IBM RT Advanced Interactive Executive Operating System Version 2.2

AIX Operating System
Commands Reference

Volume 1

Programming Family

$C23-2011-1

IBM RT Advanced Interactive Executive Operating System Version 2.2

AIX Operating System

Commands Reference
Volume 1

Programming Family

SC23-2011-1

Second Edition (September 1988)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
The Network File System was developed by Sun Microsystems, Inc.

This edition applies to Version 2.2 of the IBM AIX Operating System. Changes are made periodically to the information herein;
these changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual “as is,” without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your IBM authorized RT dealer, your IBM marketing representative, or your IBM authorized
remarketer.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation. Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1988
©Copyright INTERACTIVE Systems Corporation 1984
©Copyright AT&T Technologies 1984

Trademarks

The following trademarks apply to this book:

e AIX is a trademark of International Business Machines Corporation.

e DEC and VT100 are trademarks of Digital Equipment Corporation.

e [Ethernet is a trademark of XEROX CORPORATION.

e IBM is a registered trademark of International Business Machines Corporation.

e PC-NFS and NFS are trademarks of Sun Microsystems, Inc.

e Proprinter is a trademark of International Business Machines Corporation.

® Quietwriter is a registered trademark of International Business Machines Corporation.
e RT is a registered trademark of International Business Machines Corporation.

e Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

e Tektronics is a trademark of Tektronix, Inc.

e UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in
the United States of America and other countries.

e XEROX is a trademark of XEROX CORPORATION.

iii

About This Book

This book contains reference information on Advanced Interactive Executive (AIX)
Operating System commands. It describes the commands you can use and summarizes who
can run them, how to run them, what they do, how they read input, how they write output,
and how to modify their actions.

Who Should Use This Book

To use this book, you should be familiar with AIX or UNIX System V commands. If you
are not already familiar with AIX or UNIX System V, see Using the AIX Operating System.
If you are familiar with the commands but need to review how to use the shell and write
shell procedures, see “sh” on page 913.

How To Use This Book

Most of the AIX commands described in this book are in alphabetical order by command
name. Some related commands are combined in one description listed with a main or key
command. The related commands have an entry with the main command in the table of
contents and are listed individually in alphabetical order in the index. If you are having
difficulty locating a particular command, check the “Contents” or “Index” sections of this
publication.

Command Information

The “Commands” section begins on page 11. A discussion of a command may include the
following information:

Purpose A single-sentence description of the major function of each
command
Syntax A syntax diagram that shows command line options (For a

discussion of how to use this syntax diagram, see “Syntax
Diagrams” on page 5.)

Description A discussion of the command that provides more details about its
function and use

About This Book v

Flags A list of command line flags and associated parameters with an
explanation of how the flags modify the action of the command

Subcommands A list of subcommands (for interactive commands) that explains
their use

Examples Specific examples of how you can use the command

Files A list of files used by the command

Related Information A list of related commands in this book and related discussions in
other books.

For details on other conventions used in this book, see “How to Use the Commands” on
page 3.

A Task Index

“Task Index” on page TASK-1 can help you locate the commands you need to perform
specific tasks. It contains lists of commands grouped by task. Next to each command is a
description of what it does. To find a command that performs a specific task, locate the
task in the table of contexts at the beginning of the task index, go to the indicated page
and review the list of commands associated with that task, then select the desired
command. For more information about the command, refer to the discussion of the
command in the “Commands” section.

Other Reference Aids

A cross-reference listing of commands and program packages appears in

Appendix B, “Program Cross-Reference” on page 1269. Appendix C, “Syntax Diagram
Guide” on page 1277 contains a detailed description of how to read syntax diagrams. The
standard system devices are described in Appendix A, “AIX Device Table” on page 1267.
A “Glossary” of terms appears after the Appendixes, followed by an “Index.”

In addition, a Reader’s Comment Form and Book Evaluation Form are provided at the
back of the second volume of this publication. Use the Reader’s Comment Form at any
time to give IBM information that may improve the book. After you have become familiar
with the book, use the Book Evaluation Form to give IBM specific feedback about the
book.

Japanese Language Support

Appendix D, “Japanese Language Support” on page 1287 contains a list of commands that
have not been modified to support Japanese characters.

vi

Special Key Sequences

You can use the AIX Operating System from any of several different display stations, each
of which has a different keyboard. In some cases, you must press different keys to perform
the same function from different keyboards. Throughout this publication both the function
name (for example, INTERRUPT) and the necessary key sequence on the IBM RT system
are identified. If you are not using an IBM RT Keyboard, look at your keyboard reference
chart to find out which keys on your keyboard produce the same function.

Prerequisite Information

IBM RT Managing the AIX Operating System provides instructions for performing
such system management tasks as adding and deleting user IDs, creating and mounting
file systems, repairing file system damage, and managing data communications
facilities.

IBM RT Using the AIX Operating System describes using the AIX Operating System
commands, working with file systems, developing shell procedures, and using data
communications facilities.

Related Information

IBM RT AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

IBM RT AIX Operating System Technical Reference is a four-volume set.

System Calls and Subroutines, describes the system calls and subroutines that a C
programmer uses to write programs for the AIX Operating System.

Files and Extensions, contains information about the extensions to the kernel and base
operating system, including file formats, special files, and GSL subroutines.

VRM Programming Support, describes the VRM programming environment, including
the internal VRM routines, VRM floating-point support, use of the VRM debugger, and
the supervisor call instructions that form the Virtual Machine Interface.

VRM Device Support, describes device IPL and configuration, minidisk management,
the virtual terminal and block I/O subsystems, as well as the interfaces to VRM device
driver and data link control components. This volume also describes the programming

About This Book vii

conventions for developing your own VRM code and installing it on the system.
(Available optionally)

e [BM RT Using DOS Services provides step-by-step information for using AIX
Operating System shell. (Available optionally; packaged with IBM RT DOS Services
Reference)

o [BM RT DOS Services Reference provides reference information about the AIX
Operating System shell. This book also includes information on sharing DOS files
with Personal Computer AT Coprocessor Services, and on the differences between PC

DOS and shell. (Available optionally; packaged with IBM RT Using DOS Services)

e [BM RT C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

e [BM RT Messages Reference lists messages displayed by the IBM RT and explains how
to respond to the messages.

e [BM RT AIX Operating System Text Formatting Guide describes the functions and
capabilities of NROFF and TROFF to perform text processing tasks. (Available
optionally)

e IBM RT Bibliography and Master Index provides brief descriptive overviews of the
books and tutorial program that support the IBM RT hardware and the AIX Operating
System. In addition, this book contains an index to the RT and AIX Operating System
library.

See IBM RT Bibliography and Master Index for order numbers of IBM RT publications
and diskettes.

Ordering Additional Copies of This Book

viii

To order additional copies of this publication (without program diskettes), use either of the
following sources:

e To order from your IBM representative, use Order Number SBOF-1814.
e To order from your IBM dealer, use Part Number 27F4354.

A binder is included with the order. For information on ordering the binder and manual
separately, contact your IBM representative or your IBM dealer.

Contents

VOLUME 1 ... ittt ittt ittt tneeeteeaeaeeeeeenesnsans 1
How to Use the Commandsc.cuititueeneennnneoneans 3
Command Input and Output e 4
Pile Name: Substitution. : cowsaa: i somned s is s hmnd s bab@s s RaEd iz aeaessii s 4
Syntax DIagrams e e e e e 5
Command, Flag, and Parameter Notationttt ineunnennn . 8
Commandsi0tveeeennn. a) = 21 280 vl e v e e e e B e gl g 0118 11
MOCE/E v o v v« v n mmcmimn o o i # e w5 F s §r e 5 bdmias §F R 13
CHAYGOICE .vwiv i smummpmmes s 6 B oM s 558 BEEE 54 PHS@N 53 NOUF 6 § 58 REEE 354 14
CRPACCt . .. e e 14
HOAISK . v v o5 mmmmm 55 8 5 i (5 R E S 38 B FAF ET RARE T MRS § S 14
JASEIOBIN wowww s s vammun s 3 s v QEBE 573 URBET § 1 FPHNBE S ¢ § PHBE 154 ¢ BHAB €58 8 15
MONACCT . . . o e e e e 15
nulladm cosieiissanmas s naEmsrs s A REES § 5 L LU HE S8 LEAE FF G EBNER L7 6 15
43 627 o 1) 2 15
Y 21 1 U TV T PR R R T 15
PITACCE : csnums s pmemenss b s UEETE € § 5 HEEOE § 55 BRGNS PONET I3 BHEE S8 5 e 16
TOHAOVE « im0 0 miitimon o 75 8BS 88855 anbiaissnpla i) RSN RERME LIS 16
ShutacCCt e e e 16
SEArtup ;iosneci s nmama i i F A RENA I BN S ¥ RAEE L HERE E IS BERE ¢ 16
72 o 1 v 16
ACCECIMIS i i v ssvand i s bR ss43 LEAHA 8o ABE G 3 BNAF I3 FNNMR I 58 FRBE 8 & 18
ACCECOM ittt et e e e e e e e 20
ACCECON. . i s i s smmus v s s PaAHd £ 43 RNPRAE 3 IS URHH IS AEEES P 5 RERNE FE 3 HEEE £ 8§ 24
ACCECOM L . . . e e e e e e e e e 24
ACCECOND csvci 5565 Ba s 5 bnARA LTI BEAE F T R REEE T 0 GEEEE S § I GEREE E 25
acctdisk, acetdusg 26
F T 17 4 =3 o - 28
BCCEPYC s :i55 smpmm s i3 ENMBEE 43 DUBEE L 185 HOME 15 19 EVRT P34 3 SERE 1538 POEE 58 30
ACCEPTCL . .. e 30
ACCEPYCD : inme s s s mud 555 RERE K15 I RARE§ ¢ 8 HBRE T NEREE S E I PR S 8 ¥ 31
2 X e 3 « O 31
F: Uea 1 12 12 1 + QR S T S s T T TR P T T Y 32
AdD . e e e 33
AdIMIN . .. e e e 41
Al s s osmmis i puERaE i RERES I E5 RREEA i Y AR F F I CNENS S S A EREE L RABEE § s 48
- s 1 o L 50

Contents ix

AN SR BE B TN R AR L AR mEE D SR ARG EE (R SR e [ThE ThE S H R oI e ne s e B SR 5% e e 3 55
ArIEhMEtIC « snvmcs s v 55 w0 BB 5555 5 B HEBES 55 LB HBE 15 55 BEHAEF T S RmTE E5 5§ ormbi s 59
- = 61
at, batch e 63
AMAIE wms 6 bwams s 385 RBEEG 55 ¥ RAENES £5 1 LBENG LS BoHEEA 5 F SR BES B F 88 RBEad ! 67
AU A PP . . . e e e e e e 69
AUdItDIn . .. e 71
AUAIEPT e 73
auditselect 76
AUMAIESELOAINY v v v 5 6 6 80 Hd 5655 HBH Eid 55 DA AE 855§ bbb md i 5 hmmmbsers mammm o s 78
AUAIEWEIt e e 80
AWK maor e D E e R N5 DR eE O NG S AR AR D D D17 BT TR faf S S ST TR S B e 81
BACK i cisnmmpais 58 smpaas i35 mihadad i 8 ndiagisi i eaRadiiii bFaeiiisbommtes 87
DaACKUD . .. e e 88
DA T . . . 94
basename, dirname e 95
o X 97
bdiff b o I D5 5 5 P GuwaBel x v 5 3 sy n e E o B o 15 B el « x TG B S ek e m Fona 102
bellmail 104
bffcreate 108
bES L 110
DO . .. 114
biodd _cfg e 115
D ot 85 5 i 7 5 55 Bodnimid § 0 5 s m 6 p e o 8 8 s e & e m e s s« » s 117
DS L e 118
DUEST s i 5050000 85 55 ma B el o s § Simmamm n £ 5 momom » § oo coman o o o s mm . o s o e n 129
CaAl . e e e 132
calendar 134
o 1 137
B 25 « N 2 iR R s o B o FlmmwEE s 2 G F BBt 5§ B F e e 139
CC swpmn s i3 amREEL s 33 FHAEE 43 HNBEREB 1§ BREN i §ARGHE .G ¥ I LIRM 35§ bWERS T s 140
CA o 150
CAC munci i ErEEd i i RUEE A 55 LRENEE I I F LB E 86 AR Ead 55 bhas sl e mammm . 152
CElOW . e 154
C g D . . e e 156
CHEBOMD : wewew crises GuB@ 13 FRRFEEE 65 HOKRE 1§ CRBEEE {15 QNER I 615 hRREL L3 158
chmod 160
ChNFEEALE & ovums o5 wbmmm s 5745 MER AT 8518 S HFE 555 hnsddasiimidessss mammm e s 164
cAnstalle .. e 166
UPAAtEC . .. e 167
CROWIL . o e e 169
CRPaATIN L . e e e 171
CRr OOt . . e e 172
ChtCb . e 174

COL, 5 i 5 5 mn i 5 5 5 % hemmonsi v B 5 BBtk a p e e b A s m n s & A § h g s a s s 179
COMID e 181
0 ' 0 o+ 1 183
COMIIE 5 -5 wnsi s 855 wmniimd 5055 hmdd isid Wabae i 75 wbmd 15 Rafdd 55 homassl5nin 185
COM O . . . e e 189
COMEIE . . e e e e 194
CONTHCE & vonma s s s nemad e 5 i RRMAEE s REMEFE 53 REPEA ¢ § S WS E§ 15 Rumm ¢ L35 6o 196
0.3 ¢ 5 s 1= 1 2t 198
BIE i » 2 v weriom & n n b 5 n % 3 s o 505 8 s e & n % i A e s s mon 8w a A n B e 202
CDIO oo 5 s 5 wimis ¢ 535 HEGEE £ 5+ 2 HEPEE 4 58 GO FEEN £5 5 BRI ¥ TP BHUE LV HHMR 58 BB 205
) 41 o 210
CRADE . « v o woommm n s r o« o momon s o 5 oo w8 B s R a a8 3 E mmA s BEAE T B 214
CraAS . . e e e 215
o3)« 1 220
CrONEAD i cvmii s A b A I R ARG L REEEA A BT REER I RREEEE S B 222
CSL L e e 225
CSPIIt .. e e e e e e 252
1 R 254
1 72 Y « J 257
CEAZS: .. . i i v s b b s § B AR A SR BB E s FE RS §T R REEA TS R EEEE SR 261
) 263
CUL o e e e e e e e e 269
CVIA i 5 ¢ 6 5 b d 5 T 5 e R E SR L R R T RN GRS A EA S REE A REE G s 272
" 274
CW, CheCKkCW . . e 275
- < A 279
AAatE i i hmmii i n s s REa i i s MR FE i BhRA SR § s RREEE T P L BN EE i R RSEE §E 281
A X . o e e e e 284
de conusirsaamummacsis batBaii 8 bUFNA I s LUBGE i s uamal 0 nUENE 3y GREME § 5 & 295
QOO Y - it e e e e 299
Ad . e e e e 301
defKey . .o e e e e 306
del . e e e 308
delta . . e 310
Aerol ... i i i s R E RS REEEE R B R EE B RRE A F R P i E s BEEEE S 313
BOVICeS . .o e 315
QeVII . . e e e e e 316
A . e e e e 318
' O 320
¢ 51 i 73 R P S S R PR T TR T T T TEE. 323
¢ +) < 326
Lo 31+ 1 + X 328
BiSKOSE . i is wammd s v i s banE i 5 ST E R §F S RREES 5SS REEE F P RS F A B REEE 330
iSSPy . .. e e 332
BISE oo cn b mmdii €5 5 s mbimd s 8 B h R P F 5 R F T RS L5 RS T RREaE Y 336

Contents xi

xii

G5 £ ok AnE SR A5 D5 e 55 T T B2 B0 5 e B ol Tt o R DR 2 B e [1 e o R R 341
AOSAE] ;i iomms s 585 BB EREF P F S B EEES F 55 R E R ¢ A HEEEE Y RS REE 558 RE G 1 345
OSAIr . ..o e e e e e 346
dosread e 348
OSWEIte . . .o 350
L)« J 352
AASIPC: 5.5 515 R ids 215 S S sl § 5 Sma il TR § w525 Flom i Bim i 515 53 o o v o 3 51 o e 6l e B S5 354
dsldxprof e e 355
dSpCat ... e e 357
ASPIIEE & i v s 55 555500755 asSad is s Cnbasfis snfifmd 515 Mnsdd i 55 qummmn » » oo 359
ASStaAte . . o 361
dsxlate 363
AU o o5 mmwE P55 SR REEE 25 HRNEE A IS U SRS {3 HHEEE 1 REEED T3 BGENEE I 364
UMD .. e 366
dumpfmt ... e 368
CCRO . e e 369
Bl :: 92 H SR A W DT T 8 TS G I TS B R B2 S 8 g T Sa e R pmens £ s e s d s e 371
CAEONTIE ¢ v c v 5 500 EEd 75 5 2 RESAE L5 6 5 @ AR AT MG B Eim s s o mmmmin s s Srmemmn o o » o 385
CAIt . . 387
=5 s 393
eqn, neqn, checkeq 395
errdead 397
BrTACIMIOML . . .t e 398
errpt, ErrPd . .. e 400
EEPSTOD wupesssormnmms 1s s PuUMER 3 5 3 PHERS 5§ 5 PUNE S E 5§ UHMME $1 3 SNBBEEEY A B 404
erTUPAAte 405
B X L i i e e e e e e e e e e e e 407
BXPY 5o sinins 555 850 E a5 858 BB R AE F5 5 S ad 5 S e e s s s v i o s e e 412
A O . . . e e e 416
i = == S 417
5 1 420
512 o R 422
IS, s snaiod 8 i bmE e d § 55 BB @R G E 155 I REEE § 15 RREa i UL 5T b s § ommmen o X v o e 427
5 ¢ 8 v 428
folder e 429
folders 433
0 o+ - 1 A 436
03 ' 71 0+ 1< 437
O W e e e e e 438
417+ X< S O 444
fSCk, AfSCR . . . o o 445
A . 450
U OT . . . e e e 455
EWENE ssws ssonmmns sri i U Rm 54 SHGER 513 PRNE I3 § FREEN A (IS HAGET £ 1 5 6 BEBH 457

ACCEWEIMID . . . e 458

BV .. e e 460
PO sowossiommpeesss onassi i sREni s R UEBEES s BEAI LS REEN 255 5 08 460
BEASE:. o v s pommpn £3 53 PRENE §.£3 VU BANE L8 S RNAE S COEETE LI P HONET I 8 5 HEE 461
hardcopy e e e e 461
BERSCl w.:::ommnais i s nnana i 55 RENG s RENIE s LBEEI 245 REAALE 34 HRE 461
5 461

Bl . e e e e 463

CBENCAL « cuww s s s 06 mhs5 5 3 HERE 35 ARNEHS F 556 NHEF S5 HEAE I UNERE 1 SHES 470

=5 s L 475

-1 477

BELOPE i swnn ssssmpmmas i s s MpEWE 3738 CHEEE S8 3§ HERE 55 GBEE Y S FRDEBE S § HEFH 485

gettext . . e e e e 488

FOEY & s s numma o3 b s e BEE 13 ARSI} SEENEEF L UENHA L35 PRAE IS RNMEL I BREE 490

BraAP I e e 494

BraAPICS . .. e e 497

TFEEK i upsmec s BREAE S § 45 BANERE EIF PHBNE I NREE I i1 HBE RS DRERE EEF RHE 499

5 <) o 501

BLOVDE ., i i 5 5 5 mmiimm s 78+ nbsanaii b MRERES 76 hRAAATF GRBIE 8 RRETEE§ T Rh 506

BULEL . L e e e 508
BIEL pocmme e v o mmmmimes o s i v s A e ¥ % e e e 6 s € % b e o ¢+ ar e 509
CVELOPL o i i thmmm s 55 r s 5 8 F B s R A F R R AA S REES S R 509
3 510
0 ' J 510
P ;cownc s R R s s ERE DL I BN PN APEEE R I U P F S EHEE IS DB 510
PUOE o e e e e 510
QUIE oot e 510
D53 0 LT 3 ¢ + 510
WhatiS wesi:innsweri s anERe 1 SURERS §? SHESEE s PEBEN £ 31 PEMEE §E 83 BE 511
20 10 2 511

HADTINAN: cunmec 145 neau® 3 53 PHEESE 5 FVSRAN S 3 ¢ PENERNF 1 GRAB L 15§ HOMEST & 4 3 8w 512

5 =Y 1 o O 513

HP wnsssvnmmnm i RpSEME s i3 PRETE E§ 5 N ESEEN S FUSNE L5 DEGRR 5§ SRREN T L3 B 514

hyphen ... e e 516

1 517

o N 518

NIt cs s awmma i 155 amhBad FF I REARE R T RERE ET R MANE I T RTRRE T § I ARG § 55 B 521

INStall . . e e 524

install-mh e 527

INSEALD: o svnmmas s smmmum 53 8 HREEE § 53 BPIWE S 53 BERE {F I FHAFEE £ F I HEBEF 5 B 529
IS AV . ottt ittt e e e e e e 531
INUYEEV cuciicnsons s i nummne b namma i 35 S HEHEE 53 6 AR EES§35 5 DREEEE§ 85 532
NI St . . o e e e 533
CRPL e g . .. e 533
MVINA . . e e e e 534

013 '+ o A 537

Contents xiii

xiv

IPCH] £ : 2 waB R le 55 B G TRl § § FREAEAR B a5 4 3585 R 4 s 6 5 e 5 505 550 e Bl 3 38 W 539

Ipctable e 544
TS - 1 7 545
JOIM ¢ i s nmmm 553 aMBREE 533 bREEG 557 bRBHAT i) REBAII 55 PERadF5 nbbmdme s ¥ «m 547
keyboard 551
I £5 F e inioe o 24 B il £ P R BB Ae o aRaf BE i EmE oF A SR B Doy 5o ok 552
Killall .. e e 555
RPN 557
JeX i it e ma a5 s e E RS P FE R AR T E F S AR B B s B et a5 s o w A e e & p e 562
I coiirrsames: v sgnpeds iR nEEes s 5 i FHEEE Al F EBRE 58 Gl SEEES LE e HEwg 50 o 567
IIIE £ oo B s » BB Bl T3 BB aE B N 5 T » comm B Te s o et on o o Sn o o Sl v S B 574
Ink, unlink e 575
T 577
I e 581
JoCatOr e e 583
BOBII vpovwmem gos s sommemm s s v wpmisa s s ¥ 5 3 B @aes 63 Brmans s s SEED S 1§ FRARES £ 5§ 88 584
JOBINR] o 5nmns s Mniam i E @ 55w 50 T 515 Hm S £5 s @A 5 S S G e 305 ol 05 50 05 587
JOBTAME woumvs 5 sumumss s mueunsr i3 SREE 83 LETRE 8 L12 BHAS § 35 RBARwE 175 06 589
Jogout .. e 590
JOTAOY & i vimiis ¢ 65 60 M Ead 5§ 55 50 68 o 5 5 5o modue b & o Sm o s s s s mmomn s oo nemmme s s o 591
' 593
IS o 595
VOLUME 2 i it ittt ittt ettt oo eseeseseneeeeeenennea 601
TN i emEE g 5 s RS S R RPEEE S I ARG S RIS F S A G A5 BB EEE e 88 e 603
mail, Mail e 608
MANSEALS o v snnamsi i s EER I BANERE 15 EPREE F Y68 hOEE s 55 b BT aade I3 e ihmn 623
MaAKE . e 625
makedbm e e 632
MmaKkeKey e e e e 634
TEDRTE 60 5u i s 5 & & mvisomctian 8w n % wiomout i sm o m n v it oo v 1o 5w 0o o am m B g 6w R A0 e o o o K et o 635
ALK . e e e 637
INALC . . e 640
MESE (v sii i bREEd 5655 LaREE i1 LERIRS I8 RUARE T AR RE S R RE R E T F R R 642
M . e e 643
mhmail . 646
mhpath .. 648
MINIAISKS 650
mkeatdefs 651
IKAIT . . 657
MNIES S ocrirm o ¢ s Srmmson x 8 x W6 5w (B30T TRR S Bl o s ThE Wos e 5 S0 D15 0 o 1B TG W i oS D B e B 658
MKNOA . .. 661
mm, checkmm 663
mmt, cheCckmm e e 666
s 10 o 2 668

mountd
b - ITITTITIITSTnIessmmmmaaamssmess s 674
AR S i 1 e S i R e Ol g e e 675
IR EELRENNA S LGk RN Ayt ok R L R M B e RN LN O s 677
By T T T IS g R AR TN YTy £y g e 679
By MR I kA 5 s k@ s o R £ RRbaiE £] 0 £ s 682
I TEmMMEOI[LWMMBMUX1}UEEME S MEENA D) EMMER G5 EMMEY L) MSE L wu 683
B!« rmmmx t s T mm L L L SRS £ e S m e s s 685
e oo lNEEERRAACEAGASEACEIRGERMERS SRR EARRR AL E S AR s 686
it e A 689
MEWS -t 691
B W CRESMARR I14EEGASA |1 ERRRAL A CKEARARE S RARAS E] SRAS L E) MERE R 694
B 1t TR CEEETY(1IEERETCEERASL LS PERAT L OSER (I ENSRTLF2 T 696
Bl . iinumse e hmSman s SmaRsumamn s mman s e s 697
S W ER i SHRARA LI CREARE L L RARAR A § ARAG 1L SBANG 114 WRAR L] RARGE LA A 699
Bl rautnacman s e g e L UR NN UL EpRan £ e s ey 701
nohup“,,”_““,”_“: .. 705
gy ™ KT MEMEEY L MR NARRE (L ERAE L HRER G RAR L 707
WSS, RGIE wprem s g vmemene g1y mmnn v p pep e L g ppm s 1y s o8 e o e 709
SRRMISHS S RAMNA §H RRBEALE R ERLASA 1T RMREAS 15 CRARI T] LADSLE FLARES {58 LS 721
e eEERRSEERESSERSRSRS G SRR ORERE S S 723
gy 726
ex ... 728
S PRI RET L ERN L4 ERRT L PR e Tse 730
BESS | mene o1 SmmRen s anmn s A 731
pagcp L MR {1 DENS UL ARAN L HARA G T RANE PR ANR TS 731
e e e 733
L« 1T EENEUI FEEET I PERAN I AN L FER AR L TR 735
Dl L TTTTTrrimemmedersessscsirsaesintonsandiand a 736
D reable, nhold ... 739
Ay PROI 741
o AL b 744
B be It 748
D oy | LIITI I 753
Ol B 1rsRaALA LUl el D e LS LR L R 757
BORD s s s RS LN LENRR LA 42 SR L2 e 758
ol ... 761
B a7 {1 NN 2 (CRANA TR LARMR £S1ENRNAR I [Z MRS (I BAME 2 DRRAR 765
e A S e S S 767
profiler__,,_,__,”_,_”_‘: .. 773
Ml T e 775
i 776
Sl Edcsen i iunnncy e 18 hReR B PR R 1 s 776
B e HUHIME 01 ranmsiiiBRXAS:LIFEERY LIIFRARLIILTEN IR IR LY 776
STRORERE | | oo (T e d e s e e e T76
... 778

Contents xv

xvi

PrS ot e e e e e e e e e e e e e e e e e e 781
P i s G S Sl oG 5§ GN5 SR T Fhr B AR AR » 3 BEdm o A5 B el $r8 Hle s B o7 AT S0 5 o o 786
pstart, penable, pshare, pdelay 791
17> < 794
PULLEXt i v i snwmma i o5 6 uam e i1 5 RO EFES 50 L HRFS FE S ERRRG EFF R BT § s b e 796
PWCK . oo e 798
P to iz 555 SRR R 5 NS B e B AR E s 25 2 R e T T R S AR W R E 5 AR 800
PWEADIE i spunuiiisisauna s anEmis 5 bRENEIS RANEMEES I LEET. 8165 LR 801
QAACIION e 802
QUIZ . oot e e e 803
PE cubesisi@uSEE il i S uEnl i I OEEREN iy A HAEE DI i BREEEREY } RERRI I F L G HEEE S 806
FCVAISE . o e 808
PONPHCK: o 5 ot sonis 15 oii s w18 505 » e 80 it ae B 75 0 s i 5 (5 o o o b & 8 5l i v s 3w e e o 810
TOVSEOTE: ;::nmnaamiti denbmm i s NnEREs (15 ANNE 153 GHENES ¥ IS AR ER 53 LRBBE 8 812
LV o i e e e e e 815
TOHONE i cs ¢ bnimdisinbbhmids (65 0aSiladd isf Rafd 15 bhEmaAii i Qaeds is fbicds 817
POOCHAD & ¢ s s sumpw 3 3 o NEES ¢ 5 4 S ERPEBE §§ S ROET § 52 VNBEN § 4 53 SNBEE E3 5 BHBRE 8 820
LDl L e 821
PESEOTE . :; cmuummes s s b uunmdis s nS@ERD 353 ANALE 53 PHEEER 435 HEmA§ 855 LnEn i 826
FeXd . 832
I b 85 5 p s 55 5 dam B il U o 5 oo ionsh 6 5 2 ovciofon v 5 5 dommachon § 5§ 0 moasimonm x5 o 8w e a 833
ALl L e e e e e 836
YBEl s i ivumm i NEEEEG I I REREE S T R REEE T BEREEE Y REEAIE Y RENEE 837
ITIAIr . e e 838
ITINE s i smmme s 852 HEURE £ 5T F R E SRS E ANNE D F S EEE TS RAEE E S R EaRE 839
¢+ 5 o o AU 841
TPEEOM. ::::spme i i o Bumn 5§ SNNMELE 53 FUENS (I HEERE A 35 BO@E E5 57 SaBRES 3 843
EPCINEO . . e e e 845
EStaAtd . . . e 847
FUNACCE . ottt e e e e e e e e e 848
TVNCAL 555 ammd 6 5 5 4 BEGRAR i i § WEASE F 083 REBHEF I hMFRE F 15 LABK 158 HARES F 3 5 852
FUD oottt et it e 854
o B E =<3 = 856
TUSEESA . . oottt e e e e e e e e 858
BERRAIL] o o & oo o o © e SR AR G 6 W R eSS By e w Pl mc B e B B w Wt S Bl B B e § 859
ewWalld .. i iR I SRR E I RBEE I GARRE IS R RRS PGS RE R E B 861
SACT . e e e e e e e e e e e e e e e e 862
SAC . . e e 863

SAl i nama i RS 5T RS EE P E S REEE T MEEE Y I8 AR (I AEEES EE 864

S L e e e e e 864
= R N N T T S T TP e 865
FS3 - 867
SCAIL o ot ettt e e e e e e e 871
SEORAILE ; ; nuanis s sapus a5 18 RERG L T F IS HERS EI S NSRRI § I UBESY F 33 BAEM E B EE 874
SAD . e e e 875

SAIE Frue . & wwB B TR DI AR TR, v s BRRoRER 3 3 puBefle « 5 waBem Mg 3 nBeue o g b nunbe s 883

SOCULC . 5.5 55 s atimdim i i K3 abEad L5 5 nmGombd inebBom i ahmidd § 53 badd 850 bodddi 885
SeA e e e 887
SENA . .. e e e 893
sendmail ... e e 897
SetAMIA e e e e e 910
=17+ 5+ X 2 911
=Y+ Y 913
Shell .. e e e e e e 938
SHITD: o oo v v e imimmi o s s s s § s m e B i RE A BEEEE Y BB EEE 5 REREA 939
S OW . e e e e 942
ShOWmMOUNt e e e 945
SHUEAOWIE . .. ot s b e o s s ssmis 6 o5 b B b F G MG 5 NE RS SR b A s 946
SIZ . . e e e e e e e e e e 949
SKULK T . . e e e e e 951
Sleep ismmesisinmmas s bERERE 15 LHEN S S REERE I REEE Y A ERET I Y B UEEE 952
SloCal . . e e e e e e 954
BINO. .+ criccioimin o o o wmimirmmm o r s a i mcn o s o A S s e §F A E I MANAE I REE 956
= 3 958
o3 o o AP 965
SOUMM s o s s s S ARSI FANEE I AT EEL I RO F HHRR ES S ROREE§ 967
SPCIL e e 969
SPIINE . . e e 972
SPHE . isue issaspaiiss s neeEa s 555 a RN F 5 SURNTEEF RN I EBEHE I HABEE 5 3 974
SPID . e e 975
FJ Lo 11 A RO P TS E S T L AT 978
SPYAY smi s vt smmEs s 88 FHo®a ¢ ¢ 8 FEET A G F 58 g b o s e am Ko v s e e e v w e e 981
SPLAVHA . v r s s i IS REERS IS AR AHARE Y BN BRI HEENE § 3 983
S 77 1 984
SEEID. vvie i 6 45 ma i 755 AR EEHE S5 HEFBRE § 57 RABES S 55 RANEE 5 PRBNGE S CREEE ¢ 1017
BB g £ 5 5 5 g v 5 3 v s s g W e R x e nh R e § x 8 1018
S :asa s i bhUpEE A P hRTEE R I HEEERE E S PR S I HEAN G FHREY S8 PEEE 1026
BUIEHL womvw v v v o wommmin v 5 o mmmmome € o i b h e v 5 e mmm o e s i 5 F REBES 1029
SYNE wamsisisannsssisspuaaas s RRaEiiss POEEE 85 GREE 113 PREE 0 458 EEps 1030
SYSCK .. e e e e 1031
SYSIOFA «ccvisonismsssaommesiis nRamEs s AR SNET 5 HEEEE S 3 GREES § T HEEER § 1037
tab, UNtaD ... e e e e e 1040
BADS oo v v w wmccimin o e m x mmmmn v s e a o 2 e £ F MREAE P REEE 1041
77 % 1 1044
tapeCh . . . e e e 1047
BAE covmmm oo s bmmmuia o § 6 haRE s 8155 AESRH G5 i RUSNG 15 BRRE s URNEEE 553 BRBER 1048
7) 1053
B . i v v e i s e i n v s n i s s s o v » i § R B R EES E S EEEE € 1056
7 o1 1 1058
7=~ S 1060
termdel .. :comsdciiinaNEai i ANEE IS LRWEE I LENES ¥ 10 BERE LT HEESE L ¥ 1062

Contents xvii

xviii

7 1067
tIME i s s s s nTEE S ¥ PSR E S SRR RS E S MEEEG F RSB EE s 8§ 1068
71+ (<R 1069
{180 :r 2: 95595 6 A5 R D AR aEAE i 5 M PEE 30 ARt as f HR B AR iE SRR an f 5 1071
TIOTEEF . cnwvwss s wnmmanm s 5§ wOM@E & 3 55 HEED £ ¢35 ESEN $EE5 3 BHEE S5 SHURE.S 5§ 1072
o X 1074

AEOC . o e e 1074

TEOE sovumis s wpeeEn i35 WESRE A2 i FERREREA G S8 HNBERNE (F LUBRE.C 15 AUAERE 8 ¥ § 1075

72 ¥ ¢ 1 ¢ 1075
BOUCHE 5. vommm s iohabidd i35 nmESdd 1§55 BaBadi i bbFddad i i RS F815 hamBnas o s 1077
TPLOL s sovmmsssranmen s s SHENE 5 85 § 6 FHEEEF RHBEN LS E FHNEHT LS PHAERE ¥ 5 1079
17 .15 2P 1081
B o v s me i s AP REEE F R EAEE §§ A GEER S AEAEE §8 3 ARENE L RS REEE § s 1083
7 - ¢ - 1086
BHEEPEE .+ comiin o 2 s mommmmen « o 2 s s & » 2 A Ao s & m e e & 8 e e e v A h s e e s 1091
CECSEOD ; snmwn s s s AR amE 1 83 IFEAR 1 FIBNNNE 53 URRRNE 1§ FHEER L § 5 HNSRRE &3 1093
treupdate e e e e e 1094
BEHTBIE . .« ook s 0 vt 8 5 § Gomision B 5 5 e m e a8 e s e Baaem o § 5 e o o a 1097
7 o) U 1099
EH 5.0 M Pt BN P DD N B DS fe ThE D e 5 [S Pl B oA S TS e B o S A s o B 0PE B 1100
171 1) . LT T T I T T T TTIeTTTTTTTYYTYTY 1102
L7 2 2 1104
Y i msnms s mpamus s s BREME E1 i3 S RENE 5 F AR EE § ¢ RMEEE § 5 HGEEE A S 1105
UL IO . . . e e e e e e 1107
7 1108
ugtable e e 1109
U ASK . e 1110
umount, UNmMOUNt e e e e e e e 1112
L0 s - 1 o o L 1114
Ut . . o e e e e e e e 1116
VATE, ;55 naome s i1 s GRSES € 05§ HHES 65§ 53 HNOEE £33 RERUE €5 I HUNNE P IFRPBEE D 5§ B 1118
JOHTUE! 15 own. 5 = 505 205 500 0 0 3 i 78 o 0 1 ol e 1w A s st & 0 e s oG8 SR 0 e 2 oo 5 oS i S 5 o 25 1119
UPABEED 5w 2 5 sonmmmm 5 ¢ 5 REFERAF 5 5 REF G § 53 REES ST 33 RAES £33 RGHES 5 5 E 1122

INUAOCIN . . . e e 1125

Iuupdt .. e e 1127
users, adduSer e e e 1129
MUCPAAIM . . . e e e e e e 1133
MMChECK . os.uii: amsanas i5s aabadis s InRENE IS b oildd A5 aNaadi § WnBE s 045 5 1137
UUCICO Y 1139
UG AU e e e e e 1141
VUCD s s sivmmmes s isEREE§ 55 FusERE {365 HARSS § 3 SARNEE 255 NAEF 4§55 EHE T £ 55 8 1144

Path Names Used with Uucpttt it e et e e 1145

Source and Destination File Names 0. 1145

PermissionS . ..ot e e e e 1146
uulog 1149

L0 L8 s ' o - 1151

UUPICK . . e 1153

File-Handling OPEIONS v« s s sowwmms s 5 5 ssmms 5 5 5 sand s s osmsishmsasss 1154
uusched e 1156
MUSEAt .. e e 1158
MBED womesisoomma i saNRFE 13 LINRG E IS LEERAEF Y GHEBEF I I BEREE S 55 RNEE £ 3 1162
uutry, Uutry, uukick e 1164
15 8 N 1166
VMXAE s5:5:6spmma6: 6 guansiiil aRatsiss snameasis FREAIIFSHNARIF I F0ERT 8 4 1172
VAl e e e e e e e e 1175
Vary ol . . e e 1177
WAPYON 55 55 vommm 558 5nuss 6§58 HREEs 858 NERNME§ 58 NERG 656 PEEEI i T HRAE § 4 1180
2 PP 1182
VOLMY 5 au i aaumaiifs nERadiiisndsdiiii hRSne F§5 ARRII5§2ERAE1 3 BaMES 8§ 1186
VI, Vedit, VICW . . . e e e 1187
VI L e e 1203
vrm2rtfomt: ;: cewse s isEmER s HERE G HEERS I I PEER L PENE 5 FRERE & 1205
VEMCONT g . .. e 1206
< 1 | [T I SRt PR AT P rEE 1208
WatCh . . e e 1209
R 2 1211
What cocieisinmnmadii i anEFa i maRLs i35 bRARA) ERNE I § 3 S NEHE I WREES B ¥ 1213
WhatnOW . e e e 1215
WO L e e e e 1219
WhoM swwisicumomis vEREER 55 FBEEFEE § 55 SENES 1§ SOBE £ 15 REBE S E3 0 RO EE &3 1222
WL . . i e e e e 1225
WEIEeSYV . i ss smman f s i NEHEn 1) SREET E: S REREY 23 s NEERS 6 BHBRE 3 § PRETS 5 1230
R0 e ¢ J P 1231
KATOS sun s :vnuumic i s POSEME 55 PESRE IS8 PRSHE S I s REER § 23 FRS QTS 2 Prows b 1232
b0 | 35 < T N TR RIS I IIT 1236
VACC wnumsst e pmmes 633 FRENET v S FHEAEST ¢ (8 PUBEY (45 PRECEE S DPFOUE g1 P may 1237
g+ 10 € ¢ [e B I SR T S e 1239
4 ¢ 1 - 1 1241
FDINAE o o o o s i v o s s s o s Rmm e b s s s dd 0§ e REAA I RREIEE I R RERS 1243
YPMACh .. e e 1245
YPPASSWA . . . e e e e e e 1247
YPPASSWAD : :: snnma: s s neem 5T HRANS E A5 PHOHEF I HAEHE 3 AERAEE s SNEEK S 1249
YPPOM e e 1251
FPPUSH - ii i sinmassossammmad s 65 6amaisssonasd s Rafssss n@anssssasans 1252
2 1= = 2 1254
4 & <=3 o2 1256
YPWHICH ¢ : s smuwumosis vummess s swmun 755 BHEE S35 SHEE L858 HAFS § 15 6 HEEH s 1258
4 4.« 1260
300 :iuuvarisauaER it RERAE i BAEE I T B ARG BEEE DT BAERAE G5 G 1262
L 1264
A0 . e 1265

Contents xix

XX

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Glossary .
Task Index

AIX Device Table ittt enns 1267

Program Cross-Reference 1269
Syntax Diagram Guidecc0ittiinnanons 1277
Japanese Language Supportc00..... 1287
.. 1291
... TASK-1
.. INDEX-1

gy
PN HOW©O NSO W

SCCS Header Flagsttt ittt ittt eenns 44
SID Determinationttt ittt et e e 481
‘Mailbox Commandsiunimt i e e e 611
Mail Editor Commandsttt it e 617
Binary Oplions . sswmms s 55 6@ s 5e i 85 ba@nssis boEsd s be@sds s hu@ws & s 619
Valued Options . ..o vttt it et e it e e e e e e 620
Delta Table Keywordsttt ittt ieeeneeenn. 782
Header Flag KeyWords sw s o s smmmas s 65 smamnnm s 58 simsan s 6 e sis 0nsesis 783
Other Keywordsttt it et et e et et 784
Configuration Optionsot tttnn ittt eeineneennnn 905
tbl Column and Item Specifiersottt iinnennennn. 1054
Configuration File Parameterst iiinernnenneenn. 1129
AIX Standard Devices (Special Files)00 i innnnn.. 1268

Figures xxi

xxii

VOLUME 1

This section contains a description of:

To help you determine which command you want to use, see “Task Index” on page TASK-1. To help
you determine in which program a command is located, see Appendix B, “Program Cross-Reference”

Command input and output
File name substitution by the shell

Syntax diagrams

Command, flag, and parameter notation.

on page 1269.

How to Use the Commands

How to Use the Commands

3

Command Input and Output

Many commands take their input from standard input and write their output to standard output.
By default, standard input comes from the keyboard, and standard output goes to the display. It is
important to remember this information as you read the command descriptions since they describe
the default action. In this context, the verb display means “write to the standard output.” Any
command that reads standard input and writes to standard output can have its input or output
redirected to a file and can be used in a pipeline, where the standard output of a previous command
1s directed to the standard input of the next command. For more information on pipelines, see “sh”
on page 913.

There are a few commands that must have a file name supplied or that must read standard input.
You can see what a particular command can read by looking at the syntax diagram at the beginning
of the description of the command. For instructions on interpreting syntax diagrams, see “Syntax
Diagrams” on page 5.

File Name Substitution

When file is supplied as an argument to either a command or a flag, you can automatically produce a
list of file name arguments by specifying a pattern for the shell to match with file names in a
directory. Most characters in such a pattern match themselves, but you can also use some special
pattern-matching characters in your pattern. These special characters are:

x Matches any string, including the null string.

2 Matches any one character.

[...] Matches any one of the characters enclosed in square brackets.

[...] Matches any character other than one of the characters that follow the exclamation mark

within square brackets.

Inside square brackets, a pair of characters separated by a - (minus) specifies a set of all characters
that collate within the range of that pair, as defined by the variable NLCTAB or NLFILE, so that
[a-dy] is equivalent to [abcdy] if only b and ¢ collate between a and d.

| Japanese Language Support Information

You can also use character classes inside square brackets by enclosing the character class name
between a [: and a :] inside the square brackets. For example, [[:alpha:]] matches any
alphanumeric character. The character classes recognized are:

[[lower:] All lowercase letters.

[:upper:] All uppercase letters.

[:alpha:] All letters.

[:digit:] Digits 0 - 9.

[:alnum:] All letters and digits.

[:print:] All printable characters.

[:punct:] All punctuation characters.

[:space:] Space, tab, form feed, or carriage return.
[:jalpha:] SJIS Roman characters.

[:jdigit:] SJIS Arabic numerals.

[;jpunct:] SJIS punctuation characters.

[:jparen:] SJIS parentheses characters.

[:jkanji:] SJIS kanji characters.

[:hira:] SJIS hiragana characters.

[jkata:] SJIS and half-width katakana characters.

I End of Japanese Language Support Information

Using pattern-matching characters in file names on the command line has some restrictions. If the
first character of a file name is a . (dot), it can be matched only by a pattern that begins with a dot.
For example, *f1i1le matches the file names myfile and yourfile, but not .myfile or .yourfile.
Use the pattern .*file to match these file names.

If a pattern does not match any file names, the pattern itself is returned as the result of the match.

Note: File and directory names should not contain the characters *, ?, [, or] because this may
create infinite loops during pattern matching attempts.

Syntax Diagrams

Before each command discussion in the “Commands” section is a syntax diagram. These diagrams
are designed to provide information about how to enter the command on the command line. A syntax
diagram can tell you:

e Which flags can be entered on the command line
Which flags must take parameters

Which flags have optional parameters

Default values of flags and parameters, if any
Which flags can and cannot be entered together

How to Use the Commands 5

e Where you must enter flags or parameters and where you have a choice
e Where you can repeat flag and parameter sequences.

This command reference uses the following conventions in the syntax diagrams:

e Diagram items that must be entered literally on the command line are in bold. These items
include the command name, flags, and literal characters.

e Variable diagram items that must be replaced by a name are in italics. These items include
parameters that follow flags and parameters that the command reads, such as files and directories.

® Default values that do not have to be entered are in the normal font on a bold path.

The following diagram is an example that illustrates the conventions used in the syntax diagrams.
Each part of the diagram is labeled. An explanation of the labels follows the diagram.

COMMAND NAME SEERTILE Uk

GO TO
q NEXT LINE
A~
command one of B —\
ac eg C
b d f h v\
Vi v\ REQUIRED ITEM
SINGLE CHOICE BOX REPEAT ARROW

CONTINUE DIAGRAM

/@ DEFAULT VALUE / INPUT OR OUTPUT

Evalue

D 1 E parm file
parm

OPTIONAL PARAMETER

FOOTNOTE

"Do not put a blank between these items.
OL805370

You interpret the diagram as follows:

1 COMMAND NAME The first item in the diagram is the name of the command you want to
invoke. It is in bold, so it must be entered exactly as it appears in the
diagram.

After the command name, the path branches into two paths. You can
follow either path.

2 SINGLE CHOICE BOX If you follow the lower path, you encounter a box with the words one of
over it. You can choose only one item from this box.

3 DEFAULT LINE

4 REPEAT ARROW

5 REQUIRED ITEM

6 GO TO NEXT LINE

7 CONTINUE DIAGRAM

8 OPTIONAL PARAMETER

9 DEFAULT VALUE

10 INPUT OR OUTPUT

If you follow the upper path, you bypass the single choice box, and enter
nothing. The bold line around the box is a default line, which means
that you do not have to enter anything from that part of the diagram.
Exceptions are usually explained under “Description.” One important
exception, the blank default line around input and output files, is
explained in item 10.

When you follow a path that takes you to a box with an arrow around it,
you must choose at least one item from the box. Then you can either
follow the arrow back around and continue to choose items from it, or
you can continue along the path. When following the arrow around just
the box (rather than an arrow that includes several branches in the
diagram), do not choose the same item more than once.

Following the branch with the repeat arrow is a branch with three
choices and no default line around them. This means that you must
choose one of A, B, or C.

If a diagram is too long to fit on one line, this character tells you to go to
the next line of the diagram to continue entering your command line.
Remember, the diagram does not end until you reach the vertical mark.

This character shows you where to continue with the diagram after it
breaks on the previous line.

If a flag can but does not have to take a parameter, the path branches
after the flag. If you cannot enter a space between the flag and
parameter, you are told in a footnote.

Often, a command has default values or actions that it will follow if you
do not enter a specific item. These default values are indicated in
normal font in the default line if they are equivalent to something you
could enter on the command line (for example, a flag with a value). If
the default is not something you can enter on the command line, it is not
indicated in the diagram. However, it is discussed under “Flags.”

Note: Default values are included in the diagram for your information.
Do not enter them on the command line.

A command that can read either input files or standard input has an
empty default line above the file parameter. If the command can write its
output to either an output file or to standard output, it is also shown
with an empty default line above the output file parameter. If a
command can read only from standard input, an input file is not shown
in the diagram, and standard input is assumed. If a command writes only
to standard output, an output file is not shown in the diagram, and
standard output is assumed. When you must supply a file name for input
or output, the file parameter is included in the diagram without an empty
default line above it.

How to Use the Commands 7

11 FOOTNOTE If a command has special requirements or restrictions, a footnote calls
attention to these differences.

Following are examples of valid ways this command can be entered based on this syntax diagram.

command name A

command name C

command name a B

command name d B

command name e A

command name e g f A

command name C D

command name C D8

command name A E7

command name B myfile

command name a e g B D3 E6 myfile
command name d f e h C D myfile

When the order of flags is important, it is indicated in the diagram, under “Flags,” or in both places.
Otherwise, the flags can be entered in any order. With this in mind, an additional example of how to
enter this command is:

command name E9 a D g A h f myfile

For more detailed information on syntax diagrams, see Appendix C, “Syntax Diagram Guide” on
page 1277.

Command, Flag, and Parameter Notation

The following type style conventions are used in command descriptions to distinguish different kinds
of information:

bold Commands, flags, and other items in bold are to be entered literally.

italics Command parameters, flag parameters, and other items in italics are items for which you
substitute an appropriate value in that position on the command line. For example, if you
see file, you should type in the name of a file in that position.

[] Items in brackets are optional. The only exception is brackets that are in bold. Brackets
in bold are part of what should be entered literally.

Items followed by an ellipsis can be repeated. Thus, if you see file . . . , you can type
several file names separated by blanks.

Using these conventions, the following string:

-Dname[=value]

shows that, with the -D flag, the name parameter is required but assigning a value to name is
optional. The following are valid ways to specify this flag and parameter combination:

-Daxis

-Daxis=10

The next string shows a parameter that can be replaced by several values:
-lfile . . .

The following are valid ways to enter the -1 flag:

-1 memo letter
-1 memo
-1 letter

How to Use the Commands 9

10

Commands

This section contains reference information for the AIX commands. This information may include
the purpose of a command, one or more syntax diagrams to illustrate how a command can be entered
on a command line, a description of how a command works, descriptions of command flags and
subcommands, a list of related files, and cross references to related information.

Commands 11

12

acct/*

acct/*

Purpose
Provides accounting shell procedures.

Syntax

/usr/lib/acct/chargefee — user — number —

1000
/usr/lib/acct/ckpacet ~<_
numblocks
/usr/lib/acct/dodisk ﬂ
-0

/usr/lib/acct/lastlogin —

/usr/lib/acct/monacct — —
number’

/usr/lib/acct/nulladm — file —

OL805236

/usr/lib/acct/pretmp —

- mmdd?
/usr/lib/acct/prdaily

=p

' The default number is the current month.
2 The defaultmmddis the current day.

