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Abstract

This document provides technical details on the PowerPC technology. It
focuses on the features and advantages of the PowerPC Architecture and
includes an historical overview of the development of the reduced instruction
set computer (RISC) technology.

It also describes in detail the IBM Power Series product family based on
PowerPC technology, including IBM Personal Computer Power Series 830
and 850 and IBM ThinkPad Power Series 820 and 850.

This book is intended for IBM customers, dealers, systems engineers and
consultants who want a clear understanding of the advantages of the
PowerPC Architecture and the capabilities of the IBM Power Series product
family.

Some knowledge of general PC technology is assumed.

(220 pages)
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Preface

This document is intended to provide technical details on the PowerPC
Architecture and the capability of IBM Personal Computer Power Series and
the IBM ThinkPad Power Series. It contains a detailed description of
features, advantages of the PowerPC technology and the IBM PC product
family based on PowerPC technology.

This document is intended for IBM customers, dealers, systems engineers
and consultants.

How This Document Is Organized

The document is organized as follows:

Chapter 1, “PowerPC Concepts”

The introduction gives an overview of the personal computer market
today, explains the market needs for PowerPC technology and defines
the term “architecture.” Furthermore, it provides information on the
reduced instruction set computer (RISC) history, and the PowerPC
alliance.

Chapter 2, “Inside the PowerPC Technology”

This chapter describes the different levels of the PowerPC Architecture
and provides details on the PowerPC technology.

Chapter 3, “RISC versus CISC”

This provides details on the technology differences between the RISC
and complex instruction set computer (CISC) technology as well as a
road map on available CISC and PowerPC processors and performance
details.

Chapter 4, “PowerPC Strategy”

The purpose of this chapter is to provide insights into the PowerPC
Reference Platform specification and the PowerPC Microprocessor
Hardware Reference Platform

Chapter 5, “PowerPC Software Environment”

This chapter discusses the PowerPC software environment including the
different PowerPC operating systems, PowerPC application support and
PowerPC application development tools.
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Chapter 6, “PowerPC - Hardware and Product Overview”

This provides detailed technical information on the IBM Power Series
product line including the IBM Personal Computer Power Series and the
IBM ThinkPad Power Series.

Appendix A, “What Is Multiprocessing?”

This appendix is provided as an overview for readers who are not
familiar with multiprocessing concepts.

Appendix B, “The PowerPC Instruction Set”

This appendix provides a list of the PowerPC Architecture instruction set.

Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document.

Inside the PowerPC Revolution, ISBN 1-883577-04-7

PowerPC Computing, ISBN 1-56529-625-7

PowerPC A Practical Companion, ISBN 0-7506-1801-9

Computer Organization and Architecture, ISBN 0-02-946297-5
PowerPC Processor Architecture, 52G7487

PowerPC 601 Microprocessor User's Manual, 52G7484

PowerPC System Technical Manual, 52G7490

PowerPC AIX Hardware Dependencies Reference Guide, 52G7485
IBM RISC System/6000 Technology, IBM SA23-2619-00

International Technical Support Organization Publications

XViii

A complete list of International Technical Support Organization publications,
with a brief description of each, may be found in International Technical
Support Organization Bibliography of Redbooks, GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:
TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on
MKTTOOLS as ITSOCAT TXT. This package is updated monthly.
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the USA, customers should contact their local IBM office. For guidance
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Chapter 1. PowerPC Concepts

When we look at the history of computers and, specifically, the personal
computer market, it is not difficult to observe the change. In its short life
span, the PC business has advanced exponentially. As prices have
decreased, performance has continuously increased and advanced.

The microprocessor design has played a very important role in this
technological boom. Ironically, the architecture that controlled all the
hardware and software design was defined long ago. This architecture was
designed for the technology of its time but it still drives most of our personal
computers today. It is for this reason that the term “backward-compatible”
has become part of our day-to-day vocabulary.

For the last decade there has been only one predominant choice of
processor in the personal computer world: the complex instruction set
computer (CISC) technology on which microprocessor design was based.
The market is totally based on the Intel and Motorola technology, which are
not even compatible with each other.

Microprocessor technology was invented in 1970 by Ted Hoff, a young Intel
engineer. His work was done for a Japanese company called Busicom,
which was in the hand-held calculator business. Intel itself thought at the
time that this processor was too limited to be useful.

The breakthrough came when BASIC began to be widely used. BASIC, a
simple programming language, demonstrated that such a microprocessor
could act very well as the central processing unit (CPU) in a computer
system. The real business breakthrough came with Visicalc, the first
spreadsheet application.

Today more than 165 million PCs have been sold, based on Intel and
Motorola microprocessors. New applications and technologies, such as 3-D
graphics and multimedia, require more and more CPU power, and CISC
processors are struggling to provide this.

Today we have:

Computation (spreadsheets, CAD)
2-D graphics
Video and audio
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Tomorrow we will have:

Even more computation

3-D graphics

Voice and language services
Collaborative computing

Users today are expecting PCs to improve their productivity, but what we see
is:

Proliferation of devices with unique functions
Multiple communication paths
Restrictive human/system interface

Although today’'s personal computers are still driven by an architecture of the
70s, it is not because the field of computer architecture has not kept pace
with technology. John Cocke from the IBM T. J. Watson Research Center
started investigations in the mid-70s on approaches to improve processor
performance. He found out that 80 percent of code was only using 20
percent of the available instructions in the processor. Eighty percent of the
available instructions were either never used or could be replaced by using
instruction strings of the 20 percent normally used.

As a result of this research and other projects of the time, a new approach to
microprocessor design called reduced instruction set computer (RISC)
evolved in the early 1980s.

A resounding testimonial to the importance of RISC is that all new processor
designs over the last five years have been based on RISC technology.

The question today is no longer if personal computers will move to RISC
technology, but when.

1.1 What Is an Architecture and Why Do We Need I[t?

2

Computer architecture refers to those attributes of a system that are visible
to a programmer, or those attributes that have a direct impact on the logical
execution of a program.

Historically, computer manufacturers have offered a family of computer
models. These models all have had the same architecture although they
may have had different components, price/performance values, etc.
Architectures typically have survived many years while everything else
around them has changed constantly.
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One of the most successful systems on the market was the System/360
developed by IBM in the 60s. Revolutionary technology was to use
integrated circuits (ICs); the instruction set was directly installed in the
processor in the form of microcode.

Software compatibility across all System/360 models was the big advantage,
since all System/360s had common instructions.

The System/360 was replaced by the IBM System/370 architecture. This
architecture was first introduced in 1971 and included a number of models.
IBM introduced many models over the years with improved technology
offering the customer greater speed, lower cost or both. These newer
models retained the same architecture as the other 370s so the customer's
software investment was protected.

The term architecture is used to refer to a broad assortment of things in the
computer industry. In the context of microprocessor architecture, it refers to
the specifications upon which the design of a processor or family of
processors is based. The architecture consists of the instruction set, the
programming model, the exception model and other specifications that
characterize a set of compatible processors. The need for a new
architecture arises from the fact that the microprocessors in most of today's
personal computers suffer from bottlenecks that are caused from outgrowing
their original design.

In order to prevent the same situation that has happened with the original
IBM Personal Computer, IBM has drawn up a document known as the
PowerPC Reference Platform specification. This document gives guidelines
and requirements for producing personal computer using PowerPC
processors. Apple, IBM and Motorola have joined focus to produce the
PowerPC Microprocessor Hardware Reference Platform. This architecture
combines the Power Macintosh and PowerPC Reference Platform features.
These documents are available free from IBM. For information on obtaining
a copy of the PowerPC Reference Platform specification, refer to 4.1,
“PowerPC Reference Platform Specification” on page 96.

1.2 The RISC Story

Contrary to popular belief, RISC architecture was born from an IBM project
intended to solve a very specific problem. It was not created in an attempt to
solve the fundamental problems of general purpose computing. Nor was it
developed to provide a common architecture for a wide spectrum of
processor requirements.
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What really happened was that in 1974, IBM engineers needed a system to
manage a telephone switching network. The network had to be capable of
executing more than 20,000 instructions per call and 300 calls per second.
No computer available at the time complied with this sort of real-time design
criteria.

The absence of such a computer could cause arithmetic functions to quickly
pile up, waiting to get access to the memory bus. This resulted in the
memory bus becoming a tremendous bottleneck.

In order to meet the project specification, IBM engineers and designers
envisioned a machine with simple instructions and extensive and well-placed
on-chip memory. The latter are two fundamental characteristics of RISC
technology today.

Reduced instruction set computing (RISC) consists of instructions that reduce
operations into simpler tasks. These simple instructions each take
approximately the same time to execute. In other words, reduce the
instruction set and use a fixed length for the instruction so that in each clock
cycle one instruction per computational unit can be executed. This makes it
easier for the processor to interpret instructions, and it speeds up the
execution while greatly simplifying processor design. Furthermore, once you
have simple instructions, the compiler can optimize more easily the code to
utilize the processor fully.

Although the telephone switching system was never built, the processor
designers went on to explore further the possibilities presented by the
project. The idea also created excitement in academic circles, and by the
middle 70s there were several design projects underway:

IBM 801 minicomputer

Further development of the telephone switching principle led to the
design of the 801. The 801 was developed by John Cocke in the
mid-1970s.

RISC-I and RISC-II

David Patterson and his colleagues at the University of California
developed the RISC-I and RISC-II processors and coined the term RISC.

Stanford MIPS

This machine was developed by John Hennessy and colleagues at the
Stanford University.
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These three projects exploited the principle of IBM's telephone switching
design by taking advantage of simple, fixed-length instructions. RISC offered
an exciting alternative to the prevailing philosophy of complex instruction set
computing (CISC) processor design.

The success of these projects sparked considerable interest on the part of
major established computer manufacturers. The university projects brought
RISC design principles out of the laboratories and into the research and
development efforts of commercial chip manufacturers.

Today many types of RISC implementations exist. RISC design, however, is
most closely associated with a handful of microprocessor manufacturers
whose products are intended mostly for use in high-end workstations. RISC
design is still maturing and taking hold in more and more environments.
RISC designers are constantly capitalizing on other technological advances,
and as manufacturing processes improve, so do the chips. Transistor
miniaturization has made it possible to have more and more transistors per
square millimeter. The combination of cheaper circuits and simpler
instructions has moved RISC processors from multi-chip designs to
single-chip processors with caches, parallel floating point units (FPUs) and
main memory units (MMUSs).

These designs have resulted in the availability of RISC processors on the
desktop. With the development of the PowerPC 603 power-saving processor,
even low-power battery-operated notebook systems and palm-top computers
are now available with RISC technology.

1.3 The PowerPC Alliance

History has proven that being the technology leader does not guarantee a
successful product. Probably the best example of this is Beta and VHS video
recording technology. Beta, clearly the better technology, has lost out to the
strength of marketing and alliance of VHS.

The computer industry has seen its own fair share of alliance and marketing
effects. The best example is definitely Microsoft Windows 3.1. Although it is
seen by few people as a technology leader, it has become a de facto
standard for personal computers. This snowballing effect of its popularity
was achieved with the marketing strength of Microsoft and the alliances it
formed to promote Windows as the default operating system.

Customers are not buying machines anymore for performance only. It is also
important to look at the long-term viability of the chosen architecture. The
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viability of the architecture as a long-term solution relies on the acceptance
of the direction of the technology and the ability of the alliance partners to
promote these ideas in the market.

