


IBM RT PC Advanced Interactive Operating System Version 2.1 

AIX Operating System 
Technical Reference 
Volumel 

Programming Family 

-~------- - --~ ---- -. ---- - - -------------,,-
Personal 
Computer 
Software SC23-0808-0 



First Edition (January 1987) 

Portions of the code and documentation described. in this book were developed at the Electrical Engineering and Computer 
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the 
University of California. 

This edition applies to Version 2.1 of the Advanced Interactive Executive Operating System, and to all subsequent releases until 
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these 
changes will be reported in technical newsletters or in new editions of this publication. 

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in 
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or 
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead. 

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either 
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a 
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described 
in this manual at any time. 

Products are not stocked at the address given below. Requests for copies of this product and for technical information about 
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative. 

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM 
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to you. 

©Copyright International Business Machines Corporation 1985, 1987 
©Copyright INTERACTIVE Systems Corporation 1984 1987 
©Copyright AT&T. Technologies 1984 



\ 

About This Book 

This book provides information about the programming interface to the Advanced 
Interactive Executive Operating System (AIX).l This information is needed to write 
applications and systems software for AIX. 

Who Should Use This Book 

This book is intended for experienced C programmers. To use this book effectively, you 
should be familiar with AIX or UNIX2 System V commands, system calls, subroutines, file 
formats, and special files. If you are not already familiar with AIX or UNIX System V, see 
Using the AIX Operating System. 

How To Use This Book 

Chapters 2, 3, 4, 5, 6, and 7 are organized in alphabetical order by name. Related 
information in those chapters is combined into one description where applicable, but each 
item appears as a separate entry in the Index. 

Organization 
This book is divided into the two volumes, Volume 1 and Volume 2. Each volume contains 
a complete table of contents, list of figures, and index for both volumes. 

Volume 1 contains Chapters 1 through 3; Volume 2 contains Chapters 4 through 7 and 
Appendixes A through F. The subjects of these chapters are: 

• Chapter 1, "AIX Operating System," gives an overview of the various subsystems 
discussed in this book. 

• Chapter 2, "System Calls," describes the C Language interface to the operating system 
calls, which are also called supervisor calls (SVCs) and kernel primitives. 

Advanced Interactive Executive and AIX are trademarks of International Business Machines 
Corporation. 

2 UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in the 
United States of America and other countries. 

About This Book iii 



• Chapter 3, "Subroutines," lists subroutines and macros available to C Language 
programmers. 

• Chapter 4, "File Formats," defines the formats of various system and user files. 

• Chapter 5, "Miscellaneous Facilities," includes miscellaneous information, such as 
text-processing macro packages. 

• Chapter 6, "Special Files," describes special files associated with specific peripheral 
devices and device drivers. 

• Chapter 7, "Advanced Display Graphics Support Library," describes the Advanced 
Display Graphics Support Library. 

In the chapters that are organized in alphabetical order, some entries describe several 
facilities (system calls, subroutines, file formats, or special files). In such cases, each 
facility appears only once, alphabetized under its major name~ If you have difficulty 
finding a given facility, look it up in the index at the back of the book. 

All entries are based on a common format, but all of the sections do not always appear. 

Purpose 
Briefly describes the purpose of the facility. 

Syntax or Synopsis 
Shows how to use the facility. See "Syntax" on page v for details about the 
information given in the "Syntax" sections for system calls and subroutines. 

Description 
Describes the system call, subroutine, file format, or special file in detail. 

Return Value 
Explains the value returned by a system call or subroutine. 

Diagnostics 
Lists the possible values that a system call can return in the errno external variable 
if an error occurs. See Appendix A, "Error Codes," for a complete list of these 
values. " 

Examples 
Shows one or more examples of how to use the facility. 

Files 
Lists the names of files that the facility uses. 

Related Information 
Refers you to additional information you may find helpful. This section refers you 
first to additional topics in this book, then to other publications. References from 
this book are given in the order they appear in the book, alphabetically within each 
chapter. 

Volume 2 also contains the following appendixes: 

iv AIX Operating System Technical Reference 

( 
\ 

" 

( 



• Appendix A, "Error Codes," lists and describes the values that system calls pass back 
when they encounter error conditions. 

• Appendix B, "Writing a Queuing System Backend," provides detailed information 
about writing friendly backend programs. 

• Appendix C, "Writing Device Drivers," gives information needed to write and install 
AIX device drivers. 

• Appendix D, "Porting DOS 3.0 Applications," explains how to port programs from the 
IBM Personal Computer Disk Operating System (DOS) to the AIX Operating System. 

• Appendix E, "Component Cross Reference," lists the programs with which certain 
subroutines and subroutine libraries are packaged. 

• Appendix F, "Glossary," defines terms to help you better understand AIX and the 
RT PC. 

A Reader's Comment Form and Book Evaluation Form are provided at the back of each 
volume of this book. Use the Reader's Comment Form at any time to give IBM information 
that may improve the book. After you have become familiar with the book, use the Book 
Evaluation Form to give IBM specific feedback about the book. 

Syntax 

The "Syntax" section of each system call and subroutine entry in this book gives the 
syntax needed to invoke it. The following conventions are used in this section: 

Boldface type shows text to be entered exactly as shown. 

Italic type shows parameters that should be replaced with actual values. 

[ ] (square brackets) enclose optional parameters. 

. . . (an ellipsis) follows a parameter that can be repeated any number of times. 

The information shown in each "Syntax" section is usually the set of declarations as they 
might appear in the actual C-Ianguage definition of the call or subroutine. These 
declarations give you more information than showing the exact calling sequence as it 
appears In a user program. 

Consider the following example of a subroutine entry: 

#include < stdio.h > 

FILE *fopen (path, type) 
char *path, *type; 

The #include statement names a header file that contains definitions needed by the 
subroutine. See "Header Files" on page vii for more information. 

About This Book v 



The first line following the #include statement shows the data type of the return value 
(FILE *), the name of the subroutine (fopen), and the parameters that it takes (path and 
type). The following lines indicate the data type of each parameter. The fact that the 
name FILE is in all capitals indicates that this data type is defined in the stdio.h header 
file. 

This subroutine might actually be used in a program like this: 

#include <stdio.h> 

ma in ( ) 
{ 

FILE *inputfile; 
char filename[] = Iitest.data"; 

inputfile = fopen (filename, Ilr+II); 

} 

Note that the type of both parameters is stated as char * (pointer to character), but that 
the value given for each is actually a pointer to a character string (an array of characters). 
In the C language, pointers and arrays are treated similarly so that the notations *p and 
p [0] are generally interchangeable. Thus, when this book shows a parameter of type . 
char *, a character string is frequently required. Check the "Description" section to 
make sure. 

Because fopen returns a type other than int, the subroutine must be declared so that the 
compiler knows this information. In this particular case, it is already declared for you in 
the header file. Sometimes, however, you may need to declare a system call or subroutine 
yourself. For this example, the declaration would take the form: 

FILE *fopen(); 

Such a declaration should be put at the top of your program, before any references to the 
system call or. subroutine. Note that the declaration resembles the syntax shown in this 
book, except that the parameters are omitted and a semicolon is added to the end. 

See C Language Guide and Reference or another C language manual for more detailed 
information about pointers, arrays, and subroutine declarations. 

vi AIX Operating System Technical Reference 

( 

( 



Header Files 

Many system calls and subroutines require that header files be included in the programs 
that use them. When this is the case, the #include statements needed are shown in the 
"Syntax" section of the call or subroutine entry. Consider the following example: 

#include <stdio.h> 
When a program is being compiled, this #include statement inserts the text of the stdio.h 
header file into the source program. The < > delimiters indicate that the file is located in 
the /usr/include directory. All of the header files used by the system calls and 
subroutines described in this book are located in /usr/include or in one of its 
subdirectories. 

The header files contain definitions of constants and macros that the C language 
preprocessor interprets. The #include statements must precede all references in your 
program to the constants and macros that the header files define. Most of the time you 
can simply put all of the #include statements together at the top of the program. If you 
use several calls or subroutines that require the same header files, then each file should be 
included only once. If a system call or subroutine requires more than one header file, be 
careful to enter the #include statements in the order shown. 

By convention, the names of most of the constants are in capital letters. Therefore, a name 
that appears in this book in bold capitals (for example, EFAULT) is a constant defined in 
a header file. A few constants are not named in capitals, notably stdin, stdout, and 
stderr, which are defined in stdio.h. 

The constant NULL is commonly used to denote a null pointer value. This book 
sometimes mentions NULL when discussing system calls and subroutines that do not 
require header files. If you compile a program and get an error message indicating that 
NULL is not defined, insert the following statement before the first NULL in your 
program: 

#define NULL 0 
In addition to constants, header files sometimes define macros and data types. Macros 
take parameters and resemble subroutines, but there are several differences: 

• You must not type a space between the macro name and the open parenthesis that 
follows it. For example, the macro call getc ( . . . ) is valid, but getc ( . . . ) is 
not. The preprocessor does not recognize the second of these as a macro, and so it does 
not make the proper substitution. 

• You cannot take the address of a macro with the C language & operator. 

• The parameters of a macro are evaluated in a different manner from those of a 
subroutine. See C Language Guide and Reference or another C language manual for 
details about parameter evaluation. 

About This Book vii 



This book describes a macro as a subroutine, then adds statement that it is implemented as 
a macro. 

Related Publications 

Related information can be found in the following books: 

• IBM RT PC Using the AIX Operating System describes using the AIX Operating 
System commands, working with file systems, and developing shell procedures. 

• IBM RT PC Managing the AIX Operating System provides instructions for performing 
such system management tasks as adding and deleting user IDs, creating and mounting 
file systems, and repairing file system damage. 

• IBM RT PC AIX Operating System Programming Tools and Interfaces describes the 
programming environment of the AIX Operating System and includes information 
about using the operating system tools to develop, compile, and debug programs. In 
addition, this book describes the operating system services and how to take advantage 
of them in a program. This book also includes a diskette that includes programming 
examples, written in C language, to illustrate using system calls and subroutines in 
short, working programs. (Available optionally) 

• IBM RT PC AIX Operating System Commands Reference lists and describes the AIX \. 
Operating System commands. 

• IBM RT PC C Language Guide and Reference provides guide information for writing, 
compiling, and running C language programs and includes reference information about 
C language data structures, operators, expressions, and statements. (Available 
optionally) 

• IBM RT PC Assembler Language Reference describes the IBM RT PC Assembler 
Language and the 032 Microprocessor and includes descriptions of syntax and 
semantics, machine instructions, and pseudo-operations. This book also shows how to 
link and run Assembler Language programs, including linking to programs written in 
C language. (A vail able optionally) 

• IBM RT PC Keyboard Description and Character Reference describes the national 
character and keyboard support for the 101-key, 102-key, and 106-key keyboards, 
including keyboard position codes, keyboard states, control code points, code sequence 
processing, and nonspacing character sequences. 

• IBM RT PC Virtual Resource Manager Technical Reference is a two-volume set. The 
first volume, Virtual Resource Manager Programming Reference, describes the VRM 
programming environment, including the internal VRM routines, VRM floating-point 
support, use of the VRM debugger, and the supervisor call instructions that form the 
Virtual Machine Interface. The second volume, Virtual Resource Manager Device 
Support, describes device IPL and configuration, minidisk mana'gement, the virtual 
terminal and block I/O subsystems, as well as the interfaces to the predefined VRM 

viii AIX Operating System Technical Reference 

( 

\ 



device drivers. This volume also describes the programming conventions for developing 
your own VRM code and installing it on the system. 

• IBM RT PC Hardware Technical Reference is a three-volume set. Volume I describes 
how the system unit operates, including 1/0 interfaces, serial ports. memory interfaces, 
and CPU interface instructions. Volumes II and III describe adapter interfaces for 
optional devices and communications and include information about IBM Personal 
Computer family options and the adapters supported by 6151 and 6150. (Available 
optionally) 

• IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and 
explains how to respond to the messages. 

• IBM RT PC Installing and Customizing the AIX Operating System provides 
step-by-step instructions for installing and customizing the AIX Operating System, 
including how to add or delete devices from the system and how to define device 
characteristics. This book also explains how to create, delete, or change AIX and 
non-AIX minidisks. 

• IBM RT PC Personal Computer AT Coprocessor Services Technical Reference describes 
differences between writing applications for the IBM Personal Computer AT and IBM 
RT PC Personal Computer AT Coprocessor Services. This book also includes Personal 
Computer AT Coprocessor Services BIOS listing, hardware technical information, 
Math Co-Processor information, and the 286 and 287 instruction sets. (Available 
optionally) 

• IBM RT PC Using AIX Operating System DOS Services provides step-by-step 
information for using AIX Operating System DOS Services. (Available optionally; 
packaged with IBM RT PC AIX Operating System DOS Services Reference) 

• IBM RT PC AIX Operating System DOS Services Reference provides reference 
information about the AIX Operating System DOS Services. This book also includes 
information on sharing DOS files with Personal Computer AT Coprocessor Services, 
and on the differences between PC DOS and DOS Services. (Available optionally; 
packaged with IBM RT PC Using AIX Operating System DOS Services) 

See IBM RT PC Bibliography and Master Index for order numbers of RT PC publications 
and diskettes. 

Ordering Additional Copies of This Book 

To order additional copies of this publication, use either of the following sources: 

• To order from your IBM representative, use Order Number SBOF-0135. 

• To order from your IBM dealer, use Part Number 79X3860. 

About This Book ix 



Two binders and the AIX Operating System Technical Reference manuals are included with 
the order. For information on ordering the binders or manuals separately, contact your 
IBM representative or your IBM dealer. 

x AIX Operating System Technical Reference 

I 

\ 



Contents 

Volume 1. System Calls and Subroutines 

Chapter 1. AIX Operating System ........................... 1-1 

Chapter 2. System Calls .................................. 2-1 

Chapter 3. Subroutines ................................... 3-1 

Index ................................................ X-I 

Volume 2. Files and Device Drivers 

Chapter 4. File Formats 4-1 

Chapter 5. Miscellaneous Facilities .......................... 5-1 

Chapter 6. Special Files ................. . . . . . . . . . . . . . . . . .. 6-1 

Chapter 7. Advanced Display Graphics Support Library .......... 7-1 

Appendix A. Error Codes ................................ A-I 

Appendix B. Writing a Queuing System Backend .............. B-1 

Appendix C. Writing Device Drivers ........................ C-l 

Appendix D. Porting DOS 3.0 Applications ................... D-l 

Appendix E. Component Cross Reference .................... E-l 

Appendix F. Glossary ................................... F-l 

Index X-I 

Contents xi 



( 
\~ 

xii AIX Operating System Technical Reference I 



3-1. 
3-2. 
3-3. 
4-1. 
4-2. 
5-1. 
5-2. 
5-3. 
5-4. 
5-5. 
5-6. 
5-7. 
5-8. 
5-9. 

5-10. 
5-11. 

6-1. 
6-2. 
6-3. 
7-1. 
E-1. 
E-2. 

Figures 

Floating-Point Trap Handler Structures ........................... . 
The fpfp Register Mapping ...................................... . 
Default Error-Handling Procedures ............................... . 
Example of Font Storage ....................................... . 
Information Record Format ..................................... . 
Octal ASCII Character Set ....................................... . 
Hexadecimal ASCII Character Set ................................. . 
Code Page PO ................................................. . 
Code Page PI ...... ........................................... . 
Code Page P2 ................................................. . 
Code Page PO ................................................ . 
Code Page PI ................................................ . 
Code Page P2 ................................................ . 
EBCDIC Character Set ........................................ . 
The eqnchar Characters ........................................ . 
Greek Characters ............................................. . 
Bit Positions of ASCII Controls in Echo Map ....................... . 
Screen Manager Ring Examples .................................. . 
Position Codes for Remapping a Keyboard ......................... . 
Default Attribute Values ........................................ . 
Extended Services Subroutines ................................... . 
Multi-User Services Subroutines .................................. . 

3-189 
3-190 
3-240 

4-72 
4-90 

5-3 
5-4 
5-6 
5-7 
5-8 

5-25 
5-33 
5-40 
5-45 
5-54 
5-58 
6-35 
6-51 
6-78 

7-9 
E-l 
E-l 

Figures xiii 



xiv AIX Operating System Technical Reference 

(' 
" " 



Volume 1. System Calls and Subroutines 

Volume 1. System Calls and Subroutines 



\ 

AIX Operating System Technical Reference 



Chapter 1. AIX Operating System 

Operating System 1-1 



About This Chapter 

This overview of the AIX Operating System is divided into three sections. The first section 
describes process management, creation, and scheduling. The second section is a 
description of the file system. The final section introduces I/O control and the I/O 
subsystem. 

1-2 AD[ Operating System Technical Reference 



Overview 

The RT PCl system software is structured in layers: the Virtual Resource Manager (VRM), 
the Virtual Machine Interface (VMI), and the AIX Operating System. The VRM extends 
the hardware function of the processor and memory management to provide a high level of 
support to hardware devices for the operating system in a virtual machine environment. 
The VMI is the protocol boundary between the operating system and the VRM. A virtual 
machine, as defined by the VRM, has a high-level interface that resembles a physical 
machine. The following figure depicts the software structure and relationships. 

Operating System 

SVC 
.,.--V_i_rt_u_a_I_M_a_c_h ....... li_n_e_I_n_t_e_rf_a_c_e---,) I nterru pt 

Virtual Resource Manager 

Virtual Machine Characteristics 

The VRM provides a virtual machine environment that has essentially the same 
characteristics as the physical machine. Virtual machines run in problem (unprivileged) 
state and do not directly reflect the supervisory (privileged) characteristics of the physical 
machine. These functions are handled by the VRM. 

A virtual machine has two protection states, user (unprivileged) and operating system 
(privileged). The operating system state and AIX kernel state are synonymous. Whenever 
the virtual machine is executing instructions (in either user or operating system state), the 
processor is actually in problem state. Only the VRM (including code installed in the 
VRM by the AIX operating system) can execute in real supervisory state. 

RT, RT PC, and RT Personal Computer are trademarks of International Business Machines 
Corporation. 

Operating System 1-3 



User State 

In user state, a virtual machine can issue any of the problem state instructions. One of the 
instructions available to the virtual machine is the supervisor call (SVC) instruction, 
which includes a I6-bit field to indicate which supervisor function is desired. If the 
high-order bit of this field is set to 1, then the call is made to the VRM; if it is set to 0, 
then the call is made to the virtual machine supervisor, the AIX Operating System. The 
VRM cannot be called directly from user state, but an application running in user state 
can issue an SVC to the virtual machine supervisor and change to operating system state. 

Operating System State 

A virtual machine enters operating system state either because of an SVC directed to it by 
a user state process or because of a virtual interrupt directed to it by the VRM. In 
operating system state, the virtual machine can use all of the instructions available in user 
state, and can also issue SVCs to the VRM. 

Registers 

The virtual machine executes in only problem state, so when in user or operating system 
state it can only directly use the problem state set of registers. The problem state register 
set consists of the General Purpose Registers (GPRs), the Multiplier Quotient register, the 
Condition Status register, and five System Control Registers (SCRs), and, if a floating-point 
processor is present, the floating-point registers. The VRM does permit virtual machines 
in operating system state to indirectly manipulate the segment registers. 

Predefined Memory Locations 

Since each virtual machine has a distinct virtual memory space starting at location 0, 
these locations are valid for all virtual machines. Virtual machine memory locations 
between OxCO and Ox2DC are reserved for communication between the virtual machine and 
the VRM. These locations are used for memory-mapped timer values, Program Status 
Blocks (PSBs) for SVCs and interrupts, and miscellaneous other values. Refer to the 
following table for a summary of predefined virtual memory locations and the values 
associated with each location. / 

1-4 AIX Operating System Technical Reference 



Memory location Bytes Value 
Decimal Hex Hex 

o 
184 

188 
192 
196 
200 
202 
204 
206 
208 
210 
212 
214 
215 
216 
220 
224 
228 
230 
232 
236 
240 
244 
248 
252 

o 
B8 
BC 
CO 
C4 
C8 
CA 
CC 
CE 
DO 
D2 
D4 
D6 
D7 
D8 
DC 
EO 
E4 
E6 
E8 
EC 
FO 
F4 
F8 
FC 

B8 
4 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 
1 
1 
4 
4 
4 
2 
2 
4 
4 
4 
4 
4 
4 

Reserved 
Number of free paging disk slots 
Number of page replacement cycles 
Number of page faults with preemption 
Number of non-paging disk I/Os 
Reserved 
PCB Segment ID 
Reserved 
Trace buffer synch flag 
VRM sequence number 
Virtual machine sequence number 
Interrupt request buffer 
Process priority 
Floating point register set 
Bus I/O base address 
Bus memory base address 
Virtual interrupt control status 
Execution level 
Virtual machine ID (right justified) 
Time of day, extended 
Virtual timer status 
Real time of day 
Real time of IPL 
Virtual timer source 
Virtual time since IPL 

There is a separate PSB for each priority interrupt level, program checks, machine 
communications and SVC. The PSB includes the Instruction Address Register (IAR) for 
the point of interrupt, interrupt control and status fields, definition of sublevels and four 
words of status and data specific to the interrupt. 

See Virtual Resource Manager Technical Reference for the details of the virtual machine 
configuration. 

Operating System 1-5 



VRM Structure 

The VRM provides paging support of the virtual memory for the operating system running 
in a virtual machine. AIX is designed to take advantage of the virtual memory support 
provided by the VRM. This makes the hardware memory management functions available 
to AIX while relieving it of the details of paging mechanics, such as page replacement 
algorithms, management of paging I/O, and so forth. 

The interface to virtual memory consists of a set of supervisory call instructions, program 
check interrupts (addressing and protection exceptions), and machine communication 
interrupts (page fault occurrence and clearing). The basic model of memory presented to 
the virtual machine is in terms of segments. 

SVCs are provided to create, copy, or destroy segments, and to manipulate segment 
characteristics. Examples of segment manipulation are changing sizes and protection 
status, loading segment IDs into the hardware memory management segment registers, and 
so on. An SVC interface is also provided to allow AIX the ability to influence the VRM 
page replacement algorithm. Using this interface, AIX advises the VRM that certain pages 
should be purged from primary storage, that certain pages should be pinned in primary 
storage, or that previously pinned pages should be unpinned. 

The AIX Operating System is based on UNIX System V with many enhancements. Among 
the enhancements are the facilities that utilize virtual memory. AIX runs in a virtual 
machine on the VRM. 

AIX Kernel 

The AIX kernel manages the various devices and resources that make up the virtual 
machine in which it resides. It is the control point for all virtual machine activity and the 
virtual machine resources. 

The internals of the AIX kernel are modified and extended to allow it to run in a virtual 
machine, provide an extended process environment, and provide a usable and stable file 
system. The system call and subroutine interfaces allow many programs and utilities 
written for UNIX-compatible systems to run on AIX. 

1-6 AIX Operating System Technical Reference 

! 

\ 



Process 
Management 

Input/Output 
Control 

File 
System 
Management 

The kernel performs the following major functions: 

• File System Management 

File: open, close, read, write, change owner, get/change statistics, seek 
File system: mount, umount, get statistics 
Directory: change working directory, change root directory, make a directory, link 
to a file, unlink to a file 
Security: access permissions. 

• Process Management 

Start and termination: fork a process, terminate this process, kill another process, 
kill a process group 
Set process group 
Informational: enable/disable accounting, get ID (process, parent, group), get times 
Priority suggestion 
Wait for child process to terminate 
Lock data, text or stack in memory. 
Signals: enable/disable signals, route signals to user routines, wait for a signal. 
Semaphores: create semaphore, get semaphore ID, perform semaphore operations, 
delete semaphore. 

• Memory Management 

Private memory: grow, shrink 
Shared memory: create, attach, delete. 

Operating System 1-7 



• Time Management 

- Set time 
- Get time. 

• Program Management 

- Execute a new program 
- Lock a program in memory. 

• Resource Management 

Set and get user and group IDs 
- Set and get user limits 

Kernel Features 

The kernel has the following features: 

• Device Error Logging 
• File System Enhancements 
• Virtual Memory 
• Enhanced Signals 
• Customization Facilities. 

The system command and utilities are programs that operate in unprivileged mode and use 
system calls to the kernel resources to perform functions. System calls to the operating 
system kernel are utilized to assist in the completion of the function or to actually perform 
the function. The system commands and utilities are divided into several categories based 
on the type of service performed: 

User Access Control 

System Status/Management 

Program Development 

Exchange Utilities 

Migration Aids 

Information Handling 

Communications 

Activity Monitoring and Accounting 

Directory Management 

File Management 

Queue Management 

Controls user access to the system. 

Provides system status. 

Provides program development aids. 

Provides exchange of files with other systems. 

Provides data interpretation between systems. 

Provides data manipulation services. 

Provides intra-system communications services. 

Provides system trace and statistics. 

Provides directory manipulation services. 

Provides file manipulation services. 

Provides queue manipulation services. 

1-8 AIX Operating System Technical Reference 

( 



System Customization Adds and deletes devices: 

• Changes device information 
• Displays configuration information. 

The system commands and utilities are written in the C language, and the kernel is mostly 
written in the C language with some assembler language where necessary. The AIX kernel 
provides the virtual machine supervisory functions such as process management, file 
system management, input/output (I/O) control, and communication between processes and 
other miscellaneous facilities. Some of the AIX kernel functions are discussed in sections 
that follow. 

Bootstrap 
Before the kernel can run, it first must be loaded into segment 0 of the virtual machine. 
The bootstrap program is responsible for locating the kernel on the root file system, 
reading it into memory, and finally giving it control. 

The bootstrap program resides on the minidisk adjacent to the root file system, but not a 
part of the file system. When a file system is created, the mkfs command handles putting 
the bootstrap program in the proper place on the minidisk. The mkfs command places the 
bootstrap program at the end of the mini disk on a block boundary. The file system uses 
the remaining blocks at the front of the minidisk. Block ° of the minidisk, which is the 
virtual machine boot block, has a field that points to the bootstrap program, and a field 
specifying the length of the bootstrap program. 

When the VRM is loaded and running, it is time to load the virtual machine (AIX). If a 
diskette is in any diskette drive, an attempt is made to load from the diskette. Otherwise, 
the minidisk directory is searched for a minidisk marked as an AIX root file system. When 
one is found, its boot block is read in order to find the bootstrap program. The bootstrap is 
loaded into the memory of the virtual machine at virtual address 0, and is given control. 

The bootstrap program searches the root file system for the file junix, reads its text and 
data segment into memory, and extends the segment. The bootstrap program moves itself 
out of the way, moves the kernel to start at address 0, and then gives the kernel control at 
its start entry point, thus completing the boot process. See "Creation and Execution" on 
page 1-16 for additional information. 

Process Management 

A process in the operating system is the current state of a program that is running. This 
includes a memory image (the logical layout of its parts in memory), the program text, 
program data, variables used, general register values, the status of opened files used, and 
current directory. Programs running in a process can be either operating system programs 
or user programs. A process must be active in order to request services to be performed by 

Operating System 1-9 



the kernel. Processes are paged into and out of memory when necessary. Processes not 
currently running are eligible to be paged from memory to disk. 

User and Kernel Modes 

The same process can be in either user mode or kernel mode. Normally, a user program 
while executing is called a user process and is considered to be in user mode. When the 
process requires a function performed by the system, it calls the system as a subroutine. A 
process in user mode uses system calls to access system resources. This is also sometimes 
referred to as a kernel call. When the user process issues a system call, the environment 
switches from user to kernel mode. The system is running the same process. The 
difference is that the code running for the user process in this instance is kernel code. The 
process is now in kernel mode. A process in kernel mode has full control of the system. 
When the kernel has completed the requested service, it usually returns control to the user 
mode of the process. A process in user mode can be preempted at any time. In contrast, a 
process in kernel mode usually cannot be preempted. Normally, a process in kernel mode 
runs until it voluntarily relinquishes control of the processor. 

Several mechanisms can prompt a switch from user mode to kernel mode. One mechanism 
that causes a switch is the system timer. The system timer periodically interrupts the 
processor at fixed intervals per second. An interrupt is a signal that diverts the processor 
to a special software routine. During the service routine for the system timer, the kernel 
checks the priority of the processes for a possible change of process. The system scheduler 
performs the basic time-slicing to enable the processor to be shared among many users. 

Servicing I/O requirements also causes a switch. Interrupt routines post completion of I/O 
operations. These routines start the next I/O operation on the device queue, mark all 
processes waiting for the service as ready to run, and set a flag to trigger a process switch 
when necessary upon return from kernel mode to user mode. 

Memory Addressing 

Memory management is provided to the operating system by the VRM (VRM). The VRM 
provides the operating system with paged virtual memory. Page faults can interrupt the 
operating system so that it can switch to some other task. Virtual memory functions are 
primarily controlled by SVCs from the operating system to the VRM, with interrupts used 
as appropriate. 

Portions of a process can be addressed when a process is running in either user or kernel 
mode. The 32-bit virtual address space is divided into 16 segments. Each segment is 228 

bytes long. The segment registers provide access to the segmented virtual memory for the 
virtual machines. The virtual memory hardware allows a maximum of 16 concurrent 
segment accesses. The RT PC implementation restricts user mode processes to 14 
concurrent segment accesses. A kernel mode process is permitted to concurrently access 

1-10 AIX Operating System Technical Reference 

( 
\ 



all segments accessible by the virtual machine. The segment registers provide several 
mechanisms for protecting the memory segments: by selective segment address loading into 
segment registers, and by page protection bit setting in each segment register. The 
protection settings provide a mechanism to invoke read and/or write protection in either 
machine state. 

Program 
Address Bits 

Selected Segment 
Register 

Virtual Memory 
Address Bits 

bJ
1 I 

I - Select Segment Register-+ 
28 -.-1 (0 - F) 

27l 

11 

o 

~ 39 

- Select Segment Y J (4096 segments) 28 

27 

- Select address ----------------+~ 

o J in segment 
(256M-bytes) 

o 

Each segment register maps part or all of a logical RT PC program segment. All addresses 
are full 32-bit virtual addresses with the segment number occupying the leftmost 4 bits. 
The segment registers are a part of the process image and are therefore switched on each 
process dispatch. The kernel is mapped by segment register O. This includes the kernel 
program text, data, and all I/O buffers. This mapping is fixed. The user program text 
segment is addressed by segment register 1 and the user program data segment is addressed 
by segment register 2. The user process stack and the user structure (u.block) are 
addressed by segment register 3. The user process stack grows from the high segment 
address to the lowest (downward). Segment registers 4 to 13 are used for the shared data 
manipulation in user programs. AIX provides a programming interface to manipulate these 
registers with the shmget, shmat, shmdt, and shmctl system calls. 

The VRM reserves segment register 14 for direct memory access (DMA) and segment 
register 15 is reserved for bus I/O. This register is used to address the I/O communication 
channel (IOCC), floating-point adapter (FP A), and memory-mapped adapters. The following 
shows the run-time register assignments to the operating system. 

Operating System 1-11 



Registers 

o 

2 

3 

4 

1 
13 

14 

15 

User Mode 

Segments 

Kernel: Text 
Data 
Stack 

User Text 

User Data 

User Stack and User Block 

Shared 
Data 

VRM-DMA 

BUS 

A process in user mode accesses the following logical areas while running. These areas 
are used to store information. 

Text segment 

Data segment 

This segment is mapped by segment register 1 and is addressable by a 
process in user mode. The text segment occupies the low addresses in 
the virtual address space of a process. This segment usually contains 
the user program code that executes. The information in this segment 
originates from the load module that executed an exec system call. (The 
exec system call is briefly discussed later). During execution, this 
segment is read-only and a single copy of it is shared by all processes 
execu ting the same code. 

This segment is mapped by segment register 2 and addressable by a 
process in user mode. The data segment of a user process begins on the 
logical boundary above the text segment. The process has read and 
write access to this segment. This segment is not shared by other 
processes and its size can be extended using a brk system call. This 
segment contains an initialized portion used for data variables such as 
arrays, and a portion called bss, which is initialized to zeros. 

1-12 AIX Operating System Technical Reference 



Stack segment 

Shared segment 

This segment is mapped by segment register 3 and is partially 
addressable by a process in user mode. This segment contains the user 
process stack and the user structure (u.block). The user structure is 
not addressable by a process in user mode. This segment of a user 
process starts at the high address in the process virtual address space 
and automatically grows in size toward the data segment as needed. 
This segment contains the run-time stack for a program and user 
programs can write to it. The process uses the top portion of this 
segment to pass I/O information to the kernel. 

In addition to the text, data, and stack segments that each process uses, a process can 
create and/or attach itself to segments that are accessible by other processes. A set of 
system calls are available for using shared segments. When a shared segment is created or 
attached, the shared segment becomes part of the address space of the requesting process. 

Shared segments can be used in either a read-only mode or in a read-write mode. Note that 
there is no implicit serialization support when two or more processes access the same 
shared segment. If one process reads from a particular area of a shared segment, then it is 
the responsibility of the two (or more) processes to coordinate their accesses to the shared 
area. 

In addition to the sharing of segments, system calls are available that allow a process to 
logically superimpose the address range of a shared segment over an ordinary file in any 
mounted file system. Access to the file can then be made by accessing the segment. The 
segment can be shared with other processes or used by a signal process. There are three 
modes of mapping a file with a segment. They are read-write, read-only, and copy-on-write. 

Read-write 
A file mapped read-write allows loads and stores in the segment to behave like reads and 
writes to the corresponding file. If a process reads that portion of the segment that is 
beyond the logical end of file, the process will read zeros. If the process writes into that 
portion of the segment that is beyond the end of file, the file is extended. 

Read-only 
A file mapped read-only allows the file to be read. Any attempt to write to the file by 
storing into the segment will signal an error to the process. Just like read-write, a process 
that accesses the part of the segment that is beyond the end of file reads zeroes. 

Operating System 1-13 



Copy-on-write 
A file mapped copy-on-write also allows loads and stores to the segment to behave like 
reads and writes to the corresponding file except that the writes are temporary. That is, 
any storing into a copy-on-write segment modifies the segment but does not modify the 
corresponding file. The fsync system call writes the changed portions of the segment to 
the corresponding file, thereby making the mapped file an exact copy of the segment. If 
this system call is not issued, the file is never changed, allowing a process to cancel 
changes that it has made to a file if it decides the changes are not needed. 

Kernel Mode 
The following areas are addressable by a process in kernel mode. Except where noted, 
these areas are mapped by register O. Data directly associated with a process are paged 
out of memory with the process. These areas contain all the data about a process needed 
by the kernel when the process is active. The four areas are: 

Text This contains kernel program code that executes. It is read only by a 
user process. 

Global data This data can be addressed by any process while in kernel mode. It 
contains tables, such as the open file table and process table, and 
other data, such as buffer pointers, maintained by the kernel. 

Per-process data This is sometimes called the user structure, user area, u.area, user 
block, or u.block. It is a portion of the user process stack segment. 
This area is paged with the process. It contains process information 
such as the current directory of files opened by the process or input 
and/or output (I/O) in kernel mode. This information occupies the top 
of the stack segment. 

Stack This area is paged with the user-process. The kernel maintains a stack 
for each process. It saves the process information such as the call 
chain and local variables used by the kernel for the user process. 

Process Data Structures 

Most process management performed by the kernel is table searching and modification. 
The kernel maintains several tables to coordinate the running of many processes. The 
following figure shows the tables maintained by the kernel to manage processes. 

1-14 AIX Operating System Technical Reference 



KERNEL 
ADD 
SPA 

RESS 
CE Process Table 

Process Entry 

Process Entry 

Reserved 

Text Table 
(Used For Shared 
Text Segment Only) 

'------+ Text Entry 

~ User Block 

Per-process 
Information 

USER 
ADDRESS 
SPACE 

User Text User Data 
Segment Segment 

User Text I User Data 

The process table contains an entry for each process that is created. This table contains 
the data needed when the process is not running. The structure of this table can be found 
in the /usr/inelude/sys/proe.h file in the file system. This table is always in memory so 
the kernel can manage events for the process. Each table entry details the state of a 
process. The state information includes the segment IDs of the process, the identification 
number of the process, and the identification of the user running the process. There is one 
table entry for each process; therefore, the number of processes that can be created is 
determined by the size of the table, which is specified as a customize parameter, proes in 
the fete/master file. Process creation causes an entry in the process table and process 
termination frees an entry in the table. One table entry is reserved for a process with 
superuser authority. A process is recognized as superuser process and is granted special 
privileges if its effective UID is O. 

Each process has its own copy of the variable segments of the process, but the text segment 
can be shared. Sharing program text allows more effective use of memory. When text 
segments are shared by processes, the system maintains a text table. This table is used to 
keep track of the shared text segment for each process sharing a text segment (a parent 
and child can share text after a fork, as an example). The structure of this table can be 
found at /usr/inelude/sys/text.h in the file system. A text table entry contains the 
segment ID of the text segment and the number of processes sharing this entry. When the 

Operating System 1-15 



number is reduced to 0, the entry is freed along with the s~gment. The first process 
executing a shared text segment causes a text table entry to be allocated and the segment 
to be created. A second process executing an already allocated text segment causes the 
number in the text table to be incremented. 

The user structure (also called per-process data area or user block) contains information 
that must be accessible while the process executes. One user structure is allocated for 
each active process. The user structure is directly accessible to the kernel routines. This 
structure can be found at /usr/include/sys/user.h in the file system. This block contains 
information such as user and group identification numbers for determining file access 
privileges, pointers into the system file table for the files opened by the process, a pointer 
to the i-node table entry, and a list of responses for various signals. The user structure is 
part of the user stack segment. This chapter makes reference to entries in the user 
structure as u.xxxx, where xxxx is the structure member. 

The user data segment contains user data. The information consists of initialized data 
variables. A pointer to this segment is found in the process table entry. The user text 
segment contains program code. A pointer to this segment is found in the process table 
and if shared, the text table. 

Creation and Execution 
When the /unix file is found (see "Bootstrap" on page 1-9), it is loaded into segment 0 and 
executed. First, it initializes disk data structures such as the free-list blocks, I/O buffer 
pool, the pool of character buffers, and the list of available i-nodes. 

Daemon 
Processes 

System 
Load 

Port 
Processes 

1-16 AIX Operating System Technical Reference 

User 
Processes 



After the initialization is complete, the kernel starts to build the first process (process 0), 
also known as the scheduler. The scheduler is not created by the fork system call like 
other processes and it does not contain all the parts of a process. It is a unique process 
that contains only a data structure to be used by the kernel. Process 0 is the first entry in 
the process table and active only when the processor is in kernel mode. 

Process 0 creates another process (process 1) by copying itself. Process 1 is also known as 
init. The system issues the equivalent of a brk system call to expand the size of process 1. 
Next, a program containing the instructions to perform an exec system call is copied into 
the text segment of the newly created process l. 

Process 0 is not a completed process image. The kernel will use this process for scheduling 
and controlling the operations of other system processes. Process 1 is the first completed 
process image and the ancestor of all subsequent processes. Neither process has run. The 
scheduler dispatches the first process that is ready to run. There is only one process ready 
to run, so process 1 runs. Process 1 immediately executes an exec system call to overlay 
itself with code from the /etc/init file. 

As previously stated, all other processes are descendents of the init process. Normally, the 
in it process runs the shell script, /etc/rc. The rc shell script is responsible for performing 
integrity checks, doing any necessary cleanup, mounting the normal file systems, enabling 
standard ports. After /etc/rc runs successfully, the init process creates a getty using the 
fork system call for each enabled port specified in the /etc/ports file. The init process 
performs the exec system call to getty to determine appropriate terminal speed and modes. 
The getty program performs the exec system call to login to validate password, sets the 
user ID (UID) and the group ID (GID), the current directory and so on. login execs shell 
or the program specified in the /etc/passwd file as the first program to be run after login. 
Shell runs in the same process created by init. Shell performs the fork system call, which 
creates new processes for every command. While the system is running, the init process 
sleeps waiting for the termination of any of its children. When a user logs off, init creates 
a new logger via a fork. 

Parent and Child Processes 
A process can, for various reasons, create a copy of itself. When this occurs, the original 
process is called the parent process and the newly created process is called the child 
process. The major difference between the original process, the parent, and the created 
process, the child, is that they have different process identification numbers, parent 
process identification numbers, and time accounting information. 

The fork system call causes the total number of system processes to increase. A process 
uses the fork system call to create a copy of itself. The fork system call causes a new 
process, the child, to be created. Besides the differences mentioned previously, each 
receives a different value from the fork system call. (The child receives the value 0 and 
the parent receives the ID of the child process.) The two processes share open files and 
each process can determine whether it is the parent or the child by the value received. 
The parent mayor may not wait, for any of its children to terminate. 

Operating System 1-17 



The exec system call causes the process to overlay the information it contains with new 
information. During an exec system call the process exchanges current text and data 
segments for new data and text segments. The total number of system processes does not 
change, only the process that issued the exec is affected. After the exec system call, the 
process identification number is the same and open files remain open (except close-on-exec 
files). 

The exit system call terminates the process that issued the exit. All files accessed by that 
process are closed and the waiting parent is notified. A zombie process is a terminated 
process whose entry remains in the process table. The parent process is responsible to 
clear the entry from the process table. In the case of a child whose parent has terminated, 
init becomes the parent process clears the entry. If accounting is enabled, exit writes an 
accounting record. 

The wait system call suspends the calling process until the child process exits, the child 
stops in trace mode (the child is traced by its parent), or the caller receives a signal. A 
wait system call passes termination status to the parent process, 1 byte (high) passed by 
exit and 1 byte (low) of system status. This system call also removes zombies from the 
process table. 

The following scenario discusses a parent process and child process relationship and the 
system calls to synchronize them. It is important to note that the parent process may 
terminate before the child process. In this instance, the in it process assumes the role of 
the parent process. 

A parent process executes a fork system call, producing a new process. The new process 
executes an exec system call creating a child process with a new identity. This is similar 
to the sequence shell uses when it runs a program. The wait system call causes a parent 
process to wait for the child to finish processing. When running interactively, the shell 
process executes a fork system call, the child process (shell running in the new process) 
executes an exec system call for the required program, and the parent process (shell) 
executes a wait system call to wait for the child to finish running. When the child 
executes an exit system call, the parent causes the process table entry for the child to be 
removed and prompts for another command. When running in the background, the shell 
process simply prints the process ID of the child and does not wait for the child process to 
terminate. See the following for the relationship of the parent and child processes as 
described when they run interactively. 

Parent 
Removes Child. 

Parent --+ fork () ---+ wait ( ) .-.-.-.---.-.-.,------+ 

--~-~~~~:f~~;t~-I-----:~~::-(-)-=::~t-( )----~:~~e-s-s-~abl e 

1-18 AIX Operating System Technical Reference 

( 

\ 



States of a Process 
A process can be in one of many states. A process can be ready to run, running, sleeping 
(waiting on an event), stopped, or ended. The scheduler determines which order the 
competing processes execute. The following diagram shows the process states and the 
events that change the states. 

Process Creation 
Fork 

+ 
Process Termination 

Only one user process is active or running at any given time. All other user processes are 
suspended from running. For example, a process that is waiting for any of its children to 
end, waits for an event that is the address of its own process table entry. When a process 
terminates, it signals the event represented by the process table entry of its parent. When 
the event occurs, the process is awakened. When a process is awakened, it is ready to run, 
which means it is eligible to be dispatched. Normally, processes run to completion unless 
they sleep. They sleep for reasons such as waiting for input or output to complete, time 
slices, waiting for an event to occur or signals from other processes. At each timer 
interrupt, the timer interrupt routine examines the process queues, and may cause a 
process switch. When a process is sleeping, it may be paged out of memory. The process 
switch routine will not restart a process that is paged out. It checks that kernel and user 
data for a process are addressable before it restarts the process. 

Operating System 1-19 



A process that relinquishes control of the processor is usually waiting for some I/O to be 
performed. In that case, the process issues a sleep call specifying chan, which is usually 
the address of the kernel data structure, and specifies a wakeup priority. It normally 
remains in a sleep state until a wakeup call is issued specifying the same chan. If the 
wakeup priority is low enough for the signal to be processed, the process is awakened and 
restarted in the same mode prior to sleep. Sometimes many processes may be waiting on 
the same event to occur, such as memory allocation. Since this is possible, when the 
process returns from sleep, it must first check that the event or resource was not seized by 
another process waiting on the same chan. If the resource is not available, the process 
issues another sleep call. 

Priority Computation 

Each process has an assigned priority. User processes are assigned low priorities. The 
scheduler uses the process priorities to dispatch processes. It dynamically calculates 
process priorities to select the inactive, but ready to run, process to run when the 
currently active process stops. A system process has a higher priority than any user 
process. 

User process priorities are assigned by an algorithm based on the ratio of the amount of 
compute time to real time recently used by the process. At every tick of the system timer, 
the p-cpu field (processor usage) in the process table for the running process is 
incremented. The compute time to real-time r~tio is updated every second. Using negative 
exponential distribution, the kernel decreases p-cpu by half its value for every process at 
or above the base user level and recalculates the priority of the processes. Processes that 
accumulated a lot of execution time have less priority than processes with very little 
execution time. A user process can execute a nice system call to induce a bias in the 
calculation. Ordinary user processes can only decrease their priority, while root user 
processes can either increase or decrease their priority. 

Signals 

Signals provide communication to an active process, forcing a single set of events where 
the current process environment is saved, and a new one is generated. A process can 
designate a signal handler function to respond to the signal. The signals all have the same 
priority, and critical functions can protect themselves from signal interference. 

A signal is an event that interrupts the normal execution of a process. The set of signals is 
defined by the AIX system, and they are listecL in the discussion of "signal" on page 2-145. 
All signals have the same priority. 

A process can specify a signal handler subroutine, which is to be called when a signal 
occurs. It can also specify that a signal is to be blocked or ignored, or that a default 
action is to be taken by the system when a signal occurs. 

1-20 AIX Operating System Technical Reference 



A global signal mask defines the set of signals currently blocked from delivery to a 
process. The signal mask for a process is initialized from that of its parent. It can be 
changed with a sigblock or sigsetmask system call. While a signal handler is executing 
for a given signal, the signal that caused it to be called is blocked, but other signals can 
occur. When the handler finishes, the signal is again unblocked. 

Normally, signal handlers execute on the current stack of the process. This can be 
changed, on a per-signal basis, so that signal handlers execute on a special signal stack. 

When a signal is sent to a process, it is added to a set of signals pending for the process. If 
the signal is not currently blocked, then it is delivered to the process. When a signal is 
delivered, the following actions occur: 

1. The current state of the process execution context is saved. 

2. A new signal mask is calculated, which remains in effect for the duration of the 
process's signal handler or until a sigblock or sigsetmask system call is made. The 
new mask is formed by logically OR-ing the current signal mask, the signal being 
delivered, and the signal mask associated with the handler to be called. 

