IBM RT PC Advanced Interactive Operating System Version 2.1

AIX Operating System
Technical Reference

Volume 1

Programming Family

Computer
Software SC23-0808-0

IBM RT PC Advanced Interactive Operating System Version 2.1

AIX Operating System
Technical Reference

Volume 1

Programming Family

Computer
Software $C23-0808-0

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 of the Advanced Interactive Executive Operating System, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual “as is,” without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984 1987
©Copyright AT&T Technologies 1984

About This Book

This book provides information about the programming interface to the Advanced
Interactive Executive Operating System (AIX).! This information is needed to write
applications and systems software for AIX.

Who Should Use This Book

This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX2 System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with AIX or UNIX System V, see
Using the AIX Operating System.

How To Use This Book

Chapters 2, 3, 4, 5, 6, and 7 are organized in alphabetical order by name. Related
information in those chapters is combined into one description where applicable, but each
item appears as a separate entry in the Index.

Organization

This book is divided into the two volumes, Volume 1 and Volume 2. Each volume contains
a complete table of contents, list of figures, and index for both volumes.

Volume 1 contains Chapters 1 through 3; Volume 2 contains Chapters 4 through 7 and
Appendixes A through F. The subjects of these chapters are:

e Chapter 1, “AIX Operating System,” gives an overview of the various subsystems
discussed in this book.

o Chapter 2, “System Calls,” describes the C Language interface to the operating system
calls, which are also called supervisor calls (SVCs) and kernel primitives.

1 Advanced Interactive Executive and AIX are trademarks of International Business Machines
Corporation.

2 UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in the
United States of America and other countries.

About This Book iii

e Chapter 3, “Subroutines,” lists subroutines and macros available to C Language
programmers.

e Chapter 4, “File Formats,” defines the formats of various system and user files.

e Chapter 5, “Miscellaneous Facilities,” includes miscellaneous information, such as
text-processing macro packages.

o Chapter 6, “Special Files,” describes special files associated with specific peripheral
devices and device drivers.

e Chapter 7, “Advanced Display Graphics Support Library,” describes the Advanced
Display Graphics Support Library.

In the chapters that are organized in alphabetical order, some entries describe several
facilities (system calls, subroutines, file formats, or special files). In such cases, each
facility appears only once, alphabetized under its major name. If you have difficulty
finding a given facility, look it up in the index at the back of the book.

All entries are based on a common format, but all of the sections do not always appear.

Purpose
Briefly describes the purpose of the facility.

Syntax or Synopsis
Shows how to use the facility. See “Syntax” on page v for details about the
information given in the “Syntax” sections for system calls and subroutines.

Description
Describes the system call, subroutine, file format, or special file in detail.

Return Value
Explains the value returned by a system call or subroutine.

Diagnostics
Lists the possible values that a system call can return in the errno external variable
if an error occurs. See Appendix A, “Error Codes,” for a complete list of these
values.

Examples
Shows one or more examples of how to use the facility.

Files
Lists the names of files that the facility uses.

Related Information
Refers you to additional information you may find helpful. This section refers you
first to additional topics in this book, then to other publications. References from
this book are given in the order they appear in the book, alphabetically within each
chapter.

Volume 2 also contains the following appendixes:

iv AIX Operating System Technical Reference

7N

e Appendix A, “Error Codes,” lists and describes the values that system calls pass back
when they encounter error conditions.

e Appendix B, “Writing a Queuing System Backend,” provides detailed information
about writing friendly backend programs.

e Appendix C, “Writing Device Drivers,” gives information needed to write and install
AIX device drivers.

e Appendix D, “Porting DOS 3.0 Applications,” explains how to port programs from the
IBM Personal Computer Disk Operating System (DOS) to the AIX Operating System.

e Appendix E, “Component Cross Reference,” lists the programs with which certain
subroutines and subroutine libraries are packaged.

e Appendix F, “Glossary,” defines terms to help you better understand AIX and the
RT PC.

A Reader’s Comment Form and Book Evaluation Form are provided at the back of each
volume of this book. Use the Reader’s Comment Form at any time to give IBM information
that may improve the book. After you have become familiar with the book, use the Book
Evaluation Form to give IBM specific feedback about the book.

Syntax
The “Syntax” section of each system call and subroutine entry in this book gives the
syntax needed to invoke it. The following conventions are used in this section:
Boldface type shows text to be entered exactly as shown.
Italic type shows parameters that should be replaced with actual values.
[1 (square brackets) enclose optional parameters.
{an ellipsis) follows a parameter that can be repeated any number of times.

The information shown in each “Syntax” section is usually the set of declarations as they
might appear in the actual C-language definition of the call or subroutine. These
declarations give you more information than showing the exact calling sequence as it
appears in a user program.

Consider the following example of a subroutine entry:
finclude <stdio.h>
FILE *fopen (path, type)
char *path, *type;

The #include statement names a header file that contains definitions needed by the
subroutine. See “Header Files” on page vii for more information.

About This Book v

vi

The first line following the #include statement shows the data type of the return value
(FILE *), the name of the subroutine (fopen), and the parameters that it takes (path and
type). The following lines indicate the data type of each parameter. The fact that the
name FILE is in all capitals indicates that this data type is defined in the stdio.h header
file.

This subroutine might actually be used in a program like this:

#include <stdio.h>

main ()
{
FILE *inputfile;
char filename[] = "test.data";

inputfile = fopen (filename, "r+");

}

Note that the type of both parameters is stated as char * (pointer to character), but that
the value given for each is actually a pointer to a character string (an array of characters).
In the C language, pointers and arrays are treated similarly so that the notations *p and
p[0] are generally interchangeable. Thus, when this book shows a parameter of type

char *, a character string is frequently required. Check the “Description” section to
make sure.

Because fopen returns a type other than int, the subroutine must be declared so that the
compiler knows this information. In this particular case, it is already declared for you in
the header file. Sometimes, however, you may need to declare a system call or subroutine
yourself. For this example, the declaration would take the form:

FILE *fopen();

Such a declaration should be put at the top of your program, before any references to the
system call or.subroutine. Note that the declaration resembles the syntax shown in this
book, except that the parameters are omitted and a semicolon is added to the end.

See C Language Guide and Reference or another C language manual for more detailed
information about pointers, arrays, and subroutine declarations.

AIX Operating System Technical Reference

AN

PN

Header Files

Many system calls and subroutines require that header files be included in the programs
that use them. When this is the case, the #include statements needed are shown in the
“Syntax” section of the call or subroutine entry. Consider the following example:

#include <stdio.h>

When a program is being compiled, this #include statement inserts the text of the stdio.h
header file into the source program. The < > delimiters indicate that the file is located in
the /usr/include directory. All of the header files used by the system calls and
subroutines described in this book are located in /usr/include or in one of its
subdirectories.

The header files contain definitions of constants and macros that the C language
preprocessor interprets. The #include statements must precede all references in your
program to the constants and macros that the header files define. Most of the time you
can simply put all of the #include statements together at the top of the program. If you
use several calls or subroutines that require the same header files, then each file should be
included only once. If a system call or subroutine requires more than one header file, be
careful to enter the #include statements in the order shown.

By convention, the names of most of the constants are in capital letters. Therefore, a name
that appears in this book in bold capitals (for example, EFAULT) is a constant defined in
a header file. A few constants are not named in capitals, notably stdin, stdout, and
stderr, which are defined in stdio.h.

The constant NULL is commonly used to denote a null pointer value. This book
sometimes mentions NULL when discussing system calls and subroutines that do not
require header files. If you compile a program and get an error message indicating that
NULL is not defined, insert the following statement before the first NULL in your
program:

#define NULL O

In addition to constants, header files sometimes define macros and data types. Macros
take parameters and resemble subroutines, but there are several differences:

e You must not type a space between the macro name and the open parenthesis that
follows it. For example, the macro call getc(. ..) is valid, but getc (...) is
not. The preprocessor does not recognize the second of these as a macro, and so it does
not make the proper substitution.

® You cannot take the address of a macro with the C language & operator.

e The parameters of a macro are evaluated in a different manner from those of a
subroutine. See C Language Guide and Reference or another C language manual for
details about parameter evaluation.

About This Book vii

This book describes a macro as a subroutine, then adds statement that it is implemented as
a macro.

Related Publications

Related information can be found in the following books:

o IBM RT PC Using the AIX Operating System describes using the AIX Operating
System commands, working with file systems, and developing shell procedures.

e IBM RT PC Managing the AIX Operating System provides instructions for performing
such system management tasks as adding and deleting user IDs, creating and mounting
file systems, and repairing file system damage.

e [IBM RT PC AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

e [IBM RT PC AIX Operating System Commands Reference lists and describes the AIX
Operating System commands.

e [BM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

e IBM RT PC Assembler Language Reference describes the IBM RT PC Assembler
Language and the 032 Microprocessor and includes descriptions of syntax and
semantics, machine instructions, and pseudo-operations. This book also shows how to
link and run Assembler Language programs, including linking to programs written in
C language. (Available optionally)

e [IBM RT PC Keyboard Description and Character Reference describes the national
character and keyboard support for the 101-key, 102-key, and 106-key keyboards,
including keyboard position codes, keyboard states, control code points, code sequence
processing, and nonspacing character sequences.

e IBM RT PC Virtual Resource Manager Technical Reference is a two-volume set. The
first volume, Virtual Resource Manager Programming Reference, describes the VRM
programming environment, including the internal VRM routines, VRM floating-point
support, use of the VRM debugger, and the supervisor call instructions that form the
Virtual Machine Interface. The second volume, Virtual Resource Manager Device
Support, describes device IPL and configuration, minidisk management, the virtual
terminal and block I/O subsystems, as well as the interfaces to the predefined VRM

viii AIX Operating System Technical Reference

device drivers. This volume also describes the programming conventions for developing
your own VRM code and installing it on the system.

e [BM RT PC Hardware Technical Reference is a three-volume set. Volume I describes
how the system unit operates, including I/O interfaces, serial ports, memory interfaces,
and CPU interface instructions. Volumes II and III describe adapter interfaces for
optional devices and communications and include information about IBM Personal
Computer family options and the adapters supported by 6151 and 6150. (Available
optionally)

e IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

e [BM RT PC Installing and Customizing the AIX Operating System provides
step-by-step instructions for installing and customizing the AIX Operating System,
including how to add or delete devices from the system and how to define device
characteristics. This book also explains how to create, delete, or change AIX and
non-AIX minidisks.

e IBM RT PC Personal Computer AT Coprocessor Services Technical Reference describes
differences between writing applications for the IBM Personal Computer AT and IBM
RT PC Personal Computer AT Coprocessor Services. This book also includes Personal
Computer AT Coprocessor Services BIOS listing, hardware technical information,
Math Co-Processor information, and the 286 and 287 instruction sets. (Available
optionally)

e [BM RT PC Using AIX Operating System DOS Services provides step-by-step
information for using AIX Operating System DOS Services. (Available optionally;
packaged with IBM RT PC AIX Operating System DOS Services Reference)

e IBM RT PC AIX Operating System DOS Services Reference provides reference
information about the AIX Operating System DOS Services. This book also includes
information on sharing DOS files with Personal Computer AT Coprocessor Services,
and on the differences between PC DOS and DOS Services. (Available optionally;
packaged with IBM RT PC Using AIX Operating System DOS Services)

See IBM RT PC Bibliography and Master Index for order numbers of RT PC publications
and diskettes.

Ordering Additional Copies of This Book

To order additional copies of this publication, use either of the following sources:
o To order from your IBM representative, use Order Number SBOF-0135.
e To order from your IBM dealer, use Part Number 79X3860.

About This Book ix

Two binders and the AIX Operating System Technical Reference manuals are included with
the order. For information on ordering the binders or manuals separately, contact your
IBM representative or your IBM dealer.

x AIX Operating System Technical Reference

Contents

Volume 1. System Calls and Subroutines

Chapter 1. AIX Operating Systemt iitieeennenan
Chapter 2. System Calls

Chapter 3. Subroutinesttt ereneronennenan

--

Volume 2. Files and Device Drivers

Chapter 4. File Formats00ttt innnenn
Chapter 5. Miscellaneous Facilities00t
Chapter 6. Special Filesttt ittt tenneaeenn

Chapter 7. Advanced Display Graphics Support Library

Appendix A. Error Codes @ittt iiernnnnnn

Appendix B. Writing a Queuing System Backend

Appendix C. Writing Device Driversc0 ittt een.

Appendix D. Porting DOS 3.0 Applications

Appendix E. Component Cross Reference

Appendix F. Glossaryc.c00iiiiiiieetneeneinannns

oo

Contents

xi

xii AIX Operating System Technical Reference

Figures

Floating-Point Trap Handler Structures 3-189
The fpfp Register Mapping i 3-190
Default Error-Handling Procedures 3-240
Example of Font Storage0 4-72
Information Record Format 4-90
Octal ASCII Character Set e 5-3
Hexadecimal ASCII Character Set 5-4
Code Page PO e 5-6
Code Page Pl 5-7
Code Page P2 e 5-8
Code Page PO e 5-25
Code Page Pl 5-33
Code Page P2 5-40
EBCDIC Character Set e e 5-45
The eqnchar Characters i, 5-b4
Greek Characters it e 5-58
Bit Positions of ASCII Controls in EchoMap 6-35
Screen Manager Ring Examples 6-51
Position Codes for Remapping a Keyboard 6-78
Default Attribute Values e 7-9
Extended Services Subroutines e E-1
Multi-User Services Subroutinest E-1

Figures xiii

xiv AIX Operating System Technical Reference

Volume 1. System Calls and Subroutines

Volume 1. System Calls and Subroutines

AIX Operating System Technical Reference

Chapter 1. AIX Operating System

Operating System 1-1

About This Chapter

This overview of the AIX Operating System is divided into three sections. The first section
describes process management, creation, and scheduling. The second section is a
description of the file system. The final section introduces I/O control and the I/O
subsystem.

1-2 AIX Operating System Technical Reference

Overview

The RT PC! system software is structured in layers: the Virtual Resource Manager (VRM),
the Virtual Machine Interface (VMI), and the AIX Operating System. The VRM extends
the hardware function of the processor and memory management to provide a high level of
support to hardware devices for the operating system in a virtual machine environment.
The VMI is the protocol boundary between the operating system and the VRM. A virtual
machine, as defined by the VRM, has a high-level interface that resembles a physical
machine. The following figure depicts the software structure and relationships.

I |
{ Operating System J__‘_]

SvC Virtual Machine Interface | Interrupt

v

Virtual Resource Manager

Virtual Machine Characteristics

The VRM provides a virtual machine environment that has essentially the same
characteristics as the physical machine. Virtual machines run in problem (unprivileged)
state and do not directly reflect the supervisory (privileged) characteristics of the physical
machine. These functions are handled by the VRM.

A virtual machine has two protection states, user (unprivileged) and operating system
(privileged). The operating system state and AIX kernel state are synonymous. Whenever
the virtual machine is executing instructions (in either user or operating system state), the
processor is actually in problem state. Only the VRM (including code installed in the
VRM by the AIX operating system) can execute in real supervisory state.

1 RT, RT PC, and RT Personal Computer are trademarks of International Business Machines
Corporation.

Operating System 1-3

User State

In user state, a virtual machine can issue any of the problem state instructions. One of the
instructions available to the virtual machine is the supervisor call (SVC) instruction,
which includes a 16-bit field to indicate which supervisor function is desired. If the
high-order bit of this field is set to 1, then the call is made to the VRM,; if it is set to 0,
then the call is made to the virtual machine supervisor, the AIX Operating System. The
VRM cannot be called directly from user state, but an application running in user state
can issue an SVC to the virtual machine supervisor and change to operating system state.

Operating System State

A virtual machine enters operating system state either because of an SVC directed to it by
a user state process or because of a virtual interrupt directed to it by the VRM. In
operating system state, the virtual machine can use all of the instructions available in user
state, and can also issue SVCs to the VRM.

Registers

The virtual machine executes in only problem state, so when in user or operating system
state it can only directly use the problem state set of registers. The problem state register
set consists of the General Purpose Registers (GPRs), the Multiplier Quotient register, the
Condition Status register, and five System Control Registers (SCRs), and, if a floating-point
processor is present, the floating-point registers. The VRM does permit virtual machines
in operating system state to indirectly manipulate the segment registers.

Predefined Memory Locations

Since each virtual machine has a distinct virtual memory space starting at location 0,
these locations are valid for all virtual machines. Virtual machine memory locations
between 0xCO and 0x2DC are reserved for communication between the virtual machine and
the VRM. These locations are used for memory-mapped timer values, Program Status
Blocks (PSBs) for SVCs and interrupts, and miscellaneous other values. Refer to the
following table for a summary of predefined virtual memory locations and the values
associated with each location.

1-4 AIX Operating System Technical Reference

Memory location Bytes Value
Decimal Hex Hex

0 0 B8 Reserved
184 B8 4 Number of free paging disk slots
188 BC 4 Number of page replacement cycles
192 Co 4 Number of page faults with preemption
196 C4 4 Number of non-paging disk I/Os
200 C8 2 Reserved
202 CA 2 PCB Segment ID
204 CcC 2 Reserved
206 CE 2 Trace buffer synch flag
208 DO 2 VRM sequence number
210 D2 2 Virtual machine sequence number
212 D4 2 Interrupt request buffer
214 D6 1 Process priority
215 D7 1 Floating point register set
216 D8 4 Bus I/O base address
220 DC 4 Bus memory base address
224 EO 4 Virtual interrupt control status
228 E4 2 Execution level
230 E6 2 Virtual machine ID (right justified)
232 E8 4 Time of day, extended
236 EC 4 Virtual timer status
240 FO 4 Real time of day
244 F4 4 Real time of IPL
248 F8 4 Virtual timer source
252 FC 4 Virtual time since IPL

There is a separate PSB for each priority interrupt level, program checks, machine
communications and SVC. The PSB includes the Instruction Address Register (IAR) for
the point of interrupt, interrupt control and status fields, definition of sublevels and four
words of status and data specific to the interrupt.

See Virtual Resource Manager Technical Reference for the details of the virtual machine
configuration.

Operating System 1-5

VRM Structure

The VRM provides paging support of the virtual memory for the operating system running
in a virtual machine. AIX is designed to take advantage of the virtual memory support
provided by the VRM. This makes the hardware memory management functions available
to AIX while relieving it of the details of paging mechanics, such as page replacement
algorithms, management of paging I/O, and so forth.

The interface to virtual memory consists of a set of supervisory call instructions, program
check interrupts (addressing and protection exceptions), and machine communication
interrupts (page fault occurrence and clearing). The basic model of memory presented to
the virtual machine is in terms of segments.

SVCs are provided to create, copy, or destroy segments, and to manipulate segment
characteristics. Examples of segment manipulation are changing sizes and protection
status, loading segment IDs into the hardware memory management segment registers, and
so on. An SVC interface is also provided to allow AIX the ability to influence the VRM
page replacement algorithm. Using this interface, AIX advises the VRM that certain pages
should be purged from primary storage, that certain pages should be pinned in primary
storage, or that previously pinned pages should be unpinned.

The AIX Operating System is based on UNIX System V with many enhancements. Among
the enhancements are the facilities that utilize virtual memory. AIX runs in a virtual
machine on the VRM.

AIX Kernel

The AIX kernel manages the various devices and resources that make up the virtual
machine in which it resides. It is the control point for all virtual machine activity and the
virtual machine resources.

The internals of the AIX kernel are modified and extended to allow it to run in a virtual
machine, provide an extended process environment, and provide a usable and stable file
system. The system call and subroutine interfaces allow many programs and utilities
written for UNIX-compatible systems to run on AIX.

1-6 AIX Operating System Technical Reference

Process File
Management Kernel System
Management

Application

(User Program)

Input/Output
Control

The kernel performs the following major functions:

File System Management

File: open, close, read, write, change owner, get/change statistics, seek

File system: mount, umount, get statistics

Directory: change working directory, change root directory, make a directory, link
to a file, unlink to a file

Security: access permissions.

Process Management

Start and termination: fork a process, terminate this process, kill another process,
kill a process group

Set process group

Informational: enable/disable accounting, get ID (process, parent, group), get times
Priority suggestion

Wait for child process to terminate

Lock data, text or stack in memory.

Signals: enable/disable signals, route signals to user routines, wait for a signal.
Semaphores: create semaphore, get semaphore ID, perform semaphore operations,
delete semaphore.

Memory Management

Private memory: grow, shrink
Shared memory: create, attach, delete.

Operating System 1-7

e Time Management

— Set time
— QGet time.

® Program Management

— Execute a new program
— Lock a program in memory.

e Resource Management

— Set and get user and group IDs
— Set and get user limits

Kernel Features

The kernel has the following features:

Device Error Logging

File System Enhancements
Virtual Memory

Enhanced Signals
Customization Facilities.

The system command and utilities are programs that operate in unprivileged mode and use
system calls to the kernel resources to perform functions. System calls to the operating

system kernel are utilized to assist in the completion of the function or to actually perform
the function. The system commands and utilities are divided into several categories based

on the type of service performed:
User Access Control

System Status/Management
Program Development
Exchange Utilities

Migration Aids

Information Handling
Communications

Activity Monitoring and Accounting
Directory Management

File Management

Queue Management

Controls user access to the system.

Provides system status.

Provides program development aids.

Provides exchange of files with other systems.
Provides data interpretation between systems.
Provides data manipulation services.

Provides intra-system communications services.
Provides system trace and statistics.

Provides directory manipulation services.
Provides file manipulation services.

Provides queue manipulation services.

1-8 AIX Operating System Technical Reference

System Customization Adds and deletes devices:

o Changes device information
e Displays configuration information.

The system commands and utilities are written in the C language, and the kernel is mostly
written in the C language with some assembler language where necessary. The AIX kernel
provides the virtual machine supervisory functions such as process management, file
system management, input/output (I/O) control, and communication between processes and
other miscellaneous facilities. Some of the AIX kernel functions are discussed in sections
that follow.

Bootstrap

Before the kernel can run, it first must be loaded into segment 0 of the virtual machine.
The bootstrap program is responsible for locating the kernel on the root file system,
reading it into memory, and finally giving it control.

The bootstrap program resides on the minidisk adjacent to the root file system, but not a
part of the file system. When a file system is created, the mkfs command handles putting
the bootstrap program in the proper place on the minidisk. The mkfs command places the
bootstrap program at the end of the minidisk on a block boundary. The file system uses
the remaining blocks at the front of the minidisk. Block 0 of the minidisk, which is the
virtual machine boot block, has a field that points to the bootstrap program, and a field
specifying the length of the bootstrap program.

When the VRM is loaded and running, it is time to load the virtual machine (AIX). If a
diskette is in any diskette drive, an attempt is made to load from the diskette. Otherwise,
the minidisk directory is searched for a minidisk marked as an AIX root file system. When
one is found, its boot block is read in order to find the bootstrap program. The bootstrap is
loaded into the memory of the virtual machine at virtual address 0, and is given control.

The bootstrap program searches the root file system for the file /unix, reads its text and
data segment into memory, and extends the segment. The bootstrap program moves itself
out of the way, moves the kernel to start at address 0, and then gives the kernel control at
its start entry point, thus completing the boot process. See “Creation and Execution” on
page 1-16 for additional information.

Process Management

A process in the operating system is the current state of a program that is running. This
includes a memory image (the logical layout of its parts in memory), the program text,
program data, variables used, general register values, the status of opened files used, and
current directory. Programs running in a process can be either operating system programs
or user programs. A process must be active in order to request services to be performed by

Operating System 1-9

the kernel. Processes are paged into and out of memory when necessary. Processes not
currently running are eligible to be paged from memory to disk.

User and Kernel Modes

The same process can be in either user mode or kernel mode. Normally, a user program
while executing is called a user process and is considered to be in user mode. When the
process requires a function performed by the system, it calls the system as a subroutine. A
process in user mode uses system calls to access system resources. This is also sometimes
referred to as a kernel call. When the user process issues a system call, the environment
switches from user to kernel mode. The system is running the same process. The
difference is that the code running for the user process in this instance is kernel code. The
process is now in kernel mode. A process in kernel mode has full control of the system.
When the kernel has completed the requested service, it usually returns control to the user
mode of the process. A process in user mode can be preempted at any time. In contrast, a
process in kernel mode usually cannot be preempted. Normally, a process in kernel mode
runs until it voluntarily relinquishes control of the processor.

Several mechanisms can prompt a switch from user mode to kernel mode. One mechanism
that causes a switch is the system timer. The system timer periodically interrupts the
processor at fixed intervals per second. An interrupt is a signal that diverts the processor
to a special software routine. During the service routine for the system timer, the kernel
checks the priority of the processes for a possible change of process. The system scheduler
performs the basic time-slicing to enable the processor to be shared among many users.

Servicing I/O requirements also causes a switch. Interrupt routines post completion of I/O
operations. These routines start the next I/O operation on the device queue, mark all
processes waiting for the service as ready to run, and set a flag to trigger a process switch
when necessary upon return from kernel mode to user mode.

Memory Addressing

Memory management is provided to the operating system by the VRM (VRM). The VRM
provides the operating system with paged virtual memory. Page faults can interrupt the
operating system so that it can switch to some other task. Virtual memory functions are
primarily controlled by SVCs from the operating system to the VRM, with interrupts used
as appropriate.

Portions of a process can be addressed when a process is running in either user or kernel
mode. The 32-bit virtual address space is divided into 16 segments. Each segment is 228
bytes long. The segment registers provide access to the segmented virtual memory for the
virtual machines. The virtual memory hardware allows a maximum of 16 concurrent
segment accesses. The RT PC implementation restricts user mode processes to 14
concurrent segment accesses. A kernel mode process is permitted to concurrently access

1-10 AIX Operating System Technical Reference

all segments accessible by the virtual machine. The segment registers provide several
mechanisms for protecting the memory segments: by selective segment address loading into
segment registers, and by page protection bit setting in each segment register. The
protection settings provide a mechanism to invoke read and/or write protection in either
machine state.

Program Selected Segment Virtual Memory
Address Bits Register Address Bits
31 11 39
- Select Segment Register —»
©O-P
128 | - Select Segment _I™
(4096 segments) 28
27
0 27
- Select address >
in segment
(256M-bytes)
0 0

Each segment register maps part or all of a logical RT PC program segment. All addresses
are full 32-bit virtual addresses with the segment number occupying the leftmost 4 bits.
The segment registers are a part of the process image and are therefore switched on each
process dispatch. The kernel is mapped by segment register 0. This includes the kernel
program text, data, and all I/O buffers. This mapping is fixed. The user program text
segment is addressed by segment register 1 and the user program data segment is addressed
by segment register 2. The user process stack and the user structure (u.block) are
addressed by segment register 3. The user process stack grows from the high segment
address to the lowest (dlownward). Segment registers 4 to 13 are used for the shared data
manipulation in user programs. AIX provides a programming interface to manipulate these
registers with the shmget, shmat, shmdt, and shmetl system calls.

The VRM reserves segment register 14 for direct memory access (DMA) and segment
register 15 is reserved for bus I/O. This register is used to address the I/O communication
channel (I0OCC), floating-point adapter (FPA), and memory-mapped adapters. The following
shows the run-time register assignments to the operating system.

. Operating System 1-11

Registers

User Mode

A process in user mode accesses the following logical areas while running. These areas

Segments

Kernel: Text
Data
Stack

User Text

User Data

User Stack and User Block

Shared
Data

VRM-DMA

BUS

are used to store information.

1-12

Text segment

Data segment

This segment is mapped by segment register 1 and is addressable by a
process in user mode. The text segment occupies the low addresses in
the virtual address space of a process. This segment usually contains
the user program code that executes. The information in this segment
originates from the load module that executed an exec system call. (The
exec system call is briefly discussed later). During execution, this
segment is read-only and a single copy of it is shared by all processes
executing the same code.

This segment is mapped by segment register 2 and addressable by a
process in user mode. The data segment of a user process begins on the
logical boundary above the text segment. The process has read and
write access to this segment. This segment is not shared by other
processes and its size can be extended using a brk system call. This
segment contains an initialized portion used for data variables such as
arrays, and a portion called bss, which is initialized to zeros.

AIX Operating System Technical Reference

Stack segment This segment 1s mapped by segment register 3 and is partially
addressable by a process in user mode. This segment contains the user
process stack and the user structure (u.block). The user structure is
not addressable by a process in user mode. This segment of a user
process starts at the high address in the process virtual address space
and automatically grows in size toward the data segment as needed.
This segment contains the run-time stack for a program and user
programs can write to it. The process uses the top portion of this
segment to pass I/O information to the kernel.

Shared segment

In addition to the text, data, and stack segments that each process uses, a process can
create and/or attach itself to segments that are accessible by other processes. A set of
system calls are available for using shared segments. When a shared segment is created or
attached, the shared segment becomes part of the address space of the requesting process.

Shared segments can be used in either a read-only mode or in a read-write mode. Note that
there is no implicit serialization support when two or more processes access the same
shared segment. If one process reads from a particular area of a shared segment, then it is
the responsibility of the two (or more) processes to coordinate their accesses to the shared
area.

In addition to the sharing of segments, system calls are available that allow a process to
logically superimpose the address range of a shared segment over an ordinary file in any
mounted file system. Access to the file can then be made by accessing the segment. The
segment can be shared with other processes or used by a signal process. There are three
modes of mapping a file with a segment. They are read-write, read-only, and copy-on-write.

Read-write

A file mapped read-write allows loads and stores in the segment to behave like reads and
writes to the corresponding file. If a process reads that portion of the segment that is
beyond the logical end of file, the process will read zeros. If the process writes into that
portion of the segment that is beyond the end of file, the file is extended.

Read-only

A file mapped read-only allows the file to be read. Any attempt to write to the file by
storing into the segment will signal an error to the process. Just like read-write, a process
that accesses the part of the segment that is beyond the end of file reads zeroes.

Operating System 1-13

Copy-on-write

A file mapped copy-on-write also allows loads and stores to the segment to behave like
reads and writes to the corresponding file except that the writes are temporary. That is,
any storing into a copy-on-write segment modifies the segment but does not modify the
corresponding file. The fsync system call writes the changed portions of the segment to
the corresponding file, thereby making the mapped file an exact copy of the segment. If
this system call is not issued, the file is never changed, allowing a process to cancel
changes that it has made to a file if it decides the changes are not needed.

Kernel Mode

The following areas are addressable by a process in kernel mode. Except where noted,
these areas are mapped by register 0. Data directly associated with a process are paged
out of memory with the process. These areas contain all the data about a process needed
by the kernel when the process is active. The four areas are:

Text This contains kernel program code that executes. It is read only by a
user process.

Global data This data can be addressed by any process while in kernel mode. It
contains tables, such as the open file table and process table, and
other data, such as buffer pointers, maintained by the kernel.

Per-process data This is sometimes called the user structure, user area, u.area, user
block, or u.block. It is a portion of the user process stack segment.
This area is paged with the process. It contains process information
such as the current directory of files opened by the process or input
and/or output (I/O) in kernel mode. This information occupies the top
of the stack segment.

Stack This area is paged with the user-process. The kernel maintains a stack
for each process. It saves the process information such as the call
chain and local variables used by the kernel for the user process.

Process Data Structures

Most process management performed by the kernel is table searching and modification.
The kernel maintains several tables to coordinate the running of many processes. The
following figure shows the tables maintained by the kernel to manage processes.

1-14 AIX Operating System Technical Reference

KERNEL USER

ADDRESS ADDRESS
SPACE Process Table SPACE
Process Entry
Process Entry ~ ~
Reserved
Text Table

(Used For Shared
Text Segment Only)

Text Entry
J
User Text User Data
User Block Segment Segment
Per-process
Information User Text User Data

The process table contains an entry for each process that is created. This table contains
the data needed when the process is not running. The structure of this table can be found
in the fusr/include/sys/proc.h file in the file system. This table is always in memory so
the kernel can manage events for the process. Each table entry details the state of a
process. The state information includes the segment IDs of the process, the identification
number of the process, and the identification of the user running the process. There is one
table entry for each process; therefore, the number of processes that can be created is
determined by the size of the table, which is specified as a customize parameter, procs in
the /etc/master file. Process creation causes an entry in the process table and process
termination frees an entry in the table. One table entry is reserved for a process with
superuser authority. A process is recognized as superuser process and is granted special
privileges if its effective UID is 0.

Each process has its own copy of the variable segments of the process, but the text segment
can be shared. Sharing program text allows more effective use of memory. When text
segments are shared by processes, the system maintains a text table. This table is used to
keep track of the shared text segment for each process sharing a text segment (a parent
and child can share text after a fork, as an example). The structure of this table can be
found at /usr/include/sys/text.h in the file system. A text table entry contains the
segment ID of the text segment and the number of processes sharing this entry. When the

Operating System 1-15

number is reduced to 0, the entry is freed along with the segment. The first process
executing a shared text segment causes a text table entry to be allocated and the segment
to be created. A second process executing an already allocated text segment causes the
number in the text table to be incremented.

The user structure (also called per-process data area or user block) contains information
that must be accessible while the process executes. One user structure is allocated for
each active process. The user structure is directly accessible to the kernel routines. This
structure can be found at /usr/include/sys/user.h in the file system. This block contains
information such as user and group identification numbers for determining file access
privileges, pointers into the system file table for the files opened by the process, a pointer
to the i-node table entry, and a list of responses for various signals. The user structure is
part of the user stack segment. This chapter makes reference to entries in the user
structure as u.xxxx, where xxxx is the structure member.

The user data segment contains user data. The information consists of initialized data
variables. A pointer to this segment is found in the process table entry. The user text
segment contains program code. A pointer to this segment is found in the process table
and if shared, the text table.

Creation and Execution

When the /unix file is found (see “Bootstrap” on page 1-9), it is loaded into segment 0 and
executed. First, it initializes disk data structures such as the free-list blocks, I/O buffer
pool, the pool of character buffers, and the list of available i-nodes.

PN

System
Load

l

Scheduler
(Process 0)

A 4

Init
(Process 1)

|
| | 1 |

/etc/rc Getty Login Shell <
Daemon Port User
Processes Processes Processes

1-16 AIX Operating System Technical Reference

After the initialization is complete, the kernel starts to build the first process (process 0),
also known as the scheduler. The scheduler is not created by the fork system call like
other processes and it does not contain all the parts of a process. It is a unique process
that contains only a data structure to be used by the kernel. Process 0 is the first entry in
the process table and active only when the processor is in kernel mode.

Process 0 creates another process (process 1) by copying itself. Process 1 is also known as
init. The system issues the equivalent of a brk system call to expand the size of process 1.
Next, a program containing the instructions to perform an exec system call is copied into
the text segment of the newly created process 1.

Process 0 is not a completed process image. The kernel will use this process for scheduling
and controlling the operations of other system processes. Process 1 is the first completed
process image and the ancestor of all subsequent processes. Neither process has run. The
scheduler dispatches the first process that is ready to run. There is only one process ready
to run, so process 1 runs. Process 1 immediately executes an exec system call to overlay
itself with code from the /etc/init file.

As previously stated, all other processes are descendents of the init process. Normally, the
init process runs the shell script, /ete/re. The re shell script is responsible for performing
integrity checks, doing any necessary cleanup, mounting the normal file systems, enabling
standard ports. After /etc/re runs successfully, the init process creates a getty using the
fork system call for each enabled port specified in the /ete/ports file. The init process
performs the exec system call to getty to determine appropriate terminal speed and modes.
The getty program performs the exec system call to login to validate password, sets the
user ID (UID) and the group ID (GID), the current directory and so on. login execs shell
or the program specified in the /etc/passwd file as the first program to be run after login.
Shell runs in the same process created by init. Shell performs the fork system call, which
creates new processes for every command. While the system is running, the init process
sleeps waiting for the termination of any of its children. When a user logs off, init creates
a new logger via a fork.

Parent and Child Processes

A process can, for various reasons, create a copy of itself. When this occurs, the original
process is called the parent process and the newly created process is called the child
process. The major difference between the original process, the parent, and the created
process, the child, is that they have different process identification numbers, parent
process identification numbers, and time accounting information.

The fork system call causes the total number of system processes to increase. A process
uses the fork system call to create a copy of itself. The fork system call causes a new
process, the child, to be created. Besides the differences mentioned previously, each
receives a different value from the fork system call. (The child receives the value 0 and
the parent receives the ID of the child process.) The two processes share open files and
each process can determine whether it is the parent or the child by the value received.
The parent may or may not wait for any of its children to terminate.

Operating System 1-17

The exec system call causes the process to overlay the information it contains with new
information. During an exec system call the process exchanges current text and data
segments for new data and text segments. The total number of system processes does not
change, only the process that issued the exec is affected. After the exec system call, the
process identification number is the same and open files remain open (except close-on-exec
files).

The exit system call terminates the process that issued the exit. All files accessed by that
process are closed and the waiting parent is notified. A zombie process is a terminated
process whose entry remains in the process table. The parent process is responsible to
clear the entry from the process table. In the case of a child whose parent has terminated,
init becomes the parent process clears the entry. If accounting is enabled, exit writes an
accounting record.

The wait system call suspends the calling process until the child process exits, the child
stops in trace mode (the child is traced by its parent), or the caller receives a signal. A
wait system call passes termination status to the parent process, 1 byte (high) passed by
exit and 1 byte (low) of system status. This system call also removes zombies from the
process table.

The following scenario discusses a parent process and child process relationship and the

system calls to synchronize them. It is important to note that the parent process may

terminate before the child process. In this instance, the init process assumes the role of /
the parent process. \

A parent process executes a fork system call, producing a new process. The new process
executes an exec system call creating a child process with a new identity. This is similar
to the sequence shell uses when it runs a program. The wait system call causes a parent
process to wait for the child to finish processing. When running interactively, the shell
process executes a fork system call, the child process (shell running in the new process)
executes an exec system call for the required program, and the parent process (shell)
executes a wait system call to wait for the child to finish running. When the child
executes an exit system call, the parent causes the process table entry for the child to be
removed and prompts for another command. When running in the background, the shell
process simply prints the process ID of the child and does not wait for the child process to
terminate. See the following for the relationship of the parent and child processes as
described when they run interactively.

Parent
X Removes Child.
Parent — fork () —» wait () >
Process Table
Entry

TN

Child with
New Identity L exec () ——» exit()

1-18 AIX Operating System Technical Reference

States of a Process

A process can be in one of many states. A process can be ready to run, running, sleeping
(waiting on an event), stopped, or ended. The scheduler determines which order the
competing processes execute. The following diagram shows the process states and the
events that change the states.

Process Creation
Fork

v

Process Termination

Only one user process is active or running at any given time. All other user processes are
suspended from running. For example, a process that is waiting for any of its children to
end, waits for an event that is the address of its own process table entry. When a process
terminates, it signals the event represented by the process table entry of its parent. When
the event occurs, the process is awakened. When a process is awakened, it is ready to run,
which means it is eligible to be dispatched. Normally, processes run to completion unless
they sleep. They sleep for reasons such as waiting for input or output to complete, time
slices, waiting for an event to occur or signals from other processes. At each timer
interrupt, the timer interrupt routine examines the process queues, and may cause a
process switch. When a process is sleeping, it may be paged out of memory. The process
switch routine will not restart a process that is paged out. It checks that kernel and user
data for a process are addressable before it restarts the process.

Operating System 1-19

A process that relinquishes control of the processor is usually waiting for some I/O to be
performed. In that case, the process issues a sleep call specifying chan, which is usually
the address of the kernel data structure, and specifies a wakeup priority. It normally
remains in a sleep state until a wakeup call is issued specifying the same chan. If the
wakeup priority is low enough for the signal to be processed, the process is awakened and
restarted in the same mode prior to sleep. Sometimes many processes may be waiting on
the same event to occur, such as memory allocation. Since this is possible, when the
process returns from sleep, it must first check that the event or resource was not seized by
another process waiting on the same chan. If the resource is not available, the process
issues another sleep call.

Priority Computation

Each process has an assigned priority. User processes are assigned low priorities. The
scheduler uses the process priorities to dispatch processes. It dynamically calculates
process priorities to select the inactive, but ready to run, process to run when the
currently active process stops. A system process has a higher priority than any user
process.

User process priorities are assigned by an algorithm based on the ratio of the amount of
compute time to real time recently used by the process. At every tick of the system timer,
the p_cpu field (processor usage) in the process table for the running process is
incremented. The compute time to real-time ratio is updated every second. Using negative
exponential distribution, the kernel decreases p_cpu by half its value for every process at
or above the base user level and recalculates the priority of the processes. Processes that
accumulated a lot of execution time have less priority than processes with very little
execution time. A user process can execute a nice system call to induce a bias in the
calculation. Ordinary user processes can only decrease their priority, while root user
processes can either increase or decrease their priority.

Signals

Signals provide communication to an active process, forcing a single set of events where
the current process environment is saved, and a new one is generated. A process can
designate a signal handler function to respond to the signal. The signals all have the same
priority, and critical functions can protect themselves from signal interference.

A signal is an event that interrupts the normal execution of a process. The set of signals is
defined by the AIX system, and they are listed in the discussion of “signal” on page 2-145.
All signals have the same priority.

A process can specify a signal handler subroutine, which is to be called when a signal
occurs. It can also specify that a signal is to be blocked or ignored, or that a default
action is to be taken by the system when a signal occurs.

1-20 AIX Operating System Technical Reference

A global signal mask defines the set of signals currently blocked from delivery to a
process. The signal mask for a process is initialized from that of its parent. It can be
changed with a sigblock or sigsetmask system call. While a signal handler is executing
for a given signal, the signal that caused it to be called is blocked, but other signals can
occur. When the handler finishes, the signal is again unblocked.

Normally, signal handlers execute on the current stack of the process. This can be
changed, on a per-signal basis, so that signal handlers execute on a special signal stack.

When a signal is sent to a process, it is added to a set of signals pending for the process. If
the signal is not currently blocked, then it is delivered to the process. When a signal is
delivered, the following actions occur:

1. The current state of the process execution context is saved.

2. A new signal mask is calculated, which remains in effect for the duration of the
process’s signal handler or until a sigblock or sigsetmask system call is made. The
new mask is formed by logically OR-ing the current signal mask, the signal being
delivered, and the signal mask associated with the handler to be called.

3. If the signal handler is to execute on the signal stack, then the current stack is
changed to the signal stack.

4. 'The signal handler is called. The parameters that are passed to the handler are defined
in the following description.

The signal-handler subroutine can be declared as follows:

handler (sig, code, scp)
int sig, code;
struct sigcontext *scp;

The sig parameter is the signal number. The code parameter is provided only for
compatibility with other UNIX-compatible systems, and its value is always 0. The scp
parameter points to the sigcontext structure that is later used to restore the process’s
previous execution context. The sigcontext structure is defined in signal.h.

5. If the signal-handling routine returns normally, then the previous context is restored
and the process resumes at the point at which it was interrupted. The handler can
cause the process to resume in a different context by calling the longjmp subroutine.
(For information on how to save and restore the execution context, see “setjmp,
longjmp” on page 3-332.)

After a fork system call, the child process inherits all signals, the signal mask, and the
signal stack from its parent.

The exec system calls reset all caught signals to the default action. Signals that cause the
default action continue to do so. Ignored signals continue to be ignored, the signal mask
remains the same, and the signal stack state is reset.

Operating System 1-21

When the longjmp subroutine is called, the process leaves the signal stack, if it is
currently on it, and restores the signal mask to the state when the corresponding setjmp
call was made. See “sigvec” on page 2-156 for enhanced signal information.

The operating system has five signal classes:

e Hardware signals occur as the result of conditions such as arithmetic exceptions,
illegal instruction execution, or memory protection violations.

e Software signals are generally user-initiated interrupts. Termination, quit, and kill are
signal types that represent various levels of user or program-initiated signals to a
process. In addition, timer expiration can be signalled with software-driven alarm
signals.

® A process can be notified of an event that occurred based on some descriptor, or
nonblocking operation that completes. A process can also request a catastrophic
condition signal.

e Processes can be stopped, restarted, or can receive notification of state changes in a
child process.

e Processes can receive threshold warnings when the processing unit time limit or a file
size limit is reached.

The kernel also contains additions and modifications to enhance the unsolicited interrupt
signal system for kernel-to-process communications.

File System Management

Files within the file system are grouped into directories and the directories are organized
into a hierarchy. At the top of the hierarchy is a directory called the root directory. This
directory is designated as / (slash). The root directory contains some system-related files
and standard directories such as /bin, fusr, /dev, /etc, and /lib. Files can be attached
anywhere onto the hierarchy of directories.

A file is a one-dimensional array of bytes uniquely identified by a device name (major and
minor number) and an i-number (index number). Data within the file is located in
blocks. The logical blocks in the AIX file system are 2048 bytes long. Block size is
specified in the superblock; therefore a compatible file system can be mounted and used on
the AIX system. Block size of the mounted file system is recognized by the kernel.

1-22 AIX Operating System Technical Reference

Types of Files

AIX file system files can be directory files, ordinary files, or special files. All files have
read, write, and execute permissions for the owner, group, and others. The read, write and
execute permissions on a file are granted to a process if one or more of the following are
true:

e The effective UID of the process is superuser authority.

o The effective UID of the process matches the UID of the owner of the file and the
appropriate access bit of the owner portion (700 octal or 0x01c0) of the file mode is set.

® The effective UID of the process does not match the UID of the owner of the file, and
the effective GID of the process or one of the process or one of the GIDs in the multiple
group list of the process matches the group of the file and the appropriate access bit of
the group portion (070 octal or 0x38) of the file mode is set.

e The effective UID of the process does not match the UID of the owner of the file, and
the effective GID of the process does not match the GID of the file, and the appropriate
access bit of the other portion (007 octal or 0x07) of the file mode is set.

Otherwise, the corresponding permissions are denied. When a process creates a file, the
GID of the file is the effective GID of the process.

In a directory, however, the read, write, and execute permissions are interpreted differently
from ordinary files. Read permission for a directory indicates that standard utility
programs are allowed to open and read the information in the directory. Write permission
for a directory indicates that files in the directory can be created or removed. Execute
permission for a directory indicates that a user can search the directory for a file name.
Denying search privileges for a directory provides protection against using files in that
directory. A request to changing location into a directory where execute permission is
denied cannot be performed.

AIX permits file names to be up to 14 characters long. It is possible for one file to have
several names. Any printable character can be used in the name. Names containing
unprintable characters, space characters, tabs, and shell metacharacters are not
recommended. The AIX file system reserves file names . (dot) and .. (dot dot); therefore
these names cannot be used as file names.

Directory Files

The AIX file system hierarchy centers around directory files. Directory files contain lists
of files. The AIX operating system maintains the directory files. Executing programs can
read the directory files, but AIX prevents programs from changing directory files to protect
the information in the directory files. Programs may add entries to directories by
requesting the system to create a file. The system is responsible for making the changes to
directory files. Files listed in a directory can be ordinary files, directory files, or special
files.

Operating System 1-23

Ordinary Files

Ordinary files are attached to directories. An ordinary file might contain an executable
program, document text, or other types of information that can be processed. There are
two types of ordinary files: text files and binary files. Text files normally contain ASCII
(American Standard Code for Information Interchange) characters. Binary files contain
256 possible values for each byte.

Special files

1-24

Special files are used to provide a convenient channel for accessing input and output (I/0)
mechanisms to devices. For each I/O device, including memory, there is a special file.
Most special files are found in the /dev directory. Special files provide an interface
between application programs and the AIX kernel routines dealing with the devices. The
names of the special files indicate the type of devices with which they are associated.
Special files are read and written just like ordinary files, except read and write requests
activate the associated device.

There are two types of special files: character and block. Some devices, such as a terminal,
handle one character at a time. The character special files provide access to character I/O
devices. Some I/O devices, such as a disk, transfer data in blocks at a time for efficiency.
The block special files provide access to block I/O devices.

No characters are stored in a special file. When a directory that contains special files is
listed, it identifies major and minor device numbers associated with the device rather than
file length. The major device number identifies the type of I/O device that the file
references. The minor device identifies the specific device when multiple devices of the
same type exist, such as terminals.

AIX Operating System Technical Reference

File System Layout

For this discussion, the device that contains the file system is a minidisk with logical data
blocks of 2048 bytes. Thus, a unit of disk storage or block is 2048 bytes. Blocks are
numbered sequentially from the beginning of the minidisk, starting with 0. A file system is
logically separated into four sections as shown in the following figure.

Block O Unused by File System
Block 1 Superblock

Block 2 I-list

Block n

Block n+1 Data Blocks

End of
File System

Block 0

The file system does not use block 0. This block usually contains system bootstrap
information.

Superblock

Block 1 is the superblock. See “fs” on page 4-74 for a detailed description of the contents
of this structure. This block is used to keep track of the file system. Some of the file
system information contained in the superblock is:

o File system size in logical blocks

File system name

Number of blocks reserved for i-nodes
The i-node list

The free-block list.

Operating System 1-25

I-list

Blocks 2 through n are the i-list, which contain structures relating a file to the data
blocks on disk. The size of this section depends on the size of the mounted file system.
Each structure, called an i-node, is 64 bytes long. Each i-node designates a file. See
“inode” on page 4-92 for the detailed content of the i-node structure of an ordinary file or
directory. Each i-node structure is sequentially numbered from 0 to a maximum number,
which is dependent on the file system size. Each index number, or i-number, designates a
64-byte i-node and is used as an offset within the i-list. I-number 1, the first 64 bytes, is not
allocated by the file system. Usually i-number 2 is the i-node of the root directory. The
remaining i-numbers are allocated by the file system. The i-node contains information
about each file such as:

Mode and type of file

Length of file

ID numbers of owner and group
Relevant dates and times
Number of links

Location of file blocks.

1-26 AIX Operating System Technical Reference

I-node Addresses

An i-node contains thirteen 4-byte disk addresses. The following figure shows the use of
the disk addresses in the i-node.