It is for this reason that the success of the PowerPC-based systems rests as
much on market acceptance, openness and direction of the industry and
alliances supporting the PowerPC initiatives as it does on the exciting
advances embodied in the PowerPC family of processors and, more
specifically, the IBM Power Series.

We will now briefly look at the alliance, its goals and objectives.

1.3.1 PowerPC Alliance, Goals and Objectives

The Somerset Design Center in Austin, Texas was created as a result of the
alliance formed between IBM, Apple and Motorola in October 1991. It was on
this date that the three companies announced they would jointly develop a
new architecture that would form the basis of the next generation of personal
computers.

The alliance recognized that the computer industry is one of the most rapidly
growing industries in the world and that more and more computer power is
required to fulfill customer application requirements.
The alliance set for itself the following objectives:

Object-oriented technology

Interconnectivity and networking

Open system environment

Microprocessor technology

- Permit broad range of implementations

- Simplify to reduce design cycle time

- Allow for aggressive superscalar implementations

— Support symmetrical multiprocessors (SMP)

— Define a 64-bit superset architecture which provides binary
compatibility for 32-bit POWER applications

The objectives were achieved when the first PowerPC microprocessor, the
PowerPC 601, was announced to the industry in 1992 and began shipment in
early 1993.
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Figure 1. The PowerPC Alliance

The PowerPC alliance provides greater opportunities for compatibility and
more efficient mixed network environments. One product of this
collaboration is an IBM-certified Apple token-ring card. It also inspired the

following joint efforts:

Kaleida Labs

Kaleida is a new company funded by IBM and Apple to create common

standards for the fast-growing multimedia products.

Taligent

Taligent is also a new company funded by IBM and Apple that is
developing an object-oriented operating system.

PowerOpen

PowerOpen is aimed towards developing a new version of the UNIX

operating system that will combine features from IBM's AIX and Apple’'s

A/UX operating systems. This platform will allow users access to AIX

and Macintosh-based applications.
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1.3.2 The History of the PowerPC Alliance

8

The following section will give chronological descriptions of the events
surrounding and following the announcement of the PowerPC alliance.

In October 1991, IBM, Apple and Motorola jointly announced the formation of
a new alliance. At that time, details were presented for the first time about
the PowerPC Architecture and the PowerOpen environments.

Bull HN Information Systems, Inc., announced adoption of the new PowerPC
Architecture for their server and workstation systems in January 1992.

During April 1992, Thomsonn-CSF CEITIA announced an agreement with IBM
to develop products based on the PowerPC Architecture.

In May 1992, IBM, Apple and Motorola dedicated the Somerset Design Center
in Austin, Texas.

The first processor was manufactured and unveiled by IBM, Apple and
Motorola in October 1992. The chip was called the PowerPC 601.

The Harris corporation announced an agreement with IBM to develop
real-time workstations based on the PowerPC Architecture in November
1992.

In December 1992 Tadpole Technology PLC announced an agreement with
IBM to develop and produce notebook computers based on the PowerPC
Architecture.

Thomson-CSF CETIA announced PowerPC VME systems and Lynx real-time
software in January 1993.

In March 1993, Apple, Bull, Harris, Motorola, Tadpole Technology and
Thomson-CSF announced the formal founding of the PowerOpen Association
with the goal of providing an open system and compatibility.

During April of 1993 SunSoft announced plans to support Solaris on PowerPC
based systems. In the same month Motorola announced general sampling of
the PowerPC 601.

IBM and Motorola announced the availability of the PowerPC 601 tools
catalog in May 1993, together with an announcement from Ford that the next
generation of their Power Train Electronic Controller would be based on
PowerPC Architecture.
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Kaleida Labs, Scientific Atlanta and Motorola announced plans for interactive
multimedia devices, developed using PowerPC processors in June 1993.

October 1993 was quite a busy month for the PowerPC alliance. An 80MHz
version of the 601 was announced and the PowerPC 603 reached first silicon.
CETIA, a subsidiary of Thomson-CSF, introduced a family of VME
single-board computers and workstation based on the PowerPC 601
processor.

Bull also announced their first PowerPC-based system. Three systems
configurations were made available: a compact desktop server, a desk side
server and a single-user workstation. These systems are based on the
PowerPC 601 processor.

Motorola's RISC Microprocessor division also announced in October five
software development packages for optimizing performance of the PowerPC
603.

In the same month Apple announced the commitment from seven additional
software developers. These developers also announced plans to ship
upgraded versions of the software simultaneously with the first PowerPC
systems.

IBM announced the PowerPC Personal System in November 1993. The
PowerPC Reference Platform specification is a non-proprietary standard
developed by the IBM Power Personal Systems Division, with participation
from others in the industry. Operating systems planned to be ported to the
PowerPC Reference Platform specification include AIX, OS/2, Windows NT,
Solaris, and Taligent.

Also, in November 1993, Microsoft and Motorola announced that a port of
Windows NT was jointly being developed with IBM's Power Personal Systems
Division. The port to Windows NT, which conforms to the PowerPC
Reference Platform specification, operates in Little-Endian mode and takes
advantage of the PowerPC's Bi-Endian feature. A broad group of computer
subsystem manufacturers announced support for the PowerPC Reference
Platform specification.

In February 1994 Insignia Solutions and Apple announced an agreement to
include SoftWindows in selected configurations of PowerPC-based Macintosh
systems.

In November 1994, Apple, IBM and Motorola announced the PowerPC
Microprocessor Hardware Reference Platform. This platform will combine
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features of the Power Macintosh and PowerPC Reference Platform
specification.
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Chapter 2. Inside the PowerPC Technology

The PowerPC processor is a third-generation RISC architecture which has
evolved from IBM's POWER (Performance Optimization With Enhanced RISC)
architecture. Many features and design points of the POWER Architecture,
such as superscalar design, zero-cycle branching and a highly optimized
cache structure, have been retained in the PowerPC Architecture. These
concepts will be explained in the next section, which starts the discussion of
the PowerPC Architecture with a look at the POWER Architecture. Although
the motivating factors that drive the design of the PowerPC Architecture
differ from those for the POWER Architecture in many aspects, the decisions
that were made in the design of the POWER architecture remain the same for
the PowerPC processors. In order to understand the PowerPC, we first have
to understand its heritage.

Next, we will discuss some general concepts of computer architecture that
help us to understand the various features of the PowerPC Architecture.

Section 2.3, “The PowerPC Architecture” on page 36 and 2.4, “Elements of
the PowerPC Architecture” on page 42 will examine the PowerPC
Architecture in general and the elements defined by it.

We will conclude with a look at some current and planned implementations
of PowerPC processors.

2.1 The POWER Architecture and the RISC System/6000

IBM introduced the RISC System/6000 family of products to the market in
1990. The goal then was to offer a series of products that would satisfy
customer requirements for commercial and scientific applications. The first
RS/6000 products were implementations of the POWER Architecture. The
POWER Architecture is a second-generation RISC Architecture which
contained many innovations for its time as well as major advances over
existing RISC architectures. These innovations and advances were
necessary to meet some design goals. These goals were motivated by
various driving factors.
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2.1.1 The Driving Factors

The POWER Architecture was designed to address the requirements of a
UNIX-based system family and could effectively support both commercial
application and scientific environments. This key objective arose out of

several driving factors which occurred mainly in the late 1970s and early
1980s:

A growing market of commercial, engineering and scientific applications
running on UNIX-based systems. In order to participate and lead in this
growing market segment, IBM had to develop a very robust and flexible

architecture on which good products could be built.

Emergence of RISC designs and implementations from various
manufactures.

Availability of 1 micron CMOS VLSI circuit technology that allowed
300,000 to one million devices per chip and projected clock cycles of 25
to 30MHz. Clearly, this technology advance could be exploited to
develop a more powerful architecture.

New developments in the fields of compiler technology and computer
organization and architecture, both within and outside of IBM. Again,
there was an opportunity to exploit these new discoveries to bring to
market more advanced products.

2.1.2 POWER - The Design Goals

12

The key objective of the RS/6000 family of products was to be able to support

both commercial and scientific application environments effectively. This

implied that the underlying processor architecture had to efficiently fulfill the

unigue requirements of processing in both environments. In particular:

Commercial environments generally feature more integer processing,

transaction processing and file I1/0. Therefore, the key components that

would influence performance are the integer processing component of
the CPU and the 1/O subsystem.

Scientific and engineering environments usually require very high
floating-point computation performance. To be able to support these
environments effectively, the architecture must have a scheme to
optimize floating-point performance.

An important goal of any processor architecture design is to minimize
execution time. In the design effort of the POWER Architecture, this was
viewed as the product of three important factors: path length, cycles per
instruction, and cycle time.
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Execution Time| = |Path Length| x| Number of Cycles per Instruction |x [Cycle Time

Figure 2. The Definition of Execution Time

Execution Time is defined as Path Length times Cycles per Instruction
times Cycle Time. An improvement in any of the three variables can
result in a corresponding improvement in execution time.

Path Length can be roughly defined as the number of instructions which
are needed to perform a certain piece of work. This variable is largely
influenced by the instruction set architecture and how well optimizing
compilers do their job.

Cycles per Instruction can be viewed as the throughput of the CPU. It is
the average number of clock cycles needed to complete executing one
instruction. Generally, the factors influencing throughput are the
processor architecture and the compiler technology.

Cycle Time is the clock speed of the processor (the MHz). lItis a
measure of how much time the processor takes to complete one clock
cycle. Much of this depends on the chip technology and the processor
architecture.

It is important to note that in the equation above, the three variables are not
independent of each other. There are interactions between the factors that
influence more than one of the three variables. For example, if the
instruction set and processor architecture is very simple, it is probably easier
to make the CPU run at a faster clock speed (reduced cycle time). But with a
simple instruction set, more instructions would be needed to perform a piece
of work compared to an architecture with a more complex instruction set
(longer path length). These interdependences complicated the work of
designing the architecture. Thus, a decision was made to focus the design
work on reduced instruction set cycles, which was defined as the optimal
value of Path Length times Cycles per Instruction. In this way, RISC was
basically redefined to have the objective of reducing the execution time
through reducing the instruction set cycles instead of simply reducing the
instruction set.
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2.1.3 Inside the POWER Architecture

The result of the design process to meet the goals stated above was the
POWER Architecture, a highly concurrent, superscalar enhancement of early
RISC architectures.

The POWER Architecture has many similar features to earlier, more
traditional RISC architectures:

Register-oriented instruction set

Simple, fixed-length instructions

A hardwired, as opposed to microcoded, CPU

Strong pipelining features

These concepts will be explained in Chapter 3, “RISC versus CISC” on
page 85.

Where POWER differs from first-generation RISC architectures is its use of
advanced features, such as:
Multiple instruction dispatch

Multiple execution units, permitting simultaneous execution of different
types of instructions

Separate instruction and data caches

Zero-cycle branches
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Figure 3. Block Diagram of the POWER Architecture

Figure 3 shows a logical view of the basic POWER architecture. There are
three main execution units in the CPU:

The fixed-point unit (FXU) performs operations on whole numbers without
a decimal point (for example, numbers like 3, 6 and 24) and numeric
representations of text. It contains the general-purpose registers (GPRS)
and the arithmetic logic unit, which does the actual execution. The FXU
also carries out the duty of address translation. Address translation is
the process of calculating the actual address in real memory of a piece
of data from the virtual addresses which are used in programs to point to
data. This process is necessary when the CPU needs to access data
from main memory.

