

Command Reference

IBM Pe~~onal ~mputer
XENIX· Operatmg System

Programming Family

--...- ------ - - ---- - -- - ---- - - ------ ------·-
Personal
Computer
Software

First Edition (December 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERN A TI ON AL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative .

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,
Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1984
©Copyright Microsoft Corporation 1983 , 1984

IBM Personal Computer XENIX
Library Overview

The XENIX1 System has three available products. They are the:

• Operating System

• Software Development System

• Text Formatting System

The following pages outline the XENIX Operating System
library.

I XENIX is a trademark of Microsoft Corporation.

iii

XENIX Operating System Library

iv

XENIX
Basic
Operations
Guide

Basic concepts

• Preparing

•

•

int11001l!lct:fon~itt;l ;the XENIX system, outlining

XENIX
Visual
Shell

andprocedures you ne~d to opc~ra1;e

For the New User

-- .
• Command menus

•

•
menus

• . , Help. information

Shell, the interface betweeii you
Offers hands-on examples.

XENIX
Installation
Guide

For the System Installer

• Fixed disk preparation

• Operating, Software
Development, and Text
Formatting System
installation

• Creating a Super-User
password

• Co-residence with other
operating systems

A guide to the installation and management of the XENIX
system on your computer.

For the System Administrator

• Starting and stopping the

--- -
system

• Using, maintaining and
backing up files

XENIX Solving system problems
System •
Administration

Using peripheral devices •

• Adding users to the system

A guide to managing and maintaining the system.

v

vi

•

•

•

•

•

Alphabetic command listing

Command definition

Command syntax

Command usage

System commands, functions,
and files

A comprehensive command reference, including a concise
and complete description of (C) commands, (M) (F) system
commands, functions and files.

About This Book

This manual is a reference for programmers who use or intend to
use the XENIX Operating System. This manual provides a listing
of all the available commands in the (C), (M), and (F) sections of
the XENIX Operating System. The (C) stands for Command,
(M) stands for Miscellaneous, and (F) stands for File Format
section.

In this book are the names, syntax, descriptions, and examples.
Comments are also included when necessary. The (M) section
contains miscellaneous information, including a great deal of
system maintenance information. The (F) section outlines the
formats of various files.

Related XENIX Publications

• IBM Personal Computer XENIX Installation Guide

• IBM Personal Computer XENIX Visual Shell

• IBM Personal Computer XENIX System Administration

IBM Personal Computer XENIX Basic Operations Guide

vii

viii

Contents

Section 1. XENIX Operating System Commands 1-1
Introduction to (C) Commands 1-1

ACCTCOM(C) . 1-3
ACCTON(C) . 1-6
ASKTIME(C) 1-7
ASSIGN(C) . 1-9
AT(C) . 1-12
AWK(C) 1-15
BACKUP(C) . 1-22
BANNER(C) . 1-25
BASENAME(C) . 1-26
BC(C) . 1-27
BDIFF(C) . 1-32
BFS(C) . 1-34
CAL(C) . 1-40
CALENDAR(C) . 1-41
CAT(C) . 1-43
CD(C) 1-45
CHGRP(C) . 1-47
CHM OD(C) . 1-48
CHOWN(C) 1-52
CHROOT(C) . 1-53
CHSH(C) . 1-54
CMP(C) . 1-55
COMM(C) 1-56
COPY(C) 1-57
CP(C) . 1-59
CPIO(C) . 1-60
CRON(C) 1-63
CSPLIT(C) . 1-65
CU(C) 1-68
DATE(C) 1-73
DC(C) 1-76
DD(C) 1-80
DEVNM(C) 1-83
DF(C) 1-84
DIFF(C) . 1-86

ix

x

DIFF3(C) . 1-89
DIRCMP(C) 1-91
DIRNAME(C) 1-92
DISABLE(C) . 1-94
DOS(C) . 1-96
DTYPE(C) 1-100
DU(C) . 1-102
DUMPDIR(C) 1-103
ECHO(C) . 1-104
ED(C) . 1-106
ENABLE(C) 1-121
ENV(C) . 1-123
EX(C) . 1-124
EXPR(C) . 1-128
FACTOR(C) 1-131
FALSE(C) . 1-132
FILE(C) . 1-133
FIND(C) . 1-134
FINGER(C) 1-137
FSCK(C) . 1-139
GETOPT(C) . 1-144
GREP(C) . 1-146
GRPCHECK(C) 1-149
HALTSYS(C) 1-150
HD (C) . 1-151
HEAD(C) 1-154
ID (C) . 1-15 5
INSTALL(C) 1-156
JOIN(C) . 1-158
KILL(C) . 1-160
LC(C) . 1-161
LINE(C) . 1-165
LN(C) . 1-166
LOGNAME(C) 1-167
LOOK(C) . 1-168
LPR(C) . 1-169
LS (C) . 1-1 71
MAIL(C) . 1-174
MESG(C) . 1-186
MKDIR(C) . 1-187
MKFS(C) . 1-188
MKNOD(C) 1-191
MKUSER(C) 1-192

MORE(C) 1-194
MOUNT(C) 1-199
MV(C) . 1-201
NCHECK(C) 1-202
NETUTIL(C) 1-204
NEWGRP(C) 1-206
NEWS(C) 1-207
NICE(C) . 1-209
NL(C) . 1-211
NOHUP(C) 1-214
OD(C) . 1-215
PACK(C) 1-217
PASSWD(C) 1-220
PR(C) . 1-222
PS(C) . 1-225
PSTAT(C) 1-229
PWADMIN(C) . 1-233
PWCHECK(C) 1-235
PWD(C) . 1-236
QUOT(C) 1-237
RANDOM(C) 1-239
RCP(C) . 1-240
REMOTE(C) 1-242
RESTORE(C) 1-244
RM(C) 1-247
RMDIR(C) 1-249
RMUSER(C) . 1-250
RSH(C) . 1-252
SDDATE(C) 1-254
SDIFF(C) . 1-256
SED(C) . 1-258
SETMNT(C) . 1-263
SETTIME(C) . 1-265
SH(C) . 1-266
SHUTDOWN(C) 1-281
SLEEP(C) . 1-283
SORT(C) . 1-284
SPLIT(C) . 1-287
STTY(C) . 1-288
SU(C) . 1-295
SUM(C) 1-297
SYNC(C) . 1-298
SYSADMIN(C) 1-299

xi

TAIL(C) 1-300
TAR(C) 1-302
TEE(C) . 1-307
TEST(C) . 1-308
TOUCH(C) . 1-310
TR(C) . 1-311
TRUE(C) 1-313
TSET(C) . 1-314
TTY(C) . 1-317
UMASK(C) 1-318
UMOUNT(C) 1-319
UNAME(C) 1-320
UNIQ(C) . 1-321
UNITS(C) . 1-322
UUCLEAN(C) 1-324
UUCP(C) 1-326
UUSTAT(C) 1-329
UUSUB(C) . 1-332
UUTO(C) . 1-334
UUX(C) . 1-336
VI(C) . 1-338
VSH(C) . 1-388
WAIT(C) 1-389
WALL(C) . 1-390
WC(C) . 1-391
WHAT(C) 1-392
WHO(C) . 1-393
WHODO(C) 1-394
WRITE(C) . 1-395
XARGS(C) . 1-397
YES(C) . 1-401

Section 2. Maintenance Commands and Miscellaneous
Information . 2-1

xii

Introduction . 2-1
ALIASES(M) 2-2
ALIASHASH(M) 2-5
ASCII(M) . 2-7
BADTRACK(M) . 2-9
BOOT(M) 2-11
CLOCK(M) . 2-14
CMOS(M) . 2-15
CONSOLE(M) 2-16

DAEMON.MN(M) 2-19

DEFAULT(M) 2-21

ENVIRON(M) . 2-23

FD(M) 2-25

FDISK(M) . 2-28

FORMAT(M) 2-31

GETTY(M) . 2-32

GROUP(M) . 2-34

HD(M) 2-35

INIT(M) . 2-38

LD(M) 2-40

LOGIN(M) . 2-45

LP(M) 2-48

MEM(M) . 2-49

MESSAGES(M) . 2-50

MICNET(M) . 2-58

NULL(M) . 2-60

P ASSWD(M) . 2-61

PROFILE(M) . 2-63

SERIAL(M) . 2-65

SETCLOCK(M) 2-67

SETKEY (M) . 2-68

SYSTEMID(M) . 2-69

TERM(M) . 2-71

TERMCAP(M) . 2-73

TERMINALS(M) 2-89
TOP(M) . 2-91

TTY(M) 2-93

TTYS(M) 2-107

UTMP(M) 2-108

XINST ALL(M) . 2-109

Section 3. File Formats . 3-1

Introduction to File Formats(F) 3-1

A.OUT(F) . 3-2

ACCT(F) . 3-3

AR(F) 3-4

BACKUP(F) . 3-5

CHECKLIST(F) . 3-8

CORE(F) . 3-9

CPIO(F) 3-10

DIR(F) . 3-12

FILESYSTEM(F) 3-13

xiii

INODE(F) 3-16
MASTER(F) . 3-17
MNTTAB(F) 3-20
SCCSFILE(F) . 3-21
STAT(F) 3-25
TYPES(F) . 3-27

Index . Index-1

xiv

Section 1. XENIX Operating System
Commands

Introduction to (C) Commands

intro - Introduces XENIX commands.

Description

This section describes use of the individual commands available in
the XENIX Operating System.

Syntax

Unless otherwise noted, commands described in this section
accept options and other arguments according to the following
syntax:

name [options] [cmdargs]

where:

name

option

noargletter

argletter

Is the name of an executable file and must be
entered exactly as shown.

-noargletters or,
-argletter< >optarg
where < > is optional spaces.

Is a single letter representing an option without an
argument.

Is a single letter representing an option requiring
an argument.

1-1

optarg

cmdarg

See Also

Is an argument (character string) satisfying
preceding argletter

Is a path name (or other command argument) not
beginning with a hyphen. A hyphen by itself
indicates the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of normal termination), one supplied by the program.
The former byte is 0 for normal termination; the latter is
customarily 0 for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It
is called variously exit code, exit status, or return code and is
described only where special conventions are involved.

Comment

Not all commands require options and arguments.

1-2

ACCTCOM(C)

Name

acctcom - Searches for and prints process accounting files.

Syntax

Description

The acctcom command reads file, the standard input, or
/usr/adm/pacct, in the form described by acct(F) and writes
selected records to the standard output. Each record represents

the execution of one process. The output shows the COMMAND

NAME, USER, TTYNAME, START TIME, END TIME, REAL

(SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the

fork/exec flag: 1 for fork without exec) and STAT (the system
exit status).

The command name is prefixed with a # if it was executed with

super-user privileges. If a process is not associated with a known

terminal, a? is printed in the TTYNAME. field.

If no files are specified, and if the standard input is associated

with a terminal or /dev/null (as is the case when using & in the

shell), /usr/adm/pacct is read, otherwise the standard input is
read.

If any file arguments are given, they are read in their respective

order. Each file is normally read forward, that is, in chronological

order by process completion time. The file /usr/adm/pacct is

usually the current file to be examined; a busy system may need

several files, in which case all but the current file are found in

I usr I adm/ pacct ?.

ACCTCOM(C) 1-3

The options are:

-b Reads backward, showing latest commands first.

-f Prints the fork I exec flag and system exit status
columns in the output.

-h Instead of mean memory size, shows the fraction of
total available CPU time consumed by the process
during its execution. This "hogging factor" is
computed as: (total CPU time)/(elapsed time).

-i Prints columns containing the I/ 0 counts in the
output.

-k Instead of memory size, shows total kcore-minutes.

-m Shows mean core size (the default).

-r Shows CPU factor (user time/(system-time +
user-time))

-t Shows separate system and user CPU times.

-v Excludes column headings from the output.

-1 line Shows only processes belonging to terminal I dev I line

-u user Shows only processes belonging to user that may be
specified by a user ID, a login name that is then
converted to a user ID , a#, which designates only the
processes executed with super-user privileges, or?,
which designates only those processes associated with
unknown user IDs.

-g group Shows only processes belonging to group. The group
may be designated by either the group ID or group
name.

-d mm/ dd Any time arguments following this flag are assumed to
occur on the given month and day, rather than during
the last 24 hours. This is needed for looking at old
files.

1-4 ACCTCOM(C)

-s time

-e time

Shows only the processes that existed on or after time,
given in the form hr:min:sec. The :sec or :min:sec may
be omitted.

Shows only the processes that existed on or before
time. Using the same time for both-sand -e shows
the processes that existed at time.

-n pattern Shows only commands matching pattern that may be a
regular expression as in ed(C) except that + means
one or more occurrences.

-Hf actor Shows only processes that exceed factor , where factor
is the "hogging factor" as explained in option -h
above.

-0 time

-C time

Shows only the processes with operating system CPU
time that exceeds time.

Shows only the processes that exceed time (the total
CPU time).

Multiple options have the effect of a logical AND.

Files

I etc/ passwd
I usr I adm/ pacct
/etc/group

See Also

accton(C), ps(C), su(C), acct(F), utmp(M)

Comment

The acctcom command only reports on processes that have
terminated; use ps(C) for active processes.

ACCTCOM(C) 1-5

ACCTON(C)

Name

accton - Turns on accounting.

Syntax

Description

The accton command turns on and off process accounting. If no
file is given, accounting is turned off. If file is given, it must be
the name of an existing file, to which the kernel appends process
accounting records. (see acct(F)).

Files

/etc/passwd Used for login name to user ID conversions
I usr /lib I acct Holds many accounting commands
/usr/adm/pacct Current process accounting file
/usr/adm/wtmp Login/logout history file

See Also

acctcom(C), acct(F), utmp(M)

1-6 ACCTON(C)

ASKTIME(C)

Name

asktime - Prompts for the correct time of day.

Syntax

1~tcf~kiinl~ ·

Description

This command prompts for the time of day. You must enter a
legal time according to the proper format as defined below:

[yymmdd] hhmm

Here yy is the last two digits of the year number; the first mm is
the month number; dd is the day number in the month. The date
is optional. The current year, month, and day is the default if you
do not enter any date. The hh is the hour number (24-hour
system); the second mm is the minute number.

Examples

This example sets the new time, date, and year to "11: 29 April
20, 1984":

current System Time is Wed Nov 3 14:36:23 PST 1982
Enter time ([yymmdd] hhmm): 8404201129

ASKTIME(C) 1-7

Diagnostics

If you enter an illegal time, asktime displays:

and exits.

Comment

The asktime command is normally performed automatically by the
system startup file /etc/re immediately after the system is
booted; however, it may be executed at any time. The command
is privileged, and can only be executed by the super-user.

1-8 ASKTIME(C)

ASSIGN(C)

Name

assign, deassign - Assigns and deassigns devices.

Syntax

Description

The assign command attempts to assign device to the current user.
The device argument must be an assignable device that is not
currently assigned. An assign command without an argument
prints a list of assignable devices along with the name of the user
to whom they are assigned.

The deassign command is used to "deassign" devices. Without
any arguments, deassign will deassign all devices assigned to the
user. When arguments are given, an attempt is made to deassign
each device given as an argument.

Available options:

-d Performs the action of deassign.

-v Gives verbose output.

-u Suppresses assignment or de-assignment, but performs error
checking.

ASSIGN(C) 1-9

The assign command does not assign any assignable devices if it
cannot assign all of them. The deassign command gives no
diagnostic if the device cannot be de-assigned. Devices may be
automatically de-assigned at logout, but this is not guaranteed.
Device names may be just the beginning of the device required.
For example:

assign fd

should be used to assign all diskette devices. Raw versions of
device will also be assigned, for example, the raw diskette devices
I dev /rfd ? would be assigned in the above example.

Files

/etc/atab Table of assignable devices
I dev I asglock File to prevent concurrent access

Diagnostics

Exit code 0 returned if successful, 1 if problems, 2 if device cannot
be assigned.

Comments

In many installations, the assignable devices such as diskette
drives have general read and write access, so the assign command
may not be necessary. This is particularly true on one-user
systems. Devices supposed to be assignable with this command
should be owned by the user asg. The directory I dev should be
owned by bin and have mode 755. The assign command (after
checking for use by someone else) assigns the device to whomever
invokes the command, without changing the access permissions.
This allows the system administrator to set up individual devices
that are freely available, assignable (owned by asg), or
nonassignable and restricted (not owned by asg and with some
restricted mode).

1-10 ASSIGN(C)

The first time assign is invoked it builds the assignable devices

table I etc/ atab. This table is used in subsequent invocations to

save repeated searches of the I dev directory. If one of the devices

in /dev, is changed to assignable (that is, asg owns the device),

the super-user must remove I etc/ atab so that a correct list will be

built the next time the command is invoked.

ASSIGN(C) 1-11

AT(C)

Name

at, atq, atrm - Executes commands at a later time.

Syntax

Description

The at command causes the contents of a file to be executed as a
shell script at a specified time. This command is useful for
running processes at regular intervals or when the system is not
busy.

The arguments are:

time One to four digits, followed by an optional "a" for am, "p"
for pm, "n" for noon, or "m" for midnight. One- and
two-digit numbers are interpreted as hours, three- and
four-digit numbers as hours and minutes. If no letters
follow the digits, 24-hour time is assumed.

day Either a month name followed by a day number, or the
name of a day of the week. If the word "week" follows the
name of the day, the file is invoked seven days after the day
named. Names of months and days may be recognizably
truncated. (See the Examples later in this section.)

file The name of the file containing the commands to be
executed. If no file is specified, the standard input is
assumed.

1-12 AT(C)

The at command creates a file that is executed by the shell at the
specified time. This file contains a comment line that lists the
user's user ID and group ID, a cd command that changes the
working directory of the process to the one you were using when
you executed at, assignments to the appropriate environment
variables, and the file specified in the at command line. Output
from processes in file must be redirected or (on most systems) it
is lost. The at command's shell scripts are run by periodic
execution of the command /usr/lib/atrun from cron(C)

The atq command gives the following information about files
waiting to be processed:

• The user ID under which the file will run

• A unique ID number used to reference the file

• The date and time the file will be processed

The -1 option displays the commands in each file in the queue.

The atrm command removes files from the "at" queue. The atrm
command uses the ID numbers from the atq command to remove
the specific files. A user can only remove his own files.

Examples

Use the following line to place a file in the queue:

at 8a jan 24 file

In the following command line, file will be executed a week from
this Friday at 3:30 p.m.

at 1530 fr week file

AT(C) 1-13

To remove a file from the queue, find out the ID numbers with:

atq

Then remove the file with atrm:

atrm idnumber

Files

I usr I spool/ at/ yy .ddd.hhhh. uu
Activity to be performed at hour hhhh of day ddd
of year yy. Uu is a unique number.

/usr I spool/ at/lasttimedone
Contains hhhh for last hour of activity.

I usr I spool/ at/ past

/usr/lib/atrun

See Also

Contains old at files.

Program that executes activities at the specified
time.

calendar(C), cron(C), pwd(C)

Diagnostics

Points out about various syntax errors and times out of range.

Comments

The directory /usr/spool/at/past should be periodically emptied
by the super-user.

Because of the granularity of the execution of /usr/lib/atrun,
there may be problems in scheduling things exactly 24 hours into
the future.

1-14 AT(C)

AWK(C)

Name

awk - Searches for and processes a pattern in a file.

Syntax

awk •· [2F c][.c;..fpr'1gr<Jlnfiie;.f.

Description

The awk command scans each input file for lines that match
patterns specified in program or in programfile. When a line of
file matches a pattern, an associated action may be performed.
This command is useful for compiling information, performing
arithmetic on input data, and for doing iterative or conditional
processing.

The options are:

-Fe Sets the field separator variable (FS) to the letter "c". The
default field separators are tab and space.

-f Causes awk to take its program from programfile .

The arguments are:

programfile
A file containing an awk program.

program An awk program. Programs given on the command line
must be enclosed in single quotation marks to prevent
interpretation by the shell.

file . ..
The names of the files to be processed. If no filename is
given, the standard output is used.

AWK(C) 1-15

An awk program consists of statements in the form:

pattern {action}

Pattern-action statements may appear on the awk command line,
or in an awk program file.

If no pattern is given, all lines in the input file are matched. If no
action is given, each matched line is displayed on the standard
output.

A pattern may be a literal string or a regular expression, or a
combination of a regular expression and a field or variable
separated by operators.

The awk command also provides two patterns, BEGIN and END,
that can be used to perform actions before the first line is read,
and after the last line is read, respectively.

To select a range of lines, use two patterns on a single program
line, separated by a comma.

An action is a sequence of statements separated by a semicolon,
newline, or right brace. See "Statements" later in this section.

Variables

In addition to variables declared and initialized by the user, awk
has the following program variables:

NR Number of records

NF Number of fields in a record

FS Input field separator

OFS Output field separator

RS Input record separator

1-16 AWK(C)

ORS Output record separator

$.6 The current record

$1, $n Fields in the current record

OFMT The output format for numbers. The default is %.6g

FILENAME
The name of the input file currently being read.

Arrays may be used to store data. Arrays do not need to be

dimensioned before use. For example, w[i] denotes the ith item of

array w.

Expressions

A pattern match with a field or variable may be tested with the

following operators:

Matches the regular expression.

!"' Does not match the regular expression.

The awk command processes relational expressions using the

following operators:

< Less than

<= Less than or equal to

-- Equal to

!= Not equal to

>= Greater than or equal to

> Greater than

AWK(C) 1-17

Patterns can be combined using the operators:

&& And

I I Or

Not

An empty expression list stands for the whole line. Expressions
take on string or numeric values as appropriate, and are built
using the following operators:

+ Addition

Subtraction

* Multiplication

I Division

% Modulo

Concatenation is indicated by a blank. The following C operators
are also available in expressions:

+ + Increment

Decrement

+ = Add and assign

-= Subtract and assign

*= Multiply and assign

I= Divide and assign

% = Modulo and assign

1-18 AWK(C)

Statements

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression)statement
break
continue
{ [statement] . . . }
variable = expression
print [expression-list][>expression]
printf format[, expression-list][>expression]
next # skip remaining patterns on input line.

if Used the same as in the C language.

while Used the same as in the C language.

for The iterative construction. It can be used the same as in
the C language, or as an array iterator.

break Similar to its C counterpart.

continue Similar to its C counterpart.

print Prints its arguments on the standard output or in a file
if redirected.

printf Prints expression-list in the format specified in format.

next Stops processing the current record and moves to the
next record, if any.

Comments are preceded by a number sign(#).

Functions

The awk command has the following built-in functions:

exit(x) Terminates the awk program. If xis given, this
value is awk's return value. If xis not given, 0 is
returned. If the program has an END section, it is
invoked before termination.

AWK(C) 1-19

index(s, t)

int(x)

length(x)

log(x)

split(x, y)

sqrt(x)

Exponentiation of the value of x.

Returns the starting position of the leftmost
occurrence oft ins. If tis not a substring of s, then
index(s,t) is,0.

Returns the largest integer less than or equal to x.
If xis negative, its value is the smallest integer
greater than or equal to x.

A function whose value is the number of
characters in the string (x) . With no arguments
length is equivalent to $0.

Natural logarithm of x.

Assigns the fields of string x to successive
elements of array y.

Square root of x.

substr(string, index, length)

Examples

Returns the substring of string that begins at index
and is length characters long.

The following displays lines in file longer than 72 characters:

awk 'length > 72' file

The following prints the first two fields in opposite order:

awk '{print $2, $1 }' file

1-20 AWK(C)

The following adds up the first column and prints the sum and

average:

awk ' {s += $ 1}
E ND { print " sum is", s, "average is", s/ NR }'

The following prints the fields in file in reverse order:

awk ' { fo r (i = NF; i > O; --i) print $i }'fl.le

The following awk program file prints all lines in file whose first

field is different from the first field in the previous line:

awk '$ 1 ! = prev { print ; prev = $1 } ' file

See Also

grep(C), sed(C),

Comments

Input whitespace is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings.

To force an expression to be treated as a number add 0 to it; to

force it to be treated as a string, concatenate the null string (" ")

to it.

AWK(C) 1-21

BACKUP(C)
Name

backup - Performs incremental file system backup.

Syntax

Description

The backup command copies to the specified device all files
changed after a certain date in the filesystem. The key specifies the
date and other options about the backup, where a key consists of
characters from the set 0123456789kfusd. The meanings of these
characters are described below:

0-9 This number is the "backup level". Backs up all files
modified since the last date stored in the file I etc/ ddate
for the same file system at lesser levels. If no date is
determined by the level, the beginning of time is assumed;
thus the option 0 causes the entire file system to be backed
up.

k This option is used when backing up to a block-structured
device, such as a diskette. The size (in K-bytes) of the
volume being written is taken from the next argument. If
the k argument is specified, any s and d arguments are
ignored. The default is to use s and d.

f Places the backup on the next argument file instead of the
default device.

u If the backup completes successfully, writes the date of the
beginning of the backup to the file I etc/ ddate. This file
records a separate date for each file system and each
backup level.

1-22 BACKUP(C)

s For backups to magnetic tape, the size of the tape
specified in feet. The number of feet is taken from the
next argument. When the specified size is reached, backup
waits for reels to be changed. The default size is 2,300
feet.

d For backups to magnetic tape, the density of the tape,
expressed in BPI, is taken from the next argument. This is

used in calculating the amount of tape used per write. The

default is 1600.

If no arguments are given, the key is assumed to be 9u and a

default file system is backed up to the default device.

The first backup should be a full level-0 backup:

backup Ou

Next, periodic level-9 backups should be made on an exponential

progression of tapes or diskettes:

backup 9u

(This is sometimes called the Tower of Hanoi progression after

the name of the game where a similar progression occurs, for

example, 1 2 1 3 1 2 1 4 . . . where backup 1 is used every other

time, backup 2 every fourth, backup 3 every eighth, etc.) When

the level-9 incremental backup becomes unmanageable because a

tape is full or too many diskettes are required, a level-1 backup

should be made:

backup lu

After this, the exponential series should progress as if
uninterrupted. These level-9 backups are based on the level-1

backup, which is based on the level-0 full backup. This

progression of levels of backups can be carried as far as desired.

The default file system and the backup device depend on the

settings of the variables DISK and TAPE, respectively, in the file

I etc/ default/backup.

BACKUP(C) 1-23

Files

/etc/ddate

I etc/ default/backup

See Also

Records backup dates of file
system/level

Default backup information

cpio(C), default(M), dumpdir(C), restore(C), tar(C), backup(F)

Diagnostics

If the backup requires more than one volume (where a volume is
likely to be a diskette or tape), you will be asked to change
volumes. Press Enter after changing volumes.

Comments

Sizes are based on 1600 BPI for blocked tape; the raw magnetic
tape device has to be used to approach these densities. Write
errors to the backup device are usually irrecoverable. Read errors
on the file system are ignored.

Warning: When backing up to diskettes, be sure to have
enough formatted diskettes ready before starting a backup.

1-24 BACKUP(C)

BANNER(C)

Name

banner - Prints large letters.

Syntax

banner strings

Description

The banner command prints its arguments (each up to 10
characters long), in large letters on the standard output. This is

useful for printing names at the front of printouts.

BANNER(C) 1-25

BASENAME(C)

Name

basename - Removes directory names from path names.

Syntax

b~!Ht.nt~ .string(sufffx]

Description

The basename command deletes any prefix ending in I and the
suffix (if present in string) from string, and prints the result on the
standard output. The result is the " base" name of the file, that is,
the filename without any preceding directory path and without an
extension. It is used inside substitution marks C ') in shell
procedures to construct new filenames.

The related command dirname deletes the last level from string
and prints the resulting path on the standard output.

Examples

The following command displays the filename memos on the
standard output:

basename / usr / johnh / memos.old .old

The following shell procedure, when invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and moves the
output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

See Also

dirname(C), sh(C)

1-26 BASENAME(C)

BC(C)

Name

be - Invokes a calculator.

Syntax

Description

The be program is an interactive processor for a language that
resembles C but provides unlimited precision arithmetic. It takes
input from any files given, then reads the standard input.

The be program is actually a preprocessor for de(C), which it
invokes automatically, unless the -e (compile only) option is
present. If the -e option is present, the de input is sent to the
standard output instead. The -1 argument stands for the name of
an arbitrary precision math library. The syntax for be programs
is: L means the letters a-z, E means expression, S means
statement.

Comments

Enclosed in /* and *I

Names

Simple variables: L

Array elements: L [E]

The words "ibase", "obase", and "scale"

BC(C) 1-27

Other operands

arbitrarily long numbers with optional sign and decimal point (E)

sqrt (E)

length (E) Number of significant decimal digits

scale (E) Number of digits right of decimal point

L (E, ... ,E)

Additive operators:

+ Addition

Subtraction

Multiplicative operators:

* Multiplication

I Division

% Modulo (remainder)

" Exponentiation

Unary operators:

+ + Increment

Decrement (prefix and postfix; apply to names)

1-28 BC(C)

•

Relational operators:

-- Equal to

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

< Less than

> Greater than

Assignment operators:

= Assign

=+ Add and assign

=- Subtract and assign

=* Multiply and assign

=I Divide and assign

=o/o Modulo and assign

=A Exponentiate and assign

Statements:

E
{ s; ... ; s}
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit ;; ~

BC(C) 1-29

Function definitions:

define L (L , . . . , L) {
auto L, ... , L
S; ... S
return (E)

Functions in -I math library:

s(x) Sine
c(x) Cosine
e(x) Exponential
l(x) Log
a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines
may separate statements. Assignment to scale influences the
number of digits to be retained on arithmetic operations in the
manner of de(C). Assignments to ibase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simultaneously. All variables are global to the program.
"Auto" variables are pushed down during function calls. When
using arrays as function arguments or defining them as automatic
variables, empty square brackets must follow the array Name.

1-30 BC(C)

Example

The following defines a function to compute an approximate
value of the exponential function:

s cal e = 20
define e(x){

auto a , b, c , i , s
a 1
b = 1
s = 1
fo r (i=l ; l==l; i++){

a a*x
b = b*i
c = a/ b
i f(c == 0) r e turn (s)
s = s+c

The following prints the approximate values of the exponential
function of the first ten integers:

for(i=l; i <=.10; i++) e (i)

Files

/ usr/ lib / lib.bc
I usr / bin/ de

See Also

dc(C)

Mathematical library
Desk calculator proper

be in the IBM Personal Computer XENIX Basic Operations

Guide.

Comments

A for statement must have all three E 's.

A quit is interpreted when read, not when executed.

BC(C) 1-31

BDIFF(C)

Name

bdiff - Compares files too large for dif f.

Syntax

Description

The bdiff command compares two files, finds lines that are
different, and prints them on the standard output. It allows
processing of files that are too large for diff. The bdiff command
splits each file into n-line segments, beginning with the first
non-matching lines, and invokes diff upon the corresponding
segments. The arguments are:

n The number of lines bdiff splits each file into for processing.
The default value is 3500. This is useful when 3500 line
segments are too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does
not suppress printing of diagnostics from diff.

If file I (or file2) is a hyphen(-), the standard input is read.

The output of bdiff is exactly that of diff. Line numbers are
adjusted to account for the segmenting of the files, and the output
looks as if the files had been processed whole.

1-32 BDIFF(C)

Files

/tmp/bd?????

See Also

diff(C)

Diagnostics

Use help(CP)

Comment

Because of segmenting the files, bdiff does not necessarily find the
smallest sufficient set of file differences.

BDIFF(C) 1-33

BFS(C)

Name

bf s - Scans big files.

Syntax

Description

The bfs command is like ed(C) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes and
32K lines, with up to 255 characters per line. This command is
usually more efficient than ed for scanning a file, because the file
is not copied to a buffer. It is most useful for identifying sections
of a large file where csplit(C) can be used to divide it into more
manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the
size of any file written with the w command. The optional hyphen
(-) suppresses printing of sizes. Input is prompted for with an
asterisk (*) by default. If a "P" and an Enter are typed as in ed,
prompting is turned off. The "P" acts as a toggle, so prompting
can be turned on again by entering another "P" and an Enter.
Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In
addition, regular expressions may be surrounded with two
symbols other than the standard slash (/) and question mark (?).
A greater-than sign (>) indicates downward search without
wraparound, and a less-than sign (<)indicates upward search
without wraparound. Because bfs uses a different regular
expression-matching routine than ed, the regular expressions
accepted are slightly wider in scope. The differences from ed
syntax include the fact that parentheses and braces are special and
need not be escaped.

1-34 BFS(C)

Differences are listed below:

+ A regular expression followed by + means one or
more times. For example, [0-9]+ is equivalent to
[0-9][0-9]*.

{m} {m,} {m,u}

(..•)$n

(...)

Integer values enclosed in U indicate the number of
times the preceding regular expression is to be
applied. m is the minimum number and u is a
number, less than 256, which is the maximum. If
only m is present (for example, {m}), it indicates the
exact number of times the regular expression is to be
applied. {m,} is analogous to {m,infinity}. The plus
(+) and asterisk (*) operations are equivalent to { 1,}
and {O,} respectively.

The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ 1) th
argument following the subject argument. At most,
ten enclosed regular expressions are allowed. The
regex command makes its assignments
unconditionally.

Parentheses are used for grouping. An operator, for
example,*, +, n, can work on a single character or a
regular expression enclosed in parenthesis. For
example, (a*(cb+)*)$0.

There is also a slight difference in mark names; only the letters
"a" through "z" may be used, and all 26 marks are remembered.

The e , g , v , k , n , p , q , w , = , ! and null commands operate as
described under ed. Commands such as---,+++-,+++=,
-12, and +4p are accepted. Note that 1,lOp and 1,10 both print
the first ten lines. The f command only prints the name of the file
being scanned; there is no remembered filename. Thew command
is independent of output diversion, truncation, or crunching (see
the xo, xt and xc commands, below).

BFS(C) 1-35

The following additional commands are available:

xffile

xo[file]

:label

Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is
received, or an error occurs, reading resumes with the
file containing the xf. You may nest xf commands to a
depth of 10.

Further output from the p and null commands is
diverted to the named file. If file is missing, output is
diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

This positions a label in a command file. The label is
terminated by a newline, and blanks between the : and
the start of the label are ignored. This command may
also be used to insert comments into a command file ,
because labels need not be referred to.

(.,.)xb/ regular expression/ label

1-36 BFS(C)

A jump (either upward or downward) is made to
label if the command succeeds. It fails under any of
the following conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression doesn't match at least
one line in the specified range, including the
first and last lines.

xt number

On success, dot(.) is set to the line matched and a
jump is made to label. This command is the only
one that doesn't issue an error message on bad
addresses, so it may be used to test whether
addresses are bad before other commands are
executed. Note that the command:

xb / A/ label

is an unconditional jump.

The xb command is allowed only if it is read from
somewhere other than a terminal. If it is read from
a pipe, only a downward jump is possible.

Output from the p and null commands is truncated
to a maximum of number characters. The initial
number is 25 5.

xv[digit][spaces] [value]
The variable name is the specified digit following
the xv. The commands xv5100 or xv5 100 both
assign the value 100 to the variable 5. The
command xv61,100p assigns the value l,lOOp to the
variable 6. To refer to a variable, put a % in front
of the variable name. For example, using the above
assignments for variables 5 and 6:

l, %5p
1 ' %5
%6

prints the first 100 lines.

g/%5/ p

globally searches for the characters 100 and prints
each line containing a match. To escape the special
meaning of% , a \ must precede it. For example:

g/' 1
• *\ %[cds] / p

could be used to match and list lines containing
printf characters, decimal integers, or strings.

BFS(C) 1-37

xbz label

xbn label

1-38 BFS(C)

Another feature of the xv command is that the first
line of output from a XENIX command can be
stored into a variable. The only requirement is that
the first character of value be a ! For example:

xv5!cat junk
! rrn junk
!echo 11 %511

xv6!expr %6 + 1

puts the current line in variable 5, prints it, and
increments the variable 6 by one. To escape the
special meaning of ! as the first character of value,
precede it with a \ . For example:

xv7\!date

stores the value !date into variable 7.

These two commands test the last saved return code
from the execution of a XENIX command
(!command) or nonzero value, respectively, and
jump to the specified label. The two examples
below search for the next five lines containing the
string size:

xv55
: l
/ size /
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
x bn l

xv 45
: l
/ size /
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz l

xc[switch]

See Also

If switch is 1, output from the p and null commands
is crunched; if switch is 0 it isn't. Without an
argument, xc reverses switch. Initially, switch is set
for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank
lines suppressed.

csplit(C), ed(C)

Diagnostics

If prompting is turned off, a question mark (?) is printed for
errors in commands. When prompting is on, self-explanatory error
messages appear.

BFS(C) 1-39

CAL(C)

Name

cal - Prints a calendar.

Syntax

Description

The cal command prints a calendar for the specified year. If a
month is also specified, a calendar for that month only is printed.
If no arguments are specified, the current, previous, and following
months are printed, along with the current date and time. The
year must be a number between 1 and 9999; month must be a
number between 1 and 12 or enough characters to specify a
particular month. For example, May must be given to distinguish
it from March, but Sis sufficient to specify September. If only a
month string is given, only that month of the current year is
printed.

Comments

Be aware that "cal 84" refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note
that England switched from the Julian to the Gregorian calendar
in September of 1752, at which time eleven days were excised
from the year. To see the result of this switch, try "cal 9 1752".

1-40 CAL(C)

CALENDAR(C)

Name

calendar - Invokes a reminder service.

Syntax

Description

The calendar command consults the file calendar in the user's
current directory and prints out lines that contain today's or
tomorrow's date. Most reasonable month-day dates, such as
"Sep. 7", "September 7", and "9 /7'', are recognized, but not "7
September", "7 /12" or "07 /12".

On weekends "tomorrow" extends through Monday. Lines that
contain the date of a Monday are sent to the user on the previous
Friday. This is not true for holidays.

When an argument is present, calendar does its job for every user
who has a file calendar in his login directory and sends the user
the results by mail(C). Normally this is done daily, in the early
morning, under the control of cron(C).

Files

calendar
/usr/lib/ calprog To figure out today's and tomorrow's dates
I etc/ passwd
/tmp/cal*
I usr /lib I crontab

CALENDAR(C) 1-41

See Also

cron(C), mail(C)

Comment

To get reminder service, a user's calendar file must have read
permission for all.

1-42 CALENDAR(C)

CAT(C)

Name

cat - Concatenates and displays files.

Syntax

Description

The cat command reads each file in sequence and writes it on the
standard output. If no input file is given, or if a single dash (-) is
given, cat reads from the standard input. The options are:

-s Suppresses warnings about nonexistent files.
-u Causes the output to be unbuffered.

No input file may have the same name as the output file unless it
is a special file.

CAT(C) 1-43

Examples

The following example displays file on the standard output:

cat file

The following example concatenates file 1 and file2 and places the
result in file3:

cat filel file2 > file3

The following example appends a copy of file I to file2:

cat filel >> file2

See Also

cp(C), pr(C)

1-44 CAT(C)

CD(C)

Name

cd - Changes working directory.

Syntax

Description

The cd command changes the current directory to the directory
specified by directory. If no directory is specified, the value of the
shell parameter $HOME is used, and the user is placed in his
home directory. The argument" .. " moves up from a directory to
the parent directory.

The user must have search (execute) permission in all directories
specified in directory.

CD(C) 1-45

Examples

The following example changes the current directory to the user's
home directory:

cd

The following command changes the current directory to
/usr/joe/memos/meetings:

cd / usr / joe / memos / meetings

The following command changes the current directory from
/usr/joe/memos/meetings to /usr/joe/accounts/overdue:

cd .. / .. / accounts / overdue

See Also

chroot(C), pwd(C), sh(C)

1-46 CD(C)

CHGRP(C)

Name

chgrp - Changes group ID.

Syntax

chgrp group file

Description

The chgrp command changes the group ID of each file to group.
The group may be either a decimal group ID or a group name
found in the file /etc/group.

Files

I etc/passwd
/ etc/ group

See Also

chown(C), passwd(M), group(F)

Comment

Only the owner or the super-user can change the group ID of a
file.

CHG RP(C) 1-47

CHMOD(C)

Name

chmod - Changes the access permissions of a file or directory.

Syntax

Description

The chmod command changes the access permissions (or mode) of
a specified file or directory. It is used to control file and directory
access by users other than the owµ~r and super-user. The mode
may be an expression composed of letters and operators (called
symbolic mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who]+ - = [permission . . .] filename

Who is one or any combination of the following letters:

a Stands for "all users". If who is not indicated on the
command line, a is the default. The definition of "all users"
depends on the user's umask. See umask(C).

g Stands for "group," all users who have the same group ID
as the owner of the file or directory.

o Stands for "others," all users on the system.

u Stands for "user," the owner of the file or directory.

The operators are:

+ Adds permission

Removes permission

1-48 CHMOD(C)

= Assigns the indicated permission and removes all other
permissions (if any) for that who. If no permission is
assigned, existing permissions are removed.

Permissions can be any combination of the following letters:

x Execute (search permission for directories)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the
owner of the file. The mode "u+s" sets the user ID bit for the
file. The mode "g+s" sets the group ID bit. Other
combinations have no effect.

t Saves text in memory upon execution. Only the mode "u+t"
sets the sticky bit. All other combinations have no effect.
This mode can only be set by the super-user.

Multiple symbolic modes may be given, separated by commas, on
a single command line. See the following "Examples" for sample
permission settings.

A chmod command using absolute mode has the form:

chmod mode filename

where mode is an octal number constructed by performing logical
OR on the following:

4000 Set user ID on execution
2000 Set group ID on execution
1000 Sets the sticky bit
0400 Read by owner
0200 Write by owner
0100 Execute (search in directory) by owner
0040 Read by group

CHMOD(C) 1-49

0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions

Examples

Symbolic Mode

The following command gives all users execute permission for
file:

chmod +x file

The following command removes read and write permission for
group and others from file:

chmod go-rw file

The following command gives other users read and write
permission for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,o+r file

1-50 CHMOD(C)

Absolute Mode

The following command gives all users read, write and execute
permission for file:

chmod 0777 file

The following command gives read and write permission to all
users for file:

chmod 0666 file

The following command gives read and write permission to the
owner of file only:

chmod 0600 file

See Also

ls(C)

Comments

The user's umask may affect the default settings.

The user ID, group ID, and sticky bit settings, are only useful for
binary executable files. They have no effect on shell scripts.

CHMOD(C) 1-51

CHOWN(C)

Name

ch own - Changes owner ID.

Syntax

Description

The chown command changes the owner ID of the files to owner.
The owner may be either a decimal user ID or a login name found
in the file I etc/passwd.

Files

I etc/ passwd
/etc/group

See Also

chgrp(C), group(M), passwd(M)

Comment

Only the owner or the super-user can change a file's owner or
group ID.

1-52 CHOWN(C)

CHROOT(C)

Name

chroot - Changes root directory for command.

Syntax

Description

The given command is executed relative to the new root. The
meaning of any initial slashes (I) in path names is changed for a
command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command >x

creates the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root
even if a chroot is currently in effect. The newroot argument is
relative to the current root of the running process. Note that it is
not possible to change directories to what was formerly the parent
of the new root directory; that is, the chroot command supports
the new root as an absolute root for the duration of the command.

This means that I .. is equivalent to I everytime.

Comment

Exercise extreme caution when referencing special files in the new
root file system.

CHROOT(C) 1-53

CHSH(C)

Name

chsh - change user default shell

Syntax

cbsh

Description

Use chsh to change the default shell assigned to a user. It is the
preferred method for updating the default user shell because it
handles all the necessary file updates. and validates whether the
desired shell is available .

The program prompts for the user login ID and validates that the
ID exists in the password file. If so, the requestor is asked to
choose a default shell. The choices are sh (for the Bourne shell),
csh (for the C-shell), and vsh (for the visual shell). The C-shell
option will only be permitted if the Software Development System
is installed. When a valid choice is made, chsh will insure that
appropriate shell files are placed in the user home directory (if
they were not already present) . For the Borne shell, a .profile file
is created. For the C-shell, .login and .cshrc files are created. The
chsh command can only be executed by the super-user.

Files

/usr/lib/mkuser/mkuser.prof /usr/lib/mkuser/mkuser.login
I usr /lib I mkuser I mkuser. cshrc I etc I passwd

See Also

passwd(C), pwadmin(C)

1-54 CHSH(C)

CMP(C)

Name

cmp - Compares two files.

Syntax

Description

The cmp command compares two files and, if they are different,
displays the byte and line number of the differences. If file 1 is -,
the standard input is used.

The options are:

-I Prints the byte number (decimal) and the differing bytes
(octal) for each difference.

-s Returns an exit code only, 0 for identical files, 1 for
different files, and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use diff(C)

or diff3(C) to compare text files.

See Also

comm(C), diff(C), diff3(C)

Diagnostics

Exit code 0 is returned for identical files, 1 for different files, and
2 for an inaccessible or missing argument.

CMP(C) 1-55

COMM(C)

Name

comm - Selects or rejects lines common to two sorted files.

Syntax

Description

The comm command reads file] and file2, which should be
ordered in ASCII collating sequence (see sort(C)), and produces
a three-column output: lines only in filel; lines only in file2; and
lines in both files. The filename - means the standard input.

Flags 1, 2, ot 3 suppress printing of the corresponding column.
Thus comm -12 prints only the lines common to the two files;
comm -23 prints only lines in the first file but not in the second;
comm -123 is a no-op.

See Also

cmp(C), diff(C), sort(C), uniq(C)

1-56 COMM(C)

COPY(C)

Name

copy - Copies groups of files.

Syntax

Description

The copy command copies the contents of directories to another
directory. It is possible to copy whole file systems because
directories are made when needed.

If files, directories, or special files do not exist at the destination,
they are created with the same modes and flags as the source. In
addition, the super-user may set the user and group ID. The
owner and mode are not changed if the destination file exists.
Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for
each source directory with the same destination directory for each
copy.

All of the options must be given as separate arguments, and they
may appear in any order even after the other arguments. The
arguments are:

-a Asks the user before attempting a copy. If the response
does not begin with a y, a copy is not done. This option
also sets the -ad option.

-1 Uses links instead whenever they can be used.
Otherwise a copy is done. Note that links are never
done for special files or directories.

COPY(C) 1-57

-n Requires the destination file to be new. If not, the copy
command does not change the destination file. The -n
flag is meaningless for directories. For special files an -n
flag is assumed (that is, the destination of a special file
must not exist).

-o If set, every file copied has its owner and group set to
those of the source. If not set, the file's owner is the
user who invoked the program.

-m If set, every file copied has its modification time and
access time set to that of the source. If not set, the
modification time is set to the time of the copy.

-r If set, every directory is recursively examined as it is
encountered. If not set, any directories found are
ignored.

-ad Asks the user whether an -r flag applies when a
directory is discovered. If the answer does not begin
with a y, the directory is ignored.

-v If the verbose option is set, messages are printed that
reveal what the program is doing.

source This may be a file, directory or special file. It must exist.
If it is not a directory, the results of the command are
the same as for the cp command.

dest The destination must be either a file or directory that is
different than the source.

If the source and destination are anything but directories, copy
acts just like a cp command. If both are directories, then copy
copies each file into the destination directory according to the
flags that have been set.

Comment

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

1-58 COPY(C)

CP(C)

Name

cp - Copies files.

Syntax

cp filei dirqctory

Description

There are two ways to use the cp command. With the first way,
filel is copied to file2. Under no circumstance can file] and file2
be the same name. With the second way, directory is the location
of a directory into which one or more files are copied.

See Also

copy(C), cpio(C), ln(C), mv(C), rm(C)

Comment

Special device files can be copied. If the file is a named pipe, the
data in the pipe is copied to a regular file. Similarly, if the file is a
device, the file is read until the end-of-file is reached and that
data is copied to a regular file. It is illegal to copy a directory to a
file.

CP(C) 1-59

CPIO(C)

Name

cpio - Copies file archives in and out.

Syntax

Description

The cpio -o (copy out) command reads the standard input to
obtain a list of path names and copies those files onto the
standard output together with path name and status information.

The cpio -i (copy in) command extracts from the standard input
(which is assumed to be the product of a previous cpio -o) the
names of files selected by zero or more patterns given in the
name-generating notation of sh(C) . In patterns, the special
characters ? * and [...] match the slash (/) character. The
default for patterns is* (that is, select all files).

Remember to escape special characters to prevent expansion by
the shell.

The cpio -p (pass) command copies out and in during a single
operation. Destination path names are interpreted relative to the
named directory.

1-60 CPIO(C)

The meanings of the available options are:

-a Resets access times of input files after they have been copied.

-B Blocks input/ output 5120 bytes to the record (does not
apply to the pass option; meaningful only with data directed
to or from raw devices).

-d Directories are created as needed.

-c Writes header information in ASCII character form for
portability.

-r Interactively renames files. If the user types a null line, the
file is skipped.

-t Prints a table of contents of the input. No files are created.

-u Copies unconditionally (normally an older file will not
replace a newer file with the same name).

-v Verbose: causes a list of filenames to be printed. When used
with the -t option, the table of contents looks like the output
of an Is -l command (seels(C)).

-1 Whenever possible, links files rather than copying them.
Usable only with the -p option.

-m Retains previous file modification time. This option is
ineffective on directories that are being copied.

CPIO(C) 1-61

Examples

The first example below copies the contents of a directory into an
archive; the second duplicates a directory hierarchy:

ls I cpio -o >/ dev / fd0

cd olddir
find . -print cpio -pdl newdir

Or:

find . -print I cpio -oB >/ dev / rfd0 11

See Also

backup(C), find(C), tar(C), backup(F), cpio(F) p.

Comment

Path names are restricted to 128 characters. If there are too
many unique linked files, the program runs out of memory to keep
track of them and thereafter linking information is lost. Only the
super-user can copy special files.

1-62 CPIO(C)

CRON(C)

Name

cron - Executes commands at specified times.

Syntax

Description

The cron clock daemon executes commands at specified dates and
times according to the instructions in the file /usr /lib/ crontab.
Because cron never exits, it should be executed only once. This is
best done by running cron from the initialization process through
the file I etc/re.

The file crontab consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns
that specify the minute (0-59), hour (0-23), day of the month
(1-31), month of the year (1-12), and day of the week (0-6, with
O=Sunday). Each of these patterns may contain:

• A number in the (respective) range indicated above

• Two numbers separated by a hyphen (indicating an inclusive
range)

• A list of numbers separated by commas (meaning all of these
numbers)

• An asterisk (meaning all legal values)

The sixth field is a string that is executed by the shell at the
specified times. A % in this field is translated into a newline
character. Only the first line (up to a % or end-of-line) of the
command field is executed by the shell. The other lines are made
available to the command as standard input.

CRON(C) 1-63

The cron command examines crontab periodically to see if it has
changed; if it has, cron reads it. Thus it takes only a short while
for entries to become effective.

Example

An example crontab file follows:

30 4 •••

0 4 •••

15 4 •••

/ et c / sa - s · / dev / n u ll

ca le ndar -

f ind / usr / pres er v e -m t i me · 7 -a - exec rm -f : : / ;
3 0 4 1 1 1 / u sr/ l i b / u uc p / c le anlo g

40 4 • • • f i nd I - name'#• ' -a t1 me 3 - e x ec rm - f : : \;

0 , 5 , 10 , 1 5 ,2 0 ,2 5 , 30 , 35 ,40,4 5 , 50 , 55 • • • •/usr / lib / atrun

0, 1 0,20 , 30 ,40, 5 0 • • • • / et c/ dme s g - · / u s r /a dm / messa ge s

1 , 2 1, 4 1 • • • * (echo - n ' '; da te; e c h o) · / de v / con s o l e

A history of all actions by cron can be recorded in
/usr /lib/ cronlog. This logging occurs only if the variable
CRONLOG in I etc/ default/ cron is set to YES. By default, this
value is set to NO and no logging occurs. If logging is turned on,
be sure to monitor the size of /usr /lib/ cronlog so that it doesn't
unreasonably consume disk space.

Files

/usr/lib/ crontab
/usr/lib/ cronlog
I etc/ default/ cron

See Also

sh(C)

Comment

The cron command reads crontab only when it has changed, but it
reads the in-core version of that table periodically.

1-64 CRON(C)

CSPLIT(C)

Name

csplit - Splits files according to context.

Syntax

arg 1 [. . argn]

Description

The csplit command reads file and separates it into n + 1 sections,

defined by the arguments arg 1 . . . argn. By default the sections

are placed in xxOO ... xxn (n may not be greater than 99). These

sections get the following pieces of file:

00: From the start of file up to (but not including) the line
referred to by argl .

01: From the line referenced by argl up to the line referenced

by arg2.

n+ 1: From the line referenced by argn to the end of file.

The options to csplit are:

-s

-k

Normally, csplit prints the character counts for each

file created. If the -s option is present, csplit

suppresses the printing of all character counts.

Normally, csplit removes created files if an error
occurs. If the -k option is present, csplit leaves
previously created files intact.

CSPLIT(C) 1-65

-f prefix If the -f option is used, the created files are named
prefix 00 ... prefixn. The default is xxOO ... xxn.

The arguments (argl ... argn) to csplit can be a combination of
the following:

/rexp/

%rexp%

lnno

{num}

A file is to be created for the section from the
current line up to (but not including) the line
containing the regular expression rexp. The current
line becomes the line containing rexp. This argument
may be followed by an optional + or - some number
of lines (for example, /Page/-5).

This argument is the same as /rexp/, except that no
file is created for the section.

A file is to be created from the current line up to
(but not including) lnno. The current line becomes
lnno.

Repeat argument. This argument may follow any of
the above arguments. If it follows a rexp type
argument, that argument is applied num more times.
If it follows lnno, the file will be split every lnno lines
(num times) from that point.

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the shell in the appropriate quotation
marks. Regular expressions may not contain embedded newlines.
The csplit command does not affect the original file; it is the users
responsibility to remove it.

1-66 CSPLIT(C)

Examples

csplit -f cobol file 1 / procedure division / 1 / par5 . / / parl6. /

This example creates four files, cobol.tJ.tJ . . . cobol.83. After
editing the "split" files, they can be recombined as follows:

cat cobol0[0-3J > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000
lines. The -k option causes the created files to be retained if there
are less than 10,000 lines, however, an error message would still
be printed.

csplit -k prog.c 1 %main(%1 1 / A} / +l 1
{ 20 }

Assuming that prog.c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
creates a file containing each separate C routine (up to 21) in
prog.c.

See Also

ed(C), sh(C)

Diagnostics

Self-explanatory except for:

arg - out of range

which means that the given argument did not refer to a line
between the current position and the end of the file.

CSPLIT(C) 1-67

CU(C)

Name

cu - Calls another XENIX system.

Syntax

Description

The cu command "calls up" another XENIX system through a
modem or a direct serial connection. It also controls the
transmission and reception of data and programs during the call.
The cu command looks at each line in the file
/usr/lib/uucp/L-devices until it finds a line that matches the
options given in the command line. If it finds an appropriate line,
it will attempt to make a connection. If it cannot find the proper
line, cu quits.

The options are:

-sspeed Specifies the transmission speed. 1200 baud is the
default value. Other speeds available are 110, 150, 300,
1200, 2400, 4800 and 9600 baud. Directly connected
machines may by set to other speeds. Most modems are
restricted to 300 and 1200 baud. Note, speeds higher
than 2400 baud may cause transmission errors.

-aacu Specifies the device name of the ACU (automatic calling
unit) device. When used with the -1 option, overrides
the search for the first available ACU with the right
speed.

1-68 CU(C)

-1/ine Specifies the device name of the communications line.
When used with the -a option, overrides the search for
the first available ACU with the right speed.

-h Emulates local echo. This feature supports calls to
systems that expect half-duplex mode terminals.

-e Specifies that even-parity data is to be generated for
data sent to the remote system.

-o Specifies that odd-parity data is to be generated for data
sent to the remote system.

The telephone number of the remote system is telno. A comma
indicates a delay at appropriate places, for example, to wait for a
secondary dial tone when calling from an internal phone system.
For directly connected lines, the string dir is used instead of telno.
Direct lines require a line to be specified, but no ACU. See the
"Examples" in this section for sample command lines.

After making the connection, cu runs as two processes: transmit
and receive. The transmit process reads data from the standard
input and, except for lines beginning with a tilde (,...,), passes it to
the remote system. The receive process accepts data from the
remote system and, except for lines beginning with a tilde, passes
it to the standard output. Normally, an automatic XON/XOFF
(DC3/DC1) protocol controls input from the remote system so
the buffer is not overrun. Lines beginning with a tilde have
special meanings.

The transmit process interprets lines beginning with a tilde as
follows:

,..., !

"'!cmd ...

Terminates the conversation.

Escapes to an interactive shell on the local
system.

Runs cmd on the local system (via sh -c).

CU(C) 1-69

"'$cmd ...
Runs cmd locally and sends its output to the
remote system.

"'%take remote [local]
Copies file remote (on the remote system) to file
local on the local system. If local is omitted, the
remote filename is used in both places. Use of
this line requires the existence of echo(C) and
cat(C) on the remote system. If tabs are to be
copied without expansion, stty tabs mode should
be set on the remote system.

"'%put local [remote]

"'
0/o nostop

1-70 CU(C)

Copies file local (on the local system) to file
remote on the remote system. If remote is
omitted, the local filename is used in both
places. Use of this line requires the existence of
stty(C) and cat(C) on the remote system. It
also requires that the current erase and kill
characters on the remote system be identical to
the current ones on the local system.
Backslashes are inserted at appropriate places.

Sends the line to the remote system.

Turns off the XON/XOFF input control
protocol for the remainder of the session. This
is useful if the remote system is one that does
not respond properly to the DC3 and DC 1
characters.

The receive process normally copies data from the remote system
to its standard output. A line from the remote system that begins
with "'> diverts the output to a file. Data is appended to a file if
"'> > is used. The diversion is terminated by a trailing "'> . The
complete sequence is:

"'>[>]:
file
zero or more lines to be written to file

"'>

Examples

A sample command line might be:

cu -s2400 -1 / dev / cuaO 4479801

Where "-s2400" indicates a line speed of 2400 baud, and
"-1/ dev I cuaO" supplies the device name of the communications
line. The system looks in the file L-devices for a line with these
characteristics."4479801" is the phone number of the remote
system. For a directly connected line:

cu -1 / dev / ttyOl dir

"dir" indicates a direct line connection.

To dial out of an internal phone system, such as a computerized
branch exchange (CBX):

cu -s2400 -1 / dev / cuaO 9,4479801

If your system does not automatically wait for an outgoing dial
tone, use several commas for an extended delay:

cu -s2400 -1 / dev / cuaO 9,,,4479801

CU(C) 1-71

Files

I usr /lib I uucp IL-devices
I usr I spool/ uucp /LCK .. (tty-device)
I usr /lib I uucp I dial
/dev/null

See Also

cat(C), echo(C), stty(C), tty(M)

Diagnostics

Device information
Lockout mechanism
Dialer program

Exit code is zero for normal exit, nonzero otherwise.

