Command Reference

IBM Personal Computer
XENIX" Operating System

Programming Family

Computer
Software 6138656

Command Reference

IBM Personal Computer
XENIX" Operating System

Programming Family

Computer
Software

First Edition (December 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM

products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM

intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader’s
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,

Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1984
© Copyright Microsoft Corporation 1983, 1984

IBM Personal Computer XENIX
Library Overview

The XENIX! System has three available products. They are the:
« Operating System

« Software Development System

« Text Formatting System

The following pages outline the XENIX Operating System
library.

1 XENIX is a trademark of Microsoft Corporation.

iii

XENIX Operating System Library

For the New User

XENIX
Basic
Operations

Guide J
J

Basic concepts

Logging in and out
Preparing your terminal
Editing with text editors

Introduction to the Bourne
Shell

Sending and receiving network
mail and messages

An introduction to the XENIX system, outlining the
fundamental concepts and procedures you need to operate

the system.
For the New User
— — Special keys and definitions
Command menus
Creating and managing files
and directories
XENIX
gﬁi‘ff‘l Customized commands and
menus
Y . .
J Help information

A description of the Visual Shell, the interface between you
and the Operating System. Offers hands-on examples.

iv

For the System Installer

XENIX
Installation
Guide

JJ

Fixed disk preparation

Operating, Software
Development, and Text
Formatting System
installation

Creating a Super-User
password

Co-residence with other
operating systems

A guide to the installation and management of the XENIX

system on your computer.

For the System Administrator

XENIX
System
Administration

JJ

Starting and stopping the
system

Using, maintaining and
backing up files

Solving system problems
Using peripheral devices

Adding users to the system

A guide to managing and maintaining the system.

For All Userév

— - ﬂ
M S
XENIX
Command
Reference

|/
J

Alphabetic command listing
Command definition
Command syntax
Command usage

System commands, functions,
and files

A comprehensive command reference, including a concise
and complete description of (C) commands, (M) (F) system
commands, functions and files.

vi

About This Book

This manual is a reference for programmers who use or intend to
use the XENIX Operating System. This manual provides a listing
of all the available commands in the (C), (M), and (F) sections of
the XENIX Operating System. The (C) stands for Command,
(M) stands for Miscellaneous, and (F) stands for File Format
section.

In this book are the names, syntax, descriptions, and examples.
Comments are also included when necessary. The (M) section
contains miscellaneous information, including a great deal of

system maintenance information. The (F) section outlines the
formats of various files.

Related XENIX Publications
. IBM Personal Computer XENIX Installation Guide

« IBM Personal Computer XENIX Visual Shell
« IBM Personal Computer XENIX System Administration

« IBM Personal Computer XENIX Basic Operations Guide

vii

Contents

Section 1. XENIX Operating System Commands 1-1
Introduction to (C) Commands 1-1
ACCTCOM(C) ..o i i 1-3
ACCTON(C) .. i e i 1-6
ASKTIME(C) 1-7
ASSIGN(C) .o e 1-9
AT(C) e 1-12
AWK(C) ... 1-15
BACKUP(C) ..o 1-22
BANNER(C) ... 1-25
BASENAME(C) i, 1-26
BC(C) .. i e 1-27
BDIFF(C) ... e 1-32
BES(C) ..o 1-34
CAL(C) .. 1-40
CALENDAR(C) ...t 1-41
CAT(C) . e e e 1-43
CD(C) i 1-45
CHGRP(C) ... e 1-47
CHMOD(C) ... e 1-48
(0] 5 (01574 [() T 1-52
CHROOT(C) ...ttt et 1-53
CHSH(C) ... 1-54
CMP(C) .. e 1-55
COMMUI(C) ... e 1-56
COPY(C) ..o e 1-57
CP(C) .. e 1-59
CPIO(C) .ottt e e 1-60
CRON(C) .. i e e 1-63
CSPLIT(C) ...t 1-65
CUC) ottt e 1-68
DATE(C) . e e e e e e 1-73
DC(C) o 1-76
DD(C) ..o 1-80
DEVNM(C) ... it i e 1-83
DE(C) .t 1-84
DIFF(C) .ottt e e e e e e e e 1-86

DIFF3(C) ... 1-89

DIRCMP(C) oo 1-91
DIRNAME(C) .+ oot 1-92
DISABLE(C) ..ottt 1-94
DOS(C) .+ oo 1-96
DTYPE(C) .ot 1-100
DU(C) .+ oo 1-102
DUMPDIR(C) .+ .o veeee e, 1-103
ECHO(C) ..o oee e 1-104
ED(C) o ooee e 1-106
ENABLE(C) @i 1-121
ENV(C) .ot 1-123
EX(C) oot 1-124
EXPR(C) '+ oot 1-128
FACTOR(C) oo, 1-131
FALSE(C) oottt 1-132
FILE(C) oo, 1-133
FIND(C) « oo, 1-134
FINGER(C) ..o 1-137
FSCK(C) + et 1-139
GETOPT(C) o oo, 1-144
GREP(C) .+t oot 1-146
GRPCHECK(C) '+ 'veeeeieean . 1-149
HALTSYS(C) ... e 1-150
1210100 U 1-151
HEAD(C) © o oeooeee e 1-154
ID(C) oot 1-155
INSTALL(C) v ovoeoeeee e 1-156
JOIN(C) oot 1-158
KILL(C) oot 1-160
17/(D 1-161
LINE(C) © oo 1-165
LN(C) oo 1-166
LOGNAME(C) .o 1-167
LOOK(C) oo 1-168
LPR(C) oot 1-169
LS(C) oot 1-171
MAIL(C) oo oee e 1-174
MESG(C) - .ot 1-186
MEDIR(C) e veeee e 1-187
MEKES(C) .« oo 1-188
MENOD(C) .« vovoeeee e 1-191

MKUSER(C) i 1-192

MORE(C) i 1-194

MOUNT(C) ... 1-199
MV(C) 1-201
NCHECK(C) 1-202
NETUTIL(C) ..., 1-204
NEWGRP(C) 1-206
NEWS(C) ... e 1-207
NICE(C) ... 1-209
NL(C) .o 1-211
NOHUP(C) i 1-214
OD(C) v 1-215
PACK(C) .. o 1-217
PASSWD(C) i 1-220
PR(C) .. 1-222
PS(C) . 1-225
PSTAT(C)o 1-229
PWADMIN(C) 1-233
PWCHECK(C) a.. 1-235
PWD(C) ... 1-236
QUOT(C) . vvi i 1-237
RANDOM(C) 1-239
RCP(C) . 1-240
REMOTE(C) 1-242
RESTORE(C) 1-244
RM(C) ... 1-247
RMDIR(C) i 1-249
RMUSER(C)iiiiiiann.. 1-250
RSH(C) i 1-252
SDDATE(C) i 1-254
SDIFF(C) ... 1-256
SED(C) ..ot 1-258
SETMNT(C) ... 1-263
SETTIME(C) 1-265
SH(C) ... 1-266
SHUTDOWN(C), 1-281
SLEEP(C) i 1-283
SORT(C) ..o e 1-284
SPLIT(C) ... 1-287
STTY(C) ..o 1-288
SUC) ..o 1-295
SUM(C) .. 1-297
SYNC(C) .. 1-298
SYSADMIN(C) i, 1-299

TAIL(C) ... 1-300

TAR(C) ..o e 1-302
TEE(C) .. 1-307
TEST(C) .. e 1-308
TOUCH(C) ... 1-310
TR(C) .. 1-311
TRUE(C) ... e 1-313
TSET(C) ... i 1-314
TTY(C) .. e 1-317
UMASK(C) ... i 1-318
UMOUNT(C) ... e 1-319
UNAME(C) i 1-320
UNIQ(C) .. e 1-321
UNITS(C) .. e 1-322
UUCLEAN(C) ... e 1-324
UUCP(C) .. e 1-326
UUSTAT(C) ... i 1-329
UUSUB(C) ..o e 1-332
UUTO(C) ..ot i 1-334
UUX(C) o e e 1-336
VIC) e 1-338
VSH(C) ... 1-388
WAIT(C) oot e 1-389
WALL(C) ... e 1-390
WC(C) e 1-391
WHAT(C) ... 1-392
WHO(C) ... e 1-393
WHODO(C) e 1-394
WRITE(C) ... i 1-395
XARGS(C) .. e 1-397
YES(C) .o 1-401
Section 2. Maintenance Commands and Miscellaneous

Informationcoiiiitnreernnnneoeennsonanns 2-1
Introduction 2-1
ALIASES(M) 2-2
ALIASHASH(M) 2-5
ASCII(M) ... e 2-7
BADTRACKM) 2-9
BOOT(M) ... i 2-11
CLOCKM) ... i 2-14
CMOSM) . 2-15
CONSOLEM) 2-16

DAEMONMNM) 2-19

DEFAULT(M) ... i 2-21
ENVIRON(M) ... i eei i 2-23
FD(M) ot 2-25
FDISK(M) ..ot 2-28
FORMAT(M) ..o 2-31
GETTY(M) .. e 2-32
GROUP(M) .. e 2-34
HD(M) .o 2-35
INIT(M) e 2-38
LD(M) oo 2-40
LOGIN(M) ... 2-45
LP(M) e 2-48
MEMM) .. 2-49
MESSAGES(M) 2-50
MICNET(M) .. 2-58
NULLMM) .o 2-60
PASSWD(M) ...t 2-61
PROFILEM) 2-63
SERIAL(M) ...ttt 2-65
SETCLOCK(M) e 2-67
SETKEY(M) ...ttt 2-68
SYSTEMID(M) ... iaiiens 2-69
TERM(M) .. e 2-71
TERMCAP(M) ... e 2-73
TERMINALS(M) i 2-89
TOP(M) .ot e 2-91
TTY(M) oo e 2-93
TTYS(M) oo e 2-107
UTMP(M) . e 2-108
XINSTALL(M) ..o 2-109
Section 3. File Formatscccevtivencnacencocnns 3-1
Introduction to File Formats(F) 3-1
AOUT(F) . 3-2
ACCT(F) ot e 3-3
AR(F) oo 3-4
BACKUP(F) ... 3-5
CHECKLIST(F) ... 3-8
CORE(F) .t 3-9
CPIO(F) oot 3-10
DIR(F) .ottt 3-12
FILESYSTEM(F) 3-13

xiii

xiv

INODE(F) ...t 3-16

MASTER(F) ... 3-17
MNTTAB(F)cinnni. .. 3-20
SCCSFILE(F) ..., 3-21
STAT(F) ... e 3-25
TYPES(F) ... 3-27

Index-1

oo

Section 1. XENIX Operating System
Commands

Introduction to (C) Commands

intro - Introduces XENIX commands.

Description

This section describes use of the individual commands available in
the XENIX Operating System.

Syntax

Unless otherwise noted, commands described in this section
accept options and other arguments according to the following
syntax:

name [options] [cmdargs]

where:

name Is the name of an executable file and must be
entered exactly as shown.

option -noargletters or,
-argletter<>optarg
where <> is optional spaces.

noargletter [s a single letter representing an option without an
argument.

argletter Is a single letter representing an option requiring

an argument.

1-1

optarg Is an argument (character string) satisfying
preceding argletter

cmdarg Is a path name (or other command argument) rnot
beginning with a hyphen. A hyphen by itself
indicates the standard input.

See Also

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of normal termination), one supplied by the program.
The former byte is 0 for normal termination; the latter is
customarily 0 for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It
is called variously exit code, exit status, or return code and is
described only where special conventions are involved.

Comment

Not all commands require options and arguments.

1-2

ACCTCOM(O)

Name

acctcom - Searches for and prints process accounting files.

Syntax

acctcom [[optionsllfile]] .. .

Description

The acctcom command reads file, the standard input, or
/usr/adm/pacct, in the form described by acct(F) and writes
selected records to the standard output. Each record represents
the execution of one process. The output shows the COMMAND
NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the
fork /exec flag: 1 for fork without exec) and STAT (the system
exit status).

The command name is prefixed with a # if it was executed with
super-user privileges. If a process is not associated with a known
terminal, a ? is printed in the TTYNAME. field.

If no files are specified, and if the standard input is associated
with a terminal or /dev/null (as is the case when using & in the
shell), /usr/adm/pacct is read, otherwise the standard input is
read.

If any file arguments are given, they are read in their respective
order. Each file is normally read forward, that is, in chronological
order by process completion time. The file /usr/adm/pacct is
usually the current file to be examined; a busy system may need
several files, in which case all but the current file are found in
/usr/adm/pacct?.

ACCTCOM(C) 1-3

The options are:
-b Reads backward, showing latest commands first.

-f Prints the fork / exec flag and system exit status
columns in the output.

-h Instead of mean memory size, shows the fraction of
total available CPU time consumed by the process
during its execution. This “hogging factor” is
computed as: (total CPU time)/(elapsed time).

-i Prints columns containing the I/O counts in the
output.

-k Instead of memory size, shows total kcore-minutes.

-m Shows mean core size (the default).

-r Shows CPU factor (user time/(system-time +

user-time))

-t Shows separate system and user CPU times.

-v Excludes column headings from the output.

-1 line Shows only processes belonging to terminal /dev/ line
-u user Shows only processes belonging to user that may be

specified by a user ID, a login name that is then
converted to a user ID, a #, which designates only the
processes executed with super-user privileges, or ?,
which designates only those processes associated with
unknown user IDs.

-g group Shows only processes belonging to group. The group
may be designated by either the group ID or group
name.

-d mm/dd Any time arguments following this flag are assumed to
occur on the given month and day, rather than during
the last 24 hours. This is needed for looking at old
files.

1-4 ACCTCOM(C)

-s time Shows only the processes that existed on or after time,
given in the form hr:min:sec. The :sec or :min:sec may
be omitted.

-e time Shows only the processes that existed on or before
time . Using the same time for both -s and -e shows
the processes that existed at time.

-n pattern Shows only commands matching pattern that may be a
regular expression as in ed(C) except that + means
one or more Occurrences.

-H factor Shows only processes that exceed factor , where factor
is the “hogging factor” as explained in option -h
above.

-O time Shows only the processes with operating system CPU
time that exceeds time.

-Ctime Shows only the processes that exceed time (the total
CPU time).

Multiple options have the effect of a logical AND.

Files
/etc/passwd

/usr/adm/pacct
/etc/group

See Also

accton(C), ps(C), su(C), acct(F), utmp(M)
Comment

The acctcom command only reports on processes that have
terminated; use ps(C) for active processes.

ACCTCOM(C) 1-5

ACCTON(O)

Name

accton - Turns on accounting.

Syntax

accton [file]

Description

The accton command turns on and off process accounting. If no
file is given, accounting is turned off. If file is given, it must be
the name of an existing file, to which the kernel appends process
accounting records. (see acct(F)).

Files
/etc/passwd Used for login name to user ID conversions
/usr/lib/acct Holds many accounting commands

/usr/adm/pacct Current process accounting file
/usr/adm/wtmp Login/logout history file

See Also

acctcom(C), acct(F), utmp(M)

1-6 ACCTON(C)

ASKTIME(C)

Name

asktime - Prompts for the correct time of day.

Syntax

/etc/asktime

Description

This command prompts for the time of day. You must enter a
legal time according to the proper format as defined below:

Lymmdd] hhmm

Here yy is the last two digits of the year number; the first mm is
the month number; dd is the day number in the month. The date
is optional. The current year, month, and day is the default if you
do not enter any date. The Ah is the hour number (24-hour
system); the second mm is the minute number.

Examples

This example sets the new time, date, and year to “11:29 April
20, 1984°:

current System Time is Wed Nov 3 14:36:23 PST 1982
Enter time ([yymmdd] hhmm): 8404201129

ASKTIME(C) 1-7

Diagnostics

If you enter an illegal time, asktime displays:

and exits.

Comment

The asktime command is normally performed automatically by the
system startup file /etc/rc immediately after the system is
booted; however, it may be executed at any time. The command
is privileged, and can only be executed by the super-user.

1-8 ASKTIME(C)

ASSIGN(C)

Name

assign, deassign - Assigns and deassigns devices.

Description

The assign command attempts to assign device to the current user.
The device argument must be an assignable device that is not
currently assigned. An assign command without an argument
prints a list of assignable devices along with the name of the user
to whom they are assigned.

The deassign command is used to “deassign” devices. Without
any arguments, deassign will deassign all devices assigned to the
user. When arguments are given, an attempt is made to deassign
each device given as an argument.

Auvailable options:

-d Performs the action of deassign.

-v Gives verbose output.

-u Suppresses assignment or de-assignment, but performs error
checking.

ASSIGN(C) 1-9

The assign command does not assign any assignable devices if it
cannot assign all of them. The deassign command gives no
diagnostic if the device cannot be de-assigned. Devices may be
automatically de-assigned at logout, but this is not guaranteed.
Device names may be just the beginning of the device required.
For example:

assign fd

should be used to assign all diskette devices. Raw versions of
device will also be assigned, for example, the raw diskette devices
/dev/rfd ? would be assigned in the above example.

Files

/etc/atab Table of assignable devices
/dev/asglock File to prevent concurrent access
Diagnostics

Exit code O returned if successful, 1 if problems, 2 if device cannot
be assigned.

Comments

In many installations, the assignable devices such as diskette
drives have general read and write access, so the assign command
may not be necessary. This is particularly true on one-user
systems. Devices supposed to be assignable with this command
should be owned by the user asg. The directory /dev should be
owned by bin and have mode 755. The assign command (after
checking for use by someone else) assigns the device to whomever
invokes the command, without changing the access permissions.
This allows the system administrator to set up individual devices
that are freely available, assignable (owned by asg), or
nonassignable and restricted (not owned by asg and with some
restricted mode).

1-10 ASSIGN(C)

The first time assign is invoked it builds the assignable devices
table /etc/atab. This table is used in subsequent invocations to
save repeated searches of the /dev directory. If one of the devices
in /deyv, is changed to assignable (that is, asg owns the device),
the super-user must remove /etc/atab so that a correct list will be
built the next time the command is invoked.

ASSIGN(C) 1-11

AT(C)

Name

at, atq, atrm - Executes commands at a later time.

Syntax

at time [day} ,
[file] -

atq[-1]

atrm idnumber . . .

Description

The at command causes the contents of a file to be executed as a
shell script at a specified time. This command is useful for
running processes at regular intervals or when the system is not
busy.

The arguments are:

(X e L]

time One to four digits, followed by an optional “a” for am, “p
for pm, “n” for noon, or “m” for midnight. One- and
two-digit numbers are interpreted as hours, three- and
four-digit numbers as hours and minutes. If no letters
follow the digits, 24-hour time is assumed.

day Either a month name followed by a day number, or the
name of a day of the week. If the word “week’’ follows the
name of the day, the file is invoked seven days after the day
named. Names of months and days may be recognizably
truncated. (See the Examples later in this section.)

file The name of the file containing the commands to be

executed. If no file is specified, the standard input is
assumed.

1-12 AT(C)

The at command creates a file that is executed by the shell at the
specified time. This file contains a comment line that lists the
user’s user ID and group ID, a ¢d command that changes the
working directory of the process to the one you were using when
you executed at, assignments to the appropriate environment
variables, and the file specified in the at command line. Output
from processes in file must be redirected or (on most systems) it
is lost. The at command’s shell scripts are run by periodic
execution of the command /usr/lib/atrun from cron(C)

The atq command gives the following information about files
waiting to be processed:

o The user ID under which the file will run

« A unique ID number used to reference the file

« The date and time the file will be processed

The -1 option displays the commands in each file in the queue.
The atrm command removes files from the “at” queue. The atrm
command uses the ID numbers from the atq command to remove
the specific files. A user can only remove his own files.
Examples

Use the following line to place a file in the queue:

at 8a jan 24 file

In the following command line, file will be executed a week from
this Friday at 3:30 p.m.

at 1530 fr week file

AT(C) 1-13

To remove a file from the queue, find out the ID numbers with;
atq
Then remove the file with atrm:

atrm idnumber

Files

/usr/spool/at/yy.ddd.hhhh.uu
Activity to be performed at hour hhhh of day ddd
of year yy. Uu is a unique number.
/usr/spool/at/lasttimedone
Contains hhhh for last hour of activity.

/usr/spool/at/past
Contains old at files.

/usr/lib/atrun
Program that executes activities at the specified
time.

See Also

calendar(C), cron(C), pwd(C)

Diagnostics

Points out about various syntax errors and times out of range.

Comments

The directory /usr/spool/at/past should be periodically emptied
by the super-user.

Because of the granularity of the execution of /usr/lib/atrun ,

there may be problems in scheduling things exactly 24 hours into
the future.

1-14 AT(C)

AWK(O)
Name

awk - Searches for and processes a pattern in a file.

Syntax

awk [-Fc][-f programfile+ |’ program’llfile . . .]

Description

The awk command scans each input file for lines that match
patterns specified in program or in programfile. When a line of
file matches a pattern, an associated action may be performed.
This command is useful for compiling information, performing
arithmetic on input data, and for doing iterative or conditional
processing.

The options are:

-Fc Sets the field separator variable (FS) to the letter “c”. The
default field separators are tab and space.

-f Causes awk to take its program from programfile .
The arguments are:

programfile
A file containing an awk program.

program An awk program. Programs given on the command line
must be enclosed in single quotation marks to prevent
interpretation by the shell.

file . . .

The names of the files to be processed. If no filename is
given, the standard output is used.

AWK(C) 1-15

An awk program consists of statements in the form:
pattern {action}

Pattern-action statements may appear on the awk command line,
or in an awk program file.

If no pattern is given, all lines in the input file are matched. If no
action is given, each matched line is displayed on the standard
output.

A pattern may be a literal string or a regular expression, or a
combination of a regular expression and a field or variable
separated by operators.

The awk command also provides two patterns, BEGIN and END,
that can be used to perform actions before the first line is read,
and after the last line is read, respectively.

To select a range of lines, use two patterns on a single program
line, separated by a comma.

An action is a sequence of statements separated by a semicolon,
newline, or right brace. See ‘““‘Statements” later in this section.

Variables

In addition to variables declared and initialized by the user, awk
has the following program variables:

NR Number of records

NF Number of fields in a record
FS Input field separator

OFS Output field separator

RS Input record separator

1-16 AWK(C)

ORS Output record separator

$9 The current record

$1, $n Fields in the current record

OFMT The output format for numbers. The default is %.6g

FILENAME
The name of the input file currently being read.

Arrays may be used to store data. Arrays do not need to be
dimensioned before use. For example, w[i] denotes the ith item of
array w.

Expressions

A pattern match with a field or variable may be tested with the
following operators:

~ Matches the regular expression.
I~ Does not match the regular expression.

The awk command processes relational expressions using the
following operators:

< Less than

= Less than or equal to

= Equal to

1= Not equal to

>= Greater than or equal to

> Greater than

AWK(O) 1-17

Patterns can be combined using the operators:

&& And
[Or
! Not

An empty expression list stands for the whole line. Expressions
take on string or numeric values as appropriate, and are built
using the following operators:

+ Addition

- Subtraction

* Multiplication
/ Division

% Modulo

Concatenation is indicated by a blank. The following C operators
are also available in expressions:

++ Increment
-- Decrement
+= Add and assign

- Subtract and assign

*= Multiply and assign
/= Divide and assign
%= Modulo and assign

1-18 AWK(C)

Statements

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression)statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list][>expression]

printf format [, expression-list][>expression]

next # skip remaining patterns on input line.

if Used the same as in the C language.
while Used the same as in the C language.
for The iterative construction. It can be used the same as in

the C language, or as an array iterator.
break Similar to its C counterpart.
continue Similar to its C counterpart.

print Prints its arguments on the standard output or in a file
if redirected.

printf Prints expression-list in the format specified in format.

next Stops processing the current record and moves to the
next record, if any.

Comments are preceded by a number sign (#).

Functions

The awk command has the following built-in functions:

exit(x) Terminates the awk program. If x is given, this
value is awk’s return value. If x is not given, O is

returned. If the program has an END section, it is
invoked before termination.

AWK(C) 1-19

exp(x)

index(s, 1)

int(x)

length(x)

log(x)

split(x, y)

sqrt(x)

Exponentiation of the value of x.

Returns the starting position of the leftmost
occurrence of ¢ in s. If ¢ is not a substring of s, then
index(s,?) isP.

Returns the largest integer less than or equal to x.
If x is negative, its value is the smallest integer
greater than or equal to x.

A function whose value is the number of
characters in the string (x). With no arguments
length is equivalent to $0.

Natural logarithm of x.

Assigns the fields of string x to successive
elements of array y.

Square root of x.

substr(string, index, length)

Examples

Returns the substring of string that begins at index
and is length characters long.

The following displays lines in file longer than 72 characters:

awk ’length > 72’ file

The following prints the first two fields in opposite order:

awk '{ print $2, $1 }’ file

1-20 AWK(C)

The following adds up the first column and prints the sum and
average:

awk §s += $1}
END { print “sum is”, s, “average is”, s/NR }’

The following prints the fields in file in reverse order:
awk ’§ for (i = NF; i > 0; --i) print $i §’ file

The following awk program file prints all lines in file whose first
field is different from the first field in the previous line:

awk '$1 != prev { print; prev = $1 ' file

See Also

grep(C), sed(C),

Comments

Input whitespace is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings.
To force an expression to be treated as a number add O to it; to

force it to be treated as a string, concatenate the null string (¢)
to it.

AWK(C) 1-21

BACKUP(O)

Name

backup - Performs incremental file system backup.

Syntax

Description

The backup command copies to the specified device all files
changed after a certain date in the filesystem. The key specifies the
date and other options about the backup, where a key consists of
characters from the set 0123456789kfusd. The meanings of these
characters are described below:

0-9 This number is the “backup level”. Backs up all files
modified since the last date stored in the file /etc/ddate
for the same file system at lesser levels. If no date is
determined by the level, the beginning of time is assumed;
thus the option 0 causes the entire file system to be backed

up.

k This option is used when backing up to a block-structured
device, such as a diskette. The size (in K-bytes) of the
volume being written is taken from the next argument. If
the k argument is specified, any s and d arguments are
ignored. The default is to use s and d.

f Places the backup on the next argument file instead of the
default device.

u If the backup completes successfully, writes the date of the
beginning of the backup to the file /etc/ddate. This file
records a separate date for each file system and each
backup level.

1-22 BACKUP(C)

S For backups to magnetic tape, the size of the tape
specified in feet. The number of feet is taken from the
next argument. When the specified size is reached, backup
waits for reels to be changed. The default size is 2,300
feet.

d For backups to magnetic tape, the density of the tape,
expressed in BPIL, is taken from the next argument. This is
used in calculating the amount of tape used per write. The
default is 1600.

If no arguments are given, the key is assumed to be 9u and a
default file system is backed up to the default device.

The first backup should be a full level-0 backup:

backup Ou

Next, periodic level-9 backups should be made on an exponential
progression of tapes or diskettes:

backup 9u

(This is sometimes called the Tower of Hanoi progression after
the name of the game where a similar progression occurs, for
example, 12131214 ... where backup 1 is used every other
time, backup 2 every fourth, backup 3 every eighth, etc.) When
the level-9 incremental backup becomes unmanageable because a
tape is full or too many diskettes are required, a level-1 backup
should be made:

backup 1lu

After this, the exponential series should progress as if
uninterrupted. These level-9 backups are based on the level-1
backup, which is based on the level-0 full backup. This
progression of levels of backups can be carried as far as desired.

The default file system and the backup device depend on the

settings of the variables DISK and TAPE, respectively, in the file
/etc/default/backup.

BACKUP(C) 1-23

Files

/etc/ddate Records backup dates of file
system/level

/etc/default/backup Default backup information

See Also

cpio(C), default(M), dumpdir(C), restore(C), tar(C), backup(F)

Diagnostics

If the backup requires more than one volume (where a volume is
likely to be a diskette or tape), you will be asked to change
volumes. Press Enter after changing volumes.

Comments

Sizes are based on 1600 BPI for blocked tape; the raw magnetic
tape device has to be used to approach these densities. Write
errors to the backup device are usually irrecoverable. Read errors
on the file system are ignored.

Warning: When backing up to diskettes, be sure to have
enough formatted diskettes ready before starting a backup.

1-24 BACKUP(C)

BANNER(C)

Name

banner - Prints large letters.

Syntax

banner strings

Description

The banner command prints its arguments (each up to 10
characters long), in large letters on the standard output. This is
useful for printing names at the front of printouts.

BANNER(C) 1-25

BASENAME(C)

Name

basename - Removes directory names from path names.

Syntax

basename string [suffix]

Description

The basename command deletes any prefix ending in / and the
suffix (if present in string) from string, and prints the result on the
standard output. The result is the “base’ name of the file, that is,
the filename without any preceding directory path and without an
extension. It is used inside substitution marks () in shell
procedures to construct new filenames.

The related command dirname deletes the last level from string
and prints the resulting path on the standard output.
Examples

The following command displays the filename memos on the
standard output:

basename /usr/johnh/memos.old .old
The following shell procedure, when invoked with the argument

/usr/src/cmd/cat.c , compiles the named file and moves the
output to a file named cat in the current directory:

cc $1
mv a.out ‘basename $1 .c’

See Also

dirname(C), sh(C)

1-26 BASENAME(C)

BC(C)
Name

bc - Invokes a calculator.

Description

The be program is an interactive processor for a language that
resembles C but provides unlimited precision arithmetic. It takes
input from any files given, then reads the standard input.

The be program is actually a preprocessor for de(C), which it
invokes automatically, unless the -c¢ (compile only) option is
present. If the -c option is present, the dc input is sent to the
standard output instead. The -l argument stands for the name of
an arbitrary precision math library. The syntax for be programs

is: L means the letters a-z, E means expression, S means
statement.

Comments

Enclosed in /* and */

Names
Simple variables: L
Array elements: L[E]

9 &6

The words “ibase”, “‘obase”, and ‘“‘scale”

BC(C) 1-27

Other operands

arbitrarily long numbers with optional sign and decimal point (E)
sqrt (E)

length (E) Number of significant decimal digits

scale (E) Number of digits right of decimal point

L (E,....,E)

Additive operators:
+ Addition

- Subtraction

Multiplicative operators:

* Multiplication

/ Division

% Modulo (remainder)
A Exponentiation

Unary operators:
++ Increment

-- Decrement (prefix and postfix; apply to names)

1-28 BC(C)

Relational operators:

== Equalto
<= Less than or equal to
>= Greater than or equal to

= Not equal to
< Less than

> Greater than

Assignment operators:

= Assign

=+ Add and assign

=- Subtract and assign
=%* Multiply and assign
=/ Divide and assign
=% Modulo and assign

=A Exponentiate and assign

Statements:

E

§S; ...;S}

if (E)S

while (E) S
for(E;E;E)S
null statement
break

quit

)

BC(C) 1-29

Function definitions:

defineL (L,...,L){
autoL, ..., L
S; ... S
return (E)

t

Functions in -1 math library:

s(x) Sine

c¢(x) Cosine

e(x) Exponential
1(x) Log

a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines
may separate statements. Assignment to scale influences the
number of digits to be retained on arithmetic operations in the
manner of de(C). Assignments to ibase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simultaneously. All variables are global to the program.
“Auto” variables are pushed down during function calls. When
using arrays as function arguments or defining them as automatic
variables, empty square brackets must follow the array Name.