The floating-point unit (FPU) performs mathematical operations on
numbers with a decimal point. These kinds of numbers are common in
scientific and engineering applications. Unlike typical floating-point
coprocessors, the FPU in the POWER Architecture is closely coupled to
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the rest of the CPU and can execute instructions independently of the
other execution units. A unique feature of the POWER Architecture is
that it implements the multiply-add floating-point instruction (an operation
of the form AxB+C). This instruction is executed with the same delay as
a single multiply or add instruction and is, effectively, two instructions in
one.

The branch processor is implemented within the instruction cache unit
(ICU). It independently executes all branch and condition register
instructions. Branch instructions are instructions that cause the flow of
the execution to be redirected to some other part of the program.
Condition register operations are instructions that operate on information
about the results of earlier calculations (for example, is A=B or X>Y?).

The basic POWER Architecture has a highly optimized cache structure which
specifies separate instruction and data caches. Cache memory is very
high-speed storage that buffers data and instructions between the slower
main memory system and higher-speed CPU registers.

The instruction cache unit (ICU) reads four instructions at a time from main
memory. This bandwidth is very important, as we will see later. It then
dispatches the instructions to the respective execution units for execution. In
a single cycle, the following mix of instructions can be dispatched
simultaneously:

One branch instruction (to the branch processor)
One condition instruction (to the branch processor)
One fixed-point instruction (to the FXU)

One floating-point instruction (to the FPU)

It can be seen that a CPU based on the POWER architecture has a potential
throughput of four instructions per clock cycle. This concept of dispatching
multiple instructions per cycle to multiple execution units is called
superscalar design.

An important concept in the design of the POWER architecture is the concept
of zero-cycle branching. Traditionally, when a branch instruction directs the
CPU to jump to a different section of the program code, the CPU wasted
clock cycles getting the new target code from main memory while the
execution units had no work to do. In the POWER Architecture, the branch
processor is implemented in the ICU. It looks ahead to the stream of
instructions which the ICU fetches from main memory, takes out the branch
instructions and executes them, and in a lot of cases (especially
unconditional branches), it can cause the new target instructions to be
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fetched into the ICU in time to provide the FXU and FPU with an
uninterrupted stream of instructions. This is termed zero-cycle branching.

The architecture also allows for schemes to perform branch prediction.
Generally, these schemes use various methods to try and predict whether a
conditional branch operation (for example, branch if A=B) will result in a
branch or not. If the branch processor can get a correct prediction earlier,
the instruction cache can fetch the necessary instructions from memory to
feed the fixed-point and floating-point units with an uninterrupted stream of
instructions to execute. Branch prediction schemes usually result in an
improvement in execution time by reducing branch delay. Branch delay
occurs when the instruction cache has to fetch instructions from a branch
target area while the execution units are idle.

The set of instructions in the POWER Architecture was designed to have as
much function as possible. This goes against the original spirit of RISC but
the intent here is to optimize as much as possible the path length of
programs. With more function in the instructions, fewer instructions are
needed to do a piece of work. Chapter 3, “RISC versus CISC” on page 85
discusses this architectural decision and its bearing on the RISC versus CISC
debate.

2.1.4 What Does All That Mean?

What aims do the various features of the POWER Architecture serve to
achieve?

1. The instruction set was designed to optimize the path length of
programs. This was one of the goals which would contribute to reducing
instruction set cycles and hence execution time.

2. Multiple instructions can be dispatched and executed in the same clock
cycle. This is aimed at reducing the cycles per instruction component.
Together with objective number 1, the objective is to achieve reduced
instruction set cycles which would in turn have a beneficial effect on
execution time.

3. Zero-cycle branching also improves throughput and is aimed at reducing
the cycles per instruction variable.

4. A tightly coupled FPU greatly improves performance for scientific and
engineering applications. One important goal of designing the POWER
Architecture was for it to effectively support both commercial and
scientific environments.
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2.2 Some General Concepts

The concepts and ideas below will help you to understand the various
aspects of the PowerPC Architecture and their importance.

2.2.1 Pipelining and Superscalar Dispatch

Typical execution of a computer instruction requires a four-stage process:
1. Instruction Fetch involves fetching the instruction from main memory.

2. Dispatch or Decode is the process of decoding the instruction, getting the
operands referred to in the instruction, and passing all these to the
execution unit.

3. Execution involves the actual computation or execution of the instruction.

4. Store is the act of storing any results of the computation back into
memory.

Each stage can be considered as taking up one CPU cycle. Of course, in a
real implementation, different types of instructions go through different
variations of the four-stage process and some of the stages may take more
than one CPU cycle. But for ease of explanation, we can generalize here
and say that there is a four-stage process with each stage using up one CPU
cycle.
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Figure 4. The Instruction Execution Process without Pipelining

Figure 4 shows how an instruction is processed through the four stages.
This process achieves a throughput of one instruction every four cycles; that
is, one instruction is completely processed every four cycles. We can see
that this scheme can be easily made more efficient. While the instruction is
going through one stage, the rest of the four stages are lying idle and not
doing any work. This brought about the idea of pipelining.
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Figure 5 shows the four-stage process with simple pipelining implemented.
This is a much more efficient scheme than the previous one. While one
stage is processing an instruction, the other stages move on to the next
instruction in the stream, like an assembly line.

In this way, we can

potentially achieve a throughput of one instruction per cycle.

Basic pipelining by itself can improve the performance of the instruction
But the POWER and PowerPC Architectures scale this

execution process.

performance improvement even further with superscalar instruction dispatch.
Superscalar design essentially adds one more dimension to pipelining.
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Figure 6. Pipelining with Superscalar Instruction Dispatch

Figure 6 illustrates how the instruction execution process works with
superscalar dispatch. There can be any number of independent execution

units, but here we show an implementation with three execution units. Since
up to three instructions can be executed in parallel, three instructions can be

fetched every cycle. These instructions will be dispatched to the three

execution units in parallel. If the execution units can be fed with an

uninterrupted stream of instructions, such an implementation can achieve a

potential throughput of three instructions per cycle.
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The concepts explained above show how the PowerPC Architecture uses
multiple parallel execution units and multiple instruction dispatch to achieve
improved throughput.

2.2.2 Load/Store Architecture

22

Traditionally, RISC architectures used the load/store method of working with
data instead of the large number of addressing modes favored by CISC
architectures.

Instructions in CISC architectures usually have a large variety of addressing
modes to specify the data which they are referring to (a discussion of these
addressing modes are beyond the scope of this book). In an instruction that
performs a computation on data, the data is usually referred to directly in
their memory location using any one of the addressing modes.

Instructions in RISC architectures tended to have only a few modes of
addressing data. In addition, when operations are performed on data, the
data is usually first loaded into CPU registers. The computation is performed
on the data in the registers and the results are then stored back into
memory.

As an example, the instruction:
A=B+C

in a CISC architecture will be translated by a compiler in a RISC architecture
to:

LOAD B into R1
LOAD C into R2
R3 = R1 + R2
STORE R3 into A

where A, B, C are locations of data in main memory and R1, R2, R3 are
registers.

This method of moving all data between registers and main memory and
only performing operations on data in the registers is called load/store
architecture. The instructions that move data between the registers and
main memory are called load/store instructions.
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2.2.3 Cache Coherency and Snooping

Cache memory is high-speed memory that is used as a buffer between the
CPU and main memory to speed up memory accesses. It is used because it
is much faster than main memory. In all execution cycles, the CPU has to
access memory at least once to fetch instructions. Usually, it has to access
memory a few more times to fetch and store operands. In this way, memory
access speed became a bottleneck to CPU performance because memory
speed was far slower compared to CPU speed. One solution then was to
build a high-speed buffer between the CPU and main memory. This buffer
was built using more expensive technology than main memory but was also
faster than main memory. This buffer, called cache, works because of what
is known as the principle of locality. Whenever the CPU fetches an
instruction or piece of data from memory, it takes what it wants word by
word. A word is usually a two to four byte piece of data depending on the
architecture. But when a CPU fetches something from memory, there is a
good chance that the next piece of data it needs will be somewhere near the
piece that was read earlier. This is the principle of locality.
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Figure 7. Data Transfer Between CPU And Memory

Figure 7 shows how cache memory takes advantage of the principle of
locality to speed up memory accesses. When the CPU does a memory
reference, entire blocks of data are brought into cache. These blocks can
contain many bytes of data, maybe three or four times what the CPU actually
needs. There is a good chance that the next piece of data that the CPU
wants to access is in this block and already in the cache. Usually, if the data
is to be updated by the CPU, the copy that is in cache is modified.

Cache memory is used widely today in CPU implementations to improve
performance. But complications can arise in the case of multiprocessing.
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Figure 8. An Incoherent View of Memory

Figure 8 shows what can happen in a multiprocessor implementation. In a
multiprocessor environment, a few CPUs, each with its own cache, share a
single stack of main memory.
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1. CPUs A and B are processing different instructions but it just happens
that at some point in time they need data from the location in memory
called X. X currently has a value of 123. So, X is brought into the caches
of CPUs A and B.

2. Now, CPU A performs some operation that changes the value of X to 456
and writes out this value to main memory. We can see that A and B now
have an incoherent view of memory; that is, their views of what X should
be do not tally with each other.

Imagine what would happen if CPU B wanted to perform an arithmetic
operation on X. It would be using the wrong value of X!

This is just a simple example to show what can possibly happen. There are
many other possible scenarios which can occur. The term cache coherency
is used to describe the situation when multiple caches sharing main memory
agree with each other on what is in memory; that is, they all have an
accurate view of memory. It is very important to put in techniques to ensure
cache coherency when designing the cache subsystem. Snooping is one
such technique.

The problem with the cache incoherency scenario above is that the individual
caches are not aware of what each other are doing. If they were allowed to
“see” what all the caches are doing, they could take the necessary action to
maintain coherency. Bus snooping is a technique that allows them to do
this.

When bus snooping is implemented, the caches keep a close watch on the
activity going on along the system bus. In the scenario above, CPU B would
have detected CPU A writing out the new value of X. It would have taken
action to mark its own copy of X as being invalid. There are many other
scenarios of incoherency that can arise and various other ways that bus
snooping prevents incoherency. The important principle to keep in mind is
that all the caches that share memory must watch the bus activity and take
action accordingly to maintain coherency.

2.2.4 Cache Write Through and Write Back Policies
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Now, think of what would happen if in the example shown in Figure 8 on
page 25, CPU A did not write the new value of X out to memory immediately.
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Figure 9. No Immediate Write Back

Figure 9 shows what happens in this case. Even if bus snooping were
implemented, CPU B would not know that the value of X is changed because
there is no activity on the system bus. This introduces two new concepts of
cache behavior - write through and write back. These are policies that can
be implemented to control the behavior of the cache system.

A write through policy states that any copy of data in cache that is modified
by the CPU must be written out to memory immediately. This ensures that
any changes to data in cache are always reflected in main memory as soon
as possible. In addition, writing out of modified data generates system bus
activity, which is useful for other caches that are snooping the bus. The
disadvantage with this policy is the fact that any modification of data always
requires movement of data to main memory. This takes time, generates
additional bus traffic, and is not always necessary.
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A write back policy is intended to overcome the main disadvantage of the
write through policy. The write back method states that modified data can be
kept in cache. It should be written to main memory when it is known that
another processor is accessing or wants to access that piece of data in
memory. In this way, modified data is only written out to memory when it is
necessary.

