
1

A Symbolic Debugger for PowerPC-Based Hardware,

Using the Engineering Support Processor (ESP)

Kiyokuni KAWACHIYA and Takao MORIYAMA

IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato, Kanagawa 242, Japan

<fkawatiya,moriyamag@jp.ibm.com>

Abstract

For debugging PowerPC-based hardware systems, there is a tool named the Engineer-

ing Support Processor (ESP) that accesses and controls the chip via the JTAG interface.

With the ESP, a user can debug a target system by starting and stopping it, accessing

registers and memory, and so on. However, with ESP alone, it is di�cult to symbolically

debug programs written in high-level languages such as C. Therefore, we have developed

a mechanism for using the GNU debugger (GDB), which is a widely-used symbolic debug-

ger, through the ESP. This mechanism is implemented by a program named GDBserver,

which mediates between a host-GDB and the ESP. This report describes its structure and

detailed implementation.

Keywords: Symbolic Debugger, Development Environment, PowerPC, GDB Server

1 Introduction

The Engineering Support Processor (ESP) [1] is a debugging tool for hardware systems using

PowerPC chips [2]. It consists of a hardware part with an interface to a JTAG (IEEE 1149.1) port

and bu�ers, and a software part for AIX. By using the ESP, a user can debug a target system by

accessing PowerPC registers (including special registers) and memory, downloading, starting,

and stopping a program, setting breakpoints, and so on. In addition to a GUI-based user

interface on X Window System, the ESP provides a programming interface named EZsockets,

which allows the user to control the ESP from another program via a network [3, 4].

With the ESP, a program on a target system can be debugged at the machine-language level.

However, it is di�cult to symbolically debug programs written in high-level languages such as

C. For this purpose, some symbolic debugger such as the GNU debugger (GDB) [5] is necessary.

The GDB already supports the PowerPC as a target CPU, and can debug a program for the

PowerPC symbolically. However, it may be somewhat di�cult to run the GDB itself on an

unstable target system.

For debugging programs in the hardware development phase, the GDB provides a remote-

debugging facility, which makes it possible to debug a program on a target system via a serial

line or network. A unique GDB remote serial protocol

1

is used for this remote debugging.

1

An overview of this protocol is given as a set of comments in a GDB source �le, remote.c.

2

PowerPC

Mem

JTAG
port

Machine under test

 (gdb) _

I/O

GDB console ESP console (GUI)

GDB remote
serial protocol

EZsockets
interface

Host-GDB
(for PPC)

ESP S/W
GDBserver

(low-esp.c)

ESP
H/W

tty X11

Figure 1: Debugging environment using the GDBserver for ESP

We have developed a program named \GDBserver for ESP" that mediates between this

remote-debugging function and the EZsockets interface of the ESP. This approach allows the

GDB to run on a stable host system and to debug an (unstable) target system symbolically

through the ESP. The present report describes the structure and detailed implementation of the

debugging environment. The basic structure is �rst described in Section 2, and several special

considerations are discussed in Section 3. Section 4 discusses several points to be noted in using

the debugging environment, and Section 5 summarizes our work. Topics that concern speci�c

target systems are dealt with separately in another report, RT5131 [6].

2 Basic Structure

Figure 1 shows the structure of the debugging environment using the GDBserver for ESP. The

host-GDB's debugging directives through the GDB remote serial protocol are translated into

a series of ESP commands by the GDBserver. The translated commands are sent to the ESP

through the EZsockets interface and executed by the ESP. In parallel with the commands from

the GDBserver, the ESP can be controlled through its original GUI. Through this \back door,"

it is possible to control special registers and so on that are not supported in the GDB.

The remainder of this section concerns functions of these modules.

2.1 Host-GDB and Upper Part of GDBserver

The host-GDB is a regular GDB built for the PowerPC. The version that we used to develop the

GDBserver was GDB version 4.16. powerpc-ibm-aix3.2.5 was speci�ed as its con�guration

option.

2

We tried to change the GDB itself as little as possible, so that we can follow up future

improvements easily. The only change we made was to modify Makefile.in by incorporating a

�le named ser-tcp.c to allow remote debugging via a TCP/IP network.