01805237

Commands 13

acct/*

/usr/lib/acct/prtacct — —f fieldspec i
=¥ *heading'

/usr/lib/acct/remove —

/usr/lib/acct/shutacct — —
'reason'

/usr/lib/acct/startup —

one of

on
/usr/lib/acct/turnacct — |off [
switch

OL805238

Description

14

Note: You should not share accounting files among nodes in a Distributed Services
system. Each node should have its own copy of the various accounting files.
chargefee

The chargefee command charges the specified number of units to the specified user.
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be
merged with other accounting records by the runacct command.

ckpacct

The ckpacct command checks the size of /usr/adm/pacct. If the size exceeds the number
specified in numblocks, ckpacct invokes turnacet switch. (The default value for
numblocks is 1000.) If the number of free disk blocks in the /fusr file system falls below 500,
ckpacct automatically turns off the collection of process accounting records by invoking
turnacct off. When 500 blocks are again available, accounting is activated again. This
feature is sensitive to how frequently ckpacct is run (usually by cron).

dodisk

The dodisk command performs the disk-usage accounting functions. cron normally runs
this command periodically. By default, it does disk accounting on the special files whose
stanzas in /etc/filesystems contain the attribute account =true. If you specify the -o
flag, it does a slower version of disk accounting by login directory.

The file parameter specifies the one or more file system names where disk accounting is to
be done. If you specify any file names, disk accounting is done on only these file systems.
If you do not specify -o, file names should be the special file names of mountable file
systems. If you specify both -0 and file names, the files should be mount points of mounted
file systems.

acct/*

lastlogin

The lastlogin command updates the file /fusr/adm/acct/sum/loginlog to show the last
date each user logged in. runacct normally calls this command.

monacct

The monacct command performs monthly (or periodic) accounting. cron should run this
command once each month or accounting period. number indicates the month or period to
process. The default number is the current month. This default is useful if monacct is
run by cron on the first day of each month. The monacct command creates summary files
in /usr/adm/acct/fiscal and restarts summary files in /usr/adm/acct/sum.

Daily reports are deleted (and thus inaccessible) each time monacet runs.

nulladm

The nulladm command creates file, assigns it permission code 664, and ensures that its
owner and group are adm. (See “chmod” on page 160 for an explanation of file
permissions.) Various accounting shell procedures call nulladm.

prctmp

The prectmp command displays the session record file created by the acctconl command
(normally /usr/adm/acct/nite/ctmp).

prdaily

The prdaily command formats a report of the day’s accounting data. Use mmdd to specify
a date other than the current day. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmdd specifies the month and day of the report. runacct invokes this command to
format a report of the previous day’s accounting data.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

Flags

-c Reports exceptional resource usage by command, and may be used on the current
day’s accounting data only.

-1 Reports exceptional usage by login ID for the specified date.

Commands 15

acct/*

Files

16

prtacct

The prtacet command formats and displays any total accounting (tacct) file. You can
specify a heading for the report by enclosing it in ” ” (double quotation marks).

Flags

-ffieldspec Selects fields to be displayed, using the field selection mechanism of
acctmerg.

-v Produces verbose output in which more precise notation is used for

floating-point numbers.

remove

The remove command deletes all /usr/adm/acct/sum/wtmp¥*,
/usr/adm/acct/sum/pacct*, and /usr/adm/acct/nite/lock?* files.

shutacct

The shutacct command turns process accounting off and adds a “reason” record to
Jusr/adm/wtmp. It is usually invoked during a system shutdown.

startup

The startup command turns on the accounting functions when the system is started up. It
should be called by the /etc/re command file.

turnacct

The turnacct command provides an interface to accton for turning process accounting on
or off.

The switch flag turns accounting off, moves the current /usr/adm/pacct to the next free
name in /usr/adm/pacctincr, where incr is a number starting at 1 and increased by one
for each additional pacct file. After moving the pacct file, turnacect turns accounting
back on.

This command is usually called by ckpacct, which in turn is called by eron, keeping the
pacct file down to a manageable size.

[usr/adm/fee Accumulator for fees charged to login names.
Jusr/adm/pacct Current file for process accounting.
Jusr/adm/pacct* Used if pacct gets large and during running of the daily

accounting procedures.

acct/*

/usr/adm/wtmp
[usr/lib/acct/ptelus.awk

Jusr/lib/acct/ptecms.awk
/usr/adm/acct/nite

Jusr/lib/acct
/usr/adm/acct/sum

Related Information

Login/logout history file.

Shell procedure that calculates the limits for exceptional
usage by login ID.

Shell procedure that calculates the limits of exceptional
usage by command name.

Working directory.

Holds all accounting commands.

Summary directory.

The following commands: “acctems” on page 18, “acctcom” on page 20, “acctcon” on
page 24, “acctmerg” on page 28, “acctprc” on page 30, “chmod” on page 160, “cron” on
page 220, “fwtmp” on page 457, and “runacct” on page 848.

The acet system call and the acet, utmp, and filesystems files in AIX Operating System

Technical Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 17

acctems

acctems

Purpose

Produces command usage summaries from accounting records.

Syntax

/usr/lib/acct/acctems

0OL805421

Description

The acctems command reads the specified files. It adds together all records for identically
named processes, sorts them, and writes them to standard output in a binary format. Files
are usually in the acct file format described in AIX Operating System Technical Reference.

When you use the -0 and -p flags together, acetems produces a report that combines
prime- and nonprime-time. All the output summaries are of total usage except for number
of times run, CPU minutes, and real minutes, which are split into prime and nonprime
minutes.

A typical sequence for performing daily command accounting and for maintaining a
running total is:

acctems file . . . > today

cp total previoustotal

acctcms -s today previoustotal > total
acctems -a -s today

18

acctems

Japanese Language Support Information

This command has not been modified to support Japanese characters.

Flags

-a

-n

-0
-p

-S
-t

Displays output in ASCII summary format rather than binary summary format. Each
output line contains the command name, the number of times the command was run,
its total kcore-time, its total CPU time, its total real time, its mean memory size (in

K bytes), its mean CPU time per invocation of the command, and its CPU usage
factor. The listed times are all in minutes. acctems normally sorts its output by
total kcore-minutes. The unit kcore-minutes measures the amount of storage used
(in K-bytes) multiplied by the amount of time it was in use.

Sorts by total CPU time rather than total kcore-minutes.
Combines under the heading ***other all commands called only once.
Sorts by the number of times the commands were called.

Displays a command summary of nonprime-time commands only. You can use this
flag with only the -a flag.

Displays a command summary of prime-time commands only. You can use this flag
with only the -a flag.

Assumes that any named files that follow this flag are already in binary format.

Processes all records as total accounting records. The default binary format splits
each field into prime- and nonprime-time sections.

Related Information

The following commands: “acct/*” on page 13, “acctcom” on page 20, “acctcon” on
page 24, “acctmerg” on page 28, “acctprc” on page 30, “fwtmp” on page 457, and
“runacct” on page 848.

The acct system call and the acet and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands

19

acctcom

acctcom

Purpose

Displays selected process accounting record summaries.

Syntax

acctcom

—C seconds —e time .
—g group —E time file

—H factor —s time
=l num —S time
~| line

—-n pattern

-0 seconds

—-u user

0L805418

Description

20

The acctcom command reads from specified files, from standard input, or from
/usr/adm/pacct and writes records (selected by flags) to standard output. The input file
format is described under acct in AIX Operating System Technical Reference.

If you do not specify any file parameters and if standard input is assigned to a work station
or to /dev/null (as it is when a process runs in the background), acctcom reads
Jusr/adm/pacct instead of standard input.

By default, if you specify any file parameters, acctcom reads each chronologically by
process completion time. Usually, /usr/adm/pacct is the current file that you want
acctcom to examine. Because the ckpacct procedure keeps this file from growing too
large, a busy system may have several pacct files. All but the current file have the
following path name:

/usr/adm/pacct?

where ? (question mark) is an integer incremented each time a new file is created.

acctcom

Flags

Each record represents one completed process. The default display consists of the
command name, user name, tty name, start time, end time, real seconds, CPU seconds, and
mean memory size (in kilobytes). These default items have the following headings in the
output:

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)

By using the appropriate flags, you can also display the fork/exec flag (F), the system exit
value (STAT), the ratio of total CPU time to elapsed time (HOG FACTOR), the product of
memory used and elapsed time (KCORE MIN), the ratio of user time to total (system and
user) time (CPU FACTOR), the number of characters transferred in input/output operations
(CHARS TRNSFD), and the total number of blocks read or written (BLOCKS READ).

If a process ran with superuser authority, its name is prefixed with a # (pound sign). If a
process is not assigned to a known work station (for example, when cron runs it), a ?
(question mark) appears in the TTYNAME field.

Notes:

1. The acctcom command only reports on processes that have finished. Use the ps
command to examine active processes.

2. If a specified time is later than the current time, it is interpreted as occurring on the
previous day.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

-a Shows some average statistics about the processes selected. The statistics
will be displayed after the output records.

-b Reads backwards, showing the most recent commands first. This flag has no
effect when acctcom reads standard input.

-C seconds Shows only processes whose total CPU time (system time + user time),
exceeds number of seconds.

-e time Selects processes existing at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is Ah[mm|ss]].

-E time Selects processes ending at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is Ah[mm[ss]]. If you specify the same time for

Commands 21

acctcom

22

-f
-g group

-h

-H factor
-i

-I num

-1 line

-m

-n pattern

-0 file

-0 seconds

-q

=T

-s time

-S time

both the -E and -S flags, acctcom displays the process that existed at the
specified time.

Displays the fork/exec flag and the system exit value columns in the output.

Selects processes belonging to group. You can specify either the group ID or
the group name.

Instead of mean memory size, shows the fraction of total available CPU time
consumed by the process while it ran (hog factor). This factor is computed
as:

(total CPU time)/(elapsed time)

Shows only processes that exceed factor. (See the -h flag for a discussion of
how this factor is calculated.)

Displays columns showing the number of characters transferred in read or
write operations (the I/O counts).

Shows only processes transferring more than num characters.
Instead of memory size, shows total kcore minutes.
Shows only processes belonging to work station /dev/line.

Shows mean main memory size. This flag is on by default. Specifying the -h
or -k flags turns off -m.

Shows only commands matching pattern, where pattern is a regular expression
like those in the ed command (see page 371), except that here you can use a

+ (plus sign) as a special symbol for one or more occurrences of the
preceding character.

Copies selected process records to file, keeping the input data format. This
flag suppresses writing to standard output.

Shows only processes with CPU system time exceeding seconds.

Does not display any output records; just displays the average statistics that
are displayed with the -a flag.

Shows CPU factor. This factor is computed as:
(user-time) | (system-time + user-time).

Shows only those processes that existed on or after the specified time. You
can use the NLTIME environment variable to specify the order of hours,
minutes, and seconds. The default order is Ah[mm/[ss]].

Shows only those processes starting at or after the specified time. You can
use the NLTIME environment variable to specify the order of hours, minutes,
and seconds. The default order is Ah[mm[ss]].

acctcom

Files

-t Shows separate system and user CPU times.

-u user Shows only processes belonging to user. For user, you can give a user ID, a
login name that is converted to a user ID, a # to select processes run with

superuser authority, or a ? to select processes associated with unknown user

IDs.
-V Eliminates column headings from the output.
/usr/adm/pacct Current process accounting file.
[etc/passwd User names and user IDs.
[etc/group Group names and group IDs.

Related Information

The following commands: “acctdisk, acctdusg” on page 26, “acctems” on page 18,
“acctcon” on page 24, “acctmerg” on page 28, “acctpre” on page 30, “acct/*” on
page 13, “fwtmp” on page 457, “ps” on page 786, “runacct” on page 848, and “su” on
page 1026.

The acet system call, the acet and utmp files and the environment miscellaneous facility
in AIX Operating System Technical Reference.

“Running System Accounting” and “Overview of International Character Support” in
Managing the AIX Operating System.

Commands 23

accteon

acctcon

Purpose

Performs connect-time accounting.

Syntax

/usr/lib/acct/acctcont —(i
=1 file

—o file
-P
—t

/usr/lib/acct/acctcon2 —
OL805233

Description

24

acctconl

The acctconl command converts a sequence of login and logoff records (read from
standard input) to a sequence of login session records (written to standard output). its
input should normally be redirected from [usr/adm/wtmp.

The acctconl command displays, in ASCII format, the login device, user ID, login name,
prime connect time (seconds), nonprime connect time (seconds), session starting time
(numeric), and starting date and time (in date/time format). It also maintains a list of ports
on which users are logged in. When it reaches the end of its input, it writes a session
record for each port that still appears to be active. It normally assumes that its input is a
current file, so that it uses the current time as the ending time for each session still in
progress (see the -t flag on page 25).

Japanese Language Support Information

This command has not been modified to support Japanese characters.

acctcon

Flags

-1 file Writes to file a line-usage summary showing the line name, the number of minutes
used, the percentage of total elapsed time used, the number of sessions charged, the
number of logins, and the number of logoffs. This file helps track line usage and
identify bad lines. All hang-ups, terminations of login, and terminations of the
login shell cause the system to write logoff records, so the number of logoffs is
often much higher than the number of sessions.

-0 file Writes to file an overall record for the accounting period, giving starting time,
ending time, number of restarts, and number of date changes.

-p Displays input only, showing line name, login name, and time in both numeric and
date/time formats.

-t Uses the last time found in the input as the ending time for any current processes
instead of the current time. This is necessary in order to have reasonable and
repeatable values for noncurrent files.

acctcon2

The acctcon2 command converts a sequence of login session records, produced by the
acctconl command, into total accounting records.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

Files
Jusr/adm/wtmp Login/logoff history file.
Related Information

The following commands: “acctdisk, acctdusg” on page 26, “acctcms” on page 18,
“acctcom” on page 20, “acctmerg” on page 28, “acctprec” on page 30, “acet/*” on
page 13, “fwtmp” on page 457, “init” on page 521, “login” on page 584, and “runacct
on page 848.

The acct system call and the acet and utmp files in AIX Operating System Technical
Reference.

»

“Running System Accounting” in Managing the AIX Operating System.

Commands 25

acctdisk

acctdisk, acctdusg

Purpose

Performs disk-usage accounting.

Syntax

/usr/lib/acct/acctdisk —

-p /etc/passwd
/usr/lib/acct/acctdusg —(>~<—' Y
-u file -p file

OL805192

Description

26

acctdisk

The acctdisk command reads lines from standard input that contain a user ID, the user’s
login name, and the number of disk blocks occupied by the user’s files. It converts these
lines to total accounting records that can be merged with other accounting records and
writes those records to standard output.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

acctdusg

The acctdusg command reads a list of file names from standard input (usually piped from
a find / -print command), computes disk resource usage (including indirect blocks) using
the login name of the owner of the files, and writes the results to standard output.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

acctdisk

Flags

-p file Searches file for login names and numbers, instead of searching /etc/passwd.

-u file Places in file records of file names for which it does not charge.

Files

[etc/passwd Used to convert login names to user IDs.
Jusr/lib/acct Directory holding all accounting commands.

Related Information

The following commands: “acct/*” on page 13, “acctecms” on page 18, “acctcom” on
page 20, “acctcon” on page 24, “acctmerg” on page 28, “acctpre” on page 30, “fwtmp”
on page 457, and “runacct” on page 848.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 27

acctmerg

acctmerg

Purpose

Merges total accounting files.

Syntax

/usr/lib/acct/acctmerg

-a =i
-h —p 2
=¥ fieldspec

’cccfmerg always reads standard imput in addition to any named files.
Do not put a blank between these items.

9 maximum

0L805234

Description

28

The acetmerg command reads records from standard input and up to nine additional files,
all in the tacct binary format or the tacct ASCII format. It merges these by adding
records with keys (normally user ID and name) that are identical, and expects the input
records to be sorted by those key fields. It writes these merged records to standard output.

The optional fieldspecs allow you to select input or output fields. A field specification is a
comma-separated list of fields or field ranges. Field numbers are in the order specified in
the tacct file in AIX Operating System Technical Reference, with array sizes, except for the
ta_name characters, taken into account. For example, -h2-3,7,15-13,2 displays the
login name, prime CPU and connect times, fee, queueing system, and disk usage data, and
the login name again, in that order, with column headings. The default specification is
“all fields” (1-18 or 1-), which produces very wide output lines containing all the
available accounting data.

Queueing system, disk usage, or fee data can be converted into tacet records using the
-ifieldspec argument. For example, disk accounting records, produced by acctdisk, consist
of lines containing the user ID, login name, number of blocks, and number of disk samples
(always one). A file, dacct, containing these records can be merged into an existing total
accounting file, tacct, with:

acctmerg -11-2,13,18 <dacct . acctmerg tacct >output

acctmerg

Japanese Language Support Information

This command has not been modified to support Japanese characters.

Flags
-a[fieldspec] Produces output in the form of ASCII records.
-h[fieldspec] Displays column headings. This flag implies -a but is effective with -p or -v.
-i[fieldspec] Expects input files composed of ASCII records.
-plfieldspec] Displays input without processing.
-t Produces a single record that contains the totals of all input.
-u Summarizes by user ID rather than by user name.
-v[fieldspec] Produces output in ASCII format, with more precise notation for
floating-point numbers.
Example

The following sequence is useful for making repairs to any file in tacct format:

acctmerg -v <filel >file2
edit file2 as desired . . .

acctmerg -a <file2 >filel

Related Information

The following commands: “acct/*” on page 13, “acctecms” on page 18, “acctcom” on
page 20, “acctcon” on page 24, “acctdisk, acctdusg” on page 26, “fwtmp” on page 457,
“acctpre” on page 30, and “runacct” on page 848.

The acct system call and the acet and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 29

acctprce

acctprc

Purpose

Performs process accounting.

Syntax

/etc/passwd
/usr/lib/acct/acctpret
file

/usr/lib/acct/acctpre2 —

/usr/adm/pacct
/usr/lib/acct/accton 4<- ->—<
file

Description

OL805235

acctprcl

The acctprcl command reads records from standard input that are in the acct format
(described in AIX Operating System Technical Reference), adds the login names that
correspond to user IDs, and then writes an ASCII record to standard output. This record
contains the user ID, login name, prime CPU time, nonprime CPU time, the total number
of characters transferred (in 512-byte units), the total number of blocks read and written,
and mean memory size (in 64-byte units) for each process.

If specified, file contains a list of login sessions in utmp format (described in AIX
Operating System Technical Reference), sorted by user ID and login name. By default,
acctprel gets login names from the password file, /etc/passwd. The information in file
helps distinguish among different login names that share the same user ID.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

30

acctprce

Files

acctprc2

The acctprc2 command reads (from standard input) the records written by acctprel,
summarizes them by user ID and name, and writes the sorted summaries to standard output
as total accounting records.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

accton

The accton command without arguments turns process accounting off. If you specify file
(the name of an existing file), the kernel adds process accounting records to it
(/usr/adm/pacct by default).

Japanese Language Support Information

This command has not been modified to support Japanese characters.

/etc/passwd Password file; contains user IDs.
Jusr/adm/pacct Contains process accounting records.

Related Information

The following commands: “acct/*” on page 13, “acctdisk, acctdusg” on page 26,
“acctcms” on page 18, “acctcom” on page 20, “acctcon” on page 24, “acctmerg” on
page 28, “fwtmp” on page 457, and “runacct” on page 848.

The acct system call and the acet and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 31

actman

actman

Purpose

Permits interaction with multiple virtual terminals.

Syntax

actman —
OL805323

Description

The actman command is the Activity Manager for the AIX Operating System. It is
normally run by the AIX logger in the same manner as any program listed in the
/etc/passwd file. Once started by the logger, actman creates the initial shell (/bin/sh)
and monitors the number of open virtual terminals until all have been closed. It then exits

to the AIX init process. If you try to end the initial shell when other virtual terminals are
still open, actman restarts the initial shell.

To take advantage of the multiple virtual terminal capability, use the open command (see
page 728) to execute another shell in a separate virtual terminal.

Notes:
1. You must log off of each existing shell to end your login session.

2. You do not need an Activity Manager if you do not have virtual terminal capabilities.
Thus if you do not log in from the local console, actman overlays itself with the initial
shell.

Related Information

The following command: “open” on page 728.

“Using Display Station Features” in Using the AIX Operating System.

32

adb

adb

Purpose

Provides a general purpose debugger.

Syntax
—a.out—core
adb core
> bjfil
—Pprompt oy .
corfil
OL805465
Description

The adb command provides a debugger for C and assembler language programs. With it,
you can examine object and core files and provide a controlled environment for running a
program.

Normally, objfil is an executable program file that contains a symbol table. If objfil does
not contain a symbol table, the symbolic features of adb cannot be used, although the file
can still be examined. The default objfil is a.out.

The corfil is assumed to be a core image file produced by running objfil. The default corfil
is core.

While running, adb takes input from standard input and writes to standard output. adb
does not recognize the Quit or Interrupt keys. These keys cause adb to wait for a new
command.

In general, requests to adb are of the form
[address] [,count] [command] [;]

where address and count are expressions. The default count is 1. If address is specified,
then the expression . (dot) is set to address.

The interpretation of an address depends on the context in which it is used. If a
subprocess is being debugged, addresses are interpreted in the usual way in the address
space of the subprocess. For more information, see “Addresses” on page 39.

You can enter more than one command at a time by separating the commands with a ;
(semicolon).

Commands 33

adb

34

Expressions

+

A

integer

‘ccec’

< name

symbol

—symbol

.symbol

Specifies the last address used by a command; this is also known as the current
address.

Increases the value of . (dot) by the current increment.
Decreases the value of . (dot) by the current increment.
Specifies the last address typed by a command.

Specifies an octal number if integer begins with 0o, a hexadecimal number if
preceded by 0x or #, or a decimal number if preceded by 0Ot; otherwise, a number
interpreted in the current radix. The radix is initially 16.

Specifies the ASCII value of up to 4 characters. \ (slash) can be used to escape
an ’ (apostrophe).

Reads the current value of name. name is either a variable name or a register
name. adb maintains a number of variables (see “Variables” on page 39) named
by single letters or digits. If name is a register name, the value of the register is
obtained from the system header in corfil. The register names are r0...r15, pc,
ics, ¢s, mq; the names fp, pcp, and link are recognized as synonyms for r1, ri4,
and rl15.

Specifies a sequence of upper- or lower-case letters, underscores, or digits, not
starting with a digit. The value of the symbol is taken from the symbol table in
objfil. An initial — (underscore) is prefixed to symbol if needed.

Specifies, in C, the true name of an external symbol begins with — (underscore),
as does the name of the constant pool of an external function. It may be
necessary to use this name to distinguish it from internal or hidden variables of
a program.

Specifies the entry point of the function named by symbol.

routine.name

(exp)

Specifies the address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted, the value is the address of the
most recently activated C stack frame corresponding to routine.

Specifies the value of the expression exp.

adb

Operators

Integers, symbols, variables, and register names can be combined with the following
operators:

Unary
*exp Contents of location addressed by exp in corefile.

@exp Contents of the location addressed by exp in objfil.

-exp Integer negation.
~exp Bitwise complement.
Binary

el+e2 Integer addition.

el-e2 Integer subtraction.
el*e?2 Integer multiplication.
el%e2 Integer division.
el&e2 Bitwise conjunction.
elle2 Bitwise disjunction.

elfe2 el rounded up to the next multiple of e2.

Binary operators are left associative and are less binding than unary operators.

Commands

You can display the contents of a text or data segment with the ? (question mark) or the /
(slash) command. The = (equal) command displays a given address in the specified format
f. (The commands ? and / may be followed by * (asterisk); see “Addresses” on page 39.)

?f Displays, in the format f, the contents of the objfil starting at address. The
value of . (dot) increases by the sum of the increment for each format letter.

/f Displays, in the format f, the contents of the corfil starting at address. The
value of . (dot) increases by the sum of the increment for each format letter.

=f Displays the value of address in the format f. The i and s format letters are not
meaningful for this command.

The format consists of one or more characters that specify print style. Each format
character may be preceded by a decimal integer that is a repeat count for the format
character. While stepping through a format, . (dot) increments by the amount given for
each format letter. If no format is given, the last format is used.

Commands 35

adb

The format letters available are as follows:

o2 Prints 2 bytes in octal.

04 Prints 4 bytes in octal.

q 2 Prints 2 bytes in the current radix, unsigned.
Q4 Prints 4 bytes in the current radix, unsigned.
d2 Prints in decimal.

D4 Prints long decimal.
x 2 Prints 2 bytes in hexadecimal.

X4 Prints 4 bytes in hexadecimal.

u?2 Prints as an unsigned decimal number.

U4 Prints long unsigned decimal.

b1 Prints the addressed byte in the current radix, unsigned.

cl Prints the addressed character.

C1 Prints the addressed character using the following escape conventions:

1. Prints control characters as ~ followed by the corresponding printing
character.

2. Prints nonprintable characters as ~ <n> where n is a hexadecimal value
of the character. The character ~ prints as ~ ~.

sn Prints the addressed character until a zero character is reached.

Sn Prints a string using the ~ escape convention. n specifies the length of the
string including its zero terminator.

Y4 Prints 4 bytes in date format (see “ctime” in AIX Operating System Technical

Reference).
in Prints as instructions. n is the number of bytes occupied by the instruction.
a0 Prints the value of . (dot) in symbolic form. Symbols are checked to ensure

that they have an appropriate type as follows:

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p4 Prints the addressed value in symbolic form using the same rules for symbol
lookup as a.
t0 When preceded by an integer, tabs to the next appropriate tab stop. For

example, 8t moves to the next 8-space tab stop.

36

adb

ro0 Prints a space.

no Prints a new line.

“...” 0 Prints the enclosed string.

Decreases . (dot) by the current increment. Nothing prints.

+ Increases . (dot) by 1. Nothing prints.

= Decreases . (dot) decrements by 1. Nothing prints.

newline

[?/Nlvalue mask

[2/1wvalue...

[?/lm b1 el f1]2/]

>name
!

$modifier

Repeats the previous command incremented with a count of 1.

Words starting at . (dot) are masked with mask and compared with value
until a match is found. If L is used, the match is for 4 bytes at a time
instead of 2. If no match is found, . (dot) is unchanged; otherwise . (dot)
is set to the matched location. If mask is omitted, -1 is used.

Writes the 2-byte value into the addressed location. If the command is
W, write 4 bytes. If the command is V, write 1 byte. Alignment
restrictions may apply when using w or W.

Records new values for b1, el, f1. If less than three expressions are
given then the remaining map parameters are left unchanged. If the ?
or / is followed by * then the second segment (b2, e2, f2) of the mapping
is changed. If the list is terminated by ? or / then the file (0bjfil or corfil
respectively) is used for subsequent requests. (For example, /m? causes
/ to refer to objfil).

Assigns . (dot) to the variable or register name.
Calls a shell to read the rest of the line following !.
Miscellaneous commands. The available modifiers are:
<file Reads commands from file and returns to the standard input.

>file Sends output to file. If file is omitted, output returns to the
standard output. file is created if it does not exist.

r Prints the general registers and the instruction addressed by
pc and sets . (dot) to pc.

b Prints all breakpoints and their associated counts and
commands.

c C stack back trace. If address is given, it is taken as the

address of the current frame (instead of using the frame
pointer register). If C is used, then the names and values of
all automatic and static variables are printed for each active
function. If count is given then only the first count frames are
printed.

Commands 37

adb

38

n

E<pﬁ9~°

p

Prints the names and values of external variables.
Sets the output page width for address. The default is 80.

Sets the limit for symbol matches to address. The default is
255,

Sets the current radix to 8.

Sets the current radix to address or 16, if none is specified.
Exits adb.

Prints all non-zero variables in octal.

Prints the address map.

Uses the remainder of the line as a prompt string.

:modifier Manages a subprocess. Available modifiers are:

bc

cs

Ss

Sets the breakpoint at address. The breakpoint runs count -1
times before causing a stop. Each time the breakpoint is
encountered, the command ¢ runs. If this command sets .
(dot) to 0, the breakpoint causes a stop.

Deletes the breakpoint at address.

Runs o0bjfil as a subprocess. If address is given explicitly, the
program is entered at this point; otherwise, the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. Arguments to
the subprocess may be supplied on the same line as the
command. An argument starting with < or > causes the
standard input or output to be established for the command.
On entry to the subprocess, all signals are turned on.

Continues the subprocess with signal s (see the signal system
call in AIX Operating System Technical Reference). If address
is given, the subprocess is continued at this address. If no
signal is specified, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for r.

Continues the subprocess in single steps count times. If there
is no current subprocess, objfil is run as a subprocess. In this
case no signal can be sent; the remainder of the line is treated
as arguments to the subprocess.

Stops the current subprocess, if one is running.

adb

Flags

Variables

adb provides a number of variables. On entry to adb, the following variables are set from
the system header in the corfil. If corfil does not appear to be a core file, then these values
are set from objfil.

The base address of the data segment

The size of the data segment

The entry address of the program

The “magic” number (0405, 0407, 0410, or 0411)
The size of the stack segment

The size of the text segment.

nmgmn..:r

Addresses

The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (b1, el, fI) and (b2,
e2, f2). The file address that corresponds to a written address is calculated as follows:

bl<address <el= > file address =address+f1-b1
or
b2<address <e2= >file address = address+[2-b2

Otherwise, the requested address is not legal. In some cases (for example, programs with
separated I and D space) the two segments for a file may overlap. If a ? or / is followed by
an *, then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected, then for that file b1 is set to 0, el is set to the maximum file
size, and fI is set to 0; in this way, the whole file can be examined with no address
translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32-bit
integers.

-pprompt Sets the prompt used by adb to prompt.. If the prompt includes spaces, enclose
the prompt in quotation marks.

-W Opens the objfil and corfil for writing. This flag makes either file if they do not
exist.

Commands 39

adb

Files

/dev/mem
/dev/swap
a.out

core

Related Information

The ptrace system call in AIX Operating System Technical Reference.
The a.out and core files in AIX Operating System Technical Reference.

40

admin

admin

Purpose

Creates and initializes SCCS files.
Syntax

To Create SCCS Files:

-n
odmin—<
i 1

name
one of

b

chum mmodule
dSID n

fnum qtext

i ttype

-r1.1

< i Mc—m um
—fv program —mmrlist

0L805376

>_<\ -y newfile

—t file L____—_l
-y comment

OL805160

% If —a is never used to specify users,

then any user can run get —e on the file.

0L805417

Commands 41

admin

To Change Existing SCCS Files:

a
admin | 1
—auser N—
—euser. s

g —f 1
one of
b
cnum mmodule
dSID n
fnum qtext
i ttype
a
num
l 4 s —fvprogram
one of —dv
b j
c m
d n
fq
i ¥

OL805385

To Check and Correct Damaged SCCS Files:

one of

:f‘ —f— file —l—¢

admin —

OL805158

' Do not put a blank between these items.
0L805308

Description

The admin command creates new Source Code Control System (SCCS) files or changes
specified parameters in existing SCCS files. These parameters control how the get
command builds the files that you can edit. They also provide information about who can
access the file, who can make changes, and when changes were made.

42

admin

If the named file exists, admin modifies its parameters as specified by the flags. If it does
not exist and you supply the -i or the -n flag, admin creates the new file and provides
default values for unspecified flags. If you specify a directory name for file, admin
performs the requested actions on all SCCS files in that directory (all files with the s.
prefix). If you specify a - (minus) as a file name, admin reads standard input and
interprets each line as the name of an SCCS file. An end-of-file character (Ctrl-D) ends
input.

The admin command is most often used to create new SCCS files without setting
parameters. See “Examples” on page 46 for the syntax used to create an SCCS file with no
parameters set in the new file.

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

SCCS File Conventions

All SCCS file names must have the form s.name. New SCCS files are created with
read-only permission. You must have write permission in the directory to create a file (see
“chmod” on page 160 for an explanation of file permissions). admin writes to a
temporary x-file, which it calls x.name. The x-file has the same permissions as the original
SCCS file if it already exists, and it is read-only if admin creates a new file. After
successful completion of admin, the x-file is moved to the name of the SCCS file. This
ensures that changes are made to the SCCS file only if admin does not detect any errors
while it is running.

Directories containing SCCS files should be created with permission code 755 (read, write,
and execute permissions for owner, read and execute permissions for group members and
others). SCCS files themselves should be created as read-only files (444). With these
permissions, only the owner can use non-SCCS commands to modify SCCS files. If a group
can access and modify the SCCS files then the directories should include group write
permission.

The admin command also uses a temporary lock file (called z.name), to prevent
simultaneous updates to the SCCS file by different users. See “SCCS Files” on page 478
for additional information on the z.name file.

The following table contains the header flags that can be set with the -f flag and unset
with the -d flags (see page 45). The header flags control the format of the g-file created
with the get command (see “SCCS Files” on page 478 for details on the g-file).

Commands 43

admin

Header

Flag Header Flag Purpose

b Lets you use the -b flag of a get command to create branch deltas.

cnum Makes num the highest release number that a get -e can use. The value of
num must be less than or equal to 9999. (Its default value is 9999.)

fnum Makes num the lowest release number that a get -e can retrieve. num must
be greater than 0 and less than 9999. (Its default value is 1.)
Makes SID the default delta supplied to a get command.

dSID

1

Treats the No id keywords (ge6) message issued by the get or delta
command as an error (see “Identification Keywords” on page 480).

Permits concurrent get commands for editing the same SID of an SCCS file.
This allows multiple concurrent updates to the same version of the SCCS
file.

lnum[,numj] . . .

Locks the releases specified by num . . . against editing, so that a get -e
against one of these releases fails. You can lock all releases against editing
by specifying -fla and unlock specific releases with the -d flag.

Causes delta to create a null delta in any releases that are skipped when a
delta is made in a new release. For example, if you make delta 5.1 after
delta 2.7, releases 3 and 4 will be null. The resulting null deltas can serve
as points from which to build branch deltas. Without this flag, skipped
releases do not appear in the the SCCS file.

qtext

Substitutes text for all occurrences of the %Q% keyword in an SCCS text
file retrieved by a get command. (See “Identification Keywords” on
page 480 for more information on keywords.)

mmodule

Substitutes module for all occurrences of the %M% keyword in an SCCS
text file retrieved by a get command. The default module is the name of the
SCCS file without the s. prefix.

ttype

Substitutes type for all % Y% keywords in a g-file retrieved by a get.

vIprogram]

Makes delta prompt for Modification Request (MR) numbers as the reason
for creating a delta. program specifies the name of an MR number validity
checking program (see “delta” on page 310). If v is set in the SCCS file, the
admin -m flag must also be used, even if its value is null.

Figure 1. SCCS Header Flags

44

admin

Flags

You can enter the flags and input file names in any order. All flags apply to all the files.

-auser

-dhdrflag

-euser

~fhdrflaglvalue]

-i[name]

Adds the specified user to the list of users that can make sets of changes
(deltas), to the SCCS file. user can be either a user name, a group name,
or a group ID. Specifying a group name or number is the same as
specifying the names of all users in that group. You can specify more
than one -a flag on a single admin command line. If an SCCS file
contains an empty user list, then anyone can add deltas.

If a file has a user list, the creator of the file must be included in the list
in order for the creator to make deltas to the file.

Removes the specified header flag from the SCCS file. You can specify
this flag only with existing SCCS files. You can also specify more than
one -d flag in a single admin command. See Figure 1 on page 44 for
the header flags that admin recognizes.

Removes the specified user from the list of users allowed to make deltas
to the SCCS file. Specifying a group ID is equivalent to specifying all
user names common to that group. You can specify several -e flags on a
single admin command line. ’

Places the specified header flag and value in the SCCS file. You can
specify more than one header flag in a single admin command. See
Figure 1 on page 44 for the header flags that admin recognizes.

Checks the structure of the SCCS file and compares a newly computed
checksum with the checksum that is stored in the first line of the SCCS
file. When the checksum value is not correct, the file has been
improperly modified or has been damaged. This flag helps you detect
damage caused by the improper use of non-SCCS commands to modify
SCCS files, as well as accidental damage. The -h flag prevents writing
to the file, so it cancels the effect of any other flags supplied. If an error
message is returned indicating the file is damaged, use the -z flag to
recompute the checksum. Then test to see if the file is corrected by
using the -h flag again.

Gets the text for a new SCCS file from name. This text is the first delta
of the file. If you specify the -i flag but you omit the file name, admin
reads the text from standard input until it reaches end-of-file (Ctrl-D). If
you do not specify the -i flag, but you do specify the -n flag, admin
creates an empty SCCS file. admin can only create one file containing
text at a time. If you are creating two or more SCCS files with one call
to admin, you must use the -n flag, and the SCCS files created are
empty.

Commands 45

admin

-m|[mrlist] Specifies a list of Modification Requests (MR) numbers to be inserted
into the SCCS file as the reason for creating the initial delta. The v flag
must be set. The MR numbers are validated if the v flag has a value (the
name of an MR number validation program). admin reports an error if
the v flag is not set or if MR validation fails.

-n Creates a new, empty SCCS file. Do not specify this flag when you use
the -i flag.
-rnum.num Inserts the initial delta into num.num, the release and version

respectively. You can specify -r only if you also specify the -i or -n flag.
If you do not specify this flag, the initial delta becomes Release 1,
Version 1. Use this flag only when creating an SCCS file.

-t[file] Takes descriptive text for the SCCS file from file. If you use -t when
creating a new SCCS file, you must supply a file name. In the case of
existing SCCS files:

e Without a file name, -t causes removal of the descriptive text (if any)
currently in the SCCS file.

e With a file name, -t causes text in the named file to replace the
descriptive text (if any) currently in the SCCS file.

-y[comment] Inserts comment text into the initial delta in a manner identical to that
of the delta command. Use this flag only when you create an SCCS file.
If you do not specify a comment, admin inserts a line of the following

form:
date and time created YY/MM/DD HH:MM:SS by login
-z Recomputes the SCCS file checksum and stores it in the first line of the

SCCS file (see the -h flag on page 45).

Warning: Using admin with this flag on a damaged file
can prevent future detection of the damage. This flag
should only be used if the SCCS file is changed using
non-SCCS commands because of a serious error.

Examples

1. To create an empty SCCS file named s.prog.c:
admin -n s.prog.c
2. To convert an existing text file into an SCCS file:

admin =-iprogram.c s.prog.c

46

admin

This converts the text file program. c into the SCCS file s.prog.c. The original file
remains intact, but it is no longer needed. You must rename or delete it before you
can use the get command on S.prog.c.

Related Information
The following commands: “delta” on page 310, “ed” on page 371, “get” on page 477,
“help” on page 513, “prs” on page 781, and “what” on page 1213.
The scesfile file in AIX Operating System Technical Reference.

“Maintaining Different Versions of a Program” in AIX Operating System Programming
Tools and Interfaces.

Commands 47

°

ali

ali

Purpose

Lists mail aliases and their addresses.

Syntax

-alias /usr/lib/mh/MailAliases

ali

-nolist
~list :

—nolist

-nonormalize -nouser
>—< one of >——< one of
—normalize —user alias |

—nonormalize —nouser

—alias file

ali — —help —1
AJ2FL150

Description

Flags

48

The ali command is used to list mail aliases and the addresses that the aliases represent.
ali is part of the MH (Message Handling) package and can be used with other MH and AIX
commands.

The ali command searches the specified mail alias files for each given alias, and writes to
standard output the addresses of each alias. If you specify the -user flag, ali interprets the
alias arguments as actual addresses, searches the alias files for the addresses, and writes
to standard output the aliases that contain definitions of the addresses. Thus, if you want
to find the address of an alias, use the default -nouser flag. If you want to find the aliases
that represent an address, use the -user flag.

-alias file Specifies that file is a mail alias file to be searched for each given alias.
The default alias file is /usr/lib/mh/MailAliases.
-help Displays help information for the command.

ali

-list

-nolist

-nonormalize

-normalize

-nouser

-user

Displays each address on a separate line.

Displays addresses separated by commas on as few lines as possible. This
flag is the default.

Does not attempt to convert local nicknames of hosts to their official host
names. This flag is the default.

Attempts to convert local nicknames of hosts to their official host names.

Lists the addresses that the specified aliases represent. This flag is the
default.

Lists the aliases that contain the specified addresses. When the -user
and -nonormalize flags are used together, the result may be a partial list
of aliases that contain the specified addresses.

Files
[usr/lib/mh/MailAliases The default mail alias file.
$HOME/.mh_profile The MH user profile.
[ete/passwd List of users.

Jetc/group

List of groups.

Related Information

The following commands: “comp” on page 185, “dist” on page 336, “forw” on page 438,
“repl” on page 821, “send” on page 893, “whom” on page 1222.

The mh-alias and mh-profile files in AIX Operating System Technical Reference.

The “Overview of the Message Handling Package” in Managing the AIX Operating System.

Commands 49

anno

anno

Purpose

Annotates messages.

Syntax

50

anno ——< all
+ folder sequence
3 < one of

num 1 one of
first tnum —prev
prev i+ num —cur
cur —num —-
: —num —next
next —first —last
last
AJ2FL221
-noinplace
>—< >{ one of >——< Y—
—component field —inplace —text string
—noinplace
anno — —help —
AJ2FL166
" Do not put a blank between these items.
0L805308

anno

Description

Flags

The anno command is used to annotate messages with specified text and dates. anno is
part of the MH (Message Handling) package and can be used with other MH and AIX
commands.

The anno command annotates messages with the lines:

field:date
field:body

Although dist, forw, and repl enable you to perform annotations, their annotations are
limited to adding distribution information to messages. anno enables you to perform
arbitrary annotations. The annotation fields must contain alphanumeric characters and
dashes only.

-component field Specifies the field name for the annotation text. The field name must
be a valid message field name, consisting of alphanumeric characters
and dashes only. If you do not specify this flag, anno prompts you for
the name of the field.

+folder msgs Specifies the messages that you want to annotate. msgs can be several
messages, a range of messages, or a single message. You can use the
following message references when specifying msgs:

num first prev
cur " next
last all sequence

The default message is the current message in the current folder. If
several messages are specified, the first message annotated becomes
the current message. If you specify a folder, that folder becomes the
current folder.

-help Displays help information for the command.

-inplace Forces annotation to be done in place in order to preserve links to the
annotated messages.

-noinplace Does not perform annotation in place. This flag is the default.

-text string Specifies the text to be annotated to the messages.

Commands 51

anno

Profile Entries

Current-Folder: Sets your default current folder.
Path: Specifies your user_mh_directory.

Files

$HOME/.mh_profile The MH user profile.

Related Information

The following commands: “dist” on page 336, “forw” on page 438, “repl” on page 821.
The mh-profile file in AIX Operating System Technical Reference.
The “Overview of the Message Handling Package” in Managing the AIX Operating System.

52

ap

ap

Purpose

Parses and reformats addresses.

Syntax

-normalize
/usr/lib/mh/dp—< one of >——<— one of m—‘
—form file —normalize —width num

—format string —nonormalize

/usr/lib/mh/ap—— —help—
AJ2FL224

Description

Flags

The ap command is used to parse and reformat addresses. ap is not designed to be run
directly by the user; it is designed to be called by other programs. The ap command is
typically called by its full path name. The ap command is part of the MH (Message
Handling) package.

The ap command parses each string specified as an address and attempts to reformat the
string. The default output format for ap is the ARPA RFC822 standard. When the default
format is used, ap displays an error message for each string it is unable to parse.

-form file Reformats the given addresses into the alternate format described in file.

-format string Reformats the given addresses into the alternate format specified by
string. The default format string is:

%<{error}%{error}:%{address}%i%(putstr(proper{address})) %>
-help Displays help information for the command.

-nonormalize Does not attempt to convert local nicknames of hosts to their official host
names.

Commands 53

ap

Files

-normalize Attempts to convert local nicknames of hosts to their official host names.
This flag is the default.
-width num Sets the maximum number of columns that ap uses to display dates and

error messages. The default is the width of the display.

$HOME/.mh_profile The MH user profile.
Jusr/lib/mh/mtstailor The MH tailor file.

Related Information

54

Other MH commands: “ali” on page 48, “dp” on page 352, “scan” on page 871.

The mh-alias, mh-format, and mh-profile files in AIX Operating System Technical
Reference.

The “Overview of the Message Handling Package” in Managing the AIX Operating System.

ar

ar

Purpose

Maintains portable libraries used by the linkage editor.

Syntax

posname

ferary w-ame T

OL805377

ar — w — J/ibrary —
01805349

" Do not put a blank between these items.
01805308

Description

The ar command combines one or more named files into a single library file written in ar
archive format. When ar creates a library, it creates headers in a transportable format;
when it creates or updates a library, it rebuilds the symbol table that the linkage editor
(the 1d command) uses to make efficient multiple passes over object file libraries. See the
ar file entry in AIX Operating System Technical Reference for information on the format
and structure of portable archives and symbol tables.

Flags

In an ar command, you must list all selected flags together on the command line without
blanks between them. You must specify one from the set dhmpqrtxw. You can also
specify any number of optional flags from the set abcilsuv. If you select a positioning flag
(a, b, or i), you must also specify the name of a file within library (posname), immediately
following the flag list and separated from it by a blank.

Commands 55

ar

a posname Positions the named files after the existing file identified by posname.

b posname Positions the named files before the existing file identified by posname.

c
d
h

i posname

56

Suppresses the normal message that is produced when library is created.
Deletes the named files from the library.

Sets the modification times in the member headers of the named files to the
current date and time. If you do not specify any file names, ar sets the time
stamps of all member headers.

.

Positions the named files before the existing file identified by posname (same
as b).

Places temporary files in the current (local) directory instead of directory
[/tmp.

Moves the named files to some other position in the library. By default, it
moves the named files to the end of the library. Use a positioning flag (abi) to
specify some other position.

Writes to the standard output the contents of the named files or all files in a
library if you do not specify any files.

Adds the named files to the end of the library. Positioning flags, if present, do
not have any effect. Note that this process does not check to see if the named
files are already in the library. In addition, if you name the same file twice, it
may be put in the library twice.

Replaces a named file if it already appears in the library. Since the named
files occupy the same position in the library as the files they replace, a
positioning flag does not have any additional effect. When used with the u
flag (update), r replaces only files modified since they were last added to the
library file.

If a named file does not already appear in the library, ar adds it. In this case,
positioning flags do affect placement. If you do not specify a position, new
files are placed at the end of the library. If you name the same file twice, it
may be put in the library twice.

Forces the regeneration of the library symbol table whether or not ar modifies
the library contents. Use this flag to restore the library symbol table after
using the strip command on the library.

Writes to the standard output a table of contents for the library. If you
specify file names, only those files appear. If you do not specify any files, t
lists all files in the library.

Copies only files which have been changed since they were last copied (see the
r flag discussed previously).

ar

v Writes to standard output a verbose file-by-file description of the making of
the new library. When used with the t flag, it gives a long listing similar to
that of the Is -1 command, described under “Is” on page 595. When used with
the x flag, it precedes each file with a name. When used with the h flag, it
lists the member name and the updated modification times.

The environment variables NLLDATE and NLTIME control the format of
the archive date and time.

w Displays the archive symbol table. Each symbol is listed with the name of the
file in which the symbol is defined.

X Extracts the named files by copying them into the current directory. These
copies have the same name as the original files, which remain in the library.
If you do not specify any files, x copies all files out of the library. This
process does not alter the library.

Examples
1. To create a library:
ar vq lib.a strien.o strcpy.o
If 1ib. a does not exist, then this creates it and enters into it copies of the files
strlen.o and strcpy.o. If 1ib. a does exist, then this adds the new members to the
end without checking for duplicate members. The v flag sets verbose mode, in which
ar displays progress reports as it proceeds.
2. To list the table of contents of a library:
ar vt 1lib.a
This lists the table of contents of 1ib. a, displaying a long listing similar to Is -1. To
list only the member file names, omit the v flag.

3. To replace or add new members to a library:

ar vr 1lib.a strlen.o strcat.o

This replaces the members strlen.o and strcat.o. If 1ib. a was created as shown
in Example 1, then the strlen.o member is replaced. A member named strcat.o
does not already exist, so it is added to the end of the library.

4. To specify where to insert a new member:

ar vrb strien.o lib.a strcmp.o
This adds strcmp. o, placing the new member before strlen.o.
5. To update a member if it has been changed:

ar vru lib.a strcpy.o

Commands 57

ar

Files

This replaces the existing Strcpy .0 member, but only if the file Strcpy.o has been
modified since it was last added to the library.

6. To change the order of the library members:
ar vma strcmp.o Tib.a strcat.o strcpy.o

This moves the members strcat.o and strcpy.o to positions immediately after
strcmp.o. The relative order of strcat.o and strcpy.o is preserved. In other
words, if strcpy.o preceded strcat.o before the move, then it still does.

7. To extract library members:
ar vx lib.a strcat.o strcpy.o

This copies the members strcat.o and strcpy.o into individual files named
strcat.o and strcpy.o, respectively.

8. To extract and rename a member:
ar p lib.a strcpy.o >stringcopy.o
This copies the member strcpy.o to a file named stringcopy.o.

9. To delete a member:
ar vd 1lib.a strlen.o

This deletes the member strlen.o from the library 1ib.a.

[tmp/ar* Temporary files.

Related Information

58

The following commands: “backup” on page 88, “ld” on page 557, “lorder” on page 591,
“make” on page 625, “nm” on page 705, “size” on page 949, and “strip” on page 1017.

The a.out and ar files and environment miscellaneous facility in AIX Operating System
Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

arithmetic

arithmetic

Purpose

Tests arithmetic skills.

Syntax

arithmetic

OL805164

' Do not put a blank between these items.
OL805308

Description

The arithmetic command displays simple arithmetic problems and waits for you to enter
an answer. If your answer is correct, the program displays Right! and presents a new

problem. If your answer is wrong, it displays What? and waits for another answer. Every
20 problems, arithmetic displays the number of correct and incorrect responses and the
time required to answer.

The arithmetic command does not give the correct answers to the problems it displays. It
provides practice rather than instruction in performing arithmetic calculations.

The range is a decimal number specifying the permissible range of all numbers (except
answers). The default range is 10. At the start, all numbers within this range are equally
likely to appear. If you make a mistake, the numbers in the problem you missed become
more likely to reappear.

To quit the game, press INTERRUPT (Alt-Pause); arithmetic displays the final game
statistics and exits.

Commands 59

arithmetic

Flags

Two types of optional flags modify the action of arithmetic. The first set specifies the
type of arithmetic problem:

+ Specifies addition problems.

- Specifies subtraction problems.

x Specifies multiplication problems.
/| Specifies division problems.

If you do not select any flags, arithmetic selects addition and subtraction problems. If
you give more than one problem specifier (+-x/), the program mixes the specified types of
problems in random order.

Examples

60

1. To drill on addition and subtraction of integers from 0 to 10:

/usr/games/arithmetic

2. To drill on addition, multiplication, and division of integers from 0 to 50:

/usr/games/arithmetic +x/ 50

as

as
Purpose
Assembles a source file.
Syntax
o g S >
—n name -] 1 file
—o objfile listfile
0OL805165
' Do not put a blank between these items.
OL805308
Description
The as command reads and assembles the named file (conventionally this file ends with a
.8 suffix). If you do not specify a file, as reads and assembles standard input. It stores its
output, by default, in a file named a.out. The output file is executable if no errors occur
and if there are no unresolved external references.
Flags
-1[listfile] Produces an assembler listing. If you do not specify a file name, a default
name is produced by replacing the .s extension of the source file name with an
.Ist extension.
-n name Specifies the name that appears in the header of the assembler listing. By
default, the header contains the name of the assembler source file.
-0 objfile Writes the output of the assembly process to the specified file instead of to
a.out.
Files

a.out Default output file.