2.2.5 Physical and Logical Memory

Main memory in most modern computer architectures are usually organized
into small fixed size partitions. These partitions are called pages. The
typical size of a page of memory is 2KB or 4KB.

28 PowerPC: An Inside View



Disk

Prog X, Pg O
Prog X, Pg 1
Prog X, Pg 2

o

Prog ¥, Pg 0
Prog Y, Pg 1
Prog Y, Pg 2
Prog ¥, Pg 3

Physical 1
Memory

Prog X, Pg 0 |0
Prog X, Pg 1 |1 Disk
Prog X, Pg2 |2

Prog X, Pg O
Prog X, Pg 1
Prog X, Pg 2

PregY,Pg0 |8

Prog ¥, Pg 1
Prog¥Y,Pg2 |10
Prog Y, Pg 3 |11

Physical )
Memory

Figure 10. Program Loading into Memory

Figure 10 shows how a program is loaded into memory.

1. Program X, which occupies three pages, is to be loaded into memory.
The program is stored on disk. There is a list of pages which are not
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occupied in memory. Program Y is already in memory, occupying four
pages.

2. The three pages of Program X are loaded into three free pages in
memory.

The pages that are loaded into memory contain instructions and data for
Program X. There will be addresses in the code to refer to data and branch
target locations. But Program X may not be loaded into the same location in
memory every time. For example, next time, pages 0, 1 and 2 may be
occupied by some other program and X may have to be loaded into pages 4,
5 and 6. The addresses in the program will have to be changed every time
the program is loaded! How are addresses specified in the program so that
wherever it is loaded, the addresses still point accurately at the correct
locations?

The problem is solved by using two types of addresses - logical addresses
and physical addresses. Logical addresses are used within a program to
refer to other locations within the program. It is expressed as a
displacement relative to the beginning of a program. When a program is
loaded into memory, the physical address of the beginning of the program is
called the base address. While the program is being executed, the CPU
converts the logical addresses in memory into physical addresses. This
process is called address translation. Address translation is done by adding
the base address of the program to the logical addresses. Figure 11 on
page 31 illustrates the difference between logical and physical addresses.
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Figure 11. Physical and Logical Addresses

In the examples so far, the programs have been loaded into memory into
pages that are directly next to each other, or contiguous pages. In Figure 10
on page 29, the memory subsystem could find three free contiguous pages in
which to load Program X. What would happen if there are not enough free
contiguous pages in memory, as shown in Figure 12 on page 327
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One thing the memory subsystem could do is compact the memory. This
involves rearranging the programs in memory such that all the free pages
are together in one block. But to do this involves a lot of effort and time
spent by the CPU.

A more popular method is to place the pages of the program wherever there
are free pages in memory. There is no need to place them in contiguous
locations. The operating system keeps track of where the pages are by
maintaining a page table.
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Figure 13. Tracking Page Allocation with Page Tables

Figure 13 shows how Program X can be loaded without having to put it into
contiguous pages of memory. A page table is maintained for X showing the
pages and where they are kept in memory. By maintaining page tables like
this for all the programs, pages can be loaded anywhere in memory.

2.2.6 Virtual Memory and Demand Paging

Physical memory is relatively expensive to implement compared to fixed
disks. Typically, the amount of real memory installed in modern personal
computers amount to no more than tens of megabytes. Fixed disk sizes are
typically hundreds of megabytes or even gigabytes.

Virtual memory is a means of using the cheaper fixed disk space to
overcome the limits of more expensive real memory. It allows the computer
to appear to have more memory than actually installed.

At any instant, execution of program code is confined to only a small section
of the total program. Only the few pages of instructions and data that the
CPU uses at that instant is actually needed in memory. Virtual memory
gives the program the illusion of having a very large memory space. But
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only the few pages that the CPU uses at any instant is loaded into real
memory. The rest of the pages stay on the fixed disk.

When the CPU needs some more pages of code and these pages are not in
memory, they are brought in from disk. This gives rise to the term demand
paging, which means that pages are only brought into memory when it is
needed, or demanded, by the CPU. The principle of locality, mentioned
earlier in 2.2.3, “Cache Coherency and Snooping” on page 23, ensures the
probability that the CPU will only need a few pages of code for a period of
time. This results in acceptable performance most of the time, as pages
brought into memory can satisfy the CPU’s requests for a while before some
more pages must be loaded.

In this way, programs can use a very large memory space - perhaps
hundreds of megabytes or a few gigabytes. But the amount of real memory
is much smaller than that. In fact, even the size of a single program can be
larger than real memory.
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Figure 14. Virtual Memory and Swapping
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Figure 14 gives an example of how a program larger than the size of real
memory can be stored during execution. Assume that the size of the
program is six pages and the size of real memory only three pages. When
the program begins to execute, the first page is brought from disk storage
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into real memory. When more pages need to be accessed by the CPU, they
are brought into real memory from disk. Meanwhile, the other pages reside
on the disk. When all the pages in real memory are filled up and another
page is needed in memory, one of the pages that are already in real memory
will be swapped out. The process of swapping out involves:

1. Deciding which page in real memory to swap out
2. Writing it back to disk if anything in the page was modified

3. Bringing in the new page that is needed

2.2.7 Big- and Little-Endian Memory Organization
Data is accessed by programs in data types of different sizes. For example,
character strings are accessed in individual bytes. Numbers such as
integers can be in 32-bit words. Floating-point operands can be in 32-bit
words or 64-bit double words.

These data are stored in memory and accessed in bytes. In the case of
operands that are more than one byte in size, the CPU expects the bytes to
be in a certain order when fetching the data. There are generally two ways
of organizing the bytes in memory. One is called Big-Endian byte ordering
and the other is Little-Endian byte ordering.

Big-Endian Ordering of Hexadecimal 1234567890ABCDEF

Little-Endian Ordering of Hexadecimal 1234567820ABCDEF

00 08

Figure 15. Big- and Little-Endian Byte Ordering

In Big-Endian ordering, the data is stored starting with the most significant
byte and ending with the least significant. The order is reversed in
Little-Endian organization. Figure 15 gives an example of how the
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hexadecimal number 1234567890ABCDEF (a 64-bit double word) is stored in
memory in Big-Endian and Little-Endian organizations.

Traditionally, computer architectures and operating systems are designed to
support one of the byte orders. So, an operating system written to support
Little-Endian byte ordering would not be able to run on a CPU built to support
Big-Endian byte-ordering.

2.3 The PowerPC Architecture

The definition of the PowerPC Architecture provides a basic conceptual
model that provides many degrees of freedom for various implementations of
the architecture to suit different needs. This flexibility was one of the
important design goals for the architecture. This and other design criteria
will be outlined in the next section. Next, the layers of the architecture and
the basic processor model will be examined.

2.3.1 Design Goals of the PowerPC Architecture
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The PowerPC Architecture was designed with the following goals in mind:

The architecture should maintain application binary compatibility with the
POWER Architecture. This would enable PowerPC-based machines to
leverage on the existing base of RISC System/6000 applications and
users. As a result, the PowerPC instruction set and programming model
is similar to the one for the POWER Architecture.

The architecture definition should allow flexibility and variety in
implementation to meet the requirements of different target markets and
uses. It was the intention of the designers to make the PowerPC an
effective platform for a wide range of implementations, from hand-held
devices to powerful mainframe-style machines. This has been achieved
in the design in a number of ways:

1. Software and hardware can play variable roles in different
implementations. For example, although the basic conceptual model
includes a tightly coupled FPU (like the POWER Architecture),
floating-point operations can be implemented in software instead of a
hardware FPU. This will be useful for lowering cost in machines
where floating-point performance is not important. The architecture
definition is not rigid in these cases and it makes for a much more
flexible architecture.

2. The layered definition described in 2.3.2, “Levels of PowerPC
Architecture” on page 37 above provides the PowerPC Architecture
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with much of its flexibility. Implementations need not comply with all
the layers of the architecture.

3. Implementers can add their own instructions, registers or exceptions
which are specific to their requirements. This can allow, for example,
special-purpose devices to be built which use instructions and
registers not found in the normal PowerPC instruction set and
programming model.

4. Many hardware-specific details are not prescribed by the PowerPC
architecture or are only described in a very general sense. For
example, the bus signals are not specified. The size and type of
cache and whether there should be separate instruction and data
caches is not specified. It is also not specified which execution units
should execute which instructions.

It can be seen that there are many degrees of freedom for
implementations which optimize the basic PowerPC Architecture to suit
various uses.

The PowerPC Architecture should provide support for both uniprocessor
and multiprocessor systems. The storage control subsystem of the
PowerPC Architecture has been designed to support multiprocessing.

The architecture should support 64-bit instruction operation in the future
while providing upward compatibility for the current 32-bit architecture.
To achieve this aim, a set of 64-bit extensions were defined that ensures
software compatibility between the current 32-bit architecture and the
next generation of 64-bit processors. Implementations can comply with
either the base 32-bit architecture or the extended 64-bit architecture.

2.3.2 Levels of PowerPC Architecture

The PowerPC Architecture consists of different layers. Adherence to the
PowerPC Architecture can be measured according to which of the following
levels of the architecture is implemented:
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Figure 16. Levels of the PowerPC Architecture
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2.3.2.1 PowerPC User Instruction Set Architecture

The PowerPC user instruction set architecture (UISA) defines the base
user-level instruction set, user-level registers, data types, floating-point
exception model, memory models for a uniprocessor environment and the
programming model for uniprocessor environment.

2.3.2.2 PowerPC Virtual Environment Architecture

The PowerPC virtual environment (VEA) describes the memory model for a
multiprocessor environment, defines cache control instructions and describes
other aspects of virtual environments. Implementations that conform to the
PowerPC virtual environment architecture also adhere to the PowerPC user
instruction set architecture, but may not necessarily adhere to the PowerPC
operating environment architecture.
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2.3.2.3 PowerPC Operating Environment Architecture

The PowerPC operating environment architecture (OEA) defines the memory
management model, supervisor-level registers, synchronization requirements
and the exception model. Implementations that conform to the PowerPC
operating environment architecture also adhere to the PowerPC user
instruction-set architecture and the PowerPC virtual environment architecture
definition.

2.3.2.4 PowerPC Chip Implementation Specific Details

Underneath the OEA are the details of the PowerPC Architecture that are
specific to each individual processor implementation and are not defined in
the general PowerPC Architecture.

2.3.3 The Basic Conceptual Processor Model
Although the PowerPC Architecture has been designed to be flexible and
much hardware detail was omitted from the definition (as mentioned in 2.3.1,
“Design Goals of the PowerPC Architecture” on page 36), there is a basic
conceptual model defined. The aim of this model is to ensure that the core
identity of the architecture and features, such as superscalar instruction
dispatch and processing, are defined.
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Figure 17 shows the basic conceptual processor model.
familiar, it is because it is largely similar to Figure 3 on page 15. The

POWER Architecture was used as the starting point for the design of the
PowerPC Architecture and there are many common features in the two

designs which will be summarized in the next section.

The processor model features three main execution units which can execute

in parallel with each other:

The branch processor is tightly coupled to the instruction unit. This is to
facilitate the implementation of branch look-ahead schemes which, as we
have seen earlier in 2.1.3, “Inside the POWER Architecture” on page 14,
helps to achieve zero-cycle branching. The architecture also allows for

the implementation of branch prediction schemes.