1-30 BC(C)

Example

The following defines a function to compute an approximate
value of the exponential function:

scale = 20
define e{x)1

auto a, b, ¢, 1, S

a 1
b =1
s =1
for(i=1; 1==1; i++)1i
a = a*x
b = b*§
c =a/'b
if(c == 0) return(s)
s = s+cC

]
S

The following prints the approximate values of the exponential
function of the first ten integers:

for(i=1; 1<=10; i++) e(i)

Files

/usr/lib/lib.bc Mathematical library
/usr/bin/dc Desk calculator proper
See Also

de(C)

be in the IBM Personal Computer XENIX Basic Operations
Guide.

Comments
A for statement must have all three E’s.

A quit is interpreted when read, not when executed.

BC(C) 1-31

BDIFF(C)

Name

bdiff - Compares files too large for diff.

Syntax

Description

The bdiff command compares two files, finds lines that are
different, and prints them on the standard output. It allows
processing of files that are too large for diff. The bdiff command
splits each file into n-line segments, beginning with the first
non-matching lines, and invokes diff upon the corresponding
segments. The arguments are:

n The number of lines bdiff splits each file into for processing.
The default value is 3500. This is useful when 3500 line
segments are too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does
not suppress printing of diagnostics from diff.

If filel (or file2) is a hyphen (-), the standard input is read.
The output of bdiff is exactly that of diff. Line numbers are

adjusted to account for the segmenting of the files, and the output
looks as if the files had been processed whole.

1-32 BDIFF(C)

Files

See Also

diff(C)

Diagnostics

Use help(CP)
Comment

Because of segmenting the files, bdiff does not necessarily find the
smallest sufficient set of file differences.

BDIFF(C) 1-33

BFS(C)
Name

bfs - Scans big files.

Syntax

hfs [-]name

Description

The bfs command is like ed(C) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes and
32K lines, with up to 255 characters per line. This command is
usually more efficient than ed for scanning a file, because the file
is not copied to a buffer. It is most useful for identifying sections
of a large file where csplit(C) can be used to divide it into more
manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the
size of any file written with the w command. The optional hyphen
(-) suppresses printing of sizes. Input is prompted for with an
asterisk (*) by default. If a “P” and an Enter are typed as in ed,
prompting is turned off. The “P”’ acts as a toggle, so prompting
can be turned on again by entering another ‘“P”” and an Enter.
Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In
addition, regular expressions may be surrounded with two
symbols other than the standard slash (/) and question mark (?).
A greater-than sign (>) indicates downward search without
wraparound, and a less-than sign (<) indicates upward search
without wraparound. Because bfs uses a different regular
expression-matching routine than ed, the regular expressions
accepted are slightly wider in scope. The differences from ed
syntax include the fact that parentheses and braces are special and
need not be escaped.

1-34 BFS(C)

Differences are listed below:

A regular expression followed by + means one or
more times. For example, [0-9]+ is equivalent to
[0-9][0-9]*.

§mi §m,} {m,u}

(...)%n

Integer values enclosed in §} indicate the number of
times the preceding regular expression is to be
applied. m is the minimum number and u is a
number, less than 256, which is the maximum. If
only m is present (for example, {m}), it indicates the
exact number of times the regular expression is to be
applied. {m,} is analogous to {m,infinity}. The plus
(+) and asterisk (*) operations are equivalent to {1,}
and {0,} respectively.

The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+1) th
argument following the subject argument. At most,
ten enclosed regular expressions are allowed. The
regex command makes its assignments
unconditionally.

Parentheses are used for grouping. An operator, for
example, *, +, §}, can work on a single character or a
regular expression enclosed in parenthesis. For
example, (a*(cb+)*)$0.

There is also a slight difference in mark names; only the letters
“a” through “z” may be used, and all 26 marks are remembered.

Thee,g,v,k,n,p,q,w,=,! and null commands operate as
described under ed . Commands such as ===, +++-, +++=,
-12, and +4p are accepted. Note that 1,10p and 1,10 both print
the first ten lines. The f command only prints the name of the file
being scanned; there is no remembered filename. The w command
is independent of output diversion, truncation, or crunching (see
the xo, xt and xc commands, below).

BFS(C) 1-35

The following additional commands are available:

xffile Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is
received, or an error occurs, reading resumes with the
file containing the xf. You may nest xf commands to a
depth of 10.

xolfile] Further output from the p and null commands is
diverted to the named file. If file is missing, output is
diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

label This positions a label in a command file. The label is
terminated by a newline, and blanks between the : and
the start of the label are ignored. This command may
also be used to insert comments into a command file,
because labels need not be referred to.

(.,.)xb/regular expression/ label
A jump (either upward or downward) is made to
label if the command succeeds. It fails under any of
the following conditions:
1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn’t match at least

one line in the specified range, including the
first and last lines.

1-36 BFS(C)

xt number

On success, dot (.) is set to the line matched and a
jump is made to label. This command is the only
one that doesn’t issue an error message on bad
addresses, so it may be used to test whether
addresses are bad before other commands are
executed. Note that the command:

xb/A/ Tabel
is an unconditional jump.

The xb command is allowed only if it is read from
somewhere other than a terminal. If it is read from
a pipe, only a downward jump is possible.

Output from the p and null commands is truncated
to a maximum of number characters. The initial
number is 255.

xvldigit][spaces] [value]

The variable name is the specified digit following
the xv. The commands xv5100 or xv5 100 both
assign the value 100 to the variable 5. The
command xv61,100p assigns the value 1,100p to the
variable 6. To refer to a variable, put a % in front
of the variable name. For example, using the above
assignments for variables 5 and 6:

1,%5p

1,%5

%6

prints the first 100 lines.
g/%5/p

globally searches for the characters 100 and prints
each line containing a match. To escape the special
meaning of % ,a \ must precede it. For example:

g/".*\%lcds1/p

could be used to match and list lines containing
printf characters, decimal integers, or strings.

BFS(C) 1-37

xbz label

xbn label

1-38 BFS(C)

Another feature of the xv command is that the first
line of output from a XENIX command can be
stored into a variable. The only requirement is that
the first character of value be a ! For example:

xvhlcat junk
'rm junk

lecho "%5"
xvblexpr %6 + 1

puts the current line in variable 5, prints it, and
increments the variable 6 by one. To escape the
special meaning of ! as the first character of value,
precede it witha \ . For example:

xv7\ ldate

stores the value !date into variable 7.

These two commands test the last saved rerurn code
from the execution of a XENIX command
(lcommand) or nonzero value, respectively, and
jump to the specified label. The two examples
below search for the next five lines containing the
string size:

xv55
]

/size

xvblexpr %5 - 1

'f 0%5 1= 0 exit 2
xbn 1

xv45

2]

'size;

xvélexpr %4 - 1
1if 0%4 = @ exit 2
xbz 1

xc[switch] If switch is 1, output from the p and null commands
is crunched; if switch is 0 it isn’t. Without an
argument, xc reverses switch. Initially, switch is set
for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank
lines suppressed.

See Also

csplit(C), ed(C)

Diagnostics
If prompting is turned off, a question mark (?) is printed for

errors in commands. When prompting is on, self-explanatory error
messages appear.

BFS(C) 1-39

CAL(O)
Name

cal - Prints a calendar.

Syntax

Description

The cal command prints a calendar for the specified year. If a
month is also specified, a calendar for that month only is printed.
If no arguments are specified, the current, previous, and following
months are printed, along with the current date and time. The
year must be a number between 1 and 9999; month must be a
number between 1 and 12 or enough characters to specify a
particular month. For example, May must be given to distinguish
it from March, but § is sufficient to specify September. If only a
month string is given, only that month of the current year is
printed.

Comments

Be aware that ‘““cal 84 refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note
that England switched from the Julian to the Gregorian calendar

in September of 1752, at which time eleven days were excised
from the year. To see the result of this switch, try “cal 9 1752”.

1-40 CAL(C)

CALENDAR(C)

Name

calendar - Invokes a reminder service.

Syntax

Description

The calendar command consults the file calendar in the user’s
current directory and prints out lines that contain today’s or
tomorrow’s date. Most reasonable month-day dates, such as
“Sep. 7, “September 77, and ““9/7”, are recognized, but not ““7
September”, “7/12” or “07/12”.

On weekends “tomorrow’’ extends through Monday. Lines that
contain the date of a Monday are sent to the user on the previous
Friday. This is not true for holidays.

When an argument is present, calendar does its job for every user
who has a file calendar in his login directory and sends the user
the results by mail(C). Normally this is done daily, in the early
morning, under the control of cron(C).

Files

calendar

/usr/lib/calprog To figure out today’s and tomorrow’s dates
/etc/passwd

/tmp/cal*

/usr/lib/crontab

CALENDAR(C) 1-41

See Also

cron(C), mail(C)
Comment

To get reminder service, a user’s calendar file must have read
permission for all.

1-42 CALENDAR(C)

CAT(C)
Name

cat - Concatenates and displays files.

Syntax

Description

The cat command reads each file in sequence and writes it on the
standard output. If no input file is given, or if a single dash (-) is
given, cat reads from the standard input. The options are:

-s Suppresses warnings about nonexistent files.
-u Causes the output to be unbuffered.

No input file may have the same name as the output file unless it
is a special file.

CAT(C) 1-43

Examples

The following example displays file on the standard output:

cat file

The following example concatenates filel and file2 and places the
result in file3:

cat filel file2 > file3

The following example appends a copy of filel to file2:

cat filel >> file?2

See Also

cp(C), pr(C)

1-44 CAT(C)

CD(O)
Name

cd - Changes working directory.

Syntax

Description

The ed command changes the current directory to the directory
specified by directory. If no directory is specified, the value of the
shell parameter SHOME is used, and the user is placed in his
home directory. The argument *“..”” moves up from a directory to
the parent directory.

The user must have search (execute) permission in all directories
specified in directory.

CD(C) 1-45

Examples

The following example changes the current directory to the user’s
home directory:

cd

The following command changes the current directory to
/usr/joe/memos/meetings:

cd /usr/joe/memos/meetings

The following command changes the current directory from
/usr/joe/memos/meetings to /usr/joe/accounts/overdue:

cd ../../accounts/overdue

See Also

chroot(C), pwd(C), sh(C)

1-46 CD(C)

CHGRP(C)

Name

chgrp - Changes group ID.

Syntax

chgrp group file .

Description

The chgrp command changes the group ID of each file to group.
The group may be either a decimal group ID or a group name
found in the file /etc/group.

Files

/ete/passwd
/ete/group

See Also

chown(C), passwd(M), group(F)
Comment

Only the owner or the super-user can change the group ID of a
file.

CHGRP(C) 1-47

CHMOD(C)

Name

chmod - Changes the access permissions of a file or directory.

Syntax

Description

The chmod command changes the access permissions (or mode) of

a specified file or directory. It is used to control file and directory

access by users other than the owner and super-user. The mode

may be an expression composed of letters and operators (called

symbolic mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who]+ - = [permission . . .] filename

Who is one or any combination of the following letters:

a Stands for ““all users”. If who is not indicated on the
command line, a is the default. The definition of ‘“‘all users”

depends on the user’s umask. See umask(C).

g Stands for “group,” all users who have the same group ID
as the owner of the file or directory.

0 Stands for “others,” all users on the system.

u Stands for “user,” the owner of the file or directory.
The operators are:

+ Adds permission

- Removes permission

1-48 CHMOD(C)

= Assigns the indicated permission and removes all other
permissions (if any) for that who. If no permission is
assigned, existing permissions are removed.

Permissions can be any combination of the following letters:
x Execute (search permission for directories)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the
owner of the file. The mode ‘“u+s” sets the user ID bit for the
file. The mode “g+s” sets the group ID bit. Other
combinations have no effect.

t Saves text in memory upon execution. Only the mode “u+t”
sets the sticky bit. All other combinations have no effect.
This mode can only be set by the super-user.

Multiple symbolic modes may be given, separated by commas, on
a single command line. See the following ‘“Examples’ for sample
permission settings.

A chmod command using absolute mode has the form:
chmod mode filename

where mode is an octal number constructed by performing logical
OR on the following:

4000 Set user ID on execution

2000 Set group ID on execution

1000 Sets the sticky bit

0400 Read by owner

0200 Write by owner

0100 Execute (search in directory) by owner
0040 Read by group

CHMOD(C) 1-49

0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions

Examples
Symbolic Mode

The following command gives all users execute permission for

file:

chmod +x file

The following command removes read and write permission for
group and others from file:

chmod go-rw file

The following command gives other users read and write
permission for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,o+r file

1-50 CHMOD(C)

Absolute Mode

The following command gives all users read, write and execute
permission for file:

chmod 0777 file

The following command gives read and write permission to all
users for file:

chmod 0666 file

The following command gives read and write permission to the
owner of file only:

chmod 0600 file

See Also

Is(C)

Comments

The user’s umask may affect the default settings.

The user ID, group ID, and sticky bit settings, are only useful for
binary executable files. They have no effect on shell scripts.

CHMOD(C) 1-51

CHOWN(O)

Name

chown - Changes owner ID.

Syntax

chown owner file . ..

Description

The chown command changes the owner ID of the files to owner.
The owner may be either a decimal user ID or a login name found
in the file /etc/passwd.

Files

/etc/passwd
/etc/group

See Also

chgrp(C), group(M), passwd(M)
Comment

Only the owner or the super-user can change a file’s owner or
group ID.

1-52 CHOWN(O)

CHROOT(C)

Name

chroot - Changes root directory for command.

ot newroot command

Description

The given command is executed relative to the new root. The
meaning of any initial slashes (/) in path names is changed for a
command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command >Xx

creates the file x relative to the original root, not the new one.
This command is restricted to the super-user.

The new root path name is always relative to the current root
even if a chroot is currently in effect. The newroot argument is
relative to the current root of the running process. Note that it is
not possible to change directories to what was formerly the parent
of the new root directory; that is, the chroot command supports

the new root as an absolute root for the duration of the command.
This means that /.. is equivalent to / everytime.

Comment

Exercise extreme caution when referencing special files in the new
root file system.

CHROOT(C) 1-53

CHSH(C)

Name

chsh - change user default shell

Syntax

chsh

Description

Use chsh to change the default shell assigned to a user. It is the
preferred method for updating the default user shell because it
handles all the necessary file updates. and validates whether the
desired shell is available.

The program prompts for the user login ID and validates that the
ID exists in the password file. If so, the requestor is asked to
choose a default shell. The choices are sh (for the Bourne shell),
csh (for the C-shell), and vsh (for the visual shell). The C-shell
option will only be permitted if the Software Development System
is installed. When a valid choice is made, chsh will insure that
appropriate shell files are placed in the user home directory (if
they were not already present). For the Borne shell, a .profile file
is created. For the C-shell, .Jogin and .cshrc files are created. The
chsh command can only be executed by the super-user.

Files

/usr/lib/mkuser/mkuser.prof /usr/lib/mkuser/mkuser.login
/usr/lib/mkuser/mkuser.cshre /etc/passwd

See Also

passwd(C), pwadmin(C)

1-54 CHSH(C)

CMP(C)
Name

cmp - Compares two files.

Syntax

emp [-1]1[-s] filel file2

Description

The emp command compares two files and, if they are different,
displays the byte and line number of the differences. If filel is -,
the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes
(octal) for each difference.

-s Returns an exit code only, O for identical files, 1 for
different files, and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use diff(C)
or diff3(C) to compare text files.

See Also

comm(QC), diff(C), diff3(C)
Diagnostics

Exit code 0 is returned for identical files, 1 for different files, and
2 for an inaccessible or missing argument.

CMP(C) 1-55

COMM(C)

Name

comm - Selects or rejects lines common to two sorted files.

Syntax

Description

The comm command reads filel and file2, which should be
ordered in ASCII collating sequence (see sort(C)), and produces
a three-column output: lines only in filel; lines only in file2; and
lines in both files. The filename - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column.
Thus comm -12 prints only the lines common to the two files;

comm -23 prints only lines in the first file but not in the second,
comm ~123 is a no-op.

See Also

cmp(C), diff(C), sort(C), uniq(C)

1-56 COMM(C)

COPY(C)

Name

copy - Copies groups of files.

Syntax

copy [option] . . . source . . . dest

Description

The copy command copies the contents of directories to another
directory. It is possible to copy whole file systems because
directories are made when needed.

If files, directories, or special files do not exist at the destination,
they are created with the same modes and flags as the source. In
addition, the super-user may set the user and group ID. The
owner and mode are not changed if the destination file exists.
Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for
each source directory with the same destination directory for each

copy.

All of the options must be given as separate arguments, and they
may appear in any order even after the other arguments. The
arguments are:

-a Asks the user before attempting a copy. If the response
does not begin with a y, a copy is not done. This option
also sets the -ad option.

-1 Uses links instead whenever they can be used.

Otherwise a copy is done. Note that links are never
done for special files or directories.

COPY(C) 1-57

=N

-0

-

-ad

-V

source

dest

Requires the destination file to be new. If not, the copy
command does not change the destination file. The -n
flag is meaningless for directories. For special files an -n
flag is assumed (that is, the destination of a special file
must not exist).

If set, every file copied has its owner and group set to
those of the source. If not set, the file’s owner is the
user who invoked the program.

If set, every file copied has its modification time and
access time set to that of the source. If not set, the
modification time is set to the time of the copy.

If set, every directory is recursively examined as it is
encountered. If not set, any directories found are
ignored.

Asks the user whether an -r flag applies when a
directory is discovered. If the answer does not begin
with a y, the directory is ignored.

If the verbose option is set, messages are printed that
reveal what the program is doing.

This may be a file, directory or special file. It must exist.
If it is not a directory, the results of the command are
the same as for the cp command.

The destination must be either a file or directory that is
different than the source.

If the source and destination are anything but directories, copy
acts just like a cp command. If both are directories, then copy
copies each file into the destination directory according to the
flags that have been set.

Comment

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

1-58 COPY(C)

CP(O)

Name

cp - Copies files.

Syntax
cp filel file2

cp files directory

Description

There are two ways to use the cp command. With the first way,
filel is copied to file2. Under no circumstance can filel and file2
be the same name. With the second way, directory is the location
of a directory into which one or more files are copied.

See Also

copy(C), cpio(C), In(C), mv(C), rm(C)

Comment

Special device files can be copied. If the file is a named pipe, the
data in the pipe is copied to a regular file. Similarly, if the file is a
device, the file is read until the end-of-file is reached and that
data is copied to a regular file. It is illegal to copy a directory to a
file.

CP(C) 1-59

CPIO(CO)
Name

cpio - Copies file archives in and out.

Syntax

Description

The cpio -0 (copy out) command reads the standard input to
obtain a list of path names and copies those files onto the
standard output together with path name and status information.

The cpio -i (copy in) command extracts from the standard input
(which is assumed to be the product of a previous cpio -0) the
names of files selected by zero or more patterns given in the
name-generating notation of sh(C). In patterns, the special
characters ? * and [...] match the slash (/) character. The
default for patterns is * (that is, select all files).

Remember to escape special characters to prevent expansion by
the shell.

The cpio -p (pass) command copies out and in during a single

operation. Destination path names are interpreted relative to the
named directory.

1-60 CPIO(C)

The meanings of the available options are:

-C

-r

-u

-v

-m

Resets access times of input files after they have been copied.
Blocks input/output 5120 bytes to the record (does not
apply to the pass option; meaningful only with data directed
to or from raw devices).

Directories are created as needed.

Writes header information in ASCII character form for
portability.

Interactively renames files. If the user types a null line, the
file is skipped.

Prints a table of contents of the input. No files are created.

Copies unconditionally (normally an older file will not
replace a newer file with the same name).

Verbose: causes a list of filenames to be printed. When used
with the -t option, the table of contents looks like the output
of an Is -1 command (seels(C)).

Whenever possible, links files rather than copying them.
Usable only with the -p option.

Retains previous file modification time. This option is
ineffective on directories that are being copied.

CPIO(C) 1-61

Examples

The first example below copies the contents of a directory into an
archive; the second duplicates a directory hierarchy:

1s | cpio -o >/dev/fd@

cd olddir
find . -print | cpio -pdl newdir

Or:

find . -print | cpio -oB >/dev/rfd@"

See Also

backup(C), find(C), tar(C), backup(F), cpio(F) p.

Comment

Path names are restricted to 128 characters. If there are too
many unique linked files, the program runs out of memory to keep
track of them and thereafter linking information is lost. Only the
super-user can copy special files.

1-62 CPIO(C)

CRON(C)

Name

cron - Executes commands at specified times.

Syntax

Description

The cron clock daemon executes commands at specified dates and
times according to the instructions in the file /usr/lib/crontab.
Because cron never exits, it should be executed only once. This is
best done by running cron from the initialization process through
the file /etc/rc.

The file crontab consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns
that specify the minute (0-59), hour (0-23), day of the month
(1-31), month of the year (1-12), and day of the week (0-6, with
0=Sunday). Each of these patterns may contain:

« A number in the (respective) range indicated above

« Two numbers separated by a hyphen (indicating an inclusive
range)

« A list of numbers separated by commas (meaning all of these
numbers)

o An asterisk (meaning all legal values)

The sixth field is a string that is executed by the shell at the
specified times. A % in this field is translated into a newline
character. Only the first line (up to a % or end-of-line) of the
command field is executed by the shell. The other lines are made
available to the command as standard input.

CRON(C) 1-63

The cron command examines crontab periodically to see if it has
changed; if it has, cron reads it. Thus it takes only a short while
for entries to become effective.

Example

An example crontab file follows:

30 * /etc/sa -s /dev/null
0
15
30
40 * find / -name '#*' -atime -3 -exec rm -f | \,
0,5,10,15,20,25,30,35,40,45,50,55 * * * */usr/lib/atrun
0,10,20,30,40,50 * * * * /etc/dmesg - /usr/adm/messages

1,217,417 * *x * x (echo -n ' '; date; echo) -/dev/console

* calendar -

R

/usr/lib/uucp/cleanlog

s =5 F & &=

*
*
* * find /usr/preserve -mtime -7 -a -exec rm -f | /i
1
*

*

A history of all actions by cron can be recorded in
/usr/lib/cronlog. This logging occurs only if the variable
CRONLOG in /etc/default/cron is set to YES. By default, this
value is set to NO and no logging occurs. If logging is turned on,
be sure to monitor the size of /usr/lib/cronlog so that it doesn’t
unreasonably consume disk space.

Files

/usr/lib/crontab
/usr/lib/cronlog
/etc/default/cron

See Also

sh(C)
Comment

The cron command reads crontab only when it has changed, but it
reads the in-core version of that table periodically.

1-64 CRON(C)

CSPLIT(C)

Name

csplit - Splits files according to context.

Syntax

: cspllt [..s] I -k] [f -f , preftx] file 'afgl [argn]

Description

The csplit command reads file and separates it into n+1 sections,
defined by the arguments arg/ . . . argn. By default the sections
are placed in xx00 . . . xxn (n may not be greater than 99). These
sections get the following pieces of file:

00: From the start of file up to (but not including) the line
referred to by argl.

01: From the line referenced by argl up to the line referenced
by arg?2.

n+1: From the line referenced by argn to the end of file.

The options to csplit are:

-s Normally, esplit prints the character counts for each
file created. If the -s option is present, csplit
suppresses the printing of all character counts.

-k Normally, esplit removes created files if an error

occurs. If the -k option is present, csplit leaves
previously created files intact.

CSPLIT(C) 1-65

-f prefix If the -f option is used, the created files are named
prefix 00 ... prefixn. The default is xx00 . . . xxn.

The arguments (argl ... argn) to csplit can be a combination of
the following:

/rexp/ A file is to be created for the section from the
current line up to (but not including) the line
containing the regular expression rexp. The current
line becomes the line containing rexp. This argument
may be followed by an optional + or - some number
of lines (for example, /Page/-5).

%rexp% This argument is the same as /rexp/, except that no
file is created for the section.

Inno A file is to be created from the current line up to
(but not including) /nno. The current line becomes
Inno.

fnumi Repeat argument. This argument may follow any of

the above arguments. If it follows a rexp type
argument, that argument is applied num more times.
If it follows /nno, the file will be split every /nno lines
(num times) from that point.

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the shell in the appropriate quotation
marks. Regular expressions may not contain embedded newlines.
The esplit command does not affect the original file; it is the users
responsibility to remove it.

1-66 CSPLIT(C)

Examples

csplit -f cobol file '/procedure division/' /par5./ /parl6./

This example creates four files, cobol@f . . . cobolf3. After
editing the “‘split” files, they can be recombined as follows:

cat cobol@[@-3]1 > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000
lines. The -k option causes the created files to be retained if there
are less than 10,000 lines, however, an error message would still
be printed.

csplit -k prog.c 'main(%' '/A}/+1" {203

Assuming that prog.c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
creates a file containing each separate C routine (up to 21) in
prog.c.

See Also

ed(C), sh(C)

Diagnostics
Self-explanatory except for:
arg - out of range

which means that the given argument did not refer to a line
between the current position and the end of the file.

CSPLIT(C) 1-67

CU(O)
Name

cu - Calls another XENIX system.

Syntax
cu [-sspeed] [-;iag:u] [-lline] [-h] [-0 | -e] telno

cn ;-‘sspeed; -lline [—h} r;o' | -e] dir

Description

The cu command “calls up” another XENIX system through a
modem or a direct serial connection. It also controls the
transmission and reception of data and programs during the call.
The cu command looks at each line in the file
/usr/lib/uucp/L-devices until it finds a line that matches the
options given in the command line. If it finds an appropriate line,
it will attempt to make a connection. If it cannot find the proper
line, cu quits.

The options are:

-sspeed Specifies the transmission speed. 1200 baud is the
default value. Other speeds available are 110, 150, 300,
1200, 2400, 4800 and 9600 baud. Directly connected
machines may by set to other speeds. Most modems are
restricted to 300 and 1200 baud. Note, speeds higher
than 2400 baud may cause transmission errors.

-aacu Specifies the device name of the ACU (automatic calling
unit) device. When used with the -1 option, overrides
the search for the first available ACU with the right
speed.

1-68 CU(C)

-lline Specifies the device name of the communications line.
When used with the -a option, overrides the search for
the first available ACU with the right speed.

-h Emulates local echo. This feature supports calls to
systems that expect half-duplex mode terminals.

-€ Specifies that even-parity data is to be generated for
data sent to the remote system.

-0 Specifies that odd-parity data is to be generated for data
sent to the remote system.

The telephone number of the remote system is felno. A comma
indicates a delay at appropriate places, for example, to wait for a
secondary dial tone when calling from an internal phone system.
For directly connected lines, the string dir is used instead of telno.
Direct lines require a line to be specified, but no ACU. See the
“Examples” in this section for sample command lines.

After making the connection, cu runs as two processes: transmit
and receive. The transmit process reads data from the standard
input and, except for lines beginning with a tilde (~), passes it to
the remote system. The receive process accepts data from the
remote system and, except for lines beginning with a tilde, passes
it to the standard output. Normally, an automatic XON/XOFF
(DC3/DC1) protocol controls input from the remote system so
the buffer is not overrun. Lines beginning with a tilde have
special meanings.

The transmit process interprets lines beginning with a tilde as
follows:
Terminates the conversation.
Escapes to an interactive shell on the local
system.

~lemd. ..
Runs cmd on the local system (via sh -c).

CU(C) 1-69

~$cmd. ..

Runs emd locally and sends its output to the
remote system.

~%take remote [local]

Copies file remote (on the remote system) to file
local on the local system. If local is omitted, the
remote filename is used in both places. Use of
this line requires the existence of echo(C) and
cat(C) on the remote system. If tabs are to be
copied without expansion, stty tabs mode should
be set on the remote system.

~%put local [remote]

~%nostop

1-70 CU(C)

Copies file local (on the local system) to file
remote on the remote system. If remote is
omitted, the Jocal filename is used in both
places. Use of this line requires the existence of
stty(C) and cat(C) on the remote system. It
also requires that the current erase and kill
characters on the remote system be identical to
the current ones on the local system.
Backslashes are inserted at appropriate places.

Sends the line ~ ... to the remote system.

Turns off the XON/XOFF input control
protocol for the remainder of the session. This
is useful if the remote system is one that does
not respond properly to the DC3 and DC1
characters.

The receive process normally copies data from the remote system
to its standard output. A line from the remote system that begins
with ~> diverts the output to a file. Data is appended to a file if
~>> is used. The diversion is terminated by a trailing ~> . The
complete sequence is:

~>[>]:

file

zero or more lines to be written to file
~>

Examples

A sample command line might be:

cu -s2400 -1/dev/cual 4479801

Where “-s2400” indicates a line speed of 2400 baud, and
“_1/dev/cua0” supplies the device name of the communications
line. The system looks in the file L-devices for a line with these
characteristics.“4479801” is the phone number of the remote
system. For a directly connected line:

cu -1/dev/tty0l1 dir

“dir” indicates a direct line connection.

To dial out of an internal phone system, such as a computerized
branch exchange (CBX):

cu -s2400 -1/dev/cual 9,4479801

If your system does not automatically wait for an outgoing dial
tone, use several commas for an extended delay:

cu -s2400 -1/dev/cua0 9,,,4479801

CuU(©O) 1-71

Files

/usr/lib/uucp/L-devices Device information
/usr/spool/uucp/LCK..(tty-device) Lockout mechanism
/usr/lib/uucp/dial Dialer program
/dev/null

See Also

cat(C), echo(C), stty(C), tty(M)

Diagnostics

Exit code is zero for normal exit, nonzero otherwise.

Comments

There is an artificial slowing of transmission by cu during the
~%put operation so that loss of data is unlikely.

ASCII files only can be transferred using ~%take or ~%put ;
binary files cannot be transferred.

1-72 CU(C)

DATE(C)

Name

date - Prints and sets the date.

Syntax

Description

If no argument is given, or if the argument begins with +, the
current date and time are printed. Otherwise, the current date is
set. The first mm is the month number; dd is the day number in
the month; hh is the hour number (24-hour system); the second
mm is the minute number; yy is the last two digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 A.M. The current year is the default
if no year is mentioned. The system operates in GMT. Date
takes care of the conversion to and from local standard and
daylight time.

If the argument begins with +, the output of date is under the
control of the user. All output fields are of fixed size (zero
padded if necessary). Each field descriptor is preceded by a
percent sign (%) and is be replaced in the output by its
corresponding value. A single percent sign is encoded by
doubling the percent sign, that is, by specifying “9%%"”. All other
characters are copied to the output without change. The string is
always terminated with a newline character.

