non-symmetric matrices with well separated eigenvalues, 
and used it unsuccessfully in one case of non-symmetric 
matrices with close sets of eigenvalues. It is a method with 
some advantages, and one that should be considered· when 
looking for a way to solve an eigenvector problem. 

The method of the characteristic polynomial is one that 
has proved the least successful at the Institute for N umeri
cal Analysis. We have tried it only once, and that was as a 
training program for a class of students. We tried to solve 
a fourth-order matrix by this method, and ended up with 
only four significant figures. We set up our characteristic 
polynomial using the Sylvester and Cayley approach. The 
coefficients of the polynomial dropped off rapidly in size. 
We solved for the roots of this polynomial by Newton's 
method. The accuracy of the roots was limited by the accu
racy of the coefficients of the polynomial. And we computed 
the components of the eigenvectors by taking minors of the 
determinant JA - AJJ. From this one sample, we feel that 
this approach is not desirable in the case of one or two 
matrices, as there must be a great deal of attention given to 
the shifting to preserve the significance of the coefficients of 
the polynomial. We feel that this may have better uses as a 
way of solving a large number of matrices on a machine 
capable of handling longer numbers. 

We have, of course, tested the gradient method exten
sively; Our procedure has been to set up a control deck of 
five parts. Part one is the loading deck. Part two is the 
orthogonalizing deck. Part three is the deck that computes 
the function p..(y). Part four computes the gradient ~(y). 
Part five computes the next approximation Yr+l. 

The loading deck and the orthogonalization decks are ex
actly analogous to those used in the power method. The first 
new deck is the deck which computes p.(Yr). We store the 
vector Yr in one half of the available storage. This deck 
multiplies the vector by the elements of the matrix, which 
are punched on the instruction cards. As soon as a compo
nent of the vector AYr is completed, it is transferred to the 
free half of the memory. Now the two scalar products Yr . Yr 
and AYr . Yr are computed and stored in two counters of the 
417. The function p..(Vr) is then computed and replaces one 
of the now unnecessary scalar products in the 417. This 
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value of p.. is then printed out to enable us to check on the 
convergence of the eigenvalue. 

The fourth deck computes ~ (Yr ). The components of Yr 
are multiplied by the value of p..(Yr) and subtracted from 
the components of AY1·' The difference is the component of 
~(Yr) and it replaces the corresponding component of AYr 
in the memory. 

The last deck computes the new approximation Yr+l. 
Both vectors Yr and ~(Yr) are available in the memory. The 
constant a is read in from an instruction card, and the com
ponent of the new vector is computed by adding a times the 
component of HYr) to the component of Yr. The new com
ponent replaces the corresponding component of Yr in the 
memory. The components of ~(Yr) and those of Yr+l are 
printed out, for the components of ~ (Yr) go to zero as Yr+ 1 

approaches an eigenvector. 
In practice, we have found all six eigenvalues and eigen

vectors of a sixth-order symmetric matrix in six hours. The 
accuracy of the vectors was better than one part in ten 
million in the length, and the accuracy of the eigenvalues 
was about the same. For matri<;:es of the order of 5 to 8, we 
figure that an hour per eigenvector is a reasonable time 
estimate. We have also solved matrices of higher order.b 

The choice of a particular computing method depends a 
great deal on the problem at hand and the equipment avail
able. It is our opinion that the gradient method is preferable 
to the power method in finding the eigenvectors of a few 
matrices. Its advantages are mainly its flexibility. It needs 
no normalization, its acceleration process is very easy to 
apply, its gradient converges to give a two-digit approxima
tion to the next eigenvector, it will find either the highest 
or the lowest eigenvector-these are all advantages. How
ever, the method needs the watchful care of an operator, 
and may not be well adapted to finding all the eigenvectors 
of a large number of matrices until fully automatic com
puters (ones which store the programming inside the in
ternal memory) are available. And if the matrices are not 
symmetric, then the choice has to be between the power 
method and the method of the characteristic polynomial. 

The eigenvector problem is by no means solved from the 
point of view of a computer. "Vhile the gradient method 
offers a method that will give an efficient solution to the 
eigenvector problem for symmetric matrices, no matter how 
closely the roots are spaced, there is no method which will 
always efficiently find the eigenvectors of a non-symmetric 
matrix. Once a reasonable method is devised to handle the 
case of the non-symmetric matrix with close eigenvalues, 
then we can say that this method, together with the gradient 
method, will allow us to solve the eigenvector problem for 
all practical cases. 

bOne of order 17 was solved by Mr. Robert Hayes, one of our grad
uate fellows, who has been very active in testing the numerical 
process. He is confident that he can solve a matrix of order 24 by 
this method. 
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DISCUSSION 

Dr. Welmers: Do you have any impressions as to whether 
this method could be extended to a non-symmetrical matrix 
or whether you have to start off on an entirely different 
method for those? 

Dr. Yowell: Dr. Hestenes has been trying to answer that 
question now for about a year and a half. 

Professor Verzuh: I wonder whether some of the people 
in the aircraft industry have any practical comments on 
non-symmetrical matrices. 

Dr. Yowell: I can make a comment for John Lowe in his 
absence, because I have discussed the problem with him 
many times. 

He expands the non-symmetric matrix, finds the charac
teristic polynomial and solves for the root by Newton's 
method. I believe this is a widely-used method. 
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Mr. Bell: We have used the method that Dr. Yowell has 
just described. We have used another one that I would like 
to call a guessing-game, in which you take the matrix, 
assume a value for the eigenvalue, place it in all elements 
except 1, rearrange the matrix so that the element which 
does not have an eigenvalue is in the upper corner, reduce 
the matrix to a triangular one so that the determinant is 
now equal to the product of the main diagonals, and you 
adjust this one element so that the problem will be zero. 
You have a product of terms, none of which is equal to 
zero. You want it to be equal to zero; so, by adjusting the 
last term, you have a value. If it agrees with the initial 
guess, you have the eigenvalue. This supposes that you 
have some knowledge of where the eigenvalue is. It has the 
advantage in the aircraft field that very often they do have 
quite good knowledge of where the root lies, and can go 
after a specific value without having to grind through a 
number, working from either the low or the high end. 

Since we do a great deal of work of this type, working 
on the average with eighth-order complex matrices, we 
have an average of about three guesses per eigenvalue. It 
requires something of the order of about an hour-not of 
machine time but of elapsed time-to get out one trial; so, 
about three trials will give an eigenvalue, with the assump
tion that you know where you are looking. 



An Application of the IBM Card-Programmed Electronic 
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A MET HOD is shown by means of which the design 
maneuvering horizontal tail loads of an airplane can be cal
culated rapidly on the IBM Card-Programmed Electronic 
Calculator. This method is based upon use of the Laplace 
transform to derive a solution of the differential equations 
which is suited to machine computation techniques. 

The methods shown in references 1 and 2 were devised 
primarily for manual computation and are very cumber
some to apply directly to machine computation procedures. 
Also, these methods are limited to the use of a trapezoidal 
time history of the elevator deflection, while the method 
shown in this paper is good for any shape of the elevator 
deflection time history. This means that experimental flight 
test data can be checked and correlated directly with the 
machine calculation method shown here. 

Two possible cases are obtained for the solution of the 
differential ~quations. Case I represents a stable airplane 
configuration, while Case II represents an airplane config
uration having a heavily-damped short-period oscillation. 
Whether Case I or Case II (described mathematically 
under the section headed Theory) is required to obtain the 
solution of the differential equations depends largely upon 
the fore and aft location of the center of gravity of the air
plane for the loading condition being analyzed. The numeri
cal example shown in this paper is a Case I solution. It will 
be seen that the Case II solution can be obtained in a 
manner very similar to that shown in this paper for Case I, 
if the proper programming revisions are incorporated to 
take care of the differences in the equations for the two 
cases. 

The problem upon which this paper is based is a typical 
airplane design analysis required to establish the magnitude 
of the dynamic loads which will result when a given load 
factor is imposed upon the airplane. It should be apparent 
that other dynamic loads analyses such as landing loads, 
gust loads (near critical flutter speeds), aileron loads, and 
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vertical tail loads can be calculated in a manner very similar 
to the methods shown in this paper. 

The estimated CPC operating time for a production run 
for 35 time intervals based upon the method shown in this 
paper is about one hour per loading condition. The same 
analysis setup parallel to the manual computation method 
.shown in reference 1 takes three hours per loading condi
tion. In addition, more re-runs are required for this latter 
method, because more errors in card handling occur in this 
more complicated procedure. Hence, the method shown in 
this paper results in better than a 70 per cent saving in CPC 
running time. 

Before discussing the actual theory involved, it might be 
well to define the symbols which will be used. The nomen
clature is given on pages 121 and 122. 

THEORY 

The equations of motion used are taken directly from 
reference 1. The discussions behind the assumptions leading 
to the neglect of certain stability derivatives in order to 
obtain the simplified equations shown below are beyond the 
scope of this paper. The reader is referred to references 1 
and 2 for elaboration on this phase of the problem. 

The equations of motion are 

w-Z1Ow-Uoq=o, 

M 10 W + M iv W + M q q - 4 = - Moe Se 

other required parameters are 

All = W - Uoq , 

w 
aw = Uo ' 

. W 
aw = Uo ' 

(1) 

(2) 

(3) 

(4) 

(5) 

(Continued on page 123) 



1.* 
dCL 

dry, 
2. p 
3. Sw 
4. Uo 

5. Constant 
6. M 

NOMENCLATURE 

= Slope of lift curve of the wing (per radian) 

= mass density of the air 
= Area of wing (sq. ft.) 
= Linear velocity of center of gravity along the x-axis 

(Positive when in plus x-direction) (ft./sec.) 
= 2.00 
= :Mass of airplane (slugs) 

= Slope of the moment coefficient curve for the whole airplane for 
a given weight and power configuration (per radian) 

8. C = MAC = lVlean aerodynamic chord (ft.) 
9. I y = Moment of inertia about the y-axis which is through the center 

10. (deL) 
dry, t 

11. St 

12. 'rJ 

13. 
de 
dry, 

14. K 

15. Constant 

16. 
dCM 

d8e 

18. Constant 
24. t 
26. cos wt 
27. sin wt 

28. 
at 
2 

at 

33. e2 

36. Constant 
41. KT 
42. ~n 

43. ~n 

44. It 

of gravity and perpendicular to the plane of symmetry (X-Z) 
( slug-ft.2 ) 

= Slope of lift curve of the horizontal tail (per radian) 

= Area of the tail (sq. ft.) 

T ·1 ffi . ~ dynamic pressure) tail = at e ctency = (d. ) ynamtc pressure tree stream 

= Change in angle of downwash with respect to change in angle of 
attack of the wing 

-~ 
- Mlt 2 

= 1.25 

= Change in the moment coefficient for the whole airplane with 
respect to a change in elevator deflection (per radian) 

= 57.3 
= Time (sec.) 

= 1.0 

= 3~~2 = Required load factor 

= 3~2 = Calculated maximum load factor on first run of 1165 
. deck 

= Distance, parallel to the x-axis, from airplane center of gravity 
to the aerodynamic center of the tail (ft.) 

(Contintted on next page) 

*The number symbols are shown on the listing to identify the calculated data obtained from the CPC. 
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50l. 

502. 

503. 

504. 

505. 
506. 
507. 
50B. 

512. 

542. 

543. 
548. 
552. 
562. 
579. 
580. 

590. 

59 I. 

592. 

593. 
594. 
595. 

596. 

597. 

598. 

599. 

600. 

60 I. 
602. 
603. 
604. 
605. 

Zw 

Mw 

M,,;, 

Mq 

Mae 
a/2 
b 
Cl 

w 

Az 
32.2 
aw 
q 

aw 
q 

at 
Alt 

NOMENCLATURE (CONTINUED) 

1 az 
Maw 

1 aM 
Iyaw 

1 aM 
= 11/ aw 

1 aM 

= ~ b - (~)2 , (real for Case II) 

= Linear acceleration at the center of gravity along the z-axis (g's) 

= Angle of attack of the wing (radians) 
= Angular pitching velocity of the airplane (rad/sec.) 

= Angle of attack of the tail (radians) 
= Incremental maneuvering horizontal tail load 

(positive when upward) (lbs.) 
(1 - df./da) 

lt 
UovYJ 
It(d£jda) 

Uo 
dat/dSe 
m 
n 

Cl 

m-n 

~(m-zw) 
m - n Uo 
~(n-zw) 
m - n Uo 
At 

2" 
Constant 

emt 

ent 

1 
= 32.2 

SeCt) = Elevator deflection (radians) 
w = Linear velocity of center of gravity along the z-axis (ft./sec.) 
W 
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where 
Z ~ _ (dCL/da.) p Sw Uo 

w - 2M 

M. __ (dCL/da.)t p St 'YJ (de/da.) 
w- 2KM 

1 
KT = (dCL/da.)t"2 p U5 St 'YJ 

a.t = (1 _ de) a.w + it q _ + it (de/da.) aw 
da. UOY'YJ UO 

+ (da.t/dSe) Se . 