The fixed-point unit (FXU) which handles processing of integer operations

and address translation. It includes the general-purpose registers (GPRS)
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which are used for calculating addresses in the address translation
process.

The floating point unit (FPU) which handles processing of floating point
operations. In the conceptual model, the floating-point registers (FPRS),
which contain the operands for floating point instructions, are
incorporated in the FPU. However, they can be implemented outside the
FPU, which could be the case if multiple FPUs were to be implemented.

Although the model specifies an FXU and a tightly coupled FPU, it is flexible
on the implementation of these units. For example, the FPU can be
implemented using software emulation instead of a hardware unit.
Additional FXUs and FPUs can be implemented for better performance in
high-end machines. Other types of execution units, such as load/store units,
can be implemented in hardware. Load/store units handle load/store
instructions which are instructions commonly found in RISC instruction sets
to move data between the registers and main memory.

The model defines separate instruction and data caches - what is known as a
Harvard-style cache subsystem. This is by no means a restriction and
unified caches can be implemented. In fact, the first PowerPC chip
implementation, the 601 processor, uses a unified cache structure, that is, a
combined data and instruction cache. Additionally, certain cache control
schemes are defined to enable multiprocessing. These schemes will be
discussed in the next section on the various elements of the PowerPC
Architecture.

2.3.4 A Comparison of POWER and PowerPC

The PowerPC Architecture, as a modification of the POWER Architecture,
inherits many characteristics of its predecessor.

A branch processor that is closely coupled to the instruction unit to
facilitate branch look-ahead.

Multiple execution units and parallel execution.

Multiple instruction dispatch.
Besides that, the instruction sets of the two architectures are similar.

There are also some important differences that distinguish the two
architectures:

The PowerPC Architecture is defined to support 64-bit operation.
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The PowerPC supports single-precision floating-point operations.
POWER supports only double-precision operations.

The PowerPC Architecture is enabled for multiprocessing. There are
some important modifications to the storage control structure to support
multiprocessing.

The PowerPC Architecture is designed to support both Big- and
Little-Endian modes of byte-ordering.

2.4 Elements of the PowerPC Architecture

The following elements are defined in the PowerPC Architecture:

Table 1. Elements of the PowerPC Architecture

Category What Is Defined

Instruction size
Instruction Set + Addressing modes

Instruction set and functionality

Register set

Programmin . . .
9 g Functionality of the registers

Model
How data is stored
Size and attributes of addressable memory
Memory Model + Cache architecture

Address translation

The PowerPC exceptions
Exception Model

Exception conditions

There is no one-to-one mapping between the elements listed above and the
layers outlined in 2.3.2, “Levels of PowerPC Architecture” on page 37.
Aspects of the architecture can fall into one or more layers. For example,
user-level instructions would fall into the UISA or VEA and supervisor-level
instructions would be defined under the OEA.

2.4.1, “PowerPC Instruction Set” on page 43 to 2.4.4, “PowerPC Exception
Model” on page 58 will go into brief detail about the various aspects of the
general architecture.
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2.4.1 PowerPC Instruction Set

This section looks at the attributes of the PowerPC instruction set and
addressing modes as defined in the general PowerPC Architecture.

2.4.1.1 Instruction Set
The following categories of instructions are defined in the PowerPC
architecture:

Integer instructions

These instructions operate on integer operands. They include
instructions that perform arithmetic on integer operands and instructions
that perform logical operations (such as negating a number). Examples
include:

- Integer arithmetic instructions

- Integer compare instructions

- Integer logical instructions

- Integer rotate and shift instructions

Floating-point instructions

These instructions operate on floating-point numbers. Examples include:
- Floating-point arithmetic instructions

- Floating-point multiply-add instructions (of the form A+BxC)

- Floating-point compare instructions

Load/Store instructions

These instructions are used to move data between main memory and
CPU registers and are necessary to support the load/store character of
the PowerPC Architecture.

Note that the order in which data is actually transferred from memory
may not be the same as the program order because of caching. For
example, if the two instructions:

Load X into R1
Load Y into R2

(where X, and Y are locations in memory, and R1 and R2 are registers)
are in program order, the second one may complete first if Y is already
in cache and X is not. This could cause difficulties if programs needed
data to be loaded in a certain order. This can be solved by memory
synchronization instructions which are under the category of processor
control instructions.

Chapter 2. Inside the PowerPC Technology 43



44

The set of load/store instructions includes:

- Integer load and store instructions

- Floating-point load and store instructions
Flow control instructions

These are instructions that affect the instruction flow. They include
branch instructions and logical operations on the condition register.

Memory control instructions

This set of instructions can be used for control of the cache subsystem
and other aspects of the memory subsystem. There is a small group of
cache control instructions in this set which can be used by user-level
programs. These instructions allow programs to pre-load into cache the
next set of data while processing the current set. This overlapping of
loading and processing may be used by programs to improve efficiency
and execution time.

Processor control instructions

This is a group of mostly supervisor-level instructions that allow access
to special control registers. These registers control the operation of the
processor and generally a certain level of privilege is required to access
these registers.

Another set of instructions in this category allow synchronization of
memory accesses. As mentioned earlier in the load/store instructions
category, memory access synchronization is sometimes necessary to
maintain a certain order when accessing data. Synchronization
instructions help to maintain the correct program order. Using
synchronization instructions, the example given in the section on
load/store instructions can be rewritten as:

Load X into R1
Synchronize
Load Y into R2

The synchronize instruction will ensure that all outstanding memory
accesses are completed.

PowerPC instructions have the following attributes:

All instructions are of a fixed-length (32-bits) and consistent format. This
allows the instruction decoding mechanism to be kept simple and
efficient. An efficient decoding system permits easier implementation of
pipelining and superscalar dispatch.

PowerPC: An Inside View



Integer instructions operate on byte, half-word and word operands (a
word in the PowerPC Architecture is defined as 32-bits).

Floating-point instructions operate on either single-precision (one word)
or double-precision (double word) floating-point operands.

Instructions that perform computation do not work directly on operands in
memory. The PowerPC Architecture uses the load/store method of
working with data. Operands must be loaded from memory to registers
using load instructions, worked on and then, if modified, stored back to
memory using store instructions.

Instructions use a non-destructive format when working with operands.
Normally, computational instructions are of the form R1 = R2 operation
R3. This ensures that operands in the registers R2 and R3 are not
destroyed by the computation.

2.4.1.2 Addressing Modes

Addresses are used in instructions to specify the location of operands in
memory. They are used by the CPU to tell the memory subsystem where to
get the data. An addressing mode is a method of specifying the address of
an operand. There is more than one addressing mode and computer
architectures usually employ a few.

The PowerPC Architecture specifies two basic and very simple addressing
modes. Both methods use a base address, taken from a register and a
displacement. The two values are added together to produce the 32-bit
effective address. The effective address is what the CPU presents to the
memory subsystem to locate the data. The two addressing modes differ on
the source from which the displacement is taken.
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The offset value in immediate addressing is specified directly in the
instruction.

Note that because of the load/store characteristic of the PowerPC
architecture, these addressing modes are not used in a computational
instruction to address operands. Instead, they are used in load/store
instructions to refer to memory locations to put/take data. They are also
used in branch instructions to refer to target locations for branching.

2.4.2 PowerPC Programming Model

This section starts by discussing the PowerPC register set - what registers
are available for programs that run on the PowerPC Architecture and what
are their functions. We will then take a brief look at the types of data storage
organization supported by the PowerPC Architecture.

2.4.2.1 PowerPC Register Set
This section looks at the register set defined by the PowerPC architecture
and the functions of some of the register sets.

The programming model defines 32 general-purpose registers (GPRs), 32
floating-point registers (FPRs), some special-purpose registers (SPRs), and a
few other miscellaneous registers.

PowerPC processors operate at two privilege levels - supervisor level and
user level. The supervisor mode of operation is typically used by the
operating system or extensions to the operating system. The user mode of
operation is usually used by user-level applications. Having different levels
of privileges allows the operating system to control the environment while
protecting critical system resources from being misused.
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Figure 20. The PowerPC Programming Model

Figure 20 shows the register set in the PowerPC programming model and
the division between the supervisor and user programming models. Some of
the registers defined in the architecture are:
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General-Purpose Registers

GPRs are used as user-level, general-purpose data registers. They are
32 bits wide in a 32-bit PowerPC implementation and 64 bits wide in a
64-bit implementation. The programming model defines a set of 32 such
registers.

Floating-Point Registers

There are 32 64-bit FPRs defined in the model. These registers serve as
data source or target registers for floating-point computations.

Condition Register (CR)

The CR is a 32-bit user-level register that contains eight 4-bit fields.
These fields reflect the results of certain operations, such as integer and
floating-point, compare and arithmetic computations. These fields are
accessed using condition register instructions for testing and conditional
branching.

Floating-Point Status And Control Register (FPSCR)

This register contains fields that show information on floating-point
computations. Some of the fields can be set by user-level programs to
control the behavior of floating-point operations (for example, how much
rounding should be performed on floating-point numbers).

Machine State Register (MSR)

The MSR is a critical supervisor-level register. The fields in the register
define the state of the processor. Examples of these fields include
whether the processor is operating in user or supervisor mode and
whether the CPU is handling an exception or performing normal
processing.

Segment Registers (SRs)

The entire map of logical memory is divided into sixteen 256MB
partitions. Each partition is called a segment. The 16 segments are
identified by the 16 SRs.

Special-Purpose Registers (SPRSs)

The programming model defines numerous SPRs. Some of these can be
accessed at the user level while most require supervisor privileges.
SPRs serve a variety of functions, ranging from indicating status and
allowing the operating system to control and configure the system to
performing special operations. Besides the SPRs defined in the basic
model, PowerPC implementations can add on additional SPRs to perform
special functions.
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2.4.2.2 Bi-Endian Support

The PowerPC Architecture supports both Big- and Little-Endian modes of
data storage. PowerPC implementations should be able to run in both Big-
and Little-Endian modes (but not both at the same time). This means that
potentially any operating system, whether it operates in Big- or Little-Endian
mode, should be portable to a PowerPC machine.

When a PowerPC system is first started up, it operates in Big-Endian mode
by default. At that point, an operating system can switch the system to
Little-Endian mode if needed. The architecture defines a 2-bit field in the
MSR that specifies whether the system is operating in Big- or Little-Endian
mode. The mode can be changed by changing the contents of the field.
Note that PowerPC processors may implement a different way of mode
switching. For example, the PowerPC 601 implements the mode switch in
another 601-specific SPR called the HIDO instead of the MSR.

The PowerPC Reference Platform contains a specification of the Endian-mode
switching process for operating systems.

2.4.3 PowerPC Memory Model
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The memory model defines the size and attributes of addressable memory,
how memory is managed and the cache architecture.

2.4.3.1 How Memory Is Partitioned

The 32-bit PowerPC Architecture allows up to 232 bytes (4GB) of logical
address space. The virtual address space is 252 bytes. This means that
logical addresses are 32 bits wide and virtual addresses are 52 bits wide.

The 64-bit architecture allows for 264 bytes of logical address space and 280
bytes of virtual memory.

The logical address space is divided into segments of 256MB. Each segment
is divided into pages of 4KB.