3. If the signal handler is to execute on the signal stack, then the current stack is 
changed to the signal stack. 

4. The signal handler is called. The parameters that are passed to the handler are defined 
in the following description. 

The signal-handler subroutine can be declared as follows: 

handler (sig, code, scp) 
int sig, code; 
struct sigcontext *scp; 

The sig parameter is the signal number. The code parameter is provided only for 
compatibility with other UNIX-compatible systems, and its value is always o. The scp 
parameter points to the sigcontext structure that is later used to restore the process's 
previous execution context. The sigcontext structure is defined in signal.h. 

5. If the signal-handling routine returns normally, then the previous context is restored 
and the process resumes at the point at which it was interrupted. The handler can 
cause the process to resume in a different context by calling the longjmp subroutine. 
(For information on how to save and restore the execution context, see "setjmp, 
longjmp" on page 3-332.) 

After a fork system call, the child process inherits all signals, the signal mask, and the 
signal stack from its parent. 

The exec system calls reset all caught signals to the default action. Signals that cause the 
default action continue to do so. Ignored signals continue to be ignored, the signal mask 
remains the same, and the signal stack state is reset. 

Operating System 1-21 



When the longjmp subroutine is called, the process leaves the signal stack, if it is 
currently on it, and restores the signal mask to the state when the corresponding setjmp 
call was made. See "sigvec"on page 2-156 for enhanced signal information. 

The operating system has five signal classes: 

• Hardware signals occur as the result of conditions such as arithmetic exceptions, 
illegal instruction execution, or memory protection violations. 

• Software signals are generally user-initiated interrupts. Termination, quit, and kill are 
signal types that represent various levels of user or program-initiated signals to a 
process. In addition, timer expiration can be signalled with software-driven alarm 
signals. 

• A process can be notified of an event that occurred based on some descriptor, or 
non blocking operation that completes. A process can also request a catastrophic 
condition signal. 

• Processes can be stopped, restarted, or can receive notification of state changes in a 
child process. 

• Processes can receive threshold warnings when the processing unit time limit or a file 
size limit is reached. 

The kernel also contains additions and modifications to enhance the unsolicited interrupt 
signal system for kernel-to-process communications. 

File System Management 

Files within the file system are grouped into directories and the directories are organized 
into a hierarchy. At the top of the hierarchy is a directory called the root directory. This 
directory is designated as j (slash). The root directory contains some system-related files 
and standard directories such as jbin, jusr, jdev, jete, and jlib. Files can be attached 
anywhere onto the hierarchy of directories. 

A file is a one-dimensional array of bytes uniquely identified by a device name (major and 
minor number) and an i-number (index number). Data within the file is located in 
blocks. The logical blocks in the AIX file system are 2048 bytes long. Block size is 
specified in the superblock; therefore a compatible file system can be mQunted and used on 
the AIX system. Block size of the mounted file system is recognized by the kernel. 

1-22 AIX Operating System Technical Reference 



Types of Files 

AIX file system files can be directory files, ordinary files, or special files. All files have 
read, write, and execute permissions for the owner, group, and others. The read, write and 
execute permissions on a file are granted to a process if one or more of the following are 
true: 

• The effective UID of the process is superuser authority. 

• The effective UID of the process matches the UID of the owner of the file and the 
appropriate access bit of the owner portion (700 octal or Ox01cO) of the file mode is set. 

• The effective UID of the process does not match the UID of the owner of the file, and 
the effective GID of the process or one of the process or one of the GIDs in the multiple 
group list of the process matches the group of the file and the appropriate access bit of 
the group portion (070 octal or Ox38) of the file mode is set. 

• The effective UID of the process does not match the UID of the owner of the file, and 
the effective GID of the process does not match the GID of the file, and the appropriate 
access bit of the other portion (007 octal or Ox07) of the file mode is set. 

Otherwise, the corresponding permissions are denied. When a process creates a file, the 
GID of the file is the effective GID of the process. 

In a directory, however, the read, write, and execute permissions are interpreted differently 
from ordinary files. Read permission for a directory indicates that standard utility 
programs are allowed to open and read the information in the directory. Write permission 
for a directory indicates that files in the directory can be created or removed. Execute 
permission for a directory indicates that a user can search the directory for a file name. 
Denying search privileges for a directory provides protection against using files in that 
directory. A request to changing location into a directory where execute permission is 
denied cannot be performed. 

AIX permits file names to be up to 14 characters long. It is possible for one file to have 
several names. Any printable character can be used in the name. Names containing 
unprintable characters, space characters, tabs, and shell metacharacters are not 
recommended. The AIX file system reserves file names . (dot) and .. ( dot dot); therefore 
these names cannot be used as file names. 

Directory Files 
The AIX file system hierarchy centers around directory files. Directory files contain lists 
of files. The AIX operating system maintains the directory files. Executing programs can 
read the directory files, but AIX prevents programs from changing directory files to protect 
the information in the directory files. Programs may add entries to directories by 
requesting the system to create a file. The system is responsible for making the changes to 
directory files. Files listed in a directory can be ordinary files, directory files, or special 
files. 

Operating System 1-23 



Ordinary Files 
Ordinary files are attached to directories. An ordinary file might contain an executable 
program, document text, or other types of information that can be processed. There are 
two types of ordinary files: text files and binary files. Text files normally contain ASCII 
(American Standard Code for Information Interchange) characters. Binary files contain 
256 possible values for each byte. 

Special files 
Special files are used to provide a convenient channel for accessing input and output (I/O) 
mechanisms to devices. For each I/O device, including memory, there is a special file. 
Most special files are found in the /dev directory. Special files provide an interface 
between application programs and the AIX kernel routines dealing with the devices. The 
names of the special files indicate the type of devices with which they are associated. 
Special files are read and written just like ordinary files, except read and write requests 
activate the associated device. 

There are two types of special files: character and block. Some devices, such as a terminal, 
handle one character at a time. The character special files provide access to character I/O 
devices. Some I/O devices, such as a disk, transfer data in blocks at a time for efficiency. 
The block special files provide access to block I/O devices. 

No characters are stored in a special file. When a directory that contains special files is 
listed, it identifies major and minor device numbers associated with the device rather than 
file length. The major device number identifies the type of I/O device that the file 
references. The minor device identifies the specific device when multiple devices of the 
same type exist, such as terminals. 

1-24 AIX Operating System Technical Reference 



File System Layout 

For this discussion, the device that contains the file system is a minidisk with logical data 
blocks of 2048 bytes. Thus, a unit of disk storage or block is 2048 bytes. Blocks are 
numbered sequentially from the beginning of the minidisk, starting with O. A file system is 
logically separated into four sections as shown in the following figure. 

Block 0 Unused by File System 

Block 1 Superblock 

Block 2 I-list 

Block n 

Block n+ 1 Data Blocks 

End of 
File System 

Block 0 

The file system does not use block O. This block usually contains system bootstrap 
information. 

Superblock 

Block 1 is the superblock. See "fs" on page 4-74 for a detailed description of the contents 
of this structure. This block is used to keep track of the file system. Some of the file 
system information contained in the superblock is: 

• File system size in logical blocks 
• File system name 
• Number of blocks reserved for i-nodes 
• The i-node list 
• The free-block list. 

Operating System 1-25 



I-list 

Blocks 2 through n are the i-list, which contain structures relating a file to the data 
blocks on disk. The size of this section depends on the size of the mounted file system. 
Each structure, called an i-node, is 64 bytes long. Each i-node designates a file. See 
"inode" on page 4-92 for the detailed content of the i-node structure of an ordinary file or 
directory. Each i-node structure is sequentially numbered from 0 to a maximum number, 
which is dependent on the file system size. Each index number, or i-number, designates a 
64-byte i-node and is used as an offset within the i-list. I-number 1, the first 64 bytes, is not 
allocated by the file system. Usually i-number 2 is the i-node of the root directory. The 
remaining i-numbers are allocated by the file system. The i-node contains information 
about each file such as: 

• Mode and type of file 
• Length of file 
• ID numbers of owner and group 
• Relevant dates and times 
• N umber of links 
• Location of file blocks. 

1-26 AIX Operating System Technical Reference 



I-node Addresses 
An i-node contains thirteen 4-byte disk addresses. The following figure shows the use of 
the disk addresses in the i-node. 

Disk Address in Inode 

~ 

First Level 

First Level 

Indirect 
Block 
Pointers 

Second Level 
Indirect Block ~ 
Pointers ~ 

Indirect Block 
Pointers 1-----+1 

First Level Second Level Third Level 

Indirect 
Block 
Pointers 

Indirect 
Block 
Pointers 

Indirect 
Block 
Pointers 

Addresses 1 through 10 point directly to the first 10 disk blocks in the file. Addresses in 
indirect blocks are 4 bytes long. If the file is larger than 10 blocks, address 11 points to a 
first level indirect block containing the next blocksize-7-4 block addresses in the file. This 
is called indirect addressing. Depending on the size of a block, an indirect block contains 
blocksize-7-4 addresses. For example, the indirect block for a file system on diskette 
contains 512 -7- 4 or 128 addresses; a disk indirect block contains 2048 -7- 4 or 512 addresses. 
A larger file requires use of the address 12. This address points to a second-level indirect 
block, which contains the addresses of up to blocksize -7- 4 first-level indirect blocks. If the 
file is larger, address 13 is required. This address points to a third-level indirect block, 
which contains the addresses of up to blocksize -7- 4 second-level indirect blocks. Any of 
these addresses can be 0, indicating holes in the file, which are read as binary zeros. 
Indirect block numbers can be 0 when the file contains large holes. 

Operating System 1-27 



I-number Allocation 

The file system tracks free i-numbers that are available. It maintains a list of i-nodes 
available for allocation in the superblock. The superblock contains the following 
information to allocate i-numbers. 

• s-inode, an array containing the next free i-numbers to be allocated to files. 

• s-ninode, the count of free i-numbers in the array. This is used as an index into the 
s-inode array. 

• s-tinode, the total number of i-nodes in the file system. 

Allocating an i-number to a file when s-ninode is greater than 0, s-ninode is decremented 
to get the next available i-number from s-inode. If s-inode[s-ninode] is 0, the next free 
i-numbers available from the i-list are placed onto the array and another attempt to 
allocate is made. Freeing an i-number when s-ninode[s-ninode] is less than maximum, 
places the freed i-number into the array and the count increments. 

Data Blocks 

The last section of the file system is data blocks, which contains data stored in files, 
indirect blocks that point to other data or indirect blocks for large files, or blocks that are 
available for data. These blocks are 2048 bytes long. The i-node contains the addresses of 
the data blocks that are already used in files. Othe.rwise, the data blocks are free and 
available for allocation to a file. 

Free-block List 

The file system maintains a list of all free blocks in a free-block list. The free-block list is 
a linked list of pointer blocks. A free block is a block that is not allocated to the 
superblock, i-nodes, indirect blocks, or files. Blocks are allocated dynamically to a file 
when needed from the data block section of the file system. In order to track data-block 
allocation, the superblock contains the following: 

• s-free, an array of free block addresses. 

• s-nfree, the number of free blocks in the s-free array. This is used as an index into 
the s-free array. 

• s-tfree, the total number of free blocks available in the file system. 

1-28 AIX Operating System Technical Reference 



Allocating Blocks 

Each pointer block in the free-block list contains a count of the number of entries in the 
block, up to 50, and the address of the next pointer block. If the pointer has a value of 0, 
this indicates the last pointer block in the file system. The first long integer in each 
pointer block is the number, up to 50, of free blocks addressed in the block. The next long 
integer is the address of the next pointer block available. The next 49 long integers 
contain the addresses of 49 free blocks. The following figure shows the relationship of the 
free-block list and s-free array. 

Free 
Block 
List 

Address of Address of 
Next Pointer First Block 
Block In This Array 

~ 
Number of Address of 

/" Free Blocks Next Pointer 
Addressed Block 
In This Block 

~ 
Number of o Indicating 

"- Free Blocks Last Pointer 
Addressed Block 
In This Block 

First Block 
Address 

First Block 
Address 

Address of 
Last Block 

J 

s_free Array !"\ 
in Super-Block I ) 

Inthe Array 

Pointer Block in 
Data Block Section} 
of File System 

Last Block 
.. Address 

Last Pointer } 
Block Available 
In File System 

Last Block 
.. Address 

) 

The file system allocates free blocks using the s-free array and pointers in the superblock. 
The pointer block information is copied into the s-free array and superblock as follows. 
s-free[O] contains the address of the next pointer blo9k in the free-block list. The 
remainder of the s-free array contains addresses of the free blocks in this pointer block. 
s-free[s-nfree-l] contains the address of the next free block available to be allocated. 

Allocating a block causes s-nfree to be decremented to locate the next available block. If 
decrementing s-nfree caused its value to become 0, this indicates that more blocks are not 
available in the s-free array. Therefore, the address found is the location of the next 
pointer block. File system management reads the pointer block into the superblock, 
placing its first long integer in s-nfree and copying the next 50 long integers, which are 
addresses, into the s-free array. If the location of the next free block is 0, indicating the 
end of the chain, then new blocks are not available in the file system. This indicates an 
error condition. 

Operating System 1-29 



When a block is freed and s-nfree has a value less than 50, the new block address is added 
to the s-free array and s-nfree is incremented. When a block is freed and s-nfree equals 
50, s-nfree and the s-free array are copied into the freed block and the value s-nfree 
becomes o. The file system manager updates the s-free array as previously described 
when s-nfree was equal to o. 

Directory Contents 
A directory file is like an ordinary file except that it cannot be written by a user. See 
"dir" on page 4-60 for a detailed description of a directory. A bit in the i-node identifies 
the file as a directory file. The directory contains an entry for each file or subdirectory 
within it. A directory block contains 16-byte directory entries for each file within it. The 
first 2 bytes of each entry are the i-number for the file. The remaining 14 bytes are the 
file name, which is left adjusted in the field. The first file entry in a directory is its i-node 
and entry. (dot). The second file entry is the parent directory, .. (dot dot). The third entry 
designates the first actual file in the directory. 

Path Name Resolution 

A path name through the file system is a route of directories and i-nodes. A direct path 
starts at the file system root. A relative path starts at the current directory. The last 
name in the path references a file. The following example shows the resolution of a direct 
path; the resolution of a relative path is similar. 

Direct Path 
The following describes accessing a file with a direct path name. Consider the path name 
/w /z. This path starts at the root directory. It leads from the root directory to the 
directory wand then to the file z. 

1. Read address 1 of i-number 2 (root) for the address of the root directory. 

2. Read the i-node for the root directory. 

1-30 AIX Operating System Technical Reference 



3. Use the information in the root directory to search the root directory for the name w 
and its i-number. 

Block 2 

Oxc 

Steps 1 and 2 

Inode 2 for 
Root Directory 

dr-xr-xr-x 

owner:root 

disk (Ill 1-----' 

4. Read the i-number for w. 

Block 2 

Oxe 

Step 4 

Inode 5 for 
Directory w 

dr-xr-xr-x 

owner ID 

disk (Ill 1----" 

Step 3 

Data Block for 
Root Directory 

2 

2 

3 bin 

4 user 

5 w 

Step 5 

Data Block for 
w Directory 

5 

2 

45 job 

46 pete 

47 z 

5. Use the information in the w i-node to search the w directory for the file named z and 
its i-number. 

Operating System 1-31 



6. Read the i-node for z. The addresses for the file blocks assigned to the files start at 
offset 10 within the i-node. The first 10 are direct addresses as previously described; 
the last three are indirect. 

Step 6 

Inode 47 
for File z 

J 
First Data 

Block 2 -rw x rw-- Block for 
owner ID File z 

Oxe disk @ 

Relative Path 
Consider the relative path name .. (dot dot)/x/y. The path leads from the current 
directory, to the parent of the current directory, to the parent subdirectory x, and finally 
to the file named y in the directory x. In order to follow this path, the system performs the 
following steps: 

1. Read the i-node of the current directory. 

2. Use the information in the i-node for the current directory to search the current 
directory for the name .. (dot dot) and its i-number. 

3. Read the i-number for .. (dot dot). 

4. Use the information in the .. (dot dot) i-node to search the parent directory for the file 
named x and its i-number. 

5. Read the i-node for x. 

6. Use the information in the x i-node to search the x directory for the file named y and 
its i-number. 

7. Read the i-node for y. The addresses for the file blocks assigned to this file starts at 
offset 10 within the i-node. The first 10 are direct addresses as previously described; 
the last three are indirect. 

1-32 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

File System Data Structures 
The kernel maintains structures in memory, along with the superblock, to access files in 
the file system. These structures include the v-nodes, i-node table, and file table. 

Access to the files in the system begins at the per-process data region in a process (user 
structure). System calls provide access to file system services for user processes. The most 
common functions performed are open, creat, read, write, lseek, and close. The user 
structure contains an array, u.u-ofile, that is indexed by file descriptor values. This array 
of entries contains the addresses of the file table entries for each file opened or created by 
the process and used for I/O operations. Descendants of the process inherit the contents of 
the u.u-ofile array. The following figure shows the data structure relationships for 
accessing two files. The format of the user structure is found in /usr/include/sys/user.h. 

User Structure File Table Inode Table 

Iv-nodell-----.,~I--____ -I 

\.~ 

File Descriptor r--

I v-node II-----.,~ /--------i" 
~~ 

All operations on files are performed with the aid of the corresponding i-node table entry. 
When the system accesses a file, it locates the corresponding i-node (see "Path Name 
Resolution" on page 1-30), allocates an entry in the i-node table, reads the i-node into 
memory, and creates the corresponding v-node. The entry in the i-node table is the current 
version of the i-node and is the focus of file system activity. The structure of an i-node 
entry is found in /usr/include/sys/inode.h. The i-node table contains the key information 
for accessing a file including flags, owner, mode, mounted-on device, i-number, and 
location of file blocks. 

The v-node holds information on the operations that the rest of AIX uses to perform 
file-related system calls on the corresponding i-node and file. These operations can differ 
from file to file. For example, a file residing on a remote server is accessible through a set 

Operating System 1-33 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

of Distributed Servic~s operations when Distributed Services is installed. The structure of 
the v-nodes is found in/usr/include/sys/vnode.h. 

Another table the kernel maintains in memory for accessing files is the file table. The 
structure of a file table entry is found in the /usr/include/sys/file.h file in the file system. 
A file table entry is associated with open and creat calls for each file. Each entry in the 
file table contains the read/write offset of the file and a pointer to a v-node, which in turn 
contains a pointer in its private data field to a particular entry in the i-node table. The 
user process maintains a file table entry for each file it opened or created. After a fork, 
the two processes share the file table entries. A separate open of a file that is already open 
shares the i-node table entry but has distinct file table entries. 

1/0 Control 

The kernel and user processes use calls to the system to access the I/O subsystem. System 
calls that perform I/O usually cause the calling process to be suspended (it relinquishes 
control of the hardware processor) while the I/O is being performed. Another process that 
is ready to run is dispatched. 

The supervisor call (SVC) is the mechanism that permits a virtual machine operating 
system to request services from the VRM. The AIX kernel sends requests to the hardware 
devices using supervisor calls to the VRM through the Virtual Machine Interface (VMI). 

Each physical device that is attached to the system must communicate with the AIX kernel 
via a device driver. Due to the VRM/VMI boundary, the AIX device drivers do not deal 
directly with actual device interrupts and do not directly place requests on the hardware 
bus. Each AIX device driver that deals with a physical device has a corresponding part 
that handles the physical device in the VRM. AIX device drivers communicate with their 
VRM counterpart using supervisor calls directed to the VRM. 

Each AIX device driver is activated by a basic I/O system call (open, read, write, ioctl, 
close, and so on) from the application level. AIX system calls are invoked via SVCs that 
are distinguished from VRM SVC requests by the SVC number. There is a range of SVC 
numbers (0 - 32767) reserved for virtual machines and a different range of SVC numbers 
(32768 - 65535) used for requests to the VRM. 

The AIX device driver routine for the particular device class performs the requested I/O 
function to a device by issuing VRM SVC requests. There are two basic device classes, 
one for block-oriented devices, and one for character-oriented devices. 

Each AIX device driver is addressed by individual applications via a system call (SVC) 
interface. The application builds device-dependent commands and data streams, and 
invokes the appropriate AIX device driver. To accomplish the system call, the device 
driver maps the system call inputs into VRM I/O subsystem SVCs. 

The AIX device drivers perform basic device error determination by reading device status 
to determine exception conditions. In some instances (where the device driver is driven 

1-34 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

with an ioctl system call), specific commands are passed through to the VRM device driver 
by the device driver. In general however, the AIX device drivers package the commands 
and data for the VMI I/O subsystem interface and execute the sve calls across the VMI. 
Virtual interrupts across the VRM are serviced to satisfy each outstanding system request. 

AIX device drivers are explained later in this discussion. See Virtual Resource Manager 
Technical Reference for an explanation of VRM device drivers. The following illustration 
shows an overview of the relationship in the control flow of the I/O subsystem. 

User Process 

I/O System Co II (SVC) 

Kernel Trap Routine 
Each system call is interpreted as a request to perform a predetermined function. The 
function to be performed is determined by a trap handler in the kernel. This kernel trap 
routine is called in other instances besides system call handling. This routine also runs in 
cases of error conditions or interrupt handling. 

During a system call, any error indicators are reset and the process return status is saved. 
Next, the system call is used to determine a system call number. (An integer number is 
assigned for each type of system call.) 

Operating System 1-35 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

System Call Switch Table 
The system call number is used as an index into the system call switch table. This table 
contains the address for the specific handler routine that handles the call. A call is made 
to the system call handler routine, which receives the parameters supplied by the user 
program along with the system call. This routine copies the parameters out of the user 
part of the process to the kernel part of the process. 

File I/O Subsystem 
The system call switch table contains many entry points into the file I/O subsystem. 
Common entry points used are open, close, read, write, lseek and ioctl system calls. 
The file I/O subsystem determines whether the system call is to gain access to an ordinary 
file, a block special file, or a character special file. In the case of special files, this 
subsystem translates the file name into a major and minor number, which is used to select 
the device and/or routine. 

Buffer Subsystem 
The buffer subsystem maintains a system buffer pool that is used by block devices to read 
and write data. Requests for blocks found in the pool are returned immediately to the 
requester. If blocks are not found in the pool, the least recently used (LRU) buffer is freed 
and allocated. See"Block Device Drivers" on page C-15 for more details. 

Device Switch Table 
The device switch table is used as an interface to the device drivers. The device driver 
major number is used to select the proper routine. The minor number selects one of 
multiple subdevices. See "Device Management" on page 1-39 for more details about device 
drivers. 

Kernel Device Driver 
The device driver in the kernel does not issue I/O directly to the device. Instead, it issues 
an SVC to a device driver in the VRM to perform the actual I/O. When the VRM device 
driver has completed its task, it sends a virtual interrupt to the virtual machine. 

VRM Device Driver 
The VRM device driver accesses the hardware device by accessing the memory mapped I/O 
bus. 

1-36 AIX Operating System Technical Reference 

( 



I/O Bus 

Return 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

The I/O bus is addressed via segment register 15 and is accessed like ordinary memory. 
Normally, only VRM device drivers should attempt addressing the I/O bus. However, a 
kernel device driver can address the I/O bus if proper device handling has been done. 
Normally, the bus address space is protected from access by opening the bus special file. 
See "bus" on page 6-5 for additional information. 

When the routine returns, the return status is copied back into the user part of the process 
and the process resumes running. Some rescheduling of processes can occur upon return 
from kernel mode due to interrupts or errors while processing the system call. Execution 
starts in the program immediately after the system call unless an error occurs. 

Common Routines 

Kernel and user processes use calls to kernel routines as an interface to the I/O subsystem. 
These routines must prepare the system internal tables in order to ensure proper 
performance. These routines are invoked using system calls. The following describes the 
common routines used and their effects on tables maintained by the operating system. 

Creat and Open 
The creat and open routines create and/or open a file for reading or writing and return a 
file descriptor for the opened file. First, the file system directory is scanned to locate the 
named file. An i-node is created if not found and an entry is placed in an i-node table. 
This entry is somewhat different than the i-node as it exists on the disk. It contains a 
count of the users (used by close) and disk block addresses are expanded from the 3 bytes 
stored in an i-node to the minidisk block number. There is one i-node table entry for a 
given file. An i-node table entry exists for an open file, the current directory of a process, 
or a special file containing a currently mounted file system. 

The open file causes a u.ofile array to be stored in the user structure. The read, write 
or any other routines that perform operations on the opened file use the file descriptor 
returned as an index into this array. Array entries are pointers to corresponding entries in 
the file table that is maintained by the system. 

Each creat or open of a file causes one file table entry to be created. If a file is opened by 
more than one process, this table contains multiple entries. After a process performs a 
fork system call, the resulting processes share the same entry of the opened file in the 
table. The fork system call increments the reference count entry in the table. This count 
is used by close to determine when the entry can be removed from the table. Additionally, 
it contains a pointer to a v-node, which in turn points to the entry for the file in the i-node 
table. 

Operating System 1-37 J 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Close 
The close routine is called each time a process closes a file. When the last process closes 
the file, the i-node table entry is removed. In some instances, buffers containing data for 
the file that are queued but not written, are written to the file before the close completes. 

Read and Write 
The read and write routines use parameters supplied by the user and the file table entry 
to set the variables u.u-base, u.u-count, and u.u-offset (in the user structure). These 
variables contain the user address of the I/O target area, the byte count for the transfer, 
and the current location within the file. It may be necessary to transform the current 
location into a logical block number or physical block number depending on the target. 

I/O Data Structures 

The operating system maintains data structures to track 1/0 processing to and from 
devices. The following figure shows these data structures and their relative relationship. 

User Structure File Table Inode Table Buf 

When an open or creat occurs, an entry is made in the file table. This table is referenced 
by pointers from the user structure using file reference numbers passed to system calls. 

Another data structure is the i-node table, which contains one entry for each active 
i-node. Each entry maintains an open count and a link count, which is used by close. 
This table is referenced by device number and i-number. The entry in this table is created 
by the open routine and removed by the close routine (when the open count and link 
count are 0). The i-node table array of a file is found by following a series of pointers. The 
first pointer is in the user structure, which points to a file table entry, which points to a 
v-node, which points to the i-node table entry. (See above figure.) 

The user structure contains information accessed by the user process, kernel, and the 
device driver routines to perform device I/O requests. The elements of this block are 
needed when performing I/O. 

Buf is a table of buffer headers maintained by the kernel and used for data read from or 
written to block devices. Each buffer header has at least three parts: flags (to show status 

1-38 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

information), forward and backward pointers (to maintain two doubly linked lists; the b 
list to link the buffers that correspond to a disk block and the av list to link buffers that 
are available for reuse). The structure of the buffer header can be found in location 
/usr/inelude/sys/buf.h in the file system. 

Device Management 

The operating system uses special files, sometimes called device files, to refer to specific 
hardware devices and device drivers. Special files, at first glance, appear to be files just 
like any other. They have path names that appear in a directory, and they have the same 
access protection as ordinary files. They can be used in almost every way that ordinary 
files can be used. However, an ordinary file is a logical grouping of data recorded on disk, 
but a special file corresponds to a device (such as a line printer), a logical subdevice (such 
as a large section of disk drive), or a pseudo-device (such as the physical memory of the 
computer, /dev/mem, or the null file, /dev/null). By convention, all special files supplied 
with AIX are located in the /dev directory. 

Device Drivers 
A device driver is a set of routines that are installed as part of the AIX kernel to control 
the transmission of data to and from a device. The major interface between the kernel and 
the device drivers is through the device switch table. 

Major Device Number 
A major device number designates which device driver in the operating system is to handle 
I/O requests. The major device number for each device is assigned in the fete/master file, 
which is used in system configuration (see the eonfig command in A/X Operating System 
Commands Reference). 

Minor Device Number 
The interpretation of the minor device number is entirely dependent on the particular 
device driver. The minor device number is frequently used to index an array that contains 
information about each of several virtual devices or subdevices. For each virtual device, 
there exists an I/O device number (IODN) that is passed on all I/O supervisor calls. This 
IODN is used by the VRM SVC handler to route the I/O request to the proper VRM device 
driver. This IODN is either a fixed assignment or can be dynamically assigned by the 
eonfig program. See config in A/X Operating System Commands Reference. 

Operating System 1-39 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Requests for Device I/O 

The operating system controls the processing of all user 1/0 requests and device interrupts. 
When a user program requests 1/0 to a device using system calls, control is transferred to 
the kernel. If the system call is to a device (not an ordinary file), the path pointer points 
to a special file. Special files describe the device and indicate to the system that the call is 
for a device. If the requested file is a special file, the system records the major and minor 
device numbers in the i-node table entry. 

All devices attached to the system are controlled by device drivers. The device drivers 
contain routines that specify the functions that can be performed by a device, such as read, 
write, open, and close. Each device has a set of driver routines that can be accessed by the 
kernel via a device switch table. The kernel uses the major device number designated in a 
corresponding special file as an index into the device switch table as shown in the next 
figure. The minor number, which is passed as a parameter, selects one of a class of devices 
(such as a diskette drive) from a group of devices or specifies device characteristics. 

devmaj 
(used to 
select a 
set of 
entry 
points) 

Major 
Number 

Device Switch Table 

Routines 

oopen oclose ........... oopencnt 

12345 @close @init. .... 

'- Address of open routine 
for selected device . 

. 

After the kernel creates the i-node table entry for the device, all references to the device 
use the i-node number assigned to that device until the device is closed. 

The following describes an overview of the processing of an 1/0 request to a device. When 
a call is made to a device, the kernel first runs the device-independent routines needed for 
the I/O request. Then, it determines the proper device driver routine to invoke for the 
required device-dependent process using the major number. Next, it calls the appropriate 
device driver routine. The requested I/O function is performed, control returns to the 

1-40 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

kernel. The kernel finishes processing the I/O request and then returns control and any 
values to the user program. 

When a device signals an interrupt to the processor (indicating I/O request completed), 
control is transferred to the interrupt vector in low memory. The interrupt vector first 
transfers control to the interrupt handler, which performs device-independent interrupt 
processing. Next, the device-dependent interrupt handler, which is part of the device 
driver software, is invoked. The interrupt handler processes the interrupt and then returns 
control to the kernel. The kernel returns control to the process that had control of the 
processor at the time of the interrupt. 

Operating System 1-41 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

1-42 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Chapter 2. System Calls 

System Calls 2-1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

About This Chapter 

This chapter gives detailed information about each of the system calls that are available in 
the AIX Operating System. System calls provide controlled access to the operating system 
kernel. 

The programming interface to the system calls is identical to that of subroutines. Thus, as 
far as a C-Ianguage program is concerned, a system call is merely a subroutine call. The 
real difference between a system call and a subroutine is the type of operation it performs. 
When a program invokes a system call, a context switch takes place so that the called 
routine has access to the operating system kernel's delicate information. The routine then 
operates in kernel mode to perform a task on behalf of the program. In this way, access to 
the delicate system information is restricted to a pre-defined set of routines whose actions 
can be controlled. 

The operations performed by system calls are frequently more basic or "primitive" than 
those of subroutines. Many subroutines described in Chapter 3, "Subroutines," use system 
calls to perform more complex tasks. For example, the open, close, read, and write, 
system calls perform very simple I/O operations; but many programs use a standard set of 
I/O subroutines that add data buffering to the I/O performed by the system calls. (See 
"standard i/o library" on page 3-342 for details about the Standard I/O Package.) 

When an error occurs, most system calls return a value of -1 and set an external variable 
named errno to identify the error. The errno.h header file declares the errno variable 
and defines a constant for each of the possible error conditions. A complete listing of 
these error codes and their meanings can be found in Appendix A, "Error Codes." The 
specific meanings of the error codes that apply to each system call are listed in the 
"Diagnostics" section of each system call entry. 

For an explanation of the "Syntax" section of each entry, see "Syntax" on page v. For an 
explanation of header files, see "Header Files" on page vii. 

The following discussion is divided into sections that discuss groups of system calls that 
perform various operations. 

2-2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Input/Output 

The following system calls perform the basic input/output for all types of devices: 

access 
chdir 
close 
creat 

Determines whether the process has permission to access a file. 
Changes the current directory. 
Closes a file. 

dup 
fclear 
fsync 
ftruncate 
ioctl 
lockf 
lseek 
open 
read 
write 

Creates a new file or replaces an existing file with an empty one. 
Duplicates an open file descriptor. 
Clears space in a file, freeing unused disk space. 
Forces changes to a file to be written to the disk. 
Shortens a file. 
Provides device-specific control. 
Locks a region of a file from access by other processes. 
Moves the read/write pointer of a file. 
Opens a file or device for reading or writing. 
Reads data from a file or device. 
Writes data to a file or device. 

File Maintenance 

The file maintenance calls change the access permissions of files, create directories, mount 
file systems, and perform a variety of other operations: 

chmod Changes the access permission mode of a file. 
chown Changes the user and group that own a file. 
chroot Changes the directory considered to be the root directory. 
fcntl Provides file control. 
fstat Gets file status information. 
link Creates a new directory entry that links to a file. 
mknod Creates a special file that describes a device. 
mount Mounts a file system. 
stat Gets file status information. 
sync Forces all changes in the file system to be written to disk. 
umask Sets the file creation mask. 
umount U nmounts a file system. 
unlink Removes a directory entry. 
ustat Gets file system statistics. 
utime Set the access and modification times of a file. 

System Calls 2-3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Process Control 

The following system calls control creating, operating and stopping processes: 

exec 
exit 
fork 
nice 
plock 
wait 

Replaces the current process image with a new program. 
Terminates the current process. 
Creates and starts a child process. 
Changes the execution priority of a process. 
Locks a process in memory. 
Waits for a child process to stop or terminate. 

Process Identification 
The following system calls get and set the IDs and limits of a process: 

getegid Gets the effective group ID. 
geteuid Gets the effective user ID. 
getgid Gets the real group ID. 
get group Gets the group access list. 
getpgrp Gets the process group ID. 
getpid Gets the process ID. 
getppid Gets parent process ID. 
getuid Gets the real user ID. 
setgid Sets the real and effective group IDs. 
setgroups Sets the group access list. 
setpgrp Sets the process group ID. 
setuid Sets the real and effective user IDs. 
ulimit Gets and sets the process's user limits. 

Signals 

Signals are sent to processes when exceptional events occur. A signal interrupts the 
activity that a process is performing and causes it to take a special action. For example, 
when a user presses the Alt-Pause key sequence at a work station, the SIGINT signal is 
sent to the user's processes. Normally, this causes them to terminate, but each process can 
arrange to ignore the signal, or to take some other action. The signals that can occur are 
defined in the sys/signal.h header file, and they are further described in "signal" on 
page 2-145. 

Standard signal processing is compatible with UNIX System V and is described in more 
detail in "signal" on page 2-145. The following system calls handle standard signal 
processing: 

alarm 
kill 

Sets the process's alarm clock. 
Sends a signal to one or more processes. 

2-4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

pause Suspends the process until a signal arrives. 
signal Sets the action to take when the process receives a signal. 

Enhanced signal processing adds several useful features to the facility. It is described in 
more detail in "Signals" on page 1-20. The following system calls control enhanced signal 
processing: 

sigblock 
sigsetmask 
sigpause 
sigstack 
sigvec 

Blocks signals from being received. 
Sets the signal mask. 
Suspends the process until a signal arrives. 
Specifies an alternate stack upon which to process signals. 
Sets the action to take when the process receives a signal. 

Semaphores, Message Queues, and Shared Memory Segments 

In addition to signals, the AIX Operating System provides three facilities that provide 
flexible interprocess communication (IPC): semaphores, message queues, and shared 
memory segments. Details about the philosophy and use of each these facilities is beyond 
the scope of this book. 

The names of the system calls that deal with semaphores begin with the letters sem-. The 
message queue system calls begin with msg-, and the shared memory system calls begin 
with shm-. All three facilities are accessed in a similar manner. The steps are outlined 
here in approximately the order that they appear in programs: 

1. The user specifies a key to identify the individual semaphore set, message queue, or 
shared segment to be accessed. This key is analogous to a file name in that it has been 
previously agreed upon to identify a specific data structure. 

The key IPC-PRIVATE (defined in the sys/ipc.h header file) is a special key value 
that specifies that the data structure is to be private to the current process. 

Keys can be generated by any algorithm as long as the same algorithm is used by all 
processes on the system. The ftok subroutine provides a standard algorithm for 
generating IPC keys. (See "ftok" on page 3-198 for information about this subroutine.) 

2. System calls whose names end with -get (semget, msgget, and shmget) use the key 
to obtain access to the requested data structure. The -get system calls are analogous 
to open: each returns an integer identifier (analogous to a file descriptor) that 
identifies the data structure for access with other system calls. 

Normally, if the semaphore, message queue, or shared segment does not already exist, 
then the -get system call creates the necessary data structure. If another process has 
already created the data structure by calling the same -get system call with the same 
key, then the the identifier of that data structure is returned. This action can be 
modified with the semflg, msgflg, or shmflg parameter. 

System Calls 2-5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

However, if IPC-PRIV ATE is specified as the key, then a private data structure is 
created. No key exists with which to identify this data structure, so only processes 
that have its identifier can access it. The current process must pass the identifier to 
other processes that are to access it. For example, the identifier can be passed to a 
child process through the argu argument vector (see "exec: execl, execv, execle, 
execve, execlp, execvp" on page 2-34 for details). 

3. Shared memory segments must next be attached using the shmat system call. 

4. The semop system call accesses semaphores. Message queues are accessed by 
msgsnd, msgrcv, and msgxrcv. Programs can access shared memory segments as 
regular memory through the pointer returned by the shmat system call. 

5. System calls whose names end with -ctl (semctl, msgctl, and shmctl) perform a 
variety of control operations on the data structure. These control operations include 
getting status information and changing the access permissions. The data structure 
associated with each type of IPC identifier is defined in the description of the 
corresponding -ctl system call. 

6. When no longer in use, shared memory segments must be detached using the shmdt 
system call. 

7. The IPC identifier and the associated data structure should then be removed from the 
system with the IPC-RMID operation of the corresponding -ctl system call. 

Each IPC data structure contains an ipc-perm structure, which contains access 
permission information. The ipc-perm structure is defined in the sys/ipc.h header file 
and it contains the following members: 

ushort ui d; /* Owner's user 10 */ 
ushort gid; /* Owner's group 10 */ 
ushort cuid; /* Creator's user 10 */ 
ushort cgid; /* Creator's group 10 */ 
ushort mode; /* Access permission mode */ 
ushort seq; /* Slot usage sequence number */ 
key-t key; /* Key */ 

The access permission mechanism resembles the one for files, except that execute 
permission does not exist for IPC facilities. The semget, msgget, and shmget system 
calls set the initial permissions when they create new IPC data structures. Also, the user 
(group) permissions apply if the process's effective user (group) ID matches either uid (gid) 
or cuid (cgid). The permissions can be changed with the corresponding -ctl system calls. 
The uid and gid fields identify the user and group that own the file for determining 
whether a given process may access a data structure. The cuid andcgid fields identify the 
process that created the data structure, and they can not be changed. 

The mode field is constructed by logically OR-ing one or more of the following values. 
Note that these values are defined in the sys/stat.h header file and that they are a subset 
of the access permissions that apply to files. 

2-6 AIX Operating System Technical Reference 



S-IRUSR 
S-IWUSR 
S-IRGRP 
S-IWGRP 
S-IROTH 
S-IWOTH 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Permits the process that owns the data structure to read it. 
Permits the process that owns the data structure to modify it. 
Permits the group associated with the data structure to read it. 
Permits the group associated with the data structure to modify it. 
Permits others to read the data structure. 
Permits others to modify the data structure. 

For more information about the interprocess communication facilities, see AIX Operating 
System Programming Tools and Interfaces. 

The shmat system call can be used to attach mapped files as well as shared memory 
segments. The two functions are similar in some ways, but they should not be confused. 
For an overview of the mapped file facility, see page 1-13. For more detailed information, 
see the following discussion and "shmat" on page 2-131. 

Mapped Files 

The AIX Operating System allows programs to map a file onto a memory segment so that 
that data in the file can be accessed more quickly and more directly. See page 1-13 for an 
overview of the file-mapping facility. 

The steps for setting up and accessing a mapped file are outlined here in the order that 
they occur in programs: 

1. Open the file with the open system call. The file must be a regular file. Directories 
and special files cannot be mapped. 

2. Attach the file to a memory segment using the shmat system call. Specify the file 
descriptor returned by open in place of the shared memory identifier as the shmid 
parameter. The shmflg parameter is either SHM-MAP (to select file mapping), or it is 
constructed by logically OR-ing the value SHM-MAP with one of the following values: 

SHM-RDONL Y Maps the file in read-only mode. 
SHM-COPY Maps the file in copy-on-write mode. 

If neither SHM-RDONL Y nor SHM-COPY is set, then the file is mapped in 
read-write mode. The shmflg parameter can also be logically OR-ed with the following 
value: 

SHM-RND Rounds the address specified by the shmaddr parameter to the next 
lowest segment boundary, if necessary. 

The file must be opened for writing (in step 1) before it can be mapped read-write or 
copy-on-write. 

3. Access shared memory segments as regular memory through the pointer returned by 
the shmat system call. The system performs the necessary read operations for you 
automatically. If the file is mapped read-write, then the system automatically writes to 
the file as well. 

System Calls 2-7 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

4. If the file is mapped copy-on-write, then you must explicitly tell the system to update 
the file by using the fsync system call. If you never call fsync, then changes made to 
the mapped file in memory are never written to permanent storage. 

5. The shmctl system call can be used to get status information about the memory 
segment onto which the file is mapped. 

6. If you wish, you can use the shmdt system call to unmap the file and detatch the 
memory segment, leaving the file open for conventional I/O. 

7. Close the file with the close system call. close automatically detatches the memory 
segment (unless you already did this in step 6). 

Mapped files can be shared with other processes that map the file, or that use the 
conventional I/O system calls. All of these processes access the same shared memory 
segment, except for those that write to the file after mapping it in copy-on-write mode. 
Each process that maps a file copy-on-write gets a private mapped copy of the file when it 
first attempt to write to it. 

Warning: Data may be lost if a process modifies a file that another 
process has mapped copy-on-write. When the latter process calls fsync, the 
changes made by the former process are overwritten. 

2-8 AIX Operating System Technical Reference 



access 

Purpose 

Determines the accessibility of a file. 

Syntax 

#include < unistd.h > 

int access (path, amode) 
char *path; 
int amode; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
access 

The access system call checks the accessibility of the file specified by the path parameter, 
using the real user ID in place of the effective user ID and the real group ID in place of the 
effective group ID. If Distributed Services is installed on your system, this path can cross 
into another node. The access system call checks the named file to see if the type of 
access specified by the amode parameter is permitted. 

The bit pattern contained in amode is constructed by logically OR-ing the following values: 

R-OK 
W-OK 
X-OK 
F-OK 

Checks read permission. 
Checks write permission. 
Checks execute (search) permission. 
Checks to see if the file exists. 

The owner of a file has access checked with respect to the owner read, write, and execute 
mode bits. Members of the file's group other than the owner have access checked with 
respect to the group mode bits. All others have access checked with respect to the other 
mode bits. 

Return Value 

If the requested access is permitted, a value of 0 is returned. If the requested access is 
denied, a value of -1 is returned and errno is set to indicate the error. 

System Calls 2-9 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
access 

Diagnostics 

Access to the file is denied if one or more of the following are true: 

ENOTDIR A component of the path prefix is not a directory. 

ENOENT Read, write, or execute (search) permission is requested for a null path 
name. 

ENOENT The named file does not exist. 

EACCES Search permission is denied on a component of the path prefix. 

EACCES Permission bits of the file mode do not permit the requested access. 

EROFS Write access is requested for a file on a read-only file system. 

ETXTBSY Write access is requested for a pure procedure (shared text) file that is being 
executed. 

EFAULT The path parameter points to a location outside of the process's allocated 
address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, access can also fail if one or more of 
the following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-10 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
access 

In this book: "chmod" on page 2-18 and "stat, fstat" on page 2-159. 

System Calls 2-10.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
access 

2-10.2 AIX Operating System Technical Reference 



acct 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
acct 

Purpose 

Enables and disables process accounting. 

Syntax 

int acct (path) 
char *path; 

Description 

The acct system call enables the accounting routine when the path parameter specifies the 
path name of the file to which an accounting record is written for each process that 
terminates. (For information about the accounting file, see "acct" on page 4-15.) When 
the path parameter is 0 or NULL, the acct system call disables the accounting routine. 

If Distributed Services is installed on your system, the accounting file can reside on 
another node. 

Warning: To insure accurate accounting, each node must have its own 
accounting file, which can be located on any node in the network. 
The effective user ID of the calling process must be superuser to use the acct system call. 

Return Value 

Upon successful completion, acct returns a value of o. If acct fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The acct system call fails if one or more of the following are true: 

EPERM The effective user ID of the calling process is not superuser. 

EBUSY An attempt is made to enable accounting when it is already enabled. 

ENOTDIR A component of the path parameter is not a directory. 

ENOENT Any component of the accounting file's path name does not exist. 

System Calls 2-11 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
acct 

EACCES 

EACCES 

EACCES 

EISDIR 

EROFS 

EFAULT 

ESTALE 

Any component of the path parameter denies search permission. 

The file named by the path parameter is not an ordinary file. 

Mode permission is denied for the named accounting file. 

The named file is a directory. 

The named file resides on a read-only file system. 

The path parameter points to a location outside of the process's allocated 
address space. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, acct can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-12 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
acct 

In this book: "exit, -exit" on page 2-40, "signal" on page 2-145, and "acct" on page 4-15. 

The discussion of acct in Managing the AIX Operating System. 

System Calls 2-12.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
acct 

2-12.2 AIX Operating System Technical Reference 



alarm 

Purpose 

Sets a process's alarm clock. 

Syntax 

unsigned int alarm (sec) 
unsigned int sec; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
alarm 

The alarm system call instructs the calling process's alarm clock to send a SIGALRM 
signal to the calling process after the number of real-time seconds specified by the sec 
parameter have elapsed. (See "signal" on page 2-145 for more information about signals.) 

The alarm system calls are not stacked. Successive alarm system calls reset the calling 
process's alarm clock. 

If the sec parameter is 0, any previous alarm request is canceled. 

Return Value 

The alarm system call returns the amount of time previously remaining in the calling 
process's alarm clock. If no alarm request was previously issued, then a value of 0 is 
returned. 

Related Information 

In this book: "pause" on page 2-94 and "signal" on page 2-145. 

System Calls 2-13 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
brk, sbrk 

brk,sbrk 

Purpose 

Changes data segment space allocation. 