Commands 61

as

Related Information

The following commands: “cc¢” on page 140 and “ld” on page 557.
The a.out file in AIX Operating System Technical Reference.

The discussion of as in Assembler Language Reference and AIX Operating System
Programming Tools and Interfaces.

62

at

at, batch

Purpose

Runs commands at a later time.

Syntax
today
time —<
date increment
at
._i ———-—\
batch —
OL805002
Description

The at and batch commands read from standard input the names of commands to be run at
a later time:

e at allows you to specify when the commands should be run.
e batch runs jobs when the system load level permits.

Both at and batch mail you all output from standard output and standard error for the
scheduled commands, unless you redirect that output. They also write the job number and
the scheduled time to standard error.

Variables in the shell environment, the current directory, umask, and ulimit are retained
when the commands are run. Open file descriptors, traps, and priority are lost.

You can use at if your name appears in the file /usr/lib/cron/at.allow. If that file does
not exist, at checks the file /usr/lib/eron/at.deny to determine if you should be denied
access to at. If neither file exists, only the superuser can submit a job. The allow/deny
files contain one user name per line. If at.allow does exist, the superuser’s login name
must be included in it for the superuser to be able to use the command.

Commands 63

at

Flags

64

The required time parameter can be one of the following:

1. A number followed by an optional suffix. at interprets one- and two-digit numbers as
hours. It interprets four digits as hours and minutes. The NLTIME environment
variable specifies the order of hours and minutes. The default order is the hour
followed by the minute. You can also separate hours and minutes with a : (colon). The
default order is hour:minute.

In addition, you may specify a suffix of am, pm, or zulu. If you do not specify am or
pm, at uses a 24 hour clock. The suffix zulu indicates that the time is GMT
(Greenwich Mean Time). The NLTMISC environment variable controls the suffixes
that at recognizes.

2. at also recognizes the following keywords as special times: noon, midnight, and now.
Note that you can use the special word now only if you also specify a date or an
increment. Otherwise, at tells you: too late. The NLTSTRS environment variable
controls the additional keywords that at recognizes.

You may specify the date parameter as either a month name and a day number (and
possibly a year number preceded by a comma), or a day of the week. The NLDATE
environment variable specifies the order of the month name and day number (by default,
month followed by day). The NLLDAY environment variable specifies long day names;
NLSDAY and NLSMONTH specify short day and month names. (By default, the long
name 1s fully spelled out; the short name abbreviated to three characters.) at recognizes
two special “days,” today and tomorrow by default. (The NLTSTRS environment
variable specifies these special days.) today is the default date if the specified time is later
than the current hour; tomorrow is the default if the time is earlier than the current
hour. If the specified month is less than the current month (and a year is not given), next
year is the default year. The optional increment can be one of the following:

1. A + (plus sign) followed by a number and one of the following words: minute[s],
hour[s], day[s], week[s], month[s], year[s] (or their non-English equivalents).

2. The special word next followed by one of the following words: minute[s], hour[s],
day[s], week[s], month[s], year[s] (or their non-English equivalents).

The NLTUNITS environment variable specifies the non-English equivalents of the English
defaults.

-1 Reports your scheduled jobs.

-r job . .. Removes jobs previously scheduled by at or batch, where job is the number
assigned by at or batch. If you do not have superuser authority (see “su”
on page 1026), you can remove only your own jobs.

at

Examples

1.

To schedule the command from the terminal, use a command similar to one of the
following:

at 5 pm Friday uuclean

Ctrl-D
at now next week uuclean
Ctrl-D
at now + 2 days uuclean
Ctrl-D

To run uuclean at 3:00 in the afternoon on the 24th of January, use any one of the
following commands:

echo wuuclean | at 3:00 pm January 24
echo uuclean | at 3pm Jan 24
echo wuuclean 1+ at 1500 jan 24

To run a job when the system load permits:

batch <!
Tongjob 2>&1 Doutfile 1 mail mylD
|

This example shows the use of a here document to send standard input to at (see
“Inline Input Documents” on page 928).

The order of redirections is important here, so that only error messages are sent into
the pipe to the mail command. If you reverse the order, both standard error and
standard output are sent to outfile (see the discussion of “Input and Output
Redirection Using File Descriptors” on page 928 for details).

To have a job reschedule itself, invoke at from within the shell procedure by including
code similar to the following within the shell file:

echo "sh shellfile" { at now tomorrow
To list the jobs you have sent to be run later:

at -1

To cancel jobs:

at -r 103 227
This cancels jobs 103 and 227. Use at -l to list the job numbers assigned to your jobs.

Commands 65

at

Files
Jusr/lib/cron Main cron directory.
[usr/lib/cron/at.allow List of allowed users.
[usr/lib/cron/at.deny List of denied users.
/usr/spool/cron/atjobs Spool area.

Related Information
The following commands: “cron” on page 220, “kill” on page 552, “mail, Mail” on
page 608, “nice” on page 699, “ps” on page 786, and “sh” on page 913.
The environment special facility in AIX Operating System Technical Reference.

“Running Commands at Pre-set Times” and “Overview of International Character Support”
in IBM RT Managing the AIX Operating System.

66

audit

audit
Purpose
Controls system auditing
Syntax
audit —query —
— off
oudf—~<;
on
panic
~start
audit ——{(_ __~i>>—4
shutdown
AJ2FL131
Description

The audit command controls system auditing. The audit command enables or disables
auditing, and no audit records are generated if the audit system is disabled. You must
have superuser authority to run this command.

The following arguments are available with the audit command:

query

start

shutdown

Gives the current status of the auditing system in the form:

auditing on (or auditing off)
bin processing off (or bin manager is process number)
audit events:

audit class: auditevent,auditevent,auditevent

(or none)

Sets up and enables the auditing system. The system initialization file,
/etec/re, normally includes the audit start command.

Terminates the operation of the auditing system. This argument forces all
audit records out to the audit trail. It then empties the bin files, invalidates
the current configuration, and stops the collection process until the next
audit start command is given.

Commands 67

audit

Files

off

on [panic]

Stops the auditing system, but leaves the auditing collection configuration
valid; no records are lost, and the collection process pauses temporarily
until the audit on or audit shutdown command is given.

Enables auditing. Audit records are generated for enabled events. This
argument assumes that Bin audit collection has already been established
(see the discussion of information collection in Managing the AIX Operating
System).

Note: If you specify the panic option, reliable long-term storage of audit
records is required. The auditbin procedure must already have been started
to manage the disposition of audit bins. If the kernel is unable to write a
record into a bin for archival, the audit system shuts down the system.

To start the auditing system, audit reads configuration information from the
/ete/security/config file. To start auditing, audit does the following:

1. Starts the auditbin collection procedure if Bin audit collection is enabled. The
procedure synchronously recovers any unprocessed bins.

2. Enables the audit classes defined in the auditclasses stanza of the
[ete/security/config file.

3. Starts auditing.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

/ete/security/audit/events Lists audit events.

[etc/security/config Specifies the audit configuration.
[ete/security/audit/cmds Lists audit bin backend programs.
[etc/security/passwd Lists audit classes for which users will be audited.

Related Information

68

The following commands: “auditbin” on page 71 and “auditpr” on page 73.

The audit, auditbin, auditevents, auditlog, and auditproc system calls in the AIX
Operating System Technical Reference.

The audit, events, passwd, and config file formats in the AIX Operating System
Technical Reference.

The discussion of accountability in Managing the AIX Operating System.

auditapp

auditapp

Purpose

Adds an audit bin file to the end of the audit trail file.

Syntax

auditapp —o ——trailfile —<_>_
binfile

~r binfile

OL805474

Description

Flags

The auditapp command adds the audit records read from standard input to the audit trail
file specified in the /etc/security/audit/cmds file. This command is part of the auditing
system, which is fully discussed in Managing the AIX Operating System.

If you specify a bin file, (binfile), then auditapp reads from binfile.
If trailfile does not exist, auditappend creates the file.

This command is designed to be used by auditbin (a daemon) and should not be used on
the command line. The auditapp command expects to find a complete bin (has both
header and trailer portions). Entering audit shutdown completes the bin for processing
by auditapp. Error conditions occur if the auditapp command is executed when bins are
not properly completed with header and trailer portions.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

-0 Specifies the the audit trail to which auditapp appends records. You must
specify this flag.

Commands 69

auditapp

-r Recovers bin files before processing them. When you specify -r during a
recovery procedure, auditapp will recover and process any unprocessed audit

records. If you specify the -r flag, you must also specify binfile; however, you
can specify binfile without the -r flag.

Files
etc/security/audit/cmds Contains audit bin backend programs.

Related Information

The following commands: “audit” on page 67, “auditbin” on page 71, and “auditselect”
on page 76.

The discussion of the audit trail in Managing the AIX Operating System.

70

auditbin

auditbin

Purpose

Manages bins of audit information.
Syntax

auditbin —
OL805475

Description

The auditbin command (a daemon) delivers bins of audit records to audit backends. A
bin is a file for storing audit information prior to processing. A backend is a program that
sends its output, in this case the processed audit records, to a particular device or file.
This device may then provide long-term storage. The default backend command is
auditapp (see “auditapp” on page 69). This command is part of the auditing system,
which is fully discussed in Managing the AIX Operating System.

Each audit backend is a command listed in /etc/security/audit/cmds. When auditbin
receives a bin from the kernel, auditbin invokes each command in the
/etc/security/audit/cmds file to process the bin. The auditbin command searches each
command line for the keyword $bin and replaces it with the path name of the bin file.

If a backend command fails, auditbin stops processing the bins. It sends a message to
/dev/console alerting the user of the problem and indicating that the command be
terminated. The message repeats every 60 seconds until the command is terminated.

The auditbin command assures that each backend encounters each bin at least once. In
the case of multiple commands, the auditbin command does not guarantee that each audit
backend command will complete before the next one begins. Synchronization depends on
the individual commands. Each backend command must wait for any duplicate command
to complete.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Commands 71

auditbin

Files

[ete/security/audit/cmds Lists audit backend commands.
etc/security/config Specifies the audit configuration.

Related Information

72

The following commands: “audit” on page 67 and “auditpr” on page 73.

The audit, auditevents, auditlog and auditproc system calls in AIX Operating System
Technical Reference.

The discussion of the audit trail in Managing the AIX Operating System.
The following file format: config in AIX Operating System Technical Reference.

auditpr

auditpr

Purpose

Displays audit trail files.

Syntax
-0 -m "message" e p P
-1 el h—er
-2 -v it
A5AC5015
Description

The auditpr command reads kernel audit records from standard input and sends formatted
records to standard output. This command is part of the auditing system, which is fully
discussed in Managing the AIX Operating System.

By default auditpr searches the local /etc/passwd file to convert user and group IDs to
names.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Flags
The first series of flags, -0, -1, and -2, specify how often to print a title.
-0 Never print a title.
-1 This flag is the default. It specifies that a title be printed only once.
-2 This flag specifies that a title be printed before each record.

-m “message” Displays message before each output record.

-r Displays numeric user IDs.

Commands 73

auditpr

74

-

-h field

Displays the tail of each audit record.

If the -v option is selected, auditpr prints the tail of each audit record in
the format specified. The information in the tail is specific to the event
that the record signifies. To print the tail of a record, auditpr searches the
auditpr stanza of /etc/security/audit/events for an attribute name (audit
event).

Note: The audit event is the attribute name. The attribute value has the
form:

event = path[,”arguments”)

Where path specifies a command to be executed to print the tail of the
record. Invoke this command as:

program arguments

The tail of the audit record is written to the program’s standard input, and
a formatted version is written to the program’s standard output.

If an attribute is not found, auditpr will print as the tail the warning:
unknown event.

Displays header fields specified by field. The -h flag specifies the header
fields to be printed. Field names and their widths are:

ID Field Width Description

e event 17 Audit event name.

c command 17 Command name.

1 luid 6 User’s login ID.

r ruid 6 Process real user ID.

u euid 6 Process effective user ID.

P pid 6 Process ID.

P ppid 6 Process ID of parent.

R result 2 Result code of the action.

t time 26 Time at which record was written.

The default header format is the combination eclt. The records that result
from this default format appear as follows:

event command luid time

login login dick Fri Feb 8, 1988 14:03:57
. . . tail portion, if requested . .

users adduser jane Fri Feb 8, 1988 14:04:33

tail portion, if requested

auditpr

File

For system calls, the tail portion consists of:
1. The arguments to the system call
2. A list of path names, each followed by two digits:

e Nonzero - indicates that the path name is a symbolic link to the
next path name. A zero (0) indicates a non-symbolic link file.
e A return code by the kernel after trying to access the path name.

For items with the printf specification, the tail consists of the string of
information specified in the quoted string that follows the specification.

|etc/security/audit/events Lists audit events.

Related Information

The following commands: “audit” on page 67 and “auditselect” on page 76.
The following system call: audit in AIX Operating System Technical Reference.

The following file formats: attributes, events, and config in AIX Operating System
Technical Reference.

The discussions of hard copy labeling and the printer subsystem in Managing the AIX
Operating System.

Commands 75

auditselect

auditselect

Purpose

Selects audit records.

Syntax
—e 'expr"
cudi?selecw‘4<; m
—f file trail
OL805476
Description

The auditselect command reads audit records from standard input and writes records to
standard output. This command is part of the auditing system, which is fully discussed in
Managing the AIX Operating System.

If trail is specified, auditselect extracts records from audit trail and writes selected
records to standard output.

The file is a file containing an expression.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Flags

-e “expr” Specifies an expression, expr, which consists of terms in the following form:
field relop value

These terms are defined as:

field One of the following:
e event
e command
e login
e real

76

auditselect

effective
pid

ppid
time
prepend

relop One of the following relational operation signs: ==(equal equal),
I =(exclamation point equal), <(less than), >(greater than),.
>=(greater than equal), or <=(less than equal).

value A quoted string if the event or command field was specified; a time
in the format specified by the NLTIME environment variable; a
date in the format specified by the NLDATE environment variable;
or an integer if one of the following fields was specified: pip, ppid,
login, real, and effective.

Combine these terms using the logical operators &8, (and) ||, (or) and ! (not).
Use () (parentheses) to force the order of evaluation. Otherwise, normal
precedence rules apply.

-f file Specifies a file containing an expression.

Related Information

The following commands: “auditbin” on page 71 and “auditpr” on page 73.

The NLtmtime subroutine in AIX Operating System Technical Reference.

Commands 77

auditstream

auditstream

Purpose

Creates a channel for the reading of audit records.

Syntax

auditstream

—c__class

0L805477
Description

The auditstream command creates a channel to the audit device, /dev/audit. Audit
records are read from /dev/audit by means of this channel and copied to standard output.
The auditstream command can be used as the first command in an audit stream pipeline.

This command is part of the auditing system, which is fully discussed in Managing the
AIX Operating System.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Flags
-cclass Specifies audit classes as found in ete/security/config. Each audit record that
belongs to an audit class specified by a -¢ option is read through the channel
created by auditstream. If no audit classes are specified by a -c¢ option in the
/ete/security/config file, all currently enabled audit events are read through
this channel.
Files
Jetc/security/config Specifies the audit configuration.
/dev/audit The audit device.

78

auditstream

Related Information

The discussion of the auditing subsystem in Managing the AIX Operating System.

Commands 79

aﬁditwrite

auditwrite

Purpose

Generates an audit record at the command level.

Syntax
auditwrite____ event__ resu/z‘ﬁ

0OL805478
Description
The auditwrite command combines an event, its result, and any arguments of supplied

strings of data.

The event is the audit event to be audited (audit events can be found in the
/etc/security/audit/events file), and the result is an indicator of the outcome of the event.
The arg includes the audit information pertaining to the event.

This command is part of the auditing system, which is fully discussed in Managing the
AIX Operating System. You must be a superuser to use this command.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Files
|etc/security/audit/events Lists audit events.
Related Information

The following commands: “audit” on page 67, “auditbin” on page 71, “auditpr” on
page 73, and “auditselect” on page 76.

The discussion of auditing in Managing the AIX Operating System.

80

awk

awk

Purpose
Finds lines in files matching specified patterns and performs specified actions on them.

Syntax

awk m:-pattem 2A>_<action§>T
—F char’ ~f progfile variable=value file

! The default charis a tab.
2 The default pattern is every line.
3 The default action is to print the line.

OL805422

Description

The awk command is a more powerful pattern matching command than the grep command.
It can perform limited processing on the input lines, instead of simply displaying lines that
match. Some of the features of awk are:

It can perform convenient numeric processing.
It allows variables within actions.

It allows general selection of patterns.

It allows control flow in the actions.

e It does not require any compiling of programs.

For a detailed discussion of awk, see AIX Operating System Programming Tools and
Interfaces.

The awk command, reads files in the order stated on the command line. If you specify a
file name as - (minus) or do not specify a file name, awk reads standard input.

The awk command searches its input line by line for patterns. When it finds a match, it
performs the associated action and writes the result to standard output. Enclose
pattern-action statements on the command line in single quotation marks to protect them
from interpretation by the shell.

Commands 81

awk

82

The awk command first reads all pattern-action statements, then it reads a line of input
and compares it to each pattern, performing the associated actions on each match. When
it has compared all patterns to the input line, it reads the next line.

The awk command treats input lines as fields separated by spaces, tabs, or a field
separator you set with the FS variable. Fields are referenced as $1, $2, and so on. $0
refers to the entire line.

On the awk command line, you can assign values to variables as follows:

variable =value

Pattern-Matching Statements
Pattern-matching statements follow the form:
pattern { action }

If a pattern lacks a corresponding action, awk writes the entire line that contains the
pattern to standard output. If an action lacks a corresponding pattern, it matches every
line.

Actions

An action is a sequence of statements that follow C Language syntax. These statements
can include:

statement format

if if (conditional) statement [else statement]

while while (conditional) statement

for for (expression ; conditional ; expression) statement
break

continue

{ statement . . .
(assignment) variable=expression

print print [expression-list] [> expression]

printf printf format|, expression-list] [> expression]
next

exit

Statements can end with a semicolon, a new-line character , or the right brace enclosing
the action.

If you do not supply an action, awk displays the whole line. Expressions can have string
or numeric values and are built using the operators +, -, *, /, %, a blank for string
concatenation, and the C operators ++, --, +=, ==, *= /= and %=.

awk

Variables can be scalars, array elements (denoted x[i]) or fields. Variable names can
consist of upper- and lower-case alphabetic letters, the underscore character, the digits
(0-9), and SJIS characters.

Japanese Language Support Information

Variable names can also include kanji characters.

Variable names cannot begin with a digit. Variables are initialized to the null string.
Array subscripts can be any string; they do not have to be numeric. This allows for a form
of associative memory. String constants in expressions should be enclosed in double
quotation marks.

There are several variables with special meaning to awk. They include:

FS Input field separator (default is a blank). This separator character cannot
be a 2-byte extended character.

NF The number of fields in the current input line (record).

NR The number of the current input line (record).

FILENAME The name of the current input file.

OFS The output field separator (default is a blank). This separator character
cannot be a 2-byte extended character.

ORS The output record separator (default is a new-line character). This
separator character cannot be a 2-byte extended character.

OFMT The output format for numbers (default %.69).

Since the actions process fields, input white space is not preserved on the output.

The printf expression list formats like the printf subroutine (see AIX Operating System
Technical Reference). It writes arguments to standard output, separated by the output field
separator and terminated by the output record separator. You can redirect the output
using the print > file or printf> file statements.

Note: You must enclose the file name in double quotes when redirecting output with the
awk command.

You have two ways to designate a character other than white space to separate fields. You
can use the -Fc flag on the awk command line, or you can start progfile with:

BEGIN { FS = ¢ }
Either action changes the field separator to c.

There are several built-in functions that can be used in awk actions.

length [(arg)] Returns the length in characters of the whole line if there is
no argument or the length of its argument taken as a string.
blength [(arg)] Returns the length in bytes of the whole line if there is no
argument or the length of its argument taken as a string.
exp(n) Takes the exponential of its argument.

Commands 83

awk

84

log(n) Takes the base e logarithm of its argument.

sqrt(n) Takes the square root of its argument.

int(n) Takes the integer part of its argument.

substr(s,m,n) Returns the substring n characters long of s, beginning at
position m.

sprintf(fmt,expr,expr, . . .) Formats the expressions according to the printf format

string fmt and returns the resulting string.

Patterns

Patterns are arbitrary Boolean combinations of patterns and relational expressions (the !,

i1, and && operators and parentheses for grouping). You must start and end patterns with
slashes (/). You can use regular expressions like those allowed by the egrep command (see
“grep” on page 501), including the following special characters:

+ One or more occurrences of the pattern.
? Zero or one occurrences of the pattern.
i Either of two statements.
() Grouping of expressions.

Isolated patterns in a pattern apply to the entire line. Patterns can occur in relational
expressions. If two patterns are separated by a comma, the action is performed on all lines
between an occurrence of the first pattern and the next occurrence of the second.

Regular expressions can contain extended characters with one exception: range constructs
in character class specifications using square brackets cannot contain 2-byte extended
characters. Individual instances of extended characters can appear within square
brackets; however, 2-byte extended characters are treated as two separate 1-byte
characters.

Japanese Language Support Information

Regular expressions can contain kanji characters. In that case, range constructs in
character class specifications using square brackets can contain 2-byte kanji characters,
which are treated as 2-byte characters.

Regular expressions can also occur in relational expressions. There are two types of
relational expressions that you can use. One has the form:

expression matchop pattern

where matchop is either: ~ (for “contains”) or !~ (for “does not contain”). The second has
the form:

expression relop expression

awk

where relop is any of the six C relational operators: <, >, <=, >=, ==, and !=. A
conditional can be an arithmetic expression, a relational expression, or a Boolean
combination of these.

You can use the special patterns BEGIN and END to capture control before the first and
after the last input line is read, respectively. You can only use these patterns before the
first and after the last line in progfile.

There are no explicit conversions between numbers and strings. To force an expression to
be treated as a number, place a O at the beginning of the expression. However, note that
only ASCII digits are treated as numeric. To force a regular expression to be treated as a
string, append a null string ("").

Flags
-f progfile Searches for the patterns and performs the actions found in the file progfile.
-Fchar Uses char as the field separator character (by default a blank).
Examples

1. To display the lines of a file that are longer than 72 characters:
awk "Tength >72" chapterl

This selects each line of the file chapterl that is longer than 72 characters. awk
then writes these lines to standard output because no action is specified.

2. To display all lines between the words start and stop:
awk "/start/,/stop/" chapterl

3. To run an awk program (sumZ2.awk .) that processes a file (Chapterl):
awk -f sum2.awk chapterl

The following awk program computes the sum and average of the numbers in the
second column of the input file:

sum += $2

END {
print "Sum: ", sum;
print "Average:", sum/NR;

}

Commands 85

awk

The first action adds the value of the second field of each line to the variable sum.

awk initializes sum (and all variables) to zero before starting. The keyword END
before the second action causes awk to perform that action after all of the input file
has been read. The variable NR, which is used to calculate the average, is a special
variable containing the number of records (lines) that have been read.

4. To print the names of the users who have the C shell as the initial shell:

awk -F: '/csh/{print $1}' /etc/passwd
Related Information

The following commands: “lex” on page 562, “grep” on page 501, and “sed” on page 887.
The printf subroutine in AIX Operating System Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

The discussion of awk in AIX Operating System Programming Tools and Interfaces.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

86

back

back

Purpose

Plays backgammon.

Syntax

/usr/games/back —
01805186

Description

Files

The back game provides you with a partner for backgammon. You select one of three skill
levels: beginner, intermediate, or expert. You may also choose to roll your own dice
during your turns, and you are asked if you want to move first.

The points are numbered such that:

e (0 is the bar for removed white pieces.
e 1 is white’s extreme inner table.

e 24 is brown’s extreme inner table.

e 25 is the bar for removed brown pieces.

For details on how to make your moves, enter y when back asks Instructions at the
beginning of the game. When it first asks Move?, enter ? to see a list of choices other than
entering a numerical move.

When the game is finished, back asks you if you want to save game information. Ay
response stores game data in the file back.log in your current directory.

The back game plays only the forward game, even at the expert level. It will object if you
try to make too many moves in a turn, but not if you make too few. Doubling is not
implemented.

To quit the game, press INTERRUPT (Alt-Pause).

[usr/games/lib/backrules Rules file.
[tmp/b* Log temp file.
back.log Log file.

Commands 87

backup

backup

Purpose

Backs up files.

Syntax
COCD
- level —u>—< f//esystem—/
backup)
~fdevice ~=
-1 num —Qqdir -b
3 —N node
—Cnum
~ddensity P
-ssize e \
“r .
“n filesystem
0L805082
Description

88

The backup command copies files in backup format to a backup medium, such as a
magnetic tape or diskette.

There are three ways to back up data:

e To back up specified files (backup by name) -i
® To back up an entire file system (backup by file system or i-node) -level
e To back up an entire minidisk (backup by minidisk) -m

To back up by name, use the -i flag. The backup command reads standard input for the
names of the files to be backed up. You can specify files by using the find command to
generate a list of path names and pipe the list into the backup command.

backup

Backing up by name allows you to back up files to a backup medium on the local system or
on a remote system.

When you specify -Q, -Q and -N, or when you use the print -backup command, the
system writes a backup header to the backup medium. A header can contain the name of a
qualifying directory and a target directory that subsequent restore commands can use to
restore the files to the proper place. When a backup header is written if -Q is not
specified, the system writes the path of the backup process’s current directory to the
header; if -N is not specified, the system writes the id of the node that requested the
backup to the header.

To back up by file system (i-node), specify -level and filesystem to indicate the files you
want to back up. You can use the level to back up either all files on the system (a full
backup) or only the files that have been modified since a specific full backup (an
incremental backup). The possible levels are 0-9. If you do not supply a level, the default
level is 9. A level 0 backup includes all files on the file system. A level n backup includes
all files modified since the last level n-1 backup. The levels, in conjunction with the -u
flag, provide an easy way to maintain a hierarchy of incremental backups for each file
system. For a discussion of backup strategy and the use of incremental backups, see
Managing the AIX Operating System. '

If you specify the name of a filesystem, it can be either the physical device name (the block
or raw name) or the name of the directory on which the file system is normally mounted.
When you specify a directory, backup reads /etc/filesystems for the physical device
name. In this case, it also acquires values for other backup parameters from
/etc/filesystems. If you do not specify a file system, the default is the root file system on
the current minidisk.

To back up by minidisk, use the -m flag. This option copies an exact image of the entire
minidisk. You can specify the file system name of the minidisk. The default is the root
directory of the current minidisk. Because a backup by minidisk backs up an entire
minidisk as an exact image, a large minidisk with a small or sparsely used file system may
take longer and require more backup medium to back up this way, rather than by file
system or by name.

When you do not specify a backup device, the backup command writes files to a default
backup device. For backup by name, backup -i, the system writes to /dev/rfd0 unless you
specify a device with the -f flag. For a backup by file system (i-node), backup -level, or a
backup by minidisk, backup -m, if /etc/filesystems contains a stanza that matches the
name you specified and a stanza with a backupdev entry, then the system writes to the
device specified by backupdev. Otherwise, the system writes to /dev/rmt0 or the device
specified with the -f flag.

The backup command recognizes a special syntax for the names of output files. If the
argument is a range of names, such as /dev/rfd0-3, the backup command automatically
goes from one drive in the range to the next. After exhausting all of the specified drives, it
halts and requests that new volumes be mounted.

Commands 89

backup

Flags

90

Notes:

1. During execution of remote backup operations, the file system is unmounted. The file
system is remounted after the backup completes.

2. If you back up by either file system (i-node) or minidisk, the backup source and target
must be on the local system. To back up to a remote system, back up by name with the
-i flag. This flag allows users in a distributed services environment to back up files on
a remote file system.

3. You should use the -u flag when you do an incremental backup to ensure that
information regarding the last date, time, and level of each incremental backup is
written to the file /etc/budate.

4. If the file system you are backing up is mounted and is not the root file system,

backup unmounts the file system before it performs a file system (i-node) or minidisk
backup and then remounts the file system before quitting. If the file systems you are
backing up include the root file system, backup ensures that the other file systems are
not in use. If one is, it warns you of this use and quits.

Warning: Be sure that the flags you specify match the backup medium.
If the backup medium is not a disk or diskette, do not specify the -1 flag.
Similarly, if the backup medium is not a tape, do not specify the -d or -s
flags. If you do specify flags that do not go with the medium, backup
displays an appropriate error message and continues the backup.

-b

Enables users to back up files in unattended mode (user input is not permitted)
to a backup medium on a remote system. If any user input (such as Please
insert volume 2)is required, the command ends in an error. This enables
users to set up a shell file that backs up files at night or at other times when
the user is unavailable.

-Cnum Specifies the number of blocks to write in a single output operation. If you do

not specify num, backup uses a default value appropriate for the physical
device selected. Larger values of num result in longer physical transfers to
tape devices. The value of the -C flag is always ignored when backup writes to
diskette. In this case, it always writes in clusters that occupy a complete track.

-ddensity Specifies the amount of data a system can write to a tape medium in bytes per

inch. The default density is 700 bytes per inch.

Note: Tape drives vary in density capabilities. Use this flag with tape drives
other than the IBM 6157 Streaming Tape Drive which has a density of 700.

backup

-fdevice

-q

-Q qdir

-r

-slength

-u

-V

-level

Specifies the output device. Specify device as a file name (such as /dev/rmt0)
to send output to the named device or specify - (minus) to send output to the
standard output device. The - feature enables you to improve performance
when backing up to streaming tape by piping the output of the backup
command to the dd command (see example).

Reads standard input for the names of files to back up.

Uses num as the limit of the total number of block to use on a diskette. The
default value is the entire diskette (2400 blocks for 1.2M, 720 blocks for 360K
diskette, and 2700 for rmt0 6157).

Backs up the entire minidisk as an exact image.

Specifies the target node for subsequent restore commands. The node can be a
node nickname or a node id (nicknames are translated to ids by backup). The
backup command writes the id of node in the backup header. The default is
the node id of the node where the backup command is running.

Indicates that removable medium is ready to use. When you specify this flag,
backup proceeds without prompting you to prepare the backup medium or
waiting for you to press the Enter key to continue. Same as -r flag.

Specifies the qualifying directory for subsequent restore commands. The
backup command stores this name in the backup header. Then a subsequent
restore command can use this information to place files with path names that
are relative to a current directory in the qualifying directory. The qdir can be
a relative or absolute directory. The default is the backup process’s current
working directory.

Indicates that removable medium is ready to use. When you specify this flag,
backup proceeds without prompting you to prepare the backup medium or
waiting for you to press the Enter key to continue. Same as -q flag.

Specifies the length in feet of usable space on a tape medium. This is a
combination of the physical length and the number of tracks on the tape. In
the case of IBM RT Streaming Tape, you should multiply the physical length of
the tape by 9 (the number of tracks) to determine the usable space available.

Updates the time, date, and level of the backup in the /etc/budate file. This
file provides the information needed for incremental backups.

Reports on each phase of the backup as it is completed and gives regular
progress reports during the longest phase.

Specifies the backup level (0-9). The default level is 9.

Commands 91

backup

Examples

92

1.

To back up selected files:
find $HOME -print 1+ backup =-i -v

The -1 flag tells the system to read from standard input the names of files to be backed
up. The find command generates a list of files in the user’s $HOME directory. This list
is piped to the backup command as standard input. The -V displays a progress report

as each file is copied. The files are backed up on the default backup device for the
local system.

To back up an entire file system:
backup -0 -u /

The -0 level and the / file system tell the system to back up the entire root file system.
The file system is backed up to the default device defined in the backupdev entry in
[etc/filesystems if it exits. Otherwise, the files are backed up to /dev/rfd0. The -u
tells the system to update the current backup level record in /etc/budate. Only the
root file system is backed up, not mounted file systems.

To back up all files modified since the last level 0 backup:
backup -1 =-u /

To back up an entire minidisk:

backup -mf/dev/rmtl /xyz

This backs up the entire minidisk that contains the file system xyz. The -f tells the

system to back up the minidisk to the streaming tape on /dev/rmtl instead of the
default device.

To back up files by name to the remote default device and specify the qualifying
directory:

find filelist -print | backup -i -Q /tmp/darlene

The system backs up the files in filelist and writes the qualifying directory

/tmp/darlene to the header. Since a target node is not specified, the default node
(the node where the backup command is running) is written to the header.

To back up files to a remote device and specify both the target node and the qualifying
directory:

find . -print | backup -i -N darlene -Q /tmp/darlene

This command backs up the current directory (.). The node nickname darlene is
translated to a node id and written to the header with the qualifying directory

/tmp/darlene. Note that when -N is specified, the -Q flag must also be present.

backup

7. To improve performance on streaming tape, pipe the backup command to the dd
command:

backup -if- -C30 | dd of=/dev/rmt0 bs=30b

The backup command backs up by name (-1), directs the output to the standard
output device (f-), and specifies an output size as 30 blocks (-C30). The output is
piped to dd. The dd command copies the files to an output file which is a streaming
tape device (0f=/dev/rmt0) and specifies a file size of 30 blocks (bs=30b). The file
size in both commands should be the same. To restore these files, pipe the dd command

to restore.
Files
Jetc/filesystems Read for default parameters.
[etc/budate Log for most recent backup dates.
/dev/rfd0 Default backup device.
/dev/rhd0 Default file system.

Related Information
The following commands: “find” on page 422, “dd” on page 301, and “restore” on
page 826.

The budate and filesystems files and the tape special file in AIX Operating System
Technical Reference.

“Backing up Files and File Systems” in Managing the AIX Operating System.

Commands 93

banner

banner

Purpose

Writes character strings in large letters to standard output.

Syntax

OL805080

Description

The banner command writes character strings to standard output in large letters. Each
line in the output can be up to 10 uppercase or lowercase characters long. On output, all
characters appear in uppercase, with the lowercase input characters appearing smaller
than the uppercase input characters.

Examples

1. To display a banner at the work station:
banner SMILE!

2. To display more than one word on a line, enclose the text in quotation marks:
banner "Out to" Lunch

This displays Out to on one line, and Lunch on the next.

3. To print a banner:

banner We like Computers i print

Related Information

The following command: “echo” on page 369.

94

basename

basename, dirname

Purpose

Returns the base name of a string parameter.

Syntax

basename — string —

suffix
0OL805085

dirname — path —i
0OL805047

Description

The basename command reads the string specified on the command line, deletes any prefix
that ends with a / (slash), as well as any specified suffix, if it is present, and writes the
remaining base file name to standard output.

Note: A basename of / is null and is considered an error.

The dirname command writes to standard output all but the last part of the specified path
name (all but the part following the last /).

The basename and dirname commands are generally used inside command
substitutions within a shell procedure to specify an output file name that is some
variation of a specified input file name. For more information, see “Command
Substitution” on page 925.

Examples

1. To display the base name of a shell variable:
basename $WORKFILE

This displays the base name of the value assigned to the shell variable WORKFILE. If
WORKFILE is set to /u/jim/program.c, then program.c is displayed

Commands 95

basename

2. To construct a file name that is the same as another file name, except for its suffix:

OFILE='basename $1 .c'.o

This assigns to OFILE the value of the first positional parameter ($1), but with its .c
suffix changed to .0. If $1is /u/jim/program.c, then OFILE becomes program.o.

Because program.o is only a base file name, it identifies a file in the current
directory.

The * * (grave accents) perform command substitution.
To construct the name of a file located in the same directory as another:

AOUTFILE=‘dirname $TEXTFILE'/a.out

This sets the shell variable AOUTFILE to the name of an a.out file that is in the same
directory as TEXTFILE. If TEXTFILE is /u/fran/prog.c, then the value of dirname
$TEXTFILE is /u/fran and AOUTFILE becomes /u/fran/a.out.

Related Information

96

The following command: “sh” on page 913.

be

bc

Purpose

Provides an interpreter for arbitrary-precision arithmetic language.

Syntax
be ——<vone of
= file
-l
OL&805081
Description

The be command is an interactive process that provides unlimited precision arithmetic. It
is a preprocessor for the de command. bc invokes de automatically, unless the -¢ (compile
only) flag is specified. If the -c flag is specified, the output from bec goes to the standard
output.

The be command lets you specify an input and output base in decimal, octal, or
hexadecimal (the default is decimal). The command also has a scaling provision for
decimal point notation. The syntax for be is similar to that of the C language.

The bec command takes input first from the specified file. When be reaches the end of the
input file, it reads standard input.

The following description of syntax for be uses the following abbreviations: L means
letters a-z; E means expressions; S means statements.

Names

Simple variables: L

Array elements: L[E]

The words ibase, obase, and scale.
Comments are enclosed in /* and */.

Commands 97

bc

98

Other Operands

Arbitrarily long numbers with optional sign and decimal point.
(E)

sqrt (E)

length (E) number of significant decimal digits

scale (E) number of digits to the right of the decimal point
L(E, ... ,E)

Operators

+ -* [% * (% is remainder; " is power)
+ + -- (prefix and postfix; apply to names)

== K= e e s

= = 4+ =. =% = = A) —_—
Statements

E

{S;...;8}

if (E) S

while (E) S

for (E;E;E) S

(null statement)

break

quit

Function Definitions
define L(L, ... ,L){

autoL, . .. ,L
S;...8
return (E)

be

Functions in -1 Math Library

s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent
j(n,x) Bessel function

All function parameters are passed by value.

The value of a statement that is an expression is displayed unless the main operator is an
assignment. A semicolon or new-line character separates statements. Assignments to
scale controls the number of decimal places printed on output and maintained during
multiplication, division, and exponentiation. Assignments to ibase or obase set the input
and output number radix respectively.

The same letter may refer to an array, a function, and a simple variable simultaneously.
All variables are global to the program. “Auto” variables are pushed down during function
calls. When you use arrays as function parameters, or define them as automatic variables,
empty square brackets must follow the array name.

All for statements must have all three E’s.

The quit statement is interpreted when read, not when executed.

Flags
-¢ Compiles file, but does not invoke dc.
-1 Includes a library of math functions.
Examples
1. To use be as a calculator:
You: bcC
1/4
System: 0
You: scale = 1 /* Keep 1 decimal place */
1/4
System: 0.2
You: scale = 3 /* Keep 3 decimal places */
1/4

System: 0.250
You: 16+63/5
System: 28.600

Commands 99

bc

100

You: (16+63)/5
System: 15.800
You: 71 / 6
System: 11.833
You: 1/6
System: 0.166

You may type the comments (enclosed in /* */), but they are provided only for your
information. The be command displays the value of each expression when you press
the Enter key, except for assignments.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the bc session and return to the shell command line.

To convert numbers from one base to another:

You: bcC
obase
ibase
12

System: A

You: 123
System: 53

You: 123456
System: A72E

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the bc session and return to the shell command line.

16 /* Display numbers in Hexadecimal */
8 /* Input numbers in Octal L

1o

To write and run C-like programs:

You: bCc -1 prog.bc
e(2) /* e squared */
System: 7.38905609893065022723
You: T(5) /* 5 factorial */
System: 120
You: T(10) /* 10 factorial */
System: 3628800

be

Files

This interprets the be program saved in prog.bc, then reads more be statements from
the work station keyboard. Starting be with the -1 flag makes the math library
available. This example uses the e (exponential) function from the math library, and f
is defined in the program file prog.bc as:

/* compute the factorial of n */

define f(n) {
auto i, r;

E = 1
for (i=2; i<=n; i++) r =% i;
return (r);

The statement following a for or while statement must begin on the same line. When
you enter be expressions directly from the keyboard, press END OF FILE (Ctrl-D) to
end the bc session and return to the shell command line.

To convert an infix expression to reverse polish notation (RPN):

You: bC -cC
(a*bh) £ [3+ & *g)
System: lalb* 3 41c*+%ps.

This compiles the be infix-notation expression into one that the de command can
interpret. de evaluates extended RPN expressions. In the compiled output, the 1 (ell)
before each variable name is the de subcommand to load the value of the variable onto
the stack. The p displays the value on top of the stack, and the s. discards the top
value by storing it in register . (dot). You can save the RPN expression in a file for de
to evaluate later by redirecting the standard output of this command. For more details,
see “Redirection of Input and Output” on page 926. When you enter bec expressions
directly from the keyboard, press END OF FILE (Ctrl-D) to end the be session and
return to the shell command line.

Jusr/lib/lib.b Mathematical library.
Jusr/bin/dc Desk calculator proper.

Related Information

The following command: “de” on page 295.

Commands 101

bdiff
bdiff

Purpose

Uses diff to find differences in very large files.

Syntax
3500
bdiff ~—fHe7——-fHeZ——{<: ;:)y—<:__j>—4
num -8
0L805083
Description

The bdiff command compares filel and file2 and writes information about their differing
lines to standard output. If either file name is - (minus), bdiff reads standard input. The
bdiff command is used like diff to find lines that must be changed in two files to make
them identical (see “diff” on page 320). Its primary purpose is to permit processing of files
that are too large for diff.

The bdiff command ignores lines common to the beginning of both files, splits the
remainder of each file into num-line segments, and calls diff to compare the corresponding
segments. In some cases, the 3500 line default for num is too large for diff. If diff fails,
specify a smaller value for num and try again.

The output of bdiff has the same format as that of diff. bdiff adjusts line numbers to
account for the segmenting of the files. Note that because of the file segmenting, bdiff
does not necessarily find the smallest possible set of file differences.

Flag

-s Suppresses error messages from bdiff. (Note that the -s flag does not suppress error
messages from diff).

Example

To display the differences between chapl and chapl.bak:
bdiff chapl chapl.bak

102

bdiff

Files

[tmp/bd* Temporary files.

Related Information

The following command: “diff” on page 320.

Commands 103

bellmail

bellmail

Purpose
Sends messages to system users and displays messages from system users.
Syntax

~-f $HOME/mbox

—f file
bellmail

OL805347

bellmail ‘D"{ﬁj—‘
-t

Description

OL805034

The bellmail command with no flags writes to standard output, one message at a time, all
stored mail addressed to the your login name. Following each message, bellmail prompts
you with a ? (question mark). Press the Enter key to display the next mail message, or
enter one of the subcommands that control the disposition of the message (see
“Subcommands” on page 106).

When sending mail, you specify users, and then bellmail reads a message from standard
input until you press END OF FILE (Ctrl-D) or enter a line containing only a . (period).
It prefixes this message with the sender’s name and the date and time of the message (its
postmark) and adds this message to the file /usr/mail/user for each user specified on the
command line.

104

bellmail

Flags

The action of bellmail can be modified in two ways by manipulating /usr/mail/user:

o The default permission assignment for “others” is “read-only.” If you change this
permission assignment to “read/write” or to “all permissions denied,” the system
preserves the file, even when it is empty, in order to maintain the desired permissions.

® You can edit the file to contain as its first line:

Forward to person

This causes all messages sent to user to be sent to person instead. The Forward to
feature is especially useful for sending all of a person’s mail to a particular machine in
a network environment.

To specify a recipient on a remote system, prefix the system name and an exclamation
mark (!) to user. See “uucp” on page 1144 for a detailed discussion of how to address
remote systems.

-r
4

Does not display any messages. This flag causes bellmail to return an exit value
of 0 if the user has mail, an exit value of 1 if he has no mail.

Saves mail in the named file instead of in the default mailfile, SHOME/mbox.

Displays mail without prompting for a disposition code. This flag does not delete,
copy, or forward any messages. (For disposition codes, see “Subcommands” on
page 106).

Causes bellmail to exit when you press INTERRUPT (Alt-Pause). Normally,
pressing INTERRUPT (Alt-Pause) stops only the message being displayed. (In
this case, the next message sometimes does not display until you enter the p
subcommand.)

Displays mail in first-in, first-out order.

Prefixes each message with the names of all recipients of the mail. (Normally,
only the individual recipient’s name appears as addressee.)

Usually, user is a name recognized by the login command. It can also be the ASCII
synonym that is automatically defined for any name that contains NLS code points. If the
system does not recognize one or more of the specified users or if bellmail is interrupted
during input, bellmail saves messages in the file S HOME/dead.letter to allow for editing
and resending.

Commands 105

bellmail

Subcommands

The following subcommands control message disposition:

+ Displays the next mail message (the same as pressing the Enter key).

- Displays the previous message.

d Deletes the current message and displays the next message.

P Displays the current message again.

s [file] Saves the message in the named file instead of in the default mailfile,
$HOME/mbox.

w [file] Saves the message, without its postmark, in the specified file instead of in the

default mailfile $HOME/mbox.
m user Forwards the message to the named user.

q Writes any mail not yet deleted to /usr/mail/user and exits. Pressing END OF
FILE (Ctrl-D) has the same effect.
X Writes all mail unchanged to fusr/mail/user and exits.
1AIX-cmd Runs the specified AIX command.
& Displays a subcommand summary.
Examples

1. To display your mail:
bellmail

After the most recent message is displayed, a ? (question mark) indicates that bellmail
is waiting for one of the subcommands explained previously (+, -, d, p, etc.). Enter

help or * (asterisk) to list the subcommands available.
2. To send mail to other users:

bellmail tom rachel
Don't forget the
meeting tomorrow at 9:30.

Ctrl-D

In this example the system mails the message Don't forget the meeting
tomorrow at 9:30. to the users tom and rachel. The Ctrl-D indicates the end of
the message but it is not sent with the text.

106

bellmail

Files

3. To send a file to another user:

bellmail fran <proposal

This command sends the contents of the file proposal to fran. You can create memo
with an editor, which allows you to correct your mistakes before sending the message.
You can also use this form of the bellmail command to send someone a copy of a data
file.

To retrieve a file that was sent to you:
bellmail

This command displays the messages mailed to you one at a time. You need to look at
them because the file you want was actually added to /usr/mail/user as a message.
You may see several other messages before the file that was sent to you. If so, press
the Enter key after the ? prompt until the desired file appears. If you go too far, enter
the - (minus) subcommand to go back a message. After the ? immediately following
the file, enter:

w mycopy

This command creates a file named mycopy in the current directory that contains the
text mailed to you. Actually, you can save a copy of any message this way.

[ete/passwd To identify sender and locate user.
Jusr/mail/user Incoming mail for user.
$HOME/mbox Saved mail.

$HOME/dead.letter Unmailable text.

/tmp/ma* Temporary file.

Jusr/mail/*.lock Lock for mail directory.

Related Information

The following commands: “login” on page 584, “uucp” on page 1144, “sendmail” on
page 897, and “write” on page 1225.

Commands 107

bffcreate

bffcreate

Purpose

Creates files in backup format for complete or subset programs in a code service
environment.

Syntax

/dev/rfd0 /tmp
bffcreofe~< >———< Y >—< >4
—d infile —f outﬁ/c'e1 —-v —w directory

1 e i % g
See flag description for special requirements, restrictions, and defaults
AJ2FL137

Description

108

The bffcreate command creates one or more files in backup format to support install and
update by client systems in a code service environment. Input files must also be in backup
format. You must be a member of the system group or operating with superuser authority
to run this command. This command is also run when you specify the -b flag in either an
installp or updatep command.

This command creates one or more of the following:

e A file that contains the files from an installp distribution media

e One file per program subset that contains the program subset file from an installp
distribution media

e A file that contains the files from an updatep distribution media

e A file that contains the files that do not follow installp or updatep conventions.

When this command runs, the contents of the distribution media are restored in a
temporary working directory. Then a copy is created in backup format and put into either
the /usr/lpp.install or the /usr/lpp.update directory for use in a code service
environment. Program subset files are created automatically for any program subset on
the distribution media.

bffcreate

Flags

-d infile

-f outfile

-v

-w directory
Files

[usr/lpp.install

[usr/lpp.update

Related Informa

Specifies the name of the distribution media. If given, it must already exist.
The default is /dev/rfd0.

Specifies the name of the backup format file. This flag is required for
non-standard distribution media and installp distribution media that
contain multiple program names. This flag is not allowed for distribution
media that contain only one program name; in this case, the system names
the output file in the form programname.vv.rr where programname is the
name of the program, vv is the version, and rr is the release. This flag is
optional for updatep distribution media. If not specified, the system
creates a name in the form updt.yyddd.nnn where yyddd is the Julian date
(for example, 88032 is February 1, 1988) and nnn represents a number in
sequence for files created that day.

Writes the name of the backup format file to standard output (verbose
mode).

Specifies the directory where a temporary working directory can be created
to contain the restored files. The default is /tmp. If specified, the directory
must already exist.

Directory that contains files in backup format for use in installing
complete or subset programs across a network.
Directory that contains files in backup format for use in updating
complete or subset programs across a network.

tion

The following commands: “installp” on page 529 and “updatep” on page 1122.

Commands 109

bfs
bfs

Purpose

Scans files.

Syntax

bfs—D— file—

Description

OL805084

The bfs command reads a file but does not do any processing of it, allowing you to scan but
not edit it.

The bfs command is basically a read-only version of the ed command, except it can process
much larger files and it has some additional subcommands. Input files can be up to 32K
lines long, with up to 255 characters per line. bfs is usually more efficient than ed for
scanning a file, because the file is not copied to a buffer. It is most useful for identifying
sections of a large file where you can use the esplit command to divide it into more
manageable pieces for editing.

If you enter the P subcommand, bfs prompts you with an * (asterisk). You can turn off
prompting by entering a second P. bfs displays error messages when prompting is turned
on.

Forward and Backward Searches

The bfs command supports all the address expressions described under “ed” on page 371.
In addition, you can instruct bfs to search forward or backward through the file, with or
without wrap-around. If you specify a forward search with wrap-around, bfs continues
searching from the beginning of the file after it reaches the end of the file. If you specify a
backward search with wrap-around, it continues searching backwards from the end of the
file after it reaches the beginning. The symbols for specifying the four types of search are

as follows:
/pattern/ Searches forward with wrap-around for the pattern.
pattern? Searches backward with wrap-around for the pattern.

>pattern> Searches forward without wrap-around for the pattern.

<pattern< Searches backward without wrap-around for the pattern.

110

bfs

The pattern matching routine of bfs differs somewhat from the one used by ed and
includes additional features (see the regemp subroutine in AIX Operating System
Technical Reference). There is also a slight difference in mark names: only lowercase
letters a through z may be used, and all 26 marks are remembered.

Flags
- Suppresses the display of file sizes. Normally, bfs displays the size in bytes of the file
being scanned.
Subcommands
Thee, g, v, k, n, p,q, w, =, ! and null subcommands operate as explained under “ed” on

page 371. Subcommands such as --, + + +-, ++ + =, -12, and +4p are accepted. Note that
1,10p and 1,10 both display the first ten lines. The f subcommand displays only the name
of the file being scanned; there are no remembered file names. The w subcommand is
independent of output diversion, truncation, or compression (see the xo, xt, and xc
subcommands on page 111). Compressed output has strings of tabs and blanks reduced to
one blank and blank lines suppressed.

The following additional subcommands are available:

xf file Reads bfs subcommands from the file. When bfs reaches the end of file
or receives an INTERRUPT signal or if an error occurs, bfs resumes
scanning the file that contains the xf subcommand. These xf
subcommands may be nested to a depth of 10.

x0 [file] Sends further output from the p and null subcommands to the named
file, which is created with read and write permission granted to all
users. If you do not specify a file parameter, bfs writes to standard
output. Note that each redirection to a file creates the specified file,
deleting an existing file if necessary.

:label Positions a label in a subcommand file. The label is ended with a
new-line character. Blanks between the : (colon) and the start of the
label are ignored. This subcommand may be used to insert comments
into a subcommand file, since labels need not be referenced.