DATE(C) 1-73

Field Descriptors:

n

t

m

4 w2 oz U <

Gt o

Inserts a newline character
Inserts a tab character

Month of year - 01 to 12

Day of month - 01 to 31

Last two digits of year - 00 to 99
Date as mm/dd/yy

Hour - 00 to 23

Minute - 00 to 59

Second - 00 to 59

Time as hh:mm:ss

Julian date - 001 to 366

Day of the week - Sunday = 0
Abbreviated weekday - Sun to Sat
Abbreviated month - Jan to Dec

Time in A.M./P.M. notation

1-74 DATE(C)

Example

The line:

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output:

DATE: 08/01/76
TIME: 14:45:05

Diagnostics

no permission

bad conversion

bad format character

You aren’t the super-user and you are
trying to change the date.

The date set is syntactically incorrect.

The field descriptor is not recognizable.

DATE(C) 1-75

DC(C)
Name

dc - Invokes an arbitrary precision calculator.

Syntax

Description

The dc program is an arbitrary precision arithmetic package.
Ordinarily, it operates on decimal integers, but you may specify
an input base, output base, and a number of fractional digits to be
maintained. The overall structure of dc is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following
constructions are recognized:

number The value of the number is pushed on the stack. A
number is an unbroken string of the digits 0-9. It may
be preceded by an underscore (__) to input a negative
number. Numbers may contain decimal points.

+=-/*%%+nA
The top two values on the stack are added (+),
subtracted (-), multiplied (*), divided (/), remaindered
(%), or exponentiated (A). The two entries are popped
off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

SX The top of the stack is popped and stored into a register
named x, where x may be any character. If the s is
capitalized, x is treated as a stack and the value is
pushed on it.

Ix The value in register x is pushed on the stack. The
register x is not altered. All registers start with zero
value. If the lis capitalized, register x is treated as a
stack and its top value is popped onto the main stack.

1-76 DC(C)

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged. p interprets the top of the stack as
an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If a string is being executed, the
recursion level is popped by two. If q is capitalized, the
top value on the stack is popped, and the string
execution level is popped by that value.

X Treats the top element of the stack as a character string
and executes it as a string of dc commands.

X Replaces the number on the top of the stack with its
scale factor.

Puts the bracketed ASCII string onto the top of the
stack. :

<X >Xx =X
The top two elements of the stack are popped and
compared. Register x is evaluated if they obey the
stated relation.

v Replaces the top element on the stack by its square root.
Any existing fractional part of the argument is taken
into account, but otherwise the scale factor is ignored.

! Interprets the rest of the line as a XENIX command.
c All values on the stack are popped.
i | The top value on the stack is popped and used as the

number radix for further input.

I Pushes the input base on the top of the stack.

DC(C) 1-77

o The top value on the stack is popped and used as the
number radix for further output.

o Pushes the output base on the top of the stack.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its
length.

? A line of input is taken from the input source (usually

the terminal) and executed.

5 Used by be for array operations.

Example

This example prints the first ten values of n!:

[Tal+dsa*plal@>ylsy@sal
1yx

See Also

be(C)

1-78 DC(C)

Diagnostics

X is unimplemented

stack empty

out of space

out of headers
out of pushdown

nesting depth

Comments

The octal number x corresponds to a
character that is not implemented as a
command.

Not enough elements on the stack to do
what was asked.

The free list is exhausted (too many
digits).

Too many numbers being kept around.
Too many items on the stack.

Too many levels of nested execution.

The be preprocessor for de provides infix notation and a C-like
syntax that implements functions and reasonable control
structures for programs. For interactive use, be is preferred to de.

DC(C) 1-79

DD(C)
Name

dd - Converts and copies a file.

Syntax

Description

The dd command copies the specified input file to the specified
output with possible conversions. The standard input and output
are used by default. The input and output block size may be
specified to take advantage of raw physical I/O.

Option Value

if=file Input filename; standard input is default.
of=file Output filename; standard output is default.
ibs=n Input block size n bytes (default, 512).
obs=n Output block size (default, 512).

bs=n Sets both input and output block size,

superseding ibs and obs; also, if no conversion
is specified, it is particularly efficient because
no in-core copy needs to be done.

1-80 DD(C)

cbs=n Conversion buffer size.
skip=n Skips n input records before starting copy.

seek=n Seeks n records from beginning of output file
before copying.

count=n Copies only n input records.

conv=ascii Converts EBCDIC to ASCII.

conv=ebcdic Converts ASCII to EBCDIC.

conv=ibm Slightly different map of ASCII to EBCDIC.
conv=lcase Maps alphabetics to lowercase.

conv=ucase Maps alphabetics to uppercase.

conv=swab Swaps every pair of bytes.

conv=noerror Does not stop processing on an error.
conv=sync Pads every input record to ibs.
conv=""...,...” Several comma-separated conversions.

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by 1024,
512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

The cbs option is used only if ASCII or EBCDIC conversion is
specified. In the former case, cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and newline added before sending the line to the output.
In the latter case ASCII characters are read into the conversion
buffer, converted to EBCDIC, and blanks added to make up an
output record of size cbhs.

After completion, dd reports the number of whole and partial
input and output blocks.

DD(C) 1-81

Example

This command reads an EBCDIC tape, blocked ten 80-byte
EBCDIC card images per record, into the ASCII file outfile:

dd if=/dev/rmt0 of=outfile ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. The dd command is especially
suited to I/O on raw physical devices because it allows reading
and writing in arbitrary record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

f+p records in(out) Numbers of full and partial records
read(written).

Comments

The ASCII/EBCDIC conversion tables are taken from the
256-character standard in the CACM, Nov, 1968. The ibm
conversion corresponds better to certain IBM printing
conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is
done only on conversion to EBCDIC.

1-82 DD(C)

DEVNM(C)

Name

devnm - Identifies device name.

Syntax

/etc/ dem [names]

Description

The devnm command identifies the special file associated with the
mounted file system where the argument name resides.

This command is most commonly used by /etc/re to construct a
mount table entry for the root device.

Examples

Be sure to type full path names in this example:
/etc/devnm /usr

If /dev/hdf3 is mounted on /usr, this produces:

hd@3 /usr
Files

/dev/* Device names
/ete/rc XENIX startup commands

See Also

setmnt(C)

DEVNM(C) 1-83

DF(C)
Name

df - Reports the number of free disk blocks.

Syntax
df[-t] [-f][filesyst m...

Description

The df command prints out the number of free blocks and free
inodes available for on-line file systems by examining the counts
kept in the super-blocks. One or more filesystem arguments may
be specified by device name (for example, /dev/hd03 or
/dev/usr). If the filesystem argument is unspecified, the free
space on all mounted file systems is sent to the standard output.
The list of mounted file systems is given in /etc/mnttab.

The -t flag causes the total allocated block figures to be reported
as well.

If the -f flag is given, only an actual count of the blocks in the

free list is made (free inodes are not reported). With this option,
df reports on raw devices.

1-84 DF(C)

Files

/dev/*
/etc/mnttab

See Also

fsck(C), mnttab(F)

Comment

See “Comments” under mount(C).

DF(C) 1-85

DIFF(C)

Name

diff - Compares two text files.

Syntax

Description

The diff command tells what lines must be changed in two files to
bring them into agreement. If filel (file2) is -, the standard input
is used. If filel (file2) is a directory, a file in that directory with
the name file2 (filel) is used. The normal output contains lines
of these forms:

nl an3,n4
nl,n2dn3
nl.,n2 ¢ n3,n4

These lines resemble ed commands to convert file!l into file2. The
numbers after the letters pertain to file2. in fact, by exchanging a
for d and reading backward, one may ascertain equally how to
convert file2 into filel. As in ed, identical pairs where n/ = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected
in the first file flagged by <, then all the lines that are affected in
the second file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be
ignored and other strings of blanks to compare equal.

1-86 DIFF(C)

The -e option produces a script of a, ¢, and d commands for the
editor ed, which will recreate file2 from filel. The -f option
produces a similar script, not useful with ed, in the opposite order.
In connection with -e, the following shell procedure helps
maintain multiple versions of a file:

(shift; cat $*; echo '1,$p') led - $1

This works by performing a set of editing operations on an
original ancestral file. This is done by combining the sequence of
ed scripts given as all command line arguments except the first.
These scripts are presumed to have been created with diff in the
order given on the command line. The set of editing operations is
then piped as an editing script to ed where all editing operations
are performed on the ancestral file given as the first argument on
the command line. The final version of the file is then printed on
the standard output. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3, . . .) made by diff need be
on hand.

Except in rare circumstances, diff finds the smallest sufficient set
of file differences.

The -h option does a faster, less-rigorous job than the default or
the -e, -f, and -b options. It works only when changed stretches
are short and well separated, but also works on files of unlimited
length. The -e and -f cannot be used with the -h option.

DIFF(C) 1-87

Files

/usr/lib/diffh for -h

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is O for no differences, 1 for some differences, 2 for
errors.

Comment

Editing scripts produced under the -e or -f option do not always
work correctly on lines consisting of a single period (.).

1-88 DIFF(C)

DIFF3(C)

Name

diff3 - Compares three files.

Syntax

diff3 [-ex3] filel file2 file3

Description

The diff3 command compares three versions of a file and
publishes disagreeing ranges of text flagged with these codes:

==== All three files differ.

1 filel is different.

=2 file2 is different

===3 file3 is different

The type of change performed in converting a given range of a
given file to some other range is indicated in one of these ways:

f:nla Text is to be appended after line number n/ in
file f, where f =1, 2, or 3.

f:nl,n2c Text is to be changed in the range line n! to line
n2.If nl = n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a ¢
indication. When the contents of two files are identical, the
contents of the lower-numbered file are suppressed.

DIFF3(C) 1-89

Under the -e option, diff3 publishes a script for the editor ed that
will incorporate into filel all changes between file2 and file3, that
is, the changes that normally would be flagged ==== and
====3. The -x option produces a script to incorporate changes
flagged with “===="". Similarly, the -3 option produces a script
to incorporate changes flagged with “====3". The following
command applies a resulting editing script to filel:

(cat script; echo '1,$p') | ed - filel

Files

/tmp/d3*
/usr/lib/diff3prog
See Also

diff(C)

Comments

The -e option does not work properly for lines consisting of a
single period.

The input file size limit is 64K bytes.

1-90 DIFF3(C)

DIRCMP(C)

Name

dircmp - Compares directories.

Syntax

dircmp [-d | [-s | dirl dir2

Description

The diremp command examines dir/ and dir2 and generates
tabulated information about the contents of the directories.
Listings of files that are unique to each directory are generated in
addition to a list that indicates whether the files common to both
directories have the same contents.

Two options are available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical

-s Reports whether files are “same” or “different”

See Also

cmp(C), diff(C)

DIRCMP(C) 1-91

DIRNAME(C)

Name

dirname - Delivers directory part of path name.

Syntax

dirname string

Description

The dirmame command delivers all but the last component of the
path name in string and prints the result on the standard output.

If there is only one component in the path name, only a “dot” is
printed. It is normally used inside substitution marks (" *) within
shell procedures.

The companion command basename deletes any prefix ending in a

slash (/) and the suffix (if present in string) from string, and
prints the result on the standard output.

1-92 DIRNAME(C)

Examples

The following example sets the shell variable NAME to
/usr/src/cmd:

NAME='dirname /usr/src/cmd/cat.c

This example prints /a/b/c on the standard output:
dirname /a/b/c/d

This example prints a “‘dot” on the standard output:

dirname file.ext

See Also

basename(C), sh(C)

DIRNAME(C) 1-93

DISABLE(C)

Name

disable - Turns off terminals.

Syntax

disable [-d][-e] zty ...

Description

This program manipulates the /ete/ttys file and signals init to
disallow logins on a particular terminal. The -d and -e options
“disable” and “enable” terminals, respectively.

Examples

A simple example follows:

disable tty0l

Multiple terminals can be disabled or enabled using the -d and -e
switches before the appropriate terminal name:

disable tty0l -e tty02 -d tty03 tty04

Warning: Be absolutely certain to pause at least one minute
before reusing this command or before using the enable
command. Failure to do so may cause the system to go
down.

1-94 DISABLE(C)

Files

/dev/tty*
/etc/ttys

See Also

login(M), enable(C), ttys(M), getty(M), init(M)

DISABLE(C) 1-95

DOS(C)
Name

dos - Accesses DOS files.

Syntax
doscat [-r] file ..
doscp [-r] filel file2
doscp [-r] file ... directory
dosdir directory . ..
dosls directory . . .
dosmkdir directory . . .
dosrm file . ..

dosrmdir directory . ..

Description

The dos commands provide access to the files and directories on
DOS disks. The commands perform the following actions:

doscat Copies one or more DOS files to the standard output.
If -r is given, the files are copied without newline
conversions (see “Conversions” below).

doscp Copies files between an DOS disk and a XENIX file
system. If filel and file2 are given, filel is copied to
file2. 1f a directory is given, one or more files are
copied to that directory. If the -r is given, the files are
copied without newline conversions (see
“Conversions’’ below).

1-96 DOS(C)

dosdir Lists DOS files in the standard DOS style directory

format.

dosls Lists DOS directories and files in a XENIX style (see
Is(C)).

dosrm Removes files from a DOS disk.

dosmkdir Creates a directory on a DOS disk.
dosrmdir Deletes directories from a DOS disk.

The file and directory arguments for DOS files and directories
have the form:

device:name

where device is a XENIX pathname for the special device file
containing the DOS disk, and name is a pathname to a file or
directory on the DOS disk. The two components are separated by
a colon (:). For example, the argument:

dev fd0: /src/file.asm

specifies the DOS file, file.asm, in the directory, /srec, on the disk
in the device file /dev/fd@. Note that slashes (and not
backslashes) are used as filename separators for DOS pathnames.
Arguments without a device : are assumed to be XENIX files.

For convenience, the drive letters A: and B: can be used for any
48TPI DOS diskette in drives 0 and 1 respectively. The drive
letters X: and Y: can be used for any 96TPI DOS diskette in
drives 0 and 1 respectively. You must enter the drive letter as a
capital letter when you use this notation to name a drive.

DOS(C) 1-97

The commands operate on the following kinds of disks:

5 1/4 inch DOS

8 or 9 sectors per track
40 tracks per side

1 or 2 sides

DOS version 1 or >2.

Converisons

All DOS text files use a carriage-return/linefeed combination,
CR-LF, to indicate a newline. XENIX uses a single newline LF
character. When the doscat and doscp commands transfer DOS
text files to XENIX, they automatically strip the CR. When text
files are transferred to DOS, the commands insert the CR before
each LF character. The -r option can be used to override the
automatic conversion and force the command to perform a true
byte copy regardless of file type.

Examples

doscat /dev/fd@96dsl15:/docs/memo.txt
or doscat x:/docs/memo.txt

dosdir /dev/fd048ds9 or dosdir A:

doscp /tmp/myfile.txt /dev,/fd148ds9:/docs /memo.txt
or doscp /tmp/myfile.txt B:/docs/memo.txt

dosls /dev,/fd@d: /src or dosls X:/src
dosmkdir /dev,/fd@: /usr/docs or dosmkdir X:/usr,/docs

dosrm ,dev,/fd196ds15: ‘docs /memo.txt
or dosrm Y:/docs/memo.txt

dosrmdir ‘dev/fd@: usr/docs or dosrmdir X:/usr/docs

1-98 DOS(C)

Files

/etc/default/msdos

Default information
/dev/fd* Diskette drive devices
See Also

dtype(C), default(M)

Comment

It is not possible to refer to DOS directories with wild card
specifications. It is the user’s responsibility to ensure he has
exclusive access to the device containing the DOS disk. If two or
more processes simultaneously attempt to access the DOS disk
the result is unpredictable.

DOS(C) 1-99

DTYPE(C)

Name

dtype - Determines disk type.

Syntax

dtype [-s] device . ..

Description

The dtype command determines type of disk, prints pertinent
information on the standard output unless the silent (-s) option is
selected, and exits with a corresponding code (see below). When
more than one argument is given, the exit code corresponds to the
last argument.

Disk Type | Exit | Message (optional)
Code
Misc. 60 error (specified)
61 empty or unrecognized data
Storage 70 backup format, volume n
71 tar format[, extent e of n]
72 cpio format
73 cpio character (-c¢) format
DOS 80 DOS 1.x, 8 sec/track, single sided
81 DOS 1.x, 8 sec/track, dual sided

1-100 DTYPE(C)

Disk Type | Exit | Message (optional)

Code

90 DOS 2.x, 8 sec/track, single sided

91 DOS 2.x, 8 sec/track, dual sided

92 DOS 2.x, 9 sec/track, single sided

93 DOS 2.x, 9 sec/track, dual sided
XENIX 120 XENIX 2.x filesystem[needs cleaning]

130 XENIX 3.x filesystem[needs cleaning]

Comment

XENIX file systems and dump and cpio binary formats may not
be recognized if created on a foreign system. This is due to such
system differences as byte and word swapping and structure

alignment.

DTYPE(C) 1-101

DU(C)
Name

du - Summarizes disk usage.

Syntax

du [-afrsu] [names]

Description

The du command gives the number of blocks contained in all files
and (recursively) directories within each directory and file
specified by the names argument. The block count includes the
indirect blocks of the file. If names is missing, the current
directory is used.

The optional argument -s causes only the grand total (for each of
the specified names) to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

Normally, du is silent about directories that cannot be read, files
that cannot be opened, etc. The -r option causes du to generate
messages in such instances.

A file with two or more links is only counted once.

Comments

If the -a option is not used, nondirectories given as arguments are
not listed.

If there are too many distinct linked files, du counts the excess

files more than once. Files with holes in them get an incorrect
block count.

1-102 DU(C)

DUMPDIR(C)
Name

dumpdir - Prints the names of files on a backup archive.

Syntax

dumpdir [f filename]

Description

The dumpdir command is used to list the names and inode
numbers of all files and directories on an archive written with the
backup command. This is most useful when attempting to
determine the location of a particular file in a set of backup
archives.

The f option causes filename to be used as the name of the
backup device instead of the default. The backup device depends
on the setting of the variable TAPE in the file
/ete/default/backup .

File

rst* Temporary files

See Also

backup(C), restor(C), default(M)

Diagnostics
If the backup extends over more than one volume (where a

volume is likely a diskette or tape), you will be asked to change
volumes. Press Enter after changing volumes.

DUMPDIR(C) 1-103

ECHO(C)

Name

echo - Echoes arguments.

Syntax

echo [-nl[-e][-u][--Ilarg] ...

Description

The echo command writes its arguments separated by blanks and
terminated by a newline on the standard output. The following
options are recognized:

-n
-€
-u

Prints line without a newline.

Prints arguments on the standard error output.

Uses unbuffered I/O when printing.

Prints arg exactly so that an argument beginning with a dash
(for example, -e or -n) can be specified.

The echo command also understands C-like escape conventions.
The following escape sequences need to be quoted so that the
shell interprets them correctly:

\b
\¢
\f
\n
\r
\t
N\
\ n

Backspace

Prints line without newline; same as use of -n option.
Form feed

Newline

Carriage return

Tab

Backslash

The 8-bit character whose ASCII code is the one-, two-,
or three-digit octal number n, which must start with a zero.

1-104 ECHO(C)

The echo command is useful for producing diagnostics in
command files and for sending known data into a pipe.

See Also

sh(C)

Comment

The -e option is a XENIX-specific enhancement and may not be
present in other UNIX implementations. Therefore, the
application developer should consider the impact to portability
when using this feature.

ECHO(C) 1-105

ED(C)
Name

ed - Invokes the text editor.

Syntax
ed [-][file]

Description

The ed command invokes the standard text editor, ed. If the file
argument is given, ed simulates an e command (see below) on the
named file; that is to say, the file is read into ed’s buffer so that it
can be edited. The optional - suppresses the printing of character
counts by e, r, and w commands, of diagnostics from e and q
commands, and of the ! prompt after a ! shell command. The
editor operates on a copy of the file being edited; changes made
to the copy have no effect on the file until a w (write) command is
given. The copy of the text being edited resides in a temporary
file called the buffer. There is only one buffer.

Commands to ed have a simple and regular structure: zero, one,
or two addresses followed by a single-character command,
possibly followed by parameters to that command. These
addresses specify one or more lines in the buffer. Every
command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the
appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

1-106 ED(C)

The editor supports a limited form of regular expression notation;
regular expressions are used in addresses to specify lines and in
some commands (for example, s) to specify portions of a line that
are to be substituted. A regular expression specifies a set of
character strings. A member of this set of strings is said to be
matched by the regular expression. The regular expressions
allowed by ed are constructed as follows:

The following one-character regular expressions match a single
character:

1.1 An ordinary character (not one of those discussed in 1.2
below) is a one-character regular expression that matches
itself.

1.2 A backslash (\) followed by any special character is a
one-character regular expression that matches the special
character itself. The special characters are:

a. .* [and \ (dot, asterisk, left bracket, and backslash,
respectively), which are always special, except when
they appear within brackets ([]; see 1.4 below).

b. A (caret), which is special at the beginning of an
entire regular expression (see 3.1 and 3.2 below), or
when it immediately follows the left of a pair of
brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire
regular expression (see 3.2 below).

d. The character used to bound (that is, delimit) an
entire regular expression, which is special for that
regular expression (for example, see how slash (/) is
used in the g command, below).

1.3 A period (.) is a one-character regular expression that
matches any character except newline.

ED(C) 1-107

1.4 A nonempty string of characters enclosed in brackets ([]) is
a one-character regular expression that matches any one
character in that string. If, however, the first character of
the string is a caret (A), the one-character regular
expression matches any character except newline and the
remaining characters in the string. The asterisk (*) has this
special meaning only if it occurs first in the string. The
hyphen (-) may be used to indicate a range of consecutive
ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The hyphen (-) loses this special meaning if
it occurs first (after an initial caret (A), if any) or last in
the string. The right bracket (]) does not terminate such a
string when it is the first character within it (after an initial
caret (A), if any); for example, []a-f] matches either a right
bracket (]) or one of the letters ““a” through “f” inclusive.
Period, asterisk, left bracket, and the backslash lose their
special meaning within such a string of characters.

The following rules may be used to construct regular
expressions from one-character regular expressions:

2.1 A one-character regular expression matches whatever the
one-character regular expression matches.

2.2 A one-character regular expression followed by an asterisk
(*) is a regular expression that matches zero or more
occurrences of the one-character regular expression. If
there is any choice, the longest leftmost string that permits a
match is chosen.

2.3 A one-character regular expression followed by \{ m\},
\{ m,\}, or \{ m,n\}is aregular expression that
matches a range of occurrences of the one-character regular
expression. The values of m and » must be non-negative
integers less than 256; \{ m\} matches exactly m
occurrences;, \{ m,\} matches at least m occurrences;
\{ m,n\} matches any number of occurrences between m
and n, inclusive. Whenever a choice exists, the regular
expression matches as many occurrences as possible.

1-108 ED(C)

2.4

2.5

2.6

The concatenation of regular expressions is a regular
expression that matches the concatenation of the strings
matched by each component of the regular expression.

A regular expression enclosed between the character
sequences \(and \) is a regular expression that matches
whatever the unadorned regular expression matches. See
2.6 below for a discussion of why this is useful.

The expression \ n matches the same string of characters as
was matched by an expression enclosed between \ (and
\) earlier in the same regular expression. Here 7 is a digit;
the sub-expression specified is that beginning with the n -th
occurrence of \(counting from the left. For example, the
expression A\ (.*\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

3.1

3.2

A caret (A) at the beginning of an entire regular expression
constrains that regular expression to match an initial
segment of a line.

A dollar sign ($) at the end of an entire regular expression
constrains that regular expression to match a final segment
of aline. The construction A entire regular expression$
constrains the entire regular expression to match the entire
line.

The null regular expression (that is, //) is equivalent to the last
regular expression encountered.

To understand addressing in ed it is necessary to know that there
is a current line at all times. Generally speaking, the current line
is the last line affected by a command; the exact effect on the
current line is discussed under the description of each command.
Addresses are constructed as follows:

1.

2.

3.

The character . addresses the current line.
The character $ addresses the last line of the buffer.

A decimal number n addresses the n -th line of the buffer.

ED(C) 1-109

10.

x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the
k command described below.

A regular expression enclosed by slashes (/) addresses the
first line found by searching forward from the line following
the current line toward the end of the buffer and stopping at
the first line containing a string matching the regular
expression. If necessary, the search wraps around to the
beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched.

A regular expression enclosed in question marks (?)
addresses the first line found by searching backward from the
line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string
matching the regular expression. If necessary, the search
wraps around to the end of the buffer and continues up to
and including the current line. See also the last paragraph
before “Files ” below.

An address followed by a plus sign (+) or a minus sign (-)
followed by a decimal number specifies that address plus or
minus the indicated number of lines. The plus sign may be
omitted.

If an address begins with + or -, the addition or subtraction
is taken with respect to the current line; for example, -5 is
understood to mean .-5.

If an address ends with + or -, 1 is added to or subtracted
from the address, respectively. As a consequence of this rule
and of rule 8, the address - refers to the line preceding the
current line. (To maintain compatibility with earlier versions
of the editor, the character A in addresses is entirely
equivalent to -). Moreover, trailing + and - characters have
a cumulative effect, so - - refers to the current line less 2.

For convenience, a comma (,) stands for the address pair 1,3,
while a semicolon (;) stands for the pair .,$.

1-110 ED(C)

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires,
the last addresses are used.

Typically, addresses are separated from each other by a comma
(,). They may also be separated by a semicolon (;). In the latter
case, the current line (.) is set to the first address, and only then is
the second address calculated. This feature can be used to
determine the starting line for forward and backward searches
(see rules 5 and 6). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

Some size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K
characters in the buffer. The limit on the number of lines
depends on the amount of user memory.

When reading a file, ed discards ASCII Nul characters and all
characters after the last newline. Files that contain characters not
in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string, for example, (/), would be the last character before a
newline, that delimiter may be omitted, in which case the
addressed line is printed. Thus the following pairs of commands
are equivalent:

s/s1/s2
s/sl/s2/p

g/sl
g/sl/p

7s1
?s1?

ED(C) 1-111

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the
address; they show that the given addresses are the default.

In general, only one command may appear on a line. However,
any command (except e, f, r, or w) may be suffixed by p or by I,
in which case the current line is either printed or listed,
respectively, as discussed below under the p and | commands.

()a
<text>

The append command reads the given text and appends it after
the addressed line; dot is left at the last inserted line, or, if there
were no inserted lines, at the addressed line. Address 0 is legal
for this command: it causes the appended text to be placed at the
beginning of the buffer.

(e
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the last line input,
or, if there were none, at the first line that was not deleted.

G,.)d

The delete command deletes the addressed lines from the buffer.

The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

1-112 ED(C)

e file

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently
remembered filename, if any, is used (see the f command). The
number of characters read is typed; file is remembered for
possible use as a default filename in subsequent e, r, and w
commands. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command. The output of this command
is read for the e and r commands. For the w command, the file is
used as the standard input for the specified command. Such a
shell command is not remembered as the current filename.

E: file

The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

f file

If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1,%)g/ regular-expression/command list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on
the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \ ; a, i, and ¢
commands and associated input are permitted; the . terminating
input mode may be omitted if it would be the last line of the
command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the
command list. See also “Comments ’ and the last paragraph
before “Files ”’ below.

ED(C) 1-113

(1,$)G/ regular-expression/

In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, ¢,i,g, G,v,and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on; a
newline acts as a null command; an ampersand (&) causes the
re-execution of the most recent command executed within the
current invocation of G. The commands input as part of the
execution of the G command may address and affect any lines in
the buffer. The G command can be terminated by typing an
Interrupt (Del).

h

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H

The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It also
explains the previous diagnostic if there was one. The H
command alternately turns this mode on and off; it is initially on.

()i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the last inserted line, or if there were no inserted
lines, at the addressed line. This command differs from the a
command only in the placement of the input text. Address O is
not legal for this command.

(0o +1j
The join command joins contiguous lines by removing the

appropriate newline characters. If only one address is given, this
command does nothing.

1-114 ED(C)

(kx

The mark command marks the addressed line with name x, which
must be a lowercase letter. The address ’x then addresses this
line; dot is unchanged.

()|

The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (for example tab, backspace)
are represented by mnemonic overstrikes, all other non-printing
characters are printed in octal, and long lines are folded. Anl
command may be appended to any command other than e, f, r, or
Ww.

(.,.)ma

The move command repositions the addressed lines after the line
addressed by a. Address O is legal for a and causes the addressed
lines to be moved to the beginning of the file; it is an error if
address a falls within the range of moved lines; dot is left at the
last line moved.

(.,.)n

The number command prints the addressed lines, preceding each
line by its line number and a tab character; dot is left at the last
line printed. The n command may be appended to any command
other thane, f, r, or w.

G,)p

The print command prints the addressed lines; dot is left at the
last line printed. The p command may be appended to any
command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

P
The editor will prompt with a * for all subsequent commands.

The P command alternately turns this mode on and off; it is
initially on.

ED(C) 1-115

q

The quit command causes ed to exit. No automatic write of a file
is done.

Q

The editor exits without checking if changes have been made in
the buffer since the last w command.

$)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and f commands). The currently remembered
filename is not changed unless file is the very first filename
mentioned since ed was invoked. Address O is legal for r and
causes the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed; dot is
set to the last line read in. If file begins with !, the rest of the line
is taken to be a shell (sh(C)) command whose output is to be
read. Such a shell command is not remembered as the current
filename.

(.,.)s/regular-expression/ replacement/
or
(.,.)s/regular-expression/replacement/g

The substitute command searches each addressed line for an
occurrence of the specified regular expression. In each line in
which a match is found, all non-overlapped matched strings are
replaced by the replacement if the global replacement indicator g
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is replaced.
It is an error for the substitution to fail on all addressed lines.
Any character other than space or newline may be used instead of
/ to delimit the regular expression and the replacement; dot is left
at the last line on which a substitution occurred.

1-116 ED(C)

An ampersand (&) appearing in the replacement is replaced by
the string matching the regular expression on the current line.
The special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \ n,
where n is a digit, are replaced by the text matched by the n -th
regular subexpression of the specified regular expression enclosed
between \(and \) . When nested parenthesized subexpressions
are present, n is determined by counting occurrences of \ (
starting from the left. When the character % is the only character
in the replacement, the replacement used in the most recent
substitute command is used as the replacement in the current
substitute command. The % loses its special meaning when it is
in a replacement string of more than one character or is preceded
by a backslash (\).

A line may be split by substituting a newline character into it.
The newline in the replacement must be escaped by preceding it
with a backslash (\). Such a substitution cannot be done as part
of a g or vcommand list.

(.,.)ta

This command acts just like the m command, except that a copy
of the addressed lines is placed after address a (which may be 0);
dot is left at the last line of the copy.

u

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the most
recenta, ¢, d, g, i, j,m,r,s,t, v, G, or Vcommand.