The initial conditions are 

{
w = W = 0 

at t = 0, . 0 
q = q = . 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 

(12) 

(13) 

The Laplace transforms of equations 1 and 2 subject to 
these initial conditions are 

SA (s) - Z w A (s) - U 0 cp (s) == 0 , 

M w A (s) + M iv SA (s) + M q cp (s) - scp (s ) 
= - Moe£oe. 

(14) 

(15) 

Equations 14 and 15 are solved for A(S) and cp(s) and the 
following substitutions made: 

b = MqZw - UoMw 

C1 = U O M 06 

m=~+~(~)2_b 

n=~_~(~)2 -b. 

Hence, the Laplace transforms of the coordinates are 

C1 
A (s) = (s _ m) (s _ n) £Se, 

C1 (s - Zw) 
cp (s) = U ( ) ( ) £Se . o s-m s-n 

(16) 

(17) 

(18) 

( 19) 

(20) 

(21) 

(22) 
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U sing partial fractions or the Bromwich integral the in
verse transforms can be shown to be: 

Case I, 

(23) 

q = C 1 [ (m _ Z ) emt 
Uo (m - n)' w 

- (n - Zw) ent ] * Se . (24) 

By the theorem of convolution, equations 23 and 24 can be 
written as follows: 

(25) 

W = C 1 emt j t Se (r) dr _ C 1 ent j toe (r) dr 
(m - n) emr (m - n) eM 

o 0 

_ C1 (n - Zw)jtse (r) dr 
U 0 (m - n) enr . 

o 

(26) 

Equations 25 and 26 are evaluated numerically for analyses 
that require a Case I solution. The additional parameters 
are calculated by 

q = M w W + M w W + At q q + N106 Se 

w 
a.w = Uo 

. W 
a.w = U

o 
• 

(27) 

(28) 

(29) 

(30) 

(31) 

Where, complex roots of the quadratic are obtained, the 
following substitutions are made: 

w = ~ b _ (~)2 (32) 

a . 
m="2+'lw (33) 

a 
n = '2 - iw. (34) 
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The transforms of the coordinates shown by equations 21 
and 22 become 

(35) 

(36) 

As showp under Case I, the inverse transforms are: 

~ase II, 

at 

c1 1i. * ~ w = -- SIn wt· oe (37) 
w 

q= 
( ) 

at a -
C1 - - Z e2 

2 W sin wt * 8e 
Uow 

at 

+ Cl e2 
>I< ~ ---u;; cos wt . oe . (38) 

Again, by the theorem of convolution, equations 37 and 38 
can be written as follows: 

at ft 
W = C~e2 sin .. t 0 cos .. ,8e(,)d, 

C e2 . 
at ft 

- ~ cos wt 0 S111 WT 8e( T )dT (39) 

a - at 
( ) 

at 

2 W C1 e2 C1 - - Z e2 
- ft 

+ [ Uo.. + ~cos .. t ] 0 cos.". 8e(, )d,. 

(40) 

Equations 39 and 40 are evaluated numerically for analyses 
that require a Case II solution. The additional parameters 
are given by equations 27 through 31, inclusive. 

COMPUTATION 

The integrals shown in the equations under Case I and 
Case II are evaluated numerically by multiplying ~t by the 
average ordinate (integrand). The scheme used is shown 
as follows: 

Let Ii, = value of integral at any station, 
Ai = product of the integrand and ~t at any station. 

Written explicitly, the first three values of the integral are 

1 - A + Ao + At _ ~ A + Al 
1- 0 2 -2 0 2 

12 = 1 + Al + A2 - ~ A + A + A2 
1 2 - 2 0 1 2 

A2 + As 3 A3 
13 = 12 + 2 = ZAo + Al + A2 +"2 0 

By inspection, the equation for the integral at the ith sta
tion is 

3 Ai 
li=:zAo+Al+A2+ ... +Ai-l+Y' (41) 

Of course, almost any desired refinement can be obtain~d 
by the use of more elaborate integration schemes. However, 
the accuracy required in the analysis shown in this paper is 
satisfactorily achieved by means of equation 41. 

DISCUSSION OF RESULTS 

No attempt was made in the numerical calculation to ob
tain extremely refined results. Although better answers 
could be obtained easily by using more elaborate numerical 
integration methods, it is considered that the results shown 
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are well within the practical limitations of the problem. 
Two typical calculated parameters are shown plotted in 
Figures 1 and 2. In general, better agreement was obtained 
for the other parameters not shown. Figure 1 shows a plot 
of the time history of the angular pitching acceleration of 
the airplane. Figure 2 shows a plot of the time history of 
the limit incremental tail load for the airplane. 

It is noted that the time interval used in the analysis 
shown in this paper is exactly the same as that used in ref
erence 1. If a direct numerical solution of the differential 
equations had been attempted, a much smaller time interval 
would have been required. It is estimated that this would 
lead to more complicated programming which would exceed 
the storage capacity of the machine as well as to require 
more CPC running time for each condition analyzed. 

PROCEDURE FOR CALCULATING MANEUVERING 
HORIZONTAL TAIL LOADS-CASE I 

The calculations are accomplished by the proper sequenc
ing of several decks.a These decks are interrelated-some 
storing data and others punching data for the decks that 
follow. The deck numbers are listed below in the proper 
order to complete one condition for one set of factual data. 

The listing shown in Table I is a complete set of factual 
data cards for one weight and center of gravity condition. 
The deck from which this listing was made is called a basic 
factual data deck. It is preserved for the purpose of printing 
listings such as the one shown in Table I into which factual 

a A sample listing of all decks used in the analysis is not shown. 
Those omitted are considered to be elementary calculations which 
the reader can find in several sources of literature on the subj ect. 
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data are directly written. Also, it is used to reproduce fac
tual data decks (channel A blank), into which the copied 
factual data are key punched. 

Table I I is explained as follows: 

Deck 1154 calculates 6.~e/ 6.t, ~e, and 6.t and punches these 
values in table look-up cards for use in the 1124 deck. 
Pull out old factual data on column 46 and sort in new 
factual data on sequence numbers in columns 45, 44, and 
43. 

Deck 1124 calculates Be time history and punches the values 
with all other necessary information in cards for use in 
the 1165 deck. Change factual data cards and table 
look-up cards by hand. It is noted that card number 3 
will have the specified load factor for the first calculation 
(i.e., card 3 and card 2 will have the same channel A 
entry). After the first run of the 1165 deck, the maximum 
load factor obtained will be key punched into channel A 
of card number 3 for the final calculation. 

Deck 1126 calculates 6.lt equation coefficients and punches 
these values along with all other necessary information in 
cards for the 1165 deck. Pull old factual data out on col
umn 46 and sort in new factual data on columns 3-2. 

In Table III there is only one deck used: 

Deck 1161 calculates the stability derivatives and the inte
gral coefficients and stores this data for use in the 1162, 
1163, and 1165 decks. Pull out old factual data on column 
46 and sort in new data on columns 3-2. 

Finally, Table IV makes use of the following decks: 

Deck 1162 calculates emt and punches these values-along 
with all other necessary information such as program
ming, decimal locations, identification, and symbols-in 
cards for use in the 1165 deck. No sorting is necessary. 

Deck 1163 calculates ent and punches these values, along 
with all other necessary information, in cards for use in 
the 1165 deck. No sorting is necessary. 

Deck 1165 calculates time history for 6.n, <xw, liw, q, q, and 
6.lt. Pull old factual data out on column 46 and sort in 
new factual data on columns 3-2, 42-41. For the first trial, 
a maximum load factor will be obtained at a specified 
time which is not necessarily correct. Enter this load 
factor in card number 3 of deck 1124 and repeat decks 
11241 1161, and 1165. This second run of deck 1165 will 
give the correct values for all the parameters obtained. 

DESCRIPTION OF CPC CONTROL PANELS 

The same control panels were used throughout the 
analysis shown in this paper. However, it is recommended 
that special panels similar to those shown in reference 6 

(Continued on page 129) 



TABLE I 

LISTING OF ALL FACTUAL DATA CARDS WITH CHANNEL A BLANK h Pull out Column 46 

Card N umher and Programming 
Decimal Location Decimal Location Deck Channel Channel 

Channel A Channel C Number A C 
I 1~ r;--t9l r---l 5 1 11 52 

7 1 13 51 52 11161 9 7 10 
A 1 14 52 51 11161 9 16 7 
9 1 15 52 52 11161 9 13 16 

71 1 11 54 52 11161 9 4 509 
10 1 16 54 5~ 21161 9 6 13 
11 1 17 57 54 21161 9 9 6 
15 1 23 52 52 21161 9 14 8 
17 1 25 52 50 31161 9 12 2 
18 1 26 54 52 41161 9 4 12 

6 1 12 52 52 61161 9 109 1 
12 1 18 54 57 71161 q 3 9 
13 1 21 54 54 71161 9 11 3 
14 1 22 52 54 71161 9 8 11 
16 1 24 50 52 81161 9 2 14 

1 1 12 1 511154 9101 
2 1 22 2 611154 9201 
1 1 12 1 2111154 9101 
2 1 22· 2 2211154 9201 
1 1 12 1 3711154 9101 
2 1 22 2· 3811154 9201 
1 1 12 1 5311154 9101 
2 1 22 2 5411154 9201 
1 1 12 1 6911154 9101 
2 1 22 :,: 7011154 9201 
1 1 12 1 8511154 9101 
2 1 22 2 8611154 9201 
1 1 74 2 1124 9 17 
2 1 75 2 2 1124 9 42 
3 1 76 2 2 11124 9 43 
5 1 11 51 11126 9 13 
7 1 13 53 51 11126 9 44 
8 1 14 53 53 11126 9 4 
9 1 16 52 53 11126 9 12 

11 1 15 52 50 11126 9 45 
41 1 11 50 52 11126 9 2 593 
42 1 12 51 50 11126 9 12 
43 1 13 51 51 11126 9 10 
45 1 11 53 52 11126 9 11 

TABLE II 

EVALUATION OF ALt COEFFICIENTS 

Weight Jc.G. Location % MAC 
62000~ 43 1126 

5 1 11 400000000 51 11126 9 13 
6 1 12 1000000000 51 400000000 1126 9 36 
7 1 13 480000000 53 1000000000 51 11126 9 44 
8 1 14 4170000000 53 480000000 53 11126 9 4 
9 1 16 63400000 52 4170000000 53 11126 9 12 

10 12 2 11 72 1 1000000000 51 400000000 51 1i3400000 5~ 1126 
11 1 15 47800000 52 6000000000 50 11126 9 45 
12 16 5 17 83400000 52 99,)9l}l}9q93 47800000 1126 
13 1 77 590005620 913236005 51 1126 
14 1 76 360505252 590005620 1126 6 
15 1 7S 11165 360505252 1126 5 
16 1 74 32172000 1111'>5 1126 4 
17 17 3 14 18 9132:S 6 0 0 t; 51 4 1 " 0 0 0 0 0 0 0 53 J2172000 1126 
1 A 1 3808194140 53 1126 
19 "2 1 1:19 6000000000 50 1126 590 
20 13 4 18 72 41-10000000 53 3H08194140 53 6000000000 50 1126 590 
21 84 86 32172000 360505252 1260439942 50 1126 
21 87 590005620 1126 
22 1 77 591000000 1126 7 
23 1 76 370505252 591000000 1126 6 
24 1 74 32672000 370505252 1126 4 
25 1 32672000 1126 
26 82 1 H9 12b04'~')94~ 50 1126 591 
27 13 3 11 73 480000000 53 400000000 51 1260439942 50 1126 591 
28 84 32672000 19200000 54 1126 
29 83 4 14 72 1 19200000 4170000000 1126 
30 1 77 1000000 460431650 50 1126 7 
31 1 76 10000000 1000000 1126 6 
32 1 74 32272000 10000000 1126 4 
33 1 32272000 1126 
34 62 1 H9 460431650 50 1126 592 
35 86 /34 380505252 32272000 460431650 50 1126 592 
36 1 77 1000000 1126 7 
37 1 76 39052S~5?' 1000000 1126 6 
36 1 74 3187??Oo 3"10525252 1126 4 
39 1 31872200 1126 
40 1 5 1 89 47600000 52 1126 593 
4 1 1 11 15000000 50 47800000 52 11126 9 2 593 
42 1 12 834000000 51 15000000 50 11126 9 12 
43 1 1 3 4100000000 51 1l3400000Q 51 11126 9 10 
44 14 3 11 72 4170000000 53 15000000 50 4100000000 51 1126 
45 1 11 32411000000 53 62550000 52 11126 9 11 
46 14 3 12 14 4170000000 53 A34000000 51 324H800000 53 1126 
47 62 3 13 72 1 625!-iOOOO 52 4100000000 51 34777AOOO 54 1126 
46 3 11 73 5000000000 50 1248800000 53 2t>64~!-I000 5<l 1126 
49 H2 3 14 72 1 256455000 52 3477" 8 0 0 0 54 1624400000 53 1126 
50 87 86 S930000un 390S2S252 89189410 55 1126 
51 83 :5 8? 72 1624400000 53 891A9410 55 1126 
52 84 3187r.?OO 1448792H 5A 1126 
53 77 9041000000 1126 7 
54 76 410Stl5200 '1041000000 1126 6 
55 74 3820000() 41051:15200 1126 4 
<;6 38200000 1126 
57 62 69 144t1'7920 5A 1126 4 1 
SA 117 /36 9041000U()(l 4105[l5200 14407928 511 1126 41 
59 II ~ 84 111 b ':> 38200000 1126 
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TABLE III 