Disk Address in Inode

> |pno
Block

First Level Data
Block

Indirect

> | Block ;
Point :
olnters —_, Data

Block
) Second Level
First Level Indirect Block Data
. Pointers
Indirect L Block
E:> Block .
Pointers : .
Indirect Block | Data
Pointers Biock
First Level S d Level Third Level Data
: econ' eve ir : eve / Biock
|:> Indirect Indirect Indirect -
Block —» Block —» Block .
Pointers Pointers Pointers .
Dot
Block

Addresses 1 through 10 point directly to the first 10 disk blocks in the file. Addresses in
indirect blocks are 4 bytes long. If the file is larger than 10 blocks, address 11 points to a
first level indirect block containing the next blocksize -4 block addresses in the file. This
is called indirect addressing. Depending on the size of a block, an indirect block contains
blocksize +4 addresses. For example, the indirect block for a file system on diskette
contains 512 <+ 4 or 128 addresses; a disk indirect block contains 2048 =+ 4 or 512 addresses.
A larger file requires use of the address 12. This address points to a second-level indirect
block, which contains the addresses of up to blocksize + 4 first-level indirect blocks. If the
file is larger, address 13 is required. This address points to a third-level indirect block,
which contains the addresses of up to blocksize + 4 second-level indirect blocks. Any of
these addresses can be 0, indicating holes in the file, which are read as binary zeros.
Indirect block numbers can be 0 when the file contains large holes.

Operating System 1-27

I-number Allocation

The file system tracks free i-numbers that are available. It maintains a list of i-nodes
available for allocation in the superblock. The superblock contains the following
information to allocate i-numbers.

e s_inode, an array containing the next free i-numbers to be allocated to files.

e s_ninode, the count of free i-numbers in the array. This is used as an index into the
s—inode array.

& s_tinode, the total number of i-nodes in the file system.

Allocating an i-number to a file when s_ninode is greater than 0, s_ninode is decremented
to get the next available i-number from s—inode. If s_inode[s_ninode] is 0, the next free
i-numbers available from the i-list are placed onto the array and another attempt to
allocate is made. Freeing an i-number when s_ninode[s—ninode] is less than maximum,
places the freed i-number into the array and the count increments.

Data Blocks

The last section of the file system is data blocks, which contains data stored in files,
indirect blocks that point to other data or indirect blocks for large files, or blocks that are
available for data. These blocks are 2048 bytes long. The i-node contains the addresses of
the data blocks that are already used in files. Otherwise, the data blocks are free and
available for allocation to a file.

Free-block List

The file system maintains a list of all free blocks in a free-block list. The free-block list is
a linked list of pointer blocks. A free block is a block that is not allocated to the
superblock, i-nodes, indirect blocks, or files. Blocks are allocated dynamically to a file
when needed from the data block section of the file system. In order to track data-block
allocation, the superblock contains the following:

e s_free, an array of free block addresses.

e s_nfree, the number of free blocks in the s_free array. This is used as an index into
the s_free array.

e s_tfree, the total number of free blocks available in the file system.

1-28 AIX Operating System Technical Reference

Allocating Blocks

Each pointer block in the free-block list contains a count of the number of entries in the
block, up to 50, and the address of the next pointer block. If the pointer has a value of 0,
this indicates the last pointer block in the file system. The first long integer in each
pointer block is the number, up to 50, of free blocks addressed in the block. The next long
integer is the address of the next pointer block available. The next 49 long integers
contain the addresses of 49 free blocks. The following figure shows the relationship of the
free-block list and s_free array.

s_free Array
in Super-Block

Address of
Next Pointer
Block

Address of
First Block
In This Array

Address of
Last Block
Inthe Array

)

Pointer

Block in

Data Block Section
of File System

)

Number of Address of First Block Last Block
Free Blocks Next Pointer | Address |, Address
(‘ Addressed Block
In This Block
Free
Block< Last Pointer
List Block Avaiicble}
In File System
Number of 0 Indicating First Block Last Block
\ Free Blocks Last Pointer | Address Address
Addressed Block
In This Block

The file system allocates free blocks using the s_free array and pointers in the superblock.
The pointer block information is copied into the s_free array and superblock as follows.
s_free[0] contains the address of the next pointer block in the free-block list. The
remainder of the s—free array contains addresses of the free blocks in this pointer block.
s_free[s_nfree-1] contains the address of the next free block available to be allocated.

Allocating a block causes s_nfree to be decremented to locate the next available block. If
decrementing s_nfree caused its value to become 0, this indicates that more blocks are not
available in the s_free array. Therefore, the address found is the location of the next
pointer block. File system management reads the pointer block into the superblock,
placing its first long integer in s_nfree and copying the next 50 long integers, which are
addresses, into the s_free array. If the location of the next free block is 0, indicating the
end of the chain, then new blocks are not available in the file system. This indicates an
error condition.

Operating System 1-29

When a block is freed and s—nfree has a value less than 50, the new block address is added
to the s_free array and s-nfree is incremented. When a block is freed and s_nfree equals
50, s—_nfree and the s_free array are copied into the freed block and the value s_nfree
becomes 0. The file system manager updates the s_free array as previously described
when s_nfree was equal to 0.

Directory Contents

A directory file is like an ordinary file except that it cannot be written by a user. See
“dir” on page 4-60 for a detailed description of a directory. A bit in the i-node identifies
the file as a directory file. The directory contains an entry for each file or subdirectory
within it. A directory block contains 16-byte directory entries for each file within it. The
first 2 bytes of each entry are the i-number for the file. The remaining 14 bytes are the
file name, which is left adjusted in the field. The first file entry in a directory is its i-node
and entry . (dot). The second file entry is the parent directory, .. (dot dot). The third entry
designates the first actual file in the directory.

Path Name Resolution

A path name through the file system is a route of directories and i-nodes. A direct path
starts at the file system root. A relative path starts at the current directory. The last
name in the path references a file. The following example shows the resolution of a direct
path; the resolution of a relative path is similar.

Direct Path

1-30

The following describes accessing a file with a direct path name. Consider the path name
/w/z. This path starts at the root directory. It leads from the root directory to the
directory w and then to the file z.

1. Read address 1 of i-number 2 (root) for the address of the root directory.

2. Read the i-node for the root directory.

AIX Operating System Technical Reference

3. Use the information in the root directory to search the root directory for the name w

and its i-number.

Steps 1 and 2 Step 3
Inode 2 for Data Block for
Root Directory Root Directory
Block 2 | dr-xr-xr-x 2
owner:root 2
. 3| bin
. 4 | user
Oxc |disk e St w

4. Read the i-number for w.

Step 4 Step 5
Inode 5 for Data Block for
Directory w w Directory
Block 2 | dr-xr-xr-x 51
owner ID 21. .
. 451 job
. 46| pete
Oxc disk e 47] z

5. Use the information in the w i-node to search the w directory for the file named z and

its i-number.

Operating System 1-31

6. Read the i-node for z. The addresses for the file blocks assigned to the files start at

offset 10 within the i-node. The first 10 are direct addresses as previously described;
the last three are indirect.

Step 6
Inode 47
for File z
First Data
Block 2 | -rw x rw-- Block for
owner ID File z
Oxc disk e

Relative Path

Consider the relative path name ..(dot dot)/x/y. The path leads from the current
directory, to the parent of the current directory, to the parent subdirectory x, and finally
to the file named y in the directory x. In order to follow this path, the system performs the
following steps:

1.
2.

Read the i-node of the current directory.

Use the information in the i-node for the current directory to search the current
directory for the name .. (dot dot) and its i-number.

Read the i-number for .. (dot dot).

Use the information in the .. (dot dot) i-node to search the parent directory for the file
named x and its I-number.

Read the i-node for x.

Use the information in the x i-node to search the x directory for the file named y and
its i-number.

Read the i-node for y. The addresses for the file blocks assigned to this file starts at
offset 10 within the i-node. The first 10 are direct addresses as previously described;
the last three are indirect.

1-32 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

File System Data Structures

The kernel maintains structures in memory, along with the superblock, to access files in
the file system. These structures include the v-nodes, i-node table, and file table.

Access to the files in the system begins at the per-process data region in a process (user
structure). System calls provide access to file system services for user processes. The most
common functions performed are open, creat, read, write, lseek, and close. The user
structure contains an array, u.u—ofile, that is indexed by file descriptor values. This array
of entries contains the addresses of the file table entries for each file opened or created by
the process and used for I/O operations. Descendants of the process inherit the contents of
the u.u—ofile array. The following figure shows the data structure relationships for
accessing two files. The format of the user structure is found in /usr/include/sys/user.h.

User Structure Fite Table Inode Table

N

u.u_ofile

File Descriptor — —

Nizx

All operations on files are performed with the aid of the corresponding i-node table entry.
When the system accesses a file, it locates the corresponding i-node (see “Path Name
Resolution” on page 1-30), allocates an entry in the i-node table, reads the i-node into
memory, and creates the corresponding v-node. The entry in the i-node table is the current
version of the i-node and is the focus of file system activity. The structure of an i-node
entry is found in /usr/include/sys/inode.h. The i-node table contains the key information
for accessing a file including flags, owner, mode, mounted-on device, i-number, and
location of file blocks.

The v-node holds information on the operations that the rest of AIX uses to perform
file-related system calls on the corresponding i-node and file. These operations can differ
from file to file. For example, a file residing on a remote server is accessible through a set

Operating System 1-33

TNL SN20-9855 (26 June 1987) to SC23-0808-0

of Distributed Services operations when Distributed Services is installed. The structure of
the v-nodes is found in fusr/include/sys/vnode.h.

Another table the kernel maintains in memory for accessing files is the file table. The
structure of a file table entry is found in the /usr/include/sys/file.h file in the file system.
A file table entry is associated with open and creat calls for each file. Each entry in the
file table contains the read/write offset of the file and a pointer to a v-node, which in turn
contains a pointer in its private data field to a particular entry in the i-node table. The
user process maintains a file table entry for each file it opened or created. After a fork,
the two processes share the file table entries. A separate open of a file that is already open
shares the i-node table entry but has distinct file table entries.

I/O Control

The kernel and user processes use calls to the system to access the I/O subsystem. System
calls that perform I/O usually cause the calling process to be suspended (it relinquishes
control of the hardware processor) while the I/O is being performed. Another process that
is ready to run is dispatched.

The supervisor call (SVC) is the mechanism that permits a virtual machine operating
system to request services from the VRM. The AIX kernel sends requests to the hardware
devices using supervisor calls to the VRM through the Virtual Machine Interface (VMI).

Each physical device that is attached to the system must communicate with the AIX kernel
via a device driver. Due to the VRM/VMI boundary, the AIX device drivers do not deal
directly with actual device interrupts and do not directly place requests on the hardware
bus. Each AIX device driver that deals with a physical device has a corresponding part
that handles the physical device in the VRM. AIX device drivers communicate with their
VRM counterpart using supervisor calls directed to the VRM.

Each AIX device driver is activated by a basic I/O system call (open, read, write, ioctl,
close, and so on) from the application level. AIX system calls are invoked via SVCs that
are distinguished from VRM SVC requests by the SVC number. There is a range of SVC
numbers (0 - 32767) reserved for virtual machines and a different range of SVC numbers
(32768 - 65535) used for requests to the VRM.

The AIX device driver routine for the particular device class performs the requested I/O
function to a device by issuing VRM SVC requests. There are two basic device classes,
one for block-oriented devices, and one for character-oriented devices.

Each AIX device driver is addressed by individual applications via a system call (SVC)
interface. The application builds device-dependent commands and data streams, and
invokes the appropriate AIX device driver. To accomplish the system call, the device
driver maps the system call inputs into VRM I/O subsystem SVCs.

The AIX device drivers perform basic device error determination by reading device status
to determine exception conditions. In some instances (where the device driver is driven

1-34 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

with an ioctl system call), specific commands are passed through to the VRM device driver
by the device driver. In general however, the AIX device drivers package the commands
and data for the VMI I/O subsystem interface and execute the SVC calls across the VMI.
Virtual interrupts across the VRM are serviced to satisfy each outstanding system request.

AIX device drivers are explained later in this discussion. See Virtual Resource Manager
Technical Reference for an explanation of VRM device drivers. The following illustration
shows an overview of the relationship in the control flow of the I/O subsystem.

User Process

1/0 System Call (VO)| | Kernel Trap Routine |

y
System Call
Switch Table
File 170 Device
Subsystem Switch Table
Buffer Kernel
Subsystem Device Driver

VRM SVC Handler l

I

| VRM Device Driver l

I

l I/0 Bus and Devices 1

Kernel Trap Routine

Each system call is interpreted as a request to perform a predetermined function. The
function to be performed is determined by a trap handler in the kernel. This kernel trap
routine is called in other instances besides system call handling. This routine also runs in
cases of error conditions or interrupt handling.

During a system call, any error indicators are reset and the process return status is saved.
Next, the system call is used to determine a system call number. (An integer number is
assigned for each type of system call.)

Operating System 1-35

TNL SN20-9855 (26 June 1987) to SC23-0808-0

System Call Switch Table

The system call number is used as an index into the system call switch table. This table
contains the address for the specific handler routine that handles the call. A call is made
to the system call handler routine, which receives the parameters supplied by the user
program along with the system call. This routine copies the parameters out of the user
part of the process to the kernel part of the process.

File I/O Subsystem

The system call switch table contains many entry points into the file I/O subsystem.
Common entry points used are open, close, read, write, lseek and ioctl system calls.
The file I/O subsystem determines whether the system call is to gain access to an ordinary
file, a block special file, or a character special file. In the case of special files, this
subsystem translates the file name into a major and minor number, which is used to select
the device and/or routine.

Buffer Subsystem

The buffer subsystem maintains a system buffer pool that is used by block devices to read
and write data. Requests for blocks found in the pool are returned immediately to the
requester. If blocks are not found in the pool, the least recently used (LRU) buffer is freed
and allocated. See“Block Device Drivers” on page C-15 for more details.

Device Switch Table

The device switch table is used as an interface to the device drivers. The device driver
major number is used to select the proper routine. The minor number selects one of
multiple subdevices. See “Device Management” on page 1-39 for more details about device
drivers.

Kernel Device Driver

The device driver in the kernel does not issue I/O directly to the device. Instead, it issues
an SVC to a device driver in the VRM to perform the actual I/O. When the VRM device
driver has completed its task, it sends a virtual interrupt to the virtual machine.

VRM Device Driver

The VRM device driver accesses the hardware device by accessing the memory mapped I/O
bus.

1-36 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

I/O Bus

The I/O bus is addressed via segment register 15 and is accessed like ordinary memory.
Normally, only VRM device drivers should attempt addressing the I/O bus. However, a
kernel device driver can address the I/O bus if proper device handling has been done.
Normally, the bus address space is protected from access by opening the bus special file.
See “bus” on page 6-5 for additional information.

Return

When the routine returns, the return status is copied back into the user part of the process
and the process resumes running. Some rescheduling of processes can occur upon return
from kernel mode due to interrupts or errors while processing the system call. Execution
starts in the program immediately after the system call unless an error occurs.

Common Routines

Kernel and user processes use calls to kernel routines as an interface to the I/O subsystem.
These routines must prepare the system internal tables in order to ensure proper
performance. These routines are invoked using system calls. The following describes the
common routines used and their effects on tables maintained by the operating system.

Creat and Open

The creat and open routines create and/or open a file for reading or writing and return a
file descriptor for the opened file. First, the file system directory is scanned to locate the
named file. An i-node is created if not found and an entry is placed in an i-node table.
This entry is somewhat different than the i-node as it exists on the disk. It contains a
count of the users (used by close) and disk block addresses are expanded from the 3 bytes
stored in an i-node to the minidisk block number. There is one i-node table entry for a
given file. An i-node table entry exists for an open file, the current directory of a process,
or a special file containing a currently mounted file system.

The open file causes a u.ofile array to be stored in the user structure. The read, write
or any other routines that perform operations on the opened file use the file descriptor
returned as an index into this array. Array entries are pointers to corresponding entries in
the file table that is maintained by the system.

Each creat or open of a file causes one file table entry to be created. If a file is opened by
more than one process, this table contains multiple entries. After a process performs a
fork system call, the resulting processes share the same entry of the opened file in the
table. The fork system call increments the reference count entry in the table. This count
is used by close to determine when the entry can be removed from the table. Additionally,
it contains a pointer to a v-node, which in turn points to the entry for the file in the i-node
table.

Operating System 1-37

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Close

The close routine is called each time a process closes a file. When the last process closes
the file, the i-node table entry is removed. In some instances, buffers containing data for
the file that are queued but not written, are written to the file before the close completes.

Read and Write

The read and write routines use parameters supplied by the user and the file table entry
to set the variables u.u-base, u.u-count, and u.u—offset (in the user structure). These
variables contain the user address of the I/O target area, the byte count for the transfer,
and the current location within the file. It may be necessary to transform the current
location into a logical block number or physical block number depending on the target.

I/O Data Structures

The operating system maintains data structures to track I/O processing to and from
devices. The following figure shows these data structures and their relative relationship.

User Structure File Table Inode Table Buf

N —l—» Data

When an open or creat occurs, an entry is made in the file table. This table is referenced
by pointers from the user structure using file reference numbers passed to system calls.

Another data structure is the i-node table, which contains one entry for each active
i-node. Each entry maintains an open count and a link count, which is used by close.

This table is referenced by device number and i-number. The entry in this table is created
by the open routine and removed by the close routine (when the open count and link
count are 0). The i-node table array of a file is found by following a series of pointers. The
first pointer is in the user structure, which points to a file table entry, which points to a
v-node, which points to the i-node table entry. (See above figure.)

The user structure contains information accessed by the user process, kernel, and the

device driver routines to perform device I/O requests. The elements of this block are
needed when performing I/0O.

Buf is a table of buffer headers maintained by the kernel and used for data read from or
written to block devices. Each buffer header has at least three parts: flags (to show status

1-38 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

information), forward and backward pointers (to maintain two doubly linked lists; the b
list to link the buffers that correspond to a disk block and the av list to link buffers that
are available for reuse). The structure of the buffer header can be found in location
Jusr/include/sys/buf.h in the file system.

Device Management

The operating system uses special files, sometimes called device files, to refer to specific
hardware devices and device drivers. Special files, at first glance, appear to be files just
like any other. They have path names that appear in a directory, and they have the same
access protection as ordinary files. They can be used in almost every way that ordinary
files can be used. However, an ordinary file is a logical grouping of data recorded on disk,
but a special file corresponds to a device (such as a line printer), a logical subdevice (such
as a large section of disk drive), or a pseudo-device (such as the physical memory of the
computer, /dev/mem, or the null file, /dev/null). By convention, all special files supplied
with AIX are located in the /dev directory.

Device Drivers

A device driver is a set of routines that are installed as part of the AIX kernel to control
the transmission of data to and from a device. The major interface between the kernel and
the device drivers is through the device switch table.

Major Device Number

A major device number designates which device driver in the operating system is to handle
I/O requests. The major device number for each device is assigned in the /etc/master file,

which is used in system configuration (see the config command in AIX Operating System
Commands Reference).

Minor Device Number

The interpretation of the minor device number is entirely dependent on the particular
device driver. The minor device number is frequently used to index an array that contains
information about each of several virtual devices or subdevices. For each virtual device,
there exists an I/O device number (IODN) that is passed on all I/O supervisor calls. This
IODN is used by the VRM SVC handler to route the I/O request to the proper VRM device
driver. This IODN is either a fixed assignment or can be dynamically assigned by the
config program. See config in AIX Operating System Commands Reference.

Operating System 1-39

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Requests for Device 1/O

The operating system controls the processing of all user I/O requests and device interrupts.
When a user program requests I/O to a device using system calls, control is transferred to
the kernel. If the system call is to a device (not an ordinary file), the path pointer points
to a special file. Special files describe the device and indicate to the system that the call is
for a device. If the requested file is a special file, the system records the major and minor
device numbers in the i-node table entry.

All devices attached to the system are controlled by device drivers. The device drivers
contain routines that specify the functions that can be performed by a device, such as read,
write, open, and close. Each device has a set of driver routines that can be accessed by the
kernel via a device switch table. The kernel uses the major device number designated in a
corresponding special file as an index into the device switch table as shown in the next
figure. The minor number, which is passed as a parameter, selects one of a class of devices
(such as a diskette drive) from a group of devices or specifies device characteristics.

Device Switch Table

Major .
Number Routines
devmaj ——
(used to ®open eclose........... @opencnt
select a
set of
entry
points)
b 12345 eclose @init.
A Address of open routine
for selected device
[]
L]

After the kernel creates the i-node table entry for the device, all references to the device
use the i-node number assigned to that device until the device is closed.

The following describes an overview of the processing of an I/O request to a device. When
a call is made to a device, the kernel first runs the device-independent routines needed for
the I/O request. Then, it determines the proper device driver routine to invoke for the
required device-dependent process using the major number. Next, it calls the appropriate
device driver routine. The requested I/O function is performed, control returns to the

1-40 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

kernel. The kernel finishes processing the I/O request and then returns control and any
values to the user program.

When a device signals an interrupt to the processor (indicating I/O request completed),
control is transferred to the interrupt vector in low memory. The interrupt vector first
transfers control to the interrupt handler, which performs device-independent interrupt
processing. Next, the device-dependent interrupt handler, which is part of the device
driver software, is invoked. The interrupt handler processes the interrupt and then returns
control to the kernel. The kernel returns control to the process that had control of the
processor at the time of the interrupt.

Operating System 1-41

TNL SN20-9855 (26 June 1987) to SC23-0808-0

1-42 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Chapter 2. System Calls

System Calls 2-1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

About This Chapter

This chapter gives detailed information about each of the system calls that are available in
the AIX Operating System. System calls provide controlled access to the operating system
kernel.

The programming interface to the system calls is identical to that of subroutines. Thus, as
far as a C-language program is concerned, a system call is merely a subroutine call. The
real difference between a system call and a subroutine is the type of operation it performs.
When a program invokes a system call, a context switch takes place so that the called
routine has access to the operating system kernel’s delicate information. The routine then
operates in kernel mode to perform a task on behalf of the program. In this way, access to
the delicate system information is restricted to a pre-defined set of routines whose actions
can be controlled.

The operations performed by system calls are frequently more basic or “primitive” than
those of subroutines. Many subroutines described in Chapter 3, “Subroutines,” use system
calls to perform more complex tasks. For example, the open, close, read, and write,
system calls perform very simple I/O operations; but many programs use a standard set of
1/O subroutines that add data buffering to the I/O performed by the system calls. (See
“standard ifo library” on page 3-342 for details about the Standard I/O Package.)

When an error occurs, most system calls return a value of -1 and set an external variable
named errno to identify the error. The errno.h header file declares the errno variable
and defines a constant for each of the possible error conditions. A complete listing of
these error codes and their meanings can be found in Appendix A, “Error Codes.” The
specific meanings of the error codes that apply to each system call are listed in the
“Diagnostics” section of each system call entry.

For an explanation of the “Syntax” section of each entry, see “Syntax” on page v. For an
explanation of header files, see “Header Files” on page vii.

The following discussion is divided into sections that discuss groups of system calls that
perform various operations.

2-2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Input/Output

The following system calls perform the basic input/output for all types of devices:

access
chdir
close
creat
dup
fclear
fsync
ftruncate
ioctl
lockf
lseek
open
read
write

Determines whether the process has permission to access a file.
Changes the current directory.

Closes a file.

Creates a new file or replaces an existing file with an empty one.
Duplicates an open file descriptor.

Clears space in a file, freeing unused disk space.

Forces changes to a file to be written to the disk.

Shortens a file.

Provides device-specific control.

Locks a region of a file from access by other processes.

Moves the read/write pointer of a file.

Opens a file or device for reading or writing.

Reads data from a file or device.

Writes data to a file or device.

File Maintenance

The file maintenance calls change the access permissions of files, create directories, mount
file systems, and perform a variety of other operations:

chmod
chown
chroot
fentl
fstat
link
mknod
mount
stat
sync
umask
umount
unlink
ustat
utime

Changes the access permission mode of a file.

Changes the user and group that own a file.

Changes the directory considered to be the root directory.
Provides file control.

Gets file status information.

Creates a new directory entry that links to a file.

Creates a special file that describes a device.

Mounts a file system.

Gets file status information.

Forces all changes in the file system to be written to disk.
Sets the file creation mask.

Unmounts a file system.

Removes a directory entry.

Gets file system statistics.

Set the access and modification times of a file.

System Calls 2-3

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Process Control

The following system calls control creating, operating and stopping processes:

exec Replaces the current process image with a new program.
exit Terminates the current process.

fork Creates and starts a child process.

nice Changes the execution priority of a process.

plock Locks a process in memory.

wait Waits for a child process to stop or terminate.

Process Identification
The following system calls get and set the IDs and limits of a process:

getegid Gets the effective group ID.

geteuid Gets the effective user ID.

getgid Gets the real group ID.

getgroup Gets the group access list.

getpgrp Gets the process group ID.

getpid Gets the process ID.

getppid Gets parent process ID.

getuid Gets the real user ID.

setgid Sets the real and effective group IDs.

setgroups Sets the group access list.

setpgrp Sets the process group ID.

setuid Sets the real and effective user IDs.

ulimit Gets and sets the process’s user limits.
Signals

Signals are sent to processes when exceptional events occur. A signal interrupts the
activity that a process is performing and causes it to take a special action. For example,
when a user presses the Alt-Pause key sequence at a work station, the SIGINT signal is
sent to the user’s processes. Normally, this causes them to terminate, but each process can
arrange to ignore the signal, or to take some other action. The signals that can occur are
defined in the sys/signal.h header file, and they are further described in “signal” on

page 2-145.

Standard signal processing is compatible with UNIX System V and is described in more
detail in “signal” on page 2-145. The following system calls handle standard signal

processing:
alarm Sets the process’s alarm clock.
kill Sends a signal to one or more processes.

2-4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

pause Suspends the process until a signal arrives.
signal Sets the action to take when the process receives a signal.

Enhanced signal processing adds several useful features to the facility. It is described in
more detail in “Signals” on page 1-20. The following system calls control enhanced signal

processing:

sighlock Blocks signals from being received.

sigsetmask Sets the signal mask.

sigpause Suspends the process until a signal arrives.

sigstack Specifies an alternate stack upon which to process signals.
sigvec Sets the action to take when the process receives a signal.

Semaphores, Message Queues, and Shared Memory Segments

In addition to signals, the AIX Operating System provides three facilities that provide
flexible interprocess communication (IPC): semaphores, message queues, and shared
memory segments. Details about the philosophy and use of each these facilities is beyond
the scope of this book.

The names of the system calls that deal with semaphores begin with the letters sem-. The
message queue system calls begin with msg-, and the shared memory system calls begin
with shm-. All three facilities are accessed in a similar manner. The steps are outlined
here in approximately the order that they appear in programs:

1. The user specifies a key to identify the individual semaphore set, message queue, or
shared segment to be accessed. This key is analogous to a file name in that it has been
previously agreed upon to identify a specific data structure.

The key IPC_PRIVATE (defined in the sys/ipc.h header file) is a special key value
that specifies that the data structure is to be private to the current process.

Keys can be generated by any algorithm as long as the same algorithm is used by all
processes on the system. The ftok subroutine provides a standard algorithm for
generating IPC keys. (See “ftok” on page 3-198 for information about this subroutine.)

2. System calls whose names end with -get (semget, msgget, and shmget) use the key
to obtain access to the requested data structure. The -get system calls are analogous
to open: each returns an integer identifier (analogous to a file descriptor) that
identifies the data structure for access with other system calls.

Normally, if the semaphore, message queue, or shared segment does not already exist,
then the -get system call creates the necessary data structure. If another process has
already created the data structure by calling the same -get system call with the same
key, then the the identifier of that data structure is returned. This action can be
modified with the semflg, msgflg, or shmflg parameter.

System Calls 2-5

TNL SN20-9855 (26 June 1987) to SC23-0808-0

However, if IPC_PRIVATE is specified as the key, then a private data structure is
created. No key exists with which to identify this data structure, so only processes
that have its identifier can access it. The current process must pass the identifier to
other processes that are to access it. For example, the identifier can be passed to a
child process through the argv argument vector (see “exec: execl, execv, execle,
execve, execlp, execvp” on page 2-34 for details).

Shared memory segments must next be attached using the shmat system call.

4. The semop system call accesses semaphores. Message queues are accessed by
msgsnd, msgrev, and msgxrev. Programs can access shared memory segments as
regular memory through the pointer returned by the shmat system call.

5. System calls whose names end with -ctl (semctl, msgetl, and shmecetl) perform a
variety of control operations on the data structure. These control operations include
getting status information and changing the access permissions. The data structure
associated with each type of IPC identifier is defined in the description of the
corresponding -ctl system call.

6. When no longer in use, shared memory segments must be detached using the shmdt
system call.

7. The IPC identifier and the associated data structure should then be removed from the
system with the IPC_RMID operation of the corresponding -ctl system call.

Each IPC data structure contains an ipe-perm structure, which contains access
permission information. The ipc_perm structure is defined in the sys/ipc.h header file
and it contains the following members:

ushort uid; /* Owner's user ID */

ushort gid; /* Owner's group ID */

ushort cuid; /* Creator's user ID */

ushort cgid; /* Creator's group ID */

ushort mode; /* Access permission mode */
ushort seq; /* Slot usage sequence number */
key_-t key; /* Key */

The access permission mechanism resembles the one for files, except that execute
permission does not exist for IPC facilities. The semget, msgget, and shmget system
calls set the initial permissions when they create new IPC data structures. Also, the user
(group) permissions apply if the process’s effective user (group) ID matches either uid (gid)
or cuid (cgid). The permissions can be changed with the corresponding -ctl system calls.
The uid and gid fields identify the user and group that own the file for determining
whether a given process may access a data structure. The cuid and cgid fields identify the
process that created the data structure, and they can not be changed.

The mode field is constructed by logically OR-ing one or more of the following values.
Note that these values are defined in the sys/stat.h header file and that they are a subset
of the access permissions that apply to files.

2-6 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

S_IRUSR Permits the process that owns the data structure to read it.
S_IWUSR Permits the process that owns the data structure to modify it.
S_IRGRP Permits the group associated with the data structure to read it.
S_IWGRP Permits the group associated with the data structure to modify it.
S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

For more information about the interprocess communication facilities, see AIX Operating
System Programming Tools and Interfaces.

The shmat system call can be used to attach mapped files as well as shared memory
segments. The two functions are similar in some ways, but they should not be confused.
For an overview of the mapped file facility, see page 1-13. For more detailed information,
see the following discussion and “shmat” on page 2-131.

Mapped Files

The AIX Operating System allows programs to map a file onto a memory segment so that
that data in the file can be accessed more quickly and more directly. See page 1-13 for an
overview of the file-mapping facility.

The steps for setting up and accessing a mapped file are outlined here in the order that
they occur in programs:

1. Open the file with the open system call. The file must be a regular file. Directories
and special files cannot be mapped.

2. Attach the file to a memory segment using the shmat system call. Specify the file
descriptor returned by open in place of the shared memory identifier as the shmid
parameter. The shmflg parameter is either SHM_MAP (to select file mapping), or it is
constructed by logically OR-ing the value SHM_MAP with one of the following values:

SHM_RDONLY Maps the file in read-only mode.
SHM_COPY Maps the file in copy-on-write mode.

If neither SHM_RDONLY nor SHM_COPY is set, then the file is mapped in
read-write mode. The shmflg parameter can also be logically OR-ed with the following
value:

SHM_-RND Rounds the address specified by the shmaddr parameter to the next
lowest segment boundary, if necessary.

The file must be opened for writing (in step 1) before it can be mapped read-write or
copy-on-write.

3. Access shared memory segments as regular memory through the pointer returned by
the shmat system call. The system performs the necessary read operations for you
automatically. If the file is mapped read-write, then the system automatically writes to
the file as well.

System Calls 2-7

TNL SN20-9855 (26 June 1987) to SC23-0808-0

4. 1If the file is mapped copy-on-write, then you must explicitly tell the system to update
the file by using the fsync system call. If you never call fsync, then changes made to
the mapped file in memory are never written to permanent storage.

5. The shmctl system call can be used to get status information about the memory
segment onto which the file is mapped.

6. If you wish, you can use the shmdt system call to unmap the file and detatch the
memory segment, leaving the file open for conventional I/O.

7. Close the file with the close system call. close automatically detatches the memory
segment (unless you already did this in step 6).

Mapped files can be shared with other processes that map the file, or that use the
conventional I/O system calls. All of these processes access the same shared memory
segment, except for those that write to the file after mapping it in copy-on-write mode.
Each process that maps a file copy-on-write gets a private mapped copy of the file when it
first attempt to write to it. ‘

Warning: Data may be lost if a process modifies a file that another
process has mapped copy-on-write. When the latter process calls fsyne, the
changes made by the former process are overwritten.

2-8 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
access

access

Purpose

Determines the accessibility of a file.

Syntax
#include <unistd.h>

int access (path, amode)
char *path;
int amode;

Description

The access system call checks the accessibility of the file specified by the path parameter,
using the real user ID in place of the effective user ID and the real group ID in place of the
effective group ID. If Distributed Services is installed on your system, this path can cross
into another node. The access system call checks the named file to see if the type of
access specified by the amode parameter is permitted.

The bit pattern contained in amode is constructed by logically OR-ing the following values:

R-OK Checks read permission.

W_OK Checks write permission.

X-OK Checks execute (search) permission.
F_OK Checks to see if the file exists.

The owner of a file has access checked with respect to the owner read, write, and execute
mode bits. Members of the file’s group other than the owner have access checked with
respect to the group mode bits. All others have access checked with respect to the other
mode bits.

Return Value

If the requested access is permitted, a value of O is returned. If the requested access is
denied, a value of -1 is returned and errno is set to indicate the error.

System Calls 2-9

TNL SN20-9855 (26 June 1987) to SC23-0808-0

accecess
Diagnostics
Access to the file is denied if one or more of the following are true:
ENOTDIR A component of the path prefix is not a directory.
ENOENT Read, write, or execute (search) permission is requested for a null path
name.
ENOENT The named file does not exist.
EACCES Search permission is denied on a component of the path prefix.
EACCES Permission bits of the file mode do not permit the requested access.
EROFS Write access is requested for a file on a read-only file system.
ETXTBSY Write access is requested for a pure procedure (shared text) file that is being
executed.
EFAULT The path parameter points to a location outside of the process’s allocated
address space.
ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.
If Distributed Services is installed on your system, access can also fail if one or more of
the following are true:
EDIST The server has blocked new inbound requests.
EDIST Outbound requests are currently blocked.
EDIST The server has a release level of Distributed Services that cannot
communicate with this node.
EAGAIN The server is too busy to accept the request.
ESTALE The file descriptor for a remote file has become obsolete.
EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.
ENODEV The named file is a remote file located on a device that has been
unmounted at the server.
ENOMEM Either this node or the server does not have enough memory available

to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node

failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

failed.

2-10 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
acceess

Related Information

In this book: “chmod” on page 2-18 and “stat, fstat” on page 2-159.

System Calls 2-10.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
acceess

2-10.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
acct

acct

Purpose

Enables and disables process accounting.

Syntax

int acct (path)
char *path;

Description

The acct system call enables the accounting routine when the path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. (For information about the accounting file, see “acct” on page 4-15.) When
the path parameter is 0 or NULL, the acct system call disables the accounting routine.

If Distributed Services is installed on your system, the accounting file can reside on
another node.

Warning: To insure accurate accounting, each node must have its own
accounting file, which can be located on any node in the network.

The effective user ID of the calling process must be superuser to use the acct system call.

Return Value

Upon successful completion, acet returns a value of 0. If acet fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics
The acct system call fails if one or more of the following are true:
EPERM The effective user ID of the calling process is not superuser.
EBUSY An attempt is made to enable accounting when it is already enabled.

ENOTDIR A component of the path parameter is not a directory.
ENOENT Any component of the accounting file’s path name does not exist.

System Calls 2-11

TNL'SN20-9855 (26 June 1987) to SC23-0808-0
acct

EACCES Any component of the path parameter denies search permission.
EACCES The file named by the path parameter is not an ordinary file.

EACCES Mode permission is denied for the named accounting file.
EISDIR The named file is a directory.
EROFS The named file resides on a read-only file system.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, acct can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

212 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
acct

Related Information

In this book: “exit, —exit” on page 2-40, “signal” on page 2-145, and “acct” on page 4-15.
The discussion of acct in Managing the AIX Operating System.

System Calls 2-12.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
acct

2-12.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
alarm

alarm

Purpose

Sets a process’s alarm clock.

Sy'ntax_

unsigned int alarm (sec)
unsigned int sec;

Description

The alarm system call instructs the calling process’s alarm clock to send a SIGALRM
signal to the calling process after the number of real-time seconds specified by the sec
parameter have elapsed. (See “signal” on page 2-145 for more information about signals.)

The alarm system calls are not stacked. Successive alarm system calls reset the calling
process’s alarm clock.

If the sec parameter is 0, any previous alarm request is canceled.

Return Value

The alarm system call returns the amount of time previously remaining in the calling
process’s alarm clock. If no alarm request was previously issued, then a value of 0 is
returned.

Related Information

In this book: “pause” on page 2-94 and “signal” on page 2-145.

System Calls 2-13

TNL SN20-9855 (26 June 1987) to SC23-0808-0
brk, sbrk

brk, sbrk

Purpose

Changes data segment space allocation.

Syntax
int brk (endds) char *sbrk (incr)
char *endds; int incr;
Description

The brk and sbrk system calls dynamically change the amount of space allocated for the
calling process’s data segment. (For information about data segments, see “exec: execl,
execv, execle, execve, execlp, execvp” on page 2-34.)

The change is made by resetting the process’s break value and allocating the appropriate
amount of space. The break value is the address of the first location beyond the current
end of the data segment. The amount of allocated space increases as the break value
increases. The newly allocated space is initialized to 0. The break value can be
automatically rounded up to a size appropriate for the memory management architecture.

The brk system call sets the break value to the value of the endds parameter and changes
the allocated space accordingly.

The sbrk system call adds to the break value the number of bytes contained in the incr
parameter and changes the allocated space accordingly. The incr parameter can be a
negative number, in which case the amount of allocated space is decreased.

Return Value

Upon successful completion, the brk system call returns a value of 0, and the sbrk system
call returns the old break value. If the brk or the sbrk system calls fail, a value of -1 is
returned and errno is set to indicate the error.

2-14 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
brk, sbrk

Diagnostics

The brk and the shrk system calls fail and the allocated space remains unchanged if one
or more of the following are true:

ENOMEM The requested change will allocate more space than is allowed by a
system-imposed maximum. (For information on the system-imposed
maximum on memory space, see “ulimit” on page 2-167.)

ENOMEM The requested change will set the break value to a value greater than or
equal to the start address of any attached shared memory segment. (For
information on shared memory operations, see “shmat” on page 2-131,
“shmdt” on page 2-138, and “shmget” on page 2-140.)

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “shmat” on
page 2-131, “shmdt” on page 2-138, and “ulimit” on page 2-167.

System Calls 2-15

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chdir

chdir

Purpose

Changes the current directory.

Syntax

int chdir (path)
char *path;

Description

The chdir system call changes the current directory to the directory specified by the path
parameter. If Distributed Services is installed on your system, this path can cross into
another node. The current directory, also called the current working directory, is the
starting point of searches for path names that do not begin with a / (slash).

Return Value

Upon successful completion, the chdir system call returns a value of 0. If the chdir
system call fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics
The chdir system call fails and the current directory remains unchanged if one or more of
the following are true:
ENOTDIR A component of the path parameter is not a directory.
ENOENT The named directory does not exist.

EACCES Search permission is denied for any component of the path parameter.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

2-16 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chdir

If Distributed Services is installed on your system, chdir can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed. :

Related Information

In this book: “chroot” on page 2-23.

The ed command in AIX Operating System Commands Reference.

System Calls 2-17

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chmod

chmod

Purpose

Changes file access permissions.

Syntax
#include <sys/stat.h>

int chmod (path, mode)
char *path;
int mode;

Description

The chmod system call sets the access permissions of the file specified by the path
parameter. If Distributed Services is installed on your system, this path can cross into
another node. The access permissions of the file are set according to the bit pattern
specified by the mode parameter.

To change file access permissions, the effective user ID of the calling process must either
be superuser or match the ID of the file’s owner.

The mode parameter is constructed by logically OR-ing one or more of the following
values, which are defined in the sys/stat.h header file:

S_ISUID Sets the process’s effective user ID to the file’s cwner on execution.
S_ISGID Sets the process’s effective group ID to the file’s group on execution.
S_ISVTX Saves text image after execution.

S_ENFMT Enables enforcement-mode record locking.

S_IRUSR Permits the file’s owner to read it.

S_IWUSR Permits the file’s owner to write to it.

S_IXUSR Permits the file’s owner to execute it (or to search the directory).
S_IRGRP Permits the file’s group to read it.

S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the directory).
S-IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod system call, but not with chmod.
A complete list of the possible file mode values and other useful macros appears in “stat.h”
on page 5-69.

2-18 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chmod

Setting S_ISVTX for a shared executable file prevents the system from unmapping the
program text segment of the file when its last user terminates. Thus, when the next
process executes it, the text need not be read from the file system. It is simply paged in,
saving time.

If S_LENFMT is set and no execute permissions are set, then locks placed on the file with
the lockf system call are enforced locks. See “lockf” on page 2-64 for details about
locking regions of a file.

If the effective user ID of the calling process is not superuser and the file is not a
character special file, then the chmod system call clears the S_LISVTX bit.

If the effective user ID of the process is not that of superuser, and if the effective group ID
or one of the IDs in the group access list of the process does not match the file’s existing
group ID, then the chmod system call clears the S_ISGID bit. (See “getgroups” on

page 2-52 and “setgroups” on page 2-126 for more information about the group access list.)

Return Value

Upon successful completion, the chmod system call returns a value of 0. If the chmod
system call fails, a value of -1 is returned, and errno is set to indicate the error.

Diagnostics
The chmod system call fails and the file permissions remain unchanged if one or more of
the following are true:
ENOTDIR A component of the path parameter is not a directory.
ENOENT The named file does not exist.
EACCES A component of the path parameter has search permission denied.

EPERM The effective user ID does not match the ID of the owner of the file or the ID
of superuser.

EROFS The named file resides on a read-only file system.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

System Calls 2-19

TNL SN20-9855 (26 June 1987) to SC23-0808-0

chmod

If Distributed Services is installed on your system, chmod can also fail if one or more of
the following are true:

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV

ENOMEM

ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node

failed.

Related Information

In this book: “chown, chownx” on page 2-21, “getgroups” on page 2-52, “mknod” on
page 2-69, and “setgroups” on page 2-126.

The chmod command in AIX Operating System Commands Reference.

2-20 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chown, . ..

chown, chownx

Purpose

Changes the owner and group IDs of a file.

Syntax
int chown (path, owner, group) | #include <sys/chownx.h>
char *path;
int owner, group; | int chownx (path, owner, group, tflag)
| char *path;
[int owner, group, iflag;
Description

The chown system call changes the owner ID and the group ID of the file named by the
path parameter. If Distributed Services is installed on your system, the path can cross into
another node, naming a remote file.

If the named file is a local file, the owner and group IDs of that file are set to the numeric
values contained in the owner and group parameters, respectively. If the named file is a
remote file, then the IDs of the named file are set to the values contained in owner and
group after both outbound and inbound translation. (See Managing the AIX Operating
System for a description of ID translation.)

A process can change the ownership of a file only if its effective user ID (translated, if the
file is remote) is either superuser or the same as the file’s owner ID.

If the effective user ID of the calling process is not the same as the superuser ID, then the
chown system call clears the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of
the file mode. (See “stat.h” on page 5-69 for the definitions of the constants S_ISUID and
S_ISGID.)

The chownx system call performs the same function as the chown system call, except that
it also allows the process to change owner and group IDs with or without ID translation by
specifying the tflag parameter.

The tflag parameter determines the translation of the owner and group parameters. This
parameter is constructed by logically ORing two of the following values:

T_OWNER-RAW Changes the file’s owner to the value of the owner parameter
without translation.

System Calls 2-21

TNL SN20-9855 (26 June 1987) to SC23-0808-0

chown, . . .

T-OWNER-TRAN

T-OWNER-_AS_IS

T-GROUP_-RAW

T-GROUP_-TRAN

T-GROUP-_AS_IS

Changes the file’s owner to the value of the owner parameter after
translation through the sending node’s outbound translate tables
and the receiving node’s inbound translation tables. If the file is a
local file, this is the same as T-OWNER_RAW,; no translation is
done.

Ignores the value specified in the owner parameter and leaves the
owner ID of the file unaltered.

Changes the file’s group ID to the value of the group parameter
without translation.

Changes the file’s group ID to the value of the group parameter
after translation through the sending node’s outbound translate
tables and the receiving node’s inbound translation tables. If the
file is a local file, this is the same as T-GROUP_RAW,; no
translation is done.

Ignores the value specified in the group parameter and leaves the
group ID of the file unaltered.

Only one each of the T_-OWNER and the T_GROUP bits should be specified.

Note that the following two system calls are equivalent:

chown (path, owner, group)

chownx (path, owner, group, T_-OWNER-TRAN | T-GROUP_TRAN)

Return Value

Upon successful completion, a value of 0 is returned. If the chown or chownx system call
fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The chown and chownx system calls fail and the owner ID and the group ID of the named
file remain unchanged if one or more of the following are true:

ENOTDIR A component of the path prefix is not a directory.
ENOENT The named file does not exist.
EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID does not match the owner of the file and the effective
user ID is not superuser.

EROFS The named file resides on a read-only file system.

2-22 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chown, . ..

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, chown or chownx can also fail if one
or more of the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

the following IDs:

o The user ID of the caller
® The owner parameter
e The group parameter.

ENODEV The named file 1s a remote file located on a device that has been
unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

|
l
|
|
I
|
|
l
|
|
I EPERM The server’s translate tables do not contain an entry for at least one of
|
|
|
|
l
|
1
|
|
1
|
| failed.

Related Information

In this book: “chmod” on page 2-18, “fullstat, ffullstat” on page 2-50.2, and “stat.h” on
page 5-69.
The chown command in AIX Operating System Commands Reference.

Managing the AIX Operating System.

System Calls 2-22.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chown, . ..

2-22.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chroot

chroot

Purpose

Changes the effective root directory.

Syntax

int chroot (path)
char *path;

Description

The chroot system call causes the directory named by the path parameter to become the
effective root directory. If Distributed Services is installed on your system, this path can
cross into another node. The effective root directory is the starting point when searching
for a file whose path name begins with / (slash). The current directory is not affected by
the chroot system call.

The effective user ID of the calling process must be superuser to change the effective root
directory.

The .. (dot-dot) entry in the effective root directory is interpreted to mean the effective

root directory itself. Thus, .. (dot-dot) cannot be used to access files outside the subtree
rooted at the effective root directory.

Return Value

Upon successful completion, a value of 0 is returned. If the chroot system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics
The chroot system call fails and the effective root directory remains unchanged if one or
more of the following are true:
ENOTDIR Any component of the path name is not a directory.
ENOENT The named directory does not exist.
EPERM The effective user ID of the calling process is not superuser.

System Calls 2-23

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chroot

2-24

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, chroot can also fail if one or more of
the following are true:

EACCES

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV

ENOMEM

ENOCONNECT

EBADCONNECT

Search permission was denied on a component of the path.

The effective user ID of the calling process must be the same as the
superuser ID to issue this call. Since with Distributed Services path
can cross into another node and a process that has superuser authority
in the local node probably does not have superuser authority in the
remote node, search permission may be denied even to the local
superuser.

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chroot

Related Information

In this book: “chdir” on page 2-16.

The chroot command in AIX Operating System Commands Reference.

System Calls 2-24.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
chroot

2-24.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
close

close

Purpose

Closes the file associated with a file descriptor.

Syntax

int close (fildes)
int fildes;

Description

The close system call closes the file associated with the file descriptor fildes. If
Distributed Services is installed on your system, this file can reside on another node. The
fildes parameter is a file descriptor obtained from a creat, open, dup, fentl, or pipe
system call.

All file regions that this process has previously locked with the lockf system call are
unlocked. This includes regions of files other than the file specified by the fildes
parameter.

If the fildes parameter is associated with a mapped file, and if no other process has
attached this mapped file, then it is unmapped.

Return Value

Upon successful completion, a value of 0 is returned. If the close system call fails, a value
of -1 is returned and errno is set to indicate the error.

Diagnostics

The close system call fails if the following is true:

EBADF The fildes parameter is not a valid open file descriptor.

System Calls 2-25

TNL SN20-9855 (26 June 1987) to SC23-0808-0

close

If Distributed Services is installed on your system, close can also fail if one or more of the

following are true:
EDIST

EDIST

EAGAIN
ENOMEM

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.
The server is too busy to accept the request.

Either this node or the server does not have enough memory available
to service the request.

An attempt to use an existing network connection with a remote node
failed. Data may be lost.

This errno value occurs only when the connection has been lost and
there is data stored at the client that cannot be written to the server.
Otherwise, having a lost connection at close time does not cause an
error. (For example, in cases where a read-only file is closed.)

Related Information

In this book: “creat” on page 2-27, “dup” on page 2-32, “exec: execl, execv, execle, execve,

execlp, execvp” on page 2-34, “fentl” on page 2-44, “open” on page 2-90, “pipe” on
page 2-95, and Appendix C, “Writing Device Drivers.”

2-26 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
creat

creat

Purpose

Creates a new file or rewrites an existing file.

Syntax
#include <stat.h>

int creat (path, mode)
char *path;
int mode;

Description

The creat system call creates a new ordinary file or prepares to rewrite an existing file
named by the path parameter. If Distributed Services is installed on your system, this path
can cross into another node.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. If
the file does not exist, the file’s owner ID is set to the process’s effective user ID, the file’s
group ID is set to the process’s effective group ID, and the low-order 12 bits of the file
mode are set to the value of the mode parameter modified as follows:

e All bits set in the process’s file mode creation mask are cleared. (For information
about the file mode creation mask, see “umask” on page 2-169.)

o The save-text-image-after-execution bit of the file mode (S_ISVTX) is cleared. (For
more information about this bit, see “chmod” on page 2-18.)

See “chmod” on page 2-18 for a detailed explanation of file modes.