Comments

There is an artificial slowing of transmission by cu during the
-%put operation so that loss of data is unlikely.

ASCII files only can be transferred using "'%take or "'%put ;
binary files cannot be transferred.

1-72 CU(C)

DATE(C)

Name

date - Prints and sets the date.

Syntax

Description

If no argument is given, or if the argument begins with +, the

current date and time are printed. Otherwise, the current date is

set. The first mm is the month number; dd is the day number in

the month; hh is the hour number (24-hour system); the second

mm is the minute number; yy is the last two digits of the year

number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 A.M. The current year is the default

if no year is mentioned. The system operates in GMT. Date

takes care of the conversion to and from local standard and

daylight time.

If the argument begins with +, the output of date is under the

control of the user. All output fields are of fixed size (zero
padded if necessary). Each field descriptor is preceded by a

percent sign (%) and is be replaced in the output by its
corresponding value. A single percent sign is encoded by

doubling the percent sign, that is, by specifying "% % ". All other

characters are copied to the output without change. The string is

always terminated with a newline character.

DATE(C) 1-73

Field Descriptors:

n Inserts a newline character

t Inserts a tab character

m Month of year - 01 to 12

d Day of month - 01 to 31

y Last two digits of year - 00 to 99

D Date as mm/dd/yy

H Hour - 00 to 23

M Minute - 00 to 59

S Second - 00 to 59

T Time as hh:mm:ss

j Julian date - 001 to 366

w Day of the week - Sunday = 0

a Abbreviated weekday - Sun to Sat

h Abbreviated month - Jan to Dec

r Time in A.M./P.M. notation

1-74 DATE(C)

Example

The line:

date '+DATE: %m/%d/ %y%nTIME: %H: %M: %S'

generates as output:

DATE: 08 / 01 / 76
TIME: 14:45:05

Diagnostics

no permission

bad conversion

bad format character

You aren't the super-user and you are
trying to change the date.

The date set is syntactically incorrect.

The field descriptor is not recognizable.

DATE(C) 1-75

DC(C)

Name

de - Invokes an arbitrary precision calculator.

Syntax

Description

The de program is an arbitrary precision arithmetic package.
Ordinarily, it operates on decimal integers, but you may specify
an input base, output base, and a number of fractional digits to be
maintained. The overall structure of de is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following
constructions are recognized:

number The value of the number is pushed on the stack. A
number is an unbroken string of the digits 0-9. It may
be preceded by an underscore () to input a negative
number. Numbers may contain decimal points.

+-/*O/o+A
The top two values on the stack are added (+) ,
subtracted (-), multiplied (*), divided (/), remaindered
(%) , or exponentiated (") . The two entries are popped
off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register
named x, where x may be any character. If thesis
capitalized, xis treated as a stack and the value is
pushed on it.

lx The value in register x is pushed on the stack. The
register x is not altered. All registers start with zero
value. If the I is capitalized, register xis treated as a
stack and its top value is popped onto the main stack.

1-76 DC(C)

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged. p interprets the top of the stack as
an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If a string is being executed, the
recursion level is popped by two. If q is capitalized, the
top value on the stack is popped, and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string
and executes it as a string of de commands.

X Replaces the number on the top of the stack with its
scale factor.

[...]
Puts the bracketed ASCII string onto Hw top of the

I ~ -

stack. ·

<x >x =x
The top two elements of the stack are popped and
compared. Register x is evaluated if they obey the
stated relation.

v Replaces the top element on the stack by its square root.
Any existing fractional part of the argument is taken
into account, but otherwise the scale factor is ignored.

Interprets the rest of the line as a XENIX command.

c All values on the stack are popped.

The top value on the stack is popped and used as the
number radix for further input.

I Pushes the input base on the top of the stack.

DC(C) 1-77

0

0

z

z

?

'.

Example

The top value on the stack is popped and used as the
number radix for further output.

Pushes the output base on the top of the stack.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its
length.

A line of input is taken from the input source (usually
the terminal) and executed.

Used by be for array operations.

This example prints the first ten values of n!:

[lal+dsa*pla10>y]sy0sal
lyx

See Also

bc(C)

1-78 DC(C)

Diagnostics

x is unimplemented

stack empty

out of space

out of headers

out of pushdown

nesting depth

Comments

The octal number x corresponds to a
character that is not implemented as a
command.

Not enough elements on the stack to do
what was asked.

The free list is exhausted (too many
digits).

Too many numbers being kept around.

Too many items on the stack.

Too many levels of nested execution.

The be preprocessor for de provides infix notation and a C-like
syntax that implements functions and reasonable control
structures for programs. For interactive use, be is preferred to de.

DC(C) 1-79

DD(C)

Name

dd - Converts and copies a file.

Syntax

Description

The dd command copies the specified input file to the specified
output with possible conversions. The standard input and output
are used by default. The input and output block size may be
specified to take advantage of raw physical 1/0.

Option

if =file

of=file

ibs=n

obs=n

bs=n

1-80 DD(C)

Value

Input filename; standard input is default.

Output filename; standard output is default.

Input block size n bytes (default, 512) .

Output block size (default, 512).

Sets both input and output block size,
superseding ibs and obs; also, if no conversion
is specified, it is particularly efficient because
no in-core copy needs to be done.

cbs=n Conversion buffer size.

skip=n Skips n input records before starting copy.

seek=n Seeks n records from beginning of output file
before copying.

count=n Copies only n input records.

conv=ascii Converts EBCDIC to ASCII.

conv=ebcdic Converts ASCII to EBCDIC.

conv=ibm Slightly different map of ASCII to EBCDIC.

conv=lcase Maps alphabetics to lowercase.

conv=ucase Maps alphabetics to uppercase.

conv=swab Swaps every pair of bytes.

conv=noerror Does not stop processing on an error.

conv=sync Pads every input record to ibs.

conv=" ... , ... " Several comma-separated conversions.

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by 1024,
512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

The cbs option is used only if ASCII or EBCDIC conversion is
specified. In the former case, cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and newline added before sending the line to the output.
In the latter case ASCII characters are read into the conversion
buffer, converted to EBCDIC, and blanks added to make up an
output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

DD(C) 1-81

Example

This command reads an EBCDIC tape, blocked ten 80-byte
EBCDIC card images per record, into the ASCII file outfile:

dd if= / dev / rmtO of=outfile ibs=800 cbs=80 conv=ascii ,lease

Note the use of raw magtape. The dd command is especially
suited to I/ 0 on raw physical devices because it allows reading
and writing in arbitrary record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

f +p records in(out)

Comments

Numbers of full and partial records
read(written).

The ASCII/EBCDIC conversion tables are taken from the
256-character standard in the CACM, Nov, 1968. The ibm
conversion corresponds better to certain IBM printing
conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is
done only on conversion to EBCDIC.

1-82 DD(C)

DEVNM(C)

Name

devnm - Identifies device name.

Syntax

/etc/devnm• [names]

Description

The devnm command identifies the special file associated with the
mounted file system where the argument name resides.

This command is most commonly used by I etc/ re to construct a
mount table entry for the root device.

Examples

Be sure to type full path names in this example:

/ etc / devnm / usr

If /dev/hd.03 is mounted on /usr, this produces:

hd03 / usr

Files

/dev/*
/etc/re

See Also

setmnt(C)

Device names
XENIX startup commands

DEVNM(C) 1-83

DF(C)

Name

df - Reports the number of free disk blocks.

Syntax

-f

Description

The df command prints out the number of free blocks and free
inodes available for on-line file systems by examining the counts
kept in the super-blocks. One or more filesystem arguments may
be specified by device name (for example, I dev /hd03 or
/dev/usr). If the filesystem argument is unspecified, the free
space on all mounted file systems is sent to the standard output.
The list of mounted file systems is given in I etc/mnttab.

The -t flag causes the total allocated block figures to be reported
as well.

If the -f flag is given, only an actual count of the blocks in the
free list is made (free inodes are not reported) . With this option,
df reports on raw devices.

1-84 DF(C)

Files

/dev/*
/etc/mnttab

See Also

fsck(C), mnttab(F)

Comment

See "Comments" under mount(C).

DF(C) 1-85

DIFF(C)

Name

diff - Compares two text files.

Syntax

Description

The diff command tells what lines must be changed in two files to
bring them into agreement. If filel (file2) is-, the standard input
is used. If file] (file2) is a directory, a file in that directory with
the name file2 (file]) is used. The normal output contains lines
of these forms:

nl a n3,n4
nl,n2 d n3
nl ,n2 c n3 ,n4

These lines resemble ed commands to convert file 1 into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a
for d and reading backward, one may ascertain equally how to
convert file2 into file 1. As in ed, identical pairs where nl = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected
in the first file flagged by <, then all the lines that are affected in
the second file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be
ignored and other strings of blanks to compare equal.

1-86 DIFF(C)

The -e option produces a script of a, c, and d commands for the
editor ed, which will recreate file2 from file 1. The -f option
produces a similar script, not useful withed, in the opposite order.
In connection with -e, the following shell procedure helps
maintain multiple versions of a file:

(shift; cat$*; echo 1 l,$p 1
) led - $1

This works by performing a set of editing operations on an
original ancestral file. This is done by combining the sequence of
ed scripts given as all command line arguments except the first.
These scripts are presumed to have been created with diff in the
order given on the command line. The set of editing operations is
then piped as an editing script to ed where all editing operations
are performed on the ancestral file given as the first argument on
the command line. The final version of the file is then printed on
the standard output. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3, ...) made by diff need be
on hand.

Except in rare circumstances, diff finds the smallest sufficient set
of file differences.

The -h option does a faster, less-rigorous job than the default or
the -e, -f, and -b options. It works only when changed stretches
are short and well separated, but also works on files of unlimited
length. The -e and -f cannot be used with the -h option.

DIFF(C) 1-87

Files

/tmp/ d?????
/usr /lib/ diffh for -h

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is 0 for no differences, 1 for some differences, 2 for
errors.

Comment

Editing scripts produced under the -e or -f option do not always
work correctly on lines consisting of a single period (.).

1-88 DIFF(C)

DIFF3(C)

Name

diff3 - Compares three files.

Syntax

Description

The diff3 command compares three versions of a file and
publishes disagreeing ranges of text flagged with these codes:

= = = = All three files differ.

====1 filel is different.

= = = =2 file2 is different

= = = =3 file3 is different

The type of change performed in converting a given range of a
given file to some other range is indicated in one of these ways:

f: nl a

f: nl, n2 c

Text is to be appended after line number nl in
file f, where f = 1, 2, or 3.

Text is to be changed in the range line nl to line
n2. If n 1 = n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a c
indication. When the contents of two files are identical, the
contents of the lower-numbered file are suppressed.

DIFF3(C) 1-89

Under the -e option, diff3 publishes a script for the editor ed that
will incorporate into file] all changes between file2 and file3, that
is, the changes that normally would be flagged = = = = and
= = = = 3. The -x option produces a script to incorporate changes
flagged with "= = = = ". Similarly, the -3 option produces a script
to incorporate changes flagged with "= = = = 3 ". The following
command applies a resulting editing script to file 1:

(cat script; echo 1 l,$p 1
) I ed - filel

Files

/tmp/d3*
I usr /lib I diff3 prog

See Also

diff(C)

Comments

The -e option does not work properly for lines consisting of a
single period.

The input file size limit is 64K bytes.

1-90 DIFF3(C)

DIRCMP(C)

Name

dircmp - Compares directories.

Syntax

flirclllP '.l , .~~ Ji.[..•. ~s ~J ',~trJ; · if.ir2

Description

The dircmp command examines dir 1 and dir2 and generates
tabulated information about the contents of the directories.
Listings of files that are unique to each directory are generated in
addition to a list that indicates whether the files common to both
directories have the same contents.

Two options are available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical

-s Reports whether files are "same" or "different"

See Also

cmp(C), diff(C)

DIRCMP(C) 1-91

DIRNAME(C)

Name

dirname - Delivers directory part of path name.

Syntax

dim~~e·.string

Description

The dirname command delivers all but the last component of the
path name in string and prints the result on the standard output.
If there is only one component in the path name, only a "dot" is
printed. It is normally used inside substitution marks C ') within
shell procedures.

The companion command basename deletes any prefix ending in a
slash (/) and the suffix (if present in string) from string, and
prints the result on the standard output.

1-92 DIRNAME(C)

Examples

The following example sets the shell variable NAME to
/usr/src/cmd:

NAME='dirname / usr / src / cmd / cat.c'

This example prints I a/b/ c on the standard output:

dirname / a/ b/ c/ d

This example prints a "dot" on the standard output:

dirname file.ext

See Also

basename(C), sh(C)

DIRNAME(C) 1-93

DISABLE(C)

Name

disable - Turns off terminals.

Syntax

disable [-d] [-e] tty

Description

This program manipulates the I etc/ttys file and signals init to
disallow logins on a particular terminal. The -d and -e options
"disable" and "enable" terminals, respectively.

Examples

A simple example follows:

disable ttyOl

Multiple terminals can be disabled or enabled using the -d and -e
switches before the appropriate terminal name:

disa ble ttyOl -e tty02 -d tty03 tty04

Warning: Be absolutely certain to pause at least one minute
before reusing this command or before using the enable
command. Failure to do so may cause the system to go
down.

1-94 DISABLE(C)

Files

/dev/tty*
/etc/ttys

See Also

login(M), enable(C), ttys(M), getty(M), init(M)

DISABLE(C) 1-95

DOS(C)
Name

dos - Accesses DOS files.

Syntax

doscat [-r l file

doscp [.. r]file l f ilef:

doscp [.-r} file . ,. . directory

dosdir directory,

dosls directory . . .

dosrtn file . . .

dosrmdir .directory

Description

The dos commands provide access to the files and directories on
DOS disks. The commands perform the following actions:

doscat

doscp

Copies one or more DOS files to the standard output.
If -r is given, the files are copied without newline
conversions (see "Conversions" below).

Copies files between an DOS disk and a XENIX file
system. If filel and file2 are given, filel is copied to
file2. If a directory is given, one or more files are
copied to that directory. If the -r is given, the files are
copied without newline conversions (see
"Conversions" below).

1-96 DOS(C)

dosdir Lists DOS files in the standard DOS style directory
format.

dosls Lists DOS directories and files in a XENIX style (see
ls(C)).

dosrm Removes files from a DOS disk.

dosmkdir Creates a directory on a DOS disk.

dosrmdir Deletes directories from a DOS disk.

The file and directory arguments for DOS files and directories

have the form:

device:name

where device is a XENIX pathname for the special device file

containing the DOS disk, and name is a pathname to a file or
directory on the DOS disk. The two components are separated by

a colon (:). For example, the argument:

/ dev / fd0 : / s rc / f il e.a sm

specifies the DOS file, file.asm, in the directory, I src, on the disk

in the device file I dev /fdlJ. Note that slashes (and not
backslashes) are used as filename separators for DOS pathnames.
Arguments without a device: are assumed to be XENIX files.

For convenience, the drive letters A: and B: can be used for any

48TPI DOS diskette in drives 0 and 1 respectively. The drive

letters X: and Y: can be used for any 96TPI DOS diskette in
drives 0 and 1 respectively. You must enter the drive letter as a

capital letter when you use this notation to name a drive.

DOS(C) 1-97

The commands operate on the following kinds of disks:

5 1/ 4 inch DOS
8 or 9 sectors per track
40 tracks per side
1 or 2 sides
DOS version 1 or ~ 2.

Converisons

All DOS text files use a carriage-return/linefeed combination,
CR-LF, to indicate a newline. XENIX uses a single newline LF
character. When the doscat and doscp commands transfer DOS
text files to XENIX, they automatically strip the CR. When text
files are transferred to DOS, the commands insert the CR before
each LF character. The -r option can be used to override the
automatic conversion and force the command to perform a true
byte copy regardless of file type.

Examples

doscat ; dev / fd096dsl5: / docs / memo.txt
or dos cat x: / docs / memo.txt

dosdir / dev / fd048ds9 or dosdir A:

doscp / tmp / myfile.txt / dev / fdl48ds9: / docs / memo.txt
or doscp / tmp / myfile.txt 8: / docs / memo.txt

dosls / dev / fd0: / src or dosls X: / src

dosmkdir / dev / fd0: / usr / docs or dosmkdir X: / usr / docs

dosrm ; dev / fdl96dsl5: / docs / memo.t xt
or dosrm Y: / do cs/ memo.t xt

dosrmdi r / dev / fd0: / usr / docs or dosrmdir X: / usr / docs

1-98 DOS(C)

Files

I etc/ default/ msdos
Default information

I dev /fd* Diskette drive devices

See Also

dtype(C), default(M)

Comment

It is not possible to refer to DOS directories with wild card
specifications. It is the user's responsibility to ensure he has
exclusive access to the device containing the DOS disk. If two or
more processes simultaneously attempt to access the DOS disk
the result is unpredictable.

DOS(C) 1-99

DTYPE(C)

Name

dtype - Determines disk type.

Syntax

dtype [-s] device

Description

The dtype command determines type of disk, prints pertinent
information on the standard output unless the silent (-s) option is
selected, and exits with a corresponding code (see below). When
more than one argument is given, the exit code corresponds to the
last argument.

Disk Type Exit Message (optional)
Code

Misc. 60 error (specified)

61 empty or unrecognized data

Storage 70 backup format, volume n

71 tar format[, extent e of n]

72 cpio format

73 cpio character (-c) format

DOS 80 DOS 1.x, 8 sec/track, single sided

81 DOS 1.x, 8 sec/ track, dual sided

1-100 DTYPE(C)

Disk Type Exit Message (optional)
Code

90 DOS 2.x, 8 sec/track, single sided

91 DOS 2.x, 8 sec/track, dual sided

92 DOS 2.x, 9 sec/track, single sided

93 DOS 2.x, 9 sec/track, dual sided

XENIX 120 XENIX 2.x filesystem[needs cleaning]

130 XENIX 3 .x filesystem[needs cleaning]

Comment

XENIX file systems and dump and cpio binary formats may not
be recognized if created on a foreign system. This is due to such
system differences as byte and word swapping and structure
alignment.

DTYPE(C) 1-101

DU(C)

Name

du - Summarizes disk usage.

Syntax

du [.:af r$u] { names]

Description

The du command gives the number of blocks contained in all files
and (recursively) directories within each directory and file
specified by the names argument. The block count includes the
indirect blocks of the file. If names is missing, the current
directory is used.

The optional argument -s causes only the grand total (for each of
the specified names) to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

Normally, du is silent about directories that cannot be read, files
that cannot be opened, etc. The -r option causes du to generate
messages in such instances.

A file with two or more links is only counted once.

Comments

If the -a option is not used, nondirectories given as arguments are
not listed.

If there are too many distinct linked files, du counts the excess
files more than once. Files with holes in them get an incorrect
block count.

1-102 DU(C)

DU1\t1PDIR(C)

Name

dumpdir - Prints the names of files on a backup archive.

Syntax

dumpdir [f filename]

Description

The dumpdir command is used to list the names and inode
numbers of all files and directories on an archive written with the
backup command. This is most useful when attempting to
determine the location of a particular file in a set of backup
archives.

The f option causes filename to be used as the name of the
backup device instead of the default. The backup device depends
on the setting of the variable TAPE in the file
I etc/ default/backup .

File

rst* Temporary files

See Also

backup(C), restor(C), default(M)

Diagnostics

If the backup extends over more than one volume (where a
volume is likely a diskette or tape), you will be asked to change
volumes. Press Enter after changing volumes.

DUMPDIR(C) 1-103

ECHO(C)

Name

echo - Echoes arguments.

Syntax

Description

The echo command writes its arguments separated by blanks and
terminated by a newline on the standard output. The following
options are recognized:

-n Prints line without a newline.
-e Prints arguments on the standard error output.
-u Uses unbuffered 1/0 when printing.

Prints arg exactly so that an argument beginning with a dash
(for example, -e or -n) can be specified.

The echo command also understands C-like escape conventions.
The following escape sequences need to be quoted so that the
shell interprets them correctly:

\ b Backspace
\c Prints line without newline; same as use of -n option.
\f Form feed
\n Newline
\ r Carriage return
\t Tab
\ \ Backslash
\ n The 8-bit character whose ASCII code is the one-, two-,

or three-digit octal number n, which must start with a zero.

1-104 ECHO(C)

The echo command is useful for producing diagnostics in
command files and for sending known data into a pipe.

See Also

sh(C)

Comment

The -e option is a XENIX-specific enhancement and may not be
present in other UNIX implementations. Therefore, the
application developer should consider the impact to portability
when using this feature.

ECHO(C) 1-105

ED(C)

Name

ed - Invokes the text editor.

Syntax

ed [-][file]

Description

The ed command invokes the standard text editor, ed. If the file
argument is given, ed simulates an e command (see below) on the
named file; that is to say, the file is read into ed's buffer so that it
can be edited. The optional - suppresses the printing of character
counts bye, r, and w commands, of diagnostics from e and q
commands, and of the ! prompt after a ! shell command. The
editor operates on a copy of the file being edited; changes made
to the copy have no effect on the file until a w (write) command is
given. The copy of the text being edited resides in a temporary
file called the buffer. There is only one buffer.

Commands to ed have a simple and regular structure: zero, one,
or two addresses followed by a single-character command,
possibly followed by parameters to that command. These
addresses specify one or more lines in the buff er. Every
command that requires addresses has default addresses, so that
the addresses can very of ten be omitted.

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the
appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

1-106 ED(C)

The editor supports a limited form of regular expression notation;
regular expressions are used in addresses to specify lines and in
some commands (for example, s) to specify portions of a line that
are to be substituted. A regular expression specifies a set of
character strings. A member of this set of strings is said to be
matched by the regular expression. The regular expressions
allowed by ed are constructed as follows :

The following one-character regular expressions match a single
character:

1.1 An ordinary character (not one of those discussed in 1.2
below) is a one-character regular expression that matches
itself.

1.2 A backslash (\) followed by any special character is a
one-character regular expression that matches the special
character itself. The special characters are:

a. . * [and \ (dot, asterisk, left bracket, and backslash,
respectively), which are always special, except when
they appear within brackets ([]; see 1.4 below).

b. A (caret), which is special at the beginning of an
entire regular expression (see 3.1 and 3.2 below), or
when it immediately follows the left of a pair of
brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire
regular expression (see 3.2 below).

d. The character used to bound (that is, delimit) an
entire regular expression, which is special for that
regular expression (for example, see how slash (/) is
used in the g command, below).

1.3 A period (.) is a one-character regular expression that
matches any character except newline.

ED(C) 1-107

1.4 A nonempty string of characters enclosed in brackets ([])is
a one-character regular expression that matches any one
character in that string. If, however, the first character of
the string is a caret (") , the one-character regular
expression matches any character except newline and the
remaining characters in the string. The asterisk (*) has this
special meaning only if it occurs first in the string. The
hyphen (-) may be used to indicate a range of consecutive
ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The hyphen (-) loses this special meaning if
it occurs first (after an initial caret (A), if any) or last in
the string. The right bracket (]) does not terminate such a
string when it is the first character within it (after an initial
caret (A), if any); for example, []a-f] matches either a right
bracket (]) or one of the letters "a" through "f" inclusive.
Period, asterisk, left bracket, and the backslash lose their
special meaning within such a string of characters.

The following rules may be used to construct regular
expressions from one-character regular expressions:

2.1 A one-character regular expression matches whatever the
one-character regular expression matches.

2.2 A one-character regular expression followed by an asterisk
(*) is a regular expression that matches zero or more
occurrences of the one-character regular expression. If
there is any choice, the longest leftmost string that permits a
match is chosen.

2.3 A one-character regular expression followed by \ { m \},
\ { m, \}, or \ { m,n \} is a regular expression that
matches a range of occurrences of the one-character regular
expression. The values of m and n must be non-negative
integers less than 256; \ { m \} matches exactly m
occurrences; \ { m, \} matches at least m occurrences;
\ { m,n \} matches any number of occurrences between m
and n, inclusive. Whenever a choice exists, the regular
expression matches as many occurrences as possible.

1-108 ED(C)

2.4 The concatenation of regular expressions is a regular
expression that matches the concatenation of the strings
matched by each component of the regular expression.

2.5 A regular expression enclosed between the character
sequences \ (and \) is a regular expression that matches
whatever the unadorned regular expression matches. See
2.6 below for a discussion of why this is useful.

2.6 The expression \ n matches the same string of characters as
was matched by an expression enclosed between \ (and
\) earlier in the same regular expression. Here n is a digit;
the sub-expression specified is that beginning with the n -th
occurrence of \ (counting from the left. For example, the
expression " \ (. * \) \ 1 $ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both) :

3.1 A caret (") at the beginning of an entire regular expression
constrains that regular expression to match an initial
segment of a line.

3.2 A dollar sign ($) at the end of an entire regular expression
constrains that regular expression to match a final segment
of a line. The construction " entire regular expression$
constrains the entire regular expression to match the entire
line.

The null regular expression (that is, I/) is equivalent to the last
regular expression encountered.

To understand addressing in edit is necessary to know that there
is a current line at all times. Generally speaking, the current line
is the last line affected by a command; the exact effect on the
current line is discussed under the description of each command.
Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character$ addresses the last line of the buffer.

3. A decimal number n addresses the n -th line of the buff er.

ED(C) 1-109

4. x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the
k command described below.

5. A regular expression enclosed by slashes (/) addresses the
first line found by searching forward from the line following
the current line toward the end of the buffer and stopping at
the first line containing a string matching the regular
expression. If necessary, the search wraps around to the
beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched.

6. A regular expression enclosed in question marks (?)
addresses the first line found by searching backward from the
line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string
matching the regular expression. If necessary, the search
wraps around to the end of the buffer and continues up to
and including the current line. See also the last paragraph
before "Files " below.

7. An address followed by a plus sign (+) or a minus sign (-)
followed by a decimal number specifies that address plus or
minus the indicated number of lines. The plus sign may be
omitted.

8. If an address begins with + or -, the addition or subtraction
is taken with respect to the current line; for example, -5 is
understood to mean .-5.

9. If an address ends with + or-, 1 is added to or subtracted
from the address, respectively. As a consequence of this rule
and of rule 8, the address - refers to the line preceding the
current line. (To maintain compatibility with earlier versions
of the editor, the character A in addresses is entirely
equivalent to-). Moreover, trailing + and - characters have
a cumulative effect, so - - refers to the current line less 2.

10. For convenience, a comma(,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

1-110 ED(C)

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires,
the last addresses are used.

Typically, addresses are separated from each other by a comma
(,). They may also be separated by a semicolon (;). In the latter
case, the current line (.) is set to the first address, and only then is
the second address calculated. This feature can be used to
determine the starting line for forward and backward searches
(see rules 5 and 6). The second address of any two-address
sequence must correspond to a line that follows, in the buff er, the
line corresponding to the first address.

Some size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K
characters in the buffer. The limit on the number of lines
depends on the amount of user memory.

When reading a file, ed discards ASCII Nul characters and all
characters after the last newline. Files that contain characters not
in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string, for example, (/),would be the last character before a
newline, that delimiter may be omitted, in which case the
addressed line is printed. Thus the following pairs of commands
are equivalent:

s / sl / s2
s / sl / s2 / p

g/ sl
g/ sl / p

?sl
?sl?

ED(C) 1-111

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the
address; they show that the given addresses are the default.

In general, only one command may appear on a line. However,
any command (except e, f, r, or w) may be suffixed by p or by I,
in which case the current line is either printed or listed,
respectively, as discussed below under the p and I commands.

(.)a
<text>

The append command reads the given text and appends it after
the addressed line; dot is left at the last inserted line, or, if there
were no inserted lines, at the addressed line . Address 0 is legal
for this command: it causes the appended text to be placed at the
beginning of the buffer.

(.)c
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the last line input,
or, if there were none, at the first line that was not deleted.

(.,.)d

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

1-112 ED(C)

efile

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently
remembered filename, if any, is used (see the f command) . The
number of characters read is typed; file is remembered for
possible use as a default filename in subsequent e, r, and w
commands. If file begins with an exclamation(!), the rest of the
line is taken to be a shell command. The output of this command
is read for thee and r commands. For thew command, the file is
used as the standard input for the specified command. Such a
shell command is not remembered as the current filename.

E: file

The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

f file

If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename .

(l,$)g/ regular-expression/ command list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on
the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \ ; a, i, and c
commands and associated input are permitted; the . terminating
input mode may be omitted if it would be the last line of the
command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the
command list. See also "Comments "and the last paragraph
before "Files " below.

ED(C) 1-113

(l,$)G I regular-expression/

In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, c, i, g, G, v, and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on; a
newline acts as a null command; an ampersand (&) causes the
re-execution of the most recent command executed within the
current invocation of G. The commands input as part of the
execution of the G command may address and affect any lines in
the buffer. The G command can be terminated by typing an
Interrupt (Del).

h

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H

The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It also
explains the previous diagnostic if there was one. The H
command alternately turns this mode on and off; it is initially on.

(.)i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the last inserted line, or if there were no inserted
lines, at the addressed line. This command differs from the a
command only in the placement of the input text. Address 0 is
not legal for this command.

(.,.+ l)j

The join command joins contiguous lines by removing the
appropriate newline characters. If only one address is given, this
command does nothing.

1-114 ED(C)

(.)kx

The mark command marks the addressed line with name x, which
must be a lowercase letter. The address 'x then addresses this
line; dot is unchanged.

(.,.)I

The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (for example tab, backspace)
are represented by mnemonic overstrikes, all other non-printing
characters are printed in octal, and long lines are folded. An I
command may be appended to any command other than e, f, r, or
w.

(.,.)ma

The move command repositions the addressed lines after the line
addressed by a. Address 0 is legal for a and causes the addressed
lines to be moved to the beginning of the file; it is an error if
address a falls within the range of moved lines; dot is left at the
last line moved.

(.,.)n

The number command prints the addressed lines, preceding each
line by its line number and a tab character; dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r, or w.

(.,.)p

The print command prints the addressed lines; dot is left at the
last line printed. The p command may be appended to any
command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

p

The editor will prompt with a * for all subsequent commands.
The P command alternately turns this mode on and off; it is
initially on.

ED(C) 1-115

q

The quit command causes ed to exit. No automatic write of a file
is done.

Q

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and f commands). The currently remembered
filename is not changed unless file is the very first filename
mentioned since ed was invoked. Address 0 is legal for r and
causes the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed; dot is
set to the last line read in. If file begins with !, the rest of the line
is taken to be a shell (sh(C)) command whose output is to be
read. Such a shell command is not remembered as the current
filename .

(.,.)s/ regular-expression/ replacement/
or

(.,.)s/ regular-expression I replacement I g

The substitute command searches each addressed line for an
occurrence of the specified regular expression. In each line in
which a match is found, all non-overlapped matched strings are
replaced by the replacement if the global replacement indicator g
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is replaced.
It is an error for the substitution to fail on all addressed lines.
Any character other than space or newline may be used instead of
I to delimit the regular expression and the replacement; dot is left
at the last line on which a substitution occurred.

1-116 ED(C)

An ampersand(&) appearing in the replacement is replaced by
the string matching the regular expression on the current line.
The special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \ n,
where n is a digit, are replaced by the text matched by the n -th
regular subexpression of the specified regular expression enclosed
between \ (and \) . When nested parenthesized subexpressions
are present, n is determined by counting occurrences of \ (
starting from the left. When the character % is the only character
in the replacement, the replacement used in the most recent
substitute command is used as the replacement iri the current
substitute command. The % loses its special meaning when it is
in a replacement string of more than one character or is preceded
by a backslash (\) .

A line may be split by substituting a newline character into it.
The newline in the replacement must be escaped by preceding it
with a backslash (\) . Such a substitution cannot be done as part
of a g or v command list.

(.,.)ta

This command acts just like the m command, except that a copy
of the addressed lines is placed after address a (which may be O);
dot is left at the last line of the copy.

u

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the most
recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1,$)v /regular-expression/ command list

This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1,$)V I regular-expression/

This command is the same as the interactive global command G
except that the lines that are marked during the first step are
those that do not match the regular expression.

ED(C) 1-117

(1,$)w file

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable
and writeable by everyone), unless the umask setting (see sh(C))
dictates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see e and f commands); dot is
unchanged. If the command is successful, the number of
characters written is displayed. If file begins with an exclamation
(!) , the rest of the line is taken to be a shell command to which
the addressed lines are supplied as the standard input. Such a
shell command is not remembered as the current filename.

x

A key string is demanded from the standard input. Subsequent e,
r, and w commands will encrypt and decrypt the text with this key
by the algorithm of crypt(C). An explicitly empty key turns off
encryption.

($)=

The line number of the addressed line is typed; dot is unchanged
by this command.

! shell command

The remainder of the line after the ! is sent to the XENIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the
remembered filename; if a ! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, ! ! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; dot is
unchanged.

1-118 ED(C)

(.+1)

An address alone on a line causes the addressed line to be printed.
An Enter alone on a line is equivalent to.+ lp. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII Del or Break) is sent, ed prints a
question mark (?) and returns to its command level.

Files

/tmp/e#
ed.hup

Temporary;# is the process number
Work is saved here if the terminal stops.

See Also

grep(C), sed(C), sh(C)

Diagnostics

? Command errors

? file An inaccessible file

p. Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is
made to destroy ed's buffer via the e or q commands: it prints ?
and allows you to continue editing. The hyphen (-)
command-line option inhibits this feature. A second e or q

command at this point will take effect.

ED(C) 1-119

Comments

An exclamation (!) command cannot be subject to a g or a v
command. The! command and the! escape from thee, r, and w
commands cannot be used if the the editor is invoked from a
restricted shell (see sh(C)).

The sequence \n in a regular expression does not match any
character.

The I command mishandles Del.

Because 0 is an illegal address for the w command, it is not
possible to create an empty file with ed.

1-120 ED(C)

ENABLE(C)

Name

enable - Turns on terminals.

Syntax

enable [-d][-e] tty ...

Description

This program manipulates the I etc/ttys file and signals init to
allow logins on a particular terminal. The -e and -d options may
be used to allow logins on some terminals and disallow logins on
other terminals in a single command.

Warning: Be absolutely certain to pause at least one minute
before reusing this command or before using the disable
command. Failure to do so may cause the system to go
down.

ENABLE(C) 1-121

Examples

A simple command to enable ttyOl follows:

enable ttyOl

Multiple terminals can be disabled or enabled using the -d and -e
switches before the appropriate terminal name:

enable ttyOl -e tty02 -d tty03 tty04

Files

/dev/tty*
I etc/ttys

See Also

login(M), disable(C), ttys(M), getty(M), init(M)

1-122 ENABLE(C)

ENV(C)

Name

env - Sets environment for command execution.

Syntax

Description

The env command obtains the current environment, modifies it
according to its arguments, then executes the command with the
modified environment. Arguments of the form name = value are
merged into the inherited environment before the command is
executed. The - flag causes the inherited environment to be
ignored completely, so that the command is executed with exactly
the environment specified by the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

See Also

sh(C), profile(M), environ(M)

ENV(C) 1-123

EX(C)

Name

ex - Invokes a text editor.

Syntax

ex [+-H~f }{.;,;Hagl{~r] ~+lin~nolname . ..

Description

The ex editor is the root of the editors ex and vi. The ex editor is a
superset of ed, whose most notable extension is a display editing
facility. Display based editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based
editor; in this case, see vi(C), a command that focuses on the
display editing portion of ex.

For ed Users

If you have used ed you will find that ex has a number of new
features. Generally, the ex editor uses far more of the capabilities
of terminals than ed does. It uses the terminal capability database
termcap(M) and the type of the terminal you are using from the
variable TERM in the environment to determine how to drive
your terminal efficiently. The ex editor makes use of features
such as insert and delete character and line in its visual command
mode, which can be abbreviated vi, which is the central mode of
editing when using vi(C). There is also an interline editing open
command, (o) that works on all terminals.

The ex editor contains a number of features for easily viewing the
text of a file. The z command gives easy access to windows of
text. Pressing Ctrl-D causes the editor to scroll a half-window of
text and is more useful for quickly stepping through a file than
just pressing the Enter key. Of course, the screen-oriented visual
mode gives constant access to editing context.

1-124 EX(C)

The ex editor gives you more help when you make mistakes. The
undo (u) command allows you to reverse any single change. This
editor also gives you feedback, normally printing changed lines,
and indicates when more than a few lines are affected by a
command so it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents the overwriting of existing files
unless you have edited them, so that you don't accidentally
overwrite with a write, a file other than the one you are editing. If
the system (or editor) goes down, or you accidentally hang up the
phone, you can use the recover command to retrieve your work.
This will get you back to within a few lines of where you left off.

Several features in ex permit editing more than one file at a time.
You can give it a list of files on the command line and use the
next (n) command to edit each in turn. You can also give the next
command a list of filenames, or a pattern used by the shell to
specify a new set of files to be edited. In general, filenames in the
editor may be formed with full shell metasyntax. The
metacharacter "%" is also available in forming filenames and is
replaced by the name of the current file. For editing large groups
of related files you can use ex's tag command to quickly locate
func\ions and other important points in any of the files. This is
useful when you want to find the definition of a particular
function in a large program.

For moving text between files and within a file, the editor has a
group of buffers named a through z. You can place text in these
named buffers and carry it over when you edit another file.

The command & repeats the last substitute command. There is
also a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether
each substitution is desired.

You can use the substitute command in ex to systematically
convert the case of letters between uppercase and lowercase. It is
possible to ignore case in searches and substitutions. The ex
editor also allows regular expressions that match words to be
constructed. This is convenient, for example, when searching for
the word "edit" if your document also contains the word
"editor."

EX(C) 1-125

In ex, you can set options. One option that is very useful is the
autoindent option that allows the editor to automatically supply
leading white space to align text. You can then use the Ctrl-D
key to backtab, space, and tab forward to align new code easily.

Miscellaneous useful features include an intelligent join (j)
command that supplies whitespace between joined lines
automatically, the commands < and > that shift groups of lines,
and the ability to filter portions of the buffer through commands
such as sort.

Files

I usr /lib I ex3. 7 strings
I usr /lib I ex3. 7 recover
I usr /lib I ex3. ?preserve
I etc/termcap
$HOME/.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
I usr I preserve

See Also

Error messages
Recover command
Preserve command
Terminal capability
Editor startup file
Editor temporary file
Named buffer temporary file
Preservation directory

awk(C), ed(C), grep(C), sed(C), termcap(M), vi(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

The undo command causes all marks to be lost on lines changed
and then restored if the marked lines were changed.

The undo command never clears the buffer modified condition.

1-126 EX(C)

The z command prints a number of logical rather than physical
lines. More than a screen full of output may result if long lines
are present.

File input/ output errors don't print a name if the command line
'' - '' option is used.

There is no easy way to do a single scan ignoring case.

Because of the implementation of the arguments to next, only 512
bytes of argument list are allowed there.

The format of I etc/termcap and the large number of capabilities
of terminals used by the editor cause terminal type setup to be
rather slow.

The editor does not warn if text is placed in named buffers and
not used before exiting the editor.

Null characters are discarded in input files and cannot appear in
resultant files.

EX(C) 1-127

EXPR(C)

Name

expr - Evaluates arguments as an expression.

Syntax

Description

The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Terms of the expression
must be separated by blanks. Characters special to the shell must
be escaped. Note that 0 is returned to indicate a zero value,
rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments
may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2's complement numbers.

The operators and keywords are listed below. Expressions should
be quoted by the shell, because many characters that have special
meaning in the shell also have special meaning in expr. The list is
in order of increasing precedence, with equal precedence
operators grouped within braces ({ and }) .

e.xpr I e.xpr

e.xpr & e.xpr

Returns the first expr if it is neither null nor 0,
otherwise returns the second expr.

Returns the first expr if neither expr is null nor 0,
otherwise returns 0.

e.xprl=,>, >=,<, <=, !=+} expr
Returns the result of an integer comparison if both
arguments are integers, otherwise returns the result of
a lexical comparison.

1-128 EXPR(C)

expr { +, - } expr
Addition or subtraction of integer-valued arguments.

expr { *,/, % } expr

expr: expr

Examples

Multiplication, division, or remainder of
integer-valued arguments.

The matching operator : compares the first argument
with the second argument, which must be a regular
expression; regular expression syntax is the same as
that of ed(C), except that all patterns are "anchored"
(That is, begin with a caret (")). and therefore the
caret is not a special character in that context. (Note
that in the shell, the caret has the same meaning as the
pipe symbol (I) .) Normally the matching operator
returns the number of characters matched (zero on
failure). Alternatively, the \(... \)pattern symbols
can be used to return a portion of the first argument.

1. a= expr $a + r

Adds 1 to the shell variable a.

2. For $a eq ual to either 11 / us r / a c/ fi le " or just 11
/' "il u

· e pr $a : ' .* I \ (. *)'I $a'

Returns the last segment of a path name (for example, file).
Watch out for the slash alone as an argument: expr will take it as
the division operator (see "Comments" below).

3. expr $V AR :'.*'

Returns the number of characters in $VAR.

See Also

ed(C), sh(C)

EXPR(C) 1-129

Diagnostics

As a side effect of expression evaluation, expr returns the
following exit values:

0 If the expression is neither null nor zero.
1 If the expression is null or zero.
2 For invalid expressions.

Other diagnostics include:

syntax error For operator I operand errors

nonnumeric argument
If arithmetic is attempted on such a string

Comments

After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an equal sign (=), the command:

expr $a = -

looks like:

expr = = =

Thus the arguments are passed to expr (and will all be taken as
the = operator). The following permits comparing equal signs:

expr X$a = X=

1-130 EXPR(C)

FACTOR(C)

Name

factor - Factor a number.

Syntax

Description

When factor is invoked without an argument, it waits for a
number to be typed in. If you type in a positive number less than
256 (about 7 .2xlQ16) it will factor the number and print it; each
one is printed the proper number of times. Then it waits for
another number. It exits if it encounters a zero or any
nonnumeric character.

If factor is invoked with an argument, it factors the number as
above and then exits.

The time it takes to factor a number, n, is proportional to yn.

Diagnostics

Factor returns an error message if the supplied input value is
greater than 256 or is not an integer number.

FACTOR(C) 1-131

FALSE(C)

Name

false - Returns with a nonzero exit value.

Syntax

false

Description

The false command does nothing except return with a nonzero
exit value; true(C), false's counterpart, does nothing except return
with a zero exit value. False is typically used in shell procedures
such as:

until false
do
command
done

See Also

sh(C), true(C)

Diagnostics

The false command has exit status 1.

1-132 FALSE(C)

FILE(C)

Name

file - Determines file type.

Syntax

Description

The file command performs a series of tests on each argument in
an attempt to classify it. If an argument appears to be ASCII, file
examines the first 512 bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from
namefile. If the -m option is given, file sets the access time for the
examined file to the current time. Otherwise, the access time
remains unchanged.

Several object file formats are recognized. For a.out and x.out
format object files, the relationship of cc flags to file classification
is -i for "separate", -n for "pure", and -s for not "not stripped".

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comment

File can make mistakes: in particular, it often suggests that
command files are C programs. The access time will always be
updated for files which you do not own.

FILE(C) 1-133

FIND(C)

Name

find - Finds files.

Syntax

Description

The find command recursively descends the directory hierarchy
for each path name in the pathname-list (that is, one or more path
names) seeking files that match a Boolean expression written in
the primaries given below. In the descriptions, the argument n is
used as a decimal integer where + n means more than n, -n means
less than n, and n means exactly n.

-name file

-perm onum

-type x

-links n

1-134 FIND(C)

True if file matches the current filename.
Normal shell argument syntax may be used if
escaped (watch out for the left bracket ([), the
question mark(?) and the asterisk(*)).

True if the file permission flags exactly match
the octal number onum (see chmod(C)). If onum
is prefixed by a minus sign, more flag bits
(017777) become significant and the flags are
compared:

(flags&onum) = =onum

True if the type of the file is x, where xis b for a
block special file, c for a character special file, d
for a directory, p for a named pipe, f for a plain
file, or n for a semaphore or shared data file.

True if the file has n links.

-user uname

-group gname

-size n

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-print

-newer file

(expression)

True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the I etc/passwd file, it is taken as a user
ID.

True if the file belongs to the group gname. If
gname is numeric and does not appear in the
/etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the file has been changed inn days.

True if the executed cmd returns a zero value as
exit status. The end of cmd must be punctuated
by an escaped semicolon (\;). A command
argument n is replaced by the current path
name.

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Always true; causes the current pathname to be
printed.

True if the current file has been modified more
recently than the argument file.

True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped).

The primaries may be combined using the
following operators (in order of decreasing
precedence):

FIND(C) 1-135

negation

AND

OR

Examples

The negation of a primary is specified with the
exclamation(!) unary not operator.

The AND operation is implied by the
juxtaposition of two primaries.

The OR operation is specified with the -o
operator given between two primaries.

The following removes all files named a.out or *.o that have not
been accessed for a week:

find I \(-name a.out -o -name 1
*.0

1
\)

-a time +7 -exec rm 0 \;

Files

I etc/ passwd
/etc/group

See Also

cpio(C), sh(C), test(C), cpio(F)

1-136 FIND(C)

FINGER(C)

Name

finger - Finds information about users.

Syntax

finger [-bfdpqsw][login 1 [login2 . . .-]]

Description

By default, finger lists the login name, full name, terminal name
and write status (as a "*" before the terminal name if write
permission is denied), idle time, login time, and office location
and phone number (if they are known) for each current XENIX
user. (Idle time is minutes if it is a single integer, hours and
minutes if a colon(:) is present, or days and hours if ad is
present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multi-line format; it includes all the
information described above as well as the user's home directory
and login shell, any plan that the user has placed in the file .plan

in the home directory, and the project on which the user is
working from the file .project also in the home directory.

Finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-i Quick list of users with idle times.

-1 Forces long output format.

-p Suppresses printing of the .plan files.

-q Quick list of users.

FINGER(C) 1-137

-s Forces short output format.

-w Forces narrow format list of specified users.

Files

/etc/utmp
/etc/passwd

I usr I adm/lastlog
$HOME/.plan
$HOME/.project

See Also

who(C)

Credit

Who file
User names, offices, phones, login
directories, and shells.
Last login times.
Plans.
Projects.

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

Only the first line of the .project file is printed.

The "office" column of the output will contain any text in the
comment field of the user's I etc/passwd file entry that
immediately follows a comma(,). For example, if the entry is:

johnd:eX8HinAk:201:50:John Doe,321: / usr / johnd: / bin / sh

the number 321 will appear in the office column.

Idle time is computed as the elapsed time since any activity on the
given terminal. This includes previous invocations of finger that
may have modified the terminal's corresponding device file
I dev I tty??.

1-138 FINGER(C)

FSCK(C)

Name

fsck - Checks and repairs file systems.

Syntax

Description

The f sck command audits and interactively repairs inconsistent
conditions for XENIX file systems. If the file system is
consistent, the number of files, number of blocks used, and
number of blocks free are reported. If the file system is
inconsistent, the operator is prompted for concurrence before
each correction is attempted. Note that most corrective actions
result in some loss of data. The amount and severity of the loss
may be determined from the diagnostic output. The default
action for each consistency correction is to wait for the operator
to respond "yes" or "no". If the operator does not have write
permission f sck defaults to the action of the -n option.

The following flags are interpreted by f sck:

-y Assumes a yes response to all questions asked by f sck.

-n Assumes a no response to all questions asked by f sck; do
not open the file system for writing.

-sb:c Ignores the actual free list and (unconditionally)
reconstructs a new one by rewriting the super-block of
the file system. The file system must be unmounted while
this is done.

The -sb:c option allows for creating an optimal free-list
organization.

FSCK(C) 1-139

The following forms are supported:

• -s

• -sBlocks-per-cylinder:Blocks-to-skip (for anything
else)

If b:c is not given, the values used when the file system
was created are used. If these values were not specified,
a reasonable default value is used.

-S Conditionally reconstructs the free list. This option is like
-sb:c above except that the free list is rebuilt only if there
are no discrepancies discovered in the file system. Using
-S forces a "no" response to all questions asked by fsck.
This option is useful for forcing free list reorganization on
uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the -t option is specified, the file
named in the next argument is used as the scratch file, if
needed. Without the -t flag, fsck prompts the operator
for the name of the scratch file. The file chosen should
not be on the file system being checked, and if it is not a
special file or did not already exist, it is removed when
f sck completes.

-rr Recovers the root file system. The required file-system
argument must refer to the root file system, and
preferably to the block device (normally /dev/root). This
switch implies -y and overrides -n. If any modifications to
the file system are required, the system is automatically
shut down to insure the integrity of the file system.

1-140 FSCK(C)

-c Causes any supported file system to be converted to the
type of the current file system. The user is asked to verify
the request for each file system that requires conversion
unless the -y option is specified. It is recommended that
every file system be checked with this option, while
unmounted if it is to be used with the current version of
XENIX. To update the active root file system, it should
be checked with:

fsck -c -rr / dev / root

The file systems are specified, f sck reads a list of default file
systems from the file I etc/ checklist.

Inconsistencies checked are:

•

•

•

•

•

•

•

•

•

•

Blocks claimed by more than one inode or the free list.

Blocks claimed by an inode or the free list outside the range
of the file system.

Incorrect link counts .

Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.

Bad inode format.

Blocks not accounted for anywhere .

Directory checks:
File pointing to unallocated inode.
Inode number out of range.

Super-block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

Bad free block list format.

Total free block or free inode count incorrect.

FSCK(C) 1-141

Orphaned files and directories (allocated but unreferenced) are,
with the operator's concurrence, reconnected by placing them in
the lost+found directory. The name assigned is the inode number.
The only restriction is that the directory lost+found must pre-exist
in the root of the file system being checked and must have empty
slots in which entries can be made. This is accomplished by
making lost+found, copying a number of files to the directory,
and then removing them (before fsck is executed).

File

I etc/ checklist

Contains default list of file systems to check.

See Also

checklist(F), filesystem(F)

Diagnostics

The diagnostics produced by f sck are intended to be
self-explanatory.

Comments

The fsck command will not run on a mounted nonraw file system
unless the file system is the root file system or unless the -n
option is specified and no writing out of the file system will take
place. If any such attempt is made, a warning is printed and no
further processing of the file system is done for the specified
device.

1-142 FSCK(C)

Although checking a raw device is almost always faster, there is
no way to tell if the file system is mounted. Cleaning a mounted
file system will almost certainly result in an inconsistent
super-block.

Warning: For a Microsoft XENIX 2.3 file system to be
properly supported under XENIX, it is necessary that f sck be
run on each 2. 3 file system to be mounted under the XENIX
kernel. For the root file system, "fsck -rr I dev /root" should
be run and for all other file systems "fsck I dev /??" on the
unmounted block device should be used.

FSCK(C) 1-143

GETOPT(C)

Name

getopt - Parses command options.

Syntax

Description

The getopt command is used to check and break up options in
command lines for parsing by shell procedures. Optstring is a
string of recognized option letters. If a letter is followed by a
colon, the option is expected to have an argument that may or
may not be separated from it by whitespace. The special option
-- is used to delimit the end of the options. The getopt command
will place -- in the arguments at the end of the options, or
recognize it if used explicitly. The shell arguments ($1 $2 ...)
are reset so that each option is preceded by a dash (-) and in its
own shell argument; each option argument is also in its own shell
argument.

1-144 GETOPT(C)

Example

The following code fragment shows how one can process the
arguments for a command that can take the options a and b, and
the option o, which requires an argument:

set - - Qgetopt abo: $*Q
if [$? != 0 J
then
echo $USAGE
exit 2
f i
for i in $*
do
case $i in
-a I -b) FLAG=$i; shift;;
-o) OARG=$2; shift; shift;;
- -)
esac
done

shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file fi l e
cmd -oarg -a file file
cmd -a -oarg - - file file

See Also

sh(C)

Diagnostics

The getopt command prints an error message on the standard
error when it encounters an option letter not included in optstring.

GETOPT(C) 1-145

GREP(C)

Name

grep, egrep, fgrep - Searches a file for a pattern.

Syntax

Description

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each line
found is copied to the standard output. The grep patterns are
limited regular expressions in the style of ed(C); it uses a compact
nondeterministic algorithm. The egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes
needs exponential space. The f grep patterns are fixed strings; it is
fast and compact. The following options are recognized:

-v Prints all lines but those matching.

-x Prints only exact matches of an entire line (fgrep only) .

-c Prints only a count of matching lines.

-1 Lists only the names of files with matching lines, separated
by newlines.

-h Prevents appending the name of the file with the matching
line to the matching line. Used when searching multiple
files.

-n Precedes each line by its relative line number in the file.

1-146 GREP(C)

-b Precedes each line by the block number on which it was
found. This is sometimes useful in locating disk block
numbers by context.

-s Suppresses error messages produced for nonexistent or
unreadable files (grep only).

-y Turns on matching of letters of either case in the input so
that case is insignificant. Does not work for egrep.

-e expression Same as a simple expression argument, but useful
when the expression begins with a dash (-).

-f file The regular expression for grep or egrep, or strings list (for
fgrep) is taken from the file.

In all cases, the filename is output if there is more than one input
file. Care should be taken when using the characters $, *, [, " ,
I , (,),and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression argument in
single quotation marks.

The f grep command searches for lines that contain one of the
strings separated by newlines.

The egrep command accepts regular expressions as in ed(C),
except for \ (and \) , with the addition of the following:

• A regular expression followed by a plus sign (+) matches one
or more occurrences of the regular expression.

• A regular expression followed by a question mark (?)
matches 0 or 1 occurrences of the regular expression.

• Two regular expressions separated by a vertical bar (I) or by
a newline match strings that are matched by either regular
expression.

• A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is[], then*?+, then
concatenation, then the backslash (\) and the newline.

GREP(C) 1-147

See Also

ed(C), sed(C) , sh(C)

Diagnostics

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Comments

Ideally there should be only one grep, but there isn't a single
algorithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

The egrep command does not recognize ranges, such as [a-z], in
character classes.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

Multiple strings can be specified in f grep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the single string argument. For example, you might
type the following at the command line:

fgrep 'stringl
string2
string3' text.file

Similarly, multiple strings can be specified in egrep by doing:

egrep 'stringllstring2lstring3 ' tex+.file

Thus egrep can do almost anything that grep and fgrep can do.

1-148 GREP(C)

GRPCHECK(C)

Name

grpcheck - Checks group file.

Syntax

Description

The grpcheck command verifies all entries in the group file. This
verification includes a check of the number of fields, group name,
group ID, and whether all login names appear in the password
file. The default group file is I etc/ group.

Files

/etc/group
/etc/passwd

See Also

pwcheck(C), group(M), passwd(M)

Diagnostics

Group entries in I etc/ group with no login names are flagged.

GRPCHECK(C) 1-149

HALTSYS(C)

Name

haltsys - Closes out the file systems and halts the system.

Syntax

Description

The haltsys command does a shutdn() system call to flush out
pending disk 1/0, mark the file systems clean, and halt the
processor. The haltsys command takes effect immediately, so user
processes should be terminated beforehand. The shutdown(C) is
recommended for normal system termination; it warns the users,
performs system house cleaning, and calls haltsys. Use haltsys
directly only if some system problem prevents the running of
shutdown.

See Also

shutdown(C)

1-150 HAL TSYS(C)

HD(C)

Name

hd - Displays files in hexadecimal format.

Syntax

Description

The hd command displays the contents of files in hexadecimal,
octal, decimal, and character formats. Control over the
specification of ranges of characters is also available. The default
behavior is with the following flags set: "-abx -A". This says that
addresses (file offsets) and bytes are printed in hexadecimal and
that characters are also printed. If no file argument is given, the
standard input is read.

Options include:

-s offset Specify the beginning offset in the file where
printing is to begin. If no file argument is given,
or if a seek fails because the input is a pipe, offset
bytes are read from the input and discarded.
Otherwise, a seek error will terminate processing
of the current file.

The offset may be given in decimal, hexadecimal
(preceded by 'Ox'), or octal (preceded by a '0').
It is optionally followed by one of the following
multipliers: w, I, b, or k; for words (2 bytes), long
words (4 bytes), blocks (512 bytes), or KB
(1024 bytes). This is the one case where "b"
does not stand for bytes. Because specifying a
hexadecimal offset in blocks would result in an
ambiguous trailing b, any offset and multiplier
may be separated by an asterisk (*).

HD(C) 1-151

-n count

Format Flags

Specify the number of bytes to process. The
count is in the same format as offset, above.

Format flags may specify addresses, characters, bytes, words (2
bytes) or longs (4 bytes) to be printed in hexadecimal, decimal, or
octal. Two special formats may also be indicated: text or ASCII.
Format and base specifiers may be freely combined and repeated
as desired to specify different bases (hexadecimal, decimal or
octal) for different output formats (such as addresses and
characters). All format flags appearing in a single argument are
applied as appropriate to all other flags in that argument.

acbwlA
Output format specifiers for addresses, characters, bytes,
words, long words and ASCII respectively. Only one base
specifier is be used for addresses; the address appears on
the first line of output that begins each new off set in the
input.

The character format prints printable characters unchanged,
special C escapes as defined in the language, and the
remaining values in the specified base.

The ASCII format prints all printable characters unchanged,
and all others as a period (.) . This format appears to the
right of the first of other specified output formats. A base
specifier has no meaning with the ASCII format. If no
other output format (other than addresses) is given, bx is
assumed. If no base specifier is given, all of xdo are used.

xdo Output base specifiers for hexadecimal, decimal and octal.
If no format specifier is given, all of acbwl are used.

1-152 HD(C)

t Print a text file, each line preceded by the address in the
file. Normally, lines should be terminated by a \n
character; but long lines are broken up. Control characters
in the range OxOO to Ox 1 f are printed as 'A @' to 'A '.

Bytes with the high bit set are preceded by a tilde ("') and
printed as if the high bit were not set. The special
characters ("' A \) are preceded by a backslash (\) to
escape their special meaning. As special cases, two values
are represented numerically as \ 1 77 and \ 3 77. This flag
overrides all output format specifiers except addresses.

HD(C) 1-153

HEAD(C)

Name

head - Prints the first few lines of a stream.

Syntax

Description

This filter prints the first count lines of each of the specified files.
If no files are specified, head reads from the standard input. If no
count is specified, then 10 lines are printed.

See Also

tail(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

1-154 HEAD(C)

ID(C)
Name

id - Prints user and group IDs and names.

Syntax

id

Description

The id command writes a message on the standard output giving
the user and group IDs and the corresponding names of the
invoking process. If the effective and real IDs do not match, both
are printed.