2

AIX 3.2.5 is speci�ed, to match the working environment of the ESP.

3

Table 1: Functions provided by the lower part of the GDBserver (low-esp.c)

Name Description

create_inferior() Start the target program

kill_inferior() Kill the target program

mythread_alive() Check whether the target program is alive

interrupt_inferior() Interrupt and stop the target program

mywait() Wait for the target program to stop

myresume() Resume the target program

registers[] Area for storing registers while stopped

fetch_inferior_registers() Read speci�ed register(s)

store_inferior_registers() Write speci�ed register(s)

read_inferior_memory() Read speci�ed memory area

write_inferior_memory() Write speci�ed memory area

The GDBserver receives directives through the GDB remote serial protocol from the host-

GDB, which is connected via a network,

3

and translates them into ESP commands. Directives to

be handled include starting and stopping a target program, waiting for the program to stop, and

reading and writing registers and memory. The GDBserver for ESP was developed by linking

a GDBserver skeleton included in the GDB package with a lower-part module for accessing

the ESP. In the current implementation, the upper-part module, which mainly handles the

protocol (server.c, remote-utils.c, etc.), is used almost as provided except for the addition

of invocation options and changes to the interrupt code and register access timing.

2.2 Lower Part of GDBserver

The lower part of the GDBserver (low-esp.c), which is linked to the upper part described in

the previous subsection, is the central part of the implementation. Functions to be provided

here include starting and stopping the target program, and reading and writing registers and

memory. The complete list is shown in Table 1. Figure 2 illustrates the states of a target

program and situations in which each function is called. Most functions are called when the

target program has been stopped.

The purpose of each function is as follows:

create inferior() is a function for starting the target program, and is called when the GDB-

server is invoked. First, it creates an EZsockets connection and checks the target system.

4

Next, it downloads and invokes the target program by using ESP commands. Since an

ESP's hardware breakpoint is set before the invocation, the target program is stopped at

its entry point.

In our implementation, the GDBserver can be attached to an already-running target

program. When this feature is speci�ed in the invocation option of the GDBserver,

3

The connection is based on TCP/IP, and it is possible that the host-GDB and GDBserver reside on the same

machine.

4

This function is also called when the target program is restarted by using GDB's run command. In this case,

the connecting and checking are skipped.

4

create_inferior()

kill_inferior()

mythread_alive()

interrupt_inferior()

mywait()

myresume()

fetch/store_inferior_registers()

read/write_inferior_memory()

registers[]

RUNNING

STOPPED

NOT ALIVE

Figure 2: States of the target program

create_inferior() stops the target program instead of downloading and invoking a

new target program.

kill inferior() is a function for killing the target program. In the current implementation,

it only changes the internal state of the GDBserver, and issues no ESP command.

mythread alive() is a function for checking whether the target program is still available (alive),

and returns 0 or 1 according to the above-mentioned internal state.

interrupt inferior() is a function that we have added to the original GDBserver skeleton.

It is called in a signal-processing context when an interrupt comes from the host-GDB.

In this function, only a ag to indicate the interrupt is set, and the actual processing to

stop the target program is done in the next mywait().

mywait() is a function for waiting until the target program is stopped. There are two possi-

ble reasons for a program to be stopped: a forced stop by one of the above-mentioned

interrupts, and a software breakpoint speci�ed by a user from the host-GDB. As reason

codes returned to the GDB, SIGINT and SIGTRAP are used, respectively. In the cur-

rent implementation, stopping with other exceptions (such as division by zero) is not

supported.

myresume() is a function for resuming the stopped target program.

registers[] is an area for storing registers used by the following two functions. Information

stored here is also accessed directly from the upper part of the GDBserver.

fetch inferior registers() and store inferior registers() are functions for reading or

writing speci�ed PowerPC register(s) from or into the registers[]. These functions can

be called only while the target program is stopped.