No process can have more than 200 files open simultaneously. A new file can be created
with a mode that forbids writing.

Note that the following two system calls are equivalent:
creat (path, mode)

open (path, O-WRONLY | O_-CREAT | O_-TRUNC, mode)

See “open” on page 2-90 for details about the open system call.

System Calls 2-27

TNL SN20-9855 (26 June 1987) to SC23-0808-0
creat

Return Value

Upon successful completion, a file descriptor (a nonnegative integer) is returned and the
file is opened for writing, even if the mode does not permit writing. The file pointer is set
to the beginning of the file. The file descriptor is set to remain open across exec system
calls. (For information about control of open files, see “fentl” on page 2-44.)

If the creat system call fails, a value of -1 is returned and errno is set to indicate the
error.

Diagnostics

The creat system call fails if one or more of the following are true:
ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of the path prefix does not exist.

EACCES Search permission is denied on a component of the path prefix.
ENOENT The path name is null.

EACCES The file does not exist and the directory in which the file is to be created
does not permit writing.

EROFS The named file resides or would reside on a read-only file system.
ETXTBSY The file is a pure procedure (shared text) file that is being executed.
EACCES The file exists and write permission is denied.

EISDIR The named file is an existing directory.

EMFILE Two hundred (200) file descriptors are currently open.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ENFILE The system file table is full.

EAGAIN The named file contains a record lock owned by another process. See
“lockf” on page 2-64 for information about record locks.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

2-28 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
creat

If Distributed Services is installed on your system, ereat can also fail if one or more of the
following are true:

EINVAL The path parameter identifies a remote file that is neither a directory
nor a regular file.

EBUSY The special file to open for writing is already mounted.

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information
In this book: “chmod” on page 2-18, “close” on page 2-25, “dup” on page 2-32, “Iseek” on

page 2-67, “open” on page 2-90, “read, readx” on page 2-106, “umask” on page 2-169, and
“write, writex” on page 2-184.

System Calls 2-29

TNL SN20-9855 (26 June 1987) to SC23-0808-0
disclaim

disclaim

Purpose

Disclaims content of a memory address range.

Syntax
#include <sys/shm.h>

int disclaim (eddr, length, flag)
char *addr;
unsigned int lengih, flag;

Description

The disclaim system call marks an area of memory that has content that is no longer
needed. This allows the system to discontinue paging the memory area. This system call
cannot be used on memory that is mapped to a file by the shmat system call.

The addr parameter points to the beginning of the memory area, and the length parameter
specifies its length in bytes. The flag parameter must be the value ZERO_-MEM, which
indicates that each memory location in the address range is to be set to 0.

Return Value

Upon successful completion, the disclaim system call returns a value of 0. If it fails, it
returns a value of -1 and sets errno to indicate the error.

Diagnostics

The disclaim system call fails if one or more of the following is true:

EFAULT The calling process does not have write access to the area of memory that
begins at address and extends for length bytes.

EINVAL The value of the flag parameter is not valid.
EINVAL The memory area is mapped to a file.

2-30 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
disclaim

Related Information

In this book: “shmat” on page 2-131 and “shmet]l” on page 2-135.

System Calls 2-30.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
dsstate

(dsstate

| Purpose

| Controls the kernel operations related to Distributed Services.

| Syntax
| #include <sys/dsstate.h>

| int dsstate (buf)
| struct dsstate *buf;

| Description

The dsstate system call controls the kernel operations related to Distributed Services. A
process with an effective user ID of superuser can use the dsstate system call to change
the state of the kernel, while a process that does not have superuser privileges can use it
to query the state of the kernel. The buf parameter is a pointer to a structure of type
ds_state. This structure is defined in the sys/dsstate.h header file, and it contains the
following members:

short i_state; /* input state */
short i_kprocs; /* input number of kprocs */
short r_state; /* result state *x/
short r_kprocs; /* result number of kprocs */
int reserved[4] /* reserved */

/* each element must be zero */
The following bits are valid in the i—state bit field:

DS_START-_SERV_SYNC Causes updates to all files for which this node is a server
to be written directly to the server, rather than to storage
at the client node. All writes to files are sent to this file
server, and all reads from files are provided by the server.

DS_END_-SERV_SYNC Allows clients of this node to store data instead of forcing
all storage to take place on the server node.

DS_START_CLIENT_SYNC Causes updates to all files for which this node is a client to
be written directly to the server, rather than to local
storage. All writes to files are sent to the file server, and
all reads from files are provided by the server. When

2-30.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
dsstate

DS_END_CLIENT_SYNC

DS_BLOCK_-SERV

DS_ALLOW_SERV

DS_BLOCK-ALL

DS_ALLOW_ALL

DS_STARTK

CLIENT-_SYNC is first started, all data stored at the
client (local node) is written to the server where each
remote file resides, and dsstate does not return until these
writes are finished.

Allows some data to be stored at the local node, rather
than processing all reads and writes through the server.

Causes this server to reject all requests for file services,
including both new requests and requests for files already
in use. When BLOCK_SERYV is entered, this server forces
any data stored on client nodes to be written to the server
before any server requests are rejected.

Allows this server to accept requests for file services from
other nodes.

Causes all data from this client node to be written to the
appropriate server, then breaks all existing connections
with remote nodes and rejects new remote requests.
DS_BLOCK_ALL sets the number of kernel processes to
0.

Allows remote requests. Connections with remote nodes
can then be established as needed.

Starts the kernel processes for Distributed Services.
DS_STARTK must be set the first time the dsstate system
call is used, and other fields can either be set at the same
time or with later calls.

The i—-kprocs field sets the number of active Distributed Services kernel processes. If the
value of i—kprocs exceeds the number of kernel processes allocated to Distributed Services
when the system was initialized, then only the available processes are started. If i_kprocs
is 0 or negative, then the number of active kernel processes is not changed. (To alter the
state bits without changing the number of kernel processes, set i—kprocs to 0.) If
i—-kproes is greater than 0, either DS_STARTK must be set with this dsstate system call
or must have been set by an earlier dsstate call.

The bits of the r_state field are set to indicate the state of the kernel after the dsstate
system call has taken effect. The following bits are returned:

ALLOW_ALL When set, this node can make file service requests of other nodes.
ALLOW_SERV When set, this node can accept requests for file services from other

nodes.

CLIENT_SYNC When set, all files for which this node is a client are written directly to
the server, rather than stored locally.

System Calls 2-30.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
dsstate

SERVER_SYNC When set, all data for which this node is a server is written directly to
the server, rather than stored at the client node.

STARTK When set, the Distributed Services kernel processes, if any were
specified in i_kprocs, are started.
DSINITED When set, the Distributed Services kernel processes have been started.

The setting of this bit is always the same as the STARTK bit.

|

I

|

l

|

|

l If i—state does not have either bit set for a given pair of values (such as DS_BLOCK_ALL
| and DS_ALLOW_ALL), then the current state of that pair is not altered and is returned

| in r_state. Otherwise, r—state contains the value that was set on the last call to dsstate.
|

|

l

|

l

|

|

|

The default state for the BLOCK/ALLOW pairs is to ALLOW requests, while the default
for the START_SYNC/END_SYNC pairs is END_SYNC.

The r-kprocs field is set to indicate the number of kernel processes after the dsstate
system call has taken effect.

If the effective user ID of the calling process is not superuser, then dsstate ignores i—state
and i-kproes, and the current state remains unaltered. A process without superuser
privileges can, however, determine the current kernel state by examining the contents of
r-state and r_kprocs at the end of a dsstate system call.

|Return Value

| Upon successful completion, the dsstate system call returns a value of 0. If the dsstate
| system call fails, a value of -1 is returned, and errno is set to indicate the error.

' Diagnostics

The dsstate system call fails and the state and number of kernel processes remain
unchanged if the following is true:

I
|
| EINVAL Invalid input data (such as mutually exclusive parameters).
|

ENOMEM Not enough kernel processes are available to run Distributed Services.

|Related Information

| In this book: “master” on page 4-98.
| Managing the AIX Operating System.

2-30.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
dsstate

System Calls 2-31

TNL SN20-9855 (26 June 1987) to SC23-6808-0
dup

dup

Purpose

Duplicates an open file descriptor.

Syntax

int dup (fildes)
int fildes;

Description

The dup system call returns a new file descriptor for the file descriptor pointed to by the
fildes parameter. The fildes parameter is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call. The dup system call returns a new file descriptor having
the following in common with the original:

® The same open file or pipe

The same file pointer (that is, both file descriptors share one file pointer)
The same access mode (read, write or read/write)

The same file status flags

The same locks.

The new file descriptor is set to remain open across exec system calls. (For more
information about file control, see “fentl.h” on page 5-56.)

The file descriptor returned is the lowest one available.

Return Value

Upon successful completion, a file descriptor (nonnegative integer) is returned. If the dup
system call fails, a value of -1 is returned and errno is set to indicate the error.

2-32 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
dup

Diagnostics

The dup system call fails if one or more of the following are true:
EBADF fildes is not a valid open file descriptor.
EMFILE Two hundred (200) file descriptors are currently open.

Related Information

In this book: “close” on page 2-25, “creat” on page 2-27, “exec: execl, execv, execle,
execve, execlp, execvp” on page 2-34, “open” on page 2-90, “pipe” on page 2-95, and
“fentLh” on page 5-56.

System Calls 2-33

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

exec: execl, execv, execle, execve, execlp, execvp

Purpose

Executes a file.

Syntax
int execl (path, arg0 [, argl, . . .], 0) int execv (path, argv)
char *path, *arg0, *argl, . . . ; char *path, *argv[1;
int execle (path, arg0 [, argl, . . . 1, 0, envp) int execve (path, argv, enuvp)
char *path, *arg0, *argl, . . . , *enuvp[]; char *path, *argv| |, *enuvp[1;
int execlp (file, arg0 [, argl, . . .], 0) int execvp (file, argv)
char *file, *arg0, *argl, . . . ; char *file, *argv[|;
Description

The exec system call, in all its forms, executes a new program in the calling process. exec
does not create a new program, but overlays the current program with a new one, which is
called the new process image. The new process image file can be one of three file types:

¢ An executable binary file in a.out format (see “a.out” on page 4-5)

e An executable text file that contains a shell procedure (only execlp and execvp allow
this type of new process image file)

e A file that names an executable binary file or shell procedure to be run.

The last of the types mentioned is recognized by a header with the syntax:
#! path [string]

The #! is the file’s magic number, which identifies the file type. path is the path name of
the file to be executed. If Distributed Services is installed on your system, this path can
cross into another node. string is an optional character string that contains no tab or
space characters. If specified, this string is passed to the new process as an argument in
front of the name of the new process image file. The header must be terminated with a
new-line character. When invoked, the new process is passed path as argv[0]. If a string is
specified in the new process image file, then the exec system call sets argv{0] to string and
path concatenated together. The rest of the arguments passed are the same as those passed
to the exec system call.

2-34 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

The parameters for the exec system calls are defined as follows:

path This parameter points to the path name of the new process image file. If
Distributed Services is installed on your system, this path can cross into another
node. Data is copied into local virtual memory before proceeding.

file This parameter points to the name of the new process image file. Unless file is a
full path name, the path prefix for the file is obtained by searching the directories
named in the PATH environment variable. The initial environment is supplied by
the shell.
Note that execlp and execvp take file parameters, but the rest of the exee system
calls take path parameters. (For information about the environment, see
“environment” on page 5-47 and the sh command in AIX Operating System
Commands Reference.)

arg0 |, argl, . . .]
These parameters point to null-terminated character strings. The strings constitute
the argument list available to the new process. By convention, at least arg0 must
be present, and it must point to a string that is the same as path or its last
component.

argv This parameter is an array of pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By convention,
argv must have at least one element, and it must point to a string that is the same
as path or its last component. The last element of argv is a NULL pointer.

envp This parameter is an array of pointers to null-terminated character strings. These

strings constitute the environment for the new process. The last element of envp
1s a NULL pointer.

When a C program is executed, it receives the following parameters:

main (argc, argv, enuvp)
int argc;
char *argvl], *enuvp[13

Here argc is the argument count, and argv is an array of character pointers to the
arguments themselves. By convention, the value of argc is at least one, and argv[0] points
to a string containing the name of the new process image file.

The main routine of a C language program automatically begins with a run-time start-off
routine. This routine sets a global variable named environ so that it points to the
environment array passed to the program in envp. You can access this global variable by
including the following declaration in your program:

extern char **environ;

The execl, execv, execlp, and execvp system calls use environ to pass the calling
process’s current environment to the new process.

System Calls 2-35

TNL SN20-9855 (26 June 1987) to SC23-0808-0

exec

File descriptors open in the calling process remain open in the new process, except for
those whose close-on-exec flag is set. For those file descriptors that remain open, the file
pointer is unchanged. (For information about file control, see “fcntl” on page 2-44.)

If the new process requires shared libraries, exec will find, open, and map each shared
library image to the new process address space. (See AIX Operating System Programming
Tools and Interfaces.) Shared libraries are searched for in the directories listed in the
LIBPATH environment variable. If any of these files is remote, the data is copied into
local virtual memory.

The exec system calls reset all caught signals to the default action. Signals that cause the
default action continue to do so after exec. Ignored signals remain ignored, the signal
mask remains the same, and the signal stack state is reset. (For information about signals,
see “signal” on page 2-145 and “sigvec” on page 2-156.)

If the set-user-ID mode bit of the new process image file is set, then exec sets the
effective user ID of the new process to the owner ID of the new process image file.
Similarly, if the set-group-ID mode bit of the new process image file is set, then the
effective group ID of the new process is set to the group ID of the new process image file.
The real user ID and real group ID of the new process remain the same as those of the
calling process. (For information about the set-ID modes, see “chmod” on page 2-18.)

When one or both of the set-ID mode bits is set and the file to be executed is a remote file,
the file’s user and group IDs go through outbound translation at the server. Then they are
transmitted to the client node where they are translated according to the inbound
translation table. These translated IDs become the user and group IDs of the new process.
See Managing the AIX Operating System for a discussion of UID and GID translation.

The shared libraries attached to the calling process are not attached to the new process.
(For information about shared memory segments, see “shmat” on page 2-1381, “shmdt” on
page 2-138, and “shmget” on page 2-140.)

Profiling is disabled for the new process. (For information about profiling, see “profil” on
page 2-99.)

The new process inherits the following attributes from the calling process:

Nice value (see “nice” on page 2-88)

Process ID

Parent process ID

Process group ID

semadj values (see “semop” on page 2-122)

TTY group ID (see “exit, —exit” on page 2-40 and “signal” on page 2-145)
Trace flag (see request 0 of “ptrace” on page 2-102)

Time left until an alarm clock signal (see “alarm” on page 2-13)
Current directory

Root directory

File mode creation mask (see “umask” on page 2-169)

File size limit (see “ulimit” on page 2-167)

utime, stime, cutime, and cstime (see “times” on page 2-165).

® 0 0000 000 06 000

2-36 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

Return Value

Upon successful completion, exec does not return because the calling process image is
overlaid by the new process image. If exec returns to the calling process, then it returns
the value -1 and sets errno to indicate the error.

Diagnostics

The exec system call fails and returns to the calling process if one or more of the following

are true:
ENOENT

ENOTDIR

EACCES

EACCES
EACCES
ENOEXEC

EINVAL

ETXTBSY

ENOMEM

E2BIG

EFAULT

One or more components of the new process image file’s path name do not
exist.

A component of the path prefix of the new process image file is not a
directory.

Search permission is denied for a directory listed in the path prefix of the
new process image file.

The new process image file is not an ordinary file.
The mode of the new process image file denies execution permission.

The exec is not an execlp or execvp, and the new process image file has the
appropriate access permission but has an invalid magic number in its
header.

The new process image file has a valid magic number in its header, but the
header is damaged or is incorrect for the machine on which the file is to be
run.

The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

The number of bytes in the new process’s argument list is greater than the
system-imposed limit. This limit is defined as NCARGS in the sys/param.h
header file.

The path, argv, or envp parameter points to a location outside of the
process’s allocated address space.

In addition, some errors can occur when using the new process file after the old process
image has been overwritten. These errors include problems in setting up new data and
stack registers, problems in mapping a shared library, or problems in reading the new
process file. Because returning to the calling process is not possible, the system sends the
SIGKILL signal to the process when one of these errors occurs.

System Calls 2-37

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

If an error occurred while mapping a shared library, an error message describing the
reason for failure will be written to standard error before the signal SIGKILL is sent to
the process. (See AIX Operating System Programming Tools and Interfaces.) If a shared
library cannot be mapped, one or more of the following is true:

ENOENT One or more components of the path name of the shared library file do not
exist.

ENOTDIR A component of the path prefix of the shared library file is not a directory.

EACCES Search permission is denied for a directory listed in the path prefix of the
shared library file.

EACCES The shared library file mode denies execution permission.

ENOEXEC The shared library file has the appropriate access permission but an invalid
magic number in its header.

ETXTBSY The shared library file is currently open for writing by some other process.

ENOMEM The shared library requires more memory than is allowed by the
system-imposed maximum.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, exec can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The set-user-ID or set-group-ID bit is set on the process image file, and

the translation tables at the server or client do not allow translation
of this user or group ID.

ENODEV The named file is a remote file located on a device that has been
unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

2-38 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

EBADCONNECT An attempt to use an existing network connection with a remote node

failed.

Examples

1.

To run a command and pass it a parameter:
execlp("1i", "1i", "-al", 0);

The execlp system call searches each of the directories listed in the PATH
environment variable for the li command, and then it overlays the current process
image with this command. execlp does not return, unless the li command cannot be
executed. Note that this example does not run the shell command processor, so
operations interpreted by the shell, such as using wildcard characters in file names, are
not valid.

To run the shell to interpret a command:
execl("/bin/sh", *“sh", "-c", "1i -1 *.c", 0);

This runs the sh (shell) command with the -¢ parameter, which indicates that the
following parameter is the command to be interpreted. (See the discussion of sh in
AIX Operating System Commands Reference for details about this command.) This
example uses execl instead of execlp because the full path name /bin/sh is specified,
making a PATH search unnecessary.

Running a shell command in a child process is generally more useful than simply using
exec, as shown here. The simplest way to do this is to use the system subroutine. See
“system” on page 3-350 for information about this subroutine.

The following is an example of a new process file that names a program to be run:
#1 /usr/bin/awk -f
{ for (i = NF; 1 > 0; --i) print i}

If this file is named reverse, then typing the following command on the command
line:

reverse chapterl chapter?2
causes the following command to be run:
/usr/bin/awk -f reverse chapterl chapter2

Note that the exec system calls use only the first line of the new process image file and
ignore the rest of it. Also, awk interprets the text that follows a # (number sign) as a
comment. (See the awk command in AIX Operating System Commands Reference for
more information.)

System Calls 2-38.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
execC

Related Information

In this book: “alarm” on page 2-13, “chmod” on page 2-18, “exit, —exit” on page 2-40,
“fentl” on page 2-44, “fork” on page 2-46, “nice” on page 2-88, “profil” on page 2-99,
“ptrace” on page 2-102, “semop” on page 2-122, “shmat” on page 2-131, “signal” on

page 2-145, “sigvec” on page 2-156, “times” on page 2-165, “ulimit” on page 2-167, “umask”
on page 2-169, “system” on page 3-350, “varargs” on page 3-371, “a.out” on page 4-5, and
“environment” on page 5-47.

The sh and shlib commands in AIX Operating System Commands Reference.

2-38.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exec

System Calls 2-39

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exit, . . .

exit, _exit

Purpose

Terminates a process.

Syntax
void exit (status) void —exit (status)
int status; int status;
Description

The exit system call terminates the calling process and causes the following to occur:

All of the file descriptors open in the calling process are closed. If Distributed Services
is installed on your system, some of these files may be remote. Since exit terminates
the process, any errors encountered during these close operations go unreported.

If the parent process of the calling process is executing a wait system call, it is notified
of the termination of the calling process and the low-order eight bits (that is, bits 0377
or 0xFF) of status are made available to it. See “wait” on page 2-182.

If the parent process of the calling process is not executing a wait system call, and if
the parent hasn’t set its SIGCLD signal to SIG-IGN, then the calling process is
transformed into a zombie process. A zombie process is a process that occupies a slot
in the process table, but has no other space allocated to it either in user or kernel
space. The process table slot that it occupies is partially overlaid with time accounting
information to be used by the times system call. (See “times” on page 2-165 and the
sys/proc.h header file.)

The parent process ID of all of the calling process’s existing child processes and zombie
processes is set to 1. This means the initialization process inherits each of these
processes.

Each attached shared memory segment is detached and the value of shm_nattach in
the data structure associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value, that semadj
value is added to the semval of the specified semaphore. (See “semop” on page 2-122
about semaphore operations.)

If the process has a process lock, text lock, or data lock, an unlock is performed. (See
“plock” on page 2-97.)

2-40 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
exit, . . .

® An accounting record is written on the accounting file if the system’s accounting
routine is enabled. (See “acct” on page 2-11 for information about enabling accounting
routines.)

e If the process ID, tty group ID, and process group ID of the calling process are equal,
then the SIGHUP signal is sent to each process that has a process group ID equal to
that of the calling process. In other words, if exit is called by the process group leader
for the controlling terminal (typically the shell), then SIGHUP is sent to all of the
processes associated with that terminal.

o Locks set by the lockf system call are removed. (See “lockf” on page 2-64 about file
locks.)

The exit subroutine causes cleanup actions to occur before the process exits. The —exit
system call bypasses all cleanup.

Note: The effect of exit can be modified by the setting of the SIGCLD signal in the
parent process. See “signal” on page 2-145 and “sigvec” on page 2-156.

Related Information

In this book: “acct” on page 2-11, “signal” on page 2-145, “sigvec” on page 2-156, “times”
on page 2-165, and “wait” on page 2-182,

System Calls 2-41

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fclear

fclear

Purpose

Makes a hole in a file.

Syntax

long fclear (fildes, nbytes)
int fildes;
unsigned long nbytes;

Description

The fclear system call zeroes the number of bytes specified by the nbytes parameter
starting at the current position of the file open on file descriptor fildes. If Distributed
Services is installed on your system, this file can reside on another node. This function
differs from the logically equivalent write operation in that it returns full blocks of binary
zeros to the file system, constructing holes in the file. The seek pointer of the file is
advanced by nbytes.

If you felear past the end of a file, then rest of the file is cleared and the seek pointer is
advanced by nbytes. The file size is updated to include this new hole, which leaves the
current file position at the byte immediately beyond the new end-of-file.

Return Value

Upon successful completion, a value of nbytes is returned. If the fclear system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics
The fclear system call fails if one or more of the following are true:
EIO I/O error.
EBADF The fildes option is not a valid file descriptor open for writing.
EINVAL The file is a FIFO, directory, or special file.
EMFILE The file is mapped copy-on-write by one or more processes.

2-42 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fclear

EAGAIN The write operation in fclear failed, due to an enforced write lock on the
file.

If Distributed Services is installed on your system, fclear can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.
EDIST Outbound requests are currently blocked.
ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “ftruncate” on page 2-50.

System Calls 2-43

TNL SN20-9855 (26 June 1987) to SC23-0808-0

fentl

fentl

Purpose

Controls open file descriptors.

Syntax

#include <fentl.h >

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

Description

The fentl system call performs controlling operations on open file descriptors. If
Distributed Services is installed on your system, the open file can reside on another node.

The fildes parameter is an open file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call. The arg parameter is a variable that depends on the value of the cmd

parameter.

The following cmds get a file descriptor or associated flags or set those flags:

F_DUPFD Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to arg
Same open file (or pipe) as the original file

Same file pointer as the original file (that is, both file descriptors share
one file pointer)

Same access mode (read, write or read/write)
Same locks

Same file status flags (that is, both file descriptors share the same file
status flags)

The close-on-exec flag associated with the new file descriptor is set to
remain open across exec system calls.

F_GETFD Gets the close-on-exec flag associated with the file descriptor fildes. If
the low-order bit is O (zero), then the file remains open across exec system
calls; otherwise the file closes upon execution of an exec system call.

2-44 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fentl

F_SETFD

F_-GETFL
F_SETFL

Sets the close-on-exec flag associated with the fildes parameter to the
value of the low-order bit of arg (0 or 1 as for F_-GETFD).

Gets the file status flags of the file descriptor fildes.

Sets the file status flags to the value of the arg parameter. Only the flags
O_NDELAY and O-APPEND should be set. Attempting to set other flags
may cause unexpected results.

When using the file locking and unlocking cmds (F-GETLK, F_SETLK, and
F_SETLKW), the arg parameter is a pointer to a structure of type flock. The flock
structure pointed to by the arg parameter describes the lock and is defined in the fentl.h
header file. It contains the following members:

short 1_type; /* F_RDLCK, F_WRLCK, F_UNLCK */
short T_whence; /* flag for starting offset */
long T_start; /* relative offset in bytes */
Tong 1_.len; /* if 0 then until EOF */
unsigned long 1_sysid; /* node ID */
short 1_pid; /* returned with F_GETLK */
1-type Describes the type of lock. Possible values are F_RDLCK, F-WRLCK, and
F_UNLCK.
l-whence Defines the starting offset. Possible values of 0, 1, or 2 indicate that the
relative offset, 1-start will be measured from the start of the file, current
position, or the end of the file, respectively. Determines the starting point of
the relative offset, 1_start. A value of 0 indicates the start of the file, 1
selects the current position, and 2 indicates the end of the file.
l_start Defines the relative offset in bytes, measured from the starting point in
l1_whence.
1-len Specifies the number of consecutive bytes to be locked.
1-sysid Contains the ID of the node that already has a lock placed on the area
defined by the fentl system call. This field is returned only when the
F_GETLK cmd is used.
1-pid Contains the ID of a process that already has a lock placed on the area

defined by the fentl system call. This field is returned only when the
F_GETLK cmd is used.

The following cmds use the flock structure and perform operations associated with file

locks:

F.GETLK

Gets the first lock that blocks the lock described in the flock structure
pointed to by arg. If a lock is found, the retrieved information overwrites
the information in this structure. If no lock is found that would prevent

System Calls 2-44.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

fentl

this lock from being created, then the structure is passed back unchanged
except that the lock type is set to F_-UNLCK.

F_SETLK Sets or clears a file lock according to the flock structure pointed to by arg.
F_SETLK is used to establish read (F-RDLCK) and write (F-WRLCK)
locks, as well as to remove either type of lock (F_-UNLCK). F_RDLCK,
F_WRLCK, and F_-UNLCK are defined by the fentl.h header file. If a
read or write lock cannot be set, fentl returns immediately with an error
value of -1.

F_SETLKW Works like F_.SETLK except that if a read or write lock is blocked by
existing locks, the process sleeps until the section of the file is free to be
locked.

When a read lock has been set on a section of a file, other processes may also set read
locks on that section or subsets of it. A read lock prevents any other process from setting
a write lock on any part of the protected area. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any other process from setting a read lock or a write lock on any
part of the protected area. Only one write lock and no read locks may exist for a specific
section of a file at any time. The file descriptor on which a write lock is being placed must
have been opened with write access.

Locks may start and extend beyond the current end of a file, but may not be negative
relative to the beginning of the file. A lock may be set to extend to the end of the file by
setting 1_len to 0. If such a lock also has 1_start and l-whence set to 0, the whole file
will be locked.

Some general rules about file locking include:

e Changing or unlocking part of a file in the middle of a locked section leaves two
smaller sections locked at each end of the originally locked section.

e When the calling process holds a lock on a file, that lock is replaced by later calls to
fentl,

e All locks associated with a file for a given process are removed when a file descriptor
for that file is closed by the process or the process holding the file descriptor ends.

® Locks are not inherited by a child process after executing a fork system call.
Notes:

1. In addition to fentl, the lockf system call can also be used to set write (exclusive)
locks.

2. Deadlocks due to file locks in a distributed system are not always detected. When such
deadlocks are possible, the programs requesting the locks should set timeout timers.

2-44.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fentl

Return Value

Upon successful completion, the value returned depends on the value of the cmd parameter

as follows:

cmd

F_DUPFD
F_GETFD
F_GETLK
F_SETFD
F_GETFL
F_SETFL
F_SETLK
F_SETLKW

Return Value

A new file descriptor

The value of the flag (only the low-order bit is defined)
A value other than -1

A value other than -1

The value of file flags

A value other than -1

A value other than -1

A value other than -1.

If the fentl system call fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The fentl system call fails if one or more of the following are true:

EBADF
EMFILE

EACCES

EACCES

EDEADLK

ENOLCK

EINVAL

The fildes parameter is not a valid open file descriptor.

The cmd parameter is F_DUPFD and 200 file descriptors are currently
open.

The emd parameter is F_.SETLK, the /_type parameter is F_RDLCK,
and the segment of the file to be locked is already write-locked by
another process.

The ¢cmd parameter is F_-SETLK, the [_type parameter is F_WRLCK,
and the segment of a file to be locked is already read-locked or
write-locked by another process.

Note: Because in the future errno may be set to EAGAIN rather
than to EACCES for the two errors described above programs should
expect and test for both values.

The emd parameter is F_SETLKW, the lock is blocked by some lock
from another process. Putting the calling process to sleep while
waiting for that lock to become free would cause a deadlock.

The emd parameter is F_-SETLK or F_-SETLKW, the type of lock is
F_RDLCK or F_-WRLCK, and there are no more file locks available.
(Too many segments are already locked.)

The ecmd parameter is F_-GETLK, F_SETLK, or F_ SETLKW and the
arg parameter or the data it points to is not valid.

System Calls 2-44.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fentl

EINVAL The ¢cmd parameter is F_DUPFD and the arg parameter is negative or
greater than 199,

If Distributed Services is installed on your system, fentl can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “close” on page 2-25, “exec: execl, execv, execle, execve, execlp, execvp” on
page 2-34, “lockf” on page 2-64, “open” on page 2-90, and “fcntlL.h” on page 5-56.

2-44.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fentl

System Calls 2-45

TNL SN20-9855 (26 June 1987) to SC23-0808-0

fork

fork

Purpose

Creates a new process.

Syntax

int fork ()

Description

The fork system call creates a new process. The new process (child process) is an exact
copy of the calling process (parent process). The created child process inherits the
following attributes from the parent process:

Environment

Close-on-exec flags (see “exec: execl, execv, execle, execve, execlp, execvp” on
page 2-34)

Signal handling settings (that is, SIG_DFL, SIG_IGN, function address)
Set-user-ID mode bit

Set-group-ID mode bit

Profiling on/off status

Nice value (see “nice” on page 2-88)

All attached shared libraries (see shlib command in AIX Operating System Commands
Reference)

Process group ID

TTY group ID (see “exit, —exit” on page 2-40 and “signal” on page 2-145)
Current directory

Root directory

File mode creation mask (see “umask” on page 2-169)

File size limit (see “ulimit” on page 2-167)

Attached shared memory segments (see “shmat” on page 2-131)

Attached mapped file segments (see “shmat” on page 2-131).

The child process differs from the parent process in the following ways:

The child process has a unique process ID.
The child process has as its parent process ID the process ID of the parent process.

The child process has its own copy of the parent’s file descriptors. However, each of
the child’s file descriptors shares a common file pointer with the corresponding file
descriptor of the parent process.

2-46 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fork

All semadj values are cleared. (For information about semadj values, see “semop” on
page 2-122.)

Process locks, text locks and data locks are not inherited by the child. (For
information about locks, see “plock” on page 2-97.)

The child process’s trace flag (see the discussion of request 0 of “ptrace” on page 2-102)
is false regardless of the value of the parent process’s trace flag.

The child process’s utime, stime, cutime, and cstime are set to 0. (See “times” on
page 2-165.)

Any pending alarms are cleared in the child. (See “alarm” on page 2-13.)

Return Value

Upon successful completion, fork returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. If fork fails, a value of -1 is returned
to the parent process, no child process is created, and errno is set to indicate the error.

Diagnostics

The fork system call fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes executing would

be exceeded.

EAGAIN The system-imposed limit on the total number of processes executing for a

single user would be exceeded.

ENOMEM There is not enough space left for this process.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,
—exit” on page 2-40, “nice” on page 2-88, “plock” on page 2-97, “ptrace” on page 2-102,
“semop” on page 2-122, “shmat” on page 2-131, “signal” on page 2-145, “sigvec” on
page 2-156, “times” on page 2-165, “ulimit” on page 2-167, “umask” on page 2-169, and
“wait” on page 2-182.

The shlib command in AIX Operating System Commands Reference.

System Calls 2-47

TNL SN20-9855 (26 June 1987) to SC23-0808-0

fsync

fsync

Purpose

Writes changes in a file to permanent storage.

Syntax

int fsynec (fildes)
int fildes;

Description

The fsync system call causes all modified data in the file open on fildes to be saved to
permanent storage. If Distributed Services is installed on your system, this file can reside
on another node. If the file is mapped onto a segment in read-write mode, then it is saved
to permanent storage. If the file is mapped copy-on-write, then the pages of the file that
have been changed are saved to permanent storage. Saving to permanent storage is
sometimes called a commit operation.

An fsync system call can be issued by a process executing at the node on which the file is
stored or by a process executing at another node. In either case, the file is written to
permanent storage at the node that holds the file.

Return Value

Upon successful completion, fsyne returns a value of 0. If fsyne fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics

The fsyne system call fails if one or more of the following are true:
EIO I/O error.
EBADF fildes is not a valid file descriptor open for writing.

EINVAL The file is a FIFO file, directory, or special file.

If Distributed Services is installed on your system, fsync can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

2-48 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

fsync
EDIST Outbound requests are currently blocked.
EAGAIN The server is too busy to accept the request.
ENOMEM Either this node or the server does not have enough memory available

to service the request.
EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “sync” on page 2-163.

System Calls 2-49

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ftruncate

ftruncate

Purpose

Makes a file shorter.

Syntax

int ftruncate (fildes, length)
int fildes;
unsigned long length;

Description

The ftrunecate system call removes all data beyond length bytes from the beginning of the
file that is open on the file descriptor fildes. Full blocks are returned to the file system so
that they can be used again, and the file size is changed to the value of the length

| parameter. If Distributed Services is installed on your system, this file can reside on

| another node.

The ftruncate subroutine does not modify the seek pointer of the file.

Return Value

Upon successful completion, ftruncate returns a value of 0. If ftruncate fails, a value of
-1 is returned and errno is set to indicate the error.

Diagnostics

The ftruncate system call fails if one or more of the following are true:
EIO 1/0O error.

EBADF fildes is not a valid file descriptor open for writing,
EINVAL The file is a directory, FIFO, or special file.

EMFILE The file is mapped copy-on-write by one or more processes.

| EAGAIN The write operation in ftruncate failed due to an enforced write lock on the
| file.
l
|

If Distributed Services is installed on your system, ftruncate can also fail if one or more
of the following are true:

2-50 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ftruncate
EDIST The server has blocked new inbound requests.
EDIST Outbound requests are currently blocked.
EAGAIN The server is too busy to accept the request.
ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “fclear” on page 2-42.

System Calls 2-50.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

fullstat, ffullstat

| Purpose

| Provides information about a file or path to a file.

|Syntax

| #include <sys/fullstat.h>

| int fullstat (path, cmd, buf) | int ffullstat (fildes, cmd, buf)
[char *path; | int fildes, cmd;

| int cmd; | struct fullstat *buf;

|

struct fullstat *buf;

| Description

The fullstat system call obtains information about the file pointed to by the path
parameter. Read, write, or execute permission of the named file is not required, but all
directories in the path leading to the file must be searchable. The fullstat system call
places the information obtained into a structure pointed to by the buf parameter, and the
cmd parameter specifies both the behavior of fullstat and the meaning of buf.

l

!

|

|

|

| Use the ffullstat system call to obtain information about an open file pointed to by the

| fildes parameter. The fildes parameter is a file descriptor obtained from a successful open,
| creat, dup, fentl, or pipe system call. The ffullstat system call places the information

| obtained into a structure pointed to by the buf parameter.

I
I
|
|

The fullstat and ffullstat system calls provide all of the information available with a stat
or fstat call, plus additional information on group IDs, user IDs, and file location.

The fullstat structure pointed to by the buf parameter is defined in the sys/fullstat.h
header file, and it contains the following members:

| dev_t st_dev; /* ID of the device that contains */

| /* a directory entry for this file */
| ino-t st_ino; /* File serial number */

| ushort st_mode; /* File access mode */

| short st_nlink; /* Number of links */

| ushort st-uid; /* Translated UID of the file's owner */
| ushort st_gid; /* Translated GID of the file's group */
| dev_t st_rdev; /* 1D of device */

2-50.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

off_t

time-t
time-t
time-t

ushort
ushort
vtype
tagtype
tagtype
short *
short
long
long
int

long
long

st_dev

st_mode

st_uid

st_size; /* File size in bytes */
st-atime; /* Time of last access */
st_mtime; /* Time of last data modification */
st_ctime; /* Time of last file status change */

/* Times are measured in seconds since */
/* 00:00:00 GMT, Jdan. 1, 1970 */
/* Above fields are the same as stat fields */

fst_uid_raw; /* Untranslated user ID of the owner */
/* of the file */

fst_gid_raw; /* Untranslated group ID of the file */

fst_type; /* Vnode type */

fst_uid_rev_tag; /* Contains special value representing */
/* result of reverse UID mapping */
fst-gid_rev_tag; /* Contains special value representing */
/* result of reverse GID mapping */
fst_other_gid-list; /* Pointer to first group ID on the */
/* alternate concurrent group list */
fst_other_gid_count; /* Number of group IDs on the
/* alternate concurrent group list */

fst-vfs; /* Virtual file system ID */

fst-nid; /* Node ID where the file resides */

fst_flag; /* Indicates whether the directory or */
/* file is a virtual mount point */

fst_i_gen; /* Inode generation number */

fst_reserved[8]; /* Reserved */

The device that contains a directory entry for this file. On a nondistributed
file system, this is a 32-bit quantity that uses only the low 16-bits to contain
the concatenated 8-bit major device number and the 8-bit minor device
number. On a distributed system, this is a 32-bit quantity, made by
combining a 16-bit connection ID, the 8-bit major device number, and the
8-bit minor device number.

The access mode of the file. (See “stat.h” on page 5-69 for a list of values for
this field.)

The user ID of the file’s owner after reverse translation. (See Managing the
AIX Operating System for a complete discussion of reverse translation.) If
the file is a remote file, this value can also be one of the two special values
netnoone or netsomeone, as defined in the /etc/master file.

When cmd is FS_STAT_-OTHER, this field is used to input a user ID.

System Calls 2-50.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

st_gid The group ID of the file’s owner after reverse translation. (See Managing the
AIX Operating System for a complete discussion of reverse translation.) If
the file is a remote file, this value can also be one of the two special values
netnoone or netsomeone, as defined in the /etc/master file.

When emd is FS-STAT-OTHER, this field is used to input a group ID.

st-rdev The ID of the device. This field is defined only for block or character special
files.

st-atime The time when file data was last accessed. For remote files, this field
contains the time at the server. Changed by the following system calls:
creat, mknod, pipe, utime, and read.

st-mtime The time when data was last modified. For remote files, this field contains
the time at the server. Changed by the following system calls: creat,
mknod, pipe, utime, and write.

st—ctime The time when file status was last changed. For remote files, this field
contains the time at the server. Changed by the following system calls:
chmod, chown, creat, link, mknod, pipe, unlink, utime, and write.

fst_uid-rev_tag
For a local file, this field is undefined. For a remote file, this tag describes
how st_uid was mapped to a remote user ID. Possible values are:

CALLER The st_uid returned is that of the calling process, which
maps to the file’s owner ID.
OTHER The st—uid returned is that of a user at this node, which

maps to the file’s owner ID.

SOMEONE The st-—uid field is undefined, but some user ID at this node
maps to the file’s owner ID.

NO_ONE The st_uid field is undefined, and no user ID at this node
maps to the file’s owner ID.

fst_gid_rev_tag
For a local file, this field is undefined. For a remote file, this tag describes
how st_gid was mapped to a remote group ID. Possible values are:

CALLER The st_gid returned is that of the calling process, which
maps to the file’s group ID.
OTHER The st_gid returned is that of a group at this node, which

maps to the file’s group ID.

SOMEONE The st_gid field is undefined, but some group ID at this node
maps to the file’s group ID.

NO_ONE The st—gid field is undefined, and no group ID at this node
maps to the file’s group ID.

2-50.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

fst_gid-list A pointer to an array that holds an alternate concurrent group list.

fst_gid—count

The number of group IDs on the alternate concurrent group list.

fst_vfs Virtual file system ID. A value of zero indicates the root file system.

fst_flag A flag indicating whether the file or directory is a virtual mount point. A
value of FS_VMP indicates that it is a virtual mount point.

The following cmds are available:

FL_STAT

FL_STAT_REV

FL_STAT_-OTHER

Returns all of the elements in the structure returned by the stat
system call, plus additional information about the file. Differs from
FL_STAT_-REV and FL_STAT_OTHER in that the values in the
st—uid and st_gid fields are undefined. For this cmd, the relevant
user ID and group ID information is instead contained in the
fst_uid_raw and fst_gid_raw fields.

This cmd allows programs that don’t care about the ID values to use
the fullstat system call without the performance cost of using the
translate tables.

Returns all of the elements in the structure returned by the stat
system call, plus additional information about user and group IDs of
the file. When using FL_STAT_REV, the returned ID information
is the result of the reverse mapping of the user ID and group ID of
the calling process. (See Managing the AIX Operating System for a
complete discussion of reverse translation.)

Returns all of the elements in the structure returned by the stat
system call, plus additional information about the user and group
IDs of the file. Differs from FL_STAT_REV in that the returned ID
information is the result of the reverse mapping of the user ID, group
ID, and concurrent group list contained in the st—uid, st—gid,
fst_other_gid_list, and fst_other_gid_count fields. (See
Managing the AIX Operating System for a complete discussion of
reverse translation.)

When the FL_STAT_OTHER cmd is used, the return values of
fst_uid-rev_tag and fst_gid_rev_tag are relative to the supplied
IDs, rather than to the calling process’s IDs. If either
fst_other_gid-list is NULL or fst_other_gid-count is 0, there is
no concurrent group list.

System Calls 2-50.5

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

I Return Value

| Upon successful completion, both the fullstat and the ffullstat system calls return a value
| of 0. If either the fullstat or the ffullstat system call fails, a value of -1 is returned and
| errno is set to indicate the error.

iDiagnostics

The fullstat system call fails if one or more of the following are true:

EFAULT The buf or path parameter points to a location outside of the process’s
allocated address space.

ENOENT A component of the path does not exist.
ENOTDIR A component of the path prefix is not a directory.
EACCES Search permission is denied for a component of the path.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, ffullstat can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

|
|
|
I
|
|
|
|
|
|
|
|
| EDIST The server has a release level of Distributed Services that cannot
|
|
|
|
l
|
|
|
|
|
I
|
| failed.

2-50.6 AIX Operating System Technical Reference

|
1
!
|
!
|
I
!
|
|
|
|
!

TNL SN20-9855 (26 June 1987) to SC23-0808-0
fullstat, . . .

The ffullstat system call fails if one or more of the following are true:
EBADF fildes is not a valid file descriptor.

EFAULT The buf parameter points to a location outside of the process’s allocated
address space.

If Distributed Services is installed on your system, ffullstat can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

|Related Information

I
1
|
!
|
!

In this book: “chmod” on page 2-18, “chown, chownx” on page 2-21, “creat” on page 2-27,
“link” on page 2-62, “mknod” on page 2-69, “pipe” on page 2-95, “read, readx” on

page 2-106, “stat, fstat” on page 2-159, “time” on page 2-164, “unlink” on page 2-174,
“ustat” on page 2-178, “utime” on page 2-180, “write, writex” on page 2-184, “master” on
page 4-98, “stat.h” on page 5-69, and “fullstat.h” on page 5-56.2.

Managing the AIX Operating System.

System Calls 2-51

TNL SN20-9855 (26 June 1987) to SC23-0808-0
getgroups

getgroups

Purpose

Gets the group access list.

Syntax
#include <grp.h>

int getgroups (ngroups, gidset)
int ngroups, *gidset;

Description

The getgroups system call gets the current group access list of the user process. The list
is stored in the array pointed to by the gidset parameter. The ngroups parameter indicates
the number of entries that can be stored in this array. getgroups never returns more than
NGROUPS entries. (NGROUPS is a constant defined in the grp.h header file.)

Return Value

Upon successful completion, the getgroups system call returns the number of elements
stored into the array pointed to by the gidset parameter. If getgroups fails, then a value
of -1 is returned and errno is set to indicate the error.

Diagnostics

The getgroups system call fails if the following is true:

EFAULT The ngroups and gidset parameters specify an array that is partially or
completely outside of the process’s allocated address space.

2-52 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
getgroups

Related Information

In this book: “setgroups” on page 2-126 and “initgroups” on page 3-230.

System Calls 2-53

TNL SN20-9855 (26 June 1987) to SC23-0808-0
getpid, . . .

getpid, getpgrp, getppid

Purpose

Gets the process, process group, and parent process IDs.

Syntax
int getpid ()
int getpgrp ()
int getppid ()
Description

The getpid system call returns the process ID of the calling process.
The getpgrp system call returns the process group ID of the calling process.

The getppid system call returns the process ID of the calling process’s parent process.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “fork” on
page 2-46, “setpgrp” on page 2-128, and “signal” on page 2-145.

2-54 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
getuid, . L L d

getuid, geteuid, getgid, getegid

Purpose

Gets the real user, effective user, real group, and effective group IDs.

Syntax
unsigned short getuid () unsigned short getgid ()
unsigned short geteuid () unsigned short getegid ()
Description

The getuid system call returns the real user ID of the calling process.

The geteuid system call returns the effective user ID of the calling process.
The getgid system call returns the real group ID of the calling process.

The getegid system call returns the effective group ID of the calling process.

Related Information

In this book: “setuid, setgid” on page 2-129.

System Calls 2-55

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ioctl
ioctl
Purpose
Controls input/output devices.
Syntax
#include <sys/ioctl.h>
#include <sys/devinfo.h >
int ioctl (fildes, op, arg)
int fildes, op;
char *arg;
Description

The ioctl system call performs a variety of control operations on the block or character
special file (device) specified by the fildes parameter. The op parameter specifies the
operation, and the use of the arg parameter depends on the particular operation performed.
The ioctl operations that are valid for each type of device are explained in

Chapter 6, “Special Files.”

Two operations are valid for all types of devices that supports ioctl system call. These two
operations are:

IOCTYPE Returns the device type associated with fildes. The device types are defined in
the sys/devinfo.h header file, which is discussed in “devinfo” on page 4-57.

IOCINFO Stores device information for the file specified by fildes into the buffer pointed
to by the arg parameter. See “devinfo” on page 4-57 for the format of the
device information structure.

Some devices support additional requests. See the discussion of individual devices in
Chapter 6, “Special Files” for details about device-dependent ioctl calls.

2-56 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ioctl

Return Value

If ioctl fails, a value of -1 is returned and errno is set to indicate the error.
Diagnostics

The ioctl fails if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

ENOTTY fildes is not associated with a character special file.

ENODEV The device associated with fildes does not support the ioctl system call.

EFAULT The arg parameter points to a location outside of the process’s allocated
address space.

EINVAL op or arg is not valid.
EINTR A signal was caught during the ioctl system call.

Related Information

In this book: “devinfo” on page 4-57, Chapter 6, “Special Files,” Appendix C, “Writing
Device Drivers,” and “ddioct]l” on page C-8.

The discussion of termio in AIX Operating System Programming Tools and Interfaces.

System Calls 2-57

TNL SN20-9855 (26 June 1987) to SC23-0808-0
iplvim, waitvm

iplvim, waitvm

Purpose

Starts a virtual machine or waits for one to terminate.

Syntax
int iplvm (iodn, waitflag) int waitvm (todn)
unsigned short iodn; unsigned short iodn;

int waitflag;

Description

The iplvm system call starts (IPLs) a new virtual machine that is independent of the AIX
virtual machine. The virtual machine is loaded from the device specified by the
input/output device number (IODN) given in the iodn parameter.

If iodn is 0, then the virtual machine of the calling process is restarted (re-IPLed). This is
accomplished by sending a SIGQUIT signal to the process 1. (Process 1 is also called the
init process. See “Creation and Execution” on page 1-16 for more information about this
special process.) Note that, unlike the reboot system call, iplvm performs a syne
operation and writes all pending output to disk before restarting the virtual machine.

If the waitflag parameter is a nonzero value, then the iplvm system call waits until the
new virtual machine has started before returning to the calling process. This allows you
to determine whether the virtual machine IPLed successfully. waitflag is ignored if the
iodn parameter is 0.

The waitvim system call waits for the virtual machine that was IPLed from the device
specified by iodn to perform a virtual machine halt.

The calling process must have an effective user ID of superuser to perform either system
call.

2-58 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
iplvm, waitvim

Return Value

Upon successful completion, the iplvm and waitvim system calls return a value of 0. If
iplvm or waitvm fails, then a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The iplvim and waitvm system calls fail if one or more of the following is true:
EPERM The effective user ID of the calling process is not superuser.
EIO The VRM detected one of the following error conditions:

® Insufficient resources are available.

e The IPL diskette needs to be mounted.

® The IPL header is not valid.

® Error encountered while reading IPL record.

e Duplicate virtual machine ID.

o IPL key sequence error.
ENXIO The device specified by the iodn parameter does not exist.
EINVAL The iodn parameter is not valid.
EAGAIN The maximum number of virtual machines are already running.

Related Information

In this book: “Creation and Execution” on page 1-16, “reboot” on page 2-109, “signal” on
page 2-145, and “sync” on page 2-163.

The init command in AIX Operating System Commands Reference.

System Calls 2-59

TNL SN20-9855 (26 June 1987) to SC23-0808-0

kill

kill

Purpose

Sends a signal to a process or to a group of processes.

Syntax

int kill (pid, sig)
int pid, sig;

Description

The kill system call sends the signal specified by the sig parameter to the process or group
of processes specified by the pid parameter. (For information on valid signals, see “signal”
on page 2-145.) If the sig parameter is 0 (the null signal), error checking is performed but
no signal is sent. This can be used to check the validity of pid.