EVALUATION 01" THE STABILITY DERIVATIVES AND INTEGRAL COEl"1"ICIENTS 

Weight J C.G. Location % MAC 

6 2000 ~ 43 1161 
1165 1161 

5 1 11 514000000* 2 11161 9 19 
6 1 12 410000000.52 514000000.5<l 61161 9 109 1 7 1 13 56100000*51 4 1 0 0 0 0 0 0 0 * ,5 <l 11161 9 7 10 
8 1 14 156000000*52 56100000.51 11161 9 16 7 
9 1 15 40000000 2 156000000* 2 11161 9 13 16 

10 1 16 1925000000 54 40000000 52 21161 9 6 13 11 1 17 560730000 57 1925000000 54 21161 9 9 6 12 1 18 1477000000 54 560730000 57 71161 9 3 9 13 1 21 324880000 54 1477000000 54 71161 9 11 3 14 1 22 1364000000 52 3248fiOOOO 54 71161 9 8 11 
15 1 23 12640000 52 1364000000 5<l 21161 9 14 A 
16 1 24 15000000 50 12640000 52 81161 9 2 14 
17 1 25 83400000 52 15000000 50 31161 9 12 2 
18 1 26 417000000 54 83400000 52 41161 9 4 12 
19 1f! 3 24 72 2 1477000000 54 15000000 50 417000000 54 1161 4 
20 221550000 52 1161 
21 11 3 26 73 1 514000000*52 417000000 54 1161 
22 3 16 74 1 200000000 52 1925000000 54 214338000*55 1161 9 5 
23 8<l 3 83 75 1 221550000 52 4785h61999955 385000000 55 1161 
24 18 3 24 72 1477000000 54 15000000 50 474Hh5HO*56 1161 
25 65 4 84 28 12 9999525134956 31j5000000 55 221.'>500 54 1161 
26 26 3 22 74 1 417000000 54 1364000000 52 123341~60*52 1161 501 
27 82 3 13 75 3 2215S00 54 56100000.51 5687H8000 55 1161 
28 3 17 72 1 200000000 52 560730000 57 1242"1000.52 1161 9 5 
29 21 3 25 76 2 324880000 54 83400000 52 11214hOOO 58 1161 
30 85 3 84 77 1 9987570999952 f>6f17AII000 5.'> 27094"1900 54 1161 
31 12 3 24 75 2 410000000.52 15000000 50 706"1470.56 1161 
32 87 4 82 27 ::> 9999929305956 11214(,000 5>1 61500000.50 1161 
33 86 3 15 72 2 270949900 54 40000000 5? ";303747*50 1161 502 
34 23 3 16 76 1 12640000 52 1925000000 54 1083HOOOO 54 1161 
35 62 3 85 77 2 10fi380000 54 9938499999<)50 ?4332000 55 1161 
36 3 86 72 2 200000000 52 243'i2000 55 66653700*52 1161 9 5 
37 21 3 24 73 2 324880000 54 15000000 50 4B664000 55 1161 
38 87 4 72 76 2 9999333462952 4f1664000 55 48732000 52 11,61 
39 26 3 25 75 1 417000000 54 8:S400000 52 13691>7163*49 1161 
40 3 12 77 2 125000000 52 410000000* 34777HOO 55 1161 9 15 
401 512500000*52 1161 
41 67 3 83 77 2 941:17499999952 4H732000 52 1161 
42 249751500*52 1161 
43 87 3 85 73 2 9 " 5 0 2 4 8 4 9 9 9 5 2 347 '17 H 0 0 55 1161 
44 18 3 24 77 2 1477000000 54 1~000000 50 868SAI00*55 1161 
45 83 4 82 75 2 999913141H955 48664000 5 !-I 2215S0000 52 11 61 
46 26 3 14 72 1 417000000 54 156000000*5? 1784A5328*52 11 ill 
47 65052000*55 1161 
4 a 87 3 82 74 2 221550000 52 9934947999955 1161 
49 26 3 22 77 417000000 54 1364000000 5? 144122700*55 1161 
50 3 17 72 1 200000000 52 S607'30000 57 5tl878AOO 5tl 1161 9 5 
51 87 3 84 73 1 56878800 5tl 4H5!)H77299955 112141'>000 SA 1161 
52 8197530*60 1161 

53 63 4 82 15 99911:l02469960 112146000 58 1161 
54 2H 1 11 123341560*52 7309h~451*52 1161 505 
55 27 1 12 6303747*50 U33341S60*52 1161 501 
56 66 1 13 9863032836949 6303747*50 1161 502 
57 85 1 14 9821514671952 136967163*49 11 61 S03 
58 1784A5328*52 1161 504 
59 26 3 13 72 1 417000000 54 136967163*49 1161 
60 11 1 72 123341560*52 57115310*5;.>. 1161 
61 14 1 72 17848532H*52 123341560*52 11 61 
62 14 3 11 73 2 1784853211*52 123341560*52 17H4H532f1*S:d 111>1 
63 26 3 12 A3 2 417000000 54 630,3747*50 22014h600 52 1161 
64 2tl 3 15 74 417000000 54 730969451*52 :?,";28h600*5? 1161 
65 1 5 3 11 85 2 730Y69451*52 123341560*52 304H142tl*5h 1161 508 
66 3 82 16 5000000000 50 96410S7H01952 9015H'I100 52 1161 9 37 509 
67 83 1 18 246433200 52 179471099*52 1161 506 
68 64 1 21 996951A57395tl 2464'33200 52 11 61 507 
69 16 3 16 17 2 179471099*52 179471099*52 304111426*5tl 1161 508 
70 85 1 22 909A41089995? 3220<)8BOO 52 1161 510 
71 1 11 417000000 54 901589100*52 11161 9 4 509 
72 1 fj 2 17 73 246433200 52 32209HHOO 52 417000000 54 1161 507 
73 17 2 11:1 72 322098600 52 246433200 52 75(;1>5600",52 1161 
74 16 1 74 179471099*5? 756(;5600 52 11 61 
75 72 73 75(;65600 52 75#)65600*5? * 
76 82 5 72 75665600 52 9999999999 1161 
741 869859759 52 1161 
77 83 5 24 75665600 5? 9999999999 51 1161 
7a 82 1 74 12 H69t:1597 51 8698,59759 51 1161 512 
79 16 1 75 179471099.52 869H5970 52 1161 
80 24 1 AS 12 H69b597 51, 179471099*52 1161 
61 fI 4 1 25 9907514870952 Htl9H5970 52 11 61 
82 65 1 26 9733542930952 924b5129*52 1161 594 
83 2664S7069*52 11 61 595 
84 1161 
85 2 5 2 26 73 9241\5129*52 26645706Y*52 1161 594 
86 25 2 21:l 74 9241:l5129*5? 123341h60*52 173971940 52 1161 
87 26 2 28 75 26645706'1*52 123341~60*5? 30856431 52 11 61 595 
88 21 4 83 12 ? 304814*5#) 1 7 ~; </ '( 1 9 4 0 5? 143115509*52 1161 
q 9 84 4 11 74 12 308S#)4 52 417000000 54 17520871*56 1161 596 
90 as 4 11 75 12 999H568644452 417000000 54 73996160 49 1161 
91 12 3 84 16 2 175208'11*51> 73996160 49 343?,02h40*4~ I1hl 

3 85 17 2 17520871,*56 9656797359949 129t>4t:100*53 1161 597 92 1 :2 
60132100 53 1161 5913 93 61 

127 



TABLE IV 

CALCULATION OF TIME HISTORY FOR n, aw, aw, q, q, AND L t 

TIME = ;1 SEC. 

Weight C.G. Location % MAC Time 
62000--1 43.-J ~ 1165 

1161 1165 
1 1 21 911663000 51 51 1 21165 9601 
2 1 18 5036671*52 911663000 51 1 31165 603 
3 1 ~na 766089000 51 5036671*51 1 21165 9602 
4 766089000 51 1 1165 
5 18 4 21 72 5036671*52 911663000 51 1 1165 
6 18 4 22 73 5036671*52 7660~9000 51 55247070*51 1 .1165 
7 3 82 23 2 50000000 51 9944752929951 65745246*51 1 1165 599 
8 3 83 24 2 50000000 51 9934254753951 2.7623500*50 1 1165 599 
9 32872600*50 1 1165 

10 23 1 76 27623500*50 1 1165 
11 24 1 77 32872600*50 27623500*50 1 1165 
12 12 3 21 72 1 17520871*56 911663000 51 32872600*50 1 1165 596 
13 11i 3 21 73 2 12964800*53 911663000 51 15973130*56 1 1165 597 
14 76 3 82 74 4 9972376499950 99~4026H6995'; 118195300*52 1 1165 
15 76 J 83 75 9972376499950 9881804('99952 441230000 52 1 1165 
16 12 3 22 72 1 17520871*56 766089000 51 32(,497 52 1 111S5 596 
17 1'1 3 22 73 2 60132100 53 766089000 51 13422550*56 1 1165 598 
18 7'1 3 82 84 4 9967127399950 9986577449951'; 41';0665400 52 1 1165 
19 7'1 3 83 85 9967127399950 4601';65400 52 441.230000 52 1 1165 
20 84 1 25 9999999999952- 1514327*52 1 1165 
21 85 1 26 1840824 52 52 1 1165 604 
22 23 1 76 27623500*50 1840824 52 1 1165 548 
23 24 1 77 32872600*50 27623500*50 1 1165 
24 28 3 25 72 123341560*52 52 32872600*50 1 1165 501 
25 4 11 74 1000000 54 4l'7000000 54 54 1 1165 
26 3 72 310559006 50 54 23980815 50 1 1165 600 
27 11 3 26 72 2 417000000 54 1840824 52 54 1 11. 65 4 542 
28 2'1 3 25 73 6303747*50 52 7676200 54 1 1165 502 
29 14 3 26 73 2 178485328*52 1840824 52 52 1 I1n5 504 
30 25 3 74 21 52 23980815 50 3285600*52 1 1165 604 
31 72 3 84 22 2 7676200 54 23980tH5 50 52 1 1165 543 
32 82 3 13 73 1 71';76200 54 136~67163*49 1840800 52 1 1165 605 552 
33 15 3 18 73 2 730969451*52 50~61';71*52 1051390*52 1 1165 505 
34 3681b500 52 1 1165 
35 83 1 32479510 52 52 1 1165 
36 3 21 72 6000000000 50 52 32479510 52 1 11165 5.90 562 
37 3 26 72 1260439942 50 1840824 52 52 1 11165 591 
38 3 22 72 460431650 50 1840800 52 232025 52 1 I11n5 592 
39 3 18 72 2 4"/800000 52 50~6671*52 84756 52 1 11165 593 
40 2407500*52 1 1165 
41 3 82 144H7928 58 9997909280952 1 11165 9 41 
42 81 3029*60 1 1165 580 

1 1 21 831129430 51 51 2 21165 9601 
2 1 18 10073341*52 831129430 51 2 31165 603 
3 1 22 586892360 51 10073341*51 2 21165 9602 
4 586892360 51 2 1165 
5 18 4 21 72 10073341*52 831129430 51 2 1165 
6 1R 4 22 73 10073341*52 586H92360 51 121200629*51 2 1165 
7 3 82 23 2 50000000 51 987H799370951 171638646*51 2 1165 599 
8 3 83 24 2 50000000 51 982H361353951 60600300*50 2 1165 599 
9 85819300*50 2 1165 