The GDB that we used tries to access the MQ register as one of the user registers even

when the PowerPC is speci�ed as its con�guration. Because there is no MQ register in

the PowerPC, the FPSCR register is accessed instead in our implementation.

read inferior memory() and write inferior memory() are functions for reading from or writ-

ing to memory on the target system. These functions are also called only while the target

program is stopped. The ESP can access memory only by its physical address. There-

fore, simple address translations to satisfy the target program are performed within these

5

Target program

"ba entry"

GPR1 (SP)

GPR2 (TOC)

MSR

ESP breakpoint

fffffff4

TOC addr

00000040

entry
entry

8. STOP!

fff00100

7. iplrun

1. load

2. Get entry and
 TOC address

3,4. Set

5. Set

6. Set

Memory

(Stack area)

Figure 3: Starting the target program

functions.

3 Special Considerations

This section describes several points that required special consideration in implementation.

3.1 Starting the Target Program

The target program is started by create_inferior() through the following steps (Figure 3):

1. Download the target program by using ESP's load command. This command reads each

section into the memory based on address information in the XCOFF header.

2. Analyze the XCOFF header and get the addresses of the entry point and TOC (table of

contents).

3. Initialize GPR1 (the stack pointer)

5

and GPR2 (the TOC register).

4. Set 0x00000040 to MSR. When this is done, the jump address at the resetting in Step 7

becomes 0xfff00100.

5. Create a branch instruction to the entry address (ba entry) and write it to the reset

vector address 0xfff00100.

6. Set the ESP's hardware breakpoint at the entry address.

7. Reset the PowerPC by using ESP's iplrun (reset the target) command.

8. The target program is stopped at its entry point by the hardware breakpoint set in Step 6.

Through this procedure, the target program is downloaded and stopped at its �rst instruction.

In the current implementation, passing of arguments to the target program is not supported.

5

The initial value of the stack pointer depends on the target system, and can be speci�ed by using an invocation

option of the GDBserver. In the current implementation, 0xfffffff4 is used as a default initial value of the stack

pointer. This is because three words higher than the stack pointer may be used by the called function in the

standard linkage convention of the PowerPC [7].

6

3.2 Making the Target Program Resume

myresume() makes a stopped target program resume through the following steps:

1. Set the ESP's hardware breakpoint at a program-exception vector address 0xfff00700.

2. Make the target program resume by using ESP's run 0 (run the target) command.

In the GDB, breakpoints are implemented by embedding a trap instruction

6

into the target

program. When a trap occurs, the PowerPC's execution jumps to the program-exception vector

address 0xfff00700. The target program is stopped by the ESP's hardware breakpoint set in

Step 1. The argument 0 of the run command is speci�ed to allow the ESP operation to be

performed while the target system is running.

3.3 Waiting for the Target Program to Stop

Until the target program is stopped, the GDBserver blocks in mywait(). There are two possible

reasons for the target program to be stopped: the trap instruction mentioned above, and an

interrupt from the host-GDB (usually caused by Ctrl-C). When the GDBserver is noti�ed of an

interrupt through an asynchronous I/O signal, interrupt_inferior() is called. This function

merely sets a ag to indicate the interrupt, and the actual processing needed to stop the program

is done in mywait() by checking this ag.

The processing in mywait() is as follows:

1. Execute the following loop until the target program stops.

a. If the interrupted ag is set by interrupt_inferior(), stop the target program by

using ESP's stop (stop the target) command.

b. Check the status of the target program by using ESP's wait -v (check status) com-

mand. If the program has been stopped, exit the loop and go to Step 2.

c. Sleep for 1 second.

7

d. Return to Step 1a.

2. Check IAR (the program counter). If the target program is stopped in the trap handler

(0xfff00700), make the program resume as follows until it exits the handler:

a. Set the ESP's hardware breakpoint at the trapped address (saved in SRR0).

b. Write 0x4c000064 (rfi instruction) to 0xfff00700, and resume the program by

using ESP's run (run the target) command.

c. The target program is stopped again at the trapped address by the hardware break-

point set in Step 2a.

3. If the processor's caches are turned on, ush them. This procedure will be described in

detail in the next subsection.