[addri[,addr2]]xb/pattern/label
Sets the current line to the line containing pattern and jumps to label in
the current command file if pattern is matched within the designated
range of lines. The jump fails under any of the following conditions:

e Either addrl or addr?2 is not between the first and last lines of the
file.

® addr2is less than addrl.

o The pattern does not match at least one line in the specified range,
including the first and last lines.

Commands 111

bfs

112

xt number

xv[digit] [value]

This subcommand is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are bad
before other subcommands are run. Note that the subcommand:

xb/~/1abel
is an unconditional jump.

The xb subcommand is allowed only if it is read from some place other
than a work station. If it is read from a pipe, only a downward jump
is possible.

Truncates output from the p and null subcommands to number
characters. The default number is 255.

Assigns the specified value to the variable named digit (0 through 9).
You can put one or more spaces between digit and value. For example:

xv5 100
xve 1,100p

assigns the value 100 to the variable 5 and the value 1,100p to the
variable 6.

To reference a variable, put a % (percent sign) in front of the variable
name. Given the preceding assignments for variables 5 and 6, the
following three subcommands:

1,%5p
1,%5
%6

each display the first 100 lines of a file.

To escape the special meaning of %, precede it with a \ (backslash). For
example:

g/".*\%[cds]/p
matches and lists lines containing printf variables (%c, %d, or %s).

You can also use the xv subcommand to assign the first line of
command output as the value of a variable. To do this, make the first
character of value an ! (exclamation point), followed by the command
name. For example:

xvh lcat junk

stores the first line of the file junk in the variable 5.

bfs

To escape the special meaning of ! as the first character of value,
precede it with a \ (backslash). For example:

xv/ \!date

stores the value !date in the variable 7.

xbz label Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is zero.

xbn label Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is not zero.

xc [switch] Turns compressed output mode on or off. (Compressed output mode
suppresses blank lines and replaces multiple blanks and tabs with a
single space.)

If switch is 1, output from the p and null subcommands is compressed; if
switch is 0 it is not. If you do not specify switch, the current value of
switch reverses. Initially, switch is set to 0.

Related Information

The following commands: “csplit” on page 252 and “ed” on page 371.

The regemp subroutine in AIX Operating System Technical Reference.

Commands 113

biod
biod

Purpose
Starts NFS asynchronous block I/O daemons.
Syntax

biod____nservers_
0L805479

Description

The biod command starts asynchronous block I/O daemons. This command is used on an
NFS client to handle read-ahead and write-behind buffer cache. The nservers parameter
specifies the number of asynchronous block I/O daemons started. Assign the number based
on the load expected on the server. Four daemons can handle an average load.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

File
[ete/re.nfs

Related Information

The following command: “nfsd” on page 696.

114

biodd_cfg

biodd_cfg

Purpose

Configures the block I/O AIX device driver.

Syntax

biodd_cfg —
AJ2FL143

Description

Files

The biodd_cfg command configures the block I/O kernel device driver so it can access
specific adapter cards. The adapter cards which can be accessed by the block I/O kernel
device driver are adapters whose VRM device drivers are written to interface with the
VRM block I/O device manager. These include the token adapter, the baseband adapter,
and multiprotocol/dual port (MPDP) adapter.

Before you run this command, you must edit the /etc/biodd file to add the device names
for the adapter cards you want to access. After the file has been edited, run the biodd_cfg
command. This command must be run again after each IPL of the system for the block I/O
kernel device driver to be configured to run with the devices listed in the file. To run this
command automatically at each IPL, edit the /ete/rc.include file to uncomment the line:

/etc/biodd-cfg

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

/ete/biodd Contains the device names of the adapters to be accessed
by the block I/O kernel device driver.
[ete/re.include Contains startup routines.

Commands 115

biodd-cfg

Related Information

The discussion of the block I/O kernel device driver in AIX Operating System Technical
Reference.

116

Purpose

Plays blackjack.

Syntax

/usr/games/bj —
01805187

Description

The bj game plays the role of the dealer in blackjack. The following rules apply.

The bet is $2 every hand. If you draw a natural (blackjack), you win $3. If the dealer
draws a natural, you lose $2. If you and the dealer both have naturals, you exchange no
money (a push). If the dealer has an ace showing, you can make an insurance bet on the
chance that the dealer has a natural, winning $2 if the dealer has a natural and lose $1 if
not. If you are dealt two cards of the same value, you can double, that is, play two hands,
each of which begins with one of these cards, betting $2 on each hand. If the value of your
original hand is 10 or 11, you can double down, that is, double the bet to $4 and receive
exactly one more card in that hand.

Under normal play, you can draw a card (hit) as long as your cards total 21 or less. If the
cards total more than 21, you bust and the dealer wins the bet. When you stand (decide
not to hit), the dealer hits until he has a total of 17 or more. If the dealer busts, you win.
If both you and the dealer stand, the one with the higher total wins. A tie is a push.

The bj command deals, keeps score, and asks the following questions at appropriate times:
? (Do you want a hit?) Insurance? Double? Double down?. To answer yes, press Y;
to answer no, press the Enter key.

The dealer tells you whenever the deck is being shuffled and displays the action (total bet)
and standing (total won or lost). To quit the game, press INTERRUPT (Alt-Pause); bj
displays the final action and standing and exits.

Commands 117

bs
bs

Purpose

Compiles and interprets modest-sized programs.

Syntax

bs —<
file

flag
OL805167

Description

This compiler/interpreter provides interactive program development and debugging. To
simplify program testing, it minimizes formal data declaration and file manipulation,
allows line-at-a-time debugging, and provides trace and dump facilities and run-time error
messages.

The optional command line parameter file specifies a file of program statements that the
compiler reads before it reads from the standard input. By default, statements read from
this file are compiled for later execution. Likewise, statements entered from the standard
input are normally executed immediately (see the compile keyword on page 119 and the
execute keyword on page 119). Unless the final operation is assignment, the result of an
immediate expression statement is displayed.

Additional command line flags can be passed to the program using the built-in functions
arg and narg (explained in more detail on page 123).

Program lines must conform to one of the following formats:

statement
label statement

The interpreter accepts labeled statements only when it is compiling statements. A label is
a name immediately followed by a colon. A label and a variable can have the sams name.
If the last character of a line is a \ (backslash), the statement continues on the following
physical line.

A statement consists of either an expression or a keyword followed by zero or more
expressions.

118

bs

Statement Syntax

break

clear

compile [expr]

continue

dump [name]

exit [expr]

execute

Exits the innermost for or while loop.

Clears the symbol table and removes compiled statements from memory.
A clear is always executed immediately.

Causes succeeding statements to be compiled (overrides the immediate
execution default). The optional expression is evaluated and used as a
file name for further input. In this latter case, the symbol table and
memory are cleared first. compile is always executed immediately.

Transfers control to the loop-continuation test of the current for or
while loop.

Displays the name and current value of every global variable or,
optionally, of the named variable. After an error or interrupt, dump
displays the number of the last statement and (possibly) the user-function
trace.

Returns to the system level. The expression is returned as process
status.

Changes to immediate execution mode (pressing INTERRUPT
[Alt-Pause] has the same effect). This statement does not cause stored
statements to execute (see run on page 121).

for name=expr expr statement

for name=expr expr

statement . . .

next

for expr, expr, expr statement

for expr, expr, expr

statement . . .

next

fun f ([a, . .

nuf

Repeatedly performs, under the control of a named variable, a statement
(first format) or a group of statements (second format). The variable
takes on the value of the first expression, then is increased by one on
each loop until it exceeds the value of the second expression. The third
and fourth formats require three expressions separated by commas. The
first of these is the initialization, the second is the test (true to
continue), and the third is the loop-continuation action.

Db,]

statement . . .

Defines the function name (f), parameters (a), and local variables (v) for a
user-written function. Up to 10 parameters and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

Commands 119

bs

120

freturn

goto name

ibase n

if expr statement

if expr
statement . . .
[else
statement . . .
fi

include expr

obase n

onintr label
onintr

return [expr]

Signals the failure of a user-written function. Without interrogation,
freturn returns zero. (See the unary interrogation operator ? discussed
on page 122.) With interrogation, freturn transfers to the interrogated
expression, possibly bypassing intermediate function returns.

Passes control to the compiled statement with the matching label.

Sets the input base to n. The only supported values for n are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (for example, fOa must be entered
as 0f0a). ibase is always executed immediately.

Performs a statement (first format) or group of statements (second
format) if the expression evaluates to nonzero. The strings 0 and ””
(null) evaluate as zero. In the second format, an optional else allows a
group of statements to be performed when the first group is not. The
only statement permitted on the same line with an else is an if; only
other fis can be on the same line with a fi. You can combine else and if
into elif. Only a single fi is required to close an

if .. . elif . . . [else . . .] sequence.

The expression must evaluate to the name of a file containing program
statements. Such statements become part of the program being compiled.
include statements may not be nested, and are always executed
immediately.

Sets the output base to n. The only supported values for n are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (that is, f0a must be entered as
0f0a). Like ibase, obase is always executed immediately.

Provides program control of interrupts. In the first format, control
passes to the label given, just as if a goto had been performed when
onintr was executed. The effect of the onintr statement is cleared after
each interrupt. In the second format, pressing INTERRUPT
(Alt-Pause) ends bs.

Evaluates the expression and passes the result back as the value of a
function call. If you do not provide an expression, the function returns
zero.

bs

run

stop

trace [expr]

Passes control to the first compiled statement. The random number
generator is reset. If a file contains a run statement, it should be the
last statement; run is always executed immediately.

Stops execution of compiled statements and returns to immediate mode.

Controls function tracing. If you do not provide an expression or if it
evaluates to zero, tracing is turned off. Otherwise, a record of
user-function calls/returns will be written. Each return decreases by
one the trace expression value.

while expr statement

while expr

statement . . .

next

! AIXcemd

#comment

while is similar to for except that only the conditional expression for
loop continuation is given.

Runs an AIX command, then returns control to bs.

Inserts a comment line.

Expression Syntax

name

Specifies a variable or, when followed immediately by a colon, a label.
Names are composed of a letter (uppercase or lowercase) optionally
followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared locally in fun statements, all
names are global. Names can take on numeric (double float) values or
string values or be associated with input/output (see the built-in function
open on page 125).

name([expr|, expr] . .

Calls function name and passes to it the parameters in parentheses.
Except for built-in functions (listed in the following text), name must be
defined in a fun statement. Function parameters are passed by value.

namelexpr|, expr] . . .]

number

References either arrays or tables (see built-in function table on page
126). For arrays, each expression is truncated to an integer and used as
a specifier for the name. The resulting array reference is syntactically
identical to a name; a[1,2] is the same as a[1] [2]. The truncated
expressions must be values between 0 and 32767.

Represents a constant numerical value. This number can be expressed in
integer, decimal, or scientific notation (it can contain digits, an optional
decimal point, and an optional e followed by a possibly sighed exponent).

Commands 121

bs

122

string Character string delimited by ” ” (double quotation marks). The \
(backslash) is an escape character that allows the double quotation mark
(\"”), new-line character (\n), carriage return (\r), backspace (\b), and tab
(\t) characters to appear in a string. When not immediately followed by
these special characters, \ stands for itself.

(expr) Parentheses alter the normal order of evaluation.

(expr, expr[, expr] . . .) [expr]

expr op expr

The bracketed expression outside the parentheses functions as a
subscript to the list of expressions within the parentheses. List elements
are numbered from the left, starting at zero. The expression:

(False, True) [a == b]
has the value True if the comparison is true.

Except for the assignment, concatenation, and relational operators, both
operands are converted to numeric form before the operator is applied.

Unary Operators

expr

-expr
+ +name
--name

lexpr

The interrogation operator (?) tests for the success of the expression
rather than its value. It is useful for testing end of file, for testing the
result of the eval built-in function, and for checking the return from
user-written functions (see freturn on page 120). An interrogation trap
(end of file, for example), causes an immediate transfer to the most
recent interrogation, possibly skipping assignment statements or
intervening function levels.

Negates the expression.
Increases by one the value of the variable (or array reference).
Decreases by one the value of the variable.

The logical negation of the expression.

Binary Operators (in increasing precedence)

The assignment operator. The left operand must be a name or an array
element. It acquires the value of the right operand. Assignment binds
right to left; all other operators bind left to right.

The concatenation operator (the underline character).
Logical AND, logical OR. The result of:
expr & expr

is 1 (true) only if both of its parameters are nonzero (true); it is 0 (false)
if one or both of its parameters are 0 (false).

bs

< <= > >=
+ -
* | o

A

The result of:
expr | expr

is 1 (true) if one or both of its expressions are nonzero (true); it is 0
(false) only if both of its expressions are 0 (false). Both operators treat a
null string as a zero.

= f

The relational operators (< less than, . < = less than or equal to, >
greater than, > = greater than or equal to, = = equal to, ! = not equal
to) return 1 if the specified relation is True. They return 0 (false)
otherwise. Relational operators at the same level extend as follows:
a>b>c is the same as a>b & b>c. A string comparison is made if both
operands are strings. The comparison is based on the collating sequence
specified in the environment variable NLCTAB.

Addition and subtraction.
Multiplication, division, and remainder.

Exponentiation.

Functions Dealing With Arguments

arg(i)

narg()

Returns the value of the i-th actual argument at the current function
call level. At level zero, arg returns the i-th command-line argument.

For example, arg(0) returns bs.

Returns the number of arguments passed. At level zero, it returns the
command line argument count.

Mathematical Functions

abs(x)
atan(x)
ceil(x)
cos(x)
exp(x)
floor(x)
log(x)
rand()
sin(x)

sqrt(x)

Returns the absolute value of x.

Returns the arctangent of x.

Returns the smallest integer not less than x.

Returns the cosine of x.

Returns e raised to the power x.

Returns the largest integer not greater than x.

Returns the natural logarithm of x.

Returns a uniformly distributed random number between zero and one.
Returns the sine of x.

Returns the square root of x.

Commands 123

bs

124

String Functions

size(s)
bsize(s)
format(f, a)

index(x, y)

trans(s, f, t)

Returns the size (length in characters) of s.
Returns the size (length in bytes) of s.

Returns the formatted value of a, f being a format specification string in
the style of the printf subroutine. Use only the %...f, %...e, and %...s
formats.

Returns a number that is the first position in x containing a character
that any of the characters in y matches. If there is no match, index
yields zero. For 2-byte extended characters, the index functions returns
the location of the first byte.

Translates characters in the source string s which match characters in f
into characters having the same position in . Source characters that do
not appear in f are copied unchanged into the translated string. If string
f is longer than ¢, source characters that match characters found in the
excess portion of f do not appear in the translated string.

substr(s, start, length)

Returns the substring of s defined by starting position in characters and
length in characters.

match(siring, pattern)

mstring(n)

This function returns the number of characters in string that match

pattern. The characters ., *, ? [,], * (when inside square brackets), \(
and \) have the following special meanings (see “ed” on page 371 for a
more detailed discussion of this special notation):

Matches any character except the new-line character.

Matches zero or more occurrences of the pattern element that

it follows (for example, .* matches zero or more occurrences of
any character except the new-line character).

$ Specifies the end of the line.
[
[

.] Matches any one character in the specified range ([-.]) or list
([...],including the first and last characters.

[* . ..] Matches any character except the new-line character and the
remaining characters in the range or list. A circumflex (") has
this special meaning only when it immediately follows the left
bracket.

bs

[~]

[1...] Matches] or any character in the list. The right square
bracket does not terminate such a list when it is the first
character within it (after an initial *, if any).

\(. .. \) Marks a substring and matches it exactly.

To succeed, a pattern must match from the beginning of the string. It
also matches the longest possible string. Consider, for example:

match('al23ab123',".*\([a-2z]\)") == 6

In this instance, .* matches al23a (the longest string that precedes a
character in the range a-z); \([a-z]\) matches b, giving a total of six
characters matched in the string. In an expression such as [a-z], the
minus means “through,” according to the current collating sequence.

A collating sequence may define equivalence classes for use in
character ranges. See the “Overview of International Character
Support” in Managing the AIX Operating System for more information
on collating sequences and equivalence classes.

Japanese Language Support Information

Note: Japanese Language Support does not define equivalence classes
for use in character ranges. To avoid unpredictable results when using a
range expression, use a character class expression rather than a
standard range expression. For information about character class
expressions, see “File Name Substitution” on page 4.

The mstring function returns the nth substring in the last call to
match (n must be between 1 and 10 inclusive).

File-Handling Functions

open(name, file, mode)

close(name)

The name parameter must be a legal variable name (passed as a string).
For open, the file parameter may be:

e A0, 1, or 2 for standard input, output, or error output, respectively
® A string representing a file name
® A string beginning with an !, representing a command to be run (via

sh -c).

The mode flag must be either r (read), w (write), W (write without
new-line character), or a (append). After a close, the name becomes an
ordinary variable. The initial associations are:

Commands 125

bs

126

access(p, m)

ftype(s)

Open(”get“, O, ol
Open(”put”, 1’ uwn
open("puterr", 2, "w")

Performs the access system call. Parameter p is the path name of a file;
m is a bit pattern representing the requested mode of access. This
function returns a 0 if the request is permitted, -1 if it is denied. (See
AIX Operating System Technical Reference for a more extensive
discussion of this system call.)

Returns a single character indicating file type: f for regular file, p for
FIFO (named pipe), d for directory, b for block special, or ¢ for character
special.

Table Functions

table(name, size) A table in bs is an associatively accessed, one-dimensional array.

item(name, 1)
key()

Subscripts (called keys) are strings (numbers are converted). The name
parameter must be a bs variable name (passed as a string). The size
parameter sets the minimum number of elements to be allocated. On
table overflow, bs writes an error message.

The item function accesses table elements sequentially (in normal use,
there is an orderly progression of key values). Where the item function
accesses values, the key function accesses the subscript of the previous
item call. The name parameter should not be quoted. Since exact table
sizes are not defined, the interrogation operator should be used to detect
end-of-table; for example:

table("t",100)

#1f word contains "party”, the following expression
#adds one to the count of that word:
++t [word]

To display the key/value pairs:
for i=0, ?(s=item(t, i)), ++i if key() put=key()-":"-s

iskey(name, word)

Tests whether the key word exists in the table name and returns one for
true, zero for false.

bs

Miscellaneous Functions

eval(string)

The string parameter is evaluated as an expression. The function is
handy for converting numeric strings to numbers. eval can also be used
as a crude form of indirection, as in:

name = '"xyz"
eval ("++"_name)

which increments the variable Xyz.

In addition, eval preceded by the interrogation operator permits you to
control bs error conditions. For example:

?eva-] (”open(\”X\”,\”XXX\", \”Y‘\”) ||)

returns the value zero if there is no file named "XXX" (instead of halting
your program). The following performs a goto to the label L: (if it
exists):

label="L:"
if!l(?eval("goto"_label))puterr="no label"

plot(request, args)

The plot function produces output on devices recognized by the tplot
command. Some requests do not apply to all plotters. All requests
except 0 and 12 are implemented by piping characters to tplot. The
requests are as follows:

Call Function

plot(0, term) Causes further plot output to be piped into
tplot with a flag of -Tterm.

plot(1) Erases the plotter.

plot (2, string) Labels the current point with string.

plot3, xI1, y1, x2, y2) Draws the line between (x1, y1) and (x2, y2).

plot(4, x, vy, 1) Draws a circle with center (x, y) and radius
r.

plot(5, xI, y1, x2, y2, x3, y3)
Draws an arc (counterclockwise) with center
(x1, y1) and endpoints (x2, y2) and (x3, y3).

plot(6) Not implemented.

plot(7, x, y) Makes the current point at (x, y).

plot(8, xy) Draws a line from the current point to (x, y).
plot(9, x, y) Draws a point at (x, y).

Commands 127

bs

plot(10, string) Sets the line mode to string.

plot(11, xI, yI, x2, y2) Makes (x1, yl) the lower left corner of the
plotting area and (x2, y2) the upper right
corner of the plotting area.

plot(12, xI, yl, x2, y2) Causes subsequent x (y) coordinates to be
multiplied by x1 (y1) and then added to x2
(y2) before they are plotted. The initial
scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

last() In immediate mode, last returns the most recently computed value.

Related Information

The following commands: “ed” on page 371, “sh” on page 913, and “tplot” on page 1079.

The access system call, the printf subroutine, and the plot file in AIX Operating System
Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

128

burst

burst

Purpose

Explodes digests into messages.

Syntax
cur
burst all
+folder sequence
3 < one of
e one of
first 1| tnum —prev
prev +num —cur
cur —num -
, —num —next
next —first —last
last
AJ2FL220
-noinplace -noquiet -noverbose
>—< one of —>~~<- one of >—< one of t>_4
—inplace —quiet —verbose
—noinpiace —noquiet —noverbose
burst—— —help—
AJ2FL160
' Do not put a blank between these items.
0L805308

Description
The burst command is used to explode digests, messages forwarded by the forw command,

and blind carbon copies sent by the forw and send commands. burst is part of the MH
(Message Handling) package and can be used with other MH and AIX commands.

Commands 129

burst

Flags

130

The burst command cannot explode more than about 1,000 messages from a single
message. burst, however, generally does not place a specific limit on the number of
messages in a folder after bursting is complete.

The burst command uses encapsulation boundaries to determine where to separate the
encapsulated messages. If an encapsulation boundary is located within a message, burst
may split that message into two or more messages.

+folder msgs Specifies the messages that you want to burst. msgs can be several
messages, a range of messages, or a single message. You can use the
following message references when specifying msgs:

num first prev
cur . next
last all sequence

The default message is the current message in the current folder. If
-inplace is also specified, the first message burst becomes the current
message. Otherwise, the first message extracted from the first digest
becomes the current message.

-help Displays help information for the command.

-inplace Replaces each digest by a table of contents for the digest, places the
messages contained in each digest directly after the digest’s table of
contents, and renumbers all subsequent messages in the folder to make room
for the messages in the exploded digest.

Warning: The burst command does not place text that
appears after the last encapsulated message in a separate
message. When you specify the -inplace flag, burst loses this
trailing text. In digests, this text is usually an End-of-Digest
string. However, if the sender appended remarks after the last
encapsulated message, burst loses these remarks.

-noinplace Preserves each digest, does not produce a table of contents for each digest,
and places the messages contained in each digest at the end of the folder.
burst does not affect messages that are not part of digests. This flag is the
default.

-noquiet Reports information about messages that are not in digest format. This flag
is the default.

burst

-noverbose Does not report the general actions that burst performs while exploding the
digests. This flag is the default.

-quiet Does not report information about messages that are not in digest format.

-verbose Reports the general actions that burst performs while exploding the digests.

Profile Entries

Current-Folder: Sets your default current folder.
Msg-Protect: Sets the protection level for your new message files.
Path: Specifies your user—_mh_directory.

Files
$HOME/.mh_profile The MH user profile.

Related Information

Other MH commands: “forw” on page 438, “inc” on page 518, “msh” on page 677,
“packf” on page 733, “send” on page 893, “show” on page 942.
The mh-profile file in AIX Operating System Technical Reference.

The “Overview of the Message Handling Package” in Managing the AIX Operating System.

Commands 131

cal

cal
Purpose
Displays a calendar.
Syntax
cal ﬂ year —
month
OL805168
Description
The cal command writes to standard output a calendar for the specified year or month.
The month parameter names the month for which you want the calendar. It can be a
number between 1 and 12 for January through December, respectively.
The year parameter names the year for which you want the calendar. Since cal can
display a calendar for any year from 1 to 9999, enter the full year rather than just the last
two digits.
Japanese Language Support Information
The name of the month is taken from the appropriate NLLMONTH string. The first two
bytes of the NLSDAY environment variable string are used as the abbreviation of the day
of the week.
Examples

1. To display a calendar for February 1984 at your work station:
cal 2 1984

2. To print a calendar for 1984:
cal 1984 i print

3. To display a calendar for the year 84 A.D.:
cal 84

132

cal

Related Information

The “Overview of International Character Support” in Managing the AIX Operating
System.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

Commands 133

calendar

calendar

Purpose

Writes reminder messages to standard output.

Syntax

calendar ‘D—

OL805169

Description

Flag

134

The calendar command reads a file named calendar, which you create in your current
(usually home) directory. It writes to standard output any line in the file that contains
today’s or tomorrow’s date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also
recognizes the special character * (asterisk). It interprets */7, for example, as signifying
the seventh day of every month. calendar does not recognize formats such as 7

December, 7/12, or DEC. 7.

On Fridays, calendar writes all lines containing the dates for Friday, Saturday, Sunday,
and Monday. It does not, however, recognize holidays, so "tomorrow" is the holiday
rather than the next working day.

For you to get reminder service, your calendar should have read permission for others (see
“chmod” on page 160).

- Calls calendar for everyone having a file calendar in his home directory and sends
any reminders by mail.

calendar

Example

To display information in the calendar file that pertains to the next two business days:

calendar

Commands 135

calendar

A typical calendar file might look like this:

*/25 - Prepare monthly report

Aug. 12 - Fly to Denver

aug 23 - board meeting

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

August 28 - Meet with Wilson

If today is Friday, August 24, then the calendar command displays:

*/25 - Prepare monthly report

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

Files
$HOME/calendar
Jusr/lib/calprog The program that determines dates.
[ete/passwd Used to identify users.
[tmp/cal* Temporary files.

Related Information

The following commands: “chmod” on page 160 and “mail, Mail” on page 608.

136

cat

cat
Purpose
Concatenates or displays files.
Syntax
cat
s file
=9
0OL805086
Description
The cat command reads each file in sequence and writes it to standard output. If you do
not specify file or specify - (minus) instead of a file, cat reads from standard input.
Warning: Do not redirect output to one of the input files using the >
redirection symbol. If you do this, you will lose the original data in the
input file because the shell truncates it before cat can read it (see “sh” on
page 913).
Flags
-s Does not display a message if cat cannot find an input file.
-u Does not buffer output.
Examples

1. To display a file at the work station:

cat notes

This displays the data in the file notes. If the file is more than about 23 lines long,
some of it will scroll off the screen. To list a file one page at a time, use the pg
command. (See “pg” on page 744 for details.)

Commands 137

cat

To concatenate several files:
cat sectionl.l sectionl.2 sectionl.3 >sectionl

This creates a file named sectionl that is a copy of sectionl.1 followed by
sectionl.?2 and sectionl.3.

To suppress error messages about files that do not exist:
cat -s section2.1 section2.2 section2.3 >section?2

If section?.1 does not exist, this concatenates section?2.2 and section?2.3. The
result is the same if you do not use the -s, except that cat displays the error message:

cat: cannot open section2.l

You may want to suppress this message with the -s flag when you use the cat
command in shell procedures.

To append one file to the end of another:
cat sectionl.4 >>sectionl

This appends a copy of sectionl.4 to the end of sectionl. The >> appends data to

the end of sectionl. If you want to replace the file, use the >. For more details, see
“Redirection of Input and Output” on page 926.

To add text to the end of a file:

cat >>notes
Get milk on the way home
Ctrl-D

Get milk on the way home is added to the end of notes. The cat command does
not prompt; it waits for you to enter text. Press Ctrl-D to indicate you are finished.

To concatenate several files with text entered from the keyboard:

cat section3.1 - section3.3 >section3

This concatenates section3. 1, text from the keyboard, and section3.3.
To concatenate several files with output from another command:

1i | cat sectiond.l - D>sectiond

This copies sectiond. 1, and then the output of the l1i command to the file section4.

Related Information

138

The following commands: “cp” on page 202, “pr” on page 761, and “sh” on page 913.

cb

cb

Purpose

Puts C source code into a form that is easily read.

Syntax

cb ~<' >——<_ one of
=S -1 length file

Description

OL805170

The c¢b command reads C programs from standard input or from specified files and writes
them to standard output in a form that shows, through indentations and spacing, the
structure of the code. When called without flags, cb does not split or join lines. Note that
punctuation in preprocessor statements can cause indentation errors.

Flags
-j Joins lines that are split.
-1 length Splits lines that are longer than length.
-s Formats the source code according to the style of Kernighan and Ritchie in
The C Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.).
Example

To create a version of pgm.c called pgm.pretty.c that is easy to read:
cb pgm.c > pgm.pretty.c

Related Information

The following command: “cc” on page 140.

The discussion of ¢b in AIX Operating System Programming Tools and Interfaces.

Commands 139

cc

CcC

Purpose

Compiles C programs.

Syntax

Ordinary Operation

-o0a.out

a.out

one of
=B =P
-E —S

>_< 5 one of —Dname
S p
Y z

—Dname =def

' Use any flag belonging to as, cpp, or Id(except —lkey).
2Do not put a blank between these items.

3Put this flag last if used (see the |d command).

140

OL805171

OL805472

CC

Extended Functions and Debugging

one of
cc —F file one of /lib/o
fce -8B 4<
e ~F file:stanza o prefix

>—< pco
—}

(ol o]
i A o)
oa ™

0OL805389

' Do not put a blank between these items.
2Use any flag belonging to as, cpp, orld (except —lkey).

3 Use any flag from the first diagram (except —lkey) or any flag
belonging to as, cpp or Id.

“put this flag last if used (see the Id command).

OL805343
Description

The cc command runs the C compiler. It accepts files containing C source code, assembler
source code, or object code and changes them into a form that the computer system can
run. cc compiles and assembles source files and then links them with any specified object
files, in the order listed on the command line. It puts the resulting executable program in
a file named a.out.

The fce command is a link to ec that compiles programs to run with the Floating-Point
Accelerator. fee should only be used on the 032 family of microprocessors. It
automatically uses the -f flag as well as special versions of the standard libraries that have
been compiled for direct floating-point applications. Note that programs compiled with fce
can run only on systems that have installed the Floating-Point Accelerator.

The vee command is a link to cc that compiles modules to be installed in the VRM. Use
the vrmfmt command to convert the a.out file produced by the vee command to a
VRM-compatible object module. The syntax of this command is as follows:

vrmfmt infile [outfile]

Commands 141

CC

142

The default output file name is a.vrm.

The cc command runs the following programs. Each program processes the source file and
then sends the results to the next program in the sequence:

cpp The macro preprocessor.
ccom0 The first pass of the compiler.
ccomq The intermediate code optimizer (if you specify the -O flag).

This program provides a variety of optimizations to the intermediate code, such
as removing loop invariants, eliminating common subexpressions, and allocating
registers. The following cannot be optimized:

e Functions that call setjmp
e Functions that contain asm statements

If you are compiling a large program and the flow optimizer runs out of space,
the compiler stops the process and displays a message describing the problem.

ccoml The second pass of the compiler.

copt The optimizer (if you specify the -O flag).
as The assembler.

1d The linkage editor.

You can replace any or all of these passes with your own versions (see the -B and -t flags).
Both cc and fcc use the cc.cfg configuration file, which specifies the standard run time,
the link options, and the libraries to be used with each version of the compiler.

Input File Types

The cc command recognizes and accepts as input the following file types:

file.c

The name of a C language source file should end with .c. After cc compiles this source
file, it gives the resulting object file the same name, except that it ends in .0 rather than
.c. If you use one command both to compile and to load a single C program, the compiler
normally deletes the .o file when it loads the program. If you use the -c flag, the compiler
does not delete the .o file.

file.i

The name of a file that contains preprocessed C source code ends in .i.

CC

Flags

file.o

The name of an object file should end in .0. The cec command sends these files to the 1d
command.

file.s

The name of an assembly language source program should end with .s. After cc assembles
this source file, it gives the resulting object file the same name, except that it ends in .o
rather than .s.

The cc command recognizes several flags. In addition, flags intended to modify the action
of the linkage editor (I1d), the assembler (as), or the preprocessor (cpp) may also appear on
the ecec command line. cc sends any flags it does not recognize to these commands for
processing. The following list includes the most commonly used cpp flags (-D, -I), and 1d
flags (-1, -L, -0). See “as” on page 61, “cpp” on page 210, and “ld” on page 557 for a
complete list of additional flags.

Note: If you use the -1 flag, it must be the last entry on the command line, following any
file parameters.

Ordinary Operation

-a Reserves a register for extended addressing. Use this flag if a compiled
procedure creates a stack greater than 32,767 bytes. Because this flag
causes the compiler to reserve a register for use by the assembler, it
reduces the number of available registers by one.

-c Does not send the completed object file to the 1d command. With this
flag, the output of cc is a .o file for each .c or .s file.

-Dname[=def] Defines name as in a #define directive. The default def is 1.

-E Runs the named C source file through only the preprocessor and writes
the result to standard output.

-f Generates code that uses the Floating-Point Accelerator or Advanced
Floating-Point Accelerator. Programs compiled with this flag will run
correctly only on 032 microprocessors configured with either of the
Floating-Point Accelerators.

-£2 Generates code that uses the Advanced Floating-Point Accelerator.
Programs compiled with this flag will run correctly only on AIX
processors configured with the Advanced Floating-Point Accelerator and
an Advanced Processor Card.

Commands 143

CC

144

-Idir

-1[key]

-Ldir

-N[ndptlnum

Produces additional information for use with the sdb command (the
symbolic debugger).

Indicates that global variables are volatile. The optimizer (ccomq)
makes fewer transformations when you specify this flag. To make a
particular variable volatile, add the “volatile” specification to its
declaration.

Treats files with the suffix .h in the same way as files with the suffix .c.

Looks first in dir, then looks in the directories on the standard list for
#include files with names that do not begin with / (slash).

Searches the specified library file, where key selects the file libkey.a.
With no key, -1 selects libe.a, the standard system library for C and
assembly language programs. ld searches for this file in the directory
specified by an -L flag, then in /lib and /usr/lib. The ld command
searches library files in the order in which you list them on the command
line.

Looks in dir for files specified by -1 keys. If it does not find the file in
dir, 1d searches the standard directories.

Changes the size of the symbol table (n), the dimension table (d), the
constant pool (p), or the space for building the parse tree (t). Each table
must be changed separately. The default size of the symbol table is 1500;
the default size of the dimension table is 2000; the default size for the
constant pool is 600; the default space for the parse tree is 1000.

Assigns name rather than a.out to the output file.
Sends compiler output to the code optimizers.

Prepares the program so that the prof command can generate an
execution profile. The compiler produces code that counts the number of
times each routine is called. If programs are sent to ld, the compiler
replaces the startup routine with one that calls the monitor subroutine
at the start (see AIX Operating System Technical Reference for a
discussion of this subroutine), and writes a mon.out file when the
program ends normally.

Sends the specified C source file to the macro preprocessor and stores the
output in a .i file.

Controls inlining. The following may be used:
7 Shows the reason for not inlining in the output file.
-name,name . . . Does not inline name.

+name,name . . . Inlines name.

cC

-W

X

-y[dmnpz]

-Z

num Limits the size increase of the function in which
inlining occurs to num intermediate operations. The
default num is 100.

#num Limits the expansion of an individual call to num
intermediate operators. The default num is 100.

-@file Reads a list of forbidden functions from file.

+ @file Reads a list of requested functions from file.

Requesting a function to be inlined overrides size constraints.

Compiles the specified C programs, storing assembly language output in
a .s file.

Prevents printing of warning messages about functions that cannot be
optimized.

Produces an assembler listing. This is stored in a file that has the same
name as the assembler source file but with the extension .Ist instead of
.S.

Specifies the rounding mode for floating-point constant folding. These
modes are specified as follows:

d Disables floating-point constant folding.

m Rounds toward negative infinity.

n Rounds to nearest whole number. This is the default action
and applies to constant folding in all applicable passes of the
compiler.

P Rounds toward positive infinity.

z Rounds toward 0.

Uses the libm.a version, or a version specified by the user, of the
following transcendental functions:

acos asin atan atan2 cos exp
log log10 sin sqrt tan

If this flag is not used, the compiler generates calls to the AIX kernel, or
the Advanced Floating Point Accelerator if possible. For more
information on libm.a, see math.h in AIX Operating System Technical
Reference. For more information on the Advanced Floating Point
Accelerator, see fpfp in AIX Operating System Technical Reference.

Commands 145

CC

146

Debugging
-Ffile[:stanza]

-V

-#

Uses an alternative file and/or stanza for cc configuration (see AIX
Operating System Technical Reference for a discussion of the
configuration file, cc.cfg). If used, this flag must be the first flag on
the command line.

Displays the trace as with -# and invokes the programs.

Displays a trace of the actions to be taken (for example, invoking the
preprocessor), without actually invoking any programs.

Extended Functions

-Bprefix

-t[pcqgoal]

Constructs path names for substitute preprocessor, compiler,
optimizer, assembler, or linkage editor programs. prefix defines part
of a path name to the new programs. To form the complete path name
for each new program, cc adds prefix to the standard program names
(see the discussion of the programs called by cc on page 142). For
example, if you enter the command:

cc testfile.c =-B/usr/jim/new
cc calls the following compiler programs:

1. /usr/jim/newcpp

2. /usr/jim/newccom(
3. /usr/jim/newccoml
4. /usr/jim/newas

5. /usr/jim/newld

Similarly, if you enter the command:

cc testfile.c -B/usr/jim/new/
cc calls the following compiler programs:
1. /usr/jim/new/cpp

2. /usr/jim/new/ccom

3. /usr/jim/new/ccoml

4. /[usr/jim/new/as

5. /usr/jim/new/ld

The default prefix is /lib/o.

Applies the -B flag instructions for constructing file names to only the
designated preprocessor (p), compiler first (¢), intermediate code
optimizer (q), compiler second (g), optimizer (o), assembler (a), or
linkage editor (1) passes. You can select any combination of peqgoal.

CcC

The -t flag with no additional p, ¢, q, g, 0, a, or 1 designates by
default the preprocessor, compiler and optimizer programs (see the
discussion of the programs called by cc on page 142).

If you do not specify the -B flag when you specify the -t flag, the
default file name prefix is /lib/n.

Note: You can specify this prefix with the -B flag. However,
depending on what combination of the -B and the -t flags you specify,
prefix can have two possible default values. If you specify -B but no
accompanying prefix, the default prefix is /lib/o. If you specify the -t
flag without also specifying the -B flag, the default prefix is /lib/n.

-We,flagi],flag2 . . .]

Gives the listed flags to the compiler program c; ¢ can be any one of
the values [pcqgoal] discussed with the -t flag. For example, since

both 1d and as recognize a -o flag, use -W to specify the program to
which the flag is to be sent. That is, -W1,-0 sends it to 1d. -Wa,-o

sends it to as.

Examples

1. To compile and link a C program, creating an executable a.out file:
cc pgm.c

2. To compile a program, producing an object file to be linked later:
cc -c pgm.c
This compiles pgm. C and produces an object file named pgm.o.

3. To compile a program to run on the Floating-Point Accelerator:
fcc pgm.c
This compiles pgm. C using the special libraries libfc.a and libfm.a instead of the
standard libraries libc.a and libm.a.

4. To view the output of the macro preprocessor:

cc -P -C pgm.c

This creates a file named pgm.i that contains the preprocessed program text including
comments. To view this file, use an editor or see “pg” on page 744. cc passes the -P
and -C flags to the preprocessor. See “cpp” on page 210 for more details about them.

Commands 147

CC

Files

148

5. To predefine macro identifiers:
cc -DBUFFERSIZE=512 -DDEBUG pgm.c

This assigns BUFFERSIZE the value 512 and DEBUG the value 1 before preprocessing.
cc passes the -D flag to the preprocessor.

6. To use #include files located in nonstandard directories:
cc -1/u/jim/include pgm.c

This looks in the directory that contains pgm. cC for the #include files with names
enclosed in double quotes (" "), then in /u/jim/include, and then in the standard
directories. It looks in /u/jim/include for #include file names enclosed in angle
brackets (< >), then in the standard directories. cc passes the -I flag to the
preprocessor.

7. To optimize the object code and produce an assembler listing:
cc =S -0 pgm.c

This uses the optimizing compiler (-O is minus, capital oh), and produces an assembler

listing in a file named pgm.s (-S).

file.c C sourece file.

file.o Object file.

file.s Assembler file.

a.out Linked output.
[etc/ce.clg cc configuration file.
[tmp/ctm* Temporary.

/lib/cpp C preprocessor.
/lib/ccom0 Compiler first pass.
/lib/ccomq Intermediate code optimizer.
/lib/ccom1 Compiler second pass.
[/lib/cgen Compiler.

[lib/copt Optimizer.

/bin/as Assembler.

/bin/1d Linkage editor.
/lib/crt0.0 Run-time startoff.

/lib/mert0.0
/lib/libc.a
/lib/libfc.a

Run-time startoff for profiling.
Standard library.
Standard library for use with Floating-Point Accelerator.

cC

/lib/libm.a Standard math library.

[lib/libfm.a Standard math library for use with Floating-Point Accelerator.
[lib/librts.a Runtime services.

Jusr/include Standard directory for #include files.

[usr/tmp/ctm* Temporary.

Related Information
The following commands: “as” on page 61, “ld” on page 557, “cpp” on page 210, “prof” on
page 773, and “sdb” on page 875.

The discussion of ce in AIX Operating System Programming Tools and Interfaces, in C
Language Guide and Reference and in Assembler Language Reference.

The monitor subroutine, the a.out and cc.cfg files, the discussion of the Advanced
Floating Point Accelerator (fpfp), and math.h in AIX Operating System Technical
Reference.

Commands 149

cd
cd

Purpose

Changes the current directory.

Syntax
$HOME
()
directory

Description

OL805087

The c¢d command moves you from your present directory to another. You must have
execute (search) permission in the specified directory.

If you do not specify a directory, ed moves you to your login directory (S HOME). If the
specified directory name is a full path name, it becomes the current directory. A full path
name begins with a / (slash—root directory), with a . (dot—current directory), or with a . .
(dot dot—parent directory). If the directory name is not a full path name, ed searches for it
relative to one of the paths specified by the §CDPATH shell variable. This variable has
the same syntax as, and similar semantics to, the $PATH shell variable. (See “Shell
Variables and Command-Line Substitutions” on page 917 for a discussion of these
variables.)

Examples

1. To change to your home directory:

cd

2. To change to an arbitrary directory:
cd /usr/include

This changes the current directory to /usr/include. Now file path names that do not
begin with / or ../ specify files located in /usr/include.

150

cd

3. To go down one level of the directory tree:
cd sys

If the current directory is /usr/include and if it contains a subdirectory named Sys,
then /usr/include/sys becomes the current directory.

4. To go up one level of the directory tree:

cd
The special file name .. (dot-dot) refers to the directory immediately above the current
directory. However, under symbolic links, .. (dot-dot) refers to the parent directory of

the symbolic link, not to the directory above the current directory.

Related Information

The following commands: “csh” on page 225, “pwd” on page 800, and “sh” on page 913.

Note: The csh and sh commands each contain a built-in subcommand named cd. The
description of ed given above applies only to sh. For more information see the esh
command.

The chdir system call in AIX Operating System Technical Reference.

Commands 151

cde

cdce
Purpose
Changes the comments in a Source Code Control System (SCCS) delta.
Syntax
—mmrlist —y comment
—rh iy
ede — =150 _C >< -
~m mrlist —~y comment
OL805088
Description
The ede command changes the Modification Requests (MRs) and comments for the SID
specified by the -r flag for each named Source Code Control System (SCCS) file. If you
specify a directory name, cde performs the requested actions on all SCCS files in that
directory (that is, all files with names that have the s. prefix). If you specify a - (minus) in
place of file, cde reads standard input and interprets each line as the name of an SCCS file.
For more information on SCCS comments and Modification Requests, see AIX Operating
System Programming Tools and Interfaces.
You can change the comments and MRs for an SID only if you made the SID or you own
the file and the directory. For more information on the permissions needed to change
SCCS files, see “SCCS Files” on page 478.
Flags

152

-m[mrlist] Supplies a list of MR numbers for ede to add or delete in the SID specified
by the -r flag. You can only use this flag if the file has the v header flag set
(see Figure 1 on page 44). A null MR list has no effect.

cde

In the mrlist, MRs are separated by blanks, tab characters, or both. To
delete an MR, precede the MR number with an ! (exclamation point). If the
MR you want to delete is currently in the list of MRs, it is changed into a
comment line. edc places a list of all deleted MRs in the comment section of
the delta and precedes them with a comment line indicating that the
following MRs were deleted.

If you do not specify the -m flag, and the v header flag is set, MRs are read
from standard input. If standard input is a work station, ede prompts you
for the MRs. The first new-line character not preceded by a backslash ends
the list on the command line. edc continues to take input until it reads an
end-of-file character (Ctrl-D) or a blank line. MRs are always read before
comments (see the -y flag).

If the v flag has a value, edc interprets the value as the name of a program
which validates the MR numbers. If the MR number validation program
returns a nonzero exit value, edc stops and does not change the MRs.

-rSID Specifies the SCCS identification number of the delta for which ede will
change the comments or MRs.

-y[comment] Specifies text to replace any comment already existing for the delta specified
by the -r flag. cdc keeps the existing comments and precedes them by a
comment line stating that they were changed. A null comment has no effect.

If you do not specify -y, edc reads comments from standard input until it
reads an end-of-file character. If the standard input is a work station, cde
prompts for the comments and also allows a blank line to end input. If the

last character of a line is a \ (backslash), ede ignores it and continues to
read standard input.

Note: If cdc reads standard input for file names (that is, when you specify
a file name of -), you must use the -y and -m flags.

Related Information

The following commands: “admin” on page 41, “delta” on page 310, “get” on page 477,
“help” on page 513, and “prs” on page 781.
The scesfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

Commands 153

cflow

cflow

Purpose

Generates a C flow graph of external references.

Syntax

cflow file

OL805172

Description

154

The cflow command analyzes C, yace, lex, assembler, and object files and writes a chart of
their external references to standard output.

It sends files with suffixes .y, .1, and .c to the yacc, lex, and cpp commands for the
appropriate processing. This step is bypassed for .i files. It then runs the output of this
processing through the first pass of lint. It assembles files which end in .s, extracting
information from the symbol table (as it does with .o files). From this output, cflow
produces a graph of external references, which it writes to standard output.

Each line of output begins with a line number followed by sufficient tabs to indicate the
level of nesting. Then comes the name of the global, a colon, and its definition. This name
is normally a function not defined as external and not beginning with an underline
character; see the -i_ inclusion flag on p. 155. For information extracted from C source
files, the definition consists of an abstract type declaration (for example, char¥*), the name
of the source file, surrounded by angle brackets, and the line number on which the
definition was found. Definitions extracted from object files contain the file name and
location counter under which the symbol appeared. cflow deletes leading underline
characters in C-style external names.

Once cflow displays the definition of a name, later references to it contain only the cflow
line number where the definition may be found. For undefined references, cflow displays

only <> (redirection symbols).

cflow

If the nesting level becomes too deep to display in available space, pipe the output from
cflow to the pr command, using the -e flag to compress the tab expansion to something
less than every eight spaces.

Note: Files produced by lex and yacc cause the reordering of line number declarations
which can confuse cflow. To get proper results, feed cflow the yacc or lex input.

Flags

In addition to the following, cflow recognizes the -I, -D, and -U flags of the epp command.

-dnum Sets to decimal integer num the depth at which the flow graph is cut off. By
default this is a very large number. Do not set the cutoff depth to a nonpositive

integer.
-ix Includes external and static data symbols. The default includes only functions.
- Includes names that begin with an underline character. The default excludes

these functions (and corresponding data if -ix is used).

-r Produces an inverted listing which shows the callers of each function, sorted by
called function.

Related Information

The following commands: “as” on page 61, “ce” on page 140, “lex” on page 562, “lint” on
page 577, “nm” on page 705, “pr” on page 761, and “yace” on page 1237.

The discussion of cflow in AIX Operating System Programming Tools and Interfaces.

Commands 155

chgrp

chgrp

Purpose

Changes the group ownership of a file or directory.

Syntax

file
chgrp graup T directory [T
—-r

OL805090
Description

The chgrp command changes the group associated with the specified file or directory to
groupname or groupID. If you do not own the file, you must have superuser authority to
change the group ID.

If the file or directory resides in a Distributed Services remote virtual file system, the
translated group ID is used.

Flag
-r Causes the untranslated group ID to be used. Applies only to files or directories
that reside in a Distributed Services remote virtual file system.
Examples
To change the group ownership of the file or directory named proposals to staff:
chgrp staff proposals
The group access permissions for proposals now apply to the staff group.
Files

[etc/group File that identifies all known groups.

156

chgrp

Related Information

The following command: “groups” on page 506.

The chown and chownx system calls and the group file in AIX Operating System
Technical Reference.

“Distributed Services id Translation” in Managing the AIX Operating System.

Commands 157

chkcomp

chkcomp

Purpose

Checks compatibility between a code server and an active-service client.

Syntax

chkcomp — —n node — —w directory —
AJ2FL261

Description

158

The chkcomp command checks compatibility between a code server and an active-service
client before allowing active service. Generally, this command is run by the chngstate
command. You must be a member of the system group or operating with superuser
authority to run this command.

When the command runs, it compares one or more programs installed at the code server to
a program or program subset installed at the client and identifies incompatibilities between
version, release, or level. If the client and server are compatible, chkcomp ends. If the
client and server are not compatible, chkcomp writes a comprehensive set of install and
update orders to a cs.compat file.

There are two types of incompatibilities: incompatibilities that can be fixed by the system
and incompatibilities that require manual intervention. These types of incompatibilities
are handled in the following manner:

e If the incompatibilities can be fixed by the system and the upgrade mode is automatic,
the system automatically initiates the required install and update orders.

e If the incompatibilities can be fixed by the system and the upgrade mode is manual, the
system displays the list of required manual actions.

e If the incompatibilities cannot be fixed by the system, the client defaults to stand-alone
mode and the user is responsible for initiating the required install and update actions
(orders in the e¢s.compat file) to resolve the incompatibilities.

The upgrade mode is set by a value in the serverattach file or by -m flag to the
chngstate command. For more information on the compatibility rules and which types of
incompatibilities can be fixed by the system, see Managing the AIX Operating System.

chkcomp

Flags

-n node Specifies the node ID or nickname of the code server. This flag and node
are required and must be specified.

-w directory Specifies the directory on the client where the code server’s root file system
is mounted. This mount must be done before chkcomp is run. If chkcomp
is run from the chngstate command, the mount is done for you. If you
want to run chkcomp directly, you must run the mount command before
you run the chkcomp command. This flag and directory are required and
must be specified.

Example

To create and mount a directory where a code server’s root file system can reside on
your system and to check compatibility between the code server and your system:

mkdir /tmp/nick
mount -n darlene / /tmp/nick
chkcomp -n darlene -w /tmp/nick

This makes the directory /tmp/nick, mounts the / (root) directory of the code server
darlene on this directory, and then checks the compatibility of the code server and
your system.

Files

ete/codeserve/cs.compat Contains information on client and server compatibility.

etc/codeserve/serverattach Contains code service attribute information.

[usr/lpp/lpp-name/lpp.hist Contains history files for both the code server and the
client

/vrm/lpp/Ilpp—-name/lpp.hist Contains history files for both the code server and the
client systems.

Related Information

The following command: “chngstate” on page 164.
The /ete/codeserve/servattach file in AIX Operating System Technical Reference.

The discussion of code service and the /etc/codeserve/cs.compat file in Managing the
AIX Operating System.

Commands 159

chmod

chmod

Purpose

Changes permission codes.

Syntax

SYMBOLIC

chmod

ABSOLUTE

file

chmod — permcode T directory :[—4

T
Do not put a blank between these items.

2Do not put a blank on either side of the comma.
01805091

Description

The chmod command modifies the read, write, execute (file), or search (directory)
permission codes of specified files or directories. You can use either symbolic or absolute
mode to specify the desired permission settings.

You can change the permission code of a file or directory only if you own it or if you are
operating with superuser authority.