(1,8)v/ regular-expression/ command list

This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.
(1,8)V/regular-expression/

This command is the same as the interactive global command G

except that the lines that are marked during the first step are
those that do not match the regular expression.

ED(C) 1-117

(1,8)w file

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable
and writeable by everyone), unless the umask setting (see sh(C))
dictates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see e and f commands); dot is
unchanged. If the command is successful, the number of
characters written is displayed. If file begins with an exclamation
(1), the rest of the line is taken to be a shell command to which
the addressed lines are supplied as the standard input. Such a
shell command is not remembered as the current filename.

X

A key string is demanded from the standard input. Subsequent e,
r, and w commands will encrypt and decrypt the text with this key
by the algorithm of crypt(C). An explicitly empty key turns off
encryption.

®)=

The line number of the addressed line is typed; dot is unchanged
by this command.

! shell command

The remainder of the line after the ! is sent to the XENIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the
remembered filename; if a ! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; dot is
unchanged.

1-118 ED(C)

(.+1)

An address alone on a line causes the addressed line to be printed.
An Enter alone on a line is equivalent to .+ 1p. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII Del or Break) is sent, ed prints a
question mark (?) and returns to its command level.

Files

/tmp/e# Temporary; # is the process number
ed.hup Work is saved here if the terminal stops.
See Also

grep(C), sed(C), sh(C)

Diagnostics

? Command errors

? file An inaccessible file

p. Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is
made to destroy ed’s buffer via the e or ¢ commands: it prints ?
and allows you to continue editing. The hyphen (-)

command-line option inhibits this feature. A second e or q
command at this point will take effect.

ED(C) 1-119

Comments

An exclamation (!) command cannot be subjecttoagorayv
command. The ! command and the ! escape from the e, r, and w
commands cannot be used if the the editor is invoked from a
restricted shell (see sh(C)).

The sequence \n in a regular expression does not match any
character.

The I command mishandles Del.

Because 0 is an illegal address for the w command, it is not
possible to create an empty file with ed.

1-120 ED(C)

ENABLE(C)

Name

enable - Turns on terminals.

Syntax

enable [-d][-e] y...

Description

This program manipulates the /etc/ttys file and signals init to
allow logins on a particular terminal. The -e and -d options may
be used to allow logins on some terminals and disallow logins on
other terminals in a single command.

Warning: Be absolutely certain to pause at least one minute
before reusing this command or before using the disable
command. Failure to do so may cause the system to go
down.

ENABLE(C) 1-121

Examples

A simple command to enable ttyO1 follows:

enable tty01

Multiple terminals can be disabled or enabled using the -d and -e
switches before the appropriate terminal name:

enable tty0l -e tty02 -d tty03 ttyO4

Files

/dev/tty*
/etc/ttys

See Also

login(M), disable(C), ttys(M), getty(M), init(M)

1-122 ENABLE(C)

ENV(CO)
Name

env - Sets environment for command execution.

Syntax

Description

The env command obtains the current environment, modifies it
according to its arguments, then executes the command with the
modified environment. Arguments of the form name = value are
merged into the inherited environment before the command is
executed. The - flag causes the inherited environment to be
ignored completely, so that the command is executed with exactly
the environment specified by the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

See Also

sh(C), profile(M), environ(M)

ENV(C) 1-123

EX(C)
Name

ex - Invokes a text editor.

Syntax

ex [-] [-v] [-t tag] [-r] [+lineno] name . . .

Description

The ex editor is the root of the editors ex and vi. The ex editor is a
superset of ed, whose most notable extension is a display editing
facility. Display based editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based
editor; in this case, see vi(C), a command that focuses on the
display editing portion of ex.

For ed Users

If you have used ed you will find that ex has a number of new
features. Generally, the ex editor uses far more of the capabilities
of terminals than ed does. It uses the terminal capability database
termcap(M) and the type of the terminal you are using from the
variable TERM in the environment to determine how to drive
your terminal efficiently. The ex editor makes use of features
such as insert and delete character and line in its visual command
mode, which can be abbreviated vi, which is the central mode of
editing when using vi(C). There is also an interline editing open
command, (o) that works on all terminals.

The ex editor contains a number of features for easily viewing the
text of a file. The z command gives easy access to windows of
text. Pressing Ctrl-D causes the editor to scroll a half-window of
text and is more useful for quickly stepping through a file than
just pressing the Enter key. Of course, the screen-oriented visual
mode gives constant access to editing context.

1-124 EX(C)

The ex editor gives you more help when you make mistakes. The
undo (u) command allows you to reverse any single change. This
editor also gives you feedback, normally printing changed lines,
and indicates when more than a few lines are affected by a
command so it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents the overwriting of existing files
unless you have edited them, so that you don’t accidentally
overwrite with a write, a file other than the one you are editing. If
the system (or editor) goes down, or you accidentally hang up the
phone, you can use the recover command to retrieve your work.
This will get you back to within a few lines of where you left off.

Several features in ex permit editing more than one file at a time.
You can give it a list of files on the command line and use the
next (n) command to edit each in turn. You can also give the next
command a list of filenames, or a pattern used by the shell to
specify a new set of files to be edited. In general, filenames in the
editor may be formed with full shell metasyntax. The
metacharacter “ %" is also available in forming filenames and is
replaced by the name of the current file. For editing large groups
of related files you can use ex’s tag command to quickly locate
functions and other important points in any of the files. This is
useful when you want to find the definition of a particular
function in a large program.

For moving text between files and within a file, the editor has a
group of buffers named a through z. You can place text in these
named buffers and carry it over when you edit another file.

The command & repeats the last substitute command. There is
also a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether
each substitution is desired.

You can use the substitute command in ex to systematically
convert the case of letters between uppercase and lowercase. It is
possible to ignore case in searches and substitutions. The ex
editor also allows regular expressions that match words to be
constructed. This is convenient, for example, when searching for
the word “edit” if your document also contains the word
“editor.”

EX(C) 1-125

In ex, you can set options. One option that is very useful is the
autoindent option that allows the editor to automatically supply
leading white space to align text. You can then use the Ctrl-D
key to backtab, space, and tab forward to align new code easily.

Miscellaneous useful features include an intelligent join (j)
command that supplies whitespace between joined lines
automatically, the commands < and > that shift groups of lines,
and the ability to filter portions of the buffer through commands
such as sort.

Files

/usr/lib/ex3.7strings Error messages
/usr/lib/ex3.7recover Recover command
/usr/lib/ex3.7preserve Preserve command
/etc/termcap Terminal capability
$SHOME/ .exrc Editor startup file
/tmp/Exnnnnn Editor temporary file
/tmp/Rxnnnnn Named buffer temporary file
/usr/preserve Preservation directory

See Also

awk(C), ed(C), grep(C), sed(C), termcap(M), vi(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

The undo command causes all marks to be lost on lines changed
and then restored if the marked lines were changed.

The undo command never clears the buffer modified condition.

1-126 EX(C)

The z command prints a number of logical rather than physical
lines. More than a screen full of output may result if long lines
are present.

File input/output errors don’t print a name if the command line
‘=’ option is used.

There is no easy way to do a single scan ignoring case.

Because of the implementation of the arguments to next, only 512
bytes of argument list are allowed there.

The format of /ete/termcap and the large number of capabilities
of terminals used by the editor cause terminal type setup to be
rather slow.

The editor does not warn if text is placed in named buffers and
not used before exiting the editor.

Null characters are discarded in input files and cannot appear in
resultant files.

EX(C) 1-127

EXPR(C)

Name

expr - Evaluates arguments as an expression.

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Terms of the expression
must be separated by blanks. Characters special to the shell must
be escaped. Note that 0 is returned to indicate a zero value,
rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments
may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2’s complement numbers.

The operators and keywords are listed below. Expressions should
be quoted by the shell, because many characters that have special
meaning in the shell also have special meaning in expr. The list is
in order of increasing precedence, with equal precedence
operators grouped within braces ({ and }).

expr | expr
Returns the first expr if it is neither null nor 0,
otherwise returns the second expr.

expr & expr
Returns the first expr if neither expr is null nor 0,
otherwise returns 0.

expri=,>, >=,<, <=, !=+} expr
Returns the result of an integer comparison if both
arguments are integers, otherwise returns the result of
a lexical comparison.

1-128 EXPR(C)

expr § +, - } expr
Addition or subtraction of integer-valued arguments.

expr { *9/’ % } expr
Multiplication, division, or remainder of
integer-valued arguments.

expr : expr
The matching operator : compares the first argument
with the second argument, which must be a regular
expression; regular expression syntax is the same as
that of ed(C), except that all patterns are ‘“‘anchored”
(That is, begin with a caret (A)). and therefore the
caret is not a special character in that context. (Note
that in the shell, the caret has the same meaning as the
pipe symbol (|).) Normally the matching operator
returns the number of characters matched (zero on
failure). Alternatively, the \ (... \) pattern symbols
can be used to return a portion of the first argument.

Examples

1.

Adds 1 to the shell variable a.

2. a equal to ither ysr/abc/t1i¢ or Just e

$a . (5N %a

Returns the last segment of a path name (for example, file).
Watch out for the slash alone as an argument: expr will take it as
the division operator (see ‘“Comments” below).

3. exnr $VAR

Returns the number of characters in $VAR.

See Also

ed(C), sh(C)

EXPR(C) 1-129

Diagnostics

As a side effect of expression evaluation, expr returns the
following exit values:

0 If the expression is neither null nor zero.
1 If the expression is null or zero.

2 For invalid expressions.

Other diagnostics include:

syntax error For operator/operand errors

nonnumeric argument
If arithmetic is attempted on such a string

Comments

After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an equal sign (=), the command:

expr $a = =
looks like:
expr = = =

Thus the arguments are passed to expr (and will all be taken as
the = operator). The following permits comparing equal signs:

expr X$a = X=

1-130 EXPR(C)

FACTOR(C)

Name

factor - Factor a number.

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a
number to be typed in. If you type in a positive number less than
256 (about 7.2x1016) it will factor the number and print it; each
one is printed the proper number of times. Then it waits for
another number. It exits if it encounters a zero or any
nonnumeric character.

If factor is invoked with an argument, it factors the number as
above and then exits.

The time it takes to factor a number, n, is proportional to \/n.
Diagnostics

Factor returns an error message if the supplied input value is
greater than 256 or is not an integer number.

FACTOR(C) 1-131

FALSE(C)
Name

false - Returns with a nonzero exit value.

Syntax

false

Description

The false command does nothing except return with a nonzero
exit value; true(C), false’s counterpart, does nothing except return
with a zero exit value. False is typically used in shell procedures
such as:

until false
do

command
done

See Also

sh(C), true(C)

Diagnostics

The false command has exit status 1.

1-132 FALSE(C)

FILE(C)
Name

file - Determines file type.

Syntax
file [-m] file ...

file [-m] -f ndinésfzf[é '

Description

The file command performs a series of tests on each argument in
an attempt to classify it. If an argument appears to be ASCII, file
examines the first 512 bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from
namefile. If the -m option is given, file sets the access time for the
examined file to the current time. Otherwise, the access time
remains unchanged.

Several object file formats are recognized. For a.out and x.out
format object files, the relationship of cc flags to file classification
is -i for “‘separate”, -n for ““pure”, and -s for not ‘“not stripped”.
Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comment

File can make mistakes: in particular, it often suggests that

command files are C programs. The access time will always be
updated for files which you do not own.

FILE(C) 1-133

FIND(C)
Name

find - Finds files.

Syntax

Description

The find command recursively descends the directory hierarchy
for each path name in the pathname-list (that is, one or more path
names) seeking files that match a Boolean expression written in
the primaries given below. In the descriptions, the argument # is
used as a decimal integer where +r means more than n, -n means
less than n, and » means exactly n.

-name file True if file matches the current filename.
Normal shell argument syntax may be used if
escaped (watch out for the left bracket ([), the
question mark (?) and the asterisk(*)).

-perm onum True if the file permission flags exactly match
the octal number onum (see chmod(C)). If onum
is prefixed by a minus sign, more flag bits
(017777) become significant and the flags are
compared:

(flags&onum) ==onum
-type x True if the type of the file is x, where x is b for a
block special file, ¢ for a character special file, d
for a directory, p for a named pipe, f for a plain

file, or n for a semaphore or shared data file.

=links n True if the file has » links.

1-134 FIND(C)

=user uname

-group gname

-size n

-atime n
-mtime »n
=ctime n

-exec cmd

-ok cmd

-print

-newer file

(expression)

True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the /etc/passwd file, it is taken as a user
ID.

True if the file belongs to the group gname. If
gname is numeric and does not appear in the
/etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file has been accessed in n days.
True if the file has been modified in »n days.
True if the file has been changed in » days.

True if the executed cmd returns a zero value as
exit status. The end of ¢md must be punctuated
by an escaped semicolon (\;). A command
argument $} is replaced by the current path
name.

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Always true; causes the current pathname to be
printed.

True if the current file has been modified more
recently than the argument file.

True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped).

The primaries may be combined using the

following operators (in order of decreasing
precedence):

FIND(C) 1-135

negation The negation of a primary is specified with the
exclamation (!) unary not operator.

AND The AND operation is implied by the
juxtaposition of two primaries.

OR The OR operation is specified with the -o
operator given between two primaries.
Examples

The following removes all files named a.out or *.o that have not
been accessed for a week:

find / \(-name a.out -o -name '*.o0' \)
-atime +7 -exec rm {}\;

Files

/etc/passwd
/etc/group

See Also

cpio(C), sh(C), test(C), cpio(F)

1-136 FIND(C)

FINGER(C)

Name

finger - Finds information about users.

Syntax

finger [-bfilpgsw 1[loginl [login2 . . .]]

Description

By default, finger lists the login name, full name, terminal name
and write status (as a “*” before the terminal name if write
permission is denied), idle time, login time, and office location
and phone number (if they are known) for each current XENIX
user. (Idle time is minutes if it is a single integer, hours and
minutes if a colon (:) is present, or days and hours if a d is
present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multi-line format; it includes all the
information described above as well as the user’s home directory
and login shell, any plan that the user has placed in the file .plan
in the home directory, and the project on which the user is
working from the file .project also in the home directory.

Finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-i Quick list of users with idle times.

-1 Forces long output format.

-p Suppresses printing of the .plan files.

-q Quick list of users.

FINGER(C) 1-137

-s Forces short output format.

-w Forces narrow format list of specified users.

Files
/etc/utmp Who file
/etc/passwd User names, offices, phones, login

directories, and shells.
/usr/adm/lastlog Last login times.
$HOME/ .plan Plans.
$HOME/ .project Projects.
See Also

who(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

Only the first line of the .project file is printed.

The “office” column of the output will contain any text in the

comment field of the user’s /etc/passwd file entry that
immediately follows a comma (,). For example, if the entry is:

johnd:eX8HinAk:201:50:John Doe,321:/usr/johnd:/bin/sh

the number 321 will appear in the office column.

Idle time is computed as the elapsed time since any activity on the
given terminal. This includes previous invocations of finger that

may have modified the terminal’s corresponding device file
/dev/tty??.

1-138 FINGER(C)

FSCK(C)

Name

fsck - Checks and repairs file systems.

Syntax

Jete/fsck [options|lfile-system] . ..

Description

The fsck command audits and interactively repairs inconsistent
conditions for XENIX file systems. If the file system is
consistent, the number of files, number of blocks used, and
number of blocks free are reported. If the file system is
inconsistent, the operator is prompted for concurrence before
each correction is attempted. Note that most corrective actions
result in some loss of data. The amount and severity of the loss
may be determined from the diagnostic output. The default
action for each consistency correction is to wait for the operator
to respond “‘yes” or “no”. If the operator does not have write
permission fsck defaults to the action of the -n option.

The following flags are interpreted by fsck:
-y Assumes a yes response to all questions asked by fsck.

-n Assumes a no response to all questions asked by fsck; do
not open the file system for writing.

-shb:c Ignores the actual free list and (unconditionally)
reconstructs a new one by rewriting the super-block of
the file system. The file system must be unmounted while
this is done.

The -sb:c option allows for creating an optimal free-list
organization.

FSCK(C) 1-139

The following forms are supported:
o =S

« -sBlocks-per-cylinder:Blocks-to-skip (for anything
else)

If b:c is not given, the values used when the file system
was created are used. If these values were not specified,
a reasonable default value is used.

-S Conditionally reconstructs the free list. This option is like
-sb:c above except that the free list is rebuilt only if there
are no discrepancies discovered in the file system. Using
-S forces a “no’ response to all questions asked by fsck.
This option is useful for forcing free list reorganization on
uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the -t option is specified, the file
named in the next argument is used as the scratch file, if
needed. Without the -t flag, fsck prompts the operator
for the name of the scratch file. The file chosen should
not be on the file system being checked, and if it is not a
special file or did not already exist, it is removed when
fsck completes.

-rr Recovers the root file system. The required file-system
argument must refer to the root file system, and
preferably to the block device (normally /dev/root). This
switch implies -y and overrides -n. If any modifications to
the file system are required, the system is automatically
shut down to insure the integrity of the file system.

1-140 FSCK(C)

-C

Causes any supported file system to be converted to the
type of the current file system. The user is asked to verify
the request for each file system that requires conversion
unless the -y option is specified. It is recommended that
every file system be checked with this option, while
unmounted if it is to be used with the current version of
XENIX. To update the active root file system, it should
be checked with:

fsck -c¢ -rr /dev/root

The file systems are specified, fsck reads a list of default file
systems from the file /etc/checklist.

Inconsistencies checked are:

Blocks claimed by more than one inode or the free list.

Blocks claimed by an inode or the free list outside the range
of the file system.

Incorrect link counts.
Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
Bad inode format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated inode.
Inode number out of range.
Super-block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

Bad free block list format.

Total free block or free inode count incorrect.

FSCK(C) 1-141

Orphaned files and directories (allocated but unreferenced) are,
with the operator’s concurrence, reconnected by placing them in
the lost+found directory. The name assigned is the inode number.
The only restriction is that the directory lost+found must pre-exist
in the root of the file system being checked and must have empty
slots in which entries can be made. This is accomplished by
making lost+found, copying a number of files to the directory,
and then removing them (before fsck is executed).

File
/etc/checklist

Contains default list of file systems to check.

See Also

checklist(F), filesystem(F)

Diagnostics

The diagnostics produced by fsck are intended to be
self-explanatory.

Comments

The fsck command will not run on a mounted nonraw file system
unless the file system is the root file system or unless the -n
option is specified and no writing out of the file system will take
place. If any such attempt is made, a warning is printed and no
further processing of the file system is done for the specified
device.

1-142 FSCK(C)

Although checking a raw device is almost always faster, there is
no way to tell if the file system is mounted. Cleaning a mounted
file system will almost certainly result in an inconsistent
super-block.

Warning: For a Microsoft XENIX 2.3 file system to be
properly supported under XENIX, it is necessary that fsck be
run on each 2.3 file system to be mounted under the XENIX
kernel. For the root file system, “fsck -rr /dev/root” should
be run and for all other file systems “fsck /dev/??”” on the
unmounted block device should be used.

FSCK(C) 1-143

GETOPT(C)
Name

getopt - Parses command options.

Syntax

set —- ‘getopt opisiring §%

Description

The getopt command is used to check and break up options in
command lines for parsing by shell procedures. Optstring is a
string of recognized option letters. If a letter is followed by a
colon, the option is expected to have an argument that may or
may not be separated from it by whitespace. The special option
-- is used to delimit the end of the options. The getopt command
will place -- in the arguments at the end of the options, or
recognize it if used explicitly. The shell arguments ($1 $2 ...)
are reset so that each option is preceded by a dash (-) and in its
own shell argument; each option argument is also in its own shell
argument.

1-144 GETOPT(C)

Example

The following code fragment shows how one can process the
arguments for a command that can take the options a and b, and
the option o, which requires an argument:

This code will accept any of the following as equivalent:

See Also

sh(C)
Diagnostics

The getopt command prints an error message on the standard
error when it encounters an option letter not included in optstring.

GETOPT(C) 1-145

GREP(C)

Name

grep, egrep, fgrep - Searches a file for a pattern.

Syntax
'gr'ep,yi[aptioyns’] expression [files]
 egrep [options] [expression] [files]

fgrep [b’pﬁéﬁs} y,f"[,:strings} [files]

Description

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each line
found is copied to the standard output. The grep patterns are
limited regular expressions in the style of ed(C); it uses a compact
nondeterministic algorithm. The egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes
needs exponential space. The fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized:

-y Prints all lines but those matching.
-x Prints only exact matches of an entire line (fgrep only).
-¢ Prints only a count of matching lines.

-1 Lists only the names of files with matching lines, separated
by newlines.

-h Prevents appending the name of the file with the matching
line to the matching line. Used when searching multiple
files.

-n Precedes each line by its relative line number in the file.

1-146 GREP(C)

-b Precedes each line by the block number on which it was
found. This is sometimes useful in locating disk block
numbers by context.

-s Suppresses error messages produced for nonexistent or
unreadable files (grep only).

-y Turns on matching of letters of either case in the input so
that case is insignificant. Does not work for egrep.

-e expression Same as a simple expression argument, but useful
when the expression begins with a dash (-).

—f file The regular expression for grep or egrep, or strings list (for
fgrep) is taken from the file.

In all cases, the filename is output if there is more than one input
file. Care should be taken when using the characters $, *, [, A,
|,(,),and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression argument in
single quotation marks.

The fgrep command searches for lines that contain one of the
strings separated by newlines.

The egrep command accepts regular expressions as in ed(C),
except for \(and \), with the addition of the following:

« A regular expression followed by a plus sign (4) matches one
or more occurrences of the regular expression.

« A regular expression followed by a question mark (?)
matches O or 1 occurrences of the regular expression.

. Two regular expressions separated by a vertical bar (|) or by
a newline match strings that are matched by either regular
expression.

« A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then *?+, then
concatenation, then the backslash (\) and the newline.

GREP(C) 1-147

See Also

ed(C), sed(C), sh(C)

Diagnostics

Exit status is O if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Comments

Ideally there should be only one grep, but there isn’t a single
algorithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

The egrep command does not recognize ranges, such as [a-z], in
character classes.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the single string argument. For example, you might
type the following at the command line:

Similarly, multiple strings can be specified in egrep by doing:

Thus egrep can do almost anything that grep and fgrep can do.

1-148 GREP(C)

GRPCHECK(C)

Name

grpcheck - Checks group file.

Syntax
pweheck [file]

‘grpeheck [file]

Description

The grpcheck command verifies all entries in the group file. This
verification includes a check of the number of fields, group name,
group ID, and whether all login names appear in the password
file. The default group file is /etc/group.

Files

/etc/group
/etc/passwd

See Also

pwcheck(C), group(M), passwd(M)

Diagnostics

Group entries in /etc/group with no login names are flagged.

GRPCHECK(C) 1-149

HALTSYS(O)

Name

haltsys - Closes out the file systems and halts the system.

Syntax

Description

The haltsys command does a shutdn() system call to flush out
pending disk /0, mark the file systems clean, and halt the
processor. The haltsys command takes effect immediately, so user
processes should be terminated beforehand. The shutdown(C) is
recommended for normal system termination; it warns the users,
performs system house cleaning, and calls haltsys. Use haltsys
directly only if some system problem prevents the running of
shutdown.

See Also

shutdown(C)

1-150 HALTSYS(C)

HD(C)
Name

hd - Displays files in hexadecimal format.

Syntax

Description

The hd command displays the contents of files in hexadecimal,
octal, decimal, and character formats. Control over the
specification of ranges of characters is also available. The default
behavior is with the following flags set: ““-abx -A”. This says that
addresses (file offsets) and bytes are printed in hexadecimal and
that characters are also printed. If no file argument is given, the
standard input is read.

Options include:

-s of fset Specify the beginning offset in the file where
printing is to begin. If no file argument is given,
or if a seek fails because the input is a pipe, offset
bytes are read from the input and discarded.
Otherwise, a seek error will terminate processing
of the current file.

The offset may be given in decimal, hexadecimal
(preceded by ‘0x’), or octal (preceded by a ‘0’).
It is optionally followed by one of the following
multipliers: w, 1, b, or k; for words (2 bytes), long
words (4 bytes), blocks (512 bytes), or KB
(1024 bytes). This is the one case where “b”
does not stand for bytes. Because specifying a
hexadecimal offset in blocks would result in an
ambiguous trailing b, any offset and multiplier
may be separated by an asterisk (*).

HD(C) 1-151

-n count Specify the number of bytes to process. The
count is in the same format as offset, above.

Format Flags

Format flags may specify addresses, characters, bytes, words (2
bytes) or longs (4 bytes) to be printed in hexadecimal, decimal, or
octal. Two special formats may also be indicated: text or ASCII.
Format and base specifiers may be freely combined and repeated
as desired to specify different bases (hexadecimal, decimal or
octal) for different output formats (such as addresses and
characters). All format flags appearing in a single argument are
applied as appropriate to all other flags in that argument.

acbwlA
Output format specifiers for addresses, characters, bytes,
words, long words and ASCII respectively. Only one base
specifier is be used for addresses; the address appears on
the first line of output that begins each new offset in the
input.

The character format prints printable characters unchanged,
special C escapes as defined in the language, and the
remaining values in the specified base.

The ASCII format prints all printable characters unchanged,
and all others as a period (.). This format appears to the
right of the first of other specified output formats. A base
specifier has no meaning with the ASCII format. If no
other output format (other than addresses) is given, bx is
assumed. If no base specifier is given, al/ of xdo are used.

xdo Output base specifiers for hexadecimal, decimal and octal.
If no format specifier is given, all of acbwl are used.

1-152 HD(C)

Print a text file, each line preceded by the address in the
file. Normally, lines should be terminated by a \n
character; but long lines are broken up. Control characters
in the range 0x00 to Ox1f are printed as ‘A @’ to ‘A__".
Bytes with the high bit set are preceded by a tilde (~) and
printed as if the high bit were not set. The special
characters (~ A \) are preceded by a backslash (\) to
escape their special meaning. As special cases, two values
are represented numerically as \ 177 and \377. This flag
overrides all output format specifiers except addresses.

HD(C) 1-153

HEAD(C)
Name

head - Prints the first few lines of a stream.

Syntax

Description

This filter prints the first count lines of each of the specified files.
If no files are specified, head reads from the standard input. If no
count is specified, then 10 lines are printed.

See Also

tail(C)
Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

1-154 HEAD(C)

ID(C)

Name

id - Prints user and group IDs and names.

Syntax

id

Description

The id command writes a message on the standard output giving
the user and group IDs and the corresponding names of the
invoking process. If the effective and real IDs do not match, both

are printed.

See Also

logname(C)

ID(C) 1-155

INSTALL(C)

Name

install - Install commands.

Syntax

b1 (-] [-n dirc] [-o] [-s] fle] dirx . . .1

Description

The install command is most commonly used in “makefiles’ to
install a file (updated target file) in a specific place within a file
system. Each file is installed by copying it into the appropriate
directory, thereby retaining the mode and owner of the original
command file. The program prints messages telling the user
exactly what files it is replacing or creating and where they are

going.

If no options or directories (dirx . . .) are given, install searches
(using find (C)) a set of default directories (/bin, /usr/bin, /etc,
/lib, and /usr/lib, in that order) for a file with the same name as
file. When the first occurrence is found, install issues a message
saying that it is overwriting that file with file, and proceeds to do
so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx . . .) are specified after file,
those directories are searched before the directories specified in
the default list.

The meanings of the options are:

-c dira Installs a new command file in the directory specified
in dira. Looks for file in dira and installs it there if it is
not found. If it is found, install issues a message
saying that the file already exists, and exits without
overwriting it. May be used alone or with the -s
option.

1-156 INSTALL

-f dirb

-n dirc

-0

See Also

find(C)

Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If the
file already exists, the mode and owner will be that of
the already existing file. May be used alone or with
the -o or -s options.

Ignores default directory list, searching only through
the given directories (dirx . . .). May be used alone
or with any other options except -c and -f.

If file is not found in any of the searched directories,
it put in the directory specified in dirc. The mode and
owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options except -c¢ and -f.

If file is found, this option saves the “found” file by

copying it to OLDfile in the directory in which it was
found. May be used alone or with any other options
except -c.

Suppresses printing of messages other than error

messages. May be used alone or with any other
options.

INSTALL 1-157

JOIN(C)

Name

join - Joins two relations.

Syntax

Description

The join command forms, on the standard output, a join of the
two relations specified by the lines of filel and file2. If filel is a
dash (-), the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, normally
the first in each line.

There is one line in the output for each pair of lines in file/ and
file2 that have identical join fields. The output line normally
consists of the common field, then the rest of the line from filel,
then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this

case, multiple separators count as one, and leading separators are
discarded.

1-158 JOIN(C)

These options are recognized:

-an

-€ S

-jn m

-0 list

In addition to the normal output, produces a line for
each unpairable line in file n, where nis 1 or 2.

Replaces empty output fields by string s.

Joins on the mth field of file n. If n is missing, uses
the m th field in each file.

Each output line makes up the fields specified in /ist,
each element of which has the form n.m, where nis a

file number and m is a field number.

Uses character c as a separator (tab character). Every
appearance of ¢ in a line is significant.

See Also

awk(C), comm(C), sort(C)

Comment

With default field separation, the collating sequence is that of sort
-b; with -t, the sequence is that of a plain sort.

JOIN(C) 1-159

KILL(C)

Name

kill - Terminates a process.

Syntax

kill [-signo] processid . . .

Description

The kill command sends signal 15 (terminate) to the specified
processes. This normally Kills processes that do not catch or
ignore the signal. The process number of each asynchronous
process started with & is reported by the shell (unless more than
one process is started in a pipeline, in which case the number of
the last process in the pipeline is reported). Process numbers can
also be found by using ps(C).

For example, if process number 0 is specified, all processes in the
process group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number (signo) preceded by - is given as the first
argument, that signal is sent instead of the terminate signal. In
particular, “kill -9 ... ” is a sure kill.

See Also

ps(C), sh(C)

1-160 KILL(C)

LC(C)

Name

Ic - Lists directory contents in columns.

Syntax

le[-1ACFRa

Description

The le command lists the contents of files and directories, in
columns. If name is a directory name, l¢ lists the contents of the
directory; if name is a filename, lc repeats the filename and any
other information requested. Output is given in columns and
sorted alphabetically. If no argument is given, the current
directory is listed. If several arguments are given, they are sorted
alphabetically, but file arguments appear before directories.

Files that are not the contents of a directory being interpreted are
always sorted across the page rather than down the page in
columns.

A stream output format is available in which files are listed across

the page, separated by commas. The -m option enables this

format.

The options are:

-1 Forces an output format with one entry per line.

-A Displays all files, including “..”” and those that begin with *.”,
unless the user is super-user. If the super-user gives this
option, “..”” and filenames that begin with *“.”” are not
displayed.

-C Forces columnar output.