See Also

logname(C)

ID(C) 1-155

INSTALL(C)

Name

install - Install commands.

Syntax

Description

The install command is most commonly used in "makefiles" to
install a file (updated target file) in a specific place within a file
system. Each file is installed by copying it into the appropriate
directory, thereby retaining the mode and owner of the original
command file. The program prints messages telling the user
exactly what files it is replacing or creating and where they are
going.

If no options or directories (dirx . . .) are given, install searches
(using find (C)) a set of default directories (/bin, / usr/bin, /etc,
/ lib, and /usr/ lib, in that order) for a file with the same name as
file. When the first occurrence is found, install issues a message
saying that it is overwriting that file with file, and proceeds to do
so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx . . .) are specified after file,
those directories are searched before the directories specified in
the default list.

The meanings of the options are:

-c dira Installs a new command file in the directory specified
in dira. Looks for file in dira and installs it there if it is
not found. If it is found, install issues a message
saying that the file already exists, and exits without
overwriting it. May be used alone or with the -s
option.

1-156 INSTALL

-f dirb

-i

-n dire

-o

-s

See Also

find(C)

Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If the
file already exists, the mode and owner will be that of
the already existing file. May be used alone or with
the -o or -s options.

Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone
or with any other options except -c and -f.

If file is not found in any of the searched directories,
it put in the directory specified in dire. The mode and
owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options except -c and -f.

If file is found, this option saves the "found" file by
copying it to OLDfile in the directory in which it was
found. May be used alone or with any other options
except -c.

Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

INSTALL 1-157

JOIN(C)
Name

join - Joins two relations.

Syntax

Description

The join command forms, on the standard output, a join of the
two relations specified by the lines of file 1 and file2. If file 1 is a
dash(-), the standard input is used.

File 1 and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, normally
the first in each line.

There is one line in the output for each pair of lines in file 1 and
file2 that have identical join fields. The output line normally
consists of the common field, then the rest of the line from file 1,
then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this
case, multiple separators count as one, and leading separators are
discarded.

1-158 JOIN(C)

These options are recognized:

-an

-es

-jn m

In addition to the normal output, produces a line for
each unpairable line in file n, where n is 1 or 2.

Replaces empty output fields by string s.

Joins on the mth field of file n. If n is missing, uses

the m th field in each file.

-o list Each output line makes up the fields specified in list,
each element of which has the form n.m, where n is a
file number and m is a field number.

-tc Uses character c as a separator (tab character). Every
appearance of c in a line is significant.

See Also

awk(C), comm(C), sort(C)

Comment

With default field separation, the collating sequence is that of sort
-b; with -t, the sequence is that of a plain sort.

JOIN(C) 1-159

KILL(C)

Name

kill - Terminates a process.

Syntax

kill [-signo] processid . . .

Description

The kill command sends signal 15 (terminate) to the specified
processes. This normally kills processes that do not catch or
ignore the signal. The process number of each asynchronous
process started with & is reported by the shell (unless more than
one process is started in a pipeline, in which case the number of
the last process in the pipeline is reported). Process numbers can
also be found by using ps(C).

For example, if process number 0 is specified, all processes in the
process group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number (signo) preceded by - is given as the first
argument, that signal is sent instead of the terminate signal. In
particular, "kill -9 . . . " is a sure kill.

See Also

ps(C), sh(C)

1-160 KILL(C)

LC(C)

Name

le - Lists directory contents in columns.

Syntax

Description

The le command lists the contents of files and directories, in
columns. If name is a directory name, le lists the contents of the
directory; if name is a filename, le repeats the filename and any
other information requested. Output is given in columns and
sorted alphabetically. If no argument is given, the current
directory is listed. If several arguments are given, they are sorted
alphabetically, but file arguments appear before directories.

Files that are not the contents of a directory being interpreted are
always sorted across the page rather than down the page in
columns.

A stream output format is available in which files are listed across
the page, separated by commas. The -m option enables this
format.

The options are:

-1 Forces an output format with one entry per line.

-A Displays all files, including " .. " and those that begin with ". ",
unless the user is super-user. If the super-user gives this
option, " .. " and filenames that begin with "." are not
displayed.

-C Forces columnar output.

LC(C) 1-161

-F Causes directories to be marked with a trailing "/" and
executable files to be marked with a trailing"*".

This is the default if the last character of the name the
program is invoked with is an "f".

-R Recursively lists subdirectories.

-a Lists all entries; usually " . " and " .. " are suppressed.

-b Forces printing of nongraphic characters in the \ ddd
notation, in octal.

-c Sorts by time of file creation.

-d If the argument is a directory, lists only its name, not its
contents (mostly used with -1 to get status on directory).

-f Forces each argument to be interpreted as a directory and
lists the name found in each slot. This option turns off -1, -t,
-s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

-g The same as -1, except that the owner is not printed.

-i Prints inode number in first column of the report for each file
listed.

-1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file. If the file is a special file, instead, the size field contains
the major and minor device numbers.

-m Forces stream output format.

-n The same as -1 switch, but the owner's user ID appears
instead of the owner's name. If used with the -g switch, the
owner's group ID appears instead of the group name.

-o The same as -1, except that the group is not printed.

1-162 LC(C)

-q Forces printing of nongraphic characters in filenames as the
character "?".

-r Reverses the order of sort to get reverse alphabetic or oldest
first as appropriate.

-s Gives size in 512-byte blocks, including indirect blocks for
each entry.

-t Sorts by time modified (latest first) instead of by name, as is
normal.

-u Uses time of last access instead of last modification for
sorting (-t) or printing (-1).

-x Forces columnar printing to be sorted across rather than
down the page.

The mode printed under the -I option contains 11 characters. The
first character is:

If the entry is a plain file.
d If the entry is a directory.
b If the entry is a block-type special file.
c If the entry is a character-type special file.
p If the entry is a named pipe.
s If the entry is a semaphore.
m If the entry is shared data (memory).

The next 9 characters are interpreted as three sets of 3 bits each.
The first set refers to owner permissions; the next to permissions
to others in the same user-group; and the last to all others.
Within each set the 3 characters indicate permission respectively
to read, to write, or to execute the file as a program. For a
directory, "execute" permission is interpreted to mean permission
to search the directory for a specified file .

LC(C) 1-163

The permissions are indicated as follows:

r If the file is readable.
w If the file is writable.
x If the file is executable.

If the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission
character is given ass if the file has set-user-ID mode.

The last character of the mode (normally "x" or"-") is t if the
1000 bit of the mode is on. See chmod(C) for the meaning of this
mode.

When the sizes of the files in a directory are listed, a total count
of blocks, including indirect blocks, is printed.

Files

I etc/ passwd
/etc/group

Credit

To get user IDs for le-I
To get group IDs for lc-g

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

Newline and tab are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

Column width choices are poor for terminals that can tab.

1-164 LC(C)

LINE(C)

Name

line - Copies one line.

Syntax

line

Description

The line command copies one line (up to a newline) from the
standard input and writes it on the standard output. It returns an
exit code of 1 on end-of-file and always prints at least a newline.
It is often used within shell files to read from the user's terminal.

See Also

sh(C)

LINE(C) 1-165

LN(C)

Name

ln - Makes a link to a file.

Syntax

Description

A link is a directory entry referring to a file; the same file
(together with its size, all its protection information, etc.) may
have several links to it. There is no way to distinguish a link to a
file from its original directory entry. Any changes to the file are
effective independent of the name by which the file is known.

The In command creates a link to the existing file name I. The
name2 argument is a new name referring to the same file contents
as name].

It is not allowed to link to a directory or to link across file
systems.

See Also

cp(C), mv(C), rm(C)

1-166 LN(C

LOGNAME(C)

Name

logname - Gets login name.

Syntax

Description

The logname command returns the current login name for the
user.

Files

/etc/utmp

See Also

env(C), login(M), environ(M)

LOGNAME(C) 1-167

LOOK(C)

Name

look - Finds lines in a sorted list.

Syntax

lo()k [-df] string [file]

Description

The look command consults a sorted file and prints all lines that
begin with string. It uses binary search.

The options d and f affect comparisons as in sort(C):

-d Dictionary order: only letters, digits, tabs and blanks
participate in comparisons.

-f Fold. Uppercase letters compare equal to lowercase.

If no file is specified, /usr/dict/words is assumed with collating
sequence -df.

File

usr I diet I words

See Also

sort(C), grep(C)

1-168 LOOK(C)

LPR(C)

Name

lpr - Sends files to the line printer queue for printing.

Syntax
. ·: - ' ~

lpr[option. ~ . . ·] ·[na/ne]

Description

The lpr command causes the named files to be queued for printing
on a line printer. If no names appear, the standard input is
assumed; thus lpr may be used as a filter.

The following options may be given (each as a separate argument
and in any order) before any filename arguments:

-c Makes a copy of the file and prints the copy and not the
original. Normally files are linked whenever possible.

-r Removes the file after sending it.

-m When printing is complete, reports that fact by mail(C).

-n Does not report the completion of printing by mail(C). This
is the default option.

LPR(C) 1-169

The file I etc/ default/lpd contains the setting of the variable
BANNERS, which contains the number of pages printed as a
banner identifying each printout. This is normally set to either 1
or 2.

Files

/etc/passwd
I usr /lib /lpd
I usr I spool/lpd/ *
I etc/ default/lpd

See Also

banner(C)

Comment

User's identification and accounting data.
Line printer daemon.
Spool area.
Contains BANNERS default setting.

Once a file has been queued for printing, it should not be changed
or deleted until printing is complete. If you want to alter the
contents of the file or to remove the file immediately, use the -c
option to force lpr to make its own copy of the file.

1-170 LPR(C)

LS(C)

Name

ls - Gives information about contents of directories.

Syntax

Is [-logtasdrucif] names

Description

For each directory named, Is lists the contents of that directory;
for each file named, ls repeats its name and any other information
requested. By default, the output is sorted alphabetically. When
no argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately,
but file arguments are processed before directories and their
contents. There are several options:

-1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file (see below). If the file is a special file, the size field will
contain the major and minor device numbers, rather than a
size.

-o The same as -I except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-t Sorts by time of last modification (latest first) instead of by
name.

-a Lists all entries; in the absence of this option, entries whose
names begin with a period (.) are not listed.

-s Gives size in 512-byte blocks, including indirect blocks for
each entry.

-d If argument is a directory, lists only its name; often used with
-1 to get the status of a directory.

LS(C) 1-171

-r Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

-u Uses time of last access instead of last modification for
sorting (with the -t option) and/or printing (with the -1
option).

-c Uses time of last modification of the inode (mode, etc.)
instead of last modification of the file for sorting (-t) and/ or
printing (-1).

-i For each file, prints the inode number in the first column of
the report.

-f Forces each argument to be interpreted as a directory and
lists the name found in each slot. This option turns off -1, -t,
-s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

The mode printed under the -1 option consists of 11 characters.
The first character is:

If the entry is an ordinary file.
d If the entry is a directory.
b If the entry is a block special file.
c If the entry is a character special file.
p If the entry is a named pipe.
s If the entry is a semaphore.
m If the entry is shared data (memory).

The next 9 characters are interpreted as three sets of 3 bits each.
The first set refers to owner permissions; the next to permissions
to others in the same user-group; and the last to all others.
Within each set the 3 characters indicate permission respectively
to read, to write, or to execute the file as a program. For a
directory, "execute" permission is interpreted to mean permission
to search the directory for a specified file. The permissions are
indicated as follows:

r If the file is readable.
w If the file is writable.
x If the file is executable.

If the indicated permission is not granted.

1-172 LS(C)

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission
character is given ass if the file has set-user-ID mode.

The last character of the mode (normally "x" or"-") is t if the
1000 bit of the mode is on. See chmod(C) for the meaning of this
mode. The indications of set-ID and 1000 bit of the mode are
capitalized if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count
of blocks including indirect blocks is printed.

Files

I etc/passwd
/etc/group

See Also

Gets user IDs for ls -1 and ls -o
Gets group IDs for ls -1 and ls -g

chmod(C), find(C), Ic(C)

Comment

Newline and tab are considered printing characters in filenames.

LS(C) 1-173

MAIL(C)

Name

mail - Sends, reads, or disposes of mail.

Syntax

Description

The mail processing system supports composing of messages, and
sending and receiving mail between multiple users. When sending
mail, a user is the name of a user or of an alias assigned to a
machine or to a group of users.

Options include:

-u user

-f mailbox

-e

-R

-i

Tells mail to read the system mailbox belonging to
the specified user.

Tells mail to read the specified mailbox instead of
the default user's system mailbox.

Allows escapes from compose mode when input
comes from a file.

Makes the mail session "read-only" by preventing
alteration of the mailbox being read. Useful when
accessing system-wide mailboxes.

Tells mail to ignore Interrupts (Del) sent from the
terminal. This is useful when reading or sending
mail over telephone lines where "noise" may
produce unwanted Interrupts.

1-174 MAIL(C)

-s subject Specifies subject as the text of the subject: field for
the message being sent.

Sending mail

To send a message to one or more other people, invoke mail with
arguments that are the names of people to send to. You are then
expected to type in your message, followed by a Ctrl-D at the
beginning of a line.

Reading Mail

To read mail, invoke mail with no arguments. This checks your
mail out of the system-wide directory so that you can read and
dispose of the messages sent to you. A message header is printed
out for each message in your mailbox The current message is
initially the last numbered message and can be printed using the
print command (which can be abbreviated p). You can move
among the messages much as you move between lines in ed, with
the commands + and - moving backward and forward, and simple
numbers typing the addressed message.

If new mail arrives during the mail session you can read in the
new messages with the restart command.

Disposing of Mail

After examining a message you can delete (d) the message or
reply (r) to it. Deletion causes the mail program to forget about
the message. This is not irreversible, the message can be
undeleted (u) by giving its number, or the mail session can be
ended by giving the exit (x) command. If you leave mail with the
quit (q) command, your deleted messages cannot be recovered.

Specifying Messages

Commands such as print and delete of ten can be given a list of
message numbers as arguments to apply to a number of messages
at once. Thus "delete 1 2" deletes messages 1 and 2, while
"delete 1-5" deletes messages 1 through 5. The special name*
addresses all messages, and $ addresses the last message; thus the
command top, which prints the first few lines of a message, could
be used in top * to print the first few lines of all messages.

MAIL(C) 1-175

Replying to or Originating Mail

You can use the reply command to set up a response to a message,
sending it back to the person who it was from. Text you then
type in, up to a Ctrl-D, defines the contents of the message.
While you are composing a message, mail treats lines beginning
with a tilde (,...,) as special. For instance, typing ""'m" (alone on a
line) places a copy of the current message into the response,
shifting it right by one tabstop. Other escapes set up subject
fields, add and delete recipients to the message, and allow you to
escape to an editor to revise the message or to a shell to run some
commands. (These options are in the summary below.)

Ending a Mail Session

You can end a mail session with the quit (q) command. Messages
can be put in your mbox file with the mbox (mb) command. If a
message is not deleted or mailboxed, it will go back to the post
office (/usr/spool/mail/yourname). The -f option causes mail to
read in the contents of your mbox (or the specified file) for
processing; when you quit, mail writes undeleted messages back to
this file. The -i option causes mail to ignore Interrupts (Del).

Using Aliases and Distribution Lists

It is possible to create personal distribution lists so that, for
instance, you can send mail to cohorts and have it go to a group
of people. Such lists can be defined by placing a line like:

alias cohorts ron bob barry bobo betty beth bobbi

in the file . mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mail.
System-wide distribution lists can be created by editing
/usr/lib/mail/aliases (see aliases(M)); these are kept in a slightly
different syntax. In mail you send, personal aliases are expanded
in mail sent to others so that they will be able to reply to the
recipients. System wide aliases are not expanded when the mail is
sent, but any reply returned to the machine will have the
system-wide alias expanded.

1-176 MAIL(C)

The mail command has a number of options that can be set in the
. mailrc file to alter its behavior; for example, set askcc enables the
askcc feature. (These options are summarized below.)

Summary

Each mail command is typed on a line by itself, and may take
arguments following the command word. The command need not
be typed in its entirety - the first command that matches the
typed prefix is used. For the commands that take message lists as
arguments, if no message list is given, the next message forward
that satisfies the command's requirements is used. If there are no
messages forward of the current message, the search proceeds
backward, and if there are no good messages at all, mail types
"No applicable messages" and ends the command.

+

Enter

?

$

alias

Goes to the previous message and prints it out. If
given a numeric argument n, goes to the nth
previous message and prints it.

Goes to the next message and prints it out. If
given a numeric argument n, goes to the nth next
message and prints it.

Goes to the next message and prints it out.

Prints a brief summary of commands.

Executes the shell command that follows.

Prints out the current message number.

Prints out the first message.

Prints out the last message.

(a) With no arguments, prints out all
currently-defined aliases. With one argument,
prints out that alias. With more than one
argument, adds the users named in the second and
later arguments to the alias named in the first
argument.

MAIL(C) 1-177

cd

delete

dp

echo path

edit

exit

file

forward

Forward

headers

(c) Changes the user's working directory to that
specified. If no directory is given, changes to the
user's login directory.

(d) Takes a list of messages as an argument and
marks them all as deleted. Deleted messages are
not retained in the system mailbox after a quit, nor
are they available to any command other than the
undelete command.

Deletes the current message and prints the next
message. If there is no next message, mail says
"No more messages".

Expands shell metacharacters.

(e) Takes a list of messages and points the text
editor at each one in turn. On return from the
editor, the message is read back in.

(x) Effects an immediate return to the shell
without modifying the user's system mailbox, his
mbox file, or his edit file in -f.

(fi) Prints the name of the file mail is reading. If it
is a mailbox the name of the owner is returned.

(f) Forwards the current message to the named
users. Current message is indented within
forwarded message.

(F) Forwards the current message to the named
users. Current message is not indented within
forwarded message.

(h) Lists the current range of headers, which is an
18-message group. If a + argument is given, the
next 18-message group is printed, and if a -
argument is given, the previous 18-message group
is printed. Both+ and - may take a number to
view a particular window. If a message list is
given, it prints the specified headers.

1-178 MAIL(C)

hold

list

lpr

mail

mbox

(ho) Takes a message list and marks each message
therein to be saved in the user's system mailbox
instead of in mbox. Use only when the switch
autombox is set. Does not override the delete
command.

Prints list of mail commands.

(I) Prints out each message in a message-list on the
line printer.

(m) Takes as argument login names and
distribution group names and sends mail to those
people.

(mb) Marks messages in a message list so that they
are saved in the user mailbox after leaving mail.

move mesg-list mesg-num

next

print

quit

Places the messages specified in mesg-list after the
message specified in mesg-num. If mesg-num is 0,
mesg-list moves to the top of the mailbox.

(n) Like + or Enter goes to the next message in
sequence and prints it. With an argument list,
types the next matching message.

(p) Prints out each message in a message list on
the terminal display.

(q) Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and
removing all other messages. Files marked with a
asterisk (*) are saved; files marked with an "M"
are saved in the user mailbox. If new mail has
arrived during the session, the message "New mail
has arrived -- type 'restart' to read." is given. If
given while editing a mailbox file with the -f flag,
the edit file is rewritten. The user returns to the
shell, unless the rewrite of edit file fails, in which
case the user can escape with the exit command.

MAIL(C) 1-179

reply

Reply

restart

save

set

shell

size

source

(r) Takes a message list and sends mail to each
message author. The default message must not be
deleted.

(R) Takes a message list and sends mail to each
message author and each member of the message
list in the cc field, just like the mail command. The
default message must not be deleted.

Reads in messages that arrived during the current
mail session.

(s) Takes a message list and a filename and
appends each message in turn to the end of the
file. The filename in quotes, followed by the line
count and character count is echoed on the user's
terminal.

(se) With no arguments, prints all variable values.
Otherwise, sets option. Arguments are of the form
option= value or option.

(sh) Invokes an interactive version of the shell.

(si) Takes a message list and prints out the size, in
characters, of each message.

(so) Reads mail commands from the file given as
its only argument.

string string mesg-list

top

undelete

Searches for string in mesg-list. If no mesg-list is
specified, all undeleted messages are searched.
Case is ignored in search.

(t) Takes a message list and prints the top few
lines of each. The number of lines printed is
controlled by the variable toplines and defaults to
six.

(u) Takes a message list and marks each one as not
being deleted.

1-180 MAIL(C)

unset

visual

write filename

(uns) Takes a list of option names and discards
their remembered values; the inverse of set.

(v) Takes a message list and invokes the visual
editor on each message.

(w) Saves the body of the message in the named
file.

Here is a summary of the compose escapes, which are used when
composing messages to perform special functions. Compose
escapes are only recognized at the beginning of lines.

+ "'"' string

+"'! cmd

+"' I cmd

Inserts the string of text in the message prefaced
by a single tilde ("'). If you have changed the
escape character, then you should double that
character instead.

Prints out help for compose escapes.

Same as Ctrl-D on a new line.

Executes the indicated shell command, then
returns to the message.

Pipes the message through the command as a
filter. If the command gives no output or
terminates abnormally, retains the original text of
the message.

+"' mail-command
Executes a mail command, then returns to
compose mode.

+"':mail-command

+"'alias

Executes a mail command, then returns to
compose mode.

Prints list of private aliases.

+"'alias aliasname
Prints names included in private aliasname.

MAIL(C) 1-181

+"'Alias Prints list of private, then system-wide aliases for
all users named in the current To, CC and Bee lists.

+"'Alias users Prints list of private, then system-wide aliases for
users.

+"'b name ...

+"'c name ...

Adds the given names to the list of blind copy
recipients.

Adds the given names to the list of carbon copy
recipients.

+"'cc name . ..

+ "'m mesg-list

+ "'M mesg-list

+"'P

Same as "'C above.

Reads the file dead. letter from your home directory
into the message.

Invokes the text editor on the message collected so
far. After the editing session is finished, you may
continue appending text to the message.

Edits the message header fields by typing each one
in turn and allowing the user to append text to the
end or modify the field with the current terminal
erase and kill characters.

Reads the named messages into the message
buffer, shifted right one tab. If no messages are
specified, reads the current message.

Reads the named messages into the message
buffer, shifted right one tab. If no messages are
specified, reads the current message.

Prints out the messages collected so far, prefaced
by the message header fields.

1-182 MAIL(C)

Aborts the message being sent, copying the
message to dead. letter in your home directory if
save is set.

+ "'r filename Reads the named file into the message buffer.

+"'Return name

+ "'S string

Adds the given names to the Return-receipt-to
field.

Causes the named string to become the current
subject field.

+ "'t name . . . Adds the given names to the direct recipient list.

+"'v Invokes a visual editor (defined by the VISUAL
option) on the message buffer. After you quit the
editor, you may resume appending text to the end
of your message.

+ "'W filename Writes the message to the named file.

Options are controlled with the set and unset commands. An
option may be either a switch, in which case it is either on or off,
or a string, in which case the actual value is of interest. The
switch options include the following:

ask cc

asksubject

autombox

auto print

Causes you to be prompted for additional copy
recipients at the end of each message. Responding
with a newline indicates your satisfaction with the
current list.

Causes mail to prompt you for the subject of each
message you send. If you respond with simply a
newline, no subject field is sent.

Causes all examined messages to be saved in the
user mailbox unless deleted or saved.

Causes the delete command to behave like dp.
After deleting a message, the next one will be
typed automatically.

MAIL(C) 1-183

chron

dot

ignore

mchron

me too

nosave

quiet

Causes messages to be displayed in chronological
order.

Permits use of dot (.) as the end of file character
when composing messages.

Causes Interrupt (Del) signals from your terminal
to be ignored and echoed as at-signs(@).

Causes messages to be listed in numerical order
(most recently received first), but displayed in
chronological order.

Usually, when a group that contains the sender is
expanded, the sender is removed from the
expansion. Setting this option causes the sender to
be included in the group.

Prevents aborted messages from being appended
to the file dead.letter in your home directory on
receipt of two Interrupts (Deis) (or a ,..., q) .

Suppresses the printing of the version header when
first invoked.

The following options have string values:

EDITOR

SHELL

VISUAL

escape

Path name of the text editor to use in the edit
command and "'e escape. If not defined, a default
editor is used.

Path name of the shell to use in the ! command
and the "'! escape. A default shell is used if this
option is not defined.

Path name of the text editor to use in the visual
command and "'V escape.

If defined, the first character of this option gives
the character to use in the place of the tilde ("') to
denote escapes.

1-184 MAIL(C)

page=n Specifies the number of lines (n) to be printed in a
"page" of text when displaying messages.

record If defined, gives the path name of the file used to
record all outgoing mail. If not defined, outgoing
mail is not saved.

toplines If defined, gives the number of lines of a message
to be printed out with the top command; normally,
the first six lines are printed.

Files

I usr I spool/ mail/*
I usr I name/ dead.letter

/usr/name/ mbox
I usr I name/ .mailrc
I usr /lib I mail/ aliases
I usr /lib I mail/ aliases.hash
I usr /lib I mail/ f aliases

I usr I lib I mail I maliases
I usr /lib I mail/ mailhelp.cmd
I usr / lib I mail/ mailhelp.esc
I usr / lib I mail/ mailhelp.set
I usr /lib I mail/ mailrc
I usr /bin/ mail

See Also

System mailboxes.
File where undeliverable mail is
deposited.
Your old mail.
File giving initial mail commands.
System-wide aliases.
System-wide alias database.
Forwarding aliases for the local
machine.
Machine aliases.
Help file.
Help file.
Help file.
System initialization file.
The mail command.

aliases(M), aliashash(M), netutil(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

MAIL(C) 1-185

MESG(C)

Name

mesg - Permits or denies messages sent to a terminal.

Syntax

mesg. [n] [y]

Description

The mesg command with argument n prevents messages via
write(C) by revoking nonuser write permission on the user's
terminal. The mesg command with argument y reinstates
permission. By itself, mesg reports the current state without
changing it.

File

/dev/tty*

See Also

write(C)

Diagnostics

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

1-186 MESG(C)

MKDIR(C)

Name

mkdir - Makes a directory.

Syntax

Description

The mkdir command creates directories. The standard entries
"dot" (.), for the directory itself, and "dot dot" (..), for its
parent, are made automatically.

The mkdir command requires write permission in the parent
directory. The permissions assigned to the new directory are
modified by the current file creation mask set by umask(C) .

See Also

rmdir(C), umask(C)

Diagnostics

The mkdir command returns exit code 0 if all directories were
successfully made; otherwise, it prints a diagnostic, and returns
nonzero.

MKDIR(C) 1-187

MKFS(C)

Name

mkf s - Constructs a file system.

Syntax

Description

The mkf s command constructs a file system by writing on the
special file according to the directions found in the remainder of
the command line.

If it appears that the special file contains a file system, operator
confirmation is requested before overwriting the data. The - y
"yes" option overrides this, and writes over any existing data
without question. The -n option causes mkfs to terminate without
question if the target contains an existing file system. The check
used is to read block one from the target device (block one is the
super-block) and see whether the bytes are the same. If they are
not, this is taken to be meaningful data and confirmation is
requested.

If the second argument is given as a string of digits, mkfs builds a
file system with a single empty directory on it. The size of the file
system is the value of blocks interpreted as a decimal number. The
boot program is left uninitialized. If the number of in odes is
specified, this number should be the same as the estimated
number of files in the file system. If the optional number of
inodes is not given, the number of inodes is calculated as a
function of the system file size.

1-188 MKFS(C)

If the second argument is a file name that can be opened, mkf s
assumes it to be a prototype file proto, and takes its directions
from that file. The prototype file contains tokens separated by
spaces or newlines. The first token is the name of a file to be
copied onto block zero as the bootstrap program. The bootstrap
program specified should already be stripped of the header. If the
header has not been stripped from the bootstrap program, mkf s
issues a warning. The second token is a number specifying the
size of the created file system. It will be the number of blocks on
the device, perhaps diminished by space for swapping. The next
token is the i-list size in blocks. The next set of tokens is the
specification for the root file. File specifications consist of tokens
giving the mode, the user ID, the group ID, and the initial
contents of the file. The syntax of the contents field depends on
the mode.

The mode token for a file is a 6-character string. The first
character specifies the type of the file . (The characters -bed
specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to
specify set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a three-digit octal
number giving the owner, group, and other read, write, execute
permissions (see chmod(C)).

Two decimal number tokens come after the mode; they specify
the user and group IDs of the owner of the file.

If the file is a regular file, the next token is a pathname from
which the contents and size are copied. If the file is a block or
character special file, two decimal number tokens follow that give
the major and minor device numbers. If the file is a directory,
mkf s makes the entries . and .. and (recursively) reads a list of
names and file specifications for the entries in the directory. The
scan is terminated with the token$.

MKFS(C) 1-189

A sample prototype specification follows:

/ stand / diskboot
4872 110
d--777 3 1
usr d--777 3 1

sh ---755 3 1 / bin / sh
ken d--755 6 1

$
bO b--644 3 1 0 0
co c--644 3 1 0 0
$

$

In both command syntaxes, the disk interleaving factors, gap and
blocks, can be specified. The interleaving factors are a function of
the disk hardware and are described in detail in the XENIX Basic
Operations-ffttide, and System Administration Manual Appendix A.

See Also

filesystem(F), dir(F)

Comment

There is no way to specify links when using a prototype file. If
the number of inodes is specified on the command line, the
maximum number of inodes in the file system is 65500.

1-190 MKFS(C)

MKNOD(C)

Name

mknod - Builds special files.

Syntax

/etc/mknod name [c][b] major minor

I etc/mknod name p

/etc/mknod names

/etc/mknodname m

Description

The mknod command makes a directory entry and corresponding
inode for a special file. The first argument is the name of the
entry. In the first case, the second argument is b if the special file
is block-type (disks, tape) or c if it is character-type (other
devices). The last two arguments are numbers specifying the
major device type and the minor device (for example, unit, drive,
or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each
system.

The mknod command can also be used to create named pipes with
the p option; semaphores with the s option; and shared data
(memory) with them option.

Only the super-user can use the first form of the syntax.

MKNOD(C) 1-191

MKUSER(C)

Name

mkuser - Adds a login ID to the system.

Syntax

I etc/mktlser

Description

The mkuser command is used to add more user login IDs to the
system. It is the preferred method for adding new users to the
system, because it handles all directory creation and password file
update. To add a new user to the system, mkuser requires four
pieces of information: the login name, the initial password, and an
optional comment string for the password file. It also allows the
new user to be assigned to a group if required, although in most
cases a default group is suitable. The program prompts for these
four items and validates the given data. The login name is
checked against certain criteria (that is, it must be at least three
characters and begin with a lowercase letter). The password must
follow standard XENIX conventions, see passwd(C). The
password file comment field can be up to 20 characters of
information.

The mkuser command takes some of its parameters from a default
file, I etc/ default/ mkuser. Currently the two settable options are
the path name for the login shell and the root path of home
directories. An example default file is:

HOME= / usr

This file can be edited (by the super-user) to change these
defaults. There are three other files in the directory
/usr/lib/mkuser which may also be altered to suit local options.
They are mkuser.help, which is the introductory explanation given
by mkuser on startup, mkuser.mail, which is the initial mail
message sent to new users, and mkuser.prof, the standard .profile
file given to new users.

1-192 MK USER(C)

The mkuser command allocates user IDs starting at 200, or the
largest number used in the password file. The default group ID
for new users is 50. The minimum group ID allowed for user
accounts is 50. The program prompts the operator for an optional
group specification. This can either be a numeric group ID, or a
group name. If the group exists, the user is added to it. If it does
not exist, a new entry in I etc/ group is created. A new group
cannot have a numeric ID less than 51. If a new group is to be
created, and the operator only specifies the group name, a free
group ID is assigned. Alternatively the operator can specify the
group ID too.

The mkuser command can only be executed by the super-user.

The minimum length of a legal password, and the minimum and
maximum number of weeks used in password aging are specified
in /etc/default/passwd by the variables PASSLENGTH,
MINWEEKS and MAXWEEKS. For example, these variables
might be set as follows:

PASSLENGTH=6

MINWEEKS=2

MAXWEEKS=6

Files

/etc/passwd
I usr I spool/ mail/ username
I etc/ default/ mkuser
I usr /lib I mkuser I mkuser.help
/usr/lib/mkuser/mkuser.prof
I usr /lib I mkuser I mkuser. mail

See Also

rmuser(C), passwd(C), pwadmin(C)

MK USER(C) 1-193

MORE(C)

Name

more - Views a file one screen full at a time.

Syntax

Description

This filter allows examination of continuous text, one screen full
at a time. It normally pauses after each screen full, printing
"--More--" at the bottom of the screen. If the user then types a
carriage return, one more line is displayed. If the user presses the
Space bar, another screen full is displayed. Other possibilities are
described below.

The command line options are:

-n An integer that is the size (in lines) of the window which
more will use instead of the default.

-c The more command draws each page by beginning at the
top of the screen and erasing each line just before it draws
on it. This avoids scrolling the screen, making it easier to
read while more is writing. This option is ignored if the
terminal does not have the ability to clear to the end of a
line.

-d The more command prompts with the message "Hit space to
continue, Rubout to abort" at the end of each screen full.
This is useful if more is being used as a filter in some setting,
such as a class, where many users may be unsophisticated.

1-194 MORE(C)

-f This option causes more to count logical, rather than screen
lines. That is, long lines are not folded. This option is
recommended when viewing output that contains
unprintable characters, for example, escape sequences.
Escape sequences contain characters that would ordinarily
occupy screen positions, but that do not print when they are
sent to the terminal as part of an escape sequence. Thus,
more may think that lines are longer than they actually are
and fold lines erroneously.

-1 Does not treat Ctrl-1 (form feed) specially. If this option is
not given, more pauses after any line that contains a Ctrl-1
as if the end of a screen full had been reached. Also, if a
file begins with a form feed, the screen is cleared before the
file is printed.

-s Squeezes multiple blank lines from the output, producing
only one blank line. This option maximizes the useful
information present on the screen.

-u Normally, more handles underlining in a manner appropriate
to the particular terminal; if the terminal can perform
underlining or has a standout mode, more outputs
appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source
file. The -u option suppresses this processing.

-r Normally, more ignores control characters that it does not
interpret in some way. The -r option causes these to be
displayed as "C where "C" stands for any such character.

-w Normally, more exits when it comes to the end of its input.
With -w however, more prompts and waits for any key to be
struck before exiting.

+linen umber
Starts up at linenumber

+/pattern
Starts up two lines before the line containing the regular

expression pattern

MORE(C) 1-195

The more command looks in the file I etc/termcap to determine
terminal characteristics and to determine the default window size.
On a terminal display capable of displaying 24 lines, the default
window size is 22 lines.

The more command looks in the environment variable MORE to
preset any flags desired. For example, if you prefer to view files
using the -c mode of operation, the shell command "MORE=-c"
in the .profile file causes all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is
displayed along with the "--More--" prompt. This gives the
fraction of the file (in characters, not lines) that has been read so
far.

Other sequences that may be typed when more pauses, and their
effects, are (i is an optional integer argument, defaulting to 1):

i<space> Displays i more lines, (or another screen full if no
argument is given).

Ctrl-D

d

iz

is

if

q orQ

=

v

h or?

Displays 11 more lines (a "scroll"). If i is given, the
scroll size is set to i.

Same as Ctrl-D.

Same as typing a space except that i, if present,
becomes the new window size.

Skips i lines and prints a screen full of lines.

Skips i screen fulls and prints a screen full of lines.

Exits from more.

Displays the current line number.

Starts up the screen editor vi at the current line.

Help command; gives a description of all the more
commands.

1-196 MORE(C)

i/expr

in

Searches for the ith occurrence of the regular
expression expr. If there are less than i occurrences of
expr, and the input is a file (rather than a pipe), the
position in the file remains unchanged. Otherwise, a
screen full is displayed, starting two lines before the
place where the expression was found. The user's
erase and kill characters may be used to edit the
regular expression. Erasing back past the first column
cancels the search command.

Searches for the ith occurrence of the last regular
expression entered.

(Single quotation mark) Goes to the point from which
the last search started. If no search has been
performed in the current file, this command goes back
to the beginning of the file.

!command Invokes a shell with command. The characters% and!
in "command" are replaced with the current filename
and the previous shell command respectively. If there
is no current filename, % is not expanded. The
sequences"\ 0/o" and"\!" are replaced by " 0/o" and
"!" respectively.

i:n

i:p

:f

:qor :Q

Skips to the ith next file given in the command line
(skips to last file if i doesn't make sense).

Skips to the ith previous file given in the command
line. If this command is given in the middle of
printing out a file, more goes back to the beginning of
the file. If i doesn't make sense, more skips back to
the first file. If more is not reading from a file, the
beep sounds and nothing else happens.

Displays the current filename and line number.

Exits from more (same as q or Q).

Repeats the previous command.

MORE(C) 1-197

The commands take effect immediately, that is, it is not necessary
to type a carriage return. Up to the time when the command
character itself is given;- the user may enter the line kill character
to cancel the numerical argument being formed. In addition, the
user may enter the erase character to redisplay the
"--More--(xx%)" message.

The terminal is set to noecho mode by this program so that the
output can be continuous. What you type will not show on your
terminal display, except for the slash(/) and exclamation(!)
commands.

If the standard output is not a teletype, more acts just like cat,
except that a header is printed before each file (if there is more
than one).

Files

/etc/termcap
I usr /lib I more.help

See Also

sh(C), environ(M)

Credit

Terminal data base.
Help file.

This utility was developed at the University of California at
Berkeley and is used with permission.

Comment

Before displaying a file, more attempts to detect whether it is a
nonprintable binary file such as a directory or executable binary
image. If more concludes that a file is unprintable, it rightly
refuses to print it. However, more cannot detect all possible kinds
of nonprintable files.

1-198 MORE(C)

MOUNT(C)

Name

mount - Mounts a file structure.

Syntax

/etc/mount [special-device directory [-r]]

I etc/umount special-device

Description

The mount command announces to the system that a removable
file structure is present on special-device. The file structure is
mounted on directory. The directory must already exist; it becomes
the name of the root of the newly mounted file structure.

The mount and umount commands maintain a table of mounted
devices. If invoked with no arguments, for each special device
mount prints the name of the device, the directory name of the
mounted file structure, whether the file structure is readonly, and
the date it was mounted.

The optional last argument indicates that the file is to be mounted
read-only. Physically write-protected files must be mounted in
this way or errors occur when access times are updated, whether
or not any explicit write is attempted.

The umount command removes the removable file structure
previously mounted on device special-device.

File

I etc/ mnttab Mount table

MOUNT(C) 1-199

See Also

umount(C), mnttab(F)

Diagnostics

The mount command issues a warning if the file structure to be
mounted is currently mounted under another name.

Busy file structures cannot be dismounted with umount. A file
structure is busy if it contains an open file or some user's working
directory.

Comments

Some degree of validation is done on the file structure; however it
is generally unwise to mount corrupt file structures.

Be aware that when in single-user mode, the commands that look
in I etc/mnttab for default arguments (for example df, ncheck,
quot, mount, and umount) give either incorrect results (because of
a corrupt /etc/mnttab from a nonshutdown stoppage) or no
results (because of an empty mnttab from a shutdown stoppage).

In multiuser mode, this is not a problem; I etc/re initializes
I etc/mnttab to contain only I dev /root and subsequent mounts
update it appropriately.

The mount(C) and umount(C) commands use a lock file to
guarantee exclusive access to I etc/mnttab , the commands which
just read it (those mentioned above) do not, so it is possible to hit
a window during which it is corrupt. This is not a problem in
practice because mount and umount are not frequent operations.

1-200 MOUNT(C)

MV(C)

mv - Moves or renames files and directories.

Syntax

The mv command file 1 file 2

mv file . .. directory

mv directory directory

Description

The mv command moves or changes the name of file I to file2.

If file2 already exists, it is erased before file 1 is moved. If file2

has a mode that prevents writing, mv prints the mode and reads
the standard input to obtain a line; if the line begins with y, the
move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory

with their original filenames.

In the third form, a directory can be renamed only.

The command mv refuses to move a file onto itself.

See Also

cp(C), copy(C)

Comment

If file 1 and file2 lie on different systems, mv must copy the file
and delete the original. In this case, the owner becomes that of
the copying process and any linking relationship with other files is
lost.

MV(C) 1-201

NCHECK(C)

Name

ncheck - Generates names from inode numbers.

Syntax

ncheck [-inumbersl[~a] [-s] ffilesystem]

Description

The ncheck command with no argument generates a path name vs.
inode number list of all files on the set of file systems specified in
/etc/mnttab. The two characters I. are appended to the names of
directory files. The -i option reduces the report to only those files
whose inode numbers follow. The -a option allows printing of the
names . and .. , which are ordinarily suppressed. The -s option
reduces the report to special files and files with set-user-ID mode;
it is intended to discover concealed violations of security policy.
A single fi/esystem may be specified rather than the default list of
mounted file systems.

1-202 NCHECK(C)

File

/etc/mnttab

See Also

fsck(C), sort(C)

Diagnostics

When the file system structure is improper,?? denotes the
"parent" of a parentless file and a pathname beginning with
denotes a loop.

Comment

See "Comments" under mount(C).

NCHECK(C) 1-203

NETUTIL(C)

Name

netutil - Administers the XENIX network.

Syntax

Description

The netutil command allows the user to create and maintain a
network of XENIX systems. A network is a linking over serial
lines of two or more XENIX systems. It is used to send mail
between systems with the mail(C) command, transfer files
between systems with the rcp(C) command, and execute
commands from a remote system with the remote(C) command.

The netutil command is used to create and distribute the data files
needed to implement the network. It is also used to start and stop
the network. The option argument may be any one of install, save,
restore, start, stop, or the numbers 1 through 5 respectively.

The install option interactively creates the data files needed to run
the network. The save option saves these files on diskettes,
allowing them to be distributed to the other systems in the
network. The restore option copies the data files from diskette
back to a system. The start option starts the network. The stop
option stops the network. An option may also be any decimal
digit in the range 1 to 5. If invoked without an option, the
command displays a menu from which to choose one. Once an
option is selected, it prompts for additional information if needed.

1-204 NETUTIL(C)

A network must be installed before it can be started. Installation
consists of creating appropriate configuration files with the install
option. This option requires the name of each machine in the
network, the serial lines to be used to connect the systems, the
speed of transmission for each line, qnd the names of the users on
each system. Once created, the files mµst be distributed to each
computer in the network with the save and restore options. The
network is started by using the start option on each system in the
network. Once the system starts, mail and remote commands can
be passed along the network. A record of the transmissions
between computers in a network can be kept in the network log
files.

File

I etc/ netutil

See Also

aliases(M), aliashash(M), mail(C), micnet(M), remote(C),
rcp(C), systemid(M), top(M), XENIX System Administration

NETUTIL(C) 1-205

NEWGRP(C)

Name

newgrp - Logs user in to a new group.

Syntax

Description

The newgrp command changes the group identification of its
caller. The same person remains logged in, and the current
directory is unchanged, but calculations of access permissions to
files are performed with respect to the new group ID.

The newgrp command without an argument changes the group
identification to the group in the password file; in effect, it
changes the group identification back to the caller's original group.

When most users log in, they are members of the group named
group.

Files

/etc/group

I etc/passwd

See Also

login(M), group(M)

1-206 NEWGRP(C)

NEWS(C)

Name

news - Print news items.

Syntax

news[-a] [-n] · [.:i.:sj [items]

Description

The news command is used to keep the user informed of current
events. By convention, these events are described by files in the
directory /usr /news.

When invoked without arguments, news prints the contents of all
current files in /usr /news, most recent first, with each preceded
by an appropriate header. The news command stores the
"currency" time as the modification date of a file named
.news time in the user's home directory (the identity of this
directory is determined by the environment variable $HOME);
only files more recent than this currency time are considered
"current."

The -a option causes news to print all items, regardless of
currency. In this case, the stored time is not changed.

The -n option causes news to report the names of the current
items without printing their contents, and without changing the
stored time.

NEWS(C) 1-207

The -s option causes news to report how many current items exist,
without printing their names or contents and without changing the
stored time.

All other arguments are assumed to be specific news items that
are to be printed.

If the Interrupt (Del) key is struck during the printing of a news
item, printing stops and the next item is started. Another
Interrupt (Del) within one second of the first causes the program
to terminate.

Files

/usr/news/*
$HOME/ .news_time

See Also

profile(M), environ(M)

1-208 NEWS(C)

NICE(C)

Name

nice - Runs a command at a different priority.

Syntax

Description

The nice command executes command with a lower CPU
scheduling priority. Priorities range from 0 to 39, where 0 is the
highest priority and 39 is the lowest. By default, commands have
a priority of 20. If an -increment argument is given where
increment is in the range 1-19, increment is added to the default
priority of 20 to produce a numerically higher priority, meaning a
lower scheduling priority. If no increment is given, an increment
of 10 to produce a priority of 30 is assumed.

The super-user may run commands with priority higher than
normal by using a double negative increment. For example, an
argument of --10 would decrement the default to produce a
priority of 10, which is a higher scheduling priority than the
default of 20.

NICE(C) 1-209

See Also

nohup(C)

Diagnostic

The nice command returns the exit status of the subject
command.

Comment

An increment larger than 19 is equivalent to 19.

1-210 NICE(C)

NL(C)

Name

nl - Adds line numbers to a file.

Syntax

Description

The nl command reads lines from the named file, or the standard
input if no file is named, and reproduces the lines on the standard
output. Lines are numbered on the left, according to the
command options in effect.

The nl command views the text it reads in terms of logical pages.
Line numbering is reset at the start of each logical page. A logical
page consists of a header, a body, and a footer section. Empty
sections are valid. Different line numbering options are
independently available for header, body, and footer (for
example, no numbering of header and footer lines, while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines
containing nothing but the following characters:

Page Section Line Contents

Header \:\:\:

Body \:\:

Footer \:

Unless signaled otherwise, nl assumes the text being read is in a
single logical page body.

NL(C) 1-211

Command options may appear in any order and may be
intermingled with an optional filename. Only one file may be
named. The options are:

-btype

-htype

-ftype

-vs tart#

-iincr

-p

-lnum

Specifies which logical page body lines are to be
numbered. Recognized types and their meaning are:
a, number all lines; t, number lines with printable
text only; n, no line numbering; pstring, number only
lines that contain the regular expression specified in
string. Default type for logical page body is t (text
lines numbered).

Same as -btype except for header. Default type for
logical page header is n (no lines numbered).

Same as -btype except for footer. Default type for
logical page footer is n (no lines numbered).

The start# is the initial value used to number logical
page lines. Default is 1.

The incr is the increment value used to number
logical page lines. Default is 1.

Does not restart numbering at logical page
delimiters.

The num is the number of blank lines to be
considered as one. For example, -12 results in only
the second adjacent blank being numbered (if the
appropriate -ha, -ha, and/ or -fa option is set).
Default is 1.

1-212 NL(C)

-ssep

-wwidth

-nformat

See Also

pr(C)

The sep is the character used in separating the line
number and the corresponding text line. Default sep
is a tab.

The width is the number of characters to be used for
the line number. Default width is 6.

The format is the line numbering format.
Recognized values are: In, left justified, leading
zeroes suppressed; m, right justified, leading zeroes
suppressed; rz, right justified, leading zeroes kept.
Default format ism (right justified).

NL(C) 1-213

NOHUP(C)

Name

nohup - Runs a command immune to hangups and quits.

Syntax

Description

The nohup command executes command with hangups and quits
ignored. If output is not redirected by the user, it will be sent to
nohup.out. If nohup.out is not writable in the current directory,
output is redirected to $HOME/nohup.out.

See Also

nice(C)

1-214 NOHUP(C)

OD(C)

Name

od - Displays files in octal format.

Syntax

od · c .:..b~dox] [lileJl [+]offset[.] [b]]

Description

The od command displays file in one or more formats as selected
by the first argument. If the first argument is missing, -o is
default. The meanings of the format options are:

-b Interprets bytes in octal.

-c Interprets bytes in ASCII. Certain non-graphic characters
appear as C escapes: null=\ .0, backspace=\ b , form
feed=\f, new line=\n, return=\r, tab=\t; others
appear as three-digit octal numbers.

-d Interprets words in decimal.

-o Interprets words in octal.

-x Interprets words in hexadecimal.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

OD(C) 1-215

The off set argument specifies the off set in the file where
displaying is to start. This argument is normally interpreted as
octal bytes. If. is appended, the offset is interpreted in decimal.
If b is appended, the offset is interpreted in blocks of 512 bytes.
If the file argument is omitted, the offset argument must be
preceded by +.

The display continues until end-of-file.

See Also

hd(C)

1-216 OD(C)

PACK(C)

Name

pack, peat, unpack - Compresses and expands files.

Syntax

Description

The pack command attempts to store the specified files in a
compressed form. Wherever possible (and useful), each input file
name is replaced by a packed file name.z with the same access
modes, access and modified dates, and owner as those of name. If
pack is successful, name is removed. Packed files can be restored
to their original form using unpack or peat.

The pack command uses Huffman (minimum redundancy) codes
on a byte-by-byte basis. If the - argument is used, an internal
flag is set that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on the
standard output. Additional occurrences of - in place of name
cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the
character frequency distribution is very skewed, which may occur
with printer plots or graphics.

PACK(C) 1-217

Text files are reduced to 60-7 5 % of their original size. Load
modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

The pack command returns a value that is the number of files that
it failed to compress.

No packing occurs if:

• The file appears to be already packed.

• The filename has more than 12 characters.

• The file has links.

• The file is a directory.

• The file cannot be opened.

• No disk storage blocks are saved by packing.

• A file called name.z already exists

• The .z file cannot be created.

• An I/ 0 error occurred during processing.

The last segment of the filename must contain no more than 12
characters to allow space for the appended .z extension.
Directories cannot be compressed.

The peat command does for packed files what cat(C) does for
ordinary files. The specified files are unpacked and written to the
standard output. To view a packed file named name.z use:

peat name.z

or just:

peat name

1-218 PACK(C)

To make an unpacked copy, with the name nnn, of a packed file
named name.z (without destroying name.z) use the command:

peat name > nnn

The peat command returns the number of files it was unable to
unpack. Failure may occur if:

• The filename (exclusive of the .z) has more than 12
characters.

• The file cannot be opened.

• The file does not appear to be the output of pack.

The unpack command expands files created by pack. For each file
name specified in the command, a search is made for a file called
name.z (or just name, if name ends in .z). If this file appears to be
a packed file, it is replaced by its expanded version. The new file
has the .z suffix stripped from its name, and has the same access
modes, access and modification dates, and owner as those of the
packed file.

The unpack command returns a value that is the number of files it
was unable to unpack. Failure may occur for the same reasons
that it may in peat, as well as in a file where the unpacked name
already exists, or if the unpacked file cannot be created.

PACK(C) 1-219

PASSWD(C)

Name

passwd - Changes login password.

Syntax

passwd name

Description

This command changes (or installs) a password associated with
the login name.

The program prompts for the old password (if any) and then for
the new one (twice). The user must supply these. Passwords can
be of any reasonable length, but only the first eight characters of
the password are significant. The minimum number of characters
allowed in a new password is determined by the PASSLENGTH
variable. Although the minimum can be three, a minimum of five
is strongly recommended, because passwords shorter that five are
much easier to guess or discover by trial and error.

Only the owner of the name or the super-user may change a
password; the owner must prove he knows the old password.
Only the super-user can create a null password.

1-220 PASSWD(C)

The password file is not changed if the new password is the same
as the old password, or if the password has not "aged"
sufficiently; (see passwd(M)).

The minimum length of a legal password, and the minimum and
maximum number of weeks used in password aging are specified
in I etc/ default/passwd by the variables P ASSLENGTH,
MINWEEKS and MAXWEEKS. For example, these variables
might be set as follows:

PASSLENGTH=6
MINWEEKS=2
MAXWEEKS=6

MINWEEKS and MAXWEEKS values must be in the range 0 to
63. If PASSLENGTH is not in the range 3 to 8, it is set to 5.

Files

I etc/ default/ passwd
I etc I passwd

See Also

login(M), pwadmin(C), default(M), passwd(M)

PASSWD(C) 1-221

PR(C)

Name

pr - Prints files on the standard output.

Syntax

pt l options] [files)

Description

The pr command prints the named files on the standard output. If
file is -, or if no files are specified, the standard input is assumed.
By default, the listing is separated into pages, each headed by the
page number, date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines that do not fit are truncated. If the -s option is used,
lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error
messages are withheld until pr has completed printing.

Options may appear singly or be combined in any order. Their
meanings are:

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options -e
and -i are assumed for multi-column output.

-a Prints multi-column output across the page.

-m Merges and prints all files simultaneously, one per column
(overrides the -k, and -a options).

-d Double-spaces the output.

1-222 PR(C)

-eek Expands input tabs to character positions k+ 1, 2*k+ 1,
3 * k + 1, etc. If k is 0 or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of
spaces. If c (any nondigit character) is given, it is treated
as the input tab character (default for c is the tab
character).

-ick In output, replaces whitespace wherever possible by
inserting tabs to character positions k + 1, 2 * k + 1, 3*k+1,
etc. If k is 0 or is omitted, default tab settings at every
eighth position are assumed. If c (any nondigit character)
is given, it is treated as the output tab character (default
for c is the tab character).

-nck Provides k-digit line numbering (default fork is 5). The
number occupies the first k + 1 character positions of each
column of normal output or each line of -m output. If c
(any nondigit character) is given, it is appended to the
line number to separate it from whatever follows (default
for c is a tab).

-wk Sets the width of a line to k character positions (default is
72 for equal-width multi-column output, no limit
otherwise).

-ok Offsets each line by k character positions (default is 0).
The number of character positions per line is the sum of
the width and offset.

-lk Sets the length of a page to k lines (default is 66).

-h Uses the next argument as the header to be printed
instead of the filename.

-p Pauses before beginning each page if the output is
directed to a terminal (pr beeps and waits for a carriage
return).

-f Uses form feed character for new pages (default is to use
a sequence of line feeds). Pauses before beginning the
first page if the standard output is associated with a
terminal.

PR(C) 1-223

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the five-line identifying header nor the
five-line trailer normally supplied for each page. Quits
printing after the last line of each file without spacing to
the end of the page.

-sc Separates columns by the single character c instead of by
the appropriate number of spaces (default for c is a tab).

Examples

The following prints file 1 and file2 as a double-spaced,
three-column listing headed by "file list":

pr -3dh 11 file list 11 filel file2

The following writes filet on file2, expanding tabs to columns 10,
19, 28, 37, ... :

pr -e9 -t <filel >file2

See Also

cat(C)

1-224 PR(C)

PS(C)

Name

ps - Reports process status.

Syntax

ps [options]

Description

The ps command prints certain information about active
processes. Without options, information is printed about
processes associated with the current terminal. Otherwise, the
information that is displayed is controlled by the following
options:

-e Prints information about all processes.

-d Prints information about all processes, except process group
leaders.

-a Prints information about all processes, except process group
leaders and processes not associated with a terminal.

-f Generates a full listing. (Normally, a short listing
containing only process ID, terminal (tty) identifier,
cumulative execution time, and the command name is
printed.) See below for meaning of columns in a full listing.

-I Generates a long listing. See below.

-c corefile Uses the file corefile in place of I dev /mem.

-s swapdev Uses the file swapdev in place of /dev/swap. This is
useful when examining a corefile.

-n namelist The argument is taken as the name of an alternate
namelist (/xenix is the default.)

PS(C) 1-225

-t tlist

-p plist

-u ulist

-g glist

Restricts listing to data about the processes
associated with the terminals given in tlist, where
tlist can be in one of two forms: a list of terminal
identifiers separated from one another by a comma,
or a list of terminal identifiers enclosed in double
quotes and separated from one another by a comma
and/ or one or more spaces.

Restricts listing to data about processes whose
process ID numbers are given in plist, where plist is
in the same format as tlist.

Restricts listing to data about processes whose user
ID numbers or login names are given in ulist, where
ulist is in the same format as tlist. In the listing, the
numerical user ID is printed unless the -f option is
used, in which case the login name is printed.

Restricts listing to data about processes whose
process groups are given in glist, where glist is a list
of process group leaders and is in the same format
as tlist.

The column headings and the meaning of the columns in a ps
listing are given below; the letters f and I indicate the option (Juli
or long) that causes the corresponding heading to appear; all
means that the heading always appears. These two options only
determine what information is provided for a process; they do not
determine which processes will be listed.

F (I)

1-226 PS(C)

A status word consisting of flags associated
with the process. Each flag is associated
with a bit in the status word. These flags are
added to form a single octal number.
Process flag bits and their meanings are:

.tH in core;
jj2 system process;
jj4 locked in core (for example, for

physical 1/0);
ljj being swapped;
2jj being traced by another process.

s (I) The state of the process:

*' non-existent;
s sleeping;
w waiting;
R running;
I intermediate;
z terminated;
T stopped.

UID (f,l) The user ID number of the process owner;
the login name is printed under the -f option.

PID (all) The process ID of the process; it is possible
to end a process if you know this data.

PPID (f,l) The process ID of the parent process.

c (f,l) Processor utilization for scheduling.

STIME (f) Starting time of the process.

PRI (I) The priority of the process; higher numbers
mean lower priority.

NI (I) Nice value; used in priority computation.

ADDR (I) The memory address of the process, if
resident; otherwise, the disk address.

sz (I) The size in blocks of the core image of the
process, but not including the size of text
shared with other processes. Because this
size includes the current size of the stack, it
will vary as the stack size varies.

WCHAN (I) The event for which the process is waiting or
sleeping; if blank, the process is running.

TTY (all) The controlling terminal for the process.

TIME (all) The cumulative execution time for the
process.

PS(C) 1-227

CMD (all) The command name; the full command name
and its arguments are printed under the -f
option.

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining
memory or the swap area. Failing this, the command name, as it
would appear without the -f option, is printed in square brackets.

Files

I xenix system name list
I dev I mem memory
I dev searched to find swap device and terminal (tty)

names.

See Also

kill(C), nice(C)

Comments

System conditions can change while psis running; the picture it
gives is only a close approximation to reality.

Some data printed for defunct processes are irrelevant.

1-228 PS(C)

PSTAT(C)

Name

pstat - Reports system information.

Syntax

Description

The pstat command interprets the contents of certain system
tables. If file is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken from /xenix. Options
are:

-a In conjunction with the -p option, describes all process slots
rather than just active ones.

-i Prints the inode table with the these headings:

LOC
FLAGS

CNT

DEV

INO
MODE
NLK
UID

The core location of this table entry.
Miscellaneous state variables encoded thus:
L Locked
U Update time filesystem(F) must be

corrected
A Access time must be corrected
M File system is mounted here
W Wanted by another process (L flag is on)
T Contains a text file
C Changed time must be corrected
Number of open file table entries for this
mode.
Major and minor device number of file system
in which this inode resides.
I-number within the device.
Mode bits.
Number of links to this inode.
User ID of owner.