160

chmod

Symbolic Mode

When you use the symbolic mode to specify permission codes, the first set of flags selects
the permission field, as follows:

u User (owner)

g Group

o All others

a User, group, and all others (same effect as ugo). This is the default permission
field.

The second set of flags selects whether permissions are to be taken away, added , or set
exactly as specified:

- Removes specified permissions

+ Adds specified permissions

= Clears the selected permission field and sets it to the code specified. If you do not
specify a permission code following =, chmod removes all permissions from the
selected field.

The third set of flags of the chmod command selects the permissions as follows:

r Read permission.
w Write permission.
b4 Execute permission for files; search permission for directories.

s Set User-ID or Set Group-ID permission. This permission bit sets the effective
user-ID or group-ID to that of the file whenever the file is run. Use this permission
setting in combination with the u or g field to allow temporary or restricted access
to files not normally accessible to other users. An s appears in the user or group
execute position of a long listing (see “Is” on page 595 or “li” on page 567), to show
that the file runs Set User-ID or Set Group-ID.

t The save text permission. Setting this permission bit causes the text segment of a
program to remain in virtual memory after its first use. The system thus avoids
having to transfer the program code of frequently-accessed programs into the
paging area. A character special file with this bit set is a multiplexed file. You
can specify this permission only with the u field. A t appears in the execute
position of the All Others field to indicate that the file has this bit (the sticky bit)
set.

You can specify multiple symbolic modes, separated with commas. Do not separate items
in this list with spaces. Operations are performed in the order they appear from left to
right.

Commands 161

chmod

Absolute Mode

The chmod command also permits you to use octal notation to set each bit in the
permission code. chmod sets the permissions to the permcode you provide. This permcode
is constructed by combining (the logical OR of) the following values:

4000 Sets user-ID on execution

2000 Sets group-ID on execution

1000 Retains memory image after execution (executable file)
1000 Indicates multiplexed character special file

0400 Permits read by owner

0200 Permits write by owner

0100 Permits execute or search by owner

0040 Permits read by group

0020 Permits write by group

0010 Permits execute or search by group
0004 Permits read by others

0002 Permits write by others

0001 Permits execute or search by others

All permission bits not explicitly specified are cleared.

Examples

162

1. To add a type of permission to several files:

chmod g+w chapl chap2

This adds write permission for group members to the files chapl and chap?2.
2. To make several permission changes at once:

chmod go-w+x mydir

This denies group members and others the permission to create or delete files in mydir

(go-w). It allows them to search mydir or use it in a path name (go+x). This is
equivalent to the command sequence:

chmod g-w mydir
chmod o-w mydir
chmod g+x mydir
chmod o+x mydir

3. To permit only the owner to use a shell procedure as a command:
chmod u=rwx,go= cmd

This gives read, write, and execute permission to the user who owns the file (U=rwx).
It also denies the group and others the permission to access cmd in any way (go=).

chmod

If you have permission to execute the shell command file cmd, then you can run it by
entering:

cmd

This may not work in some cases, depending on the value of the shell variable PATH.
See page 923 for more information about PATH.

4. To use Set-ID modes:
chmod ug+s cmd

When cmd is executed, this causes the effective user and group IDs to be set to those
that own the file cmd. Only the effective IDs associated with the subprocess that runs
cmd are changed. The effective IDs of the shell session remain unchanged.

This feature allows you to permit restricted access to important files. Suppose that the
file cmd has the Set-User-ID mode enabled and is owned by a user called dbms. dbms is
not actually a person, but might be associated with a database management system.

The user betty does not have permission to access any of dbms’s data files. However,
she does have permission to execute cmd. When she does so, her effective user ID is
temporarily changed to dbms, so that the cmd program can access the data files owned
by dbms.

This way betty can use cmd to access the data files, but she cannot accidentally
damage them with the standard shell commands.

5. To use the absolute mode form of the chmod command:
chmod 644 text

This sets read and write permission for the owner, and it sets read-only mode for the
group and others.

Related Information

The following commands: “Is” on page 595, “l1i” on page 567, and “umask” on page 1110.

Commands 163

chngstate

chngstate

Purpose

Changes the state of a code service client to either active-service or stand-alone.

Syntax
chngstate one oi>——<
-b =S name =a
—e name —t n =
AJ2FL263
Description

Use the chngstate command to change the state of a code service client to active-service
or stand-alone. You must be a member of the system group or operating with superuser
authority to run this command. It is also run by the r¢ command during system
initialization.

When the command runs, it validates and processes the code service attribute file

/etc/codeserve/serverattach. The contents of this file tell chngstate whether the
system should be an active-service system or a stand-alone system.

If the target state is stand-alone, chngstate runs rc.standalone and rc.include.
If the target state is active-service, chngstate checks the attribute file to determine:

e The server to use

e The time between attach attempts for the specified server
® The maximum time to attempt individual server attach

e The upgrade mode (automatic or manual).

Then chngstate runs the chkcomp command to check for client-server compatibility
before attempting to attach to the code server in active-service mode.

If the client and server are compatible, chngstate runs rc.actvsrve and rc.include to
attach the client to the code server in active-service mode. If the client and server are not
compatible, chkcomp writes a comprehensive set of install and update orders to a
cs.compat file.

164

chngstate

Flags

There are two types of incompatibilities: incompatibilities that can be fixed by the system
and incompatibilities that require manual intervention. These incompatibilities are
handled in the following manner:

e If the incompatibilities can be fixed by the system and the upgrade mode is automatic,
the system attempts to fix incompatibilities by calling the internal command installc to
upgrade the install and update state of the client.

e If the incompatibilities can be fixed by the system and the upgrade mode is manual, the
system displays the list of required manual actions.

e If the incompatibilities cannot be fixed by the system, the client defaults to stand-alone
mode.

In the latter two cases, the user is responsible for initiating the required install and update
actions (orders in the cs.compat file) to resolve the incompatibilities. The system will not
attach a client as long as incompatibilities exist. To manually resolve incompatibilities:

e Run installp or updatep to install or update programs on the client.
e Rerun the chngstate command to verify compatibility and attach to the server as an
active-service client.

For more information on the compatibility rules and which types of incompatibilities can
be fixed by the system, see Managing the AIX Operating System.

Notes:

1. The upgrade mode parameter (automatic or manual) must be specified in the attribute
file or an error will result. However, you can override the attribute in the file by
specifying the -a or -m flag in the chngstate command.

2. If chngstate encounters a server timeout error while attempting to attach to a server,
it reads the next system attribute file stanza and attempts to attach to that server
according to the stanza attributes. Any other error causes the system to come up in
stand-alone mode.

3. You can also run the ckcomp command from the command line to get a list of which
programs are incompatible. However, ckcomp does not leave you attached to the
server in active-service mode.

-a Uses automatic upgrade mode when attempting to attach to any server with a
target state of active-service. This flag overrides the mode set in the system
attribute file stanzas.

-b Prevents chngstate from running a killall command. This flag should be used
only when chngstate is run from /etc/rc during a system boot.

-e name Excludes the attribute file stanza specified by name. To exclude more than one
stanza, enter the -e flag for each stanza.

Commands 165

chngstate

-m Uses manual upgrade mode when attempting to attach to any server with a
target state of active-service. This flag overrides the mode set in the system
attribute file stanzas.

-s name Starts processing with this system attribute file stanza.

-tn Specifies the total time in seconds to attempt to attach to any server. The time,
n, must be greater than or equal to 60.

Internal Commands

166

The chngstate command uses the following internal commands. Because they are internal
commands, they do minimum validation of input parameters.

installe

The installc command installs a full program or subset program. It uses the following
syntax:

/etc/codeserve/cs.compat
installe ——-—r path——<— _>_
file

The installe command attempts to upgrade the installation or update state of an
active-service client to make it fully compatible with a specific server by installing a full
program or a subset program on the active-service client. Generally, installe is run by the
chngstate command when there is an incompatibility that can be automatically corrected
by installing a complete or subset program. A user’s path would not normally include this
command. It is located at /etc/codeserve/installc. The installc command requires you to
be a member of the system group or operating with superuser authority.

AJ2FL140

When run, installc processes install and update requests from an input file in the format
defined in the file ¢s.compat. Install requests result in a call to the command installp
and update requests result in a call to the internal command updatec.

The chngstate command runs this command when the cs.compat file contains only
install, update, or install and update records. If cs.compat does not exist or contains
dbos, uplevel, or unknown records, installe will not be run. In this case the user must
manually upgrade the client by running the installp or updatep command for the
appropriate programs.

If install records exist, then chngstate mounts the server directory /usr/lpp.install prior
to running installe. If update records exist, then chngstate mounts the server directory
/usr/lpp.update.

chngstate

Files

The -r path parameter is used to pass the path that installe must use to gain access to the
server’s /usr/lpp.install directory. It represents a local path where chngstate has
mounted the / (root) directory of the server.

The file is an input file in cs.compat format. This file contains specific install and update
requests required to make the client fully compatible with a specific code server.

updatec

The updatec command controls the update process for complete or subset programs on
active-service clients in a code service environment. It uses the following syntax:

/etc/codeserve/cs.compat
updatec — —r path ‘(_>—
file
AJ2FL141

Generally, this command is run from the installc internal command to upgrade the update
state of an active service client and make it fully compatible with a specific server on an
active service network. A user’s path would not normally include this file. It is located at
/etc/codeserve/updatec. You must be a member of the system group or be operating with
superuser authority to run this command.

When run, this command processes update requests from an input file in the format defined
in the file e¢s.compat. Update requests result in a call to the updatep internal command,
inuupdt.

This command is run by installe only when the ¢s.compat file contains update records. If

cs.compat does not exist or contains dbos, uplevel, or unknown records, installe will not
be called.

The -r path parameter is used to pass the path that updatec must use to gain access to the
server’s /usr/lpp.update directory. It represents a local path where chngstate has
mounted the / (root) directory of the server.

The file is an input file in cs.compat format. The file contains specific update requests
required to make this client fully compatible with a specific code server.

etc/codeserve/cs.compat Contains information on client and server compatibility.
[ete/codeserve/serverattach Contains code service attribute information.

ete/re Performs normal startup initialization.
/ete/rc.standalone Initializes stand-alone system.

Commands 167

chngstate

/ete/re.actvsrve Initializes active-service client.

[usr/lpp.install Server directory containing backup format files required
to do installations.

[usr/lpp.update Server directory containing backup format files required

to do updates.
Related Information

The following commands: “chkcomp” on page 158, “installp” on page 529, “rc” on
page 806, “updatep” on page 1122.
The /etc/codeserve/serverattach file in AIX Operating System Technical Reference.

The discussion of code service and the /etc/codeserve/cs.compat file in Managing the
AIX Operating System.

168

chown

chown

Purpose

Changes the owner of files or directories.

Syntax

hown use e
g J directory
=t

OL805095

Description

The chown command changes the owner of the specified files or directories to username or
userID. The group associated with the file or directory is not affected.

Note: If you give ownership of a file or directory to another user, you cannot regain
ownership unless you have superuser authority.

If the file or directory resides in a Distributed Services remote virtual file system, the
translated user ID is used.

Flag

-r Causes the untranslated user ID to be used. Applies only to files or directories
that reside in a Distributed Services remote virtual file system.

Example
chown Jjim program.c
The user access permissions for program.c now apply to jim. As the owner, jim can use
chmod to permit or deny the other users access to program.c. See “chmod” on page 160
for details.

Files

[etc/passwd File that contains user IDs.

Commands 169

chown

Related Information

The following command: “passwd” on page 735.

The chown and chownx system calls and the passwd file in AIX Operating System
Technical Reference.

“Distributed Services id Translation” in Managing the AIX Operating System.

170

chparm

chparm

Purpose

Changes or examines system parameters.

Syntax
nodename /unix
chparm —<j_— >—< >—4
nodename=newvalue kernel-image
0L805093
Description

The chparm command lets you change a system parameter or look at its current setting.
Currently, only the nodename parameter may be examined or changed. The name
assigned cannot be longer than eight characters. If you do not assign a newvalue, chparm
writes the current value of nodename to standard output. The default kernel-image is
/unix.

Changes do not affect the running system. You must restart the system for the change to
become effective.

Examples

1. To display the nodename of your system:
chparm nodename

This displays the nodename of /unix, which is a file containing the kernel of the AIX
Operating System. This file is loaded and run when you start up the computer.

2. To change the nodename of a system:
chparm nodename=COMP-CTR /unix.compctr

This changes the nodename of /unix.compctr to COMP-CTR. /unix.compctrisa
file that contains an alternate version of the operating system kernel. The change does
not affect the running system, even if you change the /unix kernel.

Commands 171

chroot

chroot

Purpose

Changes the root directory of a command.

Syntax

chroot — directory — command —
OL805094

Description

Warning: If special files in the new root have different major and minor
device numbers than they have in the real root, it is possible to overwrite
the file system.

The chroot command can be used only by a user operating with superuser authority (see
“su” on page 1026). If you have superuser authority, the chroot command changes the
root directory to the specified directory when executing command. The first [/ (slash) in any
path name changes to directory for the specified command and any of its children.

Notice that:
chroot directory command > file
creates the file. relative to the original root, not the new one.

The directory path name is always relative to the current root. Even if a chroot is in
effect, directory is relative to the current root of the running process.

Several programs may not operate properly after chroot has been run. For example, the
command ls -1 will fail to give user and group names if the current root location makes
/etc/passwd beyond reach. In addition, utilities that depend on description files produced
by the ctab command (see page 257) may fail altogether if these files are also not in the
new root file system. It is your responsibility to ensure that all vital data files are present
in the new root file system and that the path names accessing such files are changed as
necessary.

172

chroot

Examples

1.

To run a subshell with another file system as the root:
chroot /diskette0 /bin/sh

This makes the directory name / refer to /diskette0 for the duration of the command
/bin/sh. It also makes the original root file system inaccessible. The file system on
/diskette0 must contain the standard directories of a root file system. In particular,
the shell will look for commands in /bin and /usr/bin on the /diskette0 file system.

Running the command /bin/sh creates a subshell, which runs as a separate process
from your original shell. Press END OF FILE (Ctrl-D) to end the subshell and go back
to where you were in the original shell. This restores the environment of the original
shell, including the meanings of the current directory (.) and the root directory (/).

To run a command in another root file system and save the output:
chroot /disketteO /bin/cc =-E /u/bob/prog.c >prep.out

This runs the /bin/ec command with / referring to /diskette0. It saves the output in
the file prep.out, which is in the original root file system.

This runs the C language preprocessor (/bin/cc -E) on the file
/diskette0O/u/bob/prog.c, reading #include files from /diskette0/usr/include, and
putting the preprocessed text in prep.out on the primary root file system.

Related Information

The following commands: “ce” on page 140, “cpp” on page 210, and “sh” on page 913.

The chdir and chroot system calls in AIX Operating System Technical Reference.

Commands 173

chtcb
chtcb

Purpose
Sets or queries the tcb attribute of a file.
Syntax

one of
on

N g [12 T
query

A5AC5021
Description

The chteb command sets or queries the tcb attribute of the specified files. The tch
attribute of a file should be on in that file is in the trusted computing base; otherwise, is
should be off.

A file must be in the trusted computing base if it is to be executed from the trusted shell
(tsh).

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

Related Information

The following commands: “sysck” on page 1031 and “tsh” on page 1100.

174

clri

clri
Purpose

Clears the specified i-node.
Syntax

clri filesystem inumber

L
0L805097

Description

Warning: Use this command only in emergencies and with extreme care.

The clri command is used to clear i-node entries for files that do not appear in a directory.
In general, you do not need to use this program because fsck can deal with most file
system inconsistencies.

Always run fsck on a file system after you have used clri on it, because it may create
dangling directory references or missing blocks. These can be fixed if they are attended to
promptly. Do not run the system when the file system has dangling directory references or
a bad free list.

The clri command zeros over the flags” word of the i-node, thus freeing it for reallocation.
The inumber parameter specifies the i-node and filesystem specifies the file system it is on.
inumber should be a decimal number, while filesystem can be either the name of the device
on which the file system resides or the name by which it is normally mounted.

If you use clri to remove an i-node that does appear in a directory, you should track down
and remove all of these entries. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry destroys the
new file and the new entry again points to an unallocated i-node.

By default, the clri command displays some information about the file and asks for
confirmation before it destroys the file. If you enter a ¥ or yes, the file is destroyed.

Since clri only zeros the flags’ word of the i-node, if you destroy the wrong file, you can
recover the file by using the fsdb command to restore the flags’ word.

Note: If the file is open, clri is likely to be ineffective. For this reason, you should run
clri only on an unmounted file system.

Commands 175

clri

Flags
-f Destroys the file without confirmation, but writes a description of the file.
-q Destroys the file without confirming or writing a description of the file.
Example

To clear i-nodes 170 and 368 of the file system /diskette0 and then clean up the file
system:

clri /diskette0 170 368
fsck /diskettel

Related Information

The following commands: “fsck, dfsck” on page 445 and “fsdb” on page 450.
The fs file in AIX Operating System Technical Reference.

176

cmp

Purpose

Compares two files.

Syntax

cmp —(one of Y filel— file2 —
-

-

OL805157

Description

The emp command compares filel and file2 and writes the results to standard output. If
you specify a - (minus) for filel, emp reads standard input. Under default conditions, ecmp
displays nothing if the files are the same. If they differ, cmp displays the byte and line
number at which the first difference occurs. If one file is an initial subsequence of the
other (that is, if cmp reads an end-of-file character in one file before finding any
differences), cmp notes this. Normally, you use ecmp to compare non-text files and the diff
command to compare text files.

Flags

-1 Displays, for each difference, the byte number in decimal and the differing bytes in
octal.

-s Returns only an exit value. (0 indicates identical files; 1 indicates different files; 2
indicates inaccessible file or a missing argument)

Examples

1. To determine whether two files are identical:
cmp prog.o.bak prog.o

This compares prog.o.bak and prog.o. If the files are identical, then a message is
not displayed. If the files differ, then the location of the first difference is displayed.

Commands 177

cmp

For instance:

prog.o.bak prog.o differ: char 5, 1line 1

If the message cmp: EOF on prog.o.bak is displayed, then the first part of prog.o is
identical to prog.o.bak, but there is additional data in prog.o.

To display each pair of bytes that differ:
cmp -1 prog.o.bak prog.o
This compares the files, and then displays the byte number (in decimal) and the

differing bytes (in octal) for each difference. For example, if the fifth byte is octal 101
in prog.o.bak and 141 in prog.o, then cmp displays:

5 101 141
To compare two files without writing any messages:
cmp -s prog.c.bak prog.c

This gives an exit value of O if the files are identical, 1 if different, or 2 if an error
occurs. This form of the command is normally used in shell procedures. For example:

if cmp -s prog.c.bak prog.c
then

echo No change
fi

This partial shell procedure displays No change if the two files are identical. See page
930 for details about the if command.

Related Information

178

The following commands: “comm” on page 183, “diff” on page 320, and “sh” on page 913.

col

col

Purpose

Processes text having reverse linefeeds and forward/reverse half-linefeeds for output to
standard output.

Syntax

col

OL805173
Description

The col command reads from standard input and writes to standard output. It performs the
line overlays implied by reverse line feeds (ASCII ESC-7), and by forward and reverse
half-line feeds (ASCII ESC-9 and ASCII ESC-8). col is particularly useful for filtering
multicolumn output made by the nroff .rt command and output from the tbl command.
The input format accepted by col matches the output format produced by nroff -T37 or by
nroff -Tlp. Use -T37 and the col f flag if the output is being sent to a device that can
interpret half-line motions; use -Tlp otherwise.

The col command assumes that the ASCII control characters SO (1017) and SI (\016) begin
and end text in an alternate character set. col remembers the character set each input
character belongs to, and on output generates SI and SO characters as appropriate to
ensure that each character is printed in the correct character set.

On input, col accepts only the control characters for Space, Backspace, Tab, Return, the
new-line character, SI, SO, VT, and ESC-7, 8, or 9. VT (\013) is an alternate form of full
reverse line feed included for compatibility with some earlier programs of this type. col
ignores all other non-printing characters.

Notes:
1. The maximum number of lines that can be backed up is 128.
2. Up to 800 characters, including backspaces, are allowed on a line.

3. Local vertical motions that would result in backing up over the first line are ignored.
As a result, the first line must not contain any superscripts.

Commands 179

col

Flags

-b

P

-X

Assumes that the output device in use is not capable of backspacing. In this case, if
two or more characters are to appear in the same position, only the last one read
appears in the output.

Suppresses the default treatment of half-line motions in the input. Normally, col
does not emit half-line motions on output, although it does accept them in its input.
With this flag, output may contain forward half-line feeds (ESC-9) but not reverse
line feeds (ESC-7 or ESC-8).

Displays unknown escape sequences as characters, subject to overprinting from
reverse line motions. Normally, col ignores them. You should be fully aware of the
textual position of escape sequences before you use this flag.

Suppresses changing the white space to tabs. Without this flag, col converts white
space to tabs wherever doing so might shorten printing time.

Related Information

180

The following commands: “nroff, troff” on page 709 and “tbl” on page 1053.

The discussion of col in Text Formatting Guide.

comb

comb

Purpose

Combines SCCS deltas.

Syntax
comb file —
-0 —-pSID
-s —clist
0L805098
Description

Flags

The comb command writes to standard output a shell procedure that can combine the
specified deltas (SIDs) or all deltas into one delta. You may reduce the size of your SCCS
file by running the resulting procedure on the file. You can see how much the file will be
reduced by running comb with the -s flag. If you specify a directory in place of file, comb
performs the requested actions on all SCCS files (that is, those with file names with the s.
prefix). If you specify a - (minus) in place of file, comb reads standard input and interprets

each line as the name of an SCCS file. comb continues to take input until it reads END
OF FILE (Ctrl-D).

If you do not specify any flags, comb preserves only leaf deltas and the minimal number of
ancestors needed to preserve the tree (see “delta” on page 310).

Note: The comb command may rearrange the shape of the tree deltas. It may not save
any space; in fact, it is possible for the reconstructed file to actually be larger than the
original.

Each flag or group of flags applies independently to each named file.

-clist Specifies a list of deltas (SIDs) that the shell procedure will preserve (see get -i
list for the SID list format on page 482). The procedure will combine all other
deltas.

Commands 181

comb

Files

-0

-pSID

-8

s.COMB

comb*

Accesses the reconstructed file at the release of the delta to be created for each
get -e generated; otherwise accesses the reconstructed file at the most recent
ancestor. Using the -0 flag may decrease the size of the reconstructed SCCS file.
It may also alter the shape of the delta tree of the original file.

Specifies the SID of the oldest delta for the resulting procedure to preserve. All
older deltas are combined in the reconstructed file.

Causes comb to generate a shell procedure that produces a report for each file
giving: the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by the formula:

100 * (original - combined) / original

You should run comb using this flag and run its procedure before combining
SCCS files in order to judge how much space will actually be saved by the
combining process.

The name of the reconstructed SCCS file.
Temporary files.

Related Information

182

The following commands: “admin” on page 41, “delta” on page 310, “get” on page 477,
“help” on page 513, and “prs” on page 781.

The scesfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

comm

comm

Purpose

Selects or rejects lines common to two sorted files.

Syntax
one of
-1 -2 -3
comm —| =12 =13 =23 |— filel —file2 —
=123
0OL805099
Description

Flags

The comm command reads filel and file2 and writes, by default, a three-column output to
standard output. The columns consist of:

e Lines that are only in filel
e Lines that are only in file2
e Lines that are in both filel and file2.

If you specify - (minus) for one of the file names, comm reads standard input. Both filel
and file2 should be sorted according to the collating sequence specified by the environment
variable NLCTAB (see “ctab” on page 257 and “sort” on page 958),

-1 Suppresses the display of the first column (lines in filel).
-2 Suppresses the display of the second column (lines in file2).
-3 Suppresses the display of the third column (lines common to filel and file2).

Note: Specifying -123 does nothing (a noop).

Examples

1. To display the lines unique to each file and common to both:

comm things.to.do things.done

Commands 183

comm

If the files things.to.do and things.done contain:

things.to.do things.done
buy soap 2nd revision
groceries interview
luncheon Tuncheon
meeting at 3 system update
system update tech. review
tech. review weekly report

then comm displays:

2nd revision
buy soap
groceries
interview
Tuncheon
meeting at 3
system update
tech. review
weekly report

The first column contains the lines found only in things.to.do. The second column,

indented with a tab character, lists the lines found only in things.done. The third
column, indented with two tabs, lists the lines common to both.

2. To display the lines that appear in only one file:
comm -23 things.to.do things.done

This suppresses the second and third columns of the comm listing. If the files are the
same as in Example 1, then the following is displayed:

buy soap
groceries
meeting at 3

Related Information

The following commands: “cmp” on page 177, “ctab” on page 257, “diff” on page 320,
“sdiff” on page 883, “sort” on page 958, and “uniq” on page 1118.
The environment miscellaneous facility in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

184

comp

comp

Purpose

Composes a message.

Syntax
—form file
comp cur
one of

+folder nam eur

sequence
first next
prev last

one of
—file file

—nodraftfolder

one of

new

—draftfolder +folder —draftmessage

—draftfolder +folder

one of

{

num .
sequence next

—draftmessage
first last
prev new
cur
AJ2FL222
< one of >—< one of < one of >
—use —editor cmd —whatnowproc cmdstring
—nouse —noedit —nowhatnowproc
comp —— —help —
AJ2FL167

Commands 185

comp

Description

Flags

186

The comp command is used to create and modify messages. comp is part of the MH
(Message Handling) package and can be used with other MH and AIX commands.

By default, comp copies a message form to a new draft message and invokes an editor.
You can then fill in the message header fields To: and Subject:, fill in or delete the other
header fields (such as cc: and Bee:), and add the body of the message. When you exit the
editor, the comp command invokes the MH command whatnow. You can specify any of
the whatnow subcommands, or you can press Enter to see a list of the subcommands.
These subcommands enable you to continue composing the message, direct the disposition
of the message, or end the processing of the comp command. See “whatnow” on

page 1215 for a description of the subcommands.

You can specify the form, or format, of the message by using the -form flag or the +folder
flag. If you do not specify one of these flags, comp uses your default message format
located in the file user—_mh_directory/components. If this file does not exist, comp uses
the system default message format located in /usr/lib/mh/components.

You can compose a new message, or you can specify the -use flag and continue composing
an existing message. The -file, -draftfolder, and -draftmessage flags enable you to
specify the new or existing message that you want to compose.

Note: The line of dashes or a blank line must be left between the header and the body of
the message for the message to be identified when it is sent.

-draftfolder +folder Places the draft message in the specified folder. If you do not
specify this flag, comp selects a default draft folder according
to the information supplied in the MH profiles. You can
define a default draft folder in SHOME/.mh_profile. If
-draftfolder +folder is followed by msg, msg represents the
-draftmessage attribute.

-draftmessage msg Specifies the draft message. You can specify one of the
following message references as msg:
num sequence first
prev cur .
next last new

If the -use flag is specified, the default draft message is cur.
Otherwise, the default draft message is new.

comp

-editor cmd

-file file

+ folder msg

-form file

-help
-nodraftfolder
-noedit

-nouse

-nowhatnowproc

-use

-whatnowproc cmdstring

Specifies that ecmd is the initial editor for composing the
message. If you do not specify this flag, comp selects a default
editor or suppresses the initial edit, according to the
information supplied in the MH profiles. You can define a
default initial editor in $HOME/.mh_profile.

Places the draft message in the specified file. If you do not
specify the absolute path name for file, comp places file in
user—_mh_directory. If file exists, comp prompts your for the
disposition of the draft.

Uses the form of the specified message in the specified folder.
You can specify one of the following message references as
msg:

num sequence first
prev cur
next last

The default message is the current message in the current
folder.

Uses the form contained in the specified file. comp treats
each line in file as a format string.

Displays help information for the command.

Places the draft in the file user—mh_directory/draft.
Suppresses the initial edit.

Creates a new message.

Does not invoke a program that guides you through the
composing tasks. The -nowhatnowproc flag also prevents
any edit from occurring.

Continues composing an existing draft of a message.

Invokes cmdstring as the program to guide you through the
composing tasks. See “whatnow” on page 1215 for
information about the default whatnow program and its
subcommands.

Note: If you specify whatnow for cmdstring, comp invokes
an internal whatnow procedure rather than a program with
the file name whatnow. '

Commands 187

comp

Profile Entries

Draft-Folder: Sets your default folder for drafts.
Editor: Sets your default initial editor.
fileproc: Specifies the program used to refile messages.
Msg-Protect: Sets the protection level for your new message files.
Path: Specifies your user—_mh_directory.
whatnowproc: Specifies the program used to prompt
What now?
questions.
Files
Jusr/lib/mh/components The system default message form.

user—mh_directory/components The user’s default message form. (If it exists, it

overrides the system default message form.)
$HOME/.mh_profile The MH user profile.
user_mh_directory/draft The draft file.

Related Information

Other MH commands: “ali” on page 48, “dist” on page 336, “forw” on page 438,
“prompter” on page 778, “repl” on page 821, “refile” on page 817, “send” on page 893,
“whatnow” on page 1215, “whom” on page 1222.

The mh-alias, mh-format, and mh-profile files in AIX Operating System Technical
Reference.

The “Overview of the Message Handling Package” in Managing the AIX Operating System.

188

confer

confer

Purpose

Provides an online conferencing system.

Syntax
-n$LOGNAME user
confer —.>»‘p<25;r etty num
—n name etty num
joinconf — name —i
OL805174
Description

The confer command sets up an online, written conference among logged-in users on your
local node. You start a conference by running the confer command, specifying the users
and/or work stations (@ttynum) that are part of the conference. If the users you specify
are logged in and their work stations are writable, they are requested to join the
conference by using the joinconf command. The other conferees are informed as each user
joins the conference.

Once you join a conference, everything you enter at your work station displays at all other
work stations that are part of the conference. This display continues until you press
Ctrl-D to end your own active participation or until you excuse a conference participant,
thus stopping the display of your contributions at his work station. (See page 190.)

To prevent the confusion that can be caused by several conferees typing at the same time,
users should follow some agreed on protocol. The following is one recommended protocol:

e In order to take the floor, a user presses the Enter key before entering his
contribution. This notifies other participants that he has the floor because his name
displays in brackets at their respective work stations.

® A user is presumed to have the floor until he relinquishes it by entering a blank line.

e If two or more users try to claim the floor at the same time, the last person to do so
(the one whose name appears last), is assumed to have the floor. The others should
immediately relinquish the floor by typing single blank lines.

Commands 189

confer

190

The confer command gives each conference a unique name, normally the name of the
conference leader, with additional letters added to it, if necessary. The conference leader
can override this default by specifying the -n flag.

A user who is logged in to more than one work station is normally written to on all of
them, unless the conference leader specifies one of the work stations with the @ttynum
flag when he invokes confer.

A conferee ends his active participation by pressing Ctrl-D. This action causes his name
and the word BYE to display at the work stations of the other conference participants.
However, the contributions of the other participants will continue to display at his work
station until the other participants each excuse him.

You can run shell commands from within a conference by simply prefixing them with a |
(vertical bar) or an ! (exclamation point). Using the exclamation point causes the
command to run in the normal fashion; the output displays only at the work station that
runs it. Using the vertical bar, however, causes the command and all of its standard
output and standard error output to become part of the conference, visible to all conferees.

Three subcommands are run directly by confer and joinconf. These are:

lexcuse name . . . Excuses the specified conferees from the conference. No further
conference material displays at these work stations.

1~ Makes all contributions from the user who issues it off the record
until he issues the !~~ subcommand.

Ve Cancels a preceding !~, placing the user’s remarks back on the
record.

Unless the conference leader makes a conference off the record by specifying the ~ flag,
confer makes a transcript of all conference proceedings. When a participant leaves the
conference, he is asked whether he wants a transcript. If he does, he is mailed a copy
when the conference concludes. Any participant can make a comment off the record in a
conference that is otherwise on the record by beginning the line with a ~ (tilde).

Conference contributions are normally transmitted one line at a time. If the conference
leader specifies the -v flag, transmission occurs one character at a time. As this mode of
transmission sends all user typing errors and hesitations and imposes a considerably larger
load on the system, its use is strongly discouraged.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

confer

Flags

-nname Assigns name to the conference transcript. The conference name is used by

=V

those joining the conference so that they get into the right one. The name of
the user who starts the conference is the default conference name.

Transmits conference messages one character at a time.

Sets up the conference off the record, that is, no transcript of the proceedings
is recorded.

@ttynum Specifies a particular work station for a conferee, if a user is also specified (for

example, ttyl). This is useful if a conferee is logged in to more than one work
station. If no user is specified, this flag invites any user logged in to the
specified work station to participate.

Examples

1.

To start a conference with steve and rachel:
confer steve rachel

Running the confer command makes you the conference leader, so your login name is

also the name of the conference. confer sends steve and rachel a message inviting
them to join your conference and giving them the conference name.

To specify work stations that may join the conference:
confer steve@tty5 rachel Pttyl0

Suppose that steve is logged in at the work stations tty3, tty4, and tty5, and that
rachel is logged in at tty7 and tty8. This command invites steve to join the

conference at work station tty5 only, invites rachel to join at either work station she
is using or at both, and invites whoever is logged in at tty10 to join.

To join a conference named paula:
joinconf paula

Now the text you type becomes part of the dialog: prefixed with your name, displayed
at each participant’s work station, and recorded in the transcript of the conference.

Suppose that you start a conference by entering the command given in Example 2, and
the person using ttyl0 decides not to join the conference. If you do nothing, this
person also sees the dialog, even though not participating in it. To prevent this from
happening, each person that has joined the conference must enter:

lexcuse @ttyl0

Commands 191

confer

192

Similarly, if rachel decides to join the conference from tty7, the discussion is also
displayed at her other work station, tty8, unless everyone enters:

lexcuse rachel@tty8

rachel should enter this, too, but only at tty7, the work station she is using for the
conference.

To make a single-line statement off the record:
~Coffee and donuts at my place.

confer displays lines beginning with ~ (tilde) at participants’ work stations, but does
not include them in the record of the conference.

To make a multiple-line statement:
| -

éveryone is invited
to my place after the conference
for coffee and donuts.

) o o
To run a shell command privately, without leaving the conference:
114

This lists the current directory without including the li command or its output in the
conference.

To include the output of a shell command in the discussion:
icat notes.conf

This lists the contents of the file notes.conf at each participant’s work station, and
includes it in the conference record.

To send command output to others, off the record:
J o

icat notes.conf

!~~

To leave the conference, press Ctrl-D. If your user name is paula, then after you
press Ctrl-D, the message: [paula] BYE is sent to the other participants. The rest
of the discussion continues to appear at your work station until each of the other
participants enters:

lexcuse paula

confer

Files

[etc/utmp
/dev/tty??
[tmp/*.cnf
[tmp/*.In?
/tmp/*.mls

List of logged-in users.

Work station names.

User transcript files.

Links to main conference file.
Transcript mailing list.

Related Information

The following command: “write” on page 1225.

Commands

193

config

config

Purpose

Extracts configuration information from configuration files.

Syntax
-m /etc/master -c conf.c -1 specials
config }—C systemfile —
-m mfile — —c¢ cfile -l spfile
01805416
Description

The config program reads the AIX master and system configuration files (by default
/etc/master and the specified systemfile). It writes a C Language configuration file and a
special file list (by default conf.c and specials). The special file list is a list of the
mknod, chown, and chmod commands that the shell runs to define the necessary special
files. The return code is the number of errors encountered.

The C Language configuration file can then be compiled and linked with other kernel
object files to produce a new kernel. Normally, when you want to reconfigure the kernel,
you should run the make command with the Makefile supplied in the /usr/sys directory.
This runs config and then builds a new kernel. For a discussion of reconfiguring the
kernel, see Managing the AIX Operating System.

Flags

-c¢ cfile Writes the C configuration file to cfile instead of to conf.c.
-1 spfile Writes the special file list commands to spfile instead of to specials.

-m mfile Reads mfile instead of /etc/master.

Files

/etc/master Default master configuration file.
[etc/system A system configuration file.
conf.c Default C configuration file.
specials Default special file list.

194

config

Related Information

The following commands: “make” on page 625 and “vrmconfig” on page 1206.
The master and system files in AIX Operating System Technical Reference.

The discussion of config in Managing the AIX Operating System.

Commands 195

conflict

conflict

Purpose

Searches for alias and password conflicts.

Syntax
search /usr/mail
/usr/lib/mh/conflicf«(
—-mail user —search directory
‘_Cusr/lib/mh/MoilAlioses—>_
: file
/usr/lib/mh/conflict — —help —
AJ2FL225
Description

196

The conflict command is used to find conflicts in aliases and to find invalid mail drops.
conflict is not designed to be run directly by the user; it is designed to be called by cron
and other programs used for system accounting. conflict is a system administrator
command that is usually invoked by its full path name. The conflict command is part of
the MH (Message Handling) package.

The conflict command searches all specified alias files for duplicate alias names that do
not resolve to the same address. By default, conflict searches /usr/lib/mh/MailAliases.
conflict also searches all specified mail drop directories for mailbox files with names that
do not correspond to valid users defined in /etc/passwd.

The conflict lists its output on the display, unless you specify the -mail flag. -mail causes
conflict to mail its output to the specified user.

conflict

Flags
-help Displays help information for the command.
-mail user Sends the results of the conflict command to the specified user.
-search directory Searches the indicated directories for invalid mailboxes. You can
specify any number of -search flags. The default mailbox directory is
/jusr/mail.
Files
Jusr/lib/mh/mtstailor The MH tailor file.
Jetc/passwd List of users.
[etc/group List of groups.
/usr/mail/$USER The location of the mail drop.

Related Information

Other MH commands: “ali” on page 48, “wWhom” on page 1222.

The mh-alias, mh-mail, and mh-profile files in AIX Operating System Technical
Reference.

The “Overview of the Message Handling Package” in Managing the AIX Operating System.

Commands 197

connect

connect

Purpose

Establishes a connection to a remote system.

Syntax

connect — —b —m—rmfhost —
file :

=z0
connect ;
—iname —mprompt
-wsec —parg
—targ —-xarg

rmthost
>—< lemd
—e—1 e file:rmthost ~rpgm
esc rate

OL805388

Description

198

The connect command lets you establish a connection to a remote host. connect runs in
two parts. The first part makes the connection with the remote system specified by
rmthost. The second part is a program called the talker. It runs automatically and
exchanges data with the rmthost. For more information about the talker program, see
“connect” in AIX Operating System Technical Reference. Any flags that you specify are
passed directly to the talker without interpretation. The default talker for asynchronous
links is atalk.

The connect command uses a system-wide control file, connect.con, located in
/usr/lib/INnet. You can specify an additional control file, file:rmthost. If you do not
specify an additional file, connect searches $HOME/bin for a connect.con file.
Information needed to complete the connection is found in one of these files.

Attributes needed to complete the connection are taken from the control file or from the
command line assignment var =val. For a description of the parameters, see “connect” in
AIX Operating System Technical Reference.

connect

Flags

When atalk detects an escape sequence in the input, it places the work station in its
former mode of operation and prompts you with the local prompt. You can then use the
flags that follow. Once the flag has run, atalk returns to its former mode.

The connect command does not limit access to the phone system to control dialing based
on the number to be called.

Warning: The connect command lets you set up and maintain
connections through a wide variety of communications devices. It
interacts with you through the file connect.con which is free-format.
Problems with the format of this file may cause unpredictable results.

Note: There are no spaces between the flags and the associated parameters.

-b

-q

-e[esc]

£
-h

-iname

Sends a break to the port. This is done by lowering the transmission speed to
75 bps and transmitting an ASCII NULL on the port. If the speed is too low,
less than 100 bps, this may not work.

Closes, quits (q) or disconnects (d) the port. Note that this does not end your
job or session at the remote site. After closing the port, connect exits.

Sets the escape sequence to the character string esc. If you do not specify esc,
connect displays escape sequence. It takes the default escape sequence from
the environment variable CONESC, if defined, or else sets it to:

Ctrl-VuCtrl-M

Enables (-h) or disables (-f) local echoing.

Writes file name to the port.

Warning: If you are connected to the remote host by RS-232
lines, data from the file may be lost if the remote host cannot
keep up with the input.

Normally, this flag is used to transfer a small file from the local site to the
remote site. File transmission must be ended manually by pressing Ctrl-D.

Commands 199

connect

200

-mprompt

-parg

-rpgm

-srate

-targ

-wsec

-xarg

lemd

For example:

cat > newfile
[escape sequence]
LOCAL: ifred

Ctrl-D

Set the local prompt to the prompt character string. connect displays this
prompt when it recognizes the escape sequence. By default, it sets the prompt
to the value of the environment variable CONPMT. If this variable is not set,
it uses the string LOCAL:.

Sets parity as specified by arg, where arg is one of the following characters: o
(odd), e (even), 7 (both even and odd), or 8 (eight data bits).

Runs the network program pgm. Anything following pgm on the command line
is passed to pgm as an argument, along with the additional arguments -i3 -03.
The port set up as file descriptor 3. The program is run as a child process.

Sets the transmission speed to rate, which is one of the following: 0, 50, 75,
110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, exta, extb (0 effectively
turns off the port). If you do not specify rate, current transmission speed
displays.

Enables or disables transcripts. If arg is any character string other than a
minus or plus sign, the transcript function is enabled with the specified file
arg as transcript. When you use an existing file as a transcript file, new data
is added to its end. Use t- to disable the transcript function, and t+ to enable
the transcript to the previous transcript file (no default).

Sets the inter-line delay of the include function to cause a delay interval of the
specified seconds between each line written to the port. The default value is 0.

Enables or disables input or output flow control. If the input flow control is
enabled, CTRL-S and CTRL-Q are automatically sent to the remote host to
control the rate at which it transmits data. If the output flow control is
enabled, CTRL-S and CTRL-Q are automatically honored if received from the
host. This is useful when using the include command. xi+ enables input
flow control. xi— disables input flow control. xi displays the current state.
For control of output flow control, replace xi with xo. See the discussion of
IXON and IXOFF in the termio file in AIX Operating System Technical
Reference.

Runs the AIX command emd. Anything that follows ! (exclamation point),
including arguments to cmd, is passed to the local shell to be run by the
system system call. In particular, all I/O redirection and piping works.

connect

Files

[usr/lib/INnet/connect.con
$HOME/bin/connect.con
Jusr/lib/INnet/dialers/*
$HOME/bin/*
[usr/lib/INnet/atalk
[etc/sites

[etc/locks

Related Information

System-wide connection control file.

Private connection control file.

System-wide dialer programs.

Private dialer programs.

Default talker program, asynchronous lines.

Network sites file.

Directory for locks on ports (devices) used for logins and
out-going connections.

The system and exec system calls, the connect subroutine, and the termio special
facility in AIX Operating System Technical Reference.

Commands 201

cp

Ccp

Purpose

Copies files.

Syntax
one of
ol outdirectory
infile[T
cp T_____J ‘.>——4
infile — outfile
OL805100
Description

The cp (copy) command copies a source file or the files in a source directory to a target file
or directory. If your output is to a directory, then the files are copied to that directory
with the same file name. If either infile or outfile is a symbolic link, the link is followed
when cp is performed. An error message is displayed if the link cannot be followed.

You can also copy special device files. If the file is a named pipe, the data in the pipe is
copied into a regular file. If the file is a device, the file is read until the end of file and
that data is copied into a regular file.

Notes:
1. Do not name outfile as one of the input files.
2. If you specify a directory for the outfile, the directory must already exist.

3. If the infile contains subdirectories and the subdirectories do not exist, the system
creates them.

Flags

-p Preserves the modification times and modes of the infile for the copy.

-r Copies each subtree rooted at the infile (recursive copy). If the infile is a directory,
then the outfile must be a directory.

-- Indicates that the arguments following this flag are to be interpreted as file names.
This null flag allows the specification of file names that start with a minus.

202

cp

Examples

1.

To make another copy of a file in the current directory:

cp prog.c prog.bak

This copies prog.c to prog.bak. If the file prog.bak does not already exist, then cp
creates it. If it does exist, then cp replaces it with a copy of prog.c.

To copy a file to another directory:

cp Jjones /u/nick/clients

This copies jones to /u/nick/clients/jones.

To copy a file to a new file and preserve the modification date and time:

cp -p smith smith.jr

This copies sSmith to smith. jr. Instead of creating the file with the current date and
time stamp, the system gives smith.jr the same date and time as smith.

To copy all the files in a directory to a new directory:

cp /u/nick/clients/* /u/nick/customers

This copies the files and directories in the directory clients to the directory
customers.

To copy a directory, its files and its subdirectories to another directory:
cp -r /u/nick/clients /u/nick/customers

This copies the directory clients, its files, its subdirectories, and the files in the
subdirectories to the directory customers.

To copy a specific set of files to another directory:

cp Jjones lewis smith /u/nick/clients

This copies jones, lewis, and smith to /u/nick/clients.
To use pattern-matching characters to copy files:

cp programs/*.c

This copies the files in directory programs that end with .C to the current directory
(.). You must type a space between the C and the final period.

Commands 203

cp

Related Information

The following commands: “cpio” on page 205, “link, unlink” on page 575, “In” on
page 581, and “mv” on page 679.

204

cpio

Cp10
Purpose
Copies files into and out of archive storage and directories.
Syntax
cpio—— -0 4 = ; one of
c B
I v I Cvalue
OL805175
H*Il
cpio — —i
pattern
01805350
cpio— —p directory —
1 adlm
ruy
' Do not put a blank between these items.
OL805351
Description

Warning: If you redirect the output from cpio to a special file (device),
you should redirect it to the raw device and not the block device. Because
writing to a block device is done asynchronously, there is no way to know
if the end of the device has been reached.

Commands 205

cpio

Flags

206

cpio -o

This command reads file path names from standard input and copies these files to standard
output along with path names and status information. Path names cannot exceed 128
characters. Avoid giving cpio path names made up of many unique linked files as it may
not have enough memory to keep track of them and so would lose linking information.

cpio -i

This command reads from standard input an archive file created by the cpio -0 command
and copies from it the files with names that match pattern. These files are copied into the
current directory tree. You may list more than one pattern, using the file name notation
described under “sh” on page 913. Note, however, that in this application the special
characters * (asterisk), ? (question mark), and [. . .] (ellipse) match the / (slash) in
path names, in addition to their use as described under “sh” on page 913. The default
pattern is * (select all files in the current directory). In an expression such as [a-z], the
minus means “through” according to the current collating sequence.

A collating sequence may define equivalence classes for use in character ranges. See the
“Overview of International Character Support” in Managing the AIX Operating System for
more information on collating sequences and equivalence classes.

Japanese Language Support Information

Note: A collating sequence in Japanese Language Support does not define equivalence
classes for use in range expressions. To avoid unpredictable results when using a range
expression to match a class of characters, use a character class expression rather than a
standard range expression. For information about character class expressions, see the
discussion of this topic in “ed” on page 371.

cpio -p

This command reads file path names from standard input and copies these files into the
named directory. The specified directory must already exist. If these path names include
directory names and if these directories do not already exist, you must use the d flag to
cause the directory to be created.

Note: You can copy special files only if you have superuser authority.

All flags must be listed together, without any blanks between them. Not all of the
following flags can be used with each of the -o, -i, and -p flags.

cpio

Cualue

Resets the access times of copied files to the current time.
Swaps both bytes and halfwords.

Note: If there are an odd number of bytes or halfwords in the file being
processed, data can be lost.

Performs block input/output, 5120 bytes to a record.
Writes header information in ASCII character form.
Performs block input/output, value * 512 bytes to a record.

Note: The C flag and the B flag are mutually exclusive. If you list both, epio
uses the last one it encounters in the flag list.

Creates directories as needed.
Copies all files except those matching pattern.

Links files rather than copies them, whenever possible. This flag is usable only
with cpio -p.

Retains previous file modification time. This flag does not work when copying
directories.

Renames files interactively. If you do not want to change the file name, enter the
current file name or press the Enter key only. In this last case, cpio does not
copy the file.

Swaps bytes. This flag is usable only with cpio -i.

Note: If there are an odd number of bytes in the file being processed, data can
be lost.

Swaps halfwords. This flag is usable only with cpio -i.

Note: If there are an odd number of halfwords in the file being processed, data
can be lost.

Creates a table of contents. This does not copy any files.

Copies unconditionally. An older file now replaces a newer file with the same
name. ‘

Lists file names. If you use this with the t flag, the output looks similar to that of
the Is -1 command.

Processes an old file (one written in UNIX Sixth Edition format). This flag is
usable only with cpio -i.

Commands 207

cpio

Examples

208

1.

To copy files onto diskette:
cpio -ov <filenames >/dev/rfd0

This copies the files with path names that are listed in the file filenames in a
compact form onto the diskette (> /dev/rfd0). The -v flag causes cpio to display the
name of each file as it is copied. This command is useful for making backup copies of
files. The diskette must already be formatted, but it must not contain a file system or
be mounted.

To copy files in the current directory onto diskette:

s *.c | cpio -ov >/dev/rfd0

This copies all the files in the current directory whose names end with . C.
To copy the current directory and all subdirectories onto diskette:

find . -print | cpio -ov >/dev/rfd0

This saves the directory tree that starts with the current directory (.) and includes all
of its subdirectories and files. A faster way to do this is:

find . -cpio /dev/rfd0 -print

The -print displays the name of each file as it is copied.

To list the files that have been saved onto a diskette with cpio:
cpio -itv </dev/rfd0

This displays the table of contents of the data previously saved onto /dev/rfd0 in cpio
format. The listing is similar to the long directory listing produced by li -1. To list
only the file path names, use only the -it flags.

To copy the files previously saved with cpio from a diskette:
cpio -idmv </dev/rfd0

This copies the files previously saved onto /dev/rfd0 by epio back into (-i) the file
system. The -d flag allows cpio to create the appropriate directories if a directory tree
was saved. The -m flag maintains the last modification time that was in effect when
the files were saved. The -v causes cpio to display the name of each file as it is copied.

cpio

6. To copy selected files from diskette:
Cpipg =1 Nk el ik gt fdev/rrd0
This copies the files that end with .C or .0 from diskette. Note that the patterns

"*. c" and "*.0" must be enclosed in quotation marks to prevent the shell from

treating the * as a pattern-matching character. This is a special case in which cpio
itself decodes the pattern-matching characters.

7. 'To rename files as they are copied from diskette:
cpio =-ir </dev/rfd0

The -r flag causes cpio to ask you whether or not to rename each file before copying it
from diskette. For example, the message:

Rename <prog.c>

asks whether to give the file saved as prog.c a new name as it is copied in. To
rename the file, type the new name and press Enter. To keep the same name, you
must enter the name again. To avoid copying the file at all, press the Enter key alone.

8. To copy a directory and all of its subdirectories:

mkdir /u/jim/newdir
find . =-print | cpio -pdl /u/jim/newdir

This duplicates the current directory tree, including the current directory and all of its
subdirectories and files. The duplicate is placed in the new directory /u/jim/newdir.
The -1 flag causes cpio to link files instead of copying them, when possible.

Related Information

The following commands: “ar” on page 55, “find” on page 422, and “In” on page 581.

The cpio system call in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.
The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

Commands 209

cpp

VY Y

Purpose

Performs file inclusion and macro substitution on C Language source files.

Syntax

) 1
/lib/cpp - }‘%—D name%{
:P = -U name =D name= def infile
—1 diF outfile

"The default def is 1.

OL805378
Description

The cpp program is the C Language preprocessor. It reads infile and writes to outfile
(standard input and standard output by default). Although you can use this preprocessor
by itself, it is best to use it through the cc command, which by default sends a C Language
source file to epp as the first pass in compilation.