10 23 1 76 60600300*50 2 1165 
11 24 1 77 85819300*50 60600300*50 2 1165 
12 12 3 21 72 1 17520871*56 831129430 51 H581~300*50 2 1'11) 5 596 
13 16 3 21 73 2 12~64800*53 »31129430 51 14562110*56 2 1165 597 
14 76 3 82 74 4 9884152699950 <lQ85417H8~95h 107754300*52 2 1165 
15 76 3 83 75 98841!>2699950 <lH92~45('99952 16869~0000 52 2 111)5 
16 12 3 22 72 1 17520871*56 51'16892360 51 1248304 5~ 2 1165 596 
17 17 3 22 73 2 60132100 53 5861'192360 51 10282870*56 2 1165 59F! 
18 77 3 82 84 4 9848435499950 '19R971712'195" 352910700 52 2 1165 
19 77 3 8'3 A5 9848435499950 352910700 52 1558520000 52 2 1165 
20 84 1 25 128460000 52 5348873*52 2 1165 
21 85 1 26 6597177 52 128460000 52 2 1165 604 
22 23 1 76 60600300*50 1S597177 52 2 1165 548 
23 24 1 77 85819300*50 60600300*50 2 1165 
24 28 3 25 72 123341560*52 128460000 52 85819300*50 2 1165 501 
25 4 11 74 1000000 54 417000000 54 15R4446*54 2 1165 
26 3 72 310559006 50 9998415553954 ?39HOR15 50 2 1165 600 
27 11 3 26 72 2 417000000 54 6597177 52 4'1201'i*54 2 1165 4 542 
28 27 3 25 73 6303747*50 12H460000 5? 27510200 54 2 1165 502 
29 1 4 3 26 73 2 17848532t1*52 6!>97177 52 8097H*5~ 2 111)5 504 
30 25 3 74 21 12R460000 52 239AOH15 5f) 1177!)000*52 2 1165 604 
31 72 3 84 22 2 25':125754 54 23QAOH15 50 308051'1 52 2 1165 543 
32 82 3 13 73 1 25925754 54 136<167163*49 6217200 52 2 111';5 605 552 
33 15 3 18 73 2 730'169451*52 100'/334 1 52 355.09 H 0 * 5 2 2 111';5 505 
34 73633000 52 2 1165 
35 83 1 58226042 52 52 2 1165 
36 3 21 72 6000000000 50 30fi05A 52 5822h042 52 2 11165 590 562 
37 3 26 72 1260439942 50 6597177 52 IH4R35 5<-l 2 l11A5 591 
38 3 22 72 400411650 50 6217200 52 8~lS35 52 2 I11n5 592 
39 3 18 72 2 47800000 52 1 0 0 '/ 3 3 4 1 * 5 :? 2Ah260 5<! 2 1111)5 593 
40 4815100*52 2 111';5 
41 3 82 14487928 58 9996487529952 2 1111';5 q 41 
42 81 501'19*60 2 1165 580 
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SEMINAR 

be wired to calculate and punch trigonometric functions 
and e-functions. 

The control panel for the 604 electronic calculating unit 
is the same as that shown in reference 7. 

The control panel for the 521 punch unit is wired to 
punch either table look-up or programmed cards through 
the punch selectors. Programmed cards are punched out of 
the normal side of the selectors, and table look-up cards are 
punched out of the transferred points. The punch selectors 
are picked up by means of the DI-impulse on the control 
panel of the IBM Type 417 Accounting Machine wired 
through a column split on the 521 panel to pick up pilot 
selectors which in turn pick up the punch selectors with a 
card cycles impulse through the transferred points. The 
punching is done out of three 417 counters into table 
look-up cards and four 417 counters into programmed 
cards. Both table look-up and programmed cards received 
two additional ten-place numbers from the 604 counter and 
general storage. 

The 417 control panel is wired to utilize all the features 
available on the 604 control panel. In addition, a two-posi
tion shift to the right into channel A before calculation is 
provided; also, a two-position shift to the left into channel B 
before calculation is provided. 

A table look-up feature is wired into the control panel 
whereby direct linear interpolation for any value of x can 
be obtained from table cards containing ay/ ax, y, and Ax. 

The 417 is wired to detail print, controlled by a setup 
change switch. This can also be controlled by an X-punch. 

A negative balance test to "machine stop" is provided 
through a 604 negative balance selector. Also, a four condi
tion negative balance test using two of the 417 counters 
simultaneously is provided. This test is used to select calcu
lations. These features were not used for the calculations 
shown in this paper. 

Selection is provided for net-balance or non-net balance 
operation for individual cards. This is controlled by an 
X-punch. The non-net balance operation is used for all cal
culations and punching, except table look-up and the con
version of a number to its absolute value. 

All storage units are cleared by a Y -punch which also 
causes an asterisk to list. Counters 1,2, and 3 are cleared by 
an X-punch. Also counters 4, 5, 6, and 7 are cleared by a 
different X-punch. All counters can be cleared on any card 
with these two X-punches. 
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DISCUSSION 

Mr. Ferber: We have been doing weight and balance 
reports for many years on IBM equipment, but we have not 
felt that it was a job for the CPC. We run the finished 
product on the accounting machine, and from this finished 
product we have the start of the job for the next time by 
the weight group, making the changes on one copy-usually 
the master copy, not the carbon copy-in colored crayon. A 
key-punch operator will cut new cards, take the cards to a 
604, multiply them in one pass, insert them in a collator, 
and then run the report with all the totals. We actually run 
many reports from these cards by sorting the cards into 
different sequences and running many different types of 
reports. 

I think the development of general-purpose control 
panels has now reached a very high level on, the 604. I 
believe that there is now much room for the development of 
general-purpose panels on the 417 and even the 521, and I 
would like to hear some comments, because one thing I find 
that is very important is the ability to emit a selected value 
through a co-selector. 

Mr. ~Vaterman: In regard to the weight and balance cal
culations, we have never had a very efficient method prior 
to this. We did this same job on a 602-A and accounting 
machines, and it took us 28 hours. We consider this to be 
a better way than the manual method, but we do it in two 
hours on the CPC, because we have another advantage 
when we use the CPC: We get a speed of 150 cards per 
minute straight through, and on the 604 we would get only 
100 cards per minute. Besides, we have no need for repro
ducing cards or changing anything in the cards except those 
changes which are made by the weights section in between 
the monthly reports, or weekly reports, or whatever we 
happen to run. 



Fifth-Order Aberration tn an Optical System* 

RUTH K. ANDERSON 

National Bureau of Standards 

THE IBM Card-Programmed Electronic Calculator has 
helped tremendously in the field of optical ray tracing. Until 
recently, the lens designer resorted to less accurate experi
mental methods rather than struggle with laborious hand 
calculations. 

Assume an optical system consisting of a series of spheri
cal surfaces of varying curvature whose centers lie in a 
straight line called the optical axis. Number the surfaces 
from left to right using the subscript k to denote an arbi
trary surface. If there are F surfaces, k may be an integer 
from 1 to F, inclusive. Let Ck be the curvature of an arbi
trary surface; the medium to the right of the kth surface is 
called the kth medium, and the data associated with it will 
have the subscript k. Thus, the index of refraction of the 
medium to the right of the kth surface is N k. The distance 
between the kth and k+ 1 th surface, measured along the 
optical axis, is given by d k • The quantities c, d and N are 
the constants of the optical system. When they are known, 
any arbitrary ray may be traced through the system. 
In addition, one usually calculates the number Vk, where 
Vk = (Nk-t/Nk)' 

First-order data are obtained by tracing two paraxial 
rays through the optical system. These are the marginal 
and principal rays. (The subscript pr is associated with the 
principal ray.) Two numbers are necessary to characterize 
a paraxial ray; U is associated with the medium and repre
sents the slope of the ray, and Y is associated with the sur
face and represents the height of the ray above the optical 
axis. Usually Uo (UO)pn Yl and (YI)pr are given, and Up, 
(up)pn YP and (YF)pr are found by alternate applications of 
the refraction and transfer equations: 

Refraction Uk = Ck (1 - Vk) Yk + Vk Uk-l 
Transfer Yk+l = Yk - dk Uk. 

Data for third and fifth orders are more complicated to 
compute. The procedure is not difficult but long and tedious. 
To simplify the coding of the problem, third and fifth-order 
data are grouped together. The final results consist of 12 fifth
order aberrations at each surface (al,a2, ... , a12) and the 
total aberrations at each surface. Each aberration, in turn} 

*The theoretical work was developed by Mr. Donald P. Feder of the 
National Bureau of Standards, Optics Division. 
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consists of two parts: hybrid aberration (iib a2, ... , (12) 
and intrinsic aberration (aI, a~, ... , ai2)' 

The hybrid aberrations at a given surface are sums of 
products; these products are of the form, [constant] [third 
order coefficient] [partial sum]. Third-order coefficients 
are functions of the constants of both the optical system and 
the marginal and principal rays. The third-order coefficient 
Bk is a function of Uk, Uk-I, Yk, (Yk)pr' Ck, Vk, and N k- l . The 
partial sum at the nth surface is defined as 

A typical example of the formula for a hybrid aberration is 

where capital letters designate third-order coefficients, and 
small letters designate partial sums. 

The intrinsic aberration at a given surface is expressed 
in a similar manner: [function of constants of both the op
tical system and the marginal and principal rays] [sum of 
fifth-order coefficients]. 

a~k = 2 [CIc(Yk) pr - (Uk-I) prJ [2(AIY~r y + A2 G~r G) 

+ A3H~r + A4HprH] , 

where Al = [1.5 v (v-I) + 1] G c3 S 

A2 = [1.5(~-v) + IJyS 
As = -SGy 

A4 = -S [c yirG + y Girl 

S = Nk-l(l-v) 
2v(v+l)2 I 

I = Nk [Uk(Yk)pr - (Uk)prYk] 

Gk = Vk [ik - Uk] 
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A 60-program control panel for the IBM Type 604 Elec
tronic Calculator is wired to perform all basic arithmetic 
operations with ten-digit numbers. In coding division by a 
ten-digit number, the approximation 

_1_ = 1.[2 - 1. (a+b)] 
a+b a a 

is used. Channel A is connected to electronic storage units, 
factor storage 1 and 2, and general storage 3. Channel B is 
connected to electronic storage units, factor storage 3 and 4, 
and general storage 4. Because of the limited amount of 
storage space, it is necessa.ry to summary punch third and 
fifth-order coefficients (wi"th necessary instruction) and 
feed them back into the machine. 

Approximately 375 programming cards are needed for 
each surface. Including the printing of intermediate and 
final results, summary punching, card handling and check
ing, about seven minutes is required for each surface in the 
system. 
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DISCUSSION 

Mr. Tillitt: There are other schemes for tracing rays. 
One of those is in progress at Inyokern, where a means 
has been developed using a sort of vector scheme for getting 
through glass and using a coding deck of around 80 cards. 
This will allow you to take skew rays or meridional rays 
through symmetric or asymmetric surfaces. The largest 
thing that has been done so far is a piece of glass which had, 
I believe, 140 surfaces. There was some question as to 
whether any light was going to get through this system; 
but, at any rate, the computations were carried out. 

Mrs. Anderson: This is just one type of ray tracing that 
we do. We also trace paraxial and skew rays through 
spherical or aspherical surfaces, but I understand this is 
the first time any fifth-order work has ever been coded on 
the machine. I think our regular tracing of skew rays 
through a spherical surface takes about 80 cards also. 



Theory of Elastic Vibrations of Helicopter Fuselages 

PETER F. LEONE 

Piasecki Helicopter Corporation 

SUMMARY 

A N analytical method for determining the natural fre
quencies of an elastic helicopter fuselage system has been 
developed herein, with particular application to the longi
tudinally tandem rotor type helicopter. The Myklestad 
method of elastic beam vibration analysis was employed to 
study the bending-torsion vibrations of a non-uniform free
free V-shaped elastic beam supporting flexibly mounted 
engines. The V-shaped beam, whose horizontal component 
comprises the fuselage proper and whose vertical compo
nents comprise the pylons, assumed cantilevered at the 
attachment points, was considered to execute uncoupled 
bending vibrations in a vertical plane and coupled side 
bending and torsion vibrations in a horizontal plane, 
ignoring rotor blade motion, damping, and aerodynamic 
forces. An application was made to a typical helicopter 
fuselage system wherein an IBl\1 electronic calculator 
was employed to effect the repetitive tabular calculations 
required to determine the natural frequencies and normal 
modes of the system. The machine computations were made 
by lVlr. William P. Heising of the IBM Technical Comput
ing Bureau of New York, employing the IBM Card-Pro
grammed Electronic Calculator. 

I N'fRODUC'fION 

Because helicopter rotors generate periodic forces in the 
forward flight condition, the helicopter fuselage is capable 
of executing elastic forced vibrations in the normal flight 
speed range. The fuselage response to the rotor excitations 
is generally manifested in uncoupled bending vibrations in 
a vertical plane and coupled side bending and torsion vibra
tions in a horizontal plane, the latter resulting from the 
fuselage static mass unbalance about its torsion axis. For a 
balanced rotor having b number of blades, the rotor excita
tion frequencies are found to be integer multiples of the 
bth harmonic of the rotor angular velocity, the major exci
tation being the fundamental harmonic. 