To send a signal to another process, at least one of the following must be true:

e Either the real or the effective user ID of the sending process matches the real or
effective user ID of the receiving process.
® The effective user ID of the sending process is superuser.

The processes that have the process IDs 0 and 1 are special processes and are sometimes
referred to here as proc0 and procl, respectively.

If the pid parameter is greater than 0, the signal specified by the sig parameter is sent to
the process whose process ID is equal to the value of the pid parameter.

If the pid parameter is equal to 0, the signal specified by the sig parameter is sent to all of
the processes, excluding proc0 and procl, whose process group ID is equal to the process
group ID of the sender.

If the pid parameter is equal to -1 and the effective user ID of the sender is not superuser,
the signal specified by the sig parameter is sent to all of the processes, excluding proc0
and procl, whose real user ID is equal to the effective user ID of the sender.

If the pid parameter is equal to -1 and the effective user ID of the sender is superuser, the
signal specified by the sig parameter is sent to all of the processes, excluding proc0 and
procl.

If the pid parameter is negative but not -1, the signal specified by the sig parameter is sent
to all of the processes whose process group ID is equal to the absolute value of the pid
parameter.

2-60 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
kill

Return Value

Upon successful completion, kill returns a value of 0. If kill fails, a value of -1 is returned
and errno is set to indicate the error.

Diagnostics

The kill system call fails and no signal is sent if one or more of the following are true:
EINVAL sig is not a valid signal number.

EINVAL sitg is SIGKILL and pid is 1 (procl).

ESRCH No process can be found corresponding to that specified by pid.

EPERM The user ID of the sending process is not superuser, and the real or effective
user ID does not match the real or effective user ID of the receiving process.

Related Information
In this book: “getpid, getpgrp, getppid” on page 2-54, “setpgrp” on page 2-128, and
“signal” on page 2-145.
The kill command in AIX Operating System Commands Reference.

System Calls 2-61

TNL SN20-9855 (26 June 1987) to SC23-0808-0
link

link

Purpose

Creates an additional directory entry for an existing file.

Syntax

int link (pathl, path?2)
char *pathl, *path2;

Description

The link system call creates an additional link (directory entry) for an existing file. The
pathl parameter points to the the path name of an existing file and the path2 parameter
points to the path name for the new directory entry to be created. If Distributed Services
is installed on your system, these paths can cross into another node.

Return Value

Upon successful completion, link returns a value of 0. If link fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics

The link system call fails if one or more of the following are true:
ENOTDIR A component of either path prefix is not a directory.
ENOENT A component of either path prefix does not exist.
EACCESS A component of either path prefix denies search permission.
ENOENT The file named by the pathl parameter does not exist.
EEXIST The link named by the path2 parameter already exists.

EPERM The file named by the pathl parameter is a directory and the effective user
ID is not superuser.
EXDEV The link named by the path2 parameter and the file named by the pathl

parameter are on different file systems.

2-62 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
link

ENOENT The path2 parameter points to a null path name.

EACCES The requested link requires writing in a directory with a mode that denies
write permission.

EROFS The requested link requires writing in a directory on a read-only file system.

EFAULT The pathl or path2 parameter points to a location outside of the process’s
allocated address space.

EMLINK The file already has the maximum number of links.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, link can also fail if one or more of the

following are true:
EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV
ENOMEM
ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “unlink” on page 2-174.

The link command in AIX Operating System Commands Reference.

System Calls 2-62.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
loadtbl

loadtbl

| Purpose

| Installs or queries configuration information in the kernel.

| Syntax
[#include <sys/dstables.h>

| int loadtbl (cntl, buf, size)
| struct ltable *cntl;

| char *buf;

| int size;

| Description

The loadtbl system call installs one element of a table into the kernel or queries
information from the kernel. If Distributed Services is installed on your system, you can
query, but not change, the kernel of another node.

To change or add an entry in the kernel table with the loadtbl system call, a process must
have an effective user ID of superuser. Queries of table entries can be submitted by any
process.

This system call provides a general mechanism for installing configuration information
into the kernel. The outline of the general structure supported by loadtbl is:

¢ Each table header contains an ID and a pointer to a structure of information related to
that ID.

o The structure of buf is unknown to the loadtbl system call.

The loadtbl system call can be used to load a single table entry into the kernel, to load an
entire set of table entries into the kernel, or to query one or more entries in the kernel.

The buf parameter is a pointer to the data being loaded, while the size parameter
determines the size (in bytes) of the data being loaded. The cntl parameter points to a
structure of type ltable. The ltable structure is defined in the sys/dstables.h header file,

|
|
|
|
I
|
| o For each type, there is an array of table headers that has a fixed size.
|
}
|
l
|
l
|
| and it contains the following members:

2-62.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

loadtbl
char type; /* Defines the type of table being managed */
/* or queried. The type must be one of: */
/* DSNCB (Node Control Block) */
/* DSOCB (Outbound Translate) */
/* DSWCB (Wild Card Node Translate) */
/* DSIPC (IPC key table entries) */
/* USERTBL (User-defined Table) */
long id; /* Identifies which table entry is being */
/* loaded. For DSNCB this is the node ID. */
char mode; /* Type of request. */
long nid; /* For queries, the node ID whose tables are */
/* to be queried. */
Tong reserved[4]; /* Reserved. Contents must be zero */

The mode field of the Itable structure can contain any one of the following values:

L-REPLACE

L_DELETE
L-QUERYI

L-QUERYT

The entry being loaded is either a new one or a replacement for an
existing one. If no corresponding table entry exists, a new one is created.

The table information for the id specified is deleted.

This mode enables the calling process to learn which IDs of a particular
type currently have information in the kernel. The ltable.type field
specifies which type is being queried. buf is assumed to point to an array
of long integers into which loadtabl places the requested IDs. (When
type is DSOCB, DSWCB, or DSIPC, a single zero ID is returned in the
array.) The ltable.nid specifies which node’s kernel is to be queried. If
Itable.nid is 0 or the node ID of the local node, then the local kernel is
queried. Otherwise, the specified remote node ID is queried.

This mode enables the calling process to learn the table values that
currently reside in the kernel for a particular table type and id. The
Itable.type field specifies which type of table is being queried, and
Itable.id specifies which ID is being queried. The ltable.nid field
specifies which node’s kernel is to be queried. If Itable.nid is 0 or the
node ID of the local node, then the local kernel is queried. Otherwise, the
specified remote node ID is queried. buf is assumed to point to an array of
long integers into which loadtabl places the requested information.

Three of the ltable.types, DSNCB, DSOCB, and DSWCB, are associated with ID
translates. The fourth type, DSIPC, is used when an IPC key mapping table is being
loaded. The fifth type is USERTBL, which is used to load tables for international
character support into the kernel. The following sections describe the ID translate values
first, then the key map information, and, finally, the international character support

tables.

The ID translate types are:

System Calls 2-62.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
loadtbl

DSNCB An inbound user ID or group ID translate table for a particular node.
DSOCB A translate table for outbound requests.
DSWCB A translate table for the wild card node.

In all of these cases, the memory pointed to by buf contains a dsxlate structure, which
contains, among other things, the first row of translate information, followed by the rest of
the translate rows. For DSNCB, the ltable.id specifies which node ID’s table is used.

The dsxlate structure is described in the sys/dstables.h header file, and it contains the
following members:

short rilvil; /* Reserved. Must be 0 - release level. */
short gid; /* Local wildcard group ID for this node. *x/
short uid; /* Local wildcard user ID for this node. */
char flag; /* The 0X01 bit is set if there is a wildcard */

/* user ID for this node. *x/

/* The 0X02 bit is set if there is a wildcard */

/* group ID for this node. */
char padl; /* Dummy for alignment purposes *x/
short numuids; /* The number of user ID translate rows */
short numgids; /* The number of group ID translate rows */
short pad2; /* Dummy for alignment purposes *x/

struct idrow idrow[l]; /* First row of translate information */
/* Rest of the translates follow. */

The idrow structure is described in the sys/dstables.h header file, and it contains the
following members:

long wireid; /* ID that arrived with the request x/
short localid; /* Local ID resulting from a translate */
short pad; /* Dummy for alignment purposes *x/

Note: For Itable.type values of DSNCB and DSWCB, the entries in the user ID and
group ID table arrays must be ordered by increasing wireid. For a type value of DSOCB
(outbound translate table), the table must be ordered by increasing localid.

There are occasions when an application needs to load an entire set of new translates into
the kernel. In the normal processing sequence for such a case, the application should:

1. Call the loadtbl system call with 1table.type=DSNCB and 1table.mode=L_QUERYT
to get a list of the node IDs that currently have translates.

2. Compare the returned list of node IDs that currently have translates to the list of node
IDs that should have translates after the new information is loaded.

3. Use L-DELETE to remove the node IDs that now have translates, but should not.

2-62.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
loadtbl

4. Use L-REPLACE on the translates for the other nodes (both node IDs that have
existing translates and node IDs that are not yet in the table).

The next Itable.type loads a different type of information into the kernel than the ID
translate types listed earlier. When ltable.type is DSIPC, an IPC key mapping table is
being loaded. The value of ltable.id is ignored for this type, and the entire set of IPC keys
is loaded as one piece of information. The memory pointed to by buf should be an array of
dsipc structures. The dsipe structure is defined in the sys/dstables.h file, and it contains
the following members:

long inkey; /* Input key */
long nid; /* Node ID */
long outkey; /* Result key */

A dsipce.nid with a value of 0 indicates that the inkey is to be mapped to the outkey in
the local node. Otherwise, the specified node is used.

The array should be sorted by inkey so that the msgget subroutine can use a binary
search to locate the requested key translate.

The final 1table.type is used to load tables of a different nature than described above for
Distributed Services. When ltable.type is USERTBL, the table being loaded into the
kernel is used for international character support, such as a character collation and
classification table. (See “Overview of International Character Support” in IBM RT PC
Managing the AIX Operating System for additional information on character collation and
classification.)

| Return Value

|
|
|
!
I
I
|
|

Upon successful completion, the loadtbl system call returns:

e For L_.REPLACE, a value of 0.

e For L_LDELETE, a value of 0.

o For L_QUERYI, a value of 0 if no table exists for the type specified. Otherwise, the
number of IDs of the specified type is returned.

o For L_.QUERYT, the number of bytes transferred.

If the loadtbl system call fails, a value of -1 is returned, and errno is set to indicate the
error.

System Calls 2-62.5

TNL SN20-9855 (26 June 1987) to SC23-0808-0
loadtbl

| Diagnostics
The loadtbl system call fails and the configuration information remains unchanged if one
or more of the following are true:
E2BIG buf is too small to contain query data.

EINVAL Invalid input data (such as invalid ltable.type or ltable.mode, or an
Itable.nid that specifies a remote node when ltable.mode is L_REPLACE
or L_LDELETE).

EPERM The ltable.mode is either L-.REPLACE or L_DELETE and the effective
user ID of the calling process is not superuser.

If Distributed Services is installed on your system, the loadtbl system call also fails if one
or more of the following are true:

|
|
1
|
l
|
|
|
]
I
| EDIST Outbound requests are currently blocked.
|
|
l
|
|
|
l
l
|

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

|Related Information

In this book: “msgget” on page 2-76.
The dsldxprof command in AIX Operating System Commands Reference.

|
l
| “Overview of International Character Support” in IBM RT PC Managing the AIX
| Operating System.
|
f

Managing the AIX Operating System.
AIX Operating System Programming Tools and Interfaces.

2-62.6 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
loadtbl

System Calls 2-63

TNL SN20-9855 (26 June 1987) to SC23-0808-0
lockf

lockf

Purpose

Locks a region of a file for exclusive access.

Syntax
#include <sys/lockf.h>

int lockf (fildes, request, size)
int fildes, request;
off_t size;

Description

The lockf system call locks and unlocks regions of an open file. If Distributed Services is
installed on your system, this file can reside on another node. lockf is used to synchronize
simultaneous access to a file by multiple processes. Only one process at a time can hold a
lock on any given region of a file. Two types of locks are provided: enforced and advisory.

When a process holds an enforced lock on a region of a file, no other process can access
that region with the read or write system calls. In addition, creat and open are
prevented from truncating the file. If another process attempts to read or write the
region, then it sleeps until the region is unlocked. However, if the system detects that
sleeping would cause deadlock, then the read or write system call fails, setting errno to
EDEADLK. If another process attempts to truncate the file with either the creat or open
system call, then that system call fails and sets errno to EACCES.

When a process holds an advisory lock on a region of a file, no other process can lock
that region, or an overlapping region, with lockf. The read, write, creat, and open
system calls are not affected. This means that processes must voluntarily call lockf in
order to make advisory locks effective.

Warning: Buffered I/O does not work properly when used with file
locking. In particular, do not use the Standard I/O Package (libc.a)
routines on files that are going to be locked, since these routines use
buffered I/0.

To select enforced locking, the S_LENFMT bit must be set in the access permission code (or
mode) of the file. Otherwise locking is advisory. Thus, a given file can have advisory or
enforced locks, but not both.

2-64 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
lockf

The fildes parameter to lockf is an open file descriptor obtained from a successful call to
open, creat, dup, or pipe system call.

The size parameter is the number of bytes to be locked or unlocked. The region starts at
the current location in the open file and extends forward if size is positive, or backward if
size is negative. If the size parameter is 0, then the region starts at the current location
and extends forward to the maximum possible file size, including the unallocated space
after the end-of-file. Unallocated “holes” in the file can also be locked. (See “fclear” on
page 2-42 about “holes” in files.)

The request parameter is one of the following constants:
F_ULOCK Unlocks a previously locked region in the file.

F_LOCK Locks the region for exclusive use. This request causes the calling process to
sleep if the region overlaps a locked region, and to resume when it is granted
the lock.

F_TLOCK Tests to see if another process has locked the specified region, and, if not,
locks the region for exclusive use. If the region is already locked, then lockf
fails and sets errno to EACCES.

F_TEST Tests to see if another process has already locked a region. lockf returns 0 if
the region is unlocked. If the region is locked, then -1 is returned and errno
is set to EACCES.

The system keeps a table of the locked regions for each file. This table can hold a limited
number of entries. When the same process locks two regions that are next to each other in
the file, lockf combines the lock table entries to conserve space in the lock table. An
unlock request in the middle of a locked region leaves two locked regions, which can cause
the lock table to overflow. When a lock or unlock request cannot be satisfied because the
lock table is full, the lockf subroutine fails.

When a process closes a file, all of its locks on that file are removed. When a process
terminates, all of the locks that it holds are removed.

All locks applied to directories, special files, and pipes are treated as advisory locks.
However, locking directories is not recommended. Only advisory locks are supported for
mapped files. An attempt to apply an enforced lock to a mapped file causes the lockf
system call to fail and set errno to EMFILE. (For information about mapped files, see
“shmat” on page 2-131.)

A child process does not inherit the locks of its parent process.

System Calls 2-65

TNL SN20-9855 (26 June 1987) to SC23-0808-0
lockf

Notes:
1. Locks may be set by fentl in addition to lockf.
2. The lockf system call sets only write (exclusive) locks.

3. When using Distributed Services, deadlocks due to file locks are not always detected.
When such deadlocks are possible, the programs requesting the locks should set
timeout timers,

Return Value

Upon successful completion, lockf returns a value of 0. If lockf fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics
The lockf system call fails if one or more of the following are true:
EBADF fildes is not a valid open file descriptor.
EINVAL request is not valid.
EACCES F_TEST or F_TLOCK fails because another process has already

locked the region.

| Note: Because in the future, errno may be set to EAGAIN rather
| than to EACCES for this error described above, programs should
| expect and test for both values.

EMFILE The file is mapped and enforced locking is enabled.

EDEADLK Deadlock will occur or the lock table is full. Deadlocks are not always
detected when remotely mounted files are locked.

If Distributed Services is installed on your system, lockf can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.
EDIST Outbound requests are currently blocked.
EAGAIN The server is too busy to accept the request.

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node

I
l
l
|
l
| ENOMEM Either this node or the server does not have enough memory available
I
l
| failed.

2-66 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
lockf

Related Information

In this book: “close” on page 2-25, “creat” on page 2-27, “dup” on page 2-32, “fentl.h” on
page 5-56, “open” on page 2-90, “read, readx” on page 2-106, “write, writex” on page 2-184,
and “standard ifo library” on page 3-342.

System Calls 2-66.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
lockf

2-66.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
Iseek

Iseek

Purpose

Moves read/write file pointer.

Syntax

#include <sys/types.h>
#include <unistd.h>

off_t Iseek (fildes, offset, whence)
int fildes;

off -t offset;

int whence;

Description

The Iseek system call sets the file pointer for the file specified by the fildes parameter. If
Distributed Services is installed on your system, this file can reside on another node. The
fildes parameter is a file descriptor obtained from a creat, open, dup, or fentl system call.

The Iseek system call sets the file pointer associated with the fildes stream according to
the value of the whence parameter, as follows:

SEEK_SET Sets the file pointer to the value of the offset parameter.

SEEK_CUR Sets the file pointer to its current location plus the value of the offset
parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of the offset
parameter.

Return Value

Upon successful completion, the resulting pointer location as measured in bytes from the
beginning of the file is returned. If Iseek fails, a value of -1 is returned and errno is set to
indicate the error.

System Calls 2-67

TNL SN20-9855 (26 June 1987) to SC23-0808-0
Iseek

Diagnostics
The Iseek system call fails and the file pointer remains unchanged if one or more of the
following are true:
EBADF fildes is not an open file descriptor.
ESPIPE fildes is associated with a pipe (FIFO) or a multiplexed special file.
EINVAL whence is not 0, 1 or 2. This also causes a SIGSYS signal.
EINVAL The resulting file pointer would be negative.

If Distributed Services is installed on your system, Iseek can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too bﬁsy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “creat” on page 2-27, “dup” on page 2-32, “fcntl” on page 2-44, “open” on
page 2-90, and “fseek, rewind, ftell” on page 3-196.

2-68 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mkdir

imkdir

| Purpose

|

Creates a directory.

| Syntax

l
|
|

int mkdir (path, mode)
char *path;
int mode;

| Description

I
|
|
l
|
i
|
|
l

The mkdir system call creates a new directory. The path parameter names the new
directory. If Distributed Services is installed on your system, this path can cross into
another node. In this case, the new directory is created at that node.

To execute the mkdir system call, a process must have search permission and write
permission in the parent directory of path.

The mode parameter is the mask for the read, write, and execute (rwx) flags for owner,
group, and others. The low-order 9 bits in mode are modified by the file mode creation
mask of the process. All bits set in the creation mask are cleared. (For more information
about the creation mask, see “umask” on page 2-169.)

Return Value

I
|

Upon successful completion, the mkdir system call returns a value of 0. If the mkdir
system call fails, a value of -1 is returned, and errno is set to indicate the error.

| Diagnostics

|
l
|
1
l
l

The mkdir system call fails and the directory is not created if one or more of the following
are true:

ENOTDIR A component of the path is not a directory.
ENOENT A component of the path does not exist.

EACCES Creating the requested directory requires writing in a directory with a mode
that denies write permission.

System Calls 2-68.1

I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TNL SN20-9855 (26 June 1987) to SC23-0808-0

mkdir

EACCES Search permission is denied for a component of the path.

EROFS The named file resides on a read-only file system.
EEXIST The named file already exists.
EFAULT The path parameter points outside of the process’s allocated address space.

EIO An I/O error occurred while writing to the file system.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, mkdir can also fail if one or more of
the following are true:

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV

ENOMEM

ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

| Related Information

I
I

In this book: “chmod” on page 2-18, “mknod” on page 2-69, “rename” on page 2-110.1,
“rmdir” on page 2-110.4, and “umask” on page 2-169.

2-68.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mknod

mknod

Purpose

Creates a directory, a special file, or an ordinary file.

Syntax
#include <sys/stat.h>

int mknod (path, mode, dev)
char *path;

int mode;

dev_t dev;

Description

The mknod system call creates a new regular file, special file, or directory. The path
parameter names the new file. If Distributed Services is installed on your system, this path
can cross into another node. Also see “mkdir” on page 2-68.1 for additional information on
creating a directory.

The mode parameter specifies the mode of the file, which defines the file type and access
permissions.

The dev parameter is configuration dependent and is used only if the mode parameter
specifies a block or character special file. dev is the ID of the device, and it corresponds to
the st_rdev member of the structure returned by the stat system call. If the file you
specify is a remote file, the dev value must be meaningful on the node where the file
resides. See “stat, fstat” on page 2-159 and “stat.h” on page 5-69 for more information
about the device ID.

The mode parameter is constructed logically OR-ing the values specified in “chmod” on
page 2-18 with one the following values, which define the file type:

S_-IFDIR Directory

S_IFCHR Character special file

S_IFMPX Multiplexed character special file
S_IFBLK Block special file

S_-IFREG Regular data file

S_IFIFO FIFO special file

A complete list of the possible mode values and other useful macros appears in “stat.h” on
page 5-69.

System Calls 2-69

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mknod

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits
set in the creation mask are cleared. (For more information about the creation mask, see
“amask” on page 2-169.)

If the type of the new file is S_IFMPX (multiplexed character special file), then when the
file is used, additional path name components can appear after the path name as if it were
a directory. The additional part of the path name is available to the file’s device driver for
interpretation. This provides a multiplexed interface to the device driver. The hft device
driver uses this feature. (See “hft” on page 6-23 for details about this device driver.)

The file’s owner ID is set to the process’s effective user ID. The file’s group ID is set to the
process’s effective group ID.

The mknod system call can be invoked only by superuser for file types other than FIFO
special.

Return Value

Upon successful completion, a value of 0 is returned. If the mknod system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

2-70

The mknod system call fails and the new file is not created if one or more of the following
are true:

EPERM The process’s effective user ID is not superuser.
ENOTDIR A component of the path prefix is not a directory.
ENOENT A component of the path prefix does not exist.

EROFS The directory in which the file is to be created is located on a read-only file
system.

EEXIST The named file exists.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, mknod can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.
EDIST Outbound requests are currently blocked.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

mknod

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the'request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been
unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “chmod” on page 2-18, “exec: execl, execv, execle, execve, execlp, execvp” on
page 2-34,“mkdir” on page 2-68.1 , “umask” on page 2-169, “fs” on page 4-74, and “stat.h”
on page 5-69.

The chmod, mkdir, and mknod commands in AIX Operating System Commands Reference.

System Calls 2-70.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mntctl

mntectl

| Purpose

| Returns information about a node’s mounts.

|Syntax
| #include <sys/mntctl.h>

] int mntctl (cmd, size, buf)
| int cmd, size;
| char *buf;

| Description

The mntetl system call returns information about a node’s mounts. The size parameter
defines the number of bytes in buf. The cmd parameter specifies how mntctl acts and
specifies the meaning of buf. The following cmd is available:

MC-MOUNTS Queries a node to learn what that node has mounted. This can be the
local node or, if Distributed Services is installed on your system, a remote
node.’

The buf parameter points to a bheader structure that contains, among other things, the
node ID of the node to query and, after the system call completes, a description of the first
mount issued by that node. The mntctl system call updates the size parameter and first
minfo structure in bheader, then appends descriptions of additional mounts in separate
minfo structures. In this way, bheader.minfo becomes the first element in an array of
minfo structures. The strings pointed to by the m_object and m_stub fields of each
minfo structure are appended to the buffer after the array of minfo structures.

The bheader structure pointed to by the buf parameter is defined in the sys/mntctl.h
header file, and it contains the following members:

unsigned long nid; /* the node ID of the node that is being */
/* queried. Zero indicates the local node. */

int reserved;

unsigned int size; /* the number of minfo structures in the */
/* buffer, including the one below in */
/* bheader, or the size of buf (in bytes) */
/* that would be required to hold the */

2-70.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mntctl

/* requested info */
struct minfo[l}]; /* first structure of mount info x/

The minfo structure is defined in the sys/mntctl.h file, and it contains the following
members:

unsigned long m-nid; /* the node ID of the node that holds the */
/* mounted object. Zero indicates the */
/* local node. */
char *m_object; /* path to the mounted object */
char *m_stub; /* path to the mounted-over object */
unsigned int m-flag; /* flag bits to define characteristics of the */
/* mounted object */
time_t m_date /* date that the virtual file system */
/* was created */

m-_object Defines the path to the object to be mounted. For the root device, this field
contains a pointer to a NULL string.

m_flag Defines various characteristics of the object to be mounted. Possible values
for this field are defined in the sys/vmount.h file, which is included by the
sys/mntctl.h file. These values are:

MNT-READONLY Indicates that the object was mounted with a read-only
mount, and write access is not allowed.

MNT-REMOVABLE Indicates that the object is a removable file system.

MNT-REMOTE Indicates that the mounted object resides on a node
other than the queried node.
MNT_DEVICE Indicates that the mounted object is a device.

The values returned for m_object and m_stub are the paths used when a mount or
vmount system call was issued to mount that object. If the paths used with these calls are
not full path names, the minfo structures returned by the mntctl system call may not be
very useful.

When the mntctl system call completes successfully, the size field in the bheader
structure contains the total number of minfo structures, including the one in bheader. If
buf is not big enough to hold all of the minfo structures and all of the strings, the mntetl
system call fails and bheader.size contains the size (in bytes) that buf must be to hold all
of the requested data. If additional mounts are performed at the remote node before the
mntctl system call is reissued with the new size parameter, this error can occur again.

System Calls 2-70.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mntctl

| Return Value

| Upon successful completion, the mntctl system call returns a value of 0. If the mntectl
| system call fails, a value of -1 1s returned, and errno is set to indicate the error.

' Diagnostics
The mntetl system call fails and the requested information is not returned if one or more
of the following are true:

E2BIG The requested information will not fit into size.

If Distributed Services is installed on your system, mntctl can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

|
i
!
|
|
|
l
|
| communicate with this node.
|
|
|
l
|
I
| failed.

| Related Information

| In this book: “mount” on page 2-71, “vmount” on page 2-180.5, and “master” on page 4-98.

2-70.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mount

mount

Purpose

Mounts a file system.

Syntax
#include <sys/vmount.h>

int mount (dev, dir, mflag)
char *dev, *dir;
int mflag;

Description

The mount system call mounts a file system contained on the block device (also called a
special file) identified by the dev parameter. The file system is mounted on the directory
identified by the dir parameter. The mount system call can be used only by superuser.

The dev parameter and the dir parameter are pointers to path names.

The mflag parameter defines various characteristics of the object to be mounted. Possible
values are:

MNT_READONLY Indicates that the to be mounted object is read-only, and write
access is not allowed. If this value is not specified, writing is
permitted according to individual file accessibility.

MNT-REMOVABLE Indicates that the object to be mounted is a removable file system.
Whenever there are no active references to files or directories on
the file system, the operating system forgets the content and
structure of the file system. The user can remove the medium and
replace it with a different file system. All future references to dir
will refer to the file system on the new medium.

After the file system is mounted, references to the path name specified by the dir
parameter refer to the root directory on the mounted file system.

System Calls 2-71

TNL SN20-9855 (26 June 1987) to SC23-0808-0

mount

Return Value

Upon successful completion a value of 0 is returned. If the mount system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

2-72

The mount system call fails if one or more of the following are true:

EPERM
ENOENT
ENOTBLK
ENXIO
ENOTDIR
ENOTDIR
ENOTDIR
EFAULT

EBUSY

EBUSY
EBUSY
EINVAL

ENOMEM

E2BIG

The effective user ID of the calling process is not superuser.

dev or dir does not exist.

dev is not a block device.

The device or driver for dev is not currently configured.

A component of a path prefix is not a directory.

dir is not a directory.

The path to the device being mounted crosses a remote mount point.

The dev or dir parameter points to a location outside of the process’s
allocated address space.

dir is currently busy. For example, it may some process’s current directory,
or a file system may be mounted onto it.

The device associated with dev is currently mounted.
There are no more mount table entries.

The data on dev is not recognizable as a file system. This usually means
that it does not contain a properly formatted super-block or, if Distributed
Services is installed on your system, that dev or dir is on a remote node.

Either this node or the server does not have enough memory available to
service the request.

The length of the path pointed to by either the dev or dir parameter is
greater than the value of MAXPATH.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mount

Related Information

In this book: “umount” on page 2-170, “uvmount” on page 2-180.3, “vmount” on
page 2-180.5, and “fs” on page 4-74.

The mount and umount commands in AIX Operating System Commands Reference.

System Calls 2-72.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
mount

2-72.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgctl

msgctl

Purpose

Provides message control operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgectl (msqid, cmd, buf)
int msgetl (msqid, cmd, mtype)

int msqid, cmd;

struct msqid-ds *buf;
int miype;

Description

The mégctl system call provides a variety of message control operations as specified by
cmd parameter. The buf parameter points to a structure of type msqid—ds. The msqid—ds
structure is defined in the sys/msg.h header file, and it contains the following members:

struct ipc_perm msg_perm;

struct msg *msg-first;
struct msg *msg-last;

ushort msg-cbytes;
ushort msg-qnums;

ushort msg-gbytes;
ushort msg-lspid;
ushort msg-lrpid;
time_t msg-_stime;
time_t msg-rtime;
time-t msg-ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Operation permission structure */
Ptr to first message on the queue *x/
Ptr to last message on the queue */
Current number of bytes on the queue */
Number of messages on the queue *x/
Maximum number of bytes on the queue */
ID of Tast process to call msgsnd */
ID of Tast process to call msgrcv */
Time of last msgsnd call */
Time of last msgrcv call */
Time of the last change to this *x/
structure with a msgctl call */

System Calls 2-73

TNL SN20-9855 (26 June 1987) to SC23-0808-0

msgctl
/* The following members support Distributed Services IPC: */
long msg-nid; /* DS - real queue's node ID */
int msg-qid; /* DS - real queue's queue ID */
key-t msg-rkey; /* DS - caller's mapped key */
ushort msg-Isnid; /* DS - nid of last msgsnd */
ushort msg-I1rnid; /* DS - nid of Tast msgrcv x/
mtyp-t msg-mtype; /* DS - server's mtype value */
int msg_bootcnty; /* DS - server's boot count */
struct node *msg-conn; /* DS - connect for this surrogate */

The following
IPC_STAT

IPC_SET

cmds are available:

Stores the current value of the first eleven members of the data structure
associated with the msqid parameter into the msqid—ds structure pointed to
by the buf parameter. The structure members that support Distributed
Services are not included.

The current process must have read permission in order to perform this
operation. If the queue resides in a remote node, then the information in the
structure (msg_lspid, msg_stime, and so on) is relative to that node.

If the last sent (or received) message came from a node other than the one
that holds the queue, then the process ID (pid) reported for msg_lIspid is the
process ID of the transaction process that actually operated on the queue,
not the process ID at the remote machine.

Sets the value of the following members of the data structure associated
with the msqid parameter to the corresponding values found in the structure
pointed to by the buf parameter:

msg-perm.uid

msg-perm.gid

msg-perm.mode /* Only the low-order nine bits */
msg-gbytes

The current process must have an effective user ID equal to either that of
superuser or to the value of msg_perm.uid in the data structure associated
with msqid in order to perform this operation. To raise the value of
msg_qgbytes, the effective user ID of the current process must be superuser.

If msqid identifies a remote queue, the remote node uses the translated
versions of the caller’s user and group IDs to determine if the caller has
permission to delete the queue. See Managing the AIX Operating System.

For remote queues, the user and group IDs of the calling process are sent to
the node where the queue resides. The remote node performs inbound ID
translation and uses the result to determine if the caller has permission to

2-74 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgctl

IPC_RMID

run the command. See Managing the AIX Operating System for a discussion
of user and group ID translation.

Removes the message queue identifier specified by the msqid parameter from
the system and destroys the message queue and data structure associated
with it. The current process must have an effective user ID equal to either
that of superuser or to the value of msg_perm.uid in the data structure
associated with msqid in order to perform this operation.

If msqid identifies a remote queue, the remote node uses the translated
versions of the caller’s user and group IDs to determine if the caller has
permission to delete the queue. See Managing the AIX Operating System for
a discussion of user and group ID translation.

If a remote queue cannot be removed (for example, if permission is denied),
then the local queue header is not removed either. Otherwise, both the
remote and local queue information is removed.

If Distributed Services is installed on your system, the following cmds are also available:

IPC_STAT2

IPC_RMID2

IPC_MTYP

Returns information about message queues, including the Distributed
Services structure members, regardless of whether the queue is remote or
local. buf is assumed to point to a msqid_ds structure. New programs that
wish to learn status information about IPC queues should use IPC_STAT2
rather than IPC_STAT.

Removes the local header for the remote queue associated with msqid
without attempting to remove the remote queue itself. If msqid does not
identify a remote queue, then msgetl sets errno to EINVAL. Like
IPC_RMID, IPC_RMID2 requires that the current process have an effective
user ID equal to either that of superuser or to the value of msg_-perm.uid
in the data structure associated with msqid in order to perform this
operation.

Returns the current mtype value and post increments the mtype value.
The mtype value is not allowed to become negative. The mtype value is
returned in *buf, which is assumed to be a pointer to a long integer. For
further information on use of the IPC-MTYP cmd, see the discussion of
bidirectional queues in “System Calls” of AIX Operating System
Programming Tools and Interfaces.

System Calls 2-74.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

msgctl

Return Value

Upon successful completion, a value of 0 is returned. If the msgetl system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The msgctl system call fails if one or more of the following are true:

EINVAL
EINVAL
EACCES

EPERM

EPERM

EFAULT

msqid is not a valid message queue identifier.
cmd is not a valid command.

cmd is equal to IPC_STAT and read permission is denied to the calling
process.

cmd is equal to IPC_RMID, IPC_SET, or IPC_RMID2 and the effective
user ID of the calling process (translated for a remote queue) is not equal to
that of superuser, nor is it equal to the value of msg_perm.uid in the data
structure associated with msqid.

cmd is equal to IPC_SET, an attempt is being made to increase to the value
of msg_qbytes, and the effective user ID of the calling process is not equal
to that of superuser.

The buf parameter points to a location outside of the process’s allocated
address space.

If Distributed Services is installed on your system, msgctl can also fail if one or more of
the following are true:

EINVAL

ESTALE

EDIST
EDIST
EDIST

EAGAIN
EPERM

ENOMEM

The cmd specified was IPC-RMID2, but msqid does not identify a
remote queue.

The current boot count of the server is the same as when the msqid
was obtained.

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

Either this node or the server does not have enough memory available
to service the request.

2-74.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

msgctl
| ENOCONNECT An attempt to establish a new network connection with a remote node
| failed.
| EBADCONNECT An attempt to use an existing network connection with a remote node
I failed.

Related Information

In this book: “msgget” on page 2-76, “msgrcv” on page 2-79, “msgsnd” on page 2-82,
“msgxrcv” on page 2-85,“create_ipc—prof” on page 3-40.2 , “del_ipc—prof” on page 3-64.1,
and “find_ipc—prof” on page 3-166.1.

Managing the AIX Operating System.
AIX Operating System Programming Tools and Interfaces.

System Calls 2-75

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgget

msgget

Purpose

Gets a message queue identifier.

Syntax

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key-t key;
int msgflg;

Description

The msgget system call returns the message queue identifier associated with the specified
key. The key parameter is either the value IPC_.PRIVATE or an IPC key constructed by
the ftok subroutine (or by a similar algorithm). See “ftok” on page 3-198 for details about
this subroutine.

If Distributed Services is installed on your system, the msgget system call provides access
to both local and remote queues.

The msgflg parameter is constructed by logically OR-ing one or more of the following
values:

IPC_CREAT Creates the data structure if it does not already exist.
IPC_EXCL Causes the msgget system call to fail if IPC_CREAT is also set and the
data structure already exists.

S_IRUSR Permits the process that owns the data structure to read it.
S_IWUSR Permits the process that owns the data structure to modify it.
S_IRGRP Permits the group associated with the data structure to read it.
S_IWGRP Permits the group associated with the data structure to modify it.
S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

The values that begin with S_I- are defined in the sys/stat.h header file and are a subset
of the access permissions that apply to files.

2-76 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgget

A message queue identifier and associated message queue and data structure are created
for the value of the key parameter if one of the following are true:

® key is equal to IPC_PRIVATE.

® key does not already have a message queue identifier associated with it, and
IPC_CREAT is set.

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

e msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

® The low-order nine bits of msg_perm.mode are set equal to the low-order nine bits of
the msgflg parameter.

¢ msg_gnum, msg-lspid, msg_Irpid, msg_stime, and msg_rtime are set equal to 0.
e msg_ctime is set equal to the current time.

e msg_gbytes is set equal to the system limit.

The msgget system call performs the following actions:

1. First, msgget looks in the IPC key mapping tables for key.

2. If the tables do not have an entry for key, then msgget either finds or creates
(depending on the value of msgfig) a local queue with key.

3. If the tables indicate that key has been mapped to a new key at a remote node and you
have installed Distributed Services, then msgget:

e Allocates a local header for the remote queue.
® Queries the remote node to find or create a queue with the indicated key.

e Installs the information (handle, boot count, and so on) returned by the remote
node into the local header.

4. Finally, msgget returns the ID of the local queue header to its caller.

For an explanation of how to set up local to remote key mappings, see the dstables
command in AIX Operating System Commands Reference.

Return Value

Upon successful completion, a message queue identifier is returned. If the msgget system
call fails, a value of -1 is returned and errno is set to indicate the error.

System Calls 2-77

TNL SN20-9855 (26 June 1987) to SC23-0808-0

msgget

Diagnostics

The msgget system call fails if one or more of the following are true:

EACCES A message queue identifier exists for the key parameter but operation
permission as specified by the low-order nine bits of the msgflg parameter
would not be granted.

ENOENT A message queue identifier does not exist for the key parameter and
IPC_CREAT is not set.

ENOSPC A message queue identifier is to be created but the system imposed limit on
the maximum number of allowed message queue identifiers system wide
would be exceeded.

EEXIST A message queue identifier exists for key, and both IPC_.CREAT and
IPC_EXCL are set.

If Distributed Services is installed on your system, msgget can also fail if one or more of
the following are true:

EDIST
EDIST
EDIST

EAGAIN
ENOMEM

EPERM

ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.

Either this node or the server does not have enough memory available
to service the request.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “msgct]l” on page 2-73, “msgrev” on page 2-79, “msgsnd” on page 2-82,
“msgxrev” on page 2-85, and “ftok” on page 3-198.

The dstables command in AIX Operating System Commands Reference.

2-78 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgrcv

msgrcv

Purpose

Reads a message from a queue.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz;

long msgtyp;

int msgflg;

Description

The msgrcv system call reads a message from the queue specified by the msqid parameter
and stores it into the structure pointed to by the msgp parameter. The current process
must have read permission in order to perform this operation. The msgbuf structure is
defined in the sys/msg.h header file, and it contains the following members:

long mtype; /* Message type */
char mtext[1l]; /* Beginning of message text */

The mtype field contains the type of the received message as specified by the sending
process. mtext is the text of the message. If Distributed Services is installed on your
system, messages can be received from either local or remote queues (see “msgsnd” on
page 2-82).

The msgsz parameter specifies the size of mtext in bytes. The received message is
truncated to the size specified by the msgsz parameter if it is longer than the size specified
by the msgsz parameter and if MSG_NOERROR is set in msgflg. The truncated part of
the message is lost and no indication of the truncation is given to the calling process. If
the message is longer than msgsz bytes and MSG_NOERROR is not set, then the msgrev
system call fails and sets errno to E2BIG.

The msgtyp parameter specifies the type of message requested as follows:

e If the msgtyp parameter is equal to 0, the first message on the queue is received.

System Calls 2-79

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgrcv

o If the msgtyp parameter is greater than 0, the first message of the type specified by the
msgtyp parameter is received.

o If the msgtyp parameter is less than 0, the first message of the lowest type that is less
-.than or equal to the absolute value of the msgityp parameter is received.

The msgfig parameter is either 0, or is constructed by logically OR-ing one or more of the
following values:

MSG_NOERROR Truncates the message if it is longer than msgsz bytes.

IPC_NOWAIT Specifies the action to take if a message of the desired type is not on
the queue:

o IfIPC_NOWALIT is set, then the calling process returns a value
of -1 and sets errno to ENOMSG.

e IfTPC_NOWAIT is not set, then the calling process suspends
execution until one of the following occurs:

— A message of the desired type is placed on the queue.

— The message queue identifier specified by the msqid parameter
is removed from the system. When this occurs, errno is set to
EIDRM, and a value of -1 is returned.

— The calling process receives a signal that is to be caught. In
this case, a message is not received and the calling process
resumes in the manner described in “signal” on page 2-145.

Return Value

Upon successful completion, msgrev returns a value equal to the number of bytes actually
stored into mtext and the following actions are taken with respect to the data structure
associated with the msqid parameter:

® msg_gnum is decremented by 1.
o msg_lrpid is set equal to the process ID of the calling process.
® msg_rtime is set equal to the current time.

If the msgrev system call fails, a value of -1 is returned and errno is set to indicate the
error.

2-80 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgrcv

Diagnostics

The msgrev system call fails if one or more of the following are true:

EINVAL
EACCES
EINVAL
E2BIG
ENOMSG

EFAULT

EINTR
EIDRM

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

msgsz is less than 0.

mtext is greater than msgsz and MSG_-NOERROR is not set.

The queue does not contain a message of the desired type and
IPC_NOWAIT is set.

The msgp parameter points to a location outside of the process’s allocated
address space.

msgrcev received a signal.

The message queue identifier specified by msqid has been removed from the
system.

If Distributed Services is installed on your system, msgrev can also fail if one or more of
the following are true:

ESTALE

EDIST
EDIST
EDIST

EAGAIN
EPERM

ENOMEM

The current boot count of the server is the same as when the msqid
was obtained.

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node

failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

failed.

System Calls 2-80.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgrcv

Related Information

In this book: “msgctl” on page 2-73, “msgget” on page 2-76, “msgsnd” on page 2-82,
“msgxrcv” on page 2-85, and “signal” on page 2-145.

2-80.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgrcv

System Calls 2-81

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgsnd

msgsnd

Purpose

Sends a message.

Syntax

#include <sys/types.h>
#include <sys/ipc.h >
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

Description

The msgsnd system call sends a message to the queue specified by the msqid parameter. If
Distributed Services is installed on your system, this queue can reside on another node.
The current process must have write permission in order to perform this operation. The
msgp parameter points to a msgbuf structure containing the message. The msgbuf
structure is defined in the sys/msg.h header file, and it contains the following members:

long mtype; /* Message type */
char mtext[1l]; /* Beginning of message text */

The mtype parameter is a positive integer that is used by the receiving process for message
selection. The mtext parameter is any text of the length in bytes specified by the msgsz
parameter. The msgsz parameter can range from 0 to a system-imposed maximum.

If msqid identifies a queue header that is a local key for a remote queue, then the message
is sent to the message queue at the remote node.

The msgflg parameter specifies the action to be taken if the message cannot be sent for one
of the following reasons:

o The number of bytes already on the queue is equal to msg_gbytes.

e The total number of messages on all queues system-wide is equal to a system-imposed
limit.

2-82 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgsnd

These actions are as follows:

o If msgfig is set to IPC_LNOWALIT, then the message is not sent, and msgsnd returns a
value of -1 and sets errno to EAGAIN.

o If msgfig is 0, then the calling process suspends execution until one of the following
occurs:

— The condition responsible for the suspension no longer exists, in which case the
message is sent.

— msqid is removed from the system. (For information on how to remove msqid, see
“msgct]l” on page 2-73.) When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

— The calling process receives a signal that is to be caught. In this case the message
is not sent and the calling process resumes execution in the manner prescribed in
“signal” on page 2-145.

Return Value
Upon successful completion, a value of 0 is returned and the following actions are taken

with respect to the data structure associated with the msqid parameter:

¢ msg_gnum is incremented by 1.
o msg-lspid is set equal to the process ID of the calling process.
e msg_stime is set equal to the current time.

If the msgsnd system call fails, a value of -1 is returned and errno is set to indicate the

error.

Diagnostics
’tI‘he msgsnd system call fails and no message is sent if one or more of the following are
rue:
EINVAL The msqid parameter is not a valid message queue identifier.

EACCES Operation permission is denied to the calling process.
EINVAL mtype is less than 1.

EAGAIN The message cannot be sent for one of the reasons stated previously, and
msgflg is set to IPC_NOWAIT.

EINVAL The msgsz parameter is less than 0 or greater than the system-imposed limit.

EFAULT The msgp parameter points to a location outside of the process’s allocated
address space.

System Calls 2-83

TNL SN20-9855 (26 June 1987) to SC23-0808-0

msgsnd
EINTR msgsnd received a signal.
EIDRM The message queue identifier specified by msqid has been removed from the

system.

If Distributed Services is installed on your system, msgsnd can also fail if one or more of
the following are true:

ESTALE

EDIST
EDIST
EDIST

EAGAIN
EPERM

ENOMEM

ENOCONNECT

EBADCONNECT

The current boot count of the server is the same as when the msqid
was obtained.

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “msgctl” on page 2-73, “msgget” on page 2-76, “msgrcv” on page 2-79,
“msgxrcv” on page 2-85, and “signal” on page 2-145.

2-84 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgxrcv

msgxrcv

Purpose

Receives an extended message.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgxrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgxbuf *msgp;

int msgsz, msgflg;

long msgtyp;

Description

The msgxrev system call reads a message from the queue specified by the msqid parameter
and stores it into the extended message receive buffer pointed to by the msgp parameter.
The current process must have read permission in order to perform this operation. The
msgxbuf structure is defined in the sys/msg.h header file, and it contains the following

members:
time_t mtime; /* Time and date message was sent */
short muid; /* Sender's effective user ID */
short mgid; /* Sender's effective group ID */
long mnid; /* Sender's node ID */
short mpid; /* Sender's process ID */
long mtype; /* Message type */
char mtext[1]; /* Beginning of message text */

The msgsz parameter specifies the size of mtext in bytes. The receive message is
truncated to the size specified by the msgsz parameter if it is larger than the msgsz
parameter and MSG_NOERROR is true. The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

The msgsz parameter specifies the size of mtext in bytes. The received message is
truncated to the size specified by the msgsz parameter if it is larger than the size specified
by the msgsz parameter and if MSG_NOERROR is set in msgflg. The truncated part of

System Calls 2-85

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgxrcv

the message is lost and no indication of the truncation is given to the calling process. If
the message is longer than msgsz bytes and MSG_NOERROR is not set, then the msgrcv
system call fails and sets errno to E2BIG.

The msgtyp parameter specifies the type of message requested as follows:
e If the msgtyp parameter is equal to 0, the first message on the queue is received.

o If the msgtyp parameter is greater than 0, the first message of the type specified by the
msgtyp parameter is received.

e If the msgtyp parameter is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of the msgtyp parameter is received.

The msgflg parameter is either 0, or is constructed by logically OR-ing one or more of the
following values:

MSG_NOERROR Truncates the message if it is longer than msgsz bytes.

IPC_NOWAIT Specifies the action to take if a message of the desired type is not on
the queue:

o If IPC_NOWALIT is set, then the calling process returns a value
of -1 and sets errno to ENOMSG.

e If IPC_NOWALIT is not set, then the calling process suspends
execution until one of the following occurs:

— A message of the desired type is placed on the queue.

— The message queue identifier specified by the msqid parameter
is removed from the system. When this occurs, errno is set to
EIDRM, and a value of -1 is returned.

— The calling process receives a signal that is to be caught. In
this case, a message is not received and the calling process
resumes in the manner prescribed in “signal” on page 2-145.

If Distributed Services is installed on your system, the msgxrcv call works with both local
and remote queues.

Return Value

2-86

Upon successful completion, msgxrcv returns a value equal to the number of bytes
actually stored into mtext, and the following actions are taken with respect to the data
structure associated with the msqid parameter:

e msg_gnum is decremented by 1.
e msg_Irpid is set equal to the process ID of the calling process.
e msg_rtime is set equal to the current time.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgxrcv

If the msgxrev system call fails, a value of -1 is returned and errno is set to indicate the

error.

Diagnostics

The msgxrcv system call fails if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

EACCES Operation permission is denied to the calling process.
EINVAL msgsz is less than 0.
E2BIG mtext is greater than msgsz and MSG_-NOERROR is not set.

ENOMSG The queue does not contain a message of the desired type and
IPC_NOWALIT is set.

EFAULT The msgp parameter points to a location outside of the process’s allocated
address space.

EINTR msgxrcv received a signal.

EIDRM The message queue identifier specified by msqid is removed from the system.

If Distributed Services is installed on your system, msgxrev can also fail if one or more of
the following are true:

ESTALE

EDIST
EDIST
EDIST

EAGAIN
EPERM

ENOMEM

ENOCONNECT

EBADCONNECT

The current boot count of the server is the same as when the msqid
was obtained.

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

System Calls 2-86.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgxrcv

Related Information

In this book: “msgctl” on page 2-73, “msgget” on page 2-76, and “msgrcv” on page 2-79.

2-86.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
msgxrcv

System Calls 2-87

TNL SN20-9855 (26 June 1987) to SC23-0808-0
nice

nice

Purpose

Changes the priority of a process.

Syntax

int nice (incr)
int incr;

Description

The nice system call adds the value of the incr parameter to the nice value of the calling
process. A process’s nice value is a positive number that determines that process’s CPU
priority. A higher number results in a lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. If
incr causes the nice value to fall outside this range, then nice sets the nice value to the
corresponding limit.

Return Value

Upon successful completion, the new nice value minus 20 is returned. If nice fails, a value
of -1 is returned and errno is set to indicate the error.

Diagnostics

The nice system call fails and the nice value is not changed if:

EPERM The incr parameter is negative or the resulting nice value would be greater
than 40, and the effective user ID of the calling process is not superuser.

2-88 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
nice

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34.

The nice command in AIX Operating System Commands Reference.

System Calls 2-89

TNL SN20-9855 (26 June 1987) to SC23-0808-0
open

open

Purpose

Opens a file for reading or writing.