4. Set the reason for the stop (SIGINT or SIGTRAP) and return.

Figure 4 shows a sequence in which a program is stopped by a trap. Since the trap handler is

exited in Step 2, the chip status can be directly used as the status of registers and so on. This

simpli�cation is also useful for avoiding confusion in direct debugging from the ESP.

6

Precisely speaking, an unconditional trap instruction 0x7d821008 (twge r2,r2) is used.

7

This sleep causes a delay of at most about 1 second for an interruption by Ctrl-C. If this delay becomes a

problem, it is possible to issue ESP's stop command directly from its native GUI.

7

Target program

"rfi"

ESP breakpoint

2c. STOP!

fff00700

2b. Set

2a. Copy

Memory

"trap"

1
.

T
ra

p

1. STOP!

2
b

. R
etu

rn

SRR0 trapped addr

New bp

Original
breakpoint

Figure 4: Stopping the target program by means of a trap

3.4 Flushing Caches after Stopping

In accessing memories, the ESP bypasses data and instruction caches in the CPU. Therefore,

to handle memory-access requests from the host-GDB correctly, the caches must be ushed

(written back and invalidated) in advance. Since the ESP cannot ush caches, a program for

ushing caches is executed by the PowerPC itself when caches are being used. This is done every

time the target program stops (in Step 3 of the process described in the previous subsection).

This program ushes data-cache blocks (dcbf instruction) and invalidates instruction-cache

blocks (icbi instruction)

8

successively for the whole physical memory loaded on the target

system. The memory area of the program uses about 10{20 bytes from 0xfff00710, which is

an area for the trap handler.

3.5 Memory Address Translation

Memory is accessed from the ESP according to its physical address. Therefore, when address

translation is used in the target program, the same translation must be done by software in the

GDBserver. This translation is necessary in read_inferior_memory() and write_inferior_memory().

The details of the translation depend on the target system and the target program. But it can

be presumed that in most target systems requiring the debugging environment described here,

address translation is not used, or is used only for a small �xed area to map I/O spaces, and

so on. Therefore, the current implementation deals with the address translation problem by

registering such static �xed translations in advance.

It may be possible to deal with the problem in earnest by reading BAT registers and page

tables and simulating the address translation by means of software in the GDBserver. However,

this technique is not adopted in the current implementation because of its large processing

overhead.

8

In the case of the PowerPC 604 [8], the instruction cache can be invalidated by setting bit 20 of the HID0

register, and this is used.

8

3.6 Performance Tuning

Access to the ESP through EZsockets is not very fast. Therefore, requests to the ESP should

be aggregated for portions that are executed often.

In the current implementation of the GDB remote serial protocol, all user-level registers are

fetched on a register access, and it is important to tune the register-fetching code. Therefore, in

reading all registers by means of the function fetch_inferior_registers(), a macro program

for the ESP that reads all registers and returns the collected result is executed instead of sending

ESP's register-fetch commands successively.

Such read-aggregation tuning is also applied to read_inferior_memory(). This is important

when displaying the contents of large arrays and so on. However, a macro program is not used

in this case; instead, ESP's continuous memory read command (memread) is used.

4 About the Target Program and Debugging Environment

This section describes general points to be noted when using the debugging environment. Actual

use of the GDBserver, which depends on the hardware structure of the target system and so on,

will be described in another report [6].

4.1 Compiling a Target Program

Information for symbolic debugging must be included in the object. In most C compilers, this can

be indicated by the -g option. In the ESP and the GDBserver, in the current implementation,

address relocation on downloading of the program is not supported. Therefore, the load addresses

should be explicitly indicated in the XCOFF header of the object. A typical method of compiling

the program to take account of these points is as follows:

9

% cc -c -g targetprog.c

% ld -T0xff800000 -D0xff810000 targetprog.o -e entry -o targetprog

The built object must run in a stand-alone environment, and must not use system calls or

dynamic-link libraries; the latter point can be checked by using the dump -H command in AIX.

4.2 Writing a Target Program

In writing a target program, the following points should be taken into account:

� The bss section is not cleared on loading. Therefore, the initial value of a global variable

that is not explicitly initialized is unpredictable.