Syntax 

int brk (endds) 
char *endds; 

Description 

char *sbrk (incr) 
int incr; 

The brk and sbrk system calls dynamically change the amount of space allocated for the 
calling process's data segment. (For information about data segments, see "exec: execl, 
execv, execle, execve, execlp, execvp" on page 2-34.) 

The change is made by resetting the process's break value and allocating the appropriate 
amount of space. The break value is the address of the first location beyond the current 
end of the data segment. The amount of allocated space increases as the break value 
increases. The newly allocated space is initialized to o. The break value can be 
automatically rounded up to a size appropriate for the memory management architecture. 

The brk system call sets the break value to the value of the endds parameter and changes 
the allocated space accordingly. 

The sbrk system call adds to the break value the number of bytes contained in the incr 
parameter and changes the allocated space accordingly. The incr parameter can be a 
negative number, in which case the amount of allocated space is decreased. 

Return Value 

Upon successful completion, thebrk system call returns a value of 0, and the sbrk system 
call returns the old break value. If the brk or the sbrk system calls fail, a value of -1 is 
returned and errno is set to indicate the error. 

2-14 AIX Operating System Technical Reference 



Diagnostics 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
brk, sbrk 

The brk and the sbrk system calls fail and the allocated space remains unchanged if one 
or more of the following are true: 

ENOMEM The requested change will allocate more space than is allowed by a 
system-imposed maximum. (For information on the system-imposed 
maximum on memory space, see "ulimit" on page 2-167.) 

ENOMEM The requested change will set the break value to a value greater than or 
equal to the start address of any attached shared memory segment. (For 
information on shared memory operations, see "shmat" on page 2-131, 
"shmdt" on page 2-138, and "shmget" on page 2-140.) 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "shmat" on 
page 2-131, "shmdt" on page 2-138, and "ulimit" on page 2-167. 

System Calls 2-15 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chdir 

chdir 

Purpose 

Changes the current directory. 

Syntax 

int chdir (path) 
char *path; 

Description 

The chdir system call changes the current directory to the directory specified by the path 
parameter. If Distributed Services is installed on your system, this path can cross into 
another node. The current directory, also called the current working directory, is the 
starting point of searches for path names that do not begin with a / (slash). 

Return Value 

Upon successful completion, the chdir system call returns a value of o. If the chdir 
system call fails, a value· of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The chdir system call fails and the current directory remains unchanged if one or more of 
the following are true: 

ENOTDIR A component of the path parameter is not a directory. 

ENOENT The named directory does not exist. 

EACCES Search permission is denied for any component of the path parameter. 

EFAULT The path parameter points to a location outside of the process's allocated 
address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

2-16 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chdir 

If Distributed Services is installed on your system, chdir can also fail if one or more of the 
following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENODEV The named file is a remote file located on a device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chroot" on page 2-23. 

The cd command in AIX Operating System Commands Reference. 

System Calls 2-17 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chmod 

chmod 

Purpose 

Changes file access permissions. 

Syntax 

#include < sys/stat.h > 

int chmod (path, mode) 
char *path; 
int mode; 

Description 

The chmod system call sets the access permissions of the file specified by the path 
parameter. If Distributed Services is installed on your system, this path can cross into 
another node. The access permissions of the file are set according to the bit pattern 
specified by the mode parameter. 

To change file access permissions, the effective user ID of the calling process must either 
be superuser or match the ID of the file's owner. 

The mode parameter is constructed by logically OR-ing one or more of the following 
values, which are defined in the sys/stat.h header file: 

S-ISUID Sets the process's effective user ID to the file's owner on execution. 
S-ISGID Sets the process's effective group ID to the file's group on execution. 
S-ISVTX Saves text image after execution. 
S-ENFMT Enables enforcement-mode record locking. 
S-IRUSR Permits the file's owner to ;read it. 
S-IWUSR Permits the file's owner to write to it. 
S-IXUSR Permits the file's owner to execute it (or to search the directory). 
S-IRGRP Permits the file's group to read it. 
S-IWGRP Permits the file's group to write to it. 
S-IXGRP Permits the file's group to execute it (or to search the directory). 
S-IROTH Permits others to read the file. 
S-IWOTH Permits others to write to the file. 
S-IXOTH Permits others to execute the file (or to search the directory). 

Other mode values exist that can be set with the mknod system call, but not with chmod. 
A complete list of the possible file mode values and other useful macros appears in "stat.h" 
on page 5-69. 

2-18 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chmod 

Setting S-ISVTX for a shared executable file prevents the system from unmapping the 
program text segment of the file when its last user terminates. Thus, when the next 
process executes it, the text need not be read from the file system. It is simply paged in, 
saving time. 

If S-ENFMT is set and no execute permissions are set, then locks placed on the file with 
the lockf system call are enforced locks. See "lockf" on page 2-64 for details about 
locking regions of a file. 

If the effective user ID of the calling process is not superuser and the file is not a 
character special file, then the chmod system call clears the S-ISVTX bit. 

If the effective user ID of the process is not that of superuser, and if the effective group ID 
or one of the IDs in the group access list of the process does not match the file's existing 
group ID, then the chmod system call clears the S-ISGID bit. (See "getgroups" on 
page 2-52 and "setgroups" on page 2-126 for more information about the group access list.) 

Return Value 

Upon successful completion, the chmod system call returns a value of o. If the chmod 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

Diagnostics 

The chmod system call fails and the file permissions remain unchanged if one or more of 
the following are true: 

ENOTDIR A component of the path parameter is not a directory. 

ENOENT The named file does not exist. 

EACCES A component of the path parameter has search permission denied. 

EPERM The effective user ID does not match the ID of the owner of the file or the ID 
of superuser. 

EROFS The named file resides on a read-only file system. 

EFAULT The path parameter points to a location outside of the process's allocated 
address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

System Calls 2-19 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chmod 

If Distributed Services is installed on your system, chmod can also fail if one or more of 
the following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chown, chownx" on page 2-21, "getgroups" on page 2-52, "mknod" on 
page 2-69, and "setgroups" on page 2-126. 

The chmod command in AIX Operating System Commands Reference. 

2-20 AIX Operating System Technical Reference 



chown, chownx 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chown, ... 

Changes the owner and group IDs of a file. 

Syntax 

int chown (path, owner, group) 
char *path; 
int owner, group; 

Description 

#include < sys/chownx.h > 

int chownx (path, owner, group, tflag) 
char *path; 
int owner, group, tflag; 

The chown system call changes the owner ID and the group ID of the file named by the 
path parameter. If Distributed Services is installed on your system, the path can cross into 
another node, naming a remote file. 

If the named file is a local file, the owner and group IDs of that file are set to the numeric 
values contained in the owner and group parameters, respectively. If the named file is a 
remote file, then the IDs of the named file are set to the values contained in owner and 
group after both outbound and inbound translation. (See Managing the A/X Operating 
System for a description of ID translation.) 

A process can change the ownership of a file only if its effective user ID (translated, if the 
file is remote) is either superuser or the same as the file's owner ID. 

If the effective user ID of the calling process is not the same as the superuser ID, then the 
chown system call clears the set-user-ID (S-ISUID) and set-group-ID (S-ISGID) bits of 
the file mode. (See "stat.h" on page 5-69 for the definitions of the constants S-ISUID and 
S-ISGID.) 

The chownx system call performs the same function as the chown system call, except that 
it also allows the process to change owner and group IDs with or without ID translation by 
specifying the tflag parameter. 

The tflag parameter determines the translation of the owner and group parameters. This 
parameter is constructed by logically ORing two of the following values: 

T -OWNER-RAW Changes the file's owner to the value of the owner parameter 
without translation. 

System Calls 2-21 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chown, ... 

T -OWNER-TRAN Changes the file's owner to the value of the owner parameter after 
translation through the sending node's outbound translate tables 
and the receiving node's inbound translation tables. If the file is a 
local file, this is the same as T -OWNER-RAW; no translation is 
done. 

T -OWNER-AS-IS Ignores the value specified in the owner parameter and leaves the 
owner ID of the file unaltered. 

T -GROUP -RAW Changes the file's group ID to the value of the group parameter 
without translation. 

T-GROUP - TRAN Changes the file's group ID to the value of the group parameter 
after translation through the sending node's outbound translate 
tables and the receiving node's inbound translation tables. If the 
file is a local file, this is the same as T-GROUP -RAW; no 
translation is done. 

T -GROUP -AS-IS Ignores the value specified in the group parameter and leaves the 
group ID of the file unaltered. 

Only one each of the T -OWNER and the T-GROUP bits should be specified. 

Note that the following two system calls are equivalent: 

chown (path, owner, group) 

chownx (path, owner, group, T-OWNER-TRAN I T-GROUP-TRAN) 

Return Value 

Upon successful completion, a value of 0 is returned. If the chown or chownx system call 
fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The chown and chownx system calls fail and the owner ID and the group ID of the named 
file remain unchanged if one or more of the following are true: 

ENOTDIR A component of the path prefix is not a directory. 

ENOENT The named file does not exist. 

EACCES Search permission is denied on a component of the path prefix. 

EPERM The effective user ill does not match the owner of the file and the effective 
user ID is not superuser. 

EROFS The named file resides on a read-only file system. 

2-22 AIX Operating System Technical Reference 



EFAULT 

ESTALE 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chown, ... 

The path parameter points to a location outside of the process's allocated 
address space. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, chown or chownx can also fail if one 
or more of the following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The server's translate tables do not contain an entry for at least one of 
the following IDs: 

• The user ID of the caller 
• The owner parameter 
• The group parameter. 

ENODEV The named file is a remote file located on a device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chmod" on page 2-18, "fullstat, ffullstat" on page 2-50.2, and "stat.h" on 
page 5-69. 

The chown command in AIX Operating System Commands Reference. 

Managing the AIX Operating System. 

System Calls 2-22.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chown, ... 

2-22.2 AIX Operating System Technical Reference 



chroot 

Purpose 

Changes the effective root directory. 

Syntax 

int chroot (path) 
char *path; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chroot 

The chroot system call causes the directory named by the path parameter to become the 
effective root directory. If Distributed Services is installed on your system, this path can 
cross into another node. The effective root directory is the starting point when searching 
for a file whose path name begins with I (slash). The current directory is not affected by 
the chroot system call. 

The effective user ID of the calling process must be superuser to change the effective root 
directory. 

The .. (dot-dot) entry in the effective root directory is interpreted to mean the effective 
root directory itself. Thus, .. (dot-dot) cannot be used to access files outside the subtree 
rooted at the effective root directory. 

Return Value 

Upon successful completion, a value of 0 is returned. If the chroot system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The chroot system call fails and the effective root directory remains unchanged if one or 
more of the following are true: 

ENOTDIR Any component of the path name is not a directory. 

ENOENT The named directory does not exist. 

EPERM The effective user ID of the calling process is not superuser. 

System Calls 2-23 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chroot 

EFAULT 

ESTALE 

The path parameter points to a location outside of the process's allocated 
address space. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, chroot can also fail if one or more of 
the following are true: 

EACCES 

EDIST 
EDIST 
EDIST 

EAGAIN 
ESTALE 
EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

Search permission was denied on a component of the path. 

The effective user ID of the calling process must be the same as the 
superuser ID to issue this call. Since with Distributed Services path 
can cross into another node and a process that has superuser authority 
in the local node probably does not have superuser authority in the 
remote node, search permission may be denied even to the local 
superuser. 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-24 AIX Operating System Technical Reference 



Related Information 

In this book: "chdir" on page 2-16. 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chroot 

The chroot command in AIX Operating System Commands Reference. 

System Calls 2-24.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
chroot 

2-24.2 AIX Operating System Technical Reference 



close 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
close 

Purpose 

Closes the file associated with a file descriptor. 

Syntax 

int close (fildes) 
int fildes; 

Description 

The close system call closes the file associated with the file descriptor fildes. If 
Distributed Services is installed on your system, this file can reside on another node. The 
fildes parameter is a file descriptor obtained from a creat, open, dup, fcntl, or pipe 
system call. 

All file regions that this process has previously locked with the lockf system call are 
unlocked. This includes regions of files other than the file specified by the fildes 
parameter. 

If the fildes parameter is associated with a mapped file, and if no other process has 
attached this mapped file, then it is unmapped. 

Return Value 

Upon successful completion, a value of 0 is returned. If the close system call fails, a value 
of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The close system call fails if the following is true: 

EBADF The fildes parameter is not a valid open file descriptor. 

System Calls 2-25 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
close 

If Distributed Services is installed on your system, close can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. Data may be lost. 

This errno value occurs only when the connection has been lost and 
there is data stored at the client that cannot be written to the server. 
Otherwise, having a lost connection at close time does not cause an 
error. (For example, in cases where a read-only file is closed.) 

Related Information 

In this book: "creat" on page 2-27, "dup" on page 2-32, "exec: execl, execv, execle, execve, 
execlp, execvp" on page 2-34, "fcntl" on page 2-44, "open" on page 2-90, "pipe" on 
page 2-95, and Appendix C, "Writing Device Drivers." 

2-26 AIX Operating System Technical Reference 



creat 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
creat 

Purpose 

Creates a new file or rewrites an existing file. 

Syntax 

#include < stat.h > 

int creat (path, mode) 
char *path; 
int mode; 

Description 

The creat system call creates a new ordinary file or prepares to rewrite an existing file 
named by the path parameter. If Distributed Services is installed on your system, this path 
can cross into another node. 

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. If 
the file does not exist, the file's owner ID is set to the process's effective user ID, the file's 
group ID is set to the process's effective group ID, and the low-order 12 bits of the file 
mode are set to the value of the mode parameter modified as follows: 

• All bits set in the process's file mode creation mask are cleared. (For information 
about the file mode creation mask, see "umask" on page 2-169.) 

• The save-text-image-after-execution bit of the file mode (S-ISVTX) is cleared. (For 
more information about this bit, see "chmod" on page 2-18.) 

See "chmod" on page 2-18 for a detailed explanation of file modes. 

No process can have more than 200 files open simultaneously. A new file can be created 
with a mode that forbids writing. 

Note that the following two system calls are equivalent: 

creat (path, mode) 

open (path, O-WRONLY I O-CREAT I O-TRUNC, mode) 

See "open" on page 2-90 for details about the open system call. 

System Calls 2-27 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
creat 

Return Value 

Upon successful completion, a file descriptor (a nonnegative integer) is returned and the 
file is opened for writing, even if the mode does not permit writing. The file pointer is set 
to the beginning of the file. The file descriptor is set to remain open across exec system 
calls. (For information about control of open files, see "fcntl" on page 2-44.) 

If the creat system call fails, a value of -1 is returned and errno is set to indicate the 
error. 

Diagnostics 

The ere at system call fails if one or more of the following are true: 

ENOTDIR 
ENOENT 
EACCES 
ENOENT 
EACCES 

EROFS 
ETXTBSY 
EACCES 
EISDIR 
EMFILE 
EFAULT 

ENFILE 
EAGAIN 

ESTALE 

A component of the path prefix is not a directory. 

A component of the path prefix does not exist. 

Search permission is denied on a component of the path prefix. 

The path name is null. 

The file does not exist and the directory in which the file is to be created 
does not permit writing. 

The named file resides or would reside on a read-only file system. 

The file is a pure procedure (shared text) file that is being executed. 

The file exists and write permission is denied. 

The named file is an existing directory. 

Two hundred (200) file descriptors are currently open. 

The path parameter points to a location outside of the process's allocated 
address space. 

The system file table is full. 

The named file contains a record lock owned by another process. See 
"lockf' on page 2-64 for information about record locks. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

2-28 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
creat 

If Distributed Services is installed on your system, creat can also fail if one or more of the 
following are true: 

EINVAL 

EBUSY 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The path parameter identifies a remote file that is neither a directory 
nor a regular file. 

The special file to open for writing is already mounted. 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ill of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chmod" on page 2-18, "close" on page 2-25, "dup" on page 2-32, "lseek" on 
page 2-67, "open" on page 2-90, "read, readx" on page 2-106, "umask" on page 2-169, and 
"write, writex" on page 2-184. 

System Calls 2-29 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
disclaim 

disclaim 

Purpose 

Disclaims content of a memory address range. 

Syntax 

#include < sys/shm.h > 

int disclaim (addr, length, flag) 
char *addr; 
unsigned int length, flag; 

Description 

The disclaim system call marks an area of memory that has content that is no longer 
needed. This allows the system to discontinue paging the memory area. This system call 
cannot be used on memory that is mapped to a file by the shmat system call. 

The addr parameter points to the beginning of the memory area, and the length parameter 
specifies its length in bytes. The flag parameter must be the value ZERO-MEM, which 
indicates that each memory location in the address range is to be set to O. 

Return Value 

Upon successful completion, the disclaim system call returns a value of O. If it fails, it 
returns a value of -1 and sets errno to indicate the error. 

Diagnostics 

The disclaim system call fails if one or more of the following is true: 

EFAULT 

EINVAL 

EINVAL 

The calling process does not have write access to the area of memory that 
begins at address and extends for length bytes. 

The value of the flag parameter is not valid. 

The memory area is mapped to a file. 

2-30 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
disclaim 

In this book: "shmat" on page 2-131 and "shmetl" on page 2-135. 

System Calls 2-30.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dsstate 

Idsstate 

,Purpose 

Controls the kernel operations related to Distributed Services. 

,Syntax 

#include < sys/dsstate.h > 

int dsstate (buf) 
struct dsstate *buf; 

I Description 

The dsstate system call controls the kernel operations related to Distributed Services. A 
process with an effective user ID of superuser can use the dsstate system call to change 
the state of the kernel, while a process that does not have superuser privileges can use it 
to query the state of the kernel. The buf parameter is a pointer to a structure of type 
ds-state. This structure is defined in the sys/dsstate.h header file, and it contains the 
following members: 

short i-state; 
short i-kprocs; 
short r-state; 
short r-kprocs; 
i nt reserved[ 4] 

/* input state */ 
/* input number of kprocs */ 
/* result state */ 
/* result number of kprocs */ 
/* reserved */ 
/* each element must be zero */ 

The following bits are valid in the i-state bit field: 

DS-START -SERV -SYNC 

DS-END-SERV -SYNC 

Causes updates to all files for which this node is a server 
to be written directly to the server, rather than to storage 
at the client node. All writes to files are sent to this file 
server, and all reads from files are provided by the server. 

Allows clients of this node to store data instead. of forcing 
all storage to take place on the server node. 

DS-ST ART -CLIENT -SYNC Causes updates to all files for which this node is a client to 
be written directly to the server, rather than to local 
storage. All writes to files are sent to the file server, and 
all reads from files are provided by the server. When 

2-30.2 AIX Operating System Technical Reference 



DS-END-CLIENT -SYNC 

DS-BLOCK-SERV 

DS-ALLOW -SERV 

DS-BLOCK-ALL 

DS-ALLOW -ALL 

DS-STARTK 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dsstate 

CLIENT -SYNC is first started, all data stored at the 
client (local node) is written to the server where each 
remote file resides, and dsstate does not return until these 
writes are finished. 

Allows some data to be stored at the local node, rather 
than processing all reads and writes through the server. 

Causes this server to reject all requests for file services, 
including both new requests and requests for files already 
in use. When BLOCK-SERV is entered, this server forces 
any data stored on client nodes to be written to the server 
before any server requests are rejected. 

Allows this server to accept requests for file services from 
other nodes. 

Causes all data from this client node to be written to the 
appropriate server, then breaks all existing connections 
with remote nodes and rejects new remote requests. 
DS-BLOCK-ALL sets the number of kernel processes to 
o. 
Allows remote requests. Connections with remote nodes 
can then be established as needed. 

Starts the kernel processes for Distributed Services. 
DS-STARTK must be set the first time the dsstate system 
call is used, and other fields can either be set at the same 
time or with later calls. 

The i-kprocs field sets the number of active Distributed Services kernel processes. If the 
value of i-kprocs exceeds the number of kernel processes allocated to Distributed Services 
when the system was initialized, then only the available processes are started. If i-kprocs 
is 0 or negative, then the number of active kernel processes is not changed. (To alter the 
state bits without changing the number of kernel processes, set i-kprocs to 0.) If 
i-kprocs is greater than 0, either DS-STARTK must be set with this dsstate system call 
or must have been set by an earlier dsstate call. 

The bits of the r-state field are set to indicate the state of the kernel after the dsstate 
system call has taken effect. The following bits are returned: 

ALLOW-ALL When set, this node can make file service requests of other nodes. 

ALLOW -SERV When set, this node can accept requests for file services from other 
nodes. 

CLIENT -,-SYNC When set, all files for which this node is a client are written directly to 
the server, rather than stored locally. 

System Calls 2-30.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dsstate 

SERVER-SYNC When set, all data for which this node is a server is written directly to 
the server, rather than stored at the client node. 

STARTK 

DSINITED 

When set, the Distributed Services kernel processes, if any were 
specified in i-kprocs, are started. 

When set, the Distributed Services kernel processes have been started. 
The setting of this bit is always the same as the STARTK bit. 

If i-state does not have either bit set for a given pair of values (such as DS-BLOCK-ALL 
and DS-ALLOW -ALL), then the current state of that pair is not altered and is returned 
in r-state. Otherwise, r-state contains the value that was set on the last call to dsstate. 

The default state for the BLOCK/ALLOW pairs is to ALLOW requests, while the default 
for the START-SYNC/END-SYNC pairs is END-SYNC. 

The r-kprocs field is set to indicate the number of kernel processes after the dsstate 
system call has taken effect. 

If the effective user ID of the calling process is not superuser, then dsstate ignores i-state 
and i-kprocs, and the current state remains unaltered. A process without superuser 
privileges can, however, determine the current kernel state by examining the contents of 
r -state and r -kprocs at the end of a dsstate system call. 

I Return Value 

Upon successful completion, the dsstate system call returns a value of O. If the dsstate 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The dsstate system call fails and the state and number of kernel processes remain 
unchanged if the following is true: 

EINV AL Invalid input data (such as mutually exclusive parameters). 

ENOMEM Not enough kernel processes are available to run Distributed Services. 

I Related Information 

In this book: "master" on page 4-98. 

Managing the A/X Operating System. 

2-30.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dsstate 

System Calls 2-31 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dup 

dup 

Purpose 

Duplicates an open file descriptor. 

Syntax 

int dup (lildes) 
int lildes; 

Description 

The dup system call returns a new file descriptor for the file descriptor pointed to by the 
lildes parameter. The lildes parameter is a file descriptor obtained from a ereat, open, 
dup, fentI, or pipe system call. The dup system call returns a new file descriptor having 
the following in common with the original: 

• The same open file or pipe 
• The same file pointer (that is, both file descriptors share one file pointer) 
• The same access mode (read, write or read/write) 
• The same file status flags 
• The same locks. 

The new file descriptor is set to remain open across exee system calls. (For more 
information about file control, see "fcntl.h" op. page 5-56.) 

The file descriptor returned is the lowest one available. 

Return Value 

Upon successful completion, a file descriptor' (nonnegative integer) is returned. If the dup 
system call fails, a value of -1 is returned and errno is set to indicate the error. 

2-32 AIX Operating System Technical Reference 



Diagnostics 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
dup 

The dup system call fails if one or more of the following are true: 

EBADF 

EMFILE 

tildes is not a valid open file descriptor. 

Two hundred (200) file descriptors are currently open. 

Related Information 

In this book: "close" on page 2-25, "creat" on page 2-27, "exec: execl, execv, execle, 
execve, execlp, execvp" on page 2-34, "open" on page 2-90, "pipe" on page 2-95, and 
"fcntl.h" on page 5-56. 

System Calls 2-33 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

exec: execl, execv, execle, execve, execlp, execvp 

Purpose 

Executes a file. 

Syntax 

int execl (path, argO [, argl, ], 0) 
char *path, *argO, *argl, ... ; 

int execle (path, argO [, argl, ... ], 0, envp) 
char *path, *argO, *argl, ... , *enup[]; 

int execlp (file, argO [, argl, ..• ], 0) 
char *file, *argO, *argl, ..• , 

Description 

int execv (path, argv) 
char *path, *argv[ ]; 

int execve (path, argv, envp) 
char *path, *argu[ ], *envp[ ]; 

int execvp (file, argv) 
char *file, *argu[ ]; 

The exec system call, in all its forms, executes a new program in the calling process. exec 
does not create a new program, but overlays the current program with a new one, which is 
called the new process image. The new process image file can be one of three file types: 

• An executable binary file in a.out format (see "a. out" on page 4-5) 

• An executable text file that contains a shell procedure (only execlp and execvp allow 
this type of new process image file) 

• A file that names an executable binary file or shell procedure to be run. 

The last of the types mentioned is recognized by a header with the syntax: 

#! path [string] 

The #! is the file's magic number, which identifies the file type. path is the path name of 
the file to be executed. If Distributed Services is installed on your system, this path can 
cross into another node. string is an optional character string that contains no tab or 
space characters. If specified, this string is passed to the new process as an argument in 
front of the name of the new process image file. The header must be terminated with a 
new-line character. When invoked, the new process is passed path as argu[O]. If a string is 
specified in the new process image file, then the exec system call sets argv[O] to string and 
path concatenated together. The rest of the arguments passed are the same as those passed 
to the exec system call. 

2-34 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

The parameters for the exec system calls are defined as follows: 

path This parameter points to the path name of the new process image file. If 
Distributed Services is installed on your system, this path can cross into another 
node. Data is copied into local virtual memory before proceeding. 

file This parameter points to the name of the new process image file. Unless file is a 
full path name, the path prefix for the file is obtained by searching the directories 
named in the PATH environment variable. The initial environment is supplied by 
the shell. 

Note that execlp and execvp take file parameters, but the rest of the exec system 
calls take path parameters. (For information about the environment, see 
"environment" on page 5-47 and the sh command in AIX Operating System 
Commands Reference.) 

argO [, argl, ... ] 
These parameters point to null-terminated character strings. The strings constitute 
the argument list available to the new process. By convention, at least argO must 
be present, and it must point to a string that is the same as path or its last 
component. 

argv This parameter is an array of pointers to null-terminated character strings. These 
strings constitute the argument list available to the new process. By convention, 
argv must have at least one element, and it must point to a string that is the same 
as path or its last component. The last element of argv is a NULL pointer. 

envp This parameter is an array of pointers to null-terminated character strings. These 
strings constitute the environment for the new process. The last element of envp 
is a NULL pointer. 

When a C program is executed, it receives the following parameters: 

main (argc, argv, envp) 
int argc; 
char *argv[ ], *envp[ ]; 

Here argc is the argument count, and argv is an array of character pointers to the 
arguments themselves. By convention, the value of argc is at least one, and argv[O] points 
to a string containing the name of the new process image file. 

The main routine of a C language program automatically begins with a run-time start-off 
routine. This routine sets a global variable named environ so that it points to the 
environment array passed to the program in envp. You can access this global variable by 
including the following declaration in your program: 

extern char **environ; 

The execl, execv, execlp, and execvp system calls use environ to pass the calling 
process's current environment to the new process. 

System Calls 2-35 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

File descriptors open in the calling process remain open in the new process, except for 
those whose close-on-exec flag is set. For those file descriptors that remain open, the file 
pointer is unchanged. (For information about file control, see "fcntl" on page 2-44.) 

If the new process requires shared libraries, exec will find, open, and map each shared 
library image to the new process address space. (See AIX Operating System Programming 
Tools and Interfaces.) Shared libraries are searched for in the directories listed in the 
LIBPATH environment variable. If any of these files is remote, the data is copied into 
local virtual memory. 

The exec system calls reset all caught signals to the default action. Signals that cause the 
default action continue to do so after exec. Ignored signals remain ignored, the signal 
mask remains the same, and the signal stack state is reset. (For information about signals, 
see "signal" on page 2-145 and "sigvec" on page 2-156.) 

If the set-user-ID mode bit of the new process image file is set, then exec sets the 
effective user ID of the new process to the owner ID of the new process image file. 
Similarly, if the set-group-ID mode bit of the new process image file is set, then the 
effective group ID of the new process is set to the group ID of the new process image file. 
The real user ID and real group ID of the new process remain the same as those of the 
calling process. (For information about the set-ID modes, see "chmod" on page 2-18.) 

When one or both of the set-ID mode bits is set and the file to be executed is a remote file, 
the file's user and group IDs go through outbound translation at the server. Then they are 
transmitted to the client node where they are translated according to the inbound 
translation table. These translated IDs become the user and group IDs of the new process. 
See Managing the AIX Operating System for a discussion of UID and GID translation. 

The shared libraries attached to the calling process are not attached to the new process. 
(For information about shared memory segments, see "shmat" on page 2-131, "shmdt" on 
page 2-138, and "shmget" on page 2-140.) 

Profiling is disabled for the new process. (For information about profiling, see "profil" on 
page 2-99.) 

The new process inherits the following attributes from the calling process: 

• Nice value (see "nice" on page 2-88) 
• Process ID 
• Parent process ID 
• Process group ID 
• semadj values (see "semop" on page 2-122) 
• TTY group ID (see "exit, -exit" on page 2-40 and "signal" on page 2-145) 
• Trace flag (see request 0 of "ptrace" on page 2-102) 
• Time left until an alarm clock signal (see "alarm" on page 2-13) 
• Current directory 
• Root directory 
• File mode creation mask (see "umask" on page 2-169) 
• File size limit (see "ulimit" on page 2-167) 
• utime, stime, cutime, and cstime (see "times" on page 2-165). 

2-36 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

Upon successful completion, exec does not return because the calling process image is 
overlaid by the new process image. If exec returns to the calling process, then it returns 
the value -1 and sets errno to indicate the error. 

Diagnostics 

The exec system call fails and returns to the calling process if one or more of the following 
are true: 

ENOENT One or more components of the new process image file's path name do not 
exist. 

ENOTDIR A component of the path prefix of the new process image file is not a 
directory. 

EACCES Search permission is denied for a directory listed in the path prefix of the 
new process image file. 

EACCES The new process image file is not an ordinary file. 

EACCES The mode of the new process image file denies execution permission. 

ENOEXEC The exec is not an execlp or execvp, and the new process image file has the 
appropriate access permission but has an invalid magic number in its 
header. 

EINVAL The new process image file has a valid magic number in its header, but the 
header is damaged or is incorrect for the machine on which the file is to be 
run. 

ETXTBSY The new process image file is a pure procedure (shared text) file that is 
currently open for writing by some process. 

ENOMEM The new process requires more memory than is allowed by the 
system-imposed maximum MAXMEM. 

E2BIG The number of bytes in the new process's argument list is greater than the 
system-imposed limit. This limit is defined as NCARGS in the sys/param.h 
header file. 

EFAULT The path, argv, or envp parameter points to a location outside of the 
process's allocated address space. 

In addition, some errors can occur when using the new process file after the old process 
image has been overwritten. These errors include problems in setting up new data and 
stack registers, problems in mapping a shared library, or problems in reading the new 
process file. Because returning to the calling process is not possible, the system sends the 
SIGKILL signal to the process when one of these errors occurs. 

System Calls 2-37 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

If an error occurred while mapping a shared library, an error message describing the 
reason for failure will be written to standard error before the signal SIGKILL is sent to 
the process. (See AIX Operating System Programming Tools and Interfaces.) If a shared 
library cannot be mapped, one or more of the following is true: 

ENOENT One or more components of the path name of the shared library file do not 
exist. 

ENOTDIR 

EACCES 

EACCES 

ENOEXEC 

ETXTBSY 

ENOMEM 

ESTALE 

A component of the path prefix of the shared library file is not a directory. 

Search permission is denied for a directory listed in the path prefix of the 
shared library file. 

The shared library file mode denies execution permission. 

The shared library file has the appropriate access permission but an invalid 
magic number in its header. 

The shared library file is currently open for writing by some other process. 

The shared library requires more memory than is allowed by the 
system-imposed maximum. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, exec can also fail if one or more of the 
following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The set-user-ID or set-groupoID bit is set on the process image file, and 
the translation tables at the server or client do not allow translation 
of this user or group ID. 

ENODEV The named file is a remote file located on a device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

2-38 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Examples 

1. To run a command and pass it a parameter: 

execlp(lIli ll , IIlill, II-alII, 0); 

The execlp system call searches each of the directories listed in the PATH 
environment variable for the Ii command, and then it overlays the current process 
image with this command. execlp does not return, unless the Ii command cannot be 
executed. Note that this example does not run the shell command processor, so 
operations interpreted by the shell, such as using wildcard characters in file names, are 
not valid. 

2. To run the shell to interpret a command: 

execl(lI/bin/sh ll , "sh", II_C Il
, IIli -1 *.c ll , 0); 

This runs the sh (shell) command with the -c parameter, which indicates that the 
following parameter is the command to be interpreted. (See the discussion of sh in 
A/X Operating System Commands Reference for details about this command.) This 
example uses execl instead of execlp because the full path name /bin/sh is specified, 
making a PATH search unnecessary. 

Running a shell command in a child process is generally more useful than simply using 
exec, as shown here. The simplest way to do this is to use the system subroutine. See 
"system" on page 3-350 for information about this subroutine. 

3. The following is an example of a new process file that names a program to be run: 

#! /usr/bin/awk -f 
{ for (i = NF; i > 0; --i) print i } 
If this file is named reverse, then typing the following command on the command 
line: 

reverse chapterl chapter2 
causes the following command to be run: 

/usr/bin/awk -f reverse chapterl chapter2 
Note that the exec system calls use only the first line of the new process image file and 
ignore the rest of it. Also, awk interprets the text that follows a # (number sign) as a 
comment. (See the awk command in A/X Operating System Commands Reference for 
more information.) 

System Calls 2-38.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

Related Information 

In this book: "alarm" on page 2-13, "chmod" on page 2-18, "exit, -exit" on page 2-40, 
"fcntl" on page 2-44, "fork" on page 2-46, "nice" on page 2-88, "profil" on page 2-99, 
"ptrace" on page 2-102, "semop" on page 2-122, "shmat" on page 2-131, "signal" on 
page 2-145, "sigvec" on page 2-156, "times" on page 2-165, "ulimit" on page 2-167, "umask" 
on page 2-169, "system" on page 3-350, "varargs" on page 3-371, "a.out" on page 4-5, and 
"environment" on page 5-47. 

The sh and shlib commands in AIX Operating System Commands Reference. 

2-38.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exec 

System Calls 2-39 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exit, . . . 

exit, -exit 

Purpose 

Terminates a process. 

Syntax 

void exit (status) 
int status; 

Description 

void -exit (status) 
int status; 

The exit system call terminates the calling process and causes the following to occur: 

• All of the file descriptors open in the calling process are closed. If Distributed Services 
is installed on your system, some of these files may be remote. Since exit terminates 
the process, any errors encountered during these close operations go unreported. 

• If the parent process of the calling process is executing a wait system call, it is notified 
of the termination of the calling process and the low-order eight bits (that is, bits 0377 
or OxFF) of status are made available to it. See "wait" on page 2-182. 

• If the parent process of the calling process is not executing a wait system call, and if 
the parent hasn't set its SIGCLD signal to SIG-IGN, then the calling process is 
transformed into a zombie process. A zombie process is a process that occupies a slot 
in the process table, but has no other space allocated to it either in user or kernel 
space. The process table slot that it occupies is partially overlaid with time accounting 
information to be used by the times system call. (See "times" on page 2-165 and the 
sys/proc.h header file.) 

• The parent process ID of all of the calling process's existing child processes and zombie 
processes is set to 1. This means the initialization process inherits each of these 
processes. 

• Each attached shared memory segment is detached and the value of shm-nattach in 
the data structure associated with its shared memory identifier is decremented by 1. 

• For each semaphore for which the calling process has set a semadj value, that semadj 
value is added to the semval of the specified semaphore. (See "semop" on page 2-122 
about semaphore operations.) 

• If the process has a process lock, text lock, or data lock, an unlock is performed. (See 
"plock" on page 2-97.) 

2-40 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
exit, . 

• An accounting record is written on the accounting file if the system's accounting 
routine is enabled. (See "acct" on page 2-11 for information about enabling accounting 
routines.) 

• If the process ID, tty group ID, and process group ID of the calling process are equal, 
then the SIGHUP signal is sent to each process that has a process group ID equal to 
that of the calling process. In other words, if exit is called by the process group leader 
for the controlling terminal (typically the shell), then SIGHUP is sent to all of the 
processes associated with that terminal. 

• Locks set by the lockf system call are removed. (See "lockf' on page 2-64 about file 
locks.) 

The exit subroutine causes cleanup actions to occur before the process exits. The -exit 
system call bypasses all cleanup. 

Note: The effect of exit can be modified by the setting of the SIGCLD signal in the 
parent process. See "signal" on page 2-145 and "sigvec" on page 2-156. 

Related Information 

In this book: "acct" on page 2-11, "signal" on page 2-145, "sigvec" on page 2-156, "times" 
on page 2-165, and "wait" on page 2-182. 

System Calls 2-41 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fclear 

fclear 

Purpose 

Makes a hole in a file. 

Syntax 

long fclear (fildes, nbytes) 
int fildes; 
unsigned long nbytes; 

Description 

The fclear system call zeroes the number of bytes specified by the nbytes parameter 
starting at the current position of the file open on file descriptor fildes. If Distributed 
Services is installed on your system, this file can reside on another node. This function 
differs from the logically equivalent write operation in that it returns full blocks of binary 
zeros to the file system, constructing holes in the file. The seek pointer of the file is 
advanced by nbytes. 

If you fclear past the end of a file, then rest of the file is cleared and the seek pointer is 
advanced by nbytes. The file size is updated to include this new hole, which leaves the 
current file position at the byte immediately beyond the new end-of-file. 

Return Value 

Upon successful completion, a value of nbytes is returned. If the fclear system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The fclear system call fails if one or more of the following are true: 

EIO I/O error. 

EBADF 

EINVAL 

EM FILE 

The fildes option is nota valid file descriptor open for writing. 

The file is a FIFO, directory, or special file. 

The file is mapped copy-on-write by one or more processes. 

2-42 AIX Operating System Technical Reference 



EAGAIN 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fclear 

The write operation in fclear failed, due to an enforced write lock on the 
file. 

If Distributed Services is installed on your system, fclear can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "ftruncate" on page 2-50. 

System Calls 2-43 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fcntl 

fentl 

Purpose 

Controls open file descriptors. 

Syntax 

#include < fcntl.h > 

int fcntl (fildes, cmd, arg) 
int fildes, cmd, arg; 

Description 

The fcnt! system call performs controlling operations on open file descriptors. If 
Distributed Services is installed on your system, the open file can reside on another node. 

The fildes parameter is an open file descriptor obtained from a creat, open, dup, fcntl, or 
pipe system call. The arg parameter is a variable that depends on the value of the cmd 
parameter. 

The following cmds get a file descriptor or associated flags or set those flags: 

F-DUPFD 

F-GETFD 

Returns a new file descriptor as follows: 

• Lowest numbered available file descriptor greater than or equal to arg 

• Same open file (or pipe) as the original file 

• Same file pointer as the original file (that is, both file descriptors share 
one file pointer) 

• Same access mode (read, write or read/write) 

• Same locks 

• Same file status flags (that is, both file descriptors share the same file 
status flags) 

• The close-on-exec flag associated with the new file descriptor is set to 
remain open across exec system calls. 

Gets the close-on-exec flag associated with the file descriptor fildes. If 
the low-order bit is 0 (zero), then the file remains open across exec system 
calls; otherwise the file closes upon execution of an exec system call. 

2-44 AIX Operating System Technical Reference 



F-SETFD 

F-GETFL 

F-SETFL 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fentl 

Sets the close-on-exec flag associated with the fildes parameter to the 
value of the low-order bit of arg (0 or 1 as for F -GETFD). 

Gets the file status flags of the file descriptor fildes. 

Sets the file status flags to the value of the arg parameter. Only the flags 
O-NDELA Y and O-APPEND should be set. Attempting to set other flags 
may cause unexpected results. 

When using the file locking and unlocking cmds (F -GETLK, F -SETLK, and 
F -SETLKW), the arg parameter is a pointer to a structure of type flock. The flock 
structure pointed to by the arg parameter describes the lock and is defined in the fcntl.h 
header file. It contains the following members: 

short l-type; 
short l-whence; 
long l-start; 
long l-len; 
unsigned long l-sysid; 
short l_pid; 

/* F-ROLCK, F-WRLCK, F-UNLCK */ 
/* flag for starting offset */ 
/* relative offset in bytes */ 
/* if 0 then until EOF */ 
/* node 10 */ 
/* returned with F-GETLK */ 

I-type Describes the type of lock. Possible values are F _RDLCK, F - WRLCK, and 
F-UNLCK. 

I-whence Defines the starting offset. Possible values of 0, 1, or 2 indicate that the 
relative offset, I-start will be measured from the start of the file, current 
position, or the end of the file, respectively. Determines the starting point of 
the relative offset, I-start. A value of 0 indicates the start of the file, 1 
selects the current position, and 2 indicates the end of the file. 

I-start Defines the relative offset in bytes, measured from the starting point in 
I-whence. 

I-len Specifies the number of consecutive bytes to be locked. 

I-sysid Contains the ID of the node that already has a lock placed on the area 
defined by the fcntl system call. This field is returned only when the 
F-GETLK cmd is used. 

I-pid Contains the IDof a process that already has a lock placed on the area 
defined by the fcntl system call. This field is returned only when the 
F -G ETLK cmd is used. 

The following cmds use the flock structure and perform operations associated with file 
locks: 

F-GETLK Gets the first lock that blocks the lock described in the flock structure 
pointed to by argo If a lock is found, the retrieved information overwrites 
the information in this structure. If no lock is found that would prevent 

System Calls 2-44.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fcntl 

this lock from being created, then the structure is passed back unchanged 
except that the lock type is set to F - UNLCK. 

F -SETLK Sets or clears a file lock according to the floek structure pointed to by argo 
F -SETLK is used to establish read (F -RDLCK) and write (F - WRLCK) 
locks, as well as to remove either type of lock (F - UNLCK). F -RDLCK, 
F - WRLCK, and F - UNLCK are defined by the fentl.h header file. If a 
read or write lock cannot be set, fentl returns immediately with an error 
value of-1. 

F -SETLKW Works like F -SETLK except that if a read or write lock is blocked by 
existing locks, the process sleeps until the section of the file is free to be 
locked. 

When a read lock has been set on a section of a file, other processes may also set read 
locks on that section or subsets of it. A read lock prevents any other process from setting 
a write lock on any part of the protected area. The file descriptor on which a read lock is 
being placed must have been opened with read access. 

A write lock prevents any other process from setting a read lock or a write lock on any 
part of the protected area. Only one write lock and no read locks may exist for a specific 
section of a file at any time. The file descriptor on which a write lock is being placed must 
have been opened with write access. 

Locks may start and extend beyond the current end of a file, but may not be negative 
relative to the beginning of the file. A lock may be set to extend to the end of the file by 
setting I-len to O. If such a lock also has I-start and I-whence set to 0, the whole file 
will be locked. 

Some general rules about file locking include: 

• Changing or unlocking part of a file in the middle of a locked section leaves two 
smaller sections locked at each end of the originally locked section. 

• When the calling process holds a lock on a file, that lock is replaced by later calls to 
fentl. 

• All locks associated with a file for a given process are removed when a file descriptor 
for that file is closed by the process or the process holding the file descriptor ends. 

• Locks are not inherited by a child process after executing a fork system call. 

Notes: 

1. In addition to fcntI, the Ioekf system call can also be used to set write (exclusive) 
locks. 

2. Deadlocks due to file locks in a distributed system are not always detected. When such 
deadlocks are possible, the programs requesting the locks should set timeout timers. 

2-44.2 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fcntl 

Upon successful completion, the value returned depends on the value of the cmd parameter 
as follows: 

cmd 

F-DUPFD 
F-GETFD 
F-GETLK 
F-SETFD 
F-GETFL 
F-SETFL 
F-SETLK 
F-SETLKW 

Return Value 

A new file descriptor 
The value of the flag (only the low-order bit is defined) 
A value other than -1 
A value other than -1 
The value of file flags 
A value other than -1 
A value other than -1 
A value other than -1. 

If the fent! system call fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The fent! system call fails if one or more of the following are true: 

EBADF 

EMFILE 

EACCES 

EACCES 

EDEADLK 

ENOLCK 

EINVAL 

The fildes parameter is not a valid open file descriptor. 

The cmd parameter is F -DUPFD and 200 file descriptors are currently 
open. 

The cmd parameter is F -SETLK, the I-type parameter is F _RDLCK, 
and the segment of the file to be locked is already write-locked by 
another process. 

The cmd parameter is F -SETLK, the I-type parameter is F - WRLCK, 
and the segment of a file to be locked is already read-locked or 
write-locked by another process. 

Note: Because in the future errno may be set to EAGAIN rather 
than to EACCES for the two errors described above, programs should 
expect and test for both values. 

The cmd parameter is F -SETLKW, the lock is blocked by some lock 
from another process. Putting the calling process to sleep while 
waiting for that lock to become free would cause a deadlock. 

The cmd parameter is F -SETLK or F -SETLKW, the type of lock is 
F-RDLCK or F-WRLCK, and there are no more file locks available. 
(Too many segments are already locked.) 

The cmd parameter is F-GETLK, F-SETLK, or F-SETLKW and the 
arg parameter or the data it points to is not valid. 

System Calls 2-44.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fentl 

EINVAL The cmd parameter is F -DUPFD and the arg parameter is negative or 
greater than 199. 

If Distributed Services is installed on your system, fent! can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "close" on page 2-25, "exec: execl, execv, execle, execve, execlp, execvp" on 
page 2-34, "lockf' on page 2-64, "open" on page 2-90, and "fcntl.h" on page 5-56. 

2-44.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rentl 

System Calls 2-45 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fork 

fork 

Purpose 

Creates a new process. 

Syntax 

int fork () 

Description 

The fork system call creates a new process. The new process (child process) is an exact 
copy of the calling process (parent process). The created child process inherits the 
following attributes from the parent process: 

• Environment 
• Close-on-exec flags (see "exec: execl, execv, execle, execve, execlp, execvp" on 

page 2-34) 
• Signal handling settings (that is, SIG-DFL, SIG_IGN, function address) 
• Set-user-ID mode bit 
• Set-group-ID mode bit 
• Profiling on/off status 
• Nice value (see "nice" on page 2-88) 
• All attached shared libraries (see shlib command in AIX Operating System Commands 

Reference) 
• Process group ID 
• TTY group ID (see "exit, -exit" on page 2-40 and "signal" on page 2-145) 
• Current directory 
• Root directory 
• File mode creation mask (see "umask" on page 2-169) 
• File size limit (see "ulimit" on page 2-167) 
• Attached shared memory segments (see "shmat" on page 2-131) 
• Attached mapped file segments (see "shmat" on page 2-131). 

The child process differs from the parent process in the following ways: 

• The child process has a unique process ID. 

• The child process has as its parent process ID the process ill of the parent process. 

• The child process has its own copy of the parent's file descriptors. However, each of 
the child's file descriptors shares a common file pointer with the corresponding file 
descriptor of the parent process. 