A mechanism called block address translation (BAT) gives quick address
translation for specially defined blocks in memory. These blocks are defined
as entries in BAT registers which are part of the set of SPRs. The blocks can
be set to be between 128KB and 256MB in size. Blocks are special areas in
memory which may be frequently accessed. Examples are areas in memory
representing some 1/O devices or graphics devices. They are specially
defined to allow for faster address translation. Figure 21 on page 51
illustrates how memory is partitioned.
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Figure 21. How Memory Is Partitioned

2.4.3.2 How the Partitions Are Accessed

2.4.2.1, "PowerPC Register Set” on page 47 described a set of segment
registers. Each of these registers store the location of one segment. Page
tables store the locations of pages, with each entry in the table (called a
page table entry or PTE) storing the location of one page. Entries in a BAT
register store the location of a block.
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Figure 22 shows where the locations of the various memory partitions are
stored.

2.4.3.3 Memory Protection

Various areas of memory contain code and data for many programs, both at
user and supervisor levels. Some areas of memory represent I/O devices -
programs access the devices by using the addresses of these areas of
memory. This is called memory-mapped 1/0.

All these areas must be protected from unauthorized or invalid accesses by
other programs. The job of enforcing this protection lies with the memory
management unit (MMU). Memory areas can be protected either at the page
or block partition level.

Pages are protected by fields in the page table entry. There is one PTE for
each page and these entries contain some special fields that describe the
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page. One of the fields is for page access protection. The following levels of
protection can be set for a page:

Table 2. Page Access Protection Levels
Supervisor-Level Programs User-level Programs
Protection Level

Read Write Read Write
Supervisor-only Yes Yes No No
Supervisor Write-only Yes Yes Yes No
Supervisor/User Yes Yes Yes Yes
Read-only Yes No Yes No

Table 2 shows the various levels of protection which can be set in the PTE
and what it means to supervisor- and user-level programs. Note that
wherever user-level programs are allowed to access a page, by default
access is allowed to supervisor-level programs too. In fact, any page that is
accessible by user-level programs must offer at least the same level of
access by supervisor programs.

Blocks are protected by setting fields in the BAT register entries. Since each
entry defines one block, each block can be configured as accessible by user
or supervisor-level programs.

2.4.3.4 Address Translation
The MMU's primary responsibility is to translate logical addresses to
physical addresses. Address translation is needed in the following events:

Instruction accesses
This occurs when the CPU needs instructions fetched from memory.
Data accesses

Data accesses to memory are generated by load and store instructions.
This category includes I/O accesses that use memory-mapped 1/0O. As
we recall, memory-mapped I/O allows programs to access I/O devices by
using normal load/store instructions and addressing the device as if it
were an area in memory.

The address translation process for memory-mapped /O is almost the
same as that for normal data loads/stores to and from memory. The only
difference is that, for memory-mapped /O, the device must be accessed
to get the data.
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I/0 controller interface accesses

This is an alternative way of accessing I/O devices. Messages are
passed to and from the processor and the I/O controller for the device.
This communication is used to provide control over the whole process as
well as to transfer data. The messages are in the form of load/store
instructions and replies, which are the messages that the I/O controller
passes to the processor. 1/O controller interface accesses are identified
by a field in the segment register.

There are different address translation processes for the various types of
memory partitions.
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Figure 23 summarizes the various methods of address translation. There
are basically four types of address translation processes:

Direct Address Translation

This is used if address translation is disabled. Address translation can
be disabled by setting some bits in the machine state register (MSR).
When translation is disabled, the logical address is used directly as the
physical address.

Block Address Translation

In this process, the BAT registers are checked to see if the logical
address refers to a defined block. If it does, the BAT register entry is
used to generate a physical address.

Page Address Translation

The segment registers are used to generate the virtual address. The
virtual page table is then accessed to map the virtual address to a
physical address. This process is run in parallel with block address
translation.

I/0O Controller Interface Translation

When a field in the segment register indicates that it is an 1/O controller
interface access, page address translation is not used. Instead, the
logical address is used to generate the messages that are used to
communicate with the 1/0O controller.

This process is also run in parallel with block address translation. If
block address translation succeeds (that is, the address is in a defined
block), this process is ignored.

After the physical address is generated, the cache unit is checked to see
whether the requested code is in cache. If not, the address is put on the bus
to access main memory or the 1/O controller.

2.4.3.5 Cache Arch itecture

The PowerPC Architecture does not define the hardware aspects of cache
implementations. It does not dictate whether there should be separate data
and instruction caches or a unified cache. It does not restrict the size or
organization of caches.

It does, however, define a method to control the caching of memory. This
control works at the page and block levels. There are three bits known as
the W, I and M bits (or collectively as WIM bits) in page table entries and
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BAT register entries. By setting or clearing WIM bits, the caching modes of
that particular page or block can be controlled.

The bits have the following meanings:

W bit - Write through/Write back

Setting the W bit means that the page or block follows a write through
policy.

Clearing the W bit means that the page or block follows a write back
policy.

I bit - Cache Inhibition

Setting the | bit means that the page or block is cache-inhibited, that is, it
is not to be cached at all. This is usually the case when the page or
block represents an I/O device.

Clearing the | bit means that the page or block can be cached as normal.
M bit - Coherency Control

When the M bit is set, coherency is enforced for the page or block. This
involves the cache snooping discussed in 2.2.3, “Cache Coherency and
Snooping” on page 23.

When the M bit is cleared, coherency is not enforced for that page or
block.

Table 3 summarizes the WIM bit settings and what they mean. Note that
when the | bit is set, caching is turned off and it does not matter what the W
and M bits are set at.

Table 3. What the WIM Settings Mean
W | M Write through/Write back Cache Coherency
0 0 0 Write back On No
0 0 1 Write back On Yes
1 0 0 Write through On No
1 0 1 Write through On Yes
X 1 X Cache inhibited
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2.4.4 PowerPC Exception Model
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Exceptions are external signals, errors or unusual events that cause the CPU
to switch to supervisor state. When the CPU is notified of an exception, it
saves the state of the system in some registers and begins executing code
found at some predefined location. This location is called an exception
vector or exception handler. Exception handlers are defined for the types of
exceptions which can be identified or foreseen. Exception vectors are
executed in supervisor mode.

The various types of exceptions are defined by two characteristics -
synchronous/asynchronous and precise/imprecise.

Synchronous exceptions are caused by the instructions that the CPU is
processing at a particular moment.

Asynchronous exceptions are caused by external events or other
conditions not connected to whatever the CPU is processing at the time
that the exception occurred.

Precise exceptions are exceptions where the exact cause of the
exception is known and the machine state at the time of exception is
known. They are usually recoverable.

Imprecise exceptions are usually caused by a very serious failure or
non-recoverable condition. They may cause the CPU to halt processing
or stop execution of some program.

The combination of these two characteristics gives rise to four types of
exceptions:

Synchronous, precise exceptions

These are exceptions caused by instructions. An example is an invalid
address in the instruction. At the time these exceptions occur, the state
of the machine is known. The CPU can save the state of the machine,
handle the exception, and then continue with processing of other
instructions.

Synchronous, imprecise exceptions

These are generally not supported in the PowerPC Architecture.
Although there are some floating-point exceptions defined as
synchronous imprecise in some implementations, they are handled as
synchronous precise exceptions.

Asynchronous, precise exceptions

PowerPC: An Inside View



These are non-disastrous exceptions that are not caused by the
instructions being processed by the CPU. Examples are external
interrupts, which are signals from external devices to tell the CPU to
handle something. A clock device may send signals to the CPU at
regular intervals to keep time, for example.

Asynchronous, imprecise exceptions

An example of this type of exception is a system reset, which causes the
CPU to stop processing, reset everything in the system and restart
processing.

2.5 The PowerPC Processor Family

A PowerPC is a microprocessor designed to meet the standard developed by
the alliance of IBM, Apple and Motorola. This standard specifies a common
instruction-set architecture allowing to design and manufacture PowerPC
processors, which then will be able to run the same code. The PowerPC
Architecture is based on the POWER technology used in IBM's RS/6000
systems.
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Figure 24. The PowerPC Processor Road Map

Figure 24 shows a road map of the PowerPC family as planned for the near
future. Features of the various processors which are in production as well as
those planned for release are summarized in the table below.

Table 4 (Page 1 of 2). PowerPC Processor Overview

Processor MHz Watt vliizt; vl\?il:ifh Cache Tr;?lii:rt]or Technology
50 5.6 32 64 32 2.8 0.65p CMOS
60 6 32 64 32 2.8 0.651 CMOS
601 66 7 32 64 32 2.8 0.651 CMOS
80 8 32 64 32 2.8 0.65p CMOS
100 4 32 64 32 2.8 0.5p CMOS
66 2.5 32 32 8/8 1.6 0.54 CMOS
o0° 80 3 32 64 8/8 1.6 0.54 CMOS
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Table 4 (Page 2 of 2). PowerPC Processor Overview

MHz Watt VS;?; v?ilcjifh Cache Trriri]“siic')srt]or Technology
100 10 32 64 16/16 3.6 0.54h CMOS
150 11-12 32 64 32/32 tbd. 0.5p CMOS
133 30 64 64 32/32 est. 6.9 0.54 CMOS
150 35 64 64 32/32 est. 6.9 0.54 CMOS
200 30 64 64 32/32 thd. 0.54h CMOS

The features of PowerPC 601, 603 and 604 processors are summarized in
2.5.1, “The PowerPC 601" through 2.5.3, “The PowerPC 604" on page 62.

2.5.1 The PowerPC 601

The PowerPC 601 microprocessor is the first member of the family and is
responsible for bringing PowerPC to the market as early as possible. Itis a
32-bit implementation of the PowerPC Architecture and achieves its
performance through concurrent execution of up to three instructions per
cycle in its three parallel execution units:

The fixed point unit
The floating point unit
The branch processing unit

The PowerPC 601 microprocessor clocks at speeds of up to 100MHz. At
66MHz, its estimated 60 SPECIint92 and 80 SPECfp92 make it an excellent
high-performance, low-cost solution for desktop systems. A detailed
description of the PowerPC 601 microprocessor is given in 2.6.1, “The
PowerPC 601" on page 62.

2.5.2 The PowerPC 603

The PowerPC 603 microprocessor is a 32-bit implementation, intended for
use in uniprocessor applications, such as notebook computers and low-end
desktop computers. High performance is achieved through concurrent
execution of up to three instructions in five parallel execution units:

The fixed point unit

The floating point unit

The branch processing unit
The system unit

The load/store unit
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The Power PC 603 microprocessor incorporates low-power design and power
management features to offer competitive advantage in cost sensitive and
portable applications. 2.6.2, “The PowerPC 603" on page 68 describes the
PowerPC 603 microprocessor in detail.

2.5.3 The PowerPC 604

The PowerPC 604 microprocessor is designed to deliver exceptional
performance for high-end desktop systems, midrange server and
high-performance graphics workstations. It is a superscalar, multiprocessor
enabled chip that issues four instructions in parallel every clock cycle to six
execution units. Its three stage double precision floating point unit allows the
end user to take advantage of increasingly graphics oriented software
packages, as well as multimedia applications, providing tremendous
performance capabilities that were previously available only through
expensive add-on hardware. 2.6.3, “The PowerPC 604” on page 74
describes the PowerPC 604 microprocessor in detail.