The proximity of the natural frequencies of the helicopter 
fuselage system to the rotor excitation frequencies will, of 
course, dictate the degree of the fuselage forced response, 
the fuselage system being composed of the fuselage proper, 

the pylons and the flexibly mounted engines. Consequently, 
a determination of these natural frequencies should be made 
in the design stage in order that an optimum fuselage de
sign may be attained. A vibration analysis of the helicopter 
Juselage system during the design stage could be either ex
perimental (employing a dynamic structural model) or 
theoretical (employing linear elastic vibration theory). The 
present paper is concerned with the theoretical study and 
presents an analytical method for determining the natural 
frequencies of a helicopter fuselage system. In particular, 
the Myklestad method of elastic beam vibration analysis 
will be employed in determining the natural frequencies of 
the fuselage system of a longitudinally tandem rotor type 
helicopter. 
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PRELIMINARY ANALYSIS 

I n the study of the elastic vibrations of a helicopter fuse
lage, the fuselage system may be described by an elastic 
beam comprising the fuselage proper, elastic beams canti
levered to the fuselage proper comprising the pylons, and 
simple mass-spring systems mounted to the fuselage proper 
comprising the flexibly mounted engines. A schematic rep
resentation of the fuselage system of a longitudinally tan
dem rotor type helicopter is shown in Figure 1. 

Forward 
Pylon 

FWD. 

Engine 

Fuselage Proper 

FIGURE 1 

Rear 
Pylon 

For the longitudinally tandem rotor type helicopter 
shown in Figure 1, the fuselage proper is capable of execut
ing uncoupled bending vibrations in a vertical plane and 
coupled side bending- and torsion vibrations in a horizontal 
plane, the latter resulting from the fuselage static mass un
balance about its torsion axis. The pylons can execute bend
ing vibrations in the fore and aft and in the lateral senses. 
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In addition, the pylons can execute torsional vibrations, 
which, depending upon their static mass balance about their 
torsion axes, can couple with bending. The engine, consid
ered to be flexibly mounted in the vertical, lateral, and roll 
senses, can execute uncoupled vertical vibrations and cou
pled lateral-roll vibrations, the latter due to a static mas~ 
unbalance about its roll axis. The resulting motion of the 
fuselage system will consist of a coupling of the motions of 
the three fuselage system components. In the vertical plane, 
the coupled fuselage system motion will include vertical 
bending of the fuselage proper, fore and aft bending of the 
pylons, and vertical engine motion. In the horizontal plane, 
the coupled fuselage system motion will include coupled 
side bending and torsion of the fuselage proper, coupled 
lateral bending and torsion of the pylons, and coupled lat
eral-roll engine motion. The coupled fuselage system mo
tions are shown, for the case of infinite pylon torsional 
rigidities, in Figures 2 and 3. 

-FWD. 

----1"""-----
I 
I 
I 

FIGURE 2. UNCOUPLED VERTICAL BENDING 

------

FIGURE 3. COUPLED SIDE BENDING AND TORSION 

The simplest analytical study is to decouple the resulting 
motion of the fuselage system into the motions of its indi
vidual components and to decouple further the motions of 
the individual components. The uncoupled natural frequen
cies of the individual components are then found, from 
which an approximation to the characteristics of the fuse
lage forced response can be made by noting the proximity 
of the uncoupled natural frequencies to the rotor excitation 
frequencies. The uncoupled natural frequencies may be ap
proximated from uniform beam theory if weighted mass 
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and stiffness parameters are employed. For this approxima
tion, the fuselage proper may be considered as a uniform 
free-free beam for bending and as a uniform free-free shaft 
for torsion. The pylons may be considered as uniform canti
levered beams for bending and as uniform cantilevered 
shafts for torsion, if both mass and stiffness are distributed. 
For a concentrated tip mass and distributed stiffness, the 
pylons may be considered as massless cantilever beams for 
bending and massless cantilever shafts for torsion. The un
coupled natural frequencies of the engine on its flexible 
mounts will, in general, be known. 

Having found the approximate uncoupled natural fre
quencies of the fuselage system components, their repre
sentations on two frequency spectra, one for vibrations 
in the vertical plane and the other for vibrations in the hori
zontal plane, along with the representations of the rotor 
excitation frequencies, will disclose which component mo
tions of the fuselage system will be of importance in the 
study of the fuselage forced response. The general locations 
of the approximate coupled natural frequencies may be 
found by noting that for any pair of adjacent uncoupled 
natural frequencies, the coupled frequencies· will be such 
that one is to the left of the lowest uncoupled and the other 
to the right of the highest uncoupled frequency. This ap
proximation appears valid, however, only if the pair of 
adjacent uncoupled natural frequencies is relatively iso
lated from the remainder of the spectrum. Typical frequency 
spectra for a three-bladed longitudinally tandem rotor 
type helicopter whose pylon torsional rigidities are infinite 
are shown in Figure 4, wherein all frequencies are dimen
sionless, being referred to the normal operating rotor speed. 

As shown in Figures 4A and 4B, page 134, the rotor ex
citation frequencies are considered in band form to account 
for the range of rotor speed encountered in all possible flight 
conditions. The first rotor harmonic band accounts for the 
major excitation because of a rotor unbalance, and the third 
rotor harmonic band accounts for the major excitation gen
erated by a three-bladed balanced rotor. 

It is to be noted that the complete natural frequency 
spectra would include the quasi-rigid body modes at the 
low ends of the spectra which are associated with the 
dynamic stability of the helicopter in flight and include the 
effects of rotor blade motion and aerodynamic forces. These 
coupled quasi-rigid body motions of the fuselage system 
and rotor blades are of little interest in the study of the 
elastic fuselage forced response since their coupling with 
the elastic modes appears negligible. Consequently, rotor 
blade motion and aerodynamic forces are ignored in the 
present analysis. 

Unfortunately, the uniform beam theory uncoupled nat
ural frequency spectra do not accurately describe the 
uncoupled motions of the fuselage system components due 
to the non-uniformity in mass and stiffness distributions. 
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FIGURE: 4A. UNCOUPLttD VERTICAL BENDING 
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FIGURE 4 B. COUPLED SIDE BENDING AND TORSION 

LEGEND: 

WV n = nth mode fuselage vertical bending frequency. 

wSn = nth mode fuselage side bending frequency. 

WTn = nth mode fuselage torsional frequency. 

Wll = Forward pylon fundamental bending frequency. 

Wbb = Rear pylon fundamental bending frequency. 

WEV ' WES' WET' = Engine uncoupled vertical, lateral and roll fre
quencies, respectively. 

(2 = Normal rotor angular velocity. 

FIGURE 4. V NCOUPLED NATURAL FREQuENCIES 

FROM UNIFORM BEAM THEORY 

The exact uncoupled natural frequencies are found to be 
lower than the approximate uniform beam theory fre
quencies, the errors being as high as 30 per cent for bend
ing and 40 per cent for torsion. But even the exact un
coupled frequencies do not properly describe the resulting 
motion of the fuselage system, because the component mo
tions couple with one another. Consequently, a rigorous 
analysis accounting for non-uniformity and coupling is re
quired in order that an accurate study of the fuselage forced 
response be made. For this reason, the Myklestad method 
of elastic beam vibration analysis will be employed to deter

.. mine the exact coupled natural frequencies of a non-uniform 
helicopter fuselage system. In particular, the Myklestad 
method will be applied to the fuselage system of a longitudi
nally tandem rotor type helicopter. Although the Myklestad 
method will be applied in a free vibration analysis, in which 
anyone mode may be found independently of all other 
modes, it may be extended to provide a forced response 
analysis, the results of which would include the forced 
modes of response and the dynamic stress distributions. 

COMPUTATION 

MYKLESTAD ANAI .. YSIS 

In applying the Myklestad method to the analysis of the 
elastic fuselage vibrations of a longitudinally tandem rotor 
type helicopter, the fuselage system is approximated by an 
equivalent V-shaped elastic free-free beam composed of a 
finite number of sections, each section having its individual 
mass and stiffness properties. The horizontal component 
of the equivalent beam comprises the fuselage proper, and 
the vertical components comprise the forward and rear 
pylons assumed cantilevered at the attachment points. The 
engine is assumed to be flexibly mounted to a section of the 
fuselage proper, the flexibility being in the vertical, lateral 
and roll senses. The equivalent beam is considered to exe
cute uncoupled bending vibrations in a vertical plane and 
coupled side bending and torsion vibrations in a horizontal 
plane, wherein the pylon torsional rigidities are assumed 
infinite. Rotor blade motion, damping, and aerodynamic 
forces are ignored, in that their effects upon the elastic 
motions are negligible. 

Uncoupled Vertical Bending Vibrations 

N ow consider the equivalent U -shaped elastic beam com
posed of a finite number of sections to be executing free un
coupled bending vibrations in a vertical plane (Figure S). 

11 

FIGURE S 

As shown in Figure S, the fuselage proper is divided into a 
finite number of sections, each section consisting of an 
elastic beam having a concentrated end mass and a bending 
stiffness distributed over its length. The engine mass is 
assumed concentrated and flexibly mounted to a section of 
the fuselage proper, and the pylon mass centers are as
sumed coincident with the rotor centers, at which centers 
originate the constant rotor forces F Zo and F;o' Designating 
the concentrated masses as vibration stations consecutively 
numbered from forward to rear, then the tip mass of the 
fuselage proper becomes station 1, and its end mass be
comes station b, where b designates the base. The forward 
and rcar pylon masses are designated as stations 11 and bb, 
respectively. To simplify the analysis, the engine mass is 
considered to' be part of the fuselage station mass to which 
it is flexibly mounted. In so doing, however, an effective 
engine mass must be employed whose magnitude is a func
tion of the uncoupled engine natural frequency and the vi
bration frequency of the fuselage system motion (see Ap
pendix A). 
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N ow consider two adjacent fuselage stations, designated 
nand n+ 1. Then the slope of the bending curve, the bend
ing deflection, the shear, and the bending moment at each 
station are shown in Figure 6. 

FIGURE 6 

The symbols employed in Figure 6 are defined as follows: 
a" = Slope of bending curve at n. 
y" = Bending deflection at n. 
S" = Shear at n. 

M,. = Bending moment at n. 
mIl = Mass concentrated at n. 

I" = Length of nth section. 
x" = Coordinate of mIl from base b. 

Employing recurrence equations, the slopes and deflec
tions of the two adjacent stations are related as follows: 

an+l = an - Sn VFn - Mn VMn } 
Yn+l = Yn - In an+1 - Sn dFn - Mn dMn 

(1) 

where, considering the section beam to be cantilevered at 
n+ 1 and free at n, the bending elastic coefficients are de
fined as follows: 

VFn = Slope at n due to a unit force at n. 
VM" = Slope at n due to a unit moment at n. 
dFn = Deflection atn due to a unit force at n. 
dMn = Deflection at n due to a unit moment at n. 

For a uniform cantilever beam of length l, the bending 
elastic coefficients become the following: 

VF = l2j2EI 

VM = llEI 
dF = l3j3EI 
dM = 12/2EI 

(2) 

where EI is the bending stiffness assumed constant over 
the beam length. 

During a free vibration, the solutions for the slope, de
flection, shear and bending moment at any station n take on 
the form: 
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a( t) = aeiwt 

yet) = yeiwt 
(3) 

Set) = Seiwt 

M(t) = Meiwt 

where now IX, y, Sand M are considered as the amplitudes 
of the dynamic quantities during the free vibration. Denot
ing the amplitudes of the slope and deflection at station 1 
to be cf> and 0, respectively, then the assumption of linear 
elastic vibrations permits the determination of the slope and 
deflection at station n as linear functions of cf> and o. Hence, 
.IXn and Yn may be expressed as follows: 

IXn = cf>i¢n - Oi5n } 
Yn = - cf>g¢n + og5n 

(4) 

where hn and gkn are the undetermined amplitude coeffi
cients for the slope and deflection, respectively, at station n. 
In a similar fashion, the amplitudes of the shear and bend
ing moment at station n take on the form: 

Sn = -cf>G¢n + oG5n } 
Mn = -cf>G¢n + oCan 

(5) 

where Ckn and C~n are the undetermined amplitude coeffi
cients for the shear and bending moment, respectively, at 
station n. Substituting equations 4 and 5 into the equations 
1, then the recurrence equations for the slope and deflection 
amplitude coefficients become the following: 

hn+1 = h n + VFn Ckn + VMn G~n } 
gk n+1 = gkn + In ikn+1 - dFn Gkn - dilln Ckn . 

(6) 

The amplitudes of the shear and bending moment at station 
n are found as shown in Figure 7. 