LC(C) 1-161

-F

-m

-n

-0

Causes directories to be marked with a trailing /" and

1% S

executable files to be marked with a trailing .

This is the default if the last character of the name the
program is invoked with is an “f”".

Recursively lists subdirectories.
Lists all entries; usually “. » and * .. ” are suppressed.

Forces printing of nongraphic characters in the \ ddd
notation, in octal.

Sorts by time of file creation.

If the argument is a directory, lists only its name, not its
contents (mostly used with -l to get status on directory).

Forces each argument to be interpreted as a directory and
lists the name found in each slot. This option turns off -, -t,
-s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

The same as -l, except that the owner is not printed.

Prints inode number in first column of the report for each file
listed.

Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file. If the file is a special file, instead, the size field contains
the major and minor device numbers.

Forces stream output format.
The same as -l switch, but the owner’s user ID appears
instead of the owner’s name. If used with the -g switch, the

owner’s group ID appears instead of the group name.

The same as -l, except that the group is not printed.

1-162 LC(C)

=q

-r

=S

=u

Forces printing of nongraphic characters in filenames as the
character “?7”.

Reverses the order of sort to get reverse alphabetic or oldest
first as appropriate.

Gives size in 512-byte blocks, including indirect blocks for
each entry.

Sorts by time modified (latest first) instead of by name, as is
normal.

Uses time of last access instead of last modification for
sorting (-t) or printing (-1).

Forces columnar printing to be sorted across rather than
down the page.

The mode printed under the -l option contains 11 characters. The
first character is:

o o oo !

m

If the entry is a plain file.

If the entry is a directory.

If the entry is a block-type special file.

If the entry is a character-type special file.
If the entry is a named pipe.

If the entry is a semaphore.

If the entry is shared data (memory).

The next 9 characters are interpreted as three sets of 3 bits each.
The first set refers to owner permissions; the next to permissions
to others in the same user-group; and the last to all others.
Within each set the 3 characters indicate permission respectively
to read, to write, or to execute the file as a program. For a
directory, “‘execute’ permission is interpreted to mean permission
to search the directory for a specified file.

LC(C) 1-163

The permissions are indicated as follows:

r If the file is readable.

w If the file is writable.

x If the file is executable.

- If the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission
character is given as s if the file has set-user-ID mode.

The last character of the mode (normally “x” or **-”’) is t if the
1000 bit of the mode is on. See chmod(C) for the meaning of this
mode.

When the sizes of the files in a directory are listed, a total count
of blocks, including indirect blocks, is printed.

Files

/etc/passwd To get user IDs for le-1
/etc/group To get group IDs for lc-g
Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comments

Newline and tab are considered printing characters in filenames.
The output device is assumed to be 80 columns wide.

Column width choices are poor for terminals that can tab.

1-164 LC(C)

LINE(C)

Name

line - Copies one line.

Syntax

line

Description

The line command copies one line (up to a newline) from the
standard input and writes it on the standard output. It returns an
exit code of 1 on end-of-file and always prints at least a newline.
It is often used within shell files to read from the user’s terminal.

See Also

sh(C)

LINE(C) 1-165

LN(C)
Name

In - Makes a link to a file.

Syntax

I namel namez ”

Description

A link is a directory entry referring to a file; the same file
(together with its size, all its protection information, etc.) may
have several links to it. There is no way to distinguish a link to a
file from its original directory entry. Any changes to the file are
effective independent of the name by which the file is known.

The In command creates a link to the existing file namel. The
name?2 argument is a new name referring to the same file contents

as namel.

It is not allowed to link to a directory or to link across file
systems.

See Also

cp(C), mv(C), rm(C)

1-166 LN(C

LOGNAME(C)

Name

logname - Gets login name.

Syntax

Description

The logname command returns the current login name for the
user.

Files

/etc/utmp

See Also

env(C), login(M), environ(M)

LOGNAME(C) 1-167

LOOK(C)
Name

look - Finds lines in a sorted list.

Syntax

look [-df] string [file]

Description

The look command consults a sorted file and prints all lines that
begin with string. It uses binary search.

The options d and f affect comparisons as in sort(C):

-d Dictionary order: only letters, digits, tabs and blanks
participate in comparisons.

-f Fold. Uppercase letters compare equal to lowercase.

If no file is specified, /usr/dict/words is assumed with collating
sequence -df.

File

usr/dict/words

See Also

sort(C), grep(C)

1-168 LOOK(C)

LPR(C)

Name

Ipr - Sends files to the line printer queue for printing.

Syntax

Ipr [option . . . | [name . ..]

Description
The Ipr command causes the named files to be queued for printing
on a line printer. If no names appear, the standard input is

assumed; thus Ipr may be used as a filter.

The following options may be given (each as a separate argument
and in any order) before any filename arguments:

-¢ Makes a copy of the file and prints the copy and not the
original. Normally files are linked whenever possible.

-r Removes the file after sending it.
-m When printing is complete, reports that fact by mail(C).

-n Does not report the completion of printing by mail(C). This
is the default option.

LPR(C) 1-169

The file /etc/default/lpd contains the setting of the variable
BANNERS, which contains the number of pages printed as a
banner identifying each printout. This is normally set to either 1
or 2.

Files
/etc/passwd User’s identification and accounting data.
/usr/lib/Ipd Line printer daemon.

/usr/spool/lpd/* Spool area.
/etc/default/lpd Contains BANNERS default setting.

See Also

banner(C)

Comment

Once a file has been queued for printing, it should not be changed
or deleted until printing is complete. If you want to alter the
contents of the file or to remove the file immediately, use the -¢
option to force Ipr to make its own copy of the file.

1-170 LPR(C)

LS(C)
Name

Is - Gives information about contents of directories.

Syntax

Is [-logtasdrucif] names

Description

For each directory named, Is lists the contents of that directory;
for each file named, Is repeats its name and any other information
requested. By default, the output is sorted alphabetically. When
no argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately,
but file arguments are processed before directories and their
contents. There are several options:

-1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file (see below). If the file is a special file, the size field will
contain the major and minor device numbers, rather than a
size.

-0 The same as -1 except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-t Sorts by time of last modification (latest first) instead of by
name.

-a Lists all entries; in the absence of this option, entries whose
names begin with a period (.) are not listed.

-s Gives size in 512-byte blocks, including indirect blocks for
each entry.

-d If argument is a directory, lists only its name; often used with
-1 to get the status of a directory.

LS(C) 1-171

-r Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

-u Uses time of last access instead of last modification for
sorting (with the -t option) and/or printing (with the -1
option).

-¢ Uses time of last modification of the inode (mode, etc.)
instead of last modification of the file for sorting (-t) and/or
printing (-I).

-i For each file, prints the inode number in the first column of
the report.

-f Forces each argument to be interpreted as a directory and
lists the name found in each slot. This option turns off -I, -t,
-s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

The mode printed under the -1 option consists of 11 characters.
The first character is:

If the entry is an ordinary file.

If the entry is a directory.

If the entry is a block special file.

If the entry is a character special file.
If the entry is a named pipe.

If the entry is a semaphore.

m If the entry is shared data (memory).

nwo 0 o

The next 9 characters are interpreted as three sets of 3 bits each.
The first set refers to owner permissions; the next to permissions
to others in the same user-group; and the last to all others.
Within each set the 3 characters indicate permission respectively
to read, to write, or to execute the file as a program. For a
directory, “‘execute” permission is interpreted to mean permission
to search the directory for a specified file. The permissions are
indicated as follows:

r If the file is readable.

w If the file is writable.

x If the file is executable.

- If the indicated permission is not granted.

1-172 LS(C)

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission
character is given as s if the file has set-user-ID mode.

The last character of the mode (normally “x” or ““-”) is t if the
1000 bit of the mode is on. See chmod(C) for the meaning of this
mode. The indications of set-ID and 1000 bit of the mode are
capitalized if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count
of blocks including indirect blocks is printed.

Files

/ete/passwd Gets user IDs for Is -1 and Is -0
/etc/group Gets group IDs for Is -l and Is -g
See Also

chmod(C), find(C), 1c(C)

Comment

Newline and tab are considered printing characters in filenames.

LS(C) 1-173

MAIL(C)
Name

mail - Sends, reads, or disposes of mail.

Syntax

Description

The mail processing system supports composing of messages, and
sending and receiving mail between multiple users. When sending
mail, a user is the name of a user or of an alias assigned to a
machine or to a group of users.

Options include:

-u user Tells mail to read the system mailbox belonging to
the specified user.

~f mailbox Tells mail to read the specified mailbox instead of
the default user’s system mailbox.

-e Allows escapes from compose mode when input
comes from a file.

-R Makes the mail session “‘read-only” by preventing
alteration of the mailbox being read. Useful when
accessing system-wide mailboxes.

-i Tells mail to ignore Interrupts (Del) sent from the
terminal. This is useful when reading or sending
mail over telephone lines where ‘‘noise” may
produce unwanted Interrupts.

1-174 MAIL(C)

-s subject Specifies subject as the text of the subject: field for
the message being sent.

Sending mail

To send a message to one or more other people, invoke mail with
arguments that are the names of people to send to. You are then
expected to type in your message, followed by a Ctrl-D at the
beginning of a line.

Reading Mail

To read mail, invoke mail with no arguments. This checks your
mail out of the system-wide directory so that you can read and
dispose of the messages sent to you. A message header is printed
out for each message in your mailbox The current message is
initially the last numbered message and can be printed using the
print command (which can be abbreviated p). You can move
among the messages much as you move between lines in ed, with
the commands + and - moving backward and forward, and simple
numbers typing the addressed message.

If new mail arrives during the mail session you can read in the
new messages with the restart command.

Disposing of Mail

After examining a message you can delete (d) the message or
reply (r) to it. Deletion causes the mail program to forget about
the message. This is not irreversible, the message can be
undeleted (u) by giving its number, or the mail session can be
ended by giving the exit (x) command. If you leave mail with the
quit (q) command, your deleted messages cannot be recovered.

Specifying Messages

Commands such as print and delete often can be given a list of
message numbers as arguments to apply to a number of messages
at once. Thus “delete 1 2" deletes messages 1 and 2, while
“delete 1-5”" deletes messages 1 through 5. The special name *
addresses all messages, and $ addresses the last message; thus the
command top, which prints the first few lines of a message, could
be used in top * to print the first few lines of all messages.

MAIL(C) 1-175

Replying to or Originating Mail

You can use the reply command to set up a response to a message,
sending it back to the person who it was from. Text you then
type in, up to a Ctrl-D, defines the contents of the message.
While you are composing a message, mail treats lines beginning
with a tilde (~) as special. For instance, typing ‘“~m” (alone on a
line) places a copy of the current message into the response,
shifting it right by one tabstop. Other escapes set up subject
fields, add and delete recipients to the message, and allow you to
escape to an editor to revise the message or to a shell to run some
commands. (These options are in the summary below.)

Ending a Mail Session

You can end a mail session with the quit (q) command. Messages
can be put in your mbox file with the mbox (mb) command. If a
message is not deleted or mailboxed, it will go back to the post
office (/usr/spool/mail/yournamg), The -f option causes mail to
read in the contents of your mbox (or the specified file) for
processing; when you quit, mail writes undeleted messages back to
this file. The -i option causes mail to ignore Interrupts (Del).

Using Aliases and Distribution Lists

It is possible to create personal distribution lists so that, for
instance, you can send mail to cohorts and have it go to a group
of people. Such lists can be defined by placing a line like:

alias cohorts ron bob barry bobo betty beth bobbi

in the file .mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mail.
System-wide distribution lists can be created by editing
/usr/lib/mail/aliases (see aliases(M)); these are kept in a slightly
different syntax. In mail you send, personal aliases are expanded
in mail sent to others so that they will be able to reply to the
recipients. System wide aliases are not expanded when the mail is
sent, but any reply returned to the machine will have the
system-wide alias expanded.

1-176 MAIL(C)

The mail command has a number of options that can be set in the
.mailrc file to alter its behavior; for example, set askcc enables the
askcc feature. (These options are summarized below.)

Summary

Each mail command is typed on a line by itself, and may take
arguments following the command word. The command need not
be typed in its entirety - the first command that matches the
typed prefix is used. For the commands that take message lists as
arguments, if no message list is given, the next message forward
that satisfies the command’s requirements is used. If there are no
messages forward of the current message, the search proceeds
backward, and if there are no good messages at all, mail types
“No applicable messages” and ends the command.

- Goes to the previous message and prints it out. If
given a numeric argument n, goes to the nth
previous message and prints it.

+ Goes to the next message and prints it out. If
given a numeric argument n, goes to the nth next
message and prints it.

Enter Goes to the next message and prints it out.
? Prints a brief summary of commands.
! Executes the shell command that follows.

= Prints out the current message number.

+A Prints out the first message.
$ Prints out the last message.
alias (a) With no arguments, prints out all

currently-defined aliases. With one argument,
prints out that alias. With more than one
argument, adds the users named in the second and
later arguments to the alias named in the first
argument.

MAIL(C) 1-177

cd

delete

dp

echo path

edit

exit

file

forward

Forward

headers

(¢) Changes the user’s working directory to that
specified. If no directory is given, changes to the
user’s login directory.

(d) Takes a list of messages as an argument and
marks them all as deleted. Deleted messages are
not retained in the system mailbox after a quit, nor
are they available to any command other than the
undelete command.

Deletes the current message and prints the next
message. If there is no next message, mail says
“No more messages’”.

Expands shell metacharacters.

(e) Takes a list of messages and points the text
editor at each one in turn. On return from the
editor, the message is read back in.

(x) Effects an immediate return to the shell
without modifying the user’s system mailbox, his
mbox file, or his edit file in -f.

(fi) Prints the name of the file mail is reading. If it
is a mailbox the name of the owner is returned.

(f) Forwards the current message to the named
users. Current message is indented within
forwarded message.

(F) Forwards the current message to the named
users. Current message is not indented within
forwarded message.

(h) Lists the current range of headers, which is an
18-message group. If a + argument is given, the
next 18-message group is printed, and if a -
argument is given, the previous 18-message group
is printed. Both + and - may take a number to
view a particular window. If a message list is
given, it prints the specified headers.

1-178 MAIL(C)

hold

list

Ipr

mail

mbox

(ho) Takes a message list and marks each message
therein to be saved in the user’s system mailbox
instead of in mbox. Use only when the switch
autombox is set. Does not override the delete
command.

Prints list of mail commands.

(1) Prints out each message in a message-list on the
line printer.

(m) Takes as argument login names and
distribution group names and sends mail to those
people.

(mb) Marks messages in a message list so that they
are saved in the user mailbox after leaving mail.

move mesg-list mesg-num

next

print

quit

Places the messages specified in mesg-list after the
message specified in mesg-num. If mesg-num is 0,
mesg-list moves to the top of the mailbox.

(n) Like + or Enter goes to the next message in
sequence and prints it. With an argument list,
types the next matching message.

(p) Prints out each message in a message list on
the terminal display.

(q) Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and
removing all other messages. Files marked with a
asterisk (*) are saved; files marked with an “M”
are saved in the user mailbox. If new mail has
arrived during the session, the message ‘“‘New mail
has arrived -- type ‘restart’ to read.” is given. If
given while editing a mailbox file with the -f flag,
the edit file is rewritten. The user returns to the
shell, unless the rewrite of edit file fails, in which
case the user can escape with the exit command.

MAIL(C) 1-179

reply

Reply

restart

save

set

shell

size

source

(r) Takes a message list and sends mail to each
message author. The default message must not be
deleted.

(R) Takes a message list and sends mail to each
message author and each member of the message
list in the cc field, just like the mail command. The
default message must not be deleted.

Reads in messages that arrived during the current
mail session.

(s) Takes a message list and a filename and
appends each message in turn to the end of the
file. The filename in quotes, followed by the line
count and character count is echoed on the user’s
terminal.

(se) With no arguments, prints all variable values.
Otherwise, sets option. Arguments are of the form
option=value or option.

(sh) Invokes an interactive version of the shell.

(si) Takes a message list and prints out the size, in
characters, of each message.

(so) Reads mail commands from the file given as
its only argument.

string string mesg-list

top

undelete

Searches for string in mesg-list. If no mesg-list is
specified, all undeleted messages are searched.
Case is ignored in search.

(t) Takes a message list and prints the top few
lines of each. The number of lines printed is
controlled by the variable toplines and defaults to
Six.

(u) Takes a message list and marks each one as not
being deleted.

1-180 MAIL(C)

unset (uns) Takes a list of option names and discards
their remembered values; the inverse of set.

visual (v) Takes a message list and invokes the visual
editor on each message.

write filename
(w) Saves the body of the message in the named
file.

Here is a summary of the compose escapes, which are used when
composing messages to perform special functions. Compose
escapes are only recognized at the beginning of lines.

+~~ string Inserts the string of text in the message prefaced
by a single tilde (~). If you have changed the
escape character, then you should double that
character instead.

+~? Prints out help for compose escapes.
+~. Same as Ctrl-D on a new line.
+~! ¢cmd Executes the indicated shell command, then

returns to the message.

+~| cmd Pipes the message through the command as a
filter. If the command gives no output or
terminates abnormally, retains the original text of
the message.

+~ mail-command
_ Executes a mail command, then returns to
compose mode.
+~: mail-command
Executes a mail command, then returns to
compose mode.

+ ~alias Prints list of private aliases.

+~alias aliasname
Prints names included in private aliasname.

MAIL(C) 1-181

+~Alias Prints list of private, then system-wide aliases for
all users named in the current To, CC and Bcc lists.

+~Alias users Prints list of private, then system-wide aliases for
users.

+~b name. ..
Adds the given names to the list of blind copy

recipients.

+~¢ name .
Adds the given names to the list of carbon copy
recipients.

+~cc name . .
Same as ~c above.

+~d Reads the file dead.letter from your home directory
into the message.

+~e Invokes the text editor on the message collected so
far. After the editing session is finished, you may
continue appending text to the message.

+~h Edits the message header fields by typing each one

in turn and allowing the user to append text to the
end or modify the field with the current terminal
erase and kill characters.

+~m mesg-list
Reads the named messages into the message
buffer, shifted right one tab. If no messages are
specified, reads the current message.

+~M mesg-list
Reads the named messages into the message
buffer, shifted right one tab. If no messages are
specified, reads the current message.

+~p Prints out the messages collected so far, prefaced
by the message header fields.

1-182 MAIL(C)

+~r filename

Aborts the message being sent, copying the
message to dead. letter in your home directory if
save is set.

Reads the named file into the message buffer.

+~Return name

+~s string

+~t name ...

+~v

Adds the given names to the Return-receipt-to
field.

Causes the named string to become the current
subject field.

Adds the given names to the direct recipient list.

Invokes a visual editor (defined by the VISUAL
option) on the message buffer. After you quit the
editor, you may resume appending text to the end
of your message.

+~w filename Writes the message to the named file.

Options are controlled with the set and unset commands. An
option may be either a switch, in which case it is either on or off,
or a string, in which case the actual value is of interest. The
switch options include the following:

askce

asksubject

autombox

autoprint

Causes you to be prompted for additional copy
recipients at the end of each message. Responding
with a newline indicates your satisfaction with the
current list.

Causes mail to prompt you for the subject of each
message you send. If you respond with simply a
newline, no subject field is sent.

Causes all examined messages to be saved in the
user mailbox unless deleted or saved.

Causes the delete command to behave like dp.

After deleting a message, the next one will be
typed automatically.

MAIL(C) 1-183

chron

dot

ignore

mchron

metoo

nosave

quiet

Causes messages to be displayed in chronological
order.

Permits use of dot (.) as the end of file character
when composing messages.

Causes Interrupt (Del) signals from your terminal
to be ignored and echoed as at-signs (@).

Causes messages to be listed in numerical order
(most recently received first), but displayed in
chronological order.

Usually, when a group that contains the sender is
expanded, the sender is removed from the
expansion. Setting this option causes the sender to
be included in the group.

Prevents aborted messages from being appended
to the file dead.letter in your home directory on
receipt of two Interrupts (Dels) (ora ~ q).

Suppresses the printing of the version header when
first invoked.

The following options have string values:

EDITOR

SHELL

VISUAL

escape

Path name of the text editor to use in the edit
command and ~e escape. If not defined, a default
editor is used.

Path name of the shell to use in the ! command
and the ~! escape. A default shell is used if this
option is not defined.

Path name of the text editor to use in the visual
command and ~v escape.

If defined, the first character of this option gives
the character to use in the place of the tilde (~) to
denote escapes.

1-184 MAIL(C)

page=n Specifies the number of lines () to be printed in a
‘“page” of text when displaying messages.

record If defined, gives the path name of the file used to
record all outgoing mail. If not defined, outgoing
mail is not saved.

toplines If defined, gives the number of lines of a message
to be printed out with the top command; normally,
the first six lines are printed.

Files

/usr/spool/mail/* System mailboxes.

/usr/name/dead.letter File where undeliverable mail is
deposited.

/usr/name/mbox Your old mail.

/usr/name/.mailrc File giving initial mail commands.

/usr/lib/mail/aliases System-wide aliases.

/usr/lib/mail/aliases.hash System-wide alias database.

/usr/lib/mail/faliases Forwarding aliases for the local
machine.

/usr/lib/mail/maliases Machine aliases.

/usr/lib/mail/mailhelp.cmd Help file.
/usr/lib/mail/mailhelp.esc Help file.
/usr/lib/mail/mailhelp.set Help file.

/usr/lib/mail/mailrc System initialization file.
/usr/bin/mail The mail command.
See Also

aliases(M), aliashash(M), netutil(C)
Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

MAIL(C) 1-185

MESG(C)

Name

mesg - Permits or denies messages sent to a terminal.

Syntax

mesg [n] [y]

Description

The mesg command with argument n prevents messages via
write(C) by revoking nonuser write permission on the user’s
terminal. The mesg command with argument y reinstates
permission. By itself, mesg reports the current state without
changing it.

File

/dev/tty*

See Also

write(C)

Diagnostics

Exit status is O if messages are receivable, 1 if not, 2 on error.

1-186 MESG(C)

MKDIR(C)

Name

mkdir - Makes a directory.

Syntax

mkdir dirname . . .

Description

The mkdir command creates directories. The standard entries
“dot” (.), for the directory itself, and “dot dot” (..), for its
parent, are made automatically.

The mkdir command requires write permission in the parent

directory. The permissions assigned to the new directory are
modified by the current file creation mask set by umask(C).

See Also

rmdir(C), umask(C)

Diagnostics
The mkdir command returns exit code O if all directories were

successfully made; otherwise, it prints a diagnostic, and returns
nonzero.

MKDIR(C) 1-187

MKFS(C)

Name

mkfs - Constructs a file system.

cial blocks [:inodes] [gap blocks]
special proto [gap blocks]

/ac/mkfs [-—y} '

Description

The mkfs command constructs a file system by writing on the
special file according to the directions found in the remainder of
the command line.

If it appears that the special file contains a file system, operator
confirmation is requested before overwriting the data. The -y
‘“yes” option overrides this, and writes over any existing data
without question. The -n option causes mkfs to terminate without
question if the target contains an existing file system. The check
used is to read block one from the target device (block one is the
super-block) and see whether the bytes are the same. If they are
not, this is taken to be meaningful data and confirmation is
requested.

If the second argument is given as a string of digits, mkfs builds a
file system with a single empty directory on it. The size of the file
system is the value of blocks interpreted as a decimal number. The
boot program is left uninitialized. If the number of inodes is
specified, this number should be the same as the estimated
number of files in the file system. If the optional number of
inodes is not given, the number of inodes is calculated as a
function of the system file size.

1-188 MKFS(C)

If the second argument is a file name that can be opened, mkfs
assumes it to be a prototype file proto, and takes its directions
from that file. The prototype file contains tokens separated by
spaces or newlines. The first token is the name of a file to be
copied onto block zero as the bootstrap program. The bootstrap
program specified should already be stripped of the header. If the
header has not been stripped from the bootstrap program, mkfs
issues a warning. The second token is a number specifying the
size of the created file system. It will be the number of blocks on
the device, perhaps diminished by space for swapping. The next
token is the i-list size in blocks. The next set of tokens is the
specification for the root file. File specifications consist of tokens
giving the mode, the user ID, the group ID, and the initial
contents of the file. The syntax of the contents field depends on
the mode.

The mode token for a file is a 6-character string. The first
character specifies the type of the file. (The characters -bed
specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to
specify set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a three-digit octal
number giving the owner, group, and other read, write, execute
permissions (see chmod(C)).

Two decimal number tokens come after the mode; they specify
the user and group IDs of the owner of the file.

If the file is a regular file, the next token is a pathname from
which the contents and size are copied. If the file is a block or
character special file, two decimal number tokens follow that give
the major and minor device numbers. If the file is a directory,
mkfs makes the entries . and .. and (recursively) reads a list of
names and file specifications for the entries in the directory. The
scan is terminated with the token $.

MKFS(C) 1-189

A sample prototype specification follows:

/stand/diskboot

4872 110

d--777 31

usr d--777 31
sh ---755 3 1 /bin/sh
ken d--755 61

$

b0 b--644 31 00
c0 c--644 3100
$

$

In both command syntaxes, the disk interleaving factors, gap and
blocks, can be specified. The interleaving factors are a function of
the disk hardware and are described in detail in the XENIX Basic
Operations-Guide, and System Administration Manual Appendix A.
See Also

filesystem(F), dir(F)

Comment

There is no way to specify links when using a prototype file. If
the number of inodes is specified on the command line, the
maximum number of inodes in the file system is 65500.

1-190 MKFS(C)

MKNOD(C)

Name

mknod - Builds special files.

Syntax
/etc/mknod name [¢l[b] major minor
/etc/mknod name p
/etc/mknod name s

/etc/mknod name m

Description

The mknod command makes a directory entry and corresponding
inode for a special file. The first argument is the name of the
entry. In the first case, the second argument is b if the special file
is block-type (disks, tape) or c if it is character-type (other
devices). The last two arguments are numbers specifying the
major device type and the minor device (for example, unit, drive,
or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each
system.

The mknod command can also be used to create named pipes with
the p option; semaphores with the s option; and shared data
(memory) with the m option.

Only the super-user can use the first form of the syntax.

MKNOD(C) 1-191

MKUSER(C)

Name

mkuser - Adds a login ID to the system.

Syntax

/ete/mkuser

Description

The mkuser command is used to add more user login IDs to the
system. It is the preferred method for adding new users to the
system, because it handles all directory creation and password file
update. To add a new user to the system, mkuser requires four
pieces of information: the login name, the initial password, and an
optional comment string for the password file. It also allows the
new user to be assigned to a group if required, although in most
cases a default group is suitable. The program prompts for these
four items and validates the given data. The login name is
checked against certain criteria (that is, it must be at least three
characters and begin with a lowercase letter). The password must
follow standard XENIX conventions, see passwd(C). The
password file comment field can be up to 20 characters of
information.

The mkuser command takes some of its parameters from a default
file, /etc/default/mkuser. Currently the two settable options are
the path name for the login shell and the root path of home
directories. An example default file is:

HOME=/usr

This file can be edited (by the super-user) to change these
defaults. There are three other files in the directory
/usr/lib/mkuser which may also be altered to suit local options.
They are mkuser.help, which is the introductory explanation given
by mkuser on startup, mkuser.mail, which is the initial mail
message sent to new users, and mkuser.prof, the standard .profile
file given to new users.

1-192 MKUSER(C)

The mkuser command allocates user IDs starting at 200, or the
largest number used in the password file. The default group ID
for new users is 50. The minimum group ID allowed for user
accounts is 50. The program prompts the operator for an optional
group specification. This can either be a numeric group ID, or a
group name. If the group exists, the user is added to it. If it does
not exist, a new entry in /etc/group is created. A new group
cannot have a numeric ID less than 51. If a new group is to be
created, and the operator only specifies the group name, a free
group ID is assigned. Alternatively the operator can specify the
group ID too.

The mkuser command can only be executed by the super-user.
The minimum length of a legal password, and the minimum and
maximum number of weeks used in password aging are specified
in /etc/default/passwd by the variables PASSLENGTH,
MINWEEKS and MAXWEEKS. For example, these variables
might be set as follows:

PASSLENGTH=6

MINWEEKS=2

MAXWEEKS=6

Files

/etc/passwd
/usr/spool/mail/ username
/etc/default/mkuser
/usr/lib/mkuser/mkuser.help
/usr/lib/mkuser/mkuser.prof
/usr/lib/mkuser/mkuser.mail

See Also

rmuser(C), passwd(C), pwadmin(C)

MKUSER(C) 1-193

MORE(C)
Name

more - Views a file one screen full at a time.

Syntax

more [—cdﬂsui’w]f n][+1menum berl[+/, pa;tern}[ﬁa;me .]

Description

This filter allows examination of continuous text, one screen full
at a time. It normally pauses after each screen full, printing
“--More--"" at the bottom of the screen. If the user then types a
carriage return, one more line is displayed. If the user presses the
Space bar, another screen full is displayed. Other possibilities are
‘described below.

The command line options are:

-n An integer that is the size (in lines) of the window which
more will use instead of the default.

-¢ The more command draws each page by beginning at the
top of the screen and erasing each line just before it draws
on it. This avoids scrolling the screen, making it easier to
read while more is writing. This option is ignored if the
terminal does not have the ability to clear to the end of a
line.

-d The more command prompts with the message ‘“Hit space to
continue, Rubout to abort” at the end of each screen full.
This is useful if more is being used as a filter in some setting,
such as a class, where many users may be unsophisticated.

1-194 MORE(C)

~-S

-u

-

-W

This option causes more to count logical, rather than screen
lines. That is, long lines are not folded. This option is
recommended when viewing output that contains
unprintable characters, for example, escape sequences.
Escape sequences contain characters that would ordinarily
occupy screen positions, but that do not print when they are
sent to the terminal as part of an escape sequence. Thus,
more may think that lines are longer than they actually are
and fold lines erroneously.

Does not treat Ctrl-1 (form feed) specially. If this option is
not given, more pauses after any line that contains a Ctrl-1
as if the end of a screen full had been reached. Also, if a
file begins with a form feed, the screen is cleared before the
file is printed.

Squeezes multiple blank lines from the output, producing
only one blank line. This option maximizes the useful
information present on the screen.

Normally, more handles underlining in a manner appropriate
to the particular terminal; if the terminal can perform
underlining or has a standout mode, more outputs
appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source
file. The -u option suppresses this processing.

Normally, more ignores control characters that it does not
interpret in some way. The -r option causes these to be
displayed as A C where “C” stands for any such character.

Normally, more exits when it comes to the end of its input.
With -w however, more prompts and waits for any key to be
struck before exiting.

+ linenumber

Starts up at linenumber

+/pattern

Starts up two lines before the line containing the regular
expression pattern

MORE(C) 1-195

The more command looks in the file /etc/termcap to determine
terminal characteristics and to determine the default window size.
On a terminal display capable of displaying 24 lines, the default
window size is 22 lines.