� Arguments cannot be passed at invocation.

� The program must not \exit," since its behavior when it does so is unpredictable.

� The program must not cause exceptions, unless it provides its own exception handlers.

� The trap instruction cannot be used, because it is used by the GDB.

� The area for the program-exception handler (0xfff00700{7ff) is overwritten by the

GDBserver whenever necessary, although the program can store some data there.

� MSR[IP] (bit 25) must not be cleared, since doing so changes the exception vector ad-

dresses, and causes the trap to be handled incorrectly.

9

The options of ld are for AIX 3.2.5.

9

� The address translation can be used only if it is a static translation registered in the

GDBserver in advance. Basically, it is preferable that the e�ective address should be the

same as the physical address (V=R).

� The IABR register

10

must not be modi�ed, because it is used by the ESP for implementing

the hardware breakpoint.

4.3 Restrictions

Finally, the debugging environment has the following restrictions:

� GDB was originally developed for debugging user-level programs. Therefore, the sup-

ported registers are limited to user-level registers.

11

Supervisor-level registers such as

BAT and SRR0/1 cannot be handled by the GDB. However, it is possible to control

these registers directly from the ESP when the program is stopped.

� It is not possible to resume with specifying a signal (signal command).

� Some commands cannot be used in practice because their speed is too slow. For example,

one-line execution of the source code (next command) is slow because it is implemented

by repeating single-step execution and IAR-register checking until the �rst instruction of

the next line is reached.

� When ESP's various windows (the register-displaying window, etc.) are displayed in

auto-update mode, the processing becomes very slow because of the frequency of update

intervention.

5 Summary

We have described an environment that allows symbolic debugging of PowerPC-based hardware

systems. This debugging environment is implemented by a program named GDBserver, which

mediates between the host-GDB and the ESP, a device for accessing the chip through its JTAG

interface. The debugging directives from the host-GDB through the GDB remote serial protocol

are translated into a series of ESP commands by the GDBserver. This approach enables the

debugging environment to run on a stable host system and to symbolically debug the target

system through the ESP.

Acknowledgment

The authors would like to thank to Kent D. Thompson of IBM Austin, who provided valuable

advice on using and programming the ESP.

References

[1] K. D. Thompson and J. Bordovsky: Engineering Support Processor (ESP) 604 User's Ref-

erence Manual, IBM Austin, Texas (1996).

[2] IBM: The PowerPC Architecture, Morgan Kaufmann Publishers, Inc. (1994).

10

This register is unique to the PowerPC 604.

11

Strictly speaking, 71 registers of GPR0{31, FPR0{31, IAR, MSR, CR, LR, CTR, XER, and FPSCR.

10

[3] K. D. Thompson and J. Bordovsky: Engineering Support Processor (ESP) Training Manual,

IBM Austin, Texas (1996).

[4] K. D. Thompson and J. Bordovsky: Engineering Support Processor (ESP) Programmers

Notes, IBM Austin, Texas (1996).

[5] R. M. Stallman and Cygnus Support: Debugging with GDB version 4.16, Free Software

Foundation (1994).

[6] K. Kawachiya and T. Moriyama: Implementation Details of the GDBserver for the

ESP/MRCJ System, IBM Research Report, RT5131, IBM (1997).

[7] IBM: AIX Version 3.2 Assembler Language Reference, Chapter 5, IBM Manual SC23-2197-

02.

[8] IBM Microelectronics and Motorola: PowerPC 604 RISC Microprocessor User's Manual.

August 27, 1997

RT0212

Computer Science 10 pages

Research Report

A Symbolic Debugger for PowerPC-Based Hardware,

Using the Engineering Support Processor (ESP)

Kiyokuni KAWACHIYA and Takao MORIYAMA

IBM Research, Tokyo Research Laboratory

IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato

Kanagawa 242, Japan

Limited Distribution Notice

This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It

has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer

of copyright to an outside publisher, its distribution outside of IBM prior to publication should be limited to

peer communications and speci�c requests. After outside publication, requests should be �lled only by reprints

or copies of the article legally obtained (for example, by payment of royalties).