Syntax
#include <fentl.h >

int open (path, oflag [, mode])
char *path;
int oflag, mode;

Description
The open system call opens a file descriptor for the file named by the path parameter. If
Distributed Services is installed on your system, this path can cross into another node.
Note: Distributed Services does not support remote pipes or special files.

The file status flags are set according to the value of the oflag parameter. The oflag
parameter values are constructed by logically OR-ing flags from the following list:

Note: Do not use O_RDONLY, O_-WRONLY, or O_RDWR together.

O_-RDONLY Open for reading only.

O-WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY Open with no delay. This flag may affect subsequent reads and writes.
When opening a FIFO with O_RDONLY or O-WRONLY set:

e If O_NDELAY is set, an open for reading-only returns without delay.
An open for writing-only returns an error if no process currently has
the file open for reading.

e If O_NDELAY is clear, an open for reading-only blocks until a
process opens the file for writing. An open for writing-only blocks
until a process opens the file for reading.

When opening a file associated with a communication line:

e If O_NDELAY is set, the open returns without waiting for carrier.

2-90 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
open

o If O_NDELAY is clear, the open blocks until carrier is present.
When opening a regular file that supports enforced record locks:

o If O_NDELAY is set, then reads and writes to portions of the file that
are locked by other processes return an error.

e If O_NDELAY is clear, then reads and writes to portions of the file
that are locked by other processes blocks until the locks are released.

O_APPEND If set, the file pointer is set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect. If the file does not exist, then the
file’s owner ID is set to the process’s effective user ID, the file’s group ID
is set to the process’s effective group ID, and the low-order 12 bits of the
file mode are set to the value of the mode parameter modified as follows:

e All bits set in the process’s file mode creation mask are cleared. (For
information about the creation mask, see “umask” on page 2-169.)

e The S_ISVTX bit of the mode, which saves the text image after
execution, is cleared.

For information about file modes and a list of the mode values, see
“chmod” on page 2-18 and “stat.h” on page 5-69.)

O-TRUNC If the file exists, then its length is truncated to 0, and the mode and owner
are unchanged. If the file has any outstanding record locks, then open
fails and the file remains unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open fails if the file exists.

The file pointer used to mark the current position within the file is set to the beginning of
the file.

The new file descriptor is set to remain open across exec system calls (see “fentl” on
page 2-44).

No process can have more than 200 file descriptors open simultaneously.

Return Value

Upon successful completion, the file descriptor, a nonnegative integer, is returned. If open
fails, a value of -1 is returned and errno is set to indicate the error.

System Calls 2-91

TNL SN20-9855 (26 June 1987) to SC23-0808-0

open
Diagnostics

The open system call fails, and the named file is not opened if one or more of the following

are true:

ENOTDIR A component of the path prefix is not a directory.

ENOENT O-CREAT is not set and the named file does not exist.

EACCES A component of the path prefix denies search permission.

EACCES The type of access specified by the oflag parameter is denied for the named
file.

EISDIR The named file is a directory and the oflag parameter is write or read/write.

EROFS The named file resides on a read-only file system and the oflag parameter is
write or read/write.

EMFILE Two hundred (200) file descriptors are currently open.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist.

ENXIO The named file is a multiplexed special file and either the channel number is
outside of the valid range, or no more channels are available.

ENXIO The special file or named pipe resides in a remote node.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and the
oflag parameter is write or read/write.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

EEXIST O_CREAT and O_EXCL are set, and the named file exists.

ENXIO O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading.

EAGAIN O-TRUNC is set, and the named file contains a record lock owned by
another process. See “lockf” on page 2-64 for information about record
locks.

EINTR A signal was caught during the open system call.

ENFILE The system file table is full. ;

ENOSPC The directory that would contain the new file cannot be extended.

ESTALE The process’s root or current directory is located in a virtual file system that

2-92

has been unmounted.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
open

If Distributed Services is installed on your system, open can also fail if one or more of the
following are true:

EINVAL The path parameter identifies a remote file that is neither a directory
nor a regular file.

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “chmod” on page 2-18, “close” on page 2-25, “creat” on page 2-27, “dup” on
page 2-32, “fentl” on page 2-44, “lockf” on page 2-64, “Iseek” on page 2-67, “mknod” on
page 2-69, “read, readx” on page 2-106, “umask” on page 2-169, “write, writex” on

page 2-184, “stat.h” on page 5-69, and Appendix C, “Writing Device Drivers.”

System Calls 2-93

TNL SN20-9855 (26 June 1987) to SC23-0808-0
pause

pause

Purpose

Suspends a process until a signal is received.

Syntax

int pause ()

Description

The pause system call suspends the calling process until it receives a signal. The signal
must not be one that is ignored by the calling process. pause does not affect the action
taken upon the receipt of a signal.

If the signal received causes the calling process to terminate, then the pause system call
does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function, then the calling process resumes execution from the point of
suspension; the pause system call returns a value of -1 and sets errno to EINTR. (For
information about signal-catching functions, see “signal” on page 2-145.)

Related Information

In this book: “alarm” on page 2-13, “kill” on page 2-60, “signal” on page 2-145, and “wait”
on page 2-182.

2-94 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
pipe

pipe

Purpose

Creates an interprocess channel.

Syntax

int pipe (fildes)
int fildes[2];

Description

The pipe system call creates an interprocess channel called a pipe and returns two file
descriptors, fildes[0] and fildes[1]. The fildes[0] file descriptor is opened for reading and
fildes[1] is opened for writing.

A read on file descriptor fildes[0] accesses the data written to fildes{1] on a first-in-first-out
basis.

When writing, at least 5,120 bytes of data are buffered by the pipe before the writing
process is blocked.

Warning: The actions of the pipe system call are undefined if the fildes
parameter points to a location outside of the process’s allocated address
space.

Return Value

Upon successful completion, a value of 0 is returned. If pipe fails, a value of -1 is returned
and errno is set to indicate the error.

Diagnostics

The pipe system call fails if one or more the following are true:
EMFILE 199 or more file descriptors are already open.
ENFILE The system file table is full.

System Calls 2-95

TNL SN20-9855 (26 June 1987) to SC23-0808-0
pipe

Related Information

In this book: “read, readx” on page 2-106, “select” on page 2-111, and “write, writex” on
page 2-184.

The sh command in AIX Operating System Commands Reference.

2-96 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
plock

plock

Purpose

Locks the process, text, or data in memory.

Syntax
#include <sys/lock.h>

int plock (op)
int op;

Description

The plock system call allows the calling process to lock or unlock its text segment (text
lock), its data segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are pinned in memory and are immune to all routine paging.
The effective user ID of the calling process must be superuser to use this call.

The op parameter specifies one of the following operations:

PROCLOCK Locks text and data segments into memory (process lock).
TXTLOCK Locks text segment into memory (text lock).

DATLOCK Locks data segment into memory (data lock).

UNLOCK Removes locks.

Return Value

Upon successful completion, a value of 0 is returned to the calling process. If plock fails,
a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The plock system call fails if one or more of the following are true:
EPERM The effective user ID of the calling process is not superuser.

EINVAL The op parameter has a value other than PROCLOCK, TXTLOCK,
DATLOCK, or UNLOCK.

System Calls 2-97

TNL SN20-9855 (26 June 1987) to SC23-0808-0
plock

EINVAL op is equal to PROCLOCK and a process lock, a text lock, or a data lock
already exists on the calling process.

EINVAL op is equal to TXTLOCK and a text lock, or a process lock already exists on
the calling process.

EINVAL op is equal to DATLOCK and data lock, or a process lock already exists on
the calling process.

EINVAL op is equal to UNLOCK and no type of lock exists on the calling process.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,
—exit” on page 2-40, and “fork” on page 2-46.

2-98 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
profil

profil

Purpose

Starts and stops execution profiling.

Syntax
#include <mon.h >

void profil (shortbuff, bufsiz, offset, scale)
void profil (profbuff, -1, 0, 0)

short *shortbuff;
struct prof *profbuff;
unsigned int bufsiz, offset, scale;

Description

The profil system call arranges to record a histogram of periodically sampled values of the
calling process’s program counter.

If the bufsiz parameter has any value but -1, then the parameters to profil are interpreted
as shown in the first syntax definition. The shortbuff parameter points to an area of
memory, and its length (in bytes) is given by the bufsiz parameter.

After this call, the user’s program counter (pc) is examined 60 times a second. The value of
the offset parameter is subtracted from the pc, and the result is multiplied by the value of
the scale parameter. If the resulting number is less than bufsiz + sizeof(short), then the
corresponding short inside shortbuff is incremented.

The least significant 16 bits of the scale parameter are interpreted as an unsigned,
fixed-point fraction with a binary point at the left. The most significant 16 bits of scale are
ignored. For example:

System Calls 2-99

TNL SN20-9855 (26 June 1987) to SC23-0808-0

profil

Octal Hex Meaning

0177777 OxFFFF Maps approximately each pair of bytes in the instruction space to a
unique short in shortbuff.
077777 0x7FFF Maps approximately every four bytes to a short in shortbuff.

01 0x0001 Maps all instructions to the first short in shortbuff, producing a
noninterrupting core clock.
0 0x0000 Turns profiling off.

Mapping each byte of the instruction space to an individual short in shortbuff is not
possible.

If the second parameter (bufsize) has the value -1, then the parameters to profil are
interpreted as shown in the second syntax definition. In this case, the offset and scale
parameters are ignored, and profbuff points to an array of prof structures. The prof
structure is defined in the mon.h header file, and it contains the following members:

daddr_t p-low;

daddr_t p_high;

short_t *p_buff;

int_t p-bufsize;

int_t p-scale;
If the p—-scale member has the value -1, then a value for it is computed based on p-low,
p-high, and p_bufsize; otherwise p_scale is interpreted like the scale argument in the
first synopsis. The p-high members in successive structures must be in ascending

sequence. The array of structures is terminated with a structure containing a p-high
member set to zero.

Profiling is turned off:

e If the value of the scale parameter is 0.

e When an exec system call is executed

e If updating the buffer pointed to by the shortbuff or profbuff parameter would cause a
memory fault.

Profiling is rendered ineffective by giving a value of O for the bufsiz parameter.

Profiling remains on in both the child process and the parent process after a fork system
call.

2-100 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
profil

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “fork” on
page 2-46, and “monitor” on page 3-248.

The cc and prof commands in AIX Operating System Commands Reference.

System Calls 2-101

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ptrace

ptrace

Purpose

Traces the execution of a child process.

Syntax

#include <sys/reg.h>

int ptrace (request, pid, addr, data, buff)
int request, pid, *addr, data, *buff;

Description

The ptrace system call allows a parent process to control the execution of a child process.
ptrace is primarily used by utility programs to implement breakpoint debugging. The sdb
command described in AIX Operating System Commands Reference is such a debugging
utility.

The child process behaves normally until it encounters a signal, at which time it enters a
stopped state and its parent process is notified with the wait system call. When the child
process is in the stopped state, its parent process can examine and modify its memory
image using the ptrace system call. Also, the parent process can cause the child process
to either terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request parameter determines the action to be taken by the ptrace system call and is
one of the following:

0 This request must be issued by the child process that is to be traced by its parent.
This request sets the child’s trace flag that causes the child to be left in a stopped
state upon receipt of a signal, rather than the state specified by the func parameter
of the signal system call. The pid, addr, and data parameters are ignored, and a
return value is not defined for this request. Do not issue this request if the parent
does not expect to trace the child.

Note: The remainder of the requests can only be used by the parent process. For each
request, the pid parameter is the process ID of the child. The child must be in a stopped
state before these requests are made.

2-102 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ptrace

1,2

4,5

These requests return the int in the child’s address space at the location pointed to
by the addr parameter. Either request 1 or request 2 can be used with with equal
results. The data parameter is ignored. These requests fail if the value of the addr
parameter is not in the address space of the child process, in which case a value of -1
is returned, and the parent’s errno is set to EIO.

This request returns the int from the child’s user area of the system’s address space
that is located at the offset given by the addr parameter. (For information about the
user area, see the sys/user.h header file.) The value of the addr parameter must be
in the range 0 to ctob(USIZE), and it is rounded down to the the next int (word)
boundary. (ctob and USIZE are defined by including the sys/param.h header file.)
The data parameter is ignored. This request fails if the addr parameter is outside
the user area, in which case a value of -1 is returned to the parent process and the
parent process’s errno is set to EIO.

These requests write the value of the data parameter into the address space of the
child process at the int pointed to by the addr parameter. Either request 4 or
request 5 can be used with equal results. Upon successful completion, the value
written into the address space of the child process is returned to the parent process.
These requests fail if the addr parameter points to a location in a pure procedure
space and a copy cannot be made. They also fail if the addr is out of range. Upon
failure, a value of -1 is returned to the parent process and the parent process’s errno
is set to EIO.

This request writes the value of the data parameter into the child’s user area of the
system’s address space at the int specified by the addr parameter. The value of the
addr parameter is rounded down to the the next int (word) boundary. The following
values for addr are defined in the sys/reg.h header file, and they identify the only
entries that can be modified:

R0—R15 General Purpose Registers 0—15

IAR Instruction Address Register
MQ Multiply/Quotient Register
CS Condition Status Register.

This request causes the child process to resume execution. If the data parameter is
0, all pending signals, including the one that caused the child process to stop, are
canceled before the child process resumes execution. If the data parameter is a valid
signal number, the child process resumes execution as if it had received that signal.
Any other pending signals are canceled. The addr parameter must be equal to 1 for
this request. Upon successful completion, the value of the data parameter is
returned to the parent process. This request fails if the data parameter is not 0 or a
valid signal number, in which case a value of -1 is returned to the parent process and
the parent process’s errno is set to EIO.

This request causes the child process to terminate the same way it would with an
exit system call.

System Calls 2-103

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ptrace

11

12

14

15

17

19

This request returns the contents of one of the general-purpose registers of the child
process. The addr parameter specifies which of the sixteen 32-bit registers is to be
returned. The data and buff parameters are ignored. This request fails if the value
of the addr parameter is not between 0 and 15 inclusive. In this case, ptrace returns
the value -1 and sets the parent’s errno to EIO.

This request stores the value of a floating-point register into the location pointed to
by the addr parameter. The data parameter specifies which floating-point register,
and it must be a value in the range from 0 to 7, excluding 6. Registers 0 through 5
are eight bytes long, and the status register (register 7) is four bytes long.

This request stores the value of the data parameter in one of the child process’s
general-purpose registers. The addr parameter specifies the register to be modified.
The buff parameter is ignored. Upon successful completion, the value of data is
returned to the parent process. This request fails if the value of the addr parameter
is not between 0 and 15 inclusive. In this case, ptrace returns the value -1 and sets
the parent’s errno to EIO.

This request sets the floating-point register specified by the data parameter to the
value pointed to by the addr parameter. The data parameter must be a value in the
range from 0 to 7, excluding 6. Registers 0 through 5 are eight bytes long, and the
status register (register 7) is four bytes long.

This request reads a block of data from the child process’s address space. The addr
parameter points to the block of data in the child’s address space and the data
parameter gives its length in bytes. The value of the data parameter must not be
greater than 1024. The buff parameter points to the location in the parent’s address
space into which the data is to be copied. Upon successful completion, ptrace
returns the value of the date parameter. If an error occurs, ptrace returns -1 and
sets the parent’s errno to indicate the error. This request fails when one or more of
the following are true:

EINVAL The data parameter is less than 1 or greater than 1024,

EIO The addr parameter is not a valid pointer into the child process’s
address space.

EFAULT The buff parameter does not point to a writable location in the parent
process’s address space.

This request writes a block of data into the child process’s address space. The addr
parameter points to the location in the child’s address space to be written into. The
data parameter gives the length of the block in bytes, and it must not be greater
than 1024. The buff parameter points to the data in the parent’s address space to be
copied. Upon successful completion, the value of data is returned to the parent. If
an error occurs, ptrace returns -1 and sets the parent’s errno to indicate the error.

2-104 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ptrace
This request fails when one or more of the following are true:
EINVAL The data parameter is less than 1 or greater than 1024.
EIO The addr parameter is not a valid pointer into the child process’s

address space.

EFAULT The buff parameter does not point to a readable location in the parent
process’s address space.

As a security measure, the ptrace system call inhibits the set-user-ID facility on
subsequent exec system calls.

If a traced process initiates an exec system call, it stops before executing the first
instruction of the new image and shows the signal SIGTRAP.

Diagnostics
In general, the ptrace system call fails if one or more of the following are true:
EIO The request parameter is not one of the values listed.
ESRCH The pid parameter identifies a child process that does not exist or has not

executed a ptrace system call with request 0.

Related Information
In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “signal” on
page 2-145, and “wait” on page 2-182.
The sdb command in AIX Operating System Commands Reference.

System Calls 2-105

TNL SN20-9855 (26 June 1987) to SC23-0808-0
read, . . .

read, readx

Purpose

Reads from file.

Syntax
int read (fildes, buf, nbyte) int readx (fildes, buf, nbyte, ext)
int fildes; int fildes, ext;
char *buf; char *buf;
unsigned int nbyte; unsigned int nbyte;
Description

The read system call reads a set number of bytes into a buffer. The read system call reads
the number of bytes set by the nbyte parameter from the file associated with the fildes
parameter and places those bytes into the buffer pointed to by the buf parameter. If
Distributed Services is installed on your system, this file can reside on another node.

The fildes parameter is a file descriptor obtained from a creat, open, dup, fentl, or pipe
system call.

On devices capable of seeking, the read starts at a position in the file given by the file
pointer associated with the fildes parameter. Upon return from the read system call, the
file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of
a file pointer associated with such a file is undefined.

When attempting to read from an empty pipe (or FIFO):
o If O_NDELAY is set, the read returns 0.

e If O_NDELAY is clear, the read blocks until data is written to the file or the file is no
longer open for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

e If O_NDELAY is set, the read returns 0.
e If O_NDELAY is clear, the read blocks until data becomes available.

2-106 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
read, . . .

When attempting to read a regular file that supports enforcement mode record locks, and
all or part of the region to be read is currently locked by another process:

e If O_NDELAY is set, then the read returns -1 and sets errno to EAGAIN.

e If O_NDELAY is clear, then the read blocks the calling process until the lock is
released.

For more information about record locks, see “lockf’ on page 2-64.

If the file has been mapped, the read system call reads from a mapped file segment. If the
fildes file descriptor was used to map the file copy-on-write, then the copy-on-write segment
is used. Otherwise, the read system call reads from the read-write mapped segment for the
file. See “shmat” on page 2-131 for information about mapping files.

The readx system call performs the same function as read, except that it provides
communication with character device drivers that require more information or return more
status than read can handle.

For files, directories, or special files with drivers that do not handle extended operations,
the readx system call does exactly what the read system call does, and the ext parameter
is ignored.

Each driver interprets the ext parameter in a device-dependent way, either as a value or as
a pointer to a communication area. The nonextended read system call is equivalent to the
extended readx system call with an ext parameter value of 0. Drivers must apply
reasonable defaults when the ext parameter value is 0.

Return Value

Upon successful completion, the read and readx system calls return the number of bytes
actually read and placed in the buffer; this number may be less than the value of the nbyte
parameter if the file is associated with a communication line, or if the number of bytes left
in the file is less than the value of the nbyte parameter. A value of 0 is returned when an
end-of-file has been reached. (For information about communication files, see “ioct]” on
page 2-56 and “termio” on page 6-114.) If read or readx fails, a value of -1 is returned and
errno is set to indicate the error.

Diagnostics

The read and readx system calls fail if one or more of the following are true:
EBADF fildes is not a valid file descriptor open for reading.

EAGAIN An enforcement mode record lock is outstanding in the portion of the file
that is to be read.

EFAULT buf points to a location outside of the process’s allocated address space.

System Calls 2-107

TNL SN20-9855 (26 June 1987) to SC23-0808-0
read, . . .

EDEADLK A deadlock would occur if the calling process were to sleep until the region
to be read was unlocked.

EINTR A signal was caught during the read system call.

If Distributed Services is installed on your system, read or readx can also fail if one or
more of the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information
In this book: “creat” on page 2-27, “dup” on page 2-32, “fcntl” on page 2-44, “ioctl” on

page 2-56, “lockf” on page 2-64, “open” on page 2-90, “pipe” on page 2-95, “termio” on
page 6-114, and Appendix C, “Writing Device Drivers.”

2-108 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
reboot

reboot

Purpose

Restarts the current virtual machine.

Syntax
int reboot (dev) int reboot ((char *) 0)
char *dev;
int reboot ("VRM")
Description

The reboot system call restarts (re-IPLs) the current virtual machine from the block
special file specified by the dev parameter. If the dev parameter is 0, the root device is
assumed. The reboot is automatic and brings up /unix in the normal, nonmaintenance
mode.

If the dev parameter is the character string "VRM", then Virtual Resource Manager is also
restarted.

The effective user ID of the calling process must be superuser for this call to complete.

Warning: The reboot system call does not perform a synec operation or
write pending output to disk. File systems may be damaged if reboot is
invoked without first assuring that all disk output has completed.

Return Value

Upon successful completion, the reboot system call does not return. If the reboot system
call fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The reboot system call fails if one or more of the following are true:
EPERM The effective user ID of the calling process is not superuser.
ENOENT The specified special file does not exist.

ENOTBLK The dev parameter does not point to a block device file.

System Calls 2-109

TNL SN20-9855 (26 June 1987) to 8023-0808-0

reboot
| ENXIO The device associated with the dev parameter does not exist or is a remote
| file.
EFAULT The dev parameter points to a location outside of the process’s allocated

address space.

Related Information

In this book: “iplvm, waitvm” on page 2-58 and “sync” on page 2-163.

The shutdown command in AIX Operating System Commands Reference.

2-110 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
rename

jrename

|Purpose

l Renames a directory or a file within a filesystem.

|Syntax

| int rename (frompath, topath)
| char *frompath, *topath;

| Description

The rename system call renames a directory or a file within a filesystem. The frompath
and fopath parameters must both be either files or directories and must reside on the same
node. If Distributed Services is installed on your system, this node can be remote.

|
l
I
| For rename to execute successfully, the calling process must have write permission to the
| parent directories of both frompath and topath, to frompath, and to topath, if it already

| exists.

|

|

I

The file or directory named by frompath cannot contain the file or directory named by
topath. If topath is an existing file or empty directory, it is replaced by frompath. If topath
is a nonempty directory, rename exits with an error.

| Return Value

| Upon successful completion, the rename system call returns a value of 0. If the rename
| system call fails, a value of -1 is returned, and errno is set to indicate the error.

| Diagnostics

The rename system call fails and the file or directory name remains unchanged if one or
more of the following are true:

directory and topath names a nondirectory.

EISDIR The topath parameter names a directory and the frompath parameter names

l
|
| ENOTDIR A component of either path prefix is not a directory or frompath names a
|
|
| a nondirectory.

System Calls 2-110.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

rename

ENOENT A component of either path does not exist or the file named by frompath does
not exist.

EACCES Creating the requested link requires writing in a directory with a mode that
denies write permission.

EACCES Search permission is denied on a component of either frompath or topath.

EXDEV The link named by topath and the file named by frompath are on different
file systems.

EROFS The named file resides on a read-only file system.

EFAULT Either frompath or topath points outside of the process’s allocated address
space.

EINVAL frompath is a parent directory of topath.

EEXIST The topath parameter is an existing nonempty directory.

ESTALE The process’s root or current directory is located in a virtual file system that

has been unmounted.

If Distributed Services is installed on your system, rename can also fail if one or more of
the following are true:

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV

ENOMEM

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node

failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

failed.

2-110.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
rename

| Related Information

| In this book: “chmod” on page 2-18 and “mkdir” on page 2-68.1.

| The chmod, mkdir, and mknod, and mvdir commands in AIX Operating System
I Commands Reference.

System Calls 2-110.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
rmdir

'rmdir

| Purpose

| Removes a directory file.

| Syntax

| rmdir (path)
| char *path;

| Description

| The rmdir system call removes the directory specified by the path parameter. If
| Distributed Services is installed on your system, this path can cross into another node.
| The directory you specify must be empty, and you must have write access to it.

i Return Value

| Upon successful completion, the rmdir system call returns a value of 0. If the rmdir
| system call fails, a value of -1 is returned, and errno is set to indicate the error.

| Diagnostics
The rmdir system call fails and the directory is not deleted if one or more of the following
are true:
EBUSY The directory is in use as either the mount point for a file system or the

|
|
|
| current directory of the process that issued the rmdir.
I EEXIST The directory is not empty.

| ENOTDIR A component of the path is not a directory.

| ENOENT The named file does not exist.

|

l

1

1

EACCES A component of the path denies search permission or write permission is
denied on the directory containing the link to be removed.

EROFS The named file resides on a read-only file system.
EFAULT path points outside of the process’s allocated address space.

2-110.4 AIX Operating System Technical Reference

I
i
1
|
1
|
|
|
|
I
I
I
l
|
l
|
|
|
|
|

TNL SN20-9855 (26 June 1987) to SC23-0808-0
rmdir

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, rmdir can also fail if one or more of the

following are true:
EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV
ENOMEM
ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

| Related Information

In this book: “chmod” on page 2-18, “mkdir” on page 2-68.1, “mknod” on page 2-69,
“rename” on page 2-110.1, and “umask” on page 2-169.

System Calls 2-110.5

TNL SN20-9855 (26 June 1987) to SC23-0808-0
rmdir

2-110.6 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
select

select

Purpose

Checks the I/O status of multiple file descriptors and message queues.

Syntax
#include <sys/select.h >

int select (nfdsmsgs, readlist, writelist, exceptlist, timeout)
int nfdsmsgs;

struct sellist *readlist, *writelist, *exceptlist;

struct timeval *timeout;

Description

The select system call checks the specified file descriptors and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exceptional
condition pending.

Note: The select system call applies only to character devices, pipes, and message
queues. Not all character device drivers support it. See the descriptions of individual
character devices in Chapter 6, “Special Files” for information about whether and how
specific device drivers support select.

The nfdsmsgs parameter specifies the number of file descriptors and the number of message
queues to check. The low-order 16 bits give the length of a bit mask that specifies which
file descriptors to check; the high-order 16 bits give the size of an array that contains
message queue identifiers. If either half of the nfdsmsgs parameter is equal to 0, then the
corresponding bit mask or array is assumed to not be present.

The readlist, writelist, and exceptlist parameters specify what to check for reading, writing,
and exceptions, respectively. Together, they specify the selection criteria. Each of these
parameters points to a sellist structure, which can specify both file descriptors and
message queues. Your program must define the sellist structure in the following form:

struct sellist
int fdsmask[f]; /* file descriptor bit mask */

int msgids{m]; /* message queue identifiers */

b

System Calls 2-111

TNL SN20-9855 (26 June 1987) to SC23-0808-0

select

The fdsmask array is treated as a bit string in which each bit corresponds to a file
descriptor. File descriptor n is represented by the bit (1 < < n) in the array element
fdsmask[rn / BITS(int)]. (The BITS macro is defined in the values.h header file.) Each
bit that is set to 1 indicates that the status of the corresponding file descriptor is to be
checked. Note that the low-order 16 bits of the nfdsmsgs parameter specify the number of
bits (not elements) in the fdsmask array that make up the file descriptor mask. If only
part of the last int is included in the mask, then the appropriate number of low-order bits
are used, and the remaining high-order bits are ignored. If you set the low-order 16 bits of
the nfdsmsgs parameter to 0, then you must not define a fdsmask array in the sellist
structure.

Each int of the msgids array specifies a message queue identifier whose status is to be
checked. Elements with a value of -1 are ignored. The high-order 16 bits of the nfdsmsgs
parameter specify the number of elements in the msgids array. If you set the high-order
16 bits of the nfdsmsgs parameter to 0, then you must not define a msgids array in the
sellist structure.

If the timeout parameter is not a NULL pointer, then it points to a structure that specifies
the maximum length of time to wait for at least one of the selection criteria to be met. The
timeval structure is defined in the sys/select.h header file, and it contains the following
members:

int tv-sec; Seconds
int tv_usec; Microseconds

The number of microseconds specified in timeout.tv—usec, a value from 0 to 999999, is
rounded to the nearest second by the AIX Operating System.

If the timeout parameter is a NULL pointer, then the select system call waits indefinitely,
until at least one of the selection criteria is met. If the timeout parameter points to a
timeval structure that contains zeros, then the file and message queue status is polled,
and the select system call returns immediately.

Note: The arrays specified by readlist, writelist, and exceptlist are the same size because
each of these parameters points to the same sellist structure type. However, you need not
specify the same number of file descriptors or message queues in each. Set the file
descriptor bits that are not of interest to 0, and set the extra elements of the msgids array
to -1.

You can use the SELLIST macro defined in the sys/select.h header file to define the
sellist structure. The format of this macro is:

SELLIST(f, m) declarator . . . ;

where f specifies the size of the fdsmask array, m specifies the size of the msgids array,
and each declarator is the name of a variable to be declared as having this type.

For example, suppose you want to test file descriptors 1, 2, and 35 in addition to five
message queues. On the RT PC, which has 32-bit integers, this requires two ints for the

2-112 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
select

bit mask. Five ints are required to specify the message queue identifiers. The structures
can be defined like this:

SELLIST(2, 5) rd, wr, ex;
This macro expands to:

struct

{
int fdsmask[2];
int msgids[5];
} rd, wr, ex;

Note that the SELLIST macro does not define the structure with a tag (that is, as
struct sellist).

The SELLIST macro cannot be used if you specify either half of the nfdsmsgs parameter
as 0, indicating that one of the arrays is not present. Trying to use SELLIST(0,5), for
example, results in a compiler error from defining an array with a dimension of 0. In this
case, you must define the structure yourself, including only the desired array.

Return Value

Upon successful completion, the select system call returns a value that indicates the total
number of file descriptors and message queues that satisfy the selection criteria. The
fdsmask bit masks are modified so that bits set to 1 indicate file descriptors that meet the
criteria. The msgids arrays are altered so that message queue identifiers that do not meet
the criteria are replaced with a value of -1.

The return value is similar to the nfdsmsgs parameter in that the low-order 16 bits give the
number of file descriptors, and the high-order 16 bits give the number of message queue
identifiers. These values indicate the sum total that meet each of the read, write and
exception criteria. Therefore, the same file descriptor or message queue may be counted up
to three times.

You can use the NFDS and NMSGS macros to separate out these two values from the
return value. If rc contains the value returned from the select system call, then

NFDS(rc) is the number of files selected, and NMSGS (rc) is the number of message queues
selected.

If the select system call fails, then it returns a value of -1 and sets errno to indicate the
error. In this case, the contents of the structures pointed to by the readlist, writelist, and
exceptlist parameters are unpredictable. If the time limit specified by the timeout parameter
expires, then select returns a value of 0.

System Calls 2-113

TNL SN20-9855 (26 June 1987) to SC23-0808-0

select

Diagnostics
The select system call fails if one or more of the following is true:
EBADF An invalid file descriptor or message queue identifier is specified.
EINTR A signal was encountered before any of the selected events occurred, or

before the time limit expired.

EFAULT The readlist, writelist, exceptlist, or timeout parameter points to a location
outside of the process’s allocated address space.

EINVAL One of the parameters contains an invalid value.

Related Information

In this book: “close” on page 2-25, “fcntl” on page 2-44, “ioctl” on page 2-56, “msgctl” on
page 2-73, “msgget” on page 2-76, “msgrcv” on page 2-79, “msgsnd” on page 2-82,
“msgxrcv”’ on page 2-85, “open” on page 2-90, “read, readx” on page 2-106, “write, writex”
on page 2-184, “values.h” on page 5-77, Chapter 6, “Special Files,” Appendix C, “Writing
Device Drivers,” and “ddselect” on page C-11.

2-114 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semctl

semctl

Purpose

Controls semaphore operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, val)

int semctl (semid, semnum, cmd, buf)
—or —

int semctl (semid, semnum, cmd, array)

int semid;

unsigned int semnum;
int cmd;

int val;

struct semid_ds *buf;
unsigned short array| 1;

Description

The semctl system call performs a variety of semaphore control operations as specified by
the cmd parameter. The data type of the last parameter depends on the value of the cmd
parameter. It is referred to as val, buf, or array to indicate one of the definitions given in
the preceding Syntax section.

The first seven cmds get and set the values of a sem structure, which is defined in the
sys/sem.h header file and contains the following members:

ushort semvatl; /* Operation permission structure */

short sempid; /* ID of last process that did a semop */
ushort semncnt; /* No. of processes awaiting semval > cval */
ushort semzcnt; /* No. of processes awaiting semval = 0 */

The following cmds are executed with respect to the semaphore specified by the semid and
semnum parameters.

System Calls 2-115

TNL SN20-9855 (26 June 1987) to SC23-0808-0

semctl

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Returns the value of semval, if the current process has read permission.

Sets the value of semval to the value specified by val, if the current process
has write permission. When this cmd is successfully executed, the semadj
value corresponding to the specified semaphore is cleared in all processes.

Returns the value of sempid, if the current process has read permission.
Returns the value of semnent, if the current process has read permission.

Returns the value of semzent, if the current process has read permission.

The following cmds return and set every semval in the set of semaphores.

GETALL

SETALL

Stores semvals into the array pointed to by array, if the current process has
read permission.

Sets semvals according to the array pointed to by array, if the current
process has write permission. When this cmd is successfully executed, the
semadj value corresponding to each specified semaphore is cleared in all
processes.

The following emds are also available:

IPC_STAT

Stores the current value of each member of the data structure associated
with the semid parameter into the structure pointed to by buf, if the current
process has read permission. This structure is defined in sys/sem.h and
contains the following members:

struct ipc-perm sem_perm; /* Operation permission structure */

struct sem
ushort
ushort
time-t
time-t

IPC_-SET

sem_base; / Pointer to first semaphore in set */
sem_nsems; /* Number of semaphores in the set */
semlcnt; /* Processes waiting on locked semaphore */
sem—otime; /* Time of last semop call */

sem—ctime; /* Time of the last change to this */

/* structure with a semetl call */

Sets the value of the following members of the data structure associated
with the semid parameter to the corresponding value found in the structure
pointed to by buf:

sem_perm.uid

sem-perm.gid

sem—perm.mode /* Only the low-order nine bits */
This ecmd can only be executed by a process that has an effective user ID

equal to either that of superuser or to the value of sem_perm.uid in the
data structure associated with the semid parameter.

2-116 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semctl

IPC_RMID

Return Value

Removes the semaphore identifier specified by the semid parameter from the
system and destroys the set of semaphores and data structures associated
with it. This cmd can only be executed by a process that has an effective
user ID equal to either that of superuser or to the value of sem-perm.uid
in the data structure associated with the semid parameter.

Upon successful completion, the value returned depends on the emd parameter as follows:

cmd

GETVAL
GETPID
GETNCNT
GETZCNT
All others

Return Value

Returns the value of semval.
Returns the value of sempid.
Returns the value of semnent.
Returns the value of semzcnt.
Return a value of 0.

If semectl fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The semectl system call fails if one or more of the following are true:

EINVAL
EINVAL
EINVAL
EACCES
ERANGE

EPERM

EFAULT

The semid parameter is not a valid semaphore identifier.

The semnum parameter is less than 0 or greater than sem—_nsems.
The cmd parameter is not a valid command.

Operation permission is denied to the calling process.

The e¢md parameter is SETVAL or SETALL and the value to which semval
is to be set is greater than the system-imposed maximum.

The cmd parameter is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal either to that of superuser or to
the value of sem—_perm.uid in the data structure associated with the semid
parameter.

The buf or array parameter points to a location outside of the process’s
allocated address space.

System Calls 2-117

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semctl

Related Information

In this book: “semget” on page 2-119 and “semop” on page 2-122.

2-118 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semget

semget

Purpose

Gets a set of semaphores.

Syntax

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

Description

The semget system call returns the semaphore identifier associated with the specified key.
The key parameter is either the value IPC_PRIVATE or an IPC key constructed by the
ftok subroutine (or by a similar algorithm). See “ftok” on page 3-198 for details about this
subroutine. The nsems parameter specifies the number of semaphores in the set.

The semflg parameter is constructed by logically OR-ing one or more of the following
values:

IPC_-CREAT Creates the data structure if it does not already exist.
IPC_EXCL Causes the semget system call to fail if IPC_CREAT is also set and the
data structure already exists.

S_IRUSR Permits the process that owns the data structure to read it.
S_IWUSR Permits the process that owns the data structure to modify it.
S_IRGRP Permits the group associated with the data structure to read it.
S_IWGRP Permits the group associated with the data structure to modify it.
S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

The values that begin with S_I- are defined in the sys/stat.h header file and are a subset
of the access permissions that apply to files.

System Calls 2-119

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semget

The semget system call creates a data structure for the semaphore ID and an array
containing nsems semaphores if one of the following is true:

e The key parameter is equal to IPC_PRIVATE.

® The key parameter does not already have a semaphore identifier associated with it, and
IPC_CREAT is set.

Upon creation, the data structure associated with the new semaphore identifier is
initialized as follows:

e sem-_perm.cuid and sem_perm.uid are set equal to the effective user ID of the
calling process.

® sem-perm.cgid and sem_perm.gid are set equal to the effective group ID of the
calling process.

® The low-order nine bits of sem_perm.mode are set equal to the low-order nine bits of
the semflg parameter.

® sem-nsems is set equal to the value of the nsems parameter.
e sem-otime is set equal to 0 and sem_ctime is set equal to the current time.

If the key parameter is not IPC_PRIVATE, IPC_EXCL is not set, and a semaphore
identifier already exists for the specified key, then the value of the nsems parameter
specifies the number of semaphores that the current process needs. If the nsems parameter
is 0, then any number of semaphores is acceptable. If the nsems parameter is not 0, then
the semget system call fails if the set contains fewer than nsems semaphores.

Return Value

Upon successful completion, a semaphore identifier is returned. If semget fails, a value of
-1 is returned and errno is set to indicate the error..

Diagnostics

2-120

The semget system call fails if one or more of the following are true:

EINVAL The nsems parameter is less than 0, equal to 0, or greater than the
system-imposed limit.

EACCES A semaphore identifier exists for the key parameter but operation
permission, as specified by the low-order nine bits of the semflg parameter, is
not granted.

EINVAL A semaphore identifier exists for the key parameter, but the number of
semaphores in the set associated with it is less than the value of the nsems
parameter and the nsems parameter is not equal to 0.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semget

ENOENT A semaphore identifier does not exist for the key parameter and
IPC_CREAT is not set.

ENOSPC A semaphore identifier is to be created, but doing so would exceed the
maximum number of identifiers allowed system wide.

EEXIST A semaphore identifier exists for the key parameter, and both IPC_.CREAT
and IPC_EXCL are set.

Related Information

In this book: “semctl” on page 2-115, “semop” on page 2-122, and “ftok” on page 3-198.

System Calls 2-121

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semop

semop

Purpose

Performs semaphore operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf sops|];
unsigned int nsops;

Description

The semop system call performs operations on the set of semaphores associated with the
semaphore identifier specified by the semid parameter. The sops parameter points to an
array of structures, each of which specifies a semaphore operation. The nsops parameter is
the number of such structures in the array. The sembuf structure is defined in the
sys/sem.h header file, and it contains the following members:

ushort sem_num; /* Semaphore number */
short sem-op; /* Semaphore operation */
short sem-flg; /* Operation flags */
Each semaphore operation specified by a sem_op is performed on the corresponding

semaphore specified by semid and sem_num. The sem_flg for each operation is either 0,
or is constructed by logically OR-ing one or more of the following values:

SEM_UNDO Specifies whether to modify semadj values.

SEM_ORDER Specifies whether to perform the operations atomically or individually.
(This applies only to the sem—_flg of the first operation specified in the
sops array.)

IPC_NOWAIT Specifies whether to wait or to return immediately when a semaphore’s
semval is not a certain value.

If SEM_ORDER is not set in sops[0].sem_flg (the default), then all of the semaphore
operations specified in the sops array are performed atomically. This means that no

2-122 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semop

semval value for any sem_num that appears in the entire array of operations is modified
until all the semaphore operations can be completed. If the calling process must wait until
some semval requirement is met, then the semop system call does so before performing
any of the operations. If any semaphore operation would cause an error to occur, then
none of the operations are performed.

If SEM_ORDER is set in sops[0].sem_flg, then the operations are performed individually
in the order that they appear in the sops array, regardless of whether any of the operations
require the process to wait. If an operation encounters an error condition, then the semop
system call sets SEM_ERR in the sem_flg of the failing operation, sets errno to indicate
the error, and returns a value of -1. In this case, the operations that precede the failing
one in the sops array have been performed, but those following it have not.

The action taken for SEM_UNDO and IPC_NOWAIT is described in the following text.

The sem-op field of the sembuf structure specifies one of the following three semaphore
operations:

1. If sem-_op is a positive integer and the current process has write permission, then the
value of sem_op is added to semval. If SEM_UNDO is set in sem_flg, then the value
of sem-op is also subtracted from the calling process’s semadj value for the specified
semaphore.

2. If sem_op is a negative integer and the current process has write permission, then one
of the following occurs:

e If semval is greater than or equal to the absolute value of sem_op, the absolute
value of sem_op is subtracted from semval. Also, if SEM_UNDO is set in
sem_flg, the absolute value of sem_op is added to the calling process’s semadj
value for the specified semaphore. The exit system call adds the semadj value to
the semaphore’s semval when the process terminates (see “exit, —exit” on
page 2-40).

e If semval is less than the absolute value of sem_op and IPC_.NOWALIT is set in
sem_flg, semop returns a value of -1 and sets errno to EAGAIN.

e If semval is less than the absolute value of sem_op and IPC_NOWAIT is not set
in sem_flg, then semop increments the semnent associated with the specified
semaphore and suspends execution of the calling process until one of the following
occurs:

- semval becomes greater than or equal to the absolute value of sem—-op. When
this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of sem-_op is subtracted from semval and, if
SEM_UNDO is set in sem_flg, the absolute value of sem_op is added to the
calling process’s semadj value for the specified semaphore.

— The semid for which the calling process is awaiting action is removed from the
system (see “semctl” on page 2-115). When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

System Calls 2-123

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semop

— The calling process receives a signal that is to be caught. When this occurs,
the value of semncnt associated with the specified semaphore is decremented,
and the calling process resumes execution in the manner prescribed in the
signal system call.

3. If sem-—op is 0 and the current process has read permission, then one of the following
oceurs:

e If semval is 0, then semop returns a value of 0.

e If semval is not equal to 0 and IPC_NOWALIT is set in sem_flg, then semop
returns a value of -1 and sets errno to EAGAIN.

e If semval is not equal to 0 and IPC_NOWAIT is not set in sem.flg, semop
increments the semzent associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

— semval becomes 0, at which time the value of semzent associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the

system. When this occurs, errno is set equal to EIDRM, and a value of of -1 is
returned.

— The calling process receives a signal that is to be caught. When this occurs,
the value of semzent associated with the specified semaphore is decremented,

and the calling process resumes execution in the manner prescribed in the
signal system call.

Return Value

Upon successful completion, the semop system call returns a value of 0. Also, the sempid

value for each semaphore that is operated upon is set to the process ID of the calling
process.

If semop fails, a value of -1 is returned and errno is set to indicate the error. If
SEM_ORDER was set in the sem—flg for the first semaphore operation in the sops array,
then SEM_ERR is set in the sem-flg for the failing operation.

Diagnostics

The semop system call fails if one or more of the following are true for any of the
semaphore operations specified by the sops parameter. If the operations were performed

individually, then see the preceding discussion of SEM_ORDER for more information
about error situations.

EINVAL The semid parameter is not a valid semaphore identifier.

2-124 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
semop

EFBIG

E2BIG
EACCES
EAGAIN

ENOSPC

EINVAL

ERANGE
ERANGE

EFAULT

EINTR
EIDRM

sem-num is less than 0 or it is greater than or equal to the number of
semaphores in the set associated with the semid parameter.

The nsops parameter is greater than the system-imposed maximum.
Operation permission is denied to the calling process.

The operation would result in suspension of the calling process, but
IPC_NOWALIT is set in sem-_flg

The limit on the number of individual processes requesting a SEM_-UNDO
would be exceeded.

The number of individual semaphores for which the calling process requests
a SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.
An operation would cause a semadj value to overflow the system-imposed
limit.

The sops parameter points to a location outside of the process’s allocated
address space.

The semop system call received a signal.

The semaphore identifier semid has been removed from the system.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,
—exit” on page 2-40, “fork” on page 2-46, “semctl” on page 2-115, and “semget” on

page 2-119.

System Calls 2-125

TNL SN20-9855 (26 June 1987) to SC23-0808-0
setgroups

setgroups

Purpose

Sets the group access list.

Syntax
#include <grp.h>

int setgroups (ngroups, gidset);
int ngroups, *gidset;

Description

The setgroups system call sets the group access list of the current user process according
to the array pointed to by the gidset parameter. The ngroups parameter indicates the
number of entries in the array and must not be more than NGROUPS, as defined in the
grp.h header file. Only a process with an effective user ID of superuser can set new
groups.

Return Value

Upon successful completion, a value of 0 is returned. If the setgroups system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The setgroups system call fails if one or more of the following is true:
EPERM The caller is not superuser.
EINVAL The value of the ngroups parameter is greater than NGROUPS.

EFAULT The gidset parameter points to a location outside of the process’s allocated
address space.

2-126 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
setgroups

Related Information

In this book: “getgroups” on page 2-562 and “initgroups” on page 3-230.

System Calls 2-127

TNL SN20-9855 (26 June 1987) to SC23-0808-0
setpgrp

setpgrp

Purpose
Sets the process group ID.
Syntax

int setpgrp (flag)
int flag;

Description

If the flag parameter has a nonzero value, then setpgrp sets the process group ID of the
calling process to be the same as its process ID and returns the new value. If the flag
parameter is 0, then the process group ID is not changed, but its value is returned.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “fork” on
page 2-46, “getpid, getpgrp, getppid” on page 2-54, “kill” on page 2-60, and “signal” on
page 2-145.

2-128 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
setuid, setgid

setuid, setgid

Purpose

Sets a process’s user and groups IDs.

Syntax
int setuid (vid) int setgid (gid)
int uid; int gid;
Description

The setuid system call sets the real and effective user IDs of the calling process. If the
effective user ID of the calling process is superuser, then the real and effective user IDs are
set to the value of the uid parameter. If the effective user ID of the calling process is not
superuser, but the real user ID is equal to the value of the uid parameter, or the process’s
original effective user ID as set by the exec system call is equal to uid, then the effective
user ID is set to the value of the uid parameter.

The setgid system call sets the real and effective group IDs of the calling process. If the
effective user ID of the calling process is superuser, then the real and effective group IDs
are set to the value of the gid parameter. If the effective user ID of the calling process is
not superuser, but the real group ID is equal to the value of the gid parameter, or the
process’s original effective group ID as set by the exec system call is equal to gid, then the
effective group ID is set to the value of the gid parameter.

Return Value

Upon successful completion, a value of 0 is returned. If the setuid or setgid system call
fails, then a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The setuid and setgid system calls fail if the following is true:

EPERM The uid (gid) parameter is not equal to the real user (group) ID of the
process or to the original effective user (group) ID as set by the exec system
call, and the effective user ID is not superuser.

EINVAL The uid parameter is not a valid user ID.

System Calls 2-129

TNL SN20-9855 (26 June 1987) to SC23-0808-0
setuid, setgid

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “getpid,
getpgrp, getppid” on page 2-54, and “getuid, geteuid, getgid, getegid” on page 2-55.

2-130 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmat

shmat

Purpose

Attaches a shared memory segment or a mapped file to the current process.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr;

int shmflg;

Description

The shmat system call attaches the shared memory segment or mapped file associated with
the shared memory identifier (returned by shmget) or file descriptor (returned by open)
specified by the shmid parameter to the address space of the calling process.

Note: You cannot map a remote file.

The segment or file is attached at the address specified by the shmaddr parameter as
follows:

e If the shmaddr parameter is equal to 0, the segment or file is attached at the first
available address as selected by the system.

e If the shmaddr parameter is not equal to 0, and SHM_-RND is set in shmflg, the
segment or file is attached at the next lower segment boundary. This address given by
(shmaddr - (shmaddr modulo SHMLBA)).

e If the shmaddr parameter is not equal to 0 and SHM_RND not set in shmflg, the
segment or file is attached at the address given by the shmaddr parameter. If this
address does not point to a segment boundary, then the shmat system call returns the
value -1 and sets errno to EINVAL.

The shmflg parameter specifies several options. Its value is either 0, or is constructed by
logically OR-ing one or more of the following values:

System Calls 2-131

TNL SN20-9855 (26 June 1987) to SC23-0808-0

shmat
SHM_RND Rounds the address given by the shmaddr parameter to the next lower
segment boundary, if necessary.
SHM_MAP Maps a file onto the address space instead of a shared memory segment.

The shmid must specify an open file descriptor in this case.
SHM_RDONLY Specifies read-only mode instead of the default read-write mode.
SHM_COPY Maps a file in copy-on-write mode.
Either SHM_RDONLY or SHM_COPY may be specified, but not both.

If SHM_MAP is not set in shmflg, then a shared memory segment is attached to the data
segment. It is attached for reading if SHM_RDONLY is set in shmflg and if the current
process has read permission. If SHM_RDONLY is not set and the current process has
both read and write permission, then it is attached for reading and writing.

If SHM_-MAP is set in shmflg, then file mapping takes place. In this case, the shmat
system call maps the file open on file descriptor shmid onto a segment. The file must be a
regular file. The segment is then mapped into the process’s address space.

When file mapping is requested, the shmflg parameter specifies how the file is to be
mapped. If SHM_RDONLY is set, then the file is mapped read-only. If SHM_COPY is
set, then the file is mapped copy-on-write. If neither of these cases is true, then the file is
mapped read-write. The file must be opened for writing before it can be mapped read-write
or copy-on-write.

All processes that map the same file read-only or read-write map to the same segment.
This segment remains mapped until the last process mapping the file closes it.