The more command looks in the environment variable MORE to
preset any flags desired. For example, if you prefer to view files

using the -¢ mode of operation, the shell command “MORE=-c”
in the .profile file causes all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is
displayed along with the “--More--"" prompt. This gives the
fraction of the file (in characters, not lines) that has been read so
far.

Other sequences that may be typed when more pauses, and their
effects, are (i is an optional integer argument, defaulting to 1):

i<space> Displays i more lines, (or another screen full if no
argument is given).

Ctl-D Displays 11 more lines (a ““scroll”). If i is given, the
scroll size is set to 1.

d Same as Ctrl-D.

iz Same as typing a space except that i, if present,
becomes the new window size.

is Skips i lines and prints a screen full of lines.
if Skips i screen fulls and prints a screen full of lines.
gorQ Exits from more.

= Displays the current line number.

v Starts up the screen editor vi at the current line.
hor? Help command; gives a description of all the more
commands.

1-196 MORE(C)

i/expr

in

lcommand

in

ip

:qor:Q

Searches for the ith occurrence of the regular
expression expr. If there are less than i occurrences of
expr, and the input is a file (rather than a pipe), the
position in the file remains unchanged. Otherwise, a
screen full is displayed, starting two lines before the
place where the expression was found. The user’s
erase and kill characters may be used to edit the
regular expression. Erasing back past the first column
cancels the search command.

Searches for the ith occurrence of the last regular
expression entered.

(Single quotation mark) Goes to the point from which
the last search started. If no search has been
performed in the current file, this command goes back
to the beginning of the file.

Invokes a shell with command. The characters % and !
in “command” are replaced with the current filename
and the previous shell command respectively. If there
is no current filename, % is not expanded. The
sequences “\ % and “\!” are replaced by “% " and
“” respectively.

Skips to the ith next file given in the command line
(skips to last file if ; doesn’t make sense).

Skips to the ith previous file given in the command
line. If this command is given in the middle of
printing out a file, more goes back to the beginning of
the file. If i doesn’t make sense, more skips back to
the first file. If more is not reading from a file, the
beep sounds and nothing else happens.

Displays the current filename and line number.

Exits from more (same as q or Q).

Repeats the previous command.

MORE(C) 1-197

The commands take effect immediately, that is, it is not necessary
to type a carriage return. Up to the time when the command
character itself is given; the user may enter the line kill character
to cancel the numerical argument being formed. In addition, the
user may enter the erase character to redisplay the
“--More--(xx%)’’ message.

The terminal is set to noecho mode by this program so that the
output can be continuous. What you type will not show on your
terminal display, except for the slash (/) and exclamation (!)
commands.

If the standard output is not a teletype, more acts just like cat,

except that a header is printed before each file (if there is more
than one).

Files

/etc/termcap Terminal data base.
/usr/lib/more.help Help file.

See Also

sh(C), environ(M)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Comment

Before displaying a file, more attempts to detect whether it is a
nonprintable binary file such as a directory or executable binary
image. If more concludes that a file is unprintable, it rightly
refuses to print it. However, more cannot detect all possible kinds
of nonprintable files.

1-198 MORE(C)

MOUNT(C)

Name

mount - Mounts a file structure.

Syntax
/ete/mount [special—de\)ice directory [-r]]

/etc/umount special-device

Description

The mount command announces to the system that a removable
file structure is present on special-device. The file structure is
mounted on directory. The directory must already exist; it becomes
the name of the root of the newly mounted file structure.

The mount and umount commands maintain a table of mounted
devices. If invoked with no arguments, for each special device
mount prints the name of the device, the directory name of the
mounted file structure, whether the file structure is readonly, and
the date it was mounted.

The optional last argument indicates that the file is to be mounted
read-only. Physically write-protected files must be mounted in
this way or errors occur when access times are updated, whether
or not any explicit write is attempted.

The umount command removes the removable file structure
previously mounted on device special-device.

File

/etc/mnttab Mount table

MOUNT(C) 1-199

See Also

umount(C), mnttab(F)

Diagnostics

The mount command issues a warning if the file structure to be
mounted is currently mounted under another name.

Busy file structures cannot be dismounted with umount. A file
structure is busy if it contains an open file or some user’s working
directory.

Comments

Some degree of validation is done on the file structure; however it
is generally unwise to mount corrupt file structures.

Be aware that when in single-user mode, the commands that look
in /etc/mnttab for default arguments (for example df, ncheck,
quot, mount, and umount) give either incorrect results (because of
a corrupt /etc/mnttab from a nonshutdown stoppage) or no
results (because of an empty mnttab from a shutdown stoppage).

In multiuser mode, this is not a problem; /etc/rc initializes
/etc/mnttab to contain only /dev/root and subsequent mounts
update it appropriately.

The mount(C) and umount(C) commands use a lock file to
guarantee exclusive access to /etc/mnttab , the commands which
just read it (those mentioned above) do not, so it is possible to hit
a window during which it is corrupt. This is not a problem in
practice because mount and umount are not frequent operations.

1-200 MOUNT(C)

MV(C)

mv - Moves or renames files and directories.

Syntax
The mv command filel file2
mv file . . . directory

mv directory directory

Description

The mv command moves or changes the name of file! to file2.
If file2 already exists, it is erased before filel is moved. If file2
has a mode that prevents writing, mv prints the mode and reads
the standard input to obtain a line; if the line begins with y, the

move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory
with their original filenames.

In the third form, a directory can be renamed only.

The command mv refuses to move a file onto itself.

See Also

cp(C), copy(C)

Comment

If filel and file2 lie on different systems, mv must copy the file
and delete the original. In this case, the owner becomes that of
the copying process and any linking relationship with other files is
lost.

MV(C) 1-201

NCHECK(C)

Name

ncheck - Generates names from inode numbers.

Syntax

ncheck [-inumbers] [-a] [-s] [filesystem]

Description

The ncheck command with no argument generates a path name vs.
inode number list of all files on the set of file systems specified in
/etc/mnttab. The two characters / . are appended to the names of
directory files. The -i option reduces the report to only those files
whose inode numbers follow. The -a option allows printing of the
names . and .., which are ordinarily suppressed. The -s option
reduces the report to special files and files with set-user-ID mode;
it is intended to discover concealed violations of security policy.

A single filesystem may be specified rather than the default list of
mounted file systems.

1-202 NCHECK(C)

File

/etc/mnttab

See Also

fsck(C), sort(C)

Diagnostics

When the file system structure is improper, ?? denotes the
“parent” of a parentless file and a pathname beginning with ...
denotes a loop.

Comment

See “Comments” under mount(C).

NCHECK(C) 1-203

NETUTIL(C)

Name

netutil - Administers the XENIX network.

Syntax

netutil {-aptwn] ,

Description

The netutil command allows the user to create and maintain a
network of XENIX systems. A network is a linking over serial
lines of two or more XENIX systems. It is used to send mail
between systems with the mail(C) command, transfer files
between systems with the rep(C) command, and execute
commands from a remote system with the remote(C) command.

The netutil command is used to create and distribute the data files
needed to implement the network. It is also used to start and stop
the network. The option argument may be any one of install, save,
restore, start, stop, or the numbers 1 through S respectively.

The install option interactively creates the data files needed to run
the network. The save option saves these files on diskettes,
allowing them to be distributed to the other systems in the
network. The restore option copies the data files from diskette
back to a system. The start option starts the network. The stop
option stops the network. An option may also be any decimal
digit in the range 1 to 5. If invoked without an option, the
command displays a menu from which to choose one. Once an
option is selected, it prompts for additional information if needed.

1-204 NETUTIL(C)

A network must be installed before it can be started. Installation
consists of creating appropriate configuration files with the install
option. This option requires the name of each machine in the
network, the serial lines to be used to connect the systems, the
speed of transmission for each line, and the names of the users on
each system. Once created, the files must be distributed to each
computer in the network with the save and restore options. The
network is started by using the start option on each system in the
network. Once the system starts, mail and remote commands can
be passed along the network. A record of the transmissions
between computers in a network can be kept in the network log
files.

File

/etc/netutil
See Also

aliases(M), aliashash(M), mail(C), micnet(M), remote(C),
rep(C), systemid(M), top(M), XENIX System Administration

NETUTIL(C) 1-205

NEWGRP(C)
Name

newgrp - Logs user in to a new group.

Syntax

newgrp [group]

Description

The newgrp command changes the group identification of its
caller. The same person remains logged in, and the current
directory is unchanged, but calculations of access permissions to
files are performed with respect to the new group ID.

The newgrp command without an argument changes the group
identification to the group in the password file; in effect, it
changes the group identification back to the caller’s original group.
When most users log in, they are members of the group named
group.

Files

/etc/group

/etc/passwd

See Also

login(M), group(M)

1-206 NEWGRP(C)

NEWS(O)
Name

news - Print news items.

Syntax

news [;aj' [-:n] {;s] [’ité'm’s]

Description

The news command is used to keep the user informed of current
events. By convention, these events are described by files in the
directory /usr/news.

When invoked without arguments, news prints the contents of all
current files in /usr/news, most recent first, with each preceded
by an appropriate header. The news command stores the
“currency”’ time as the modification date of a file named
.news__time in the user’s home directory (the identity of this
directory is determined by the environment variable SHOME);
only files more recent than this currency time are considered
“‘current.”

The -a option causes news to print all items, regardless of
currency. In this case, the stored time is not changed.

The -n option causes news to report the names of the current

items without printing their contents, and without changing the
stored time.

NEWS(C) 1-207

The -s option causes news to report how many current items exist,
without printing their names or contents and without changing the
stored time.

All other arguments are assumed to be specific news items that
are to be printed.

If the Interrupt (Del) key is struck during the printing of a news
item, printing stops and the next item is started. Another
Interrupt (Del) within one second of the first causes the program
to terminate.

Files

/usr/news/*
$HOME/ .news__time

See Also

profile(M), environ(M)

1-208 NEWS(C)

NICE(C)

Name

nice - Runs a command at a different priority.

Syntax

nice [-ihcrement] ‘command [argumenzs] .

Description

The nice command executes command with a lower CPU
scheduling priority. Priorities range from O to 39, where 0 is the
highest priority and 39 is the lowest. By default, commands have
a priority of 20. If an -increment argument is given where
increment is in the range 1-19, increment is added to the default
priority of 20 to produce a numerically higher priority, meaning a
lower scheduling priority. If no increment is given, an increment
of 10 to produce a priority of 30 is assumed.

The super-user may run commands with priority higher than
normal by using a double negative increment. For example, an
argument of --10 would decrement the default to produce a
priority of 10, which is a higher scheduling priority than the
default of 20.

NICE(C) 1-209

See Also

nohup(C)

Diagnostic

The nice command returns the exit status of the subject

command.

Comment

An increment larger than 19 is equivalent to 19.

1-210 NICE(C)

NL(C)
Name

nl - Adds line numbers to a file.

Syntax

nl [-htype] [-htype} [-frype] [-vstart#] [-uncr] [-p] [—lnum} [-—ssep]
[-wwidth] [—nformat] file ;

Description

The nl command reads lines from the named file, or the standard
input if no file is named, and reproduces the lines on the standard
output. Lines are numbered on the left, according to the
command options in effect.

The nl command views the text it reads in terms of logical pages.
Line numbering is reset at the start of each logical page. A logical
page consists of a header, a body, and a footer section. Empty
sections are valid. Different line numbering options are
independently available for header, body, and footer (for
example, no numbering of header and footer lines, while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines
containing nothing but the following characters:

Page Section Line Contents

Header AW
Body AT
Footer \:

Unless signaled otherwise, nl assumes the text being readisina
single logical page body.

NL(C) 1-211

Command options may appear in any order and may be
intermingled with an optional filename. Only one file may be
named. The options are:

-btype

-hsype

-f1ype

-vstart#t

-iincr

-lnum

Specifies which logical page body lines are to be
numbered. Recognized types and their meaning are:
a, number all lines; t, number lines with printable
text only; n, no line numbering; pstring, number only
lines that contain the regular expression specified in
string. Default type for logical page body is t (text
lines numbered).

Same as -btype except for header. Default type for
logical page header is n (no lines numbered).

Same as -btype except for footer. Default fype for
logical page footer is n (no lines numbered).

The start# is the initial value used to number logical
page lines. Defaultis 1.

The incr is the increment value used to number
logical page lines. Default is 1.

Does not restart numbering at logical page
delimiters.

The num is the number of blank lines to be
considered as one. For example, -12 results in only
the second adjacent blank being numbered (if the
appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

1-212 NL(C)

-ssep

-wwidth

-nformat

See Also

pr(C)

The sep is the character used in separating the line
number and the corresponding text line. Default sep
is a tab.

The width is the number of characters to be used for
the line number. Default width is 6.

The format is the line numbering format.
Recognized values are: In, left justified, leading
zeroes suppressed; rn, right justified, leading zeroes
suppressed; rz, right justified, leading zeroes kept.
Default format is rn (right justified).

NL(C) 1-213

NOHUP(C)

Name

nohup - Runs a command immune to hangups and quits.

Syntax

' xiohu‘p ,comnéand {argicment&]

Description
The nohup command executes command with hangups and quits
ignored. If output is not redirected by the user, it will be sent to

nohup.out. If nohup.out is not writable in the current directory,
output is redirected to SHOME/nohup.out.

See Also

nice(C)

1-214 NOHUP(C)

OD(C)

Name

od - Displays files in octal format.

Syntax

‘od [-bedox] [file] [[+]offse.] [b] 1

Description

The od command displays file in one or more formats as selected
by the first argument. If the first argument is missing, -o is
default. The meanings of the format options are:

-b

=C

-d

-0

=-X

Interprets bytes in octal.

Interprets bytes in ASCIIL. Certain non-graphic characters
appear as C escapes: null=\f, backspace=\b , form
feed=\f, new line=\n , return=\r, tab=\t ; others
appear as three-digit octal numbers.

Interprets words in decimal.

Interprets words in octal.

Interprets words in hexadecimal.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

OD(C) 1-215

The offset argument specifies the offset in the file where
displaying is to start. This argument is normally interpreted as
octal bytes. If . is appended, the offset is interpreted in decimal.
If b is appended, the offset is interpreted in blocks of 512 bytes.
If the file argument is omitted, the offser argument must be
preceded by +.

The display continues until end-of-file.

See Also

hd(C)

1-216 OD(C)

PACK(O)
Name

pack, pcat, unpack - Compresses and expands files.

Syntax
pack [-}‘ namé . '
pst e

unpack name . ..

Description

The pack command attempts to store the specified files in a
compressed form. Wherever possible (and useful), each input file
name is replaced by a packed file name.z with the same access
modes, access and modified dates, and owner as those of name. If
pack is successful, name is removed. Packed files can be restored
to their original form using unpack or pcat.

The pack command uses Huffman (minimum redundancy) codes
on a byte-by-byte basis. If the - argument is used, an internal
flag is set that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on the
standard output. Additional occurrences of - in place of name
cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the
character frequency distribution is very skewed, which may occur
with printer plots or graphics.

PACK(C) 1-217

Text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

The pack command returns a value that is the number of files that
it failed to compress.

No packing occurs if:

o The file appears to be already packed.

» The filename has more than 12 characters.

o The file has links.

« The file is a directory.

o The file cannot be opened.

« No disk storage blocks are saved by packing.

o A file called name.z already exists

« The .z file cannot be created.

« An1/0 error occurred during processing.

The last segment of the filename must contain no more than 12
characters to allow space for the appended .z extension.
Directories cannot be compressed.

The pcat command does for packed files what cat(C) does for
ordinary files. The specified files are unpacked and written to the
standard output. To view a packed file named name.z use:
pcat name.z

or just:

pcat name

1-218 PACK(C)

To make an unpacked copy, with the name nnn, of a packed file
named name.z (without destroying name.z) use the command:

pcat name >nnn

The pcat command returns the number of files it was unable to
unpack. Failure may occur if:

« The filename (exclusive of the .z) has more than 12
characters.

« The file cannot be opened.
« The file does not appear to be the output of pack.

The unpack command expands files created by pack. For each file
name specified in the command, a search is made for a file called
name.z (or just name, if name ends in .z). If this file appears to be
a packed file, it is replaced by its expanded version. The new file
has the .z suffix stripped from its name, and has the same access
modes, access and modification dates, and owner as those of the
packed file.

The unpack command returns a value that is the number of files it
was unable to unpack. Failure may occur for the same reasons
that it may in pcat, as well as in a file where the unpacked name
already exists, or if the unpacked file cannot be created.

PACK(C) 1-219

PASSWD(C)

Name

passwd - Changes login password.

Syntax

passwd name

Description

This command changes (or installs) a password associated with
the login name.

The program prompts for the old password (if any) and then for
the new one (twice). The user must supply these. Passwords can
be of any reasonable length, but only the first eight characters of
the password are significant. The minimum number of characters
allowed in a new password is determined by the PASSLENGTH
variable. Although the minimum can be three, a minimum of five
is strongly recommended, because passwords shorter that five are
much easier to guess or discover by trial and error.

Only the owner of the name or the super-user may change a

password; the owner must prove he knows the old password.
Only the super-user can create a null password.

1-220 PASSWD(O)

The password file is not changed if the new password is the same
as the old password, or if the password has not “aged”
sufficiently; (see passwd(M)).

The minimum length of a legal password, and the minimum and
maximum number of weeks used in password aging are specified
in /etc/default/passwd by the variables PASSLENGTH,
MINWEEKS and MAXWEEKS. For example, these variables
might be set as follows:

PASSLENGTH=6

MINWEEKS=2

MAXWEEKS=6

MINWEEKS and MAXWEEKS values must be in the range O to
63. If PASSLENGTH is not in the range 3 to 8, it is set to 5.

Files

/etc/default/passwd
/etc/passwd

See Also

login(M), pwadmin(C), default(M), passwd(M)

PASSWD(C) 1-221

PR(C)
Name

pr - Prints files on the standard output.

Syntax

pr [options] [files]

Description

The pr command prints the named files on the standard output. If
file is -, or if no files are specified, the standard input is assumed.
By default, the listing is separated into pages, each headed by the
page number, date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines that do not fit are truncated. If the -s option is used,
lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error
messages are withheld until pr has completed printing.

Options may appear singly or be combined in any order. Their
meanings are:

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options -e
and -i are assumed for multi-column output.

-a Prints multi-column output across the page.

-m Merges and prints all files simultaneously, one per column
(overrides the -k, and -a options).

-d Double-spaces the output.

1-222 PR(C)

-eck

-ick

-nck

-wk

-0k

-k

-h

=P

Expands input tabs to character positions k+1, 2*¥k+1,
3*k+1, etc. If kis O or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of
spaces. If ¢ (any nondigit character) is given, it is treated
as the input tab character (default for c is the tab
character).

In output, replaces whitespace wherever possible by
inserting tabs to character positions k+1, 2*k+1, 3*k+1,
etc. If kis O or is omitted, default tab settings at every
eighth position are assumed. If ¢ (any nondigit character)
is given, it is treated as the output tab character (default
for ¢ is the tab character).

Provides k-digit line numbering (default for k is 5). The
number occupies the first k+1 character positions of each
column of normal output or each line of -m output. If ¢
(any nondigit character) is given, it is appended to the
line number to separate it from whatever follows (default
for c is a tab).

Sets the width of a line to k character positions (default is
72 for equal-width multi-column output, no limit
otherwise).

Offsets each line by k character positions (default is 0).
The number of character positions per line is the sum of
the width and offset.

Sets the length of a page to & lines (default is 66).

Uses the next argument as the header to be printed
instead of the filename.

Pauses before beginning each page if the output is
directed to a terminal (pr beeps and waits for a carriage
return).

Uses form feed character for new pages (default is to use
a sequence of linefeeds). Pauses before beginning the
first page if the standard output is associated with a
terminal.

PR(C) 1-223

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the five-line identifying header nor the
five-line trailer normally supplied for each page. Quits
printing after the last line of each file without spacing to
the end of the page.

-sc Separates columns by the single character c instead of by
the appropriate number of spaces (default for c is a tab).
Examples

The following prints filel and file2 as a double-spaced,
three-column listing headed by ““file list™:

pr -3dh "file list" filel file2

The following writes filel on file2, expanding tabs to columns 10,
19,28,37, ...:

pr -e9 -t <filel>file?

See Also

cat(C)

1-224 PR(C)

PS(O)

Name

ps - Reports process status.

Syntax

ps [options] |

Description

The ps command prints certain information about active
processes. Without options, information is printed about
processes associated with the current terminal. Otherwise, the
information that is displayed is controlled by the following

options:

-e Prints information about all processes.

-d Prints information about all processes, except process group
leaders.

-a Prints information about all processes, except process group
leaders and processes not associated with a terminal.

-f Generates a full listing. (Normally, a short listing

-1

containing only process ID, terminal (tty) identifier,
cumulative execution time, and the command name is
printed.) See below for meaning of columns in a full listing.

Generates a long listing. See below.

-c corefile Uses the file corefile in place of /dev/mem.

-s swapdev Uses the file swapdev in place of /dev/swap. This is

useful when examining a corefile.

-n namelist The argument is taken as the name of an alternate

namelist (/xenix is the default.)

PS(C) 1-225

-t tlist

-p plist

-u ulist

-g glist

Restricts listing to data about the processes
associated with the terminals given in #/ist, where
tlist can be in one of two forms: a list of terminal
identifiers separated from one another by a comma,
or a list of terminal identifiers enclosed in double
quotes and separated from one another by a comma
and/or one or more spaces.

Restricts listing to data about processes whose
process ID numbers are given in plist, where plist is
in the same format as t/ist.

Restricts listing to data about processes whose user
ID numbers or login names are given in ulist, where
ulist is in the same format as t/ist. In the listing, the
numerical user ID is printed unless the -f option is
used, in which case the login name is printed.

Restricts listing to data about processes whose
process groups are given in glist, where glist is a list
of process group leaders and is in the same format
as tlist.

The column headings and the meaning of the columns in a ps
listing are given below; the letters f and 1 indicate the option (fu//
or long) that causes the corresponding heading to appear; all
means that the heading always appears. These two options only
determine what information is provided for a process; they do not
determine which processes will be listed.

F o

1-226 PS(C)

A status word consisting of flags associated
with the process. Each flag is associated
with a bit in the status word. These flags are
added to form a single octal number.
Process flag bits and their meanings are:

#1 in core;

P2 system process;

P4 locked in core (for example, for
physical I/0);

19 being swapped;

2§ Dbeing traced by another process.

UID

PID

PPID

STIME

PRI

NI

ADDR

SZ

WCHAN

TTY

TIME

Q)

((8))

(all)

(£,D
(£,D
()
)

U
M

)

M

(all)

(all)

The state of the process:

non-existent;
sleeping;
waiting;
running;
intermediate;
terminated,;
stopped.

NTRgn=

The user ID number of the process owner;
the login name is printed under the -f option.

The process ID of the process; it is possible
to end a process if you know this data.

The process ID of the parent process.
Processor utilization for scheduling.
Starting time of the process.

The priority of the process; higher numbers
mean lower priority.

Nice value; used in priority computation.

The memory address of the process, if
resident; otherwise, the disk address.

The size in blocks of the core image of the
process, but not including the size of text
shared with other processes. Because this
size includes the current size of the stack, it
will vary as the stack size varies.

The event for which the process is waiting or
sleeping; if blank, the process is running.

The controlling terminal for the process.

The cumulative execution time for the
process.

PS(C) 1-227

CMD (all) The command name; the full command name
and its arguments are printed under the -f
option.

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining
memory or the swap area. Failing this, the command name, as it
would appear without the -f option, is printed in square brackets.

Files

/xenix system namelist

/dev/mem memory

/dev searched to find swap device and terminal (tty)
names.

See Also

kill(C), nice(C)

Comments

System conditions can change while ps is running; the picture it
gives is only a close approximation to reality.

Some data printed for defunct processes are irrelevant.

1-228 PS(O)

PSTAT(C)

Name

pstat - Reports system information.

Syntax

‘pstat [-aixpf] [-u ubase] [-c corefile] [file]

Description

The pstat command interprets the contents of certain system
tables. If file is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken from /xenix. Options
are:

-a In conjunction with the -p option, describes all process slots
rather than just active ones.

-i Prints the inode table with the these headings:

LOC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:

Locked

Update time filesystem(F) must be

corrected

Access time must be corrected

File system is mounted here

Wanted by another process (L flag is on)

Contains a text file

Changed time must be corrected

CNT Number of open file table entries for this
mode.

DEV Major and minor device number of file system
in which this inode resides.

INO I-number within the device.

MODE Mode bits.

NLK Number of links to this inode.

UID User ID of owner.

A=gz2» ar

PSTAT(C) 1-229

SI1Z/DEV

Number of bytes in an ordinary file, or major
and minor device of special file.

-x Prints the text table with these headings:

LOC
FLAGS

DADDR
CADDR
SIZE
IPTR

CNT
CCNT

The core location of this table entry.
Miscellaneous state variables encoded thus:
T ptrace in effect

W Text not yet written on swap device

L Loading in progress

K Locked

w Wanted (L flag is on)

Disk address in swap, measured in multiples of
BSIZE bytes.

Core address, measured in units of memory
management resolution.

Size of text segment, measured in units of
memory management resolution.

Core location of corresponding inode.
Number of processes using this text segment.
Number of processes in core using this text
segment.

-p Prints process table for active processes with these

headings:

LOC
S

PRI

1-230 PSTAT(C)

The core location of this table entry.
Run state encoded as follows:

No process

Waiting for some event
Runnable

Being created

Being terminated

Stopped under trace
Miscellaneous state variables, ORed together:
01 Loaded

02 The scheduler process

AWM R W=

04 Locked
010 Swapped out
020 Traced

040 Used in tracing
0100 Locked in
Scheduling priority.

-f

SIGNAL

UID
TIM

CPU
NI
PGRP

PID

PPID
ADDR

SIZE
WCHAN
LINK
TEXTP

CLKT

Signals received (signals 1-16 coded in bits
0-15)

Real user ID.

Time resident in seconds; times > 127 coded
as 127.

Weighted integral of CPU time, for scheduler.
Nice level.

Process number of root of process group (the
opener of the controlling terminal).

The process ID number.

The process ID of parent process.

If in core, the physical address of the u-area of
the process measured in units of memory
management resolution. If swapped out, the
position in the swap area measured in multiples
of BSIZE bytes.

Size of process image, measured in units of
memory management resolution.

Wait channel number of a waiting process.
Link pointer in list of runnable processes.

If text is pure, pointer to location of text table
entry.

Countdown for alarm measured in seconds.

Print the open file table with these headings:

LOC
FLG

CNT
INO

OFFS

The core location of this table entry.
Miscellaneous state variables encoded as
follows:

R Open for reading

W Open for writing

P Pipe

Number of processes that know this open file.
The location of the inode table entry for this
file.

The file offset.

PSTAT(C) 1-231

-u ubase
Print information about a user process; the hexaddr
argument is its hexadecimal address. The address can be
displayed using the ps(C) command. The user process must
be in main memory, or the file used can be a core image and
the address 0.

-c corefile
Use the file corefile in place of /dev/mem.

-n namelist
Use the file namelist as an alternate namelist in place of
/Xenix.

Files

/Xenix Namelist

/dev/mem Default source of tables

See Also

ps(C), filesystem(F)

1-232 PSTAT(C)

PWADMIN(C)

Name

pwadmin - Performs password aging administration.

Syntax

pwadmin -dcfan [-min weeks] [-maxA weeks | user

Description

The pwadmin command is used to examine and modify the
password aging information in the password file. The options one
can specify are:

-d Displays the password aging information.

-f Forces the user to change his password at the next login.
-c Prevents the user from changing his password.

-a Enables password aging for the given user. This option

sets the minimum number of weeks that the user must wait
before changing his password and the maximum number of
weeks that a user can keep his current password to the
values defined by the MINWEEKS and MAXWEEKS
variables in the /etc/default/passwd file. If the file is not
found or the defined values are not in range O to 63, the
default values 2 and 4 are used.

PWADMIN(C) 1-233

-n Disables the password aging feature.

-min Uses the next argument as the minimum number of weeks
before the user can change his password. (This prevents
him from changing his password back to the old one).

-max Uses the next argument as the number of weeks before the
user must change his password again.

File

/etc/passwd

See Also

passwd(C), passwd(M)

Comments

The user must not attempt to force a new password by setting
both the -min and -max values to zero. To force a password, use
the -f option.

The user must not attempt to prevent further password changes

by setting the -min value greater than the -max value. To prevent
changes, use the -c option.

1-234 PWADMIN(C)

PWCHECK(C)

Name

pwcheck - Checks password file.

Syntax

 pweheck [file]

Description

The pwcheck command scans the password file and checks for any
inconsistencies. The checks include validation of the number of
fields, login name, user ID, group ID, and whether the login
directory and optional program name exist. The default password
file is /etc/passwd.

File

/etc/passwd

See Also

grpcheck(C), group(M), passwd(M)

PWCHECK(C) 1-235

PWD(CO)
Name

pwd - Prints working directory name.

Syntax

pwd

Description

The pwd command prints the path name of the working (current)
directory.

See Also

cd(C)

Diagnostics

“Cannot open ..” and “Read error in ..”” indicate possible file
system trouble. In such cases, see the XENIX System
Administration for information on fixing the file system.

1-236 PWD(C)

QUOT(C)

Name

quot - Summarizes file system ownership.

Syntax

quot [option] . .. [filesystem]

Description

The quot command prints the number of blocks in the named
filesystem currently owned by each user. If no filesystem is
named, the file systems given in /etc/mnttab are examined.

The following options are available:

-n Causes the following pipeline to produce a list of all files
and their owners:

ncheck filesystem | sort +@n | quot -n filesystem

-¢ Prints three columns, giving file size in blocks, number of
files of that size, and cumulative total of blocks in that size
or smaller file. Data for files of size greater than 499 blocks

are included in the figures for files of exactly size 499.

-f Prints count of number of files as well as space owned by
each user.

QUOT(C) 1-237

Files

/etc/passwd Gets user names
/etc/mnttab Contains list of mounted file systems
See Also

du(C), Is(C)

Comments

Holes (empty spaces) in files are counted as if they actually
occupied space.

See also “Comment” under mount(C).

1-238 QUOT(C)

RANDOM(C)
Name

random - Generates a random number.

Syntax

random [-s] [scale]

Description

The random command generates a random number on the
standard output and returns the number as its exit value. By
default, this number is either O or 1; that is, scale is 1 by default.
If scale is given a value between 1 and 255, the range of the
random value is from 0 to scale. If scale is greater than 255 an
error message is printed.

When the -s (silent) option is given, the random number is
returned as an exit value but is not printed on the standard
output. If an error occurs, random returns an exit value of zero.
Comments

This command does not perform any floating point computations.

The random command uses the time of day as a seed.

RANDOM(C) 1-239

RCP(O)
Name

rcp - Copies files across XENIX systems.