FIGURE 7 

As shown in Figure 7, S1 and .1t11 are the amplitudes of 
the shear and bending moment at station 1, respectively, 
resulting from the motions of the forward pylon and tht: 
tip mass of the fuselage proper, yet to be determined, and 



136 

miYiw2 is the incremental shear amplitude at station i result
ing from the bending vibration. It follows, therefore, that 
S nand M n become the following: 

n 

Sn = S1 + 2: miYiw2 

i=2 n-1 (7) 
Mn= M1 + S1(X1-'Xn) + 2:miYiw2 (Xi-Xn). 

i=2 

Substituting equations 4 and 5 into equations 7, then the 
recurrence equations for the shear and bending moment 
amplitude coefficients become the following: 

n 

Gkn = Gk1 + 2: miw2gk;, 
i=2 

n-1 

Glen = G"1 + 2:liGki 
;'=1 

(8) 

COMPUTATION 

where 

(9) 

The recurrence equations for the slope and deflection 
amplitude coefficients, given by equations 6, and the re
currence equations for the shear and bending moment am
plitude coefficients, given by equations 8, formulate the 
tabular calculations required in the Myklestad analysis. 
These tabular calculations may be effected by the well
known Myklestad tables for uncoupled beam bending vi
brations (Tables I and II). The tabular calculations re
quired in the analysis for uncoupled vertical bending free 
vibrations are formulated in these amplitude coefficients 
tables, one associated with the tip slope cp and the other with 
the tip deflection 8. 

TABLE I. MASS AND STIFFNESS PARAMETERS 

n m EI X 10-8 1 dp X 108 vp X lOS 
Vjf X lOS 

dM X lOS 

11 

1 

t 
b 

bb 

TABLE II. AMPLITUDE COEFFICIENTS 

kth Table 

CD 

gk = CD +® Gk X 10-8 = Gft X 10-8 = fkn+l = fkn !1g1e = 
n 'In(,)2/108 2:mw2 

CD L:lX@ +vpX~ lX@)-dpX@ 
for n-l 108 X 1 for n-l +VMX 3 -dMX@ 

1 gk1 Gk1 Gk1 fk2 !1g"l 

t 
b 



SEMINAR 

The amplitudes of the shear and bending moment at 
station 1 are found from a study of the motions of the for
ward pylon and the tip mass of the fuselage proper, as 
shown in Figure 8. 

FIGURE 8 

It follows from Figure 8 that 

Sl = ('lnl + 'lnU)YlW
2 

} 

M1 = Yu (lU'lnllw2-FzO) . 
(10) 

The amplitudes of the slope and deflection of the forward 
pylon, ~ll and Yli, respectively, must now be evaluated. 
These are found to be as follows: 

~u = ~l + VFll ('ln11YllW2 - C%llFzO) 

Yu = 11l~1 + dFll ('lnUYllw2_~llFzo) 

Now, since at station 1 

~1 = cf> } 
Yl = 8 , 

then it follows from equations 4 that 

fifJ1 = gOl = 1 } 
fOl = gifJ) = 0 . 

(11) 

(12) 

(13) 

The forward pylon slope and deflection amplitudes then 
take on the form: 

~u = cf>fifJu - 8fliu } 

Yu = -cf>gifJu + 8gou 

where 

fifJll = {I + 'lnuw2(lllVFu - dFll ) }/All} 
fOll = 0 . 

gifJll = - {Ill + Fzo(lllVFu - dFU ) }/Au } 

gOll = 0 

and where 

.Au = 1 + FZOVFll - mUw2dFll 

(14) 

(15) 

(16) 

(17) 

Making substitutions into equations 10, then the amplitude 
coefficients for S 1 and M 1 become: 

GifJl = 0 } 
GOI = ('lnl+'lnll)W2 

G~l = gifJu (lll'lnllw
2

- FzO) } 
GOI = 0 . 
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(18) 

(19) 

It now remains only to evaluate the rear pylon boundary 
conditions. This is effected as shown in Figure 9. 

FIGURE 9 

It follows from Figure 9 that in order to meet the require
ments for zero net shear and bending moment at the base 
section b, the following boundary condition equations must 
be satisfied: 

Sb + mbbYbw2 = 0 } 
Mb + Ybb(Lbb'lnbbw2_F~o) = 0 . (20) 

The amplitudes of the rear pylon slope and deflection, ~bb 
and Ybb, respectively, must now be evaluated. These are 
found to be as follows: 

~bb = ~b + VFbb (mbbYbbw2 - ~bbF~o) } 
Ybb = lbb~b +dFbb ('lnbbYbbW2 - ~bbF;o) . 

The solutions for ~bb and Ybb then become: 

~bb = cf>fifJbb - 8fobb } 
Ybb = - cj>gifJbb + 8gobb . 

where 

fifJbb = yI/ifJb 

fO bb = Y1!lib 

gifJbb = -AlfifJb 

glibb = - A1fob 

and where 

} 
} 

Yl = {I + 'lnbbw2 (lbbVFbb - d Fbb) } / Abb 

Al = {lbb + F;o (lbbvFbb - dFbb ) }/Abb 

(21) 

(22) 

(23) 

(24) 

} (25) 

(26) 

The boundary conditions given by equations 20 may be 
expressed in the form: 

Sb = - cj> V ifJ + 8 V li = 0 
Mb = -cj>MifJ + 8Mo = 0 } (27) 

where Sb and Mb are the net shear and bending moment, 
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respectively, at station b which must be zero concurrently, 
and where their amplitude coefficients are defined as: 

V¢ = G¢b + fflbb w2g¢b } (28) 
Va = Gab + fflbbw2glib 

M¢ = G~b + g¢bb (lbb ffl bbw2 - F~o) . } (29) 
Mo = Gab + gObb (lbb ffl bbw2 - F~o) . 

If, now, the tip deflection 8is made unity for normalization 
purposes, then the tip slope cp becomes, from the net shear 
equation, the following: 

cp = Vo/V¢ . (30) 

Substituting, the net bending moment then becomes: 

Mb = -M¢(Vo/V¢) + Mo = 0 . (31) 

The above equation 31, which expresses the zero net bend
ing moment at the fuselage base, becomes the criterion for 
the existence of a natural frequency in uncoupled vertical 
bending free vibrations. The tabular calculations must be 
repeated for assumed values of natural frequencies until the 
criterion is satisfied. The solutions for the slope, deflection, 
shear and bending moment at a natural frequency then be
come simply: 

an = cpf¢n - fan I 
Yn = -cpg¢n + gOn (32) 
Sn = -cpG¢n + GOn 

Mn = -cpG¢n + G~n . 

The foregoing equations 32 express the final solutions for 
uncoupled vertical bending free vibrations. These solutions 
are valid only at a natural frequency of vibration which sat
isfies the criterion of zero net bending moment at the fuse
lage base given by equation 31. 

Coupled Side Bending and Torsion Vibrations 

N ow consider the equivalent U -shaped elastic beam com
posed of a finite number of sections to be executing coupled 
side bending and torsion free vibrations in a horizontal 
plane, shown in Figure 10. 

FIGURE 10 

COMPUTATION 

As shown in Figure 10, the individual section beam is now 
considered to have its concentrated mass offset from the 
torsion axis and to have both bending and torsional stiff
nesses distributed over its length. As before, the engine 
mass is assumed concentrated and to be flexibly mounted 
to a fuselage station, the flexibility being in both the lateral 
and roll senses. The engine mass will again be considered 
as part of the fuselage station mass to which it is flexibly 
mounted, where now its effective value will be a function 
of both its uncoupled lateral and uncoupled roll natural fre
quencies and the vibration frequency of the fuselage system 
motion (see Appendix A). 

Now consider two adjacent fuselage stations, n andn+1. 
Then the slope of the bending curve, the bending deflection, 
the twist, the shear, the bending moment and the torque at 
each station are shown as in Figure 11. 

FIGURE 11 

In addition to the symbols employed previously, the symbols 
of Figure 11 are defined as follows: 

(In = Twist angle at n. 
Tn = Torque at n. 
J n = Mass polar moment of inertia about torsion axis 

at n. 
rn = Vertical offset of mn from torsion axis. 

In addition to the recurrence equations for the slopes and 
deflections of two adjacent stations given by equations 1, 
the recurrence equation for the twist angles of the two adja
cent stations becomes: 

(33) 

where, considering the section as a uniform shaft canti
levered at n+ 1 and free at n, the twist elastic coefficient Vp 

is defined simply as: 

V'l' = l/Gfp (34) 
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where Clp is the torsional stiffness assumed constant over 
the section length. 

In addition to the form of the solutions for the slope, de
flection, shear and bending moment, given by equations 3, 
the solutions for the twist and torque at station n take on 
the form: 

O( t) = Oeiwt 
} 

T(t) = Teiwt (35) 

where 0 and T are considered as the amplitudes of the 
dynamic quantities during the free vibration. 

Denoting the amplitudes of the slope, deflection and twist 
at station 1 to be cp, 0 and tfi, respectively, then the assump
tion of linear elastic vibrations permits the determination of 
a, y, and 0 at n as linear functions of cp, 0, and tfi. Hence, 

an = CPitl>n - oion - tfii:/Jn } 

Yn = - cpgtl>n + ogon + tfig:/Jn 
On = - cphtl>n + Shon + tfiht/ln 

(36) 

where hen and gkn are defined as before and where hkn are 
the undetermined amplitude coefficients for the twist at n. 
In a similar fashion, the amplitudes of the shear, bending 
moment and torque at n take on the form: 

Sn = -cpCtI>n + SCon + tfiCt/ln } 

Mn = -cpC¢n + SCan + tfiC~n 
Tn = -cpH4>n + oHon + tfiHt/ln 

(37) 

where Ckn and C~n are defined as before, and H kn are the 
undetermined amplitude coefficients for the torque at n. 

In addition to the recurrence equations for the slope and 
deflection amplitude coefficients given by equations 6, the 
recurrence equation for the twist amplitude coefficients be
comes, upon substituting On of equations 36 and Tn of equa
tions 37 into equation 33, the following: 

(38) 

The amplitudes of the shear, bending moment, and torque 
at station n are found as shown in Figure 12. 

FIGURE 12 
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As shown in Figure 12, S 11 M 11 and 7\ are the amplitudes 
of the shear, bending moment, and torque at station 1, re
spectively, resulting from the motions of the forward pylon 
and the tip mass of the fuselage proper. Also acting at sta
tion 1 is the vertical shear F ZO' being the shear transmitted 
by the constant forward rotor force. Also, the incremental 
shear and torque amplitudes at station i are found to be 
miw2 (Yi -riOi) and w2 (liO, -miriY-i) , respectively. It follows, 
therefore, that S n, M n, and Tn become the following: 

'" 
Sn = SI + L miw2 (Yi- riOi) 

i=2 
n-l 

Mn = Ml + S1(%1-%n) + L miw2 (Y-i- riOi) (Xi-.l-n) (39) 
1=2 

!I-

T1 + L w2(liOi-- miriyJ - FZO(Yl- Yn). 
";=2 

Substituting equations 36 and 37 into equations 39, then 
the recurrence equations for the shear, bending moment 
and torque amplitude coefficients become the following: 

n 

Ckn = Ckl + L 1niw2 (gki - rihki) 
i=2 

n-l 

C~n = G~l + LhCki 

i=1 
n n-l 

H kn = Hk1 + L w2(lihki-mirigkJ + LFzoLlgki 

where 

i=2 i=1 

n-l 

gkn - gkl = L Llgki 
i=1 

(40) 

(41) 

The recurrence equations for the slope and deflection ampli
tude coefficients, given by equations 6, the recurrence equa
tion for the twist amplitude coefficients, given by equation 
38, and the recurrence equations for the shear, bending 
moment, and torque amplitude coefficients, given by equa
tions 40 and 41, formulate the tabular calculations required 
in the Myklestad analysis. These tabular calculations may 
be effected by the well-known l\1yklestad tables for coupled 
bending-torsion beam vibrations (Tables III and IV). 

The tabular calculations required in the analysis for 
coupled side bending and torsion free vihrations are formu
lated in the amplitude coefficients tables, their being three 
such tables, these being associated with the tip slope cp, the 
tip deflection 8, and the tip twist tfi. 



TABLE III. MASS AND STIFFNESS PARAMETERS 

n m r mr 1 EI X 10-s Glp X 10-s 

11 

1 

t 
b 

bb 

n mw2/10s mrw2/10s 1w2/10s l dF X IDs 
VF X lOS 

VM X lOS VT X lOS dM X lOS 

11 

1 

t 
b 

bb 

TABLE IV. AMPLITUDE COEFFICIENTS 

kth Table 

CD CD CD ® CD 
Hk X 10-s = 

gk = CD hk = @ Gk X 10-s = Gk X 10-s = Zl 1m' ~ fkn+l = fkn t1gk = 

+0 -VTX(§) Zmw
2 CD Zlx0 

10sX 2 
+VFX® lX® n lOS X 1 mrw2 

for n-1 _Zmrw
2 ><@ 

for n-1 I - IDs 1 +VMX@ -dFXQ) 

IDs + Z F so X10- SXCZ) -dMX® 

for n-l 

1 gkl hkl Gkl Gtel Hkl fk2 t1gkl 

t 
b 
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The amplitudes of the shear, bending moment, and torque 
at station 1 are found from a study of the motions of the 
forward pylon and the tip mass of the fuselage proper, as 
shown in Figures 13A and 13B. 

FIGURE 13A 

FIGURE 13B 

It follows from Figures 13A and 13B that 

S1 = mlw2(Yl-r18l ) + mllYllw
2 

} 

Ml =0 (42) 
Tl = J lw281 -m lrlYlw2+ lllmllYllW2 -F~O(Yll-Yl). 