The cpp program recognizes two special names, -_LINE__ (the current line number) and
——FILE__ (current file name). These names can be used anywhere just as any other
defined name.

All cpp directive lines must begin with a hash sign (#). These directives are:

#define name token-string
Replaces subsequent instances of name with token-string.

#define name(arg, . . . ,arg) token-string
Replaces subsequent instances of the sequence name (arg, . . . ,arg)
with token-string, where each occurrence of an arg in token-string is
replaced by the corresponding token in the comma-separated list. Note
that there must not be any space between name and the left
parenthesis.

#undef name Ignores the definition of name from this point on.

210

cpp

#include "file”
#include <file>

#line num ["file”]

#endif

#ifdef name

#ifndef name

#if expr

#else

Includes at this point the contents of file, which cpp then processes.

If you enclose file in " ", (double quotation marks) epp searches first
in the directory of infile, second in directories named with the -I flag,
and last in directories on a standard list .

If you use the <file> notation, cpp searches for file only in the
standard places. It does not search the directory in which infile
resides.

Includes line control information for the next pass of the C compiler.
num is the line number of the next line and file is the file from which
it comes. If you omit “file”, the current file name remains unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

Places the subsequent lines in the output only if name has been
defined by a previous #define and has not been undefined by an
intervening #undef.

Places the subsequent lines in the output only if name has not been
defined by a previous #define or has been undefined by an intervening
#undef.

Places subsequent lines in the output only if expr evaluates to nonzero.
All the binary nonassignment C operators, the ?: operator, and the
unary -, !, and ~ operators are legal in expr. The precedence of the
operators is the same as that defined in the C Language. There is also
a unary operator defined, which can be used in expr in these two
forms:

defined (name)
defined name

This allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by cpp
should be used in expr. The sizeof operator is not available.

Places subsequent lines in the output only if the expression in the
preceding #if directive evaluates to False (and hence the lines
following the #if and preceding the #else have been ignored).

You can nest the test directives and the possible #else directives.

Commands 211

cpp

Flags

-C

Copies source file comments to the output file. If you omit this flag, cpp
removes all comments (except those found on cpp directive lines).

-Dname[=def] Defines name as in a #define directive. The default def is 1.

-Idir Looks first in dir, then looks in the directories on the standard list for

#include files with names that do not begin with a / (slash). See the
previous discussion of #include.

-P Preprocesses input without producing line control information for the
next pass of the C compiler.
-Uname Removes any initial definition of name, where name is a reserved symbol
predefined by the preprocessor.
Examples
1. To display the text that the preprocessor sends to the C compiler:
/1ib/cpp pgm.c
This preprocesses pgm. C and displays the resulting text at the work station. You may
want to see the preprocessor output when looking for errors in your macro definitions.
2. To create a file containing more readable preprocessed text:
/1ib/cpp -P -C pgm.c pgm.i
This preprocesses pgm. C and stores the result in pgm.i. It omits line numbering
information intended for the C compiler (-P), and includes program comments (-C).
3. To predefine macro identifiers:
/1ib/cpp -DBUFFERSIZE=512 -DDEBUG pgm.c pgm.i
This defines BUFFERSIZE with the value 512 and DEBUG with the value 1 before
preprocessing.
4. To use #include files located in nonstandard directories:

212

/1ib/cpp =-I/u/jim/include pgm.c

This looks in the current directory for quoted #include files, then in
/u/jim/include, and then in the standard directories. It looks in /u/jim/include
for angle-bracketed #include files (< >) and then in the standard directories.

Cpp

Files

[usr/include Standard directory for #include files.

Related Information

The following commands: “ce” on page 140 and “m4” on page 603.

Commands 213

craps

craps

Purpose

Plays craps.

Syntax

/usr/games/craps —i
OL805188

Description

214

The craps game plays a form of the game of craps that is played in Las Vegas. It simulates
the roller while you place bets. Bet with the roller by making a positive bet or with the
House by making a negative bet.

You start with a $2000 bankroll. When the program prompts with bet?, you may bet all
or part of your bankroll. If you bet more than your bankroll, the program repeats the
prompt until you make a legal bet. Then the roller throws the dice. The payoff odds are
one to one. The player wins depending on whether the bet is placed with the roller or with
the House. The first roll is the roll immediately following a bet.

The following rules apply. On the first roll, 7 or 11 wins for the roller; 2, 3, or 12 wins for
the House; and any other number becomes the point and you roll again (the next rule then
applies). On subsequent rolls, the point wins for the roller; 7 wins for the House; and any
other number rolls again.

If you lose your bankroll, the House prompts marker?, offering to lend you an additional
$2000. Accept the loan by responding Yy or yes. Any other response ends the game. When
you hold markers, the House reminds you before a bet how many markers are outstanding.
When you have markers and your bankroll exceeds $2000, craps asks Repay marker? If
you want to repay part or all of your loan, respond with y (or yes). If you have more than
one marker, craps asks you How many? If you respond with a number greater than the
number of markers you hold, it repeats the prompt until you enter a valid number. If you
accumulate 10 markers (a total loan of $20,000), craps tells you so and exits. If you
accumulate a bankroll of more than $50,000 while holding markers, the money owed is
repaid automatically.

A bankroll of more than $100,000 breaks the bank, and craps will prompt New game? To
quit the game, press INTERRUPT (Alt-Pause); craps displays whether you have won, lost,
or broken even and exits.

crash

crash

Purpose

Examines system images.

Syntax
/dev/mem
crash ——C }—
system

Description

OL805101

The crash command is an interactive utility for examining an operating system image (a
core image or the running kernel). It has facilities for interpreting and formatting control
structures in the system and certain miscellaneous functions useful for examining a dump.

The system parameter specifies the file that contains the system image and the kernel
symbol definitions. You can run crash with no arguments to examine an active system.
The default value is /dev/mem. If you specify a system-image file, crash assumes it is a
system dump file and sets the default process to the process running at the time of the
crash.

Notes:

1. When using crash to identify the flags it uses, a source listing of system header files
may be helpful.

2. Stack tracing of the current process on a running system does not work.

The crash command recognizes the following aliases in subcommand format specifications.

Format Aliases Format Aliases Format Aliases
byte b hexadecimal hexadec, hex, h, x octal oct, o
character char, ¢ inode ino, i write w
decimal dec, e longdec 1d, D

directory direct, dir,d longoct lo, O

Commands 215

crash

Subcommands

216

The crash command presents a prompt (>) when it is ready to interpret subcommands
entered at the work station. The general subcommand format for crash is:

subcommand [flags] [structures to be displayed]

When allowed, flags modify the format of the data displayed. If you do not specify which
structure elements you want to examine, all valid entries are displayed. In general, those
subcommands that perform I/O with addresses assume hexadecimal notation.

Most of the subcommands recognized by crash have aliases (abbreviated forms that give
the same result). crash recognizes the following subcommands:

buf [buffer-header] . . .
Displays the system buffer headers.

buffer [format] [buffer] . . .
Displays the data in a system buffer according to format. If you do not provide a
format parameter, the previous format is used. Valid formats include decimal,
octal, hex, character, byte, directory, i-node and write. The write format
creates a file in the current directory containing the buffer data.

callout Aliases: calls, call, ¢, timeout, time, tout
Displays all entries in the callout table.

cm [slot-number segment-number]
If you specify the process slot-number and segment number, this subcommand
changes the map of crash internal pointers for any segment of a process not
swapped out. This allows the od subcommand to display data relative to the
beginning of the segment desired. If you enter cm without any parameters, cm
resets the map (equivalent of a reset subcommand). Use only when analyzing the
currently running system.

ds [data-address] . . .
Finds the data symbols closest to the given addresses.

du [slot-number]
Uses the specified process slot number to display a combined hex and ASCII dump
of the user block for any process that has not been swapped out. The default is the
current process.

crash

file [file-table-entry] . . . Aliases: files, f
Displays the file table. Unless specific file entries are requested, only those with a
nonzero reference are displayed.

fs [slot-number]
Traces a kernel stack for the process specified by the process slot number for any
process that has not been swapped out. Displays the called subroutines with a hex
dump of the stack frame for the subroutine which contains the parameters passed
to the subroutine. The default process is the currently running process.

inode [-] [i-node-table-entry] . . . Aliases: ino, i
Displays the i-node table. The - flag also displays the i-node data block addresses.
Unless specific i-node entries are requested, only those with a nonzero reference
are displayed.

map [map-name] . . .
Displays the named system map structures.

mount [mount-table-entry] . . . Aliases: mnt, m
Displays the mount table. Unless specific mount table entries are requested, only
those in use are displayed.

nm [symbol] . . .
Displays symbol value and type as found in the kernel-image file.

od [symbol name or address] [count] [format]
Dumps count data values starting at the symbol value or address given according to
format. Allowable formats are octal, longoct, decimal, longdec, character, hex
or byte.

proc [-] [-r] [process-table-entry] . . . Aliases: ps, p
Displays the process table. (See the /usr/include/sys/proc.h file for this structure
definition.) The -r flag causes only runable processes to be displayed. The
- (minus) alone displays a longer listing.

Exits from crash.

reset Aliases: r
Reinitializes the crash data, takes another slice from /dev/mem, and updates the
process table. Any new processes created can be displayed. Use only when
analysing the currently running system.

Commands 217

crash

218

stack [process-table-entry] . . . Aliases: stk, s, kernel, k
Displays a dump of the kernel stack of a process. The addresses shown are virtual
data addresses rather than true physical locations. If you do not specify an entry,
information about the last running process is displayed. You can not trace the
stack of the current process on a running system.

stat
Displays statistics found in the dump. These include the panic message (if a panic
occurred), time of crash, and system name.

text [text-table-entry] . . . Aliases: txt, x
Displays the text table. Unless specific text entries are requested, only those with
a nonzero i-node pointer are displayed.

trace [process-table-entry] . . . Aliases: t

Displays a kernel stack trace of the current process. The trace starts at the bottom
of the stack and attempts to find valid stack frames deeper in the stack. If you do
not specify a process table entry, information about the last running process is
displayed.

ts [text-address] . . .
Finds the text symbols closest to the given addresses.

tty [type]l [-] [tty-entry] . . . Aliases: term, dz, dh
Displays the tty structures. The type parameter specifies which structure is used
(such as ksr, or rs). The last type entered with the tty command becomes the
default. The - flag displays the stty parameters for the given line.

user [process-table-entry] . . . Aliases: uarea, u—area, u
Displays the user structure of the named process as determined by the information
contained in the process table entry. (See the /usr/include/sys/user.h file for this
structure definition.) If you do not specify the entry, the information about the last
running process is displayed. Attempting to display a paged process produces an
error message.

var Aliases: tunables, tunable, tune, v
Displays the tunable system parameters.

vis [-] [vfs slot-number]
Uses the specified vfs slot number to display an entry in the vfs table. The - flag
displays the vnodes associated with the vfs. The default is to display the entire vfs
table.

vnode [vnode slot-number]
Uses the specified vnode slot number to display an entry in the vnode table. The
default is to display the entire vnode structure.

crash

Runs shell commands.

?
Displays summary of crash commands.
Files
[usr/include/sys/*.h Header files for table and structure information.
/dev/mem Default system-image file.
Junix Default kernel-image file.
buf.# Files containing buffer data.

Related Information

The following commands: “mount” on page 669, “nm” on page 705, “ps” on page 786,
“sh” on page 913, and “stty” on page 1018.

Commands 219

cron

cron

Purpose

Runs commands automatically.

Syntax

1
cron —i

' Not usually run from the command line, but included in /etc/rc.
0L805184

Description

Files

220

The cron command runs shell commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions contained in crontab files. You can
submit your crontab file via the crontab command (see page 222). Use the at command
(see page 63) to submit commands that are to be run only once. Because cron never exits,
it should be run only once. This is best done by running cron from the initialization
process through the /etc/rc command file (see page 806).

The cron command examines crontab files and at command files only during process
initialization and when a file changes. This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

The cron command also executes a sync system call approximately once a minute to
assure that all information in memory that should be on disk (buffered output) is written
out. These periodic updates minimize the possibility of file system damage in the event of
a crash. In addition, cron keeps a number of frequently used system directories open to
keep their i-nodes in kernel memory for faster access.

The cron command creates a log of its activities in /usr/lib/cron/log.

For a discussion of how to schedule commands, see “crontab” on page 222.

Jusr/lib/cron Main cron directory.
[usr/lib/cron/log Accounting information.
[usr/spool/cron Spool area.

/bin Directory kept open.
/lib Directory kept open.

cron

Jusr Directory kept open.
[usr/bin Directory kept open.
usr/lib Directory kept open.
Jete Directory kept open.
/tmp Directory kept open.

Related Information

The following commands: “at, batch” on page 63, “crontab” on page 222, and “rc¢” on
page 806.

The sync system call and the crontab file in AIX Operating System Technical Reference.

Commands 221

crontab

crontab

Purpose

Submits a schedule of commands to cron.

Syntax
crontab file
one of
=
-r
01805003
Description

222

The crontab command copies the specified file, or standard input if you do not specify a
file, into a directory that holds all users’ crontab files. The cron command runs
commands according to the instructions in these crontab files. It then mails you the
output from standard output and standard error for these commands, unless you redirect
standard output or standard error. When entries are made to a crontab file, all previous
entries are erased.

You may use crontab if your logname appears in the file /usr/lib/cron/cron.allow. If
that file does not exist, crontab checks the file /usr/lib/cron/cron.deny to determine if
you should be denied access to crontab. If neither file exists, you can submit a job only if
you are operating with superuser authority. The allow/deny files contain one user name
per line.

Notes:

1. If your login ID is associated with more than one login name, crontab uses the first
login name that appears in the /etc/passwd file, regardless of which login name you
might actually be using.

2. If cron.allow exists, the superuser’s log name must appear there for the superuser to
be able to use the command.

crontab

Flags

Each crontab file entry consists of a line with six fields, separated by spaces and tabs, that
contain, respectively:

The minute (0-59)

The hour (0-23)

The day of the month (1-31)

The month of the year (1-12)

The day of the week (0-6 for Sunday-Saturday)
The shell command.

O s 001 B e

Each of these fields can contain:

® A number in the specified range

e Two numbers separated by a minus to indicate an inclusive range

e A list of numbers separated by commas, which selects all numbers in the list
e An asterisk, meaning all legal values.

Note that the specification of days may be made by two fields (day of the month and day of
the week). If you specify both as a list of elements, both are adhered to. For example, the
following entry:

001,15 * 1 command

would run command on the first and fifteenth days of each month, as well as every
Monday. To specify days by only one field, the other field should contain an *.

The eron command runs the command named in the sixth field at the selected date and

time. If you include a % (percent sign) in the sixth field, cron treats everything that
precedes it as the command invocation and makes all that follows it available to standard
input, unless you escape or quote the percent sign (\% or "%").

Note: The shell runs only the first line of the command field (up to a % or end of line). All
other lines are made available to the command as standard input.

The cron command invokes a subshell from your $HOME directory. This means that it
will not run your .profile file. If you schedule a command to run when you are not logged
in and you want to have commands in your .profile run, you must explicitly do so in the
crontab file. (For a more detailed discussion of how sh can be invoked, see “sh” on

page 913).

cron supplies a default environment for every shell, defining HOME, LOGNAME, SHELL
(=/bin/sh), and PATH (=:/bin:/usr/bin).

-1 Lists your crontab file.

-r Removes your crontab file from the crontab directory.

Commands 223

crontab

Examples

The following examples show valid crontab file entries.
1. To write the time to the console every hour on the hour:
0 * * * * echo The hour 1is ‘date'. >/dev/console

This example uses command substitution. For more information, see “Command
Substitution” on page 925.

2. To run calendar at 6:30 a.m. every Monday, Wednesday, and Friday:
30 6 * * 1,3,5 /usr/bin/calendar -
3. To define text for the standard input to a command:
0 16 10-31 12 5 /etc/wall%HAPPY HOLIDAYS!%Remember to turn in your time c

This writes a message to all users logged in at 4:00 p.m. each Friday between December
10th and 31st.

The text following the % (percent sign) defines the standard input to the wall command
as:

HAPPY HOLIDAYS!
Remember to turn in your time card.

Files
Jusr/lib/cron Main cron directory.
[usr/spool/cron/crontabs Spool area.
[usr/lib/cron/cron.allow List of allowed users.
/usr/lib/cron/cron.deny List of denied users.

Related Information

The following commands: “cron” on page 220 and “sh” on page 913.

224

csh

csh
Purpose
Interprets commands read from a file or entered from the keyboard.
Syntax
one of
- " d t ¥ "
csh ‘{fne oi>-<\one of _: “ie we
-V =X -t
-V -X
OL805447
Description

The e¢sh command is a system command interpreter and programming language that
incorporates a history mechanism and a C-like syntax. Like the sh command, it is an
ordinary user program that reads commands typed at the keyboard and arranges for their
execution. In addition, it can read commands from a file, usually called a shell procedure
or a command file.

When you run csh, it begins by executing commands from the file .cshrc in your home
directory, if it exists. If, on the other hand, csh runs as a login shell, it executes
commands from your .cshre file and your .login file.

Commands

A simple command is a sequence of words separated by single blanks or tabs.

Japanese Language Support Information

Words can also be separated by double blanks.

A word is a sequence of characters and/or numerals that does not contain blanks without
quotation marks. In addition, the following characters and doubled characters also form
single words when used as command separators or terminators:

Commands 225

csh

226

&] ! < >
&& 1 KL >

These special characters may be parts of other words. Preceding them with a \ (backslash),
however, prevents the shell from interpreting them as special characters. When the shell
is not reading input from a work station, it treats any word that begins with a # (number
sign) as a comment and ignores that word and all characters following up to the next
new-line character. Strings enclosedin ' ' or " " (matched pairs of quotation characters)
or ' ' (grave accents) can also form parts of words. (Blanks, tab characters, and special
characters do not form separate words when they are found within these quotation marks.)
In addition, within ' ' or " " (pairs of single or double quotation marks), you may

include the new-line character by preceding it with \ (backslash).

The first word in the simple-command sequence (numbered 0), usually specifies the name of
a command. Any remaining words, with a few exceptions, are passed to that command. If
the command specifies an executable file that is a compiled program, the shell immediately
runs that program. If the file is marked executable but is not a compiled program, the
shell assumes that it is a shell procedure. In this case it spawns another instance of itself
(a subshell), to read the file and execute the commands included in it.

A pipeline is a sequence of one or more commands separated by a | (vertical bar). The
output of each command in a pipeline provides the input to the next command.

A list is a sequence of one or more pipelines separated by a ; (semicolon), & (ampersand),
&& (two ampersands), or i (two vertical bars) and optionally ended by a ; (semicolon) or
an & (ampersand). These separators and terminators have the following effects:

: Causes sequential execution of the preceding pipeline (the shell waits for the
pipeline to finish).

& Causes asynchronous execution of the preceding pipeline (the shell does not wait
for the pipeline to finish).

&& Causes the list following it to be executed only if the preceding pipeline returns a
zero exit value.

Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

Note: The c¢d command is an exception. If it returns a nonzero exit value, no
subsequent commands in a list are executed, regardless of the separators.

The ; and & separators have equal precedence, as do && and ii. The single-character
separators have lower precedence than the double-character separators. A new-line
character without quotation marks following a pipeline functions the same as a ;
(semicolon). Place any of the above in parentheses to form a simple command.

csh

The shell associates a job with each pipeline. It keeps a table of current jobs and assigns
them small integer numbers. When you start a job asynchronously by terminating the

command with a &, the shell displays a line that looks like the following:
[1] 1234

This line indicates that the job number is 1 and that the job is composed of one process
with a process-ID of 1234. Use the built-in jobs command (page 243) to see what jobs are
currently running.

A job running in the background competes for input if it tries to read from the work
station. Background jobs can also produce output that competes for the work station and
is interleaved there with the output of other jobs.

There are several ways to refer to jobs in the shell. Use the % (percent) character to
introduce a job name. This name can be either the job number or the command name that
started the job, if this name is unique. So, for example, if a make process is running as
job 1, you can refer to it as %1. You can also refer to it as %make, if there is only one
suspended job with a name that begins with the string make. You can also use

%?:string
to specify a job whose name contains string, if there is only one such job.

The shell detects immediately whenever a process changes state. Whenever a job becomes
blocked so that further progress is not possible, a message is sent to the work station, but
not until just before the shell prompt. If, however, the notify shell variable is set (see
page 237), the shell issues a message that indicates changes in status of background jobs
immediately. Use the notify built-in command (page 244) to mark a single process so that
its status changes are immediately reported. By default, notify marks the current process.

History Substitution

History substitution lets you modify individual words from previous commands to create
new commands, thus making it easy to repeat commands, repeat the arguments of a
previous command in the current command, or fix spelling mistakes in the previous
command with little typing.

History substitutions begin with the ! (exclamation) character and may appear anywhere
on the command line, provided they do not nest (in other words, a history substitution
cannot contain another history substitution). You can precede the ! with a \ to prevent its
special meaning. In addition, if you place the ! before a blank, tab, new-line character, =
(equal sign), or ((left parenthesis), it is passed unchanged. History substitutions also
occur when you begin an input line with a * (circumflex). (This special abbreviation is
discussed on page 230.) The shell echoes any input line containing history substitutions at
the work station before it executes that line.

Commands 227

csh

228

The history list saves commands that the shell reads from the work station and that
consist of one or more words. History substitution reintroduces sequences of words from
these saved commands into the input stream.

The history shell variable (page 237) controls the size of the history list. You must set the
history shell variable either in the .cshre file or on the command line with the built-in
set command (page 245). The previous command is always retained, however, regardless of
the value of history. Commands in the history list are numbered sequentially starting
from 1. The built-in history command (page 242) produces output of the type:

9 write michael

10 ed write.c

11 cat oldwrite.c
12 diff *write.c

The command strings are shown with their event numbers. It is not usually necessary to
use event numbers to refer to events, but you can have the current event number displayed

as part of your system prompt by placing an ! in the prompt string assigned to the prompt
environmental variable (page 238).

A full history reference contains an event specification, a word designator, and one or
more modifiers in the following general format:

event[:Jword:modifier[:modifier] . . .
Note: Only one word can be modified. A string that contains blanks is not allowed.

In the previous sample of history command output, the current event number is 13. Using
this example, the following refer to previous events:

Event Specification

'10 Refers to event number 10

1-2 Refers to event number 11 (the current event minus 2)

'd Refers to a command word beginning with d (in this case event number 12)

1?mic? Refers to a command word that contains the string mic (in this case, event
number 9).

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case, ! | refers to the previous
command; the command !! alone on an input line reruns the previous command.

To select words from an event, follow the event specification with a : (colon) and one of the
following word designators (the words of an input line are numbered sequentially starting
from 0):

csh

Word Designator

0

n

A

$
%
x-y

¥
*

X

xX=-

The first word (the command name)

The nth argument

The first argument

The last argument

The word matched by an immediately preceding ?string? search
A range of words from the xth word to the yth word

A range of words from the first word (0) to the yth word

The first through the last argument, or nothing if there is only one word (the
command name) in the event

The xth through the last argument

Like x* but omitting the last word.

You may omit the colon that separates the event specification from the word designator if
the word designator begins with a *, $, *, -, or %. You can also place a sequence of the
following modifiers after the optional word designator, each preceded by a colon:

Modifier
h
r

e

s/lr/

Remove a trailing path name extension, leaving the head.
Remove a trailing “.xxx” component, leaving the root name.
Remove all but the trailing extension “.xxx.”

Substitute [for r. With substitutions, it is an error for no word to be
applicable.

The [(left) side of a substitution is not a pattern in the sense of a string
recognized by an editor; rather, it is a word, a single unit without blanks.
Normally, a / (slash) delimits the word (I) and its replacement (r). However,
you can use any character as the delimiter if you precede that character with
a \ (backslash). Thus, in the following example:

s\%/usr/myfile\%/usr/yourfile\%

the % becomes the delimiter allowing you to include the / in your word. If you

include an & in the replacement, it is replaced by the text from the left-hand
side (I). A null [side is replaced by either the last substitution or by the last

string used in the contextual scan ! ?string?. You may omit the trailing
delimiter (/) if a new-line character follows immediately.

Commands 229

csh

230

Remove all leading path name components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, that is, g&.

Display the new command, but do not run it.

Quote the substituted words, thus preventing further substitutions.

M e T | g e

Act like q, but break into words at blanks, tabs, and new-line characters.

Unless the modifier is preceded by a g, the change applies only to the first modifiable word.

If you give a history reference without an event specification, for example, !$, the shell
uses the previous command as the event, unless a previous history reference occurs on the
same line, in which case it repeats the previous reference. Thus, the following sequence:

t?2foo?” 1§
gives the first and last arguments of the command that matches ?f007?.

A special abbreviation of a history reference occurs when the first non-blank character of
an input line is a * (circumflex). This is equivalent to ! :S”, thus providing a convenient

shorthand for substitutions on the text of the previous line. The command *1b”*T11ib
corrects the spelling of 1ib in the previous command.

You can enclose a history substitution in {} (braces), if necessary, to insulate it from the
characters that follow. For example, if you want to use a reference to the command:

1s -1d ~paul

to perform the command:
1s -1d ~paula

use the following:

1{1}a

whereas ! 1a would look for a command starting with 1a.

Quoting with Single and Double Quotes

Enclose strings in single and double quotation marks to prevent all or some of the
substitutions that remain. Enclosing strings in ' ' (single quotation marks) prevents any
further interpretation. Enclosing strings in " " (double quotation marks) allows further
expansion. In both cases, the text that results becomes (all or part of) a single word. Only
in one special case does a string quoted by " " yield parts of more than one word; strings
quoted by ' never do (see “Command Substitution” on page 231).

csh

Command and File-Name Substitution

The shell performs command and file-name substitutions selectively on the arguments of
built-in commands. This means that it does not expand those parts of expressions that are
not evaluated. For commands that are not built-in, the shell substitutes the command
name separately from the argument list. This occurs very late, after it performs
input/output redirection and in a child of the main shell.

Command Substitution

The shell performs command substitution on a command string enclosed in * * (grave
accents). The shell normally breaks the output from such a command into separate words
at blanks, tabs, and new-line characters; this text then replaces the original command
string. Within strings surrounded by " " (double quotation marks), the shell treats only
the new-line character as a word separator, thus preserving blanks and tabs within the
word.

In any case, the single final new-line character does not force a new word. Note that it is
therefore possible for command substitution to yield only part of a word, even if the
command outputs a complete line.

File-name Substitution

If a word contains any of the characters *, ?, [, or {, or begins with the ~ character, that
word is a candidate for file-name substitution, also known as globbing. The word is then
regarded as a pattern and replaced with an alphabetically sorted list of file names which
match the pattern.

The current collating sequence is used, which may be specified by the environment
variables NLCTAB or NLFILE. In a list of words specifying file-name substitution, it is
an error for no patterns to match an existing file name, but it is not required that each

pattern match. Only the character-matching symbols *, ?, and [imply pattern matching;
the characters ~ and { being more related to abbreviations.

In matching file names, the character . (dot) at the beginning of a file name or
immediately following a /, and the character /, must be matched explicitly. The *

character matches any string of characters, including the null string. The ? character
matches any single character. The sequence [abcd] matches any one of the enclosed

characters. Within [], a lexical range of characters may be indicated by [a-z]. The
characters that match this pattern are defined by the current collating sequence (see
“ctab” on page 257).

Commands 231

csh

232

Japanese Language Support Information

Note: For information about matching file names, see “File-name Substitution in
Japanese Language Support” on page 233.

The ~ (tilde) character at the beginning of a file name is used to see home directories.
Standing alone, ~ expands to your home directory as reflected in the value of the home

shell variable. When followed by a name that consists of letters, digits, and - (dash)
characters, the shell searches for a user with that name and substitutes their home
directory. Thus, ~ken might expand to /usr/ken and ~ken/chmach to

/usr/ken/chmach. If the ~ character is followed by a character other than a letter or /,
or appears anywhere except at the beginning of a word, it is left undisturbed.

The pattern a{b,c,d}e is a shorthand for abe ace ade. The shell preserves the
left-to-right order, with results of matches being stored separately at a low level to preserve
this order. This construct may be nested. Thus:

~source/s1/{oldls,1s}.c

expands to:

/Jusr/source/sl/oldls.c /usr/source/sl/lIs.c

if the home directory for source is /usr/source. Similarly:
../{memo, *box}

might expand to:

../memo ../box ../mbox

(Note that memo is not sorted with the results of matching *box.) As a special case, {, },
and {} are passed undisturbed.

csh

File-name Substitution in Japanese Language Support

You can also use the following notation to match file names within a range indication:
L:charclass:]

This format instructs the system to match any single character belonging to class; the
defined classes correspond to ctype subroutines. Following are the names of these classes:

alnum jalpha
alpha jdigit
digit jhira
lower jkanji
print jkata
punct jparen
space jpunct
upper jspace
xdigit jxdigit

For example, the expression that matches any single kanji character would be the
following:

[[zikenitz]]

For additional information about character class expressions, see the discussion of this
topic in “ed” on page 371.

Alias Substitution

The shell maintains a list of aliases that the alias and unalias built-in commands (page
240) can establish, display, and modify. After the shell scans the command line, it divides
it into distinct commands and checks the first word of each command, left to right, to see if
it has an alias. If it does, the shell uses the history mechanism available (see “History
Substitution” on page 227), to replace the text of the alias with the text of the command it
stands for. The words that result replace the command and argument list. If reference is
not made to the history list, the argument list is left unchanged. Thus, if the alias for the
Is command is 1s -1, the shell replaces the command 1s /usr with 1s -1 /usr. The
argument list is undisturbed because there is no reference to the history list in the
command with an alias. Similarly, if the alias for lookup is:

grep \!* /etc/passwd
then the shell replaces 1ookup bi11 with:
grep bill /etc/passwd

Commands 233

csh

234

Here, ! * refers to the history list and the shell replaces it with the first argument in the

input line, in this case bi11. Note that you can use special pattern-matching characters
in an alias. Thus the command:

alias Iprint 'pr \!* >> print'

makes a command which formats its arguments to the line printer. The ! is protected from
the shell in the alias so that it is not expanded until pr runs.

If an alias is found, the word transformation of the input text is performed and the alias
process begins again on the reformed input line. If the first word of the next text is the
same as the old, looping is prevented by flagging it to terminate the alias process. Other
loops are detected and cause an error.

Variable Substitution

The shell maintains a set of variables, each of which has as its value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell variable list, and words which comprise the value of
this variable are referred to in special ways.

You can change and display the values of variables with the set and unset commands. Of
the variables referred to by the shell, a number are toggles (variables that turn something
on and off); the shell does not care what their value is, only whether they are set or unset.
For instance, the verbose variable is a toggle which causes command input to be echoed.
The setting of this variable results from the -v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric
calculations and the result is assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For numeric operations, the null string is considered
to be zero, and the second and subsequent words of multiword values are ignored.

After an input line is parsed and alias substitution is performed, and before each command
is run, variable substitution is performed, keyed by $ characters. You can prevent this
expansion by preceding the $ with a |, except within " " (double quotation marks, where it
always occurs, and within ' ' (single quotation marks), where it never occurs. Strings
quoted by ' are interpreted later (see “Command Substitution” on page 231), so $

substitution does not occur there until later, if at all. A $ is passed unchanged if it is
followed by a blank, tab, or new-line character.

Input/output redirections are recognized before variable expansion and are expanded
separately. Otherwise, the command name and complete argument list expands together.
It is therefore possible for the first (command) word to this point to generate more than
one word, the first of which becomes the command name and the rest of which become
parameters.

csh

Unless enclosed in " " or given the :q modifier, the results of variable substitution may

themselves eventually be command and file name substituted. Within pairs of double
quotation marks, a variable with a value that consists of multiple words expands to a
(portion of a) single word, with the words of the variable’s value separated by blanks.
When you apply the :q modifier to a substitution, the variable expands to multiple words.
Each word is separated by a blank and quoted to prevent later command or file name
substitution.

The following notation allows you to introduce variable values into the shell input.
Except as noted, it is an error to reference a variable that is not set.

$name

${name} Replaced by the words assigned to name, each separated by a blank.
Braces insulate name from any following characters that would
otherwise be part of it. Shell variable names start with a letter and
consist of up to 20 letters and digits, including the — (underline)
character. If name is not a shell variable but is set in the
environment, then that value is returned. The : modifiers and the
other forms given below are not available in this case.

$namel[selector]

${namelselector]} Used to select only some of the words from the value of name. The
selector is subjected to $ substitution and may consist of a single
number, or two numbers separated by a -. The first word of a
variable’s string value is numbered 1. If the first number of a range
is omitted, it defaults to 1. If the last member of a range is omitted, it
defaults to $#name. The * symbol selects all words. It is not an
error for a range to be empty if the second argument is omitted or is
in range.

$#name

${#name} Gives the number of words in the variable. This is useful for later
use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

$number

${number} Equivalent to $argv[number]

o Equivalent to $argv[*].

You can apply the modifiers :gh, :gt, :gr, :h, :r, :q, and :x to the substitutions above. If {}
(braces) appear in the command form, then the modifiers must appear within the braces.
The current implementation allows only one : modifier on each $ expansion.

Commands 235

csh

236

The following substitutions may not be changed with : modifiers.

$?name

${?name} Substitutes the string 1 if name is set; 0 if it is not set.

$70 Substitutes 1 if the current input file name is known; 0 if it is not
known.

$$ Substitutes the (decimal) process number of the (parent) shell.

$< Substitutes a line from the standard input, without further

interpretation. Use it to read from the keyboard in a shell procedure.

Predefined and Environmental Variables

The following variables have special meaning to the shell. Of these, argv, cwd, home,
path, prompt, shell, and status are always set by the shell. Except for ewd and status,
this setting occurs only at initialization. These variables maintain their settings unless
you explicitly reset them.

The csh command copies the environment variables USER, TERM, HOME, and PATH
into the csh variables user, term, home, and path, respectively. The values are copied
back into the environment whenever the normal shell variables reset. It is not necessary
to worry about the setting of the path variable other than in the .eshre file, since csh
subprocesses import the definition of path from the environment and re-export it if it is
changed.

argv Set to the arguments to the shell; it is from this variable that positional
parameters are substituted.

cdpath Can be given a list of alternate directories to be searched by the chdir
commands to find subdirectories.

cwd The full path name of the current directory.

echo Set when the -x command line flag is used; when set, causes each

command and its arguments to echo just before it is run. For non-built-in
commands, all expansions occur before echoing. Built-in commands are
echoed before command and file name substitution, since these
substitutions are then done selectively.

histchars Can be given a string value to change the characters used in history
substitution. Use the first character of its value as the history
substitution character, this replaces the default character !. The second
character of its value replaces the * (circumflex) character in quick
substitutions.

csh

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

notify

Can be given a numeric value to control the size of the history list. Any
command that is referenced in this many events is not discarded. Very
large values of history may run the shell out of memory. Saves the last
command that ran on the history list, regardless of whether history is
set.

Your home directory, initialized from the environment. The file name
expansion of ~ refers to this variable.

If set, the shell ignores an end-of-file character from input devices that
are work stations. This prevents shells from accidentally being killed
when it reads an end-of-file character (Ctrl-D).

The files where the shell checks for mail. This is done after each
command completion, which results in a prompt if a specified interval has
elapsed. The shell displays the message, "You have new mail" if the
file exists with an access time not greater than its change time.

If the first word of the value of mail is numeric, it specifies a different
mail checking interval (in seconds); the default is 10 minutes. If you
specify multiple mail files, the shell displays the message, "New mail in

file", when there is mail in file.

If set, places restrictions on output redirection to insure that files are not
accidentally destroyed, and that > > redirections see existing files. (See
“Redirecting Input and Output” on page 238).

If set, inhibits file-name expansion. This is most useful in shell
procedures that are not dealing with file names, or after a list of file
names has been obtained and further expansions are not desirable.

If set, it is not an error for a file-name expansion to not match any
existing files; rather, the primitive pattern returns. It is still an error for
the primitive pattern to be malformed.

If set, the shell notifies asynchronously of changes in job status. The
default presents status changes just before displaying the shell prompt.

Commands 237

csh

path Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies the current
directory. If there is no path variable set, then only full path names run.
The usual search path is the current directory , /bin, and /usr/bin. For
the superuser, the default search path is /ete, /bin, and /usr/bin. A shell
which is given neither the -¢ nor the -t flags normally hashes the
contents of the directories in the path variable after reading .cshrc and
each time the path variable is reset. If new commands are added to these
directories while the shell is active, it may be necessary to give the
rehash command (page 245), or the commands may not be found.

prompt The string which is displayed before each command is read from an
interactive work station input. If a ! appears in the string, it is replaced
by the current event number. If the ! is in a quoted string, it must be
preceded by a \ (backslash). The default prompt is %, # for the superuser.

savehist Given a numeric value to control the number of entries of the history list
that are saved in ~/.history when you log off. Any command which is
referenced in this many events is saved. During startup, the shell reads
~/.history into the history list, enabling history to be saved across
logins. Very large values of savehist slow down the shell startup.

shell The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not executable
by the system (see “Nonbuilt-in Command Execution” on page 249). This
is initialized to the (system-dependent) home of the shell.

status The status returned by the last command. If it ended abnormally, then
0200 is added to the status. Built-in commands that fail return exit status
1; all other built-in commands set status 0.

time Controls automatic timing of commands. If set, any command that takes
more than the specified number of CPU seconds causes a line giving user,
system, and real times and a utilization percentage, that is the ratio of
user-plus-system-times to real time, displays when it ends.

verbose Set by the -v command line flag; causes the words of each command to
display after history substitution.
Redirecting Input and Output

You can redirect the standard input and standard output of a command with the following
syntax:

< name Opens file name (which is first variable, command, and file name expanded)
as the standard input.

238

csh

<< word Reads the shell input up to a line which is the same as word. word is not
subjected to variable, file name, or command substitution, and each input
line is compared to word before any substitutions are done on this input line.
Unless a quoting character (\, ", ', or ‘) appears in word, the shell performs
variable and command substitution on the intervening lines, allowing \ to
quote $, \, and *. Commands which are substituted have all blanks, tabs, and
new-line characters preserved, except for the final new-line character, which
is dropped. The resultant text is placed in an anonymous temporary file,
which is given to the command as standard input.

> name
>! name
>& name

>&! name Uses the file name as standard output. If the file does not exist, it is made.
If the file exists, it is truncated, its previous contents being lost. If the
noclobber shell variable is set, the file must not exist or be a character
special file, or an error results. This helps prevent accidental destruction of
files. In this case, use the ! forms to suppress this check. The forms
involving & route the diagnostic output into the specified file as well as the
standard output. name expands in the same way as < input file names.

>> name
>>& name
>>! name

>>8&! name Uses file name as standard output like >, but places output at the end of the
file. If the noclobber shell variable is set, it is an error for the file not to
exist, unless one of the ! forms is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the
input/output parameters and the presence of the command as a pipeline. Thus, unlike
some previous shells, commands that run from a file of shell commands do not have any
access to the text of the commands by default. Rather, they receive the original standard
input of the shell. Use the << mechanism to present in-line data. This lets shell command
files function as components of pipelines and lets the shell block read its input. Note that
the default standard input for a command run detached is not changed to be the empty file
/dev/null. Rather, the standard input remains as the original standard input of the shell.

To redirect the diagnostics output through a pipe with the standard output, use the form &
(vertical bar ampersand) rather than just | (vertical bar).

Commands 239

csh

240

Control Flow

The shell contains some commands that can be used to regulate the flow of control in
command files (shell procedures) and (in limited but useful ways) from work station input.
These commands all operate by forcing the shell to reread or skip in its input and, because
of the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, and the if-then-else form of the if statement,
require that the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read
and searches the internal buffer to do the rereading implied by the loop. To the extent
that this allows, backward gotos succeed on inputs that you cannot search.

Built-in Commands

Built-in commands are run within the shell. If a built-in command occurs as any
component of a pipeline except the last, it runs in a subshell.

Notes:

1. If you enter a command from csh at the prompt, the system searches for a csh built-in
command first. If a built-in command does not exist, then the system searches for an
AIX command. Some esh built-in commands and AIX commands have the same name.
However, these commands do not necessarily work the same way. Check the
appropriate command description for information on how the command works.

2. If you run a shell procedure from esh and the first characters of the shell procedure
are #!/shell_pathname, csh runs the shell specified in the comment to process the
procedure. Otherwise, esh runs the standard shell (sh). If run by sh, esh built-in
commands are not recognized. To get the system to run e¢sh commands, the first line of
the procedure should be: #! /bin/csh.

alias

alias name

alias name wordlist Displays all aliases (first form). The second form displays the
alias for name. The final form assigns the specified wordlist as
the alias of name. wordlist is command and file name substituted.
name is not allowed to be alias or unalias.

break Resumes running after the end of the nearest enclosing foreach
or while. Runs the remaining commands on the current line.
Multilevel breaks are therefore possible by writing them all on
one line.

breaksw Breaks from a switch; resumes after the endsw.

case label: Defines a label in a switch statement, as discussed in the
following.

csh

cd

cd name
chdir
chdir name

continue
default:

dirs

dirstyle +
dirstyle -

echo string

echo -n string . . .

else
end
endif

endsw

evalarg . ..

exec cmd

exit

Changes the current directory to name. If no argument is given,
then changes to your home directory.

If name is not found as a subdirectory of the current directory and
does not begin with /, ./, or ../, then each component of the
cdpath shell variable is checked to see if it has a subdirectory
name. Finally, if all else fails, but name is a shell variable with a
value that begins with /, then this is tried to see if it is a
directory.

Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line run.

Labels the default case in a switch statement. The default should
come after all case labels.

Displays the directory stack, the top of the stack is at the left, the
first directory in the stack being the current directory.

Interprets directories in specified format so you can read their
contents in System V format. The + flag converts path names
from remote file systems to System V format. The - flag leaves
the directory contents in raw form instead of converting the path
names of remote file systems to the System V format.

Writes the listed strings to the shell’s standard output, separated
by spaces and ending with a new-line character unless you specify
the -n flag.

See the description of the foreach, if, switch, and while
statements.

Reads arg as input to the shell and runs the resulting command(s)
in the context of the current shell. Use this to run commands
generated as the result of command or variable substitution, since
parsing occurs before these substitutions.

Runs the specified command in place of the current shell.

Commands 241

csh

exit (expr) Exits the shell with either the value of the status shell variable
(first form) or with the value of the specified expression (second
form).

foreach name (list)

end Successively sets name to each member of list and runs the
sequence of commands between the foreach and the matching
end. Both foreach and end must appear alone on separate lines.

Use the continue statement to continue the loop and the break
statement to end the loop prematurely. When this command is
read from the work station, the loop is read once, prompts with ?
before any statement in the loop runs. If a mistake is made in
entering a loop, it can be corrected before you run the loop.
Commands within loops, prompted for by ?, are not placed in the
history list.

glob list Functions like echo, but does not recognize backslash (\) escapes,
and delimits words by null characters in the output. Useful if you
want to use the shell to perform file-name substitution to expand
a list of words.

goto word Continues to run after the line specified by word. The specified
word is file-name and command expanded to yield a string of the
form label. The shell rewinds its input as much as possible and
searches for a line of the form label:, possibly preceded by blanks
or tabs.

history

history num

history -r num

history -h num Displays the history event list. If you specify a number, only the
n most recent events are displayed. The -r flag reverses the order
of display to the most recent first rather than the oldest first. The
-h flag causes the history list to be displayed without leading
numbers. Use this to produce files suitable for used with the -h
flag of the source command.

if (expr) cmd Runs the single command (with arguments) if the specified
expression evaluates true. Variable substitution on cmd happens
early, at the same time it does for the rest of the if statement.
cmd must be a simple command, not a pipeline, command list, or
parenthesized command list.

Note: Input and output redirection occurs even if expr is false
(and the command is not executed).

if (expr) then

242

csh

e.ls.e .if (expr2) then
else

endif

jobs
jobs -1

kill %job

kill -signal %job . . .
kill pid

kill -signal pid . . .
kill -1

limit
limit resource
limit resource max-use

login

logout

If expr is true, runs the commands that follow the first then; else
if expr2 is true, runs the commands that follow the second then;
else runs the commands that follow the second else. Any number
of else-if pairs are possible; only one endif is needed. The else
part is optional. The words else and endif must appear at the
beginning of input lines. The if must appear alone on its input
line or after an else.

Lists the active jobs. With the -1 flag, lists process-IDs in addition
to the job number and process-ID.

Sends to the jobs or process that you specify either the TERM
(terminate) signal or signal. Specify signals either by number or
by names (as given in /usr/include/signal.h, stripped of the SIG
prefix). Signal names are listed by kill -1.

Limits the usage by the current process and each process it
creates to not individually exceed max-use on the specified
resource. If a max-use is not given, the current limit displays; if a
resource is not given, all limitations are given. Controllable
resources are limited to filesize, stacksize, and datasize. You
can specify max-use as a (floating-point or integer) number
followed by a scale factor: k or kilobytes (1024 bytes), m or
megabytes, or b or blocks (the units used by the ulimit system
call). For both resource names and scale factors, unambiguous
prefixes of the names suffice. The filesize may be lowered by an
instance of e¢sh, but may only be raised by an instance whose
effective user-ID is root. (See the ulimit system call in AIX
Operating System Technical Reference.)

Ends a login shell, and replaces it with an instance of /bin/login.
This is one way to log off (included for compatibility with the sh
command).

Ends a login shell. Especially useful if ignoreeof is set.

Commands 243

csh

newgrp

nice

nice +num
nice cmd

nice +num cmd

nohup
nohup cmd

notify

notify %job . . .

onintr
onintr -
onintr label

popd
popd +n

244

Executes the newgrp command in the current shell process. See
“newgrp” on page 689 for a discussion of command options.

Sets the priority of commands run in this shell to 24 (first form).
The second form sets the priority to the specified number. The
final two forms run the specified command at priority 24 and the
specified number, respectively. If you have superuser authority,
you can specify nice with a negative number. The command
always runs in a subshell, and the restrictions placed on
commands in simple if statements apply.

Causes hangups to be ignored for the remainder of the procedure
(first form). The second form causes the specified command to be
run with hangups ignored. To run a pipeline or list of commands
with this form, put the pipeline or list in a shell procedure, give
the procedure execute permission, and use the shell procedure as
the cmd. All processes run in the background with & are
effectively protected from being sent a hangup signal when you
log off, but will still be subject to explicitly sent hangups unless
nohup is used.

Causes the shell to notify you asynchronously when the status of
the current or specified jobs changes. Normally, notification is
presented just before the shell prompt. This is automatic if the
notify shell variable is set.

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts, which is to
end shell procedures or to return to the work station command
input level. The second form causes all interrupts to be ignored.
The third form causes the shell to run a goto label when it
receives an interrupt or a child process ends due to an
interruption. In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr have no
meaning, and interrupts continue to be ignored by the shell and
all invoked commands.

Pops the directory stack, returns to the new top directory. With a
+n, discards the nth entry in the stack. The elements of the
directory stack are numbered from the top starting at 0.

csh

pushd
pushd name
pushd +n

rehash

repeat count cmd

set
set name
set name = word

set name[index] =word
set name = (list)

setenv name value

shift

With no arguments, exchanges the top two elements of the
directory stack. With name, changes to the new directory and
pushes the old current directory (as given in the cwd shell
variable) onto the directory stack. With a numeric argument,
rotates the nth argument of the directory stack around to be the
top element and changes to it. The members of the directory
stack are numbered from the top starting at 0.

Causes the internal hash table of the contents of the directories in
the path shell variable to be recomputed. This is needed if new
commands are added to directories in path while you are logged
in. This should only be necessary if commands are added to one
of the user’s own directories, or if someone changes the contents
of one of the system directories.

Runs the specified command, which is subject to the same
restrictions as the if statement, count times.

Note: I/O redirections occur exactly once, even if count is 0.

Shows the value of all shell variables (first form). Variables that
have more than a single word as their value are displayed as a
parenthesized word list. The second form sets name to the null
string. The third form sets the indexth component of name to
word; this component must already exist. The final form sets
name to the list of words in list. In all cases, the value is
command and file-name expanded. These arguments may be
repeated to set multiple values in a single set command.
However, variable expansion happens for all arguments before
any setting occurs.

Sets the value of environment variable name to be value, a single
string. The most commonly used environment variables, USER,
TERM, and PATH, are automatically imported to and exported
from the csh variables user, term, and path; there is no need to
use setenv for these.

If you modify the environment variables NLFILE or NLCTAB,
the current international character support environment and
collating sequence are changed as specified for subsequent

.commands executed from the shell.

Commands 245

csh

246

shift variable

source name
source -h name

switch (string)
case strl:

breaksw
default:
breaksw
endsw

time
time cmd

umask
umask value

unalias pattern

Shifts the members of argv to the left. It is an error for argv not
to be set or to have less than one word as its value. The second
form does the same function on the specified variable.

Reads commands from name. You can nest the source commands.
However, if they are nested too deeply, the shell may run out of
file descriptors. An error in a source command at any level ends
all nested source commands. Normally, input during source
commands is not placed on the history list. The -h flag causes the
commands to be placed in the history list without running.

Successively matches each case label against string. The string is
command and file-name expanded first. Use the pattern-matching
characters *, ?,and [...] in the case labels, which are
variable expanded. If none of the labels match before a default
label is found, then the execution begins after the default label.
Each case label and the default label must appear at the
beginning of a line. The breaksw command causes execution to
continue after the endsw. Otherwise, control may fall through
case labels and the default labels, as in C. If no label matches
and there is no default, execution continues after the endsw.

With no argument, displays a summary of time used by this shell
and its children. If arguments are given, the specified command is
timed, and a time summary as described under the time shell
variable is displayed. If necessary, an extra shell is created to
display the time statistic when the command completes.

Displays the file creation mask (first form) or sets it to the
specified value (second form). The mask is given as an octal
value. Common values for the mask are 002, giving all access to
owner and group and read and execute access to others, or 022,
giving all access to the owner and all access except write access
for users in the group or others.

Discards all aliases with names that match pattern. Thus, all
aliases are removed by unalias *. The absence of aliases does not
cause an error.

csh

unhash

unlimit
unlimit resource

unset patiern
unsetenv pattern
wait

while (expr)

end

@

(@ name = expr
@ name[index] = expr

Disables the use of the internal hash table to locate running
programs.

Removes the limitation on resource. If you do not specify resource,
then all resource limitations are removed. The only removable
limitation is that on filesize, and only the superuser can remove
it.

Removes all variables with names that match the pattern. Use
unset * to remove all variables. It is not an error for nothing to
be unset.

Removes all variables from the environment whose names match
the specified pattern. (See the setenv built-in command on page
245.)

Waits for all background jobs. If the shell is interactive, an
INTERRUPT (Alt-Pause) can disrupt the wait, when the shell
displays the names and job numbers of all jobs known to be
outstanding.

Evaluates the commands between the while and the matching
end while expr evaluates nonzero. You can use break to end and
continue to continue the loop prematurely. The while and end
must appear alone on their input lines. If the input is a work
station, prompts occur the first time through the loop, as for the
foreach statement.

Displays the values of all the shell variables (first form). The
second form sets the specified name to the value of expr. If the
expression contains <, >, &, or |, then at least this part of the
expression must be placed within parentheses. The third form
assigns the value of expr to the indexth argument of name. Both
name and its indexth component must already exist.