2-46 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fork 

• All semadj values are cleared. (For information about semadj values, see "semop" on 
page 2-122.) 

• Process locks, text locks and data locks are not inherited by the child. (For 
information about locks, see "plock" on page 2-97.) 

• The child process's trace flag (see the discussion of request 0 of "ptrace" on page 2-102) 
is false regardless of the value of the parent process's trace flag. 

• The child process's utime, stime, cutime, and cstime are set to o. (See "times" on 
page 2-165.) 

• Any pending alarms are cleared in the child. (See "alarm" on page 2-13.) 

Return Value 

Upon successful completion, fork returns a value of 0 to the child process and returns the 
process ID of the child process to the parent process. If fork fails, a value of -1 is returned 
to the parent process, no child process is created, and errno is set to indicate the error. 

Diagnostics 

The fork system call fails if one or more of the following are true: 

EAGAIN 

EAGAIN 

ENOMEM 

The system-imposed limit on the total number of processes executing would 
be exceeded. 

The system-imposed limit on the total number of processes executing for a 
single user would be exceeded. 

There is not enough space left for this process. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "nice" on page 2-88, "plock" on page 2-97, "ptrace" on page 2-102, 
"serp.op" on page 2-122, "shmat" on page 2-131, "signal" on page 2-145, "sigvec" on 
page 2-156, "times" on page 2-165, "ulimit" on page 2-167, "umask" on page 2-169, and 
"wait" on page 2-182. 

The shlib command in AIX Operating System Commands Reference. 

System Calls 2-47 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fsync 

fsync 

Purpose 

Writes changes in a file to permanent storage. 

Syntax 

int fsync (fildes) 
int fildes; 

Description 

The fsync system call causes all modified data in the file open on fildes to be saved to 
permanent storage. If Distributed Services is installed on your system, this file can reside 
on another node. If the file is mapped onto a segment in read-write mode, then it is saved 
to permanent storage. If the file is mapped copy-on-write, then the pages of the file that 
have been changed are saved to permanent storage. Saving to permanent storage is 
sometimes called a commit operation. 

An fsync system call can be issued by a process executing at the node on which the file is 
stored or by a process executing at another node. In either case, the file is written to 
permanent storage at the node that holds the file. 

Return Value 

Upon successful completion, fsync returns a value of O. If fsync fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The fsync system call fails if one or more of the following are true: 

EIO I/O error. 

EBADF 

EINVAL 

tildes is not a valid file descriptor open for writing. 

The file is a FIFO file, directory, or special file. 

If Distributed Services is installed on your system, fsync can also fail if one or more of the 
following are true: 

EDIST The server has blocked new inbound requests. 

2-48 AIX Operating System Technical Reference 



EDIST 

EAGAIN 

ENOMEM 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fsync 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "sync" on page 2-163. 

System Calls 2-49 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ftruncate 

ftruncate 

Purpose 

Makes a file shorter. 

Syntax 

int ftruncate (fildes, length) 
int fildes; 
unsigned long length; 

Description 

The ftruncate system call removes all data beyond length bytes from the beginning of the 
file that is open on the file descriptor fildes. Full blocks are returned to the file system so 
that they can be used again, and the file size is changed to the value of the length 
parameter. If Distributed Services is installed on your system, this file can reside on 
another node. 

The ftruncate subroutine does not modify the seek pointer of the file. 

Return Value 

Upon successful completion, ftruncate returns a value of o. If ftruncate fails, a value of 
-1 is returned and errno is set to indicate the error. 

Diagnostics 

The ftruncate system call fails if one or more of the following are true: 

EIO I/O error. 

EBADF 

EINVAL 

EMFILE 

EAGAIN 

fildes is not a valid file descriptor open for writing. 

The file is a directory, FIFO, or special file. 

The file is mapped copy-on-write by one or more processes. 

The write operation in ftruncate failed due to an enforced write lock on the 
file. 

If Distributed Services is installed on your system, ftruncate can also fail if one or more 
of the following are true: 

2-50 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ftruncate 

EDIST 

EDIST 

EAGAIN 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "fclear" on page 2-42. 

System Calls 2-50.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, ... 

I fullstat, ffullstat 

I Purpose 

Provides information about a file or path to a file. 

I Syntax 

#include < sys/fullstat.h > 

int fullstat (path, cmd, but) 
char *path; 
int cmd; 
struct fullstat *buf; 

int ffullstat (fildes, cmd, but) 
int fildes, cmd; 
struct fullstat *buf; 

I Description 

2-50.2 

The fulls tat system call obtains information about the file pointed to by the path 
parameter. Read, write, or execute permission of the named file is not required, but all 
directories in the path leading to the file must be searchable. The fullstat system call 
places the information obtained into a structure pointed to by the buf parameter, and the 
cmd parameter specifies both the behavior of fullstat and the meaning of buf. 

Use the ffullstat system call to obtain information about an open file pointed to by the 
fildes parameter. The fildes parameter is a file descriptor obtained from a successful open, 
creat, dup, fcntl, or pipe system call. The ffullstat system call places the information 
obtained into a structure pointed to by the buf parameter. 

The fullstat and ffullstat system calls provide all of the information available with a stat 
or fstat call, plus additional information on group IDs, user IDs, and file location. 

The fullstat structure pointed to by the buf parameter is defined in the sys/fullstat.h 
header file, and it contains the following members: 

dev-t st-dev; /* 10 of the device that contains */ 
/* a directory entry for this file */ 

ino-t st-ino; /* Fi 1 e seri a 1 number */ 
ushort st-mode; /* File access mode */ 
short st-nlink; /* Number of links */ 
ushort st-uid; /* Translated U1D of the file's owner */ 
ushort st-gid; /* Translated G10 of the file's group */ 
dev-t st-rdev; /* 10 of device */ 

AIX Operating System Technical Reference 



off-t 
time-t 
time-t 
time-t 

ushort 

ushort 
vtype 
tag type 

tagtype 

short * 

short 

long 
long 
int 

long 
long 
st-dev 

st-mode 

st-uid 

st-size; 
st-atime; 
st-mtime; 
st-ctime; 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, ... 

/* File size in bytes */ 
/* Time of last access */ 
/* Time of last data modification */ 
/* Time of last file status change */ 
/* Times are measured in seconds since */ 
/* 00:00:00 GMT, Jan. 1, 1970 */ 

/* Above fields are the same as stat fields */ 
fst-uid_raw; /* Untranslated user 10 of the owner */ 

/* of the file */ 
/* Untranslated group 10 of the file */ 
/* Vnode type */ 

fst-gid-raw; 
fst-type; 
fst-uid-rev-tag; /* Contains special value representing */ 

/* result of reverse UID mapping */ 
/* Co·nta ins speci a 1 val ue representing * / 

/* result of reverse GID mapping */ 
fst-other-gid-list; /* Pointer to first group 10 on the */ 

/* alternate concurrent group list */ 
fst-other-gid-count; /* Number of group IDs on the 

fst-vfs; 
fst-nid; 
fst-flag; 

fst-i-gen; 
fst-reserved[8] ; 

/* alternate concurrent group list */ 
/* Virtual file system 10 */ 
/* Node 10 where the file resides */ 
/* Indicates whether the directory or */ 
/* file is a virtual mount point */ 
/* Inode generation number */ 
/* Reserved */ 

The device that contains a directory entry for this file. On a nondistributed 
file system, this is a 32-bit quantity that uses only the low I6-bits to contain 
the concatenated 8-bit major device number and the 8-bit minor device 
number. On a distributed system, this is a 32-bit quantity, made by 
combining a 16-bit connection ID, the 8-bit major device number, and the 
8-bit minor device number. 

The access mode of the file. (See "stat.h" on page 5-69 for a list of values for 
this field.) 

The user ID of the file's owner after reverse translation. (See Managing the 
AIX Operating System for a complete discussion of reverse translation.) If 
the file is a remote file, this value can also be one of the two special values 
netnoone or netsomeone, as defined in the fete/master file. 

When cmd is FS-STAT-OTHER, this field is used to input a user ID. 

System Calls 2-50.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, ... 

The group ID of the file's owner after reverse translation. (See Managing the 
AIX Operating System for a complete discussion of reverse translation.) If 
the file is a remote file, this value can also be one of the two special values 
netnoone or netsomeone, as defined in the /etc/master file. 

When cmd is FS-STAT-OTHER, this field is used to input a group ID. 

st-rdev The ID of the device. This field is defined only for block or character special 
files. 

st-atime The time when file data was last accessed. For remote files, this field 
contains the time at the server. Changed by the following system calls: 
creat, mknod, pipe, utime, and read. 

st-mtime The time when data was last modified. For remote files, this field contains 
the time at the server. Changed by the following system calls: creat, 
mknod, pipe, utime, and write. 

st-ctime The time when file status was last changed. For remote files, this field 
contains the time at the server. Changed by the following system calls: 
chmod, chown, creat, link, mknod, pipe, unlink, utime, and write. 

fst-uid-rev -tag 
For a local file, this field is undefined. For a remote file, this tag describes 
how st-uid was mapped to a remote user ID. Possible values are: 

CALLER The st-uid returned is that of the calling process, which 
maps to the file's owner ID. 

OTHER The st-uid returned is that of a user at this node, which 
maps to the file's owner ID. 

SOMEONE The st-uid field is undefined, but some user ID at this node 
maps to the file's owner ID. 

NO-ONE The st-uid field is undefined, and no user ID at this node 
maps to the file's owner ID. 

fst-gid-rev -tag 
For a local file, this field is undefined. For a remote file, this tag describes 
how st-gid was mapped to a remote group ID. Possible values are: 

CALLER The st-gid returned is that of the calling process, which 
maps to the file's group ID. 

OTHER The st-gid returned is that of a group at this node, which 
maps to the file's group ID. 

SOMEONE The st-gid field is undefined, but some group ID at this node 
maps to the file's group ID. 

NO-ONE The st-gid field is undefined, and no group ID at this node 
maps to the file's group ID. 

2-50.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, 

fst-gid-list A pointer to an array that holds an alternate concurrent group list. 

fst-gid-count 
The number of group IDs on the alternate concurrent group list. 

fst-vfs Virtual file system ID. A value of zero indicates the root file system. 

fst-flag A flag indicating whether the file or directory is a virtual mount point. A 
value of FS-VMP indicates that it is a virtual mount point. 

The following cmds are available: 

FL-STAT Returns all of the elements in the structure returned by the stat 
system call, plus additional information about the file. Differs from 
FL-STAT-REV and FL-STAT-OTHER in that the values in the 
st-uid and st-gid fields are undefined. For this cmd, the relevant 
user ID and group ID information is instead contained in the 
fst-uid-raw and fst-gid-raw fields. 

This cmd allows programs that don't care about the ID values to use 
the fullstat system call without the performance cost of using the 
translate tables. 

FL-ST AT -REV Returns all of the elements in the structure returned by the stat 
system call, plus additional information about user and group IDs of 
the file. When using FL-STAT-REV, the returned ID information 
is the result of the reverse mapping of the user ID and group ID of 
the calling process. (See Managing the AIX Operating System for a 
complete discussion of reverse translation.) 

FL-ST AT -OTHER Returns all of the elements in the structure returned by the stat 
system call, plus additional information about the user and group 
IDs of the file. Differs from FL-ST AT -REV in that the returned ID 
information is the result of the reverse mapping of the user ID, group 
ID, and concurrent group list contained in the st-uid, st-gid, 
fst-other -gid-list, and fst-other _gid_count fields. (See 
Managing the AIX Operating System for a complete discussion of 
reverse translation.) 

When the FL-STAT-OTHER cmd is used, the return values of 
fst-uid-rev -tag and fst-gid-rev -tag are relative to the supplied 
IDs, rather than to the calling process's IDs. If either 
fst-other -gid-list is NULL or fst-other -gid-count is 0, there is 
no concurrent group list. 

System Calls 2-50.5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, ... 

I Return Value 

Upon successful completion, both the fullstat and the ffullstat system calls return a value 
of o. If either the fullstat or the ffullstat system call fails, a value of -1 is returned and 
errno is set to indicate the error. 

I Diagnostics 

The fullstat system call fails if one or more of the following are true: 

EFAULT 

ENOENT 
ENOTDIR 
EACCES 
ESTALE 

The but or path parameter points to a location outside of the process's 
allocated address space. 

A component of the path does not exist. 

A component of the path prefix is not a directory. 

Search permission is denied for a component of the path. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, ffullstat can also fail if one or more of 
the following are true: 

EDIST 
EDIST 
EDIST 

EAGAIN 
ESTALE 
EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-50.6 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fullstat, 

The ffullstat system call fails if one or more of the following are true: 

EBADF 

EFAULT 

fildes is not a valid file descriptor. 

The buf parameter points to a location outside of the process's allocated 
address space. 

If Distributed Services is installed on your system, ffullstat can also fail if one or more of 
the following are true: 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

EDIST 

EDIST 

EAGAIN 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "chmod" on page 2-18, "chown, chownx" on page 2-21, "creat" on page 2-27, 
"link" on page 2-62, "mknod" on page 2-69, "pipe" on page 2-95, "read, readx" on 
page 2-106, "stat, fstat" on page 2-159, "time" on page 2-164, "unlink" on page 2-174, 
"ustat" on page 2-178, "utime" on page 2-180, "write, writex" on page 2-184, "master" on 
page 4-98, "stat.h" on page 5-69, and "fullstat.h" on page 5-56.2. 

Managing the AIX Operating System. 

System Calls 2-51 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getgroups 

getgroups 

Purpose 

Gets the group access list. 

Syntax 

#include < grp.h > 

int getgroups (ngroups, gidset) 
int ngroups, *gidset; 

Description 

The getgroups system call gets the current group access list of the user process. The list 
is stored in the array pointed to by the gidset parameter. The ngroups parameter indicates 
the number of entries that can be stored in this array. getgroups never returns more than 
NGROUPS entries. (NGROUPS is a constant defined in the grp.h header file.) 

Return Value 

Upon successful completion, the getgroups system call returns the number of elements 
stored into the array pointed to by the gidset parameter. If getgroups fails, then a value 
of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The getgroups system call fails if the following is true: 

EFAULT The ngroups and gidset parameters specify an array that is partially or 
completely outside of the process's allocated address space. 

2-52 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getgroups 

In this book: "setgroups" on page 2-126 and "initgroups" on page 3-230. 

System Calls 2-53 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getpid, ... 

getpid, getpgrp, getppid 

Purpose 

Gets the process, process group, and parent process IDs. 

Syntax 

int getpid ( ) 

int getpgrp ( ) 

int getppid ( ) 

Description 

The getpid system call returns the process ID of the calling process. 

The getpgrp system call returns the process group ID of the calling process. 

The getppid system call returns the process ID of the calling process's parent process. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "fork" on 
page 2-46, "setpgrp" on page 2-128, and "signal" on page 2-145. 

2-54 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getuid, ... 

getuid, geteuid, getgid, getegid 

Purpose 

Gets the real user, effective user, real group, and effective group IDs. 

Syntax 

unsigned short getuid ( ) 

unsigned short geteuid ( ) 

Description 

unsigned short getgid ( ) 

unsigned short getegid ( ) 

The getuid system call returns the real user ID of the calling process. 

The geteuid system call returns the effective user ID of the calling process. 

The getgid system call returns the real group ID of the calling process. 

The getegid system call returns the effective group ID of the calling process. 

Related Information 

In this book: "setuid, setgid" on page 2-129. 

System Calls 2-55 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ioctl 

ioctl 

Purpose 

Controls input/output devices. 

Syntax 

#include < sys/ioctl.h > 
#include < sys/devinfo.h > 

int ioctl (fildes, op, arg) 
int tildes, op; 
char *arg; 

Description 

The ioctl system call performs a variety of control operations on the block or character 
special file (device) specified by the tildes parameter. The op parameter specifies the 
operation, and the use of the arg parameter depends on the particular operation performed. 
The ioctl operations that are valid for each type of device are explained in 
Chapter 6, "Special Files." 

Two operations are valid for all types of devices that supports ioctl system call. These two 
operations are: 

IOCTYPE Returns the device type associated with tildes. The device types are defined in 
the sys/devinfo.h header file, which is discussed in "devinfo" on page 4-57. 

IOCINFO Stores device information for the file specified by tildes into the buffer pointed 
to by the arg parameter. See "devinfo" on page 4-57 for the format of the 
device information structure. 

Some devices support additional requests. See the discussion of individual devices in 
Chapter 6, "Special Files" for details about device-dependent ioctl calls. 

2-56 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ioctl 

If ioctl fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The ioctl fails if one or more of the following are true: 

EBADF 
ENOTTY 
ENODEV 
EFAULT 

EINVAL 
EINTR 

fildes is not a valid open file descriptor. 

fildes is not associated with a character special file. 

The device associated with fildes does not support the ioctl system call. 

The arg parameter points to a location outside of the process's allocated 
address space. 

op or arg is not valid. 

A signal was caught during the ioctl system call. 

Related Information 

In this book: "devinfo" on page 4-57, Chapter 6, "Special Files," Appendix C, "Writing 
Device Drivers," and "ddioctl" on page C-8. 

The discussion of termio in AIX Operating System Programming Tools and Interfaces. 

System Calls 2-57 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
iplvm, waitvm 

iplvm, waitvm 

Purpose 

Starts a virtual machine or waits for one to terminate. 

Syntax 

int iplvm (iodn, waitflag) 
unsigned short iodn; 
int waitflag; 

Description 

int waitvm (iodn) 
unsigned short iodn; 

The iplvm system call starts (IPLs) a new virtual machine that is independent of the AIX 
virtual machine. The virtual machine is loaded from the device specified by the 
input/output device number (IODN) given in the iodn parameter. 

If iodn is 0, then the virtual machine of the calling process is restarted (re-IPLed). This is 
accomplished by sending a SIGQUIT signal to the process 1. (Process 1 is also called the 
init process. See "Creation and Execution" on page 1-16 for more information about this 
special process.) Note that, unlike the reboot system call, iplvm performs a sync 
operation and writes all pending output to disk before restarting the virtual machine. 

If the waitflag parameter is a nonzero value, then the iplvm system call waits until the 
new virtual machine has started before returning to the calling process. This allows you 
to determine whether the virtual machine IPLed successfully. waitflag is ignored if the 
iodn parameter is o. 
The waitvm system call waits for the virtual machine that was IPLed from the device 
specified by iodn to perform a virtual machine halt. 

The calling process must have an effective user ID of superuser to perform either system 
call. 

2-58 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
iplvm, waitvm 

Upon successful completion, the iplvm and waitvm system calls return a value of o. If 
iplvm or waitvm fails, then a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The iplvm and waitvm system calls fail if one or more of the following is true: 

EPERM 

EIO 

ENXIO 

EINVAL 

EAGAIN 

The effective user ID of the calling process is not superuser. 

The VRM detected one of the following error conditions: 

• Insufficient resources are available. 
• The IPL diskette needs to be mounted. 
• The IPL header is not valid. 
• Error encountered while reading IPL record. 
• Duplicate virtual machine ID. 
• IPL key sequence error. 

The device specified by the iodn parameter does not exist. 

The iodn parameter is not valid. 

The maximum number of virtual machines are already running. 

Related Information 

In this book: "Creation and Execution" on page 1-16, "reboot" on page 2-109, "signal" on 
page 2-145, and "sync" on page 2-163. 

The in it command in AIX Operating System Commands Reference. 

System Calls 2-59 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
kill 

kill 

Purpose 

Sends a signal to a process or to a group of processes. 

Syntax 

int kill (pid, sig) 
int pid, sig; 

Description 

The kill system call sends the signal specified by the sig parameter to the process or group 
of processes specified by the pid parameter. (For information on valid signals, see "signal" 
on page 2-145.) If the sig parameter is ° (the null signal), error checking is performed but 
no signal is sent. This can be used to check the validity of pid. 

To send a signal to another process, at least one of the following must be true: 

• Either the real or the effective user ID of the sending process matches the real or 
effective user ID of the receiving process. 

• The effective user ID of the sending process is superuser. 

The processes that have the process IDs 0 and 1 are special processes and are sometimes 
referred to here as procO and procl, respectively. 

If the pid parameter is greater than 0, the signal specified by the sig parameter is sent to 
the process whose process ID is equal to the value of the pid parameter. 

If the pid parameter is equal to 0, the signal specified by the sig parameter is sent to all of 
the processes, excludIng procO and procl, whose process group ID is equal to the process 
group ID of the sender. 

If the pid parameter is equal to -1 and the effective user ID of the sender is not superuser, 
the signal specified by the sig parameter is sent to all of the processes, excluding procO 
and procl, whose real user ID is equal to the effective user ID of the sender. 

If the pid parameter is equal to -1 and the effective user ID of the sender is superuser, the 
signal specified by the sig parameter is sent to all of the processes, excluding procO and 
procl. 

If the pid parameter is negative but not -1, the signal specified by the sig parameter is sent 
to all of the processes whose process group ID is equal to the absolute value of the pid 
parameter. 

2-60 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
kill 

Upon successful completion, kill returns a value of o. If kill fails, a value of -1 is returned 
and errno is set to indicate the error. 

Diagnostics 

The kill system call fails and no signal is sent if one or more of the following are true: 

EINVAL 

EINVAL 

ESRCH 

EPERM 

sig is not a valid signal number. 

sig is SIGKILL and pid is 1 (procl). 

No process can be found corresponding to that specified by pid. 

The user ID of the sending process is not superuser, and the real or effective 
user ID does not match the real or effective user ID of the receiving process. 

Related Information 

In this book: "getpid, getpgrp, getppid" on page 2-54, "setpgrp" on page 2-128, and 
"signal" on page 2-145. 

The kill command in AIX Operating System Commands Reference. 

System Calls 2-61 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
link 

link 

Purpose 

Creates an additional directory entry for an existing file. 

Syntax 

int link (pathl, path2) 
char *pathl, *path2; 

Description 

The link system call creates an additional link (directory entry) for an existing file. The 
pathl parameter points to the the path name of an existing file and the path2 parameter 
points to the path name for the new directory entry to be created. If Distributed Services 
is installed on your system, these paths can cross into another node. 

Return Value 

Upon successful completion, link returns a value of O. If link fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The link system call fails if one or more of the following are true: 

ENOTDIR 
ENOENT 
EACCESS 
ENOENT 
EEXIST 
EPERM 

EXDEV 

A component of either path prefix is not a directory. 

A component of either path prefix does not exist. 

A component of either path prefix denies search permission. 

The file named by the pathl parameter does not exist. 

The link named by the path2 parameter already exists. 

The file named by the pathl parameter is a directory and the effective user 
ID is not superuser. 

The link named by the path2 parameter and the file named by the pathl 
parameter are on different file systems. 

2-62 AIX Operating System Technical Reference 



ENOENT 
EACCES 

EROFS 
EFAULT 

EMLINK 
ESTALE 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
link 

The path2 parameter points to a null path name. 

The requested link requires writing in a directory with a mode that denies 
write permission. 

The requested link requires writing in a directory on a read-only file system. 

The pathl or path2 parameter points to a location outside of the process's 
allocated address space. 

The file already has the maximum number of links. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, link can also fail if one or more of the 
following are true: 

EDIST 
EDIST 
EDIST 

EAGAIN 
ESTALE 
EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "unlink" on page 2-174. 

The link command in AIX Operating System Commands Reference. 

System Calls 2-62.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
loadtbl 

,loadtbl 

,Purpose 

Installs or queries configuration information in the kernel. 

,Syntax 

#include < sys/dstables.h > 

int loadtbl (cntl, bur, size) 
struct It able *cntl; 
char *bur; 
int size; 

, Description 

The loadtbl system call installs one element of a table into the kernel or queries 
information from the kernel. If Distributed Services is installed on your system, you can 
query, but not change, the kernel of another node. 

To change or add an entry in the kernel table with the loadtbl system call, a process must 
have an effective user ID of superuser. Queries of table entries can be submitted by any 
process. 

This system call provides a general mechanism for installing configuration information 
into the kernel. The outline of the general structure supported by loadtbl is: 

• For each type, there is an array of table headers that has a fixed size. 

• Each table header contains an ID and a pointer to a structure of information related to 
that ID. 

• The structure of bur is unknown to the loadtbl system call. 

The loadtbl system call can be used to load a single table entry into the kernel, to load an 
entire set of table entries into the kernel, or to query one or more entries in the kernel. 

The bur parameter is a pointer to the data being loaded, while the size parameter 
determines the size (in bytes) of the data being loaded. The cntl parameter points to a 
structure of type ltable. The ltable structure is defined in the sys/dstables.h header file, 
and it contains the following members: 

2-62.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23.;0808-0 
loadtbl 

char type; /* Defines the type of table being managed */ 
/* or queried. The type must be one of: */ 
/* DSNCB (Node Control Block) */ 
/* DSOCB (Outbound Translate) */ 
/* DSWCB (Wild Card Node Translate) */ 
/* DSIPC (IPC key table entries) */ 
/* USERTBL (User-defined Table) */ 

long i d; /* Identifies which table entry is being */ 
/* loaded. For DSNCB this is the node 10. */ 

char mode; /* Type of request. */ 
long nid; /* For queries, the node 10 whose tables are */ 

/* to be queried. */ 
long reserved [4J ; /* Reserved. Contents must be zero */ 

The mode field of the ltable structure can contain anyone of the following values: 

L-REPLACE 

L-DELETE 

L-QUERYI 

L-QUERYT 

The entry being loaded is either a new one or a replacement for an 
existing one. If no corresponding table entry exists, a new one is created. 

The table information for the id specified is deleted. 

This mode enables the calling process to learn which IDs of a particular 
type currently have information in the kernel. The ltable.type field 
specifies which type is being queried. but is assumed to point to an array 
of long integers into which loadtahl places the requested IDs. (When 
type is DSOCB, DSWCB, or DSIPC, a single zero ID is returned in the 
array.) The ltable.nid specifies which node's kernel is to be queried. If 
ltable.nid is 0 or the node ID of the local node, then the local kernel is 
queried. Otherwise, the specified remote node ID is queried. 

This mode enables the calling process to learn the table values that 
currently reside in the kernel for a particular table type and id. The 
ltable.type field specifies which type of table is being queried, and 
ltable.id specifies which ID is being queried. The ltable.nid field 
specifies which node's kernel is to be queried. If ltable.nid is 0 or the 
node ID of the local node, then the local kernel is queried. Otherwise, the 
specified remote node ID is queried. but is assumed to point to an array of 
long integers into which loadtabl places the requested information. 

Three of the ltable.types, DSNCB, DSOCB, and DSWCB, are associated with ID 
translates. The fourth type, DSIPC, is used when an IPC key mapping table is being 
loaded. The fifth type is USERTBL, which is used to load tables for international 
character support into the kernel. The following sections describe the ID translate values 
first, then the key map information, and, finally, the international character support 
tables. 

The ID translate types are: 

System Calls 2-62.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
loadtbl 

DSNCB An inbound user ID or group ID translate table for a particular node. 

DSOCB A translate table for outbound requests. 

DSWCB A translate table for the wild card node. 

In all of these cases, the memory pointed to by but contains a dsxlate structure, which 
contains, among other things, the first row of translate information, followed by the rest of 
the translate rows. For DSNCB, the ltable.id specifies which node ID's table is used. 

The dsxlate structure is described in the sys/dstables.h header file, and it contains the 
following members: 

short rlvl; /* Reserved. Must be 0 - release level. */ 
short gid; /* Local wildcard group ID for this node. */ 
short uid; /* Local wildcard user ID for this node. */ 
char flag; /* The OXOI bit is set if there is a wildcard */ 

/* user ID for this node. */ 
/* The OX02 bit is set if there is a wildcard */ 
/* group ID for this node. */ 

char padl; /* Dummy for alignment purposes */ 
short numuids; /* The number of user ID translate rows */ 
short numgids; /* The number of group ID translate rows */ 
short pad2; /* Dummy for alignment purposes */ 
struct idrow idrow[l]; /* First row of translate information */ 

/* Rest of the translates follow. */ 

The idrow structure is described in the sys/dstables.h header file, and it contains the 
following members: 

long wireid; 
short localid; 
short pad; 

/* ID that arrived with the request 
/* Local ID resulting from a translate 
/* Dummy for alignment purposes 

*/ 
*/ 
*/ 

Note: For ltable.type values of DSNCB and DSWCB, the entries in the user ID and 
group ID table arrays must be ordered by increasing wireid. For a type value of DSOCB 
(outbound translate table), the table must be ordered by increasing localid. 

There are occasions when an application needs to load an entire set of new translates into 
the kernel. In the normal processing sequence for such a case, the application should: 

1. Call the loadtbl system call with 1 tab 1 e. type=DSNCB and 1 tab 1 e. mode=L-QUERYT 
to get a list of the node IDs that currently have translates. 

2. Compare the returned list of node IDs that currently have translates to the list of node 
IDs that should have translates after the new information is loaded. 

3. Use L-DELETE to remove the node IDs that now have translates, but should not. 

2-62.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
loadtbl 

4. Use L-REPLACE on the translates for the other nodes (both node IDs that have 
existing translates and node IDs that are not yet in the table). 

The next ltable.type loads a different type of information into the kernel than the ID 
translate types listed earlier. When ltable.type is DSIPC, an IPC key mapping table is 
being loaded. The value of ltable.id is ignored for this type, and the entire set of IPC keys 
is loaded as one piece of information. The memory pointed to by but should be an array of 
dsipc structures. The dsipc structure is defined in the sys/dstables.h file, and it contains 
the following members: 

long inkey; 
long nidi 
long outkey; 

/* Input key */ 
/* Node 10 */ 
/* Result key */ 

A dsipc.nid with a value of 0 indicates that the inkey is to be mapped to the outkey in 
the local node. Otherwise, the specified node is used. 

The array should be sorted by inkey so that the msgget subroutine can use a binary 
search to locate the requested key translate. 

The finalltable. type is used to load tables of a different nature than described above for 
Distributed Services. When ltable.type is USERTBL, the table being loaded into the 
kernel is used for international character support, such as a character collation and 
classification table. (See "Overview of International Character Support" in IBM RT PC 
Managing the AIX Operating System for additional information on character collation and 
classification. ) 

I Return Value 

Upon successful completion, the loadtbl system call returns: 

• For L-REPLACE, a value of O. 
• For L-DELETE, a value of O. 
• For L-QUERYI, a value of 0 if no table exists for the type specified. Otherwise, the 

number of IDs of the specified type is returned. 
• For L-QUERYT, the number of bytes transferred. 

If the loadtbl system call fails, a value of -1 is returned, and errno is set to indicate the 
error. 

System Calls 2-62.5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
loadtbl 

I Diagnostics 

The loadtbl system call fails and the configuration information remains unchanged if one 
or more of the following are true: 

E2BIG 

EINVAL 

buf is too small to contain query data. 

Invalid input data (such as invalid ltable.type or ltable.mode, or an 
ltable.nid that specifies a remote node when ltable.mode is L-REPLACE 
or L-DELETE). 

EPERM The ltable.mode is either L-REPLACE or L-DELETE and the effective 
user ID of the calling process is not superuser. 

If Distributed Services is installed on your system, the loadtbl system call also fails if one 
or more of the following are true: 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "msgget" on page 2-76. 

The dsldxprof command in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Managing the AIX Operating System. 

AIX Operating System Programming Tools and Interfaces. 

2-62.6 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
loadtbl 

System Calls 2-63 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lockf 

lockf 

Purpose 

Locks a region of a file for exclusive access. 

Syntax 

#include < sys/lockf.h > 

int lockf (fildes, request, size) 
int fildes, request; 
off-t size; 

Description 

The lockf system call locks and unlocks regions of an open file. If Distributed Services is 
installed on your system, this file can reside on another node. lockf is used to synchronize 
simultaneous access to a file by multiple processes. Only one process at a time can hold a 
lock on any given region of a file. Two types of locks are provided: enforced and advisory. 

When a process holds an enforced lock on a region of a file, no other process can access 
that region with the read or write system calls. In addition, creat and open are 
prevented from truncating the file. If another process attempts to read or write the 
region, then it sleeps until the region is unlocked. However, if the system detects that 
sleeping would cause deadlock, then the read or write system call fails, setting errno to 
EDEADLK. If another process attempts to truncate the file with either the creat or open 
system call, then that system call fails and sets errno to EACCES. 

When a process holds an advisory lock on a region of a file, no other process can lock 
that region, or an overlapping region, with lockf. The read, write, creat, and open 
system calls are not affected. This means that processes must voluntarily calliockf in 
order to make advisory locks effective. 

Warning: Buffered I/O does not work properly when used with file 
locking. In particular, do not use the Standard I/O Package (libc.a) 
routines on files that are going to be locked, since these routines use 
buffered I/O. 
To select enforced locking, the S-ENFMT bit must be set in the access permission code (or 
mode) of the file. Otherwise locking is advisory. Thus, a given file can have advisory or 
enforced locks, but not both. 

2-64 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lockf 

The tildes parameter to lockf is an open file descriptor obtained from a successful call to 
open, creat, dup, or pipe system call. 

The size parameter is the number of bytes to be locked or unlocked. The region starts at 
the current location in the open file and extends forward if size is positive, or backward if 
size is negative. If the size parameter is 0, then the region starts at the current location 
and extends forward to the maximum possible file size, including the unallocated space 
after the end-of-file. Unallocated "holes" in the file can also be locked. (See "fclear" on 
page 2-42 about "holes" in files.) 

The request parameter is one of the following constants: 

F - ULOCK Unlocks a previously locked region in the file. 

F -LOCK Locks the region for exclusive use. This request causes the calling process to 
sleep if the region overlaps a locked region, and to resume when it is granted 
the lock. 

F - TLOCK Tests to see if another process has locked the specified region, and, if not, 
locks the region for exclusive use. If the region is already locked, then lockf 
fails and sets errno to EACCES. 

F -TEST Tests to see if another process has already locked a region. lockf returns 0 if 
the region is unlocked. If the region is locked, then -1 is returned and errno 
is set to EACCES. 

The system keeps a table of the locked regions for each file. This table can hold a limited 
number of entries. When the same process locks two regions that are next to each other in 
the file, lockf combines the lock table entries to conserve space in the lock table. An 
unlock request in the middle of a locked region leaves two locked regions, which can cause 
the lock table to overflow. When a lock or unlock request cannot be satisfied because the 
lock table is full, the lockf subroutine fails. 

When a process closes a file, all of its locks on that file are removed. When a process 
terminates, all of the locks that it holds are removed. 

All locks applied to directories, special files, and pipes are treated as advisory locks. 
However, locking directories is not recommended. Only advisory locks are supported for 
mapped files. An attempt to apply an enforced lock to a mapped file causes the lockf 
system call to fail and set errno to EMFILE. (For information about mapped files, see 
"shmat" on page 2-131.) 

A child process does not inherit the locks of its parent process. 

System Calls 2-65 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lockf 

Notes: 

1. Locks may be set by fcntl in addition to lockf. 

2. The lockf system call sets only write (exclusive) locks. 

3. When using Distributed Services, deadlocks due to file locks are not always detected. 
When such deadlocks are possible, the programs requesting the locks should set 
timeout timers. 

Return Value 

Upon successful completion, lockf returns a value of O. If lockf fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The lockf system call fails if one or more of the following are true: 

EBADF 

EINVAL 

EACCES 

EMFILE 

EDEADLK 

tildes is not a valid open file descriptor. 

request is not valid. 

F -TEST or F - TLOCK fails because another process has already 
locked the region. 

Note: Because in the future, errno may be set to EAGAIN rather 
than to EACCES for this error described above, programs should 
expect and test for both values. 

The file is mapped and enforced locking is enabled. 

Deadlock will occur or the lock table is full. Deadlocks are not always 
detected when remotely mounted files are locked. 

If Distributed Services is installed on your system, lockf can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-66 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lockf 

In this book: "close" on page 2-25, "creat" on page 2-27, "dup" on page 2-32, "fcntl.h" on 
page 5-56, "open" on page 2-90, "read, readx" on page 2-106, "write, writex" on page 2-184, 
and "standard i/o library" on page 3-342. 

System Calls 2-66.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lock! 

2-66.2 AIX Operating System Technical Reference 



lseek 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lseek 

Purpose 

Moves read/write file pointer. 

Syntax 

#inelude < sys/types.h > 
#inelude < unistd.h > 

off-t lseek (fildes, offset, whence) 
int fildes; 
off-t offset; 
int whence; 

Description 

The lseek system call sets the file pointer for the file specified by the fildes parameter. If 
Distributed Services is installed on your system, this file can reside on another node. The 
fildes parameter is a file descriptor obtained from a ereat, open, dup, or fent! system call. 

The lseek system call sets the file pointer associated with the fildes stream according to 
the value of the whence parameter, as follows: 

SEEK-SET Sets the file pointer to the value of the offset parameter. 

SEEK-CUR Sets the file pointer to its current location plus the value of the offset 
parameter. 

SEEK-END Sets the file pointer to the size of the file plus the value of the offset 
parameter. 

Return Value 

Upon successful completion, the resulting pointer location as measured in bytes from the 
beginning of the file is returned. If lseek fails, a value of -1 is returned and errno is set to 
indicate the error. 

System Calls 2-67 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lseek 

Diagnostics 

The lseek system call fails and the file pointer remains unchanged if one or more of the 
following are true: 

EBADF 

ESPIPE 

EINVAL 

EINVAL 

tildes is not an open file descriptor. 

tildes is associated with a pipe (FIFO) or a multiplexed special file. 

whence is not 0, 1 or 2. This also causes a SIGSYS signal. 

The resulting file pointer would be negative. 

If Distributed Services is installed on your system, lseek can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "creat" on page 2-27, "dup" on page 2-32, "fcnt!" on page 2-44, "open" on 
page 2-90, and "fseek, rewind, ftell" on page 3-196. 

2-68 AIX Operating System Technical Reference 



,mkdir 

,Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mkdir 

Creates a directory. 

,Syntax 

int mkdir (path, mode) 
char *path; 
int mode; 

I Description 

The mkdir system call creates a new directory. The path parameter names the new 
directory. If Distributed Services is installed on your system, this path can cross into 
another node. In this case, the new directory is created at that node. 

To execute the mkdir system call, a process must have search permission and write 
permission in the parent directory of path. 

The mode parameter is the mask for the read, write, and execute (rwx) flags for owner, 
group, and others. The low-order 9 bits in mode are modified by the file mode creation 
mask of the process. All bits set in the creation mask are cleared. (For more information 
about the creation mask, see "umask" on page 2-169.) 

I Return Value 

Upon successful completion, the mkdir system call returns a value of O. If the mkdir 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The mkdir system call fails and the directory is not created if one or more of the following 
are true: 

ENOTDIR 
ENOENT 
EACCES 

A component of the path is not a directory. 

A component of the path does not exist. 

Creating the requested directory requires writing in a directory with a mode 
that denies write permission. 

System Calls 2-68.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mkdir 

EACCES 

EROFS 

EEXIST 

EFAULT 

EIO 

ESTALE 

Search permission is denied for a component of the path. 

The named file resides on a read-only file system. 

The named file already exists. 

The path parameter points outside of the process's allocated address space. 

An I/O error occurred while writing to the file system. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, mkdir can also fail if one or more of 
the following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENODEV The named file is a remote file located on a device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "chmod" on page 2-18, "mknod" on page 2-69, "rename" on page 2-110.1, 
"rmdir" on page 2-110.4, and "umask" on page 2-169. 

2-68.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mknod 

mknod 

Purpose 

Creates a directory, a special file, or an ordinary file. 

Syntax 

#include < sys/stat.h > 

int mknod (path, mode, dev) 
char *path; 
int mode; 
dev-t dev; 

Description 

The mknod system call creates a new regular file, special file, or directory. The path 
parameter names the new file. If Distributed Services is installed on your system, this path 
can cross into another node. Also see "mkdir" on page 2-68.1 for additional information on 
creating a directory. 

The mode parameter specifies the mode of the file, which defines the file type and access 
permissions. 

The dev parameter is configuration dependent and is used only if the mode parameter 
specifies a block or character special file. dev is the ID of the device, and it corresponds to 
the st-rdev member of the structure returned by the stat system call. If the file you 
specify is a remote file, the dev value must be meaningful on the node where the file 
resides. See "stat, fstat" on page 2-159 and "stat.h" on page 5-69 for more information 
about the device ID. 

The mode parameter is constructed logically OR-ing the values specified in "chmod" on 
page 2-18 with one the following values, which define the file type: 

S-IFDIR 
S-IFCHR 
S-IFMPX 
S-IFBLK 
S-IFREG 
S-IFIFO 

Directory 
Character special file 
Multiplexed character special file 
Block special file 
Regular data file 
FIFO special file 

A complete list of the possible mode values and other useful macros appears in "stat.h" on 
page 5-69. 

System Calls 2-69 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mknod 

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits 
set in the creation mask are cleared. (For more information about the creation mask, see 
"umask" on page 2-169.) 

If the type of the new file is S_IFMPX (multiplexed character special file), then when the 
file is used, additional path name components can appear after the path name as if it were 
a directory. The additional part of the path name is available to the file's device driver for 
interpretation. This provides a multiplexed interface to the device driver. The hft device 
driver uses this feature. (See "hft" on page 6-23 for details about this device driver.) 

The file's owner ID is set to the process's effective user ID. The file's group ID is set to the 
process's effective group ID. 

The mknod system call can be invoked only by superuser for file types other than FIFO 
special. 

Return Value 

Upon successful completion, a value of 0 is returned. If the mknod system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The mknod system call fails and the new file is not created if one or more of the following 
are true: 

EPERM 

ENOTDIR 

ENOENT 

EROFS 

EEXIST 

EFAULT 

ESTALE 

The process's effective user ID is not superuser. 

A component of the path prefix is not a directory. 

A component of the path prefix does not exist. 

The directory in which the file is to be created is located on a read-only file 
system. 

The named file exists. 

The path parameter points to a location outside of the process's allocated 
address space. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, mknod can also fail if one or more of 
the following are true: 

EDIST 

EDIST 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

2-70 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mknod 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENODEV The named file is a remote file located on a device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chmod" on page 2-18, "exec: execl, execv, exec1e, execve, exec1p, execvp" on 
page 2-34,"mkdir" on page 2-68.1 , "umask" on page 2-169, "fs" on page 4-74, and "stat.h" 
on page 5-69. 

The chmod, mkdir, and mknod commands in AIX Operating System Commands Reference. 

System Calls 2-70.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mntctl 

,mntctl 

,Purpose 

Returns information about a node's mounts. 

,Syntax 

#include < sys/mntctl.h > 

int mntctl (cmd, size, but) 
int cmd, size; 
char *but; 

, Description 

The mntctl system call returns information about anode's mounts. The size parameter 
defines the number of bytes in but. The cmd parameter specifies how mntctl acts and 
specifies the meaning of but. The following cmd is available: 

Me-MOUNTS Queries a node to learn what that node has mounted. This can be the 
local node or, if Distributed Services is installed on your system, a remote 
node. 

The but parameter points to a bheader structure that contains, among other things, the 
node ID of the node to query and, after the system call completes, a description of the first 
mount issued by that node. The mntctl system call updates the size parameter and first 
minfo structure in bheader, then appends descriptions of additional mounts in separate 
minfo structures. In this way, bheader.minfo becomes the first element in an array of 
minfo structures. The strings pointed to by the m-object and m-stub fields of each 
minfo structure are appended to the buffer after the array of minfo structures. 

The bheader structure pointed to by the but parameter is defined in the sys/mntctl.h 
header file, and it contains the following members: 

unsigned long nidi 

int reserved; 
unsigned int size; 

/* the node 10 of the node that is being */ 
/* queried. Zero indicates the local node. */ 

/* the number of minfo structures in the */ 
/* buffer, including the one below in */ 
/* bheader, or the size of buf (in bytes) */ 
/* that would be required to hold the */ 

2-70.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mntctl 

/* requested info */ 
struct mi nfo[l]; /* first structure of mount info */ 
The minfo structure is defined in the sys/mntctl.h file, and it contains the following 
members: 

unsigned long m-nid; 

char *m-object; 
char *m-stub; 
unsigned int m-flag; 

/* the node ID of the node that holds the */ 
/* mounted object. Zero indicates the */ 
/* local node. */ 
/* path to the mounted object */ 
/* path to the mounted-over object */ 
/* flag bits to define characteristics of the */ 
/* mounted object */ 
/* date that the virtual file system */ 
/* was created */ 

m-object Defines the path to the object to be mounted. For the root device, this field 
contains a pointer to a NULL string. 

m-flag Defines various characteristics of the object to be mounted. Possible values 
for this field are defined in the sys/vmount.h file, which is included by the 
sys/mntctl.h file. These values are: 

MNT -READONLY Indicates that the object was mounted with a read-only 
mount, and write access is not allowed. 

MNT -REMOVABLE Indicates that the object is a removable file system. 

MNT-REMOTE 

MNT-DEVICE 

Indicates that the mounted object resides on a node 
other than the queried node. 

Indicates that the mounted object is a device. 

The values returned for m-object and m-stub are the paths used when a mount or 
vmount system call was issued to mount that object. If the paths used with these calls are 
not full path names, the minfo structures returned by the mntctl system call may not be 
very useful. 

When the mntctl system call completes successfully, the size field in the bheader 
structure contains the total number of minfo structures, including the one in bheader. If 
but is not big enough to hold all of the minfo structures and all of the strings, the mntctl 
system call fails and bheader.size contains the size (in bytes) that but must be to hold all 
of the requested data. If additional mounts are performed at the remote node before the 
mntctl system call is reissued with the new size parameter, this error can occur again. 

System Calls 2-70.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mntctl 

I Return Value 

Upon successful completion, the mntctl system call returns a value of O. If the mntctl 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The mntctl system call fails and the requested information is not returned if one or more 
of the following are true: 

E2BIG The requested information will not fit into size. 

If Distributed Services is installed on your system, mntctl can also fail if one or more of 
the following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "mount" on page 2-71, "vmount" on page 2-180.5, and "master" on page 4-98. 

2-70.4 AIX Operating System Technical Reference 



mount 

Purpose 

Mounts a file system. 

Syntax 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mount 

#include < sys/vmount.h > 

int mount (dev, dir, mflag) 
char *dev, *dir; 
int mflag; 

Description 

The mount system call mounts a file system contained on the block device (also called a 
special file) identified by the dev parameter. The file system is mounted on the directory 
identified by the dir parameter. The mount system call can be used only by superuser. 

The dev parameter and the dir parameter are pointers to path names. 

The mflag parameter defines various characteristics of the object to be mounted. Possible 
values are: 

MNT -READ ONLY Indicates that the to be mounted object is read-only, and write 
access is not allowed. If this value is not specified, writing is 
permitted according to individual file accessibility. 