PSTAT(C) 1-229

SIZ/DEV Number of bytes in an ordinary file, or major
and minor device of special file.

-x Prints the text table with these headings:

LOC
FLAGS

DAD DR

CAD DR

SIZE

IPTR
CNT
CCNT

The core location of this table entry.
Miscellaneous state variables encoded thus:
T ptrace in effect
W Text not yet written on swap device
L Loading in progress
K Locked
w Wanted (L flag is on)
Disk address in swap, measured in multiples of
BSIZE bytes.
Core address, measured in units of memory
management resolution.
Size of text segment, measured in units of
memory management resolution.
Core location of corresponding inode.
Number of processes using this text segment.
Number of processes in core using this text
segment.

-p Prints process table for active processes with these
headings:

LOC The core location of this table entry.
S Run state encoded as follows:

j} No process
1 Waiting for some event
3 Runnable
4 Being created
5 Being terminated
6 Stopped under trace

F Miscellaneous state variables, ORed together:
01 Loaded
02 The scheduler process
04 Locked
010 Swapped out
020 Traced
040 Used in tracing
0100 Locked in

PRI Scheduling priority.

1-230 PSTAT(C)

SIGNAL

UID
TIM

CPU
NI
PGRP

PID
PPID
ADDR

SIZE

WCHAN
LINK
TEXTP

CLKT

Signals received (signals 1-16 coded in bits
0-15)
Real user ID.
Time resident in seconds; times > 127 coded
as 127.
Weighted integral of CPU time, for scheduler.
Nice level.
Process number of root of process group (the
opener of the controlling terminal) .
The process ID number.
The process ID of parent process.
If in core, the physical address of the u-area of
the process measured in units of memory
management resolution. If swapped out, the
position in the swap area measured in multiples
of BSIZE bytes.
Size of process image, measured in units of
memory management resolution.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.
If text is pure, pointer to location of text table
entry.
Countdown for alarm measured in seconds.

-f Print the open file table with these headings:

LOC
FLG

CNT
INO

OFFS

The core location of this table entry.
Miscellaneous state variables encoded as
follows:
R Open for reading
W Open for writing
P Pipe
Number of processes that know this open file.
The location of the inode table entry for this
file.
The file off set.

PSTAT(C) 1-231

-u ubase
Print information about a user process; the hexaddr
argument is its hexadecimal address. The address can be
displayed using the ps(C) command. The user process must
be in main memory, or the file used can be a core image and
the address 0.

-c corefile
Use the file corefile in place of /dev/mem.

-n namelist
Use the file namelist as an alternate namelist in place of
/xenix.

Files

/xenix
/dev/mem

See Also

Namelist
Default source of tables

ps(C), filesystem(F)

1-232 PSTAT(C)

PWADMIN(C)

Name

pwadmin - Performs password aging administration.

Syntax

pwadmin - dcfan [-min weeks] [-max weeks] user

Description

The pwadmin command is used to examine and modify the
password aging information in the password file. The options one
can specify are:

-d Displays the password aging information.

-f Forces the user to change his password at the next login.

-c Prevents the user from changing his password.

-a Enables password aging for the given user. This option
sets the minimum number of weeks that the user must wait
before changing his password and the maximum number of
weeks that a user can keep his current password to the
values defined by the MINWEEKS and MAXWEEKS
variables in the I etc/ default/passwd file. If the file is not
found or the defined values are not in range 0 to 63, the
default values 2 and 4 are used.

PWADMIN(C) 1-233

-n Disables the password aging feature.

-min Uses the next argument as the minimum number of weeks
before the user can change his password. (This prevents
him from changing his password back to the old one).

-max Uses the next argument as the number of weeks before the
user must change his password again.

File

/etc/passwd

See Also

passwd(C), passwd(M)

Comments

The user must not attempt to force a new password by setting
both the -min and -max values to zero. To force a password, use
the -f option.

The user must not attempt to prevent further password changes
by setting the -min value greater than the -max value. To prevent
changes, use the -c option.

1-234 PWADMIN(C)

PWCHECK(C)

Name

pwcheck - Checks password file.

Syntax

,pw~li~it · . lfiI;l'

Description

The pwcheck command scans the password file and checks for any
inconsistencies. The checks include validation of the number of
fields , login name, user ID, group ID, and whether the login
directory and optional program name exist. The default password
file is I etc/passwd.

File

/etc/passwd

See Also

grpcheck(C) , group(M), passwd(M)

PWCHECK(C) 1-235

PWD(C)

Name

pwd - Prints working directory name.

Syntax

pwd

Description

The pwd command prints the path name of the working (current)
directory.

See Also

cd(C)

Diagnostics

"Cannot open .. " and "Read error in .. " indicate possible file
system trouble. In such cases, see the XENIX System
Administration for information on fixing the file system.

1-236 PWD(C)

QUOT(C)

Name

quot - Summarizes file system ownership.

Syntax

quot [option] fjilesystem]

Description

The quot command prints the number of blocks in the named
filesystem currently owned by each user. If no filesystem is
named, the file systems given in /etc/mnttab are examined.

The following options are available:

-n Causes the following pipeline to produce a list of all files
and their owners:

ncheck filesystem I sort +0n I quot -n filesystem

-c Prints three columns, giving file size in blocks, number of
files of that size, and cumulative total of blocks in that size
or smaller file. Data for files of size greater than 499 blocks
are included in the figures for files of exactly size 499.

-f Prints count of number of files as well as space owned by
each user.

QUOT(C) 1-237

Files

I etc/ passwd
/etc/mnttab

See Also

du(C), ls(C)

Comments

Gets user names
Contains list of mounted file systems

Holes (empty spaces) in files are counted as if they actually
occupied space.

See also "Comment" under mount(C).

1-238 QUOT(C)

R ~-DOM(C)

Name

random - Generates a random number.

Syntax

random [-s] [scale]

Description

The random command generates a random number on the
standard output and returns the number as its exit value. By
default, this number is either 0 or 1; that is, scale is 1 by default.
If scale is given a value between 1 and 25 5, the range of the
random value is from 0 to scale. If scale is greater than 255 an
error message is printed.

When the -s (silent) option is given, the random number is
returned as an exit value but is not printed on the standard
output. If an error occurs, random returns an exit value of zero.

Comments

This command does not perform any floating point computations.

The random command uses the time of day as a seed.

RANDOM(C) 1-239

RCP(C)

Name

rep - Copies files across XENIX systems.

Syntax

Description

The rep command copies files between systems in a Micnet
network. The command copies the srcmachine:srcfile to
destmachine:destfile, where srcmachine: and destmachine: are
optional names of systems in the network, and srcfile and destfile
are path names of files. If a machine name is not given, the name
of the current system is assumed. If - is given in place of srcfile,
rep uses the standard input as the source. Directories named on
the destination machine must be publicly writable. Directories
and files on a remote source machine must be publicly readable.

The available options are:

-m
Mails and reports completion of the command, whether
there is an error or not.

-u[machine:]user
Any mail goes to the named user on machine. The default
machine is the system on which rep is invoked.

1-240 RCP(C)

The rep command is useful for transferring small numbers of files
across the network. The network consists of daemons that
periodically awaken and send files from one system to another.
The network must be installed using netutil(C) before rep can be
used. Also, to enable transfer of files from a remote system, the
line:

rcp= / usr / bin / rcp

or

executeall

must be added to the default file I etc/ default/micnet on the
systems in the network.

Example

rep -m machinel: / etc / mnttab / tmp / vtape

See Also

netutil(C), remote(C), mail(C), micnet(M)

Diagnostics

If an error occurs, mail is sent to the user.

Comments

Full path names must be specified for remote files.

The rep command handles binary data files transparently, no extra
switches or protocols are needed to handle them. Wild cards are
not expanded on the remote machine.

RCP(C) 1-241

REMOTE(C)

Name

remote - Executes commands on a remote XENIX system.

Syntax

remote l..,J(-f file][·ml(""'.u Jset] 'lna~hine command[argu111ents]

Description

The remote command is a limited networking facility that permits
execution of XENIX commands across serial lines. Commands
on any connected system may be executed from the host system
using remote. A command line consisting of command and any
blank-separated arguments is executed on the remote machine. A
machine's name is located in the file /etc/systemid. Wild cards are
not expanded on the remote machine, so they should not be
specified in arguments. The optional -m switch causes mail to be
sent to the user telling whether the command is successful.

The available options follow:

A dash signifies that standard input is used as the
standard input for command on the remote machine.
Standard input comes from the local host and not from
the remote machine.

-f file Use the specified file as the standard input for command
on the remote machine. The file exists on the local host
and not on the remote system.

-m Mails the user a report of command completion. By
default, mail reports only errors.

1-242 REMOTE(C)

-u user Any report mail goes to the named user rather than to
the executor of the command. The user name may have
a machine name to signify a user on some remote
system.

Before remote can be successfully used, a network of systems
must first be set up and the proper daemons initialized using
netutil(C). Also, entries for the command to be executed using
remote must be added to the I etc/ default/micnet files on each
remote machine.

Example

The following command executes an ls command on the remote
directory /tmp of the machine machine 1:

remote -m machinel ls / tmp

See Also

rcp(C), mail(C), netutil(C), micnet(M)

Comment

The mail command uses the equivalent of remote to send mail
between systems.

REMOTE(C) 1-243

RESTORE(C)

Name

restore - Invokes incremental file system restorer.

Syntax

Description

The restore command reads archive media backed up with the
backup(C) command. The key specifies what is to be done. Key
is one of the characters rRxXtT, optionally combined with f.

f Uses the first argument as the name of the archive instead of
the default.

r,R The archive is read and loaded into the file system specified
in argument. If the key is R, restore asks which archive of a
multivolume set to start on. This allows restore to be
interrupted and then restarted (an fsck must be done before
the restart).

x,X Each file on the archive named by an argument is extracted.
The filename has all "mount" prefixes removed; for
example, if /usr is a mounted file system, /usr /bin/lpr is
named /bin/lpr on the archive. The extracted file is placed
in a file with a numeric name supplied by restore (actually
the inode number). To keep the amount of archive read to
a minimum, the following procedure is recommended:

1. Mount volume 1 of the set of backup archives.

2. Type the restore command.

1-244 RESTORE(C)

3. The restore command announces whether it found the
files, gives the numeric name that it assigns to the file,
and in the case of a tape, rewinds to the start of the
archive.

4. It then asks you to "mount the desired tape volume."
Type the number of the volume you choose. On a
multivolume backup, the recommended procedure is to
mount the last through the first volumes, in that order.
The restore command checks to see if any of the
requested files are on the mounted archive (or a later
archive, thus the reverse order) . If the requested files
are not there, restore doesn't read through the tape. If
you are working with a single-volume backup or if the
number of files being restored is large, respond to the
query with 1 and restore will read the archives in
sequential order.

t Prints the date the archive was written and the date the file
system was backed up.

T Same as t, in addition, T returna a listing of the files names
contained in the backup.

The r option should only be used to restore a complete backup
archive onto a clear file system or to restore an incremental
backup archive onto a file system so created. The following:

/ etc / mkfs / dev / hd03 10000
restor r / dev / hd03

is a typical sequence to restore a complete backup. Another
restore can be done to get an incremental backup in addition to
this.

A backup followed by a mkfs and a restore is used to change the
size of a file system.

RESTORE(C) 1-245

Files

rst* Temporary files
I etc/ default/ dump Name of default archive device

The default archive unit varies with installation.

See Also

backup(C), fsck(C), mkfs(C)

Diagnostics

Various diagnostics are involved with reading the archive and
writing the diskette. There are also diagnostics if the i-list or the
free list of the file system is not large enough to hold the backup.

If the backup extends over more than one diskette or tape, it may
ask you to change diskettes or tapes. Press Enter when the next
unit has been mounted.

Comment

It is not possible to successfully restore an entire active root file
system.

1-246 RESTORE(C)

RM(C)

Name

rm, rmdir - Removes files or directories.

Syntax

rm [-fri] file ...

rmdir dir ...

Description

The rm command removes the entries for one or more files from a
directory. If an entry was the last link to the file, the file is
destroyed. Removal of a file requires write permission in its
directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a
terminal, its permissions are printed and a line is read from the
standard input. If that line begins with y, the file is deleted,
otherwise the file remains. No questions are asked when the -f
option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed
unless the optional argument -r has been used. In that case, rm

recursively deletes the entire contents of the specified directory,
and the directory itself.

RM(C) 1-247

If the -i (interactive) option is in effect, rm asks whether to delete
each file, and if the -r option is in effect, whether to examine each
directory.

The rmdir command removes empty directories.

See Also

rmdir(C)

Diagnostics

Generally self-explanatory. It is prohibited to remove the file .. to
avoid the consequences of inadvertently doing something like:

rm -r .*

It is also prohibited to remove the root directory of a given file
system.

No more than 17 levels of subdirectories can be removed using
the -r option.

1-248 RM(C)

RMDIR(C)

Name

rmdir - Removes directories.

Syntax

·tmdir · dir .. • ..

Description

The rmdir command removes the entries for one or more
subdirectories from a directory. A directory must be empty
before it can be removed. The rmdir command enforces a
standard and safe procedure for removing a directory. The rm -r
dir command is a more dangerous alternative to rmdir.

The rmdir command removes entries for the named directories,
which must be empty.

See Also

rm(C)

Comment

The rmdir command refuses to remove the root directory of a
mounted file system.

RMDIR(C) 1-249

RMUSER(C)

Name

rmuser - Removes a user from the system.

Syntax

Description

The rmuser program removes users from the system. It begins by
prompting for a user name; after receiving a valid user name as a
response, it deletes the named user's entry in the password file,
and removes the user's mailbox file, the .profile file, and the entire
home directory. It also removes the users group entry in
I etc/ group if the user was the only remaining member of that
group, and the group ID was greater than 50.

Before removing a user ID from the system, make sure its mailbox
is empty and that all files belonging to that user ID have been
saved or deleted as required.

1-250 RMUSER(C)

The rmuser program refuses to remove a user ID or any of its files
if one or more of the following checks fails:

• The user name given is one of the "system" user names such
as root, sys, sysinfo, cron, or uucp. All user IDs less than
200 are considered reserved for system use and cannot be
removed using rmuser. Likewise all group IDs less than 50
are not removable using rmuser.

• The user's mailbox exists and is not empty.

• The user's home directory contains files other than .profile.

The rmuser program can only be executed by the super-user.

Files

I etc I passwd
I usr I spool/ mail/ username
$HOME

See Also

mkuser(C), backup(C)

RMUSER(C) 1-251

RSH(C)
Name

rsh - Invokes a restricted shell (command interpreter).

Syntax

Description

The rsh command is a restricted version of the standard command
interpreter sh(C). It is used to set up login names and execution
environments whose capabilities are more controlled than those of
the standard shell. The actions of rsh are identical to those of sh,
except that changing directory with cd, setting the value of
$PA TH, using command names containing slashes, and
redirecting output using > and > > are all disallowed.

When invoked with the name -rsh, rsh reads the user's .profile
(from $HOME/.profile). It acts as the standard sh while doing
this, except that an interrupt causes an immediate exit, instead of
causing a return to command level. The restrictions above are
enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to the
end user shell procedures that have access to the full power of the
standard shell, while restricting him to a limited menu of
commands; this scheme assumes that the end user does not have
write and execute permissions in the same directory.

1-252 RSH(C)

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed
setup actions, then leaving the user in an appropriate directory
(probably not the login directory).

The rsh command is actually just a link to sh and any flags
arguments are the same as for sh(C).

The system administrator of ten sets up a directory of commands
that can be safely invoked by rsh.

See Also

sh(C) , profile(M)

RSH(C) 1-253

SDDATE(C)

Name

sddate - Prints and sets backup dates.

Syntax

Description

If no argument is given, the contents of the backup date file
I etc/ ddate are printed. The backup date file is maintained by
backup(C) and contains the date of the most recent backup for
each backup level for each file system.

If arguments are given, an entry is replaced or made in
I etc/ ddate. name is the last component of the device pathname;
lev is the backup level number (from 0 to 9); and date is a time in
the form taken by date(C):

mmddhhmm[yy]

Where the first mm is a two-digit month in the range 01-12, dd is
a two-digit day of the month, hh is a two-digit military hour from
00-23, and the final mm is a two-digit minute from 00-59. An
optional two-digit year, yy, is presumed to be an offset from the
year 1900, that is, 19yy

1-254 SDDATE(C)

Some sites may wish to back up file systems by copying them
verbatim to backup media. The sddate command could be used to
make a level 0 entry in I etc/ ddate, which would then allow
incremental backups.

For example:

sddate rhd03 5 10081520

makes an I etc/ ddate entry showing a level 5 backup of
/ dev/ rhd03 on October 8, at 3:20 p.m.

File

/ etc/ ddate

See Also

backup(C) , date(C)

Diagnostics

If the date set is syntactically incorrect: bad conversion.

SDDATE(C) 1-255

SDIFF(C)

Name

sdiff - Compares files side-by-side.

Syntax

Description

The sdiff command uses the output of diff(C) to produce a
side-by-side listing of two files indicating the lines that are
different. Each line of the two files is printed with a blank gutter
between them if the lines are identical, a < in the gutter if the line
only exists in file 1, a > in the gutter if the line only exists in file2,
and a I for lines that are partially different.

For example:

x y
a a
b <

c <

d d
> c

The following options exist:

-w n Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

-1 Only prints the left side of any lines that are
identical.

-s Does not print identical lines.

1-256 SDIFF(C)

-o output Uses the next argument, output, as the name of a
third file that is created as a user-controlled merging
of file 1 and file2. Identical lines of file 1 and file2 are
copied to output. Sets of differences, as produced by
diff(C), are printed if a set of differences shares a
common gutter character. After printing each set of
differences, sdiff prompts the user with a % and
waits for one of the following user-typed commands:

Appends the left column to the output file

r Appends the right column to the output file

s Turns on silent mode; does not print identical
lines

v Turns off silent mode

e I Calls the editor with the left column

e r Calls the editor with the right column

e b Calls the editor with the concatenation of left
and right

e Calls the editor with a zero length file

q Exits from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

See Also

diff(C), ed(C)

SDIFF(C) 1-257

SED(C)

Name

sed-Invokes the stream editor

Syntax

Description

The sed command copies the named files (standard input default)
to the standard output, edited according to a script of commands.
The -f option causes the script to be taken from file sfile; these
options accumulate . If there is just one -e option and no -f
options, the flag -e may be omitted. The -n option suppresses the
default output. A script consists of editing commands, one per
line, of the following form:

[address[, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a
pattern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that
pattern space, and at the end of the script copies the pattern space
to the standard output (except under -n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input,
or a context address, that is, a I regular expression/ in the style of
ed(C) modified as follows:

• In a context address, the construction \ ?regular expression?,
where ? is any character, is identical to I regular expression/
Note that in the context address \xabc \xdefx, the second
x stands for itself, so that the regular expression is abcxdef.

1-258 SED(C)

• The escape sequence \ n matches a newline embedded in the
pattern space.

• A period (.) matches any character except the terminal
newline of the pattern space.

• A command line with no addresses selects every pattern
space.

• A command line with one address selects each pattern space
that matches the address.

• A command line with two addresses selects the inclusive
range from the first pattern space that matches the first
address through the next pattern space that matches the
second. (If the second address is a number less than or equal
to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first
address.

Editing commands can be applied only to nonselected pattern
spaces by use of the negation function ! (see below).

In the following list of functions, the maximum number of
permissible addresses for each function is indicated in
parentheses.

The text argument consists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in
text are treated like backslashes in the replacement string of an s
command, and may be used to protect initial blanks and tabs
against the stripping that is done on every script line. The rfile or
wfile argument must terminate the command line and must be
preceded by exactly one blank. Each wfile is created before
processing begins. There can be at most 10 distinct wfile
arguments.

(1) a+\ text
Appends text, placing it on the output before reading the

next input line.

SED(C) 1-259

(2) b label
Branches to the : command bearing the label. If label is

empty, branches to the end of the script.

(2) c+ \ text
Changes text by deleting the pattern space and then

appending text. With zero or one address or at the end of
a two-address range, places text on the output and starts
the next cycle.

(2) d Deletes the pattern space and starts the next cycle.

(2) D Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

(2) g Replaces the contents of the pattern space with the
contents of the hold space.

(2) G Appends the contents of the hold space to the pattern
space.

(2) h Replaces the contents of the hold space with the contents
of the pattern space.

(2) H Appends the contents of the pattern space to the hold
space.

(1) i+ \ text
Insert. Places text on the standard output.

(2) I Lists the pattern space on the standard output with
non-printing characters spelled in two-digit ASCII and
long lines folded.

(2) n Copies the pattern space to the standard output.
Replaces the pattern space with the next line of input.

(2) N Appends the next line of input to the pattern space with
an embedded newline. (The current line number
changes.)

1-260 SED(C)

(2)p Prints (copies) the pattern space on the standard output.

(2)P Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

(l)q Quits sed by branching to the end of the script. No new
cycle is started.

(2)r rfile
Reads the contents of rfile and places them on the output

before reading the next input line.

(2)s/regular expression/replacement/flags
Substitutes the replacement string for instances of the

regular expression in the pattern space. Any character
may be used instead of I . For a more detailed description
see ed(C). Flags is zero or more of:

g Globally substitutes for all non-overlapping
instances of the regular expression rather than just
the first one.

p Prints the pattern space if a replacement was made.

w wfile

(2) t label

Writes the pattern space to wfile if a replacement
was made.

Branches to the colon(:) command bearing label if any
substitutions have been made since the most recent
reading of an input line or execution of a t command. If
label is empty, t branches to the end of the script.

(2) w wfile
Writes the pattern space to wfile.

(2) x Exchanges the contents of the pattern and hold spaces.

SED(C) 1-261

(2) y/stringl/string2/
Replaces all occurrences of characters in string 1 with the

corresponding characters in string2. The lengths of
string 1 and string2 must be equal.

(2) ! function
Applies the function (or group, if function is {) only to
lines not selected by the addresses.

(0) : label
This command does nothing; it bears a label for b and t
commands to branch to.

(1) = Places the current line number on the standard output as
a line.

(2) { Executes the following commands through a matching }
only when the pattern space is selected.

(0) An empty command is ignored.

See Also

awk(C), ed(C), grep(C)

1-262 SED(C)

SETMNT(C)

Name

setmnt - Establishes I etc/ mnttab table.

Syntax

Description

The setmnt command creates the I etc/mnttab table (see
mnttab(F)), which is needed for both the mount(C) and
umount(C) commands. The setmnt command reads the standard
input and creates a mnttab entry for each line. Input lines have
the format:

filesys node

where filesys is the name of the file system's special file (for
example, "hdO. ") and node is the root name of that file system.
Thus, filesys and node become the first two strings in the
mnttab(F) entry.

SETMNT(C) 1-263

File

/etc/mnttab

See Also

mnttab(F)

Comments

If filesys or node are longer than 128 characters, errors can occur.

The setmnt command enforces an upper limit on the maximum
number of mnttab entries.

The setmnt command is normally invoked by I etc/re when the
system starts up.

1-264 SETMNT(C)

SETTIME(C)

Name

settime - Changes the access and modification dates of files.

Syntax

Description

The settime command sets the access and modification dates for

one or more files. The dates are set to the specified date or to the

access and modification dates of the file specified via -f. Exactly

one of these methods must be used to specify the new dates. The

first mm is the month number; dd is the day number in the month;

hh is the hour number (24-hour system); the second mm is the
minute number; yy is the last two digits of the year and is
optional. For example:

settime 1008004584 ralph pete

sets the access and modification dates of files ralph and pete to
Oct 8, 12:45 AM, 1984. Another example:

settime -f ralph john

This sets the access and modification dates of the file john to
those of the file ralph.

Comments

Use of touch(C) in place of settime is encouraged.

SETTIME(C) 1-265

SH(C)

Name

sh - Invokes the shell command interpreter.

Syntax

Description

The shell is the standard command programming language that
executes commands read from a terminal or a file. See
"Invocation " for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of non-blank words separated by
blanks (a blank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0. The
value of a simple-command is its exit status if it terminates
normally, or (decimal) 1000+ status if it terminates abnormally,
that is, if the failure produces a core file.

A pipeline is a sequence of one or more commands separated by a
vertical bar (I). (The caret (" has the same effect.) The
standard output of each command but the last is connected by a
pipe to the standard input of the next command. Each command
is run as a separate process; the shell waits for the last command
to terminate.

1-266 SH(C)

A list is a sequence of one or more pipelines separated by ;, &,
&&, or II and optionally terminated by ; or &. Of these four
symbols, ; and & have equal precedence, which is lower than that

of && and II . The symbols && and II also have equal
precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand(&) causes asynchronous
execution of the preceding pipeline (that is, the shell does not
wait for that pipeline to finish). The symbol && (II) causes the
list following it to be executed only if the preceding pipeline
returns a 0 or nonzero exit status. An arbitrary number of
newlines may appear in a list, instead of semicolons, to delimit
commands.

A command is either a simple-command or one of the following
commands. Unless otherwise stated, the value returned by a
command is that of the last simple-command executed in the
command:

for name [in word . ..] do list: done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word is omitted,
the for command executes the do list once for each
positional parameter that is set (see "Parameter
Substitution" below). Execution ends when there are no
more words in the list.

case word in [pattern[I pattern] ...) list;;] ... esac
A case command executes the list associated with the first
pattern that matches word. The form of the patterns is the
same as that used for filename generation (see "Filename
Generation" below).

If list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a 0 exit
status, the list following the first then is executed.
Otherwise, the list following elif is executed and, if its
value is 0, the list following the next then is executed.
Failing that, the else list is executed. If no else list or then
list is executed, the if command returns a 0 exit status.

SH(C) 1-267

while list do list done

(list)

A while command repeatedly executes the while list and, if
the exit status of the last command in the list is 0, executes
the do list; otherwise the loop terminates. If no commands
in the do list are executed, the while command returns a 0
exit status; until may be used in place of while to negate the
loop termination test.

Executes list in a subshell.

{ list; }
The list is simply executed.

The following words are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do done { }

Note: A word beginning with# causes that word and all the
following characters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave
accents C') may be used as part or all of a word; trailing
newlines are removed.

Parameter Substitution

The character$ is used to introduce substitutable parameters.
Positional parameters may be assigned values by set. Variables
may be set by writing:

name = value [name = value] ...

Pattern-matching is not performed on value.

1-268 SH(C)

${parameter}
A parameter is a sequence of letters, digits, or underscores
(a name), a digit, or any of the characters*, @, #, ?, -, $,
and !. The value, if any, of the parameter is substituted.
The braces are required only when parameter is followed
by a letter, digit, or underscore that is not to be interpreted
as part of its name. A name must begin with a letter or
underscore. If parameter is a digit, it is a positional
parameter. If parameter is * or @, all the positional
parameters, starting with $1 are substituted (separated by
spaces). Parameter $0 is set from argument 0 when the
shell is invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value;
otherwise substitute word.

${parameter:= word}
If parameter is not set or is null, then set it to word; the
value of the parameter is substjtuted. Positional
parameters may not be assigned to in this way.

${parameter:? word}
If parameter is set and is non-null, substitute its value;
otherwise, print word and exit from the shell. If word is
omitted, the message "parameter null or not set" is
printed.

${parameter:+ word}
If parameter is set and is non-null, substitute word;
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that in the following example, pwd is
executed only if d is not set or is null:

echo ${ d:- 'pwd'}

SH(C) 1-269

If the colon (:) is omitted from the expressions on the preceding
page, the shell only checks whether parameter is set, not whether
parameter is null (b= "").

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set
command.

? The decimal value returned by the last synchronously
executed command.

$ The process number of this shell.

The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME

PATH

The default argument (home directory) for the cd
command.

The search path for commands (see "Execution "
below).

CDPATH The search path for the cd command.

MAIL

PSI

PS2

IFS

If this variable is set to the name of a mail file, the
shell informs the user of the arrival of mail in the
specified file.

Primary prompt string, by default $.

Secondary prompt string, by default >.

Internal field separators, normally space, tab, and
newline.

1-270 SH(C)

The shell gives default values to PATH, PSl, PS2, andIFS, while
HOME and MAIL are not set at all by the shell (although HOME
is set by login(M)).

Blank Interpretation

After parameter and command substitution, the results of
substitution are scanned for internal field separator characters
(those found in IFS) and split into distinct arguments where such
characters are found. Explicit null arguments (" " or' ') are
retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

Filename Generation

Following substitution, each command word is scanned for the
characters*, ?, and [. If one of these characters appears, the word
is regarded as a pattern. The word is replaced with alphabetically
sorted filenames that match the pattern. If no filename is found
that matches the pattern, the word is left unchanged. The
character . at the start of a filename or immediately following a I,
as well as the character I itself, must be matched explicitly.
These characters and their matching patterns are:

*

?

[...]

Quoting

Matches any string, including the null string.

Matches any single character.

Matches any one of the enclosed characters. A pair of
characters separated by - matches any character
lexically between the pair, inclusive. If the first
character following the opening bracket ([) is an
exclamation mark (!) , any character not enclosed is
matched.

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

SH(C) 1-271

; & () I " < > newline space tab

A character may be quoted (that is, made to stand for itself) by
preceding it with a \ . The pair \newline is ignored. All
characters enclosed between a pair of single quotation marks C ,) ,
except a single quotation mark, are quoted. Inside double
quotation marks (11 11

), parameter and command substitution
occurs and \ quotes the characters \ , ' , ", and $. The
character group "$*" is equivalent to "$1 $2 ... ", whereas
"$@"is equivalent to "$1" "$2"

Prompting

When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a newline is typed and
further input is needed to complete a command, the secondary
prompt (that is, the value of PS2) is issued.

Input I Output

Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple command or may
precede or follow a command. They are not passed on to the
invoked command; substitution occurs before word or digit is
used:

<word

>word

>>word

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1).
If the file does not exist, it is created; otherwise, it is
truncated to zero length.

Use file word as standard output. If the file exists,
output is appended to it (by first seeking to the
end-of -file); otherwise, the file is created.

1-272 SH(C)

<<[-]word The shell input is read up to a line that is the same as
word or to an end-of-file. The resulting document
becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the
characters of the document; otherwise, parameter
and command substitution occurs, (unescaped)
\newline is ignored, and \ must be used to quote
the characters \ , $, ', and the first character of
word. If - is appended to < <, all leading tabs are
stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor
digit. Similarly for the standard output using >per.

< &- The standard input is closed. Similarly for the
standard output using >.

If one of the above is preceded by a digit, the file descriptor
created is that specified by the digit (instead of the default ,0 or
1). For example:

.. 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, the default standard input for the
command is the empty file I dev /null. Otherwise, the environment
for the execution of a command contains the file descriptors of
the invoking shell as modified by input/ output specifications.

SH(C) 1-273

Environment

The environment (see environ(M)) is a list of name-value pairs
that is passed to an executed program in the same way as a
normal argument list. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters
or creates new ones, none of these affects the environment unless
the export command is used to bind the shell's parameter to the
environment. The environment seen by any executed command is
thus composed of any unmodified name-value pairs originally
inherited by the shell, plus any modifications or additions, all of
which must be noted in export commands.

The environment for any simple command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is
concerned).

If the -k flag is set, all keyword arguments are placed in the
environment, even if they occur after the command name.

Signals

The Interrupt (Del) and Quit signals for an invoked command are
ignored if the command is followed by&; otherwise signals have
the values inherited by the shell from its parent, with the
exception of signal 11 (but see also the trap command below).

1-274 SH(C)

Execution

Each time a command is executed, the above substitutions are
carried out. Except for the "Special Commands" listed below, a
new process is created and an attempt is made to execute the
command.

The shell parameter PA TH defines the search path for the
directory containing the command. Alternative directory names

are separated by a colon(:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and/usr/bin, in that
order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the

command name contains a I then the search path is not used.
Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A
subshell (that is, a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Special Commands

The following commands are executed in the shell process and,
except as specified, no input/ output redirection is permitted for

such commands:

. file

No effect; the command does nothing. A 0 exit code is
returned .

Reads and executes commands from file and returns. The
search path specified by PA TH2 is used to find the directory

containing file.

break [n]
Exits from the enclosing for or while loop, if any. If n is
specified, breaks n levels.

SH(C) 1-275

continue [n]
Resumes the next iteration of the enclosing for or while loop.
If n is specified, resumes at the n-th enclosing loop.

cd [arg]
Changes the current directory to arg. The shell parameter
HOME is the default arg. The shell parameter CDPATH
defines the search path for the directory containing arg.
Alternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory).
The current directory is specified by a null path name, which
can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins
with a I the search path is not used. Otherwise, each
directory in the path is searched for arg.

eval [arg . ..]
The arguments are read as input to the shell and the resulting
commands are executed.

exec [arg ...]
The command specified by the arguments is executed in place
of this shell without creating a new process. Input/ output
arguments may appear and, if no other arguments are given,
cause the shell input/ output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n
is omitted, the exit status is that of the last command
executed (an end-of-file also causes the shell to exit.)

export [name ...]
The given names are marked for automatic export to the
environment of subsequently executed commands. If no
arguments are given, a list of all names that are exported in
this shell is printed.

newgrp [arg . ..)
Equivalent to exec newgrp arg . ..

1-276 SH(C)

read [name .. .)
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second
name, and so on, with leftover words assigned to the last
name. The return code is 0 unless an end-of-file is
encountered.

readonly [name . ..)
The given names are marked read-only and the values of the

these names may not be changed by subsequent assignment.

If no arguments are given, a list of all read-only names is
printed.

set [-eknuvx [arg . ..]]

-e If the shell is noninteractive, exits immediately if a
command exits with a nonzero exit status.

-k Places all keyword arguments in the environment for a
command, not just those that precede the command
name.

-n Reads commands but does not execute them.
-u Treats unset variables as an error when substituting.
-v Prints shell input lines as they are read.
-x Prints commands and their arguments as they are

shift [n)

executed.
Does not change any of the flags; useful in setting $1
to-.

Using + rather than - causes these flags to be turned
off. These flags can also be used upon invocation of
the shell. The current set of flags is in $-. The
remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are
given, the values of all names are printed.

The positional parameters from $n+ 1 ... are renamed $1

.... If n is not given, it is assumed to be 1.

SH(C) 1-277

test
Evaluates conditional expressions. See test(C) for use and
description.

times
Prints the accumulated user and system times for processes
run from the shell.

trap [arg) [n) ...
The arg is a command to be read and executed when the shell
receives signals n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands
are executed in order of signal number. The highest signal
number allowed is 16. Any attempt to set a trap on a signal
that was ignored on entry to the current shell is ineffective.
An attempt to trap on signal 11 (memory fault) produces an
error. If arg is absent all traps n are reset to their original
values. If arg is the null string, this signal is ignored by the
shell and by the commands it invokes. If n is ,0, the
command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands
associated with each signal number.

ulimit [-fl [n)
imposes a size limit of n.

-f imposes a size limit of n blocks on files written by child
processes (files of any size may be read). With no
argument, the current limit is printed.

If no option is given, -f is assumed.

umask [ooo)
The user file-creation mask is set to the octal number ooo
where o is an octal digit (see umask(C)). If ooo is omitted,
the current value of the mask is printed.

wait [n)
Waits for the specified process to terminate and reports the
termination status. If n is not given, all currently active child
processes are waited for. The return code from this command
is always 0.

1-278 SH(C)

Invocation

If the shell is invoked and the first character of argument 0 is -,
commands are initially read from I etc/profile and then from
$HOME/.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is
invoked as /bin/sh. The flags below are interpreted by the shell
on invocation only; note that unless the -c or - s flag is specified,
the first argument is assumed to be the name of a file containing
commands, and the remaining arguments are passed as positional
parameters to that command file:

-c string If the -c flag is present, commands are read from
string.

-s If the -s flag is present or if no arguments remain,
commands are read from the standard input. Any
remaining arguments specify the positional
parameters. Shell output is written to file descriptor
2.

-t If the -t flag is present, a single command is read and
executed and the shell exits. This flag is intended for
use by C programs only and is not useful interactively.

-i If the -i flag is present or if the shell input and output
are attached to a terminal, this shell is interactive. In
this case Terminate is ignored (so that kill 0 does not
kill an interactive shell) and Interrupt (Del) is caught
and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell
(see rsh(C)).

The remaining flags and arguments are described under the set
command above.

SH(C) 1-279

Exit Status

Errors detected by the shell, such as syntax errors, cause the shell
to return a nonzero exit status. If the shell is being used
noninteractively, execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command
executed (see also the exit command above) .

Files

I etc/profile
$HOME/ .profile
/tmp/sh*
/dev/null

See Also

cd(C), env(C), login(M), newgrp(C), rsh(C), test(C), umask(C),
a.out(F), profile(M), environ(M)

Comments

The command readonly (without arguments) produces the same
output as the cdinmand export.

If < < is used to provide standard input to an asynchronous
process invoked by &, the shell gets mixed up about naming the
input document; a temporary file /tmp/sh* is created and the
shell complains about not being able to find that file by another
name.

1-280 SH(C)

SHUTDOWN(C)

Name

shutdown - Terminates all processing.

Syntax

Description

The shutdown command is part of the XENIX operating
procedures. Its primary function is to terminate all currently
running processes in an orderly and cautious manner. The time

argument is the number of minutes before a shutdown will occur;
default is five minutes. The optional su argument lets the user go
single-user, without completely shutting down the system.
However, the system is shut down for multiuser use. The
shutdown command goes through the following steps. All users
logged on the system are notified to log off the system by a
broadcast message. All file system super-blocks are updated
before the system is stopped (see sync(C)). This must be done

before rebooting the system, to insure file system integrity.

SHUTDOWN(C) 1-281

See Also

sync(C), umount(C), wall(C)

Diagnostics

The most common error diagnostic that occurs is device busy. This
diagnostic appears when a particular file system could not be
unmounted. See umount(C).

Comment

Once shutdown has been invoked, it must be allowed to run to
completion and must not be interrupted by pressing C /Break or
Del.

1-282 SHUTDOWN(C)

SLEEP(C)

Name

sleep - Suspends execution for an interval.

Syntax

Description

The sleep command suspends execution for time seconds. It is
used to execute a command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

Comment

Time must be less than 65536 seconds.

SLEEP(C) 1-283

SORT(C)

Name

sort - Sorts and merges files.

Syntax

Description

The sort program merges and sorts lines from all named files and
writes the result on the standard output. A dash (-) may appear
as a file in the files argument, signifying the standard input. If no
input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is
lexicographic by bytes in machine collating sequence. The
ordering is affected globally by the following options, one or more
of which may appear.

-b Ignores leading blanks (spaces and tabs) in field
comparisons.

-d "Dictionary" order: only letters, digits and blanks are
significant in comparisons.

-f Folds uppercase letters onto lowercase.

-i Ignores characters outside the ASCII octal range 040-0176
in non-numeric comparisons.

-n An initial numeric string, consisting of optional blanks,
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. Option n
implies option b.

-r Reverses the sequence of comparisons, that is, the output of
the sort is in reverse order from normal.

1-284 SORT(C)

-tx "Tab character" separating fields is x.

The 110tation + pos 1 -pos2 restricts a sort key to a field beginning
at pos 1 and ending just before pos2 . Pos 1 and pos2 have the form
m.n, optionally followed by one or more of the flags bdfinr, where
m tells a number of fields to skip from the beginning of the line
and n tells a number of characters to skip further. If any flags are
present, they override all the global ordering options for this key.
If the b option is in effect, n is counted from the first non-blank in
the field; bis attached independently to pos2. A missing .n means
.O; a missing -pos2 means the end of the line. Under the -tx
option, fields are strings separated by x; otherwise fields are
nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise
compare equal are ordered with all bytes significant. Very long
lines are truncated.

These option arguments are also understood:

-c Checks that the input file is sorted according to the ordering
rules; gives no output unless the file is out of sort.

-m Merges only, the input files are already sorted.

-u Suppresses all but one instance in each set of duplicated
lines. Ignored bytes and bytes outside keys do not
participate in this comparison.

-o The next argument is the name of an output file to use
instead of the standard output. This file may be the same as
one of the inputs.

SORT(C) 1-285

Examples

The following prints in alphabetical order all the unique spellings
in a list of words (capitalized words differ from uncapitalized):

sort -u +0f +0 list

The following prints the password file (passwd(M)) sorted by user
ID (the third colon-separated field):

sort -t: +2n / etc / passwd

The following prints the first instance of each month in an already
sorted file of month-day entries (the options -um with just one
input file make the choice of a unique representative from a set of
equal lines predictable):

sort -um +0 -1 dates

File

I usr I tmp I stm ???

See Also

comm(C), join(C), uniq(C)

Diagnostic

Comments and exits with nonzero status for various trouble
conditions and for disorder discovered under option -c.

1-286 SORT(C)

SPLIT(C)

Name

split - Splits a file into pieces.

Syntax

split [-n] [file[name]]

Description

The split command reads file and writes it in n-line pieces (default
1000), as many as necessary, onto a set of output files. The name
of the first output file is name with aa appended, and so on
lexicographically. If no output name is given, x is the default.

If no input file is given, or if a dash (-) is given instead, the
standard input file is used.

See Also

bfs(C) , csplit(C)

SPLIT(C) 1-287

STTY(C)

Name

stty - Sets the options for a terminal.

Syntax

Description

The stty command sets certain terminal I/ 0 options for the device
that is the current standard input; without arguments, it reports
the settings of certain options; with the -a option, it reports all of
the option settings; with the -g option, it reports current settings
in a form that can be used as an argument to another stty
command. Detailed information about the modes listed in the
first five groups below may be found in tty(M). Options in the
last group are implemented using options in the previous groups.
The options are selected from the following:

Control Modes

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

cs5 cs6 cs7 cs8
Selects character size (see tty(M)).

Hangs up phone line immediately.

1-288 STTY(C)

50 75 110 134 150 200 300 600
1200 1800 2400 4800 9600 exta

Sets terminal baud rate to the number given, if possible. The
baud rate that is possible is defined in the appropriate
Hardware Reference Manual.

hupcl (-hupcl)
Hangs up (does not hang up) phone connection on last close.

hup (-hup)
Same as hupcl (-hupcl).

cstopb (-cstopb)
Uses two(one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (-clocal)
Assumes a line without (with) modem control.

Input Modes

ignbrk (-ignbrk)
Ignores (does not ignore) break on input.

brkint (-brkint)
Signals (does not signal) Intr on break.

ignpar (-ignpar)
Ignores (does not ignore) parity errors.

parmrk (-parmrk)
Marks (does not mark) parity errors (see tty(M)).

inpck (-inpck)
Enables (disables) input parity checking.

istrip (-istrip)
Strips (does not strip) input characters to 7 bits.

STTY(C) 1-289

inlcr (-inlcr)
Maps (does not map) NL to CR on input.

igncr (-igncr)
Ignores (does not ignore) CR on input.

icrnl (-icrnl)
Maps (does not map) CR to NL on input.

iuclc (-iuclc)
Maps (does not map) uppercase alphabetics to lowercase on
input.

ixon (-ixon)
Enables (disables) start/stop output control. Output is
stopped by sending an ASCII DC3 and started by sending an
ASCII DCl .

ixany (-ixany)
Allows any character (only DC 1) to restart output.

ixoff (-ixoff)
Requests that the system send (not send) Start/Stop
characters when the input queue is nearly empty /full.

Output Modes

opost (-opost)
Post-processes output (does not post-process output; ignores
all other output modes).

olcuc (-olcuc)
Maps (does not map) lowercase alphabetics to uppercase on
output.

onlcr (-onlcr)
Maps (does not map) NL to CR-NL on output.

ocrnl(-ocrnl)
Maps (does not map) CR to NL on output.

1-290 STTY(C)

onocr (-onocr)
Does not (does) output CRs at column zero.

onlret (-onlret)
On the terminal NL performs (does not perform) the CR
function.

ofill (-ofill)
Uses fill characters (use timing) for delays.

of del (-of del)
Fill characters are Deis (Nuls)

crO crl cr2 cr3.
Selects style of delay for carriage returns (see tty(M)).

nlO nil
Selects style of delay for linefeeds (see tty(M)).

tabO tab 1 tab2 tab3
Selects style of delay for horizontal tabs (see tty(M)).

bsO bsl
Selects style of delay for backspaces (see tty(M)).

ffO ffl
Selects style of delay for form feeds (see tty(M)).

vtO vtl
Selects style of delay for vertical tabs (see tty(M)).

Local Modes

isig (-isig)
Enables (disables) the checking of characters against the
special control characters Intr and Quit.

icanon (-icanon)
Enables (disables) canonical input (erase and kill
processing).

STTY(C) 1-291

xcase (-xcase)
Canonical (unprocessed) upper/lowercase presentation.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Echoes (does not echo) Erase character as a
backspace-space-backspace string.

Note: This mode erases the ERASEed character on
many displays; however, it does not keep track of
column position and, as a result, may be confusing on
escaped characters, tabs, and backspaces.

echok (-echok)
Echoes (does not echo) NL after KILL character.

lfkc (-lfkc)
The same as echok (-echok)

echonl (-echonl)
Echoes (does not echo) NL.

noflsh (-noflsh)
Disables (enables) flush after Intr or Quit.

Control Assignments

control-character-C
Sets control-character to C, where control-character is erase,
kill, intr, quit, eof, eol. If C is preceded by a caret (/\)
(escaped from the shell), the value used is the corresponding
Ctrl character (for example, " AD" is a Ctrl-D); "/\?"is
interpreted as Del and "A-" is interpreted as undefined.

mini, time i(O<i<127)
When icanon is not set, read requests are not satisfied until at
least min characters have been received or the timeout value
time has expired. See tty(M).

1-292 STTY(C)

line i
Sets the line discipline to i(O <i< 127). There are currently
no line disciplines implemented.

Combination Modes

evenp or parity
Enables parenb and cs7.

oddp
Enables parenb, cs7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets cs8.

raw (-raw or cooked)
Enables (disables) raw input and output (no Erase, Kill, Intr,
Quit, top, or output postprocessing).

nl (-nl)
Unsets (sets) icrnl, onlcr. In addition, -nl unsets inlcr, igncr,
ocrnl, and onlret.

lease (-lease)
Sets (unsets) xcase, iucle, and oleuc.

LCASE (-LCASE)
Same as lease (-lease).

tabs (tabs or tab3)
Preserves (expands to spaces) tabs when printing.

STTY(C) 1-293

ek

sane

term

Resets Erase and Kill characters back to normal Ctrl-H and
Ctrl-U.

Resets all modes to some reasonable values. Useful when a
terminal's settings have been scrambled.

Sets all modes suitable for the terminal type term, where term
is one of tty33, tty37, vt05, tn300, ti700, or tek.

See Also

tty(M)

Comment

Many combinations of options make no sense, but no checking is
performed.

1-294 STTY(C)

SU(C)

Name

su - Makes the user super-user or another user.

Syntax

l

Description

The su command allows you to become another user without
logging off. The default user name is root (that is, super-user).

To use su, the appropriate password must be supplied (unless you
are already super-user). If the password is correct, su executes a
new shell with the user ID set to that of the specified user. To
restore normal user ID privileges, type a Ctrl-D to the new shell.

Any additional arguments are passed to the shell, permitting the
super-user to run shell procedures with restricted privileges (an
arg of the form -c string executes string via the shell). When
additional arguments are passed, /bin/ sh is always used. When

no additional arguments are passed, su uses the shell specified in
the password file.

An initial dash (-) causes the environment to be changed to the
one that would be expected if the user actually logged in again.
This is done by invoking the shell with an argf) of -su causing the
.profile in the home directory of the new user ID to be executed.
Otherwise, the environment is passed along with the possible
exception of $PATH, which is set to /bin:/ etc:/usr /bin for root.

SU(C) 1-295

Note that .profile can check arg~ for -sh or -su to determine how
it was invoked. This is true only if there is no specified shell (in
the passwd file) for the user. If a shell has been specified in the
passwd file, the "shell name" is passed to arg~.

Files

/etc/passwd
$HOME/.profile

See Also

The system password file
User's profile

env(C), login(M), sh(C), environ(M)

1-296 SU(C)

SUM(C)

Name

sum - Calculates checksum and counts blocks in a file.

Syntax

sum [-r] file

Description

The sum command calculates and prints a 16-bit checksum for the

named file and also prints the number of blocks in the file. It is

typically used to look for bad data or to validate a file
communicated over a transmission line. The option -r causes an

alternate algorithm to be used in computing the checksum.

See Also

wc(C)

Diagnostics

"Read error" is indistinguishable from end-of-file on most
devices; check the block count.

SUM(C) 1-297

SYNC(C)

Name

sync - Updates the super-block.

Syntax

Description

The sync command executes the sync system primitive. If the
system is to be stopped, sync must be called to ensure file system
integrity. Note that shutdown(C) automatically calls sync before
shutting down the system.

See Also

shutdown(C)

1-298 SYNC(C)

SYSADMIN(C)

Name

sysadmin - Performs file system backups and restores files.

Syntax

Description

The sysadmin script performs file system backups and restores to
and from backup disks. It can do a daily incremental backup
(level 9), or a periodic full backup (level ,0). It can provide a
listing of the files backed up and also has a facility to restore
individual files from a backup.

The sysadmin script operates on XENIX formatted diskettes. The
version provided backs up the root and user file systems.

The script can be edited to operate on additional file systems if
required.

You must be the super-user to use this program.

File

/ tmp/backup.list

See Also

backup(C) , restor(C), mkfs(C), dumpdir(C)

SYSADMIN(C) 1-299

TAIL(C)

Name

tail - Copies the last part of a file to the output.

Syntax

Description

The tail command copies the named file to the standard output
beginning at a designated place. If no file is named, the standard
input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the value 10
is assumed). The number is counted in units of lines, blocks, or
characters, according to the appended option I, b, or c. When no
units are specified, counting is by lines.

1-300 TAIL(C)

With the -f (follow) option, if the input file is not a pipe, the
program will not terminate after the line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a
second and then attempts to read and copy further records from
the input file. Thus, it may be used to monitor the growth of a
file that is being written by some other process. For example, the
command:

tail -f file

prints the last ten lines of file, followed by any lines that are
appended to file between the time tail is initiated and ended.

See Also

dd(C)

Comment

Any tail commands relative to the end of the file are kept in a
buffer and thus are limited in length. Unpredictable results can
occur if character special files are "tailed."

TAIL(C) 1-301

TAR(C)

Name

tar - Archives files.

Syntax

tar [key] [files]

Description

The tar command saves and restores files to and from an archive
medium which is typically a storage device such as diskette, tape,
or regular file. Its actions are controlled by the key argument.
The key is a string of characters containing at most one function
letter and possibly one or more function modifiers. Valid
function letters are r, x, t, u, and c .. Other arguments to the
command are files (or directory names) specifying which files are
to be backed up or restored. In all cases, appearance of a
directory name refers to the files and (recursively) to
subdirectories of that directory.

The function portion of the key is specified by one of the
following letters:

r The named files are written to the end of the archive. The c
function implies this function.

x The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if
possible). If no files argument is given, the entire contents
of the archive are extracted. Note that if several files with
the same name are on the archive, the last one overwrites all
earlier ones.

t The names of the specified files are listed each time that
they occur on the archive. If no files argument is given, all
the names on the archive are listed.

1-302 TAR(C)

u The named files are added to the archive if they are not
already there or if they have been modified since last
written on that archive.

c Creates a new archive; writing begins at the beginning of
the archive, instead of after the last file. This command
implies the r function.

The following characters may be used in addition to the letter that
selects the desired function:

e Prevents files from being split across volumes (tapes or
diskettes). If there is not enough room on the present
volume for a given file, tar prompts for a new volume.
This is only valid when the -k option is also specified
on the command line.

0, ... ,7
This modifier selects the drive on which the archive is
mounted. The default is l[for/dev/m+l]. This option
should only be selected if you have linked the
appropriate I dev /mt to the desired device.

v Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats,
preceded by the function letter. With the t function, v
gives more information about the archive entries than
just the name.

w Causes tar to print the action to be taken, followed by
the name of the file, and then wait for the user's
confirmation. If a word beginning with y is given, the
action is performed. Any other input means "no."

f Causes tar to use the next argument as the name of the
archive instead of I dev I mtl. If the name of the file is a
dash (-) , tar writes to the standard output or reads
from the standard input, whichever is appropriate.
Thus, tar can be used as the head or tail of a pipeline.
The tar command can also be used to move hierarchies
with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

TAR(C) 1-303

b Causes tar to use the next argument as the blocking
factor for archive records. The default is 1, the
maximum is 20. This option should only be used with
raw magnetic tape archives (see f above). The block
size is determined automatically when reading tapes
(key letters x and t).

F Causes tar to use the next argument as the name of a
file from which succeeding arguments are taken. A
lone dash (-) signifies that arguments are taken from
the standard input.

Tells tar to print an error message if it cannot resolve
all of the links to the files being backed up. If I is not
specified, no error messages are printed.

m Tells tar to not restore the modification times. The
modification time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an
archive volume in kilobytes. The minimum value
allowed is 250. This option is useful when the archive
is not intended for a magnetic tape device, but for some
fixed size device, such as diskette (See f above). Very
large files are split into "extents" across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been
partially restored.

n Indicates the archive device is not a magnetic tape.
The k option implies this. Listing and extracting the
contents of an archive are sped because tar can seek
over files it wishes to skip. Sizes are printed in
kilobytes instead of tape blocks.

p Indicates that files are extracted using their original
permissions. It is possible that a non-super-user may
be unable to extract files because of the permissions
associated with the files or directories being extracted.

1-304 TAR(C)

Examples

If the name of a diskette device is /dev/fd.096dsl5, a file can be
copied in tar format on this device by typing:

tar cvfk / de v/ f d09 6ds l 5 11 50 f i les

where files are the names of files you want archived and 1150 is
the capacity of the diskette in kilobytes. Arguments to key letters
are given in the same order as the key letters themselves, thus the
fk key letters have corresponding arguments I dev /fd.096dsl Sand
1150. If a file is a directory, the contents of the directory are
recursively archived. To print a listing of the archive, type:

tar tvf ; dev / f d096 ds l 5

At some later time you will likely want to extract the files from
the archive diskette. You can do this by typing:

tar xvf /de v/ fd09 6ds l 5

The above command extracts all files from the archive using the
exact same path names as used when the archive was created.
Because of this behavior, it is normally best to save archive files
with relative path names rather than absolute ones, because
directory permissions may not let you read the files into the
absolute directories specified.

In the above examples, the v (verbose) option is used simply to
confirm the reading or writing of archive files on the screen.
Also, a normal file could be substituted for the diskette drive
/dev/fd.096dsl5in the examples.

Files

I etc/ default / backup Default devices
/ tmp/ tar*

TAR(C) 1-305

Diagnostics

Prints an error message about bad key characters and archive
read/write errors.

Prints an error message if not enough memory is available to hold
the link tables.

Comments

There is no way to ask for the nth occurrence of a file.

The u option can be slow.

The b option should not be used with archives that are going to be
updated. If the archive is on a disk, the b option should not be
used at all, because updating an archive stored on disk can destroy
it. To update (r or u option) a tar archive, do not use raw
magnetic tape and do not use the b option. This applies both
when updating and when the archive was first created.

The limit on filename length is 100 characters.

When archiving a directory that contains subdirectories, tar can
only access those subdirectories that are within 1 7 14,vels of
nesting. Subdirectories at higher levels will be ignored after tar
displays an error message.

Systems with a lK-byte file system cannot specify raw disk
devices unless the b option is used to specify an even number of
blocks. This means that one cannot update a raw-mode disk
partition.

Don't do:

tar xfF - -

This would imply taking two things from the standard input at the
same time.

1-306 TAR(C)

TEE(C)

Name

tee - Creates a tee in a pipe.

Syntax

Description

The tee command transcribes the standard input to the standard

output and makes copies in the files . The -i option ignores

interrupts; the -a option causes the output to be appended to the

files rather than overwriting them.

Examples

The following example illustrates the creation of temporary files

at each stage in a pipeline:

grep ABC I tee ABC.grep I sort I tee ABC.sort I more

This example shows how to tee output to the terminal screen:

grep ABC I tee / dev / tty I sort I uniq >final .file

TEE(C) 1-307

TEST(C)

Name

test - Tests conditions.

Syntax

test expr

[expr]

Warning: In the second form of the command (that is, the
one that uses (), rather than the word test), the square
brackets must be delimited by blanks.

Description

The test command evaluates the expression expr and, if its value is
true, returns a 0 (true) exit status~ otherwise, returns a 1 (false)
exit status. The test command returns a nonzero exit status if
there are no arguments. The following primitives are used to
construct expr:

-rfile True if file exists and is readable.

-wfile True if file exists and is writable.

-xfile True if file exists and is executable.

-ffile True if file exists and is a regular file.

-dfile True if file exists and is a directory.

-cfile True if file exists and is a character special file.

-bfile True if file exists and is a block special file.

-ufile True if file exists and its set-user-ID bit is set.

-gfile True if file exists and its set-group-ID bit is set.

1-308 TEST(C)

-kfile True if file exists and its sticky bit is set.

-sfile True if file exists and has a size greater than zero.

-t[fildes) True if the open file whose file descriptor number is

fildes (1 by default) is associated with a terminal
device.

-z s 1 True if the length of string s 1 is zero.

-n s 1 True if the length of the string s 1 is nonzero.

sl = s2 True if strings sl and s2 are identical.

sl != s2 True if strings sl and s2 are not identical.

s 1 True if s 1 is not the null string.

nl -eq n2 True if the integers nl and n2 are algebraically equal.

Any of the comparisons -ne, -gt, -ge, -It, and -le

may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-o

(expr)

Unary negation operator

Binary AND operator

Binary OR operator (-a has higher precedence than

-o)

Parentheses for grouping

Notice that all the operators and flags are separate arguments to

test. Notice also that parentheses are meaningful to the shell and,

therefore , must be escaped.

See Also

find(C), sh(C)

TEST(C) 1-309

TOUCH(C)
Name

touch - Updates access and modification times of a file.

Syntax

touch [~amc] [mmddhhmm[yyJ] files

Description

The touch command causes the access and modification times of
each argument to be updated. If no time is specified (see date(C),
the current time is used. The -a and -m options cause touch to
update only the access or modification times respectively (default
is -am). The -c option silently prevents touch from creating the
file if it did not previously exist.

The return code from touch is the number of files for which the
times could not be successfully modified (including files that did
not exist and were not created).

See Also

date(C)

1-310 TOUCH(C)

TR(C)

Name

tr - Translates characters.