C operators, such as *= and += are available. The space
separating name from the assignment operator is optional. Spaces
are, however, required in separating components of expr, which
would otherwise be single words. Special postfix + + and --
operators increase and decrease name.

Commands 247

csh

248

Expressions

The @ built-in command and the exit, if, and while statements accept expressions which
include operators similar to those of C, with the same precedence. The following operators
are available:

* / %

AN+
N

noun N

— V'V
I\

~ | ~

In the preceding list, operators of equal precedence appear on the same line, below those
lines containing operators (if any) that have greater precedence and above those lines
containing operators having lesser precedence. The ==, != =~ and !~ operators compare
their arguments as strings; all others operate on numbers. The =~ and !~ operators are
similar to != and ==, except that the right-most side is a pattern against which the
left-hand operand is matched. This reduces the need for use of the switch statement in
shell procedures when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are
considered 0. The result of all expressions are strings, which represent decimal numbers.
It is important to note that now two components of an expression can appear in the same
word; except when next to components of expressions which are syntactically significant to
the parser (& | < > ()), expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in {
and } and file inquiries of the form -I name where [is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

N OO K g

The specified name 1s command and file-name expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible, then all
inquiries return false, that is, 0. (Command runs succeed, returning true (1), if the
command exits with status 0; otherwise they fail, returning false (0).) If more detailed
status information is required, run the command outside an expression and the examine
status shell variable.

csh

Nonbuilt-in Command Execution

When a command to run is found not to be a built-in command, the shell attempts to run
the command with execve. (See the exec system call in AIX Operating System Technical
Reference.) Each word in the path shell variable names a directory from which the shell
attempts to run the command. If it is given neither a -¢ nor a -t flag, the shell will hash
the names in these directories into an internal table so it only tries an exec in a directory
if there is a possibility that the command resides there. If this mechanism has been turned
off with unhash, or if the shell is given a -¢ or -t (and in any case for each directory
component of path that does not begin with a /), the shell concatenates with the given
command name to form a path name of a file, which it then attempts to run.

Parenthesized commands always run in a subshell. Thus, (cd ; pwd) ; pwd displays
the home directory without changing the current directory location, whereas cd ; pwd
changes the current directory location to the home directory. Parenthesized commands
are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions, but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell runs to read it.

If there is an alias for shell, then the words of the alias will be prefixed to the argument
list to form the shell command. The first word of the alias should be the full path name of
the shell. Note that this is a special, late-occurring case of alias substitution and only
allows words to be prefixed to the argument list without modification.

Signal Handling

The shell normally ignores QUIT signals. Jobs running detached are immune to signals
generated from the keyboard INTERRUPT, QUIT, and HANGUP). Other signals have the
values the shell inherited from its parent. You can control the shell’s handling of
INTERRUPT and TERMINATE signals in shell procedures with onintr. Login shells catch
the TERMINATE signal; otherwise, this signal is passed on to children from the state in
the shell’s parent. In no case are INTERRUPTSs allowed when a login shell is reading the
Jogout file.

Limitations

The following are csh limitations:

e Words can be no longer than 1024 characters.
® Argument lists are limited to 5120 characters.

e The number of arguments to a command that involves file-name expansion is limited to
1/6th the number of characters allowed in an argument list.

Commands 249

csh

e Command substitutions can substitute no more characters than are allowed in an
argument list.

e To detect looping, the shell restricts the number of alias substitutions on a single line
to 20.

Flags

If the first argument to the shell is - (minus), this is a login shell. The flags are interpreted

as follows:

-c Reads commands from the (single) following argument, which must be present.
Any remaining arguments are placed in argv.

-e Exits if any invoked command ends abnormally or yields a nonzero exit status.

-f Starts without searching for or running commands from the .cshre file in the your

home directory.

-i Prompts for its top-level input (an interactive shell), even if input does not appear
to be coming from a work station. Shells are interactive without this flag if their
input and output are attached to work stations.

-n Parses commands but does not run them. This aids in syntactic checking of shell
procedures.

-s Takes command input from the standard input.

-t Reads and processes a single line of input. You can use a \ to escape the new-line
character at the end of the current line to continue onto another line.

-V Sets the verbose shell variable, with the effect that command input is echoed after
history substitution.

-V Sets the verbose shell variable even before .cshre runs.

-x Sets the echo shell variable, so that commands are echoed immediately before they
run.

-X Sets the echo shell variable even before .cshre runs.

After processing of flag arguments, if arguments remain but none of the -¢, -i, -s, or -t
flags were given, the first parameter is taken as the name of a file of commands (shell
procedure). The system opens this file and saves its name for possible resubstitution by $0.
If the first characters of the shell procedure are #!/shell_pathname, esh runs the specified
shell to process the procedure. Otherwise, csh runs the standard shell (sh). Remaining
parameters initialize the argv variable. For more information on the #!/shell_pathname
comment, see the exec system call in AIX Operating System Technical Reference.

250

csh

Files
$HOME)/.cshre Read at beginning of execution by each shell.
$HOME/.login Read by login shell, after .cshre at login.
$HOME/.logout Read by login shell, at logoff.
[bin/sh Standard shell.
[tmp/sh* Temporary file for < <.
[etc/passwd Source of home directories for ~name.

Related Information
The following commands: “cd” on page 150, “make” on page 625, “pr” on page 761, and
“sh” on page 913.

The access, exec, fork, pipe, umask, and wait system calls, the a.out and environ files,
and the environment miscellaneous facility in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

Commands 251

csplit

csplit

Purpose

Splits files by context.

Syntax
csplit file —E__p_gﬁ_]—*
OL805177
Description

The esplit command reads a file and separates it into segments defined by the specified
parameters (parm . . .). By default, csplit writes these segments to files xx00 +

.. xxn, where n is the number of parms listed on the command line (n may not be
greater than 99). These new files get the following pieces of file:

00: From the start of file up to, but not including, the line referenced by the first
parm.

01: From the line referenced by the first parm up to the line referenced by the
second parm.

n+1: From the line referenced by the last parm to the end of file.
Note that csplit does not alter the original file.
The specified parms can be a combination of the following:

/pattern/ Creates a file that contains the segment from the current line up to (but not
including) the line containing pattern, which becomes the current line.

%pattern% Makes the line containing pattern the current line, but does not create a file
for the segment.

+num

-num Moves forward or backward the specified number of lines from the line
matched by an immediately preceding pattern parameter (for example,
/Page/-5).

252

csplit

linenum Creates a file containing the segment from the current line up to (but not
including) linenum, which becomes the current line.

{number} Repeats the preceding argument the specified number of times. This number
can follow any of the pattern or linenum parameters. If it follows a pattern
parameter, csplit reuses that pattern the specified number of times. If it
follows a linenum parameter, csplit splits the file from that point every
linenum of lines for the specified number of times.

Quote all pattern parameters that contain blanks or other characters special to the shell.
Patterns may not contain embedded new-line characters. In an expression such as [a-z],
the minus means “through” according to the current collating sequence. A collating
sequence may define equivalence classes for use in character ranges. See “Overview of
International Character Support” in Managing the AIX Operating System for more
information on collating sequences and equivalence classes.

Flags
-f prefix Specifies the prefix name for the created file segments. xx is the default prefix.
-k Leaves created file segments intact in the event of an error.
-s Suppresses the display of character counts.

Examples

1. To split the text of a book into a separate file for each chapter:
csplit book "/~ Chapter *[0-9]/" {9}

This creates files named xx00, xx01, xx02, . . . ,xx9, which contain individual
chapters of the file book. Each chapter begins with a line that contains only the word
Chapter and the chapter number. The file xx00 contains the front matter that comes
before the first chapter. The {9} after the pattern allows up to nine chapters.

2. To specify the prefix for the created file names:
csplit -f chap book "/~ Chapter *[0-9]/" {9}
This splits book into files named chap00, chap01, chap02, . . . ,chap9.

Related Information

The following commands: “ed” on page 371, “sh” on page 913, and “regemp” on
page 820.

The regxp file in AIX Operating System Technical Reference.
“Overview of International Character Support” in Managing the AIX Operating System.

Commands 253

ct

ct

Purpose

Dials an attached terminal and issues a login process.

Syntax

ct—— * telno :]—4

-h -w
—~sspeed X
-v

AJ2FL101

Description

254

The Basic Networking Utilities (BNU) command ct enables a user on a remote ASCII
terminal, such as an IBM 3161 or a DEC VT100, to communicate with an RT work station
over a telephone line attached to a modem at each end of the connection. The user on the
remote terminal can then log in and work on the RT work station.

A user on the local system issues ct with the appropriate telephone number to call the
modem attached to the remote terminal. When the connection is established, ¢t issues an
AIX login prompt that is displayed on the remote terminal. The user on the remote
terminal enters an AIX login name at the prompt, and AIX opens a new shell. The user at
the remote terminal then proceeds to work on the RT PC just like a local user.

Note: In order to establish a ct connection, the remote user generally contacts a local
user (with a regular phone call) and asks the local user to issue the command.

The ¢t command is useful in the following situations:

e When a user working off site needs to communicate with a local system under strictly
supervised conditions. Because the local system contacts the remote terminal, the
remote user does not need to know the phone number of the local system.

e When the cost of the connection should be charged either to the local site, or to a
specific account on the calling RT. If the remote user has the appropriate access
permission and can make outgoing calls on the attached modem, that user can make
the equivalent of a collect call. The remote user calls the specified local system, logs
in, and issues the phone number of the remote terminal without the -h flag. The local

ct

Flags

system hangs up the initial link so that the remote terminal is free for an incoming
call, and then calls back to the modem attached to the remote terminal.

Note: Before issuing the ¢t command, be certain that the remote terminal is attached to a
modem that can answer the telephone.

The ¢t command is not as flexible as the BNU command cu. For example, the user can not
issue AIX commands on the local system while connected to a remote system via ct.
However, the et command does have two features not available with cu:

e The user can instruct ct to continue dialing the specified number until the connection
is established or a set amount of time has elapsed.

e The user can specify more than one telephone number at a time to instruct ct to
continue dialing each modem until a connection is established over one of the lines.

If the user specifies alternate dialing paths by entering more than one number on the
command line, ct tries each line listed in the file /usr/adm/uucp/Devices until it finds an
available line with appropriate attributes, or runs out of entries. If there are no free lines,
ct asks if it should wait for one, and if so, for how many minutes. The et command
continues to try to open the dialers at 1-minute intervals until the specified time is
exceeded. The user can override this prompt by specifying a time with the -wn flag when
entering the command.

After the user logs off, ct prompts the user on the remote terminal with a reconnect option;
the system can either display a new login prompt or drop the line.

-wn Allows the dialogue to be overridden by specifying n as the maximum number of
minutes that et is to wait for a line. The command then dials the remote modem
at 1-minute intervals until the connection is established or the specified time has
elapsed.

-xn Used for debugging. Produces detailed information about the command’s
execution on standard error output on the local system. The debugging level, n,
is a single digit between 0 and 9. The recommended default is 9.

-h Prevents ¢t from hanging up the current line to answer an incoming call.
-v Allows ct to send a running narrative to standard error output.
-sspeed Sets the data rate where speed is expressed in baud. The default is 1200.

telno Specifies the telephone number of the modem attached to the remote terminal.
The telno may include the digits 0 - 9, minus signs (-) representing delays, equal
signs (=) representing secondary dial tones, asterisks (*), and pound/number
signs (#). The phone number may contain a maximum of 31 characters.

Commands 255

ct

Examples

1. To connect to a modem with an internal number 4-1589 (the - is optional):
ct 41589
The system responds:

Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

2. To dial a modem connected to a local telephone number (dialing 9 for an outside line
and specifying a 3-minute wait time):

ct -w3 9=2453017

3. To dial a long-distance number (specifying an outside line and a 5-minute wait):

ct -w5 9=15026647003

Files
Jusr/adm/uucp/Devices Information about available devices.
[usr/adm/uucp/Dialcodes Dialing code abbreviations.
[usr/adm/uucp/Dialers Initial handshaking on a link.
[usr/adm/uucp/Permissions Access permission codes.
[usr/adm/uucp/Systems Accessible remote systems.

Related Information

The following commands: “cu” on page 263 and “login” on page 584.

256

ctab

ctab

Purpose

Produces a collating table.

Syntax
-i ctab.in -o ctab.out
Cfdb_{ ‘>_< }
=iinfile —ooutfile

Description

OL805451

The ctab command takes an input file (by default a file named ctab.in found in the
current directory) and produces a binary file (by default named ctab.out) containing a
collating table. These output files should be stored in a special directory such as
Jusr/lib/nls.

Programs that need the current collating information use the NLCTAB environment
variable to access that information.

The following conventions are used to make it easier to set up a table file:
e One line of information is present for each character explicitly named.

e A line beginning with the word option serves to change one or more of the default
conditions or metacharacters built into ctab. An option line contains a set of
name/value pairs, with each half of each pair delimited by tab or space characters. The
following is a list of recognized names:

eclass Turns the use of equivalence classes on or off globally. The assigned
value must be on (the default) or off. (This name is ignored when
Japanese Language Support is installed.)

sep Uses the assigned value as the field separator character. The default
value is : (colon).

trans Uses the assigned value of the “translate” indicator in subject character
fields. The default character is | (vertical bar).

repeat Uses the assigned value as the “same as last line” indicator in subject
character field. The default value is " (circumflex).

comment Uses the assigned value as the comment character. The default value is
the # character.

Commands 257

ctab

o The order of the per-character input lines specifies the collating sequence.

e By default, fields on a line are separated by colons. Tabs or spaces may surround fields
or separators. You can change the separator character with an option line.

e Use an octal escape sequence in the ASCII range to name a nonprintable character. A
backslash character that does not form part of a valid escape sequence serves to strip
the following character, including a second backslash, of any special meaning it
otherwise would have. For example, to include the colon character in the collating
sequence, use the following line:

\as

The input file format includes a comment convention, namely that the remainder of the
line following a # character is ignored. The comment character can be changed with
an option line.

Input File Specification

Use the following rules to build infile, entering field information for each line:

1. The first field on a line contains the subject character, a character to be inserted into
the collating sequence at that point.

e This subject character definition can include a trenslation mechanism:

— Instead of a single character, this field may contain two or more characters
that are to be collated as a single unit, or

— The single subject character may be followed by a vertical bar (i) and a single-
or multiple-character string. The vertical bar indicates that the first character
will be translated to the second string before being collated.

For example, to treat an “é” (e acute) as equivalent to the character “e,” use
the following line:
éle

— One restriction is placed on the translation mechanism: the subject character
cannot be contained in the translated string of characters. For example, the
following line is illegal:

oioe

e Any form of the first field may contain a trailing circumflex () to indicated that
the current character is to collate to the same value as the preceding one.
However, a circumflex following a translation string is illegal because the subject
character to be translated has no inherent collating value.

258

ctab

If the subject field contains a string of multiple characters (to collate as a unit), its
first character must be declared elsewhere to establish the default collating
sequence of that character.

The translate and collating no-change characters can be changed with option
lines.

The second and third fields specify whether or not a character is alphabetic and what
its lower- and upper-case equivalents are:

If a subject character is to be treated as a lowercase alphabetic, the second field on
its line is its uppercase equivalent, and the third field must be 1 or L.

If a subject character is to be treated as a uppercase alphabetic, the second field on
its line is its lowercase equivalent, and the third field must be u or U.

If a subject character is to be treated as a control character or a space character,
the third field must be ¢, C, s, or S.

Each character explicitly named whose line contains a non-null second field will be
considered alphabetic (that is, matched by NCisalpha). Characters that do not
have an uppercase or lowercase equivalent (that is, that have a null second field)
but that you wish to be considered alphabetic should simply contain a third field
that is 1, L, u, or u.

The fourth field on a line is used explicitly to specify the first character in the
equivalence class of the subject character. The members of one equivalence class
must be consecutively listed in the input file.

There cannot be any gaps within a particular equivalence class. For example, the
following lines will put the characters a, b, and ¢ in the same equivalence class:

a:A:1:a

beBalsg

eslslug

As a convenience, if the fourth field is not specified, then the group of consecutive
characters with blank fourth fields, provided that they are all based on the same
Roman alphabetic character, will be placed in the same equivalence class. To
reiterate, only characters with the same base will be placed into the same
equivalence class by default. If you wish to have many characters from different
bases belong to one equivalence class, as in the preceding example, the first
character of the equivalence class has to be specified in the fourth field for every
character specified.

Commands 259

ctab

Flags

Files

e It is illegal to specify an equivalence character that comes later in the collating
sequence. The fourth field can refer only to characters that have already been
mentioned.

e All international character support characters not based on Roman alphabetic
characters by default are the sole members of their equivalence class.

Japanese Language Support Information

When Japanese Language Support is installed on your system, the information about
the second, third, and fourth fields is irrelevant.

Characters not named in the table file that have an ordinal value (that is, a value as an
NLchar) below the ordinal value of the lowest-valued character named are put into the
collating sequence below the first character in the table file. All other characters not

named in the table file are put into the collating sequence above the last character in the
table file.

The standard characters for decimal and hexadecimal digits are always marked as digits (to
be matched by NCisdigit and NCisxdigit). All other printable characters not marked as
alphabetic are marked as punctuation.

-i infile Specifies the name of the input file (ctab.in by default).
-0 outfile Specifies the name of the output file (ctab.out by default).

Jusr/lib/nls/ascii.ctab Input file listing the ASCII range of characters.
[usr/lib/nls/example.ctab
Input file listing a sample Collating Sequence.

Related Information

260

The NCisalpha, NCisdigit, NCisxdigit, nls, and NLgetenv subroutines in AIX Operating
System Technical Reference.

“Overview of International Character Support” in IBM RT Managing the AIX Operating
System.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

ctags

ctags

Purpose

Makes a file of tags to help locate objects in source files.

Syntax

ctags

OLB805457

Description

The ctags command makes a tags file for ex and vi editors from the specified C, Pascal,
and FORTRAN source files. A tags file gives the locations of specified objects (in this case
functions) in a group of files. Each line of the tags file contains the object name, the file
in which it is defined, and an address specification for the object definition. Functions are
searched with a pattern. Specifiers are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex and vi can quickly find these object definitions.

If a file name ends in .c or .h, it is assumed to be a C source file and is searched for C
routine and macro definitions. Others are first examined to see if they contain any Pascal
or FORTRAN routine definitions; if not, they are processed again for C definitions.

The tag main is treated specially in C programs. The tag formed is created by prefixing M
to the file name, removing a trailing .c (if any), and removing the leading path name
components. This makes use of ctags practical in directories with more than one program.

Notes:

1. Recognitions of the keywords function, subroutine, and procedure in FORTRAN and
Pascal code is performed in a very simple-minded way. No attempt is made to deal with
block structure; if you have two Pascal procedures with the same name but in different
blocks, ctags may yield inadequate results.

2. The ctags command does not know about #ifdef.

Commands 261

ctags

Flags

-a Appends to tags file.

-w Suppresses warning diagnostics.

-x Causes ctags to display a list of object names, the line number and file name on which
each is defined, as well as the text of that line. This provides a simple index. If you
specify this flag, ctags does not build a tags file.

-u Updates the specified files in tags; that is, all references to them are deleted, and the
new values are appended to the file. This flag may be slow. (It is usually faster to
simply rebuild the tags file.)

Files
tags Output tags file.

Related Information

The following commands: “ex” on page 407 and “vi, vedit, view” on page 1187.

262

cu

cu
Purpose
Connects directly or indirectly to another UNIX system.
Syntax
eul one of telno —
—d —s speed 5
-l line —n
OL805553
OL805554
system name —
OL805555
Description

The Basic Networking Utilities (BNU) command cu connects one system to another UNIX
system, to a terminal connected to a UNIX system, or, if the proper hardware and software
are installed, to a non-UNIX system. The connection can be established over a hard-wired
line, or over a telephone line via a modem.

Once the connection is established, a user can be logged in on both systems at the same
time, executing commands on either one without dropping the BNU communication link.
If the remote computer is also running under UNIX, the user can transfer ASCII files
between the two systems.

Note: The system should already be configured to use the cu command. Refer to
Managing the AIX Operating System for details about this configuration.

Commands 263

cu

Local ~

264

After issuing cu from the local system, the user must press the Enter key (carriage return)
and then log in to the remote system.

After making the connection, cu runs as two concurrent processes: the transmit process
reads data from standard input and, except for lines beginning with a ~ (tilde), passes that
data to the remote terminal. The receive process accepts data from the remote system
and, except for lines beginning with a ~, passes it to standard output. To control input
from the remote system so the buffer is not overrun, cu uses an automatic DC3/DC1
(Ctrl-Q/Ctrl-S) protocol.

In addition to issuing regular AIX commands on the remote system, the user can also issue
special cu “local commands,” which are preceded by a ~. Use these ~ commands to issue
AIX commands on the local system and to perform tasks such as transferring files between
two UNIX systems.

Commands

The transmit process interprets lines beginning with a tilde in the following ways:

=, Logs the user off the remote computer and terminates the remote
connection.
=] Returns the user to an interactive shell on the local system. Toggle

between the local and remote systems using ~! (remote to local) and
Ctrl-D (local to remote).

~lemd... Executes the command denoted by cmd on the local system via sh -c.

~$emd... Runs the command denoted by cmd locally and sends its output to the
remote system for execution.

~%ecd Changes the directory on the local system.

~%take from [to] Copies the from file on the remote system to the to file on the local
system. If to is omitted, the remote file is copied to the local system
under the same file name. As each block of the file is transferred,
consecutive single digits are displayed on the terminal screen.

~%put from [to] Copies the from file on the local system to the to file on the remote
system. If to is omitted, the local file is copied to the remote system
under the same file name. As each block of the file is transferred,
consecutive single digits are displayed on the terminal screen.

~~line Sends the string denoted by ~line to the remote system.

~%break Transmits a BREAK to the remote system. The BREAK can also be
specified as ~%b.

~%debug Toggles the -debug flag on or off; this can also be specified as ~%d.

~t Prints the values of the TERMIO structure variables for the user’s

terminal. This is useful for debugging.

cu

=] Prints the values of the TERMIO structure variables for the remote
communication line. This is useful for debugging.
~%nostop Toggles between DC3/DC1 input control protocol and no input

control. This is useful in case the remote system is one that does not
respond properly to the DC3 and DC1 characters.

Note: As soon as the user enters ~!,~%, ~$, ~t, or ~1, the system displays the name of the
local computer in a format such as the following:

~[system_name]!/%

The user then enters the command to be executed on the local computer.

Additional Information

The receive process normally copies data from the remote system to the local system’s
standard output. Internally, the program accomplishes this by initiating an output
diversion to a file when a line from the remote system begins with ~ >.

Data from the remote system is diverted to file on the local system. The trailing ~ >
marks the end of the diversion.

The use of ~%put requires stty and cat on the remote system. It also requires that
the current erase and kill characters on the remote system be identical to these current
control characters on the local system. Backslashes are inserted at appropriate places.

The use of ~%take requires echo and cat on the remote system. Also, stty tabs mode
should be set on the remote system if tabs are to be copied without expansion to spaces.

The cu command can be used to connect multiple systems, and commands can then be
executed on any of the connected systems. For example, issue cu on system X to
connect to system Y, and then issue cu on system Y to connect to system Z. System X
is then the local computer, and systems Y and Z are remote computers.

The user can execute commands on system Z by logging in and issuing the command.
Commands can be executed on system X by prefixing the command with a single tilde
(~ecmd), and on system Y by prefixing the command with two tildes (~~cmd). In
general, one tilde causes the specified command to be executed on the original local
computer, and two tildes cause the command to be executed on the next system on
which cu was issued.

For example, once the multiple systems are connected, the user can execute the uname
command with the -n flag (to display the node name) on Z, X, and Y as follows:

$ uname -n

Z

$ ~luname -n
X

$ ~~luname -n
Y

Commands 265

cu

Flags

266

Notes:

1. After executing cu, the user must log in to the remote system and press Enter
(carriage return).

2. The cu command does not do integrity checking on data it transfers.

Data fields with special cu characters may not be transmitted properly.

4. Depending on the interconnection hardware, it may be necessary to use a ~. to
terminate the conversation even if the normal logoff sequence has been used.

5. There is an artificial slowing of transmission by cu during the ~%put operation so
that loss of data is unlikely.

6. The exit code is 0 for normal exit, otherwise, -1.

-sspeed

-lline

-h

Specifies the transmission speed (300, 1200, 2400, 4800, 9600). The default
value is “Any” speed, which instructs the system to use the rate
appropriate for the default (or specified) transmission line. (The order of
the transmission lines is specified in the fusr/adm/uucp/Devices file.)
Most modems operate at 300, 1200, or 2400 baud, while most hard-wired
lines are set to 1200 baud or higher.

Specifies a device name to use as the communication line. This can be
used to override the search that would otherwise take place for the first
available line with the right speed. When the -1 flag is used without the
-s flag, the speed of a line is taken from the /usr/adm/uucp/Devices file.

When the -1 and -s flags are used together, cu searches the
/usr/adm/uucp/Devices file to check whether the requested speed is
available for the specified line. If so, the connection is made at the
requested speed; otherwise, an error message is printed, and the call is
not made.

The specified device is generally a hard-wired asynchronous line (for
example, /dev/tty2), in which case a telephone number (telno) is not
required. If the specified device is associated with a modem, a telephone
number must be provided. Using this flag with system_name rather than
with telno does not give the desired result (see system_name, below).

Note: Under ordinary circumstances, the user should not have to
specify the transmission speed, or a line/device. The defaults set when
BNU is installed should be sufficient. Refer to Managing the AIX
Operating System for information about setting defaults.

Emulates local echo, supporting calls to other systems that expect
terminals to be set to half-duplex mode.

cu

-t Used to dial an ASCII terminal that has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return line-feed pairs
is set.

-d Prints diagnostic traces.

-0 Designates that odd parity is to be generated for data sent to the remote
system.

-e Designates that even parity is to be generated for data sent to the remote
system.

-n For added security, prompts the user to provide the telephone number to
be dialed, rather than taking it from the command line.

telno When using a modem, the argument is the telephone number, with
appropriately placed equal signs for secondary dial tones, or minus signs
for delays of 4 seconds.

system_name A uucp system name can be used rather than a telephone number; in that
case, cu obtains an appropriate hard-wired line or telephone number from
/usr/adm/uucp/Systems. System names must be ASCII characters only.
Note: Do not use the system_name flag in conjunction with the -l and -s
flags. If you do, cu connects to the first available line for the requested
system name, ignoring the specified line and speed.

Examples

1. To connect to a remote system using a system name:
cu hera

2. To dial a remote system whose telephone number is 1-201-555-1212, where dialing 9 is
required to get an outside dial tone and the baud rate is 1200:
cu -s 1200 9=12015551212
If the speed is not specified, “Any” is the default value.

3. To log in to a system connected by a hard-wired line:
cu -1 /dev/tty2
or
cu -1 tty?

4. To dial a remote system with the specified line and a specific speed:

cu -s 1200 -1 tty3

Commands 267

cu

5. To dial a remote system using a specific line associated with a modem:
cu -1 culd 9=12015551212

6. To copy a file from the local system to the remote system (after logging in to the
remote system):

~%put /u/amy/file
or

~%put /u/amy/file /u/amy/tmpfile

Files
[ete/locks/LCK..(tty-device) Prevents multiple use of device.
[usr/adm/uucp/Devices Information about available links.
Jusr/adm/uucp/Dialcodes Dialing code abbreviations.
Jusr/adm/uucp/Dialers Initial handshaking on a link.
Jusr/adm/uucp/Permissions Access permission codes.
[usr/adm/uucp/Systems Accessible remote systems.

Related Information

The following commands: “cat” on page 137, “ct” on page 254, “echo” on page 369,
“stty” on page 1018, “uuname” on page 1151, and “uucp” on page 1144.

268

cut

cut

Purpose
Writes out selected fields from each line of a file.

Syntax

—clist v
“C
~flist file

' The default char is a tab.
OL805178

Description

The cut command cuts out columns from a table or fields from each line of a file and

writes these columns or fields to standard output. If you do not specify a file, cut reads
standard input.

You must specify either the -¢ or -f flag. The list parameter is a comma-separated and/or
minus-separated list of integer field numbers (in increasing order). The minus separator
indicates ranges. Some sample lists are 1,4,7; 1-3,8; -5,10 (short for 1-5,10); and 3~
(short for third through last field). The fields specified by list can be a fixed number of
character positions, or the length can vary from line to line and be marked with a field
delimiter character, such as a tab character.

You can also use the grep command to make horizontal cuts through a file and the paste
command to put the files back together. To change the order of columns in a file use cut
and paste.

Flags

-clist Specifies character positions. For example, if you specify -cl1-72, cut writes out
the first 72 characters in each line of the file. Note that there is no space
between -c¢ and list.

Commands 269

cut

-dchar Uses the specified character as the field delimiter when you specify the -f flag.
You must quote characters with special meaning to the shell, such as the space
character. Any ASCII character can be used as char.

Japanese Language Support Information

char can either be any ASCII character, or any SJIS character.

flist Specifies a list of fields assumed to be separated in the file by a delimiter
character, by default the tab character. For example, if you specify -fl,7, cut
writes out only the first and seventh fields of each line. If a line contains no field
delimiters, cut passes them through intact (useful for table subheadings), unless
you specify the -s flag.

- Suppresses lines that do not contain delimiter characters (use only with the -f
flag).

Example

270

To display several fields of each line of a file:
cut -fl,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These
are the first and fifth fields (-f1,5) separated by colons (-d:).

So, if the /ete/passwd file looks like this:

su:UHuj9Pgdvz0J":0:0:User with special privileges:/:/bin/sh
daemon:*:1:1::/etc:

bing*:2:2za/bing

sysa®: 313 s usrisres

adm:*:4:4:System Administrator:/usr/adm:/bin/sh
pierre:boodwqT3irHFE:200:200:Pierre Harper:/u/pierre:/bin/sh
Joan:wijBNaYpCZulL.:202:200:Joan Brown:/u/joan:/bin/sh

then cut produces:

su:User with special privileges
daemon:

bin:

Sys:

adm:System Administrator
pierre:Pierre Harper

joan:dJdoan Brown

cut

Related Information

The following commands: “grep” on page 501 and “paste” on page 736.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

Commands 271

cvid

cvid

Purpose

Creates a VRM install diskette for backup purposes.

Syntax

cvid_ device_ —f __< > —v~< > < >
fs-id vol-id prototypefile

0OL805104

Description

Flags

272

The cvid command backs up the VRM minidisk onto a diskette. Since you can reinstall
the VRM system from this backup diskette, use cvid as a precautionary measure before
modifying the VRM. You must be a member of the system group or operating with
superuser authority to run this command.

The device parameter specifies the device (special file) to which cvid copies the VRM. This
can be a block device name or a directory name. If device is a directory name, cvid reads
the /etc/filesystems file for the corresponding device. cvid uses the prototypefile
parameter to determine the size of the new file system. prototypefile defaults to
/vrm/vproto. For more information on prototype files, see “mkfs” on page 658 and
“proto” on page 780.

When auditing is on, an audit record of the type cvid is created.

Warning: If you used the mv command to change or modify the order of
the files on a minidisk, you could lose files when restoring a evid backup
of the minidisk. To avoid problems, modifications, additions or changes to
the /vrm/ldlist/posts directory must be reflected in the /vrm/inst.batch
file.

-f fs-ID Makes fs-ID the label for the new file system. The default label is vemmnt.

-v vol-ID Makes vol-ID the volume label for the new file system. The default label is
ibmvrm.

cvid

Files

etc/filesystems Contains device directories.
[vrm/proto Contains the default file size for new file systems.

Related Information

The following commands: “mkfs” on page 658 and “mount” on page 669.

Commands 273

Cvt

Cvt

Purpose

Moves old UUCP files into new BNU directories.

Syntax

Cvt file
e

AJ2FL122

Description

Flags

Files

274

The Cvt command moves existing (old) UNIX-to-UNIX Copy Program (UUCP) data and
command files into new Basic Networking Utilities (BNU) directories.

After the new BNU programs are installed, issue Cvt before attempting to use the BNU

functions. The Cvt shell handles the command (C.*) and data (D.*) files created under the

old UUCP facility so that they will run under the new BNU facility. The command first
creates the required new BNU directories and then moves the old UUCP files (located in
the /usr/spool/uucp directory) into those directories.

To issue Cvt from the command line, a user must have superuser privileges.

Note: If Cvt is not used to move old UUCP command and data files into new BNU
directories, those files will not run after the new BNU Program is installed.

-n Displays the message explaining the actions that Cvt performs but does not execute
the command. A file can be specified for D.* and C.* files, but not for X.* (execute)
files.

Jusr/adm/uucp Directory in which Cvt is stored.
Jusr/spool/uucp Spooling directory.

Ccw

cw, checkew

Purpose

Prepares constant-width text for troff.

—ldelim — —rdelim w

checkcw —< V— file
~ldelim — —rdelim

Description

Syntax

cw

0L805427

The cw command preprocesses troff files containing text to be typeset in the
constant-width (CW) font. ew reads standard input if you do not specify a file or if you
specify a -. (minus) as one of the input file names. It writes its output to standard output.

Since the text that is typeset by ew resembles the output of line printers and work
stations, it can be used to typeset examples of programs and computer output in user
manuals and programming texts. It has been designed to be distinctive when used with the
Times Roman font.

Because the CW font contains a “nonstandard” set of characters and because text typeset
with it requires different character and interword spacing than is used for “standard
fonts,” you must use cw to preprocess documents that use the CW font.

Commands 275

Cw

276

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

1§58 ()" *+@.,/13=2 (11 -~ ~"O{}#\

plus eight non-ASCII characters represented by four-character troff strings (in some cases
attaching these strings to “nonstandard” graphics):

Character Symbol Troff Name
"Cents" sign ¢ \(ct
EBCDIC "not" sign - \(no
Left arrow 4 \ (<~
Right arrow — \(->
Down arrow I \(da
Vertical single quote ' \(fm
Control-shift sign n \(dg
Visible space sign m \(sg
Hyphen = \(hy
Up arrow P \ (ua
Home arrow X \(lh

OL805409

The ew command recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff macro requests. ¢w copies them in their entirety onto the
output. Thus, you can define them as troff macros; in fact, the .CW and .CN macros
should be so defined. The five requests are:

CW

.CN

.CD

.CP argument-list

PC argument-list

Marks the start of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the cw command line.

Marks the end of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the ew command line.

Changes the delimiters and/or settings of other flags. It can take the
same flags (in the same format) as those available on the ew command
line. The purpose of this request is to allow the changing of flags
other than at the beginning of a document.

Concatenates all the arguments (delimited like troff macro
arguments), with the odd-numbered arguments set in the CW font and
the even-numbered ones in the prevailing font.

Acts the same as .CP, except the even-numbered (rather than
odd-numbered) arguments are set in CW font.

Cw

The .CW and .CN requests should bracket text that is to be typeset in the CW font “as is.”
Normally, ecw operates in the transparent mode. In that mode, every character between
.CW and .CN request lines represents itself, except for the .CD request and the special
four-character names listed previously. In particular, ew arranges for all periods (.) and
apostrophes () at the beginning of lines, and all backslashes (\) and ligatures (fi, ff, and so
on) to be hidden from troff. The transparent mode can be turned off by using the -t flag,
in which case normal troff rules apply. In either case, cw hides from the user the effect of
the font changes generated by the .CW and .CN requests.

You can also use the -1 and -r flags to define delimiters with the same function as the .CW
and .CN requests. They are meant to enclose words or phrases that are to be set in CW font
in the running text. cw treats text between delimiters as it does text bracketed by
.CW/.CN pairs, with one exception. Spaces within .CW/.CN pairs have the same width as
other CW characters, while spaces within delimited text are half as wide, so they have the
same width as spaces in the prevailing text. Delimiters have no special meaning inside
.CW/.CN pairs.

The checkew command checks that left and right delimiters, and the .CW/.CN pairs are
properly balanced. It prints out all lines in the section with the unmatched delimiters.

Notes:

1. It is unwise to use . (period) or \ (backslash) as delimiter characters.

2. Certain CW characters do not combine well with certain Times Roman characters; for
example, the spacing between a CW & (ampersand) followed by a Times Roman comma
(,). In such cases, using troff half-and quarter-space requests can help.

The troff code produced by ew is difficult to read.

The mm and mv macro packages contain definitions of .CW and .CN macros that are
adequate for most use. If you define your own, make sure that the .CW macro invokes
the troff no-fill (.nf) mode, and the .CN macro restores the fill mode (.fi), if
appropriate.

5. When set in running text, the CW font is meant to be set in the same point size as the
rest of the text. In displayed matter, on the other hand, it can often be profitably set

one point smaller than the prevailing point size. The CW font is sized so that, when it is
set in 9-point, there are 12 characters per inch.

6. Documents that contain CW text may also contain tables and equations. If this is the
case, the order of preprocessing must be cw, tbl, and eqn. Usually, the tables will not
contain any CW text, although it is possible to have elements in the table set in the CW
font. Care must be taken that cw does not modify the tbl format information.
Attempts to set equations in the CW font are not likely to be pleasing or successful.

7. In the CW font, overstriking is most easily accomplished with backspaces. Because
spaces (and therefore backspaces) are half as wide between delimiters as inside
.CW/.CN pairs, two backspaces are required for each overstrike between delimiters.

Commands 277

CwW

Flags

-d

-ffont

-ldelim
-rdelim

-t
+t

Files

Displays the current flag settings on the standard error output in the form of
troff comment lines. This flag is meant for debugging.

Replaces font with the ew font (default=3, replacing the bold font). -f5 is
commonly used for formatters that allow more than four simultaneous fonts.

This flag is useful only on the command line.

Sets the left delimiter as the one-or two-character string delim. The left
delimiter is undefined by default.

Set the right delimiter as delim The right delimiter is undefined by default.
The left and right delimiters may (but need not) be different.

Turns the transparent mode off.

Turns the transparent mode on (this is the default).

Jusr/lib/font/ftCW CW font-width table.

Related Information

The following commands: “eqn, neqn, checkeq” on page 395, “mmt, checkmm” on
page 666, “tbl” on page 1053, and “troff” on page 710.

The mm and mv miscellaneous facilities in AIX Operating System Technical Reference.

278

cxref

cxref

Purpose

Creates a C program cross-reference listing.

Syntax

cxref

" Do not put a space between these items.
OL805180

Description

Flags

The cxref command analyzes C program files and creates a cross-reference table, using a
version of the epp command to include #define directives in its symbol table. It writes to
standard output a listing of all symbols in each file processed, either separately or in
combination (see the -c flag on page 279). When a reference to a symbol is that symbol’s
declaration, an * (asterisk) precedes it.

You can also use the -D, -1, and -U flags from the ¢pp command.

-C displays a combined listing of the cross-references in all input files.
-0 file Direc?s the output to the specified file.

-s Does not display the input file names.

-t Makes the listing 80 columns wide.

-wlnum] Makes the listing num columns wide, where num is a decimal integer greater
than or equal to 51. If you do not specify num or if num is less than 51, the
listing will be 80 columns wide.

Commands 279

cxref

File
Jusr/lib/xcpp Special version of C-preprocessor.

Related Information

The following commands: “ce” on page 140 and “cpp” on page 210.

The discussion of exref in AIX Operating System Programming Tools and Interfaces.

280

date

date
Purpose
Displays or sets the date.
Syntax
Operating With Superuser Authority
=)
>— hh .ss yy
1 dd
MM
0L805105
Operating Without Superuser Authority
date —{ }———4
+"string "
! Do not put a blank between these items.
OL805357
Description

Warning: Do not change the date while the system is running with more
than one user.

If called with no flags or with a flag list that begins with a + (plus sign), the date
command writes the current date and time to standard output. Otherwise, it sets the
current date. Only a user operating with superuser authority can change the date and
time. The NLDATE variable, if it is defined, controls the ordering of the day and month
numbers in the date specifications. The default order is MMddhhmm.ssyy where:

MM is the month number

dd is the number of the day in the month

hh is the hour in the day (using a 24-hour clock)
mm is the minute number

.ss 1s the number of seconds

yy is the last two numbers of the year.

The alternative ordering is dd MMhhmm.ssyy.

Commands 281

date

The current month, day, hour, and year are default values. The system operates in
Greenwich Mean Time (GMT). date takes care of the conversion to and from local
standard and daylight time as specified in the NLTZ environment variable.

If you follow date with a + (plus sign) and a field descriptor, you can control the output of
the command. You must precede each field descriptor with a % (percent sign). The system
replaces the field descriptor with the specified value. Enter a literal % as %%. date copies
any other characters to the output without change. date always ends the string with a
new-line character. Output fields are fixed size (zero padded if necessary).

Field Descriptors

Examples

282

a

Bt m =.‘

IR RL -

y

1.

Displays the abbreviated day of the week (Sun to Sat or the non-English
equivalent).

Displays the day of month (01 to 31).

Displays the date as mm/dd/yy (the default), or as dd/mm/yy. This format is
specified by the NLDATE environment variable, if defined.

Displays the abbreviated month (Jan to Dec or the non-English equivalent).
Displays the hour (00 to 23).

Displays the day of year (001 to 366).

Displays the month of year (01 to 12).

Displays the minute (00 to 59)

Inserts a new-line character.

Displays the time in AM/PM notation (or the non-English equivalent).
Displays the second (00 to 59).

Inserts a tab character.

Displays the time as Ah:mm:ss (the default), or as mm:hh:ss. This format is specified
by the NLTIME environment variable, if defined.

Displays the day of the week numerically (Sunday = 0).
Displays the last two numbers of year (00 to 99).

To display current date and time:
date

date

2. To set the date and time:
date 02171425.45

This sets the date and time to 14:25:45 (45 seconds after 2:25 p.m.) February 17 of the
current year.

3. To display the date and time in a specified format:
date +"%r %a %d %h %y (Julian Date: %j)"
This displays the date (assume current year is 1984) shown in Example 2 as:
02:25:03 PM Fri 17 Feb 84 (Julian Date: 048)

Files
/dev/kmem
Related Information

See the time and stime system calls and the environment miscellaneous facility in AIX
Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 283

dbx
dbx

Purpose

Provides a tool to debug and run programs under AIX.

Syntax
dbx . —a pid
ofile
corefile —
AJ2FL127
Description

The dbx command provides a symbolic debugger for C, Pascal, and FORTRAN programs.
Use it to do the following:

e Examine object and core files.

e Provide a controlled environment for running a program.

e Set breakpoints at selected statements or run the program one line at a time.
e Debug using symbolic variables and display them in their correct format.

The ofile is an object (executable) file produced by a compiler. Use the -g (generate symbol
table) flag when compiling your program to produce the information dbx needs.

Note: If the object file is not compiled with the -g flag or if it contains compiler or loader
errors, the symbolic capabilities of dbx are limited.

When dbx is started, it checks for the .dbxinit file in the user’s current directory. If the
file is not found, it checks the user’s SHOME directory. If .dbxinit exists, its
subcommands run at the beginning of the debug session. Use an editor to create a
.dbxinit file.

If the file core exists in the current directory or a corefile is specified, use the dbx
debugger to examine the state of the program when it faulted.

284

dbx

Flags

When displaying variables and expressions, dbx resolves names first using the static scope
of the current function. The dynamic scope is used if the name is not defined in the first
scope. If static and dynamic searches do not yield a result, an arbitrary symbol is chosen
and the system prints the message [using module.variable]. The module.variable is
the name of an identifier qualified with a block name. Override the name resolution
procedure by qualifying an identifier with a block name. Source files are treated as
modules named by the file name without the language suffix (such as, the .f suffix on a
FORTRAN program or the .c suffix on a C Language program).

Specify expressions in dbx with a subset of C and Pascal (or equivalent Modula-2) syntax.
A prefix * or a postfix » denotes indirection. Use [] (square brackets) or ()
(parentheses) to enclose array subscripts. Use the field reference operator . (period) with
pointers and records.

Note: This makes the C operator -> unnecessary (although it is supported). Specify
portions of the array by separating the lower and upper bounds with. (period).

The dbx debugger checks types of expressions. Override types of expressions by using
type-name (expression). When there is no corresponding named type, use the special
construct &type-name to represent a pointer to the named type. Represent a pointer to
enum, struct, or union tag with the construct $$tag-name.

The following operators are valid in expressions:

Algebraic +, -, *, / (floating), div (integral), mod, exp (exponentiation)
Bitwise -, |, bitand, xor, ~, <X,

Logical or, and, not

Comparison <, >, L=, >=, <> or =, =or ==

Other sizeof

-a pid Attaches the debugger to a process that is running. The debugger becomes
active as soon as the process wakes up. In order to attach the debugger, you
need authority to end a process.

-c file Runs the dbx commands in the file before reading from standard input.

-1 dir Includes dir in the list of directories searched for source files. The default is to
look for source files in the current directory and in the directory where the
object file is located. The search path is also set with the use subcommand.

-k Maps memory addresses, this is useful for kernel debugging.

-r Runs the object file immediately. If it ends successfully, exit dbx. Otherwise,
enter the debugger and report the reason for termination.

Note: Unless -r is specified, dbx prompts the user and waits for a command.

Commands 285

dbx

Subcommands

Run and Trace Subcommands

286

call proc (params)

catch

catch signum
catch signame
ignore

ignore signum
ignore signame

clear sline

cont
cont signum
cont signame

delete num ...

delete all

detach
detach signum
detach signame

Executes the object code associated with the named procedure
or function. Use print proc (params) to perform the same
function, but with a return code of procedure printed.

Starts or stops trapping a signal before it is sent to the
program. This subcommand is useful when a program being
debugged handles signals such as interrupts. A signal is
specified by a number or by a name. Signal names are case
insensitive. The SIG prefix in names is optional. By default
all signals are trapped except SIGHUP, SIGCLD, SIGALRM,
and SIGKILL.

Removes all stops at a given source line. The sline is an

integer or a file name string followed by a : (colon) and an
integer.

Continues execution from the current stopping point until the
program finishes or another break point is encountered. If a
signal is specified, the process continues as though it received
the signal. Otherwise, the process is continued as though it
had not been stopped.

Removes the traces and stops corresponding to the specified
numbers. Use the status subcommand to display the numbers
associated by dbx with a trace or stop.

Removes all active traces and stops.

Continues execution from where it stopped without debugger
control. If a signal is specified, the process continues as
though it received the signal. Otherwise, the debugger will
exit, but the debugged process shall continue.

dbx

goto sline

multproc [on]
multproc [off]

print proc (params)

next [num]

return [proc]

Makes the specified source line the next line to be executed.

Note: The source line must be in the same function as the
current source line. To override this restriction, set
$vnsafegoto.

Turns on or off multiprocess debugging. The initial value is off.
Issue the command without parameters to check the status of
multiprocess debugging.

Executes the object code associated with the named procedure
or function. You use call proc (params) to perform the same
function, but with a return code of procedure called.

Runs the program up to the next source line. This subcommand
and the step subcommand differ in that if the line contains a
call to a procedure or function, step will stop at the beginning
of that block, and next will not. Use num to perform a specfic
number of next commands.

Continues until a return to procedure is executed, or until the
current procedure returns if none is specified.

run [args][< file][> file] [> > file][2> file][2> > file] [> & file][> > & file]
rerun [args] [< file][> file] [> > file] [2> file][2> > file] [>& file][> > & file]

skip num

status [> file]

Starts running the object file, passing args as command line
arguments.

<or>or 2>
Redirects input, output, or standard error,
respectively.

>> Appends redirected output

2>> Appends redirected standard error.

>& Redirects both output and standard error to the
same file.

>>& Appends the redirected output and standard error

to the same file.

When rerun is used without arguments, the previous argument
list is passed.

Continues execution from the current stopping point until num
+ 1 breakpoints are encountered or the program finishes.

Displays out the currently active trace and stop commands.

Commands 287

dbx

288

step [num] Runs one source line. Use num to execute a specific number of
lines.

stop if cond
stop at sline [if cond]
stop in proc [if cond]
stop var [in proc] [if cond]
Stops the program when:

e The condition is true.

o The source line number is reached.

e The procedure (or function) is called.
The variable is changed.

A condition can be specified for the source line, procedure, or
variable stops.

The debugger associates numbers with each stop subcommand.
Use the status subcommand to view these numbers. Use the
delete or clear subcommand to turn stopping off. You use the
qualified name to get the actual variable stop.

trace

trace in proc [if cond]
trace sline [if cond]

trace proc [in proc][if cond]

trace expr at sline [if cond]

trace var [in proc][if cond]
Prints the tracing information for the specified procedure (or
function), source line, expression, or variable when the program
runs. A condition can be specified. The debugger associates
numbers with each trace subcommand. Use the status
subcommand to view these numbers. Use the delete
subcommand to turn tracing off.

watch var [in proc] Traces changes to a variable in a watch window if invoked
under xdbx. Otherwise, this is the same as trace.

dbx

Subcommands for Examining Program Data

assign var = expr
case [default]
case [mixed]

case [lower]
case [upper]

dump [proc] [> file]

print expr [,expr...]

whatis name
where [> file]
whereis identifier
which identifier

up [count]
down [count]

Assigns the value of the expression to the variable.

Changes the way in which the debugger interprets symbols. The
default handling of symbols is based upon the current language.
Symbols fold to lowercase unless C is the current language. You use
this command if a symbol needs to be interpreted in a way not
consistent with the current language. Entering this command with
no parameters displays the current case mode.

Displays or puts in a file the names and values of variables in the

specified procedure. If the procedure specified is . (period), then all
active variables are dumped. The default is the current procedure.

Prints out the values of the expressions.

Displays the declaration of name where name is a variable,
procedure, or function name qualified with a block name.

Displays a list of the active procedures and functions.

Displays the full qualification of all the symbols whose name matches
the specified identifier. The order in which the symbols print is not
significant.

Displays the full qualification of the given identifier (the outer blocks
with which the identifier is associated).

Moves the current function, which is used for resolving names, up or
down the stack count levels. The default is 1.

Subcommands for Accessing Source Files

[sline-exp [,sline-exp]]

Jregular expression[/]

Searches forward in the current source file for the specified

pattern.

?regular expression[?] Searches backward in the current source file for the specified
pattern.

edit [file]

edit proc Invokes an editor with file or the current source file if none is

specified. If a procedure (or function) proc is specified, the
editor is invoked on the file that contains it. The default editor

Commands 289

dbx

290

file [file]

func [proc]

list [proc]

list [sline-exp| , sline-expl]]

listi [proc]

listi at sline

listi [address [address]]

move sline

use dir [dir ...]

is vi. Override the default by resetting the environment
variable EDITOR to the name of the desired editor.

Note: If the procedure has the same name as a file in the same
directory, the editor starts the other file, not the file containing
the procedure.

Changes the current source file to file, but does not write to the
file. If none is specified, displays the name of the current
source file.

Changes the current function to the specified procedure or
function. If none is specified, displays the current function.
Changing the current function implicitly changes the current
source file to the one containing the function; it also changes
the current scope used for name resolution.

Lists lines f-n to f+m where f is the first statement in the
procedure or function, n is a small number, and m is the number
of lines remaining that fit in the default list window. Use set
$listwindow =value to set or change the number of lines
displayed in the list window.

Lists the source lines in the current source file from the first
line number to the second inclusive. If no lines are specified,

lists the next 10 lines or $listwindow lines. An sline of $

specifies the current line of execution. An sline of @ specifies
the next line to be listed. An sline-exp is an sline followed by
an optional + or - and an integer.

Lists instructions from the specified procedure or function.
The number of instructions displayed is controlled by the
$listwindow value.

Lists instructions beginning with the source line specified.

Lists instructions from the first address to the second address
inclusive. If no lines are specified, list the next $listwindow
instructions.