MNT-REMOVABLE Indicates that the object to be mounted is a removable file system. 
Whenever there are no active references to files or directories on 
the file system, the operating system forgets the content and 
structure of the file system. The user can remove the medium and 
replace it with a different file system. All future references to dir 
will refer to the file system on the new medium. 

After the file system is mounted, references to the path name specified by the dir 
parameter refer to the root directory on the mounted file system. 

System Calls 2-71 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mount 

Return Value 

Upon successful completion a value of 0 is returned. If the mount system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The mount system call fails if one or more of the following are true: 

EPERM The effective user ID of the calling process is not superuser. 

ENOENT dev or dir does not exist. 

ENOTBLK dev is not a block device. 

ENXIO The device or driver for dev is not currently configured. 

ENOTDIR A component of a path prefix is not a directory. 

ENOTDIR dir is not a directory. 

ENOTDIR The path to the device being mounted crosses a remote mount point. 

EFAULT The dev or dir parameter points to a location outside of the process's 
allocated address space. 

EBUSY dir is currently busy. For example, it may some process's current directory, 
or a file system may be mounted onto it. 

EBUSY The device associated with dev is currently mounted. 

EBUSY There are no more mount table entries. 

EINV AL The data on dev is not recognizable as a file system. This usually means 
that it does not contain a properly formatted super-block or, if Distributed 
Services is installed on your system, that dev or dir is on a remote node. 

ENOMEM Either this node or the server does not have enough memory available to 
service the request. 

E2BIG The length of the path pointed to by either the dev or dir parameter is 
greater than the value of MAXP ATH. 

2-72 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mount 

In this book: "umount" on page 2-170, "uvmount" on page 2-180.3, "vmount" on 
page 2-180.5, and "fs" on page 4-74. 

The mount and umount commands in A/X Operating System Commands Reference. 

System Calls 2-72.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mount 

2-72.2 AIX Operating System Technical Reference 



msgctl 

Purpose 

Provides message control operations. 

Syntax 

#iriclude < sysjtypes.h > 
#include < sys/ipc.h > 
#include < sys/msg.h > 

int msgctl (msqid, cmd, but) 
-or-

int msgctl (msqid, cmd, mtype) 

int msqid, cmd; 
struct msqid-ds *buf; 
int mtype; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgctl 

The msgctl system call provides a variety of message control operations as specified by 
cmd parameter. The buf parameter points to a structure of type msqid-ds. The msqid-ds 
structure is defined in the sys/msg.h header file, and it contains the following members: 

struct ipc-perm 
struct msg 
struct msg 
ushort 
ushort 
ushort 
ushort 
ushort 
time-t 
time-t 
time-t 

msg-perm; 
*msg-first; 
*msg-last; 
msg-cbytes; 
msg-qnum; 
msg-qbytes; 
msg-lspid; 
msg-lrpid; 
msg-stime; 
msg-rtime; 
msg-ctime; 

/* Operation permission structure */ 
/* Ptr to first message on the queue */ 
/* Ptr to last message on the queue */ 
/* Current number of bytes on the queue */ 
/* Number of messages on the queue */ 
/* Maximum number of bytes on the queue */ 
/* 10 of last process to call msgsnd */ 
/* IO of last process to call msgrcv */ 
/* Time of last msgsnd call */ 
/* Time of last msgrcv call */ 
/* Time of the last change to this */ 
/* structure with a msgctl call */ 

System Calls 2-73 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgctl 

/* The following members support Distributed Services IPe: */ 
long msg-nid; /* OS - real queue's node 10 */ 
int msg-qid; /* OS - real queue's queue 10 */ 
key-t msg-rkey; /* OS - caller's mapped key */ 
ushort msg-lsnid; /* OS - nid of last msgsnd */ 
ushort msg~lrnid; /* OS - nid of last msgrcv */ 
mtyp-t msg-mtype; /* OS - server's mtype value */ 
int msg-bootcnt; /* OS - server's boot count */ 
struct node *msg-conn; /* OS - connect for this surrogate */ 
The following cmds are available: 

IPC-ST AT Stores the current value of the first eleven members of the data structure 
associated with the msqid parameter into the msqid-ds structure pointed to 
by the but parameter. The structure members that support Distributed 
Services are not included. 

The current process must have read permission in order to perform this 
operation. If the queue resides in a remote node, then the information in the 
structure (msg-lspid, msg-stime, and so on) is relative to that node. 

If the last sent (or received) message came from a node other than the one 
that holds the queue, then the process ID (pid) reported for msg-lspid is the 
process ID of the transaction process that actually operated on the queue, 
not the process ID at the remote machine. 

Sets the value of the following members of the data structure associated 
with the msqid parameter to the corresponding values found in the structure 
pointed to by the but parameter: 

msg-perm.uid 
msg_perm.gid 
msg-perm.mode /* Only the low-order nine bits */ 
msg_qbytes 

The current process must have an effective user ID equal to either that of 
superuser or to the value of msg-perm.uid in the data structure associated 
with msqid in order to perform this operation. To raise the value of 
msg-qbytes, the effective user ID of the current process must be superuser. 

If msqid identifies a remote queue, the remote node uses the translated 
versions of the caller's user and group IDs to determine if the caller has 
permission to delete the queue. See Managing the AIX Operating System. 

For remote queues, the user and group IDs of the calling process are sent to 
the node where the queue resides. The remote node performs inbound ID 
translation and uses the result to determine if the caller has permission to 

2-74 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgctl 

run the command. See Managing the AIX Operating System for a discussion 
of user and group ID translation. 

IPC-RMID Removes the message queue identifier specified by the msqid parameter from 
the system and destroys the message queue and data structure associated 
with it. The current process must have an effective user ID equal to either 
that of superuser or to the value of msg-perm.uid in the data structure 
associated with msqid in order to perform this operation. 

If msqid identifies a remote queue, the remote node uses the translated 
versions of the caller's user and group IDs to determine if the caller has 
permission to delete the queue. See Managing the AIX Operating System for 
a discussion of user and group ID translation. 

If a remote queue cannot be removed (for example, if permission is denied), 
then the local queue header is not removed either. Otherwise, both the 
remote and local queue information is removed. 

If Distributed Services is installed on your system, the following cmds are also available: 

IPC-STAT2 Returns information about message queues, including the Distributed 
Services structure members, regardless of whether the queue is remote or 
local. but is assumed to point to a msqid-ds structure. New programs that 
wish to learn status information about IPC queues should use IPC-ST AT2 
rather than IPC-STAT. 

IPC-RMID2 Removes the local header for the remote queue associated with msqid 
without attempting to remove the remote queue itself. If msqid does not 
identify a remote queue, then msgctl sets errno to EINV AL. Like 
IPC_RMID, IPC-RMID2 requires that the current process have an effective 
user ID equal to either that of superuser or to the value of msg-perm.uid 
in the data structure associated with msqid in order to perform this 
operation. 

IPC-MTYP Returns the current mtype value and post increments the mtype value. 
The mtype value is not allowed to become negative. The mtype value is 
returned in *but, which is assumed to be a pointer to a long integer. For 
further information on use of the IPC-MTYP cmd, see the discussion of 
bidirectional queues in "System Calls" of AIX Operating System 
Programming Tools and Interfaces. 

System Calls 2-74.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgctl 

Return Value 

Upon successful completion, a value of 0 is returned. If the msgctl system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The msgctl system call fails if one or more of the following are true: 

EINVAL 

EINVAL 

EACCES 

EPERM 

EPERM 

msqid is not a valid message queue identifier. 

cmd is not a valid command. 

cmd is equal to IPC-STAT and read permission is denied to the calling 
process. 

cmd is equal to IPC-RMID, IPC-SET, or IPC-RMID2 and the effective 
user ID of the calling process (translated for a remote queue) is not equal to 
that of superuser, nor is it equal to the value of msg-perm.uid in the data 
structure associated with msqid. 

cmd is equal to IPC-SET, an attempt is being made to increase to the value 
of msg-qbytes, and the effective user ID of the calling process is not equal 
to that of superuser. 

EFAULT The but parameter points to a location outside of the process's allocated 
address space. 

If Distributed Services is installed on your system, msgctl can also fail if one or more of 
the following are true: 

EINV AL The cmd specified was IPC-RMID2, but msqid does not identify a 
remote queue. 

ESTALE The current boot count of the server is the same as when the msqid 
was obtained. 

EDIST 

EDIST 

EDIST 

EAGAIN 

EPERM 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too· busy to accept the request. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

Either this node or the server does not have enough memory available 
to service the request. 

2-74.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgctl 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "msgget" on page 2-76, "msgrcv" on page 2-79, "msgsnd" on page 2-82, 
"msgxrcv" on page 2-85, "create-ipc-prof' on page 3-40.2 , "del-ipc-prof' on page 3-64.1, 
and "find-ipc-prof' on page 3-166.1. 

Managing the AIX Operating System. 

AIX Operating System Programming Tools and Interfaces. 

System Calls 2-75 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgget 

msgget 

Purpose 

Gets a message queue identifier. 

Syntax 

#include < sys/stat.h > 
#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/msg.h > 

int msgget (key, msgflg) 
key-t key; 
int msgflg; 

Description 

The msgget system call returns the message queue identifier associated with the specified 
key. The key parameter is either the value IPC-PRIVATE or an IPC key constructed by 
the ftok subroutine (or by a similar algorithm). See "ftok" on page 3-198 for details about 
this subroutine. 

If Distributed Services is installed on your system, the msgget system call provides access 
to both local and remote queues. 

The msgflg parameter is constructed by logically OR-ing one or more of the following 
values: 

IPC-CREAT 
IPC-EXCL 

Creates the data structure if it does not already exist. 
Causes the msgget system call to fail if IPC-CREAT is also set and the 
data structure already exists. 

S-IRUSR Permits the process that owns the data structure to read it. 
S-IWUSR Permits the process that owns the data structure to modify it. 
S-IRGRP Permits the group associated with the data structure to read it. 
S-IWGRP Permits the group associated with the data structure to modify it. 
S-IROTH Permits others to read the data structure. 
S-IWOTH Permits others to modify the data structure. 

The values that begin with S-I- are defined in the sys/stat.h header file and are a subset 
of the· access permissions that apply to files. 

2-76 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgget 

A message queue identifier and associated message queue and data structure are created 
for the value of the key parameter if one of the following are true: 

• key is equal to IPC-PRIV ATE. 

• key does not already have a message queue identifier associated with it, and 
IPC-CREA T is set. 

Upon creation, the data structure associated with the new message queue identifier is 
initialized as follows: 

• msg-perm.cuid, msg-perm.uid, msg-perm.cgid, and msg-perm.gid are set equal 
to the effective user ID and effective group ID, respectively, of the calling process. 

• The low-order nine bits of msg_perm.mode are set equal to the low-order nine bits of 
the msgflg parameter. 

• msg-qnum, msg-lspid, msg-Irpid, msg-stime, and msg-rtime are set equal to O. 

• msg-ctime is set equal to the current time. 

• msg-qbytes is set equal to the system limit. 

The msgget system call performs the following actions: 

1. First, msgget looks in the IPC key mapping tables for key. 

2. If the tables do not have an entry for key, then msgget either finds or creates 
(depending on the value of msgflg) a local queue with key. 

3. If the tables indicate that key has been mapped to a new key at a remote node and you 
have installed Distributed Services, then msgget: 

• Allocates a local header for the remote queue. 

• Queries the remote node to find or create a queue with the indicated key. 

• Installs the information (handle, boot count, and so on) returned by the remote 
node into the local header. 

4. Finally, msgget returns the ID of the local queue header to its caller. 

For an explanation of how to set up local to remote key mappings, see the dstables 
command in AIX Operating System Commands Reference. 

Return Value 

Upon successful completion, a message queue identifier is returned. If the msgget system 
call fails, a value of -1 is returned and errno is set to indicate the error. 

System Calls 2-77 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgget 

Diagnostics 

The msgget system call fails if one or more of the following are true: 

EACCES 

ENOENT 

ENOSPC 

EEXIST 

A message queue identifier exists for the key parameter but operation 
permission as specified by the low-order nine bits of the msgflg parameter 
would not be granted. 

A message queue identifier does not exist for the key parameter and 
IPC-CREAT is not set. 

A message queue identifier is to be created but the system imposed limit on 
the maximum number of allowed message queue identifiers system wide 
would be exceeded. 

A message queue identifier exists for key, and both IPC-CREAT and 
IPC-EXCL are set. 

If Distributed Services is installed on your system, msgget can also fail if one or more of 
the following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "msgctl" on page 2-73, "msgrcv" on page 2-79, "msgsnd" on page 2-82, 
"msgxrcv" on page 2-85, and "ftok" on page 3-198. 

The dstables command in AIX Operating System Commands Reference. 

2-78 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgrcv 

msgrcv 

Purpose 

Reads a message from a queue. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/msg.h > 

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg) 
int msqid; 
struct msgbuf *msgp; 
int msgsz; 
long msgtyp; 
int msgflg; 

Description 

The msgrcv system call reads a message from the queue specified by the msqid parameter 
and stores it into the structure pointed to by the msgp parameter. The current process 
must have read permission in order to perform this operation. The msgbuf structure is 
defined in the sys/msg.h header file, and it contains the following members: 

long 
char 

mtype; 
mtext [lJ ; 

/* Message type */ 
/* Beginning of message text */ 

The mtype field contains the type of the received message as specified by the sending 
process. mtext is the text of the message. If Distributed Services is installed on your 
system, messages can be received from either local or remote queues (see "msgsnd" on 
page 2-82). 

The msgsz parameter specifies the size of mtext in bytes. The received message is 
truncated to the size specified by the msgsz parameter if it is longer than the size specified 
by the msgsz parameter and if MSG-NOERROR is set inmsgflg. The truncated part of 
the message is lost and no indication of the truncation is given to the calling process. If 
the message is longer than msgsz bytes and MSG-NOERROR is not set, then the msgrcv 
system call fails and sets errno to E2BIG. 

The msgtyp parameter specifies the type of message requested as follows: 

• If the msgtyp parameter is equal to 0, the first message on the queue is received. 

System Calls 2-79 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgrcv 

• If the msgtyp parameter is greater than 0, the first message of the type specified by the 
msgtyp parameter is received. 

• If the msgtyp parameter is less than 0, the first message of the lowest type that is less 
. than or equal to the absolute value of the msgtyp parameter is received. 

The msgflg parameter is either 0, or is constructed by logically OR-ing one or more of the 
following values: 

MSG-NOERROR Truncates the message if it is longer than msgsz bytes. 

IPC-NOW AIT Specifies the action to take if a message of the desired type is not on 
the queue: 

Return Value 

• If IPC-NOW AIT is set, then the calling process returns a value 
of -1 and sets errno to ENOMSG. 

• If IPC-NOW AIT is not set, then the calling process suspends 
execution until one of the following occurs: 

A message of the desired type is placed on the queue. 

The message queue identifier specified by the msqid parameter 
is removed from the system. When this occurs, errno is set to 
EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. In 
this case, a message is not received and the calling process 
resumes in the manner described in "signal" on page 2-145. 

Upon successful completion, msgrcv returns a value equal to the number of bytes actually 
stored into mtext and the following actions are taken with respect to the data structure 
associated with the msqid parameter: 

• msg-qnum is decremented by l. 
• msg-Irpid is set equal to the process ID of the calling process. 
• msg-rtime is set equal to the current time. 

If the msgrcv system call fails, a value of -1 is returned and errno is set to indicate the 
error. 

2-80 AIX Operating System Technical Reference 



Diagnostics 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgrcv 

The msgrcv system call fails if one or more of the following are true: 

EINVAL 

EACCES 

EINVAL 

E2BIG 

ENOMSG 

EFAULT 

EINTR 

EIDRM 

msqid is not a valid message queue identifier. 

Operation permission is denied to the calling process. 

msgsz is less than O. 

mtext is greater than msgsz and MSG-NOERROR is not set. 

The queue does not contain a message of the desired type and 
IPC-NOWAIT is set. 

The msgp parameter points to a location outside of the process's allocated 
address space. 

msgrcv received a signal. 

The message queue identifier specified by msqid has been removed from the 
system. 

If Distributed Services is installed on your system, msgrcv can also fail if one or more of 
the following are true: 

ESTALE 

EDIST 

EDIST 

EDIST 

EAGAIN 

EPERM 

ENOMEM 

ENOCONNECT 

The current boot count of the server is the same as when the msqid 
was obtained. 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

Either this node or the serve!' does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

System Calls 2-80.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgrcv 

Related Information 

In this book: "msgctl" on page 2-73, "msgget" on page 2-76, "msgsnd" on page 2-82, 
"msgxrcv" on page 2-85, and "signal" on page 2-145. 

2-80.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgrcv 

System Calls 2-81 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgsnd 

msgsnd 

Purpose 

Sends a message. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/msg.h > 

int msgsnd (msqid, msgp, msgsz, msgflg) 
int msqid; 
struct msgbuf *msgp; 
int msgsz, msgflg; 

Description 

The msgsnd system call sends a message to the queue specified by the msqid parameter. If 
Distributed Services is installed on your system, this queue can reside on another node. 
The current process must have write permission in order to perform this operation. The 
msgp parameter points to a msgbuf structure containing the message. The msgbuf 
structure is defined in the sys/msg.h header file, and it contains the following members: 

long 
char 

mtype; 
mtext [1] ; 

/* Message type */ 
/* Beginning of message text */ 

The mtype parameter is a positive integer that is used by the receiving process for message 
selection. The mtext parameter is any text of the length in bytes specified by the msgsz 
parameter. The msgsz parameter can range from 0 to a system-imposed maximum. 

If msqid identifies a queue header that is a local key for a remote queue, then the message 
is sent to the message queue at the remote node. 

The msgflg parameter specifies the action to be taken if the message cannot be sent for one 
of the following reasons: 

• The number of bytes already on the queue is equal to msg-qbytes. 

• The total number of messages on all queues system-wide is equal to a system-imposed 
limit. 

2-82 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgsnd 

These actions are as follows: 

• If msgflg is set to IPC-NOWAIT, then the message is not sent, and msgsnd returns a 
value of -1 and sets errno to EAGAIN. 

• If msgflg is 0, then the calling process suspends execution until one of the following 
occurs: 

The condition responsible for the suspension no longer exists, in which case the 
message is sent. 

msqid is removed from the system. (For information on how to remove msqid, see 
"msgctl" on page 2-73.) When this occurs, errno is set equal to EIDRM, and a 
value of -1 is returned. 

The calling process receives a signal that is to be caught. In this case the message 
is not sent and the calling process resumes execution in the manner prescribed in 
"signal" on page 2-145. 

Return Value 

Upon successful completion, a value of 0 is returned and the following actions are taken 
with respect to the data structure associated with the msqid parameter: 

• msg-qnum is incremented by 1. 
• msg-lspid is set equal to the process ID of the calling process. 
• msg-stime is set equal to the current time. 

If the msgsnd system call fails, a value of -1 is returned and errno is set to indicate the 
error. 

Diagnostics 

The msgsnd system call fails and no message is sent if one or more of the following are 
true: 

EINVAL 

EACCES 

EINVAL 

EAGAIN 

EINVAL 

EFAULT 

The msqid parameter is not a valid message queue identifier. 

Operation permission is denied to the calling process. 

mtype is less than l. 

The message cannot be sent for one of the reasons stated previously, and 
msgflg is set to IPC-NOWAIT. 

The msgsz parameter is less than 0 or greater than the system-imposed limit. 

The msgp parameter points to a location outside of the process's allocated 
address space. 

System Calls 2-83 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgsnd 

EINTR msgsnd received a signal. 

EIDRM The message queue identifier specified by msqid has been removed from the 
system. 

If Distributed Services is installed on your system, msgsnd can also fail if one or more of 
the following are true: 

ESTALE The current boot count of the server is the same as when the msqid 
was obtained. 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "msgctl" on page 2-73, "msgget" on page 2-76, "msgrcv" on page 2-79, 
"msgxrcv" on page 2-85, and "signal" on page 2-145. 

2-84 AIX Operating System Technical Reference 



msgxrcv 

Purpose 

Receives an extended message. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/msg.h > 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgxrcv 

int msgxrcv (msqid, msgp, msgsz, msgtyp, msgflg) 
int msqid; 
struct msgxbuf *msgp; 
int msgsz, msgflg; 
long msgtyp; 

Description 

The msgxrcv system call reads a message from the queue specified by the msqid parameter 
and stores it into the extended message receive buffer pointed to by the msgp parameter. 
The current process must have read permission in order to perform this operation. The 
msgxbuf structure is defined in the sys/msg.h header file, and it contains the following 
members: 

time-t mtime; /* Time and date message was sent */ 
short muid; /* Sender1s effective user 10 */ 
short mgid; /* Sender1s effective group 10 */ 
long mnid; /* Sender1s node 10 */ 
short mpid; /* Sender1s process 10 */ 
long mtype; /* Message type */ 
char mtext [lJ ; /* Beginning of message text */ 

The msgsz parameter specifies the size of mtext in bytes. The receive message is 
truncated to the size specified by the msgsz parameter if it is larger than the msgsz 
parameter and MSG-NOERROR is true. The truncated part of the message is lost and no 
indication of the truncation is given to the calling process. 

The msgsz parameter specifies the size of mtext in bytes. The received message is 
truncated to the size specified by the msgsz parameter if it is larger than the size specified 
by the msgsz parameter and if MSG-NOERROR is set in msgflg. The truncated part of 

System Calls 2-85 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgxrcv 

the message is lost and no indication of the truncation is given to the calling process. If 
the message is longer than msgsz bytes and MSG-NOERROR is not set, then the msgrcv 
system call fails and sets errno to E2BIG. 

The msgtyp parameter specifies the type of message requested as follows: 

• If the msgtyp parameter is equal to 0, the first message on the queue is received. 

• If the msgtyp parameter is greater than 0, the first message of the type specified by the 
msgtyp parameter is received. 

• If the msgtyp parameter is less than 0, the first message of the lowest type that is less 
than or equal to the absolute value of the msgtyp parameter is received. 

The msgflg parameter is either 0, or is constructed by logically OR-ing one or more of the 
following values: 

MSG-NOERROR Truncates the message if it is longer than msgsz bytes. 

IPC-NOW AIT Specifies the action to take if a message of the desired type is not on 
the queue: 

• If IPC-NOW AIT is set, then the calling process returns a value 
of -1 and sets errno to ENOMSG. 

• If IPC-NOW AIT is not set, then the calling process suspends 
execution until one of the following occurs: 

A message of the desired type is placed on the queue. 

The message queue identifier specified by the msqid parameter 
is removed from the system. When this occurs, errno is set to 
EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. In 
this case, a message is not received and the calling process 
resumes in the manner prescribed in "signal" on page 2-145. 

If Distributed Services is installed on your system, the msgxrcv call works with both local 
and remote queues. 

Return Value 

Upon successful completion, msgxrcv returns a value equal to the number of bytes 
actually stored into mtext, and the following actions are taken with respect to the data 
structure associated with the msqid parameter: 

• msg-qnum is decremented by 1. 
• msg-Irpid is set equal to the process ID of the calling process. 
• msg-rtime is set equal to the current time. 

2-86 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgxrcv 

If the msgxrcv system call fails, a value of -1 is returned and errno is set to indicate the 
error. 

Diagnostics 

The msgxrcv system call fails if one or more of the following are true: 

EINVAL 

EACCES 

EINVAL 

E2BIG 

ENOMSG 

EFAULT 

EINTR 

EIDRM 

msqid is not a valid message queue identifier. 

Operation permission is denied to the calling process. 

msgsz is less than O. 

mtext is greater than msgsz and MSG-NOERROR is not set. 

The queue does not contain a message of the desired type and 
IPC-NOWAIT is set. 

The msgp parameter points to a location outside of the process's allocated 
address space. 

msgxrcv received a signal. 

The message queue identifier specified by msqid is removed from the system. 

If Distributed Services is installed on your system, msgxrcv can also fail if one or more of 
the following are true: 

ESTALE 

EDIST 

EDIST 

EDIST 

EAGAIN 

EPERM 

ENOMEM 

ENOCONNECT 

The current boot count of the server is the same as when the msqid 
was obtained. 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

System Calls 2-86.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgxrcv 

Related Information 

In this book: "msgctl" on page 2-73, "msgget" on page 2-76, and "msgrcv" on page 2-79. 

2-86.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
msgxrcv 

System Calls 2-87 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
nice 

nice 

Purpose 

Changes the priority of a process. 

Syntax 

int nice (incr) 
int incr; 

Description 

The nice system call adds the value of the incr parameter to the nice value of the calling 
process. A process's nice value is a positive number that determines that process's CPU 
priority. A higher number results in a lower CPU priority. 

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. If 
incr causes the nice value to fall outside this range, then nice sets the nice value to the 
corresponding limit. 

Return Value 

Upon successful completion, the new nice value minus 20 is returned. If nice fails, a value 
of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The nice system call fails and the nice value is not changed if: 

EPERM The incr parameter is negative or the resulting nice value would be greater 
than 40, and the effective user ID of the calling process is not superuser. 

2-88 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
nice 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34. 

The nice command in AIX Operating System Commands Reference. 

System Calls 2-89 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
open 

open 

Purpose 

Opens a file for reading or writing. 

Syntax 

#include < fcntl.h > 

int open (path, of lag [, mode]) 
char *path; 
int of lag, mode; 

Description 

The open system call opens a file descriptor for the file named by the path parameter. If 
Distributed Services is installed on your system, this path can cross into another node. 

Note: Distributed Services does not support remote pipes or special files. 

The file status flags are set according to the value of the of lag parameter. The of lag 
parameter values are constructed by logically OR-ing flags from the following list: 

Note: Do not use O-RDONLY, O-WRONLY, or O-RDWR together. 

O-RDONLY Open for reading only. 

0-WRONL Y Open for writing only. 

O_RDWR Open for reading and writing. 

O-NDELAY Open with no delay. This flag may affect subsequent reads and writes. 

When opening a FIFO with O-RDONLY or O-WRONLY set: 

• If O-NDELAY is set, an open for reading-only returns without delay. 
An open for writing-only returns an error if no process currently has 
the file open for reading. 

• If O-NDELA Y is clear, an open for reading-only blocks until a 
process opens the file for writing. An open for writing-only blocks 
until a process opens the file for reading. 

When opening a file associated with a communication line: 

• If O-NDELA Y is set, the open returns without waiting for carrier. 

2-90 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
open 

• If O_NDELA Y is clear, the open blocks until carrier is present. 

When opening a regular file that supports enforced record locks: 

• If O-NDELA Y is set, then reads and writes to portions of the file that 
are locked by other processes return an error. 

• If O-NDELA Y is clear, then reads and writes to portions of the file 
that are locked by other processes blocks until the locks are released. 

O-APPEND If set, the file pointer is set to the end of the file prior to each write. 

O-CREAT If the file exists, this flag has no effect. If the file does not exist, then the 
file's owner ID is set to the process's effective user ID, the file's group ID 
is set to the process's effective group ID, and the low-order 12 bits of the 
file mode are set to the value of the mode parameter modified as follows: 

O-TRUNC 

O-EXCL 

• All bits set in the process's file mode creation mask are cleared. (For 
information about the creation mask, see "umask" on page 2-169.) 

• The S-ISVTX bit of the mode, which saves the text image after 
execution, is cleared. 

For information about file modes and a list of the mode values, see 
"chmod" on page 2-18 and "stat.h" on page 5-69.) 

If the file exists, then its length is truncated to 0, and the mode and owner 
are unchanged. If the file has any outstanding record locks, then open 
fails and the file remains unchanged. 

If O-EXCL and O-CREAT are set, open fails if the file exists. 

The file pointer used to mark the current position within the file is set to the beginning of 
the file. 

The new file descriptor is set to remain open across exec system calls (see "fcntl" on 
page 2-44). 

No process can have more than 200 file descriptors open simultaneously. 

Return Value 

Upon successful completion, the file descriptor, a nonnegative integer, is returned. If open 
fails, a value of -1 is returned and errno is set to indicate the error. 

System Calls 2-91 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
open 

Diagnostics 

The open system call fails, and the named file is not opened if one or more of the following 
are true: 

ENOTDIR 

ENOENT 

EACCES 

EACCES 

EISDIR 

EROFS 

EMFILE 

ENXIO 

ENXIO 

ENXIO 

ETXTBSY 

EFAULT 

EEXIST 

ENXIO 

EAGAIN 

EINTR 

ENFILE 

ENOSPC 

ESTALE 

A component of the path prefix is not a directory. 

O-CREAT is not set and the named file does not exist. 

A component of the path prefix denies search permission. 

The type of access specified by the of lag parameter is denied for the named 
file. 

The named file is a directory and the of lag parameter is write or read/write. 

The named file resides on a read-only file system and the of lag parameter is 
write or read/write. 

Two hundred (200) file descriptors are currently open. 

The named file is a character special or block special file, and the device 
associated with this special file does not exist. 

The named file is a multiplexed special file and either the channel number is 
outside of the valid range, or no more channels are available. 

The special file or named pipe resides in a remote node. 

The file is a pure procedure (shared text) file that is being executed and the 
of lag parameter is write or read/write. 

The path parameter points to a location outside of the process's allocated 
address space. 

O-CREAT and O-EXCL are set, and the named file exists. 

O-NDELA Y is set, the named file is a FIFO, 0-WRONL Y is set, and no 
process has the file open for reading. 

O-TRUNC is set, andthe named file contains a record lock owned by 
another process. See "lockf' on page 2-64 for information about record 
locks. 

A signal was caught during the open system call. 

The system file table is full. 

The directory that would contain the new file cannot be extended. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

2-92 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
open 

If Distributed Services is installed on your system, open can also fail if one or more of the 
following are true: 

EINVAL 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The path parameter identifies a remote file that is neither a directory 
nor a regular file. 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chmod" on page 2-18, "close" on page 2-25, "creat" on page 2-27, "dup" on 
page 2-32, "fcntl" on page 2-44, "lockf' on page 2-64, "lseek" on page 2-67, "mknod" on 
page 2-69, "read, readx" on page 2-106, "umask" on page 2-169, "write, writex" on 
page 2-184, "stat.h" on page 5-69, and Appendix C, "Writing Device Drivers." 

System Calls 2-93 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
pause 

pause 

Purpose 

Suspends a process until a signal is received. 

Syntax 

int pause () 

Description 

The pause system call suspends the calling process until it receives a signal. The signal 
must not be one that is ignored by the calling process. pause does not affect the action 
taken upon the receipt of a signal. 

If the signal received causes the calling process to terminate, then the pause system call 
does not return. 

If the signal is caught by the calling process and control is returned from the 
signal-catching function, then the calling process resumes execution from the point of 
suspension; the pause system call returns a value of -1 and sets errno to EINTR. (For 
information about signal-catching functions, see "signal" on page 2-145.) 

Related Information 

In this book: "alarm" on page 2-13, "kill" on page 2-60, "signal" on page 2-145, and "wait" 
on page 2-182. 

2-94 AIX Operating System Technical Reference 



pipe 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
pipe 

Purpose 

Creates an interprocess channel. 

Syntax 

int pipe (fildes) 
int fildes[2]; 

Description 

The pipe system call creates an interprocess channel called a pipe and returns two file 
descriptors, fildes[O] and fildes[l]. The fildes[O] file descriptor is opened for reading and 
fildes[l] is opened for writing. 

A read on file descriptor fildes[O] accesses the data written to fildes[l] on a first-in-first-out 
basis. 

When writing, at least 5,120 bytes of data are buffered by the pipe before the writing 
process is blocked. 

Warning: The actions of the pipe system call are undefined if the fildes 
parameter points to a location outside of the process's allocated address 
space. 

Return Value 

Upon successful completion, a value of 0 is returned. If pipe fails, a value of -1 is returned 
and errno is set to indicate the error. 

Diagnostics 

The pipe system call fails if one or more the following are true: 

EMFILE 

ENFILE 

199 or more file descriptors are already open. 

The system file table is full. 

System Calls 2-95 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
pipe 

Related Information 

In this book: "read, readx" on page 2-106, "select" on page 2-111, and "write, writex" on 
page 2-184. 

The sh command in AIX Operating System Commands Reference. 

2-96 AIX Operating System Technical Reference 



plock 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
plock 

Purpose 

Locks the process, text, or data in memory. 

Syntax 

#include < sys/lock.h > 

int plock (op) 
int op; 

Description 

The plock system call allows the calling process to lock or unlock its text segment (text 
lock), its data segment (data lock), or both its text and data segments (process lock) into 
memory. Locked segments are pinned in memory and are immune to all routine paging. 
The effective user ID of the calling process must be superuser to use this call. 

The op parameter specifies one of the following operations: 

PROCLOCK Locks text and data segments into memory (process lock). 
TXTLOCK Locks text segment into memory (text lock). 
DATLOCK Locks data segment into memory (data lock). 
UNLOCK Removes locks. 

Return Value 

Upon successful completion, a value of 0 is returned to the calling process. If plock fails, 
a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The plock system call fails if one or more of the following are true: 

EPERM 

EINVAL 

The effective user ID of the calling process is not superuser. 

The op parameter has a value other than PROCLOCK, TXTLOCK, 
DATLOCK, or UNLOCK. 

System Calls 2-97 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
plock 

EINVAL 

EINVAL 

EINVAL 

EINVAL 

op is equal to PROCLOCK and a process lock, a text lock, or a data lock 
already exists on the calling process. 

op is equal to TXTLOCK and a text lock, or a process lock already exists on 
the calling process. 

op is equal to DATLOCK and data lock, or a process lock already exists on 
the calling process. 

op is equal to UNLOCK and no type of lock exists on the calling process. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, and "fork" on page 2-46. 

2-98 AIX Operating System Technical Reference 



profil 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
profil 

Purpose 

Starts and stops execution profiling. 

Syntax 

#include < mon.h > 

void profil (shortbuff, bufsiz, offset, scale) 
-or-

void profil (profbuff, -1, 0, 0) 

short * shortbuff; 
struct prof *profbuff; 
unsigned int bufsiz, offset, scale; 

Description 

The profil system call arranges to record a histogram of periodically sampled values of the 
calling process's program counter. 

If the bufsiz parameter has any value but -1, then the parameters to profil are interpreted 
as shown in the first syntax definition. The shortbuff parameter points to an area of 
memory, and its length (in bytes) is given by the bufsiz parameter. 

After this call, the user's program counter (pc) is examined 60 times a second. The value of 
the offset parameter is subtracted from the pc, and the result is multiplied by the value of 
the scale parameter. If the resulting number is less than bufsiz -=- sizeof(short), then the 
corresponding short inside shortbuff is incremented. 

The least significant 16 bits of the scale parameter are interpreted as an unsigned, 
fixed-point fraction with a binary point at the left. The most significant 16 bits of scale are 
ignored. For example: 

System Calls 2-99 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
profil 

Octal Hex Meaning 

0177777 OxFFFF Maps approximately each pair of bytes in the instruction space to a 
unique short in shortbuff. 

077777 
01 

Ox7FFF 
OxOOOl 

Maps approximately every four bytes to a short in shortbuff. 
Maps all instructions to the first short in shortbuff, producing a 
noninterrupting core clock. 

o OxOOOO Turns profiling off. 

Mapping each byte of the instruction space to an individual short in shortbuff is not 
possible. 

If the second parameter (bufsize) has the value -1, then the parameters to profil are 
interpreted as shown in the second syntax definition. In this case, the offset and scale 
parameters are ignored, and profbuff points to an array of prof structures. The prof 
structure is defined in the mon.h header file, and it contains the following members: 

daddr-t 
daddr-t 
short-t 
int-t 
int_t 

p-low; 
p-high; 
*p-buff; 
p-bufsize; 
p-scale; 

If the p-scale member has the value -1, then a value for it is computed based on p-Iow, 
p-high, and p-bufsize; otherwise p-scale is interpreted like the scale argument in the 
first synopsis. The p-high members in successive structures must be in ascending 
sequence. The array of structures is terminated with a structure containing a p-high 
member set to zero. 

Profiling is turned off: 

• If the value of the scale parameter is O. 
• When an exec system call is executed 
• If updating the buffer pointed to by the shortbuff or profbuff parameter would cause a 

memory fault. 

Profiling is rendered ineffective by giving a value of 0 for the bufsiz parameter. 

Profiling remains on in both the child process and the parent process after a fork system 
call. 

2-100 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
profil 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "fork" on 
page 2-46, and "monitor" on page 3-248. 

The cc and prof commands in AIX Operating System Commands Reference. 

System Calls 2-101 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ptrace 

ptrace 

Purpose 

Traces the execution of a child process. 

Syntax 

#include < sys/reg.h > 

int ptrace (request, pid, addr, data, buff) 
int request, pid, *addr, data, *buff; 

Description 

The ptrace system call allows a parent process to control the execution of a child process. 
ptrace is primarily used by utility programs to implement breakpoint debugging. The sdb 
command described in A/X Operating System Commands Reference is such a debugging 
utility. 

The child process behaves normally until it encounters a signal, at which time it enters a 
stopped state and its parent process is notified with the wait system call. When the child 
process is in the stopped state, its parent process can examine and modify its memory 
image using the ptrace system call. Also, the parent process can cause the child process 
to either terminate or continue, with the possibility of ignoring the signal that caused it to 
stop. 

The request parameter determines the action to be taken by the ptrace system call and is 
one of the following: 

o This request must be issued by the child process that is to be traced by its parent. 
This request sets the child's trace flag that causes the child to be left in a stopped 
state upon receipt of a signal, rather than the state specified by the func parameter 
of the signal system call. The pid, addr, and data parameters are ignored, and a 
return value is not defined for this request. Do not issue this request if the parent 
does not expect to trace the child. 

Note: The remainder of the requests can only be used by the parent process. For each 
request, the pid parameter is the process ID of the child. The child must be in a stopped 
state before these requests are made. 

2-102 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ptrace 

1, 2 These requests return the int in the child's address space at the location pointed to 
by the addr parameter. Either request 1 or request 2 can be used with with equal 
results. The data parameter is ignored. These requests fail if the value of the addr 
parameter is not in the address space of the child process, in which case a value of-l 
is returned, and the parent's errno is set to EIO. 

3 This request returns the int from the child's user area of the system's address space 
that is located at the offset given by the addr parameter. (For information about the 
user area, see the sys/user.h header file.) The value of the addr parameter must be 
in the range 0 to ctob(USIZE), and it is rounded down to the the next int (word) 
boundary. (ctob and USIZE are defined by including the sys/param.h header file.) 
The data parameter is ignored. This request fails if the addr parameter is outside 
the user area, in which case a value of -1 is returned to the parent process and the 
parent process's errno is set to EIO. 

4, 5 These requests write the value of the data parameter into the address space of the 
child process at the int pointed to by the addr parameter. Either request 4 or 
request 5 can be used with equal results. Upon successful completion, the value 
written into the address space of the child process is returned to the parent process. 
These requests fail if the addr parameter points to a location in a pure procedure 
space and a copy cannot be made. They also fail if the addr is out of range. Upon 
failure, a value of -1 is returned to the parent process and the parent process's errno 
is set to EIO. 

6 This request writes the value of the data parameter into the child's user area of the 
system's address space at the int specified by the addr parameter. The value of the 
addr parameter is rounded down to the the next int (word) boundary. The following 
values for addr are defined in the sys/reg.h header file, and they identify the only 
entries that can be modified: 

RO-R15 
IAR 
MQ 
CS 

General Purpose Registers 0-15 
Instruction Address Register 
Multiply/Quotient Register 
Condition Status Register. 

7 This request causes the child process to resume execution. If the data parameter is 
0, all pending signals, including the one that caused the child process to stop, are 
canceled before the child process resumes execution. If the data parameter is a valid 
signal number, the child process resumes execution as if it had received that signal. 
Any other pending signals are canceled. The addr parameter must be equal to 1 for 
this request. Upon successful completion, the value of the data parameter is 
returned to the parent process. This request fails if the data parameter is not 0 or a 
valid signal number, in which case a value of -1 is returned to the parent process and 
the parent process's errno is set to EIO. 

8 This request causes the child process to terminate the same way it would with an 
exit system call. 

System Calls 2-103 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ptrace 

11 This request returns the contents of one of the general-purpose registers of the child 
process. The addr parameter specifies which of the sixteen 32-bit registers is to be 
returned. The data and buff parameters are ignored. This request fails if the value 
of the addr parameter is not between 0 and 15 inclusive. In this case, ptrace returns 
the value -1 and sets the parent's errno to EIO. 

12 This request stores the value of a floating-point register into the location pointed to 
by the addr parameter. The data parameter specifies which floating-point register, 
and it must be a value in the range from 0 to 7, excluding 6. Registers 0 through 5 
are eight bytes long, and the status register (register 7) is four bytes long. 

14 This request stores the value of the data parameter in one of the child process's 
general-purpose registers. The addr parameter specifies the register to be modified. 
The buff parameter is ignored. Upon successful completion, the value of data is 
returned to the parent process. This request fails if the value of the addr parameter 
is not between 0 and 15 inclusive. In this case, ptrace returns the value -1 and sets 
the parent's errno to EIO. 

15 This request sets the floating-point register specified by the data parameter to the 
value pointed to by the addr parameter. The data parameter must be a value in the 
range from 0 to 7, excluding 6. Registers 0 through 5 are eight bytes long, and the 
status register (register 7) is four bytes long. 

17 This request reads a block of data from the child process's address space. The addr 
parameter points to the block of data in the child's address space and the data 
parameter gives its length in bytes. The value of the data parameter must not be 
greater than 1024. The buff parameter points to the location in the parent's address 
space into which the data is to be copied. Upon successful completion, ptrace 
returns the value of the data parameter. If an error occurs, ptrace returns -1 and 
sets the parent's errno to indicate the error. This request fails when one or more of 
the following are true: 

EINV AL The data parameter is less than 1 or greater than 1024. 

EIO 

EFAULT 

The addr parameter is not a valid pointer into the child process's 
address space. 

The buff parameter does not point to a writable location in the parent 
process's address space. 

19 This request writes a block of data into the child process's address space. The addr 
parameter points to the location in the child's address space to be written into. The 
data parameter gives the length of the block in bytes, and it must not be greater 
than 1024. The buff parameter points to the data in the parent's address space to be 
copied. Upon successful completion, the value of data is returned to the parent. If 
an error occurs, ptrace returns -1 and sets the parent's errno to indicate the error. 

2-104 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ptrace 

This request fails when one or more of the following are true: 

EINV AL The data parameter is less than 1 or greater than 1024. 

EIO The addr parameter is not a valid pointer into the child process's 
address space. 

EFAULT The buff parameter does not point to a readable location in the parent 
process's address space. 

As a security measure, the ptrace system call inhibits the set-user-ID facility on 
subsequent exec system calls. 

If a traced process initiates an exec system call, it stops before executing the first 
instruction of the new image and shows the signal SIGTRAP. 

Diagnostics 

In general, the ptrace system call fails if one or more of the following are true: 

EIO The request parameter is not one of the values listed. 

ESRCH The pid parameter identifies a child process that does not exist or has not 
executed a ptrace system call with request O. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "signal" on 
page 2-145, and "wait" on page 2-182. 

The sdb command in AIX Operating System Commands Reference. 

System Calls 2-105 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
read, ... 

read,readx 

Purpose 

Reads from file. 

Syntax 

int read (fildes, but, nbyte) 
int tildes; 
char *but; 
unsigned int nbyte; 

Description 

int readx (fildes, but, nbyte, ext) 
int lildes, ext; 
char *but; 
unsigned int nbyte; 

The read system call reads a set number of bytes into a buffer. The read system call reads 
the number of bytes set by the nbyte parameter from the file associated with the lildes 
parameter and places those bytes into the buffer pointed to by the bul parameter. If 
Distributed Services is installed on your system, this file can reside on another node. 

The lildes parameter is a file descriptor obtained from a creat, open, dup, fcntl, or pipe 
system call. 

On devices capable of seeking, the read starts at a position in the file given by the file 
pointer associated with the lildes parameter. Upon return from the read system call, the 
file pointer is incremented by the number of bytes actually read. 

Devices that are incapable of seeking always read from the current position. The value of 
a file pointer associated with such a file is undefined. 

When attempting to read from an empty pipe (or FIFO): 

• If O-NDELA Y is set, the read returns O. 

• If O-NDELA Y is clear, the read blocks until data is written to the file or the file is no 
longer open for writing. 

When attempting to read a file associated with a terminal that has no data currently 
available: 

• If O-NDELAY is set, the read returns O. 

• If O-NDELA Y is clear, the read blocks until data becomes available. 

2-106 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
read, ... 

When attempting to read a regular file that supports enforcement mode record locks, and 
all or part of the region to be read is currently locked by another process: 

• If O-NDELAY is set, then the read returns -1 and sets errno to EAGAIN. 

• If O_NDELA Y is clear, then the read blocks the calling process until the lock is 
released. 

For more information about record locks, see "lockf' on page 2-64. 

If the file has been mapped, the read system call reads from a mapped file segment. If the 
fildes file descriptor was used to map the file copy-on-write, then the copy-on-write segment 
is used. Otherwise, the read system call reads from the read-write mapped segment for the 
file. See "shmat" on page 2-131 for information about mapping files. 

The readx system call performs the same function as read, except that it provides 
communication with character device drivers that require more information or return more 
status than read can handle. 

For files, directories, or special files with drivers that do not handle extended operations, 
the readx system call does exactly what the read system call does, and the ext parameter 
is ignored. 

Each driver interprets the ext parameter in a device-dependent way, either as a value or as 
a pointer to a communication area. The nonextended read system call is equivalent to the 
extended readx system call with an ext parameter value of o. Drivers must apply 
reasonable defaults when the ext parameter value is o. 

Return Value 

Upon successful completion, the read and readx system calls return the number of bytes 
actually read and placed in the buffer; this number may be less than the value of the nbyte 
parameter if the file is associated with a communication line, or if the number of bytes left 
in the file is less than the value of the nbyte parameter. A value of 0 is returned when an 
end-of-file has been reached. (For information about communication files, see "ioctl" on 
page 2-56 and "termio" on page 6-114.) If read or readx fails, a value of -1 is returned and 
errno is set to indicate the error. 

Diagnostics 

The read and readx system calls fail if one or more of the following are true: 

EBADF 

EAGAIN 

EFAULT 

fildes is not a valid file descriptor open for reading. 

An enforcement mode record lock is outstanding in the portion of the file 
that is to be read. 

buf points to a location outside of the process's allocated address space. 

System Calls 2-107 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
read, 

EDEADLK A deadlock would occur if the calling process were to sleep until the region 
to be read was unlocked. 

EINTR A signal was caught during the read system call. 

If Distributed Services is installed on your system, read or readx can also fail if one or 
more of the following are true: 

EDIST 

EDIST 

EAGAIN 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "creat" on page 2-27, "dup" on page 2-32, "fcntl" on page 2-44, "ioctl" on 
page 2-56, "lockf' on page 2-64, "open" on page 2-90, "pipe" on page 2-95, "termio" on 
page 6-114, and Appendix C, "Writing Device Drivers." 