The amplitudes of the slope and deflection of the forward 
pylon, 011 and Yll, respectively, must now be evaluated. 
These are found to be as follows: 

811 = 81 + VF11 (m11YllW
2
-811F zO ) } (43) 

Y11 = Yl + 111(h + dFll (mllYllw2 -8llFzo ) . 
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The forward pylon slope and deflection amplitudes then 
become: 

811 = - cph¢ll + Shall + I/Ihl/l11 } 
Yll = -CPg¢11 + Sgol1 + I/Igl/l11 

where 

(46) 

(47) 

(48) 

(49) 

Making substitutions into equations 42, then the amplitude 
coefficients for S 1, M 1, and T 1 become the following: 

G¢l = 0 } 
Gal = mlW2 + mllw2goll 
GI/Il = -mlrlw2 + mllw2gl/lu 

G¢l = 0 
Gil = 0 
G~l = 0 

} 

(SO) 

(51) 

H~=O } 
HOI = -mlrlw2 + gOl.1 (11lmllU)2-Fzo) + Fzo (52) 
HI/Il = JlW

2 + gl/ll1 (lllmllw2- Fzo) . 

The rear pylon boundary conditions are now found as 
shown in Figures 14A and 14B. 

I I 

~\~ 
I I 

Now, since at station 1 FIGURE 14A 

al = cp } 
Yl = B 
81 = 1/1 , 

then it follows from equations 36 that 

f¢l = gal = hl/ll = 1 
fa l = gl/ll = hePl = 0 
fl/ll = g¢l = hal = 0 } 

(44) 

(45) 
FIGURE 14B 
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It follows from Figures 14A and 14B that in order to meet 
the requirements for zero net shear, bending moment and 
torque and the base section b, the following boundary con
dition equations must be satisfied: 

Mb = 0 (53) 
Sb + mbbYbbw2 = 0 } 

Tb + lbbm bbYbbw2 - F;o (Ybb-Yb) = 0 . 

The amplitudes of the slope and deflection of the rear pylon, 
()bb and Ybb respectively, must now be evaluated. These are· 
found to be as follows: 

Obb = Ob + VFbb (mbbYbbw2 - ObbF ;o) } 
Ybb = Yb + lbbOb + d Fbb (mbbYbbw2 - ()bbF;O) . ( 54 ) 

The solutions for ()bb and Ybb then become: 

Obb = -CPhcPbb + ShObb + tf;hl/lbb } 
Ybb = -CPgcPbb + Sgobb + tf;gl/lbb 

where 

gcPbb = PlgcPb + P2hcPb 

gObb = Plgob + P2hob 

gl/lbb = Plgl/lb + P2h l/lb 

and where 

(55) 

(56) 

(57) 

~l = dFb / Abb } (59) 
~2 = {1 + mbbW2 (lbbVFbb - dFbb )} / Abb 

Abb = 1 + F;OVPbb - mbbw2dFbb . (60) 

The boundary conditions given by equations 53 may be 
expressed in the form: 

Sb = - cpV cP + SVn + tf;V 1/1 = 0 } 
M b = - cpM cP + SA! 0 + tf;M 1/1 = 0 
Tb = - cf>T cP + STo + tf;T 1/1 = 0 

(61) 

where Sb, Mb and Tb are the net shear, bending moment 
and torque, respectively, at station b which must be zero 
concurrently, and where their amplitude coefficients are 
defined as: 

(62) 

(63) 

COMPUTATION 

If now the tip deflection S is made unity for normalization 
purposes, then the tip slope cp and the tip twist tf; become, 
from the solutions of the shear and torque equations, the 
following: 

The solutions for cf> and tf; must satisfy the zero net bending 
moment equation, namely 

(66) 

The above equation 66, expressing the zero net bending mo
ment at the fuselage base section, becomes the criterion for 
the existence of a natural frequency in coupled side bending 
and torsion free vibrations .. The tabular calculations must 
be repeated for assumed values of natural frequencies until 
the criterion is satisfied. The solutions for the slope, deflec
tion, twist, shear, bending moment and torque at a natural 
frequency then become simply: 

an = cpfcPn - tf;fl/ln - ion 

Yn = -cpgcPn + tf;gl/ln + gOn 
o = -cphcPn + tf;hl/ln + hon 

Sn = -cpCcPn + tf;Cl/ln + COn 

Mn = -cpC¢n + tf;C~n + Can 

Tn = -cpHcPn + tf;Hl/ln + Hon' 

(67) 

The foregoing equations 67 express the final solutions for 
coupled side bending and torsion free vibrations. These 
solutions are valid only at a natural frequency of vibration 
which satisfies the criterion of zero net bending moment at 
the fuselage base given by equation 66. 

ApPLICATION OF MYKLESTAD ANALYSIS 

The results of an application of the l\1yklestad analysis to 
a three-bladed longitudinally tandem rotor type helicopter 
are now presented. These results include the solutions for 
the first four normal modes of uncoupled vertical bending 
and the first three normal modes of coupled side bending 
and tor$ion free vibrations of an equivalent U -shaped elas
tic beam supporting a flexibly mounted engine and having 
infinite pylon torsional rigidities. The Myklestad solutions 
for the exact coupled natural frequencies are summarized 
in the following dimensionless frequency spectra (Figure 
15) which include the approximate uncoupled natural fre
quencies derived from uniform beam theory (Figure 4). 
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Natural 
Frequencies 

Rotor 
Excitation 
Frequencies 

WI W2 

2.48 3.60 
WEV 

2.84 
! 

W3 

5.44 
Wbb WV1 

5.99 ?51 
I I 
I I 

W4 

8.44 

FIGURE 15A. UNCOUPLED VERTICAL BENDING 

Natural 
Frequencies 

Rotor 

WI W2 W;{ 

2.66 4.88 5.44 
OJET WES Wbb 

1.62 2.35 4.86 
I I 
I I 

W'~I WTl Wll 

6.56 7.158.08 
I I 
I I 

0L-~~~~~~'-~~~~~~--~-"10w/O 

Excitation .89 
Frequencies 

30 
-- Myklestad Solution 

LEGEND: 

- - - - Uniform Beam Theory 

FIGURE lSB. COUPLED SIDE BENDING AND TORSION 

FIGURE 15. COUPLED NATURAL FREQUENCIES 
I<'ROM M YKLESTAD SOLUTION 

It was noted earlier that in order to effect the Myklestad 
analysis for free vibrations, the tabular calculations must 
be repeated for assumed values of natural frequencies until 
the criterion for the existence of a normal mode is satisfied. 
This criterion is formulated in the boundary condition re
quiring zero net bending moment at the fuselage base, ex
pressed by equation 31 for uncoupled vertical bending and 
equation 66 for coupled side bending and torsion. To facili
tate the solution, it is found convenient to plot the function 
Mb/w2 versus w, its zeros then being the criteria for the 
existence of natural frequencies. The residual moment func
tions associated with the results presented herein are shown 
in Figures 16A and 16B. 

FIGURE 16A. UNCOUPLED VERTICAL BENDING 
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4.95 

I 

I 
I 

FIGURE 16B. COUPLED SIDE BENDING AND TORSION 

FIGURE 16. RESIDUAL MOMENT FUNCTIONS 

The asymptotes shown in the foregoing plots of the 
residual moment functions do not, of course, denote natural 
frequencies of the system. Rather, they denote those fre
quencies of vibration at which the amplitudes of the pylon 
and engine motions, and the amplitudes of the torsion mo
tion of the fuselage proper, become infinite for finite ampli
tudes of bending motion of the fuselage proper. These 
asymptote frequencies are associated with the uncoupled 
natural frequencies of the motions of the fuselage system 
components other than the bending motion of the fuselage 
proper. The asymptote frequencies, however, do not corre
spond exactly with the uncoupled natural frequencies of 
the aforementioned motions due to their coupling with one 
another and with the bending motion of the fuselage proper. 
In the plot of the residual moment function for uncoupled 
vertical bending, shown in Figure 16A, the first asymptote 
is associated with the engine vertical motion, the second 
with the rear pylon fore and aft bending, and the third with 
the forward pylon fore and aft bending. In the plot of the 
residual moment function for coupled side bending and 
torsion, shown in Figure 16B, the first asymptote is asso
ciated with the engine lateral motion, and the second with 
the rear pylon lateral bending. Further calculations would 
yield two additional asymptote frequencies, the first associ
ated with the first torsion mode of the fuselage proper, and 
the second with the forward pylon lateral bending motion. 
Calculations beyond this point would yield asymptote fre
quencies associated with the higher torsion modes of the 
fuselage proper. Calculations at the low frequencies should 
yield an asymptote associated with the engine roll motion. 
In general, it may be said that the total number of asymp
totes equals the total number of uncoupled modes of each 
of the fuselage system components other than bending of 
the fuselage proper, when employing the criterion of zero 
bending moment at the base of the fuselage proper to de
termine the natural frequenci~s of the helicopter fuselage 
system. 
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One final note to be made is the existence of natural fre
quencies at the low ends of the frequency spectra. For un
coupled vertical bending, there will exist a natural fre
quency of the order of .01 to .1 associated with the quasi
rigid body pitch motion of the fuselage system. For coupled 
side bending and torsion, there will exist a natural fre
quency of the above order associated with the quasi-rigid 
body roll motion of the fuselage system. These quasi-rigid 
body motions arise from the pendular effects of the constant 
rotor thrusts. 
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ApPENDIX A 

EFFECTIVE MASS PROPERTIES OF A 

FLEXIBLY MOUNTED ENGINE 

Uncoupled Vertical Bending Vibrations 

Consider an engine of mass me to be concentrated at a 
fuselage station, at which station the concentrated fuselage 
mass is mf (less engine mass). Also, consider the engine to 
be flexibly mounted to the fuselage with a spring of constant 
k~ and consider the fuselage station spring constant to be kyo 
The system may then be represented as a simple two-de
gree-of-freedom vibratory system as follows: 

FIGURE Al 

where, in Figure AI, ~ and yare the linear displacements 
of me and m" respectively. The equations of motion become: 

~: mf~. + ky y + k~(y-~) : 0 } 
~. me~+k~(~-y) -0. 

(A-I) 

For harmonic vibrations of a frequency w, the solutions are 
of the form 

whence it follows that 

where 

IJ.~ = 1/ ( I - ,B~ ) 

y. = Yo sin wt } 
~ = ~o sin wt 

~o = p.~ Yo 

,B~ = w/w~ 

(A-2) 

(A-3) 

(A-4) 

COMPUTATION 

The equation of motion with respect to y may then be ex
pressed as 

(A-S) 

Therefore, in uncoupled vertical bending vibrations, the 
total effective mass at a fuselage station at which is concen
trated a flexibly mounted engine becomes: 

(A-6) 

where the amplification factor p.~ is a function of the vibra
tion frequency w, and the engine uncoupled vertical natural 
frequency, w~. 

Coupled Side Bending and Torsion Vibrations 

In a similar fashion consider the engine to be mounted 
flexibly in both the lateral and torsional senses with the 
engine torsion axis located above the fuselage torsion axis 
as shown in Figure A2. 

FIGURE A2 

where, in Figure A2, ky and ko are the lateral and torsional 
spring constants of the fuselage station whose mass mf (less 
engine) is located a distance rf below the fuselage torsion 
axis and whose mass polar moment of inertia about the 
fuselage torsion axis is I" and ka and k¢ are the lateral and 
torsional spring constants of the engine whose mass me is 
located a distance h above the fuselage torsion axis and 
whose mass polar moment of inertia is Ie about its roll axis 
likewise offset a distance· h above the fuselage torsion axis. 
Also, y and 0 are the linear and angular displacements, re
spectively, of the fuselage station, and 8 and cp are the linear 
and angular displacements of the engine, respectively, taken 
with respect to the fuselage. 

The equations of motion then become: 

y: y(mf+me) + 'B( -mfrf+meh) 

+8'me + Ji?yy = 0 

0: O(If+Ie+meh2
) + Y ( -mrrf+meh ) 

+8meh + :{>Ie + koO = 0 

8: S'me + yme + Bmeh + ka8 = 0 

cp: ;j,Ie + Ole + k¢cp = 0 . 

(A-7) 
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For harmonic vibrations, the solutions take the form: 
y = Yo sin wt 
() = ()o sin wt 
8 = 80 sin wt 

cP = CPo sin wt 
whence it follows that 

cpo = ()op,¢/3~ } 
80 = p.o/3:(yo+hOo) 

where 

(A-8) 

(A-9) 
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Therefore, in coupled side bending and torsion vibrations, 
the total mass, static mass moment and mass polar moment 
of inertia about the fuselage torsion axis at a fuselage sta
tion at which is concentrated a flexibly mounted engine 
become: 

(A-12) 

p.¢ = 1/(1-,8~), /3¢ = w/w¢, W$ = k¢/le } (A-10) 
P.o = 1/(1-/3~), /30 = w/wo, w* = ko/me . 

where the amplification factors P.o and p.¢ are functions of 
the vibration frequency wand the engine uncoupled natural 
frequencies in the lateral and roll senses, Wo and W¢' re
spectively. 