All processes that map the same file copy-on-write map the same copy-on-write segment.
Changes to the shared segment do not affect the contents of the file resident in the file
system until an fsynec system call is issued for a file descriptor for which copy-on-write
mapping was requested. If a process requests copy-on-write mapping for a file and the
copy-on-write segment does not yet exist, then it is created, and that segment is maintained
for sharing until the last process attached to it detaches it with a close system call. When
the mapped file is closed, the segment is detached. The next request for copy-on-write
mapping for the same file causes a new segment to be created for the file.

A file descriptor can be used to map the corresponding file only once. A file can be
multiply mapped by using multiple file descriptors. However, a file cannot be mapped both
read-write and copy-on-write by one or more users at the same time. The results are
unpredictable if a file that one process has mapped copy-on-write is modified by another
process with the write system call, unless that process has also attached the copy-on-write
segment with a shmat system call.

When a file is mapped onto a segment, the file is referenced by accessing the segment. The
memory paging system automatically takes care of the physical I/O. References beyond the
end of the file cause the file to be extended in increments of the page size.

2-132 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmat

Return Value

Upon successful completion, the segment start address of the attached shared memory
segment or mapped file is returned. If shmat fails, a value of -1 is returned and errno is
set to indicate the error.

Diagnostics

The shmat system call fails and the shared memory segment or mapped file is not attached
if one or more of the following are true:

EACCES
ENOMEM

ENOMEM

EINVAL

EINVAL

EINVAL

EINVAL

EEXIST
ETXTBSY

EMFILE

EBADF

EACCES

EACCES

Operation permission is denied to the calling process.

The available data space in memory is not large enough to hold the shared
memory segment.

The available data space in memory is not large enough to hold the mapped
file data structure.

The shmid parameter is not a valid shared memory identifier, or the file to
be mapped resides in a remote node.

The shmaddr parameter is not equal to 0, and the value of (shmaddr -
(shmaddr modulo SHMLBA)) points to a location outside of the process’s
allocated address space.

The shmaddr parameter is not equal to 0, SHM_-RND is not set in shmflg,
and the the shmaddr parameter points to a location outside of the process’s
allocated address space.

The shmaddr parameter is not equal to 0, SHM_RND is not set in shmflg,
and the the shmaddr parameter does not point to a segment boundary.

The file to be mapped has already been mapped.

The shmat system call attempted to map a file onto a segment attached to a
shared library.

The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

A file descriptor to map does not refer to an open regular file, or both
read-only and copy-on-write modes were requested.

A file to be mapped is open read-only, but the segment is to be mapped
read-write or copy-on-write.

The file is to be mapped read-write, but the file is currently mapped
copy-on-write; or the file is to be mapped copy-on-write, but it is currently
mapped read-write.

System Calls 2-133

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmat

EACCES The file to be mapped has enforced locking enabled, and the file is currently

locked.

EFBIG The file to be mapped is larger than the maximum size of a segment.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,
—exit” on page 2-40, “fclear” on page 2-42, “fork” on page 2-46, “fsync” on page 2-48,
“ftruncate” on page 2-50, “read, readx” on page 2-106, “shmctl” on page 2-135, “shmdt” on
page 2-138, “shmget” on page 2-140, and “write, writex” on page 2-184.

2-134 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmectl

shmectl

Purpose

Controls shared memory operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (shmid, ecmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

Description

The shmectl system call performs a variety of shared memory control operations as
specified by the cmd parameter. The shmid parameter is a shared memory identifier
returned by the shmget system call. The following cmds are available:

IPC-STAT
perform this operation.
struct ipc—perm shm_perm; /*
int shm_segsz; /*
ushort shm_segid; /*
ushort shm_1pid; /*
ushort shm_cpid; /*
ushort shm-nattch; /*
ushort shm-cnattach; /*
time—-t shm_atime; /*
time—_t shm_dtime; /*
time—t shm_ctime; /*
/ *

Places the current value of each member of the data structure associated

with the shmid parameter into the shmid-ds structure pointed to by the buf
parameter. The current process must have read permission in order to

The shmid-ds structure is defined in the

sys/shm.h header file, and it contains the following members:

Operation permission structure */

Segment size */

Segment identifier */

ID of last process to call shmop */

ID of process that created this shmid */

Current number of processes attached */

No. of in-memory processes attached */

Time of last shmat call */

Time of last shmdt call */

Time of the last change to this */
structure with a shmctl call */

System Calls 2-135

TNL SN20-9855 (26 June 1987) to SC23-0808-0

shmectl

IPC_SET

IPC_RMID

SHM-_SIZE

Return Value

Sets the value of the following members of the data structure associated
with the shmid parameter to the corresponding value found in the structure
pointed to by the buf parameter:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* Only the low-order nine bits */

This emd can only be performed by a process that has an effective user ID
equal to either that of superuser or to the value of shm_perm.uid in the
data structure associated with the shmid parameter.

Removes the shared memory identifier specified by the shmid parameter
from the system and erases the shared memory segment and data structure
associated with it. This cmd can only be executed by a process that has an
effective user ID equal to either that of superuser or to the value of
shm_perm.uid in the data structure associated with the shmid parameter.

Sets the size of the shared memory segment to the value specified by
buf->shm-_segsz. This value can be larger or smaller than the current size,
as long as it is not greater than the value of the shmmax keyword set in
the /etc/master file. This emd can only be executed by a process that has
an effective user ID equal to either that of superuser or to the value of
shm_perm.uid in the data structure associated with the shmid parameter.

Upon successful completion, a value of 0 is returned. If shmetl fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics

The shmetl system call fails if one or more of the following are true:

EINVAL
EINVAL
EINVAL

EACCES

EPERM

The shmid parameter is not a valid shared memory identifier.
The c¢md parameter is not a valid command.

The emd parameter is equal to SHM_SIZE and buf->shm_segsz is greater
than the value of the shmmax keyword in the /etc/master file.

The cmd parameter is equal to IPC_STAT and read permission is denied to
the calling process.

The cmd parameter is equal to IPC_.RMID, IPC_SET, or SHM_SIZE, and
the effective user ID of the calling process is neither equal to the superuser
ID, nor is it equal to the value of shm_perm.uid in the data structure
associated with shAmid.

2-136 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmectl

ENOMEM The cmd parameter is equal to SHM_SIZE and the attempt to change the
segment size failed.

EFAULT The buf parameter points to a location outside of the process’s allocated
address space.

Related Information

In this book: “disclaim” on page 2-30, “shmat” on page 2-131, “shmdt” on page 2-138,
“shmget” on page 2-140, and “master” on page 4-98.

System Calls 2-137

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmdt

shmdt

Purpose

Detaches a shared memory segment.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmdt (shmaddr)
char *shmaddr;

Description
The shmdt system call detaches, from the calling process’s data segment, the shared
memory segment located at the address specified by the shmaddr parameter.

Mapped file segments are automatically detached when no longer in use. However, you
can use the shmdt system call to explicitly release the segment register used to map a file.
Shared memory segments must be explicitly detatched with shmdt.

Return Value

Upon successful completion, a value of 0 is returned. If shmdt fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics
The shmdt system call fails and the shared memory segment is not detached if the
following is true:

EINVAL The shmaddr parameter is not the data segment start address of a shared
memory segment.

ETXTBSY The shmdt system call attempted to detach a segment attached to a shared
library.

2-138 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmdt

Related Information
In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,

—exit” on page 2-40, “fclear” on page 2-42, “fork” on page 2-46, “fsync” on page 2-48,
“shmat” on page 2-131, “shmctl” on page 2-135, and “shmget” on page 2-140.

System Calls 2-139

TNL SN20-9855 (26 June 1987) to SC23-0808-0

shmget

shmget

Purpose

Gets shared memory segment.

Syntax

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)

key-t key;

int size, shmflg;

Description

The shmget system call returns the shared memory identifier associated with the specified
key. The key parameter is either the value IPC_PRIVATE or an IPC key constructed by
the ftok subroutine (or by a similar algorithm). See “ftok” on page 3-198 for details about
this subroutine. The size parameter specifies the number of bytes of shared memory

required.

The shmflg parameter is constructed by logically OR-ing one or more of the following

values:

IPC_CREAT
IPC_EXCL

S_IRUSR
S_-IWUSR
S_IRGRP
S_-IWGRP
S_IROTH
S_IWOTH

Creates the data structure if it does not already exist:
Causes the shmget system call to fail if IPC_.CREAT is also set and the
data structure already exists.

Permits the process that owns the data structure to read it.
Permits the process that owns the data structure to modify it.
Permits the group associated with the data structure to read it.
Permits the group associated with the data structure to modify it.
Permits others to read the data structure.

Permits others to modify the data structure.

The values that begin with S_I- are defined in the sys/stat.h header file and are a subset
of the access permissions that apply to files.

2-140 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmget

A shared memory identifier, its associated data structure, and a shared memory segment
equal in bytes to the value of the size parameter are created for the key parameter if one of
the following is true:

o The key parameter is equal to IPC_PRIVATE.

o The key parameter does not already have a shared memory identifier associated with it,
and IPC_CREAT is set.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

¢ shm_perm.cuid and shm_perm.uid are set equal to the effective user ID of the
calling process.

e shm_perm.cgid and shm_perm.gid are set equal to the effective group ID of the
calling process.

o The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of
the shmflg parameter.

e shm_segsz is set equal to the value of the size parameter.
e shm_lpid, shm_nattch, shm_atime, and shm-dtime are set equal to 0.

¢ shm_ctime is set equal to the current time.

Return Value

Upon successful completion, a shared memory identifier is returned. If shmget fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The shmget system call fails if one or more of the following are true:

EINVAL The size parameter is less than the system-imposed minimum or greater than
the system-imposed maximum.

EACCES A shared memory identifier exists for the key parameter but operation
permission as specified by the low-order nine bits of the shmflg parameter is
not granted.

EINVAL A shared memory identifier exists for key, but the size of the segment
associated with it is less than the size parameter and the size parameter is
not equal to 0.

ENOENT A shared memory identifier does not exist for the key parameter and
IPC_CREAT not set.

System Calls 2-141

TNL SN20-9855 (26 June 1987) to SC23-0808-0
shmget

ENOSPC A shared memory identifier is to be created but the system-imposed limit on
the maximum number of allowed shared memory identifiers system wide will
be exceeded.

ENOMEM A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill
the request.

EEXIST A shared memory identifier exists for the key parameter, and both
IPC_CREAT and IPC_EXCL are set.

Related Information

In this book: “shmat” on page 2-131, “shmctl” on page 2-135, “shmdt” on page 2-138, and
“ftok™ on page 3-198.

2-142 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigblock

sigblock

Purpose

Blocks signals.

Syntax

int sigblock (mask)
int mask;

Description

The sigblock system call causes the signals specified by the mask parameter to be added to
the set of signals currently being blocked from delivery. The signals are blocked from
delivery by logically OR-ing the mask parameter into the process’s signal mask. Signal i is
blocked if the i-th bit in mask is a 1.

It is not possible to block SIGKILL. The system provides no indication of this restriction.

Typically, the sigblock system call is used to block signals during a critical section of
code, and then sigsetmask is called to restore the mask to the previous value returned by
sigblock.

Return Value
Upon completion, the previous set of masked signals is returned.
Example

The following example sets the signal mask to block SIGINT from delivery, in addition to
the signals that are already blocked:

#include <signal.h>
int prevmask;

prevmask = sigblock (1 << (SIGINT - 1));

System Calls 2-143

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigblock

Related Information

In this book: “kill” on page 2-60, “signal” on page 2-145, “sigvec” on page 2-156, and
“sigsetmask” on page 2-152.

2-144 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
signal

signal

Purpose

Specifies the action to take upon receipt of a signal.

Syntax

#include <sys/signal.h>

int (*signal (sig, action)) ()

int sig;
void (*action) ();

Description

The signal system call allows the calling process to choose one of three ways to handle the
receipt of a specific signal. The sig parameter specifies the signal and the action parameter

specifies the choice.

The sig parameter can be any one of the following signal values except SIGKILL. Each of
the names shown below is defined in the sys/signal.h header file with the value of the
corresponding signal number.

SIGHUP 1
SIGINT 2
SIGQUIT 3*
SIGILL 4*
SIGTRAP 5*
SIGIOT 6*
SIGDANGER 7+
SIGFPE 8%+
SIGKILL 9
SIGBUS 10*
SIGSEGV 11*
SIGSYS 12*
SIGPIPE 13

Hangup

Interrupt

Quit

Illegal instruction (not reset when caught)

Trace trap (not reset when caught)

Abort process (see “abort” on page 3-5)

The system is likely to “crash” soon

Arithmetic exception, integer divide by 0, or floating point
exception

Kill (cannot be caught or ignored)

Specification exception

Segmentation violation

Bad parameter to system call

Write on a pipe when there is no process to read it

System Calls 2-145

TNL SN20-9855 (26 June 1987) to SC23-0808-0

signal
SIGALRM 14
SIGTERM 15
SIGUSR1 16
SIGUSR2 17
SIGCLD 18+
SIGPWR 19+
SIGAIO 25
SIGPTY 26

SIGIOINT 27

SIGGRANT 28#
SIGRETRACT 29#
SIGSOUND 30#
SIGMSG 314

Alarm clock

Software termination signal

User-defined signal 1

User-defined signal 2

Death of a child process

Power-fail restart (not reset when caught)
Basic LAN signal for asynchronous I/O

PTY device driver read/write availability

I/O intervention required

HFT monitor access wanted

HFT monitor access should be relinquished

An HFT sound control has completed execution
Input data has been stored into the HFT monitor mode ring buffer

The symbols in the preceding table have the following meaning:

*

A memory image file (core file) is created when one of these signals is received. This

is explained in more detail in the following discussion of SIG-DFL.

+ These signals require special consideration, as described in “Special Signals” on

page 2-148.

For more information on the use of these signals, see “hft” on page 6-23.

The action parameter is one of three values: SIG_DFL, SIG_IGN, or a function address.
The actions prescribed by these values of are as follows:

SIG_DFL — Default action: Terminate process upon receipt of signal.

Upon receipt of the signal sig, the receiving process is to be terminated with all of the
consequences outlined in the exit system call. In addition, a memory image file will be
created in the current directory of the receiving process if sig is one for which an
asterisk appears in the preceding list and the following conditions are met:

e The effective user ID and the real user ID of the receiving process are equal.

e An ordinary file named core exists in the current directory and is writable, or it
can be created. If the file must be created, it will have the following properties:

— The access permission code 0666 (0x1B6), modified by the file creation mask
(see “umask” on page 2-169)

— A file owner ID that is the same as the effective user ID of the receiving

process

- A file group ID that is the same as the effective group ID of the receiving

process.

2-146 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
signal

SIG_IGN — Ignore signal.

The signal sig is to be ignored.

Note: The SIGKILL signal cannot be ignored.
function address — Catch signal.

Upon receipt of the signal sig, the receiving process is to execute the signal-catching
function pointed to by the action parameter. The signal number sig is passed as the
only parameter to the signal-catching function. Before calling the signal-catching
function, the value of action for the caught signal is set to SIG-DFL unless the signal
is SIGILL, SIGTRAP, or SIGPWR.

When the signal-catching function returns, the value of the signal mask upon entry is
restored, and the receiving process resumes execution at the point at which it was
interrupted.

Note that after a signal is received, there is a period of time during which the signal
action is set to SIG_-DFL and the signal-catching function has not had a chance to
re-establish itself as the catcher for this signal. If the signal occurs again during that
period, it will not be caught. The sigvec system call offers an enhanced
signal-handling capacity to avoid this race condition.

When a signal that is to be caught occurs during a read, write, open, or ioctl system
call on a slow device (like a terminal; but not an ordinary file), during a pause system
call, or during a wait system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal-catching function will
be executed and then the interrupted system call will return a -1 to the calling process
with errno set to EINTR.

Note: The SIGKILL signal cannot be caught.

Warning: The signal system call does not check the validity of the
action parameter. If it points to a location outside of the process’s
allocated address space, then the process receives a memory fault when
the system attempts to call the signal handler. If action points to
anything other than a subroutine, the results are unpredictable.

System Calls 2-147

TNL SN20-9855 (26 June 1987) to SC23-0808-0

signal

Special Signals

Some signals are handled differently from those described previously. These signals are:

SIGFPE 8%+ Arithmetic exception, integer divide by 0, or floating point
exception

SIGDANGER 7+ The system is likely to “crash” soon.

SIGCLD 18+ Death of a child process

SIGPWR 19+ Power-fail restart (not reset when caught)

On a SIGFPE signal, the values in all of the floating-point registers are saved. On any
other signal, only the first eight registers are saved.

See the sys/robust.h header file for the conditions that can cause the SIGDANGER
signal. The most likely cause is a shortage of paging space (PGSDANGER). Also see the
pslotwarn, pslotkill, and pslotpanic keywords in “master” on page 4-98.

For SIGDANGER and SIGPWR, the actions prescribed by the action parameter are as
follows:

SIG-DFL The signal is ignored.

SIG_IGN The signal is ignored.

function address The signal-catching function pointed to by action is called.
For SIGCLD, the actions prescribed by the action paramer are as follows:
SIG_DFL The signal is ignored.

SIG-IGN The signal is ignored. Also, the child processes of the calling process
do not create zombie processes when they terminate. (See “exit, —exit”
on page 2-40 for more information about zombie processes.)

function address The signal-catching function pointed to by action is called. When the
signal-catching function returns, another SIGCLD signal is sent to the
process if any zombie child processes remain to be waited for.
Therefore, the SIGCLD signal-catching function must issue a wait
system call to eliminate the zombies, or an infinite loop will occur.

The setting of the action for the SIGCLD signal affects the wait and exit system calls in
the following ways:

wait If the action value of SIGCLD is set to SIG_IGN and a wait system call is
executed, the wait blocks until all of the child processes of the calling process
terminate. It then returns a value of -1 with errno set to ECHILD.

exit If, in the parent of the exiting process, the action value of SIGCLD is set to
SIG_IGN, then the exiting process does not create a zombie process.

2-148 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
signal

When processing a pipeline, the shell makes the last process in the pipeline the parent of
the preceding processes. A process that can be piped into in this manner, and thus become
the parent of other processes; should not set SIGCLD to be caught. Otherwise, it will
receive unexpected SIGCLD signals.

After a fork system call, the child process inherits all signals from its parent.

The exec system calls reset all caught signals to the default action. Signals that cause the
default action continue to do so. Ignored signals continue to be ignored.

Return Value

Upon successful completion, signal returns the previous value of action for the specified
signal sig. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The signal system call fails if the following is true:
EINVAL The sig parameter is not a valid signal number, or it is SIGKILL.

Related Information

In this book: “acct” on page 2-11, “exit, —exit” on page 2-40, “kill” on page 2-60, “pause”
on page 2-94, “ptrace” on page 2-102, “sigblock” on page 2-143, “sigpause” on page 2-150,
“sigsetmask” on page 2-152, “sigstack” on page 2-154, “sigvec” on page 2-156, “umask” on
page 2-169, “wait” on page 2-182, “setjmp, longjmp” on page 3-332, and “core” on

page 4-39.

System Calls 2-149

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigpause

sigpause

Purpose

Atomically releases blocked signals and waits for an interrupt.

Syntax

int sigpause (sigmask)
int sigmask;

Description

The sigpause system call sets the process’s signal mask to the value of the sigmask
parameter and then and waits for a signal to arrive. Upon return, the previous signal
mask is restored. The sigpause system call terminates by being interrupted, returning -1,
and setting errno to EINTR.

The sigpause system call sets the signal mask and waits for an interrupt as one atomic
operation. This means that signals cannot occur between the operations of setting the
mask and waiting for a signal. If a program invokes the sigsetmask and pause system
calls separately, then a signal that occurs between these system calls might not be noticed
by pause.

In normal usage, a signal is blocked by using the sigblock system call at the beginning of
a critical section. The process then determines whether there is work for it to do. If no
work is to be done, then the process waits for work by calling sigpause with the mask
previously returned by sigblock.

Return Value

If the signal is caught by the calling process and control is returned from the signal
handler, then the calling process resumes execution after the sigpause system call, which
always returns a value of -1 and sets errno to EINTR.

2-150 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigpause

Related Information

In this book: “pause” on page 2-94, “sigblock” on page 2-143, “signal” on page 2-145,
“sigsetmask” on page 2-152, and “sigvec” on page 2-156.

System Calls 2-151

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigsetmask

sigsetmask

Purpose

Sets the current signal mask.

Syntax

int sigsetmask (mask)
int mask;

Description

The sigsetmask system call sets the current signal mask as specified by the mask
parameter. The signal mask determines which signals is blocked from delivery to the
process. Signal i is blocked if the i-th bit in mask is a 1.

Typically, you would use the sigblock system call to block signals during a critical section
of code and then use the sigsetmask system call to restore the mask to the previous value
returned by the sigblock system call.

The sigsetmask system call does not allow SIGKILL to be blocked. If a program attempts
to block SIGKILL, sigsetmask gives no indication of the error.

Return Value

Upon successful completion, the previous set of masked signals is returned.

Example

To set the signal mask to block only SIGINT from delivery:
#include <signal.h>

int prevmask;

prevmask = sigsetmask (1 << (SIGINT - 1));

2-152 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigsetmask

Related Information

In this book: “kill” on page 2-60, “signal” on page 2-145, “sigvec” on page 2-156,
“sigblock” on page 2-143, and “sigpause” on page 2-150.

System Calls 2-153

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigstack

sigstack

Purpose

Sets and gets signal stack context.

Syntax
#include <signal.h>

int sigstack (instack, outstack)
struct sigstack *instack, *outstack;

Description

The sigstack system call defines an alternate stack on which signals are to be processed.

If the value of the instack parameter is nonzero, then it points to a sigstack structure,
which has the following members:

caddr_t ss_sp;
int ss_onstack;

The value of instack~->ss—_sp specifies the stack pointer of the new signal stack. Since
stacks grow from numerically greater addresses to lower ones, the stack pointer passed to
the sigstack system call should point to the numerically high end of the stack area to be
used. instack->ss—onstack should be set to 1 if the process is currently executing on that
stack; otherwise, it should be 0.

If the value of the outstack parameter is nonzero, then it points to a sigstack structure
into which the sigstack system call stores the current signal stack state.

If the value of the instack parameter is 0 (that is, a NULL pointer), then the signal stack
state is not set. If the value of the outstack parameter is 0, then the previous signal stack
state is not reported.

When a signal occurs whose handler is to run on the signal stack, the system checks to see
if the process is already executing on that stack. If so, then it continues to do so even
after the handler returns. If not, then the signal handler runs on the signal stack, and the
original stack is restored when the handler returns.

Use the sigvec system call to specify whether or not a given signal’s handler routine is to
run on the signal stack.

2-154 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigstack

Warning: A signal stack does not automatically increase in size as a
normal stack does. If the stack overflows, unpredictable results may occur.

Return Value

Upon successful completion, a value of 0 is returned. If the sigstack system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The sigstack system call fails and the signal stack context remains unchanged if the
following is true:

EFAULT The instack or outstack parameter points to a location outside of the
process’s allocated address space.

Related Information

In this book: “signal” on page 2-145, “sigvec” on page 2-156, and “setjmp, longjmp” on
page 3-332.

System Calls 2-155

TNL SN20-9855 (26 June 1987) to SC23-0808-0

sigvec

sigvec

Purpose

Selects enhanced signal facilities.

Syntax

#include <sys/signal.h >
int sigvec (sig, invec, outvec)
int sig;

struct sigvec *invec, *outvec;

Description

2-156

The sigvec system call allows the user to select standard or enhanced signal-handling
facilities. Like the signal system call, it sets the action to take upon the receipt of a
signal, but it also sets additional features.

The sigvee system call assigns a handler for a specific signal. If the invec parameter is
nonzero, it points to a sigvec structure that specifies a handler routine and mask to be
used when delivering the specified signal. The sigvec structure has the following
members:

int (*sv-handler) ();
int sv_mask;
int sv.onstack;

If the SIG-STK bit of sv_onstack is set, then the system runs the handler on the signal
stack specified by the sigstack system call. If this bit is not set, then the handler executes
on the stack of the interrupted process. If the SIG-STD bit of sv_onstack is set, then
standard signal processing is used. If this bit is not set, then enhanced signal processing is
used.

The default action for a signal can be reinstated by setting sv_handler to SIG_DFL. If
sv_handler is set to SIG-IGN, then the signal is ignored, and pending instances of the

signal are discarded. See “signal” on page 2-145 for a detailed description of the default
signal actions.

If the outvec parameter is nonzero, then the previous handling information for the signal is
stored in the sigvec structure pointed to by outvec.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigvec

If the value of the invec parameter is 0 (that is, a NULL pointer), then the signal handler
information is not set. If the value of the outvec parameter is 0, then the previous signal
handler information is not reported.

Once a signal handler is assigned, it remains assigned until another sigvec, signal, or
exec system call is made.

Warning: The sigvec system call does not check the validity of the
sv_handler pointer. If it points to a location outside of the process’s
allocated address space, then the process receives a memory fault when the
system attempts to call the signal handler. If sv_handler points to
anything other than a subroutine, then the results are unpredictable.

The signal-handler subroutine can be declared as follows:

handler (sig, code, scp)
int sig, code;
struct sigcontext *scp;

The sig parameter is the signal number. The code parameter is provided only for
compatibility with other UNIX-campatible systems, and its value is always 0. The scp
parameter points to the sigcontext structure that is later used to restore the process’s
previous execution context. The sigcontext structure is defined in signal.h.

Note: The sigcontext structure contains fields for saving the values of the floating-point
registers. On a SIGFPE signal, the values in all of the registers are saved. On all other
signals, only the first eight registers are saved.

Return Value

Upon successful completion, a value of 0 is returned. If the sigvec system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics
The sigvec system call fails and no new signal handler is installed if one of the following
occurs:
EFAULT The invec or outvec parameter points to a location outside of the process’s

allocated address space
EINVAL The sig parameter is not a valid signal number.
EINVAL An attempt was made to ignore or supply a handler for SIGKILL.

System Calls 2-157

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sigvec

Related Information

In this book: “kill” on page 2-60, “ptrace” on page 2-102, “sigblock” on page 2-143,
“sigpause” on page 2-150, “sigstack” on page 2-154, “sigsetmask” on page 2-152, “sigvec’
on page 2-156, and “setjmp, longjmp” on page 3-332.

>

The kill command in AIX Operating System Commands Reference.

2-158 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
stat, . . .

stat, fstat

Purpose

Gets the status of a file.

Syntax

#include <sys/stat.h>

int stat (path, buf)

char *path;

struct stat *buf;

Description

int fstat (fildes, buf)
int fildes;
struct stat *buf;

The stat system call obtains information about the file pointed to by the path parameter.
Read, write, or execute permission of the named file is not required, but all directories in
the path leading to the file must be searchable. The stat system call places the
information obtained into a structure pointed to by the buf parameter.

Use the fstat system call to obtain information about an open file pointed to by the fildes

parameter. The fildes parameter is a file descriptor obtained from a successful open,
creat, dup, fentl, or pipe system call. The fstat system call places the information

obtained into a structure pointed to by the buf parameter.

The stat structure pointed to by the buf parameter is defined in the sys/stat.h header file,
and it contains the following members:

dev_t

ino-t
ushort
short
ushort
ushort
dev_t

off-t
time-t

st_dev;

st_ino;
st_mode;
st-nlink;
st_uid;
st_gid;
st_rdev;

st_size;
st-atime;

/*
/*
/*
/*
/*
/*
/*
/*

ID of the device that contains */
a directory entry for this file */
Inode number */
File mode; see mknod and chmod */
Number of links */
User ID of the file's owner */
Group ID of the file's group */
ID of device */
st_rdev is defined only for */
character or block special files */
File size in bytes */
Time of last access */

System Calls

2-159

TNL SN20-9855 (26 June 1987) to SC23-0808-0

stat, . . .

time_t
time—-t

st_dev

st—uid

st_gid

st—atime

st-mtime

st_ctime

Return Value

st_mtime; /* Time of last data modification */
st_ctime; /* Time of last file status change */
/* Times are measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

The device that contains a directory entry for this file. On a nondistributed
file system, this is a 32-bit quantity that uses only the low 16-bits to contain
the concatenated 8-bit major device number and the 8-bit minor device
number. On a distributed system, this is a 32-bit quantity, created by
combining a 16-bit connection ID, the 8-bit major device number, and the
8-bit minor device number.

The user ID of the file’s owner. If the file is a remote file, this value can also
be one of the two special values netnoone or netsomeone, as defined in the
Jete/master file. For remote files, this field contains the user ID after
reverse translation. (See Managing the AIX Operating System for a
discussion of reverse translation.)

The group ID of the file’s owner. If the file is a remote file, this value can
also be one of the two special values netnoone or netsomeone, as defined
in the /etc/master file. For remote files, this field contains the group ID
after reverse translation. (See Managing the AIX Operating System for a
discussion of reverse translation.)

The time when file data was last accessed. For remote files, this field
contains the time at the server. Changed by the following system calls:
creat, mknod, pipe, utime, and read.

The time when data was last modified. For remote files, this field contains
the time at the server. Changed by the following system calls: creat, fclear,
ftruncate, mknod, open, pipe, utime, and write.

The time when file status was last changed. For remote files, this field
contains the time at the server. Changed by the following system calls:
chmod, chown, creat, link, mknod, pipe, unlink, utime, and write.

Upon successful completion, both the stat and the fstat system calls return a value of 0.
If either the stat or the fstat system calls fail, a value of -1 is returned and errno is set to
indicate the error.

2-160 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
stat, . . .

Diagnostics

The stat system call fails if one or more of the following are true:

ENOTDIR A component of the path prefix is not a directory.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path prefix.

EFAULT The buf or path parameter points to a location outside of the process’s
allocated address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, stat can also fail if one or more of the

following are true:
EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV
ENOMEM
ENOCONNECT

EBADCONNECT

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

An attempt to establish a new network connection with a remote node
failed.

An attempt to use an existing network connection with a remote node
failed.

The fstat system call fails if one or more of the following are true:
EBADF fildes is not a valid open file descriptor.

EFAULT buf points to a location outside of the process’s allocated address space.

If Distributed Services is installed on your system, fstat can also fail if one or more of the

following are true:

System Calls 2-160.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

stat, . . .
| EDIST The server has blocked new inbound requests.
| EDIST Outbound requests are currently blocked.
| EAGAIN The server is too busy to accept the request.
| ENOMEM Either this node or the server does not have enough memory available
|
|
l

Related Information

In this book: “chmod” on page 2-18, “chown, chownx” on page 2-21, “creat” on page 2-27,
“fullstat, ffullstat” on page 2-50.2, “link” on page 2-62, “mknod” on page 2-69, “pipe” on
page 2-95, “read, readx” on page 2-106, “time” on page 2-164, “unlink” on page 2-174,
“ustat” on page 2-178, “utime” on page 2-180, “write, writex” on page 2-184, “master” on
page 4-98, and “stat.h” on page 5-69.

2-160.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
stat, . . .

System Calls 2-161

TNL SN20-9855 (26 June 1987) to SC23-0808-0
stime

stime

Purpose

Sets the time.

Syntax

int stime (tp)
long *ip;

Description

The stime system call sets the system’s time and date. The ip parameter points to the time
as measured in seconds from 00:00:00 GMT January 1, 1970.

Return Value

Upon successful completion, a value of 0 is returned. If the stime system call fails, a value
of -1 is returned and errno is set to indicate the error.

Diagnostics

The stime system call fails if the following is true:

EPERM The effective user ID of the calling process is not superuser.

Related Information

In this book: “time” on page 2-164.

2-162 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
sync

sync

Purpose

Updates the superblock, i-nodes, and delayed blocks.

Syntax

void syne ()

Description

The sync system call causes all information in memory that should be on disk to be
written out. The writing, although scheduled, is not necessarily complete upon return
from the sync system call. Types of information to be written include modified
superblocks, modified i-nodes, delayed block I/O, and read-write mapped files.

If Distributed Services is installed on your system, information in memory relating to
remote files is scheduled to be sent to the remote node.

The sync system call should be used by programs that examine a file system, such as the
df and fsek commands described in AIX Operating System Commands Reference.

Related Information

In this book: “fsync” on page 2-48.

The sync command in AIX Operating System Commands Reference.

System Calls 2-163

TNL SN20-9855 (26 June 1987) to SC23-0808-0

time
time
Purpose
Gets the time.
Syntax
long time ((long *) 0) long time (tloc)
long *tloc;
Description

The time system call returns the current time in seconds since 00:00:00 GMT, January 1,
1970.

If the tloc parameter is nonzero, the time is also stored in the location to which the tloc
parameter points.

Warning: The actions of the time system call are undefined if the tloc
parameter points to a location outside of the process’s allocated address
space.

Return Value

Upon successful completion, the current time is returned.

Related Information

In this book: “stime” on page 2-162.

2-164 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
times

times

Purpose

Gets process and child process times.

Syntax

#include <sys/types.h>
#include <sys/times.h>

time_t times (buffer)
struct tms *buffer;

Description

The times system call fills the structure pointed to by the buffer parameter with
time-accounting information. All time values reported by the times system call are in
10ths of a second, unless execution profiling is enabled. When profiling is enabled, times
reports values in 60ths of a second. (For more information about profiling, see “profil” on
page 2-99, “monitor” on page 3-248, and the ec and prof commands in AIX Operating
System Commands Reference.)

The tms structure is defined in sys/times.h and it contains the following members:

time—-t tms_utime;
time-t tms_stime;
time_t tms_cutime;
time-t tms-cstime;

This information comes from the calling process and each of its terminated child processes
for which it has executed a wait system call.

tms_utime The CPU time used while executing instructions in the user space of the
calling process.

tms_stime The CPU time used by the system on behalf of the calling process.

tms_cutime The sum of the tms_utimes and the tms_cutimes of the child processes.

tms_cstime The sum of the tms_stimes and the tms_estimes of the child processes.

Note: The system measures time by counting clock interrupts. The precision of the
values reported by the times system call depends on the rate at which the clock interrupts
occur.

System Calls 2-165

TNL SN20-9855 (26 June 1987) to SC23-0808-0
times

Return Value

Upon successful completion, the times system call returns the elapsed real time, in 10ths
of a second (60ths when profiling), since an arbitrary reference time in the past (for
example, system start-up time). This reference time does not change from one call of times
to another. If the times system call fails, a -1 is returned and errno is set to indicate the
error.

Diagnostics

The times system call fails if the following is true:

EFAULT The buffer parameter points to a location outside of the process’s allocated
address space.

Related Information

In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “fork” on
page 2-46, “profil” on page 2-99, “time” on page 2-164, “wait” on page 2-182, and “monitor”
on page 3-248.

The cc and prof commands in AIX Operating System Commands Reference.

2-166 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ulimit

ulimit

Purpose

Sets and gets user limits.

Syntax

#include <sys/types.h>

off_t ulimit (cmd, newlimit)
int cmd;
off_t newlimit;

Description

The ulimit system call controls process limits. The cmd parameter values are:

1

1004

1005

1006

Returns the process’s file size limit. The limit is in units of 512-byte blocks and is
inherited by child processes. Files of any size can be read.

Sets the process’s file size limit to the value of the newlimit parameter. Any
process can decrease this limit, but only a process with an effective user ID of
superuser can increase the limit. ,

Returns the maximum possible break value (see “brk, sbrk” on page 2-14).

Sets the maximum possible break value (see “brk, sbrk” on page 2-14). Returns the
new maximum break value, which is newlimit rounded up to the nearest page
boundary.

Returns the lowest valid stack address. (Note that stacks grow from high addresses
to low addresses.)

Sets the lowest valid stack address. Returns the new minimum valid stack address,
which is newlimit rounded down to the nearest page boundary.

With remote files, the ulimit values of the client, or local, node are used.

System Calls 2-167

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ulimit

Return Value

Upon successful completion, a nonnegative value is returned. If the ulimit system call
fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The ulimit system call fails and the limit remains unchanged if:

EPERM A process with an effective user ID other than superuser attempts to
increase the file size limit.

EINVAL The emd parameter is a value other than 1, 2, or 3.

Example

To increase the size of the stack segment by 2048 bytes, and set r'C to the new lowest valid
stack address:

rc = ulimit(1006, ulimit(1005, 0) - 2048);

Related Information

In this book: “brk, sbrk” on page 2-14 and “write, writex” on page 2-184.

2-168 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
umask

umask

Purpose

Sets and gets the value of the file creation mask.

Syntax

int umask (cmask)
int cmask;

Description

The umask system call sets the process’s file mode creation mask to the value of the
cmask parameter. Only the low-order 9 bits of the cmask parameter and the file mode
creation mask are used.

Return Value

Upon successful completion, the previous value of the file mode creation mask is returned.

Related Information

In this book: “chmod” on page 2-18, “creat” on page 2-27, “mknod” on page 2-69, “open”
on page 2-90, and “stat:h” on page 5-69.

The sh and umask commands in AIX Operating System Commands Reference.

System Calls 2-169

TNL SN20-9855 (26 June 1987) to SC23-0808-0
umount

umount

Purpose

Unmounts a file system.

Syntax

int umount (dev)
char *dev;

Description

The umount system call unmounts a previously mounted file system contained on the
block device (also called a special file) identified by the dev parameter. The dev parameter
is a pointer to a path name.

After the file system is unmounted, the directory upon which the file system was mounted
reverts to its ordinary interpretation as a directory.

The umount system call can be invoked only by a process whose effective user ID is
superuser.

Return Value

Upon successful completion, a value of 0 is returned. If the umount system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The umount system call fails if one or more of the following are true:

EPERM The process’s effective user ID is not superuser.

ENOENT dev does not exist.

ENOTBLK dev is not the name of a block special file.

EINVAL dev is not mounted.

EINVAL dev is not local.

EBUSY A file on the device specified by the dev parameter is currently in use.

2-170 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
umount

EFAULT dev points to a location outside of the process’s allocated address space.

ENXIO dev is not currently configured.

Related Information

In this book: “mount” on page 2-71, “uvmount” on page 2-180.3, and “vmount” on
page 2-180.5.

The mount and umount commands in AIX Operating System Commands Reference.

System Calls 2-171

TNL SN20-9855 (26 June 1987) to SC23-0808-0
uname, . . .

uname, unamex

Purpose

Gets the name of the current AIX system.

Syntax
#include <sys/utsname.h>
int uname (name) int unamex (name)
struct utsname *name; struct xutsname *name;
Description

2-172

The uname system call stores information identifying the current system in the structure
pointed to by the name parameter.

The uname system call uses the utsname structure, which is defined in the
sys/utsname.h file, and it contains the following members:

char sysname[SYS_NMLN];
char nodename[SYS—-NMLN];
char release[SYS-NMLN];
char version[SYS-NMLN];
char machine[SYS-NMLN];

The uname system call returns a null-terminated character string naming the current
system in the character array sysname. The nodename array contains the name that the
system is known by on a communications network. The release and version arrays
further identify the system.

The machine array identifies the CPU hardware being used. This array contains an
eight-character string followed by a terminating null character. The first two characters
identify the hardware model. The hardware model identification may be one of the
following:

10 IBM 6151
20 IBM 6150

The remaining six characters of the machine string specify the unique serial number of
the machine. Each digit of the serial number is in the range '0' to '9' or 'A' to 'F'.

AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
uname, L] . L]

The unamex system call uses the xutsname structure, which is defined in the
sys/utsname.h file, and it contains the following members:

unsigned long nid;
long reserved[3];

The xutsname.nid field is the binary form of the utsname.machine field. For local area
networks in which a binary node name is appropriate, xutsname.nid contains such a
name.

Return Value

Upon successful completion, a nonnegative value is returned. If the uname or unamex
system call fails, a value of -1 is returned and errno is set to indicate the error.

Diagnostics

The uname and unamex system calls fail if:

EFAULT The name parameter points to a location outside of the process’s allocated
address space.

Related Information

The uname command in AIX Operating System Commands Reference.

System Calls 2-173

TNL SN20-9855 (26 June 1987) to SC23-0808-0
unlink

unlink

Purpose

Removes a directory entry.

Syntax

int unlink (path)
char *path;

Description
The unlink system call removes the directory entry specified by the path parameter. If
Distributed Services is installed on your system, this path can cross into another node.

When all links to a file are removed and no process has the file open, the space occupied
by the file is freed and the file ceases to exist. If one or more processes have the file open
when the last link is removed, the removal is postponed until all references to the file are
closed.

Return Value

Upon successful completion, a value of 0 is returned. If the unlink system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics
The unlink system call fails and the named file is not unlinked if one or more of the
following are true:
ENOTDIR A component of the path prefix is not a directory.
ENOENT The named file does not exist.
EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to be
removed.

EPERM The named file is a directory and the effective user ID of the process is not
superuser.

2-174 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
unlink

EBUSY The entry to be unlinked is the mount point for a mounted file system.

ETXTBSY The entry to be unlinked is the last link to a pure procedure (shared text)
file that is being executed.

EROFS The entry to be unlinked is part of a read-only file system.

EFAULT The path parameter points to a location outside of the process’s allocated
address space.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, unlink can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

ESTALE The file descriptor for a remote file has become obsolete.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEYV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “close” on page 2-25, “link” on page 2-62, and “open” on page 2-90.

The rm command in AIX Operating System Commands Reference.

System Calls 2-175

TNL SN20-9855 (26 June 1987) to SC23-0808-0
usrinfo

usrinfo

Purpose

Gets and sets user information about the owner of the calling process.

Syntax
#include <uinfo.h >

int usrinfo (cmd, buf, count)
int cmd;

char *buf;

int count;

Description

The usrinfo system call gets and sets information about the owner of the current process.
The information is a sequence of null-terminated name=value strings. The last string in
the sequence is terminated by two successive null characters. A child process inherits the
user information of its parent.

The buf parameter is a pointer to a user buffer. This buffer is usually UINFOSIZ bytes
long.

The count parameter is the number of bytes of user information to be copied from or to the
user buffer.

If the cmd parameter is one of the following constants:

GETUINFO Copies up to count bytes of user information into the buffer pointed to by
the buf parameter.

SETUINFO Sets the user information for the process to the first count bytes in the
buffer pointed to by the buf parameter. The effective user ID of the calling
process must be superuser to set the user information.

The user information should at minimum consist of three strings that are typically set by
the login program. These three strings are:

NAME =username
UID =userid
TTY =ttyname

If the process has no terminal, ttyname should be null.

2-176 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
usrinfo

Return Value

Upon successful completion, a nonnegative integer giving the number of bytes transferred
is returned. If the usrinfo system call fails, a value of -1 is returned and errno is set to
indicate the error.

Diagnostics

The usrinfo system call fails if one or more of the following are true:

EPERM

EINVAL
EINVAL

EINVAL

EFAULT

The cmd parameter is set to SETUINFO and the effective user ID of the
process is not superuser.

The ecmd parameter is not set to SETUINFO or GETUINFO.

The cmd parameter is set to SETUINFO and the count parameter is larger
than UINFOSIZ.

The emd parameter is SETUINFO and buf does not contain a NAME =
entry.

The buf parameter points to a location outside of the process’s allocated
address space.

Related Information

In this book: “getuinfo” on page 3-223.

The login command in AIX Operating System Commands Reference.

System Calls 2-177

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ustat

ustat

Purpose

Gets file system statistics.

Syntax

#include <sys/types.h>
#include <ustat.h >

int ustat (dev, buf)
dev_t deuv;
struct ustat *buf;

Description

The ustat system call gets information about the mounted file system identified by device
number dev. The dev parameter is the ID of the device, and it corresponds to the st_dev
member of the structure returned by the stat and fullstat system calls. If the high-order
bits of the device number are zero, then the device is a local device. If the high-order bits
of the device number are nonzero, then the calling node queries the remote node over the
connection identified by these 16 bits. See “fullstat, ffullstat” on page 2-50.2, “stat, fstat”
on page 2-159, “fullstat.h” on page 5-56.2, and “stat.h” on page 5-69 for more information
about the device ID. The information is stored into a structure pointed to by the buf
parameter.

The ustat structure pointed to by the buf parameter is defined in the ustat.h file, and it
contains the following members:

daddr-t f_tfree; /* Total free blocks */
ino-t f_tinode; /* Number of free i-nodes */
char f_fname[6]; /* File system name */
char f_fpack[6]; /* File system pack name */

2-178 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
ustat

Return Value

Upon successful completion, a value of 0 is returned. If the ustat system call fails, a value
of -1 is returned and errno is set to indicate the error.

Diagnostics

The ustat system call fails if one or more of the following are true:
EINVAL dev is not the device number of a device containing a mounted file system.

EFAULT The buf parameter points to a location outside of the process’s allocated
address space.

If Distributed Services is installed on your system, ustat can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too busy to accept the request.

ESTALE dev identifies a remote device that can no longer be reached.
ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “fullstat, ffullstat” on page 2-50.2, “stat, fstat” on page 2-159, and “fs” on
page 4-74.

System Calls 2-179

TNL SN20-9855 (26 June 1987) to SC23-0808-0

utime

utime

Purpose

Sets file access and modification times.

Syntax

#include <unistd.h >

int utime (path, times)
char *path;
struct utimbuf *times;

Description

The utime system call sets the access and modification times of the file pointed to by the
path parameter to the value of the times parameter. If Distributed Services is installed on
your system, this path can cross into another node.

If the times parameter is NULL, the access and modification times of the file are set to the
current time. If the file is a remote file, the current time at the remote node, rather than
the local node, is used. The effective user ID of the process must be the same as the owner
of the file or must have write permission in order to use the utime system call in this
manner.

If the times parameter is not NULL, it is a pointer to a utimbuf structure and the access
and modification times are set to the values contained in the designated structure,
regardless of whether or not those times correlate with the current time. For remote files,
if the utime system call is used in this way, the file’s times may be different from the time
at the remote node. Only the owner of the file or superuser can use the utime system call
this way.

The utimbuf structure pointed to by the times parameter is defined in the unistd.h file,
and it contains the following members.

time-t actime; /* Date and time of last access */
time_t modtime; /* Date and time of last modification */

The times in this structure are measured in seconds since 00:00:00 GMT, January 1, 1970.

2-180 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
utime

Return Value

Upon successful completion, a value of 0 is returned. If the utime system call fails, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics

The utime system call fails if one or more of the following are true:

ENOENT
ENOTDIR
EACCES
EPERM

EACCES

EROFS
EFAULT

ESTALE

The named file does not exist.
A component of the path prefix is not a directory.
Search permission is denied by a component of the path prefix.

The effective user ID is not superuser or the owner of the file and the times
parameter is not NULL.

The effective user ID is not superuser or the owner of the file, the times
parameter is NULL, and write access is denied.

The file system containing the file is mounted read-only.

The times or path parameter points to a location outside of the process’s
allocated address space.

The process’s root or current directory is located in a virtual file system that
has been unmounted.

If Distributed Services is installed on your system, utime can also fail if one or more of the
following are true:

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

ENODEV

ENOMEM

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

The named file is a remote file located on a device that has been
unmounted at the server.

Either this node or the server does not have enough memory available
to service the request.

System Calls 2-180.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
utime

| ENOCONNECT An attempt to establish a new network connection with a remote node
| failed.
| EBADCONNECT An attempt to use an existing network connection with a remote node
| failed.

Related Information

In this book: “stat, fstat” on page 2-159.

2-180.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
uvmount

juvmount

| Purpose

| Unmounts a device, directory, or file.

| Syntax

| int uvmount (stubpath)
| char *stubpath;

| Description

The uvmount system call unmounts the device, directory, or file that is mounted on
stubpath. The stubpath parameter points to a path name. If Distributed Services is
installed on your system, this path can lead to a remote node.

process must own the stubpath directory and have write permission on the parent directory
of the stubpath.

After the uvmount system call has been completed, stubpath reverts to its previous

|
I
l
| To issue a uvmount system call, this process’s effective user ID must be superuser, or the
I
l
| : . ;
| interpretation as a directory or file.

| Return Value

| Upon successful completion, the uvmount system call returns a value of 0. If the
| uvmount system call fails, a value of -1 is returned, and errno is set to indicate the error.

| Diagnostics

The uvmount system call fails if one or more of the following are true:

|

| EBUSY A device that is still in use is being unmounted.

| EPERM The process’s effective user ID is not superuser nor is this process the
| owner of the stubpath directory, with write permission on the parent

| directory.

| EINVAL There is nothing mounted on stubpath.

| EFAULT stubpath points to a location outside of the process’s allocated address
| space.

System Calls 2-180.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
uvmount

ESTALE The process’s root or current directory is located in a virtual file
system that has been unmounted.

If Distributed Services is installed on your system, uvmount can also fail if one or more of
the following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EDIST The server has a release level of Distributed Services that cannot
communicate with this node.

EAGAIN The server is too busy to accept the request.

EPERM The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

ENODEYV The named file is a remote file located on a device that has been

unmounted at the server.

ENOMEM Either this node or the server does not have enough memory available
to service the request.

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

l

l

I

|

|

|

|

|

|

| ESTALE The file descriptor for a remote file has become obsolete.
|

l

l

|

|

|

|

|

|

| failed.

| Related Information

| In this book: “mntctl” on page 2-70.2, “mount” on page 2-71, “umount” on page 2-170,
| “vmount” on page 2-180.5, and “master” on page 4-98.

| The mount and umount commands in AIX Operating System Commands Reference.

2-180.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
vmount

'vmount

| Purpose

l

Mounts a directory or a regular file.

| Syntax

|

\
\
l
1
!
|

#include <sys/vmount.h >

int vmount (path, stubpath, mflag, type, info, SLze)
char *path, *stubpath;

int mflag;

unsigned int type;

unsigned long *info;

int size;

' Description

|
1
!
|
|
\
l
1
|
|
|
l
\
\
!
|
|

The vmount system call provides, in addition to the function of the mount system call,
the following types of mounts:

e Local file or directory over local file or directory

e Local file or directory over remote file or directory

e Remote file or directory over local file or directory

e Remote file or directory over remote file or directory.

A directory can only be mounted over a directory, and a file can only be mounted over a
file.

A process must have an effective user ID of superuser to use the vmount system call.

The vmount system call mounts the file or directory identified by the path parameter on
the file or directory identified by the stubpath parameter. The path and stubpath
parameters are both pointers to null-terminated path names. For the mntctl system call to
be useful in reporting current virtual mounts, these paths should both be absolute path
names, beginning at the root directory with a / (slash).