2-108 AIX Operating System Technical Reference 



reboot 

Purpose 

Restarts the current virtual machine. 

Syntax 

int reboot (dev) 
char *dev; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
reboot 

int reboot «char *) 0) 

int reboot (" VRM'I) 

The reboot system call restarts (re-IPLs) the current virtual machine from the block 
special file specified by the dev parameter. If the dev parameter is 0, the root device is 
assumed. The reboot is automatic and brings up /unix in the normal, nonmaintenance 
mode. 

If the dev parameter is the character string II V RM II, then Virtual Resource Manager is also 
restarted. 

The effective user ID of the calling process must be superuser for this call to complete. 

Warning: The reboot system call does not perform a sync operation or 
write pending output to disk. File systems may be damaged if reboot is 
invoked without first assuring that all disk output has completed. 

Return Value 

Upon successful completion, the reboot system call does not return. If the reboot system 
call fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The reboot system call fails if one or more of the following are true: 

EPERM The effective user ID of the calling process is not superuser. 

ENOENT The specified special file does not exist. 

ENOTBLK The dev parameter does not point to a block device file. 

System Calls 2-109 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
reboot 

ENXIO 

EFAULT 

The device associated with the dev parameter does not exist or is a remote 
file. 

The dev parameter points to a location outside of the process's allocated 
address space. 

Related Information 

In this book: "iplvm, waitvm" on page 2-58 and "sync" on page 2-163. 

The shutdown command in AIX Operating System Commands Reference. 

2-110 AIX Operating System Technical Reference 



I rename 

I Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rename 

Renames a directory or a file within a filesystem. 

I Syntax 

int rename (jrompath, topath) 
char *frompath, *topath; 

I Description 

The rename system call renames a directory or a file within a filesystem. The frompath 
and topath parameters must both be either files or directories and must reside on the same 
node. If Distributed Services is installed on your system, this node can be remote. 

For rename to execute successfully, the calling process must have write permission to the 
parent directories of both frompath and topath, to frompath, and to topath, if it already 
exists. 

The file or directory named by frompath cannot contain the file or directory named by 
topath. If topath is an existing file or empty directory, it is replaced by frompath. If topath 
is a nonempty directory, rename exits with an error. 

I Return Value 

Upon successful completion, the rename system call returns a value of o. If the rename 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The rename system call fails and the file or directory name remains unchanged if one or 
more of the following are true: 

ENOTDIR A component of either path prefix is not a directory or frompath names a 
directory and topath names a nondirectory. 

EISDIR The topath parameter names a directory and the frompath parameter names 
a nondirectory. 

System Calls 2-110.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rename 

ENOENT 

EACCES 

EACCES 
EXDEV 

EROFS 
EFAULT 

EINVAL 
EEXIST 
ESTALE 

A component of either path does not exist or the file named by {rompath does 
not exist. 

Creating the requested link requires writing in a directory with a mode that 
denies write permission. 

Search permission is denied on a component of either {rompath or topath. 

The link named by topath and the file named by {rompath are on different 
file systems. 

The named file resides on a read-only file system. 

Either {rompath or topath points outside of the process's allocated address 
space. 

{rompath is a parent directory of topath. 

The topath parameter is an existing nonempty directory. 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, rename can also fail if one or more of 
the following are true: 

EDIST 
EDIST 
EDIST 

EAGAIN 
ESTALE 
EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

2-110.2 AIX Operating System Technical Reference 



I Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rename 

In this book: "chmod" on page 2-18 and "mkdir" on page 2-68.l. 

The chmod, mkdir, and mknod, and mvdir commands in AIX Operating System 
Commands Reference. 

System Calls 2-110.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rmdir 

,rmdir 

,Purpose 

Removes a directory file. 

,Syntax 

rmdir (path) 
char *path; 

, Description 

The rmdir system call removes the directory specified by the path parameter. If 
Distributed Services is installed on your system, this path can cross into another node. 
The directory you specify must be empty, and you must have write access to it. 

,Return Value 

Upon successful completion, the rmdir system call returns a value of o. If the rmdir 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

, Diagnostics 

The rmdir system call fails and the directory is not deleted if one or more of the following 
are true: 

EBUSY The directory is in use as either the mount point for a file system or the 
current directory of the process that issued the rmdir. 

EEXIST The directory is not empty. 

ENOTDIR A component of the path is not a directory. 

ENOENT The named file does not exist. 

EACCES A component of the path denies search permission or write permission is 
denied on the directory containing the link to be removed. 

EROFS The named file resides on a read-only file system. 

EFAULT path points outside of the process's allocated address space. 

2-110.4 AIX Operating System Technical Reference 



ESTALE 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rmdir 

The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, rmdir can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate· with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "chmod" on page 2-18, "mkdir" on page 2-68.1, "mknod" on page 2-69, 
"rename" on page 2-110.1, and "umask" on page 2-169. 

System Calls 2-110.5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
rmdir 

2-110.6 AIX Operating System Technical Reference 



select 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
select 

Purpose 

Checks the I/O status of multiple file descriptors and message queues. 

Syntax 

#include < sys/select.h > 

int select (nfdsmsgs, readlist, write list, exceptlist, timeout) 
int nfdsmsgs; 
struct sellist *readlist, *writelist, *exceptlist; 
struct timeval *timeout; 

Description 

The select system call checks the specified file descriptors and message queues to see if 
they are ready for reading (receiving) or writing (sending), or if they have an exceptional 
condition pending. 

Note: The select system call applies only to character devices, pipes, and message 
queues. Not all character device drivers support it. See the descriptions of individual 
character devices in Chapter 6, "Special Files" for information about whether and how 
specific device drivers support select. 

The nfdsmsgs parameter specifies the number of file descriptors and the number of message 
queues to check. The low-order 16 bits give the length of a bit mask that specifies which 
file descriptors to check; the high-order 16 bits give the size of an array that contains 
message queue identifiers. If either half of the nfdsmsgs parameter is equal to 0, then the 
corresponding bit mask or array is assumed to not be present. 

The readlist, writelist, and exceptlist parameters specify what to check for reading, writing, 
and exceptions, respectively. Together, they specify the selection criteria. Each of these 
parameters points to a sellist structure, which can specify both file descriptors and 
message queues. Your program must define the sellist structure in the following form: 

struct sellist 
{ 

}; 

int fdsmask[f]; /* file descriptor bit mask */ 
int msgids[m]; /* message queue identifiers */ 

System Calls 2-111 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
select 

The fdsmask array is treated as a bit string in which each bit corresponds to a file 
descriptor. File descriptor n is represented by the bit (1 < < n) in the array element 
fdsmask[n / BITS(int)]. (The BITS macro is defined in the values.h header file.) Each 
bit that is set to 1 indicates that the status of the corresponding file descriptor is to be 
checked. Note that the low-order 16 bits of the nfdsmsgs parameter specify the number of 
bits (not elements) in the fdsmask array that make up the file descriptor mask. If only 
part of the last int is included in the mask, then the appropriate number of low-order bits 
are used, and the remaining high-order bits are ignored. If you set the low-order 16 bits of 
the nfdsmsgs parameter to 0, then you must not define a fdsmask array in the sellist 
structure. 

Each int of the msgids array specifies a message queue identifier whose status is to be 
checked. Elements with a value of -1 are ignored. The high-order 16 bits of the nfdsmsgs 
parameter specify the number of elements in the msgids array. If you set the high-order 
16 bits of the nfdsmsgs parameter to 0, then you must not define a msgids array in the 
sellist structure. 

If the timeout parameter is not a NULL pointer, then it points to a structure that specifies 
the maximum length of time to wait for at least one of the selection criteria to be met. The 
timeval structure is defined in the sys/select.h header file, and it contains the following 
members: 

int tv-sec; 
int tv-usee; 

Seconds 
Microseconds 

The number of microseconds specified in timeout.tv-usec, a value from ° to 999999, is 
rounded to the nearest second by the AIX Operating System. 

If the timeout parameter is a NULL pointer, then the select system call waits indefinitely, 
until at least one of the selection criteria is met. If the timeout parameter points to a 
timeval structure that contains zeros, then the file and message queue status is polled, 
and the select system call returns immediately. 

Note: The arrays specified by readlist, writelist, and exceptlist are the same size because 
each of these parameters points to the same sellist structure type. However, you need not 
specify the same number of file descriptors or message queues in each. Set the file 
descriptor bits that are not of interest to 0, and set the extra elements of the msgids array 
to -l. 

You can use the SELLIST macro defined in the sys/select.h header file to define the 
sellist structure. The format of this macro is: 

SELLIST(f, m) declarator . .. ; 

where f specifies the size of the fdsmask array, m specifies the size of the msgids array, 
and each declarator is the name of a variable to be declared as having this type. 

For example, suppose you want to test file descriptors 1, 2, and 35 in addition to five 
message queues. On the RT PC, which has 32-bit integers, this requires two ints for the 

2-112 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
select 

bit mask. Five ints are required to specify the message queue identifiers. The structures 
can be defined like this: 

SELLIST(2, 5) rd, wr, ex; 

This macro expands to: 

struct 
{ 

i nt fdsmas k [2J ; 
i nt msgi ds [5J ; 

} rd, wr, ex; 

Note that the SELLIST macro does not define the structure with a tag (that is, as 
struct sellist). 

The SELLIST macro cannot be used if you specify either half of the nfdsmsgs parameter 
as 0, indicating that one of the arrays is not present. Trying to use SELLIST(O,5), for 
example, results in a compiler error from defining an array with a dimension of o. In this 
case, you must define the structure yourself, including only the desired array. 

Return Value 

Upon successful completion, the select system call returns a value that indicates the total 
number of file descriptors and message queues that satisfy the selection criteria. The 
fdsmask bit masks are modified so that bits set to 1 indicate file descriptors that meet the 
criteria. The msgids arrays are altered so that message queue identifiers that do not meet 
the criteria are replaced with a value of -l. 

The return value is similar to the nfdsmsgs parameter in that the low-order 16 bits give the 
number of file descriptors, and the high-order 16 bits give the number of message queue 
identifiers. These values indicate the sum total that meet each of the read, write and 
exception criteria. Therefore, the same file descriptor or message queue may be counted up 
to three times. 

You can use the NFDS and NMSGS macros to separate out these two values from the 
return value. If rc contains the value returned from the select system call, then 
N FDS (rc) is the number of files selected, and NMSGS (rc) is the number of message queues 
selected. 

If the select system call fails, then it returns a value of -1 and sets errno to indicate the 
error. In this case, the contents of the structures pointed to by the readlist, writelist, and 
exceptlist parameters are unpredictable. If the time limit specified by the timeout parameter 
expires, then select returns a value of o. 

System Calls 2-113 



TNL SN20·9855 (26 June 1987) to SC23·0808·0 
select 

Diagnostics 

The select system call fails if one or more of the following is true: 

EBADF 

EINTR 

EFAULT 

EINVAL 

An invalid file descriptor or message queue identifier is specified. 

A signal was encountered before any of the selected events occurred, or 
before the time limit expired. 

The readlist, writelist, exceptlist, or timeout parameter points to a location 
outside of the process's allocated address space. 

One of the parameters contains an invalid value. 

Related Information 

In this book: "close" on page 2-25, "fcntl" on page 2-44, "ioctl" on page 2-56, "msgctl" on 
page 2-73, "msgget" on page 2-76, "msgrcv" on page 2-79, "msgsnd" on page 2-82, 
"msgxrcv" on page 2-85, "open" on page 2-90, "read, readx" on page 2-106, "write, writex" 
on page 2-184, "values.h" on page 5-77, Chapter 6, "Special Files," Appendix C, "Writing 
Device Drivers," and "ddselect" on page C-11 . 

2-114 AIX Operating System Technical Reference 



semctl 

Purpose 

Controls semaphore operations. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/sem.h > 

int semctl (semid, semnum, cmd, val) 
-or-

int semctl (semid, semnum, cmd, but) 
-or-

int semctl (semid, semnum, cmd, array) 

int semid; 
unsigned int semnum; 
int cmd; 
int val; 
struct semid-ds * but; 
unsigned short array[ ]; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semetl 

The semctl system call performs a variety of semaphore control operations as specified by 
the cmd parameter. The data type of the last parameter depends on the value of the cmd 
parameter. It is referred to as val, but, or array to indicate one of the definitions given in 
the preceding Syntax section. 

The first seven cmds get and set the values of a sem structure, which is defined in the 
sys/sem.h header file and contains the following members: 

ushort semval; /* Operation permission structure */ 
short sempid; /* IO of last process that did a se~op */ 
ushort semncnt; /* No. of processes awaiting se~val > eval */ 
ushort semzcnt; /* No. of processes awaiting se~val = 0 */ 

The following cmds are executed with respect to the semaphore specified by the semid and 
semnum parameters. 

System Calls 2-115 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semctl 

GETVAL 

SETVAL 

GETPID 

Returns the value of semval, if the current process has read permission. 

Sets the value of semval to the value specified by val, if the current process 
has write permission. When this cmd is successfully executed, the semadj 
value corresponding to the specified semaphore is cleared in all processes. 

Returns the value of sempid, if the current process has read permission. 

GETNCNT Returns the value of semncnt, if the current process has read permission. 

GETZCNT Returns the value of semzcnt, if the current process has read permission. 

The following cmds return and set every semval in the set of semaphores. 

GETALL 

SETALL 

Stores semvals into the array pointed to by array, if the current process has 
read permission. 

Sets semvals according to the array pointed to by array, if the current 
process has write permission. When this cmd is successfully executed, the 
semadj value corresponding to each specified semaphore is cleared in all 
processes. 

The following cmds are also available: 

IPC-STAT Stores the current value of each member of the data structure associated 
with the semid parameter into the structure pointed to by but, if the current 
process has read permission. This structure is defined in sys/sem.h and 
contains the following members: 

struct ipc-perm sem-perm; 
struct sem *sem-base; 

/* Operation permission structure */ 
/* Pointer to first semaphore in set */ 
/* Number of semaphores in the set */ ushort sem-nsems; 

ushort semlcnt; /* Processes waiting on locked semaphore */ 
/* Time of last se~op call */ time-t sem-otime; 

time-t sem-ctime; /* Time of the last change to this */ 
/* structure with a se~ctl call */ 

IPC-SET Sets the value of the following members of the data structure associated 
with the semidparameter to the corresponding value found in the structure 
pointed to by but: 

sem-perm.uid 
sem-perm.gid 
sem-perm.mode /* Only the low-order nine bits */ 

This cmd can only be executed by a process that has an effective user ID 
equal to either that of superuser or to the value of sem-perm.uid in the 
data structure associated with the semid parameter. 

2-116 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semctl 

IPC-RMID Removes the semaphore identifier specified by the semid parameter from the 
system and destroys the set of semaphores and data structures associated 
with it. This cmd can only be executed by a process that has an effective 
user ID equal to either that of superuser or to the value of sem-perm.uid 
in the data structure associated with the semid parameter. 

Return Value 

Upon successful completion, the value returned depends on the cmd parameter as follows: 

cmd Return Value 

GETVAL 
GETPID 
GETNCNT 
GETZCNT 
All others 

Returns the value of semval. 
Returns the value of sempid. 
Returns the value of semncnt. 
Returns the value of semzcnt. 
Return a value of O. 

If semctl fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The semctl system call fails if one or more of the following are true: 

EINVAL 

EINVAL 

EINVAL 

EACCES 

ERANGE 

EPERM 

EFAULT 

The semid parameter is not a valid semaphore identifier. 

The semnum parameter is less than 0 or greater than sem-nsems. 

The cmd parameter is not a valid command. 

Operation permission is denied to the calling process. 

The cmd parameter is SETV AL or SETALL and the value to which semval 
is to be set is greater'than the system-imposed maximum. 

The cmd parameter is equal to IPC-RMID or IPC-SET and the effective 
user ID of the calling process is not equal either to that of superuser or to 
the value of sem-perm.uid in the data structure associated with the semid 
parameter. 

The but or array parameter points to a location outside of the process's 
allocated address space. 

System Calls 2-117 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semctl 

Related Information 

In this book: "semget" on page 2-119 and "semop" on page 2-122. 

2-118 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semget 

semget 

Purpose 

Gets a set of semaphores. 

Syntax 

#include < sys/stat.h > 
#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/sem.h > 

int semget (key, nsems, semflg) 
key-t key; 
int nsems, semflg; 

Description 

The semget system call returns the semaphore identifier associated with the specified key. 
The key parameter is either the value IPC-PRIVATE or an IPC key constructed by the 
ftok subroutine (or by a similar algorithm). See "ftok" on page 3-198 for details about this 
subroutine. The nsems parameter specifies the number of semaphores in the set. 

The semflg parameter is constructed by logically OR-ing one or more of the following 
values: 

IPC-CREAT Creates the data structure if it does not already exist. 
IPC-EXCL Causes the semget system call to fail if IPC-CREAT is also set and the 

data structure already exists. 

S-IRUSR Permits the process that owns the data structure to read it. 
S-IWUSR Permits the process that owns the data structure to modify it. 
S-IRGRP Permits the group associated with the data structure to read it. 
S-IWGRP Permits the group associated with the data structure to modify it. 
S-IROTH Permits others to read the data structure. 
S-IWOTH Permits others to modify the data structure. 

The values that begin with S-I- are defined in the sys/stat.h header file and are a subset 
of the access permissions that apply to files. 

System Calls 2-119 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semget 

The semget system call creates a data structure for the semaphore ID and an array 
containing nsems semaphores if one of the following is true: 

• The key parameter is equal to IPC-PRIV ATE. 

• The key parameter does not already have a semaphore identifier associated with it, and 
IPC-CREAT is set. 

Upon creation, the data structure associated with the new semaphore identifier is 
initialized as follows: 

• sem-perm.cuid and sem-perm. uid are set equal to the effective user ID of the 
calling process. 

• sem-perm.cgid and sem-perm.gid are set equal to the effective group ID of the 
calling process. 

• The low-order nine bits of sem-perm.mode are set equal to the low-order nine bits of 
the semflg parameter. 

• sem-nsems is set equal to the value of the nsems parameter. 

• sem-otime is set equal to ° and sem-ctime is set equal to the current time. 

If the key parameter is not IPC-PRIV ATE, IPC-EXCL is not set, and a semaphore 
identifier already exists for the specified key, then the value of the nsems parameter 
specifies the number of semaphores that the current process needs. If the nsems parameter 
is 0, then any number of semaphores is acceptable. If the nsems parameter is not 0, then 
the semget system call fails if the set contains fewer than nsems semaphores. 

Return Value 

Upon successful completion, a semaphore identifier is returned. If semget fails, a value of 
-1 is returned and errno is set to indicate the error. 

Diagnostics 

The semget system call fails if one or more of the following are true: 

EINVAL 

EACCES 

EINVAL 

The nsems parameter is less than 0, equal to 0, or greater than the 
system-imposed limit. 

A semaphore identifier exists for the key parameter but operation 
permission, as specified by the low-order nine bits of the semflg parameter, is 
not granted. 

A semaphore identifier exists for the key parameter, but the number of 
semaphores in the set associated with it is less than the value of the nsems 
parameter and the nsems parameter is not equal to 0. 

2-120 AIX Operating System Technical Reference 



ENOENT 

ENOSPC 

EEXIST 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semget 

A semaphore identifier does not exist for the key parameter and 
IPC-CREA T is not set. 

A semaphore identifier is to be created, but doing so would exceed the 
maximum number of identifiers allowed system wide. 

A semaphore identifier exists for the key parameter, and both IPC-CREAT 
and IPC_EXCL are set. 

Related Information 

In this book: "semctl" on page 2-115, "semop" on page 2-122, and "ftok" on page 3-198. 

System Calls 2-121 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semop 

semop 

Purpose 

Performs semaphore operations. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/sem.h > 

int semop (semid, sops, nsops) 
int semid; 
struct sembuf sops[ ]; 
unsigned int nsops; 

Description 

The semop system call performs operations on the set of semaphores associated with the 
semaphore identifier specified by the semid parameter. The sops parameter points to an 
array of structures, each of which specifies a semaphore operation. The nsops parameter is 
the number of such structures in the array. The sembuf structure is defined in the 
sys/sem.h header file, and it contains the following members: 

ushort 
short 
short 

sem-num; 
sem-op; 
sem-flg; 

/* Semaphore number */ 
/* Semaphore operation */ 
/* Operation flags */ 

Each semaphore operation specified by a sem-op is performed on the corresponding 
semaphore specified by semid and sem-num. The sem-fig for each operation is either 0, 
or is constructed by logically OR-ing one or more of the following values: 

SEM-UNDO Specifies whether to modify semadj values. 

SEM-ORDER Specifies whether to perform the operations atomically or individually. 
(This applies only to the sem-fig of the first operation specified in the 
sops array.) 

IPC-NOW AIT Specifies whether to wait or to return immediately when a semaphore's 
semval is not a certain value. 

If SEM-ORDER is not set in sops[O].sem-fig (the default), then all of the semaphore 
operations specified in the sops array are performed atomically. This means that no 

2-122 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semop 

semval value for any sem-Dum that appears in the entire array of operations is modified 
until all the semaphore operations can be completed. If the calling process must wait until 
some semval requirement is met, then the semop system call does so before performing 
any of the operations. If any semaphore operation would cause an error to occur, then 
none of the operations are performed. 

If SEM-ORDER is set in sops[O].sem-flg, then the operations are performed individually 
in the order that they appear in the sops array, regardless of whether any of the operations 
require the process to wait. If an operation encounters an error condition, then the semop 
system call sets SEM-ERR in the sem-flg of the failing operation, sets errno to indicate 
the error, and returns a value of -1. In this case, the operations that precede the failing 
one in the sops array have been performed, but those following it have not. 

The action taken for SEM-UNDO and IPC-NOW AIT is described in the following text. 

The sem-op field of the sembuf structure specifies one of the following three semaphore 
operations: 

1. If sem-op is a positive integer and the current process has write permission, then the 
value of sem-op is added to semval. If SEM-UNDO is set in sem-flg, then the value 
of sem-op is also subtracted from the calling process's semadj value for the specified 
semaphore. 

2. If sem-op is a negative integer and the current process has write permission, then one 
of the following occurs: 

• If semval is greater than or equal to the absolute value of sem-op, the absolute 
value of sem-op is subtracted from semval. Also, if SEM_UNDO is set in 
sem-flg, the absolute value of sem-op is added to the calling process's semadj 
value for the specified semaphore. The exit system call adds the semadj value to 
the semaphore's semval when the process terminates (see "exit, -exit" on 
page 2-40). 

• If semval is less than the absolute value of sem-op and IPC-NOW AIT is set in 
sem-flg, semop returns a value of -1 and sets errno to EAGAIN. 

• If semval is less than the absolute value of sem-op and IPC-NOW AIT is not set 
in sem-flg, then semop increments the semncnt associated with the specified 
semaphore and suspends execution of the calling process until one of the following 
occurs: 

semval becomes greater than or equal to the absolute value of sem-op. When 
this occurs, the value of semncnt associated with the specified semaphore is 
decremented, the absolute value of sem-op is subtracted from semval and, if 
SEM-UNDO is set in sem-flg, the absolute value of sem-op is added to the 
calling process's semadj value for the specified semaphore. 

The semid for which the calling process is awaiting action is removed from the 
system (see "semctl" on page 2-115). When this occurs, errDO is set equal to 
EIDRM, and a value of -1 is returned. 

System Calls 2-123 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semop 

The calling process receives a signal that is to be caught. When this occurs, 
the value of semncnt associated with the specified semaphore is decremented, 
and the calling process resumes execution in the manner prescribed in the 
signal system call. 

3. If sem-op is 0 and the current process has read permission, then one of the following 
occurs: 

• If semval is 0, then semop returns a value of O. 

• If semval is not equal to 0 and IPC-NOW AIT is set in sem-fig, then semop 
returns a value of -1 and sets errno to EAGAIN. 

• If semval is not equal to 0 and IPC-NOW AIT is not set in sem-fig, semop 
increments the semzcnt associated with the specified semaphore and suspends 
execution of the calling process until one of the following occurs: 

Return Value 

semval becomes 0, at which time the value of semzcnt associated with the 
specified semaphore is decremented. 

The semid for which the calling process is awaiting action is removed from the 
system. When this occurs, errno is set equal to EIDRM, and a value of of -1 is 
returned. 

The calling process receives a signal that is to be caught. When this occurs, 
the value of semzcnt associated with the specified semaphore is decremented, 
and the calling process resumes execution in the manner prescribed in the 
signal system call. 

Upon successful completion, the semop system call returns a value of O. Also, the sempid 
value for each semaphore that is operated upon is set to the process ID of the calling 
process. 

If semop fails, a value of -1 is returned and errno is set to indicate the error. If 
SEM-ORDER was set in the sem-fig for the first semaphore operation in the sops array, 
then SEM-ERR is set in the sem-fig for the failing operation. 

Diagnostics 

The semop system call fails if one or more of the following are true for any of the 
semaphore operations specified by the sops parameter. If the operations were performed 
individually, then see the preceding discussion of SEM-ORDER for more information 
about error situations. 

EINVAL The semid parameter is not a valid semaphore identifier. 

2-124 AIX Operating System Technical Reference 



EFBIG 

E2BIG 

EACCES 

EAGAIN 

ENOSPC 

EINVAL 

ERANGE 

ERANGE 

EFAULT 

EINTR 

EIDRM 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
semop 

sem-Dum is less than 0 or it is greater than or equal to the number of 
semaphores in the set associated with the semid parameter. 

The nsops parameter is greater than the system-imposed maximum. 

Operation permission is denied to the calling process. 

The operation would result in suspension of the calling process, but 
IPC-NOW AIT is set in sem-flg 

The limit on the number of individual processes requesting a SEM-UNDO 
would be exceeded. 

The number of individual semaphores for which the calling process requests 
a SEM-UNDO would exceed the limit. 

An operation would cause a semval to overflow the system-imposed limit. 

An operation would cause a semadj value to overflow the system-imposed 
limit. 

The sops parameter points to a location outside of the process's allocated 
address space. 

The semop system call received a signal. 

The semaphore identifier semid has been removed from the system. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "fork" on page 2-46, "semctl" on page 2-115, and "semget" on 
page 2-119. 

System Calls 2-125 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setgroups 

setgroups 

Purpose 

Sets the group access list. 

Syntax 

#include < grp.h > 

int setgroups (ngroups, gidset); 
int ngroups, *gidset; 

Description 

The setgroups system call sets the group access list of the current user process according 
to the array pointed to by the gidset parameter. The ngroups parameter indicates the 
number of entries in the array and must not be more than NGROUPS, as defined in the 
grp.h header file. Only a process with an effective user ID of superuser can set new 
groups. 

Return Value 

Upon successful completion, a value of 0 is returned. If the setgroups system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The setgroups system call fails if one or more of the following is true: 

EPERM 

EINVAL 

EFAULT 

The caller is not superuser. 

The value of the ngroups parameter is greater than NGROUPS. 

The gidset parameter points to a location outside of the process's allocated 
address space. 

2-126 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setgroups 

In this book: "getgroups" on page 2-52 and "initgroups" on page 3-230. 

System Calls 2-127 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setpgrp 

setpgrp 

Purpose 

Sets the process group ID. 

Syntax 

int setpgrp (flag) 
int flag; 

Description 

If the flag parameter has a nonzero value, then setpgrp sets the process group ID of the 
calling process to be the same as its process ID and returns the new value. If the flag 
parameter is 0, then the process group ID is not changed, but its value is returned. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "fork" on 
page 2-46, "getpid, getpgrp, getppid" on page 2-54, "kill" on page 2-60, and "signal" on 
page 2-145. 

2-128 AIX Operating System Technical Reference 



setuid, setgid 

Purpose 

Sets a process's user and groups IDs. 

Syntax 

int setuid (uid) 
int uid; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setuid, setgid 

int setgid (gid) 
int gid; 

The setuid system call sets the real and effective user IDs of the calling process. If the 
effective user ID of the calling process is superuser, then the real and effective user IDs are 
set to the value of the uid parameter. If the effective user ID of the calling process is not 
superuser, but the real user ID is equal to the value of the uid parameter, or the process's 
original effective user ID as set by the exec system call is equal to uid, then the effective 
user ID is set to the value of the uid parameter. 

The setgid system call sets the real and effective group IDs of the calling process. If the 
effective user ID of the calling process is superuser, then the real and effective group IDs 
are set to the value of the gid parameter. If the effective user ID of the calling process is 
not superuser, but the real group ID is equal to the value of the gid parameter, or the 
process's original effective group ID as set by the exec system call is equal to gid, then the 
effective group ID is set to the value of thegid parameter. 

Return Value 

Upon successful completion, a value of 0 is returned. If the setuid or setgid system call 
fails, then a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The setuid and setgid system calls fail if the following is true: 

EPERM The uid (gid) parameter is not equal to the real user (group) ID of the 
process or to the original effective user (group) ID as set by the exec system 
call, and the effective user ID is not superuser. 

EINV AL The uid parameter is not a valid user ID. 

System Calls 2-129 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setuid, setgid 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "getpid, 
getpgrp, getppid" on page 2-54, and "getuid, geteuid, getgid, getegid" on page 2-55. 

2-130 AIX Operating System Technical Reference 



shmat 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmat 

Attaches a shared memory segment or a mapped file to the current process. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/shm.h > 

char *shmat (shmid, shmaddr, shmflg) 
int shmid; 
char *shmaddr; 
int shmflg; 

Description 

The shmat system call attaches the shared memory segment or mapped file associated with 
the shared memory identifier (returned by shmget) or file descriptor (returned by open) 
specified by the shmid parameter to the address space of the calling process. 

Note: You cannot map a remote file. 

The segment or file is attached at the address specified by the shmaddr parameter as 
follows: 

• If the shmaddr parameter is equal to 0, the segment or file is attached at the first 
available address as selected by the system. 

• If the shmaddr parameter is not equal to 0, and SHM-RND is set in shmflg, the 
segment or file is attached at the next lower segment boundary. This address given by 
(shmaddr - (shmaddr modulo SHMLBA». 

• If the shmaddr parameter is not equal to ° and SHM-RND not set in shmflg, the 
segment or file is attached at the address given by the shmaddr parameter. If this 
address does not point to a segment boundary, then the shmat system call returns the 
value -1 and sets errno to EINV AL. 

The shmflg parameter specifies several options. Its value is either 0, or is constructed by 
logically OR-ing one or more of the following values: 

System Calls 2-131 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmat 

SHM-RND Rounds the address given by the shmaddr parameter to the next lower 
segment boundary, if necessary. 

SHM-MAP Maps a file onto the address space instead of a shared memory segment. 
The shmid must specify an open file descriptor in this case. 

SHM-RDONL Y Specifies read-only mode instead of the default read-write mode. 

SHM-COPY Maps a file in copy-on-write mode. 

Either SHM-RDONL Y or SHM-COPY may be specified, but not both. 

If SHM-MAP is not set in shmflg, then a shared memory segment is attached to the data 
segment. It is attached for reading if SHM-RDONL Y is set in shmflg and if the current 
process has read permission. If SHM-RDONL Y is not set and the current process has 
both read and write permission, then it is attached for reading and writing. 

If SHM-MAP is set in shmflg, then file mapping takes place. In this case, the shmat 
system call maps the file open on file descriptor shmid onto a segment. The file must be a 
regular file. The segment is then mapped into the process's address space. 

When file mapping is requested, the shmflg parameter specifies how the file is to be 
mapped. If SHM-RDONLY is set, then the file is mapped read-only. If SHM-COPY is 
set, then the file is mapped copy-on-write. If neither of these cases is true, then the file is 
mapped read-write. The file must be opened for writing before it can be mapped read-write 
or copy-on-write. 

All processes that map the same file read-only or read-write map to the same segment. 
This segment remains mapped until the last process mapping the file closes it. 

All processes that map the same file copy-on-write map the same copy-on-write segment. 
Changes to the shared segment do not affect the contents of the file resident in the file 
system until an fsync system call is issued for a file descriptor for which copy-on-write 
mapping was requested. If a process requests copy-on-write mapping for a file and the 
copy-on-write segment does not yet exist, then it is created, and that segment is maintained 
for sharing until the last process attached to it detaches it with a close system call. When 
the mapped file is closed, the segment is detached. The next request for copy-on-write 
mapping for the same file causes a new segment to be created for the file. 

A file descriptor can be used to map the corresponding file only once. A file can be 
multiply mapped by using multiple file descriptors. However, a file cannot be mapped both 
read-write and copy-on-write by one or more users at the same time. The results are 
unpredictable if a file that one process has -mapped copy-on-write is modified by another 
process with the write system call, unless that process has also attached the copy-on-write 
segment with a shmat system call. 

When a file is mapped onto a segment, the file is referenced by accessing the segment. The 
memory paging system automatically takes care of the physical I/O. References beyond the 
end of the file cause the file to be extended in increments of the page size. 

2-132 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmat 

Return Value 

Upon successful completion, the segment start address of the attached shared memory 
segment or mapped file is returned. If shmat fails, a value of -1 is returned and errno is 
set to indicate the error. 

Diagnostics 

The shmat system call fails and the shared memory segment or mapped file is not attached 
if one or more of the following are true: 

EACCES Operation permission is denied to the calling process. 

ENOMEM The available data space in memory is not large enough to hold the shared 
memory segment. 

ENOMEM The available data space in memory is not large enough to hold the mapped 
file data structure. 

EINV AL The shmid parameter is not a valid shared memory identifier, or the file to 
be mapped resides in a remote node. 

EINV AL The shmaddr parameter is not equal to 0, and the value of (shmaddr -
(shmaddr modulo SHMLBA» points to a location outside of the process's 
allocated address space. 

EINV AL The shmaddr parameter is not equal to 0, SHM-RND is not set in shmflg, 
and the the shmaddr parameter points to a location outside of the process's 
allocated address space. 

EINV AL The shmaddr parameter is not equal to 0, SHM-RND is not set in shmflg, 
and the the shmaddr parameter does not point to a segment boundary. 

EEXIST The file to be mapped has already been mapped. 

ETXTBSY The shmat system call attempted to map a file onto a segment attached to a 
shared library. 

EMFILE The number of shared memory segments attached to the calling process 
would exceed the system-imposed limit. 

EBADF A file descriptor to map does not refer to an open regular file, or both 
read-only and copy-on-write modes were requested. 

EACCES A file to be mapped is open read-only, but the segment is to be mapped 
read-write or copy-on-write. 

EACCES The file is to be mapped read-write, but the file is currently mapped 
copy-on-write; or the file is to be mapped copy-on-write, but it is currently 
mapped read-write. 

System Calls 2-133 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmat 

EACCES 

EFBIG 

The file to be mapped has enforced locking enabled, and the file is currently 
locked. 

The file to be mapped is larger than the maximum size of a segment. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "fclear" on page 2-42, "fork" on page 2-46, "fsync" on page 2-48, 
"ftruncate" on page 2-50, "read, readx" on page 2-106, "shmctl" on page 2-135, "shmdt" on 
page 2-138, "shmget" on page 2-140, and "write, writex" on page 2-184. 

2-134 AIX Operating System Technical Reference 



shmctl 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmctl 

Controls shared memory operations. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/shm.h > 

int shmctl (shmid, cmd, buf) 
int shmid, cmd; 
struct shmid-ds *buf; 

Description 

The shmctl system call performs a variety of shared memory control operations as 
specified by the cmd parameter. The shmid parameter is a shared memory identifier 
returned by the shmget system call. The following cmds are available: 

IPC-STAT Places the current value of each member of the data structure associated 
with the shmid parameter into the shmid-ds structure pointed to by the buf 
parameter. The current process must have read permission in order to 
perform this operation. The shmid-ds structure is defined in the 
sys/shm.h header file, and it contains the following members: 

struct 
int 
ushort 
ushort 
ushort 
ushort 
ushort 
time-t 
time-t 
time-t 

ipc-perm shm-perm; 
shm-segsz; 
shm-segid; 
shm-lpid; 
shm-cpid; 
shm-nattch; 
shm-cnattach; 
shm-atime; 
shm-dtime; 
shm-ctime; 

/* Operation permission structure */ 
/* Segment size */ 
/* Segment identifier */ 
/* 10 of last process to call shmop */ 
/* 10 of process that created this shrnid */ 
/* Current number of processes attached */ 
/* No. of in-memory processes attached */ 
/* Time of last shmat call */ 
/* Time of last shmdt call *j 
/* Time of the last change to this */ 
/* structure with a shmctl call */ 

System Calls 2-135 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmctl 

Sets the value of the following members of the data structure associated 
with the shmid parameter to the corresponding value found in the structure 
pointed to by the buf parameter: 

shm-perm.uid 
shm_perm.gid 
shm-perm.mode /* Only the low-order nine bits */ 

This cmd can only be performed by a process that has an effective user ID 
equal to either that of superuser or to the value of shm-perm.uid in the 
data structure associated with the shmid parameter. 

IPC-RMID Removes the shared memory identifier specified by the shmid parameter 
from the system and erases the shared memory segment and data structure 
associated with it. This cmd can only be executed by a process that has an 
effective user ID equal to either that of superuser or to the value of 
shm-perm.uid in the data structure associated with the shmid parameter. 

SHM-SIZE Sets the size of the shared memory segment to the value specified by 

Return Value 

buf- > shm-segsz. This value can be larger or smaller than the current size, 
as long as it is not greater than the value of the shmmax keyword set in 
the fete/master file. This cmd can only be executed by a process that has 
an effective user ID equal to either that of superuser or to the value of 
shm-perm.uid in the data structure associated with the shmid parameter. 

Upon successful completion, a value of 0 is returned. If shmetl fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The shmetl system call fails if one or more of the following are true: 

EINVAL 

EINVAL 

EINVAL 

EACCES 

EPERM 

The shmid parameter is not a valid shared memory identifier. 

The cmd parameter is not a valid command. 

The cmd parameter is equal to SHM-SIZE and buf- > shm-segsz is greater 
than the value of the shmmax keyword in the fete/master file. 

The cmd parameter is equal to IPC-STAT and read permission is denied to 
the calling process. 

The cmd parameter is equal to IPC_RMID, IPC_SET, or SHM-SIZE, and 
the effective user ID of the calling process is neither equal to the superuser 
ID, nor is it equal to the value of shm-perm.uid in the data structure 
associated with shmid. 

2-136 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmctl 

ENOMEM The cmd parameter is equal to SHM-SIZE and the attempt to change the 
segment size failed. 

EFAULT The but parameter points to a location outside of the process's allocated 
address space. 

Related Information 

In this book: "disclaim" on page 2-30, "shmat" on page 2-131, "shmdt" on page 2-138, 
"shmget" on page 2-140, and "master" on page 4-98. 

System Calls 2-137 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmdt 

shmdt 

Purpose 

Detaches a shared memory segment. 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/shm.h > 

int shmdt (shmaddr) 
char * shmaddr; 

Description 

The shmdt system call detaches, from the calling process's data segment, the shared 
memory segment located at the address specified by the shmaddr parameter. 

Mapped file segments are automatically detached when no longer in use. However, you 
can use the shmdt system call to explicitly release the segment register used to map a file. 
Shared memory segments must be explicitly detatched with shmdt. 

Return Value 

Upon successful completion, a value of 0 is returned. If shmdt fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The shmdt system call fails and the shared memory segment is not detached if the 
following is true: 

EINV AL The shmaddr parameter is not the data segment start address of a shared 
memory segment. 

ETXTBSY The shmdt system call attempted to detach a segment attached to a shared 
library. 

2 .. 138 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmdt 

In this book: "exec: exeel, execv, exeele, execve, exeelp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "felear" on page 2-42, "fork" on page 2-46, "fsync" on page 2-48, 
"shmat" on page 2-131, "shmctl" on page 2-135, and "shmget" on page 2-140. 

System Calls 2-139 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmget 

shmget 

Purpose 

Gets shared memory segment. 

Syntax 

#include < sys/stat.h > 
#include < sys/types.h > 
#include < sys/ipc.h > 
#include < sys/shm.h > 

int shmget (key, size, shmflg) 
key-t key; 
int size, shmflg; 

Description 

The shmget system call returns the shared memory identifier associated with the specified 
key. The key parameter is either the value IPC-PRIVATE or an IPC key constructed by 
the ftok subroutine (or by a similar algorithm). See "ftok" on page 3-198 for details about 
this subroutine. The size parameter specifies the number of bytes of shared memory 
required. 

The shmflg parameter is constructed by logically OR-ing one or more of the following 
values: 

IPC-CREAT 
IPC-EXCL 

Creates the data structure if it does not already exist; 
Causes the shmget system call to fail if IPC_CREAT is also set and the 
data structure already exists. 

S-IRUSR Permits the process that owns the data structure to read it. 
S-IWU8R Permits the process that owns the data structure to modify it. 
S-IRGRP Permits the group associated with the data structure to read it. 
S-IWGRP Permits the group associated with the data structure to modify it. 
S-IROTH Permits others to read the data structure. 
8-IWOTH Permits others to modify the data structure. 

The values that begin with 8-1- are defined in the sys/stat.h header file and are a subset 
of the access permissions that apply to files. 

2-140 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmget 

A shared memory identifier, its associated data structure, and a shared memory segment 
equal in bytes to the value of the size parameter are created for the key parameter if one of 
the following is true: 

• The key parameter is equal to IPC-PRIV ATE. 

• The key parameter does not already have a shared memory identifier associated with it, 
and IPC-CREAT is set. 

Upon creation, the data structure associated with the new shared memory identifier is 
initialized as follows: 

• shm-perm.cuid and shm-perm. uid are set equal to the effective user ID of the 
calling process. 

• shm-perm.cgid and shm-perm.gid are set equal to the effective group ID of the 
calling process. 

• The low-order nine bits of shm-perm.mode are set equal to the low-order nine bits of 
the shmflg parameter. 

• shm-segsz is set equal to the value of the size parameter. 

• shm-Ipid, shm-nattch, shm-atime, and shm-dtime are set equal to O. 

• shm-ctime is set equal to the current time. 

Return Value 

Upon successful completion, a shared memory identifier is returned. If shmget fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The shmget system call fails if one or more of the following are true: 

EINVAL 

EACCES 

EINVAL 

ENOENT 

The size parameter is less than the system-imposed minimum or greater than 
the system-imposed maximum. 

A shared memory identi~er exists for the key parameter but operation 
permission as specified by the low-order nine bits of the shmflg parameter is 
not granted. 

A shared memory identifier exists for key, but the size of the segment 
associated with it is less than the size parameter and the size parameter is 
not equal to O. 

A shared memory identifier does not exist for the key parameter and 
IPC-CREAT not set. 

System Calls 2-141 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
shmget 

ENOSPC A shared memory identifier is to be created but the system-imposed limit on 
the maximum number of allowed shared memory identifiers system wide will 
be exceeded. 

ENOMEM A shared memory identifier and associated shared memory segment are to be 
created but the amount of available physical memory is not sufficient to fill 
the request. 

EEXIST A shared memory identifier exists for the key parameter, and both 
IPC-CREAT and IPC-EXCL are set. 

Related Information 

In this book: "shmat" on page 2-131, "shmctl" on page 2-135, "shmdt" on page 2-138, and 
"ftok" on page 3-198. 

2-142 AIX Operating System Technical Reference 



sigblock 

Purpose 

Blocks signals. 

Syntax 

int sigblock (mask) 
int mask; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigblock 

The sigblock system call causes the signals specified by the mask parameter to be added to 
the set of signals currently being blocked from delivery. The signals are blocked from 
delivery by logically OR-ing the mask parameter into the process's signal mask. Signal i is 
blocked if the i-th bit in mask is a 1. 

It is not possible to block SIGKILL. The system provides no indication of this restriction. 

Typically, the sigblock system call is used to block signals during a critical section of 
code, and then sigsetmask is called to restore the mask to the previous value returned by 
sigblock. 

Return Value 

Upon completion, the previous set of masked signals is returned. 

Example 

The following example sets the signal mask to block SIGINT from delivery, in addition to 
the signals that are already blocked: 

#include <signal.h> 

int prevmask; 

prevmask = sigblock (1 « (SIGINT - 1)); 

System Calls 2-143 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigblock 

Related Information 

In this book: "kill" on page 2-60, "signal" on page 2-145, "sigvec" on page 2-156, and 
"sigsetmask" on page 2-152. 

2-144 AIX Operating System Technical Reference 



signal 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
signal 

Specifies the action to take upon receipt of a signal. 

Syntax 

#include < sys/signal.h > 

int (*signal (sig, action» ( ) 
int sig; 
void (*action) ( ); 

Description 

The signal system call allows the calling process to choose one of three ways to handle the 
receipt of a specific signal. The sig parameter specifies the signal and the action parameter 
specifies the choice. 

The sig parameter can be anyone of the following signal values except SIGKILL. Each of 
the names shown below is defined in the sys/signal.h header file with the value of the 
corresponding signal number. 

SIGHUP 
SIGINT 
SIGQUIT 
SIGILL 
SIGTRAP 
SIGIOT 
SIGDANGER 
SIGFPE 

SIGKILL 
SIGBUS 
SIGSEGV 
SIGSYS 
SIGPIPE 

1 
2 
3* 
4* 
5* 
6* 
7+ 
8*+ 

9 
10* 
11* 
12* 
13 

Hangup 
Interrupt 
Quit 
Illegal instruction (not reset when caught) 
Trace trap (not reset when caught) 
Abort process (see "abort" on page 3-5) 
The system is likely to "crash" soon 
Arithmetic exception, integer divide by 0, or floating point 
exception 
Kill (cannot be caught or ignored) 
Specification exception 
Segmentation violation 
Bad parameter to system call 
Write on a pipe when there is no process to read it 

System Calls 2-145 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
signal 

SIGALRM 14 Alarm clock 
SIGTERM 15 Software termination signal 

User-defined signal 1 
User-defined signal 2 

SIGUSRI 16 
SIGUSR2 17 
SIGCLD 18+ Death of a child process 
SIGPWR 19+ Power-fail restart (not reset when caught) 

Basic LAN signal for asynchronous I/O 
PTY device driver read/write availability 
I/O intervention required 

SIGAIO 25 
SIGPTY 26 
SIGIOINT 27 
SIGGRANT 28# HFT monitor access wanted 
SIGRETRACT 29# HFT monitor access should be relinquished 
SIGSOUND 30# An HFT sound control has completed execution 
SIGMSG 31# Input data has been stored into the HFT monitor mode ring buffer 

The symbols in the preceding table have the following meaning: 

* 

+ 

# 

A memory image file (core file) is created when one of these signals is received. This 
is explained in more detail in the following discussion of SIG-DFL. 

These signals require special consideration, as described in "Special Signals" on 
page 2-148. 