2.5.4 The PowerPC 620

The PowerPC 620 microprocessor is designed to deliver the maximum
performance achievable with the current available half-micron CMOS
process technology. This superscalar design implements the full 64-bit
PowerPC architecture and includes an embedded L2 cache controller that
interfaces to standard SRAM chips. The design is targeted at high-end
desktop systems, workgroup server and transaction processing-based
systems.

2.6 PowerPC Technology Details

We will now take a closer look at each of the processor implementations.
We will briefly examine the internal processor architecture and focus on how
it differs from the general PowerPC Architecture.

2.6.1 The PowerPC 601

62

The 601 processor probably differs from the general PowerPC architecture
more than any other current implementation. This is due to its goal of being
a “bridge” processor for the transition between POWER and PowerPC
processor families. It allows most of the existing POWER applications to run
unmodified. This gives application vendors time to recompile their software
to take full advantage of the other PowerPC processors.
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Figure 25. The PowerPC 601 Microprocessor Block Diagram

Figure 25 shows the block diagram of the 601 processor. The various
aspects of the processor architecture will be discussed next.
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2.6.1.1 Instruction Queue and Dispatch Unit

The instruction unit (IU) contains an eight-instruction queue. Its job is to
dispatch the instructions in the queue to the execution units in the CPU, as
well as keep track of which instructions to fetch next.

The IU can fetch eight instructions per clock cycle from the cache. Eight
instruction words is actually the size of a cache block. The large number of
instructions that can be fetched each cycle offsets the 601's disadvantage of
not having a separate instruction cache. To fetch the instructions, the IU
generates the effective addresses of the instructions and hands them to the
memory management unit.

The IU allows dispatch of integer instructions from the top four positions in
the queue. Floating-point and branch instructions can be dispatched from
the last four positions in the queue.

The IU benefits from the RISC attributes of the PowerPC instruction set:
fixed-length instructions with simple format. This allows a simple
fixed-length queue and easier decoding of instructions.

2.6.1.2 Branch Processor (BP)

The branch processor has an important job to perform. It constantly looks
into the instruction queue, takes out the branch instructions and tries to
predict whether the branch will be taken or not.

For conditional branches, the 601 architecture implements a mechanism
called static branch prediction. When coding programs, the programmer can
specify in the operand of a conditional branch whether or not the branch is
likely to be taken. The BP works according to this “prediction”. Branch
prediction schemes generally improve the performance of the CPU when
handling branch instructions.

The BP does its job by working with registers, such as the condition register
(which was discussed in 2.4.2.1, “PowerPC Register Set” on page 47). These
registers are implemented within the BP itself.

2.6.1.3 Fixed-Point Unit (FXU)

The FXU executes all the integer computation instructions which are
dispatched to it by the IU. It has specialized units, such as a divider, a
multiplier and an arithmetic logic unit, to perform this work. In addition, it
has the responsibility of calculating effective or logical addresses for memory
accesses. Any instruction that contains a memory address would require an
address calculation by the FXU. This includes integer and floating-point
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load/store instructions. The FXU interfaces with the memory management
unit to send out the logical addresses that have been calculated.

32-bit general-purpose registers (GPRs) are implemented in the FXU.
These store the operands for integer computations.

2.6.1.4 Floating-Point Unit (FPU)

The FPU executes all the floating-point computations. It contains a
multiply-add array which allows it to efficiently perform floating-point
operations, such as add, multiply, divide and multiply-add.

The FPU also contains 32 64-bit floating-point registers (FPRs) as well as the
floating-point status and control register (FPSCR). These registers were
described in 2.4.2.1, “PowerPC Register Set” on page 47. The 601 FPU fully
supports all the IEEE 754 data types in hardware.

2.6.1.5 Memory Management Unit (MMU)

The 601 is an implementation of the 32-bit PowerPC Architecture, which
means that it supports up to 4 petabyte of virtual memory and 4 gigabyte of
real memory. The MMU's job is to translate the logical addresses given to it
by the FXU and BP to physical addresses which it presents to the cache unit.
The address translation process works as outlined in 2.4.3.4, “Address
Translation” on page 53. It has to be performed every time there is an
instruction fetch or exchange of data between the CPU and memory.

The MMU makes use of translation lookaside buffers (TLBs) to do its job.
TLBs are small, fast buffers that contain the most recent physical addresses
that were translated. Because of the principle of locality, it is quite likely that
an address that the MMU is looking for has just been translated recently. If it
is found in the TLBs, the MMU just takes the physical address in the buffer.

It does not have to go through the whole process of translation.

2.6.1.6 Cache Unit

The cache unit in the 601 is a 32KB unified instruction and data cache. It
uses eight-way set associative mapping.
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The cache is organized in eight sets of 64 lines. This operation is very
efficient because a 601 cache line is the same size as eight instruction
words. Each line contains the address tag, which is used to address and
identify the contents of that line. Sixteen words of data can be stored on
each line. This is divided into two sectors of eight words each. The sector is
the cacheable unit in the 601 processor. This means that each sector can be
individually loaded into the cache, flushed out from cache or marked as
invalid.

When data is loaded from memory to cache, the words that the CPU is
actually asking for are always transferred first, regardless of its position in
the sector. After that the rest of the sector is transferred. This ensures that
the cache unit can satisfy the CPU's request as fast as possible. This
method of cache loading is called critical word first.

The cache unit is designed to follow a write back policy, but the 601
implements cache control using WIM bits as described in 2.4.3.5, “Cache
Architecture” on page 56.
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To enforce cache coherency in multiprocessor or multi-cache systems, the
601 cache unit uses snooping together with the MESI protocol. The MESI
protocol uses 2 bits in the address tag lines to keep track of the state of a
cache sector. This adds up to 4 bits per cache line. The 2 bits indicate
which of the four states that the cache sector is in:

Modified

The data in the cache has been modified and, therefore, the copy in
memory is invalid.

Exclusive

The data in this sector is identical to the copy in memory and no other
cache has a copy of this data.

Shared

The data in this sector is identical to the copy in memory but at least one
other cache unit also has a copy of this data.

Invalid

The data in this sector is invalid.

The 601 cache has a dedicated port for snooping. This means that there are
separate interfaces for data transfer and snooping and the two activities can
happen simultaneously without interfering with each other.

2.6.1.7 Instruction Set

The 601 was intended to provide total application binary compatibility with
the POWER Architecture. It implements all the user-level instructions of the
POWER architecture as well as some of the supervisor-level instructions.

Some of the instructions in the PowerPC Architecture are not implemented in
the 601 or are implemented differently. For example, some of the cache
control instructions in the general architecture are meant for separate
instruction and data caches. Since the 601 implements a unified cache,
these instructions operate differently.

2.6.1.8 Register Set
The 601 implements some registers that are not part of the general PowerPC
Architecture:

Real-time clock registers (RTC)

An RTC register to provide clocking is implemented in the 601 as part of
the set of special-purpose registers. They can be read by user-level
programs but only written to by supervisor-level programs.
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MQ register

The MQ register is a 32-bit user-level SPR that is used to hold the
product for multiply instructions and the dividend for divide instructions.
It is only implemented on the 601.

2.6.1.9 Exception Model

The PowerPC 601 defines the following classifications of exceptions:

Table 5. 601 Microprocessor Exception Classifications

Precise Imprecise
Synchronous Instruction-caused None
exceptions
Asynchronous - External interrupt - Machine check
Decrementer - System reset

2.6.2 The PowerPC 603

The 603 is a 32-bit, low-power implementation of the PowerPC family. It
provides four software-controllable power-saving modes. This feature allows
the 603 to be used in systems, such as mobile workstations, where power
consumption needs to be as low as possible.

Up to three instructions can be dispatched per clock cycle to the five
execution units in the 603. As many as five instructions can be executed in
each cycle.

The 603 also supports a 32-bit or 64-bit data bus for developing lower-cost
systems.

Figure 27 on page 69 shows the block diagram of the 603 processor. The
various components of the processor will be examined next.
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2.6.2.1 Instruction Queue and Dispatch

The instruction unit fetches up to two instructions per clock cycle from the
instruction cache. It contains an instruction queue which can contain up to
six instructions. Instructions for each of the execution units are dispatched
from this queue.

2.6.2.2 Branch Processor (BP)

The BP is similar to the one implemented in the 601. It looks into the stream
of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BP has its own set of registers to work
with, including the condition register.

2.6.2.3 Fixed-Point Unit (FXU)

Unlike the FXU in the 601, the FXU implemented in the 603 performs only
integer computation operations. It is not involved in the job of calculating
effective addresses. This is left to another execution unit.

Like the 601, the 32-bit GPRs in the 603 are implemented within the FXU.

2.6.2.4 Floating-Point Unit (FPU)
The FPU implemented in the 603 is similar to the one in the 601.

2.6.2.5 Load/Store Unit (LSU)

The 603 implements a specialized load/store unit that handles all the
load/store instructions. It provides an interface for data transfers between
the data registers (GPRs, FPRs) and the memory subsystem. It does this by
doing the calculation of effective addresses, which it then presents to the
data memory management unit. It also performs sequencing for load and
store instructions.

2.6.2.6 System Register Unit (SRU)

This special execution unit handles some supervisor-level instructions, such
as operations involving the special-purpose registers. Because some of the
supervisor-level instructions affect the system state, the SRU must make sure
that they are executed in strict order to preserve the integrity of the system.
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2.6.2.7 Completion Unit (CU)

The CU’'s job is to watch all instructions being dispatched and executed and
ensure that they are retired correctly in program order. Because of the
superscalar dispatch and parallel execution features of the PowerPC,
instructions may not complete in program order. For example, if instruction
A, which is before instruction B in the program order, is dispatched to the
FPU and instruction B to the FXU, B may complete execution before A.

The CU uses a five-instruction buffer to make sure that instructions are
completed in the proper order, despite the out-of-order execution.

2.6.2.8 Memory Management Units (MMUS)

The 603 implements two separate MMUs - the instruction MMU (I-MMU) and
the data MMU (D-MMU). Each of the two MMUs work with the respective
caches. As a 32-bit implementation of the PowerPC Architecture, the 603
supports up to 4 petabyte of virtual memory and 4 gigabytes of real memory.

The instruction unit performs the address calculation for instruction fetches
and presents the effective addresses to the I-MMU. The LSU performs the
address calculation for data loads and stores and presents the logical
addresses to the D-MMU. The MMUs then translate the addresses to
physical addresses and checks with the respective caches to see if the
requested instructions or data are in cache. If not, external memory is
accessed to bring in the required code or data.

Each MMU also has TLBs and BAT arrays implemented within the unit to
speed up the work of address translation.

2.6.2.9 Cache Units

The 603 implements separate instruction and data caches. Each is 8KB in
size and uses two-way set-associative mapping. Both caches are organized
in a similar manner.
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Figure 28 shows the organization of a 603 data cache unit. The cache unit is
divided into 128 sets of two lines each. Each line or block consists of 32
bytes or eight words, which is the cacheable unit. The line also contains an
address tag and two state bits.

The two state bits implement the MEI protocol for cache coherency
enforcement. The MEI protocol is similar to the MESI protocol described in
2.6.1.6, “Cache Unit” on page 65, except that there is no shared state. So
the only states allowed are modified, exclusive and invalid.