Syntax

tr [""cds][strtng1 [string 2]]

Description

The tr command copies the standard input to the standard output

with substitution or deletion of selected characters. Input

characters found in string 1 are mapped into the corresponding

characters of string2. Any combination of the options -eds may be

used:

-c Complements the set of characters in string 1 with respect

to the universe of characters whose ASCII codes are 001

through 377 octal.

-d Deletes all input characters in string 1.

-s Compresses all strings of repeated output characters that

are in string2 to single characters.

The following abbreviation conventions may be used to introduce

ranges of characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes

run from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is

considered octal; otherwise, n is taken to be decimal. A 0

or missing n is taken to be huge; this facility is useful for

padding string2.

TR(C) 1-311

The escape character \ may be used as in the shell to remove
special meaning from any character in a string. In addition, \
followed by one, two, or three octal digits stands for the character
whose ASCII code is given by those digits.

The following example creates a list of all the words in file 1, one
per line, in file2, where a word is taken to be a maximal string of
alphabetics. The strings are quoted to protect the special
characters from interpretation by the shell; 012 is the ASCII code
for newline:

tr -cs 11 [A-ZJ[a-z] 11 11 [\012*] 11 <filel >file2

See Also

ed(C), sh(C), ascii (M)

Comment

The tr command won't handle ASCII Nul in string I or string2; it
always deletes Nul from input.

1-312 TR(C)

TRUE(C)

Name

true - Returns with a 0 exit value.

Syntax

true

Description

The true command does nothing except return with a 0 exit value.

The false command, true's counterpart, does nothing except

return with a nonzero exit value. The true command is typically

used in shell procedures such as:

while true
do

command
done

See Also

sh(C), false(C)

Diagnostics

The true command has exit status 0.

TRUE(C) 1-313

TSET(C)

Name

tset - Sets terminal modes.

Syntax

Description

The tset command allows the user to set a terminal's Erase and
Kill characters, and define the terminal's type and capabilities by
creating values for the TERM and TERMCAP environment
variables. If a type is given, tset creates information for a terminal
of the given type. The type may be any type given in
I etc/termcap. If type is not given, tset creates information for a
terminal of the type defined by the value of the environment
variable TERM, unless the -h or -m option is given. If these
options are given, tset searches the I etc/ttytype file for the
terminal type corresponding to the current serial port, then
creates information for a terminal based on this type. If the serial
port is not found in I etc/ ttytype the terminal type is set to
unknown.

The tset command displays the created information at the
standard output. The information is in a form that can be used to
set the current environment variables. The exact form depends
on the login shell from which tset was invoked. Examples below
illustrate how to use this information to change the variables.

There are the following options:

Prints the terminal type on the standard output.

-r Prints the terminal type on the diagnostic output.

1-314 TSET(C)

-s Outputs export and assignment commands (for sh(C)).
The type of commands is determined by the user's login
shell.

-I Suppresses printing of the terminal initialization strings.

-Q Suppresses the printing of the "Erase set to" and "Kill
set to" messages.

-S Only outputs the strings to be placed in the environment
variables.

-e[c] Sets the Erase character to Ctrl-C on all terminals. The
default for c is the backspace character on the terminal,
usually Ctrl-H.

-E[c) Identical to the -e command except that it only operates
on terminals that can backspace.

-k[c) Sets the Kill character to Ctrl-C, defaulting to Ctrl-U.

-m[ident)(test baud rate] :type
Allows a user to specify how a given serial port is is to

be mapped to an actual terminal type. The option
applies to any serial port in I etc/ttytype whose type is
indeterminate (for example, dialup, plugboard, and so
on. The type specifies the terminal type to be used, and
ident identifies the name of the indeterminate type to be
matched. If no ident is given, all indeterminate types are
matched. The test baudrate defines a test to be
performed on the serial port before the type is assigned.
The baudrate must be as defined in stty(C). The test
may be any combination of: > = < @ and !. If the type
begins with a question mark, the user is asked if he really
wants that type. A null response means to use that type;
otherwise, another type can be entered which will be
used instead. The question mark must be escaped to
prevent filename expansion by the shell. If more than
one -m option is given, the first correct mapping
prevails.

TSET(C) 1-315

The tset command is most useful when included in the .profile (for
sh(C)) file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

Examples

tset gt42

tset -m dialup\ >300:adm3a -m dialup:dw2 -Qr -e#

tset -m dial :ti733 -m plug: \ ?hp2621 -m unknown: \ ? -e -kAU

To use the information created by the -s option for the Bourne
shell (sh), repeat these commands:

tset -s > / tmp / tset$$
/ tmp / tset$$
rm / tmp / tset$$

Files

I etc/ ttytype
/etc/termcap

See Also

Port name to terminal type map database
Terminal capability database

tty(M), termcap(M), stty(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

1-316 TSET(C)

TTY(C)

Name

tty - Gets the terminal's name.

Syntax

Description

The tty command prints the path name of the user's terminal on
the standard output. The -s option inhibits printing, allowing you
to test just the exit code.

Exit Codes

O; if the standard input is a terminal, 1 otherwise.

Diagnostic

not a tty If the standard input is not a terminal and -s is not
specified.

TIY(C) 1-317

UMASK(C)

Name

umask - Sets file-creation mode mask.

Syntax

Description

The user file-creation mode mask is set to ooo. The three octal
digits refer to read/write/ execute permissions for owner, group,
and others, respectively. Only the low-order nine bits of umask
and the file mode creation mask are used. The value of each
specified digit is subtracted from the corresponding digit specified
by the system for the creation of any file. This is actually a binary
masking operation, and thus the name umask. In general, binary
1 's remove a given permission and O's have no effect. For
example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files
created with mode 666 become mode 644) .

If ooo is omitted, the current value of the mask is printed.

The umask command is recognized and executed by the shell. By
default, login shells have a umask of 022.

See Also

chmod(C), sh(C)

1-318 UMASK(C)

UMOUNT(C)

Name

umount - Dismounts a file structure.

Syntax

I etc/umount special-device

Description

The umount command announces to the system that the
removable file structure previously mounted on device
special-device is to be removed. Any pending I/ 0 for the file
system is completed, and the file structure is flagged clean. For
fuller explanation of the mounting process, see mount(C).

Files

I etc/ mnttab Mount table

See Also

mount(C), mnttab(F)

Diagnostic

device busy An executing process is using a file on the
named file system.

UMOUNT(C) 1-319

UNAME(C)

Name

uname - Prints the current XENIX name.

Syntax

Description

The uname command prints the current system name of XENIX
on the standard output file. The options cause selected
information returned by uname to be printed:

-s Prints the system name (default).

-n Prints the node name (the node name may be a name that the
system is known by to a communications network).

-r Prints the operating system release.

-m Prints manufacturer, original supplier of XENIX system.

-d Prints distributor or OEM for this system.

-u Prints user serial number for this system.

-v Prints the operating system version.

-a Prints all the above information.

1-320 UNAME(C)

UNIQ(C)

Name

uniq - Reports repeated lines in a file.

Syntax

Description

The uniq command reads the input file and compares adjacent

lines. In the normal case, the second and succeeding copies of
repeated lines are removed; the remainder is written on the output

file. Input and output should always be different. Repeated lines
must be adjacent to be found (see sort(C)). If the -u flag is used,

just the lines that are not repeated in the original file are output.
The -d option specifies that one copy of just the repeated lines is
to be written. The normal mode output is the union of the -u and

-d mode outputs.

The -c option supersedes -u and -d and generates an output
report in default style but with each line preceded by a count of
the number of times it occurred.

The n arguments specify skipping an initial portion of each line in

the comparison:

-n The first n fields and any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before
characters.

See Also

comm(C), sort(C)

UNIQ(C) 1-321

UNITS(C)
Name

units - Converts units.

Syntax

µnits

Description

The units command converts quantities expressed in various
standard scales to their equivalents in other scales. It works
interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+00

; 3.937008e-Ol

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated
by suffixed positive integers, division by the usual sign:

You have: 15 lbs force / in2
You want: atm

* l.020689e+00

I 9.797299e-Ol

1-322 UNITS(C)

The units command only does multiplicative scale changes; thus it
can convert Kelvin to Rankine, but not Centigrade to Fahrenheit.
Most familiar units, abbreviations, and metric prefixes are
recognized, as well as the following:

pi Ratio of circumference to diameter

c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g

mole Avogadro's number

water Pressure head per unit height of water

au Astronomical unit

Pound is not recognized as a unit of mass; lb is. Compound
names are run together, (for example lightyear). British units that
differ from their US counterparts are prefixed with hr. For a
complete list of units, type:

cat / usr / lib / unittab

File

I usr /lib I unittab

UNITS(C) 1-323

UUCLEAN(C)

Name

uuclean - Clean up the uucp spool directory.

Syntax

Description

The uuclean command scans the spool directory for files with the
specified prefix and deletes all those that are older than the
specified number of hours.

The following options are available.

-ddirectory
Clean directory instead of the spool directory.

-ppre Scan for files with pre as the file prefix. Up to 10 -p
arguments may be specified. A -p without any pre
following will cause all files older than the specified time
to be deleted.

-ntime Files whose age is more than time hours are deleted if the
prefix test is satisfied. (default time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

This program is typically started by cron(C).

1-324 UUCLEAN(C)

Files

/usr/lib/uucp directory where unclean command is located

I usr I spool/ uucp spool directory

See Also

uucp(C), uux(C).

UUCLEAN(C) 1-325

UUCP(C)

Name

uucp, uulog - Copies files from XENIX to XENIX

Syntax

uucp [option] . source-file . . . destination-file

uulog [option] .. .

Description

The uucp command copies files named by the source-file
arguments to the destination-file argument. A filename may be a
pathname on your system, or may have the form:

system-name!pathname

where "system-name" is taken from a list of system names that
uucp knows about. Shell metacharacters ?*[] appearing in
pathname are expanded on the appropriate system.

Pathnames may be a a full pathname, or a pathname preceded by
,...., user where user is a user ID on the specified system and is
replaced by that user's login directory. Anything else is prefixed
by the current directory.

If the result is an erroneous pathname for the remote system the
copy will fail. If the destination-file is a directory, the last part of
the source-filename is used.

The uucp command preserves execute permissions across the
transmission and gives 0666 read and write permissions.

The following options are interpreted by uucp :

-d Makes all necessary directories for the file copy.

1-326 UUCP(C)

-c Uses the source file when copying out rather than
copying the file to the spool directory.

-m Sends mail to the requester when the copy is complete.

The uulog command maintains a summary log of uucp and uux (C)
transactions in the file /usr/spool/uucp/LOGFILE by gathering
information from partial log files named
/usr/spool/uucp/LOG.*.?. It removes the partial log files.

The options cause uulog to print logging information:

-ssys
Prints information about work involving system sys.

-uuser
Prints information about work done for the specified user.

Files

/ usr / spool/uucp Spool directory

/ usr/ lib/ uucp / * Other data and program files

See Also

uux(C), mail(C)

Warning: The domain of remotely accessible files can (and
for obvious security reasons, usually should) be severely
restricted. You will very likely not be able to fetch files by
pathname; ask a responsible person on the remote system to
send them to you. For the same reasons you will probably
not be able to send files to arbitrary pathnames.

UUCP(C) 1-327

Comments

For security reasons, all files received by uucp should be owned
by uucp.

The -m option will only work sending files or receiving a single
file . Receiving multiple files specified by special shell characters
?*[]will not activate the -m option.

This version of uucp is based on a version 7 implementation of the
program.

1-328 UUCP(C)

UUSTAT(C)

Name

uustat - uucp status inquiry and job control.

Syntax

Description

The uustat command will display the status of, or cancel,
previously specified uucp commands, or provide general status on
uucp connections to other systems. The following options are
recognized:

-mm ch

-kjobn

-chour

-uuser

-ssys

-ohour

-yhour

Report the status of accessibility of machine mch . If
mch is specified as all, the status of all machines known
to the local uucp is provided.

Kill the uucp request whose job number is jobn. Jobn
can be found by using the -u option. The killed uucp
request must belong to the person issuing the uustat

command unless that person is the super-user.

Remove the status entries that are older than hour
hours. This administrative option can only be initiated
by the user uucp or the super-user.

Report the status of all uucp requests issued by user.

Report the status of all uucp requests that communicate
with remote system sys.

Report the status of all uucp requests that are older
than hour hours.

Report the status of all uucp requests that are younger
than hour hours.

UUSTAT(C) 1-329

-jail Report the status of all the uucp requests.

-v Report the uucp status verbosely. If this option is not
specified, a status code is printed with each uucp
request.

When no options are given, uustat outputs the status of all uucp
requests issued by the current user. Note that you can only
specify one of the options : -j , -m, -k, or -c at a time.

For example, the command

uustat -uhdc -smhtsa -y72 -v

prints the verbose status of all uucp requests that were issued by
user hdc to communicate with system mhtsa within the last 72
hours. The job request status format is:

job-number user remote-system command-time status-time

where the status may be either an octal number or a verbose
description. The octal code corresponds to the following
description:

OCT AL ST A TUS
00001 The copy failed, but the reason cannot be determined
00002 Permission to access local file is denied
00004 Permission to access remote file is denied
00010 Bad uucp command is generated
00020 Remote system cannot create temporary file
00040 Cannot copy to remote directory
00100 Cannot copy to local directory
00200 Local system cannot create temporary file
00400 Cannot execute uucp
01000 Copy succeeded
02000 Copy finished, job deleted
04000 Jobisqueued

1-330 UUSTAT(C)

The machine accessibility status format is:

system-name time status

where time is the latest status time and status is a self-explanatory
description of the machine status.

Files

I usr I spool/ uucp spool directory
/ usr/ lib / uucp / L stat system status file
/ usr / lib/ uucp/ R _stat request status file

See Also

uucp(C).

UUSTAT(C) 1-331

UUSUB(C)
Name

uusub - Monitor uucp network.

Syntax

Description

The uusub command defines a uucp subnetwork and monitors the
connection and traffic among the members of the subnetwork.
The following options are available:

-asys Add sys to the subnetwork.

-dsys Delete sys from the subnetwork. (super user only)

-1 Report the statistics on connections.

-r Report the statistics on traffic amount.

-f Flush the connection statistics.

-uhr Gather the traffic statistics over the past hr hours.

-csys Exercise the connection to the system sys. If sys is
specified as all, exercise the connection to all the
systems in the subnetwork.

Sys in the above options is the first seven characters of a system
name.

The connections report format is:

sys #call #ok time #dev #login #nack #other

1-332 UUSUB(C)

Where sys is the remote system name, #call is the number of times
the local system tries to call sys since the last flush was done, #ok
is the number of successful connections, time is the the latest
successful connect time, #dev is the number of unsuccessful
connections because of no available device (for example ACU),
#login is the number of unsuccessful connections because of login
failure, #nack is the number of unsuccessful connections because
of no response (for example line busy, system down), and #other
is the number of unsuccessful connections because of other
reasons.

The traffic statistics format is:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of
bytes sent over the period of time indicated in the latest uusub
command with the -uhr option. Similarly, rfile and rbyte are the
numbers of files and bytes received.

The command:

uusub -c all -u 24

is typically started by cron(C) once a day.

Files

/usr/spool/uucp/SYSLOG
/usr/lib/uucp/L sub
/usr /lib/uucp/R _sub

See Also

uucp(C), uustat(C).

system log file
connection statistics
traffic statistics

UUSUB(C) 1-333

UUTO(C)

Name

uuto, uupick - Public XENIX-to-XENIX file copy.

Syntax

Description

The uuto command sends source-files to destination. The uuto
command uses the uucp(C) facility to send files, while it allows
the local system to control the file access. A source-file name is a
path name on your machine. Destination has the form:

system! user

where system is taken from a list of system names that uucp
knows about (see uuname(C)). User is the login name of
someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before
transmission.

-m Send mail to the sender when the copy is complete.

The files (or subtrees if directories are specified) are sent to
PUBDIR on system, where PUBDIR is a public directory defined
in the uucp source. Specifically .the files are sent to

PUBD IR/ receive I user I mysystem I files.

The destined recipient is notified by mail(C) of the arrival of files.

1-334 UUTO(C)

The uupick command accepts or rejects the files transmitted to the
user. Specifically, uupick searches PUBDIR for files destined for
the user. For each entry (file or directory) found, the following
message is printed on the standard output:

from system:[file file-name] [dir dirname]?

Uupick then reads a line from the standard input to determine the
disposition of the file:

<new-line> Go on to next entry.

d Delete the entry.

m[dir] Move the entry to named directory dir (current
directory is default).

a[system] Same as m except moving all the files sent from
system.

p Print the content of the file.

q Stop.

EOT (control-d)
Same as q.

! command Escape to the shell to do command .

* Print a command summary.

Uupick invoked with the -s system option will only search the
PUBDIR for files sent from system .

Files

PUBD IR/ usr I spool/ uucppu blic public directory

See Also

mail(C), uuclean(C), uucp(C), uuname(C), uustat(C), uux(C).

UUTO(C) 1-335

UUX(C)

Name

uux - Executes commands on remote XENIX systems

Syntax

Description

The uux command will gather 0 or more files from various
systems, execute a command on a specified system and send
standard output to a file on a specified system.

The command-string is made up of one or more arguments that
look like a shell command line, except that the command and
filenames may be prefixed by system-name!. A null system-name is
interpreted as the local system.

Filenames may be (1) a full pathname; (2) a pathname preceded
by ,..., xxx ; where xxx is a user ID on the specified system and is
replaced by that user's login directory; or (3) anything else
prefixed by the current dire~tory.

The"-" option causes the standard input to the uux command to
be the standard input to the command-string.

For example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff"

will get the fl files from the usg and pwba systems, execute a diff
command, and put the results in fl.diff in the local directory.

Any special shell characters such as < >; I should be quoted
either by qqoting the entire command-string, or quoting the
special characters as individual arguments.

1-336 UUX(C)

Files

/usr/spool/uucp Spool directory

/usr/lib/uucp/* Other data and programs

See Also

uucp(C)

Warning

An installation may, and for security reasons generally will, limit
the list of commands executable on behalf of an incoming request
from uux. Typically, a restricted site will permit little other than
the receipt of mail via uux.

Comments

Only the first command of a shell pipeline may have a
system-name!. All other commands are executed on the system of
the first command.

The shell metacharacter * will probably not perform as expected.

The shell tokens < < and > > are not implemented.

There is no notification of denial of execution on the remote
machine.

The uux command does not execute a command on a remote
system unless the remote system has the name of the command
listed in the I usr I lib I uucp IL. cmds file.

UUX(C) 1-337

VI(C)

Name

vi - Invokes a screen-oriented display editor.

Syntax

Description

The vi editor offers a powerful set of text editing operations based
on a set of mnemonic commands. Most commands are single
keystrokes that perform simple editing functions. This editor
displays a full screen "window" into the file you are editing. The
contents of this window can be changed quickly and easily within
vi. While editing, visual feedback is provided (the name vi is short
for "visual").

The vi editor and the line editor ex are one and the same editor:
the names vi and ex identify a particular user interface rather than
any underlying functional difference. The differences in user
interface, however, are quite striking; ex is a powerful
line-oriented editor, similar to the editor ed. However, in both ex
and ed, visual updating of the terminal is limited, and commands
are entered on a command line. On the other hand, vi is a
screen-oriented editor designed so that what you see on the
screen corresponds exactly and immediately to the contents of the
file you are editing.

Options available on the vi command line:

-t Equivalent to an initial tag command; edits the file
containing the tag and positions the editor at its definition.

-r Used in recovering after an editor or system failure,
retrieving the last saved version of the named file. If no file
is specified, this option prints a list of saved files.

1-338 VI(C)

-I Specific to editing LISP, this option sets the showmatch and
lisp options.

-wn Sets the default window size to n. Useful on dialups to start
in small windows.

-R Sets a read-only option so that files can be viewed but not
edited.

The Editing Buffer

The vi editor performs no editing operations on the file that you

name during invocation. Instead, it works on a copy of the file in

an editing buff er. The editor remembers the name of the file

specified at invocation so that it can later copy the editing buffer

back to the named file. The contents of the named file are not

affected until the changes are copied back to the original file.
This allows editing of the buff er without immediately destroying

the contents of the original file.

When you invoke vi with a single filename argument, the named

file is copied to a temporary editing buffer. When the file is
written out, the temporary file is written back to the named file.

Modes of Operation

Within vi there are three distinct modes of operation:

Command Mode

Insert Mode

Within command mode, signals from the
keyboard are interpreted as editing commands.

Insert mode can be entered by typing any of
the vi insert, append, open, substitute, change,
or replace commands. Once in insert mode,
letters typed at the keyboard are inserted into
the editing buffer.

Vl(C) 1-339

Ex Escape Mode
The vi and ex editors are one and the same
editor differing mainly in their user interface.
In vi, commands are usually single keystrokes.
In ex, commands are lines of text terminated
by an Enter. A special "escape" command
gives vi access to many of these line-oriented
ex commands. To escape to ex escape mode,
type a colon (:). The colon is echoed on the
status line as a prompt for the ex command.
An executing command can be aborted by
pressing Interrupt (Del) . Most file
manipulation commands are executed in ex
escape mode; for example, the commands to
read in a file and to write out the editing buffer
to a file.

Special Keys

There are several special keys in vi. These keys are used to edit,
delimit, or abort commands and command lines.

Esc Used to return to vi command mode, cancel partially formed
commands.

Enter
Terminates ex commands when in ex escape mode. Also
used to start a new line when in insert mode.

Interrupt (Del)
Of ten the same as the Del or Erase key on many terminals.
Generates an interrupt, telling the editor to stop what it is
doing. Used to end any command that is executing.

I Used to specify a string to be searched for. The slash
appears on the status line as a prompt for a search string.

? Works exactly like the slash key, except that it is used to
search backward in a file instead of forward .

1-340 VI(C)

The colon is a prompt for an ex command. You can then
type in any ex command, followed by an Esc or Enter. and
the given ex command is executed.

The following characters are special in insert mode:

Bksp Backs up the cursor one character on the current line.

Ctrl-U

The last character typed before the Bksp is removed
from the input buffer but remains displayed on the
screen.

Moves the cursor back to the first character of the
insertion, and restarts insertion.

Ctrl-V Removes the special significance of the next typed
character. Use Ctrl-V to insert cbntrol characters.
Line feed and Ctrl-J cannot be inserted in the text
except as newline characters. Ctrl-Q and Ctrl-S are
trapped by the operating system before they are
interpreted by vi, so they too cannot be inserted as text.

Ctrl-W Moves the cursor back to the first character of the last
inserted word.

Ctrl-T During an insertion, with the autoindent option set and
at the beginning of the current line, typing this
character inserts shiftwidth whitespace.

Ctrl-@ If typed as the first character of an insertion, it is
replaced with the last text inserted, and the insertion
terminates. Only 128 characters are saved from the
last insertion. If more than 128 characters were
inserted, this command inserts no characters. A
Ctrl-@ cannot be part of a file , even if quoted.

Vl(C) 1-341

Invoking and Exiting Vi

To 'enter vi type:

vi Edits empty editing buffer

vi file Edits named file

vi+ l23file Goes to line 123

vi +45 file Goes to line 45

vi +I word file Finds first occurrence of "word"

vi +I tty file Finds first occurrence of "tty"

There are several ways to exit the editor:

zz The editing bµffer is written to the file only if changes were
made.

:x The editing buffer is written to the file only if changes were
made.

:q! Cancels an editing session. The exclamation mark (!) tells vi
to quit unconditionally. In this case, the editing buffer is
not written out.

Vi Commands

The vi editor is a visual editor that displays a window of the file.
What you see on the screen is vi's notion of what the file contains.
Commands do not cause any change to the screen until the
complete command is typed. Most commands may take a
preceding count that specifies repetition of the command. This
count parameter is not given in the following command
descriptions but is implied unless overridden by some other prefix
argument. When vi gets an improperly formatted command, it
sounds a beep.

1-342 VI(C)

Cursor Movement

The cursor movement keys allow you to move your cursor around

in a file. Note in particular the arrow keys (if available on your

terminal), the h, j, k, and 1 cursor keys, and Space, Bksp, Ctrl-N,

and Ctrl-P. These three sets of keys perform identical functions.

Forward Space: -I, Space, or-->

Syntax:
Space
-->

Function: Moves the cursor right one character. If a count is

given, moves right count characters. You cannot
move past the end of the line.

Backspace: -h, Bksp, or <--

Syntax: h
Bksp
<--

Function: Moves cursor left one character. If a count is given,

moves left count characters. You cannot move past

the beginning of the current line.

Next Line: -+, Enter, j, Ctrl-N, and LF

Syntax: +
Enter

Function: Moves the cursor down to the beginning of the next

line.

VI(C) 1-343

Syntax: j
Ctrl-N
LF
(down arrow)

Function: Moves the cursor down one line, remaining in the
same column. Note the difference between these
commands and the preceding set of next line
commands, which move to the beginning of the next
line.

Previous Line: -k, Ctrl-P, and -

Syntax: k
Ctrl-P
(up arrow)

Function: Moves the cursor up one line, remaining in the same
column. If a count is given, the cursor is moved
count lines.

Syntax:

Function: Moves the cursor up to the beginning of the previous
line. If a count is given, the cursor is moved count
lines.

Beginning of Line: 0 and "

Syntax: "
0

Function: Moves the cursor to the beginning of the current line.
Note that 0 always moves the cursor to the first
character of the current line. The caret (") works
somewhat differently: it moves to the first character
on a line that is not a tab or a space. This is useful
when editing files that have a great deal of
indentation, such as program texts.

1-344 VI(C)

End of Line: -$

Syntax: $

Function: Moves the cursor to the end of the current line.
Note that the cursor resides on top of the last
character on the line. If a count is given, the cursor is
moved forward count-1 lines to the end of the line.

Goto Line: -G

Syntax: [/inenumber]G

Function: Moves the cursor to the beginning of the line
specified by linenumber. If no linenumber is given,
the cursor moves to the beginning of the last line in
the file . To find the line number of the current line,
use Ctrl-G.

Column: - I

Syntax: [column] I

Function: Moves the cursor to the column in the current line
given by column. If no column is given, the cursor is
moved to the first column in the current line.

Word Forward: -wand W

Syntax: w
w

Function: Mover the cursor right to the beginning of the next
word. The lowercase w command searches for a
word defined as a string of alphanumeric characters
separated by punctuation or whitespace (that is, tab,
newline, or space characters). The uppercase W
command searches for a word defined as a string of
non whitespace characters.

VI(C) 1-345

Back Word: -b and B

Syntax: b
B

Function: Moves the cursor left to the beginning of a word.
The lowercase b command searches backward for a
word defined as a string of alphanumeric characters
separated by punctuation or whitespace (that is, tab,
newline, or space characters). The uppercase B
command searches for a word defined as a string of
non whitespace characters. If the cursor is already
within a word, it moves backward to the beginning of
that word.

End: -e and E

Syntax: e
E

Function: Moves the cursor to the end of a word. The
lowercase e command moves the cursor to the last
character of a word, where a word is defined as a
string of alphanumeric characters separated by
punctuation or whitespace (that is, tab, newline, or
space characters). The uppercase E moves the
cursor to the last character of a word where a word is
defined as a string of non-whitespace characters. If
the cursor is already within a word, it moves to the
end of that word.

1-346 VI(C)

Sentence: -(and)

Syntax: (
)

Function: Moves the cursor to the beginning (left parenthesis)
or end of a sentence (right parenthesis). A sentence
is defined as a sequence of characters ending with a
period(.) , question mark (?),or exclamation mark
(!),followed by either two spaces or a newline. A
sentence begins on the first non-whitespace
character following a preceding sentence. Sentences
are also delimited by paragraph and section
delimiters. See below.

Paragraph: -{ and }

Syntax: }
{

Function: Moves the cursor to the beginning ({) or end (}) of a
paragraph. A paragraph is defined with the
paragraphs option. By default, paragraphs are
delimited by the nroff macros ".IP," ".LP," ".P,"
".QP," and ".bp" . Paragraphs also begin after empty
lines.

Section: -[[and]]

Syntax:]]
[[

Function: Moves the cursor to the beginning ([[) or end (])) of a
section. A section is defined with the sections
option. By default, sections are delimited by the
nroff macros ".NH" and ".SH". Sections also start at
form feeds (Ctrl-L) and at lines beginning with a
brace ({).

VI(C) 1-347

Match Delimiter: - %

Syntax: %

Function: Moves the cursor to a matching delimiter, where a
delimiter is a parenthesis, a bracket, or a brace. This
is useful when matching pairs of nested parentheses,
brackets, and braces.

Home: -H

Syntax: [offset]H

Function: Moves the cursor to upper left corner of screen.
Use this command to quickly move to the top of the
screen. If an offset is given, the cursor is homed
offset -l number of lines from the top of the screen.
Note that the command "dH" deletes all lines from
the current line to the top line shown on the screen.

Middle Screen: -M

Syntax: M

Function: Moves the cursor to the beginning of the screen's
middle line. Use this command to quickly move to
the middle of the screen from either the top or the
bottom. Note that the command "dM" deletes from
the current line to the line specified by the M
command.

1-348 VI(C)

Lower Screen: -L

Syntax: [offset]L

Function: Moves the cursor to the lowest line on the screen.
Use this command to quickly move to the bottom of
the screen. If an of [set is given, the cursor is homed
of [set - l. number of lines from the bottom of the
screen. Note that the command "dL" deletes all
lines from the current line to the bottom line shown
on the screen.

Previous Context: -"and"

Syntax: "
'character

"
'character

Function: Moves the cursor to previous context or to context
marked with the m command. If the single quotation
mark or back quotation mark is doubled, the cursor
is moved to previous context. If a single character is
given after either quotation mark, the cursor is
moved to the location of the specified mark as
defined by the m command. Previous context is the
location in the file of the last non-relative cursor
movement. The single quotation mark (') syntax is
used to move to the beginning of the line
representing the previous context. The back
quotation mark (') syntax is used to move to the
previous context within a line.

VI(C) 1-349

The Screen Commands

The screen commands are not cursor movement commands and
cannot be used in delete commands as the delimiters of text
objects. However, the screen commands do move the cursor and
are useful in paging or scrolling through a file. These commands
are described below.

Page: - Ctrl-U and Ctrl-D

Syntax: [size]Ctrl-U
[size]Ctrl-D

Function: Scrolls the screen up a half window (Ctrl-U) or
down a half window (Ctrl-D). If size is given , the
scroll is size number of lines. This value is
remembered for all later scrolling commands.

Scroll: - Ctrl-F and Ctrl-B

Syntax: Ctrl-F
Ctrl-B

Function: Pages screen forward and backward. Two lines of
continuity are kept between pages if possible. A
preceding count gives the number of pages to move
forward or backward.

Status: - Ctrl-G

Syntax: BELL
Ctrl-G

Function: Prints vi status on status line. This gives you the
name of the file you are editing, whether it has been
modified, the current line number, the number of
lines in the file, and the percentage of the file (in
lines) that precedes the cursor.

1-350 VI(C)

Zero Screen: -z

Syntax: [linenumber]z[size]Enter
[linenumber I z[size].
[linen umber]z[size]-

Function: Redraws the display with the current line placed at or
"zeroed" at the top, middle, or bottom of the screen,
respectively. If you give a size, the number of lines
displayed is equal to size. If a preceding linenumber is
given, the given line is placed at the top of the
screen. If the last argument is an Enter, the current
line is placed at the top of the screen. If the last
argument is a period (.),the current line is placed in
the middle of the screen. If the last argument is a
hyphen (-), the current line is placed at the bottom
of the screen.

Redraw: - Ctrl-R or Ctrl-L

Syntax: Ctrl-R
Ctrl-L

Function: Redraws the screen. Use this command to erase any
system messages that may disrupt your screen. Note
that system messages do not affect the file you are
editing.

Text Insertion

The text insertion commands always place you in insert mode.
Exit from insert mode is always done by pressing Esc. The
following insertion commands are "pure" insertion commands; no
text is deleted when you use them. This differs from the text
modification commands change, replace, and substitute, which
delete and then insert text in one operation.

VI(C) 1-351

Insert: -i and I

Syntax: i[text]ESC
l[text]ESC

Function: Insert text in editing buffer. The lowercase i
command places you in insert mode. Text is inserted
before the character beneath the cursor. To insert a
newline, just press an Enter. Exit insert mode by
typing the Esc key. The uppercase I command
places you in insert mode , but begins text insertion at
the beginning of the current line, rather than before
the cursor.

Append: -a and A

Syntax: a[text]ESC
A[text]ESC

Function: Appends text to the editing buffer. The lowercase a
command works exactly like the lowercase i
command, except that text insertion begins after the
cursor and not before. This is the one way to add
text to the end of a line. The uppercase A command
begins appending text at the end of the current line
rather than after the cursor.

Open New Line: -o and 0

Syntax: o[text]ESC
O[text]ESC

Function: Opens a new line and inserts text. The lowercase o
command opens a new line below the current line;
uppercase 0 opens a new line above the current line .
After the new line has been opened, both these
commands work like the I command.

1-352 VI(C)

Text Deletion

Many of the text deletion commands use the letter d as an
operator. This operator deletes text objects delimited by the
cursor and a cursor movement command. Deleted text is always
saved away in a buffer. The delete commands are described
below:

Delete Character: -x and X

Syntax: x
x

Function: Deletes a character. The lowercase x command
deletes the character beneath the cursor. With a
preceding count, count characters are deleted to the
right beginning with the character beneath the
cursor. This is a quick and easy way to delete a few
characters. The uppercase X command deletes the
character just before the cursor. With a preceding
count, count characters are deleted backward,
beginning with the character just before the cursor.

Delete: -d and D

Syntax: dcursor-movement
dd
D

Function: Deletes a text object. The lowercase d command
takes a cursor-movement as an argument. If the
cursor-movement is an intraline command, deletion
takes place from the cursor to the end of the text
object delimited by the cursor-movement. Deletion
forward deletes the character beneath the cursor;
deletion backward does not. If the cursor-movement

is a multiline command, deletion takes place from
and including the current line to the text object
delimited by the cursor-movement. The dd command
deletes whole lines. The uppercase D command
deletes from and including the cursor to the end of
the current line.

VI(C) 1-353

Deleted text is automatically pushed on a stack of buffers
numbered 1 through 9. The most recently deleted text is also
placed in a special delete buffer that is logically buffer ,0. This
special buffer is the default buffer for all (put) commands using
the double quotation mark (") to specify the number of the buffer
for delete, put, and yank commands. The buffers 1 through 9 can
be accessed with the p and P (put) commands by appending the
double quotation mark(") to the number of the buffer. For
example:

114p

puts the contents of delete buffer number 4 in your editing buffer
just below the current line. Note that the last deleted text is
"put" by default and does not need a preceding buffer number.

Text Modification

The text modification commands all involve the replacement of
text with other text. This means that some text will necessarily be
deleted. All text modification commands can be "undone" with
the u command, discussed below:

Undo: -u and U

Syntax: u
u

Function: Undoes the last insert or delete command. The
lowercase u command undoes the last insert or delete
command. This means that after an insert, u deletes
text; and after a delete, u inserts text. For the
purposes of undo, all text modification commands
are considered insertions.

The uppercase U command restores the current line
to its state before it was edited, no matter how many
times the current line has been edited since you
moved to it.

1-354 VI(C)

Repeat: - .

Syntax:

Function: Repeats the last insert or delete command. A special
case exists for repeating the p and P "put"
commands. When these commands are preceded by
the name of a delete buff er, successive u commands
print out the contents of the delete buffers.

Change:: -c and C

Syntax: ccursor-movement textEsc
CtextEsc
cctextEsc

Function: Changes a text object and replaces it with text . Text
is inserted as with the i command. A dollar sign ($)
marks the extent of the change. The c command
changes arbitrary text objects delimited by the cursor
and a cursor-movement. The C and cc commands
affect whole lines and are identical in function.

Replace: -r and R

Syntax: rchar
RtextESC

Function: Overstrikes character or line with char or text,
respectively. User to overstrike a single character
and R to overstrike a whole line. A count multiplies
the replacement text count times.

VI(C) 1-355

Substitute: -s and S

Syntax: stextEsc
StextEsc

Function: Substitutes current character or current line with
text. Uses to replace a single character with new
text. Use S to replace the current line with new text.
If a preceding count is given, text substitutes for
count number of characters or lines depending on
whether the command is s or S, respectively.

Filter: -!

Syntax: !cursor-movement cmdEnter

Function: Filters the text object delimited by the cursor and
cursor-movement through the XENIX command, cmd.
For example, the following command sorts all lines
between the cursor and the bottom of the screen,
substituting the designated lines with the sorted lines:

!Lsort

Arguments and shell metacharacters may be
included as part of cmd; however, standard input and
output are always associated with the text object
being filtered.

Join Lines: -J

Syntax: J

Function: Joins the current line with the following line. If a
count is given, then count lines are joined.

1-356 VI(C)

Shift: -< and >

Syntax: >[cursor-movement]
<[cursor-movement]

>>
<<

Function: Shifts text left (>) or right (<). Text is shifted by
the value of the option shiftwidth, which is normally
set to eight spaces. Both the > and < commands
shift all lines in the text object delimited by the
current line and cursor-movement. The > > and<<
commands affect whole lines. All versions of the
command can take a preceding count that acts to
multiply the number of objects affected.

Text Movement

The text movement commands move text in and out of the named
buffers a-z and out of the delete buffers 1-9. These commands
either "yank" text out of the editing buffer and into a named
buffer or "put" text into the editing buff er from a named buffer
or a delete buffer. By default, text is put and yanked from the
"unnamed buffer," which is also where the most recently deleted
text is placed. Thus it is quite reasonable to delete text, move
your cursor to the location where you want the deleted text placed
and put the text back into the editing buffer at this new location
with the p or P command.

VI(C) 1-357

The named buffers are most useful for keeping track of several
pieces of text that you want to keep on hand for later access,
movement, or rearrangement. These buffers are named with the
letters "a" through "z." To ref er to one of these buffers (or one
of the numbered delete buffers) in a command such as put, yank,
or delete, use a quotation mark. For example, to yank a line into
the buffer named a, type:

llayy

To put this text back into the file, type:

llap

If you yank text into the buffer named A rather than a, text is
appended to the buffer.

The contents of the named buffers are not destroyed when you
switch files. Therefore, you can delete or yank text into a buffer,
switch files, and then do a put. Buff er contents are destroyed
when you exit the editor.

Put: -p and P

Syntax: ["alphanumeric)p
["alphanumeric JP

Function: Puts text from a buffer into the editing buffer. If no
buffer name is specified, text is put from the
unnamed buffer. The lowercase p command puts
text either below the current line or after the cursor,
depending on whether the buff er contains a partial

. line or not. The uppercase P command puts text
either above the current line or before the cursor,
again depending on whether the buffer contains a
partial line or not.

1-358 VI(C)

Yank: -y and Y

Syntax: ("letter]ycursor-movement
[" letter]yy
("letter]Y

Function: Copies text in the editing buffer to a named buffer.

Searching

If no buffer name is specified, text is yanked into the
unnamed buffer. If an uppercase letter is used, text is
appended to the buffer and does not overwrite and
destroy the previous contents. When a
cursor-movement is given as an argument, the
delimited text object is yanked. The Y and yy
commands yank a single line. If a preceding count is
given, multiple lines are yanked.

The search commands search forward or backward in the editing
buff er for text that matches a given regular expression.

Search: - I and ?

Syntax: /[pattern]/[offset]Enter
/[pattern]Enter
?[pattern]?[offset]Enter
? [pattern]Enter

Function: Searches forward (/) or backward (?) for pattern. A
string is actually a regular expression. The trailing
delimiter is not required. If no pattern is given, the
last pattern searched for is used. After the second
delimiter, an offset may be given, specifying the
beginning of a line relative to the line on which
pattern was found.

VI(C) 1-359

For example:

/ word / -

finds the beginning of the line immediately
preceding the line containing "word" and

/ word / +2

finds the beginning of the line two lines after the
line containing "word." See also the ignorecase and
magic options.

Next String: -n and N

Syntax: n
N

Function: Repeats the last search command. The n command
repeats the search in the same direction as the last
search command. The N command repeats the
search in the opposite direction of the last search
command.

Find Character: -f and F

Syntax: f char
Fchar

Function: Finds character char on the current line. The
lowercase f searches forward on the line; the
uppercase F searches backward. The semicolon (;)
repeats the last character search. The comma(,)
reverses the direction of the search.

1-360 VI(C)

To Character: -t and T

Syntax: tchar
Tchar

Function: Moves the cursor up to but not on to char. The
semicolon (;) repeats the last character search. The
comma (,) reverses the direction of the search.

Mark: -m

Syntax: mletter

Function: Marks a place in the file with a lowercase letter. You
can move to a mark using the "to mark" commands
described below. It is often useful to create a mark,
move the cursor, and then delete from the cursor to
the mark a with the following command:

d'a

VI(C) 1-361

To Mark: - , and'

Syntax: , letter
'letter

Function: Move to letter. These commands let you move to the
location of a mark. Marks are denoted by single
lowercase alphabetic characters. Before you can
move to a mark, it must first be created with the m
command. The back quotation mark (') moves you
to the exact location of the mark within a line; the
forward quotation mark (') moves you to the
beginning of the line containing the mark. Note that
these commands are also legal cursor movement
commands.

1-362 VI(C)

Exit and Escape Commands

There are several commands that are used to escape from vi
command mode and to exit the editor. These are described
below: ex Escape: -:

Syntax:

Function: Enters ex escape mode to execute an ex command.
The colon appears on the status line as a prompt for
an ex command. You then can enter an ex command
line terminated by either an Enter or an Esc and the
ex command will execute. You are then prompted to
type Enter to return to vi command mode. During
the input of the ex command line or during execution
of the ex command you may press Interrupt (Del) to
stop what you are doing and return to vi command
mode.

Exit Editor: - ZZ

Syntax: ZZ

Function: Exit vi and write out the file if any changes have
been made. This returns you to the shell from which
you invoked vi.

Quit to Ex: -Q

Syntax: Q

Function: Enters the ex editor. When you do this, you are still
editing the same file. You can return to vi by typing
the vi command from ex.

VI(C) 1-363

ex Commands

Typing the colon (:) escape command when in command mode,
produces a colon prompt on the status line. This prompt is for a
command available in the line-oriented editor, ex. In general, ex
commands let you write out or read in files, escape to the shell, or
switch editing files.

Many of these commands perform actions that affect the
"current" file by default. The current file is normally the file that
you named when you invoked vi, although the current file can be
changed with the "file" command, f, or with the "next"
command, n. In most respects, these commands are identical to
similar commands for the editor, ed. All such ex commands are
ended by either an Enter or an Esc. We shall use an Enter in our
examples. Command entry is terminated by typing an Interrupt
(Del).

Command Structure

Most ex command names are English words, and initial prefixes
of the words are acceptable abbreviations. In descriptions, only
the abbreviation is discussed, because this is the most frequently
used form of the command. The ambiguity of abbreviations is
resolved in favor of the more commonly used commands. As an
example, the command substitute can be abbreviated s while the
shortest available abbreviation for the set command is se:.

Most commands accept prefix addresses specifying the lines in the
file that they are to affect. A number of commands also may take
a trailing count specifying the number of lines to be involved in
the command. Counts are rounded down if necessary. Thus, the
command Sp prints the fifth line in the buffer while move 5 moves
the current line after line 5.

1-364 VI(C)

Some commands take other information or parameters, stated
after the command name. Examples might be option names in a
set command, such as set number, a filename in an edit command,
a regular expression in a substitute command, or a target address
for a copy command, such as:

1,5 copy 25

A number of commands have variants. The variant form of the
command is invoked by placing an exclamation mark(!)
immediately after the command name. Some of the default
variants may be controlled by options; in this case, the
exclamation mark turns off the meaning of the default.

In addition, many commands take flags, including the characters p
and I. A p or I must be preceded by a blank or tab. In this case,
the command abbreviated by these characters is executed after
the command completes. Since ex normally prints the new
current line after each change, p is rarely necessary. Any number
of plus (+) or minus (-) characters may also be given with these
flags. If they appear, the specified off set is applied to the current
line value before the printing command is executed.

Most commands that change the contents of the editing buffer
give feedback if the scope of the change exceeds a threshold given
by the report option. This feedback helps to detect undesirably
large changes so that they may be quickly and easily reversed with
the undo command. After commands with global effect, you will
be informed if the net change in the number of lines in the buffer
during this command exceeds this threshold.

Command Addressing

The following specify the line addressing syntax for ex
commands:

The current line. Most commands leave as the
current line the last line they affect. The
default address for most commands is the
current line, thus . is rarely used alone as an
address.

VI(C) 1-365

n

$

O/o

+nor -n

The nth line in the editing buffer, lines being
numbered sequentially from 1.

The last line in the buffer.

An abbreviation for "1,$," the entire buffer.

An offset, n relative to the current buffer line.
The forms ". + 3" "+ 3" and "+ + +" are all
equivalent. If the current line is line 100, they
all address line 103.

I pattern/ or ?pattern?

+"or' x

1-366 VI(C)

Scan forward and backward respectively for
text matching the regular expression given by
pattern. Scans normally wrap around the end of
the buffer. If all that is desired is to print the
next line containing pattern, the trailing slash
(/) or question mark (?) may be omitted. If
pattern is omitted or explicitly empty, the string
matching the last specified regular expression is
located. The forms Enter and ?Enter scan
using the last named regular expression. After
a substitute, Enter and ??Enter would scan
using that substitute's regular expression.

Before each non-relative motion of the current
line dot (.), the previous current line is marked
with a label, subsequently referred to with two
single quotation marks ("). This makes it easy
to refer or return to this previous context.
Marks are established with the vi m command,
using a single lowercase letter as the name of
the mark. Marked lines are later referred to
with the notation

x.

where x is the name of a mark.

Addresses to commands consist of a series of addresses, separated
by a colon (,) or a semicolon (;). Such address lists are evaluated
left to right. When addresses are separated by a semicolon (;),
the current line (.) is set to the value of the previous addressing
expression before the next address is interpreted. If more
addresses are given than the command requires, all but the last
one or two are ignored. If the command takes two addresses, the
first addressed line must precede the second in the buffer. Null
address specifications are permitted in a list of addresses, the
default in this case is the current line ". "; thus ", 1.6.6" is
equivalent to ".,1.6.6". It is an error to give a prefix address to a
command which expects none.

Command Format

The following is the format for ex commands:

[address] [command] [!][parameters] [count] [flags]

All parts are optional depending on the particular command and
its options. The following section describes specific commands.

Argument List Commands

The argument list commands allow you to work on a set of files
by remembering the list of filenames that are specified when you
invoke vi. The args command lets you examine this list of
filenames. The file command gives you information about the
current file. The n (next) command lets you either edit the next
file in the argument list or change the list. And the rewind
command lets you restart editing the files in the list. All of these
commands are described below:

args The members of the argument list are printed,
with the current argument delimited by
brackets. For example, a list might look like
this:

filel file2 [file3] file4 file5

The current file is file3

VI(C) 1-367

f

f file

n

n!

Prints the current filename , whether it has been
modified since the last write command, whether
it is read-only, the current line number, the
number of lines in the buffer, and the
percentage of the buffer that you have edited.
In the rare case that the current file is "[Not
edited]" this is noted also; in this case you have
to use the form "w!" to write to the file,
because the editor is not sure that aw
command will not destroy a file unrelated to
the current contents of the buffer.

The current filename is changed to file which is
considered "[Not edited]" .

The next file in the command line argument list
is edited.

This variant suppresses warnings about the
modifications to the buffer not having been
written out, discarding irretrievably any
changes that may have been made.

n [+commandlfilelist

rew

rew!

1-368 VI(C)

The specified filelist is expanded and the
resulting list replaces the current argument list;
the first file in the new list is then edited. If
command is given (it must contain no spaces),
it is executed after the first file is edited.

The argument list is rewound, and the first file
in the list is edited.

The argument list is rewound and any changes
made to the current buffer are discarded.

Edit Commands

To edit a file other than the one you are currently editing, you will
often use one of the variations of the e command.

In the following discussions, note that the name of the current file
is always remembered by vi and is specified by a percent sign
(%). The name of the previous file in the editing buffer is
specified by a number sign (#) .

The edit commands are described below:

e file Used to begin an editing session on a new file. The
editor first checks to see if the buffer has been
modified since the last w command was issued. If it
has been, a warning is issued and the command is not
executed. The command otherwise deletes the entire
contents of the editing buffer, makes the named file
the current file, and prints the new filename. After
ensuring that this file is sensible, (that is, that it is

e! file

not a binary file, directory, or a device), the editor
reads the file into its buffer. If the read of the file
finishes without error, the number of lines and
characters read is printed on the status line. If there
were any non-ASCII characters in the file, they are
stripped of their non-ASCII high bits, and any null
characters in the file are discarded. If none of these
errors occurred, the file is considered edited. If the
last line of the input file is missing the trailing
newline character, it is supplied and an error message
issued. The current line is initially the first line of
the file.

This variant suppresses the complaint about
modifications having been made and not written
from the editor buffer, thus discarding all changes
that have been made before editing the new file.

VI(C) 1-369

e +n file

Ctrl-"

Causes the editor to begin editing at line n rather
than at the first line. The argument n may also be an
editor command containing no spaces; for example,
"+I pattern".

This is a shorthand equivalent for an :e #Enter,
which returns to the previous position in the last
edited file. If you do not want to write the file you
should use :e! #Enter. instead.

Write Commands

The write commands let you write out all or part of your editing
buffer to either the current file or to some other file. These
commands are described below:

w file
Writes changes made back to file, printing the number of
lines and characters written. Normally, file is omitted and
the buffer is written to the name of the current file. If file is
specified, text is written to that file. The editor writes to a
file only if it is the current file and is edited or if the file does
not exist. Otherwise, you must give the variant form w! to
force the write. If the file does not exist it is created. The
current filename is changed only if there is no current
filename; the current line is never changed.

If an error occurs while the current and edited file is being
written, the editor prints:

No write since last change

even if the buffer had not previously been modified.

w >>file
Appends the buffer contents at the end of an existing file.
Previous file contents are not destroyed.

w! name
Overrides the checking of the normal write command, and
writes to any file that the system permits.

1-370 VI(C)

w! command
Writes the specified lines into command. Note the difference
between:

w!file
which overrides checks and

w!cmd
which writes to a command. The output of this command is
displayed on the screen and not inserted in the editing buffer.

Read Commands

The read commands let you read text into your editing buffer at
any location you specify. The text you read in must be at least
one line long, and can be either a file or the output from a
command.

r file Places a copy of the text of the given file in the
editing buffer after the specified line. If no file is
given, the current filename is used. The current
filename is not changed unless there is none, in
which case the file becomes the current name. If
the file buffer is empty and there is no current
name, this is treated as an e command.

Address 0 is legal for this command and causes the
file to be read at the beginning of the buffer.
Statistics are given as for thee command when the r
successfully terminates. After an r, the current line
is the last line read.

r !command Reads the output of command into the buffer after
the specified line. A blank or tab before the
exclamation mark (!) is mandatory.

VI(C) 1-371

Quit Commands

There are several ways to exit vi. Some end the editing session,
some write out the editing buffer before exiting, and some warn
you if you decide to exit without writing out the buffer. All of
these ways of exiting are described below:

q Exits vi. No automatic write of the editing buffer to a
file is performed. However, vi issues a warning
message if the file has changed since the last w
command was issued, and does not quit. Also, vi
issues a diagnostic message if there are more files in
the argument list left to edit. Normally, you want to
save your changes, and you should give aw command.
If you want to discard them, use the "q!" command
variant.

q! Quits from the editor, discarding changes to the buffer
without a message.

wq name Like a w and then a q command.

wq ! name This variant overrides checking of the w command so
that you can write to a file that the system allows.

x name If any changes have been made and not written, writes
the buffer out and quits. Otherwise, it just quits.

1-372 VI(C)

Global and Substitute Commands

The global and substitute commands allow you to perform
complex changes to a file in a single command. Learning how to
use these commands is a must for the serious user of vi.

g/ pattern/ cmds The g command has two distinct phases. In the
first phase, each line matching pattern in the
editing buffer is marked. Next, the given
command list is executed with the current line,
dot (.), initially set to each marked line.

The command list consists of the remaining
commands on the current input line and may
continue to multiple lines by ending all but the
last such line with a backslash (\). This
multiple-line option will not work from within
vi, you must switch to ex to do it. If cmds (or
the trailing slash (/) delimiter) is omitted, each
line matching pattern is printed.

The g command itself may not appear in cmds.
The options autoprint and autoindent are
inhibited during a global command and the
value of the report option is temporarily
infinite , in deference to a report for the entire
global command. Finally, the context mark(')
or (') is set to the value of the current line (.)
before the global command begins and is not
changed during a global command.

The following global commands, most of them substitutions,
cover the most frequent uses of the global command.

g/sl/p

g/sl/s//s2/

This command simply prints all lines that
contain the string s 1.

This command substitutes the first occurrence
of s 1 on all lines that contain it with the string
s2.

VI(C) 1-373

g/sl/s//s2/g This command substitutes all occurrences of sl
with the string s2. This includes multiple
occurrences of s 1 on a line.

g/sl/s//s2/gp This command works the same as the
preceding example, except that in addition, all
changed lines are printed on the screen.

g/sl /s//s2/gc This command asks you to confirm that you
want to make each substitution of the string s 1
with the string s2. If you type a y the given
substitution is made, otherwise it is not.

g/s0/s/sl/s2/g This command marks all lines that contain the
string sO, and then, for those lines only, it
substitutes all occurrences of the string s 1 with
s2.

g!/ pattern/ cmds This variant form of g runs cmds at each line
not matching pattern

s/ pattern/ rep!/ options
On each specified line, the first instance of

text matching the regular expression pattern is
replaced by the replacement text rep/. If the
global indicator option character g appears, all
instances on a line are substituted. If the
confirm indication character c appears, before
each substitution, the line to be substituted is
printed on the screen with the string to be
substituted marked with caret (A) characters.
By typing a y, you cause the substitution to be
performed; any other input causes no change
to take place. After an s command the current
line is the last line substituted.

v I pattern/ cmds A synonym for the global command variant g!,
running the specified cmds on each line that
does not match pattern.

1-374 VI(C)

Text Movement Commands

The text movement commands are largely superseded by
commands available in vi command mode. However, the
following two commands are still quite useful.

co addr flags

[range Jmaddr

A copy of the specified lines is placed after addr,
which may be "j)". The current line"."
addresses the last line of the copy.

The m command moves the lines specified by
range after the line given by addr. For example,
"m +" swaps the current line and the following
line, because the default range is just the current
line. The first of the moved lines becomes the
current line (.).

Shell Escape Commands

You will often want to escape from the editor to execute normal
XENIX commands. You may also want to change your working
directory so that your editing can be done with respect to a
different working directory. These operations are described
below:

cd directory

sh

The specified directory becomes the current
directory. If no directory is specified, the current
value of the home option is used as the target
directory. After a cd the current file is not
considered to have been edited so that write
restrictions on preexisting files still apply.

A new shell is created. You may invoke as many
commands as you like in this shell. To return to
vi, type a Ctrl-D to terminate the shell.

VI(C) 1-375

!command The remainder of the line after the exclamation
(!) is sent to a shell to be executed. Within the
text of command, the characters " 0/o" and "#"
are expanded as the filenames of the current file
and the last edited file and the character"!" is
replaced with the text of the previous command.
Thus, in particular, "!!"repeats the last such shell
escape. If any such expansion is performed, the
expanded line is echoed. The current line is
unchanged by this command.

If there has been "[No write]" of the buffer contents since the
last change to the editing buffer, a diagnostic is printed as a
warning before the command is executed. A single exclamation
(!) is printed when the command finishes.

Other Commands

The following command descriptions explain how to use
miscellaneous ex commands that do not fit into the above
categories:

abbr Maps the first argument to the following string. For
example, the following command:

map, map!

:abbr rainbow yellow green blue red

maps "rainbow" to "yellow green blue red".
Abbreviations can be turned off with the unabbreviate
command, as in:

:una rainbow

Maps any character or escape sequence to an existing
command sequence. Characters mapped with map!
work only in insert mode, while characters mapped
with map work only in command mode.

nu Prints each specified line preceded by its buffer line
number. The current line is left at the last line printed.
To get automatic line numbering of lines in the buffer,
set the number option.

1-376 VI(C)

preserve The current editing buffer is saved as though the
system had just gone down. This command is for use
only in emergencies when a w command has resulted in
an error and you don't know how to save your work.

= Prints the line number of the addressed line. The
current line is unchanged.

recover file
Recovers file from the system save area. The system
saves a copy of the editing buffer only if you have
made changes to the file, the system goes down, or you
execute a preserve command. Except when you use
preserve, you will be notified by mail when a file is
saved.

set argument
With no arguments, set prints these options whose

values have been changed from their defaults; with the
argument all it prints all of the option values.

Giving an option name followed by a question mark (?) causes
the current value of that option to be printed. The ? is
unnecessary unless the option is Boolean valued. Switch options
are given values either with:

set option

to turn them on or:

set nooption

to turn them off. String and numeric options are assigned with:

set option= value

VI(C) 1-377

More than one parameter may be given to set; all are interpreted
from left to right.

tag label The focus of editing switches to the location of label.
If necessary, vi will switch to a different file in the
current directory to find label. If you have modified
the current file before giving a tag command, you
must first write it out. If you give another tag
command with no argument, the previous label is
used.

Similarly, if you type only a Ctrl-], vi searches for the
word immediately after the cursor as a tag. This is
equivalent to typing ":tag", the word, and then an
Enter.

The tags file is normally created by a program such
as ctags and consists of a number of lines with three
fields separated by blanks or tabs. The first field
gives the name of the tag, the second the name of the
file where the tag resides, and the third an addressing
form that can be used by the editor to find the tag.
This field is usually a contextual scan using I pattern/
to be immune to minor changes in the file. Such
scans are always performed as if the nomagic option
was set. The tag names in the tags file must be
sorted alphabetically. There are a number of options
that can be set to affect the vi environment. These
can be set with the ex set command either while
editing or immediately after vi is invoked in the vi
start-up file, .exrc.

The first thing that must be done before you can use vi, is to set
the terminal type so that vi understands how to talk to the
particular terminal you are using.

Each time vi is invoked, it reads commands from the file named
.exrc in your home directory. This file normally sets the user's
preferred options so that they need not be set manually each time
you invoke vi. Each of the options is described in detail below.