For more information on the use of these signals, see "hft" on page 6-23. 

The action parameter is one of three values: SIG-DFL, SIG-IGN, or a function address. 
The actions prescribed by these values of are as follows: 

SIG-DFL - Default action: Terminate process upon receipt of signal. 

Upon receipt of the signal sig, the receiving process is to be terminated with all of the 
consequences outlined in the exit system call. In addition, a memory image file will be 
created in the current directory of the receiving process if sig is one for which an 
asterisk appears in the preceding list and the following conditions are met: 

• The effective user ID and the real user ID of the receiving process are equal. 

• An ordinary file named core exists in the current directory and is writable, or it 
can be created. If the file must be created, it will have the following properties: 

The access permission code 0666 (OxlB6), modified by the file creation mask 
(see "umask" on page 2-169) 

A file owner ID that is the same as the effective user ID of the receiving 
process 

A file group ID that is the same as the effective group ID of the receiving 
process. 

2-146 AIX Operating System Technical Reference 



SIG-IGN - Ignore signal. 

The signal sig is to be ignored. 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
signal 

Note: The SIGKILL signal cannot be ignored. 

function address - Catch signal. 

Upon receipt of the signal sig, the receiving process is to execute the signal-catching 
function pointed to by the action parameter. The signal number sig is passed as the 
only parameter to the signal-catching function. Before calling the signal-catching 
function, the value of action for the caught signal is set to SIG-DFL unless the signal 
is SIGILL, SIGTRAP, or SIGPWR. 

When the signal-catching function returns, the value of the signal mask upon entry is 
restored, and the receiving process resumes execution at the point at which it was 
in terru pted. 

Note that after a signal is received, there is a period of time during which the signal 
action is set to SIG-DFL and the signal-catching function has not had a chance to 
re-establish itself as the catcher for this signal. If the signal occurs again during that 
period, it will not be caught. The sigvec system call offers an enhanced 
signal-handling capacity to avoid this race condition. 

When a signal that is to be caught occurs during a read, write, open, or ioctl system 
call on a slow device (like a terminal; but not an ordinary file), during a pause system 
call, or during a wait system call that does not return immediately due to the 
existence of a previously stopped or zombie process, the signal-catching function will 
be executed and then the interrupted system call will return a -1 to the calling process 
with errno set to EINTR. 

Note: The SIGKILL signal cannot be caught. 

Warning: The signal system call does not check the validity of the 
action parameter. If it points to a location outside of the process's 
allocated address space, then the process receives a memory fault when 
the system attempts to call the signal handler. If action points to 
anything other than a subroutine, the results are unpredictable. 

System Calls 2-147 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
signal 

Special Signals 

Some signals are handled differently from those described previously. These signals are: 

SIGFPE 

SIGDANGER 
SIGCLD 
SIGPWR 

8* + Arithmetic exception, integer divide by 0, or floating point 
exception 

7 + The system is likely to "crash" soon. 
18 + Death of a child process 
19 + Power-fail restart (not reset when caught) 

On a SIGFPE signal, the values in all of the floating-point registers are saved. On any 
other signal, only the first eight registers are saved. 

See the sys/robust.h header file for the conditions that can cause the SIGDANGER 
signal. The most likely cause is a shortage of paging space (PGSDANGER). Also see the 
pslotwarn, pslotkill, and pslotpanic keywords in "master" on page 4-98. 

For SIGDANGER and SIGPWR, the actions prescribed by the action parameter are as 
follows: 

SIG-DFL The signal is ignored. 

SIG-IGN The signal is ignored. 

function address The signal-catching function pointed to by action is called. 

For SIGCLD, the actions prescribed by the action paramer are as follows: 

SIG-DFL The signal is ignored. 

SIG-IGN The signal is ignored. Also, the child processes of the calling process 
do not create zombie. processes when they terminate. (See "exit, -exit" 
on page 2-40 for more information about zombie processes.) 

function address The signal-catching function pointed to by action is called. When the 
signal-catching function returns, another SIGCLD signal is sent to the 
process if any zombie child processes remain to be waited for. 
Therefore, the SIGCLD signal-catching function must issue a wait 
system call to eliminate the zombies, or an infinite loop will occur. 

The setting of the action for the SIGCLD signal affects the wait and exit system calls in 
the following ways: 

wait If the action value of SIGCLD is set to SIG-IGN and a wait system call is 
executed, the wait blocks until all of the child processes of the calling process 
terminate. It then returns a value of -1 with errno set to ECHILD. 

exit If, in the parent of the exiting process, the action value of SIGCLD is set to 
SIG-IGN, then the exiting process does not create a zombie process. 

2-148 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
signal 

When processing a pipeline, the shell makes the last process in the pipeline the parent of 
the preceding processes. A process that can be piped into in this manner, and thus become 
the parent of other processes; should not set SIGCLD to be caught. Otherwise, it will 
receive unexpected SIGCLD signals. 

After a fork system call, the child process inherits all signals from its parent. 

The exec system calls reset all caught signals to the default action. Signals that cause the 
default action continue to do so. Ignored signals continue to be ignored. 

Return Value 

Upon successful completion, signal returns the previous value of action for the specified 
signal sig. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The signal system call fails if the following is true: 

EINVAL The sig parameter is not a valid signal number, or it is SIGKILL. 

Related Information 

In this book: "acct" on page 2-11, "exit, -exit" on page 2-40, "kill" on page 2-60, "pause" 
on page 2-94, "ptrace" on page 2-102, "sigblock" on page 2-143, "sigpause" on page 2-150, 
"sigsetmask" on page 2-152, "sigstack" on page 2-154, "sigvec" on page 2-156, "umask" on 
page 2-169, "wait" on page 2-182, "setjmp, longjmp" on page 3-332, and "core" on 
page 4-39. 

System Calls 2-149 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigpause 

sigpause 

Purpose 

Atomically releases blocked signals and waits for an interrupt. 

Syntax 

int sigpause (sigmask) 
int sigmask; 

Description 

The sigpause system call sets the process's signal mask to the value of the sigmask 
parameter and then and waits for a signal to arrive. Upon return, the previous signal 
mask is restored. The sigpause system call terminates by being interrupted, returning -1, 
and setting errno to EINTR. 

The sigpause system call sets the signal mask and waits for an interrupt as one atomic 
operation. This means that signals cannot occur between the operations of setting the 
mask and waiting for a signal. If a program invokes the sigsetmask and pause system 
calls separately, then a signal that occurs between these system calls might not be noticed 
by pause. 

In normal usage, a signal is blocked by using the sigblock system call at the beginning of 
a critical section. The process then determines whether there is work for it to do. If no 
work is to be done, then the process waits for work by calling sigpause with the mask 
previously returned by sigblock. 

Return Value 

If the signal is caught by the calling process and control is returned from the signal 
handler, then the calling process resumes execution after the sigpause system call, which 
always returns a value of -1 and sets errno to EINTR. 

2-150 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigpause 

In this book: "pause" on page 2-94, "sigblock" on page 2-143, "signal" on page 2-145, 
"sigsetmask" on page 2-152, and "sigvec" on page 2-156. 

System Calls 2-151 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigsetmask 

sigsetmask 

Purpose 

Sets the current signal mask. 

Syntax 

int sigsetmask (mask) 
int mask; 

Description 

The sigsetmask system call sets the current signal mask as specified by the mask 
parameter. The signal mask determines which signals is blocked from delivery to the 
process. Signal i is blocked if the i-th bit in mask is a 1. 

Typically, you would use the sigblock system call to block signals during a critical section 
of code and then use the sigsetmask system call to restore the mask to the previous value 
returned by the sigblock system call. 

The sigsetmask system call does not allow SIGKILL to be blocked. If a program attempts 
to block SIGKILL, sigsetmask gives no indication of the error. 

Return Value 

Upon successful completion, the previous set of masked signals is returned. 

Example 

To set the signal mask to block only SIGINT from delivery: 

#include <signal .h> 

int prevmask; 

prevmask = sigsetmask (1 « (SIGINT - 1)); 

2-152 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigsetmask 

In this book: "kill" on page 2-60, "signal" on page 2-145, "sigvec" on page 2-156, 
"sigblock" on page 2-143, and "sigpause" on page 2-150. 

System Calls 2-153 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigstack 

sigstack 

Purpose 

Sets and gets signal stack context. 

Syntax 

#include < signal.h > 

int sigstack (instack, outstack) 
struct sigstack *instack, *outstack; 

Description 

The sigstack system call defines an alternate stack on which signals are to be processed. 

If the value of the instack parameter is nonzero, then it points to a sigstack structure, 
which has the following members: 

caddr-t ss-sp; 
int ss-onstack; 

The value of instack- >ss-sp specifies the stack pointer of the new signal stack. Since 
stacks grow from numerically greater addresses to lower ones, the stack pointer passed to 
the sigstack system call should point to the numerically high end of the stack area to be 
used. instack->ss-onstack should be set to 1 if the process is currently executing on that 
stack; otherwise, it should be o. 
If the value of the outstack parameter is nonzero, then it points to a sigstack structure 
into which the sigstack system call stores the current signal stack state. 

If the value of the ins tack parameter is 0 (that is, a NULL pointer), then the signal stack 
state is not set. If the value of the outstack parameter is 0, then the previous signal stack 
state is not reported. 

When a signal occurs whose handler is to run on the signal stack, the system checks to see 
if the process is already executing on that stack. If so, then it continues to do so even 
after the handler returns. If not, then the signal handler runs on the signal stack, and the 
original stack is restored when the handler returns. 

Use the sigvec system call to specify whether or not a given signal's handler routine is to 
run on the signal stack. 

2-154 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigstack 

Warning: A signal stack does not automatically increase in size as a 
normal stack does. If the stack overflows, unpredictable results may occur. 

Return Value 

Upon successful completion, a value of 0 is returned. If the sigstack system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The sigstack system call fails and the signal stack context remains unchanged if the 
following is true: 

EFAULT The instack or outstack parameter points to a location outside of the 
process's allocated address space. 

Related Information 

In this book: "signal" on page 2-145, "sigvec" on page 2-156, and "setjmp, longjmp" on 
page 3-332. 

System Calls 2-155 



TNL SN20-9855 (26 June 1987) to SC23-080B-O 
sigvec 

sigvec 

Purpose 

Selects enhanced signal facilities. 

Syntax 

#include < sys/signal.h > 

int sigvec (sig, invec, outvec) 
int sig; 
struct sigvec *invec, *outvec; 

Description 

The sigvec system call allows the user to select standard or enhanced signal-handling 
facilities. Like the signal system call, it sets the action to take upon the receipt of a 
signal, but it also sets additional features. 

The sigvec system call assigns a handler for a specific signal. If the invec parameter is 
nonzero, it points to a sigvec structure that specifies a handler routine and mask to be 
used when delivering the specified signal. The sigvec structure has the following 
members: 

int (*sv-handler) ( ); 
int sv-mask; 
int sv_onstack; 

If the SIG -STK bit of sv -onstack is set, then the system runs the handler on the signal 
stack specified by the sigstack system call. If this bit is not set, then the handler executes 
on the stack of the interrupted process. If the SIG-STD bit of sv-onstack is set, then 
standard signal processing is used. If this bit is not set, then enhanced signal processing is 
used. 

The default action for a signal can be reinstated by setting sv-handler to SIG-DFL. If 
sv-handler is set to SIG-IGN, then the signal is ignored, and pending instances of the 
signal are discarded. See "signal" on page 2~145 for a detailed description of the default 
signal actions. 

If the outvec parameter is nonzero, then the previous handling information for the signal is 
stored in the sigvec structure pointed to by outvec. 

2-156 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigvec 

If the value of the invec parameter is 0 (that is, a NULL pointer), then the signal handler 
information is not set. If the value of the outvec parameter is 0, then the previous signal 
handler information is not reported. 

Once a signal handler is assigned, it remains assigned until another sigvec, signal, or 
exec system call is made. 

Warning: The sigvec system call does not check the validity of the 
sv-handler pointer. If it points to a location outside of the process's 
allocated address space, then the process receives a memory fault when the 
system attempts to call the signal handler. If sv-handler points to 
anything other than a subroutine, then the results are unpredictable. 
The signal-handler subroutine can be declared as follows: 

handler (sig, code, scp) 
int sig, code; 
struct sigcontext *scp; 

The sig parameter is the signal number. The code parameter is provided only for 
compatibility with other UNIX-compatible systems, and its value is always o. The scp 
parameter points to the sigcontext structure that is later used to restore the process's 
previous execution context. The sigcontext structure is defined in signal.h. 

Note: The sigcontext structure contains fields for saving the values of the floating-point 
registers. On a SIGFPE signal, the values in all of the registers are saved. On all other 
signals, only the first eight registers are saved. 

Return Value 

Upon successful completion, a value of 0 is returned. If the sigvec system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The sigvec system call fails and no new signal handler is installed if one of the following 
occurs: 

EFAULT 

EINVAL 

EINVAL 

The invec or outvec parameter points to a location outside of the process's 
allocated address space 

The sig parameter is not a valid signal number. 

An attempt was made to ignore or supply a handler for SIGKILL. 

System Calls 2-157 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sigvec 

Related Information 

In this book: "kill" on page 2-60, "ptrace" on page 2-102, "sigblock" on page 2-143, 
"sigpause" on page 2-150, "sigstack" on page 2-154, "sigsetmask" on page 2-152, "sigvec" 
on page 2-156, and "setjmp, longjmp" on page 3-332. 

The kill command in AIX Operating System Commands Reference. 

2-158 AIX Operating System Technical Reference 



stat, fstat 

Purpose 

Gets the status of a file. 

Syntax 

#include < sys/stat.h > 

int stat (path, but) 
char *path; 
struct stat *buf; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stat, . . . 

int fstat (fildes, but) 
int fildes; 
struct stat *buf; 

The stat system call obtains information about the file pointed to by the path parameter. 
Read, write, or execute permission of the named file is not required, but all directories in 
the path leading to the file must be searchable. The stat system call places the 
information obtained into a structure pointed to by the buf parameter. 

Use the fstat system call to obtain information about an open file pointed to by the fildes 
parameter. The fildes parameter is a file descriptor obtained from a successful open, 
creat, dup, fcnt!, or pipe system call. The fstat system call places the information 
obtained into a structure pointed to by the buf parameter. 

The stat structure pointed to by the buf parameter is defined in the sys/stat.h header file, 
and it contains the following members: 

dev-t st-dev; /* 10 of the device that contains */ 
/* a directory entry for this file */ 

ino-t st-ino; /* Inode number */ 
ushort st-mode; /* File mode; see mknod and chmod */ 
short st-nlink; /* Number of links */ 
ushort st-uid; /* User 10 of the file's owner */ 
ushort st-gid; /* Group 10 of the file's group */ 
dev-t st-rdev; /* 10 of device */ 

/* st-rdev is defined only for */ 
/* character or block special files */ 

off-t st-size; /* File size in bytes */ 
time-t st-atime; /* Time of last access */ 

System Calls 2-159 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stat, ... 

st-mtime; 
st-ctime; 

/* Time of last data modification */ 
/* Time of last file status change */ 
/* Times are measured in seconds since *1 
/* 00:00:00 GMT, Jan. 1, 1970 */ 

st-dev The device that contains a directory entry for this file. On a nondistributed 
file system, this is a 32-bit quantity that uses only the low 16-bits to contain 
the concatenated 8-bit major device number and the 8-bit minor device 
number. On a distributed system, this is a 32-bit quantity, created by 
combining a 16-bit connection ID, the 8-bit major device number, and the 
8-bit minor device number. 

st-uid The user ID of the file's owner. If the file is a remote file, this value can also 
be one of the two special values netnoone or netsomeone, as defined in the 
fete/master file. For remote files, this field contains the user ID after 
reverse translation. (See Managing the A/X Operating System for a 
discussion of reverse translation.) 

st-gid The group ID of the file's owner. If the file is a remote file, this value can 
also be one of the two special values netnoone or netsomeone, as defined 
in the fete/master file. For remote files, this field contains the group ID 
after reverse translation. (See Managing the A/X Operating System for a 
discussion of reverse translation.) 

st-atime The time when file data was last accessed. For remote files, this field 
contains the time at the server. Changed by the following system calls: 
ereat, mknod, pipe, utime, and read. 

st-mtime The time when data was last modified. For remote files, this field contains 
the time at the server. Changed by the following system calls: ereat, fclear, 
ftruneate, mknod, open, pipe, utime, and write. 

st-etime The time when file status was last changed. For remote files, this field 
contains the time at the server. Changed by the following system calls: 
ehmod, ehown, ereat, link, mknod, pipe, unlink, utime, and write. 

Return Value 

Upon successful completion, both the stat and the fstat system calls return a value of o. 
If either the stat or the fstat system calls fail, a value of -1 is returned and errno is set to 
indicate the error. 

2-160 AIX Operating System Technical Reference 



Diagnostics 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stat, ... 

The stat system call fails if one or more of the following are true: 

ENOTDIR A component of the path prefix is not a directory. 

ENOENT The named file does not exist. 

EACCES Search permission is denied for a component of the path prefix. 

EFAULT The but or path parameter points to a location outside of the process's 
allocated address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, stat can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

EST ALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmoun ted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

The fstat system call fails if one or more of the following are true: 

EBADF 

EFAULT 

tildes is not a valid open file descriptor. 

but points to a location outside of the process's allocated address space. 

If Distributed Services is installed on your system, fstat can also fail if one or more of the 
following are true: 

System Calls 2-160.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stat, 

EDIST 

EDIST 

EAGAIN 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "chmod" on page 2-18, "chown, chownx" on page 2-21, "creat" on page 2-27, 
"fullstat, ffullstat" on page 2-50.2, "link" on page 2-62, "mknod" on page 2-69, "pipe" on 
page 2-95, "read, readx" on page 2-106, "time" on page 2-164, "unlink" on page 2-174, 
"ustat" on page 2-178, "utime" on page 2-180, "write, writex" on page 2-184, "master" on 
page 4-98, and "stat.h" on page 5-69. 

2-160.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stat, . . . 

System Calls 2-161 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
stime 

stime 

Purpose 

Sets the time. 

Syntax 

int stime (tp) 
long *tp; 

Description 

The stime system call sets the system's time and date. The tp parameter points to the time 
as measured in seconds from 00:00:00 GMT January 1, 1970. 

Return Value 

Upon successful completion, a value of 0 is returned. If the stime system call fails, a value 
of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The stime system call fails if the following is true: 

EPERM The effective user ID of the calling process is not superuser. 

Related Information 

In this book: "time" on page 2-164. 

2-162 AIX Operating System Technical Reference 



sync 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
sync 

Purpose 

Updates the superblock, i-nodes, and delayed blocks. 

Syntax 

void sync () 

Description 

The sync system call causes all information in memory that should be on disk to be 
written out. The writing, although scheduled, is not necessarily complete upon return 
from the sync system call. Types of information to be written include modified 
superblocks, modified i-nodes, delayed block I/O, and read-write mapped files. 

If Distributed Services is installed on your system, information in memory relating to 
remote files is scheduled to be sent to the remote node. 

The sync system call should be used by programs that examine a file system, such as the 
df and fsck commands described in A/X Operating System Commands Reference. 

Related Information 

In this book: "fsync" on page 2-48. 

The'sync command in A/X Operating System Commands Reference. 

System Calls 2-163 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
time 

time 

Purpose 

Gets the time. 

Syntax 

long time «(long *) 0) 

Description 

long time (tloc) 
long *tloc; 

The time system call returns the current time in seconds since 00:00:00 GMT, January 1, 
1970. 

If the tloc parameter is nonzero, the time is also stored in the location towhich the tloc 
parameter points. 

Warning: The actions of the time system call are undefined if the tloe 
parameter points to a location outside of the process's allocated address 
space. 

Return Value 

Upon successful completion, the current time is returned. 

Related Information 

In this book: "stime" on page 2-162. 

2-164 AIX Operating System Technical Reference 



times 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
times 

Purpose 

Gets process and child process times. 

Syntax 

#include < sys/types.h > 
#include < sys/times.h > 

time-t times (buffer) 
struct tms * buffer; 

Description 

The times system call fills the structure pointed to by the buffer parameter with 
time-accounting information. All time values reported by the times system call are in 
lOths of a second, unless execution profiling is enabled. When profiling is enabled, times 
reports values in 60ths of a second. (For more information about profiling, see "profil" on 
page 2-99, "monitor" on page 3-248, and the cc and prof commands in AIX Operating 
System Commands Reference.) 

The tms structure is defined in sys/times.h and it contains the following members: 

time-t 
time-t 
time-t 
time-t 

tms-utime; 
tms-stime; 
tms-cutime; 
tms-cstime; 

This information comes from the calling process and each of its terminated child processes 
for which it has executed a wait system call. 

tms-utime 

tms-stime 
tms-cutime 
tms-cstime 

The CPU time used while executing instructions in the user space of the 
calling process. 
The CPU time used by the system on behalf of the calling process. 
The sum of the tms-utimes and the tms-cutimes of the child processes. 
The sum of the tms-stimes and the tms-cstimes of the child processes. 

Note: The system measures time by counting clock interrupts. The precision of the 
values reported by the times system call depends on the rate at which the clock interrupts 
occur. 

System Calls 2-165 



TNLSN20-9855 (26 June 1987) to SC23-0808-0 
times ' 

Return Value 

Upon successful completion, the times system call returns the elapsed real time, in 10ths 
of a second (60ths when profiling), since an arbitrary reference time in the past (for 
example, system start-up time). This reference time does not change from one call of times 
to another. If the times system call fails, a -1 is returned and errno is set to indicate the 
error. 

Diagnostics 

The times system call fails if the following is true: 

EFAULT The buffer parameter points to a location outside of the process's allocated 
address space. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "fork" on 
page 2-46, "profil" on page 2-99, "time" on page 2-164, "wait" on page 2-182, and "monitor" 
on page 3-248. 

The cc and prof commands in A/X Operating System Commands Reference. 

2-166 AIX Operating System Technical Reference 



ulimit 

Purpose 

Sets and gets user limits. 

Syntax 

#include < sys/types.h > 

off-t ulimit (cmd, newlimit) 
int cmd; 
off-t newlimit; 

Description 

TNL SN20·9855 (26 June 1987) to SC23·0808·0 
ulimit 

The ulimit system call controls process limits. The cmd parameter values are: 

1 Returns the process's file size limit. The limit is in units of 512-byte blocks and is 
inherited by child processes. Files of any size can be read. 

2 Sets the process's file size limit to the value of the newlimit parameter. Any 
process can decrease this limit, but only a process with an effective user ID of 
superuser can increase the limit. 

3 Returns the maximum possible break value (see "brk, sbrk" on page 2-14). 

1004 Sets the maximum possible break value (see "brk, sbrk" on page 2-14). Returns the 
new maximum break value, which is new limit rounded up to the nearest page 
boundary. 

1005 Returns the lowest valid stack address. (Note that stacks grow from high addresses 
to low addresses.) 

1006 Sets the lowest valid stack address. Returns the new minimum valid stack address, 
which is new limit rounded down to the nearest page boundary. 

With remote files, the ulimit values of the client, or local, node are used. 

System Calls 2-167 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ulimit 

Return Value 

Upon successful completion, a nonnegative value is returned. If the ulimit system call 
fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The ulimit system call fails and the limit remains unchanged if: 

EPERM 

EINVAL 

Example 

A process with an effective user ID other than superuser attempts to 
increase the file size limit. 

The cmd parameter is a value other than 1, 2, or 3. 

To increase the size of the stack segment by 2048 bytes, and set rc to the new lowest valid 
stack address: 

rc = ulimit(1006, ulimit(1005, 0) - 2048); 

Related Information 

In this book: "brk, sbrk" on page 2-14 and "write, writex" on page 2-184. 

2-168 AIX Operating System Technical Reference 



umask 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
umask 

Sets and gets the value of the file creation mask. 

Syntax 

int umask (cmask) 
int cmask; 

Description 

The umask system call sets the process's file mode creation mask to the value of the 
cmask parameter. Only the low-order 9 bits of the cmask parameter and the file mode 
creation mask are used. 

Return Value 

Upon successful completion, the previous value of the file mode creation mask is returned. 

Related Information 

In this book: "chmod" on page 2-18, "creat" on page 2-27, "mknod" on page 2-69, "open" 
on page 2-90, and "stat;h" on page 5-69. 

The sh and umask commands in A/X Operating System Commands Reference. 

System Calls 2-169 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
umount 

umount 

Purpose 

Unmounts a file system. 

Syntax 

int umount (de v) 
char *dev; 

Description 

The umount system call unmounts a previously mounted file system contained on the 
block device (also called a special file) identified by the dev parameter. The dev parameter 
is a pointer to a path name. 

After the file system is unmounted, the directory upon which the file system was mounted 
reverts to its ordinary interpretation as a directory. 

The umount system call can be invoked only by a process whose effective user ID is 
superuser. 

Return Value 

Upon successful completion, a value of 0 is returned. If the umount system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The umount system call fails if one or more of the following are true: 

EPERM The process's effective user ID is not superuser. 

ENOENT dev does not exist. 

ENOTBLK dev is not the name of a block special file. 

EINV AL dev is not mounted. 

EINV AL dev is not local. 

EBUSY A file on the device specified by the dev parameter is currently in use. 

2-170 AIX Operating System Technical Reference 



EFAULT 

ENXIO 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
umount 

dev points to a location outside of the process's allocated address space. 

dev is not currently configured. 

Related Information 

In this book: "mount" on page 2-71, "uvmount" on page 2-180.3, and "vmount" on 
page 2-180.5. 

The mount and umount commands in A/X Operating System Commands Reference. 

System Calls 2-171 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
uname, ... 

uname, unamex 

Purpose 

Gets the name of the current AIX system. 

Syntax 

#include < sys/utsname.h > 

int uname (name) 
struct utsname *name; 

Description 

int unamex (name) 
struct xutsname *name; 

The uname system call stores information identifying the current system in the structure 
pointed to by the name parameter. 

The uname system call uses the utsname structure, which is defined in the 
sys/utsname.h file, and it contains the following members: 

char sysname[SYS-NMLN]; 
char nodename[SYS-NMLN]; 
char release[SYS-NMLN]; 
char vers;on[SYS-NMLN]; 
char machine[SYS-NMLN]; 

The uname system call returns a null-terminated character string naming the current 
system in the character array sysname. The nodename array contains the name that the 
system is known by on a communications network. The release and version arrays 
further identify the system. 

The machine array identifies the CPU hardware being used. This array contains an 
eight-character string followed by a terminating null character. The first two characters 
identify the hardware model. The hardware model identification may be one of the 
following: 

10 IBM 6151 
20 IBM 6150 

The remaining six characters of the machine string specify the unique serial number of 
the machine. Each digit of the serial number is in the range 10 1 to 19 1 or I A I to I Fl. 

2-172 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
uname, 

The unamex system call uses the xutsname structure, which is defined in the 
sys/utsname.h file, and it contains the following members: 

unsigned long 
long 

nid; 
reserved[3] ; 

The xutsname.nid field is the binary form of the utsname.machine field. For local area 
networks in which a binary node name is appropriate, xutsname.nid contains such a 
name. 

Return Value 

Upon successful completion, a nonnegative value is returned. If the uname or unamex 
system call fails, a value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The uname and unamex system calls fail if: 

EFAULT The name parameter points to a location outside of the process's allocated 
address space. 

Related Information 

The uname command in A/X Operating System Commands Reference. 

System Calls 2-173 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
unlink 

unlink 

Purpose 

Removes a directory entry. 

Syntax 

int unlink (path) 
char *path; 

Description 

The unlink system call removes the directory entry specified by the path parameter. If 
Distributed Services is installed on your system, this path can cross into another node. 

When all links to a file are removed and no process has the file open, the space occupied 
by the file is freed and the file ceases to exist. If one or more processes have the file open 
when the last link is removed, the removal is postponed until all references to the file are 
closed. 

Return Value 

Upon successful completion, a value of 0 is returned. If the unlink system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The unlink system call fails and the named file is not unlinked if one or more of the 
following are true: 

ENOTDIR 
ENOENT 
EACCES 
EACCES 

EPERM 

A component of the path prefix is not a directory. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Write permission is denied on the directory containing the link to be 
removed. 

The named file is a directory and the effective user ID of the process is not 
superuser. 

2-174 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
unlink 

EBUSY The entry to be unlinked is the mount point for a mounted file system. 

ETXTBSY The entry to be unlinked is the last link to a pure procedure (shared text) 
file that is being executed. 

EROFS The entry to be unlinked is part of a read-only file system. 

EFAULT The path parameter points to a location outside of the process's allocated 
address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is installed on your system, unlink can also fail if one or more of 
the following are true: 

EDIST The server has blocked new inbound requests. 

EDIST Outbound requests are currently blocked. 

EDIST The server has a release level of Distributed Services that cannot 
communicate with this node. 

EAGAIN The server is too busy to accept the request. 

ESTALE The file descriptor for a remote file has become obsolete. 

EPERM The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

ENODEV The named file is a remote file located on a-device that has been 
unmounted at the server. 

ENOMEM Either this node or the server does not have enough memory available 
to service the request. 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "close" on page 2-25, "link" on page 2-62, and "open" on page 2-90. 

The rm command in AIX Operating System Commands Reference. 

System Calls 2-175 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
usrinfo 

usrinfo 

Purpose 

Gets and sets user information about the owner of the calling process. 

Syntax 

#include < uinfo.h > 

int usrinfo (cmd, but, count) 
int cmd; 
char *but; 
int count; 

Description 

The usrinfo system call gets and sets information about the owner of the current process. 
The information is a sequence of null-terminated name = value strings. The last string in 
the sequence is terminated by two successive null characters. A child process inherits the 
user information of its parent. 

The but parameter is a pointer to a user buffer. This buffer is usually UINFOSIZ bytes 
long. 

The count parameter is the number of bytes of user information to be copied from or to the 
user buffer. 

If the cmd parameter is one of the following constants: 

GETUINFO Copies up to count bytes of user information into the buffer pointed to by 
the but parameter. 

SETUINFO Sets the user information for the process to the first count bytes in the 
buffer pointed to by the but parameter. The effective user ID of the calling 
process must be superuser to set the user information. 

The user information should at minimum consist of three strings that are typically set by 
the login .program. These three strings are: 

NAME = username 
UID=userid 
TTY = ttyname 

If the process has no terminal, ttyname should be null. 

2-176 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
usrinfo 

Upon successful completion, a nonnegative integer giving the number of bytes transferred 
is returned. If the usrinfo system call fails, a value of -1 is returned and errno is set to 
indicate the error. 

Diagnostics 

The usrinfo system call fails if one or more of the following are true: 

EPERM The cmd parameter is set to SETUINFO and the effective user ID of the 
process is not superuser. 

EINVAL 

EINVAL 

EINVAL 

EFAULT 

The cmd parameter is not set to SETUINFO or GETUINFO. 

The cmd parameter is set to SETUINFO and the count parameter is larger 
than UINFOSIZ. 

The cmd parameter is SETUINFO and buf does not contain a NAME = 
entry. 

The buf parameter points to a location outside of the process's allocated 
address space. 

Related Information 

In this book: "getuinfo" on page 3-223. 

The login command in A/X Operating System Commands Reference. 

System Calls 2-177 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ustat 

ustat 

Purpose 

Gets file system statistics. 

Syntax 

#include < sys/types.h > 
#include < ustat.h > 

int ustat (dev, buf) 
dev-t dev; 
struct ustat *but; 

Description 

The ustat system call gets information about the mounted file system identified by device 
number dev. The dev parameter is the ID of the device, and it corresponds to the st-dev 
member of the structure returned by the stat and fullstat system calls. If the high-order 
bits of the device number are zero, then the device is a local device. If the high-order bits 
of the device number are nonzero, then the calling node queries the remote node over the 
connection identified by these 16 bits. See "fullstat, ffullstat" on page 2-50.2, "stat, fstat" 
on page 2-159, "fullstat.h" on page 5-56.2, and "stat.h" on page 5-69 for more information 
about the device ID. The information is stored into a structure pointed to by the but 
parameter. 

The ustat structure pointed to by the but parameter is defined in the ustat.h file, and it 
contains the following members: 

daddr_t 
ino-t 
char 
char 

f-tfree; 
f-tinode; 
f - fname [6] ; 
f - fpack[6] ; 

/* Total free blocks */ 
/* Number of free i-nodes */ 
/* File system name */ 
/* File system pack name */ 

2-178 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ustat 

Upon successful completion, a value of 0 is returned. If the ustat system call fails, a value 
of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The ustat system call fails if one or more of the following are true: 

EINVAL dev is not the device number of a device containing a mounted file system. 

EFAULT The but parameter points to a location outside of the process's allocated 
address space. 

If Distributed Services is installed on your system, ustat can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

ESTALE 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

dev identifies a remote device that can no longer be reached. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "fullstat, ffullstat" on page 2-50.2, "stat, fstat" on page 2-159, and "fs" on 
page 4-74. 

System Calls 2-179 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
utime 

utime 

Purpose 

Sets file access and modification times. 

Syntax 

#include < unistd.h > 

int utime (path, times) 
char *path; 
struct utimbuf *times; 

Description 

The utime system call sets the access and modification times of the file pointed to by the 
path parameter to the value of the times parameter. If Distributed Services is installed on 
your system, this path can cross into another node. 

If the times parameter is NULL, the access and modification times of the file are set to the 
current time. If the file is a remote file, the current time at the remote node, rather than 
the local node, is used. The effective user ID of the process must be the same as the owner 
of the file or must have write permission in order to use the utime system call in this 
manner. 

If the times parameter is not NULL, it is a pointer to a utimbuf structure and the access 
and modification times are set to the values contained in the designated structure, 
regardless of whether or not those times correlate with the current time. For remote files, 
if the utime system call is used in this way, the file's times may be different from the time 
at the remote node. Only the owner of the file or superuser can use the utime system call 
this way. 

The utimbuf structure pointed to by the times parameter is defined in the unistd.h file, 
and it contains the following members. 

time-t actime; 
time-t modtime; 

/* Date and time of last access */ 
/* Date and time of last modification */ 

The times in this structure are measured in seconds since 00:00:00 GMT, January 1, 1970. 

2-180 AIX Operating System Technical Reference 



Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
utime 

Upon successful completion, a value of 0 is returned. If the utime system call fails, a 
value of -1 is returned and errno is set to indicate the error. 

Diagnostics 

The utime system call fails if one or more of the following are true: 

ENOENT The named file does not exist. 

ENOTDIR A component of the path prefix is not a directory. 

EACCES Search permission is denied by a component of the path prefix. 

EPERM The effective user ID is not superuser or the owner of the file and the times 
parameter is not NULL. 

EACCES The effective user ID is not superuser or the owner of the file, the times 
parameter is NULL, and write access is denied. 

EROFS The file system containing the file is mounted read-only. 

EFAULT The times or path parameter points to a location outside of the process's 
allocated address space. 

ESTALE The process's root or current directory is located in a virtual file system that 
has been unmounted. 

If Distributed Services is· installed on your system, utime can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

System Calls 2-180.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
utime 

ENOCONNECT An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "stat, fstat" on page 2-159. 

2-180.2 AIX Operating System Technical Reference 



luvmount 

I Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
uvmount 

Unmounts a device, directory, or file. 

I Syntax 

int uvmount (stubpath) 
char *stubpath; 

I Description 

The uvmount system call unmounts the device, directory, or file that is mounted on 
stubpath. The stubpath parameter points to a path name. If Distributed Services is 
installed on your system, this path can lead to a remote node. 

To issue a uvmount system call, this process's effective user ID must be superuser, or the 
process must own the stubpath directory and have write permission on the parent directory 
of the stubpath. 

After the uvmount system call has been completed, stubpath reverts to its previous 
interpretation as a directory or file. 

I Return Value 

Upon successful completion, the uvmount system call returns a value of O. If the 
uvmount system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The uvmount system call fails if one or more of the following are true: 

EBUSY 
EPERM 

EINVAL 
EFAULT 

A device that is still in use is being unmounted. 

The process's effective user ID is not superuser nor is this process the 
owner of the stubpath directory, with write permission on the parent 
directory. 

There is nothing mounted on stubpath. 

stubpath points to a location outside of the process's allocated address 
space. 

System Calls 2-180.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
uvmount 

ESTALE The process's root or current directory is located in a virtual file 
system that has been unmounted. 

If Distributed Services is installed on your system, uvmount can also fail if one or more of 
the following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

ENODEV 

ENOMEM 

ENOCONNECT 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "mntctl" on page 2-70.2, "mount" on page 2-71, "umount" on page 2-170, 
"vmount" on page 2-180.5, and "master" on page 4-98. 

The mount and umount commands in AIX Operating System Commands Reference. 

2-180.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
vmount 

Ivmount 

I Purpose 

Mounts a directory or a regular file. 

I Syntax 

#include < sys/vmount.h > 

int vmount (path, stubpath, mflag, type, info, size) 
char *path, *stubpath; 
int mflag; 
unsigned int type; 
unsigned long *info; 
int size; 

I Description 

The vmount system call provides, in addition to the function of the mount system call, 
the following types of mounts: 

• Local file or directory over local file or directory 

• Local file or directory over remote file or directory 

• Remote file or directory over local file or directory 

• Remote file or directory over remote file or directory. 

A directory can only be mounted over a directory, and a file can only be mounted over a 
file. 

A process must have an effective user ID of superuser to use the vmount system call. 

The vmount system call mounts the file or directory identified by the path parameter on 
the file or directory identified by the stubpath parameter. The path and stubpath 
parameters are both pointers to null-terminated path names. For the mntctl system call to 
be useful in reporting current virtual mounts, these paths should both be absolute path 
names, beginning at the root directory with a / (slash). 

The type parameter identifies the type of file system that is being mounted with the path 
parameter. The setting of this parameter also determines whether the info and size 
parameters are used or ignored. The following values are permitted for type: 

System Calls 2-180.5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
vmount 

MNT -AIX Indicates that path identifies a local entity, and the system can determine the 
type of the entity by examining it. For this type, the info and size parameters 
are ignored by the system call. 

When mounting any local device, file, or directory, specify this value. 

MNT -DS Indicates that path identifies an entity in a remote node. For this type, info 
points to the node ID of the remote node, and size is sizeof(long). 

When mounting any remote file or directory, specify this value. 

The mflag parameter defines various characteristics of the object to be mounted. Possible 
values are: 

MNT-READONLY Indicates that the object is read-only, and write access is not 
allowed. If this value is not specified, writing is permitted 
according to individual file accessibility. 

MNT -REMOVABLE Indicates that the object is a removable file system. Whenever 
there are no active references to files or directories on the file 
system, the operating system forgets the content and structure of 
the file system. The user can remove the medium and replace it 
with a different file system. All future references to stubpath will 
refer to the file system on the new medium. 

I Return Value 

Upon successful completion, the vmount system call returns a value of o. If the vmount 
system call fails, a value of -1 is returned, and errno is set to indicate the error. 

I Diagnostics 

The vmount system call fails and the file or directory is not mounted if one or more of the 
following are true: 

EBUSY 

EBUSY 

ENOTBLK 

EFAULT 

E2BIG 

stubpath is currently busy. Possible causes include: 

• The kernel's mount table is full. 
• The path parameter indicates a device that is currently mounted. 

The special file to be mounted, defined by the path parameter, is 
already open for writing. 

The object to be mounted is not a file, directory, or device. 

The info, stubpath, or path parameter points to a location outside of 
the process's allocated address space. 

The number of characters in path is greater than MAXP ATH. 

2-180.6 AIX Operating System Technical Reference 



EPERM 

EPERM 

EPERM 

ENOTDIR 

ENOTDIR 

ENOTDIR 

ENOTDIR 

EINVAL 

EINVAL 

EINVAL 

EINVAL 

EINVAL 

EINVAL 

EINVAL 

ESTALE 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
vmount 

This process is not the owner of the stubpath directory. 

This process does not have write permission on the parent directory of 
stubpath. 

This process does not have an effective user ID of superuser and is 
attempting to mount a device. 

A device is being mounted over a non-directory or over a remote 
directory. 

A mount of a remote device has been attempted. 

A component of the path prefix is not a directory. 

stubfile and path are not both files or both directories. 

For a remote mount, the info parameter did not point to a valid node 
ID. 

A remote mount is requested, but stubpath is not a full path name 
beginning with / (slash). 

type is not a recognized file system type. 

path indicates a device that does not contain a recognizable file 
system. 

A type of MNT -DS was specified, but the local node ID was specified 
in info. 

A remote mount is requested, but path is not local to the server. 

path indicates a device that contains a corrupted file system. 

The process's root or current directory is located in a virtual file 
system that has been unmounted. 

If Distributed Services is installed on your system, vmount can also fail if one or more of 
the following are true: 

EDIST 

EDIST 

EDIST 

EAGAIN 

ESTALE 

EPERM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server has a release level of Distributed Services that cannot 
communicate with this node. 

The server is too busy to accept the request. 

The file descriptor for a remote file has become obsolete. 

The translate tables of the server did not contain any entry for either 
the effective user ID or effective group ID of the calling process. 

System Calls 2-180.7 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
vmouI1t 

ENODEV 

ENOMEM 

ENOCONNECT 

The named file is a remote file located on a device that has been 
unmounted at the server. 

Either this node or the server does not have enough memory available 
to service the request. 

An attempt to establish a new network connection with a remote node 
failed. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

I Related Information 

In this book: "mntctl" on page 2-70.2, "mount" on page 2-71, "umount" on page 2-170, 
"uvmount" on page 2-180.3, and "master" on page 4-98. 

The mount and umount commands in A/X Operating System Commands Reference. 

2-180.8 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-080B-O 
vmount 

System Calls 2-181 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
wait 

wait 

Purpose 

Waits for a child process to stop or terminate. 

Syntax 

int wait (stat-lac) 
int *stat-loc; 

Description 

int wait «int *) 0) 

The wait system call suspends the calling process until it receives a signal that is to be 
caught, or until anyone of the calling process's child processes stops in a trace mode or 
terminates. wait returns without waiting if a child process that hasn't been waited for has 
already stopped or terminated prior to the call. 

If the stat-loc parameter is nonzero, 16 bits of information called status are stored in the 
low-order 16 bits of the location pointed to by stat-lac. The status information can be used 
to differentiate between stopped and terminated child processes and, if the child process 
terminated, the status information identifies the cause of termination and passes 
information to the parent process. This is accomplished in the following manner: 

• If the child process stopped in a trace mode, then the high-order 8 bits of status contain 
the number of the signal that caused the process to stop and the low-order 8 bits are set 
equal to 0177 (Ox7F). 

• If the child process terminated due to an exit system call, the low-order 8 bits of status 
are 0 and the high-order 8 bits contain the low-order 8 bits of the parameter that the 
child passed to the exit system call. 

• If the child process terminated due to a signal, the high-order 8 bits of status are 0 and 
the low-order 8 bits contain the number of the signal that caused the termination. In 
addition, if the low-order seventh bit (bit 0200 or Ox80) is set, then a memory image file 
is produced before wait returns. 

If a parent process terminates without waiting for its child processes to terminate, the 
parent process ID of each child process is set to 1. This means the initialization process 
inherits the child processes. 

Note: The effect of the wait system call can be modified by the setting of the SIGCLD 
signal. See "Special Signals" on page 2-148 for details. 

2-182 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
wait 

Warning: The actions of the wait system call are undefined if the stat-Ioc 
parameter points to a location outside of the process's allocated address 
space. 

Return Value 

If the wait system call returns due to a stopped or terminated child process, the process ID 
of the child is returned to the calling process. If the wait system call fails, a value of -1 is 
returned and errno is set to indicate the error. 

Diagnostics 

The wait system call fails and returns without waiting if one or more of the following are 
true: 

ECHILD 

EINTR 

The calling process has no existing unwaited-for child processes. 

The wait system call received a signal. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "fork" on page 2-46, "pause" on page 2-94, "ptrace" on page 2-102, and 
"signal" on page 2-145. 

System Calls 2-183 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
write, ... 

write, writex 

Purpose 

Writes to a file. 

Syntax 

int write (fildes, but, nbytes) 
int tildes; 
char *but; 
unsigned int nbytes; 

Description 

int writex (fildes, but, nbytes, ext) 
int tildes; 
char *but; 
unsigned int nbytes; 
int ext; 

The write system call writes the number of bytes specified by the nbytes parameter from 
the buffer specified by the but parameter to the file associated with the tildes parameter. If 
Distributed Services is installed on your system, this file can reside on another node. 

The tildes parameter is a file descriptor obtained from a creat, open, dup, fcnt!, or pipe 
system call. 

On devices capable of seeking, the actual writing of data proceeds from the position in the 
file indicated by the file pointer. Upon return from the write system call, the file pointer 
increments by the number of bytes actually written. 

On devices incapable of seeking, writing always takes place starting at the current 
position. The value of a file pointer associated with such a device is undefined. 

When the O-APPEND flag of the file status is set, the file pointer is set to the end of the 
file prior to each write. 

If the write system call requests that more bytes be written than there is room for, only as 
many bytes as there is room for are written and the write system call returns an integer 
equal to the number of bytes written. The next attempt to write nonzero number of bytes 
will fail (except as noted following). The limit reached can be either the ulimit (see 
"ulimit" on page 2-167) or the end of the physical medium. A partial write is not permitted 
for the following: 

• If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag 
word is set, then a write to a full pipe (or FIFO) returns a count of O. 

2-184 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
write, ... 

• If the file being written is a pipe (or FIFO) and the O-NDELAY flag of the file flag 
word is not set, then a write to a full pipe (or FIFO) blocks until space becomes 
available. 

If the file to be written supports enforcement mode record locks and all or part of the 
region to be written is currently locked by another process, then the action taken depends 
on the setting of the O-NDELAY flag: 

• If O-NDELAY is set, then write returns -1 and sets errno to EAGAIN. 

• If O-NDELAY is not set, then the calling process blocks until the lock is released. 

For more information about record locks, see "lockf' on page 2-64. 

If the file has been mapped, the write system call writes to a mapped file segment. If the 
fildes file descriptor was used to map the file copy-on-write, then the copy-on-write segment 
is used. Otherwise, the write system call writes to the read-write mapped segment for the 
file. 

Warning: If a process issues a write system call to a file that it has not 
mapped, but that other processes have mapped copy-on-write, then the 
results are unpredictable. However, if the process first attaches the 
mapped file in copy-on-write mode with the shmat system call, then the 
write to the file is properly reflected in the copy-an-write shared segment. 
The writex system call performs the same function as write, except that it provides 
communication with character device drivers that require more information or return more 
status than write can handle. 

For files, directories, or special files with drivers that do not handle extended operations, 
the writex system call does exactly what the write system call does, and the ext parameter 
is ignored. 

Each driver interprets the ext parameter in a device-dependent way, either as a value or as 
a pointer to a communication area. The nonextended write system call is equivalent to 
the extended writex system call with an ext parameter value of o. Drivers must apply 
reasonable defaults when the ext parameter value is O. 