The instruction cache unit is organized in a similar manner to the data cache
- 128 sets of 2 lines, with each line holding eight words. The only difference
is that, with the data cache, instead of two state bits, each line in the
instruction cache has only one valid bit. The instruction cache is not
snooped, and cache coherency must be enforced by software.
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Cache loading transfers blocks of eight words at one time. This applies to
both cache units. The eight-word block transfer is divided into four cycles of
64 bits each. The transfer is always performed with the critical double word
first, that is, the two words actually required by the CPU are always
transferred first regardless of their position in the cache line.

Snooping is implemented on the data cache but, unlike the 601 cache unit, it
does not have a dedicated port for snooping. It has one port which is used
for both data transfer and snooping.

2.6.2.10 Power Management

The 603 implements certain fields in the machine state register (MSR) that
can select the power mode that the processor operates at. Software can
manipulate these bits at supervisor-level to control the power mode settings.

There are four power-saving modes in the 603. The first three (doze, nap
and sleep) progressively reduce the power consumed by the processor by
disabling more and more functional units of the CPU. The fourth mode,
called dynamic power management mode, minimizes power consumption
during full operation. It does this by detecting any functional unit that is idle
and putting this unit in a low-power state. This does not affect the
operational performance or software execution process of the system.

2.6.2.11 Instruction Set
The 603 supports all the 32-bit PowerPC Architecture instructions in
hardware.

2.6.2.12 Register Set

The 603 implements all the registers in the user-level programming model of
the PowerPC Architecture. Some additional registers to help in the process
of address translation are implemented in the supervisor-level SPR set of the
603.

2.6.2.13 Exception Model

The PowerPC 603 defines the following classifications of exceptions:

Table 6 (Page 1 of 2). 603 Microprocessor Exception Classifications

Precise Imprecise

Synchronous

Instruction-caused None
exceptions
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Table 6 (Page 2 of 2). 603 Microprocessor Exception Classifications

Precise

Imprecise

Asynchronous

External interrupt
Decrementer

System management
exception

Soft system reset

Machine check

Hard system reset

2.6.3 The PowerPC 604

The PowerPC 604 microprocessor features six different execution units:

The branch processor execution unit

Load/store execution unit
Floating-point execution unit

Three separate integer execution units
- Two for all integer operations that can be executed in one single

clock cycle and

— one to execute all integer operations requiring more than one clock
cycle

The PowerPC processor 604 can execute up to four instructions in one single
clock cycle. The processor features zero-cycle capability as well as support

for multiprocessing.

Figure 29 on page 75 shows a block diagram of the PowerPC 604 processor.

The various components of the processor will be examined next.
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Figure 29. The PowerPC 604 Microprocessor Block Diagram

2.6.3.1 Instruction Queue
The instruction unit fetches up to four instructions per clock cycle form the

"Fetch” and Dispatch

instruction cache. It contains an instruction queue that can contain up to
eight instructions. Instructions for each of the execution units are dispatched

from this queue.

Chapter 2.

Inside the PowerPC Technology

75




76

2.6.3.2 Branch Processor Unit (BPU)

The BP is similar to the one implemented in the 603. It looks into the stream
of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BP has its own set of registers to work
with, including the condition register.

All branches, including unconditional branches, are placed in a reservation
station until conditions are resolved and they can be executed. At that point
branch instructions are executed in order and the completion unit is notified
whether the prediction was correct.

2.6.3.3 Completion Unit (CU)

The CU retires executed instructions and updates register files and control
registers. The CU can quickly remove instructions from a mispredicted
branch, and the Branch Processor unit begins dispatching from the correct
path. The CU guarantees a sequential programming model by monitoring all
dispatched instructions and retiring them in order. The CU retires as many
as four instructions per cycle.

2.6.3.4 Rename Buffers

To avoid contention for a given register location, the 604 provides rename
registers for storing instruction results before the completion unit commits
them to the architected register. Twelve rename registers are provided for
the GPRs, twelve for the FPRs, and eight each for the condition register.

2.6.3.5 Fixed-Point Unit (FXU)

The 604 has three FXUs to improve cycle times. It has two single-cycle
integer units (SCIU) and one multiple-cycle integer unit (MCIU). The one
MCIU executes all integer instructions, such as integer multiply, divide, and
all move to/from special-purpose registers. The two SCIUs execute all other
register-to-register instructions in one cycle. Each SCIU and MCIU has one
two-entry reservation station to minimize calls.

The 604 FXU has 32 general-purpose registers (GPR) for integer operands.

2.6.3.6 Floating-Point Unit (FPU)

The FPU implemented in the 604 as the one in the 603 is IEEE 754-1985
compliant for both single- and double-precision operations. It also supports
non-lIEEE mode for time-critical operations. The 604 FPU has a two-entry
reservation station to minimize stalls and thirty-two 64-bit floating point
registers (FPR).
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2.6.3.7 Load/Store Unit (LSU)
The LSU implemented in the 604 is similar to the one in 603.

2.6.3.8 Memory Management Units (MMUS)

The MMUs implemented in the 604 are similar to the ones in 603.

2.6.3.9 Cache Units

The 604 implements separate instruction and data caches. Each is 16KB in
size and uses four-way set-associative mapping. Both caches are organized
in a similar manner.

Figure 30 shows the organization of a 604 data cache unit.

Block 0

Block 1

Block 2

Block 3

128 Sets L L J
® L]
[ & @00 ( ]
Address Tag 0 State Words 0-7 —
Address Tag 1 State Words 0-7
Address Tag 2 State Words 0- 7
Address Tag 3 State Words 0- 7
- Words/Blook —————————

Figure 30. The PowerPC 604 Data Cache Organization

The parity checked cache unit is divided into 128 sets of four lines each. Each
line or block consists of 32 bytes or 8 words, which is the cachable unit. The
line also contains an address tag and two state bits.

The two state bits implement the MESI protocol for cache coherency
enforcement. (See 2.6.1.6, “Cache Unit” on page 65 for MESI details.)

The instruction cache unit is organized in a similar manner to the data
cache: 128 sets of 4 lines, with each holding eight words. The only difference
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is that, with the instructions cache, instead of two state bits, each line has
only one valid bit. The instruction cache is not snooped, and cache
coherency must be enforced by software.

Cache loading transfers blocks of eight words at one time. This applies to
both cache units. The transfer is always performed with the critical double
word first, that is, the two words actually required by the CPU are always
transferred first regardless of their position in the cache line.

The cache is programmable on a per page or per block basis for write back
or write through. It can also be disabled or locked via software.

2.6.3.10 Power Management

The 604 provides one power savings mode, called NAP mode, in which all
internal processing and bus operation is suspended. Software initiates NAP
mode by setting the MSR. NAP mode is cleared when any asynchronous
interrupt is detected.

2.6.3.11 Instruction Set
The 604 supports all the 32-bit PowerPC Architecture instructions and most
optional PowerPC instructions in hardware.

2.6.3.12 Register Set

The 604 implements all the registers in the user instruction set architecture
(UISA), the virtual environment architecture (VEA) and the operating
environment architecture (OEA) (that is, supervisor-level) plus some 604
specific registers, such as Performance Monitor and Cache Control.

2.6.3.13 Exception Model
The PowerPC 604 defines the following classification of exceptions:

Table 7 (Page 1 of 2). 604 Microprocessor Exception Classifications

Type Exception

Asynchronous/nonmaskable - Machine check

System reset

Asynchronous/maskable - External interrupt

Decrementer

System management interrupt(not defined
by the PowerPC Architecture)
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Table 7 (Page 2 of 2). 604 Microprocessor Exception Classifications

Type

Exception

Synchronous / precise

Instruction-caused

Synchronous / imprecise

Floating-point (imprecise nonrecoverable

mode)

2.6.3.14 Performance Monitor

The 604 incorporates a performance monitor facility that designers can use
to help bring up, debug, and optimize software performance, especially in
multiprocessing systems. These are software-accessible registers that
provide detailed information concerning the dispatch, execution, completion,
and memory access of the PowerPC instructions.

2.6.4 The PowerPC 620

The 620 is an implementation of the PowerPC family of RISC
microprocessors. The 620 implements the PowerPC Architecture as it is
specified for 64-bit addressing, which provides 64-bit effective (logical)
addresses, integer data types of 8, 16, 32, and 64 bits, and floating-point data
types of 32 and 64 bits (single and double precision). The 620 is software
compatible with the 32-bit version of the PowerPC microprocessor family.

The 620 is a superscalar processor capable of issuing four instructions per
cycle. As many as six instructions can finish execution at the same time. The
620 has six execution units:

Floating-point unit

Branch processing unit

Load/store unit

Three integer units

- Two for all integer operations that can be executed in one single
clock cycle

— One to execute all integer operations requiring more than one clock
cycle

Figure 31 on page 80 shows a block diagram of the PowerPC 620 processor.
The various components of the processor will be examined next.
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Figure 31. The PowerPC 620 Microprocessor Block Diagram

2.6.4.1 Instruction Queue "Fetch” and Dispatch

The instruction unit fetches up to four instructions per clock cycle from the
instruction cache. Instructions for each of the execution units are dispatched
from this queue.
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2.6.4.2 Branch Processor Unit (BPU)

The BPU is similar to the one implemented in the 603. It looks into the
stream of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BPU has its own set of registers to work
with, including the condition register.

All branches, including unconditional branches, are placed in a reservation
station until conditions are resolved and they can be executed. At that point
branch instructions are executed in order; the completion unit is notified
whether the prediction was correct.

2.6.4.3 Completion Unit (CU)

The CU retires executed instructions and updates register files and control
registers. The CU can quickly remove instructions from a mispredicted
branch, and the Branch Processor unit begins dispatching from the correct
path. The CU guarantees a sequential programming model by monitoring all
dispatched instructions and retiring them in order. The CU can retire several
instructions per cycle.

2.6.4.4 Rename Buffers

To avoid contention for a given register location, the 620 provides rename
registers for storing instruction results before the completion unit commits
them to the architected register. Eight rename registers are provided for the
GPRs, eight for the FPRs, and eight each for the condition register.

2.6.4.5 Fixed-Point Unit (FXU)

The 620 has three FXUs to improve cycle times. It has two single-cycle
integer units (SCIU) and one multiple-cycle integer unit (MCIU). The one
MCIU executes all integer instructions, such as integer multiply, divide, and
all move to/from special-purpose registers. The two SCIUs execute all other
register-to-register instructions in one cycle. Each SCIU and MCIU has one
two-entry reservation station to minimize calls.

The 620 FXU has 32 general-purpose registers (GPR) for integer operands.

2.6.4.6 Floating-Point Unit (FPU)

The FPU implemented in the 620 as the one in the 603 is IEEE 754-1985
compliant for both single- and double-precision operations. It also supports
non-IEEE mode for time-critical operations. The 620 FPU has a two-entry
reservation station to minimize stalls and thirty-two 64-bit floating point
registers (FPR).
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2.6.4.7 Load/Store Unit (LSU)
The LSU implemented in the 620 is similar to the one in 603.

The LSU includes a 64-bit adder dedicated for EA calculations.

2.6.4.8 Memory Management Units (MMUSs)

The MMUs implemented in the 620 are similar to the ones in 603 except that
the 620 supports up to one heptabyte (289) of virtual memory and one
terabyte (249) of physical memory.

2.6.4.9 Cache Units (L1)

The 620 implements separate instruction and data caches. Each is 32KB in
size and uses eight-way set-associative mapping. Both caches are organized
in a similar manner.

Figure 32 shows the organization of a 620 (L1) data cache unit.
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