The equations of motion with respect to y and 0 may then 
be expressed as: 

y: ~(m,+mep.o) + kyy - 6(m,r,-mehp.o) = 0 } 
(): ()(I,+lep.¢+meh2p.{j) + ko() (A-ll) 

- Y(m,r,-mehp.o) = 0 . 

APPENDIX B 

DISCUSSION 

[This paper and the next were discussed as a unit.] 

UNIFORM BEAM THEORY FORMULAS FOR UNCOUPLED NATURAL FREQUENCIES 

Beam Type Natural Frequency Mode Frequency Modal Shape rad.jsec. Coefficient 

Uniform 
Wn = an~ El 

1st bending al = 22.4 ~ 
free-free p.l4 2nd bending a2 = 61.7 ~ 
beam 3rd bending as = 121.0 ~ 

Uniform 
(dn = b1£~GlfJ 1st torsion bi = 7T' c=- ==::::l 

free-free )...12 2nd torsion b2 = 27T' ~ 
shaft 3rd torsion bs =: 37T' ~ 

Uniform 
Wn = Cn~ El 

1st bending CI = 3.52 ~ -----cantilever p.l4 2nd bending C2 = 22.4 ~- -~ 

beam 3rd bending Cs = 61.7 ~ 

Wn = dn~GlfJ 
~ ___ =:::J Uniform 1st torsion dl = 7T'/2 

cantilever 2nd torsion d2 = 37T'/2 ~ ---e_ --==:::J \l2 
shaft 3rd torsion ds = 57T'/2 ~ 

Massless w = ~3El Fundamental unity ~ ~ 
cantilever mls bending 
beam with 
tip mass 

Massless w = ~GlfJ Fundamental unity 
cantilever Jl torsion 
shaft with 
tip inertia 

LEGEND: 

EI = Bending stiffness ] = Mass polar moment p. = m/ L, mass per unit length 
G1fJ = Torsional stiffness of inertia A = ] / L, mass polar moment 

m= Mass 1 = Beam length of inertia per unit length 



Machine Procedure for Computation of 
Elastic Vibrations of Helicopter Fuselages 

WILLIAM P. HEISING 

International BttSiness Machines Corporation 

PRELIMINARY ANALYSIS 

THE system of equations developed in the previous paper 
is a difference system approximating a system of differen
tial equations. If the fuselage section properties are assumed 
constant, and the corresponding differential equations are 
examined, a crude analysis shows that the various depend
ent variables may be expected to increase in an exponential 
manner along the fuselage. The curve will be influenced by 
the value of the parameter, w2 • 

The modal shapes are developed from the dependent vari
abIes j, g, and h (which increase exponentially along the 
fuselage) by the following equations: 

Uncoupled Vertical Bending: 

Deflection: Yn = -ipg1>n + gOn 

Coupled Side Bending and Torsion: 
Deflection: Yn = _. if>g1>n + gOn + 'l!g1/ln 

Twist Angle: ()n = - if>h1>n + hon + 'l!h1/ln . 

In the case of uncoupled vertical bending, there are two 
independent solutions which satisfy all the boundary condi
tions at the forward pylon. Because of the linear character 
of the equations, any linear combination of the two solutions 
is also a solution which satisfies the initial boundary condi
tions at the forward pylon. These two solutions are called 
the cp solution and the 8 solution. There are two boundary 
conditions to be satisfied at the aft pylon. These conditions 
state that the residual shear and bending moment are zero 
at the rear. A parameter if> is the multiple of the <p solution 
to be added to the 8 solution so that the combined solution 
has zero residual shear at the aft pylon. The residual bend
ing moment is then computed and plotted as a function of w; 
the roots of M' = 0 correspond to the natural frequencies 
of undamped harmonic vibration of small amplitude. 

The case of coupled side bending and torsion is similar 
ex<;ept that there are three independent solutions consistent 
with the boundary conditions at the forward pylon. At the 
aft pylon, the boundary conditions for a natural vibration 
frequency are that the residual shear, torque, and bending 
moments be zero. Two parameters, if> and 'l!, are chosen so 
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that the residual shear and torque are zero. These param
eters are the relative amounts of the <p and tf; solutions 
which must be added to the 8 solution to give zero shear 
and torque at the rear pylon. The residual moments com
puted using various values of the frequency parameter, 
w = 27rj, are plotted against w, and the roots give the natural 
frequencies of the system. 

Under these conditions, the variables f and g, together 
with the parameter if> (also the variable h and the param
eter 'l!, in the case of coupled side bending and torsion), de
termine the modal shapes at the natural frequencies. Since 
the variables j, g, and h increase exponentially along the 
fuselage, whereas the appropriate physical quantities de
scribing the modal shape (such as deflection in the case of 
uncoupled vertical bending) oscillate in sign and remain of 
the same order of magnitude along the fuselage, there must 
be very nearly exact cancellation of the component deflec
tions from the various solutions near the rear of the 
fuselage. 

In practice, the first three to five significant figures may 
be identical before subtraction. Thus, a high degree of ac
curacy in the dependent variables is necessary to get reason
ably accurate modal shape curves. Five to seven figures are 
necessary to obtain two to three significant figures in the 
modal shape curve. The experience of the Piasecki engi
neers lead them to recommend the retention of at least six 
significant figures at all times, if possible. In order to main
tain maximum accuracy and yet avoid the likelihood of 
counter overflow in the Type 402 Accounting l\1achine, 
particular care in the scaling of this problem was essential. 

SCALING THe SYS'rEM OF UNITS 

The system of units in which design engineers express the 
various structural constants of the helicopter fuselage is 
gravitational, with the pound of force) the inch) and the 
second as fundamental ,units. In the engineer's system of 
units, the numerical values of the different types of struc
tural constants range from 109 to 10- 9 • By an appropriate 
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alteration of these units by powers of ten, all the various 
structural constants hecome of the order of unity in the new 
system of units. The various dependent variables (f, g, h, 
G, G', and H) also become of the order of unity in the new 
units. Thus, 102 inches, 10-2 seconds, and 107 pounds of 
force were chosen as convenient units for machine proce
dure, and the various factors for conversion from the engi
neers' system of units to the given system are powers of ten. 

Examination of sample hand computations for typical 
cases performeda over a part of the range of frequencies of 
interest indicated that the maximum values of the various 
variables were fairly approximately proportional to w2 • Since 
all the equations are linear and homogeneous in all the other 
variables, it was decided to use solutions with initial or 
starting values of 1/w2 rather than unity for j, g, or h, as the 
case might be. The analogous quantities in this solution, 
j, g, h, G, G', and H, are equal to j/w2

, g/w2 , h/w2 , etc., 
respecti vel y. 

MACHINE PLANNING 

Machine planning for the IBl\1 Card-Programmed Elec
tronic Calculator allowed for seven decimal digits in all con
stants and variables used in the computations. Thus, the 
appropriate channel C shift code depends only on the mathe
matical operation being performed. A setup change switch 
was wired so that the problem could be instantly converted 
to the solution of the problem using six instead of seven 
decimal digits. This setup change switch automatically 
shifted the reading of the factors from the card one position, 
and also automatically altered the channel C shift code on 
the 402 control panel in the proper manner. 

The parameter, w 2 , was entered into the CPC on the first 
card only. The remaining program cards contained instruc
tions and fuselage constants. To repeat the solution for a 
different frequency, a different initial card was substituted. 
Output was in the form of a tabular listing only. At the end 
of each section, all the counters were impulsed to total with
out. reset on a minor program cycle. This caused the print
ing of a table of j, g, h, G, G', and H. The machine used was 
equipped with automatic conversion and reconversion so 
that true negative values were listed, and complement nega
tive values were retained. The identical program cards were 
used for different helicopters, or revisions of the same 
model helicopter. The new structural constants were 
punched in a different factor field in the same card. 

The time of solution on the CPC was approximately two 
minutes for uncoupled vertical bending (compared to eight 
hours hand computing). Coupled side bending and torsion 
required five to six minutes per frequency investigated. 

Complete checking was not attempted. Smoothness of 
the residual moment curve served as a check against ob-

aThese computations were carried out in the Vibration Analysis De
partment of the Piasecki Helicopter Corporation. 
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vious errors. These curves were plotted while the CPC was 
in operation. If a random error was suspected, that fre
quency was re-run. If the results were identical, and a con
sistent error was suspected, a setup change switch was 
utilized to read the structural constants from a different 
factor field on the cards, which field contained the struc
tural constants of an helicopter model which had previously 
been extensively investigated. 

Throwing of the setup change switch which controlled 
the number of decimal figures retained in each step of the 
calculation, should give similar answers; thus, single digit 
counter overflow could be ruled out. These safeguards 
against error, together with the expected values of the 
natural frequences of vibration derived by the design engi
neers on the basis of uniform beam theory were deemed 
sufficient guarantees of the correctness of the calculation. 
The errors arising from truncation of the various numerical 
quantities after seven decimal places could usually be esti
mated by comparison of the results obtained using only six 
decimal digits. As was expected, this truncation error in
creased rapidly with w2

, but was within acceptable bounds 
for the ranges of interest for design purposes. 

This problem is considered an ideal type of problem for 
solution on the CPC. The counters and storage were prac
tically completely utilized to the maximum efficiency. After 
the problem had been set up and in operation for some 
months, the engineers wished to discover what effect, if any, 
their assumption of a rigidly mounted engine had upon the 
frequency spectrum. This meant that to investigate the non
rigid engine mounting case, some of the structural "con
stants" became prescribed functions of the frequency being 
investigated. The conversion from one problem to the other 
required the replacement of 5 to 10 program cards; thus, it 
was very convenient to alternate between the two cases to 
assess the importance of their original assumption in the 
various frequency ranges. 

It is of interest to compare the procedure used with the 
recently developed floating decimal procedures. The main 
body of the solution consists of the accumulation of products 
to obtain the succeeding values of the dependent variables. 
In the procedure used, practically every card used the mul
tiplication type of operation, and the addition was per
formed by the read-in to the 402 counters. Thus, the pro
gramming of this problem by floating decimal procedures 
would require practically twice as many program cards. 

On the other hand, floating decimal procedures would 
guarantee eight significant figures at each step. This com
pares with six figures (or five in a few cases at higher fre
quency) in the present procedure. Further, the initial plan
ning would have been only a fraction as complicated, since 
scaling would have been unnecessary. Floating decimal 
operation would also have eliminated the necessity for con
version factors of powers of ten. 
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DISCUSSION 

Mr. Ferber: This is exactly the method that we have 
been using at Consolidated V ultee in San Diego for the past 
four or five years. In fact, we used this method on the 
601 sometimes with complex numbers. It was really a big 
problem. We also have more flexibility taken into account 
and instead of four and six equations, we often have eight 
and ten simultaneous equations. However, I found again 
that this was just the problem where you would want to 
emit the value of w rather than punch a card each time. 

Mr. Conant: Is there a possible application to slightly 
different problems, that is, vibration within the cabin of an 
aircraft, due to vibrations of the motor and propeller-mount? 

1M r. Leone: One of the easiest ways to remedy the exces
sive vibrations of the engine, of course, is to vary its 
flexible mounts, but in this particular problem, one has to 
be careful that, in so doing, the resulting coupling effect of 
the fuselage, vibration with the engine will not produce a 
coupled frequency ,vhich will fall inside of an excitation 
range. 

Dr. Welmers: Very frequently a rough experimental 
check, after the airplane or the helicopter has been con
structed, can give some results rather conveniently. In one 
particular instance on a helicopter where we had excessive 
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cabin vibration, a couple of hours spent in vibrating the 
ship and in shifting the battery around in the tail structure 
solved the probiem. The total shift of the battery was about 
one and a half or two feet. It completely eliminated an 
annoying cabin vibration that had been complained of by 
the pilots. Much of this work is hardly worth a careful 
analytical. study because the variations from one ship to 
another may make it almost impossible to apply on a pro
duction basis. The sheet-metal and the way in which it is 
bent on most of these non-structural items is not particu
larly carefully watched. 

Mr. Leone: I would just like to say that we at Piasecki 
are developing a method for the analysis of the flutter and 
force response of the rotor blade in which we, too, hope to 
use complex numbers, but it appears to be a big problem 
at the moment because of the obscure knowledge of the 
oscillating air forces on rotating wings. 

Mr. Ferber: It may be of interest to mention an addi
tional reference on this subject of Mr. Leone's paper: "Cal
culation of Coupled Vibration Modes and Frequencies of 
Aircraft" by Michael Dublin, Consolidated V ultee Aircraft 
Corporation. This paper was presented at the Applied Me
chanics Conference held at Stanford University on June 
22-23, 1951. 