The type parameter identifies the type of file system that is being mounted with the path
parameter. The setting of this parameter also determines whether the info and size
parameters are used or ignored. The following values are permitted for type:

System Calls 2-180.5

|
!
|
|
|
|
|
|
|
|
|
|
|
I
I
!
|
|

|
l

I
|
|
|
|
|
1
|
|
|
I

TNL SN20-9855 (26 June 1987) to SC23-0808-0
vmount

MNT_AIX Indicates that path identifies a local entity, and the system can determine the
type of the entity by examining it. For this fype, the info and size parameters
are ignored by the system call.

When mounting any local device, file, or directory, specify this value.

MNT-DS Indicates that path identifies an entity in a remote node. For this type, info
points to the node ID of the remote node, and size is sizeof(long).

When mounting any remote file or directory, specify this value.

The mflag parameter defines various characteristics of the object to be mounted. Possible
values are:

MNT_READONLY Indicates that the object is read-only, and write access is not
allowed. If this value is not specified, writing is permitted
according to individual file accessibility.

MNT_REMOVABLE Indicates that the object is a removable file system. Whenever
there are no active references to files or directories on the file
system, the operating system forgets the content and structure of
the file system. The user can remove the medium and replace it
with a different file system. All future references to stubpath will
refer to the file system on the new medium.

Return Value

Upon successful completion, the vmount system call returns a value of 0. If the vmount
system call fails, a value of -1 is returned, and errno is set to indicate the error.

Diagnostics
The vmount system call fails and the file or directory is not mounted if one or more of the
following are true:
EBUSY stubpath is currently busy. Possible causes include:

e The kernel’s mount table is full.
e The path parameter indicates a device that is currently mounted.

EBUSY The special file to be mounted, defined by the path parameter, is
already open for writing.

ENOTBLK The object to be mounted is not a file, directory, or device.

EFAULT The info, stubpath, or path parameter points to a location outside of
the process’s allocated address space.

E2BIG The number of characters in path is greater than MAXPATH.

2-180.6 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
vmount

EPERM
EPERM

EPERM

ENOTDIR

ENOTDIR
ENOTDIR
ENOTDIR
EINVAL

EINVAL

EINVAL
EINVAL

EINVAL

EINVAL
EINVAL
ESTALE

This process is not the owner of the stubpath directory.

This process does not have write permission on the parent directory of
stubpath.

This process does not have an effective user ID of superuser and is
attempting to mount a device.

A device is being mounted over a non-directory or over a remote
directory.

A mount of a remote device has been attempted.
A component of the path prefix is not a directory.
stubfile and path are not both files or both directories.

For a remote mount, the info parameter did not point to a valid node
ID.

A remote mount is requested, but stubpath is not a full path name
beginning with / (slash).

type is not a recognized file system type.

path indicates a device that does not contain a recognizable file
system.

A type of MNT_DS was specified, but the local node ID was specified
in info.

A remote mount is requested, but path is not local to the server.
path indicates a device that contains a corrupted file system.

The process’s root or current directory is located in a virtual file
system that has been unmounted.

If Distributed Services is installed on your system, vmount can also fail if one or more of
the following are true:

EDIST
EDIST
EDIST

EAGAIN
ESTALE
EPERM

The server has blocked new inbound requests.
Outbound requests are currently blocked.

The server has a release level of Distributed Services that cannot
communicate with this node.

The server is too busy to accept the request.
The file descriptor for a remote file has become obsolete.

The translate tables of the server did not contain any entry for either
the effective user ID or effective group ID of the calling process.

System Calls 2-180.7

TNL SN20-9855 (26 June 1987) to SC23-0808-0

vmount
ENODEV The named file is a remote file located on a device that has been
unmounted at the server.
ENOMEM Either this node or the server does not have enough memory available

ENOCONNECT An attempt to establish a new network connection with a remote node
failed.

EBADCONNECT An attempt to use an existing network connection with a remote node

l

I

| \

| to service the request.
I

|

l ;

1 failed.

| Related Information

| In this book: “mntctl” on page 2-70.2, “mount” on page 2-71, “umount” on page 2-170,
| “uvmount” on page 2-180.3, and “master” on page 4-98.

| The mount and umount commands in AIX Operating System Commands Reference.

2-180.8 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
vmount

System Calls 2-181

TNL SN20-9855 (26 June 1987) to SC23-0808-0
wait

wait

Purpose

Waits for a child process to stop or terminate.

Syntax

int wait (stat-loc) int wait ((int *) 0)
int *stat_loc;

Description

The wait system call suspends the calling process until it receives a signal that is to be
caught, or until any one of the calling process’s child processes stops in a trace mode or
terminates. wait returns without waiting if a child process that hasn’t been waited for has
already stopped or terminated prior to the call.

If the stat_loc parameter is nonzero, 16 bits of information called status are stored in the
low-order 16 bits of the location pointed to by stat_loc. The status information can be used
to differentiate between stopped and terminated child processes and, if the child process
terminated, the status information identifies the cause of termination and passes
information to the parent process. This is accomplished in the following manner:

o If the child process stopped in a trace mode, then the high-order 8 bits of status contain
the number of the signal that caused the process to stop and the low-order 8 bits are set
equal to 0177 (0x7F).

e If the child process terminated due to an exit system call, the low-order 8 bits of status
are 0 and the high-order 8 bits contain the low-order 8 bits of the parameter that the
child passed to the exit system call.

e If the child process terminated due to a signal, the high-order 8 bits of status are 0 and
the low-order 8 bits contain the number of the signal that caused the termination. In
addition, if the low-order seventh bit (bit 0200 or 0x80) is set, then a memory image file
is produced before wait returns.

If a parent process terminates without waiting for its child processes to terminate, the
parent process ID of each child process is set to 1. This means the initialization process
inherits the child processes.

Note: The effect of the wait system call can be modified by the setting of the SIGCLD
signal. See “Special Signals” on page 2-148 for details.

2-182 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
wait

Warning: The actions of the wait system call are undefined if the stat_loc
parameter points to a location outside of the process’s allocated address

space.

Return Value

If the wait system call returns due to a stopped or terminated child process, the process ID
of the child is returned to the calling process. If the wait system call fails, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics
The wait system call fails and returns without waiting if one or more of the following are
true:
ECHILD The calling process has no existing unwaited-for child processes.
EINTR The wait system call received a signal.

Related Information
In this book: “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34, “exit,

—exit” on page 2-40, “fork” on page 2-46, “pause” on page 2-94, “ptrace” on page 2-102, and
“signal” on page 2-145.

System Calls 2-183

TNL SN20-9855 (26 June 1987) to SC23-0808-0
write, . . .

write, writex

Purpose

Writes to a file.

Syntax
int write (fildes, buf, nbytes) int writex (fildes, buf, nbytes, ext)
int fildes; int fildes;
char *buf; char *buf;
unsigned int nbytes; unsigned int nbytes;
int ext;
Description

The write system call writes the number of bytes specified by the nbytes parameter from
the buffer specified by the buf parameter to the file associated with the fildes parameter. If
Distributed Services is installed on your system, this file can reside on another node.

The fildes parameter is a file descriptor obtained from a creat, open, dup, fentl, or pipe
system call.

On devices capable of seeking, the actual writing of data proceeds from the position in the
file indicated by the file pointer. Upon return from the write system call, the file pointer
increments by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

When the O_APPEND flag of the file status is set, the file pointer is set to the end of the
file prior to each write.

If the write system call requests that more bytes be written than there is room for, only as
many bytes as there is room for are written and the write system call returns an integer
equal to the number of bytes written. The next attempt to write nonzero number of bytes
will fail (except as noted following). The limit reached can be either the ulimit (see
“ulimit” on page 2-167) or the end of the physical medium. A partial write is not permitted
for the following:

e If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag
word is set, then a write to a full pipe (or FIFO) returns a count of 0.

2-184 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
Write, L] L] L]

e If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag
word is not set, then a write to a full pipe (or FIFO) blocks until space becomes
available.

If the file to be written supports enforcement mode record locks and all or part of the
region to be written is currently locked by another process, then the action taken depends
on the setting of the O_NDELAY flag:

o If O_NDELAY is set, then write returns -1 and sets errno to EAGAIN.
e If O_NDELAY is not set, then the calling process blocks until the lock is released.
For more information about record locks, see “lockf” on page 2-64.

If the file has been mapped, the write system call writes to a mapped file segment. If the
fildes file descriptor was used to map the file copy-on-write, then the copy-on-write segment
is used. Otherwise, the write system call writes to the read-write mapped segment for the
file.

Warning: If a process issues a write system call to a file that it has not
mapped, but that other processes have mapped copy-on-write, then the
results are unpredictable. However, if the process first attaches the
mapped file in copy-on-write mode with the shmat system call, then the
write to the file is properly reflected in the copy-on-write shared segment.

The writex system call performs the same function as write, except that it provides
communication with character device drivers that require more information or return more
status than write can handle.

For files, directories, or special files with drivers that do not handle extended operations,
the writex system call does exactly what the write system call does, and the ext parameter
is ignored.

Each driver interprets the ext parameter in a device-dependent way, either as a value or as
a pointer to a communication area. The nonextended write system call is equivalent to
the extended writex system call with an ext parameter value of 0. Drivers must apply
reasonable defaults when the ext parameter value is 0.

Return Value

Upon successful completion, the number of bytes actually written is returned. If the write
or writex system call fails, a value of -1 is returned and errno is set to indicate the error.

System Calls 2-185

TNL SN20-9855 (26 June 1987) to SC23-0808-0
write, . . .

Diagnostics
The write and writex system calls fail and the file pointer remains unchanged if one or
more of the following are true:
EBADF The fildes parameter is not a valid file descriptor open for writing.

EAGAIN An enforcement mode record lock is outstanding in the portion of the file
that is to be written.

EPIPE An attempt is made to write to a pipe that is not open for reading by any
process. A SIGPIPE signal is also sent to the calling process.

EFBIG An attempt is made to write a file that exceeds the process’s file size limit or
the maximum file size (see “ulimit” on page 2-167). If Distributed Services is
installed on your system, the file size cannot exceed the client’s default file
size limit.

EFAULT ‘buf points to a location outside of the process’s allocated address space.

EDEADLK A deadlock would occur if the calling process were to sleep until the region
to be written was unlocked.

EINTR A signal was caught during the write system call.

If Distributed Services is installed on your system, write can also fail if one or more of the
following are true:

EDIST The server has blocked new inbound requests.

EDIST Outbound requests are currently blocked.

EAGAIN The server is too busy to accept the request.

ENOMEM Either this node or the server does not have enough memory available

to service the request.

EBADCONNECT An attempt to use an existing network connection with a remote node
failed.

Related Information

In this book: “creat” on page 2-27, “dup” on page 2-32, “lockf” on page 2-64, “Iseek” on
page 2-67, “open” on page 2-90, “pipe” on page 2-95, and “ulimit” on page 2-167, and
Appendix C, “Writing Device Drivers.”

2-186 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

Chapter 3. Subroutines

Subroutines 3-1

TNL SN20-9855 (26 June 1987) to SC23-0808-0

About This Chapter

This chapter gives detailed information about the subroutines (also called functions) that
are available in standard AIX subroutine libraries. For an explanation of the differences
between system calls and subroutines, see the introduction to Chapter 2 on page 2-2. For
an explanation of the “Syntax” section of each entry, see “Syntax” on page v. For an
explanation of header files, see “Header Files” on page vii.

Each subroutine entry contains a “Library” section that indicates the library where the
subroutine is stored. Subroutines are stored in libraries to conserve storage space and to
make the program linkage process more efficient. A library (sometimes called an archive)
is a data file that contains copies of a number of individual files and control information
that allows them to be accessed individually. See “ar” on page 4-18 and the ar command
in AIX Operating System Commands Reference for more information about libraries.

The libraries that contain the subroutines described in this book are located in the fusr/lib
directory. By convention, all of them have names of the form librname.a, where name
identifies the specific library.

You do not need to do anything special to use subroutines from the Standard C Library
(libc.a) or the Run-time Services Library (librts.a). The cec command automatically
searches these libraries for subroutines that a program needs. However, if you use
subroutines from another library, you must tell the compiler to search that library. If your
program uses subroutines from the library libname.a, compile your program with the flag
-lname. The following example compiles the program myprog. c, which uses subroutines
from the libdbm.a:

cc myprog.c ~-Tdbm

You can specify more than one -l flag, but they must be specified after any other flags. See
the ec command in AIX Operating System Commands Reference for details.

The libraries discussed in the book are:

Curses Library (libcurses.a)

Database Library (libdbm.a)

DOS Services Library (libdos.a)

Extended Curses Library (libcur.a)
Graphics Libraries (libplot.a, libprint.a, 1ib300.a, and others)
IPC Library (libipec.a)

Math Library (libm.a)

Object File Access Routine Library (libld.a)
Programmers Workbench Library (libPW.a)
Run-time Services Library (librts.a)
Standard C Library (libc.a)

Standard I/O Package (libc.a)

Usability Services Library (libpanels.a).

3-2 AIX Operating System Technical Reference

The Standard I/O Package subroutines are actually contained in the Standard C Library
(libc.a). These subroutines implement a buffered I/O system on top of the basic I/O
provided by the system calls. For more information about these subroutines, see “standard
i/o library” on page 3-342.

Note: A few of the subroutines are stored in libraries that may not be included in your
system configuration. If the likage editor (1d, which is called by the e¢c command) gives
you an error message indicating that it cannot find one of the subroutines, then check
Appendix E, “Component Cross Reference.” The subroutines listed there are shipped with
programs or licensed programs that must be installed separately.

Subroutines 3-3

a64l, 164a

a64l, 164a

Purpose

Converts between long integers and base-64 ASCII strings.

Library

Standard C Library (libc.a)

Syntax

long a64l (s) char *164a ()
char *s; long /;

Description

The a64l and 164a subroutines maintain numbers stored in base-64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base-64 notation.

The following characters are used to represent digits:

represents 0.
/ represents 1.
0—9 represent 2—11.
A—Z represent 12-37.
a—Z represent 38—63.

The a64] subroutine takes a pointer to a null-terminated character string containing a
value in base-64 representation and returns the corresponding long value. If the string
pointed to by the s parameter contains more than 6 characters, the a64l subroutine uses
only the first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the
corresponding base-64 representation. If the ! parameter is 0, then the 164a subroutine
returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which are
overwritten by each call.

3-4 AIX Operating System Technical Reference

abort

abort

Purpose

Generates an IOT fault to terminate the current process.

Library

Standard C Library (libec.a)

Syntax

int abort ()

Description
The abort subroutine causes a SIGIOT signal to be sent to the current process. This
usually terminates the process and produces a memory dump.

It is possible for the abort subroutine to return control if SIGIOT is caught or ignored. In
this case, abort returns the value returned by the kill system call.

If SIGIOT is neither caught nor ignored, and if the current directory is writable, then the
abort subroutine produces a memory dump in a file named core in the current directory.
The shell then displays the message:

abort - core dumped

Related Information

In this book: “exit, —exit” on page 2-40, “kill” on page 2-60, and “signal” on page 2-145.
The adb command in AIX Operating System Commands Reference.

Subroutines 3-5

abs

abs

Purpose

Returns the absolute value of an integer.

Library

Standard C Library (libc.a)

Syntax

int abs (7)
int i;

Description

The abs subroutine returns the absolute value of its integer operand.

Note: A two’s-complement integer can hold a negative number whose absolute value is
too large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

Related Information

In this book: “floor, ceil, fmod, fabs” on page 3-167.

3-6 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
assert

assert

Purpose

Verifies a program assertion.

Library

Standard C Library (libc.a)

Syntax
#include <assert.h>

void assert (expression)
int expression;

Description
The assert macro puts diagnostics into a program. If expression is false (zero), then assert
writes the following message on the standard error output and aborts the program:
Assertion failed: expression, file filename, line linenum

In the error message, filename is the name of the source file and linenum is the source line
number of the assert statement.

If you compile a program with the preprocessor option -DNDEBUG, or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h >
statement, assertions will not be compiled into the program.

Related Information

In this book: “abort” on page 3-5.
The cpp command in AIX Operating System Commands Reference.

Subroutines 3-7

TNL SN20-9855 (26 June 1987) to SC23-0808-0
atof, . . .

atof, strtod

Purpose

Converts an ASCII string to a floating-point number.

Library

Standard C Library (libc.a)

Syntax

double atof (nptr) | double strtod (nptr, pir)
char *nptr; l char *nptr, **ptr;

Description

The atof and strtod subroutines convert a character string, pointed to by the nptr
parameter, to a double-precision floating-point number. The first unrecognized character
ends the conversion.

These subroutines recognize a character string when the characters appear in the
following order:

1. An optional string of white-space characters

2. An optional sign

3. A string of digits optionally containing a decimal point

4. An optional e or E followed by an optionally signed integer.

If the string begins with an unrecognized character, atof and strtod return the value 0.

If the value of ptr is not (char *¥*) NULL, then a pointer to the character that terminated
the scan is stored in *ptr. If an integer cannot be formed, *pir is set to nptr, and 0 is
returned.

If the correct return value overflows, atof and strtod return INF. On underflow, atof and
strtod return 0.

The atof (npir) subroutine call is equivalent to strtod (npir, (char *¥*) NULL).

The atof and strtod subroutines perform conversions to a floating-point number. See
“strtol, atol, atoi” on page 3-347 for information on conversions to integers.

3-8 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
atof, . . .

Related Information

In this book: “scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf” on page 3-325 and
“strtol, atol, atoi” on page 3-347.

Subroutines 3-8.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
atof, . . .

3-8.2 AIX Operating System Technical Reference

bessel

bessel: j0, j1, jn, y0, y1, yn

Purpose

Computes Bessel functions.

Library
Math Library (libm.a)

Syntax
#include <math.h >
double jO (x) double y0 (x)
double x; double x;
double j1 (x) double y1 (x)
double x; double x;
double jn (n, x) double yn (n, x)
int n; int n; double x;
double x:

Description

The jO and j1 subroutines return Bessel functions of x of the first kind, of orders 0 and 1,
respectively. jn returns the Bessel function of x of the first kind of order n.

The y0 and y1 subroutines return the Bessel functions of x of the second kind, of orders 0
and 1, respectively. yn returns the Bessel function of x of the second kind of order n. The
value of x must be positive.

Non-positive parameters cause y0, y1, and yn to return the value HUGE, to set errno to
EDOM, and to write a message to the standard error output indicating a DOMAIN error.

Parameters that are too large in magnitude cause j0, j1, y0, and y1 to return as much of
the result as possible, to set errno to ERANGE, and to write a message to the standard
error output indicating a PLOSS error.

You can change these error-handling procedures with the matherr subroutine.

Subroutines 3-9

bessel

Related Information

In this book: “matherr” on page 3-238.

3-10 AIX Operating System Technical Reference

bsearch

bsearch

Purpose

Performs a binary search.

Library

Standard C Library (libc.a)

Syntax
#include <search.h>

char *hsearch ((char *)key, (char *)base, nel, sizeof (*key), compar)
unsigned int nel;
int (*compar) ();

Description

The bsearch subroutine is a binary search routine generalized from Donald E. Knuth’s
The Art of Computer Programming, Volume 3, 6.2.1, Algorithm B.* It returns a pointer into
a table indicating where a datum is found.

The table must already be sorted in increasing order according to the provided comparison
function compar. The key parameter points to the datum to be sought in the table. The
base parameter points to the element at the base of the table. The nel parameter is the
number of elements in the table. The compar parameter is a pointer to the comparison
function, which is called with two parameters that point to the elements being compared.

The comparison function must compare its parameters and return a value as follows:

o If the first parameter is less than the second parameter, compar must return a value
less than 0.

e If the first parameter is equal to the second parameter, compar must return 0.

o If the first parameter is greater than the second parameter, compar must return a value
greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained
in the elements in addition to the values being compared.

* Reading, Massachusetts: Addison-Wesley, 1981.

Subroutines 3-11

bsearch

The pointers key and base should be of type pointer-to-element, and cast to type
pointer-to-character. Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Return Value

If the key is found in the table, the bsearch returns a pointer to the element found. If the
key cannot be found in the table, then bsearch returns the value NULL.

Related Information

In this book: “hsearch, hcreate, hdestroy” on page 3-227, “lsearch” on page 3-234, “gsort”
on page 3-315, and “tsearch, tdelete, twalk” on page 3-364.

3-12 AIX Operating System Technical Reference

cfgabdds

cfgabdds

Purpose

Builds and initializes a Define_Device Structure, and then issues a Define_Device SVC.

Library

Run-time Services Library (librts.a)

Syntax
#include <sys/bioca.h>

int cfgabdds (argc, argv, ptr, len)
int argc;

char *argv[];

char *pir;

int len;

Description

A customize helper program must issue the Define_Device SVC for each VRM device
driver. The cfgabdds subroutine is provided for use in customize helper programs to
simplify the task of building the Define_Device structure and issuing the SVC. See AIX
Operating System Programming Tools and Interfaces for more detailed information about
using this subroutine.

The cfgabdds subroutine takes the following parameters:

argc The number of elements in the argv array passed to the customize helper by the
calling program, which is normally the vrmconfig comand.

argv An array of parameters passed to the customize helper by the calling program,
which is normally the vrmconfig command.

ptr A pointer to the initialized structure of device-dependent information for the device
being added to the system. This structure does not include hardware or block I/O
device characteristics. If the device requires no device-dependent information,
then set this parameter to NULL.

len The length in bytes of the structure pointed to by the pir parameter. If the device
requires no device-dependent information, then set this parameter to 0.

Subroutines 3-13

cfgabdds

The customize helper must pass arge and argv to cfgabdds without modification.

Return Value
Upon successful completion, the efgabdds subroutine returns the value VRCSUCC. If
cfgabdds fails, then one of the following values is returned:
VRCKCORP A configuration file is not in attribute file format.

VRCKUNXF An error was returned from the SVC that configures the AIX device
driver.

VRCKIOPT An invalid option was specified from vrmconfig.

VRCKNOSP No storage space available. The malloc subroutine returned a NULL
value.

VRCKIARG One or more parameters are invalid.

VRCKSTNF kaf_file keyword value not found in the argv passed from vrmconfig.
VRCKASNF kaf_file keyword value not found in the argv passed from vrmconfig.
VRCKANOP Unable to open kaf file.

VRCKYINF Keyword not found in input file.

VRCKYWNF Keyword not found in kaf file.

VRCKNONE No processing required by library routine.

VRCKNOBY Length of device-dependent information exceeds the limit of the
Define_Device Structure. (The total space allowed for entire DDS is 500
bytes.)

Related Information

In this book: Appendix C, “Writing Device Drivers.”
AIX Operating System Programming Tools and Interfaces.

3-14 AIX Operating System Technical Reference

cfgadev

cfgadev

Purpose

Adds a device.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfg0l.h>

int cfgadev (master, system, xstanza, vstanza, dstanza, vflag, cflag)
char *master, *system, *xstanza, *vstanza, *dstanza;
int vflag, cflag;

Description

The cfgadev subroutine adds information about devices and device drivers to the system
configuration.

The master parameter points to the full path name of the master file. The system
parameter points to the full path name of the system file. These files are usually
/ete/master and /etc/system, respectively.

The xstanza, vstanza, and dstanza parameters point to buffers that contain the text of
attribute file stanzas. Any one or two of these parameters can be NULL pointers,
indicating that a stanza of that type is not to be added, but at least one of them must point
to a stanza buffer.

The xstanza parameter points to an AIX device driver stanza to be added to the master file.
If the major device number is missing from the stanza, then the cfgadev subroutine
generates a new one, beginning with decimal 20.

The vstanza parameter points to a VRM device driver stanza to be added to the master file.
If the IOCN is missing from the stanza, then the cfgadev subroutine generates a new one,
beginning with decimal 1024.

The dstanza parameter points to a device stanza to be added to the system file. If the IODN
is missing from the stanza, then the cfgadev subroutine generates a new one, beginning

Subroutines 3-15

cfgadev

with decimal 12000. It also generates a minor device number if only the prefix is supplied
or if the value is not unique.

The vflag parameter is either 1 (for “yes”) or 0 (for “no”), indicating whether to execute the
vrmconfig command after the device stanza is added. If the vflag parameter is 1, then
cfgadev executes the vrmconfig command with the -a stname flag, where stname is the
name of the device stanza. The vrmconfig command then processes this stanza for driver
addition and produces a shell procedure. The cfgadev subroutine then runs this shell
procedure, which creates the special file /dev/stname, where stname is the name of the
device stanza in the system file. If the vrmconfig command returns an error, then all
stanzas that were added to the master and system files are deleted.

The cflag parameter is either 1 (for “yes”) or 0 (for “no”), indicating whether to attempt to
associate the VRM device driver stanza with one that has been defined previously. If the
cflag parameter is 1, then the cfgadev subroutine gets the VRM device driver stanza
associated with the device being added. If this VRM device driver stanza contains a code
keyword, then cfgadev searches through the master file for other stanzas that contain the
same code keyword value and that are associated with a device stanza, in the system file,
with the same dtype value. If another stanza is found and if that stanza is defined before
the stanza for the device being added, then the cfgadev subroutine replaces the code
keyword with a copy keyword to copy the stanza that was found. If the VRM device
driver stanza contains a copy keyword, then cfgadev verifies that the stanza it is copying
is defined before the VRM device driver stanza of the device being added.

If the device stanza pointed to by the dstanza parameter contains the admgr keyword,
then its value specifies the name of the device manager’s stanza in the system file. The
new device is added to the vdmgr keyword value list in the device manager’s stanza.

If the device stanza pointed to by the dstanza parameter contains the specproc keyword,
then the program specified by the value of this keyword is executed to perform any special
processing required when adding this device. The value of the specproc keyword must be
the full path name of an executable file. The following arguments are passed to the
program using the argv mechanism described in “exec: execl, execv, execle, execve,
execlp, execvp” on page 2-34. All of them are passed as character strings.

argv[0] The full path name of the special-processing program
argvil] The full path name of the master file

argv[2] The full path name of the system file

argv[3] The name of the device stanza

argv[4] The character string "a", indicating addition.

If the special processing program fails, then the device is still added to the system, but
additional steps may be required before it can be used.

3-16 AIX Operating System Technical Reference

cfgadev

Return Value

File

Upon successful completion, the value CFG-SUCC is returned. If the cfgadev subroutine
fails, then one of the following values is returned:

CFG-BEMP
CFG-BFIC
CFG-BFNA
CFG-BFSM
CFG-CFLI

CFG-CLSE
CFG-FCOR
CFG-MALF
CFG-MAXM

CFG-MGRF
CFG-MPRE
CFG-OPNE
CFG-SLPF

CFGT-VLNG

CFG-VCFG

/etc/specials

The xstanza, vstanza, and dstanza parameters are all NULL pointers.
An input stanza is incomplete, or necessary information is missing.

A failure occured while adding a stanza to the master or system file.

An input stanza buffer can not be updated because the buffer is too small.

The cflag parameter is 1, but the device stanza pointed to by the dstanza
parameter contains nocopy = true. Or, the VRM device driver stanza
for the new device contains a copy keyword, but the stanza that it copies
is not defined before it in the /ete/master file.

An error was detected while trying to close a file.
The master or system file is set up incorrectly.
Memory allocation failed because of insufficient space.

The maximum number of minor device numbers has been reached for the
driver associated with the device being added.

A failure occurred while updating the device manager’s stanza.
The prefix of the device’s minor number is neither b nor c.
An error was detected while trying to open a file.

Special processing failed. The device was added but may require some
additional steps before it can be used.

An IOCN value, an IODN value, or a major device number could not be
generated to complete an input stanza.

The vrmconfig command failed.

Subroutines 3-17

cfgadev

Related Information

In this book: “attributes” on page 4-20, “master” on page 4-98, and “system” on
page 4-139.

The vrmconfig command in AIX Operating System Commands Reference.

3-18 AIX Operating System Technical Reference

cfgamni

cfgamni

Purpose

Adds a minidisk.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfg02.h>

int cfgamni (sysstanza, fsstanza, use, loc)
char *sysstanza, *fsstanza;
int use, loc;

Description

The efgamni subroutine creates minidisks. The necessary steps to accomplish this include
adding stanzas to the /etc/system and the /etc/filesystems files, updating coprocessor
stanzas, executing the vrmconfig command to define the minidisk, and issuing AIX
subroutine calls to make the file system usable. The calling process must have an effective
ID of superuser.

The sysstanza and fsstanza parameters point to buffers that contain the text of attribute
file stanzas. The sysstanza parameter points to a minidisk stanza that is to be added to the
Jetc/system file. The fsstanza parameter points to a minidisk stanza that is to be added to
the /etc/filesystems file.

The use parameter specifies how the minidisk is used. The values allowed for this
parameter are:

PARTUNIX AIX file system partition
PARTCOPR Coprocessor partition
PARTOTHR A partition for some other use.

The loc parameter specifies the approximate location on the physical disk where the
minidisk should reside. The values allowed for this parameter are:

PARTLOCH At the high end of the fixed disk
PARTLOCM |Near the center of the fixed disk

Subroutines 3-19

cfgamni

PARTLOCL Near the beginning of the fixed disk.

After the efgamni subroutine completes successfully, the /etc/system file contains a
stanza for the new minidisk, and the minidisk has been added to the system.

Return Value
Upon successful completion, the value CFG_.SUCC is returned. If the cfgamni subroutine
fails, then one of the following values is returned:
CFG_NSID The calling process’s effective user ID is not superuser.
CFG_USZF The format of a stanza is incorrect.
CFG-MAXP The maximum number of minidisks are already defined.
CFG_VRMF The vrmconfig command could not define the partition.
CFG_APIE One or more parameters are incorrect.
CFG_CFEF The VRM call to create the partition failed.
CFG_UNRW An unrecoverable read or write error occurred.

CFG-FOPN An error occurred while opening a file.

Files
/etc/ddi/epmgr

/etc/filesystems
[etc/system

Related Information

In this book: “attributes” on page 4-20, “master” on page 4-98, and “system” on
page 4-139.

The vrmconfig command in AIX Operating System Commands Reference.

3-20 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
cfgaply

cfgaply

Purpose

Applies configuration information.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfg03.h>

int cfgaply (restart)
int restart;

Description

The efgaply subroutine rebuilds the AIX kernel. It runs the make command to allow you
to rebuild the following files:

Jusr/sys/cf/conf.c
/usr/sys/cf/conf.o
Jusr/sys/specials
Kernel library files:
[usr/sys/lib0
Jusr/sys/libl
[usr/sys/lib2

The restart parameter indicates whether to restart the system after the subroutine
completes. If restart is a nonzero value, then the system is restarted after completion.

Before attempting to rebuild the kernel, cfgaply creates a backup copy of it named
Junixdate.seq, where date is the Julian date the backup was created, and seq is a sequence
number, starting with 1. Since kernel images take up storage space, cfgaply deletes any
backup copies that were saved previously.

The cfgaply subroutine creates a shell procedure named /usr/sys/specials that contains
the mknod, chown, and chmod commands necessary to create the special files (/dev files)
needed by the new kernel. The cfgaply subroutine does not run this shell procedure.

Subroutines 3-21

TNL SN20-9855 (26 June 1987) to SC23-0808-0
cfgaply

Return Value

If the restart parameter is nonzero, then the system is restarted and the cfgaply subroutine
does not return. If restart is 0 and cfgaply completes successfully, then it returns the
value CFG-SUCC. If an AIX program fails that cfgaply has executed, the return code
from that program is returned. If the cfgaply subroutine itself fails, then one of the
following values is returned:

CFG_-ACCS A failure occurred while accessing the funix kernel.

CFG-AOPN The open system call failed.
CFG_ABCK A failure occurred while reading the kernel and writing to the backup file.

CFG_-ACPF A failure occurred while reading the rebuilt kernel (/usr/sys/unix.std)
and copying it to /unix on the root file system. The previous /unix kernel
remains intact.

CFG-AMKF The make command failed. Error messages from make are redirected to
the file fusr/sys/make.out.

Files

/unix

/unixdate.seq
/usr/sys/cf/conf.c
Jusr/sys/cf/conf.o
[usr/sys/specials
Jusr/sys/lib0
[usr/sys/libl
jusr/sys/lib2
[usr/sys/make.out
[usr/sys/unix.std

Related Information

In this book: “config” on page 6-7.

The config and make commands in AIX Operating System Commands Reference.

3-22 AIX Operating System Technical Reference

cfgcadsz

cfgcadsz

Purpose

Adds or replaces a stanza in an attribute file.

Library

Run-time Seryices Library (librts.a)

Syntax
#include <cfg04.h>

int cfgcadsz (atfile, stanza, stname,after)
CFG__SFT *atfile;

char *stanza;

char *stname;

char *after;

Description
The cfgcadsz subroutine adds a new stanza or replaces an existing stanza in an attribute
file. (For details about attribute files, see “attributes” on page 4-20.)

The atfile parameter points to an open attribute file structure. The stanza parameter
points to the buffer that contains the stanza to be written. The stname parameter points to
the name of the stanza to be added to the file.

The after parameter points to the name of the stanza after which the new stanza is to be
inserted. If this parameter is NULL, then the stanza is added to the end of the file.

All information that is repeated in the default stanza of the attribute file is removed from
the new stanza before it is written to the file.

The calling program must have an effective user ID of superuser to access system
customization files such as /etc/master, fetc/system, and /etc/predefined.

Subroutines 3-23

cfgcadsz

Return Value
Upon successful completion, the value CFG_SUCC is returned. If the cfgecadsz subroutine
fails, then the following value is returned:
CFG-ECLS An error occurred while closing a file.
CFG_EOPN An error occurred while opening a file.
CFG_SPCE Memory allocation failed because of insufficient space.

CFG_UNIO An unrecoverable I/O error occurred during processing.

Related Information
In this book: “cfgadev” on page 3-15, “cfgamni” on page 3-19, “cfgeclsf” on page 3-25,

“cfgedlsz” on page 3-27, “cfgcopsf” on page 3-29, “cfgerdsz” on page 3-31, and “attributes”
on page 4-20.

3-24 AIX Operating System Technical Reference

——

cfgcclsf

cfgccelsf

Purpose

Closes an attribute file.

Library

Run-time Services Library (librts.a)

Syntax
#include < cfg04.h>

int cfgcelst (atfile)
CFG-_SFT *atfile;

Description
The efgeelsf subroutine closes an attribute file. (For details about attribute files, see
“attributes” on page 4-20.)
The atfile parameter points to an open attribute file structure.

The calling program must have an effective user ID of superuser to access system
customization files such as /etc/master, /etc/system, and /etc/predefined.

Return Value

Upon successful completion, the value CFG_-SUCC is returned. If the efgeelsf subroutine
fails, then the following value is returned:

CFG-UNIO Unrecoverable I/O error occurred during processing.

Subroutines 3-25

cfgccelsf

Related Information

In this book: “cfgcadsz” on page 3-23, “cfgedlsz” on page 3-27, “cfgcopsf” on page 3-29,
“cfgcrdsz” on page 3-31, and “attributes” on page 4-20.

3-26 AIX Operating System Technical Reference

cfgedlsz

cfgedlsz

Purpose

Deletes a stanza from an attribute file.

Library

Run-time Services Library (librts.a)

Syntax
ffinclude <cfg04.h>

int cfgedlsz (atfile, stname)
CFG-_SFT *atfile;
char *stname;

Description
The cfgedlsz subroutine deletes a stanza from an attribute file. (For details about
attribute files, see “attributes” on page 4-20.)

The atfile parameter points to an open attribute file structure. The stname parameter
points to the name of the stanza to be deleted from the file.

The calling program must have an effective user ID of superuser to access system
customization files such as fetc/master, /etc/system, and /etc/predefined.

Return Value
Upon successful completion, the value CFG_SUCC is returned. If the cfgedlsz subroutine
fails, then one of the following values is returned:
CFG_-ECLS An error occurred while closing a file.
CFG_EOPN An error occurred while opening a file.
CFG_SPCE Memory allocation failed because of insufficient space.

CFG_-SZBF The file contains a stanza that is larger than the maximum allowable
stanza size.

Subroutines 3-27

cfgcdlsz

CFG-SZNF The requested stanza to be deleted was not found in the file.

CFG_UNIO An unrecoverable I/O error occurred during processing.

Related Information
In this book: “cfgcrdsz” on page 3-31, “cfgdmni” on page 3-36, “cfgcadsz” on page 3-23,

“cfgeelst” on page 3-25, “cfgcopsf” on page 3-29, “cfgddev” on page 3-33, and “attributes”
on page 4-20. '

3-28 AIX Operating System Technical Reference

cfgcopsf

cfgcopsf

Purpose

Opens an attribute file.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfg04.h>

CFG-_SFT *cfgcopsf (path)
char *path;

Syntax
The cfgcopsf subroutine opens an attribute file for update. (For details about attribute
files, see “attributes” on page 4-20.)
The path parameter points to the full path name of the file to be opened.

The cfgcopsf subroutine calls the fopen subroutine to open the file for update. If the call
to fopen is successful, then cfgcopsf allocates a CFG-_SFT structure. This structure
contains the file descriptor returned by fopen, a pointer to a default stanza buffer for
reads, a pointer to an array of indexes in a default stanza buffer, and the full path name of
the file that was opened. "

The calling program must have an effective user ID of superuser to access system
customization files such as /etc/master, /etc/system, and /etc/predefined.

Return Value

Upon successful completion, the cfgeopsf subroutine returns a pointer to an open
attribute file structure. If the cfgcopsf subroutine fails, it returns a NULL pointer.

Subroutines 3-29

cfgcopsf

Related Information
In this book: “cfgcadsz” on page 3-23, “cfgcclsf” on page 3-25, “cfgedlsz” on page 3-27,

“cfgerdsz” on page 3-31, “fopen, freopen, fdopen” on page 3-168, and “attributes” on
page 4-20.

3-30 AIX Operating System Technical Reference

cfgerdsz

cfgerdsz

Purpose

Reads an attribute file stanza.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfg04.h >

int efgerdsz (atfile, stanza, nbytes, stname)
CFG__SFT *atfile;

char *stanza;

int nbytes;

char *stname;

Description

The efgerdsz subroutine reads one stanza from an attribute file. A specific stanza may be
requested, or the next stanza in the file can be read. When a stanza is read, any
information contained in a default stanza preceding it in the file will be added to the
information returned in the buffer. (For details about attribute files, see “attributes” on
page 4-20.)

The atfile parameter points to an open attribute file structure.
The stanza parameter points to the buffer into which the stanza will be read.
The nbytes parameter is the size in bytes of the buffer pointed to by the stanza parameter.

The stname parameter points to a string containing the name of the stanza to be read. If
this parameter is a NULL pointer, then the next stanza in the file is read.

The calling program must have an effective user ID of superuser to access system
customization files such as /etc/master, /etc/system, and /etc/predefined.

Subroutines 3-31

cfgerdsz

Return Value

Upon successful completion, the value CFG_SUCC is returned. If the cfgerdsz subroutine
fails, then one of the following values is returned:

CFG_-EOF The next stanza was requested, but the end of the file has been reached.
CFG_-SZNF The requested stanza was not found in the file.

CFG_-SZBF The requested stanza is longer than nbytes bytes.

CFG_UNIO Unrecoverable I/O error occurred during processing.

Related Information

In this book: “cfgcadsz” on page 3-23, “cfgcelsf” on page 3-25, “cfgedlsz” on page 3-27,
“cfgcopsf” on page 3-29, and “attributes” on page 4-20.

3-32 AIX Operating System Technical Reference

cfgddev

cfgddev

Purpose

Deletes a device.

Library

Run-time Services Library (librts.a)

Syntax
#include <cfgldl.h>

int cfgddev (master, system, dstname, vflag)
char *master, *system, *dstname;
int vflag;

Description

The cfgddev subroutine deletes information about devices and device drivers from the
system configuration.

The master parameter points to the full path name of the master file. The system
parameter points to the full path name of the system file. These files are usually
/etc/master and /etc/system, respectively. The dstname parameter points to a string
containing the name of the stanza in the system file of the device to be deleted.

The vflag parameter is either 1 (for “yes”) or 0 (for “no”). If the vflag parameter is 1, then
cfgddev executes the vrmconfig command with the -d dstrname flag. The vrmconfig
command then processes the named stanza for driver deletion and produces a shell
procedure. The cfgddev subroutine then runs this shell procedure to delete the special file
(/dev file) for the device. If the virmconfig command returns an error, then the device is
not deleted.

The cfgddev subroutine then gets the VRM device driver stanza associated with the device
being deleted. If it contains a code keyword, then cfgddev searches the master file for
other VRM device driver stanzas that copy this stanza by specifying its name as the value
of a copy keyword. If any are found, they are updated so that the first of these stanzas
defined in the master file contains the code keyword, and the other stanzas copy the first
stanza.

Subroutines 3-33

cfgddev

If the VRM device driver stanza for the device being deleted contains a copy keyword,
then it is replaced with a code keyword whose value is the same as the value of the code
keyword in the stanza it is copying.

If the device stanza being deleted from the system file contains an admgr keyword, then its
value is the name of the device manager’s stanza in the system file. The device is deleted
from the vdmgr keyword value list in the device manager’s stanza.

If the device stanza named by the dstname parameter contains the speeproc keyword, then
the program specified by the value of this keyword is executed to perform any special
processing required when deleting this device. The value of the specproc keyword must
be the full path name of an executable file. The following arguments are passed to the
program using the argv mechanism described in “exec: execl, execv, execle, execve,
execlp, execvp” on page 2-34. All of them are passed as character strings.

argv[0] The full path name of the special-processing program
argv[l] The full path name of the master file

argv|[2] The full path name of the system file

argv[3] The name of the device stanza

argv[4] The character string "d", indicating deletion.

If the special processing program fails, then the device is still deleted from the system, but
some additional steps may be required to clean up the system.

The device stanza associated with the deleted device is then deleted from the system file.

Return Value
Upon successful completion, the value CFG_SUCC is returned. If the cfgddev subroutine
fails then one of the following values is returned:
CFG-CLSE An error was detected while trying to close a file.

CFG_CPYF A failure occurred while trying to update the VRM driver stanzas that
copy the driver stanza of the device being deleted.

CFG-DVND The device could not be deleted from the system file.
CFG_DVNF The device to be deleted cannot be found in the system file.
CFG_FCOR The master or system file is set up incorrectly.
CFG-MALF Memory allocation failed because of insufficient space.

CFG_MGRF A failure occurred while updating the device manager’s stanza for the
device being deleted.

3-34 AIX Operating System Technical Reference

cfgddev

CFG_OPNE An error was detected while trying to open a file.

CFG-SLPF Special processing failed. The device is deleted but some additional steps
may be required to clean up the system.

CFG_VCFG The vrmconfig command failed.
Files
/etc/specials

Related Information

In this book: “attributes” on page 4-20, “master” on page 4-98, and “system” on
page 4-139.

The vrmconfig command in AIX Operating System Commands Reference.

Subroutines 3-35

cfgdmni

cfgdmni

Purpose

Deletes a minidisk.

Library

Run-time Services Library (librts.a)

Syntax
#include < cfg02.h>

int cfgdmni (sysstname, fsstname)
char *sysstname, *fsstname;

Description

The cfgdmni subroutine deletes a minidisk from the system. The necessary steps to
accomplish this include calling the minidisk manager, executing the vrmconfig command,
removing the minidisk stanzas from the /etc/system and /etc/filesystems files, and
removing the coprocessor stanza references.

The sysstname parameter is a pointer to the name of the stanza in the /etc/system file that
describes the minidisk that is to be deleted.

The fsstname parameter is a pointer to the name of the stanza in the /etc/filesystems file
if the minidisk is an AIX minidisk. If the minidisk is not an AIX minidisk, then the
fsstname parameter must be NULL.

After the cfgdmni subroutine completes successfully, the minidisk is deleted from the
system and the minidisk stanza has been deleted from the /etc/system file, and, if
appropriate, from the /etc/filesystems file or from the /etc/ddi/cpmgr file.

3-36 AIX Operating System Technical Reference

cfgdmni

Return Value
Upon successful completion, the value CFG_SUCC is returned. If the cfgdmni subroutine
fails, then one of the following is returned:
CFG-NSID The calling process’s effective user ID is not superuser.
CFG_VRMF The vrmconfig command could not delete the partition.
CFG_APIE One or more parameters are incorrect.
CFG-CFEF The VRM call to delete the partition failed.

CFG-USZF The stanza specified by the sysstname parameter could not be found in the
[ete/system file.

CFG_UNRW An unrecoverable read or write error occurred.

CFG-FOPN An error occurred while opening a file.

Files

[etc/ddi/cpmgr
/etc/filesystems
[etc/system

Related Information

In this book: “attributes” on page 4-20, “master” on page 4-98, and “system” on
page 4-139.

The vrmconfig command in AIX Operating System Commands Reference.

Subroutines 3-37

clock

clock

Purpose

Reports CPU time used.

Library

Standard C Library (libc.a)

Syntax

long clock ()

Description

The clock subroutine returns the amount of CPU time (in microseconds) used since the
first call to clock.

The time reported is the sum of the user and system times of the calling process and its
terminated child processes for which it has executed a wait system call or a system
subroutine. The nominal resolution of the clock is 16.667 milliseconds if the process is
being profiled; otherwise, it is 100 milliseconds. See “monitor” on page 3-248 and “profil”
on page 2-99 for information about profiling a process.

Note: The value returned by the clock subroutine is defined in microseconds for
compatibility with systems that have CPU clocks with much higher resolution. Because of
this, the value returned wraps around after accumulating approximately 2147 seconds of
CPU time (about 36 minutes).

Related Information

In this book: “times” on page 2-165, “wait” on page 2-182, and “system” on page 3-350.

3-38 AIX Operating System Technical Reference

conv

conv

Purpose

Translates characters.

Library

Standard C Library (libc.a)

Syntax
#include <ctype.h>

int toupper (c¢)
int c;

int tolower (c¢)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

int NCesc (xp, cp)
NLchar *xp;
char *cp;

int NCtoupper (x)
int x;

int NCtolower (x)
int x;

int _NCtoupper (x)
int x;

int _NCtolower (x)
int x;

int NCtoNLchar (x)
int x;

int NCunesc (cp, xp)
char *cp;
NLchar *xp;

int NCflatchr (x)
int x;

Subroutines 3-39

conv

Description

The NCxxxxxxx subroutines translate all characters, including extended characters, as
code points (see “Overview of International Character Support” in IBM RT PC Managing
the AIX Operating System). The other subroutines translate traditional ASCII characters
only.

The toupper and the tolower subroutines have as domain the range of the gete
subroutine: from -1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter, the result is the
corresponding uppercase letter. If the parameter of the tolower subroutine represents an
uppercase letter, the result is the corresponding lowercase letter. All other values in the
domain are returned unchanged.

The —toupper and —tolower routines are macros that accomplish the same thing as
toupper and tolower, but they have restricted domains and they are faster. _toupper
requires a lowercase letter as its parameter; its result is the corresponding uppercase
letter. _tolower requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Values outside the domain cause undefined results.

The value of x is in the domain of any legal NLchar in a value range from 0 to
NLCHARMAX inclusive, or a special value of -1 (which represents EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to
the current collating sequence configuration, the result is the corresponding uppercase
letter. If the parameter of the NLtolower subroutine represents an uppercase letter
according to the current collating sequence configuration, the result is the corresponding
lowercase letter. All other values in the domain are returned unchanged.

The _NCtoupper and -NCtolower routines are macros that accomplish the same thing as
NCtoupper and NCtolower, but have restricted domains and are faster. _NCtoupper
requires a lowercase letter as its parameter; its result is the corresponding uppercase
letter. -NCtolower requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Values outside the domain cause undefined results.

The toascii subroutine yields the value of its parameter with all bits that are not part of a
standard ASCII character turned off. It is intended for compatibility with other systems.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that
are not part of an NLchar.

The NCesc macro converts the NLchar value xp into one or more ASCII bytes stored in
the character array pointed to by ¢p. If the NLchar represents an extended character, it is
converted into a printable ASCII escape sequence that uniquely identifies the extended
character. NCesc returns the number of bytes it wrote. See “display symbols” on

page 5-24 for a list that shows the escape sequence for each character.

3-40 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
conv

The inverse conversion is performed by the NCunesc macro, translating an ordinary

ASCII byte or escape sequence starting at ¢p into a single NLchar at xp. NCunesc
returns the number of bytes it read.

The NCflatchr subroutine converts its parameter value into the single ASCII byte that
most closely resembles the parameter character in appearance. If no ASCII equivalent
exists, it converts the parameter value to a ? (question mark).

Related Information
In this book: “ctype” on page 3-49, “getc, fgetc, getchar, getw” on page 3-204, and “display
symbols” on page 5-24.

“Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

Subroutines 3-40.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
create_ipc_prof

create_ipc_prof

| Purpose

| Creates a profile for an IPC queue.

| Library

| IPC Library (libipc.a)

| Syntax
| #include <drs.h>
| int creat_ipc_prof (queue_name, I—key, r_key, nickname)

[char *queue-_name;
| key_t *I_key, *r_key;
| char *nickname;

|Description

The create_ipc_prof subroutine creates a profile for an IPC queue.

The queue_name parameter contains the name of the IPC queue. If this value is not
specified by the caller, create_ipe_prof assigns a queue name and places it in
queue_name. A queue—_name supplied by the caller must have valid AIX filename syntax.
A queue_name supplied by the subroutine has valid AIX filename syntax and is up to 15
characters long, including the trailing NULL.

|

|

|

I

|

|

| The [-key parameter points to the local key for an IPC queue. If this parameter is NULL,
[then create_ipc_prof assigns a local key value and places it in [_key. If the caller

| supplies the [_key, it should fall between 0x30000 and OxFFFFF because other ranges are

| reserved. A value for this parameter supplied by the subroutine will fall in the same range.
|

|

|

|

l

I

The create-ipc_profile creates a profile that maps a key (I-key) to another key (r—key),
which can be either local or remote. The nickname parameter points to the nickname or
node ID, in hexadecimal, of the node where the IPC queue exists. A value of NULL for

both r_key and nickname indicates that the queue is on the local node.