Syntax

rep [yoptionsr'], [;squrtachine:]srcﬁle [destmachme]deszf:e

Description

The rep command copies files between systems in a Micnet
network. The command copies the srcmachine:srcfile to
destmachine:destfile, where srcmachine: and destmachine: are
optional names of systems in the network, and srcfile and destfile
are path names of files. If a machine name is not given, the name
of the current system is assumed. If - is given in place of srcfile,
rcp uses the standard input as the source. Directories named on
the destination machine must be publicly writable. Directories
and files on a remote source machine must be publicly readable.

The available options are:

-m
Mails and reports completion of the command, whether
there is an error or not.

-u[machine:|user

Any mail goes to the named user on machine. The default
machine is the system on which rcp is invoked.

1-240 RCP(C)

The rep command is useful for transferring small numbers of files
across the network. The network consists of daemons that
periodically awaken and send files from one system to another.
The network must be installed using netutil(C) before rcp can be
used. Also, to enable transfer of files from a remote system, the
line:

rcp=/usr/bin/rcp

or

executeall

must be added to the default file /etc/default/micnet on the
systems in the network.

Example

rcp -m machinel:/etc/mnttab /tmp/vtape

See Also

netutil(C), remote(C), mail(C), micnet(M)

Diagnostics

If an error occurs, mail is sent to the user.

Comments
Full path names must be specified for remote files.
The rep command handles binary data files transparently, no extra

switches or protocols are needed to handle them. Wild cards are
not expanded on the remote machine.

RCP(C) 1-241

REMOTE(C)

Name

remote - Executes commands on a remote XENIX system.

Syntax

remote [=1[-f file][-m][-u yuser] machine command [arguments]

Description

The remote command is a limited networking facility that permits
execution of XENIX commands across serial lines. Commands
on any connected system may be executed from the host system
using remote. A command line consisting of command and any
blank-separated arguments is executed on the remote machine. A
machine’s name is located in the file /etc/systemid. Wild cards are
not expanded on the remote machine, so they should not be
specified in arguments. The optional -m switch causes mail to be
sent to the user telling whether the command is successful.

The available options follow:

- A dash signifies that standard input is used as the
standard input for command on the remote machine.
Standard input comes from the local host and not from
the remote machine.

-f file Use the specified file as the standard input for command
on the remote machine. The file exists on the local host
and not on the remote system.

-m Mails the user a report of command completion. By
default, mail reports only errors.

1-242 REMOTE(C)

-u user Any report mail goes to the named user rather than to
the executor of the command. The user name may have
a machine name to signify a user on some remote
system.

Before remote can be successfully used, a network of systems
must first be set up and the proper daemons initialized using
netutil(C). Also, entries for the command to be executed using
remote must be added to the /etc/default/micnet files on each
remote machine.

Example

The following command executes an Is command on the remote
directory /tmp of the machine machinel:

remote -m machinel 1s /tmp

See Also

rcp(C), mail(C), netutil(C), micnet(M)

Comment

The mail command uses the equivalent of remote to send mail
between systems.

REMOTE(C) 1-243

RESTORE(C)

Name

restore - Invokes incremental file system restorer.

Syntax

restore key [arguments]

Description

The restore command reads archive media backed up with the
backup(C) command. The key specifies what is to be done. Key
is one of the characters rRxXtT, optionally combined with f.

f Uses the first argument as the name of the archive instead of
the default.

r,R The archive is read and loaded into the file system specified
in argument. If the key is R, restore asks which archive of a
multivolume set to start on. This allows restore to be
interrupted and then restarted (an fsck must be done before
the restart).

x,X Each file on the archive named by an argument is extracted.
The filename has all “mount” prefixes removed; for
example, if /usr is a mounted file system, /usr/bin/Ipr is
named /bin/Ipr on the archive. The extracted file is placed
in a file with a numeric name supplied by restore (actually
the inode number). To keep the amount of archive read to
a minimum, the following procedure is recommended:

1. Mount volume 1 of the set of backup archives.

2. Type the restore command.

1-244 RESTORE(C)

T

The restore command announces whether it found the
files, gives the numeric name that it assigns to the file,
and in the case of a tape, rewinds to the start of the
archive.

It then asks you to “mount the desired tape volume.”
Type the number of the volume you choose. On a
multivolume backup, the recommended procedure is to
mount the last through the first volumes, in that order.
The restore command checks to see if any of the
requested files are on the mounted archive (or a later
archive, thus the reverse order). If the requested files
are not there, restore doesn’t read through the tape. If
you are working with a single-volume backup or if the
number of files being restored is large, respond to the
query with 1 and restore will read the archives in
sequential order.

Prints the date the archive was written and the date the file
system was backed up.

Same as t, in addition, T returna a listing of the files names
contained in the backup.

The r option should only be used to restore a complete backup
archive onto a clear file system or to restore an incremental
backup archive onto a file system so created. The following:

/etc/mkfs /dev/hd@3 10000
restor r /dev/hd@3

is a typical sequence to restore a complete backup. Another
restore can be done to get an incremental backup in addition to

this.

A backup followed by a mkfs and a restore is used to change the
size of a file system.

RESTORE(C) 1-245

Files

rst* Temporary files
/etc/default/dump Name of default archive device

The default archive unit varies with installation.

See Also

backup(C), fsck(C), mkfs(C)

Diagnostics

Various diagnostics are involved with reading the archive and
writing the diskette. There are also diagnostics if the i-list or the
free list of the file system is not large enough to hold the backup.
If the backup extends over more than one diskette or tape, it may
ask you to change diskettes or tapes. Press Enter when the next
unit has been mounted.

Comment

It is not possible to successfully restore an entire active root file
system.

1-246 RESTORE(C)

RM(C)

Name

rm, rmdir - Removes files or directories.

Syntax
rm [-fri] file . . .

rmdir dir . ..

Description

The rm command removes the entries for one or more files from a
directory. If an entry was the last link to the file, the file is
destroyed. Removal of a file requires write permission in its
directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a
terminal, its permissions are printed and a line is read from the
standard input. If that line begins with y, the file is deleted,
otherwise the file remains. No questions are asked when the -f
option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed
unless the optional argument -r has been used. In that case, rm
recursively deletes the entire contents of the specified directory,
and the directory itself.

RM(C) 1-247

If the -i (interactive) option is in effect, rm asks whether to delete
each file, and if the -r option is in effect, whether to examine each
directory.

The rmdir command removes empty directories.

See Also

rmdir(C)

Diagnostics

Generally self-explanatory. It is prohibited to remove the file .. to
avoid the consequences of inadvertently doing something like:

rm -r ¥

It is also prohibited to remove the root directory of a given file
system.

No more than 17 levels of subdirectories can be removed using
the -r option.

1-248 RM(C)

RMDIR(C)

Name

rmdir - Removes directories.

Syntax

rmdir dir . . .

Description

The rmdir command removes the entries for one or more
subdirectories from a directory. A directory must be empty
before it can be removed. The rmdir command enforces a
standard and safe procedure for removing a directory. The rm -r
dir command is a more dangerous alternative to rmdir.

The rmdir command removes entries for the named directories,
which must be empty.

See Also

rm(C)
Comment

The rmdir command refuses to remove the root directory of a
mounted file system.

RMDIR(C) 1-249

RMUSER(C)
Name

rmuser - Removes a user from the system.

Syntax

/ete/ muiéét

Description

The rmuser program removes users from the system. It begins by
prompting for a user name; after receiving a valid user name as a
response, it deletes the named user’s entry in the password file,
and removes the user’s mailbox file, the .profile file, and the entire
home directory. It also removes the users group entry in
/etc/group if the user was the only remaining member of that
group, and the group ID was greater than 50.

Before removing a user ID from the system, make sure its mailbox

is empty and that all files belonging to that user ID have been
saved or deleted as required.

1-250 RMUSER(C)

The rmuser program refuses to remove a user ID or any of its files
if one or more of the following checks fails:

« The user name given is one of the “‘system” user names such
as root, sys, sysinfo, cron, or uucp. All user IDs less than
200 are considered reserved for system use and cannot be
removed using rmuser. Likewise all group IDs less than 50
are not removable using rmuser.

« The user’s mailbox exists and is not empty.

« The user’s home directory contains files other than .profile.

The rmuser program can only be executed by the super-user.

Files

/ete/passwd
/usr/spool/mail/username
$HOME

See Also

mkuser(C), backup(C)

RMUSER(C) 1-251

RSH(C)

Name

rsh - Invokes a restricted shell (command interpreter).

Syntax

rsh [flags) [name [arg1]

Description

The rsh command is a restricted version of the standard command
interpreter sh(C). It is used to set up login names and execution
environments whose capabilities are more controlled than those of
the standard shell. The actions of rsh are identical to those of sh,
except that changing directory with cd, setting the value of
$PATH, using command names containing slashes, and
redirecting output using > and >> are all disallowed.

When invoked with the name -rsh, rsh reads the user’s .profile
(from SHOME/ .profile). It acts as the standard sh while doing
this, except that an interrupt causes an immediate exit, instead of
causing a return to command level. The restrictions above are
enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to the
end user shell procedures that have access to the full power of the
standard shell, while restricting him to a limited menu of
commands; this scheme assumes that the end user does not have
write and execute permissions in the same directory.

1-252 RSH(C)

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed
setup actions, then leaving the user in an appropriate directory
(probably not the login directory).

The rsh command is actually just a link to sh and any flags
arguments are the same as for sh(C).

The system administrator often sets up a directory of commands
that can be safely invoked by rsh.

See Also

sh(C), profile(M)

RSH(C) 1-253

SDDATE(C)

Name

sddate - Prints and sets backup dates.

Syntax

sddate [name lev date

Description

If no argument is given, the contents of the backup date file
/etc/ddate are printed. The backup date file is maintained by
backup(C) and contains the date of the most recent backup for
each backup level for each file system.

If arguments are given, an entry is replaced or made in
/etc/ddate. name is the last component of the device pathname;
lev is the backup level number (from O to 9); and date is a time in
the form taken by date(C):

mmddhhmm[yy]

Where the first mm is a two-digit month in the range 01-12, dd is
a two-digit day of the month, A% is a two-digit military hour from
00-23, and the final mm is a two-digit minute from 00-59. An
optional two-digit year, yy, is presumed to be an offset from the
year 1900, that is, 19yy

1-254 SDDATE(C)

Some sites may wish to back up file systems by copying them
verbatim to backup media. The sddate command could be used to
make a level O entry in /ete/ddate, which would then allow
incremental backups.

For example:
sddate rhd03 5 10081520

makes an /etc/ddate entry showing a level 5 backup of
/dev/rhd03 on October 8, at 3:20 p.m.

File

/etc/ddate

See Also

backup(C), date(C)

Diagnostics

If the date set is syntactically incorrect: bad conversion.

SDDATE(C) 1-255

SDIFF(C)

Name

sdiff - Compares files side-by-side.

Syntax

Description

The sdiff command uses the output of diff(C) to produce a
side-by-side listing of two files indicating the lines that are
different. Each line of the two files is printed with a blank gutter
between them if the lines are identical, a < in the gutter if the line
only exists in filel, a > in the gutter if the line only exists in file2,
and a | for lines that are partially different.

For example:

X | y

a a

b

c

d d
> c

The following options exist:

-W n Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

-1 Only prints the left side of any lines that are
identical.
-s Does not print identical lines.

1-256 SDIFF(C)

-0 output Uses the next argument, output, as the name of a
third file that is created as a user-controlled merging
of filel and file2. 1dentical lines of filel and file2 are
copied to output. Sets of differences, as produced by
diff(C), are printed if a set of differences shares a
common gutter character. After printing each set of
differences, sdiff prompts the user with a % and
waits for one of the following user-typed commands:

el

er

eb

€

q

Appends the left column to the output file
Appends the right column to the output file

Turns on silent mode; does not print identical
lines

Turns off silent mode
Calls the editor with the left column
Calls the editor with the right column

Calls the editor with the concatenation of left
and right

Calls the editor with a zero length file

Exits from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

See Also

diff(C), ed(C)

SDIFF(C) 1-257

SED(C)
Name

sed-Invokes the stream editor

Syntax

sed [-n] [~ script] [-fsfile] [files]

Description

The sed command copies the named files (standard input default)
to the standard output, edited according to a script of commands.
The -f option causes the script to be taken from file sfile; these
options accumulate. If there is just one -e option and no -f
options, the flag -e may be omitted. The -n option suppresses the
default output. A script consists of editing commands, one per
line, of the following form:

laddress|, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a
pattern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that
pattern space, and at the end of the script copies the pattern space
to the standard output (except under -n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input,
or a context address, that is, a /regular expression/ in the style of
ed(C) modified as follows:

» In a context address, the construction \ ?regular expression?,
where ? is any character, is identical to /regular expression/
Note that in the context address \xabc\xdefx , the second
x stands for itself, so that the regular expression is abcxdef.

1-258 SED(C)

o The escape sequence \n matches a newline embedded in the
pattern space.

« A period (.) matches any character except the terminal
newline of the pattern space.

« A command line with no addresses selects every pattern
space.

« A command line with one address selects each pattern space
that matches the address.

« A command line with two addresses selects the inclusive
range from the first pattern space that matches the first
address through the next pattern space that matches the
second. (If the second address is a number less than or equal
to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first
address.

Editing commands can be applied only to nonselected pattern
spaces by use of the negation function ! (see below).

In the following list of functions, the maximum number of
permissible addresses for each function is indicated in
parentheses.

The text argument consists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in
text are treated like backslashes in the replacement string of an s
command, and may be used to protect initial blanks and tabs
against the stripping that is done on every script line. The rfile or
wfile argument must terminate the command line and must be
preceded by exactly one blank. Each wfile is created before
processing begins. There can be at most 10 distinct wfile
arguments.

(1) a+ \ rext

Appends fext, placing it on the output before reading the
next input line.

SED(C) 1-259

(2) b label

Branches to the : command bearing the label. If label is
empty, branches to the end of the script.

(2) e+ \ text

2)d

2)D

2)g

)G

2)h

(2)H

1) i+\

2)1

2)n

(2)N

Changes text by deleting the pattern space and then
appending rext. With zero or one address or at the end of
a two-address range, places fext on the output and starts
the next cycle.

Deletes the pattern space and starts the next cycle.

Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

Replaces the contents of the pattern space with the
contents of the hold space.

Appends the contents of the hold space to the pattern
space.

Replaces the contents of the hold space with the contents
of the pattern space.

Appends the contents of the pattern space to the hold
space.

text
Insert. Places fext on the standard output.

Lists the pattern space on the standard output with
non-printing characters spelled in two-digit ASCII and
long lines folded.

Copies the pattern space to the standard output.
Replaces the pattern space with the next line of input.

Appends the next line of input to the pattern space with
an embedded newline. (The current line number
changes.)

1-260 SED(C)

2)p Prints (copies) the pattern space on the standard output.

(2)P Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

(1)q Quits sed by branching to the end of the script. No new
cycle is started.

2)r rfile
Reads the contents of rfile and places them on the output
before reading the next input line.

(2)s/regular expression/replacement/flags
Substitutes the replacement string for instances of the
regular expression in the pattern space. Any character
may be used instead of / . For a more detailed description
see ed(C). Flags is zero or more of:

g Globally substitutes for all non-overlapping
instances of the regular expression rather than just
the first one.

p Prints the pattern space if a replacement was made.

w wfile
Writes the pattern space to wfile if a replacement
was made.
(2) t label

Branches to the colon (:) command bearing label if any
substitutions have been made since the most recent
reading of an input line or execution of a t command. If
label is empty, t branches to the end of the script.

(2) w wfile
Writes the pattern space to wfile.

(2) x Exchanges the contents of the pattern and hold spaces.

SED(C) 1-261

(2) y/stringl/string2/
Replaces all occurrences of characters in stringl with the
corresponding characters in string2. The lengths of
stringl and string2 must be equal.

(2) ! function
Applies the function (or group, if function is §) only to
lines not selected by the addresses.

(0) : label
This command does nothing; it bears a /label for b and t
commands to branch to.

(1) = Places the current line number on the standard output as
a line.

(2){ Executes the following commands through a matching §
only when the pattern space is selected.

0) An empty command is ignored.

See Also

awk(C), ed(C), grep(C)

1-262 SED(C)

SETMNT(C)

Name

setmnt - Establishes /etc/mnttab table.

Syntax

Jete/ setmnt

Description

The setmnt command creates the /etc/mnttab table (see
mnttab(F)), which is needed for both the mount(C) and
umount(C) commands. The setmnt command reads the standard
input and creates a mnttab entry for each line. Input lines have
the format:

filesys node
where filesys is the name of the file system’s special file (for
example, “hd0.”) and node is the root name of that file system.

Thus, filesys and node become the first two strings in the
mnttab(F) entry.

SETMNT(C) 1-263

File

/etc/mnttab

See Also

mnttab(F)

Comments
If filesys or node are longer than 128 characters, errors can occur.

The setmnt command enforces an upper limit on the maximum
number of mnttab entries.

The setmnt command is normally invoked by /etc/rc when the
system starts up.

1-264 SETMINT(C)

SETTIME(C)

Name

settime - Changes the access and modification dates of files.

Syntax

settimérrimddhh?nm [yy} [-f 'fndme]name

Description

The settime command sets the access and modification dates for
one or more files. The dates are set to the specified date or to the
access and modification dates of the file specified via -f. Exactly
one of these methods must be used to specify the new dates. The
first mm is the month number; dd is the day number in the month;
hh is the hour number (24-hour system); the second mm is the
minute number; py is the last two digits of the year and is
optional. For example:

settime 1008004584 ralph pete

sets the access and modification dates of files ralph and pete to
Oct 8, 12:45 AM, 1984. Another example:

settime -f ralph john

This sets the access and modification dates of the file john to
those of the file ralph.

Comments

Use of touch(C) in place of settime is encouraged.

SETTIME(C) 1-265

SH(C)
Name

sh - Invokes the shell command interpreter.

Syntax

Description

The shell is the standard command programming language that
executes commands read from a terminal or a file. See
“Invocation ” for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of non-blank words separated by
blanks (a blank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0. The
value of a simple-command is its exit status if it terminates
normally, or (decimal) 1000+ status if it terminates abnormally,
that is, if the failure produces a core file.

A pipeline is a sequence of one or more commands separated by a
vertical bar (|). (The caret (A has the same effect.) The
standard output of each command but the last is connected by a
pipe to the standard input of the next command. Each command
is run as a separate process; the shell waits for the last command
to terminate.

1-266 SH(C)

A list is a sequence of one or more pipelines separated by ;, &,
&&, or | and optionally terminated by ; or &. Of these four
symbols, ; and & have equal precedence, which is lower than that
of && and | . The symbols && and | also have equal
precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (that is, the shell does not
wait for that pipeline to finish). The symbol && (||) causes the
list following it to be executed only if the preceding pipeline
returns a 0 or nonzero exit status. An arbitrary number of
newlines may appear in a /list, instead of semicolons, to delimit
commands.

A command is either a simple-command or one of the following
commands. Unless otherwise stated, the value returned by a
command is that of the last simple-command executed in the
command:

for name [in word . . .] do list: done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word is omitted,
the for command executes the do list once for each
positional parameter that is set (see ‘“‘Parameter
Substitution” below). Execution ends when there are no
more words in the list.

case word in [pattern| | pattern] . . .) list;;] . . . esac
A case command executes the /ist associated with the first
pattern that matches word. The form of the patterns is the
same as that used for filename generation (see ‘‘Filename
Generation” below).

If list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a 0 exit
status, the list following the first then is executed.
Otherwise, the /ist following elif is executed and, if its
value is 0, the list following the next then is executed.
Failing that, the else list is executed. If no else /ist or then
list is executed, the if command returns a O exit status.

SH(C) 1-267

while /ist do list done
A while command repeatedly executes the while /ist and, if
the exit status of the last command in the list is 0, executes
the do /ist; otherwise the loop terminates. If no commands
in the do /ist are executed, the while command returns a 0
exit status; until may be used in place of while to negate the
loop termination test.

(list)
Executes /ist in a subshell.

§ list; }
The list is simply executed.

The following words are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do done § }

Note: A word beginning with # causes that word and all the
following characters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave
accents () may be used as part or all of a word; trailing
newlines are removed.

Parameter Substitution

The character $ is used to introduce substitutable parameters.
Positional parameters may be assigned values by set. Variables
may be set by writing:

name = value [name = value]

Pattern-matching is not performed on value.

1-268 SH(C)

${parameter}
A parameter is a sequence of letters, digits, or underscores
(a name), a digit, or any of the characters *, @, #, ?, -, $,
and !. The value, if any, of the parameter is substituted.
The braces are required only when parameter is followed
by a letter, digit, or underscore that is not to be interpreted
as part of its name. A name must begin with a letter or
underscore. If parameter is a digit, it is a positional
parameter. If parameter is * or @, all the positional
parameters, starting with $1 are substituted (separated by
spaces). Parameter $0 is set from argument O when the
shell is invoked.

$$parameter:-word}
If parameter is set and is non-null, substitute its value;
otherwise substitute word.

$$parameter:=word}
If parameter is not set or is null, then set it to word, the
value of the parameter is substjtuted. Positional
parameters may not be assigned to in this way.

$$parameter:?word}
If parameter is set and is non-null, substitute its value;
otherwise, print word and exit from the shell. If word is
omitted, the message ‘“‘parameter null or not set” is
printed.

$$parameter:+word}
If parameter is set and is non-null, substitute word,
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that in the following example, pwd is
executed only if d is not set or is null:

echo ${d:- ‘pwd}

SH(C) 1-269

If the colon (:) is omitted from the expressions on the preceding
page, the shell only checks whether parameter is set, not whether
parameter is null (b="""").

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

- Flags supplied to the shell on invocation or by the set
command.

? The decimal value returned by the last synchronously
executed command.

$ The process number of this shell.
! The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME

PATH

CDPATH

MAIL

PS1

PS2

IFS

The default argument (home directory) for the cd
command.

The search path for commands (see ‘“‘Execution ”’
below).

The search path for the ed command.

If this variable is set to the name of a mail file, the
shell informs the user of the arrival of mail in the
specified file.

Primary prompt string, by default $.

Secondary prompt string, by default >.

Internal field separators, normally space, tab, and
newline.

1-270 SH(C)

The shell gives default values to PATH, PS1, PS2, andIFS, while
HOME and MAIL are not set at all by the shell (although HOME
is set by login(M)).

Blank Interpretation

After parameter and command substitution, the results of
substitution are scanned for internal field separator characters
(those found in IFS) and split into distinct arguments where such
characters are found. Explicit null arguments ("' " or ") are
retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

Filename Generation

Following substitution, each command word is scanned for the
characters *, ?, and [. If one of these characters appears, the word
is regarded as a pattern. The word is replaced with alphabetically
sorted filenames that match the pattern. If no filename is found
that matches the pattern, the word is left unchanged. The
character . at the start of a filename or immediately following a /,
as well as the character / itself, must be matched explicitly.
These characters and their matching patterns are:

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of

characters separated by - matches any character
lexically between the pair, inclusive. If the first
character following the opening bracket ([) is an
exclamation mark (!), any character not enclosed is
matched.

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

SH(C) 1-271

; & () | A < > newline space tab

A character may be quoted (that is, made to stand for itself) by
preceding it with a \ . The pair \newline is ignored. All
characters enclosed between a pair of single quotation marks ("),
except a single quotation mark, are quoted. Inside double
quotation marks (" '), parameter and command substitution
occurs and \ quotes the characters \ , ,”, and $. The
character group ”$*” is equivalent to ’$1 $2 ... ”, whereas
“$@” is equivalent to ’$1” ’$2”

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a newline is typed and
further input is needed to complete a command, the secondary
prompt (that is, the value of PS2) is issued.

Input / Output

Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple command or may
precede or follow a command. They are not passed on to the
invoked command; substitution occurs before word or digit is
used:

<word Use file word as standard input (file descriptor @).

>word Use file word as standard output (file descriptor 1).
If the file does not exist, it is created; otherwise, it is
truncated to zero length.

>>word Use file word as standard output. If the file exists,

output is appended to it (by first seeking to the
end-of -file); otherwise, the file is created.

1-272 SH(C)

< <|-]lword The shell input is read up to a line that is the same as
word or to an end-of-file. The resulting document
becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the
characters of the document; otherwise, parameter
and command substitution occurs, (unescaped)
\newline is ignored, and \ must be used to quote
the characters \ , $, ¢, and the first character of
word. If - is appended to <<, all leading tabs are
stripped from word and from the document.

< &digit The standard input is duplicated from file descriptor
digit. Similarly for the standard output using >per.

<&- The standard input is closed. Similarly for the
standard output using >.

If one of the above is preceded by a digit, the file descriptor
created is that specified by the digit (instead of the default § or
1). For example:

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, the default standard input for the
command is the empty file /dev/null. Otherwise, the environment
for the execution of a command contains the file descriptors of
the invoking shell as modified by input/output specifications.

SH(C) 1-273

Environment

The environment (see environ(M)) is a list of name-value pairs
that is passed to an executed program in the same way as a
normal argument list. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters
or creates new ones, none of these affects the environment unless
the export command is used to bind the shell’s parameter to the
environment. The environment seen by any executed command is
thus composed of any unmodified name-value pairs originally
inherited by the shell, plus any modifications or additions, all of
which must be noted in export commands.

The environment for any simple command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=450 cmd args
and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is
concerned).

If the -k flag is set, all keyword arguments are placed in the
environment, even if they occur after the command name.

Signals
The Interrupt (Del) and Quit signals for an invoked command are
ignored if the command is followed by &; otherwise signals have

the values inherited by the shell from its parent, with the
exception of signal 11 (but see also the trap command below).

1-274 SH(C)

Execution

Each time a command is executed, the above substitutions are
carried out. Except for the “Special Commands” listed below, a
new process is created and an attempt is made to execute the
command.

The shell parameter PATH defines the search path for the
directory containing the command. Alternative directory names
are separated by a colon (:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and/usr/bin, in that
order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the
command name contains a / then the search path is not used.
Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A
subshell (that is, a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Special Commands

The following commands are executed in the shell process and,
except as specified, no input/output redirection is permitted for
such commands:

No effect; the command does nothing. A 0 exit code is
returned.

file
Reads and executes commands from file and returns. The
search path specified by PATH2 is used to find the directory
containing file.

break [n]

Exits from the enclosing for or while loop, if any. If nis
specified, breaks n levels.

SH(C) 1-275

continue [#]
Resumes the next iteration of the enclosing for or while loop.
If n is specified, resumes at the n-th enclosing loop.

cd [arg]
Changes the current directory to arg. The shell parameter
HOME is the default arg. The shell parameter CDPATH
defines the search path for the directory containing arg.
Alternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory).
The current directory is specified by a null path name, which
can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins
with a / the search path is not used. Otherwise, each
directory in the path is searched for arg.

eval [arg...]
The arguments are read as input to the shell and the resulting
commands are executed.

exec [arg ...]
The command specified by the arguments is executed in place
of this shell without creating a new process. Input/output
arguments may appear and, if no other arguments are given,
cause the shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n
is omitted, the exit status is that of the last command
executed (an end-of-file also causes the shell to exit.)

export [name . . . |
The given names are marked for automatic export to the
environment of subsequently executed commands. If no
arguments are given, a list of all names that are exported in
this shell is printed.

newgrp [arg ...]
Equivalent to exec newgrp arg . . .

1-276 SH(C)

read [name . ..]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second
name, and so on, with leftover words assigned to the last
name. The return code is O unless an end-of-file is
encountered.

readonly [name . . .]
The given names are marked read-only and the values of the
these names may not be changed by subsequent assignment.
If no arguments are given, a list of all read-only names is
printed.

set [-eknuvx [arg .. .]

shift [n]

If the shell is noninteractive, exits immediately if a
command exits with a nonzero exit status.

Places all keyword arguments in the environment for a
command, not just those that precede the command
name.

Reads commands but does not execute them.

Treats unset variables as an error when substituting.
Prints shell input lines as they are read.

Prints commands and their arguments as they are
executed.

Does not change any of the flags; useful in setting $1
to -.

Using + rather than - causes these flags to be turned
off. These flags can also be used upon invocation of
the shell. The current set of flags is in $-. The
remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are
given, the values of all names are printed.

The positional parameters from $n+1 ... are renamed $1
....If nis not given, it is assumed to be 1.

SH(C) 1-277

test
Evaluates conditional expressions. See test(C) for use and
description.

times
Prints the accumulated user and system times for processes
run from the shell.

trap [arg] [#] ...
The arg is a command to be read and executed when the shell
receives signals n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands
are executed in order of signal number. The highest signal
number allowed is 16. Any attempt to set a trap on a signal
that was ignored on entry to the current shell is ineffective.
An attempt to trap on signal 11 (memory fault) produces an
error. If argis absent all traps » are reset to their original
values. If arg is the null string, this signal is ignored by the
shell and by the commands it invokes. If n is 0, the
command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands
associated with each signal number.

ulimit [-f] [#]
imposes a size limit of n.

-f imposes a size limit of n blocks on files written by child
processes (files of any size may be read). With no
argument, the current limit is printed.

If no option is given, -f is assumed.

umask [oo0]
The user file-creation mask is set to the octal number ooo
where o is an octal digit (see umask(C)). If ooo is omitted,
the current value of the mask is printed.

wait [#]
Waits for the specified process to terminate and reports the
termination status. If n is not given, all currently active child
processes are waited for. The return code from this command
is always 0.

1-278 SH(C)

Invocation

If the shell is invoked and the first character of argument O is -,
commands are initially read from /etc/profile and then from
$HOME/ .profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is
invoked as /bin/sh. The flags below are interpreted by the shell
on invocation only; note that unless the -c or -s flag is specified,
the first argument is assumed to be the name of a file containing
commands, and the remaining arguments are passed as positional
parameters to that command file:

-c string

-S

-t

-i

-r

If the -c flag is present, commands are read from
string.

If the -s flag is present or if no arguments remain,
commands are read from the standard input. Any
remaining arguments specify the positional
parameters. Shell output is written to file descriptor
2.

If the -t flag is present, a single command is read and
executed and the shell exits. This flag is intended for
use by C programs only and is not useful interactively.

If the -i flag is present or if the shell input and output
are attached to a terminal, this shell is interactive. In
this case Terminate is ignored (so that kill 0 does not
kill an interactive shell) and Interrupt (Del) is caught
and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

If the -r flag is present, the shell is a restricted shell
(see rsh(C)).

The remaining flags and arguments are described under the set
command above.

SH(C) 1-279

Exit Status

Errors detected by the shell, such as syntax errors, cause the shell
to return a nonzero exit status. If the shell is being used
noninteractively, execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command
executed (see also the exit command above).

Files

/ete/profile
$HOME/ .profile
/tmp/sh*
/dev/null

See Also
cd(C), env(C), login(M), newgrp(C), rsh(C), test(C), umask(C),
a.out(F), profile(M), environ(M)

Comments

The command readonly (without arguments) produces the same
output as the command export.