1-378 VI(C)

Options

There are only two kinds of options: switch options and string
options. A switch option is either on or off. A switch is turned
off by prefixing the word no to the name of the switch within a set
command. String options are strings of characters that are
assigned values with the syntax option=string. Multiple options
may be specified on a line. Options are listed below:

autoindent, ai default: noai
Can be used to ease the preparation of structured
program text. For each line created by an append,
change, insert, open, or substitute operation, vi looks at
the preceding line to determine and insert an
appropriate amount of indentation. To back the cursor
up to the preceding tab stop, you can type Ctrl-D. The
tab stops going backward are defined as multiples of
the shiftwidth option. You cannot backspace over the
indent, except by typing a Ctrl-D.

Specially processed in this mode is a line with no
characters added to it, which turns into a completely
blank line (the whitespace provided for the autoindent

is discarded.) Also specially processed in this mode are
lines beginning with a caret (") and immediately
followed by a Ctrl-D. This causes the input to be
repositioned at the beginning of the line but retains the
previous indent for the next line. Similarly, a
0followed by a Ctrl-D repositions the cursor at the
beginning but without retaining the previous indent.
Autoindent doesn't happen in global commands.

autoprint, ap default: ap
Causes the current line to be printed after each ex
copy, move, or substitute command. This has the same
effect as supplying a trailing p to each such command.
The autoprint option is suppressed in globals and only
applies to the last of many commands on a line.

Vl(C) 1-379

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically
written to the current file if you have modified it when
you give a next, rewind, tag, or ! command, or a Ctrl- A

(switch files) or Ctrl-] (tag go to) command.

beautify, bf default: nobeautify
Causes all control characters except tab, new line and
form feed to be discarded from the input. A message is
returned the first time a backspace character is
discarded. The beautify option does not apply to
command input.

directory, dir default: dir=/tmp
Specifies the directory in which vi places the editing
buffer file. If this directory is not writable, the editor
exits abruptly when it fails to write to the buffer file.

edcompatible def a ult: noedcompatible
Causes the presence or absence of g and c suffixes on
substitute commands to be remembered and to be
toggled on and off by repeating the suffixes. The suffix
r causes the substitution to be like the ("') command,
instead of like &.

errorbells,eb default: noeb
Error messages usually are preceded by a beep. If
possible, the editor places the error message in inverse
video instead of sounding the beep.

hardtabs, ht default: ht=8
Gives the boundaries on which terminal tabs are set or
on which the system expands tabs.

ignorecase, ic default:noic
Maps all uppercase characters in the text to lowercase
in regular expression matching. In addition, all
uppercase characters in regular expressions are mapped
to lowercase except in character class specifications
enclosed in brackets.

1-380 VI(C)

lisp default: nolisp
Autoindent indents appropriately for LISP code, and
the () n [[and]] commands are modified to have
meaning for LISP.

list default: nolist
All printed lines are displayed unambiguously, showing
tabs and end-of-lines.

magic default: magic
If nomagic is set, the number of regular expression
special characters is greatly reduced, with only
up-arrow (t), and dollar sign ($) having special effects.
In addition, the special characters""'" and"&" in
replacement patterns are treated as normal characters.
All the normal special characters may be made magic
when nomagic is set by preceding them with a backslash
(\).

mesg default: nomesg
Causes write permission to be turned off to the
terminal while you are in visual mode, if nomesg is set.
This prevents people writing to your screen with the
XENIX write command and disrupting your screen as
you edit.

number, n default: nonumber
Causes all output lines to be printed with their line
numbers.

open default: open
If set to noopen, the commands open and visual are not
permitted from ex. This is set to prevent confusion
resulting from accidental entry to open or visual mode.

optimize, opt default: optimize
Output of text to the screen is expedited by setting the
terminal so that it does not perform automatic carriage
returns when printing more than one line of output,
thus greatly speeding output on terminals without
addressable cursors when text with leading whitespace
is printed.

VI(C) 1-381

paragraphs, para default: para=IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and J
operations. The pairs of characters in the option's
value are the names of the nroff macros that start
paragraphs.

prompt default: prompt
Input to ex is prompted for with a colon (:). If
noprompt is set, when ex command mode is entered
with the Q command, no colon prompt is displayed on
the status line.

redraw default: noredraw
The editor simulates (using great amounts of output),
an intelligent terminal on a dumb terminal. Useful only
at very high speed.

remap default: remap
If on, mapped characters are repeatedly tried until they
are unchanged. For example, if o is mapped to 0 and
0 is mapped to I, o will map to I if remap is set, and to
0 if noremap is set.

report default: report=5
Specifies a threshold for feedback from commands.
Any command that modifies more than the specified
number of lines will provide feedback about the scope
of its changes. For global commands and the undo
command, which have potentially far reaching scope,
the net change in the number of lines in the buffer is
presented at the end of the command, subject to this
same threshold. Thus, notification is suppressed during
a g command on the individual commands performed.

scroll default: scroll= window
Determines the number of logical lines scrolled when
Ctrl-D is received from a terminal input in command
mode, and the number of lines printed by a command
mode z command (double the value of scroll).

1-382 VI(C)

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations.

The pairs of characters in the option's value are the
names of the nroff macros that start paragraphs.

shell, sh default: sh=/bin/sh
Gives the path name of the shell forked for the shell

escape command "! ", and by the shell command. The

default is taken from SHELL in the environment, if

present.

shiftwidth, sw default: sw=8
Gives the width of a software tab stop, used in reverse

tabbing with Ctrl-D when using autoindent to append

text, and by the shift commands.

showmatch, sm default: nosm
When a) or } is typed, moves the cursor to the
matching (or { for one second if this matching
character is on the screen.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on

tabstop boundaries for the purposes of display.

taglength, ti default: tl=O
The first taglength characters in a tag name are
significant, but all others are ignored. A value of 0 (the

default) means that all characters are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag
command. A requested tag is searched for in the
specified files, sequentially. By default, files named tag

are searched for in the current directory and in

/ usr/lib.

VI(C) 1-383

term default:= value of shell TERM variable
The terminal type of output device.

terse default: noterse
Shorter error diagnostics are produced for the
experienced user.

warn default: warn
Warn if there has been "[No write since last change]"
before a shell escape command (!).

window default: window= speed dependent
This specifies the number of lines in a text window.
The default is 8 at slow speeds (600 baud or less), 16
at medium speed (1200 baud), and the full screen
(minus one line) at higher speeds.

w300,w1200,w9600
These are not true options but set window (above) only
if the speed is slow (300), medium (1200), or high
(9600), respectively.

wrapscan, ws default: ws
Searches using the regular expressions in addressing
wrap around past the end of the file.

wrapmargin, wm default: wm=O
Defines the margin for automatic insertion of new lines
during text input. A value of £) specifies no wrap
margin.

writeany, wa default: nowa
Inhibits the checks normally made before write
commands, allowing a write to any file that the system
protection mechanism will allow.

1-384 VI(C)

Regular Expressions

A regular expression specifies a set of strings of characters. A

member of this set of strings is said to be matched by the regular

expression. The vi editor remembers two previous regular

expressions: the previous regular expression used in a substitute

command and the previous regular expression used elsewhere,

referred to as the previous scanning regular expression. The

previous regular expression can always be referred to by a null

regular expression: for example, I I or??.

The regular expressions allowed by vi are constructed in one of

two ways, depending on the setting of the magic option. The ex

and vi default setting of magic gives quick access to a powerful set

of regular expression special characters. The disadvantage of

magic is that the user must remember that these special characters

are magic and precede them with the backslash (\) to use them as

"ordinary" characters. With nomagic set, regular expressions are

much simpler, there being only three special characters. The

power of the other special characters is still available by preceding

the now ordinary character with a \. Note that \ is thus always

a special character. In this discussion the magic option is

assumed. With nomagic the only special characters are the caret

(A) at the beginning of a regular expression, the dollar sign ($) at

the end of a regular expression, and the backslash (\). The tilde

('"") and the ampersand (&) also lose their special meanings

related to the replacement pattern of a substitute.

The following basic constructs are used to construct magic mode

regular expressions.

char An ordinary character matches itself. Ordinary characters

are any characters except a caret (A) at the beginning of a

line, a dollar sign ($) at the end of line, a asterisk (*) as any

character other than the first, and any of the following

characters:

. \ [] '""

These characters must be escaped (that is, preceded) by a

backslash (\) if they are to be treated as ordinary

characters.

VI(C) 1-385

/\ At the beginning of a pattern, this forces the match to
succeed only at the beginning of a line.

$ At the end of a regular expression this forces the match to
succeed only at the end of the line.

Matches any single character except the newline character.

\ < Forces the match to occur only at the beginning of a
"word"; that is, either at the beginning of a line, or just
before a letter, digit, or underline and after a character not
one of these.

\ > Similar to \ <, but matching the end of a "word," that is
either the end of the line or before a character which is not
a letter, a digit, or the underline character.

[string]
Matches any single character in the class defined by string.

Most characters in string define themselves. A pair of
characters separated by a hyphen (-) in string defines the set
of characters between the specified lower and upper
bounds, thus "[a-z]" as a regular expression matches any
single lowercase letter. If the first character of string is a
caret (/\), the construct matches those characters which it
otherwise would not. Thus [/\ a-z] matches anything but a
lowercase letter or a newline. To place any of the
characters caret, left bracket, or dash in string they must be
escaped with a preceding backslash (\).

1-386 VI(C)

The concatenation of two regular expressions first matches the
leftmost regular expression and then the longest string that can be
recognized as a regular expression. The first part of this new
regular expression matches the first regular expression and the
second part matches the second. Any of the single character
matching regular expressions mentioned above may be followed
by an asterisk (*) to form a regular expression that matches zero
or more adjacent occurrences of the characters matched by the
prefixing regular expression. The tilde (,....,) may be used in a
regular expression to match the text that defined the replacement
part of the last s command. A regular expression may be enclosed
between the sequences \ (and \) to remember the text
matched by the enclosed regular expression. This text can later
be interpolated into the replacement text using the notation:

\ digit

where digit enumerates the set of remembered regular
expressions.

The basic special characters for the replacement pattern are the
ampersand(&) and the tilde("'). These are given as \&and
\,...., when nomagic is set. Each instance of the ampersand is
replaced by the characters matched by the regular expression. In
the replacement pattern, the tilde stands for the text of the
previous replacement pattern.

Other metasequences possible in the replacement pattern are
always introduced by a backslash (\). The sequence \ n is
replaced by the text matched by the nth regular subexpression
enclosed between \ (and \). When nested, parenthesized
subexpressions are present, n is determined by counting
occurrences of \ (starting from the left. The sequences \ u and
\1 cause the immediately following character in the replacement
to be converted to uppercase or lowercase, respectively, if this
character is a letter. The sequences \ U and \ L turn such
conversion on, either until \E or" \e" is encountered, or until
the end of the replacement pattern.

VI(C) 1-387

Limitations

When using vi, you should note the following limits:

250,000 lines in a file

1024 characters per line

256 characters per global command list

128 characters per filename

128 characters in the previously inserted and deleted text

100 characters in a shell escape command

63 characters in a string valued option

30 characters in a tag name

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

The /usr/lib/ex2.13preserve program can be used to restore vi
buffer files that were lost as a result of the system going down.
The program searches the /tmp directory for vi buffer files and
places them in the directory /usr/preserve. The owner can
retrieve these files using the -r option.

The /usr/lib/ex2.13preserve program must be placed in the
system startup file, I etc/re, before the command that cleans out
the /tmp directory. See the XENIX System Administration for
more information on I etc/re.

1-388 VI(C)

VSH(C)

Name

vsh - Invokes the visual shell.

Syntax

Description

The vsh command is a visual command interpreter with an
interface much like that of other IBM tools. This shell is
recommended for casual users of the system and those with
specialized needs that do not include learning the complete
operating system. Note that the visual shell can be substituted for
a user's normal login shell by altering the I etc/passwd file.

See Also

XENIX Visual Shell
sh(C)

VSH(C) 1-389

WAIT(C)

Name

wait - A waits completion of background processes.

Syntax

wait

Description

The wait command waits until all background processes started
with an ampersand
(&)have finished and reports on abnormal terminations.

See Also

sh(C)

Comment

Not all the processes of a pipeline with three or more stages are
children of the shell and thus cannot be waited for.

1-390 WAIT(C)

WALL(C)

Name

wall - Writes to all users.

Syntax

/etc/wall

Description

The wall command reads a message from the standard input until

an end-of-file. It then sends this message to all users currently

logged in preceded by "Broadcast Message from .. . ". The wall
command is used to warn all users, as for example, before

shutting down the system.

The sender should be super-user to override any protections the

users may have invoked.

Files

/ dev / tty*

See Also

mesg(C), write(C)

Diagnostics

Cannot send to The open on a user's tty file has failed.

WALL(C) 1-391

WC(C)

Name

we - Counts lines, words and characters.

Syntax

Description

The we command counts lines, words and characters in the named
files or in the standard input if no names appear. It also keeps a
total count for all named files. A word is a maximal string of
characters delimited by spaces, tabs, or newlines.

The options I, w, and c may be used in any combination to specify
that a subset of lines, words, and characters is to be reported.
The default is -lwc.

When names are specified on the command line, the names are
printed along with the counts.

1-392 WC(C)

WHAT(C)

Name

what - Identifies files.

Syntax

W'batfi/es ,

Description

The what command searches the given files for all occurrences of
the pattern @(#) and prints out what follows until the first tilde
("'),greater than sign(>), new-line, backslash(\), or null
character.

For example, if the shell procedure in -file print contains:

@(#)this is the print program
@(#)syntax: print [files]
pr $* 11 pr

then the command:

what print

displays the name of the file print and the identifying strings in
that file:

print:
this is the print program
synta x: print [files]

WHAT(C) 1-393

WHO(C)

Name

who - Lists who is on the system.

Syntax

Description

Without an argument, who lists the login name, terminal name,
and login time for each current XENIX user.

Without an argument, who examines the I etc/utmp file to obtain
its information. If a file is given, that file is examined. Typically
the given file will be /usr/adm/wtmp, which contains a record of
all the logins since it was created. Then who lists logins, logouts,
and system outages since the creation of the wtmp file. Each login
is listed with user name, terminal name (with /dev/ suppressed),
and date and time. When an argument is given, logouts produce a
similar line without a user name. Reboots produce a line with ,...,
in the place of the device name, and a fossil time indicating when
the system went down.

With two arguments, as in who am I (and also who are you), who
tells who you are logged in as.

File

/etc/utmp

See Also

utmp(M)

1-394 WHO(C)

WHODO(C)

Name

whodo - Determines who is doing what.

Syntax

Description

The whodo command produces merged, reformatted, and dated
output from the who(C) and ps(C) commands.

See Also

ps(C), who(C)

WHODO(C) 1-395

WRITE(C)

Name

write - Writes to another user.

Syntax

write user [tty]

Description

The write command copies lines from your terminal to that of
another user. When first called, it sends the message:

Message from your-logname your-tty

The recipient of the message should write back at this point.
Communication continues until an end-of-file is read from the
terminal or an interrupt is sent. At that point, write writes:

(end of message)

on the other terminal and exits.

If you want to write to a user who is logged in more than once,
the tty argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the
mesg(C) command. At the outset, writing is allowed. Certain
commands, in particular pr(C), disallow messages to prevent
messy output.

1-396 WRITE(C)

If the character ! is found at the beginning of a line, write calls
the shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you first
write to another user, wait for him or her to write back before
starting to send. Each party should end each message with a
distinctive signal ((o) ford"over" is conventional), indicating that
the other may reply; (oo) for "over and out" is suggested when
conversation is to be terminated.

Files

/etc/utmp
/bin/sh

See Also

To find user
To execute!

mail(C), mesg(C), who(C)

WRITE(C) 1-397

XARGS(C)

Name

xargs - Constructs and executes commands.

Syntax

xargs [flags] [command[initial-arguments]]

Description

The xargs command combines the fixed initial-arguments with
arguments read from the standard input to execute the specified
command one or more times. The number of arguments read for
each command invocation and the manner in which they are
combined are determined by the flags specified.

The command specified, which may be a shell file, is searched for
using the shell $PA TH variable. If command is omitted,
/bin/ echo is used.

Arguments read in from standard input are defined to be
contiguous strings of characters delimited by one or more blanks,
tabs, or new lines; empty lines are always discarded. Blanks and
tabs may be embedded as part of an argument if escaped or
quoted; characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of
quoted strings, a backslash (\) escapes the next character.

Each argument list is constructed starting with the
initial-arguments, followed by some number of arguments read
from standard input (exception: see -i flag). Flags -i, -1, and -n
determine how arguments are selected for each command
invocation. When none of these flags is coded, the
initial-arguments are followed by arguments read continuously
from standard input until an internal buffer is full. Then
command is executed with the accumulated arguments. This
process is repeated until there are no more arguments. When
there are flag conflicts (for example, -I vs. -n), the last flag has
precedence.

1-398 XARGS(C)

Values for flag are:

-lnumber The specified command is executed for each number
lines of non-empty arguments from the standard
input. This is instead of the default single line of
input for each command. The last invocation of
command will be with fewer lines of arguments if
fewer than number remain. A line is considered to
end with the first newline unless the last character of
the line is a blank or a tab; a trailing blank/tab
signals continuation through the next non-empty
line. If number is omitted, 1 is assumed. Option -x
is forced.

-ireplstr Insert mode: command is executed for each line from
the standard input, taking the entire line as a single
arg, inserting it in initial-arguments for each
occurrence of replstr. A maximum of five arguments
in initial-arguments may each contain one or more
instances of replstr. Blanks and tabs at the beginning
of each line are thrown away. Constructed
arguments may not grow larger than 255 characters,
and option -x is also forced. n is assumed for replstr
if not specified.

-nnumber Executes command using as many standard input
arguments as possible, up to number arguments
maximum. Fewer arguments are used if their total
size is greater than size characters, and for the last
invocation if there are fewer than number arguments
remaining. If option -x is also coded, each number
argument must fit in the size limitation or else xargs
terminates execution.

-t Trace mode: The command and each constructed
argument list are echoed to file descriptor 2 just
before their execution.

XARGS(C) 1-399

-p

-x

-ssize

-eeofstr

Prompt mode: The user is asked whether to execute
the specified command at each invocation. Trace
mode (-t) is automatically turned on to print the
command each time it is expected to execute,
followed by a ? . . . prompt. A reply of y (optionally
followed by anything) executes the command;
anything else, including just a carriage return, skips
that particular invocation of command.

Causes xargs to terminate if any argument list would
be greater than size characters; -xis forced by the
options -i and -I. When neither -i, -1, or -n are
coded, the total length of all arguments must be
within the size limit.

The maximum total size of each argument list is set
to size characters; size must be a positive integer less
than or equal to 4 70. If -sis not coded, 4 70 is taken
as the default. Note that the character count for size
includes one extra character for each argument and
the count of characters in the command name.

The eofstr is taken as the logical end-of-file string.
Underscore () is assumed for the logical EOF
string if -e is not coded. The -e with no eofstr coded
turns off the logical EOF string capability
(underscore is taken literally) . The xargs command
reads the standard input until either end-of-file or
the logical EOF string is encountered.

The xargs command terminates if it either receives a return code
of -1 from, or if it cannot execute, command. When command is a
shell program, it should explicitly exit (see sh(C)) with an
appropriate value to avoid accidentally returning with -1.

1-400 XARGS(C)

Examples

The following moves all files from directory $1 to directory $2,
and echoes each move command just before doing it:

s $1 I xargs - i - t mv $1/ {} $2/ {}

The following combines the output of the parenthesized
commands on to one line, which is then echoed to the end of file
log:

(l ogname ; d a ~ e ; ec ho $0 $*) I xargs >> l og

The user is asked which files in the current directory are to be
printed and prints them one at a time:

l s I xargs - p - 1 lp r

or many at a time:

l s I xa gs p -1 I xarg s l pr

The following executes diff(C) with successive pairs of arguments
originally typed as shell arguments:

echo $* I xargs -n2 diff

XARGS(C) 1-401

YES(C)

Name

yes - Prints string repeatedly.

Syntax

Description

The yes command repeatedly outputs y or, if a single string
argument is given, arg is output repeatedly. The command
continues indefinitely unless ended. This is useful in pipes to
commands that prompt for input and require a y response for a
yes. In this case, yes terminates when the command it pipes to
terminates, so that no infinite loop occurs.

1-402 YES(C)

Section 2. Maintenance Commands and
Miscellaneous Information

Introduction

This section contains commands and information that can be used

to maintain the XENIX system . Included in this section are:

commands, descriptions of important files, devices, tables, and

programs that are important in maintaining the entire XENIX

system.

2-1

ALIASES(M)
Name

aliases, aliases.hash, maliases, faliases - Micnet aliasing files.

Description

These files contain the alias definitions for a Micnet network.
Aliases are short names or abbreviations that may be used in the
mail(C) command to refer to specific machines or users in a
network. Aliasing allows a complex combination of site, machine,
and user names to be represented by a single name.

The aliases, maliases, and faliases files each define a different type
of alias. The aliases file defines the standard aliases, which are
names for specific systems and users and, in some case, for
commands. The maliases file defines machine aliases, names, and
paths for specific systems. The faliases file defines forwarding
aliases, which are temporary names for forwarding mail intended
for one system or user to another.

The aliases.hash file is the hashed version of the aliases file
created by the aliashash(C) command. The file is used by the
mail(C) command to resolve all standard aliases and is identical to
the aliases file except for a hash table at the beginning of the file.
The hash table allows for more efficient access to the entries in
the file. The aliases file need only be present to generate the
aliases.hash file. The aliases file is not required to run the
network.

Each file contains zero or more lines. Each line lists the alias and
its meaning. The alias can have up to eight letters and numbers,
but must begin with a letter. The meaning can have site, machine,
and user login names and other aliases (its exact composition
depends on the type of alias). A colon (:) separating the alias and
meaning is required.

2-2 ALIASES(M)

In the aliases file, a line can have the forms:

alias:[[site!Jmachine:J user[,[[site!]machine:Juser]

alias:[[site!Jmachine:J command-pipeline

alias:error-message

Site and machine are the site and machine names of the system to

which the user belongs or on which the specified command is to

be executed. The site and machine names must end with an

exclamation mark (!) or colon (:),respectively, and must be

defined in a systemid file. A machine alias may be used in place

of a site and machine name if it is followed by a colon.

User is a user login name or another alias. User names in a list

must be separated by commas. A newline may immediately

follow a comma. Spaces and tabs are allowed, but only

immediately before or after a comma or newline.

Command-pipeline is any valid command (with necessary

arguments) preceded by a pipe symbol (I) and enclosed in double

quotation marks. Spaces may separate the command and

arguments, but there must be no space between the first double

quotation mark and the pipe symbol.

Error-message is any sequence of letters, numbers, and
punctuation marks (except a double quotation mark) preceded by

a number sign (#) and enclosed in double quotation marks.

In the faliases file, each line can have the same form as lines in the

aliases file except that no more than one user name can be given

for any one alias.

In the maliases file, a line has the form:

alias:[[site!Jmachine:J ...

Site and machine are the site and machine names for a specific

network and system. Multiple site and machine names direct

messages along the specified path of systems. If no site or

machine name is given, the alias is ignored.

ALIASES(M) 2-3

Before the mail program sends a message, it searches the
aliases.hash, faliases, and maliases files to see if any of the names
given with the command are aliases. Each file is searched in turn,
(aliases.hash, faliases, then maliases) and if a match is found, the
alias is replaced with its meaning. If no match is found, the name
is assumed to be the valid login name of a user on that machine.
The search in the aliases.hash file continues until all aliases have
been replaced, so it is possible for several replacements to occur
for a single name. (If a loop exists, processing continues
indefinitely). The faliases file is searched once, from beginning to
end, even if it contains no aliases. The maliases file is searched
only if the alias contains a machine alias.

When an alias is a user or a list of users, the mail command sends
the message to each user in the list. When it is a
command-pipeline, the mail command starts execution of the
command on the specified machine and sends the message as
input. When the alias is an error message, the mail command
ignores the message and instead displays the alias and its meaning
on the standard error output.

In all files, any line beginning with a number sign (#) is
considered a comment and is ignored.

As a special feature, any alias that contains a site name as the first
component of its meaning is automatically prefixed with the
machine alias uucp?. This alias may be explicitly defined in the
maliases file to help direct mail between networks to the system
performing the uucp link.

Files

I usr /Ii b I mail/ aliases
I usr I Ii b I mail I aliases. hash
I usr /lib I mail/ maliases
I usr /lib I mail/ f aliases

See Also

aliashash(M), netutil(C), systemid(M), top(M)

2-4 ALIASES(M)

ALIASHASH(M)

Name

aliashash - Micnet alias hash table generator

Syntax

/usr/lib/maU/aliashash [-v] [-o output-file] [input-fileJ

Description

The aliashash command reads the input-file and generates an

output-file containing a hash table of alias definitions for a Micnet

network. The input-file must name a file containing alias

definitions in the form described for the aliases file (see

aliases(M)). If the -o option is not used to specify an output-file,

the command creates a file with the same name as the input-file

but with .hash appended to it. If no input-file is given, the

command reads the file named /usr /lib/mail/ aliases and creates

the file named /usr /lib/mail/ aliases.hash.

If invoked with the -v option, the command lists information

about the hash table.

The output-file contains both the alias definitions given in the

input-file and the new hash table. The hash table appears at the

beginning of the file and is separated from the alias definitions by

a blank line. The hash table has three or more lines. The first line

is:

<h ash>

The second line has four entries: the bytes per table entry, the

maximum number of items per hash value, the number of entries

in the table , and the offset (in bytes) from the beginning of the

file to the beginning of the alias definitions.

ALIASHASH(M) 2-5

The next lines (to the end of the hash table) contain the hash
table entries. Each line has eight entries (separated by spaces)
and each entry has two fields. The first field (one byte) is a
checksum (represented as a printable character); the second field
is a pointer (in bytes) to the alias definition. The pointer is
represented as a hexadecimal number, with leading blanks if
necessary, and is always relative to the start of the definitions.

The aliashash command is normally invoked by the install option
of the netutil command. If the alias definitions of a network must
be changed, the definitions in the aliases file should be changed
and a new aliases.hash file created using the aliashash command.
The new aliases.hash file must then be copied to all other
computers in the network.

Files

I usr /lib I mail/ alias hash
I usr /lib I mail/ aliases
I usr /lib I mail/ aliases.hash

See Also

aliases(M), netutil(C)

Warning: Do not use the aliashash file while the network is
running. If necessary, create a temporary output file,
aliases.hash-, using the -o option, then type:

mv aliases.hash- aliases.hash

This will prevent disruption of the network.

2-6 ALIASHASH(M)

ASCII(M)

Name

ascii - Map of the ASCII character set.

Description

The ascii map is a map of the ASCII character set. It lists both

octal and hexadecimal equivalents of each character. It contains:

OCTAL

000 nul 00 I soh 002 stx 003 e lx 004 eot 005 enq 006 ack 007 bet

0 I 0 bs 011 ht 012 nl 013 Vl 014 np 015 er 016 so 017 si

020 die 021 dcl 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 clb

030 can 031 cm 032 sub 033 esc 034 fs 035 gs 036 rs 037 us

040 sp 041 I 042" 043 # 044 s 045 <y. , 046 & 047.

050 (051) 052 * 053 + 054. 055 - 056. 057 I

060 0 061 I 062 2 063 3 064 4 065 5 066 6 067 7

070 8 071 9 072: 073 : 074 < 075 = 076 > 077 ?

100@ IOI A 102 B 103 c 104 D 105 E 106 F 107 G

110 H II I I 112 J 113 K 114 L 115 M 116N 117 0

120 p 121 Q 122 R 123 s 124 T 125 u 126 v 127 w
130 x 131 y 132 z 133 r 134 \ 135 I 136 /\ 137_

140. 141 a 142 h 143 c 144 cl 145 e 146 f 147 g

150 h IS I i 152 .i 153 k 154 I 155 111 156 n 157 ()

I ()0 p 161 q 162 r 163 s 164 t 165 LI 166 v 167 w

L 170 x 171 y 172 z 173 f t 74 I 175 } 176 rv 177 del

ASCII(M) 2-7

HEXADECIMAL
00 nul 01 soh 02 stx 03 etx 04 eot OS enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt Oc np Oder Oe so Of si
10 die 11 dcl 12 dc2 13 dc3 14 dc4 IS nak 16 syn 17 etb
18 can 19 em la sub I b esc I c fs Id gs I e rs If us
20 sp 21 ! 22" 23 # 24 $ 2s (x) 26 & 27'
28 (29) 2a * 2b + 2c, 2d - 2e. 2f I
30 0 31 I 32 2 33 3 34 4 3S s 36 6 37 7
38 8 39 9 3a : 3b; 3c < 3d = 3e > 3f?
40@ 41A 42 B 43 c 44 D 4S E 46 F 47 G
48 H 491 4a J 4b K 4c L 4d M 4e N 4f 0
sop SI Q 52 R 53 s S4 T SS u S6 v 57 w
58 x S9 y Sa Z Sb [Sc\ Sci] Se /\ Sf -
60. 61 a 62 b 63 c 64 d 6S e 66 f 67 g
68 h 69 i 6a j 6b k 6c I 6d m 6e n 6f 0

70 p 71 q 72 r 73 s 74 t 75 LI 76 v 77 w
78 x 79 y 7a z 7b { 7c I 7d} 7e rv 7f def

Files

I usr I pub I ascii

2-8 ASCII(M)

BADTRACK(M)

Name

badtrack - Creates bad track table

Description

This facility is used during system installation to build a badtrack
table on any fixed disk connected to the system. If you add a
second fixed disk after installing XENIX, badtrack must be run
again. Running badtrack again will not harm the data on the first
disk because only unallocated partitions are scanned. To use the
badtrack program you must boot the installation diskette.

1. Insert the XENIX installation diskette in drive A and power on
the system.

2. At the colon prompt (:),type

f d / etc / badtrack

3. Press Enter, and the line

Loading

displays. When the XENIX installation diskette finishes loading

Loaded, press Enter to start

is displayed.

4. Press Enter again

BADTRACK(M) 2-9

The badtrack program is loaded from the Installation diskette.
The program first displays the number and type of the first fixed
disk. The number of each cylinder is displayed as the program
proceeds with its tests. After scanning all cylinders on the first
disk, badtrack displays a list of the bad tracks (listed by cylinder
and track). badtrack then displays the prompt:

Enter additional bad tracks for drive 0
Enter cylinder [1-613]
(press Enter to terminate):

If their are no additional bad tracks, press enter. (For the first
installation, you do not have to supply additional track
information). The program displays a list of the bad tracks, and
creates the actual table on the fixed disk. If their are additional
bad tracks, at the prompt

Enter cylinder [1-613]

Enter the cylinder number followed by Enter. At the prompt

Enter track [0-3]

Enter the track number followed by Enter. If you have more bad
tracks to report, continue entering cylinder and track data as
prompted. After entering the last bad track. Press Enter.

If you have a second fixed disk, badtrack repeats the same
operation for that disk. After completing all operations, badtrack
returns control to the XENIX boot program which displays the
prompt:

XENIX 286 boot

Enter: device program

Press Enter for default: hd / xenix

Files

I etc/ badtrack

2-10 BADTRACK(M)

BOOT(M)

Name

boot - XENIX boot program.

Description

The boot program is an interactive program used to load and
execute standalone XENIX programs. It is used primarily for
loading and executing the XENIX kernel, but can be used for any
other programs that have been linked for standalone execution.
The boot program is a required part of the XENIX Operating
System and must be present in the root directory of the root file
system to ensure successful loading of the XENIX kernel.

The boot program is invoked by the system each time the
computer is started. A bootstrap loader, loaded by the IBM
Personal Computer AT startup ROM, carries out the invocation.
A diskette version of boot is invoked if the upper diskette drive
(drive 0) contains a diskette and block 0 of that diskette contains
a valid bootstrap program. A fixed disk version of boot is invoked
if the diskette drive is empty and block 0 of the active partition of
the fixed disk contains a valid bootstrap program. Otherwise, the
startup ROM starts ROM BASIC.

When first invoked (or after termination of standalone programs),
boot prompts for the location of a program to load by displaying
the message:

XENIX 286 Boot
Enter: device program
Press Enter for default: hd / xenix

To specify the location of a program, a device and pathname must
be given. The device can be either fd or hd. The pathname must
be the full pathname of the file containing the standalone
program.

BOOT(M) 2-11

For example, to load /xenix from the diskette, type:

fd / xenix

Because boot is most of ten used to load the XENIX kernel from
the fixed disk, the default value "hd /xenix" is provided.

If an optional load-address is given, boot loads the program at the
specified 20-bit physical memory address. This address must be
a hexadecimal value in the range Ox800 to OxFOOOO. If no
address is given, boot uses the default load address for the
program (given when the program was linked). For example, the
default load address for the XENIX kernel is 0. Addresses in the
ranges 0 to Ox800 and OxFOOOO to OxFFFFF are reserved for the
system's interrupt tables and the boot program, respectively.
Interrupt table addresses can be used if the program operates in
protected mode. The boot addresses can be used if the program
does not return control to boot after terminating.

You can display a list of the current allowable device names by
typing the question mark (?).

Diagnostics

On an error, boot displays an error message, then returns to its
prompt. The following is a list of the most common messages:

bad magic number
The given file is not an executable program.

bad runtime environment
The given program is not a standalone program. The
program must be a small or middle model program, and
the absolute flag of the program header must be set.

pathname not found
The supplied pathname does not correspond to an
existing file .

2-12 BOOT(M)

Stage 1 boot failure
The bootstrap loader cannot not find or read boot. You
must restart the computer and supply a file system disk
with boot in the root directory.

Unknown device: device
Only f d and hd can be used for device names.

Files

/boot

See Also

hd(M)

Comments

The boot program cannot be used to load programs that have not

been linked for standalone execution. To create standalone

programs, the -A option of the XENIX linker must be used.

Although standalone programs can operate in real or protected

mode, they must not be large or huge model programs. Programs

in real mode can use the input/ output routines of the IBM

Personal Computer AT startup ROM. Programs that wish to

return control to boot must be linked with the library

I usr I sys/boot/lib_stand.

BOOT(M) 2-13

CLOCK(M)

Name

clock - The system real-time clock.

Description

The clock file provides access to the battery-powered, real-time
clock of the IBM Personal Computer AT. Reading this file returns
the current time; writing to the file sets the current time. The
time, 10 bytes long, has the following form:

MMddhhmmyy

where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. For example, the
time:

0122140884

is 14:08 on January 22, 1984.

File

/dev/clock

See Also

setclock(M)

2-14 CLOCK(M)

CMOS(M)

Name

cmos - Displays and sets the configuration data base.

Syntax

Description

The cmos command displays and/ or sets the values in the CMOS
configuration data base. This battery-powered data base stores
configuration information about the computer that is used at
power up to define the system hardware configuration and to
direct boot procedures. The data base is 64 bytes long and is
reserved for system operation (see the IBM Personal
Computer AT Technical Reference Manual for details) .

The cmos command is typically used to alter the current hardware

configuration when new devices are added to the system. When
only address is given, the command displays the value at that
address. If both and address and a value are given, the command
assigns the value to that address. If no arguments are given, the
command displays the entire contents of the data base.

The CMOS configuration data base may also be examined and
modified by reading from and writing to the I dev I cmos file.
Because successful system operation depends on correct
configuration information, the data base should be modified by

experienced system administrators only.

Files

/ etc/ cmos
/ dev/ cmos

CMOS(M) 2-15

CONSOLE(M)
Name

console, color, monochrome - The standard system terminal.

Description

The console file provides access to the keyboard and the current
display device of the IBM Personal Computer AT and is the
default device for all system error messages and for interaction
during the system boot sequence. The file has the same input and
output characteristics as the terminal devices described in tty(M).

The console file is actually two files in one: a readable file to the
keyboard and a writable file to one of two possible display
devices, color and monochrome. The color file provides access to
a color I graphics adapter, the monochrome file to the
monochrome adapter. Only one file is used as the current display
device. It is defined by the hardware configuration in the CMOS
configuration data base (see cmos(M)) and assigned when the
system is started. The other file remains available to be written
to; neither file can be read. It is an error to attempt to access the
color or monochrome file when no corresponding adapter exists
or when the file is the current display device.

2-16 CONSOLE(M)

The following is a list of the control sequences supported by the
IBM Personal Computer AT display devices. Note that "ESC" is
the ASCII escape character, 027, and "Pn" is a numeric
parameter to be supplied. Although spaces are shown between
characters in a sequence, they are not allowed when actually
forming the sequence.

ANSI Sequence Action
Mnemonic

CPL ESC [Pn F Move cursor to previous line

CNL ESC [Pn E Move cursor to next line

CUB ESC [Pn D Move cursor backward

CUF ESC l Pn C Move cursor forward

cuu ESC [Pn A Move cursor up

CUD ESC [Pn B Move cursor down

CUP ESC [Pm; Pn H Move cursor to row Pm, column Pn

OCH ESC [Pn P Delete character

DL ESC [Pn M Delete line

ECH ESC [Pn X Erase character

ED ESC [Pn J Erase display *

E L ESC f Pn K Erase line *

ICH ESC [Pn@ Insert char

IL ESC [Pn L Insert line

SGR ESC [Pn m Select graphic rendition**

* For the ED and EL sequences, if Pn is:

0 Erase from start of screen or line to cursor

1 Erase from cursor to end of the screen or line

2 Erase entire screen or line

** For the SGR sequence, if Pn is:

0 Enter normal video mode

7 Enter inverse video mode

CONSOLE(M) 2-17

For all other sequences, Pn defines the number of times to repeat
the given action. The default count is 1.

The special character sequence:

ESC Q Pd Pc Ps Pc

sets the output of the function key given by Pd to the string Ps.
The key number Pd must be one less than the actual function key
number. The string Ps must be enclosed by the quoting character
Pc, and must not contain any occurrence of Pc. For example, the
sequence:

ESC Q 0 11 date 11

sets the output of function key 1 to "date". The escape sequence:

A Pn

may be used in the string Ps to represent an ASCII control
character (OxO to Ox20). Pn must be a character in the ASCII
range Ox20 to Ox40. For example, the escape sequence "/\ *"
represents the newline character Ctrl-J. A caret "A" in Ps must
be given as "/\ /\ ".

Files

I dev I console
/ dev/ color
I dev I monochrome

See Also

tty(M)

2-18 CONSOLE(M)

DAEMON.MN(M)

Name

daemon.mn - Micnet mailer daemon

Syntax

Description

The mailer daemon performs the "backend" networking functions
of the mail, rep, and remote commands by establishing and
servicing the serial communications link between computers in a
Micnet network.

When invoked, the daemon creates multiple copies of itself, one
copy for each serial line in the network. Each copy opens the
serial line, creates a startup message for the LOG file
corresponding to that line, and waits for a response from the
daemon at the other end. The startup message lists the names of
the machines to be connected, the serial line to be used, and the
current date and time. If the daemon receives a correct response,
it establishes the serial link and adds the message "first handshake
complete" to the LOG file. If there is no response, the daemon
waits indefinitely.

If invoked with the -x option, the daemon records each
transmission in the LOG file. A transmission entry shows the
direction of the transmission (tx for transmit, rx for receive), the
number of bytes transmitted, the elapsed time for the
transmission (in minutes and seconds), and the time of day of the
transmission (in hours, minutes, and seconds). Each entry has the
form:

direction byte_count elapsed_time @ time_of_day

The daemon also records the date and time every hour. The date
and time have the same format as described for the date (C)
command.

DAEMON.MN(M) 2-19

If invoked with the -e option, the daemon records all transmission
errors in the LOG file. An error entry shows the cause of the
error preceded by the name of the daemon subroutine that
detected the error.

The mailer daemon is normally invoked by the start option of the
netutil(C) command and is stopped by the stop option.

During the normal course of execution, the mailer daemon uses
several files in the /user/spool/micnet/remote directory. These
files provide storage for LOG entries, commands issued by the
remote(C) command, and a list of processes under daemon

Files

I usr /lib/ mail/ daemon.mn
I usr I spool/ micnet/ remote I* /LOG
/usr/spool/micnet/remote/* /mn*
I usr I spool/ micnet/ remote /local/ mn *
I usr I spool/ micnet/ remote /lock
I usr I spool/ micnet/ remote I pids

See Also

netutil(C)

2-20 DAEMON.MN(M)

DEFAULT(M)

Name

default - Default program information directory.

Description

The files in the directory I etc/ default contain the default
information used by system commands such as backup(C) and

remote(C). Default information is any information required by

the command that is not explicitly given when the command is
invoked.

The directory may contain zero or more files. Each file
corresponds to one or more commands. A command searches a

file whenever it has been invoked without sufficient information.

Each file contains zero or more entries that define the default
information. Each entry has the form:

keyword

or

keyword= value

where keyword identifies the type of information available and
value defines its value. Both keyword and value must consist of
letters, digits, and punctuation. The exact spelling of a keyword

and the appropriate values depend on the command and are
described with the individual commands.

DEFAULT(M) 2-21

Any line in a file beginning with a number sign(#) is considered a
comment and is ignored.

Files

I etc/ default/backup
I etc/ default/ cron
I etc/ default/ dos
I etc/ default/ dumpdir
I etc/ default/lpd
I etc I def a ult/ mien et
I etc/ default/ mkuser
I etc/ default/msdos
I etc/ default/passwd
I etc/ default/restor
I etc/ default/ su

See Also

cron(C), dos(C), backup(C), dumpdir(C), lpr(C), mkuser(C),
pwadmin(C), remote(C), restor(C), su(C)

2-22 DEFAULT(M)

ENVIRON(M)

Name

environ - The user environment.

Description

The user environment is a collection of information about a user,
such as his login directory, mailbox, and terminal type. The
environment is stored in special "environment variables," which
can be assigned character values, such as names of files,
directories, and terminals. These variables are automatically
made available to programs and commands invoked by the user.
The commands can then use the values to access the user's files
and terminal.

The following is a partial list of environment variables:

PA TH Defines the search path for the directories containing
commands. The system searches these directories
whenever a user types a command without giving a full
pathname. The search path is one or more directory
names separated by colons (:). Initially, PA TH is set
to :/ bin: / usr/ bin.

HOME Names the user's login directory. Initially, HOME is
set to the login directory given in the user's passwd file
entry.

TERM Defines the type of terminal being used. This
information is used by commands such as more(C),
that rely on information about the capabilities of the
user's terminal. The variable may be set to any valid
terminal name (see terminals(M)) directly or by using
the tset(C) command.

ENVIRON(M) 2-23

TZ Defines time zone information. This information is
used by date(C) to display the appropriate time. The
variable may have any value of the form xxxnzzz where
xxx is standard local time zone abbreviation, n is the
difference in hours from GMT, and zzz is the
daylight-saving local time zone abbreviation (if any).
For example: ESTSEDT. The difference for a location
east of England can be given as a negative number.

The environment can be changed by assigning a new value to a
variable. An assignment has the form:

name= value

For example, the assignment:

TERM=h29

sets the TERM variable to the value .h29. The new value can be
exported to each subsequent invocation of a shell by exporting the
variable with the export command (see sh(C)) or by using the
env(C) command.

A user may also add variables to the environment, but must be
sure that the new names do not conflict with exported shell
variables such as MAIL, PS 1, PS2, and IFS. Placing assignments
in the .profile file is a useful way to change the environment
automatically before a session begins.

Note that the environment is made available to all programs as a
string of arrays. Each string has the form:

name= value

where the name is the name of an exported variable and the value
is the variable's current value.

See Also

env(C), login(M), sh(C), profile(M)

2-24 ENVIRON(M)

FD(M)

Name

fd,0, fdl - Diskette drive devices.

Description

The fd,t? and fdl files provide access to the standard diskette
drives. Each file corresponds to one diskette drive and may only
be accessed if the corresponding drive is present. The file
fd,t? provides access to the boot diskette drive (or drive £)), and
fdl provides access to the optional secondary drive (drive 1).
The files are typically used to mount file systems based on
diskette (see mount(C)) and to create backup copies of files
stored on fixed disk (see tar(C) and backup(C)).

To implement the standard diskette drive files , the f d,t? and f dl
files are actually linked to two of 10 underlying device files.
These underlying files correspond to the 10 possible combinations
of diskette drives and disk formats. Each file defines a specific
drive, density, sector count, side count, and capacity as shown by
the following table.

FD(M) 2-25

Name Drive Density Sectors Sides Capacity
(TPI) (KBytes)

fd£)48ss8 0 48 8 1 160
fd,048ds8 0 48 8 2 320
fd£)48ss9 0 48 9 1 180
fd£)48 0 48 9 2 360
fd,048ds9 0 48 9 2 360
fd148ss8 1 48 8 1 160
fd148ds8 1 48 8 2 320
fdl48ss9 1 48 9 1 180
fd148 1 48 9 2 360
fd148ds9 1 48 9 2 360
fd,096dsl5 0 96 15 2 1200
fdl 96dsl5 1 96 15 2 1200

The fdfJ and fdl files are linked to the device files that define the
format of the resident diskette fd,096dsl5 and fd196ds15. The
drives can be accessed through fdfJ and fdl or directly through
the corresponding format-specific files.

The rfdfJ and rfdl files are the raw (or character 1/0) files
associated with the standard diskette drives. There are similar
character I/ 0 files for the underlying format-specific files. These
files are used by the format(M) command, and can also be used
by special applications. When accessing the character 1/0 files,
input and output must be aligned on 512 byte boundaries. One
method to ensure this is to create a buffer that contains 512 bytes
more than actually needed, then round the start address up to the
next multiple of 512.

Attempting to access a drive of one format through a device file
of a different format may cause unpredictable results or errors.
Furthermore, attempting to access a disk of one format in a drive
of another may have unpredictable results or errors. Attempting
to read a nine sector disk as an eight sector disk causes
unpredictable results.

The format(M) Command may be used to format diskettes.

2-26 FD(M)

It should be noted that the DOS file utilities additionally support
alias device names according to the following table:

Alias Names
A fd048ds9, fd048ds8, fd048ss9, fd048ss8
B fd148ds9, fd148ds8, fd148ss9, fd148ss8
X fd096dsl5
Y fd196ds15

Note

These alias device names are only supported for DOS file utilities.

Files

Block I/ 0 files

I dev /fd,0
I dev /fd,048ss8
I dev If d,048ds8
I dev /fd,048ss9
I dev /fd,048ds9
I dev If d,096ds 15
I dev /fd,048

/dev/fdl
I dev /fd148ss8
I dev /fdl48ds8
I dev /fdl48ss9
I dev /fd148ds9
/dev/fdl96dsl5
/dev/fdl48

Character I/ 0 files

/dev /rfd,0
I dev I rfd,048ss8
I dev /rfd,048ds8
I dev /rfd,048ss9
I dev /rfd,048ds9
I dev I rf d,096ds 15

See Also

format(M)

/dev/rfdl
I dev /rfd148ss8
I dev I rfd 148ds8
I dev I rfd 148ss9
I dev /rfd148ds9
I dev /rfdl 96ds15

FD(M) 2-27

FDISK(M)

Name

fdisk - Creates disk partitions.

Syntax

Description

The fdisk program interactively creates a disk partition table for
the fixed disk drive given by specialfile. The partition table defines
the location and size of up to four disk partitions on the given
fixed disk. One of the four partitions is reserved for the Badtrack
Table(BTT). The fdisk program prompts for information about
the disk partitions, constructs a partition table, then copies the
table to a reserved location on the first block of the fixed disk.
Each partition provides distinct storage space on the fixed disk
that is not accessible through the other partitions. With the
following option it is possible to use the fdisk program in other
than an interactive fashion:

- p [file]

2-28 FDISK(M)

Provides fOf the creation of a protofile. This
file contains the necessary information for the
fdisk command to function noninteractively.
For each partition to be created a single line is
added to the protofile. This line contains three
fields, separated by spaces. The first field is
the length of the partition in blocks, the second
contains the character 'a' if the partition is to
be active and some other character if it is not,
the third field contains a number indicating the
type of the partition.

The fdisk program must be invoked with the name of the raw
device special file corresponding to an entire fixed disk (see
hd(M)). The program displays a message and a prompt(*) , and
waits for commands. The program has the commands:
a (activate), c (create), d (delete),? (help), p (print),
q (quit) , and w (write).

The a command activates a partition, naming it as the partition
from which to load the operating system. The command prompts
for the partition number.

The c command creates a disk partition by prompting for the
partition's number (1 through 4), starting block, size (in blocks),
and type (XENIX or DOS). No more than four partitions can be
created. The partitions must not overlap and their size must not
be greater than the available space on the fixed disk. The type
must define the type of file system or files to be stored in the
partition. A partition that already exists must be deleted before it
can be recreated.

The d command deletes a disk partition by prompting you for the
number of the partition (1 through 4). The command prompts for
a partition number.

The ? help command displays a list of the fdisk commands.

The p command prints information about the partition table
currently being created. The information includes the partition
number, its activation state, type, starting and ending cylinders
numbers, and size in sectors. Only partitions that have been
created using c are shown. If a partition is active, the letter A is
given in the Active column; otherwise N is given.

The q command stops the fdisk program and returns control to the
shell.

The w command copies the partition table to the fixed disk,
destroying any current table on that disk.

FDISK(M) 2-29

Files

/etc/fdisk

See Also

hd(M)

Comment

If an attempt is made to write a partition table to a disk before
activating a partition, fdisk will display a warning before
proceeding with the operation. The fdisk program will not allow
updating of the partition table on an active disk. To modify the
partition table you must load the /xenix.fd diskette and type

fd / xenix.fd

at the boot program prompt(:) fdisk can be run. Remember to
run haltsys before removing the installation diskette.

2-30 FDISK(M)

FORMAT(M)
Name

format - Formats diskettes.

Syntax

Description

The format command formats the diskette in the diskette drive
given by specialfile. The specialfile must be the name of the
character I/ 0 device special file that corresponds to the diskette
drive (see fd(M)). The diskette is given a format compatible with
the given drive. For example, the command:

format / dev / rfdO

formats the diskette in the drive 0. Formatting the diskette
destroys any data previously stored on it.

Warning: When you are working on a terminal connected to
a IBM Personal Computer AT, the format command formats
the diskette in the system unit. Make certain the diskette you
intend to format is in the drive on the system unit.

The diskette must be in the drive before invoking the command.

Files

/ bin/format

See Also

f d(M)

FORMAT(M) 2-31

GETTY(M)

Name

getty - Sets terminal mode.

Syntax

Description

The getty program is invoked by init(M) immediately after a
terminal is opened for user logins. The getty program displays a
"login:" message, then waits for the user to type a login name.
While reading the name, getty attempts to adapt the system to the
speed and type of terminal being used. Once the name is read,
getty calls login(M) with the login name as the argument.

The init program calls getty with a single character argument
taken from the ttys(M) file entry for the terminal line. This
argument determines the line speed for the terminal and also the
"login:" greeting message, which can contain control characters
to initialize the terminal for proper communication.

If the user types a name and terminates it with a newline (ASCII
LF) or carriage return (ASCII CR), getty scans the name for
uppercase alphabetic characters. If only uppercase characters are
found, getty adapts the system to map all subsequent lowercase
characters into the corresponding uppercase characters.
Furthermore, if the name terminates with a carriage return
character, getty sets the terminal's serial line mode to CRMOD.

2-32 GETTY(M)

If, on the other hand, the user presses the Interrupt (Del) key,
getty writes the login message again. It also changes the serial line
speed if char is 1 or 3 as described below. This allows the system
to adapt to terminals whose line speeds vary.

After a name has been typed and scanned, getty passes it to
login(M), which asks for the user's password and completes the
login process.

The following arguments from the ttys file are understood:

110 baud. Intended for an ASR-33 console, for example, an
operator's console.

0 150 baud for an ASR-37 console.
1 Cycles through 300-150-110-1200 baud. Useful for dial-up

lines.
2 300-baud console decwriter.
3 Cycles through 1200-300-150-110 baud. Recommended for

dialup lines.
4 2400 baud.
5 4800 baud.
6 9600 baud.
7 9600 baud for IBM 3101 terminal.

See Also

login(M), ttys(M), init(M)

GETTY(M) 2-33

GROUP(M)

Name

group - Format of the group file.

Description

The group file contains for each group the following information:

• Group name

• Encrypted password (optional)

• Numerical group ID

• Comma-separated list of all users allowed in the group.

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a newline. If the password
field is null, no password is demanded.

This file resides in directory I etc. Because of the encrypted
passwords, it can and does have general read permission and can
be used, for example, to map numerical group IDs to names.

Files

/etc/ group

See Also

newgrp(C), passwd(C), passwd(M)

2-34 GROUP(M)

HD(M)

Name

hd.0,0, hdl.0 - Fixed disk devices.

Description

The hdfJfJ and hdl fJ files provide access to the fixed disk drives of

the IBM Personal Computer AT computer. Each file corresponds

to one fixed disk drive and may be accessed if the corresponding

fixed disk drive is present. The hdf)fJ file corresponds to the

standard fixed disk drive, and hdl fJ corresponds to an optional or

second fixed disk. Each file permits access to the entire contents

of the given fixed disk, regardless of partition boundaries.

The hd fJ 1, hd fJ 2, hd fJ 3, and hd fJ4 files provide access to each of

the four possible partitions on the standard fixed disk. Similarly,

the hdl 1, hdl 2, hdl 3, and hdl 4 provide access to the partitions of

an optional or second disk. Each file corresponds to a region on

the given fixed disk that has been specifically defined as a

partition using the fdisk(M) program. A partition file may only

be accessed if the corresponding partition has been defined. Each

file permits access to the contents of the given partition only.

The hdf)a and hdla files provide access to the active partitions of

the respective fixed disk drives. Only one of four partitions on

the fixed disk can be the active partition. This partition usually

contains the root file system for the system, including the boot

program used to load XENIX. The active partition can be set

using the fdisk(M) program.

HD(M) 2-35

The following illustrates a typical layout:

hdO

cylinder 0

root

swap

user

extra

extra

(reserved)

hdOl

hd02

hd03

hd04

The rhdf)fJ and rhdl fJ files are the raw (or character 1/0) device
files associated with the standard and optional fixed disk drives.
The raw files are used by the fdisk(M) program.

Because system operation depends on the content of these blocks,
they should be modified by experienced users only. Each block
contains 1024 bytes.

2-36 HD(M)

Files

Block I/ 0 files

/dev/hd00/dev/hd01
/dev/hd,02
/dev/hd,03
/dev/hd,04
/dev/hd10/dev/hdll
/dev/hd12
/dev/hd13
/dev/hd14

Character I/ 0 files

I dev /rhd0,0/ dev /rhd,01
/dev/rhd02
I dev I rhd,03
/dev/rhd04
/dev/rhd10/dev/rhdll
/dev/rhdl2
/dev/rhd13
/dev/rhd14

See Also

fdisk(M)

HD(M) 2-37

INIT(M)

Name

init - Process control initialization.

Syntax

Description

The init program is invoked as the last step of the boot procedure
and as the first step in enabling terminals for user logins. This is
one of three programs (init, getty(M), and login(M)) used to
initialize a system for execution.

The init program creates a process for each terminal on which a
user may log in. It begins by opening the console device,
I dev I console, for reading and writing. It then invokes a shell,
which asks for a password to start the system in maintenance
mode. You can type the password or terminate the shell by
typing ASCII end-of-file (Ctrl-D) at the console. If the shell
terminates, init performs several steps to begin normal operation.
It invokes a shell and reads the commands in the I etc/re file.
This command file performs housekeeping tasks such as removing
temporary files, mounting file systems, and starting daemons.
Then init reads the file I etc/ttys and forks several times to create
a process for each terminal device in the file. Each line in the
/etc/ttys lists the state of the line (0 for closed, 1 for open), the
line mode, and the serial line (see ttys(M)). Each process opens
the appropriate serial line for reading and writing, assigning the
file descriptors 0, 1, and 2 (standard input, output, and error file)
to the line. If the serial line is connected to a modem, the process
delays opening the line until someone has dialed up and a carrier
has been established on the line.

2-38 INIT(M)

Once init has opened a line, it executes the getty program, passing
the line mode as an argument. The getty program reads the user's
name and invokes login(M) to complete the login process (see
getty(M) for details) . The init program waits until the user logs
out by typing ASCII end-of-file (Ctrl-D) or by hanging up. It
responds by waking up and removing the former user's login entry
from the file I etc/utmp, which records current users, and makes a
new entry in the file /usr/adm/wtmp, which is a history of logins
and logouts. Then the corresponding line is reopened, and getty is
reinvoked.

The init program has special responses to the hangup, interrupt,
and quit signals. The hangup signal SIGHUP causes init to change
the system from normal operation to maintenance mode. The
interrupt signal SIGINT causes init to read the ttys file again to
open any new lines and close lines that have been removed. The
quit signal SIGQUIT causes init to disallow any further logins. In
general, these signals have a significant effect on the system and
should not be used by an inexperienced user. Instead, similar
functions can be safely performed with the enable(C), disable(C),
and shutdown(C) commands.

Files

I dev / tty
/ etc/ utmp
I usr I adm/ wtmp
/etc/ ttys
/ etc/ re

See Also

disable(C), enable(C) , login(M), kill(C), sh(C), shutdown(C),
ttys(M), getty(M)

INIT(M) 2-39

LD(M)
Name

Id - Invokes the link editor.

Syntax

Description

The Id command combines several object programs into one,
resolves external references, and searches libraries. It is strongly
suggested that Id be invoked only through cc; cc invokes Id with
all the necessary C-language support routines. If you choose to
use Id directly and fail to get all of the components in the right
places, your resultant file will fail to execute. Furthermore, many
of the options available on "traditional" XENIX hooters are not
supported in the same form with this version of Id.

In the simplest case, several object files are given, and Id
combines them, producing an executable object module. The
output of Id is left in the file a.out. This file is made executable
only if no errors occurred during the load.

The argument routines are concatenated in the order specified.
The entry point of the output is the beginning of the first routine.

If an argument is a library, it must be preceded by the -1 switch,
and it must have been processed by ranlib. The first member of a
library is named' .SYMDEF', which is understood to be a
dictionary for the library. The dictionary is searched iteratively to
satisfy as many references as possible. A library is processed at
the point it is encountered in the argument list. Only routines
defining an unresolved external reference are loaded.

2-40 LD(M)

The Id command understands several options, which should
normally appear before the names of the object files. Exceptions
are libraries, which should be specified with the -1 after all object
files have been given. Options are described below:

-o

-C

-S

-1 libname

-i

-m

The name argument after -o is used as the
name of the Id output file, instead of a.out.

Case is significant in symbol names. This
option should always be used for C programs
because case is significant in C.

No symbol table .sym file is created. If this
flag is not specified, then a .sym file is created
containing global symbols only.

Search libname for unresolved external
references. The -1 switch may be used multiple
times on a command line, but only one library
name may follow each switch. A library is
searched when its name is encountered, so the
placement of a -I is significant. Note that
libname is a full pathname and not a name to
be searched for in a default directory.