Changes the next line to be displayed to sline. Changes value
of @.

Sets the list of directories to be searched when looking for
source files.

dbx

Machine Level Subcommands
address,address/[mode][> file]

address/[count][mode] [> file]

cleari addr

gotoi addr

registers [> file]

stepi [num]
nexti [num]

tracei [addr][if cond]
stopi [addr][if cond]

Displays the contents of memory starting at the first address and
continuing up to the second address or until count items are
printed. If the address is . (period), the address following the one
printed most recently is used. The mode specifies how memory is
to be printed; if it is omitted, the previous mode specified is used.
The initial mode is X. The following modes are supported:

Prints a byte in octal.

Prints a byte as a character.

Prints a short word in decimal.

Prints a long word in decimal.

Prints a single precision real number.
Prints a double precision real number.
Prints a byte in hexadecimal.

Prints the machine instruction.

Prints a short word in octal.

Prints a long word in octal.

Prints a string of characters terminated by a null byte.
Prints a short word in hexadecimal.
Prints a long word in hexadecimal.

MK ® OO0 =R o

Specify symbolic addresses by preceding the name with an &.
Addresses can be expressions made up of other addresses and the
operators +, -, and * (indirection). Any expression enclosed in
parentheses is interpreted as an address.

Remove all the breakpoints at a specified address.

Change program counter address.

Displays the values of all general purpose registers, system
control registers, floating point registers, and the current
instruction register. General purpose registers are denoted by
$rn where n is the number of the register. Floating point
registers are denoted by $frn.

Runs a single step as in step or next, but runs a single
instruction rather than source line. If num is specified, repeats a
single step num times.

Traces or sets a stop when the contents of addr change.

Commands 291

dbx

tracei [addr][[if cond] addr][if cond]

stopi [var][at addr][if cond]
Turns on tracing or sets a stop at a machine instruction address.

Subcommand Aliases and Variables

alias Displays aliases for subcommands.

alias name name

alias name "string"

alias name (params) "string"
When subcommands are processed, dbx checks first to see if the word
is an alias for either a subcommand or a string. If it is, dbx treats the
input as though the corresponding string (with values substituted for
any parameters) has been entered.

unalias name Removes the alias with the given name.

unset name Deletes the debugger variable associated with name.

The set Subcommand

set var [= expr]
Defines a value (expression) for a debugger variable. The name of the
variable cannot conflict with names in the program being debugged. A
variable 1s expanded to the corresponding expression within other
commands.

The following variables are selected with set and have special meaning:

$dual Turns on both source- and machine-level dbx interface with
X-Windows.

$expandunions Causes dbx to display values of each part of variant records or
unions.

$frame Setting this variable to an address causes dbx to use the stack frame

pointed to by the address for doing stack traces and accessing local
variables. This facility is of particular use for kernel debugging.

292

dbx

$hexchars
$hexin
$hexints

$hexstrings
$listwindow
$machine
$mapaddrs

$octin
$octints

$noargs
$noflargs

$source

$unsafeassign

$unsafebounds

$unsafecall

$unsafegoto

Causes dbx to interpret integers as hexadecimal.

Causes dbx to print out characters, integers, or character pointers
respectively in hexadecimal.

Specifies the number of lines to list around a function or when the
list command is given without any parameters. Its default value is 10.

Turns on machine-level dbx interface with X-Windows. This variable
turns off $source.

Setting (unsetting) this variable causes dbx to start (stop) mapping
addresses. This is useful for kernel debugging.

Causes dbx to interpret integers as octal.
Causes dbx to print out integers in octal.

Causes dbx to omit arguments from commands which walk the stack
(where, up, down, dump).

Causes dbx to omit display of floating point registers from the
registers command.

Turns on source-level dbx interface with X-Windows.

Turns off strict type checking between the two sides of an assign
statement.

Note: Use these variables with great care. They severely limit the
usefulness of dbx in detecting errors.

Turns off subscript checking on arrays.

Turns off strict type checking for arguments to subroutine or function
calls.

Turns off goto destination checking.

Commands 293

dbx

Other Useful Subcommands
help Prints out a synopsis of common dbx commands.

prompt "string"
Changes the dbx prompt to be the same as string.

quit Quits dbx.

screen Opens a virtual terminal for the dbx command interaction. The user
continues to operate in the window in which the process originated.

sh command Passes the command line to the shell for execution. The SHELL
environment variable determines which shell is used.

source file Reads dbx commands from the given file.

Files

a.out Contains object code; object file.
core Contains core dump.
.dbxinit Contains initial commands.

Related Information

The following commands: “cc” on page 140 and “xdbx” on page 1236.
The a.out and core files in AIX Operating System Technical Reference.

The topic “Debugging Programs” in AIX Operating System Programming Tools and
Interfaces.

294

de

de

Purpose

Provides an interactive desk calculator for doing arbitrary-precision integer arithmetic.

Syntax

file

Description

OL805106

The de command is an arbitrary-precision arithmetic calculator. de takes its input from
file or standard input until it reads an end-of-file character. It writes to standard output.
It operates on decimal integers, but you may specify an input base, output base, and a
number of fractional digits to be maintained. dc is structured overall as a stacking,
reverse Polish calculator.

The be command (see page 118) is a preprocessor for de. It provides infix notation and a
syntax similar to the C language which implements functions and reasonable control
structures for programs.

Subcommands

number

+ %%

SX

Sx

1x

Pushes the specified value onto the stack. A number is an unbroken
string of the digits 0-9. To specify a negative number, precede it with _
(underscore). A number may contain a decimal point.

Adds (+), subtracts (-), multiplies (*), divides (/), remainders (%), or
exponentiates (*) the top two values on the stack. de pops the top two
entries off the stack and pushes the result on the stack in their place. de
ignores fractional parts of an exponent.

Pops the top of the stack and stores it in a register named x, where x may
be any character.

Treats x as a stack. It pops the top of the main stack and pushes that
value onto stack x.

Pushes the value in register x on the stack. The register x is not changed.
All registers start with zero value.

Commands 295

de

Lx Treats x as a stack and pops its top value onto the main stack.
Duplicates the top value on the stack.

Displays the top value on the stack. The top value remains unchanged.
The p interprets the top of the stack as an ASCII string, removes it, and
displays it.

P Interprets the top of the stack as a string, removes it, and displays it.

f Displays all values on the stack.

q Exits the program. If dc is executing a string, it pops the recursion level
by two.

Q Pops the top value on the stack and the string execution level by that
value.

b Treats the top element of the stack as a character string and executes it as
a string of de commands.

X Replaces the number on the top of the stack with its scale factor.

[string] Puts the bracketed string onto the top of the stack.

<x

>x

=x Pops the top two elements of the stack and compares them. Evaluates
register x as if it obeys the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

! Interprets the rest of the line as a AIX command.

c Cleans the stack: de pops all values on the stack.

i Pops the top value on the stack and uses that value as the number radix
for further input.

Pushes the input base on the top of the stack.

o Pops the top value on the stack and uses that value as the number radix
for further output.

Q) Pushes the output base on the top of the stack.

k Pops the top of the stack, and uses that value as a nonnegative scale

factor. The appropriate number of places displays on output and is
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if all
are changed together.

296

de

?

.o
9

Examples

1.

Pushes the number of elements in the stack onto the stack.

Replaces the top number in the stack with the number of digits in that
number.

Gets and runs a line of input.

bc uses these characters for array operations.

To use de as a calculator:

You:
System:
You:

System:
You:

System:
You:
System:
You:
System:

14/ p

0

1k [Keep 1 decimal place Js.
14/p

0.2

3 k [Keep 3 decimal places]s.
14/p

0.250

16 635/ +p

28.600

16 635+ / p

0.235

You may type the comments (enclosed in []s.), but they are provided only for your
information.

When you enter de expressions directly from the keyboard, press Ctrl-D to end the be
session and return to the shell command line.

To load and run a de¢ program file:

You:

System:
You:
System:

dc prog.dc

51f x p [5 factorial]Js.
120

10 1f x p [10 factorial Js.
3628800

This interprets the de program saved in prog.dc, then reads from the work station
keyboard.

Commands 297

de

The 1f X evaluates the function stored in register f, which could be defined in the
program file prog.c as:

[f: compute the factorial of n]Js.
[(n = the top of the stack) Js.

[If 1>n do by If 1<n do r]s.
[d1> d1<r] sf

[Return f(n) =1 1s.
[d -1+] sb

[Return f(n) = n * f(n-1) Js.
[d1=1f & *¥] sr

You can create de program files with a text editor, or with the -¢ (compile) flag of the
bc command. When you enter de expressions directly from the keyboard, press Ctrl-D
to end the be session and return to the shell command line.

Related Information

The following command: “be” on page 97.

“Overview of International Character Support” in Managing the AIX Operating System.

298

dcopy

dcopy

Purpose

Copies file systems for the best access time.

Syntax
-a7
dcopy —ffsize oldfs — newfs —i
:s —anum ~ffsize : isize
—scyl:skip
"I not specified, the values from o/dfs are used.
0L805420
Description

Warning: oldfs and newfs must not refer to the same minidisk. Doing so
will destroy the old file system.

The decopy command copies an existing file system oldfs to a new file system newfs,
appropriately sized to hold the reorganized results. For best results, oldfs should be the
raw device and newfs should be the block device. If oldfs or newfs is a file system name,
dcopy uses the corresponding block device given in /etc/filesystems. You should run
dcopy on unmounted file systems (in the case of the root file system, copy to a new
minidisk).

If you do not specify any flags, dcopy copies files from oldfs, compressing directories by
removing vacant entries and spacing consecutive blocks in a file by the optimal rotational
gap.

The dcopy command makes newfs identical to oldfs and preserves the pack and volume

labels. Thus, to compress a file system without moving it, use the dcopy command to copy
the file to another file system and the dd command to copy the file back.

The dcopy command catches INTERRUPT and QUIT signals and reports on its progress.
To end dcopy, send a Quit signal (Ctrl-V) and dcopy no longer catches INTERRUPT or
QUIT. dcopy also attempts to modify its command line arguments so that its progress can
be monitored with the ps command.

Commands 299

dcopy

Flags

-anum

-d
-ffsize[:isize]

-scyl:skip

-~

Places files not accessed in the specified number of days after the free
blocks of the destination file system. The default value of num is 7. If you
do not specify num, no files are moved.

Leaves the order of directory entries as is. If you do not specify this flag,
dcopy moves subdirectories to the beginning of directories.

Specifies the file system and i-node list sizes (in blocks). If not specified, the
value from oldfs is used.

Supplies device information for creating the best organization of blocks in a
file, where cy! is the number of block per cylinder and skip is the number of
blocks to skip.

Reports how many files were processed and how big the source and
destination free lists are.

Related Information

300

The following commands: “fsck, dfsck” on page 445, “mkfs” on page 658, and “ps” on

page 786.

dd

dd

Purpose

Converts and copies a file.

Syntax

ibs=512 >_< obs=512
ibs=num obs=num

bs=num

dd

4if=infile
of=outfile
cbs=num
fskip=num
skip=num

seek=num

count=num

_ 1] ascii? icase3
conv= —| u

ebcdic?2 ucase3
iblock swab
oblock noerror
block sync
tonls® fromnlsS
tosjis® flattens
fromjisé

1

1 Do not put a blank between these items.

2Use only one of ascii and ebcdic.

3 Use only one of icase and ucase.

4 infile and outfile default to standard input and standard output.

5 Not active when using Japanese Language Support.
6 Active when using Japanese Language Support.
0L805373

Description

The dd command reads the specified infile or standard input, does the specified
conversions, and copies it to the specified outfile or standard output. The input and output
block size may be specified to take advantage of raw physical I/O. The terms block and

Commands 301

dd

302

record refer to the quantity of data read or written by dd in one operation and are not
necessarily the same size as a disk block.

Where sizes are specified, a number of bytes is expected. A number may end with w, b, or
k to specify multiplication by 2, 5§12, or 1024 respectively; a pair of numbers can be
separated by an x to indicate a product.

The conversion requested by conv =fromnls translates each extended character in a text
file to a printable ASCII escape sequence that uniquely identifies the extended character.
The complementary conversion, provided by conv =tonls, translates ASCII escape
sequences to the corresponding extended character. The conversion requested by

conv =flatten translates an extended character to the single ASCII character most
resembling it in appearance or to a ? (question mark) if no ASCII characters resemble that
extended character.

Japanese Language Support Information

The conversion requested by conv =fromsjis translates each kanji character in a text file
to a printable ASCII escape sequence that uniquely identifies that kanji character. The
conversion provided by conv =tosjis translates the ASCII escape sequences to the
corresponding kanji character.

The character set mappings associated with conv =ascii and conv =ebedic are
complementary operations, described in the ebedic file in AIX Operating System Technical
Reference. These attempt to map between ASCII and the subset of EBCDIC that is found
on most terminals and keypunches.

The cbs specification is used only if the ascii or ebedic conversion is specified. For ASCII
conversions, dd places characters in a conversion buffer of size cbs, converts these
characters to ASCII, trims trailing blanks and adds new-line characters before sending
data specified output. For EBCDIC conversions, it places ASCII characters in the
conversion buffer, converts these characters to EBCDIC, adds trailing blanks to create
records of size cbs.

After it finishes, dd reports the number of whole and partial input and output blocks.
Notes:

1. Normally, you need only write access to the output file. However, when the output file
1s not on a direct access device and you use the seek parameter, you also need read
access to the file.

2. The dd command inserts new-line characters only when converting to ASCII; it pads
only when converting to EBCDIC.

3. Use the backup, tar, or cpio commands instead of the dd command whenever possible
to copy files to tape. These commands are designed for use with tape devices.

dd

4. If you need to use dd to copy to a streaming tape and the data is an odd length (not a
multiple of 512 bytes), you must use the conv=sync option to fill the last record.
Streaming tape devices permit only multiples of 512 bytes.

Parameters
if=infile
of =outfile
ibs=num
obs=num

bs=num

cbs=num
skip=num

seek =num
fskip=num

count=num

conv = spec[,spec . . .

Specifies the input file name; standard input is the default.
Specifies the output file name; standard output is the default.
Specifies the input block size in bytes; the default is 512.
Specifies the output block size in bytes; the default is 512.

Specifies both the input and output block size, superseding ibs
and obs.

Specifies the conversion buffer size.
Skip num input records before starting copy.

Seek to the numth record from the beginning of output file
before copying.

Skip past num end-of-file characters before starting copy; this
parameter is useful for positioning on multifile magnetic tapes.

Copies only num input blocks. The default block size is 512
bytes (see the ibs parameter).

Specifies one or more of the following conversions:

ascii Converts EBCDIC to ASCIL.

ebcdic Converts ASCII to EBCDIC.

tonls Converts ASCII escape sequences to extended
characters.

fromnls Converts extended characters to ASCII escape
sequences.

flatten Converts extended characters to the ASCII character
most resembling it, or to a ? (question mark).

Japanese Language Support Information
tosjis Converts ASCII escape sequences to kanji characters.

fromsjis Converts kanji characters to ASCII escape sequences.

iblock

Commands 303

dd

Example

304

1L,

oblock

block Minimizes data loss resulting from a read or write
error on direct access devices. If you specify iblock
and an error occurs during a block read (where the
block size is 512 or the size specified by ibs =num), dd
attempts to reread the data block in smaller size units.
If dd can determine the sector size of the input device,
it reads the bad record one sector at a time.
Otherwise, it reads it 512 bytes at a time. The input
block size (ibs) must be a multiple of this “retry size.”
This allows you to maximize disk input efficiency
while ensuring that data loss associated with a read
error is confined to a single sector. The oblock
conversion works similarly on output. Specifying
block is same as specifying iblock,oblock.

lcase Makes all alphabetic characters lowercase.
ucase Makes all alphabetic characters uppercase.
swab Swaps every pair of bytes.

noerror Does not stop processing on an error.

sync Pads every input record to ibs.

To convert an ASCII text file to EBCDIC:
dd if=text.ascii of=text.ebcdic conv=ebcdic

This converts text.ascii to EBCDIC representation, storing the EBCDIC version in
text.ebcdic.

Note: When you specify conv=ebcdic, dd converts the ASCII * (circumflex)
character to an unused EBCDIC character (9A hexadecimal), and ASCII ~ (tilde) to
EBCDIC = (NOT symbol).

To use dd as a filter:

1i =1 | dd conv=ucase

This displays a long listing of the current directory (11 -1) in uppercase.

dd

Related Information

The following command: “cp” on page 202.
The ebedic and tape files in AIX Operating System Technical Reference.
“Overview of International Character Support” in Managing the AIX Operating System.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

Commands 305

defkey
defkey

Purpose
Defines keyboard key assignments.

Syntax

w0
-7 file

Description

OL805453

The defkey command lets you redefine the keyboard keys on the active virtual terminal.
Input to defkey comes either interactively from the keyboard or from a redirected file.
Key assignments can be a single character, non-spacing characters, or strings.

If you specify a file that does not exist, defkey creates and opens the file; if file exists,
defkey opens the file. It then displays a menu that prompts you for input. This file can
then be used as redirected input to defkey.

Flags
-? Provides help information.
Examples

1. To redefine a key or keys and create or add to a keyboard definition file:
defkey mykeys

This creates the file mykeys and prompts for input. When defkey ends, the keys that
you specified will be redefined on the active virtual terminal. You can also use the file

mykeys to redefine the keyboard on another virtual terminal with the command:
defkey < mykeys
2. To interactively redefine one or more keyboard keys for the active virtual terminal:

defkey

306

defkey

Related Information

hft and dispsym in AIX Operating System Technical Reference.

Keyboard Description and Character Reference.

Commands 307

del

del

Purpose

Deletes files if the request is confirmed.

Syntax

OL805049

Description

Flag

308

The del command displays the list of specified file names and asks you to confirm your
request to delete the group of files. To answer yes (delete the files), press the Enter key
or enter a line beginning with y. Any other response specifies N0 (do not delete the files).

Japanese Language Support Information

An affirmative response in Japanese Language Support matches one of the elements in the
environment variable YESSTR.

The del command does not delete directories. See “rmdir” on page 838 for information
about deleting directories.

Warning: The del command ignores file protection, allowing the owner of
a file to delete a write-protected file. However, to delete a file, you must
have write permission in the directory that the file exists in.

Since pressing the Enter key by itself is the same as answering “yes,” be
careful not to delete files accidentally.

- Requests confirmation for each specified file rather than for the entire group.

del

Examples

1. To delete a file:
del chapl.bak
This displays the message:
delete chapl.bak? (y)

to ask for confirmation before deleting chapl.bak. The (y) reminds you to press the
Enter key or to enter y to answer yes.

2. To use del with pattern-matching characters:
del *.bak

Before passing the command line to del, the shell replaces the pattern *.bak with the
names of all the files in the current directory that end with .bak. (This is known as
file-name expansion.) del asks for confirmation before deleting them all at one time.

3. To interactively select files to be deleted:
del - *

This displays the name of each file in the current directory one at a time, allowing you
to select which ones to delete.

Japanese Language Support Information
The allowed affirmative responses are defined in the environment variable YESSTR.

Related Information

The following commands: “rmdir” on page 838 and “rm” on page 833.

Commands 309

delta

delta

Purpose

Creates a delta in a Source Code Control System file.

Syntax
4 -m file
—-ycomment j : -mmrlist
delta
-y —Hi
—ycomment j i ~-mmrlist :
OL805056
Description

310

The delta command is used to introduce into the named Source Code Control System
(SCCS) file any changes that were made to the file version retrieved by a get -e command.

The delta command reads the g-files that correspond to the specified files (see “SCCS
Files” on page 478) and creates a new delta.

If you specify a directory in place of file, delta performs the requested actions on all SCCS
files within that directory (that is, on all files with the s. prefix). If you specify a - (minus)
in place of file, delta reads standard input and interprets each line as the name of an SCCS
file. When delta reads standard input, you must supply the -y flag. You must also supply
the -m flag if the v header flag is set. (For more information on header flags, see the
discussion in the admin command on page 44.) delta reads standard input until it reaches
END OF FILE (Ctrl-D).

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

Note: Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
SCCS file unless the SOH is quoted using a \ (backslash). SOH has special meaning to
SCCS and causes an error. See the scesfile file in AIX Operating System Technical
Reference.

delta

Flags

A get of many SCCS files, followed by delta of those files, should be avoided when the get
generates a large amount of data. Instead, you should alternate the use of get and delta.

-glist

-m[mrlist]

n

P

-rSID

-S

-y[comment]

Specifies a list of SIDs (deltas) that are to be ignored when the get
command creates the g-file. After you use this flag, get ignores this delta if
it is one that it should not include when it builds the g-file.

If the SCCS file has the v header flag set, then a Modification Request (MR)
number must be supplied as the reason for creating the new delta.

If you do not specify the -m flag, and the v header flag is set, delta reads
MRs from the standard input. If standard input is a work station, delta
prompts you for the MRs. delta continues to take input until it reads END
OF FILE (Ctrl-D). It always reads MRs before the comments (see the -y
flag). You can use blanks, tab characters, or both to separate MRs in a list.

If the v header flag has a value, it is interpreted as the name of a program
that validates the MR numbers. If delta returns a nonzero exit value from
the MR validation program, delta assumes some of the MR numbers were
invalid and stops running.

Retains the g-file, which is normally removed at completion of delta
processing.

Writes to standard output (in the format of the diff command) the SCCS file
differences before and after the delta is applied. See “diff” on page 320 for
an explanation of the format.

Specifies which delta is to be made to the SCCS file. You must use this flag
only if two or more outstanding get -e commands were done on the same
SCCS file by the same person. The SID can be either the SID specified on
the get command line or the SID to be made as reported by the get
command (see Figure 2 on page 481 for additional information). An error
results if the specified SID cannot be uniquely identified, or if a SID must be
specified but it is not.

Suppresses the information normally written to standard output on normal
completion of the delta command.

Specifies text used to describe the reason for making the delta. A null
string is considered a valid comment. If your comment line includes special
characters or blanks, the line must be enclosed in single or double quotation
marks.

If you do not specify -y, delta reads comments from standard input until it
reads a blank line or END OF FILE (Ctrl-D). If input is from the keyboard,
delta prompts for the comments. If the last character of a line is a
backslash, it is ignored. Comments must be no longer than 512 characters.

Commands 311

delta

Japanese Language Support Information

Comments can include kanji characters.

Example

To record changes you have made to an SCCS file:
delta s.prog.c

This adds a delta to the SCCS file s.prog.c, recording the changes made by editing

prog.c. delta then asks you for a comment that summarizes the changes you made.
Enter the comment, then press END OF FILE (Ctrl-D) or press the Enter key twice to
indicate that you have finished the comment.

Related Information
The following commands: “admin” on page 41, “bdiff” on page 102, “cdc” on page 152,
“get” on page 477, “help” on page 513, “prs” on page 781, and “rmdel” on page 837.
The sccsfile file in AIX Operating System Technical Reference.
The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

The discussion of Japanese Language Support in Japanese Language Support User’s Guide.

312

deroff

deroff

Purpose

Removes nroff, troff, troff, tbl, and eqn constructs from files.

Syntax

deroff —<°2;(::>—< one of
-W B file

-ms
-ml

0OL805181

Description

Flags

The deroff command reads files (standard input by default), removes all troff requests,
macro calls, backslash constructs, eqn constructs (between .EQ and .EN lines and
between delimiters), and tbl descriptions (perhaps replacing them with blanks or blank
lines), and writes the remainder of the file to standard output.

The deroff command normally follows chains of included files (.so and .nx troff
commands). If a file has already been included, a .so naming it is ignored and a .nx
naming that file ends execution.

Notes:

1. deroff is not a complete troff interpreter, so it can be confused by subtle constructs.
Most errors result in too much rather than too little output.

2. The -ml flag does not handle nested lists correctly.

-i Suppresses the processing of included files.

-1 Suppresses the processing of included files whose names begin with /usr/lib, such
as macro files in /usr/lib/tmac.

-mm Ignores MM macros in text so that only running text is output (no text from
macro lines is included).

-ml Ignores MM macros in text (-mm) and also deletes MM list structures.

Commands 313

deroff

-ms Ignores MS macros in text.

-W Makes the output a word list, with one word per line and all other characters
deleted. In text, a word is any string that contains at least two letters and is
composed of letters, digits, & (ampersands), and ' (apostrophes). In a macro call,
a word is a string that begins with at least two letters and contains a total of at
least three letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are removed
from words.

Related Information

The following commands: “eqn, neqn, checkeq” on page 395, “nroff, troff” on page 709,
“tbl” on page 1053, and “troff” on page 710.

314

devices

devices

Purpose

Adds, deletes, changes, and displays device information.

Syntax

devices —
01805306

Description

Files

The devices command lets you add, delete, change, or examine information about devices
on the system. To use devices you must be a member of the system group or have
superuser authority.

The devices command is an interactive, menu-driven program. For information on how to
use it, see Installing and Customizing the AIX Operating System. When auditing is
enabled for your system, audit records are created. When a device is added or deleted, the
audit record is of the type devices - add or devices - del. When a device is changed, the
audit record is of the type stanza - add or stanza - del.

[etc/filesystems
/etc/predefined
[etc/master

[ete/system

[ete/ports

[etc/qconfig
/tmp/CONFIGREPORT

Related Information

The discussion of devices in Installing and Customizing the AIX Operating System.

The following command: “minidisks” on page 650.

Commands 315

devnm

devnm

Purpose

Names a device.

Syntax
R i
OL805114
Description

The devnm command reads path, identifies the special file associated with the mounted
file system where path resides, and writes the special file name to standard output. Each
path must be a full path name.

The most common use of the devnm command is by /ete/re to construct a mount table
entry for the root device.

Note: This command is for local file systems only.
Examples

1. To identify the device on which a file resides:
devnm /disketteO/bob/textfile

This displays the name of the special device file on which

/disketteO/bob/textfile resides. If a diskette is mounted as /diskette0, then
devnm displays:

fd0 /disketteO/bob/textfile
rfd0 /disketteO/bob/textfile

This means that /diskette0/bob/textfile resides on the diskette drive /dev/fdo0.

316

devnm

2. To identify the device on which a file system resides:
devnm /

This displays the name of the device on which the root file system (/) resides. The
following list appears on the screen:

hdo /
This means that / resides on /dev/hd0.

Files

/dev Directory.
/ete/mnttab Table of mounted devices.

Related Information

The following commands: “rc¢” on page 806 and “setmnt” on page 911.

Commands 317

df
df

Purpose

Reports number of available disk blocks.

Syntax

df —<<
-s filesystem’

' The default action is to provide information for each file
system in /etc/filesystems with the attribute free=true.

OL805052

Description

The df command writes to standard output information about total space and available
space on the specified file systems. filesystem can be the name of the device on which the
file system resides or the directory on which it is mounted. If you do not specify filesystem,
df provides information on all mounted file systems.

Normally, df uses free counts maintained in the superblock. Under certain exceptional
circumstances, these counts may be in error.

If a file system is being actively modified at the instant df is run, the free count may be
inaccurate.

Flag

-s This flag is for backwards compatibility only.

318

df

Examples

1. To list information about all file systems:

df

If your system is configured so that the /, /usr, /u, and /tmp directories reside in
separate file systems, the output from the df command resembles this:

Device Mounted on total
/dev/hd0 7 19368
/dev/hdl /usr 242172
/dev/hd2 Ju 9744
/dev/hd5 /tmp 3868

ifree used

4714 5%
5031 19%
1900 4%

986 0%

Note: On some remote file systems, such as NFS, columns are blank if the server does

not provide the information.

2. To list information about the file system on a diskette:

df /dev/fd0

3. To list information about the file system currently mounted as /diskette0:

df /diskette0

Related Information

The following command: “fsck, dfsck” on page 445.

The discussion of df in Managing the AIX Operating System.

Commands

319

diff

diff

Purpose

Compares text files.

Syntax
diff -<-°”_eeci>—< >v Filel — file2 —i
- b
—~h
OL805046
Description

The diff command compares filel and file2 and writes to standard output information about
what changes must be made to bring them into agreement. If you specify a - (minus) for
filel or file2, diff reads standard input. If filel is a directory, then diff uses a file in that
directory with the name file2. If file2 is a directory, then diff uses a file in that directory
with the name filel.

The normal output contains lines of these forms:

Lines Affected in filel Action | Lines Affected in file2
numl a num2[,nums)
numl[,num?2] d num3

numl[,num?] c numd[,num4]

These lines resemble ed subcommands to convert filel into file2. The numbers before the
action letters pertain to filel; those after pertain to file2. Thus, by exchanging a for d and
reading backward, you can also tell how to convert file2 into filel. As in ed, identical
pairs (where numl = num?2) are abbreviated as a single number.

Following each of these lines, diff displays all lines affected in the first file preceded by a
<, then all lines affected in the second file preceded by a >.

Except in rare circumstances, diff finds a smallest sufficient set of file differences. An exit
value of 0 indicates no differences, 1 indicates differences found, and 2 indicates an error.

Note: Editing scripts produced by the -e or -f flags cannot create lines consisting of a
single . (period).

320

diff

Flags

-b Ignores trailing spaces and tab characters and considers other strings of blanks to
compare as equal.

-e Produces output in a form suitable for use with the ed command to convert filel to
file2.

-f Produces output in a form not suitable for use with ed, showing the modifications
necessary to convert filel to file2 in the reverse order of that produced under the -e
flag.

-h Performs a faster comparison. This flag only works when the changed sections are
short and well separated, but it does work on files of any length. The -e and -f flags
are not available when you use the -h flag.

Examples

1. To compare two files:
diff chapl.bak chapl
This displays the differences between the files chapl.bak and chapl.

2. To compare two files, ignoring differences in the amount of white space:
diff -b prog.c.bak prog.c
If two lines differ only in the number of blanks and tabs between words, then diff
considers them to be the same.

3. To create a file containing commands that ed can use to reconstruct one file from

another:
diff -e chap2 chap2.0ld >new.to.old.ed

This creates a file named new.to.o1d.ed that contains the ed commands to change
chap?2 back into the version of the text found in chap2.01d. In most cases,
new.to.old.ed is a much smaller file than chap2.01d. You can save disk space by
deleting chap2.01d, and you can reconstruct it at any time by entering:

(cat new.to.old.ed ; echo '1,$p') ! ed - chap2 >chap2.0ld

The commands in parentheses add 1, $p to the end of the editing commands sent to ed.
The 1, $p causes ed to write the file to standard output after editing it. This modified
command sequence is then piped to ed (! ed), and the editor reads it as standard input.
The - flag causes ed not to display the file size and other extra information since it
would be mixed with the text of chap2.01d. See page 931 for details about grouping
commands with parentheses.

Commands 321

diff

Files

[tmp/d??77? Temporary files.
Jusr/lib/diffh For the -h flag.

Related Information

The following commands: “bdiff” on page 102 “cmp” on page 177, “comm” on page 183,
“ed” on page 371, and “sdiff” on page 883.

322

diff3

diff3

Purpose

Compares three files.

Syntax

diff3 filel — fileZ2 — file3 —

OL805053
Description

The diff3 command reads three versions of a file and writes to standard output the ranges
of text that differ, flagged with the following codes:

All three files differ.
filel differs.
file2 differs.
file3 differs.

The type of change needed to convert a given range of a given file to match another file is
indicated in one of these two ways in the output:

o
o
o
JCH R

file : nl a Text is to be added after line number n1I in file, where file is 1, 2, or
3.
file : nl[,n2] ¢ Text in the range line nl to line n2 is to be changed. If nl = n2,

the range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the
contents of two files are identical, diff3 does not show the contents of the lower-numbered
file, although it shows the location of the identical lines for each.

Notes:

1. Editing scripts produced by the -e flag cannot create lines consisting only of a single
period (.).

2. The diff3 command does not work on files longer than 64K bytes.

Commands 323

diff3

Flags
-e Creates an edit script for use with the ed command to incorporate into filel all
changes between file2 and file3 (that is, the changes that normally would be flagged
==== gnd === =3).
-x Produces an edit script to incorporate only changes flagged = == =,
-8 Produces an edit script to incorporate only changes flagged = = = =3.
Example

To list the differences among three files:
diff3 fruit.a fruit.b fruit.c

If fruit.a, fruit.b, and fruit.c contain the following data:

fruit.a fruit.b fruit.c
banana apple grape
grape banana grapefruit
kiwi grapefruit | kiwi

Temon kiwi lTemon
mango orange mango
orange peach orange
peach pear peach

pare pear

then the output from diff3 shows the differences between these files as follows. (The
comments on the right do not appear in the output.)

TR e All three files are different.
1:1,2c - Lines 1 and 2 of the first file, fruit.a
banana
grape
2:1,3c -Lines 1 through 3 of fruit.b
apple
banana
grapefruit
3:1,2¢ -Lines1land2of fruit.c
grape
grapefruit
===7 e The second file, fruit.b, is different.

324

diff3

Files

1:4,5c - Lines 4 and 5 are the same in fruit.a and fruit.c.

2:4a - To make fruit.b look the same, add text after line 4.

334, 5¢
lemon
mango

==== e The first file, fruit. a, is different.

1:8¢
pare

25 7¢ - Line 7 of fruit.b and line 8 of fruit.c are the same.

3:8¢
pear

/tmp/d3*
Jusr/lib/diff3prog

Related Information

The following command: “diff” on page 320.

Commands

325

diffmk

diffmk

Purpose

Marks differences between files.

Syntax
diffmk filel — file2 ﬂ
file3
OL805057
Description

Flags

326

The diffmk command compares filel and file2 and creates a third file that includes change
mark commands for the nroff and troff commands. filel and file2 are the old and new
versions of the file. diffmk writes the newly created file to file3, if specified, or to
standard output. This file contains the lines of file2 with formatter change mark (.mec)
requests inserted as appropriate. When file3 is formatted, the changed or inserted text is
marked by a | (vertical bar) at the right margin of each line. An * (asterisk) in the margin
indicates that a line was deleted.

If the environment parameter DIFFMARK is defined, it names a command string that
diffmk uses to compare the files. (Normally, diffmk uses the diff command.) For

example, you might set DIFFMARK to diff -h in order to better handle extremely large
files.

-abX Uses X to mark where added lines begin.
-aeX Uses X to mark where added lines end.
-b Ignores differences that are only changes in tabs or spaces on a line.

-cbX Uses X to mark where changed lines begin.

diffmk

-ceX Uses X to mark where changed lines end.
-dbX Uses X to mark where deleted lines begin.
-deX Uses X to mark where deleted lines end.

Examples

1. To mark the differences between two versions of a text file:
diffmk chapl.old chapl > chapl.nroff

This produces a copy of chapl containing nroff/troff change mark commands to
identify text that has been added to, changed in, or deleted from chapl.old. This
copy is saved in the file chapl.nroff.

2. To mark differences with non-nroff/troff messages:

diffmk -ab'>>New:' -ae'<<End New' chapl.old chapl >chapl.nroff

This causes diffmk to write >>New: on the line before a section of new lines that have
been added to chapl and to write <End New on the line following the added lines.
Changes and deletions still generate nroff/troff commands to put a | or * in the
margin.

3. To use different nroff/troff marking commands and ignore changes in white space:

diffmk -b -cb'.mc %' chapl.old chapl > chapl.nroff

This imbeds commands that mark changes with %, additions with !, and deletions with
*, It does not mark changes that only involve a different number of spaces or tabs
between words (-b).

Related Information

The following commands: “diff” on page 320, “nroff, troff” on page 709, and “troff” on
page 710.

Commands 327

dircmp

dircmp

Purpose

Compares two directories and the contents of their common files.

Syntax

dircmp

Description

directoryl — directory2 —i

OL805004

The diremp command reads directoryl and directory2 and writes information about their
contents to standard output. First, dircmp compares the file names in each directory.
When the same file name appears in both, dircmp compares the contents of both files.

In the output, dircmp lists the files unique to each directory. It then lists the files with
identical names in both directories, but with different contents. With no flag, it also lists
files that have identical contents as well as identical names in both directories.

Flags

-d Displays for each common file name both versions of the differing file lines. The
display format is the same as that of “diff” on page 320.

-s Does not list the names of identical files.

Examples

1. To summarize the differences between the files in two directories:

dircmp proj.verl proj.ver2

This displays a summary of the differences between the directories proj.verl and
proj.ver2. The summary lists separately the files found only in one directory or the
other, and those found in both. If a file is found in both directories, dircmp notes
whether or not the two copies are identical.

328

dircmp

2. To show the details of the differences between files:
dircmp -d -s proj.verl proj.ver?
The -s flag suppresses information about identical files. The -d flag displays a diff
listing for each of the differing files found in both directories.

Related Information

The following commands: “cmp” on page 177 and “diff” on page 320.

Commands 329

diskusg

diskusg

Purpose

Generates disk accounting data by user ID.

Syntax

-p/etc/passwd
diskusg ——>—< one of
~pfile ~u file file
B

0L805402

Description

Flags

330

The diskusg command generates intermediate disk accounting information from data in
files or from standard input if you do not specify any files. diskusg writes lines to
standard output, one per user, in the following format:

uid login #blocks

where:

uid Is the numerical user ID of the user

login Is the login name of the user; and

#blocks Is the total number of disk blocks allocated to this user.

The diskusg command normally reads only the i-nodes of file systems for disk accounting.
In this case, files are the special file names of these devices.

Note: This command is for local devices only.

Japanese Language Support Information

This command has not been modified to support Japanese characters.

-i fnmlist Ignores the data on those file systems with a file system name in fnmlist.
fnmlist is a list of file system names separated by commas or enclosed within
quotation marks. diskusg compares each name in this list with the file
system name stored in the volume ID.

diskusg

-p file Uses file as the name of the password file to generate login names.
/ete/passwd is used by default.

-s Combines all lines for a single user into a single line. (The input date is
already in diskusg output format.)

-u file Writes records to file of files that are charged to no one. Records consist of
the special file name, the i-node number, and the user ID.
-v Writes a list to standard error of all files that are charged to no one.

The output of diskusg is normally the input to acetdisk, which generates total accounting
records that can be merged with other accounting records. diskusg is normally run in
dodisk (see “acct/*” on page 13).

Examples

Files

The following will generate daily disk accounting information:

for i in /dev/hd0 /dev/hdl /dev/hd2 /dev/hd3

do
diskusg $i > dtmp.'basename $i' &
done
wait
diskusg -s dtmp.* 1 sort +On +1 | acctdisk > dacct
Jetc/passwd Used for user ID to login name conversions.

Related Information

The following commands: “acct/*” on page 13, “acctems” on page 18, “acctcom” on
page 20, “acctcon” on page 24, “acctmerg” on page 28, “acctprc” on page 30, “fwtmp”
on page 457, and “runacct” on page 848.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

The discussion of accounting in Managing the AIX Operating System.

Commands 331

display

display

Purpose

Selects the physical display that an existing or new virtual terminal uses and sets colors

and fonts.

Syntax

display TL
I

NG

= : : = -p
= . =f ;
display color file

>—<— -m 4<\ >>—<— —4
addr — size font

Description

®

0L805442

The display command changes the physical display assigned to the current virtual
terminal or assigns a default display to be used when you open a virtual terminal. It also
sets the foreground and background colors, the active color palette, and the active and
alternate fonts on the current display. The display parameter can be one of the following

names:
pcmono
egamono
egacol
advmono
advcol
extmono

megapel

332

PC Monochrome Adapter and Display

Enhanced Graphics Adapter and PC Monochrome Display

Enhanced Graphics Adapter and Display

Advanced Monochrome Graphics Adapter and Display

Advanced Color Graphics Adapter and Display

Extended Monochrome Graphics Adapter and Display

IBM Megapel Display Adapter and IBM 5081 Display Models 16 and 19.

display

Flags

You can request only those displays that are actually installed on the system. If you have
more than four, only four will be displayed on the -¢ and -d menus. Before display makes
any changes, it checks all arguments for errors and, if it encounters one, displays a list of
valid arguments and exits.

Note: You must insure that the TERM shell variable contains the proper value for
whatever the current display is. See “termdef” on page 1062 and the terminfo file in
AIX Operating System Technical Reference for a list of these values.

-b [color] Selects the background color. The color parameter is an integer
from 1 to 8 for the Enhanced Graphics Display and from 1 to 16 for
other color graphics displays. These values correspond to the first
eight or sixteen entries in the active color palette (see the -p flag).
For example, -b 5 selects the fifth entry. If you do not specify a
number, display lists the palette of active background colors and
prompts you to select a number for the new background color.

-c¢ [display] Changes the display used by the current virtual terminal.

If you do not specify a display, you are given a menu of available
options. This menu consists of a numbered list of display names and
descriptions. The display number reflects the number of physical
displays installed and their relative positions in the Real Screen
Table. The current default is always display number 1 in this list.
Changing the default alters the display number associated with each
physical display. If the virtual terminal does not know the
display/adapter combination, the Name column will contain the

display list asks you to enter the new display number for the current
or default display setting. Whenever you change the current display,
the screen of that display clears.

-d [display] Changes the default display used when a virtual terminal is opened.
If you do not specify a display, you are given a menu of available
options (see the -c flag).

-f [color] Selects the foreground color. The color parameter is an integer from
1 to 16. These values correspond to the first sixteen entries in the
active color palette (see the -p flag). If you do not specify a color
number, display lists the palette of active foreground colors and
prompts you to select a number for the new foreground color.

-m [addr size] Changes the DMA pinned page at the specified starting address to
size 256K blocks. If you do not specify an address and a size, the
current starting address and size is displayed.

Commands 333

display

-p [file]

-t [font[,font] . . .]

Changes the active color palette. The optional file parameter is the
full path name to a file that contains a list of colors for the current
display, one color per line, where each color is the decimal
representation of the 32-bit color value. The color palette file can
also contain blank lines and comment lines (a comment line must
begin with a * character in column one). Each supported display
has a corresponding color file which contains its default active color
palette. The name of this file is /ete/vtm/pal.name where name is
the display name described on page 332. This is the default value for
the file parameter.

Selects the primary and active alternate fonts for the current virtual
terminal on the current display. The first font named in the optional
list following -t will be the primary font. The remaining fonts will
be alternates, in the order listed, for the active font table. If you do
not specify eight font IDs, the first font will be used to fill out in the
remaining entries in the active font table.

Notes:
1. All of the fonts in the list must be of the same size.

2. Some applications that use the terminfo file expect the italic
font to be the first alternate and the bold font to be the second
alternate fonts (see the terminfo file in AIX Operating System
Technical Reference for more information).

If you do not specify any fonts, all of the fonts available for the
current display will be listed, and you will be prompted first for the
desired primary font ID and then for alternate font IDs until you
enter F. As you enter alternate fonts, the display command checks
that they are the same size as the new primary font. If you enter
fewer than eight fonts, the primary font will be repeated in the
remaining entries of the active font table.

You can specify combinations of the same flags on a single command line. display
processes -¢ and -d flags first. If you specify -e¢, you will see the message Changing to
current display.. ., and the current display will be changed. Any menu interface for
the color or font parameters will be displayed there. A -p flag will be processed next. The
screen will be immediately redrawn with the colors from the new color palette. Then any
foreground, background, or font flags will be processed.

Examples

334

1.

To change the current virtual terminal display:

display

=

egamono

display

This changes the display to the Enhanced Graphics Adapter and PC Monochrome
Display.

2. To make the Advanced Color Graphics Display the default virtual terminal display:
display =-d advcol

3. To change both the current and the default displays:
display =-c pcmono -d egacol

This makes the PC Monochrome Adapter and Display the current display and makes
the Enhanced Graphics Adapter and Display the default display.

4. To change the active color palette for the current display:

display -p /u/new/palette
Related Information

The following commands: “open” on page 728 and “termdef” on page 1062.
The terminfo file in AIX Operating System Technical Reference.

“Using Display Station Features” in IBM RT Using the AIX Operating System and
“Managing Display Station Features” in IBM RT Managing the AIX Operating System.

The default color palettes in Virtual Resource Manager Technical Reference.

Commands 335

dist

dist

Purpose

Redistributes a message to additional addresses.

Syntax

cur -noannotate
dist ‘~< one of one of
Refilider num cur —annotate
sequence . ~noannotate
first next
prev last
—nodraftfolder
one of new
—draftfolder +folder —draftmessage one of
—draftfolder + folder
—draftmessage i :
sequence next
first last
prev new
cur

one of

t——form 7‘/'/e9>—_<

—editor emd
—noedit

dist — —help —

336

AJ2FL242

AJ2FL157

-noinplace

one of

one of

—~inplace
—noinplace

—whatnowproc cmdstring
—nowhatnowproc

)

AJ2FL243

dist

Description

Flags

The dist command is used to redistribute messages to a new list of addresses. dist is part
of the MH (Message Handling) package and can be used with other MH and AIX
commands.

By default, dist copies a message form to a new draft message and invokes an editor. You
can then fill in the message header fields Resent-To: and Subject: and fill in or delete the
other header fields (such as Resent-cc: and Resent-Bee:). Since the body of the message
will be the message you are redistributing, do not fill in the body. dist does not
automatically display the body of the message. When you exit the editor, the dist
command invokes the MH command whatnow. You can press Enter to see a list of the
available whatnow subcommands. These subcommands enable you to continue editing the
message header, list the message header, direct the disposition of the message, or end the
processing of the dist command. “whatnow” on page 1215 describes the subcommands.

When you send the draft message, the recipients are sent the headers and body of the
original message appended to the new message. dist does not automatically store a copy of
the original message with the new draft message. The draft message you create using the
dist command consists of header fields only.

You can specify the message that you want to distribute by using the +folder msg flag. If
you do not specify a message, dist redistributes the current message.

You can specify the format, of the message header by using the -form flag. If you do not
specify this flag, dist uses your default message format located in the file
user—mh_directory/distcomps. If this file does not exist, dist uses the system default
message format located in /fusr/lib/mh/distcomps. dist prepends the form to the message
being redistributed.

Note: The line of dashes or a blank line must be left between the header and the body of
the message for the message to be identified when it is sent.

-annotate Annotates the message being redistributed with the lines:

Resent: date
Resent: addrs

The annotation appears in the original draft message so that
you can maintain a complete list of recipients with the
original message. If you do not actually redistribute the
message using the immediate dist command, the -annotate
flag may fail to provide annotation. The -inplace flag forces
annotation to be done in place.

Commands 337

dist

338

-draftfolder + folder

-draftmessage msg

-editor cmd

+folder msg

-form file

-help

-inplace

-noannotate
-nodraftfolder
-noedit

-noinplace

Places the draft message in the specified folder. If you do not
specify this flag, dist selects a default draft folder according to
the information supplied in the MH profiles. You can define a
default draft folder in $HOME/.mh_profile. If

-draftfolder +folder is followed by msg, msg represents the
-draftmessage attribute.

Specifies the draft message. You can specify one of the
following message references as msg:

num sequence first
prev cur]
next last new

The default draft message is new. If you specify a draft
message, that message becomes the current message.

Specifies that ¢cmd is the initial editor for preparing the
message for distribution. If you do not specify this flag, dist
selects a default editor or suppresses the initial edit, according
to the information supplied in the MH profiles. You can
define a default initial editor in $HOME/.mh_profile.

Redistributes the specified message in the specified folder. You
can specify one of the following message references as msg:

num sequence first
prev cur
next last

The default message is the current message in the current
folder. If you specify a folder, that folder becomes the current
folder.

Prepends the form contained in the specified file to the
message being resent. dist treats each line in file as a format
string.

Displays help information for the command.

Forces annotation to be done in place in order to preserve
links to the annotated message.

Does not annotate the message. This flag is the default.
Places the draft in the file user_mh_directory/draft.
Suppresses the initial edit.

Does not perform annotation in place. This flag is the default.

dist

-nowhatnowproc Does not invoke a program that guides you through the
distribution tasks. The -nowhatnowproc flag also prevents
any edit from occurring.

-whatnowproc cmdstring Invokes cmdstring as the program to guide you through the
distribution tasks. See “whatnow” on page 1215 for
information about the default whatnow program and its
subcommands.

Note: If you specify whatnow for cmdstring, dist invokes an
internal whatnow procedure rather than a program with the
file name whatnow.

Profile Entries

Current-Folder: Sets your default current folder.

Draft-Folder: Sets your default folder for drafts.

Editor: Sets your default initial editor.

fileproc: Specifies the program used to refile messages.

Path: Specifies your user—mh_directory.

whatnowproc: Specifies the program used to prompt What now? questions.

Files

[usr/lib/mh/distcomps The system default message skeleton

user—mh_directory/distcomps The user’s default message skeleton. (If it exists, it
overrides the system default message skeleton.)

$HOME/.mh_profile The MH user profile.

user—mh_directory/draft The draft file.

Related Information

2

Other MH commands: “ali” on page 48, “anno” on page 50, “comp” on page 185, “forw’
on page 438, “prompter” on page 778, “refile” on page 817, “repl” on page 821, “send”
on page 893, “whatnow” on page 1215.

The mh-alias, mh-format, mh-mail, and mh-profile files in AIX Operating System
Technical Reference.

“Overview of the Message Handling Package” in Managing the AIX Operating System.

Commands 339

domainname

domainname

Purpose

Sets or displays the name of the current Yellow Pages (YP) domain.

Syntax
domainname ﬂ
domain
01805481
Description

The domainname command displays the name of the current YP domain. If you have
superuser authority, you can also use this command to set the name of the domain.

A domain is a group of host machines in the network. The name of the domain typically
is set In /ete/re.nfs file.

Japanese Language Support Information

If Japanese Language Support is installed on your system, this command is not available.

File

letc/re.nfs The NFS startup shell script.

340

dos

dos

Purpose

Starts shell.

Syntax

dos

file

0OL805330
Description

The dos command starts a DOS emulation environment. It interprets DOS commands and
runs programs that can use the routines that simulate DOS run-time behavior. (For more
information on these routines and this environment, see DOS Services Reference and
Installing and Customizing the AIX Operating System.)

When you enter dos, a DOS environment file is created from the process environment.
(For details on how this is done, see dosinit in AIX Operating System Technical Reference.)
Upon invocation, dos sets the current drive to A or the first valid drive. The environment
variable DOSDISK can be set to define the default current drive (B, C, D, and so on).

The file parameter specifies a dos batch file to be run. file must have the extension .bat or
.BAT.

If the current DOS Services directory contains the batch file autoexec.bat or
AUTOEXEC.BAT, then DOS Services initially reads and runs commands from this file.

Commands 341

dos

342

DOS commands are either built-in (to the dos command itself), or they are external.
External commands reside in the /usr/dos/bin directory. Normally, the search order for
commands that you enter is as follows:

e The directory /usr/dos/bin
e The working directory
e FEach directory in the dos path.

When you enter a command, dos searches each directory for a file with a name composed
of the command name and either the extension .BAT, the extension .bat, or no extension.
If the file has the extension .BAT or .bat, it runs as a batch file. Otherwise, it runs as an
AIX program. If it is an AIX program, it can be either a compiled program or a shell file.

In either case you must have execute access to it.

The dos command supports two types of file systems: AIX file systems and DOS file
systems. Each dos minidisk can contain either an AIX-formatted file system or a
DOS-formatted file system. However, diskette drives (such as /dev/fd0) may contain only
DOS-formatted file systems, unless the device is mounted as an AIX file system before you
invoke dos.

Warning: Only one user or process at a time can access a dos file system.
If a dos file system resides on a minidisk, two or more users may attempt
to access the minidisk at the same time. Because dos has no way to warn
you that another process is using a minidisk, you should allocate minidisks
containing dos file systems on a per-user basis.

If a coprocessor on the system accesses a dos-formatted<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>