If << is used to provide standard input to an asynchronous
process invoked by &, the shell gets mixed up about naming the
input document; a temporary file /tmp/sh* is created and the
shell complains about not being able to find that file by another
name.

1-280 SH(C)

SHUTDOWN(C)

Name

shutdown - Terminates all processing.

Syntax

/etc/shutdown [time] [su]

Description

The shutdown command is part of the XENIX operating
procedures. Its primary function is to terminate all currently
running processes in an orderly and cautious manner. The time
argument is the number of minutes before a shutdown will occur;
default is five minutes. The optional su argument lets the user go
single-user, without completely shutting down the system.
However, the system is shut down for multiuser use. The
shutdown command goes through the following steps. All users
logged on the system are notified to log off the system by a
broadcast message. All file system super-blocks are updated
before the system is stopped (see sync(C)). This must be done
before rebooting the system, to insure file system integrity.

SHUTDOWN(C) 1-281

See Also

sync(C), umount(C), wall(C)

Diagnostics

The most common error diagnostic that occurs is device busy. This
diagnostic appears when a particular file system could not be
unmounted. See umount(C).

Comment

Once shutdown has been invoked, it must be allowed to run to
completion and must not be interrupted by pressing C/Break or
Del.

1-282 SHUTDOWN(C)

SLEEP(C)

Name

sleep - Suspends execution for an interval.

Syntax

Description

The sleep command suspends execution for time seconds. It is
used to execute a command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do
command
sleep 37
done

Comment

Time must be less than 65536 seconds.

SLEEP(C) 1-283

SORT(C)

Name

sort - Sorts and merges files.

Syntax

sort [-cmubdf'mrtx][+pos1 [-pos2]]. . . [~ooutput] [files]

Description

The sort program merges and sorts lines from all named files and
writes the result on the standard output. A dash (-) may appear

as a file in the files argument, signifying the standard input. If no
input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is
lexicographic by bytes in machine collating sequence. The
ordering is affected globally by the following options, one or more
of which may appear.

-b

-d

-f

-n

=T

Ignores leading blanks (spaces and tabs) in field
comparisons.

“Dictionary” order: only letters, digits and blanks are
significant in comparisons.

Folds uppercase letters onto lowercase.

Ignores characters outside the ASCII octal range 040-0176
in non-numeric comparisons.

An initial numeric string, consisting of optional blanks,
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. Option n
implies option b.

Reverses the sequence of comparisons, that is, the output of
the sort is in reverse order from normal.

1-284 SORT(C)

-tx “Tab character” separating fields is x.

The notation +posl -pos2 restricts a sort key to a field beginning
at posI and ending just before pos2. Posl and pos2 have the form
m.n, optionally followed by one or more of the flags bdfinr, where
m tells a number of fields to skip from the beginning of the line
and n tells a number of characters to skip further. If any flags are
present, they override all the global ordering options for this key.
If the b option is in effect, n is counted from the first non-blank in
the field; b is attached independently to pos2. A missing .n means
.0; a missing -pos2 means the end of the line. Under the -tx
option, fields are strings separated by x; otherwise fields are
nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise
compare equal are ordered with all bytes significant. Very long
lines are truncated.

These option arguments are also understood:

-¢ Checks that the input file is sorted according to the ordering
rules; gives no output unless the file is out of sort.

-m Merges only, the input files are already sorted.

-u Suppresses all but one instance in each set of duplicated
lines. Ignored bytes and bytes outside keys do not
participate in this comparison.

-0 The next argument is the name of an output file to use

instead of the standard output. This file may be the same as
one of the inputs.

SORT(C) 1-285

Examples

The following prints in alphabetical order all the unique spellings
in a list of words (capitalized words differ from uncapitalized):

sort -u +0f +@ 1ist

The following prints the password file (passwd(M)) sorted by user
ID (the third colon-separated field):

sort -t: +2n /etc/passwd
The following prints the first instance of each month in an already
sorted file of month-day entries (the options -um with just one

input file make the choice of a unique representative from a set of
equal lines predictable):

sort -um +0 -1 dates

File

/usr/tmp/stm???

See Also

comm(C), join(C), uniq(C)
Diagnostic

Comments and exits with nonzero status for various trouble
conditions and for disorder discovered under option -c.

1-286 SORT(C)

SPLIT(C)

Name

split - Splits a file into pieces.

Syntax

split [-n] [file[name]]

Description

The split command reads file and writes it in n-line pieces (default
1000), as many as necessary, onto a set of output files. The name
of the first output file is name with aa appended, and so on
lexicographically. If no output name is given, x is the default.

If no input file is given, or if a dash (-) is given instead, the
standard input file is used.

See Also

bfs(C), csplit(C)

SPLIT(C) 1-287

STTY(C)

Name

stty - Sets the options for a terminal.

Syntax

stty [-al [~g] [options]

Description

The stty command sets certain terminal I/O options for the device
that is the current standard input; without arguments, it reports
the settings of certain options; with the -a option, it reports all of
the option settings; with the -g option, it reports current settings
in a form that can be used as an argument to another stty
command. Detailed information about the modes listed in the
first five groups below may be found in tty(M). Options in the
last group are implemented using options in the previous groups.
The options are selected from the following:

Control Modes

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

csS ¢s6 cs7 cs8

Selects character size (see tty(M)).

Hangs up phone line immediately.

1-288 STTY(C)

5075110 134 150 200 300 600

1200 1800 2400 4800 9600 exta
Sets terminal baud rate to the number given, if possible. The
baud rate that is possible is defined in the appropriate
Hardware Reference Manual.

hupcl (-hupcl)
Hangs up (does not hang up) phone connection on last close.

hup (~hup)
Same as hupcl (-hupcl).

cstopb (-cstopb)
Uses two(one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (~clocal)
Assumes a line without (with) modem control.

Input Modes

ignbrk (-ignbrk)
Ignores (does not ignore) break on input.

brkint (-brkint)
Signals (does not signal) Intr on break.

ignpar (-ignpar)
Ignores (does not ignore) parity errors.

parmrk (-parmrk)
Marks (does not mark) parity errors (see tty(M)).

inpck (-inpck)
Enables (disables) input parity checking.

istrip (~istrip)
Strips (does not strip) input characters to 7 bits.

STTY(C) 1-289

inler (~inler)
Maps (does not map) NL to CR on input.

igner (-igner)
Ignores (does not ignore) CR on input.

icrnl (-icrnl)
Maps (does not map) CR to NL on input.

iucle (-iuclc)
Maps (does not map) uppercase alphabetics to lowercase on
input.

ixon (-ixon)
Enables (disables) start/stop output control. Output is
stopped by sending an ASCII DC3 and started by sending an
ASCII DC1.

ixany (-ixany)
Allows any character (only DC1) to restart output.

ixoff (-ixoff)
Requests that the system send (not send) Start/Stop
characters when the input queue is nearly empty/full.

Output Modes
opost (-opost)

Post-processes output (does not post-process output; ignores
all other output modes).

olcuc (-olcuc)
Maps (does not map) lowercase alphabetics to uppercase on
output.

onler (-onlcr)
Maps (does not map) NL to CR-NL on output.

ocrnl (-ocrnl)
Maps (does not map) CR to NL on output.

1-290 STTY(C)

onocr (-onocr)
Does not (does) output CRs at column zero.

onlret (-onlret)
On the terminal NL performs (does not perform) the CR
function.

ofill (-ofill)
Uses fill characters (use timing) for delays.

ofdel (-ofdel)
Fill characters are Dels (Nuls)

cr0 crl cr2 cr3.
Selects style of delay for carriage returns (see tty(M)).

nl0 nll
Selects style of delay for linefeeds (see tty(M)).

tab0 tabl tab2 tab3
Selects style of delay for horizontal tabs (see tty(M)).

bs0 bs1
Selects style of delay for backspaces (see tty(M)).

ffo ff1
Selects style of delay for form feeds (see tty(M)).

vt vtl
Selects style of delay for vertical tabs (see tty(M)).

Local Modes

isig (-isig)
Enables (disables) the checking of characters against the
special control characters Intr and Quit.

icanon (-icanon)

Enables (disables) canonical input (erase and kill
processing).

STTY(O) 1-291

xcase (-xcase)
Canonical (unprocessed) upper/lowercase presentation.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Echoes (does not echo) Erase character as a
backspace-space-backspace string.

Note: This mode erases the ERASEed character on
many displays; however, it does not keep track of
column position and, as a result, may be confusing on
escaped characters, tabs, and backspaces.

echok (-echok)
Echoes (does not echo) NL after KILL character.

Ifke (-lfke)
The same as echok (-echok)

echonl (-echonl)
Echoes (does not echo) NL.

noflsh (-noflsh)
Disables (enables) flush after Intr or Quit.

Control Assignments

control-character-C
Sets control-character to C, where control-character is erase,
kill, intr, quit, eof, eol. If C is preceded by a caret (A)
(escaped from the shell), the value used is the corresponding
Ctrl character (for example, “AD” is a Ctrl-D); “A?” is
interpreted as Del and ‘““A-"" is interpreted as undefined.

min i, time i(0<i<127)
When icanon is not set, read requests are not satisfied until at
least min characters have been received or the timeout value
time has expired. See tty(M).

1-292 STTY(C)

line i
Sets the line discipline to i(0 <i< 127). There are currently
no line disciplines implemented.

Combination Modes

evenp or parity
Enables parenb and cs7.

oddp
Enables parenb, cs7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets cs8.

raw (-raw or cooked)
Enables (disables) raw input and output (no Erase, Kill, Intr,
Quit, top, or output postprocessing).

nl (-nl)
Unsets (sets) icrnl, onler. In addition, -nl unsets inlcr, igner,
ocrnl, and onlret.

lcase (-lcase)
Sets (unsets) xcase, iucle, and olcuc.

LCASE (-LCASE)
Same as Icase (-lcase).

tabs (tabs or tab3)
Preserves (expands to spaces) tabs when printing.

STTY(C) 1-293

ek
Resets Erase and Kill characters back to normal Ctrl-H and
Ctrl-U. :

sane
Resets all modes to some reasonable values. Useful when a
terminal’s settings have been scrambled.

term
Sets all modes suitable for the terminal type term, where term
is one of tty33, tty37, vt05, tn300, ti700, or tek.

See Also

tty(M)
Comment

Many combinations of options make no sense, but no checking is
performed.

1-294 STTY(C)

SU(C)
Name

su - Makes the user super-user or another user.

Syntax

su [_} ‘ [name[arg]}

Description

The su command allows you to become another user without
logging off. The default user name is root (that is, super-user).

To use su, the appropriate password must be supplied (unless you
are already super-user). If the password is correct, su executes a
new shell with the user ID set to that of the specified user. To
restore normal user ID privileges, type a Ctrl-D to the new shell.

Any additional arguments are passed to the shell, permitting the
super-user to run shell procedures with restricted privileges (an
arg of the form -c string executes string via the shell). When
additional arguments are passed, /bin/sh is always used. When
no additional arguments are passed, su uses the shell specified in
the password file.

An initial dash (=) causes the environment to be changed to the
one that would be expected if the user actually logged in again.
This is done by invoking the shell with an argf of -su causing the
.profile in the home directory of the new user ID to be executed.
Otherwise, the environment is passed along with the possible
exception of $PATH, which is set to /bin:/etc:/usr/bin for root.

SU(C) 1-295

Note that .profile can check argf for -sh or -su to determine how
it was invoked. This is true only if there is no specified shell (in
the passwd file) for the user. If a shell has been specified in the
passwd file, the “‘shell name” is passed to argp.

Files

/etc/passwd The system password file
$HOME/ .profile ~ User’s profile

See Also

env(C), login(M), sh(C), environ(M)

1-296 SU(C)

SUM(C)
Name

sum - Calculates checksum and counts blocks in a file.

Syntax

sum [-r] file

Description

The sum command calculates and prints a 16-bit checksum for the
named file and also prints the number of blocks in the file. Itis
typically used to look for bad data or to validate a file

communicated over a transmission line. The option -r causes an
alternate algorithm to be used in computing the checksum.

See Also

wc(C)
Diagnostics

“Read error” is indistinguishable from end-of-file on most
devices; check the block count.

SUM(C) 1-297

SYNC(O)
Name

sync - Updates the super-block.

Syntax

Description
The sync command executes the sync system primitive. If the
system is to be stopped, sync must be called to ensure file system

integrity. Note that shutdown(C) automatically calls sync before
shutting down the system.

See Also

shutdown(C)

1-298 SYNC(C)

SYSADMIN(C)

Name

sysadmin - Performs file system backups and restores files.

Syntax

Description

The sysadmin script performs file system backups and restores to
and from backup disks. It can do a daily incremental backup
(level 9), or a periodic full backup (level §). It can provide a
listing of the files backed up and also has a facility to restore
individual files from a backup.

The sysadmin script operates on XENIX formatted diskettes. The
version provided backs up the root and user file systems.

The script can be edited to operate on additional file systems if
required.

You must be the super-user to use this program.

File

/tmp/backup.list

See Also

backup(C), restor(C), mkfs(C), dumpdir(C)

SYSADMIN(C) 1-299

TAIL(C)
Name

tail - Copies the last part of a file to the output.

Syntax

tail [[number] [Ibe] [-f]] [file]

Description

The tail command copies the named file to the standard output
beginning at a designated place. If no file is named, the standard
input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the value 10
is assumed). The number is counted in units of lines, blocks, or
characters, according to the appended option 1, b, or ¢. When no
units are specified, counting is by lines.

1-300 TAIL(C)

With the -f (follow) option, if the input file is not a pipe, the
program will not terminate after the line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a
second and then attempts to read and copy further records from
the input file. Thus, it may be used to monitor the growth of a
file that is being written by some other process. For example, the
command:

tail -f file

prints the last ten lines of file, followed by any lines that are
appended to file between the time tail is initiated and ended.

See Also

dd(C)

Comment
Any tail commands relative to the end of the file gre keptin a

buffer and thus are limited in length. Unpredictable results can
occur if character special files are “tailed.”

TAIL(C) 1-301

TAR(C)
Name

tar - Archives files.

Syntax

tar [key] [files]

Description

The tar command saves and restores files to and from an archive
medium which is typically a storage device such as diskette, tape,
or regular file. Its actions are controlled by the key argument.
The key is a string of characters containing at most one function
letter and possibly one or more function modifiers. Valid
function letters are r, x, t, u, and c.. Other arguments to the
command are files (or directory names) specifying which files are
to be backed up or restored. In all cases, appearance of a
directory name refers to the files and (recursively) to
subdirectories of that directory.

The function portion of the key is specified by one of the
following letters:

r The named files are written to the end of the archive. The ¢
function implies this function.

X The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if
possible). If no files argument is given, the entire contents
of the archive are extracted. Note that if several files with
the same name are on the archive, the last one overwrites all
earlier ones.

t The names of the specified files are listed each time that

they occur on the archive. If no files argument is given, all
the names on the archive are listed.

1-302 TAR(C)

u The named files are added to the archive if they are not
already there or if they have been modified since last
written on that archive.

c Creates a new archive; writing begins at the beginning of
the archive, instead of after the last file. This command
implies the r function.

The following characters may be used in addition to the letter that
selects the desired function:

e Prevents files from being split across volumes (tapes or
diskettes). If there is not enough room on the present
volume for a given file, tar prompts for a new volume.
This is only valid when the -k option is also specified
on the command line.

This modifier selects the drive on which the archive is
mounted. The default is 1[for/dev/m+1]. This option
should only be selected if you have linked the
appropriate /dev/mt to the desired device.

v Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats,
preceded by the function letter. With the t function, v
gives more information about the archive entries than
just the name.

w Causes tar to print the action to be taken, followed by
the name of the file, and then wait for the user’s
confirmation. If a word beginning with y is given, the
action is performed. Any other input means “no.”

f Causes tar to use the next argument as the name of the
archive instead of /dev/mtl. If the name of the file is a
dash (-), tar writes to the standard output or reads
from the standard input, whichever is appropriate.
Thus, tar can be used as the head or tail of a pipeline.
The tar command can also be used to move hierarchies
with the command:

cd fromdir; tar cf - .| (cd todir; tar xf -)

TAR(C) 1-303

b Causes tar to use the next argument as the blocking
factor for archive records. The default is 1, the
maximum is 20. This option should only be used with
raw magnetic tape archives (see f above). The block
size is determined automatically when reading tapes
(key letters x and t).

F Causes tar to use the next argument as the name of a
file from which succeeding arguments are taken. A
lone dash (-) signifies that arguments are taken from
the standard input.

1 Tells tar to print an error message if it cannot resolve
all of the links to the files being backed up. If lis not
specified, no error messages are printed.

m Tells tar to not restore the modification times. The
modification time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an
archive volume in kilobytes. The minimum value
allowed is 250. This option is useful when the archive
is not intended for a magnetic tape device, but for some
fixed size device, such as diskette (See f above). Very
large files are split into “‘extents’ across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been
partially restored.

n Indicates the archive device is not a magnetic tape.
The k option implies this. Listing and extracting the
contents of an archive are sped because tar can seek
over files it wishes to skip. Sizes are printed in
kilobytes instead of tape blocks.

P Indicates that files are extracted using their original
permissions. It is possible that a non-super-user may
be unable to extract files because of the permissions
associated with the files or directories being extracted.

1-304 TAR(C)

Examples

If the name of a diskette device is /dev/fdf96ds15, a file can be
copied in tar format on this device by typing:

dd96ds15 1150 fites

where files are the names of files you want archived and 1150 is
the capacity of the diskette in kilobytes. Arguments to key letters
are given in the same order as the key letters themselves, thus the
fk key letters have corresponding arguments /dev/fd#96ds15and
1150. If a file is a directory, the contents of the directory are
recursively archived. To print a listing of the archive, type:

{06dc 1R
Yodslio

At some later time you will likely want to extract the files from
the archive diskette. You can do this by typing:

d096ds15

The above command extracts all files from the archive using the
exact same path names as used when the archive was created.
Because of this behavior, it is normally best to save archive files
with relative path names rather than absolute ones, because
directory permissions may not let you read the files into the
absolute directories specified.

In the above examples, the v (verbose) option is used simply to
confirm the reading or writing of archive files on the screen.
Also, a normal file could be substituted for the diskette drive
/dev/fdf96ds15in the examples.

Files

/etc/default/backup Default devices
/tmp/tar*

TAR(C) 1-305

Diagnostics

Prints an error message about bad key characters and archive
read/write errors.

Prints an error message if not enough memory is available to hold
the link tables.

Comments
There is no way to ask for the nth occurrence of a file.
The u option can be slow.

The b option should not be used with archives that are going to be
updated. If the archive is on a disk, the b option should not be
used at all, because updating an archive stored on disk can destroy
it. To update (r or u option) a tar archive, do not use raw
magnetic tape and do not use the b option. This applies both
when updating and when the archive was first created.

The limit on filename length is 100 characters.

When archiving a directory that contains subdirectories, tar can
only access those subdirectories that are within 17 levels of
nesting. Subdirectories at higher levels will be ignored after tar
displays an error message.

Systems with a 1K-byte file system cannot specify raw disk
devices unless the b option is used to specify an even number of
blocks. This means that one cannot update a raw-mode disk
partition.

Don’t do:

tar xfF - -

This would imply taking two things from the standard input at the
same time.

1-306 TAR(C)

TEE(C)
Name

tee - Creates a tee in a pipe.

Syntax

Description

The tee command transcribes the standard input to the standard
output and makes copies in the files. The -i option ignores
interrupts; the -a option causes the output to be appended to the
files rather than overwriting them.

Examples

The following example illustrates the creation of temporary files
at each stage in a pipeline:

grep ABC | tee ABC.grep | sort | tee ABC.sort | more

This example shows how to tee output to the terminal screen:

grep ABC | tee /dev/tty | sort | unig >final.file

TEE(C) 1-307

TEST(C)
Name

test - Tests conditions.

Syntax
test expr

lexpr]

Warning: In the second form of the command (that is, the
one that uses [], rather than the word test), the square
brackets must be delimited by blanks.

Description

The test command evaluates the expression expr and, if its value is
true, returns a 0 (true) exit status; otherwise, returns a 1 (false)
exit status. The test command returns a nonzero exit status if
there are no arguments. The following primitives are used to
construct expr:

-rfile True if file exists and is readable.

-wfile True if file exists and is writable.

-xfile True if file exists and is executable.

-ffile True if file exists and is a regular file.

-dfile True if file exists and is a directory.

-cfile True if file exists and is a character special file.
-bfile True if file exists and is a block special file.
-ufile True if file exists and its set-user-ID bit is set.
-gfile True if file exists and its set-group-ID bit is set.

1-308 TEST(C)

-kfile
-sfile
-t[fildes]

-zsl

-n s/

sl =52
sl !'=s2
s

nl -eq n2

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.
True if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal
device.

True if the length of string s! is zero.

True if the length of the string s/ is nonzero.

True if strings s/ and s2 are identical.

True if strings s/ and s2 are not identical.

True if s/ is not the null string.

True if the integers nl and n2 are algebraically equal.

Any of the comparisons -ne, -gt, -ge, -It, and -le
may be used in place of -eq.

These primaries may be combined with the following operators:

!
-a

-0

(expr)

Unary negation operator
Binary AND operator

Binary OR operator (-a has higher precedence than
-0)

Parentheses for grouping

Notice that all the operators and flags are separate arguments (o
test. Notice also that parentheses are meaningful to the shell and,
therefore, must be escaped.

See Also

find(C), sh(C)

TEST(C) 1-309

TOUCH(C)

Name

touch - Updates access and modification times of a file.

Syntax

touch[-’anlc] [mmddhhmm|yy] | files

Description

The touch command causes the access and modification times of
each argument to be updated. If no time is specified (see date(C),
the current time is used. The -a and -m options cause touch to
update only the access or modification times respectively (default
is -am). The -c option silently prevents touch from creating the
file if it did not previously exist.

The return code from touch is the number of files for which the

times could not be successfully modified (including files that did
not exist and were not created).

See Also

date(C)

1-310 TOUCH(C)

TR(C)

Name

tr - Translates characters.

Syntax

tr [-cds] [string! [string2]]

Description

The tr command copies the standard input to the standard output
with substitution or deletion of selected characters. Input
characters found in string! are mapped into the corresponding
characters of string2. Any combination of the options -cds may be
used:

-c Complements the set of characters in siring! with respect
to the universe of characters whose ASCII codes are 001
through 377 octal.

-d Deletes all input characters in stringl.

-s Compresses all strings of repeated output characters that
are in string2 to single characters.

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes
run from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is0, nis
considered octal; otherwise, n is taken to be decimal. A 0
or missing n is taken to be huge; this facility is useful for
padding string?2.

TR(C) 1-311

The escape character \ may be used as in the shell to remove
special meaning from any character in a string. In addition, \
followed by one, two, or three octal digits stands for the character
whose ASCII code is given by those digits.

The following example creates a list of all the words in filel, one
per line, in file2, where a word is taken to be a maximal string of
alphabetics. The strings are quoted to protect the special
characters from interpretation by the shell; 012 is the ASCII code
for newline:

tr -cs "[A-Z]la-z]" "[\012*]" <filel >file2

See Also

ed(C), sh(C), ascii (M)
Comment

The tr command won’t handle ASCII Nul in stringl or string2; it
always deletes Nul from input.

1-312 TR(C)

TRUE(C)
Name

true - Returns with a 0 exit value.

Syntax

true

Description

The true command does nothing except return with a 0 exit value.
The false command, true’s counterpart, does nothing except
return with a nonzero exit value. The true command is typically
used in shell procedures such as:

while true

do

command
done
See Also

sh(C), false(C)

Diagnostics

The true command has exit status O.

TRUE(C) 1-313

TSET(C)

Name

tset - Sets terminal modes.

Syntax

tset [-] [-hrsIQS] [~efc]] [-Elc] [-klc])
[-ml[ident] [test baz;dmfg}:(ype}[ﬁpe] -

Description

The tset command allows the user to set a terminal’s Erase and
Kill characters, and define the terminal’s type and capabilities by
creating values for the TERM and TERMCAP environment
variables. If a type is given, tset creates information for a terminal
of the given type. The type may be any type given in
/ete/termeap. If fype is not given, tset creates information for a
terminal of the type defined by the value of the environment
variable TERM, unless the -h or -m option is given. If these
options are given, tset searches the /etc/ttytype file for the
terminal type corresponding to the current serial port, then
creates information for a terminal based on this type. If the serial
port is not found in /etc/ttytype the terminal type is set to
unknown.

The tser command displays the created information at the
standard output. The information is in a form that can be used to
set the current environment variables. The exact form depends
on the login shell from which tset was invoked. Examples below
illustrate how to use this information to change the variables.
There are the following options:

- Prints the terminal type on the standard output.

-r Prints the terminal type on the diagnostic output.

1-314 TSET(C)

=S

-elc]

-E|c]

=k[cl]

Outputs export and assignment commands (for sh(C)).
The type of commands is determined by the user’s login
shell.

Suppresses printing of the terminal initialization strings.

Suppresses the printing of the “Erase set to”” and “Kill
set to”’ messages.

Only outputs the strings to be placed in the environment
variables.

Sets the Erase character to Ctrl-C on all terminals. The
default for c is the backspace character on the terminal,
usually Ctrl-H.

Identical to the -e command except that it only operates
on terminals that can backspace.

Sets the Kill character to Ctrl-C, defaulting to Ctrl-U.

-m|identlltest baudrate):type

Allows a user to specify how a given serial port is is to
be mapped to an actual terminal type. The option
applies to any serial port in /etc/ttytype whose type is
indeterminate (for example, dialup, plugboard, and so
on. The type specifies the terminal type to be used, and
ident identifies the name of the indeterminate type to be
matched. If no ident is given, all indeterminate types are
matched. The fest baudrate defines a test to be
performed on the serial port before the type is assigned.
The baudrate must be as defined in stty(C). The test
may be any combination of: > = < @ and !. If the zype
begins with a question mark, the user is asked if he really
wants that type. A null response means to use that type;
otherwise, another type can be entered which will be
used instead. The question mark must be escaped to
prevent filename expansion by the shell. If more than
one -m option is given, the first correct mapping
prevails.

TSET(C) 1-315

The tser command is most useful when included in the .profile (for
sh(C)) file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

Examples

tset gt4?2
tset -m dialup\>300:adm3a -m dialup:dw2 -Qr -e#
tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -kAU

To use the information created by the -s option for the Bourne
shell (sh), repeat these commands:

tset -s . . . > /tmp/tset$$
/tmp/tset$$
rm /tmp/tset$$

Files

/etc/ttytype Port name to terminal type map database
/etc/termcap Terminal capability database

See Also

tty(M), termcap(M), stty(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

1-316 TSET(C)

TTY(C)

Name

tty - Gets the terminal’s name.

Syntax

Description

The tty command prints the path name of the user’s terminal on
the standard output. The -s option inhibits printing, allowing you
to test just the exit code.

Exit Codes

0; if the standard input is a terminal, 1 otherwise.
Diagnostic

not a tty If the standard input is not a terminal and -s is not
specified.

TTY(C) 1-317

UMASK(C)
Name

umask - Sets file-creation mode mask.

Syntax

umask [000]

Description

The user file-creation mode mask is set to ooo. The three octal
digits refer to read/write/execute permissions for owner, group,
and others, respectively. Only the low-order nine bits of umask
and the file mode creation mask are used. The value of each
specified digit is subtracted from the corresponding digit specified
by the system for the creation of any file. This is actually a binary
masking operation, and thus the name umask. In general, binary
1’s remove a given permission and 0’s have no effect. For
example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files
created with mode 666 become mode 644).

If ooo is omitted, the current value of the mask is printed.

The umask command is recognized and executed by the shell. By
default, login shells have a umask of 022.

See Also

chmod(C), sh(C)

1-318 UMASK(C)

UMOUNT(C)

Name

umount - Dismounts a file structure.

Syntax

/ete/umount special-device

Description

The umount command announces to the system that the
removable file structure previously mounted on device
special-device is to be removed. Any pending I/O for the file
system is completed, and the file structure is flagged clean. For
fuller explanation of the mounting process, see mount(C).

Files

/etc/mnttab Mount table

See Also

mount(C), mnttab(F)
Diagnostic

device busy An executing process is using a file on the
named file system.

UMOUNT(C) 1-319

UNAME(C)

Name

uname - Prints the current XENIX name.

Syntax

Description

The uname command prints the current system name of XENIX
on the standard output file. The options cause selected
information returned by uname to be printed:

-s Prints the system name (defauit).

-n Prints the nodename (the nodename may be a name that the
system is known by to a communications network).

-r Prints the operating system release.

-m Prints manufacturer, original supplier of XENIX system.
-d Prints distributor or OEM for this system.

-u Prints user serial number for this system.

-v Prints the operating system version.

-a Prints all the above information.

1-320 UNAME(C)

UNIQ(C)
Name

uniq - Reports repeated lines in a file.

Syntax

“ umq [~ude[+n] ,[-h]] [input{outpur]]

Description

The unig command reads the input file and compares adjacent
lines. In the normal case, the second and succeeding copies of
repeated lines are removed; the remainder is written on the output
file. Inpur and output should always be different. Repeated lines
must be adjacent to be found (see sort(C)). If the -u flag is used,
just the lines that are not repeated in the original file are output.
The -d option specifies that one copy of just the repeated lines is
to be written. The normal mode output is the union of the -u and
-d mode outputs.

The -c option supersedes -u and -d and generates an output
report in default style but with each line preceded by a count of
the number of times it occurred.

The n arguments specify skipping an initial portion of each line in
the comparison:

-n The first n fields and any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

See Also

comm(C), sort(C)

UNIQ(C) 1-321

UNITS(C)

Name

units - Converts units.

Syntax

Description

The units command converts quantities expressed in various
standard scales to their equivalents in other scales. It works
interactively in this fashion:

You have: inch
You want: c¢m

* 2.540000e+00

/ 3.937008e-01

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated
by suffixed positive integers, division by the usual sign:

You have: 15 1bs force/in2
You want: atm

* 1.020689e+00

/9.797299e-01

1-322 UNITS(C)

The units command only does multiplicative scale changes; thus it
can convert Kelvin to Rankine, but not Centigrade to Fahrenheit.
Most familiar units, abbreviations, and metric prefixes are
recognized, as well as the following:

pi

c

e

g
force
mole
water

au

Ratio of circumference to diameter
Speed of light

Charge on an electron

Acceleration of gravity

Same as g

Avogadro’s number

Pressure head per unit height of water

Astronomical unit

Pound is not recognized as a unit of mass; Ib is. Compound
names are run together, (for example lightyear). British units that
differ from their US counterparts are prefixed with br. For a
complete list of units, type:

cat /usr/lib/unittab

File

/usr/lib/unittab

UNITS(C) 1-323

UUCLEAN(C)

Name
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>