Specify separate instruction and data spaces:
when the output file is executed, the program
text and data areas live in separate address
spaces. The text portion is read-only and is
shared by all users executing the file.

The following argument, mapfile, is taken to be
the name of the file in which a map of external
and local variables is placed, along with
memory allocation information.

LD(M) 2-41

-M string

2-42 LD(M)

Sets the program configuration. This
configuration defines the programs memory
model, word order, data threshold, and enables
C language enhancements such as advanced
instruction set and keywords. The string may
be any combination of the following (the s, m,
and I are mutually exclusive):

s Creates a small model program (default).

If the -M switch is not given. Small model is
used and variables are stored as segment
offsets. In the default case, the following
object modules and libraries are used:

Object modules:

Libraries:

/lib/Scrt,0.o or
/lib/Smcrtt).o

/lib/Slibcfp.a and
/lib/Slibc.a

m Creates a middle model program.

If this switch is given, middle model is used,
and text addresses contain both a segment and
an off set. Data addresses contain only an
offset into the data segment. This means that
program text may be larger then 64K-bytes,
but program data size is limited to this figure.
The -Mm option implies -i. To support middle
model, the following object modules and
libraries are used:

Object modules:

Libraries:

/lib/Mcrt,0.o or
/lib/Mcrtt).o

/lib/Mlibcfp.a and
/lib/Mlibc.a

Creates a large model program.

If this switch is given, large model is used, and
text addresses contain both a segment and an
offset. This means that program text and data
size may be larger than 64K-bytes. The -Ml
option implies -i. To support large model, the
following object modules and libraries are
used:

Object modules:

Libraries:

/lib/Lcrt,0.o or
/ lib/Lmcrt,0.o

/ lib/LlibcFp.a and
/ lib / Llib:bc.a.br

The cc command normally calls Id with the following arguments,
where X below is either S, M, or L depending on whether the -M
flag was specified and files are the user's object files and libraries:

I 1 i b I t x t d gr p . o [i f not - i , -Mm , or -M 1 J
/ lib / seg.o
/ lib/ XcrtO.o [/ lib / XmcrtO.o if -p J
-c
-S [if not -s
-M [if -MJ
-L [if -Ml J
-o outfile
-m map [if -m

files

/ lib/ Xlibcfp.a
/lib/Xlibc.a

LD(M) 2-43

Files

/lib/lib* .a
/usr/lib/lib* .a
/usr/?lib/lib* .a
/lib/txtdgrp.o
/lib/seg.o
/lib/Mcrt,0.o
/lib/Mlibcfp.a
/lib/Mlibc.a
/lib/Mmcrt,0.o

/lib/Lcrt,0.o
/lib/Llibcfp.a
/lib/Llibc.a
/lib/Lmcrt,0.o

/lib/Scrt,0.o
/lib/Smcrt,0.o

/lib/Slibcfp.a
/lib/Slibc.a
a.out

2-44 LD(M)

Libraries
More libraries
More libraries
Needed if no separate I & D
Always needed for C programs
Middle model runtime initialization
Middle model
Middle model
Middle model runtime initialization with
profiling
Large model runtime initialization
Large model
Large model
Large model runtime initialization with
profiling
Small model runtime initialization
Small model runtime initialization with
profiling
Small model
Small model
Output file

LOGIN(M)

Name

login - Gives access to the system.

Description

The login program is used at the beginning of each terminal
session to identify the user attempting to log in to the system.
The login program is invoked by getty(M), after a login name has
been typed in response to the "login:" message. The login
message prompts for the user's password, then turns off echoing
(where possible) to prevent the password from appearing on the
terminal screen when typed.

Once a password has been typed, login encrypts the password and
compares it with the encrypted password in the user's password
entry (see passwd(M)). If there is a match, the login is successful.

If password aging is in effect and the current password is out of
date, the passwd(C) command is automatically invoked. In this
case, the user must change the password, then attempt to log in
again.

If the login is not completed within a certain period of time (for
example, one minute), login either returns control to getty or
disconnects the dial-up line without outputting any message.

After a successful login, login updates accounting files, displays a
message about the existence of any mail, then executes the
start-up profile file, I etc/profile, and the user's .profile file in his
home directory. (see profile(M)). The login program then
initializes the user and group IDs and the working directory.
Finally, it executes a command interpreter (usually sh(C))
according to specifications found in the I etc/passwd file.

LOGIN(M) 2-45

At some installations, an option may be invoked that requires a
second external password to be entered. This occurs only for
dial-up connections and is prompted by the message "External
security:". Both passwords are required for a successful login.

When the user's shell is finally invoked, argument 0 of the
command interpreter is a dash (-) followed by the last component
of the interpreter's pathname. The environment (see environ(M))
is initialized to:

HOME= your-login-directory

PATH= :/bin:/usr/bin

The user's file creation mask is set to octal 022. See umask(C)
for more information.

Files

/etc/utmp
/usr/adm/wtmp
I usr I spool/ mail/ your-name
/etc/motd
/etc/passwd
/etc/profile
$HOME/.profile

2-46 LOGIN(M)

Accounting
Accounting
Your mailbox
Message of the day
Password file
System profile
Personal profile

See Also

mail(C), newgrp(C), sh(C), passwd(C), su(C), umask(C),
passwd(M), profile(M), environ(M), getty(M)

Diagnostics

Login incorrect
The user name or the password is incorrect.

No shell, cannot open password file, no directory
Your account has not been properly set up.

Your password has expired. Choose a new one.
Password aging is implemented and yours has expired.

LOGIN(M) 2-47

LP(M)

Name

lp, lpO, lp 1, lp2 - Line printer device interfaces.

Description

The Ip, lpO, lpl, lpl, and lp2 files provide access to the optional
parallel ports of the IBM Personal Computer AT. The lpO and lpl
files provide access to parallel ports 1 and 2, respectively. The lp2
file provides access to the parallel port of a monochrome and
printer adapter. The Ip file is actually a link to either lpO, lpl, or
lp2, and is the output file for all lpr(C) commands. Because the
files are intended to give access to a standard dot matrix printer,
all bytes written to a file are passed directly to the given port
without translation.

Files

/dev/lp
/dev/lpO
/dev/lpl
/dev/lp2

See Also

lpr(C)

2-48 LP(M)

MEM(M)

Name

mem, kmem - Memory image file.

Description

The mem file provides access to the computer's physical memory.
All byte addresses in the file are interpreted as memory addresses.
Thus, memory locations can be examined in the same way as
individual bytes in a file. Note that accessing a nonexistent
location causes an error.

The kmem file is the same as mem except that it corresponds to
kernel virtual memory rather than physical memory.

In rare cases, the mem and kmem files may be used to write to
memory and memory-mapped devices. Such patching is not
intended for the inexperienced user and may lead to a system
failure if not conducted properly. Patching device registers is
likely to lead to unexpected results if the device has read-only or
write-only bits.

Files

/dev/mem
/dev/kmem

MEM(M) 2-49

MESSAGES(M)

Name

messages - Description of system console messages.

Description

This section describes the various system messages that may
appear on the system console. The messages are categorized as
follows:

Catastrophic

System inconsistency

Abnormal

Hardware

Recovery is impossible.

A contradiction exists in the kernel.

A probably legitimate but extreme
situation exists.

Indicates a hardware problem.

Serious system messages begin with "panic" and indicate
hardware problems or kernel inconsistencies that are too big for
continued operation. After displaying the message, the system
stops. Reloading is required.

System inconsistency messages indicate problems usually
traceable to hardware malfunction, such as memory failure.
These messages rarely occur since associated hardware problems
are generally detected before such an inconsistency occurs.

Abnormal messages represent kernel operation problems, such as
the overflow of critical tables. It takes extreme situation to bring
these problems about, so they should never occur in normal
system use.

2-50 MESSAGES(M)

Hardware messages normally specify the device, dev, that caused
the error. Each message gives a device specification of the form
nn/mm where nn is the major number of the device, and mm is its
minor number. The command pipeline:

ls -1 / dev I grep

nn I grep mm

may be used to list the name of the device associated with the
given major and minor numbers.

System Messages

ABNORMAL System Shutdown
This message appears when errors occur during normal
system shutdown. It is usually accompanied by other
system messages. System inconsistency, unrecoverable.

bad block on dev nn I mm dev
A nonexistent disk block was found on, or is being inserted
in, the structure's free list. System inconsistency.

bad count on dev nn I mm
A structural inconsistency in the superblock of a file
system. The system attempts a repair, but this message
probably is followed by more error messages about this file
system. System inconsistency.

bad free count on dev nn I mm
A structural inconsistency in the superblock of a file
system. The system attempts a repair, but this message
will probably be followed by more error messages about
this file system. System inconsistency.

bad signature (xx) on drive num
The fixed disk drive specified by num has not been
properly initialized. The drive should not be used until
fdisk(M) has been used to initialize the drive. Hardware.

MESSAGES(M) 2-51

can't read bad block list on drive num
An attempt to read bad block information from the
specified fixed disk has failed. This may indicate a
hardware malfunction. Hardware.

err on dev name (nn/mm)
This is the way that most device driver diagnostic messages
start. The message indicates the specific driver and error
message. The name is a word identifying the device.
Hardware.

iaddress > 2 /\ 2 4
This indicates an attempted reference to an illegal block
number, one so large that it could only occur on a file
system larger than eight billion bytes. Abnormal.

inode table overflow
Each open file requires an inode entry to be kept in
memory. When this table overflows, the specific request is
refused. Although not catastrophic to the system, this
event may damage the operation of various spoolers,
daemons, the mailer, and other important utilities.
Anomalous results and missing data files are a common
result. Abnormal.

interrupt from unknown device, vec=xxxx

no file

The CPU received an interrupt via a supposedly unused
vector. This message is followed by "panic: unknown
interrupt." Typically this event comes about when a
hardware failure miscomputes the vector of a valid
interrupt. Hardware.

There are too many open files; the system has run out of
entries in its "open file" table. The warnings given for the
message "inode table overflow" apply here. Abnormal.

2-52 MESSAGES(M)

no space on dev mm/ mm dev
This message means that the specified file system has run
out of free blocks. Although not normally as serious, the
warnings discussed for "inode table overflow" apply:
of ten programs are written casually and ignore the error
code returned when they tried to write to the disk; this
results in missing data and "holes" in data files. The
system administrator should keep close watch on the
amount of free disk space and take steps to avoid this
situation. Abnormal.

** Normal System Shutdown **
This message appears when the system has been shutdown
properly. It indicates that the machine may now be
reloaded or powered down.

out of inodes on dev nn/ mm
The indicated file system has run out of free inodes. The
number of inodes available on a file system is determined
when mkfs(C) is run. The default number is quite
generous; this message should be very rare. The only
recourse is to remove some unused files from that file
system, or backup the entire system to a backup device,
rerun mkfs(C) with more inodes specified, and restore the
files from backup. Abnormal.

out of text
When programs linked with the Id -i or -n switch are run, a
table entry is made so that only one copy of the pure text
will be in memory even if there are multiple copies of the
program running. This message appears when this table is
full. The system refuses to run the program that caused
the overflow. Note that there is only one entry in this
table for each different pure text program. Multiple copies
of one program will not require multiple table entries.
Each "sticky" program (see chmod(C)) requires a
permanent entry in this table; nonsticky pure text
programs require an entry only when there is at least one
copy being executed. Abnormal.

MESSAGES(M) 2-53

panic: bad 287 int
Attempted execution of real mode 287 instruction. System
inconsistency, irrecoverable.

panic: blkdev
An internal disk I/ 0 request, already verified as valid, is
discovered to be referring to a nonexistent disk. System
inconsistency, irrecoverable.

panic: devtab
An internal disk I/ 0 request, already verified as valid, is
discovered to be referring to a nonexistent disk. System
inconsistency, irrecoverable.

panic: iinit
The super-block of the root file system could not be read.
This message occurs only at load time. Hardware,
irrecoverable.

panic: I 0 err in swap
A fatal I/ 0 error occurred while reading or writing the
swap area. Hardware, irrecoverable.

panic: memory failure - parity error
A hardware memory failure trap has been taken. System
inconsistency, irrecoverable.

panic: memory management failure
An error occurred during memory management operations.
System inconsistency, irrecoverable.

panic: no fs
A file system descriptor has disappeared from its table.
System inconsistency, irrecoverable.

2-54 MESSAGES(M)

panic: no imt
A mounted file system has disappeared from the mount
table. System inconsistency, irrecoverable.

panic: no procs
You are limited in the amount of simultaneous processes
you can have; an attempt to create a new process when
none is available or when your limit is exceeded is refused.
That is an occasional event and produces no console
messages; this panic occurs when the kernel has certified
that a free process table entry is available and yet can't
find one when it goes to get it. System inconsistency,
irrecoverable.

panic out of swap
There is insufficient space on the swap disk to hold a task.
The system refuses to create tasks when it feels there is
insufficient disk space, but it is possible to create situations
to fool this mechanism. Abnormal, irrecoverable.

panic: general protection trap
General protection trap taken in kernel. System
inconsistency, irrecoverable.

panic: segment not present
An attempt has been made to access an invalid segment. It
may also indicate the segment-not-present trap has been
taken in the kernel. System inconsistency, irrecoverable.

panic: timeout table overflow
The timeout table is full. Timeout requests are generated
by device drivers; there should usually be room for one
entry per system serial line plus ten more for other usages.
System inconsistency, irrecoverable.

MESSAGES(M) 2-55

panic: trap in system
The CPU has generated an illegal instruction trap while
executing kernel or device driver code. This message is
preceded by an information dump describing the trap.
System inconsistency, irrecoverable.

panic: invalid TSS
Internal tables have become corrupted. System
inconsistency, irrecoverable.

panic: unknown interrupt
The system received an interrupt via a supposedly unused
vector. Typically, this event happens when a hardware
failure miscomputes the vector of a valid interrupt.
Hardware, irrecoverable.

proc on q
The system attempts to queue a process already on the
process ready-to-run queue. System inconsistency,
irrecoverable.

saint: received interrupt at wrong level (num)
This message indicates a serious hardware malfunction in
the system serial devices. Num indicates the specific
device. Hardware.

spurious hb interrupt
This message indicates a serious hardware malfunction
associated with the fixed disk. Hardware.

spurious kb interrupt
This message indicates a serious hardware malfunction
associated with the system console. Hardware.

2-56 MESSAGES(M)

timed out on a diskette drive num
An attempt to read from or write to a diskette drive has
failed. The drive door may be open, the diskette in the
drive may be bad, or the disk may have the wrong density
for the requested read or write. Hardware.

trap type
This message precedes a "panic" message. The type is the
trap number given by the processor. The message is
followed by a dump of registers. System inconsistency,
irrecoverable.

Warning: invalid partition table
The partition table on the fixed disk drive is not valid. The
drive should not be used until fdisk(M) has been run to
properly initialize the disk. Hardware.

See Also

config(CP)

MESSAGES(M) 2-57

MICNET(M)

Name

Micnet - The Micnet default commands file.

Description

The Micnet file lists the system commands that may be executed
through the remote command. The file is required for each
system in a Micnet network. Whenever a remote command is
received through the network, the Micnet programs search the
Micnet file for the system command specified with the remote
command. If found, the command is executed. Otherwise, the
command is ignored and an error message is returned to the
system that issued the remote command.

The file may contain one or more lines. If all commands may be
executed, then only the line:

execute all

is required in the file. Otherwise, the commands must be listed
individually. A line that defines an individual command has the
form:

command= commandpath

Command is the command name to be specified in a remote
command. Commandpath is the full path name of the command
on the specified system. The equal sign (=) separates the
command and commandpath. For example, the line:

cat= / bin / cat

defines the command name cat (used in the remote command) to
refer to the system command cat in the /bin directory.

2-58 MICNET(M)

When executeall is set, commands are sought in a series of default
directories. Initially, the directories are /bin and I usr /bin. The
default directories can be explicitly defined in the file by including
a line of the form:

execpath=PATH=directory[:directory] ...

The first part of the line, execpath=PATH=, is required. Each
directory must be a valid pathname. The colon is required to
separate directories. For example, the line:

execpath=PATH= / bin: / usr / bin: / usr / bobf / bin

sets the default directories to /bin, /usr/bin, and /usr/bobf/bin.

Files

I etc/ default / micnet

See Also

aliases(M), netutil(C), systemid(M), top(M)

Comment

The rep command cannot be executed from a remote system
unless the Micnet file contains either executeall or the line:

rcp= / usr / bin / rcp

MICNET(M) 2-59

NULL(M)

Name

null - The null file .

Description

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

Files

/dev/null

2-60 NULL(M)

PASSWD(M)

Name

passwd - The password file.

Description

The passwd file contains the following information for each user:

-Login name

-Encrypted password

-Numerical user ID

-Numerical group ID

-Comment

-Initial working directory

-Program to use as shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon (:). The comment can contain
any desired information. Each user is separated from the next by
a newline. If the password field is null, no password is demanded;
if the shell field is null, sh(C) is used.

This file resides in the directory I etc. Because the passwords are
encrypted, the file has general read permission and can be used,
for example, to map numerical user IDs to names.

PASSWD(M) 2-61

The encrypted password consists of 13 characters chosen from a
64-character alphabet(.,/, 0-9, A-Z, a-z) except when the
password is null, in which case the encrypted password is also
null. Password aging is in effect for a particular user if his
encrypted password in the password file is followed by a comma
and a non-null string of characters from the above alphabet.
(Such a string must be introduced by the super-user). The first
character of the age denotes the maximum number of weeks for
which a password is valid. A user who attempts to log in after his
password has expired is forced to supply a new one. The next
character denotes the minimum period in weeks that must expire
before the password may be changed. The remaining characters
define the week (counted from the beginning of 1970) when the
password was last changed. (A null string is equivalent to zero.)
The first and second characters must have numerical values in the
range 0-63, where the dot (.) is equal to 0 and lowercase z is
equal to 63. If the numerical value of both characters is 0, the
user will be forced to change his password the next time he logs
in. If the second character is greater than the first, only the
super-user will be able to change the password.

Files

I etc/passwd

See Also

login(M), passwd(C), group(M), pwadmin(C)

2-62 PASSWD(M)

PROFILE(M)

Name

profile - Sets up an environment at login time.

Description

The optional file .profile permits automatic execution of
commands whenever a user logs in. The file is generally used to
personalize a user's work environment by setting exported
environment variables and terminal mode (see environ (C)).

When a user logs in, the user's login shell looks for .profile in the
login directory. If it is found, the shell executes the commands in
the file before beginning the session. The commands in the file
must have the same format as if typed at the keyboard. Any line
beginning with the number sign(#) is considered a comment and
is ignored. The following is an example of a typical file:

Tell me when new mail comes in
MAIL= / usr / mail / myname
Add my / bin directory to the shell search sequence
PATH= $PATH:$HOME / bin
Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22

PROFILE(M) 2-63

Note that the file I etc/profile is a system-wide profile that, if it
exists, is executed for every user before the user's .profile is
executed.

Files

$HOME/. profile
I etc/ profile

See Also

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M)

2-64 PROFILE(M)

SERIAL(M)

Name

ttyOO, ttyOl - Interface to serial ports.

Description

The ttyOO and ttyO 1 files provide access to the optional serial
ports of the IBM Personal Computer AT. Each file corresponds

to one serial port and may only be accessed if the corresponding

serial interface card has been installed and its jumper address
correctly set. The file ttyOO (minor number 0) provides access to

the serial port at jumper address "x03f8"; ttyOl (minor number

1) provides access to the port at jumper address "x02f8". The

serial ports must also be defined in the system configuration
database (see cmos(M)). It is an error to attempt to access a
serial port that has not been installed and defined.

The IBM Personal Computer AT serial ports can be used for a

variety of serial communication purposes such as connecting login

terminals to the computer or forming a serial network with other

computers. Note that a serial port may operate at most of the

standard XENIX baud rates, and that the ports have a DTE (data

terminal equipment) configuration. The following table defines
how each pin is used.

Pin Description

2 Transmit Data

3 Receive Data

6 Request to Send

7 Signal Ground

8 Carrier Detect (Data Set Ready)

20 Data Terminal Ready

SERIAL(M) 2-65

See tty(M) for the details of serial line operation in the XENIX
system.

Files

I dev I ttyOO I
I dev /ttyOl

See Also

cmos(M), getty(M), tty(M)

2-66 SERIAL(M)

SETCLOCK(M)

Name

setclock - Sets the real-time clock.

Syntax

Description

The setclock command sets the battery-powered, real-time clock
of the IBM Personal Computer AT to the given time. If time is not
given, the current contents of the battery-powered clock are
displayed. The time must be a combination of digits with the
form:

MMddhhmm[yyJ

where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. If yy is not given,
it is taken from the current system time. For example, the
command:

setclock 0122151884

sets the real-time clock to 15: 18 on January 22, 1984.

File

I etc/ setclock

See Also

clock(M)

SETCLOCK(M) 2-67

SETKEY(M)

Name

setkey - Assigns the function keys.

Syntax

Description

The setkey command assigns the given string to be the output of
the computer function key given by keynum. For example,
the command:

setkey 1 date

assigns the string "date" as the output of function key 1. The
string can contain control characters, such as a newline character,
and should be quoted to protect it from processing by the shell.
For example, the command:

setkey 2 11 pwd ; lc 11

assigns the command sequence "pwd ; le" to function key 2.
Notice how the newline character is embedded in the quoted
string. This causes the commands to be carried out when function
key 2 is pressed. Otherwise, the Enter key would have to be
pressed after pressing the function key.

Files

/bin/ setkey

2-68 SETKEY(M)

SYSTEMID(M)

Name

systemid - The Micnet system identification file .

Description

The systemid file contains the machine and site names for a
system in a Micnet network. A machine name identifies a system
and distinguishes it from other systems in the same network. A
site name identifies the network to which a system belongs and
distinguishes the network from other networks in the same chain.

The systemid file may contain a site name and up to four different
machine names. The file has the form:

[site-name]
machine-name 1
[machine-name2]
[machine-name3]
[machine-name4]

The file must contain at least one machine name. The other
machine names are optional, serving as alternate names for the
same machine. The file must contain a site name if more than one
machine name is given or if the network is connected to another
through a uucp link. The site name, when given, must be on the
first line.

Each name can have up to eight letters and numbers but must
always begin with a letter. There is never more than one name to
a line. A line beginning with a number sign (#) is considered a
comment line and is ignored.

SYSTEMID(M) 2-69

The Micnet network requires one systemid file on each system in a
network, with each file containing a unique set of machine names.
If the network is connected to another network through a uucp
link, each file in the network must contain the same site name.

The systemid file is used primarily during resolution of aliases.
When aliases contain site and/ or machine names, the name is
compared with the names in the file and removed if there is a
match. If there is no match, the alias (and associated message,
file, or command) is passed to the specified site or machine for
further processing.

Files

I etc/ systemid

See Also

aliases(M), netutil(C), top(M)

2-70 SYSTEMID(M)

TERM(M)

Name

term - Conventional names.

Description

These names are maintained as part of the shell environment (see
sh(C), profile(M), and environ(M)) in the variable $TERM:

1520
1620

1620- 12
2621
2631
2631- c

2631- e
2640
2645

300

300- 12
300s
382
300s- 12
3045
33
37
40- 2
4000A
4014
43
450
450- 12

Datamedia 1520
Diab lo® 1 1620 and others using the HyType II
printer
same, in 12-pitch mode
Hewlett-Packard HP@2 2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed
mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard HP 2640 series
Hewlett-Packard HP 264n series (other than the
2640 series)
DASl/DTC/GSI 300 and others using the HyType I
printer
same, in 12-pitch mode
DASl/DTC/GSI 300s
DTC 382
same, in 12-pitch mode
Datamedia 3045
TELETYPE@ 3 Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
Trendata4000A
Tektronix@4 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode

Diablo is a registered trademark of the Xe rox C o rpora tio n.

HP is a registered trademark of the Hewlett-Packard Corporation .

Te letype is a registe red trademark o f the Te letype Corpo ratio n.

Tektronix is a registered trade mark of Te kt ronix , Inc.

TERM(M) 2-71

735
745
dumb

hp
Ip
tn1200
tn300

Texas Instruments Tl735 and Tl725
Texas Instruments Tl7 45
generic name for terminals that lack reverse line-feed
and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [-, a-z, 0-9] make up a basic
terminal name. Terminal sub-models and operational modes are
distinguished by suffixes beginning with a-. Names should
generally be based on original vendors, rather than local
distributors. A terminal acquired from one vendor should not
have more than one distinct basic name.

Commands whose behavior depends on the type of terminal
should accept arguments of the form - Tterm where term is one of
the names given above; if no such argument is present, such
commands should obtain the terminal type from the environment
variable $TERM, which, in turn, should contain term.

See Also

mm(CT), nroff(CT), sh(C), stty(C), profile(M), environ(M) .

Comment

Not all XENIX facilities support all of these options.

2-72 TERM(M)

TERMCAP(M)

Name

termcap - Terminal capability data base.

Description

The file I etc/termcap is a data base describing terminals. This
data base is used by programs such as vi(C). Terminals are
described in termcap by giving a set of capabilities and by
describing how operations are performed. Padding requirements
and initialization sequences are included in termcap.

Entries in termcap consist of a number of ':' separated fields. The
first entry for each terminal gives the names that are known for
the terminal, separated by vertical bar (I) characters. The first
name is always two characters long for compatibility with older
level systems. The second name given is the most common
abbreviation for the terminal, and the last name given should be a
long name fully identifying the terminal. The second name should
contain no blanks; the last name may contain blanks for
readability.

Capabilities

The following is a list of the capabilities that can be defined for a
given terminal. In this list, (P) indicates that padding may be
specified, (P*) indicates that padding may be based on the
number of lines affected, and uppercase names indicate XENIX
extensions (except for CC).

TERMCAP(M) 2-73

Name Type Pad Description

ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not AH
BE str Bell character
bs bool Terminal can backspace with AH
BS str Sent by Bksp key (if not be)
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last

column
cc str Command character in prototype if terminal

settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
CF str Cursor off
ch str (P) Like cm but horizontal motion only, line stays

same
CL str Sent by CHAR LEFT key
cl str (P*) Clear screen
cm str (P) Cursor motion
CN str Sent by CANCEL key
co num Number of columns in a line
co str Cursor on
CR str Sent by CHAR RIGHT key
er str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vtlOO), like cm
CV str (P) Like ch but vertical only.
cw str Sent by CHANGE WINDOW key
da bool Display may be retained above
db bool Display may be retained below

2-74 TERMCAP(M)

Name Type Pad Description

dB num Number of millisec of bs delay needed
dC num Number of millisec of er delay needed
de str (P*) Delete character
dF num Number of millisec of ff delay needed
DK str Sent by down arrow key (if not kd)
DL str Sent by Del key
DL str Sent by destructive character delete key
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
EE str Edit mode end
EG num Number of chars taken by ES and EE
ei str End insert mode; give ':ei=:' if ic

EN str Sent by End key
eo str Can erase overstrikes with a blank
ES str Edit mode start
ff str (P*) Hardcopy terminal page eject (defaultt\L)
Gl str Upper-right (1st quadrant) corner character
G2 str Upper-left (2nd quadrant) corner character
G3 str Lower-left (3rd quadrant) corner character
G4 str Lower-right (4th quadrant) corner character
GD str Down-tick character
GE str Graphics mode end
GG num Number of chars taken by GS and GE
GH str Horizontal bar character
GS str Graphics mode start
GU str Up-tick character

TERMCAP(M) 2-75

Name Type Pad Description

GV str Vertical bar character
he bool Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
HM str Sent by Home key (if not kh)
ho str Home cursor (if no m)
HP str Sent by HELP key
hu str Half-line up (reverse 1 /2 linefeed)
hz str Hazeltine; can't print /\ 's
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give ':im=:q' ific
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by 'other' function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of 'keypad transmit' mode
KF str Key-click off
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of 'other' keys
KO str Key-click on
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in 'keypad transmit' mode
ku str Sent by terminal up arrow key
10-19 str Labels on 'other' function keys
LD str Sent by line delete key
LF str Sent by line feed key
Ii num Number of lines on screen or page

2-76 TERMCAP(M)

Name Type Pad Description

LK str Sent by left arrow key (if not kl)
11 str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
MN str Sent by minus sign key
MP str Multiplan initialization string
MR str Multiplan reset string
mu str Memory unlock (tum off memory lock)
nc bool No correctly working carriage return

(DM2500, H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll
NU str Sent by NEXT UNLOCKED CELL key
OS bool Terminal overstrikes
pc str Pad character (rather than null)
PD str Sent by PAGE DOWN key
PL str Sent by PAGE LEFT key
PR str Sent by PAGE RIGHT key
PS str Sent by plus sign key
pt bool Has hardware tabs (may need to be set with

is)
PU str Sent by PAGE UP key
RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RK str Sent by right arrow key (if not kr)
RT str Sent by RETURN key
RT str Sent by return key
se str End stand out mode
sf str (P) Scroll forward

TERMCAP(M) 2-77

Name Type Pad Description

sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than /\I or with padding)
TB str Sent by Tab key
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
UC str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
UK str Sent by up arrow key (if not ku)
ul bool Terminal underlines even though it doesn't

overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/ visual mode
vs str Sequence to start open/visual mode
WL str Sent by WORD LEFT key
WR str Sent by WORD RIGHT key
xb bool Beehive (fl =escape, f2=ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ce \ r \ n (Delta Data)
XS bool Standard out not erased by writing over it (HP

2641)
xt bool Tabs are destructive, magic so char (Teleray

1061)

2-78 TERMCAP(M)

A Sample Entry

The following entry describes the Concept-I 00, and is among the

more complex entries in the termcap file. (This particular concept
entry is used as an example only.):

cl/clOO /concept100:is=\EU\Ef\E7\E5\
ES\El\ENH\EK\E\200\Eo&\200:\
: a 1 = 3 *\EAR: am: b s : c d = 16 *\EA C : c e = 16 \ E AS : cl = 2 *AL : \
: cm=\ Ea %+ %+: co #80: dc=l 6 \ E AA: dl =3* \
EAB:ei=\E\200: \
: eo: \ E /\ P: in : i p = 16 *: l i # 24: mi : n d = \ E =: \
: se= \Ed\ Ee: so=\ ED\
EE:ta=8\t:ul :up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last

character of a line, and empty fields may be included for
readability. Capabilities in termcap are of three types: Boolean

capabilities, which indicate that the terminal has some particular

feature, numeric capabilities give the size of the terminal or the

size of particular delays, and string capabilities, that give a
sequence that can be used to perform particular terminal
operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that
the Concept has automatic margins (that is, an automatic return
and linefeed when the end of a line is reached) is indicated by the
capability am. Numeric capabilities are followed by the character

and the value. Thus co, which indicates the number of columns

the terminal has, gives the value 80 for the Concept.

TERMCAP(M) 2-79

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an =, and then a
string ending at the next following : . A delay in milliseconds may
appear after the = in such a capability, and padding characters
are supplied by the editor after the remainder of the string is sent
to provide this delay. The delay can be either a integer, for
example 20, or an integer followed by an *,that is, 3*. A*
indicates that the padding required is proportional to the number
of lines affected by the operation, and the amount given is the
per-affected-unit padding required. When a * is specified, it is
sometimes useful to give a delay of the form 3.5 to specify a delay
per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \ E maps to
an ESCAPE character, Ax maps to a control-x for any
appropriate x, and the sequences \ n \ r \ t \ b \ f give a
newline, return, tab, backspace, and formfeed. Finally, characters
may be given as three octal digits after a \ , and the characters "
and \ may be given as \" and \ \ . If it is necessary to place a :
in a capability it must be escaped in octal as \ 072 . If it is
necessary to place a null character in a string capability it must be
encoded as \ 200 . The routines that deal with termcap use C
strings, and strip the high bits of the output very late so that a
\ 200 comes out as a \ 000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The
most effective way to prepare a terminal description is by
imitating the description of a similar terminal in termcap and to
build up a description gradually, using partial descriptions with ex
to check that they are correct. Be aware that a very unusual
terminal may expose deficiencies in the ability of the termcap file
to describe it or bugs in ex. To easily test a new terminal
description you can set the environment variable TERMCAP to a
pathname of a file containing the description you are working on
and the editor will look there rather than in I etc/termcap.
TERMCAP can also be set to the termcap entry itself to avoid
reading the file when starting up the editor.

2-80 TERMCAP(M)

Basic Capabilities

The number of columns on each line for the terminal is given by
the co numeric capability. If the terminal is a CRT, the number
of lines on the screen is given by the Ii capability. If the terminal
wraps around to the beginning of the next line when it reaches the
right margin, it should have the am capability. If the terminal can
clear its screen, this is given by the cl string capability. If the
terminal can backspace, it should have the bs capability, unless a
backspace is accomplished by a character other than /\ H in which
case you should give this character as the be string capability. If it
overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability.

A very important point here is that the local cursor motions
encoded in termcap are undefined at the left and top edges of a
CRT terminal. The editor never attempts to backspace around
the left edge, nor will it attempt to go up off the top. The editor
assumes that feeding off the bottom of the screen causes the
screen to scroll up, and the am capability tells whether the cursor
sticks at the right edge of the screen. If the terminal has switch
selectable automatic margins, the termcap file usually assumes
that this is on, that is, am.

These capabilities suffice to describe hardcopy and glass-tty
terminals. Thus the model 33 teletype is described as:

t3133ltty33:co#72:os

while the Lear Siegler ADM-3 is described as:

cl ladm31311si adm3:am:bs:cl=AZ:li#24:co#80

TERMCAP(M) 2-81

Cursor Addressing

Cursor addressing in the terminal is described by a cm string
capability, with escapes %x in it. These substitute to encodings
of the current line or column position, while other characters are
passed through unchanged. If the cm string is thought of as being
a function, its arguments are the line and then the column to
which motion is desired, and the % encodings have the following
meanings:

%d as in printf, 0 origin.

%2 like %2d.

%3 like %3d.

%. like %c.

%+x adds x to value, then% .

% > xy if value > x adds y, no output.

0/or reverses order of line and column, no output.

%i increments line/ column (for 1 origin).

% % gives a single % .

%n exclusive or row and column with 0140 (DM2500).

%B BCD (16*(x/10)) + (x% 10), no output.

%D Reverse coding (x-2*(x% 16)), no output. (Delta Data).

2-82 TERMCAP(M)

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E&al2c7.pslzero2 3Y padded for 6
milliseconds. The order of the rows and columns is inverted here,
and the row and column are printed as two digits. Its cm
capability is 'cm=6\E&%r%2c%2Y'. The Microterm ACT-IV
needs the current row and column sent preceded by a "T , with
the row and column simply encoded in binary, 'cm=" T%. %.'.
Terminals that use'%.' need to be able to backspace the cursor
(bs or be) and to move the cursor up one line on the screen (up
introduced below). This is necessary because it is not always safe
to transmit \ t , \ n , "D and \ r , as the system may change or
discard them.

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus 'cm= \E=%+ %+'.

Cursor Motions

If the terminal can move the cursor one position to the right,
leaving the character at the current position unchanged, then this
sequence should be given as nd (non-destructive space). If it can
move the cursor up a line on the screen in the same column, this
should be given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left corner of
screen), this can be given as ho; similarly a fast way of getting to
the lower left hand corner can be given as II; this may involve
going up with up from the home position, but the editor will never
do this itself (unless II does), because it makes no assumption
about the effect of moving up from the home position.

Area Clears

If the terminal can clear from the current position to the end of
the line, leaving the cursor where it is, this should be given as ce If
the terminal can clear from the current position to the end of the
display, this should be given as cd The editor only uses cd from
the first column of a line.

TERMCAP(M) 2-83

Insert I Delete Line

If the terminal can open a new blank line before the line where
the cursor is, this should be given as al; this is done only from the
first position of a line. The cursor must then appear on the newly
blank line. If the terminal can delete the line that the cursor is on,
this should be given as di; this is done only from the first position
on the line to be deleted. If the terminal can scroll the screen
backward, this can be given as sh, but just al suffices. If the
terminal can retain display memory above then the da capability
should be given; if display memory can be retained below then db
should be given. These let the editor understand that deleting+ a
line on the screen may bring nonblank lines up from below or that
scrolling back with sh may bring down nonblank lines.

Insert I Delete Character

There are two basic kinds of intelligent terminals with respect to
insert/ delete character which can be described using termcap. The
most common insert/ delete character operations affect only the
characters on the current line and shift characters off the end of
the line. Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped blanks
on the screen, shifting upon an insert or delete only to an untyped
blank on the screen, which is either eliminated, or expanded to
two untyped blanks. You can find out which kind of terminal you
have by clearing the screen and then typing text separated by
cursor motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the cursor
before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters
to fall off the end, your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and
onto the next as you insert, you have the second type of terminal,
and should give the capability in, which stands for insert null. If
your terminal does something different and unusual, you may
have to modify the editor to get it to use the insert mode your
terminal defines. No known terminals have an insert mode not
falling into one of these two classes.

2-84 TERMCAP(M)

The editor can handle both terminals that have an insert mode
and terminals that send a simple sequence to open a blank
position on the current line. Give as im the sequence to get into
insert mode, or give it an empty value if your terminal uses a
sequence to insert a blank position. Give as ei the sequence to
leave insert mode (give this, with an empty value also if you gave
im an empty value). Now give as ic any sequence needed to be
sent just before sending the character to be inserted. Most
terminals with a true insert mode will not give ic; terminals that
send a sequence to open a screen position should give it here.
(Insert mode is preferable to the sequence to open a position on
the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string
option). Any other sequence that may need to be sent after an
insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode
to delete characters on the same line (for example, if there is a tab
after the insertion position). If your terminal allows motion while
in insert mode you can give the capability mi to speed up inserting
in this case. Omitting mi will affect only speed. Some terminals
(notably Datamedia's) must not have mi because of the way their
insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter
and exit delete mode, and de to delete a single character while in
delete mode.

Highlighting, Underlining, and Visible Bells

If your terminal has sequences to enter and exit standout mode
these can be given as so and se respectively. If there are several
standout modes (such as inverse video, blinking, or underlining -
half bright is not usually an acceptable 'standout' mode unless the
terminal is in inverse video mode constantly) the preferred mode
is inverse video by itself. If the code to change into or out of
standout mode leaves one or even two blank spaces on the screen,
as the TVI 912 and Teleray 1061 do, this is acceptable, and
although it may confuse some programs slightly, it can't be
helped.

TERMCAP(M) 2-85

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as uc (If the underline
code does not move the cursor to the right, give the code followed
by a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement) this can be given as vb; it must
not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be
given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, for example, from an
underline to a block cursor and back.

If the terminal needs to be in a special mode when running a
program that addresses the cursor, the codes to enter and exit this
mode can be given as ti and te. This arises, for example, from
terminals like the Concept with more than one page of memory.
If the terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one screen-sized window
must be fixed into the terminal for cursor addressing to work
properly.

If your terminal correctly generates underlined characters (with
no special codes needed) even though it does not overstrike, you
should give the capability ul. If overstrikes are erasable with a
blank, this should be indicated by giving eo.

2-86 TERMCAP(M)

Keypad

If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not
possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
ks and ke. Otherwise, the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kl, kr, ku, kd, andkh
respectively. If there are function keys such as fO fl, ... , f9, the
codes they send can be given as kO, kt, ... , k9. If these keys
have labels other than the default fO through f9, the labels can be
given as IO, 11, ... , 19. If there are other keys that transmit the
same code as the terminal expects for the corresponding function,
such as clear screen, the termcap 2 letter codes can be given in the
ko capability, for example, ':ko=cl,11,sf,sb:', which says that the
terminal has clear, home down, scroll down, and scroll up keys
that transmit the same thing as the cl, ll, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals
which have single character arrow keys. This field is redundant
with kl, kr, ku, kd, and kh. It consists of groups of two characters.
In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These
commands are h for kl, j for kd, k for ku, I for kr, and H for kh.
For example, the Mime would be :ma= /\Kj /\Zk/\XI: indicating
arrow keys left (/\H), down (/\K), up (/\Z), and right (/\X).

(There is no home key on the Mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a
pad, this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a
character other than /\I to tab, this can be given as ta.

TERMCAP(M) 2-87

Hazeltine terminals, which don't allow '"'' characters to be
printed should indicate hz. Datamedia terminals, which echo
carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nc. Early Concept terminals,
which ignore a linefeed immediately after an am wrap, should
indicate xn. If an erase-eol is required to get rid of standout
(instead of merely writing on top of it), xs should be given.
Teleray terminals, where tabs turn all characters moved over to
blanks, should indicate xt. Other specific terminal problems may
be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the
terminal, and if, the name of a file containing long initialization
strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both
are given, is will be printed before if. This is useful where if is
/usr/lib/tabset/std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as
being just like the other with certain exceptions. The string
capability tc can be given with the name of the similar terminal.
This capability must be last and the combined length of the two
entries must not exceed 1024. Because termlib routines search
the entry from left to right, and because the tc capability is
replaced by the corresponding entry, the capabilities given at the
left override the ones in the similar terminal. A capability can be
cancelled with xx@ where xx is the capability. For example:

hni2621nl :ks@:ke@:tc=2621:

This defines a 2621 nl that does not have the ks or ke capabilities,
and hence does not turn on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for
different user preferences.

2-88 TERMCAP(M)

Files

I etc/termcap File containing terminal descriptions

See Also

ex(C), tset(C), vi(C), more(C)

Credit

This utility was developed at the University of California at

Berkeley and is used with permission.

Comments

The ex editor allows only 256 characters for string capabilities.

The total length of a single entry (excluding only escaped

newlines) may not exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are

not supported by any program.

TERMCAP(M) 2-89

TERMIN.ALS(M)

Name

terminals - List of supported terminals.

Description

The following is a partial list of terminals that may be used on a
XENIX system. The corresponding names can be used to assign
the terminal type to TERM (see environ(M)). Additional
terminals and names are defined in the file:

I etc/termcap.

Name
dwl
dw2
h19
h1000
h1552
h1500
h1510
h1520
h2000
3101
ti700
ti745
vt50
vt50h
vt52

Terminal
DECwriter I
DECwriter II
Heathkit hl 9
Hazeltine 1000
Hazeltine 1552
Hazeltine 15 00
Hazeltine 1510
Hazeltine 15 20
Hazeltine 2000
IBM 3101
Texas Instruments Silent 700
Texas Instruments Silent 7 45
Digital VT50
Digital VT50h
Digital VT52

2-90 TERMINALS(M)

Name
vtl
vt100s
vt100w
z19
z29

Files

Terminal
Digital VT 100
Digital VT 100 13 2 cols 14 lines
Digital VT100 132 cols
Zenith Z19
Zenith Z29

I etc/termcap

TERMINALS(M) 2-91

TOP(M)

Name

top, top.next - The Micnet topology files .

Description

These files contain the topology information for a Micnet
network. The topology information describes how the individual
systems in the network are connected and what path a message
must take from one system to reach another. Each file contains
one or more lines of text. Each line of text defines a connection
or a communication path.

The top file defines connections between systems. Each line lists
the machine names of the connected systems, the serial lines used
to make the connection, and the speed (baud rate) of
transmission between the systems. Each line has the form:

machine 1 tty 1 machine 2 tty 2 speed

where machine 1 and machine2 are the machine names of the
respective systems (as given in the systemid files), and ttyl and
tty2 are the device names (for example, ttyO 1) of the connecting
serial lines. The speed must be an acceptable baud rate (for
example, 110, 300, ... , 2400).

2-92 TOP(M)

The top.next file contains information about how to reach a
particular system from a given system. There may be several lines
for each system in the network. Each line lists the machine name
of a system, followed by the machine name of a system connected
to it, followed by the machine names of all the systems that may
be reached by going through the second system. Such a line has
the form:

machine 1 machine2 machine] [machine4] ...

The machine names must be the names of the respective systems
(as given by the first machine name in the systemid files) .

The top.next file must be present even if there are only two
computers in the network. In such a case, the file must be empty.

In the top and top.next files, any line beginning with a number
sign(#) is considered a comment and is ignored.

Files

I usr /lib I mail/ top
I usr / lib I mail/ top. next

See Also

aliases(M), netutil(C), systemid(M), top(M)

TOP(M) 2-93

TTY(M)

Name

tty - General terminal interface.

Description

This section describes both a particular special file and the general
nature of the terminal interface.

The file I dev /tty is, in each process, a synonym for the control
terminal associated with the process group of that process, if any.
It is useful for programs or shell sequences that wish to be sure of
writing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand the
name of a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.

All asynchronous communications ports use the same general
interface, no matter what hardware is involved. The remainder of
this section discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to
wait until a connection is established. In practice, users' programs
seldom open these files; they are opened by getty(M) and become
a user's standard input, output, and error files. The very first
terminal file opened by the process group leader of a terminal file
not already associated with a process group becomes the control
terminal for that process group. The control terminal plays a
special role in handling quit and interrupt signals, as discussed
below.

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters may be typed at any time, even
while output is occurring, and are only lost when the system's
character input buffers become completely full, which is rare, or
when the user has accumulated the maximum allowed number of
input characters that have not yet been read by some program.
This limit is 256 characters. When the input limit is reached, all
the saved characters are thrown away without notice.

2-94 TTY(M)

Normally, terminal input is processed in units of lines. A line is
delimited by a newline (ASCII LF) character, an end-of-file
(ASCII EOT) character, or an end-of-line character. This means
that a program attempting to read will be suspended until an
entire line has been typed. Also, no matter how many characters
are requested in the read call, at most one line will be returned. It
is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one,
without losing information.

Erase and kill processing is normally done during input. By
default, pressing Ctrl-H or Backspace erases the last character
typed, except that it will not erase beyond the beginning of the
line. By default, Ctrl-U deletes the entire input line, and
optionally outputs a newline character. Both these characters
operate on a key-stroke basis, independent of any backspacing or
tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with the
escape character (\) . In this case the escape character is not
read. The erase and kill characters may be changed (see stty(C)).

Certain characters have special functions on input. These
functions and their default character values are summarized as
follows:

INTR (Rubout or ASCII Del) Generates an interrupt signal
that is sent to all processes with the associated control
terminal. Normally, each such process is forced to
terminate, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed-upon
location.

QUIT (Ctrl- \ or ASCII FS) Generates a quit signal. Its
treatment is identical to the interrupt signal except that,
unless a receiving process has made other arrangements,
it will not only be terminated but a core image file
(called core) will be created in the current working
directory.

ERASE (Ctrl-H) Erases the preceding character. It does not
erase beyond the start of a line, as delimited by a NL,
EOF, or EOL character.

TTY(M) 2-95

KILL (Ctrl-U) Deletes the entire line, as delimited by a NL,
EOF, or EOL character.

EOF (Ctrl-D or ASCII EQT) May be used to generate an
end-of-file from a terminal. When received, all the
characters waiting to be read are immediately passed to
the program, without waiting for a newline, and the
EOF is discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at the
beginning of a line, zero characters are passed back,
which is the standard end-of-file indication.

NL (ASCII LF) Is the normal line delimiter. It cannot be
changed or escaped.

EOL (ASCII Nul) Is an additional line delimiter, like NL. It
is not normally used.

STOP (Ctrl-S or ASCII DC3) Can be used to temporarily
suspend output. It is useful with CRT terminals to
prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored
and not read.

START (Ctrl-Q or ASCII DC 1) is used to resume output which
has been suspended by a STOP character. While output
is not suspended, ST ART characters are ignored and not
read. The start/ stop characters cannot be changed or
escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and
EOL can be changed to suit individual tastes. The ERASE,
KILL, and EOF characters may be escaped by a preceding \
character, in which case no special function is carried out.

When the carrier signal from the dataset drops, a hangup signal is
sent to all processes that have this terminal as the control
terminal. Unless other arrangements have been made, this signal
causes the processes to terminate. If the hangup signal is ignored,
any subsequent read returns with an end-of-file indication. Thus,
programs that read a terminal and test for end-of-file can
terminate appropriately when hung up on.

2-96 TTY(M)

When one or more characters are written, they are transmitted to

the terminal as soon as previously-written characters have

finished typing. Input characters are echoed by putting them in

the output queue as they arrive. If a process produces characters

more rapidly than they can be typed, it is suspended when its

output queue exceeds a given limit. When the queue has drained

down to the given threshold, the program is resumed.

Several system calls apply to terminal files. The primary calls use

the following structure, defined in the file termio.h:

#define NCC 8
struct termio {

unsigned short c_iflag; I* input modes *I
unsigned short c_ofl ag; I* output modes *I
unsigned short c_cflag; I* control modes */

unsigned short c_lflag; ; * local modes *I
char c_line; I* line discipline*;

unsigned char c_cc[NCC J; !* control chars */

} ;

The special control characters are defined by the array c_cc. The

relative positions and initial values for each function are as

follows:

0 INTR Del
1 QUIT FS
2 ERASE Bksp
3 KILL C::trl-U, C::trl-II,
4 EOF EOT
5 EOL Nul
6 Reserved
7 Reserved

TTY(M) 2-97

The c_iflag field describes the basic terminal input control:

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
I STRIP
I NL CR
IGNCR
ICRNL
IUCLC
IXON
IXANY
IX OFF

0000001 Ignores break condition
0000002 Signals interrupt on break
0000004 Ignores characters with parity errors
0000010 Marks parity errors
0000020 Enables input parity check
0000040 Strips character
0000100 Maps NL to CR on input
0000200 Ignores CR
0000400 Maps CR to NL on input
0001000 Maps uppercase to lowercase on input
0002000 Enables start / stop output control
0004000 Enables any character to restart output
0010000 Enables start / stop input control

If IGNBRK is set, the break condition (a character-framing error
with data all zeros) is ignored, that is, not put on the input queue
and therefore not read by any process. Otherwise, if BRKINT is
set, the break condition generates an interrupt signal and flushes
both the input and output queues. If IGNPAR is set, characters
with other framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error, that
is not ignored, is read as the three-character sequence: 0377, 0,
X, where X is the data of the character received in error. To
avoid ambiguity in this case, if !STRIP is not set, a valid character
of 03 77 is read as 03 77, 03 77. If P ARMRK is not set, a framing
or parity error, that is not ignored, is read as the character Nul
(0).

If INPCK is set, input parity checking is enabled. If INPCK is
not set, input parity checking is disabled. This allows output
parity generation without input parity errors.

If !STRIP is set, valid input characters are first stripped to
seven-bits, otherwise all eight-bits are processed.

If INLCR is set, a received NL character is translated into a CR
character. If IGNCR is set, a received CR character is ignored
(not read). Otherwise if ICRNL is set, a received CR character is
translated into a NL character.

2-98 TTY(M)

If IUCLC is set, a received uppercase alphabetic character is
translated into the corresponding lowercase character.

If IXON is set, start/ stop output control is enabled. A received
STOP character suspends output and a received START character
restarts output. All start/ stop characters are ignored and not
read. If IXANY is set, any input character restarts output which
has been suspended.

If IXOFF is set, the system transmits START characters when the

input queue is nearly empty and STOP characters when nearly
full.

The initial input control value is all bits clear.

The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocesses output.

OLCUC 0000002 Maps lowercase to uppercase on output.

ONLCR 0000004 Maps NL to CR-NL on output.

OCRNL 0000010 Maps CR to NL on output.

ON OCR 0000020 No CR output at column 0.

ONLRET 0000040 NL performs CR function.

OFILL 0000100 Uses fill characters for delay.

OFDEL 0000200 Fills is Del, else Nul.

NLDLY 0000400 Selects newline delays:
NLO 0
NLl 0000400

CRDLY 0003000 Selects carriage return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000

TTY(M) 2-99

TABDLY 0014000 Selects horizontal tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expands tabs to spaces.

BSDLY 0020000 Selects backspace delays:
BSO 0
BSl 0020000

VTDLY 0040000 Selects vertical tab delays:
VTO 0
VTl 0040000

FFDLY 0100000 Selects form feed delays:
FFO 0
FFl 0100000

If OPOST is set, output characters are post-processed as indicated
by the remaining flags, otherwise characters are transmitted
without change.

If OLCUC is set, a lowercase alphabetic character is transmitted
as the corresponding uppercase character. This function is often
used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted
as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set,
the NL character is assumed to perform the carriage return
function; the column pointer is set to 0 and the delays specified
for CR are used. Otherwise the NL character is assumed to
perform the linefeed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR
character is actually transmitted.

2-100 TTY(M)

The delay bits specify how long transmission stops to allow for

mechanical or other movement when certain characters are sent
to the terminal. In all, cases a value of 0 indicates no delay. If

OFILL is set, fill characters will be transmitted for delay instead
of a timed delay. This is useful for high baud rate terminals that
need only a minimal delay. If OFDEL is set, the fill character is
Del, otherwise N ul.

If a form feed or vertical tab delay is specified, it lasts for about

two seconds. If OFILL is set no fill characters are transmitted.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the

carriage return delays are used instead of the newline delays. If

OFILL is set, two fill characters are transmitted.

Carriage return delay type 1 is dependent on the current column

position, type 2 is about 0.10 seconds, and type 3 is about 0.15

seconds. If OFILL is set, CR1,CR2, and CR3 transmits two fill

characters,

Horizontal tab delay type 1 depends on the current column
position. Type 2 is about 0.10 seconds. Type 3 specifies that

tabs are to be expanded into spaces. If OFILL is set, TAB 1
transmits two fill characters and T AB2 transmits one fill
character.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one

fill character is transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

TTY(M) 2-101

The c_cflag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
Bl 10
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
EXTA
EXTB

0000017
0
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017

CSIZE 0000060
CS5 0
CS6 0000020
CS7 0000040
CS8 0000060
CSTOPB 0000100
CREAD 0000200
PARENB
PARODD
HUPCL 0002000
CLO CAL

2-102 TTY(M)

Baud rate:
Hang up.
50 baud.
75 baud.
110 baud.
134.5 baud.
150 baud.
200 baud.
300 baud.
600 baud.
1200 baud.
1800 baud.
2400 baud.
4800 baud.
9600 baud.
External A.
External B.

Character size:
five bits.
six bits.
seven bits.

eight bits.
Sends two stop bits, else one.
Enables receiver.
0000400 Parity enable.
0001000 Odd parity, else even.
Hangs up on last close.
0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, BO,

is used to hang up the connection. If BO is specified, the
data-terminal-ready signal will not be asserted. Without this

signal, the line is disconnected if connected through a modem.
For any particular hardware, impossible speed changes are
ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the parity

bit, if any. If CSTOPB is set, two stop bits are used, otherwise 1

stop bit. For example, at 110 baud, two stops bits are required.

If PARE NB is set, parity generation and detection is enabled and

a parity bit is added to each character. If parity is enabled, the
PARO DD flag specifies odd parity if set, otherwise even parity is

used.

If CREAD is set, the receiver is enabled. Otherwise no
characters will be received.

If HUPCL is set, the line is disconnected when the last process

with the line open closes it or terminates. That is, the
data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. The data-terminal-ready and

request-to-send signals are asserted, but incoming modem signals
are ignored. If CLOCAL is not set, modem control is assumed.

This means the data-terminal-ready and request-to-send signals

are asserted. Also, the carrier-detect signal must be returned

before communications can proceed.

The initial hardware control value after open is B9600, CS8,

CREAD,HUPCL.

TTY(M) 2-103

The c /flag field of the argument structure is used by the line
discipline to control terminal functions . The basic line discipline
(0) provides the following:

ISIG 0000001
ICANON 0000002

XCASE 0000004
ECHO 0000010
ECHOE 0000020
ECHOK 0000040
ECHONL 0000100
NOFLSH 0000200
XCLUDE 0100000

Enable signals.
Canonical input (erase and kill
processing).
Canonical upper /lower presentation.
Enables echo.
Echoes erase character as BS-SP-BS.
Echoes NL after kill character.
Echoes NL.
Disables flush after interrupt or quit.
Exclusive use of the line.

p. If ISIG is set, each input character is checked against the
special control characters INTR and QUIT. If an input character
matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no checking is
done. Thus, these special input functions are possible only if ISIG
is set. These functions may be disabled individually by changing
the value of the control character to an unlikely or impossible
value (for example, 0377).

If !CANON is set, canonical processing is enabled. This enables
the erase and kill edit functions, and the assembly of input
characters into lines delimited by NL, EOF, and EOL. If
!CANON is not set, read requests are satisfied directly from the
input queue. A read is not satisfied until at least VMIN
characters have been received or the timeout value VTIME has
expired. This allows fast bursts of input to be read efficiently
while still allowing single character input. The VMIN and
VTIME values are stored in the position for the EOF and EOL
characters respectively. The time value represents tenths of
seconds.

2-104 TTY(M)

If XCASE is set, and if ICANON is set, an uppercase letter is
accepted on input by preceding it with a \ character and is
output preceded by a \ character. In this mode, the following
escape sequences are generated on output and accepted on input:

For: Use:

\'
\!
\ /\

{ \(
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as
\ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.
If ECHO and ECHOE are set, the erase character is echoed as
ASCII BS SP BS, which clears the last character from a CRT
screen. If ECHOE is set and ECHO is not set, the erase
character is echoed as ASCII SP BS. If ECHOK is set, the NL
character is echoed after the kill character to emphasize that the
line will be deleted. Note that an escape character preceding the
erase or kill character removes any special function. If ECHONL
is set, the NL character is echoed even if ECHO is not set. This
is useful for terminals set to local echo (so-called half duplex).
Unless escaped, the EOF character is not echoed. Because EOT
is the default EOF character, this prevents terminals that respond
to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters, is not
done.

TTY(M) 2-105

If XCLUDE is set, any subsequent attempt to open the tty device
fails for all users except the super-user. If the call fails, it returns
EBUSY in errno. XCLUDE is useful for programs that must have
exclusive use of a communications line. It is not intended for the
line to the program's controlling terminal. XCLUDE must be
cleared before the setting program terminates, otherwise
subsequent attempts to open the device will fail.

The initial line-discipline control value is all bits clear.

The primary ioctl system calls have the form:

ioctl (fildes, command, arg)
struct termio arg;

The commands using this form are:

TCGET A Gets the parameters associated with the terminal and
stores them in the termio structure referenced by arg.

TCSET A Sets the parameters associated with the terminal from
the structure referenced by arg. The change is
immediate.

TCSETA W Waits for the output to drain before setting the new
parameters. This form should be used when changing
parameters that affect output.

TC SET AF Waits for the output to drain, then flushes the input
queue and sets the new parameters.

2-106 TTY(M)

Additional ioctl calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Waits for the output to drain. If arg is 0, sends a
break (zero bits for 0.25 seconds).

TCXONC Starts/ stops control. If arg is 0, suspends output; if 1,
restarts suspended output.