If create_ipc—_prof succeeds in creating a profile, the dsipc command is used to update the
kernel’s copy of the profiles.

3-40.2 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
create_ipc_prof

|Return Value

|
|
I
{
|
I
|
|
|
1
|
|
1
|
l
|
|
|
|
|
|
|
1
|
!
|
l
l

Upon successful completion, this function returns a 0, and the parameters queue—name,
I_key, r—key, and nickname contain the values in the created profile. If an error occurs,
then create—ipc—prof returns a negative value from the following list:

DRS_ACCES The required access permissions were denied.
DRS_BADLEN An incorrect parameter was supplied.
DRS_NOREC No record was found.

DRS_BKEY The key is out of range.

DRS_NOKEY No keys are available.

DRS-IO An input/output error occurred.
DRS_AGAIN Unable to start pfsmain.

DRS_BADF An incorrect file descriptor was supplied.
DRS_BADK An incorrect index key was supplied.
DRS_BDMSF An incorrect file or table was supplied.
DRS_BOF The beginning of the file was encountered.
DRS_DEADLK A deadlock was detected.

DRS_EOF The end of the file was encountered.
DRS_FAULT An incorrect address was supplied.
DRS_FBIG The maximum file size was exceeded.
DRS_IDRM The identifier was removed.

DRS_INBLCK The profile database is locked against updates.
DRS_INTENT The intentions were denied.

DRS-ISDIR A write to a directory was attempted.
DRS_MFILE Too many files, tables, or indexes were open.
DRS_NFILE The file table overflowed.

DRS_NOENT No file or directory was found.
DRS_NOMEM No memory is available.
DRS_NOSPC No space is available on the device.
DRS_NOTDIR Not a directory.

DRS_NOTIDX Not an index.

Subroutines 3-40.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
create_ipc_prof

f DRS_PANIC Abnormal termination occurred.

f DRS_RCVRY The file needs recovery.

| DRS_RECLEN The record length is invalid.

| DRS_ROFS The file system to be accessed is read-only.

| Related Information

| In this book: “msgctl” on page 2-73, “del_ipc_prof” on page 3-64.1, and “find-ipc—prof” on
| page 3-166.1.

| The dsipe command in AIX Operating System Commands Reference.

|

AIX Operating System Programming Tools and Interfaces.

3-40.4 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
create_ipc_prof

Subroutines 3-41

TNL SN20-9855 (26 June 1987) to SC23-0808-0
crypt, . . .

crypt, encrypt

Purpose

Encrypts user passwords.

Library

Standard C Library (libc.a)

Syntax

char *crypt (key, salt) void encrypt (block)
char *key, *salt; char *block;

Description

The erypt and encrypt subroutines encrypt user passwords. They are based on a one-way
hashing encryption algorithm with variations intended to frustrate the use of
hardware-implemented key searches. These subroutines are provided for compatibility
with UNIX system implementations, and no assertion is made about the strength of the
algorithm.

The key parameter is a user’s typed password. The salt parameter is a two-character string
chosen from the set [a-zA-Z0-9./].

The salt parameter is used to perturb the hashing algorithm in one of 4096 different ways,
after which the password is used as the key to repeatedly encrypt a constant string. The
return value points to the encrypted password. The first two characters of the return
value are the string entered in the salt parameter.

The erypt subroutine uses a character array of length 64 containing only the values

(char) 0and (char) 1. This string is divided into groups of eight characters each, and
the low-order bit in each group is ignored. This provides a 56-bit key, which is set into the
machine by crypt.

The encrypt subroutine provides somewhat primitive access to the actual hashing
algorithm. The block parameter is a 64-character array containing only the values

(char) 0 and (char) 1. encrypt modifies this array in place, producing a similar array
that has been subjected to the hashing algorithm using the key set by crypt.

3-42 AIX Operating System Technical Reference

crypt, .

Return Value

The crypt subroutine returns a pointer to the encrypted password. The first two
characters of it are the same as the salt parameter.

Note: The return value points to static data that is overwritten by subsequent calls.

Related Information

In this book: “getpass” on page 3-217 and “passwd” on page 4-112.

The login and passwd commands in AIX Operating System Commands Reference.

Subroutines

3-43

ctermid

ctermid

Purpose

Generates a file name for terminal.

Library

Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

char *ctermid (s)
char *s;

Description

3-44

The ctermid subroutine generates the path name of the controlling terminal for the
current process and stores it in a string.

If the s parameter is a NULL pointer, the string is stored in an internal static area and the
address is returned. The next call to ctermid overwrites the contents of the internal static
area.

If the s parameter is not a NULL pointer, it points to a character array of at least
L_ctermid elements as defined in the stdio.h header file. The path name is placed in this
array and the value of s is returned.

The difference between the ctermid and ttyname subroutines is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associated with that
file descriptor, while ctermid returns a string (/dev/tty) that refers to the terminal if used
as a file name. Thus ttyname is useful only if the process already has at least one file
open to a terminal.

AIX Operating System Technical Reference

—x

ctermid

Related Information

In this book: “ttyname, isatty” on page 3-367.

Subroutines 3-45

ctime, . . .

ctime, localtime, gmtime, asctime, tzset

Purpose

Converts date and time to string representation.

Library

Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime (clock) char *asctime (tm)
long *clock; struct tm *tm;

struct tm *localtime (clock) void tzset ()
long *clock;
extern long timezone;

struct tm *gmtime (clock) extern int daylight;
long *clock; extern char *tzname|2];
Description

The ctime subroutine converts a time value pointed to by the clock parameter, which
represents the time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1,
1970, into a 26-character string in the following form:

Sun Sep 16 01:03:52 1973\n\0
The width of each field is always the same as shown here.

The localtime subroutine converts the long integer pointed to by the clock parameter,
which contains the time in seconds since 00:00:00 GMT, January 1, 1970, into a tm
structure. localtime adjusts for the time zone and for daylight savings time, if it is in
effect.

The gmtime subroutine converts the long integer pointed to by the clock parameter into a
tm structure containing the Greenwich Mean Time, which is the time that AIX uses.

3-46 AIX Operating System Technical Reference

PN

ctime, . . .

The tm structure is defined in the time.h header file, and it contains the following
members:

int tm_sec; /* Seconds (0 - 59) */

int tm_min; /* Minutes (0 - 59) */

int tm_hour; /* Hours (0 - 23) */

int tm-mday; /* Day of month (1 - 31) */

int tm_mon; /* Month of year (0 - 11) */

int tm_year; /* Year - 1900 */

int tm-wday; /* Day of week (Sunday = 0) */

int tm_yday; /* Day of year (0 - 365) */

int tm_isdst; /* Nonzero = Daylight savings time */

The asctime subroutine converts a tm structure to a 26-character string of the same
format as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone,
which is the U.S. Eastern time zone. See “environment” on page 5-47 for the format of the
time zone information specified by TZ. TZ is usually set when the system is started up to
the value that is defined in either /etc/environment or [etc/profile. However, it can also
be set by the user as a regular environment variable for performing alternate time zone
conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to
reflect the setting of TZ. tzset is called by ctime and localtime, and it can also be called
explicitly by an application program.

The timezone external variable contains the difference, in seconds, between GMT and

local standard time. For example, timezone is 5 x 60 x 60 for U.S. Eastern Standard
Time.

The daylight external variable is non-zero when a daylight savings time conversion should
be applied. By default, this conversion follows the standard U.S. conventions; other
conventions can be specified. The default conversion algorithm adjusts for the
peculiarities of U.S. daylight savings time in 1974 and 1975. See “environment” on

page 5-47 for information about specifying alternate daylight savings time conventions.

The tzname external variable contains the name of the standard time zone (tzname[0])
and of the time zone when daylight savings time is in effect (tzname[1]). For example:

char *tzname[2] = {"EST", "EDT"};

The time.h header file contains declarations of all these subroutines, externals, and the
tm structure.

Warning: The return values point to static data that is overwritten by
each call.

Subroutines 38-47

ctime, . . .

Related Information
In this book: “time” on page 2-164, “getenv, NLgetenv” on page 3-208, “NLstrtime” on

page 3-288, “NLtmtime” on page 3-291, “profile” on page 4-127, and “environment” on
page 5-47.

3-48 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ctype
ctype
Purpose
Classifies characters.
Library
Standard C Library (libc.a)
Syntax
#include <ctype.h>
int isalpha (c) int isspace (c)
int c; int c;
int isupper (c) int ispunct (c)
int c; int c;
int islower (c) int isprint (c)
int c; int c;
int isdigit (c) int isgraph (c)
int c; int c;
int isxdigit (c) int isentrl (c)
int c; int c;
int isalnum (c) int isascii (c)
int c; int c;
Description

The ctype macros classify character-coded integer values by table look-up. Each of these
macros returns a nonzero value for “true” and 0 for “false.”

The isascii macro is defined for all integer values. The other macros return a meaningful
value only if isascii returns “true” for the same ¢ value, or if ¢ is EOF. (See “standard i/o
library” on page 3-342 for information about the value EOF.)

Subroutines 3-49

TNL SN20-9855 (26 June 1987) to SC23-0808-0

ctype

The following list shows the set of values for which each macro returns a nonzero (“true”)

value:
isalpha
isupper
islower
isdigit
isxdigit
isalnum
isspace
ispunct
isprint

isgraph
iscntrl

isascii

¢ is a letter.

¢ is an uppercase letter.

¢ is a lowercase letter.

¢ is a digit in the range [0-9].

¢ is a hexadecimal digit in the range [0-9], [A-F] or [a~f].

¢ is alphanumeric (a letter or a digit).

¢ is a space, tab, carriage return, new-line, vertical tab, or form-feed character.
¢ is a punctuation character (neither a control character nor alphanumeric).

¢ is a printing character, ASCII space (040 or 0x20) through ~ (0176 or 0x7E).

¢ is a printing character, like isprint but, unlike isprint, isgraph returns false
(0) for the space character.

¢ is an ASCII DEL character (0177 or 0x7F) or an ordinary control character
(less than 040 or 0x20).

¢ is an ASCII character whose value is in the range 0—0177 (0 —0x7F),
inclusive.

Related Information

In this book: “NCctype” on page 3-270, “ascii” on page 5-3, and “data stream” on page 5-5.

“Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

3-50 AIX Operating System Technical Reference

curses

curses

Purpose

Controls cursor movement and windowing.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>
#include <term.h>

Description

Note: The curses package of subroutines is included here only for compatibility with
existing programs. For information about the enhanced screen-handling subroutine
library, see “extended curses library” on page 3-131.

The curses subroutine package updates the screen with reasonable optimization. The
term.h header file is only needed if terminfo level routines are needed (see “Terminfo
Level Subroutines” on page 3-57).

In order to initialize the routines, the routine initscr must be called before any of the
other routines that deal with windows and screens are used. The routine endwin should
be called before exiting. To get character-at-a-time input without echoing, call the nonl,
cbreak, and noecho routines. Most interactive, screen-oriented programs require the
character-at-a-time input without echoing.

The full curses interface permits manipulation of data structures called windows, which
can be thought of as two-dimensional arrays of characters representing all or part of a
screen. A default window called stdscr is supplied, and others can be created with the
newwin routine. Windows are referred to by variables declared WINDOW *. The type
WINDOW is defined in curses.h to be a C structure. These data structures are
manipulated with the routines described following, among which the most basic are move
and addch. Then the refresh routine is called, telling the routines to make the screen
look like stdser. More general versions of these routines are included with names
beginning with w allowing you to specify a window. The routines not beginning with a w
affect stdscr.

Subroutines 3-51

curses

Minicurses is a subset of curses that does not allow manipulation of more than one
window. To invoke this subset, use -DMINICURSES as a c¢c option. This level is smaller
and faster than the full curses.

If the environment variable TERMINFO is defined, any program using curses checks for
a local terminal definition before checking in /usr/lib/terminfo. For example, TERM is
set to vt100, then normally, the compiled file is found in /usr/lib/terminfo/v/vt100. (The
directory name v is copied from the first letter of vt100 to avoid creating huge directories.)
If, for example, TERMINFO is set to /usr/mark/myterms, curses first checks
fusr/mark/myterms/v/vt100. If this file does not exist, curses then checks
Jusr/lib/terminfo/v/vt100. This is useful for developing experimental definitions or when
write permission in /usr/lib/terminfo is not available.

Note: The plotting library, plot and the curses library, curses both use the names erase
and move. The curses versions are macros. If you need both libraries, put the plot code
in a different source file than the curses code, or include the following statements in the

plot code:

#undef move()
#undef erase()

Routines

The routines listed here can be called when using the full curses. Those marked with an
asterisk can be called when using minicurses.

addch(ch)* Add a character to stdscr (like putchar), wrapping to the next
line at the end of a line.

waddch(win, ch) Add the character ch to win

mvwaddch(win, y, x, ch) Move (y, x) then add the character ch to win

addstr(sir)* Call addch with each character in str

mvaddstr(y, x, str) Move (y, x) then add str

waddstr(win, str) Add the string sir to win

mvwaddstr(win, y, x, str)
Move (y, x) then add the string str to win

attroff(attrs)* Turn off the attributes named in attrs

attron(attrs)* Turn on the attributes named in atirs Q
attrset(atirs)* Set current attributes to those specified in attrs

baudrate ()* Set current terminal speed

beep ()* Sound beep on terminal

3-52 AIX Operating System Technical Reference

curses

box(win, vert, hor)

cbreak ()*
nocbreak ()*
clear ()
clearok(win, bf)
clrtobot ()
clrtoeol ()
delay_output(ms)*
nodelay(win, bf)
delch ()
deleteln ()
delwin(win)
doupdate ()
echo ()*
noecho ()*
endwin ()*
erase ()
erasechar ()
fixterm ()
flash ()
flushinp ()*
getch ()*
getstr(str)
gettmode ()
getyx(win, vy, x)
has-ic ()
has_il ()
idlok(win, bf)*

Draw a box around edges of win. The vert and hor parameters
are the characters to use for vertical and horizontal edges of the
box.

Set cbreak mode

Unset cbreak mode

Clear stdscr

Clear screen before next redraw of win
Clear to bottom of stdscr

Clear to end of line on stdscr

Insert ms millisecond pause in output
Enable nodelay input mode through getch
Delete a character

Delete a line

Delete window win

Update screen from all wnoutrefresh

Set echo mode

Unset echo mode

End window modes

Erase stdscr

Return user’s erase character

Restore terminal to in curses state

Flash screen or beep

Throw away any type-ahead

Get a character from tty

Get a string through stdser

Establish current tty modes

Get (y, x) coordinates

Has value of true if terminal can do insert character
Has value of true if terminal can do insert line

Use terminal’s insert/delete line if bf1=0

Subroutines 3-53

curses

inch ()

initser ()*
insch(c)

insertin ()
intrflush(win, bf)
keypad(win, bf)
killchar ()
leaveok(win, flag)

longname ()
meta(win, flag)*
move(y, x, ch)*
mvaddch(y, x, ch)

Get character at current (y, x) coordinates
Initialize screens

Insert a character

Insert a line

Interrupt flush output if bf is true

Enable keypad input

Return current user’s kill character

Permit cursor to be left anywhere after refresh if flag!=0 for
win; otherwise cursor must be left at current position

Return verbose name of terminal

Allow metacharacters on input if flag! =0
Move to (y, x) on stdscr

Move (y, x) then add ch

mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ¢)

mvprintw(y, x, fmt, args)

mvscanw(y, x, fmt, args)
mvwdelch(win, y, x)
mvwgetch(win, y, x)

mvwgetstr(win, y, x, str)

mvwin(win, by, bx)
mvwinch(win, y, x)

mvwinsch(win, y, x, ¢)

Move cursor from current position to another position

Move (y, x) then delete a character

Move (y, x) then get a character from tty

Move (y, x) then get a string through stdser

Move (y, x) then get the character at current (y, x) coordinates

Move (y, x) then insert the character ¢

Move (y, x) then get print on stdscr
Move (y, x) then scan through stdser
Move (y, x) then delete a character from win

Move (y, x) then get a character through win

Move (y, x) then get a string through win
Move win so that the upper left-hand corner is located at (y, x)
Move (y, x) then get the character at current (y, x) in win

Move (v, x) then insert the character ¢ into win

3-54 AIX Operating System Technical Reference

curses

mvwprintw(win, y, x, fmt, args)
Move (y, x) then printf on stdser

mvwscanw(win, y, x, fmt, args)
Move (y, x) then scanf through stdser

newpad(nlines, ncols) Create a new pad with given dimensions
newterm(type, fd) Set up new terminal of given type to output on fd

newwin(lines, cols, begin_y, begin_x)
Create a new window

nl ()* Set newline mapping
nonl ()* Unset newline mapping
overlay(winl, win2) Overlay winl on win2

overwrite(winl, win2) Overwrite winl on top of win2

printw(fmt, argl, arg2, ...)
Print on stdscr

raw ()* Set raw mode
refresh ()* Make current screen look like stdscr

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
Refresh from pad starting with given upper left corner of pad
with output to given portion of screen

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
Refresh like prefresh, but with no output until doupdate is

called
noraw ()* Unset raw mode
resetterm ()* Set tty modes to out of curses state
resetty ()* Reset tty flags to stored value
saveterm ()* Save current modes as in curses state
savetty ()* Store current tty flags

scanw(fmt, argl, arg2, ...)
Scanf through stdscr

scroll(win) Scroll win one line

scrollok(win, flag) Allow terminal to scroll if flag!=0
set—term(new) Enable talk to terminal new

setscrreg(t, b) Set user scrolling region to lines ¢ through b

Subroutines 3-55

setterm(type)
standend ()*

standout ()*

Establish terminal with a give type
Clear standout mode attribute

Set standout mode attribute

subwin(win, lines, cols, begin_y, begin_x)

touchwin(win)
traceoff ()
traceon ()
typeahead(fd)
unctrl(ch)*
wattroff(win, attrs)
wattron(win, atirs)
wattrset(win, atirs)
wclear(win)
welrtobot(win)
wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertIn(win)

wmove(win, y, x)

Create a subwindow

Change all of win

Turn off debugging trace output

Turn on debugging trace output

Check file descriptor fd to check type-ahead
Use printable version of ch

Turn off attrs in win

Turn on attrs in win

Set attributes in win to attrs

Clear win

Clear to bottom of win

Clear to end of line on win

Delete the character ¢ from win

Delete line from win

Erase win

Get a character through win

Get the string str through win

Get the character at current (y, x) in win
Insert the character ¢ into win

Insert line into win

Set current (y, x) coordinates on win

wnoutrefresh(win) Refresh but no screen output
wprintw(win, fmt, argl, arg2, . . .)

printf on win
wrefresh(win) Make screen look like win

3-56 AIX Operating System Technical Reference

curses

wscanw(win, fmt, argl, arg2, . . .)

scanf through win
wsetscrreg(win, t, b) Set scrolling region of win
wstandend(win) Clear standout attribute in win
wstandout(win) Set standout attribute in win

Terminfo Level Subroutines

These routines should be called by programs that have to deal directly with the terminfo
data base. Due to the low level of this interface, its use is discouraged. The header files
curses.h and term.h should be included (in that order) to get the definitions for these
strings, numbers, and flags. You should call setupterm before using any of the other
terminfo subroutines. This defines the set of terminal-dependent variables defined in the
terminfo file.

If the program needs only one terminal, you can specify the -DSINGLE flag to the C
compiler. This results in static references instead of dynamic references to capabilities.
The result is smaller code, but only one terminal can be used at a time for the program.

Capabilities with a Boolean value have the value 1 if the capability is present and 0 if it is
not. Numeric capabilities have a value of -1 if the capability is missing and a value of 0 or
greater if it is present. String capabilities have a NULL value if the capability is missing
and otherwise have type char * and point to a character string that contains the
capability. Special character codes that use the backslash and circumflex characters (\ and
*) are transformed into the appropriate ASCII characters. Padding information of the form
$ <time>, and parameter information beginning with % (percent) are left uninterpreted.
The tputs routine interprets padding information and tparm interprets parameter
information.

All terminfo strings (including the output of tparm) should be printed with tputs or
putp. Before exiting, reset—shell_mode should be called to restore the tty modes.
Programs desiring shell escapes can call reset_shell-mode before the shell is called and
reset_prog_mode after returning from the shell.

delay_output (ms)
Sets the output delay, in milliseconds.

def_prog_mode
Saves the current terminal mode as program mode, in cur—term- > Nttyb.

def_shell_mode
Saves the shell mode as normal mode, in cur—term-> Ottyb. def_shell_mode is called
automatically by setupterm.

putp(str)
Calls tputs(str, 1, putchar).

Subroutines 3-57

curses

reset_prog_mode
Puts the terminal into program mode.

reset_shell_mode
Puts the terminal into shell mode. All programs must call reset—_shell-mode before
they exit. The higher-level routine endwin automatically does this.

setupterm(term, fd, rc)
Reads in the data base. term is a character string that specifies the terminal name. If
term is 0, then the value of the TERM environment variable is used. One of the
following status values is stored into the integer pointed to by rc:

1 Successful completion
0 No such terminal
-1 An error occurred while locating the terminfo database.

If the rc parameter is 0, then no status value is returned, and an error causes
setupterm to print an error message and exit, rather than return. fd is the file
descriptor of the terminal being used for output. setupterm calls termdef to
determine the number of lines and columns on the display. If termdef cannot supply
this information, then setupterm uses the values in the terminfo data base. The
simplest call is setupterm(0, 1, 0), which uses all the defaults.

After the call to setupterm, the global variable cur—term is set to point to the current
structure of terminal capabilities. It is possible for a program to use more than one
terminal at a time by calling setupterm for each terminal and saving and restoring
cur—term.

The setupterm subroutine also initializes the global variable ttytype as an array of
characters to the value of the list of names for the terminal. The list comes from the
beginning of the terminfo description.

tparm(str, p1, p2, ... p9)
Instantiates the string str with parameters p;. The character string returned has the
given parameters applied.

tputs(str, affcnt, putc)
Applies padding information to string str. affent is the number of lines affected, or 1 if
not applicable. putc is a putchar-like routine to which the characters are passed one at
a time.

Some strings are of a form like $<20>, which is an instruction to pad for 20
milliseconds.

vidputs(attrs, puic)
Outputs the string to put terminal in video attribute mode atirs. Characters are passed
to the putchar-like routine putc. The atirs are defined in <curses.h>. The previous
mode is retained by this routine.

vidattr(atirs)
Like vidputs, but outputs through putchar.

3-58 AIX Operating System Technical Reference

curses

Termcap Compatibility Routines

These routines are included for compatibility with programs that require termcap. Their
parameters are the same as for termcap, and they are emulated using the terminfo data
base.

tgetent(bp, name)
Looks up the termcap entry for name. bp and name are strings. name is a terminal
name; bp is ignored. Calls setupterm.

tgetflag(id)
Returns the Boolean entry for id. id is a 2-character string that contains a termcap
identifier.

tgetnum(id)
Returns the numeric entry for id. id is a 2-character string that contains a termcap
identifier.

tgetstr(id, area)
Returns the string entry for id. id is a 2-character string that contains a termcap
identifier. The area parameter is ignored.

tgoto(cap, col, row)
Applies parameters to the given cap. Calls tparm.

tputs(cap, affcnt, fn)
Applies padding to cap calling fn as putchar.

Attributes

The following video attributes can be passed to the routines attron, attroff, and attrset.
A_STANDOUT The terminal’s best highlighting mode
A_UNDERLINE Underlined

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_INVIS Invisible (blanked or zero-intensity)
A_PROTECT Protected

A_ALTCHARSET Alternate character set

A_NORMAL Normal attributes

Subroutines 3-59

Function Keys

The following function keys might be returned by getch if keypad has been enabled. Note
that not all of these are currently supported due to lack of definitions in terminfo, or due
to the terminal not transmitting a unique code when the key is pressed.

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME

KEY_BACKSPACE

KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_-ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL
KEY_Al
KEY_-A3
KEY_B2
KEY_C1
KEY_C3

Break key (unreliable)
Down-arrow key

Up-arrow key

Left-arrow key

Right-arrow key

Home key

Backspace (unreliable)

Function key Fn, where n is an integer from 0 to 63
Delete line

Insert line

Delete character

Insert character or enter insert mode
Exit insert character mode
Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backwards (reverse)
Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send (unreliable)

Soft (partial) reset (unreliable)
Reset or hard reset (unreliable)
Print or copy

Home down or bottom (lower left)
Upper left key of keypad

Upper right key of keypad
Center key of keypad

Lower left key of keypad

Lower right key of keypad

3-60 AIX Operating System Technical Reference

curses

Related Information

In this book: “extended curses library” on page 3-131, “termdef” on page 3-352, and
“terminfo” on page 4-148,

Subroutines 3-61

cuserid

cuserid

Purpose

Gets the alphanumeric user name associated with the current process.

Library

Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

char *cuserid (s)
char *s;

Description
The cuserid subroutine generates a character string representing the user name of the
owner of the current process.

If the s parameter is a NULL pointer, then the character string is stored into an internal
static area, the address of which is returned.

If the s parameter is not a NULL pointer, then the character string is stored into the array
pointed to by the s parameter. This array must contain at least Lcuserid characters.
L_cuserid is a constant defined in the stdio.h header file.

If the user name cannot be found, the cuserid subroutine returns a NULL pointer; if the s
parameter is not a NULL pointer, then a null character (' \0"') is stored into s[0].

Related Information

In this book: “getlogin” on page 3-212, “getpwent, getpwuid, getpwnam, setpwent,
endpwent” on page 3-219, and “standard ifo library” on page 3-342.

3-62 AIX Operating System Technical Reference

dbm

dbm

Purpose

Performs data base operations.

Library
Database Library (libdbm.a)

Syntax
int dbminit (file) datum firstkey ()
char *file;

4 datum nextkey (key)
datum fetch (key) datum key;
datum key;

typedef struct
int store (key, content)
datum key, content; char *dptr;
int dsize;
int delete (key) } datum;
datum key;
Description

The dbm subroutines maintain a data base of key-content pairs. These subroutines can
handle very large data bases and access keyed items in one or two file-system accesses.

The key parameter is a pointer to data specified by the content parameter. The sum of the
sizes of the key-content pairs must not exceed the internal block size of 512 bytes. All
key-content pairs that hash together must fit on a single block. The store subroutine
returns an error if a disk block fills with inseparable data.

The key and the content parameters are described by the typedef datum structure. The
datum structure sets up a string of bytes. The length of the string is specified by the
dsize field. The string is pointed to by the dptr field. The dptr pointers that are returned
by these subroutines point to static storage that changes with subsequent calls. You can
use binary data or normal ASCII strings.

The data base is stored in two files. One file is a directory that contains a bit map and is
suffixed with .dir. The second file contains all data and is suffixed with .pag. The .pag
file contains holes that increases its apparent size to about four times its actual size. You

Subroutines 3-63

dbm

cannot copy a .pag file using the standard utilities such as cp and cat without first filling
these holes.

Before you can access a data base, you must open the data base with the dbminit
subroutine. The file, .dir, and .pag files must already exist before you call the dbminit
subroutine. You can create an empty data base by creating zero-length .dir and .pag files.

After the data base is opened with the dbminit subroutine, you can use the fetch
subroutine to access the data that is is pointed to by the key parameter. You can use the
store subroutine to write the data specified by the content parameter to a file and to
specify the key to be used to access that data with the key parameter.

The delete subroutine removes the key specified by the key parameter and the data to
which that key points. The delete subroutine does not actually reclaim the file space, but
it does make it available for reuse.

The firstkey and nextkey subroutines make a linear pass through all of the keys in a data
base. The firstkey subroutine returns the first key in the data base. The nextkey
subroutine returns the next key in the data base. The following code makes a linear pass
through a data base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))

-

}

The order of keys that are presented to firstkey and nextkey depend on the hashing
function.

Return Value

All of the dbm subroutines that return an int value return 0 upon successful completion,
and they return a negative value if an error occurs. Subroutines that return a datum
value indicate an error by setting the dptr field to NULL.

3-64 AIX Operating System Technical Reference

TNL SN20-9855 (26 June 1987) to SC23-0808-0
del_ipc_prof

del_ipc_prof

| Purpose

Deletes an IPC queue profile.

| Library

IPC Library (libipc.a)

| Syntax

I
I

#include <drs.h>
int del_ipc_prof (queue_name, l_key, r_key, nickname)
char *queue—_name;

key_t *I_key, *r_key;
char *nickname;

| Description

I
I
I
|
I
I
I
I
I
|
|
|
|

The del-ipc—prof subroutine deletes an IPC queue profile at the local node.

The queue_name parameter contains the name of an IPC queue. The [-key parameter
points to the local key for an IPC queue. You must specify one or both of these values.
The del-ipc—prof subroutine fails if both queue_name and I_key are NULL.

The r—key is a pointer from the local node to the IPC profile for a queue at a remote node.
The nickname parameter points to the nickname or node ID, in hexadecimal, of the node
where the IPC queue exists. A value of NULL indicates that the queue is on the local
node.

The application does not supply values for the r—key and nickname parameters. The
del_ipc_prof subroutine assigns values to these parameters when it returns. The
application, however, must ensure that enough space is allocated to hold the return values.

If del-ipc—_prof successfully deletes the requested profile, the dsipc command is used to
update the kernel’s copy of the profiles.

Subroutines 3-64.1

TNL SN20-9855 (26 June 1987) to SC23-0808-0
del_ipc_prof

| Return Value

Upon successful completion, the function returns a 0, and queue—name, [_key, r_key, and
nickname contain the values from the deleted profile. If an error occurs, del_ipc_prof
returns a negative value from the following list:

DRS-ACCES The required access permissions were denied.
DRS_BADLEN An incorrect parameter was supplied.
DRS_NOREC No record was found.

DRS_IO An input/output error occurred.
DRS_AGAIN Unable to start pfsmain.

DRS-BADF An incorrect file descriptor was supplied.
DRS_BADK An incorrect index key was supplied.
DRS_BDMSF An incorrect file or table was supplied.
DRS_BOF The beginning of the file was encountered.
DRS_DEADLK A deadlock was detected.

DRS_EOF The end of the file was encountered.
DRS_FBIG The maximum file size was exceeded.
DRS_IDRM Identifier removed.

DRS_INBLCK The profile database is locked against updates.
DRS_-INTENT Intentions denied.

DRS_ISDIR A write to a directory was attempted.
DRS_-LOCKPM Lock permission denied.

DRS_MFILE Too many files, tables, or indexes were open.
DRS_NFILE The file table overflowed.

DRS_NOENT No file or directory was found.
DRS_NOMEM No memory is available.
DRS_NOSPC No space is available on the device.
DRS_-NOTDIR Not a directory.

DRS_NOTIDX Not an index.

I
I
|
I
I
|
I
I
|
|
I
|
I
|
| DRS_FAULT An incorrect address was supplied.
I
I
I
I
I
|
I
|
I
|
I
I
|
| DRS_PANIC Abnormal termination occurred.

3-64.2 AIX Operating System Technical Reference

|
|
I

TNL SN20-9855 (26 June 1987) to SC23-0808-0
del_-ipc_prof

DRS_RCVRY File needs recovery.
DRS_RECLEN Record length is invalid. v
DRS_ROFS The file system to be accessed is read-only.

| Related Information

!
|
|
\

In this book: “msgct]l” on page 2-73, “create—ipc—prof” on page 3-40.2, and “find—ipc—prof”
on page 3-166.1.

The dsipe command in AIX Operating System Commands Reference.

AIX Operating System Programming Tools and Interfaces.

Subroutines 3-64.3

TNL SN20-9855 (26 June 1987) to SC23-0808-0
del_ipc_prof

3-64.4 AIX Operating System Technical Reference

DOS services library

DOS services library

Purpose

Provides access to DOS files and diskettes.

Library

DOS Services Library (libdos.a)

Syntax

#include <dos.h>

Description

The DOS Services subroutines provide a programming environment for applications that
utilize DOS Services. DOS Services is an AIX Operating System shell that interacts with
the system user like DOS and provides access to both AIX and DOS file systems. The dos
command starts this shell. (The dos command is discussed in AIX Operating System
Commands Reference.)

The DOS Services library provides access to DOS file systems on fixed disks and on
diskettes in addition to AIX file systems. The access is transparent; that is, applications do
not need to know which type of file system provides the files.

Applications intended to be run under DOS Services are actually AIX applications. While
the user interface to DOS Services is as similar to DOS as possible, the applications
programming interface follows the conventions of AIX and AIX system calls wherever
possible. Many AIX applications can be converted to use the DOS Services library with
few modifications.

The DOS Services subroutines require that your programs include the dos.h header file.

When an error occurs, the DOS Services subroutines set the global variable doserrno to
indicate the error, resembling the error reporting performed by system calls. If you want
your program to check doserrno, then you must also include the doserrno.h header file.
For detailed information about header files, see “Header Files” on page vii.

An application program receives parameters in the standard arge, argv, envp format used
to pass parameters to ordinary AIX processes. (See “exec: execl, execv, execle, execve,
execlp, execvp” on page 2-34 for details about this parameter-passing convention.) The
application can use most of the services provided by AIX, but must use the DOS Services
subroutines for file access to ensure compatibility with DOS file systems.

Subroutines 3-65

DOS services library

Any application can use the exec system call and the dosexecve subroutine to invoke
another AIX program, including another DOS Services application program. There is no
way for the invoked program to tell which program invoked it other than by the content of
the parameters or the environment. The exec system call and the dosexecve subroutine
do not process DOS Services path information. The DOS path information must be
processed by the application program, using the DOS_PATH environment variable.

A .BAT file cannot be directly invoked by exec or dosexecve. To execute a .BAT file, an
application program must run the dos command with the appropriate flags and parameters.
For example, the following call runs the batch file hello.bat:

execl ("/usr/bin/dos", "dos", “"-a", "-c", "hello.bat", 0);

See the dos command in AIX Operating System Commands Reéference for details about the
flags and their meanings.

The DOS Services library performs transparent translation of textual data between DOS
ASCII and AIX ASCII formats. This translation takes place for a given file if the
DO_ASCII bit is set set when the file is opened with the dosopen subroutine. The
application program operates on the data in AIX ASCII format whether the file is located
on an AIX file system or on a DOS file system. See “dosread” on page 3-98 and “doswrite”
on page 3-116 for more details about the translation performed.

The DOS Services library provides no direct support for interaction with an attached
coprocessor. Access to a file system is mediated by the VRM, which prevents the sharing
of a file system between the coprocessor and AIX.

The DOS Services library supports the DOS file systems in both diskette and fixed disk
formats. It uses the content of the device rather than the device itself to determine the
format of the file system. Therefore, it is possible to copy a diskette to a fixed disk using
the ¢p command, and to access the diskette data from the fixed disk.

The DOS Services library supports multiplexed disk drives. A multiplexed drive is a
single physical drive that is configured as several logical drives (such as drives A: and B:).
As one or the other of these is accessed, the DOS Services system prompts the user to
insert the appropriate diskette.

The DOS Services library provides recovery from diskette I/O errors in the form of Abort,
Retry, Ignore messages.

The DOS Services library maps DOS file attributes into AIX file modes whenever possible
so that the application programmer need think only in terms of AIX file modes. The
directory, read-only, and hidden attributes map to corresponding facilities in AIX. The
system, volume, and archive attributes are not directly supported, but are recognized by
the DOS commands that need to use them. The dosstat and dosfstat subroutines provide
access to the attributes of both DOS and AIX files.

If both a parent and a child process use DOS Services subroutines, then the parent must
call dosunopen before starting the child process, and it must call dosreopen after the
child finishes. This synchronizes the information shared by the two processes.

3-66 AIX Operating System Technical Reference

DOS services library

Standard header information required for many of the DOS Services library routines is
defined in the file dos.h.

DOS Services library routines return diagnostic codes like the AIX system calls.
Subroutines return a value of -1 or NULL in case of an error, and the variable doserrno is
set to indicate the error. The file doserrno.h contains definitions of each possible DOS
diagnostic code. The majority of these codes conform to AIX diagnostic codes.

Device Names

DOS emulation requires binding DOS devices to AIX files. Device names in the DOS
environment are mapped to AIX files according to definitions found in the environment at
the time the dosinit subroutine is first invoked in a process family. Generally, this will be
performed by the dos command.

Device Environment Variable and Default Setting

NUL: DOS_NUL = /dev/null
CON: DOS_CON = /dev/tty
COM1: DOS_COM1=/dev/tty0
COM2: DOS_-COM2=/dev/ttyl
AUX: DOS_AUX=/dev/tty0
LPO: DOS_LP0=/dev/lp0
LP1: DOS_LP1=/dev/lpl
LP2: DOS_LP2=/dev/lp2

LP7: DOS_LP7=/dev/lp7

A: DOS_A = /dev/fd0
B: DOS_B=/dev/fd0
C: DOS_C=$HOME
D: DOS_D=/

A DOS disk drive name can be bound to an AIX directory, file, or device formatted as an
AIX or a DOS file system. Typically, this is /dev/fdn or /[dev/vdn. Any uppercase
alphabetic character can be used for a DOS disk name.

A DOS nondisk device can be bound to an AIX file or device or to a program. Only the
names listed in the preceding table can be used as nondisk devices. If the first character of
the value of the AIX path name bound to a DOS nondisk device is a | (vertical bar), the
associated device will be a pipe into the shell command given by the rest of the symbol
value. If it is not a vertical bar, the value will be interpreted as an AIX file name.

The dosinit subroutine creates a configuration table which is propagated to subordinate
processes. The environment is not inspected after this table is initialized. Files and
devices are not actually opened until they are accessed.

Subroutines 3-67

DOS services library

File Naming

A DOS file name has the following format:
[d:1lpathlfilenamel.ext]
DOS file names are converted to AIX file names as follows:

The characters A-Z 0-9 $ & # @ | % ¥ - _ ~ ~
When file name specifications refer to DOS file systems, lowercase characters in file
name specifications are converted to uppercase by the DOS Services subroutines. No
translation is made when file names refer to AIX file systems.

The drive name can be any single letter followed by a colon. The DOS Services
library translates it to uppercase.

path
The directory path is of the form:

(\l[dirnamel[\dirname . . .]

If the file is on an AIX file system, then each directory level is translated to an AIX
directory level with the same name.

filenamel.ext]
A DOS file name consists of a filename of one to eight characters that can be
followed by an extension. The extension, if present, consists of a . (period) and up to
three characters. AIX file names are 1 to 14 characters long, including the extension.
The extension can be from 1 to 13 characters long, including the period.
Incompatibilities may arise when copying files from AIX file systems to DOS file
systems.

Diagnostics

When a DOS Services subroutine encounters an error, it returns the value -1 and sets the
global variable doserrno to a code that identifies the error. This scheme resembles the
one used by AIX system calls.

All of the possible error codes are listed in the doserrno.h header file. For your
convenience, they are also listed here:

DE_FNAME (-2) Syntax error in file name
DE_NOMNT (-3) AIX file system is not mounted
DE_UNOPEN (-4) File unopened and not reopened
DE_EXDOS (-5) Attempt to execute a DOS file
DE_RFULL (-6) DOS root directory is full

DE_ROOT (-7) Can not modify DOS root directory
DE_BADMNT (-8) Bad header or FAT for DOS file system

3-68 AIX Operating System Technical Reference

DOS services library

DE_NEMPTY (-9) Directory is not empty
DE_INIT (-10) dosinit configuration error
DE_ENVT (-11) Environment file error

In addition, doserrno may be set to any of the values set by the AIX system calls. These
values are redefined in the doserrno.h header file with the prefix DE_ added.

Subroutines 3-69

dosassign

dosassign

Purpose

Assigns one DOS Services drive to another.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h >

int dosassign (drive, todrive)
char *drive, *todrive;

Description

The dosassign subroutine causes all references to the drive specified by the drive
parameter to use the drive specified by the todrive parameter. The drive and fodrive
parameters are strings containing the names of drives as configured by dosinit or in a user
profile. The names can be in either uppercase or lowercase and must not include the
colon.

If the drive parameter is NULL, all assignments are reset to their initial state.

Once assigned, using the drive specified by the drive parameter is equivalent to using the
drive specified by the todrive parameter. However, the dospwd subroutine does not
perform this translation. It returns a path name that includes either the drive name passed
to it as a parameter or the drive name passed to the doschdir subroutine.

The dosassign subroutine does not change the current drive.

3-70 AIX Operating System Technical Reference

dosassign

Return Value

Upon successful completion, a value of 0 is returned. If the dosassign subroutine fails, a
value of -1 is returned and doserrno is set to indicate the error.

Related Information

In this book: “DOS services library” on page 3-65, “doschdir” on page 3-72, and “dospwd”
on page 3-96.

Subroutines 3-71

doschdir

doschdir

Purpose

Changes the current DOS Services directory or current drive.

Library

DOS Services Library (libdos.a)

Syntax

#include <dos.h>

int doschdir (path)
char *path;

Description

The doschdir subroutine changes the current directory on the current drive to the
directory specified by the path parameter, or changes the current drive to the drive
specified in the path parameter. If the path parameter contains only a drive name, then
only the current drive is changed. If the path parameter contains only a directory path
name, then only the current directory on the current drive is changed. If the path
parameter contains both a drive name and a directory path name, then the current drive
and the current directory are both changed.

When the current drive is set to a drive that contains a DOS file system, the AIX current
directory cannot follow along. Therefore, the current AIX directory is set to the special
directory /usr/dos/nulldir, if it exists.

Normally, the user does not have write access to the fusr/dos/nulldir directory.
Therefore, if a program aborts, the core dumps are suppressed. If you do not want this to
happen, you must remove the /usr/dos/nulldir directory.

3-72 AIX Operating System Technical Reference

doschdir

Return Value

Upon successful completion, a value of 0 is returned. If the doschdir subroutine fails, a
value of -1 is returned and doserrno is set to indicate the error.

Related Information

In this book: “DOS services library” on page 3-65, “dospwd” on page 3-96, and “dosassign”
on page 3-70.

Subroutines 3-73

doschmod

doschmod

Purpose

Changes the mode of a DOS file.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h>

int doschmod (path, mode)
char *path;
long mode;

Description

The doschmod subroutine changes the mode of the file specified by the path parameter to
the mode specified by the mode parameter. (For information about modes, see “doscreate”
on page 3-76.)

Return Value

Upon successful completion, a value of 0 is returned. If the doschmod subroutine fails, a
value of -1 is returned and doserrno is set to indicate the error.

Related Information

In this book: “DOS services library” on page 3-65, “doscreate” on page 3-76, and
“dosopen” on page 3-94.

3-74 AIX Operating System Technical Reference

dosclose

dosclose

Purpose

Closes a DOS file.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h>

int dosclose (dosfile)
DOSFILE dosfile;

Description

The dosclose subroutine closes the file descriptor specified by the dosfile parameter.

The dosfile parameter is a file descriptor obtained from a dosopen, doscreate, or dosdup
subroutine.

Warning: DOS files are not implicitly closed when a process terminates.
You must explicitly close all DOS files or you may lose data.

Return Value

Upon successful completion, a value of 0 is returned. If the dosclose subroutine fails, a
value of -1 is returned and doserrno is set to indicate the error.

Related Information

In this book: “DOS services library” on page 3-65, “doscreate” on page 3-76, “dosdup” on
page 3-78, and “dosopen” on page 3-94.

Subroutines 3-75

doscreate

doscreate

Purpose

Creates a DOS file.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h>

DOSFILE doscreate (path, mode)
char *path;
long mode;

Description

The doscreate subroutine creates a DOS file with the path and name specified by the path
parameter. The newly created file has the flags set as specified by the mode parameter. If
the file specified by the path parameter already exists, the file is truncated to zero length
and the mode and owner are unchanged.

The mode parameter is a 32-bit word containing flags. The low-order 12 bits are access
permission flags. (For information about access permission flags, see “chmod” on
page 2-18.)

If the file is contained in a DOS file system, the write-by-owner bit of the mode parameter
is the only significant access flag. If it is 0, the read-only flag is set in the DOS directory
of the file created.

Mode flags for emulating functions unique to DOS are defined in the dos.h header file.
They may be logically OR’ed together from the following list:

M_HIDDEN If this flag of the mode parameter is set, the file is created as a hidden file.
If the file is created in a DOS file system, the appropriate bit is set in the
directory. If the file is created in an AIX file system, the file name is
prefixed by a . (period). If a hidden file is created with the same file name
as an existing normal file, the normal file is renamed.

3-76 AIX Operating System Technical Reference

doscreate

M_SYSTEM If this flag of the mode parameter is set, and the file is created in a DOS
file system, the SYSTEM attribute of the file is set. If the file is created in
an AIX file system, this flag is ignored.

If the file is created in a DOS file system, the name of the file is translated to uppercase. If
the file is created in an AIX file system, no translation takes place.

Warning: DOS files are not implicitly closed when a process terminates.
You must explicitly close all DOS files or you may lose data.

Return Value

Upon successful completion, a non-NULL handle is returned. This handle is used in
subsequent operations. The file is open for writing even if the mode does not permit
writing. If the doscreate subroutine fails, a -1 is returned and doserrno is set to indicate
the error.

The doscreate subroutine fails if one or more of the following are true:

e The user does not have write access to the directory containing the file.
The user does not have write access to the file if the file already exists.
The physical medium cannot be written to.

No such device or address.

No such device.

Related Information

In this book: “DOS services library” on page 3-65, “chmod” on page 2-18, and “dosopen”
on page 3-94.

Subroutines 3-77

dosdup

dosdup

Purpose

Duplicates a DOS Services file handle.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h >

int dosdup (dosfile)
DOSFILE dosfile;

Description

The dosdup subroutine returns a new file descriptor that indicates the same file and has
the same open flags as the original file descriptor. The dosfile parameter is a file
descriptor returned by dosread, doscreate, or dosdup. The file position is initially set to
the same value as the original, but changes independently. The file descriptor returned is
the lowest one available.

Return Value

Upon successful completion, a DOS Services file handle is returned. If the dosdup
subroutine fails, a value of -1 is returned and doserrno is set to indicate the error.

Related Information

In this book: “DOS services library” on page 3-65, “dosclose” on page 3-75. “doscreate”
on page 3-76, and “dosopen” on page 3-94.

3-78 AIX Operating System Technical Reference

dosexecve

dosexecve

Purpose

Executes a program with a DOS path name.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h >

int dosexecve (path, argv, envp)
char *path, *argvf], *envp[1;

Description

The dosexecve subroutine invokes an AIX-executable program identified by a DOS path
name. The dosexecve subroutine corresponds to the execve system call except that the
path parameter is interpreted with respect to the configured DOS file system.

The path parameter must identify an AIX-executable file. It cannot refer to a
DOS-executable file, such as an .EXE, .COM, or .BAT file. See the instructions for
running a .BAT file on page 3-66.

The new program started by the dosexecve subroutine inherits the AIX run-time
environment, which includes the AIX open file descriptors and other information. (See
“fork” on page 2-46 and “exec: execl, execv, execle, execve, execlp, execvp” on page 2-34
for a complete description of the AIX environment that is inherited after these system
calls.)

However, the new program does not automatically inherit the DOS Services environment.
See “dosunopen, dosreopen” on page 3-112 for details about passing the DOS Services
environment to a child process.

Subroutines 3-79

dosexecve

Return Value

Upon successful completion, a value of 0 is returned. If the dosexecve subroutine fails, a
value of -1 is returned and doserrno is set to indicate the error.

Related Information
In this book: “DOS services library” on page 3-65, “exec: execl, execv, execle, execve,

execlp, execvp” on page 2-34, “fork” on page 2-46, “wait” on page 2-182, “dosinit” on
page 3-85, and “dosunopen, dosreopen” on page 3-112.

3-80 AIX Operating System Technical Reference

dosfirst, . . .

dosfirst, dosnext

Purpose

Finds DOS files that match a pattern.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h >

char *dosfirst (srch, pattern, mode) char *dosnext (srch)
DOSFIND *srch; DOSFIND *srch;
char *pattern;

long mode;

Description

The dosfirst and dosnext subroutines return a pointer to a memory area containing a file
name that matches the pattern specified by the pattern parameter and that has the
attributes specified by the mode parameter.

The pattern parameter is a file path name that can contain the pattern-matching characters
? (question mark) and * (asterisk).

The srch parameter points to a DOSFIND structure. That same DOSFIND structure
should be passed to the dosnext subroutine on subsequent uses of the dosnext subroutine.

The mode parameter contains flags that specify files to include in the search. If the mode
parameter is 0, directories, hidden files, and DOS system files are omitted from the search.
You can use the following flags OR’ed together in any combination:

S_DIR Includes directories in the search.
S_HIDDEN Includes DOS/AIX hidden files in the search.
S_SYSTEM Includes DOS system files in the search.

S_REG Includes regular DOS files (all files other than directories, hidden files, or
system files).

S_ALL Includes all files (directories, hidden files, system files, and regular files).

Subroutines 3-81

dosfirst, . . .

DOSFIND is defined in the dos.h header file and has the following format:

typedef 1long DOSMODE;
typedef short DOSFILE;

typedef struct

{
tong seek;
int count;
long *disk;
int mode;
int tnxtcl;

} dossrch;

typedef struct

long mode;

char path[128];
char *base;
char *extn;
char is-dos;
DOSFILE handle;
short index;
dossrch dos—srch;

} DOSFIND;

A return of NULL from either subroutine indicates that no more files matching the pattern
can be found. If the search is terminated before the NULL return occurs, you should use
the free subroutine to free the memory area returned from the last call.

Related Information

“DOS services library” on page 3-65.

3-82 AIX Operating System Technical Reference

dosfsync

dosfsync

Purpose

Synchronizes a specified DOS file.

Library

DOS Services Library (libdos.a)

Syntax
#include <dos.h>

int dosfsync (dosfile)
DOSFILE dosfile;

Description

The dosfsync subroutine guarantees that any changes to the file specified by the dosfile
parameter has been written to the device on which the file exists when the subroutine
returns. The use of the dosfsync subroutine has no detectab