TCFLSH If arg is 0, flushes the input queue; if 1, flushes the
output queue; if 2, flushes both the input and output
queues.

Files

/dev/tty
/dev/tty*
I dev I console

See Also

stty(C)

TIY(M) 2-107

TTYS(M)

Name

ttys - Log in terminals file.

Description

The I etc/ttys file contains a list of the device special files
associated with possible log in terminals and defines which files
are to be opened by the init (M) program on system start-up.

The file contains one or more entries of the form:

state mode name

The name must be the filename of a device special file. Only the
filename may be supplied; the path is assumed to be /dev. If state
is "1 ", the file is enabled for logins; if "O", the file is disabled.
The mode is used as an argument to the getty(M) program. It
defines the line speed and type of device associated with the
terminal. A list of arguments is provided in getty(M).

For example, the entry "16tty02" means the serial line tty02 is to
be opened for logging in at 9600 baud.

Files

/etc/ttys

See Also

init(M), getty(M), enable(C), disable(C)

2-108 TTYS(M)

UTMP(M)

Name

utmp, wtmp - Formats of utmp and wtmp entries.

Description

The files utmp and wtmp hold user and accounting information for
use by commands such as who(C), and login(M). They have the
following structure, as defined by /usr/include/utmp.h:

struct utmp
{

} ;

Files

char
char
long

ut_line[8];
ut_name[8];
ut_time;

/etc/utmp
/ usr/adm/wtmp
/ usr / include/ utmp.h

See Also

login(M) , who(C), write(C)

I* tty name * I
/ * login name * I
! * time on * I

UTMP(M) 2-109

XINST ALL(M)

Name

xinstall - Installs XENIX systems.

Syntax

Description

The xinstall command copies the XENIX program and data files
from the XENIX system distribution disks to the root and user
file systems of a fixed disk. The xinstall command creates the
appropriate directories for the files and sets permissions. Existing
files of the same name are deleted.

The options may be any one of the following:

base Install the XENIX Operating System.

soft Install the XENIX Software Development System.

text Install the XENIX Text Formatting System.

If no option is given, base is assumed.

The xinstall command first performs a five or six step check of the
file system, then explains how to insert the distribution disks into
the system's diskette drive. It displays the message:

First Diskette ? [y,n]

when it is ready for the first disk. It displays a similar message
when ready for the next disk. All distribution disks are numbered
and must be inserted in order.

2-110 XINST ALL(M)

In some cases, programs or data files may be split across two
disks. When a split file is encountered, xinstall displays the
message:

tar: please mount new volume

to indicate that the next disk in the set must be inserted.

When all disks have been copied, xinstall assigns permissions for

each file using the I etc/fixperm program.

Files

I etc/ xinstall
I etc/fixperm

See Also

XENIX Installation Guide

XINST ALL(M) 2-111

2-112

Section 3. File Formats

Introduction to File Formats(F)

Name

intro - Introduction to file formats.

Description

This section outlines the formats of various files. Usually, these
structures can be found in the directories /usr /include or
/usr /include/ sys.

3-1

A.OUT(F)

Name

a.out - Format of assembler and link editor output.

Description

The a.out file is the output file of the assembler as and the link
editor Id. Both programs make a.out executable if there were no
errors in assembling or linking, and no unresolved external
references.

The format of a.out, called the x.out or segmented x.out format, is
defined by the files /usr /include/ a.out.h and
/usr/include/sys/relsym.h. The a.out file has the following general
layout:

1. Header.

2. Extended header.

3. File segment table (for segmented formats).

4. Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data
segments, depending on the memory model of the program.
Segments within the file begin on boundaries that are multiplies of
512 bytes as defined by the file's pagesize.

3-2 A.OUT(F)

ACCT(F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct have records in the form
defined by <sys/ acct.h>.

In ac flag, the AFORK flag is turned on by each fork and
turned off by each exec. The ac comm field is inherited from the
parent process and is reset by any exec. Each time the system
charges the process with a clock tick, it also adds the current
process size to ac_mem computed as follows:

(data size) + (text size) I (number of in-core processes using
text)

The value of ac mem/ ac stime can be viewed as an
approximation to the mean process size, as modified by
text-sharing.

See Also

acct(C), acctcom(C)

Comment

The ac mem value for a short-lived command gives little
information about the actual size of the command, because
ac mem may be incremented while a different command (for
example, the shell) is being executed by the process.

ACCT(F) 3-3

AR(F)

Name

ar - Archive file format.

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link
editor ld(M).

A file produced by ar has a magic number at the start, followed
by the constituent files; each preceded by a file header. The
magic number is,0177545 octal (or Oxff65 hexadecimal). The
header of each file is declared in /usr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted
between files if necessary. Nevertheless, the size given reflects
the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

3-4 AR(F)

BACKUP(F)

Name

backup - Incremental dump tape format.

Description

The backup and restore commands are used to write and read
incremental dump magnetic tapes.

The backup tape consists of a header record, some bit mask
records, a group of records describing file system directories, a
group of records describing file system files, and some records
describing a second bit mask.

The header record and the first record of each description have
the format described by the structure included by:

#include <dumprestor.h>

Fields in the dumprestor structure are described below.

NTREC is the number of 512 byte blocks in a physical tape
record. MLEN is the number of bits in a bit map word. MSIZ is
the number of bit map words.

The TS entries are used in the c type field to indicate what
sort of header this is. The types and their meanings are:

TS TYPE Tape volume label.

TS IN ODE A file or directory follows. The c_ dinode field is a
copy of the disk inode and contains bits telling
what sort of file this is.

TS BITS A bit mask follows. This bit mask has a 1 bit for
each inode that was dumped.

TS ADDR A subblock to a file (TS INODE). See the
description of c_ count below.

BACKUP(F) 3-5

TS END

TS CLRI

MAGIC

End of tape record.

A bit mask follows. This bit mask contains a 1 bit
for all inodes that were empty on the file system
when dumped.

All header blocks have this number in c_magic.

CHECKSUM Header blocks checksum to this value.

The fields of the header structure are:

c_type

c date

c ddate

c volume

c_tapea

The type of the header.

The date the dump was taken.

The date the file system was dumped from.

The current volume number of the dump.

The current block number of this record. This is
counting 512 byte blocks.

c inumber The number of the inode being dumped if this is of
type TS_INODE.

c_magic This contains the value MAGIC above, truncated
as needed.

c checksum This contains whatever value is needed to make
the block sum to CHECKSUM.

c dinode This is a copy of the inode as it appears on the file
system.

3-6 BACKUP(F)

c count

c addr

This is the count of characters following that
describe the file. A character is 0 if the block
associated with that character was not present on
the file system; otherwise the character is nonzero.
If the block was not present on the file system, no
block was dumped and it is replaced as a hole in
the file. If there is not sufficient space in this
block to describe all of the blocks in a file,
TS ADDR blocks are scattered through the file,
eacll one picking up where the last left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS_END block and a
tapemark.

The structure idates describes an entry of the file where dump
history is kept.

See Also

backup(C), restore(C), filesystem(F)

BACKUP(F) 3-7

CHECKLIST(F)

Name

checklist - List of file systems processed by fsck.

Description

The I etc/ checklist file contains a list of the file systems to be
checked when fsck(C) is invoked without arguments. The list
contains, at most, 15 special file names. Each special file name
must be on a separate line and must correspond to a file system.

See Also

fsck(C)

3-8 CHECKLIST(F)

CORE(F)

Name

core - Format of core image file.

Description

XENIX writes out a core image of a terminated process when
various errors occur. The most common are memory violations,

illegal instructions, bus errors, and user-generated quit signals.
The core image is called core and is written in the process'
working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the
real user ID does not produce a core image.

The first section of the core image is a copy of the system's
per-user data for the process, including the registers as they were
at the time of the fault. The size of this section depends on the

parameter usize, which is defined in /usr/include/sys/param.h.
The remainder represents the actual contents of the user's core

area when the core image was written. If the text segment is
read-only and shared, or separated from data space, it is not
dumped.

The format of the information in the first section is described by
the user structure of the system, defined in
/usr /include/ sys/user.h. The locations of registers, are outlined
in /usr/include/sys/reg.h.

CORE(F) 3-9

CPIO(F)
Name

cpio - Format of cpio archive.

Description

The header structure, when the c option is not used, is:

struct

} Hdr;

short h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];

When the c option is used, the header information is described by
the statement below:

s scan f (Chd r, 11 %60 %60%60%60%60%60%60%60 %1110%60%60%s 11
,

&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev
&Longtime,&Hdr.h_namesize,&Longfile,Hdr.h_name);

3-10 CPIO(F)

Longtime and Longfile are equivalent to Hdr.h mtime and
Hdr.h filesize, respectively. The contents of each file is
recorded in an element of the array of varying length structures,
archive, together with other items describing the file. Every
instance of h magic contains the constant 070707 (octal). The
length of the null-terminated pathname h name, including the
null byte, is given by h_namesize. -

The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

See Also

cpio(C), find(C)

CPIO(F) 3-11

DIR(F)

Name

dir - Format of a directory.

Syntax

Description

A directory behaves exactly like an ordinary file, except that no
user may write into a directory. The fact that a file is a directory
is indicated by a bit in the flag word of its inode entry (see
filesystem(F)). The structure of a directory is given in the include
file /usr/include/sys/dir.h.

By convention, the first two entries in each directory are "dot" (.)
and "dot dot" (..). The first is an entry for the directory itself.
The second is for the parent directory. The meaning of dot dot is
modified for the root directory of the master file system; there is
no parent, so dot dot has the same meaning as dot.

See Also

filesystem(F)

3-12 DIR(F)

FILESYSTEM(F)

Name

file system - Format of a system volume.

Syntax

Description

Every file system storage volume (for example, a fixed disk) has a
common format for certain vital information. Every such volume
is divided into a certain number of 512 word (1,024 byte) blocks.
Block 0 is unused and is available to contain a bootstrap program
or other information.

Block 1 is the super-block. The format of a super-block is
described in /usr/include/sys/filesys.h. In that include file,
S isize is the address of the first data block after the i-list. The
i-list starts just after the super-block in block 2; thus the i-list is
s isize- 2 blocks long. S [size is the first block not potentially
available for allocation to afile. These numbers are used by the
system to check for bad block numbers. If an "impossible" block
number is allocated from the free list or is freed, a diagnostic is
written on the console. Moreover, the free array is cleared to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The
s free array contains, ins free[l], ... , s free[s nfree- 1] up
to49 numbers of free blocks. S free[O] isthe block number of
the head of a chain of blocks constituting the free list. The first
long in each free-chain block is the number (up to 50) of
free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next
member of the chain.

FILESYSTEM(F) 3-13

To allocate a block: decrements nfree, and the new block is
s free[s nfree]. If the new block number is 0, there are no
blocks left, so give an error. Ifs nfree becomes 0, read in the
block named by the new block number, replaces nfree by its
first word, and copy the block numbers in the next50 longs into
the s free array. To free a block, check if s nfree is 50; if so,
copys nfree and the s free array into it, write it out, and set
s nfree to 0. In any event set s free[s nfree] to the freed
block's number and increment s-nfree-. -

S_tfree is the total free blocks available in the file system.

S ninode is the number of free i-numbers in the s inode array.
To allocate an inode: if s ninode is greater than O~ecrement it
and return s inode[s ninode]. If it was 0, read the i-list and
place the numbers of all free inodes (up to 100) into the s inode
array, then try again. To free an inode, provided s ninode is less
than 100, place its number into s inode[s ninode]and
increment s ninode. If s ninode is already 100, do not bother to
enter the freed inode intoany table. This list of inodes only
speeds up the allocation process. The information about whether
the inode is really free is maintained in the inode itself.

S tinode is the total free inodes available in the file system.

S flock and s ilock are flags maintained in the core copy of the
file system whileit is mounted and their values on disk are
immaterial. The value of s fmod on disk is also immaterial, and
is used as a flag to indicatethat the super-block has changed and
should be copied to the disk during the next periodic update of
file system information.

S ronly is a read-only flag to indicate write-protection.

S time is the last time the super-block of the file system was
changed, and is a double-precision representation of the number
of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reload, the s time of the super-block for the root file
system is used to set the system's idea of the time. The system
time is not set from the real time cmos clock when multiuser mode
is entered.

3-14 FILESYSTEM(F)

I-numbers begin at 1, and the storage for inodes begins in block
2. Also, inodes are 64 bytes long, so 8 of them fit into a block.
Therefore, inode i is located in block (i+15)/8, and begins
64 x ((i + 15) (mod 8)) bytes from its start. In ode 1 is reserved for
future use. In ode 2 is reserved for the root directory of the file
system, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see
inode(F).

Files

/usr /include/ sys/filsys.h
/usr /include/ sys/ stat.h

See Also

fsck(C), mkfs(C), inode(F)

FILESYSTEM(F) 3-15

INODE(F)

Name

inode - Format of an inode.

Syntax

Description

An inode for a plain file or directory in a file system has the
structure defined by <sys/ino.h>. For the meaning of the defined
types off_t and time_t see types(F).

Files

/usr/include/sys/ino.h

See Also

filesystem(F), types(F)

3-16 INODE(F)

MASTER(F)

Name

master - master device information table

Description

This file is used to obtain device information that enables it to

generate the configuration files . The file consists of four parts,

each separated by a line with a dollar sign ($) in column 1. Part

1 contains device information; part 2 contains the line discipline

table; part 3 contains names of devices that have aliases; part 4

contains tunable parameter information. Any line with an

asterisk (*) in column 1 is treated as a comment.

Part 1

This part contains definitions for the system devices. Each line

has 14 fields with the fields delimited by tabs and/ or blanks:

Field 1:
Field 2:
Field 3:

device name (eight chars. maximum).
interrupt vector size (decimal, in bytes).
device mask (octal)-each "on" bit indicates that the
driver has the corresponding handler or structure:

000400
000200
000100
000040
000020
000010
000004
000002
000001

not used.
not used.
initialization handler.
not used.
open handler.
close handler.
read handler.
write handler.
ioctl handler ..

MASTER(F) 3-17

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

device type indicator (octal):

000200
000100
000040
000020
000010
000004
000002
000001

allow only one of these devices.
not used.
not used.
required device.
block device.
character device.
not used.
not used.

handler prefix (4 chars. maximum).
not used.
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller
(decimal).

Field 10: not used.
Fields 11-14:

maximum of four interrupt vector addresses. Each
address is followed by a unique letter or a blank.

Devices not interrupt-driven have an interrupt vector size of zero.
Devices that generate interrupts but are not of the standard
character or block device mold, should be specified with a type
(field 4) that does not have the block or character bits set.

Part 2

This part contains definitions for the system line discipline. Each
line has 11 fields. Each field is a maximum of 8 characters
delimited by a blank if less than 8:

Field 1:
Field 2:
Field 3:
Field 4:
Field 5:
Field 6:

Device associated with this line.
open routine.
close routine.
read routine.
write routine.
ioctl routine.

3-18 MASTER(F)

Field 7:
Field 8:
Field 9:
Field 10:
Field 11:

Part 3

receiver interrupt routine.
unused- should be nulldev.
unused- should be nulldev.
output start routine.
unused- should be nulldev.

This part contains definitions for device aliases. Each line has 2

fields:

Field 1:
Field 2:

Part 4

alias name of device (8 chars. maximum).
reference name of device (8 chars. maximum;

specified in Part 1).

This part contains the names and default values for tunable

parameters. Each line has 2 or 3 fields:

Field 1:

Field 2:

Field 3:

parameter name (as it appears in description file; 20

chars. maximum).
parameter name (as it appears in the c.c file; 20

chars. maximum)
default parameter value (20 chars. maximum;

parameter specification is required if this field is

omitted)

If a parameter has no default value, an explicit specification for

the parameter must be given in the description file.

Devices that are not interrupt-driven have an interrupt vector size

of zero. Devices that generate interrupts but are not of the

standard character or block device mold, should be specified with

a type (field 4 in part 1), which has neither the block nor char bits

set.

MASTER(F) 3-19

MNTTAB(F)
Name

mnttab - Format of mounted file system table.

Syntax

Description

The I etc/mnttab file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/ write permissions of the special file, and the date on which
the device was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/sys/conf/c.c, which defines
the number of allowable mounted special files.

See Also

mount(C)

3-20 MNTTAB(F)

SCCSFILE(F)

Name

sccsfile - Format of an SCCS file.

Description

An SCCS file is an ASCII file. It consists of six logical parts: the

checksum, the delta table (contains information about each delta),

user names (contains login names and/ or numerical group IDs of

users who may add deltas), flags (contains definitions of internal

keywords), comments (contains arbitrary descriptive information

about the file), and the body (contains the actual text lines

intermixed with control lines). Each logical part of a SCCS file is

described in detail below.

Throughout an SCCS file there are lines that begin with the

ASCII SOH (start of heading) character (octal 001). This

character is hereafter referred to as the control character and will

be represented graphically as @. Any line described below that is

not depicted as beginning with the control character is prevented

from beginning with the control character. Entries of the form

DDDDD represent a five digit string (a number between 00000

and 99999).

Checksum

The checksum is the first line of an SCCS file. The form of the

line is:

@hDDDDD

The value of the checksum is the sum of all characters, except

those of the first line. The @hR provides a magic number of

(octal) 064001.

SCCSFILE(F) 3-21

Delta Table

The delta table consists of a variable number of entries of the
form:

@sDDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr>DDDDD DDDDD
@iDDDDD .. .
@xDDDDD .. .
@gDDDDD .. .
@m <MR number>

@c <comments>

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

3-22 SCCSFILE(F)

User Names

The list of login names and/ or numerical group IDs of users who

may add deltas to the file, separated by new-lines. The lines

containing these login names and/ or numerical group IDs are

surrounded by the bracketing lines @u and @U. An empty list

allows anyone to make a delta.

Flags

Flags are keywords used internally. Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@ft
@fv
@f i
@f b
@f m
@ff
@f c
@f d
@f n
@f j
@f 1
@fq

<type of program>
<program name>

<module name>
<floor>
<ceiling>
<default-sid>

<lock-releases>
<user defined>

The t flag defines the replacement for the identification keyword.

The v flag controls prompting for MR numbers in addition to

comments; if the optional text is present it defines an MR number

validity checking program. The i flag controls the warning/ error

aspect of the "No id keywords" message. When the i flag is not

present, this message is only a warning; when the i flag is present,

this message will cause an unrecoverable error (the file will not be

accessed, or the delta will not be made).

SCCSFILE(F) 3-23

When the b flag is present, the -b option may be used with the get
command to cause a branch in the delta tree. Them flag defines
the first choice for the replacement text of the sccsfile.F
identification keyword. The f flag defines the "floor" release; the
release below which no deltas may be added. The c flag defines
the "ceiling" release; the release above which no deltas may be
added. The d flag defines the default SID to be used when none is
specified on a get command. The n flag causes delta to insert a
"null" delta (a delta that applies no changes) in those releases that
are skipped when a delta is made in a new release (for example,
when delta 5 .1 is made after delta 2. 7, releases 3 and 4 are
skipped). The absence of then flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits
of the same base SID. The I flag defines a list of releases that are
locked against editing. The q flag defines the replacement for the
identification keyword.

Comments

Comments are arbitrary text surrounded by the bracketing lines
@t and @T. The comments section typically contains a
description of the file's purpose.

Body

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:

@IDDDDD
@DDDDDD
@EDDDDD

The digit string (DDDDD) is the serial number corresponding to
the delta for the control line.

3-24 SCCSFILE(F)

STAT(F)

Name

stat - Data returned by stat system call.

Syntax

Description

The sys/ stat.h include file contains the definition for the structure
returned by the stat and fstat functions . The structure is defined
as :

struct stat {

};

dev t

ino t
ushort
short
ushort
ushort
dev t

off t
time -time -time

t
t
t

st_dev;

st_ino;
st mode;
st-nlink;
st-uid;
st-gid;
st=rdev;

st size; -st atime; -st mtime; -st ctime; -

I* id of device containing directory
entry* I
/ * inode number *I
/* file mode *I
/ *#of links*/
/* owner uid *I
/ * owner gid *I
I* device id (block and char
devices only) *I
I* file size in bytes *I
I* time of last access *I
I* time of last data modification *I
I* time of last file
status 'change' *I

The st atime, st mtime, and st ctime values are measured in
seconds since 00:00:00 (GMT) on January 1, 1970.

The st mode value is actually a combination of one or more of
the following file mode values:

STAT(F) 3-25

S IFMT
S-IFDIR
S-IFCHR
S-IFBLK
S-IFREG
S-IFIFO
S-IFNAM
S-INSEM
S-INSHD
S-ISUID
S-ISGID
S-ISVTX

0170000
0040000
0020000
0060000
0100000
0010000
0050000
01
02
04000
02000
01000

S IREAD 00400
S-IWRITE 00200
S-IEXEC 00100

Files

/usr/ include/ sys/ stat.h

3-26 STAT(F)

/* type of file *I
I* directory *I
I* character special *I
/* block special *I
/* regular *I
/* fifo *I
/* name space entry *I
/* semaphore *I
I* shared memory *I
/* set user id on execution *I
I* set group id on execution *I
/ * save swapped text
even after use *I
I* read permission, owner *I
I* write permission, owner *I
/* execute/ search
permission, owner *I

TYPES(F)

Name

types - Primitive system data types.

Syntax

Description

The data types defined in the include file < sys/types.h > are used
in XENIX system code; some data of these types are accessible to
user code.

The form is as follows:

typedef long daddr_t;
typedef char *caddr t;
typedef unsigned shortushort;
typefde unsigned short ino t;
typedef char cnt_t; -
typedef long time t;
typedef int label -t[6]; /* return, sp, si, di, bp* I
typedef short dev =t;
typedef long off_t;
typedef long paddr t;
typedef unsigned short mloc t; /* memory region location* I
typedef unsigned short msize_t; /*memory region size* I

TYPES(F) 3-27

I* selectors and constructor for device code *I
#define major(x) (((unsigned)(x)>>8))
#define minor(x) ((x)&03 77)
#define makedev(x,y) (dev_t)((x)<<8j(y))

typedef unsigned char
typedef unsigned long
struct saddr {

uchar t;
ulong_t;

unsigned short sa seg;
long sa_off;

} ;

The form daddr t is used for disk addresses except in an inode
on disk, see filesystem(F). Times are encoded in seconds since
00:00:00 specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the
processor state while another process is running.

Files

filesystem(F)

3-28 TYPES(F)

Index

Special Characters

I etc/ mnttab, create
table 1-263

A

A.OUT(F) 3-2
assembler and link editor

format 3-2
abbreviations,

ALIASES(M) 2-2
access and modification

dates 1-265
access DOS files 1-96
access permission 1-48
access times, update and

modification 1-310
access to system 2-45
according to context 1-65
accounting file format 3-3
accounting files 1-3
accounting information 2-109
accounting on 1-6
ACCT(F) 3-3

accounting file format 3-3
ACCTCOM(C) 1-3

accounting files 1-3
ACCTON(C) 1-6

accounting on 1-6
add a login id 1-192
add line numbers 1-211

administration of XENIX
network 1-204

aging, password 1-23 3
pwadmin(C) performs

password aging
administration 1-233

ALIASES.HASH(M) 2-2
Micnet alias files 2-2

ALIASES(M) 2-2
Micnet alias files 2-2

ALIASHASH(M) 2-5
Micnet hash table

generator 2-5
another user 1-295
AR(F) 3-4

archive file format 3-4
arbitrary precision

arithmetic 1-27
arbitrary precision

calculator 1-7 6
archive 1-60
archive file format 3-4
archive, dumpdir-prints 1-103
archive , format of cpio 3-10
archives files 1-302
archives, read 1-244
arguments 1-104
arguments as an
expression 1-128

arithmetic 1-76
dc(C) invokes

calculator 1-7 6
arithmetic processor,bc 1-27
ascii character set 2-7
ASCII(M) 2-7

ascii character set 2-7
ASKTIME(C) 1-7

Index-1

-~

time of day 1-7
assembler and link editor
format 3-2

assign function keys 2-68
ASSIGN(C) 1-9

assigns devices 1-9
assigns devices 1-9
AT(C) 1-12
ATQ(C) 1-12
ATRM(C) 1-12

command execution
time 1-12

awk - invokes a pattern 1-15
AWK(C) 1-15

B

search for patterns in
file 1-15

back up system 1-299
background processes 1-389
backup archive print 1-103
BACKUP(C) 1-22

incremental file system
backup 1-22

BACKUP(F) 3-5
dump tape format 3-5

backup, print and set
dates. 1-254

bad track map 2-9
BADTRACK(M) 2-9

bad track map 2-9
BANNER(C) 1-25

print large letters 1-25
BASENAME(C) 1-26

removes directory
names 1-26

battery-powered clock 2-14
BC(C) 1-27

calculator 1-2 7

Index-2

BDIFF(C) 1-32
compares files 1-32
processes files 1-3 2

BFS(C) 1-34
scans files 1-34

big files 1-34
boot program 2-11
BOOT(M) 2-11

boot program 2-11
build special files 1-191

c

CAL(C) 1-40
print calendar 1-40

calculate checksum 1-297
calculator 1-27
calendar 1-40
CALENDAR(C) 1-41

prints today's date 1-41
prints tomorrow's

date 1-41
reminder service 1-41

call another system 1-68
CAT(C) 1-43

concatenate and display
files 1-43

CD(C) 1-45
change directory 1-45

change access permission 1-48
change directory 1-45
change group ID 1-4 7
change login password 1-220
change owner id 1-5 2
change root 1-5 3
change to super-user 1-295
character set, ascii 2-7
characters, count 1-391
characters, translate 1-311
check 1-149

grpcheck(C) group file
check 1-149

check password file 1-235
CHECKLIST(F) 3-8

list of fsck check files 3-8
checksum 1-297

counts blocks in file 1-297
sum(C) calculates

checksum 1-297
CHGRP(C) 1-47

change group ID 1-4 7
CHMOD(C) 1-48

change access
permission 1-48

CHOWN(C) 1-52
change owner id 1-52

CHROOT(C) 1-53
change root 1-53

CHSH(C) 1-54
change user default

shell 1-54
clean up uucp spool directory

See uuclean(C)
clean, uucp spool

directory 1-324
clock 2-67

setclock(M) sets the real
time clock 2-67

CLOCK(M) 2-14
real-time clock 2-14

closes 1-150
haltsys(C) closes file

system 1-150
haltsys(C) halts
CPU 1-150

CMOS(M) 2-15
configuration data

base 2-15
CMP(C) 1-55

compare files 1-55
columns 1-161

le(C) lists directory content
columns 1-161

combine files 3-4
COMM(C) 1-56

common lines 1-56
selects or rejects lines 1-56

command environment 1-123
command execution 1-63

cron(C), specified time and
dates 1-63

command execution time 1-12
command option

breakup 1-144
command priority 1-209
command, invoke

interpreter 1-252
command, shell 1-266

invoke interpreter 1-266
commands 1-156

install(C) install
commands 1-15 6

commands on remote systems
See uux(C)

commands, construct and
execute 1-397

commands, execute on remote
system 1-242

common lines 1-56
comm(C) selects or rejects

lines 1-56
compare directories 1-91
compare files 1-55, 1-256
compare three files 1-8 9
compares files 1-32
compares two text files 1-86
compress files 1-217
concatenate and display

files 1-43
conditions, test 1-308
configuration data base 2-15
CONSOLE(M) 2-16

system terminal 2-16
color 2-16
monochrome 2-16

construct a file system 1-188

lndex-3

-
construct and execute

commands 1-397
contents 1-171

ls(C) information, contents
of directory 1-1 71

control information 2-38
control messages 2-50
Conventional names 2-71
convert and copy file 1-80
convert units 1-322
copies file archives 1-60
copies files 1-5 9
copies groups 1-57
copy 1-165

line(C) Reads one
line 1-165

copy DOS files to standard
output 1-96

copy DOS files to XENIX
system 1-96

copy files
See uucp(C)

copy files across
systems 1-240

copy files to fixed disk. 2-110
copy one line 1-165
copy part of file 1-300
COPY(C) 1-57

copies contents 1-57
copies groups 1-57

core image format 3-9
CORE(F) 3-9

core image format 3-9
count file blocks 1-297
count lines, words, and
characters 1-3 91

CP(C) 1-59
copies files 1-59
copiesfilel tofile2 1-59

cpio archive format 3-10
CPIO(C) 1-60

copies file archives 1-60
CPIO(F) 3-10

Index-4

cpio archive format 3-10
cpu halt 1-150
create I etc/ mnttab

table 1-263
create a tee in a pipe 1-307
create bad track map 2-9
create directory on DOS

disk 1-96
create disk partitions 2-28
CRON(C) 1-63

command execution 1-63
specified time and

dates 1-63
CSPLIT(C) 1-65

split files 1-65
CU(C) 1-68

call another system 1-68
current events, print

items 1-207

D

daemon - clock 1-63
command execution 1-63

DAEMON.MN(M) 2-19
Micnet mailer 2-19

data base, configuration 2-15
data base, terminal
capability 2-73

Data returned by stat system
call 3-25

date 1-7, 1-40, 1-41
calendar(C) invokes a

reminder service 1-41
calendar(C) prints
dates 1-41

print calendar 1-40
DATE(C) 1-73

print and set date 1-73
dates of files 1-265

change access 1-265
change modification 1-265

DC(C) 1-76
precision calculator 1-7 6

DD(C) 1-80
convert and copy file 1-80

DEASSIGN(C) 1-9
deassigns devices 1-9

deassigns devices 1-9
default program

information 2-21
default shell, change 1-54
DEFAULT(M) 2-21

default program
information 2-21

delete directory from DOS
disk 1-96

denies or permits messages
sent 1-186

device information table 3-17
device name 1-83
device, diskette drive 2-25
devices, assign 1-9
devices, fixed disk 2-35
DEVNM(C) 1-83

identify device name 1-83
DF(C) 1-84

free disk blocks 1-84
free inodes 1-84
prints number of 1-84

DIFF 1-32
bdiff(C) compares files
large 1-32

DIFF(C) 1-86
text file compare 1-86

different priority 1-209
DIFF3(C) 1-89

compare three files 1-89
flaggs with codes 1-89
publishes disagreeing

ranges 1-89
DIR(F) 3-12

directory format 1 3-12

DIRCMP(C) 1-91
compare directories 1-91
generates tabulated

information 1-91
direct serial connection 1-68

cu(C) calls another
system 1-68

directories 1-5 7, 1-91
copy(C) copies

contents 1-57
directories, basename(C)

removes names from
paths 1-26

directory 1-45, 1-48, 1-59,
1-187, 1-201, 1-236

change access
permission 1-48

cp(C) copies files to 1-59
mkdir(C) makes a

directory 1-18 7
move or rename file or
directory 1-201

pwd(C) prints directory
name 1-236

directory content
columns 1-161

directory for command 1-53
directory format 1 3-12
directory information 1-1 71
directory part of

pathname 1-92
directory, remove 1-24 7,

1-249
directory, spool 1-324
dirname 1-26
dirname - delivers

directory 1-92
DIRNAME(C) 1-92

directory part of
pathname 1-92

DISABLE(C) 1-94
turn off terminals 1-94

discard data 2-60

lndex-5

disk blocks 1-84
disk devices, fixed 2-35
disk partitions 2-28
disk type 1-100
disk usage 1-102
diskette devices 2-25
diskette format 2-31
dismount file 1-319
display and set configuration
data base 2-15

display editor, invoke 1-338
display files 1-43

cat(C) concatenate and
display files 1-43

display octal files 1-215
displays files in

hexadecimal 1-151
dispose of mail 1-174
DOS(C) 1-96

access DOS files 1-96
DOSCAT(c) 1-96

copy DOS files to standard
output 1-96

DOSCP(C) 1-96
copy DOS files to XENIX

system 1-96
DOSDIR(C) 1-96

list DOS files in DOS
style 1-96

DOSLS(C) 1-96
list DOS files in XENIX
style 1-96

DOSMKDIR(C) 1-96
create directory on DOS

disk 1-96
DOSRM(C) 1-96

remove files from DOS
disk 1-96

DOSRMDIR(C) 1-96
delete directory from DOS

disk 1-96
drive devices 2-25
DTYPE(C) 1-100

Index-6

disk type 1-100
DU(C) 1-102

disk usage 1-102
dump tape format 3-5
DUMPDIR(C) 1-103

backup archive print 1-103

E

echo argument 1-104
ECHO(C) 1-104

echo argument 1-104
ED(C) 1-106

invokes text editor 1-106
edit , text 1-124
editor 1-124
editor format, assembler and

link 3-2
editor, display 1-338
editor, link 2-40
editor, stream 1-258
EGREP(C) 1-146

file pattern search 1-146
ENABLE(C) 1-121

terminal, turns on 1-121
ENV(C) 1-123

command
environment 1-123

ENVIRON (M) 2-23
user environment 2-23

environment 1-123
establish I etc/ mnttab

table 1-263
evaluate expression 1-128
EX(C) 1-124

invoke text editor 1-124
execute commands 1-397
execute commands on remote

system 1-24 2
execute programs 2-11

executes command at later
time 1-12

exit value 1-132, 1-313
expand files 1-217
EXPR(C) 1-128

arguments 1-128
evaluate expression 1-128

F

factor a number 1-131
FACTOR(C) 1-131

factor a number 1-131
FALIASES 2-2

Micnet alias files 2-2
FALSE(C) 1-132

return exit value 1-132
FD(M) 2-25

diskette devices 2-25
FDISK(M) 2-28

create disk partitions 2-28
FGREP(C) 1-146

file pattern search 1-146
file 1-15, 1-48, 1-80, 1-156,

1-201, 1-235, 1-237, 1-297,
1-302

awk(C) processes pattern in
file 1-15

awk(C) searches for pattern
in file 1-15

change access
permission 1-48

counts blocks in file 1-297
dd(C) convert and copy

file 1-80
install(C) install

commands 1-15 6
move or rename file or

directory 1-201

pwcheck (C) check
password file 1-235

quot(C) summarize file
ownership 1-23 7

restores archive files 1-302
sum(C) calculates

checksum 1-2 97
tar(C) saves archive

files 1-302
file check 1-139
file copy

See uuto(C)
file format, secs 3-21
file hexadecimal display 1-15 1
file pattern search 1-146
file repair 1-13 9
file structure, dismounts 1-319
file system 1-188, 1-199,

1-299
mkfs(C) constructs a file

system 1-188
mount(C) mounts a file

structure 1-199
restores files 1-299
sysadmin(C) perform

backup 1-299
file system checks 1-139
file system restorer 1-244
file systems processed by

fsck 3-8
file type 1-133
FILE(C) 1-133

file type 1-133
language 1-133

file-creation mode mask 1-318
file, copy last part 1-300
file, core image 3-9
file, group format of 2-34
file, login terminals 2-108
file, memory image 2-49
file, Micnet default

commands 2-58
file, null 2-60

lndex-7

file, remove 1-24 7
file, report repeated

lines 1-321
file, split into pieces 1-287
file, view by screen 1-194
files 1-55, 1-134, 1-265,

1-392
change access date 1-265
change modification

date 1-265
cmp(C) compare two

files 1-55
find(C) finds files 1-134
what(C) identifies

files 1-392
files display in octal

format 1-215
files, builds special 1-191
files, compare side by

side 1-256
files, copy across XENIX

system 1-240
files, Micnet topology 2-92
files, per-process

accounting 3-3
files, sends to lineprinter 1-169
files, sort and merge 1-284
FILESYSTEM(F) 3-13

system volume format 3-13
FIND 1-134, 1-137

find files 1-134
finger(C) finds user

information 1-137
find files 1-134
find lines in list 1-168
FINGER(C) 1-137

finds user
information 1-13 7

fixed disk devices 2-35
format 1-215

od(C) display files in octal
format 1-215

format diskettes 2-31

lndex-8

format of a directory 3-12
format of a system

volume 3-13
format of an inode 3-16
format of an sccs file 3-21
format of cpio archive 3-10
format of mounted file system

table 3-20
format of the group file 2-34
FORMA T(M) 2-31

format diskettes 2-31
free disk blocks 1-84
FSCK(C) 1-139

checks and repairs
file 1-139

file sys tern checks 1-13 9
full, view a file by 1-194
function keys, assign 2-68

G

general terminal interface 2-94
generate names 1-202
generate random

number 1-239
generator, Micnet hash

table 2-5
get terminal name 1-317
GETOPT(C) 1-144

command option
breakup 1-144

parses command
options 1-144

gets 1-167
logname(C) gets login

name 1-167
gets terminal name 2-94
GETTY(M) 2-32

set terminal mode 2-32

gives directory
information 1-171

GREP(C) 1-146
file pattern search 1-146

group 1-155
id(C) prints user and group

IDs 1-155
prints user and group

names 1-155
group file check 1-149
group ID 1-4 7
GROUP(M) 2-34

format of the group
file 2-34

group, log new user into 1-206
GRPCHECK(C) 1-149

group file check 1-149

H

halt 1-150
haltsys(C) closes file
system 1-150

haltsys(C) halts
CPU 1-150

HALTSYS(C) 1-150
closes file system 1-150
cpu halt 1-150

hangups 1-214
nohup(C) ignores hangup
and quits 1-214

hash table
generator ,Micnet 2-5

HD(C) 1-151
file hexadecimal

display 1-151
HD(M) 2-35

fixed disk devices 2-35
HEAD(C) 1-154

print stream lines 1-154

hexadecimal format 1-151
hd(C) displays files 1-151

I

ID file, Micnet system 2-69
ID(C) 1-155

user and group IDs 1-15 5
user and group

names 1-155
id, add login 1-192
ID, change group ID 1-4 7
identify device name 1-83
identify file 1-392
ignore hangups 1-214
image file, memory 2-49
image format 3-9
incremental 1-244

restore(C) invoke file
system restorer 1-244

incremental dump tape
format 3-5

incremental file system
backup 1-22

information 1-229
pstat(C) report system

information 1-229
information table, master

device 3-17
information, default

program 2-21
information, directory 1-171
information, Micnet topology

files 2-92
information, user and

accounting 2-109
information, user

environment 2-23
INIT(M) 2-38

control information 2-38

lndex-9

initialization, process
control 2-38

inode format 3-16
INODE(F) 3-16

in-0de format 3-16
inode, generates names
from 1-202

inodes 1-84
df(C) prints number

of 1-84
df(C) reports number
of 1-84

install commands 1-15 6
install XENIX systems 2-11 o
INSTALL(C) 1-156

install commands 1-15 6
interface to serial port 2-65
interface, line printer 2-48
interpreter, invoke a restricted
shell 1-252

interpreter, shell
command 1-266

interval, suspend execution
for 1-283

INTRODUCTION(C) 1-1
argletter 1-1
cmdarg 1-1
name 1-1
noargletter 1-1
optarg 1-1
option 1-1

invoke command
interpreter 1-252

invoke display editor 1-338
invoke file system
restorer 1-244

invoke shell command
interpreter 1-266

invoke stream editor 1-25 8
invoke text editor 1-124
invoke the link editor 2-40
invoke visual shell 1-388
items, print news 1-207

Index-10

J

job control, uucp
See uustat(C)

join related fields 1-15 8
JOIN(C) 1-158

join related fields 1-15 8

K

key, assign function 2-68
KILL(C) 1-160

process termination 1-160
KMEM(M) 2-49

L

language 1-13 3
file(C), guess 1-133

large files 1-34
LC(C) 1-161

directory content
columns 1-161

LD(M) 2-40
invoke the link editor 2-40

libraries, archive 3-4
line numbers, add to file 1-211
line printer device
interface 2-48

LINE(C) 1-165
read one line 1-165

lineprinter, send files to 1-169
lines 1-168

look(C) find lines in
list 1-168

lines, count 1-391
lines, report repeated 1-321
link editor format 3-2
link editor, invoke 2-40
link to a file 1-166
list 1-161

le(C) lists directory content
columns 1-161

list DOS files in DOS
style 1-96

list DOS files in XENIX
style 1-96

list name of files 1-103
list of fsck check files 3-8
list of supported

terminals 2-90
list users 1-393
LN(C) 1-166

link to a file 1-166
load programs 2-11
log user in new group 1-206
login 1-121, 1-220

passwd(C) changes login
password 1-220

login environment setup 2-63
login name 1-167
login password 2-61
login terminals file 2-108
LOGIN(M) 2-45

system access 2-45
login, add id to system 1-192
LOGNAME(C) 1-167

login name 1-167
LOOK(C) 1-168

find lines in list 1-168
LP(M) 2-48

line printer device
interface 2-48

LPR(C) 1-169

send files to
lineprinter 1-169

LS(C) 1-171
directory

information 1-171

M

MAIL(C) 1-174
send, read, or dispose of

mail 1-174
mailer, Micnet 2-19
make a directory 1-18 7
MALIASES 2-2

Micnet alias files 2-2
map, ascii character set 2-7
map, bad track 2-9
mask, file-creation

mode 1-318
master device information

table 3-17
MASTER(F) 3-17

master device information
table 3-17

MEM(M) 2-49
memory image file 2-49

memory image file 2-49
merge and sort files 1-284
MESG(C) 1-186

message permission 1-186
message permission 1-186
message, write to all

users 1-390
MESSAGES(M)

**Normal System
Shutdown ** 2-53

**ABNORMAL System
Shutdown** 2-51

bad block on dev 2-51
bad count on dev 2-51

lndex-11

-
bad free count on dev 2-51
bad signature (xx) on
drive 2-51

can't read bad block list on
drive 2-51

err on dev 2-52
iaddress > 2 "2-5 2
inode table overflow 2-52
interrupt from unknown

device, vec= 2-52
no space on dev 2-53
nofile 2-52
out of inodes on dev 2-53
out of text 2-53
panic: bad 287 int 2-54
panic: blkdev 2-54
panic: devtab 2-54
panic: general protection

trap 2-55
panic: iinit 2-54
panic: invalid TSS 2-56
panic: IO err in swap 2-54
panic: memory failure -
parity error 2-54

panic: memory management
failure 2-54

panic: no fs 2-54
panic: no imt 2-54
panic: no procs 2-55
panic: segment not

present 2-55
panic: timeout table
overflow 2-55

panic: trap in system 2-56
panic: unknown
interrupt 2-56

panic out of swap 2-55
proc on q 2-56
saint: received interrupt at

wrong level 2-56
spurious hb interrupt 2-56
spurious kb interrupt 2-56

Index-12

system control
messages 2-50

timed out on a diskette
drive 2-57

trap 2-57
Warning: invalid partition

table 2-57
Micnet alias files 2-2
Micnet default commands

file 2-58
Micnet hash table
generator 2-5

Micnet mailer 2-19
Micnet system ID file 2-69
Micnet topology files 2-92
MICNET(M) 2-58

Micnet default commands
file 2-58

MKDIR(C) 1-187
make a directory 1-18 7

MKFS(C) 1-188
construct a file
system 1-188

MKNOD(C) 1-191
build special files 1-1 91

MKUSER(C) 1-192
add a login id 1-192

MNTTAB(F) 3-20
mounted file format 3-20

mode mask, set
file-creation 1-318

modem 1-68
cu(C) calls another
system 1-68

modification date,
change 1-265

modification times, update and
access 1-310

monitor uucp network
See uusub(C)

MORE(C) 1-194
view a file by screen 1-1 94

mount a file structure 1-199

MOUNT(C) 1-199
mount a file

structure 1-199
mounted file format 3-20
mounted file system 1-83
move file or directory 1-201
MV(C) 1-201

N

move file or
directory 1-201

name 1-155, 1-167, 1-236
id(C) prints user and group

names 1-155
logname(C) gets login

name 1-167
pwd(C) prints directory

name 1-236
name, get 1-31 7
name, print current
XENIX 1-320

name, terminal 2-94
names, conventional 2-71
names, generates from inode

number 1-202
NCHECK(C) 1-202

generate names 1-202
NETUTIL(C) 1-204

administration of XENIX
network 1-204

network, administration of
XENIX 1-204

network, Micnet 2-92
NEWGRP(C) 1-206

log user in new
group 1-206

newroot 1-53
NEWS(C) 1-207

print news items 1-207

news, print items 1-207
NICE(C) 1-209

command priority 1-209
NL(C) 1-211

add line numbers 1-211
NOHUP(C) 1-214

ignore hangups 1-214
nonzero exit value 1-132
null file 2-60
NULL(M) 2-60

null file 2-60
number, generates

names 1-202
number, random 1-239
numbers 1-211

0

nl(C) adds line
numbers 1-211

octal format 1-215
OD(C) 1-215

display octal files 1-215
options, set terminal 1-288
output 1-222

pr(C) print files on
standard output 1-222

owner id 1-52
ownership 1-237

p

quot(C) summarize file
ownership 1-237

PACK(C) 1-217
compress files 1-217

Index-13

--
parses command options 1-144
partitions disk 2-28
PASSWD(C) 1-220

change login
password 1-220

P ASSWD(M) 2-61
password file 2-61

password aging
administration 1-233

password file 2-61
password file check 1-235
path names 1-26
pattern, awk(C) searches
for 1-15

PCAT(C) 1-217
expand files 1-21 7

per-process accounting file 3-3
permit or denies messages
sent 1-186

pieces, split file into 1-287
pipe, create tea 1-307
port serial 2-65
PR(C) 1-222

print files on standard
output 1-222

precision calculator 1-7 6
primitive system data
types 3-27

print 1-155
id(C) prints user and group
IDs 1-155

prints user and group
names 1-155

print accounting files 1-3
print and set date 1-73
print attributes 1-225
print backup date 1-254
print calendar 1-40
print files 1-222
print large letters 1-25
print news items 1-207
print stream lines 1-154
print string repeatedly 1-401

lndex-14

print system name 1-320
printer device interface 2-48
prints directory name 1-236
priority, run command 1-209
process 1-160, 1-225

kill(C) terminates a
process 1-160

prints attributes 1-225
ps(C) reports process
status 1-225

process accounting files 1-3
process accounting off 1-6
process accounting on 1-6
process control
initialization 2-38

process termination 1-160
processes pattern in file 1-15
processes, background 1-389
processing, terminate 1-281
PROFILE(M) 2-63

login environment
setup 2-63

program information,
default 2-21

program, boot 2-11
prompt, time of day 1-7
PS(C) 1-225

print attributes 1-225
reports process

status 1-225
PSTAT(C) 1-229

report system
information 1-229

PWADMIN(C) 1-233
password aging
administration 1-233

PWCHECK(C) 1-235
check password file 1-235

PWD(C) 1-236
prints directory

name 1-236

Q

quantities, convert standard to
other 1-322

quit 1-214
nohup(C) ignores hangup

and quits 1-214
QUOT(C) 1-237

summarize file
ownership 1-237

R

RANDOM(C) 1-239
generate random

number 1-239
RCP(C) 1-240

copy files across
systems 1-240

read archives 1-244
read mail 1-174
read one line 1-165
real-time clock 2-14
relations 1-158

join(C) joins two
relations 1-15 8

reminder service 1-41
remote system processing

See uux(C)
REMOTE(C) 1-242

execute commands on
remote system 1-24 2

remove a user 1-250
remove directory 1-249
remove file or directory 1-24 7
remove files from DOS
disk 1-96

removes directory names 1-26
rename 1-201

move or rename file or
directory 1-201

repeated lines in file 1-321
repeatedly, print string 1-401
report repeated lines 1-321
report system

information 1-229
reports number of free

blocks 1-84
reports process status 1-225

ps(C) print
attributes 1-225

restore archive file 1-302
restore files 1-299
RESTORE(C) 1-244

read archives 1-244
restricted shell, invoke
command interpreter 1-252

return exit value 1-132, 1-313
returned data 3-25
RM(C) 1-247

remove file or
directory 1-24 7

RMDIR(C) 1-249
remove directory 1-249

RMUSER(C) 1-250
remove a user 1-250

RSH(C) 1-252
invoke command

interpreter 1-252
run a command immune to

hangups 1-214
runs, command at different

priority 1-209

s
save archive file 1-302
scans files 1-34

lndex-15

sccs file format 3-21
SCCSFILE(F) 3-21

sccs file format 3-21
screen editor, vi(C) 1-338
screen, view file by 1-194
SDDATE(C) 1-254

print backup date 1-254
SDIFF(C) 1-256

compare files 1-256
search 1-146

egrep(C) file pattern
search 1-146

fgrep(C) file pattern
search 1-146

grep(C) file pattern
search 1-146

search for accounting files 1-3
search for patterns in file 1-15

processes pattern in
file 1-15

SED(C) 1-258
stream editor 1-258

send files to lineprinter 1-169
send mail 1-174
SERIAL(M) 2-65

ttyOO 2-65
ttyOl 2-65

interface to serial
port 2-65

set backup dates, and
print 1-254

set file-creation mode
mask. 1-318

set terminal mode 2-32
set terminal modes 1-314
set terminal options 1-288
set up login environment 2-63
SETCLOCK(M) 2-67

sets the real time
clock 2-67

SETKEY(M) 2-68
assign function keys 2-68

SETMNT(C) 1-263

Index-16

create I etc/ mnttab
table 1-263

sets the real time clock 2-67
SETTIME(C) 1-265

access and modification
dates 1-265

SH(C) 1-266
shell command

interpreter 1-266
shell command

interpreter 1-266
shell, default 1-54
shell,visual 1-388
SHUTDOWN(C) 1-281

terminate all
processing 1-281

side by side comparison of
files 1-256

SLEEP(C) 1-283
suspend execution 1-283

sort and merge files 1-284
SORT(C) 1-284

sort and merge files 1-284
special,builds files 1-191
split file into pieces 1-287
split files 1-65
SPLIT(C) 1-287

split file into pieces 1-287
spool directory, clean up 1-324
standard output 1-222

pr(C) print files 1-222
ST A T(F) 3-25

Data returned by stat
system call 3-25

status inquiry, uucp
See uustat(C)

steram, head 1-154
head(C) prints first few
lines 1-154

stream editor 1-258
string, print repeatedly 1-401
structure, mount a file
structure 1-199

STTY(C) 1-288
set terminal options 1-288

SU(C) 1-295
change to super-user 1-295

SUM(C) 1-297
calculate checksum 1-297
count file blocks 1-297

summarize disk usage. 1-102
summarize file

ownership 1-237
super-block, update 1-298
super-user, change user

to 1-295
supported terminals 2-90
suspend execution 1-283
SYNC(C) 1-298

update super-block 1-298
SYSADMIN(C) 1-299

back up system 1-299
restore files 1-2 99

system 1-229, 1-320
print current XENIX

name 1-320
pstat(C) report system

information 1-229
system access 2-45
system control messages 2-50
system data types 3-27
system table, mounted

file 3-20
system terminal 2-16
system volume format 3-13
system, add login id to 1-192
system, execute remote

commands 1-242
system, remove user

from 1-250
SYSTEMID(M) 2-69

Micnet system ID file 2-69
systems processed by fsck 3-8

T

table generator,micnet
hash 2-5

table, disk partition 2-28
table, master device 3-17
table, mounted file 3-20
TAIL(C) 1-300

copy part of file 1-300
tape format, dump 3-5
TAR(C) 1-302

restore archive file 1-302
save archive file 1-302

TEE(C) 1-307
create a tee in a pipe 1-307

tee, create in pipe 1-307
TERM(M) 2-71

Conventional names 2-71
TERMCAP(M) 2-73

terminal capability data
base 2-73

terminal 1-186
mesg(C) permits of denies

messages sent 1-186
terminal capability data

base 2-73
terminal interface 2-94
terminal mode, set 2-32
terminal, gets name 1-317
terminal, set options 1-288
terminal, turns on 1-121
terminals file login 2-108
TERMINALS(M) 2-90

supported terminals 2-90
terminate 1-160

kill(C) terminates a
process 1-160

terminate all processing 1-281
test conditions 1-308
TEST(C) 1-308

test conditions 1-308
text editing operations 1-338

Index-17

text editor 1-106, 1-124
text file compare 1-86
time 2-67

setclock(M) sets the real
time clock 2-6 7

time of day 1-7
time, real-time clock 2-14
times, access and
modification 1-310

TOP.NEXT 2-92
Micnet topology files 2-92

TOP(M) 2-92
Micnet topology files 2-92

topology ,Micnet network 2-92
TOUCH(C) 1-310

update access and
modification times 1-310

TR(C) 1-311
translate characters 1-311

track map 2-9
translate characters 1-311
true(C) 1-132, 1-313

return exit value 1-313
TSET(C) 1-314

set terminal modes 1-314
TTY(C) 1-317

get terminal name 1-317
TTY(M) 2-94

terminal interface 2-94
TTYS(M) 2-108

login terminals file 2-108
ttyOO 2-65
ttyOl 2-65
turn off terminals 1-94
turns on accounting 1-6
TYPES(F) 3-27

primitive system data
types 3-27

Index-18

u

UMASK(C) 1-318
file -creation mode

mask 1-318
UMOUNT(C) 1-319

dismount file 1-319
UNAME(C) 1-320

print system name 1-320
UNIQ(C) 1-321

report repeated lines 1-321
UNITS(C) 1-322

convert units 1-322
units, convert 1-322
UNPACK(C) 1-217

expand files 1-217
update access and modification

times 1-310
update super-block 1-298
user and accounting
information 2-109

user and group IDs 1-155
user default shell, change 1-54
user environment 2-23
user information 1-13 7

finger(C) finds
information 1-13 7

user, change to
super-user 1-295

user, log into new group 1-206
user, remove from
system 1-250

user, write to another 1-395
users, list 1-393
users, wall(C) writes to all

users 1-390
UTMP(M) 2-109

user and accounting
information 2-109

uuclean(C) 1-324
uucp(C) 1-326
uulog(C)

See uucp(C)
uupick(C)

See uuto(C)
uustat(C) 1-329
uusub(C) 1-332
uuto(C) 1-334
uux(C) 1-336

v
VI(C)

Argument List
Commands 1-366

Bksp 1-341
Command
Addressing 1-364

Command Format 1-366
Command Structure 1-363
Ctrl-@ 1-341
Ctrl-T 1-341
Ctrl-U 1-341
Ctrl-V 1-341
Ctrl-W 1-341
Cursor Movement 1-343
Edit Commands 1-368
Enter 1-340
Esc 1-340
ex Commands 1-363
Exit and Escape

Commands 1-362
Global and Substitute

Commands 1-372
Interrupt (Del) 1-340
invoke display editor 1-338
Invoking and Exiting
Vi 1-342

Limitations 1-387
Options 1-378
Other Commands 1-375
Quit Commands 1-371

Read Commands 1-370
Regular Expressions 1-384
Searching 1-359
Shell Escape

Commands 1-374
special keys 1-340
Text Deletion 1-353
Text Insertion 1-3 51
Text Modification 1-354
Text Movement 1-357
Text Movement

Commands 1-3 7 4
The Screen

Commands 1-350
Write Commands 1-369

view a file by screen 1-194
visual shell 1-388
visual, vi(C) 1-338
VSH(C) 1-388

invoke visual shell 1-388

w

wait for background
processes 1-389

WAIT(C) 1-389
wait for background

processes 1-389
WALL(C) 1-390

write to all users 1-3 90
WC(C) 1-391

count lines, words, and
characters 1-3 91

what 1-394
who is doing what 1-394

WHAT(C) 1-392
identify file 1-392

who is doing what 1-394
WHO(C) 1-393

listusers 1-393

Index-19

-
WHODO(C) 1-394

who is doing what 1-394
words, count 1-391
work directory (change) 1-45
WRITE 1-395

write to user 1-395
write to all users 1-390
write to user 1-395
WTMP(M) 2-109

x

user and accounting
information 2-109

XARGS(C) 1-397
construct and execute

commands 1-397

lndex-20

XENIX system install 2-110
XENIX, administration of

network 1-204
XENIX, copy file across

system 1-240
XENIX, print current 1-320
XINST ALL(M) 2-110

install XENIX
systems 2-110

y

YES(C) 1-401
print string

repeatedly 1-401

--------- - - --- - -= :-:. === -------- ·-

Reader's Comment Form

XENIX™
Command Reference

The Personal Computer
Programming Family

6138656

Your comments assist us in improving the usefulness of

our publication; they are an important part of the input

used for revisions.

IBM may use and distribute any of the information you

supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course,

continue to use the information you supply.

Please do not use this form for technical questions

regarding the IBM Personal Computer or programs for

the IBM Personal Computer, or for requests for
additional publications; this only delays the response .

Instead, direct your inquiries or request to your

authorized IBM Personal Computer dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

a;a4 PIO.:l

a1de1s 1ou op asea1d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.L

--------- - - --- - -= =-=. === --------·-

Reader's Comment Form

XENIX™
Command Reference

The Personal Computer
Programming Family

6138656

Your comments assist us in improving the usefulness of

our publication; they are an important part of the input

used for revisions.

IBM may use and distribute any of the information you

supply in any way it believes appropriate without

incurring any obligation whatever. You may , of course ,

continue to use the information you supply.

Please do not use this form for technical questions

regarding the IBM Personal Computer or programs for

the IBM Personal Computer, or for requests for

additional publications: this only delays the response.

Instead, direct your inquiries or request to your

authorized IBM Personal Computer dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO::J

a1de1s 1ou op asea1d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.i

--------- - - --- - -= =-=. === -------- ·-

Reader's Comment Form

XENIX™
Command Reference

The Personal Computer
Programming Family

6138656

Your comments assist us in improving the usefulness of

our publication~ they are an important part of the input

used for revisions.

IBM may use and distribute any of the information you

supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course,

continue to use the information you supply.

Please do not use this form for technical questions

regarding the IBM Personal Computer or programs for

the IBM Personal Computer, or for requests for
additional publications; this only delays the response.

Instead, direct your inquiries or request to your

authorized IBM Personal Computer dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa~ PIO.:::J

a1de1s iou op asea1d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade1

--------- - - --- - -- - ---- - - ------ -----·-

Reader's Comment Form

XENIX TM

Command Reference

The Personal Computer
Programming Family

6138656

Your comments assist us in improving the usefulness of

our publication; they are an important part of the input

used for revisions.

IBM may use and distribute any of the information you

supply in any way it believes appropriate without

incurring any obligation whatever. You may , of course,

continue to use the information you supply.

Please do not use this form for technical questions

regarding the IBM Personal Computer or programs for

the IBM Personal Computer, or for requests for

additional publications; this only delays the response.

Instead, direct your inquiries or request to your

authorized IBM Personal Computer dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

<:WH.l PIO:!

a1de1s 1ou op asea1d

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

ade.i

© IBM Corp . 1984
All rights reserved .

International Business
Machines Corporati on
PO Box 1328-S
Boca Raton. Florid a 33432

Printed in the
United States of Ameri ca

6138656

---- ------- - --- ---. ---- - ------- ---~-·-®