Return Value 

Upon successful completion, the number of bytes actually written is returned. If the write 
or writex system call fails, a value of -1 is returned and errno is set to indicate the error. 

System Calls 2-185 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
write, ... 

Diagnostics 

The write and writex system calls fail and the file pointer remains unchanged if one or 
more of the following are true: 

EBADF The tildes parameter is not a valid file descriptor open for writing. 

EAGAIN An enforcement mode record lock is outstanding in the portion of the file 
that is to be written. 

EPIPE An attempt is made to write to a pipe that is not open for reading by any 
process. A SIGPIPE signal is also sent to the calling process. 

EFBIG An attempt is made to write a file that exceeds the process's file size limit or 
the maximum file size (see "ulimit" on page 2-167). If Distributed Services is 
installed on your system, the file size cannot exceed the client's default file 
size limit. 

EF A ULT but points to a location outside of the process's allocated address space. 

EDEADLK A deadlock would occur if the calling process were to sleep until the region 
to be written was unlocked. 

EINTR A signal was caught during the write system call. 

If Distributed Services is installed on your system, write can also fail if one or more of the 
following are true: 

EDIST 

EDIST 

EAGAIN 

ENOMEM 

The server has blocked new inbound requests. 

Outbound requests are currently blocked. 

The server is too busy to accept the request. 

Either this node or the server does not have enough memory available 
to service the request. 

EBADCONNECT An attempt to use an existing network connection with a remote node 
failed. 

Related Information 

In this book: "creat" on page 2-27, "dup" on page 2-32, "lockf' on page 2-64, "lseek" on 
page 2-67, "open" on page 2-90, "pipe" on page 2-95, and "ulimit" on page 2-167, and 
Appendix C, "Writing Device Drivers." 

2-186 AIX Op.erating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

Chapter 3. Subroutines 

Subroutines 3-1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

About This Chapter 

This chapter gives detailed information about the subroutines (also called functions) that 
are available in standard AIX subroutine libraries. For an explanation of the differences 
between system calls and subroutines, see the introduction to Chapter 2 on page 2-2. For 
an explanation of the "Syntax" section of each entry, see "Syntax" on page v. For an 
explanation of header files, see "Header Files" on page vii. 

Each subroutine entry contains a "Library" section that indicates the library where the 
subroutine is stored. Subroutines are stored in libraries to conserve storage space and to 
make the program linkage process more efficient. A library (sometimes called an archive) 
is a data file that contains copies of a number of individual files and control information 
that allows them to be accessed individually. See "ar" on page 4-18 and the ar command 
in AIX Operating System Commands Reference for more information about libraries. 

The libraries that contain the subroutines described in this book are located in the /usr/lib 
directory. By convention, all of them have names of the form libname.a, where name 
identifies the specific library. 

You do not need to do anything special to use subroutines from the Standard C Library 
(libc.a) or the Run-time Services Library (librts.a). The cc command automatically 
searches these libraries for subroutines that a program needs. However, if you use 
subroutines from another library, you must tell the compiler to search that library. If your 
program uses subroutines from the library libname.a, compile your program with the flag 
-Iname. The following example compiles the program myp rag. c, which uses subroutines 
from the libdbm.a: 

CC myprag.c -ldbm 
You can specify more than one -1 flag, but they must be specified after any other flags. See 
the cc command in AIX Operating System Commands Reference for details. 

The libraries discussed in the book are: 

• Curses Library (libcurses.a) 
• Database Library (libdbm.a) 
• DOS Services Library (libdos.a) 
• Extended Curses Library (libcur.a) 
• Graphics Libraries (libpIot.a, libprint.a, lib300.a, and others) 
• IPC Library (libipc.a) 
• Math Library (libm.a) 
• Object File Access Routine Library (libId.a) 
• Programmers Workbench Library (libPW.a) 
• Run-time Services Library (librts.a) 
• Standard C Library (libc.a) 
• Standard I/O Package (libc.a) 
• Usability Services Library (libpaneIs.a). 

3-2 AIX Operating System Technical Reference 



The Standard I/O Package subroutines are actually contained in the Standard C Library 
(libc.a). These subroutines implement a buffered I/O system on top of the basic I/O 
provided by the system calls. For more information about these subroutines, see "standard 
i/o library" on page 3-342. 

Note: A few of the subroutines are stored in libraries that may not be included in your 
system configuration. If the likage editor (ld, which is called by the cc command) gives 
you an error message indicating that it cannot find one of the subroutines, then check 
Appendix E, "Component Cross Reference." The subroutines listed there are shipped with 
programs or licensed programs that must be installed separately. 

Subroutines 3-3 



a641,164a 

a641, 164a 

Purpose 

Converts between long integers and base-64 ASCII strings. 

Library 

Standard C Library (libc.a) 

Syntax 

long a641 (8) 
char *8; 

Description 

char *164a (l) 
long l; 

The a641 and 164a subroutines maintain numbers stored in base-64 ASCII characters. This 
is a notation in which long integers are represented by up to 6 characters, each character 
representing a digit in a base-64 notation. 

The following characters are used to represent digits: 

represents o. 
/ represents 1. 
0-9 represent 2-11. 
A-Z represent 12-37. 
a-z represent 38-63. 

The a641 subroutine takes a pointer to a null-terminated character string containing a 
value in base-64 representation and returns the corresponding long value. If the string 
pointed to by the 8 parameter contains more than 6 characters, the a641 subroutine uses 
only the first 6. 

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the 
corresponding base-64 representation. If the I parameter is 0, then the 164a subroutine 
returns a pointer to a null string. 

The value returned by 164a is a pointer into a static buffer, the contents of which are 
overwritten by each call. 

3-4 AIX Operating System Technical Reference 



abort 

abort 

Purpose 

Generates an lOT fault to terminate the current process. 

Library 

Standard C Library (libc.a) 

Syntax 

int abort () 

Description 

The abort subroutine causes a SIGIOT signal to be sent to the current process. This 
usually terminates the process and produces a memory dump. 

It is possible for the abort subroutine to return control if SIGIOT is caught or ignored. In 
this case, abort returns the value returned by the kill system call. 

If SIGIOT is neither caught nor ignored, and if the current directory is writable, then the 
abort subroutine produces a memory dump in a file named core in the current directory. 
The shell then displays the message: 

abort - core dumped 

Related Information 

In this book: "exit, -exit" on page 2-40, "kill" on page 2-60, and "signal" on page 2-145. 

The adb command in AIX Operating System Commands Reference. 

Subroutines 3-5 



abs 

abs 

Purpose 

Returns the absolute value of an integer. 

Library 

Standard C Library (libc.a) 

Syntax 

int abs (i) 
int i; 

Description 

The abs subroutine returns the absolute value of its integer operand. 

Note: A two's-complement integer can hold a negative number whose absolute value is 
too large for the integer to hold. When given this largest negative value, the abs 
subroutine returns the same value. 

Related Information 

In this book: "floor, ceil, fmod, fabs" on page 3-167. 

3-6 AIX Operating System Technical Reference 



assert 

Purpose 

Verifies a program assertion. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < assert.h > 

void assert (expression) 
int expression; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
assert 

The assert macro puts diagnostics into a program. If expression is false (zero), then assert 
writes the following message on the standard error output and aborts the program: 

Assertion failed: expression, file filename, line linenum 

In the error message, filename is the name of the source file and linenum is the source line 
number of the assert statement. 

If you compile a program with the preprocessor option -DNDEBUG, or with the 
preprocessor control statement #define NDEBUG ahead of the #include < assert.h > 
statement, assertions will not be compiled into the program. 

Related Information 

In this book: "abort" on page 3-5. 

The cpp command in AIX Operating System Commands Reference. 

Subroutines 3-7 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
atof, 

atof, strtod 

Purpose 

Converts an ASCII string to a floating-point number. 

Library 

Standard C Library (libc.a) 

Syntax 

double atof (nptr) 
char *nptr; 

Description 

double strtod (nptr, ptr) 
char *nptr, **ptr; 

The atof and strtod subroutines convert a character string, pointed to by the nptr 
parameter, to a double-precision floating-point number. The first unrecognized character 
ends the conversion. 

These subroutines recognize a character string when the characters appear in the 
following order: 

1. An optional string of white-space characters 
2. An optional sign 
3. A string of digits optionally containing a decimal point 
4. An optional e or E followed by an optionally signed integer. 

If the string begins with an unrecognized character, atof and strtod return the value o. 
If the value of ptr is not (char **) NULL, then a pointer to the character that terminated 
the scan is stored in *ptr. If an integer cannot be formed, *ptr is set to nptr, and 0 is 
returned. 

If the correct return value overflows, atof and strtod return INF. On underflow, atof and 
strtod return O. 

The at of (nptr) subroutine call is equivalent to strtod (nptr, (char **) NULL). 

The atof and strtod subroutines perform conversions to a floating-point number. See 
"strtol, atol, atoi" on page 3-347 for information on conversions to integers. 

3-8 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
atof, ... 

In this book: "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf' on page 3-325 and 
"strtol, atol, atoi" on page 3-347. 

Subroutines 3-8.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
atof, ... 

3-8.2 AIX Operating System Technical Reference 



bessel: jO, jl, jn, yO, yl, yn 

Purpose 

Computes Bessel functions. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

double jO (x) 
double x; 

double jl (x) 
double x; 

double jn (n, x) 
int n; 
double x; 

Description 

double yO (x) 
double x; 

double yl (x) 
double x; 

double yn (n, x) 
int n; double x; 

bessel 

The jO and jl subroutines return Bessel functions of x of the first kind, of orders 0 and 1, 
respectively. jn returns the Bessel function of x of the first kind of order n. 

The yO and yl subroutines return the Bessel functions of x of the second kind, of orders 0 
and 1, respectively. yn returns the Bessel function of x of the second kind of order n. The 
value of x must be positive. 

Non-positive parameters cause yO, yl, and yn to return the value HUGE, to set errno to 
EDOM, and to write a message to the standard error output indicating a DOMAIN error. 

Parameters that are too large in magnitude cause jO, jl, yO, and yl to return as much of 
the result as possible, to set errno to ERANGE, and to write a message to the standard 
error output indicating a PLOSS error. 

You can change these error-handling procedures with the math err subroutine. 

Subroutines 3-9 



bessel 

Related Information 

In this book: "matherr" on page 3-238. 

3-10 AIX Operating System Technical Reference 



bsearch 

Purpose 

Performs a binary search. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < search.h > 

char *bsearch «char *)key, (char *)base, neZ, sizeof (*key), compar) 
unsigned int neZ; 
int (*compar) ( ); 

Description 

bsearch 

The bsearch subroutine is a binary search routine generalized from Donald E. Knuth's 
The Art of Computer Programming, Volume 3,6.2.1, Algorithm B.* It returns a pointer into 
a table indicating where a datum is found. 

The table must already be sorted in increasing order according to the provided comparison 
function compar. The key parameter points to the datum to be sought in the table. The 
base parameter points to the element at the base of the table. The neZ parameter is the 
number of elements in the table. The compar parameter is a pointer to the comparison 
function, which is called with two parameters that point to the elements being compared. 

The comparison function must compare its parameters and return a value as follows: 

• If the first parameter is less than the second parameter, compar must return a value 
less than O. 

• If the first parameter is equal to the second parameter, compar must return O. 
• If the first parameter is greater than the second parameter, compar must return a value 

greater than O. 

The comparison function need not compare every byte, so arbitrary data can be contained 
in the elements in addition to the values being compared. 

Reading, Massachusetts: Addison-Wesley, 1981. 

Subroutines 3-11 



bsearch 

The pointers key and base should be of type pointer-to-element, and cast to type 
pointer-to-character. Although declared as type pointer-to-character, the value returned 
should be cast into type pointer-to-element. 

Return Value 

If the key is found in the table, the bsearch returns a pointer to the element found. If the 
key cannot be found in the table, then bsearch returns the value NULL. 

Related Information 

In this book: "hsearch, here ate , hdestroy" on page 3-227, "lsearch" on page 3-234, "qsort" 
on page 3-315, and "tsearch, tdelete, twalk" on page 3-364. 

3-12 AIX Operating System Technical Reference 



cfgabdds 

cfgabdds 

Purpose 

Builds and initializes a Define-Device Structure, and then issues a Define_Device SVC. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < sys/bioca.h >-

int cfgabdds (argc, argv, ptr, len) 
int argc; 
char *argv[ ]; 
char *ptr; 
int len; 

Description 

A customize helper program must issue the Define-Device SVC for each VRM device 
driver. The cfgabdds subroutine is provided for use in customize helper programs to 
simplify the task of building the Define-Device structure and issuing the SVC. See AIX 
Operating System Programming Tools and Interfaces for more detailed information about 
using this subroutine. 

The cfgabdds subroutine takes the following parameters: 

argc The number of elements in the argv array passed to the customize helper by the 
calling program, which is normally the vrmconfig comand. 

argv An array of parameters passed to the customize helper by the calling program, 
which is normally the vrmconfig command. 

ptr A pointer to the initialized structure of device-dependent information for the device 
being added to the system. This structure does not include hardware or block I/O 
device characteristics. If the device requires no device-dependent information, 
then set this parameter to NULL. 

len The length in bytes of the structure pointed to by the ptr parameter. If the device 
requires no device-dependent information, then set this parameter to o. 

Subroutines 3-13 



cfgabdds 

The customize helper must pass argc and argv to cfgabdds without modification. 

Return Value 

Upon successful completion, the cfgabdds subroutine returns the value VRCSUCC. If 
cfgabdds fails, then one of the following values is returned: 

VRCKCORP 
VRCKUNXF 

VRCKIOPT 
VRCKNOSP 

VRCKIARG 
VRCKSTNF 
VRCKASNF 
VRCKANOP 
VRCKYINF 
VRCKYWNF 
VRCKNONE 
VRCKNOBY 

A configuration file is not in attribute file format. 

An error was returned from the SVC that configures the AIX device 
driver. 

An invalid option was specified from vrmconfig. 

No storage space available. The malloc subroutine returned a NULL 
value. 

One or more parameters are invalid. 

kaf-file keyword value not found in the argv passed from vrmconfig. 

kaf-file keyword value not found in the argv passed from vrmconfig. 

Unable to open kaf file. 

Keyword not found in input file. 

Keyword not found in kaf file. 

No processing required by library routine. 

Length of device-dependent information exceeds the limit of the 
Define-Device Structure. (The total space allowed for entire DDS is 500 
bytes.) 

Related Information 

In this book: Appendix C, "Writing Device Drivers." 

AIX Operating System Programming Tools and Interfaces. 

3-14 AIX Operating System Technical Reference 



cfgadev 

Purpose 

Adds a device. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfgOl.h > 

int cfgadev (master, system, xstanza, vstanza, dstanza, vflag, cflag) 
char *master, *system, *xstanza, *vstanza, *dstanza; 
int vflag, cflag; 

Description 

cfgadev 

The cfgadev subroutine adds information about devices and device drivers to the system 
configuration. 

The master parameter points to the full path name of the master file. The system 
parameter points to the full path name of the system file. These files are usually 
/etc/master and /etc/system, respectively. 

The xstanza, vstanza, and dstanza parameters point to buffers that contain the text of 
attribute file stanzas. Anyone or two of these parameters can be NULL pointers, 
indicating that a stanza of that type is not to be added, but at least one of them must point 
to a stanza buffer. 

The xstanza parameter points to an AIX device driver stanza to be added to the master file. 
If the major device number is missing from the stanza, then the cfgadev subroutine 
generates a new one, beginning with decimal 20. 

The vstanza parameter points to a VRM device driver stanza to be added to the master file. 
If the IOCN is missing from the stanza, then the cfgadev subroutine generates a new one, 
beginning with decimal 1024. 

The dstanza parameter points to a device stanza to be added to the system file. If the IODN 
is missing from the stanza, then the cfgadev subroutine generates a new one, beginning 

Subroutines 3-15 



cfgadev 

with decimal 12000. It also generates a minor device number if only the prefix is supplied 
or if the value is not unique. 

The uflag parameter is either 1 (for "yes") or 0 (for "no"), indicating whether to execute the 
vrmconfig command after the device stanza is added. If the uflag parameter is 1, then 
cfgadev executes the vrmconfig command with the -a stname flag, where stname is the 
name of the device stanza. The vrmconfig command then processes this stanza for driver 
addition and produces a shell procedure. The cfgadev subroutine then runs this shell 
procedure, which creates the special file /dev/stname, where stname is the name of the 
device stanza in the system file. If the vrmconfig command returns an error, then all 
stanzas that were added to the master and system files are deleted. 

The cflag parameter is either 1 (for "yes") or 0 (for "no"), indicating whether to attempt to 
associate the VRM device driver stanza with one that has been defined previously. If the 
cflag parameter is 1, then the cfgadev subroutine gets the VRM device driver stanza 
associated with the device being added. If this VRM device driver stanza contains a code 
keyword, then cfgadev searches through the master file for other stanzas that contain the 
same code keyword value and that are associated with a device stanza, in the system file, 
with the same dtype value. If another stanza is found and if that stanza is defined before 
the stanza for the device being added, then the cfgadev subroutine replaces the code 
keyword with a copy keyword to copy the stanza that was found. If the VRM device 
driver stanza contains a copy keyword, then cfgadev verifies that the stanza it is copying 
is defined before the VRM device driver stanza of the device being added. 

If the device stanza pointed to by the dstanza parameter contains the admgr keyword, 
then its value specifies the name of the device manager's stanza in the system file. The 
new device is added to the vdmgr keyword value list in the device manager's stanza. 

If the device stanza pointed to by the dstanza parameter contains the specproc keyword, 
then the program specified by the value of this keyword is executed to perform any special 
processing required when adding this device. The value of the specproc keyword must be 
the full path name of an executable file. The following arguments are passed to the 
program using the argv mechanism described in "exec: execl, execv, execle, execve, 
execlp, execvp" on page 2-34. All of them are passed as character strings. 

argv[O] The full path name of the special-processing program 
argv[l] The full path name of the master file 
argv[2] The full path name of the system file 
argv[3] The name of the device stanza 
argv[4] The character string II a II, indicating addition. 

If the special processing program fails, then the device is still added to the system, but 
additional steps may be required before it can be used. 

3-16 AIX Operating System Technical Reference 



cfgadev 

Return Value 

File 

Upon successful completion, the value CFG-SUCC is returned. If the cfgadev subroutine 
fails, then one of the following values is returned: 

CFG-BEMP The xstanza, vstanza, and dstanza parameters are all NULL pointers. 

CFG-BFIC An input stanza is incomplete, or necessary information is missing. 

CFG-BFNA A failure occured while adding a stanza to the master or system file. 

CFG-BFSM An input stanza buffer can not be updated because the buffer is too small. 

CFG-CFLI The cflag parameter is 1, but the device stanza pointed to by the dstanza 
parameter contains nocopy = true. Or, the VRM device driver stanza 
for the new device contains a copy keyword, but the stanza that it copies 
is not defined before it in the /etc/master file. 

CFG-CLSE An error was detected while trying to close a file. 

CFG-FCOR The master or system file is set up incorrectly. 

CFG-MALF Memory allocation failed because of insufficient space. 

CFG-MAXM The maximum number of minor device numbers has been reached for the 
driver associated with the device being added. 

CFG-MGRF A failure occurred while updating the device manager's stanza. 

CFG-MPRE The prefix of the device's minor number is neither b nor c. 

CFG-OPNE An error was detected while trying to open a file. 

CFG-SLPF Special processing failed. The device was added but may require some 
additional steps before it can be used. 

CFGT-VLNG An IOCN value, an IODN value, or a major device number could not be 
generated to complete an input stanza. 

CFG-VCFG The vrmconfig command failed. 

/ etc/ specials 

Subroutines 3-17 



cfgadev 

Related Information 

In this book: "attributes" on page 4-20, "master" on page 4-98, and "system" on" 
page 4-139. 

The vrmconfig command in AIX Operating System Commands Reference. 

3-18 AIX Operating System Technical Reference 



cfgamni 

Purpose 

Adds a minidisk. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#inelude < efg02.h > 

int efgamni (sysstanza, fsstanza, use, loc) 
char *sysstanza, *fsstanza; 
int use, loc; 

Description 

cfgamni 

The efgamni subroutine creates minidisks. The necessary steps to accomplish this include 
adding stanzas to the fete/system and the /ete/filesystems files, updating coprocessor 
stanzas, executing the vrmeonfig command to define the minidisk, and issuing AIX 
subroutine calls to make the file system usable. The calling process must have an effective 
ID of superuser. 

The sysstanza and fsstanza parameters point to buffers that contain the text of attribute 
file stanzas. The sysstanza parameter points to a minidisk stanza that is to be added to the 
fete/system file. The fsstanza parameter points to a minidisk stanza that is to be added to 
the / ete/filesystems file. 

The use parameter specifies how the minidisk is used. The values allowed for this 
parameter are: 

P ARTUNIX AIX file system partition 
PARTCOPR Coprocessor partition 
P ARTOTHR A partition for some other use. 

The loc parameter specifies the approximate location on the physical disk where the 
minidisk should reside. The values allowed for this parameter are: 

PARTLOCH 
PARTLOCM 

At the high end of the fixed disk 
Near the center of the fixed disk 

Subroutines 3-19 



cfgamni 

P ARTLOCL N ear the beginning of the fixed disk. 

After the cfgamni subroutine completes successfully, the /etc/system file contains a 
stanza for the new minidisk, and the minidisk has been added to the system. 

Return Value 

Files 

Upon successful completion, the value CFG-SUCC is returned. If the cfgamni subroutine 
fails, then one of the following values is returned: 

CFG-NSID 

CFG-USZF 

CFG-MAXP 

CFG-VRMF 

CFG-APIE 

CFG-CFEF 

CFG-UNRW 

CFG-FOPN 

The calling process's effective user ID is not superuser. 

The format of a stanza is incorrect. 

The maximum number of minidisks are already defined. 

The vrmconfig command could not define the partition. 

One or more parameters are incorrect. 

The VRM call to create the partition failed. 

An unrecoverable read or write error occurred. 

An error occurred while opening a file. 

/ etc/ddi/ cpmgr 
/ etc/filesystems 
/etc/system 

Related Information 

In this book: "attributes" on page 4-20, "master" on page 4-98, and "system" on 
page 4-139. 

The vrmconfig command in A/X Operating System Commands Reference. 

3-20 AIX Operating System Technical Reference 



cfgaply 

Purpose 

Applies configuration information. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfg03.h > 

int cfgaply (restart) 
int restart; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
cfgaply 

The cfgaply subroutine rebuilds the AIX kernel. It runs the make command to allow you 
to rebuild the following files: 

• /usr/sys/cf/conf.c 
• /usr/sys/cf/conf.o 
• /usr/sys/specials 
• Kernel library files: 

/usr/sys/libO 
/usr/sys/libl 
/usr/sys/lib2 

The restart parameter indicates whether to restart the system after the subroutine 
completes. If restart is a nonzero value, then the system is restarted after completion. 

Before attempting to rebuild the kernel, cfgaply creates a backup copy of it named 
/unixdate.seq, where date is the Julian date the backup was created, and seq is a sequence 
number, starting with 1. Since kernel images take up storage space, cfgaply deletes any 
backup copies that were saved previously. 

The cfgaply subroutine creates a shell procedure named /usr/sys/specials that contains 
the mknod, chown, and chmod commands necessary to create the special files (fdev files) 
needed by the new kernel. The cfgaply subroutine does not run this shell procedure. 

Subroutines 3-21 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
cfgaply 

Return Value 

Files 

If the restart parameter is nonzero, then the system is restarted and the cfgaply subroutine 
does not return. If restart is 0 and cfgaply completes successfully, then it returns the 
value CFG-SUCC. If an AIX program fails that cfgaply has executed, the return code 
from that program is returned. If the cfgaply subroutine itself fails, then one of the 
following values is returned: 

CFG-ACCS 

CFG-AOPN 

CFG-ABCK 

CFG-ACPF 

CFG-AMKF 

/unix 

A failure occurred while accessing the /unix kernel. 

The open system call failed. 

A failure occurred while reading the kernel and writing to the backup file. 

A failure occurred while reading the rebuilt kernel (fusr/sys/unix.std) 
and copying it to /unix on the root file system. The previous /unix kernel 
remains in tact. 

The make command failed. Error messages from make are redirected to 
the file /usr/sys/make.out. 

/unixdate.seq 
/usr/sys/cf/conf.e 
/usr /sys/ ef/ eonf.o 
/usr/sys/speeials 
/usr/sys/libO 
/usr/sys/libl 
/usr/sys/lib2 
/usr/sys/make.out 
/usr/sys/unix.std 

Related Information 

In this book: "config" on page 6-7. 

The eonfig and make commands in AIX Operating System Commands Reference. 

3-22 AIX Operating System Technical Reference 



cfgcadsz 

Purpose 

Adds or replaces a stanza in an attribute file. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfg04.h > 

int cfgcadsz (atfile, stanza, stname,after) 
CFG--SFT *atfile; 
char *stanza; 
char *stname; 
char *after; 

Description 

cfgcadsz 

The cfgcadsz subroutine adds a new stanza or replaces an existing stanza in an attribute 
file. (For details about attribute files, see "attributes" on page 4-20.) 

The atfile parameter points to an open attribute file structure. The stanza parameter 
points to the buffer that contains the stanza to be written. The stname parameter points to 
the name of the stanza to be added to the file. 

The after parameter points to the name of the stanza after which the new stanza is to be 
inserted. If this parameter is NULL, then the stanza is added to the end of the file. 

All information that is repeated in the default stanza of the attribute file is removed from 
the new stanza before it is written to the file. 

The calling program must have an effective user ID of superuser to access system 
customization files such as /etc/master, /etc/system, and /etc/predefined. 

Subroutines 3-23 



cfgcadsz 

Return Value 

Upon successful completion, the value CFG-SUCC is returned. If the cfgcadsz subroutine 
fails, then the following value is returned: 

CFG-ECLS An error occurred while closing a file. 

CFG-EOPN An error occurred while opening a file. 

CFG-SPCE Memory allocation failed because of insufficient space. 

CFG - UNIO An unrecoverable I/O error occurred during processing. 

Related Information 

In this book: "cfgadev" on page 3-15, "cfgamni" on page 3-19, "cfgcclsf' on page 3-25, 
"cfgcdlsz" on page 3-27, "cfgcopsf' on page 3-29, "cfgcrdsz" on page 3-31, and "attributes" 
on page 4-20. 

3-24 AIX Operating System Technical Reference 



cfgcclsf 

Purpose 

Closes an attribute file. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#inelude < efg04.h > 

int efgeelsf (atfile) 
CFG--SFT *atfile; 

Description 

cfgcclsf 

The efgeelsf subroutine closes an attribute file. (For details about attribute files, see 
"attributes" on page 4-20.) 

The atfile parameter points to an open attribute file structure. 

The calling program must have an effective user ID of superuser to access system 
customization files such as fete/master, fete/system, and fete/predefined. 

Return Value 

Upon successful completion, the value CFG-SUCC is returned. If the efgeelsf subroutine 
fails, then the following value is returned: 

CFG-UNIO Unrecoverable I/O error occurred during processing. 

Subroutines 3-25 



cfgcclsf 

Related Information 

In this book: "cfgcadsz" on page 3-23, "cfgcdlsz" on page 3-27, "cfgcopsf' on page 3-29, 
"cfgcrdsz" on page 3-31, and "attributes" on page 4-20. 

3-26 AIX Operating System Technical Reference 



cfgcdlsz 

Purpose 

Deletes a stanza from an attribute file. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfg04.h > 

int cfgcdlsz (atfile, stname) 
CFG __ SFT *atfile; 
char *stname; 

Description 

cfgcdlsz 

The cfgcdlsz subroutine deletes a stanza from an attribute file. (For details about 
attribute files, see "attributes" on page 4-20.) 

The atfile parameter points to an open attribute file structure. The stname parameter 
points to the name of the stanza to be deleted from the file. 

The calling program must have an effective user ID of superuser to access system 
customization files such as /etc/master, /etc/system, and /etc/predefined. 

Return Value 

Upon successful completion, the value CFG-SUCC is returned. If the cfgcdlsz subroutine 
fails, then one of the following values is returned: 

CFG-ECLS 

CFG-EOPN 

CFG-SPCE 

CFG-SZBF 

An error occurred while closing a file. 

An error occurred while opening a file. 

Memory allocation failed because of insufficient space. 

The file contains a stanza that is larger than the maximum allowable 
stanza size. 

Subroutines 3-27 



cfgcdlsz 

CFG -SZNF The requested stanza to be deleted was not found in the file. 

CFG-UNIO An unrecoverable I/O error occurred during processing. 

Related Information 

In this book: "cfgcrdsz" on page 3-31, "cfgdmni" on page 3-36, "cfgcadsz" on page 3-23, 
"cfgcclsf" on page 3-25, "cfgcopsf" on page 3-29, "cfgddev" on page 3-33, and "attributes" 
on page 4-20. 

3-28 AIX Operating System Technical Reference 



cfgcopsf 

Purpose 

Opens an attribute file. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfg04.h > 

CFG--8FT *cfgcopsf (path) 
char *path; 

Syntax 

cfgcopsf 

The cfgcopsf subroutine opens an attribute file for update. (For details about attribute 
files, see "attributes" on page 4-20.) 

The path parameter points to the full path name of the file to be opened. 

The cfgcopsf subroutine calls the fopen subroutine to open the file for update. If the call 
to fopen is successful, then cfgcopsf allocates a CFG __ 8FT structure. This structure 
contains the file descriptor returned by fopen, a pointer to a default stanza buffer for 
reads, a pointer to an array of indexes in a default stanza buffer, and the full path name of 
the file that was opened. 

The calling program must have an effective user ID of superuser to access system 
customization files such as /etc/master, /etc/system, and /etc/predefined. 

Return Value 

Upon successful completion, the cfgcopsf subroutine returns a pointer to an open 
attribute file structure. If the cfgcopsf subroutine fails, it returns a NULL pointer. 

Subroutines 3-29 



cfgcopsf 

Related Information 

In this book: "cfgcadsz" on page 3-23, "cfgcclsf' on page 3-25, "cfgcdlsz" on page 3-27, 
"cfgcrdsz" on page 3-31, "fopen, freopen, fdopen" on page 3-168, and "attributes" on 
page 4-20. 

3-30 AIX Operating System Technical Reference 



cfgcrdsz 

Purpose 

Reads an attribute file stanza. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < cfg04.h > 

int cfgcrdsz (atfile, stanza, nbytes, stname) 
CFG--SFT *atfile; 
char *stanza; 
int nbytes; 
char *stname; 

Description 

cfgcrdsz 

The cfgcrdsz subroutine reads one stanza from an attribute file. A specific stanza may be 
requested, or the next stanza in the file can be read. When a stanza is read, any 
information contained in a default stanza preceding it in the file will be added to the 
information returned in the buffer. (For details about attribute files, see "attributes" on 
page 4-20.) 

The atfile parameter points to an open attribute file structure. 

The stanza parameter points to the buffer into which the stanza will be read. 

The nbytes parameter is the size in bytes of the buffer pointed to by the stanza parameter. 

The stname parameter points to a string containing the name of the stanza to be read. If 
this parameter is a NULL pointer, then the next stanza in the file is read. 

The calling program must have an effective user ID of superuser to access system 
customization files such as /etc/master, /etc/system, and /etc/predefined. 

Subroutines 3-31 



cfgcrdsz 

Return Value 

Upon successful completion, the value CFG-SUCC is returned. If the cfgcrdsz subroutine 
fails, then one of the following values is returned: 

CFG-EOF The next stanza was requested, but the end of the file has been reached. 

CFG-SZNF 

CFG-SZBF 

CFG-UNIO 

The requested stanza was not found in the file. 

The requested stanza is longer than nbytes bytes. 

Unrecoverable I/O error occurred during processing. 

Related Information 

In this book: "cfgcadsz" on page 3-23, "cfgcclsf' on page 3-25, "cfgcdlsz" on page 3-27, 
"cfgcopsf' on page 3-29, and "attributes" on page 4-20. 

3-32 AIX Operating System Technical Reference 



cfgddev 

Purpose 

Deletes a device. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#inelude < efgOl.h > 

int efgddev (master, system, dstname, vflag) 
ehar *master, *system, *dstname; 
int vflag; 

Description 

cfgddev 

The efgddev subroutine deletes information about devices and device drivers from the 
system configuration. 

The master parameter points to the full path name of the master file. The system 
parameter points to the full path name of the system file. These files are usually 
fete/master and fete/system, respectively. The dstname parameter points to a string 
containing the name of the stanza in the system file of the device to be deleted. 

The vflag parameter is either 1 (for "yes") or 0 (for "no"). If the vflag parameter is 1, then 
efgddev executes the vrmeonfig command with the -d dstname flag. The vrmeonfig 
command then processes the named stanza for driver deletion and produces a shell 
procedure. The efgddev subroutine then runs this shell procedure to delete the special file 
(fdev file) for the device. If the vrmeonfig command returns an error, then the device is 
not deleted. 

The efgddev subroutine then gets the VRM device driver stanza associated with the device 
being deleted. If it contains a eode keyword, then efgddev searches the master file for 
other VRM device driver stanzas that copy this stanza by specifying its name as the value 
of a eopy keyword. If any are found, they are updated so that the first of these stanzas 
defined in the master file contains the eode keyword, and the other stanzas copy the first 
stanza. 

Subroutines 3-33 



cfgddev 

If the VRM device driver stanza for the device being deleted contains a copy keyword, 
then it is replaced with a code keyword whose value is the same as the value of the code 
keyword in the stanza it is copying. 

If the device stanza being deleted from the system file contains an admgr keyword, then its 
value is the name of the device manager's stanza in the system file. The device is deleted 
from the vdmgr keyword value list in the device manager's stanza. 

If the device stanza named by the dstname parameter contains the specproc keyword, then 
the program specified by the value of this keyword is executed to perform any special 
processing required when deleting this device. The value of the specproc keyword must 
be the full path name of an executable file. The following arguments are passed to the 
program using the argv mechanism described in "exec: execl, execv, execle, execve, 
execlp, execvp" on page 2-34. All of them are passed as character strings. 

argv[O] The full path name of the special-processing program 
argv[l] The full path name of the master file 
argv[2] The full path name of the system file 
argv[3] The name of the device stanza 
argv[4] The character string II d ", indicating deletion. 

If the special processing program fails, then the device is still deleted from the system, but 
some additional steps may be required to clean up the system. 

The device stanza associated with the deleted device is then deleted from the system file. 

Return Value 

Upon successful completion, the value CFG-SUCC is returned. If the cfgddev subroutine 
fails then one of the following values is returned: 

CFG-CLSE An error was detected while trying to close a file. 

CFG-CPYF A failure occurred while trying to update the VRM driver stanzas that 
copy the driver stanza of the device being deleted. 

CFG-DVND The device could not be deleted from the system file. 

CFG-DVNF The device to be deleted cannot be found in the system file. 

CFG-FCOR The master or system file is set up incorrectly. 

CFG-MALF Memory allocation failed because of insufficient space. 

CFG-MGRF A failure occurred while updating the device manager's stanza for the 
device being deleted. 

3-34 AIX Operating System Technical Reference 



Files 

CFG-OPNE 
CFG-SLPF 

CFG-VCFG 

/ etc/ specials 

cfgddev 

An error was detected while trying to open a file. 

Special processing failed. The device is deleted but some additional steps 
may be required to clean up the system. 

The vrmconfig command failed. 

Related Information 

In this book: "attributes" on page 4-20, "master" on page 4-98, and "system" on 
page 4-139. 

The vrmconfig command in A/X Operating System Commands Reference. 

Subroutines 3-35 



cfgdmni 

cfgdmni 

Purpose 

Deletes a minidisk. 

Library 

Run-time Services Library (lihrts.a) 

Syntax 

#include < cfg02.h > 

int cfgdmni (sysstname, fsstname) 
char *sysstname, *fsstname; 

Description 

The cfgdmni subroutine deletes a minidisk from the system. The necessary steps to 
accomplish this include calling the minidisk manager, executing the vrmconfig command, 
removing the minidisk stanzas from the /etc/system and /etc/filesystems files, and 
removing the coprocessor stanza references. 

The sysstname parameter is a pointer to the name of the stanza in the /etc/system file that 
describes the minidisk that is to be deleted. 

The fsstname parameter is a pointer to the name of the stanza in the /etc/filesystems file 
if the minidisk is an AIX minidisk. If the minidisk is not an AIX minidisk, then the 
fsstname parameter must be NULL. 

After the cfgdmni subroutine completes successfully, the minidisk is deleted from the 
system and the minidisk stanza has been deleted from the /etc/system file, and, if 
appropriate, from the /etc/filesystems file or from the /etc/ddi/cpmgr file. 

3-36 AIX Operating System Technical Reference 



cfgdmni 

Return Value 

Files 

Upon successful completion, the value CFG-SUCC is returned. If the cfgdmni subroutine 
fails, then one of the following is returned: 

CFG-NSID 

CFG-VRMF 

CFG-APIE 

CFG-CFEF 

CFG-USZF 

CFG-UNRW 

CFG-FOPN 

The calling process's effective user ID is not su peruser. 

The vrmconfig command could not delete the partition. 

One or more parameters are incorrect. 

The VRM call to delete the partition failed. 

The stanza specified by the sysstname parameter could not be found in the 
/etc/system file. 

An unrecoverable read or write error occurred. 

An error occurred while opening a file. 

/etc/ddi/ cpmgr 
/ etc/filesystems 
/etc/system 

Related Information 

In this book: "attributes" on page 4-20, "master" on page 4-98, and "system" on 
page 4-139. 

The vrmconfig command in AIX Operating System Commands Reference. 

Subroutines 3-37 



clock 

clock 

Purpose 

Reports CPU time used. 

Library 

Standard C Library (libc.a) 

Syntax 

long clock ( ) 

Description 

The clock subroutine returns the amount of CPU time (in microseconds) used since the 
first call to clock. 

The time reported is the sum of the user and system times of the calling process and its 
terminated child processes for which it has executed a wait system call or a system 
subroutine. The nominal resolution of the clock is 16.667 milliseconds if the process is 
being profiled; otherwise, it is 100 milliseconds. See "monitor" on page 3-248 and "profil" 
on page 2-99 for information about profiling a process. 

Note: The value returned by the clock subroutine is defined in microseconds for 
compatibility with systems that have CPU clocks with much higher resolution. Because of 
this, the value returned wraps around after accumulating approximately 2147 seconds of 
CPU time (about 36 minutes). 

Related Information 

In this book: "times" on page 2-165, "wait" on page 2-182, and "system" on page 3-350. 

3-38 AIX Operating System Technical Reference 



cony 

Purpose 

Translates characters. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < ctype.h > 

int toupper (c) 
int c; 

int tolower (c) 
int c; 

int -toupper (c) 
int c; 

int -tolower (c) 
int C; 

int toascii (c) 
int c; 

int NCesc (xp, cp) 
NLchar *xp; 
char *cp; 

int NCtoupper (x) 
int x; 

int NCtolower (x) 
int x; 

int -NCtoupper (x) 
int x; 

int -NCtolower (x) 
int x; 

int NCtoNLchar (x) 
int x; 

int NCunesc (cp, xp) 
char *cp; 
NLchar *xp; 

int NCflatchr (x) 
int x; 

cony 

Subroutines 3-39 



conv 

Description 

The NCxxxxxxx subroutines translate all characters, including extended characters, as 
code points (see "Overview of International Character Support" in IBM RT PC Managing 
the AIX Operating System). The other subroutines translate traditional ASCII characters 
only. 

The toupper and the tolower subroutines have as domain the range of the getc 
subroutine: from -1 through 255. 

If the parameter of the toupper subroutine represents a lowercase letter, the result is the 
corresponding uppercase letter. If the parameter of the tol6wer subroutine represents an 
uppercase letter, the result is the corresponding lowercase letter. All other values in the 
domain are returned unchanged. 

The -toupper and -to lower routines are macros that accomplish the same thing as 
toupper and tolower, but they have restricted domains and they are faster. -toupper 
requires a lowercase letter as its parameter; its result is the corresponding uppercase 
letter. -tolower requires an uppercase letter as its parameter; its result is the 
corresponding lowercase letter. Values outside the domain cause undefined results. 

The value of x is in the domain of any legal NLchar in a value range from 0 to 
NLCHARMAX inclusive, or a special value of -1 (which represents EOF). 

If the parameter of the NCtoupper subroutine represents a lowercase letter according to 
the current collating sequence configuration, the result is the corresponding uppercase 
letter. If the parameter of the NLtolower subroutine represents an uppercase letter 
according to the current collating sequence configuration, the result is the corresponding 
lowercase letter. All other values in the domain are returned unchanged. 

The -NCtoupper and -NCtolower routines are macros that accomplish the same thing as 
NCtoupper and NCtolower, but have restricted domains and are faster. -NCtoupper 
requires a lowercase letter as its parameter; its result is the corresponding uppercase 
letter. -NCtolower requires an uppercase letter as its parameter; its result is the 
corresponding lowercase letter. Values outside the domain cause undefined results. 

The toascii subroutine yields the value of its parameter with all bits that are not part of a 
standard ASCII character turned off. It is intended for compatibility with other systems. 

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that 
are not part of an NLchar. 

The NCesc macro converts the NLchar value xp into one or more ASCII bytes stored in 
the character array pointed to by cpo If the NLchar represents an extended character, it is 
converted into a printable ASCII escape sequence that uniquely identifies the extended 
character. NCesc returns the number of bytes it wrote. See "display symbols" on 
page 5-24 for a list that shows the escape sequence for each character. 

3-40 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
conv 

The inverse conversion is performed by the NCunesc macro, translating an ordinary 
ASCII byte or escape sequence starting at cp into a single NLchar at xp. NCunesc 
returns the number of bytes it read. 

The NCflatchr subroutine converts its parameter value into the single ASCII byte that 
most closely resembles the parameter character in appearance. If no ASCII equivalent 
exists, it converts the parameter value to a ? (question mark). 

Related Information 

In this book: "ctype" on page 3-49, "getc, fgetc, getchar, getw" on page 3-204, and "display 
symbols" on page 5-24. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-40.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
create-ipc-prof 

I create-ipc-prof 

I Purpose 

Creates a profile for an IPC queue. 

I Library 

IPC Library (libipc.a) 

I Syntax 

#include < drs.h > 

int creat-ipc-prof (queue-name, Lkey, r-key, nickname) 

char *queue-name; 
key - t * Lkey, *r -key; 
char *nickname; 

I Description 

The create-ipc-prof subroutine creates a profile for an IPC queue. 

The queue_name parameter contains the name of the IPC queue. If this value is not 
specified by the caller, create-ipc-prof assigns a queue name and places it in 
queue-name. A queue-name supplied by the caller must have valid AIX filename syntax. 
A queue-name supplied by the subroutine has valid AIX filename syntax and is up to 15 
characters long, including the trailing NULL. 

The I-key parameter points to the local key for an IPC queue. If this parameter is NULL, 
then create-ipc-prof assigns a local key value and places it in Lkey. If the caller 
supplies the I-key, it should fall between Ox30000 and OxFFFFF because other ranges are 
reserved. A value for this parameter supplied by the subroutine will fall in the same range. 

The create-ipc-profile creates a profile that maps a key (Lkey) to another key (r -key), 
which can be either local or remote. The nickname parameter points to the nickname or 
node ID, in hexadecimal, of the node where the IPC queue exists. A value of NULL for 
both r _key and nickname indicates that the queue is on the local node. 

If create-ipc_prof succeeds in creating a profile, the dsipc command is used to update the 
kernel's copy of the profiles. 

3-40.2 AIX Operating System Technical Reference 



I Return Value 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
create-ipc-prof 

Upon successful completion, this function returns a 0, and the parameters queue_name, 
Lkey, r-key, and nickname contain the values in the created profile. If an error occurs, 
then create-ipc-prof returns a negative value from the following list: 

DRS-ACCES 

DRS-BADLEN 

DRS-NOREC 

DRS-BKEY 

DRS-NOKEY 

DRS-IO 

DRS-AGAIN 

DRS-BADF 

DRS-BADK 

DRS-BDMSF 

DRS-BOF 

DRS-DEADLK 

DRS-EOF 

DRS-FAULT 

DRS-FBIG 

DRS-IDRM 

DRS-INBLCK 

DRS-INTENT 

DRS-ISDIR 

DRS-MFILE 

DRS-NFILE 

DRS-NOENT 

DRS-NOMEM 

DRS-NOSPC 

DRS-NOTDIR 

DRS-NOTIDX 

The required access permissions were denied. 

An incorrect parameter was supplied. 

No record was found. 

The key is out of range. 

No keys are available. 

An input/output error occurred. 

Unable to start pfsmain. 

An incorrect file descriptor was supplied. 

An incorrect index key was supplied. 

An incorrect file or table was supplied. 

The beginning of the file was encountered. 

A deadlock was detected. 

The end of the file was encountered. 

An incorrect address was supplied. 

The maximum file size was exceeded. 

The identifier was removed. 

The profile database is locked against updates. 

The intentions were denied. 

A write to a directory was attempted. 

Too many files, tables, or indexes were open. 

The file table overflowed. 

No file or directory was found. 

No memory is available. 

No space is available on the device. 

Not a directory. 

Not an index. 

Subroutines 3-40.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
create-ipc-prof 

DRS-PANIC 

DRS_RCVRY 

DRS-RECLEN 

DRS-ROFS 

Abnormal termination occurred. 

The file needs recovery. 

The record length is invalid. 

The file system to be accessed is read-only. 

I Related Information 

In this book: "msgctl" on page 2-73, "del-ipc-prof' on page 3-64.1, and "find-ipc-prof' on 
page 3-166.I. 

The dsipc command in AIX Operating System Commands Reference. 

AIX Operating System Programming Tools and Interfaces. 

3-40.4 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
create-ipc-prof 

Subroutines 3-41 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
crypt, ... 

crypt, encrypt 

Purpose 

Encrypts user passwords. 

Library 

Standard C Library (libc.a) 

Syntax 

char *crypt (key, salt) 
char * key, * salt; 

Description 

void encrypt (block) 
char *block; 

The crypt and encrypt subroutines encrypt user passwords. They are based on a one-way 
hashing encryption algorithm with variations intended to frustrate the use of 
hardware-implemented key searches. These subroutines are provided for compatibility 
with UNIX system implementations, and no assertion is made about the strength of the 
algorithm. 

The key parameter is a user's typed password. The salt parameter is a two-character string 
chosen from the set [a-zA-ZO-9. I]. 
The salt parameter is used to perturb the hashing algorithm in one of 4096 different ways, 
after which the password is used as the key to repeatedly encrypt a constant string. The 
return value points to the encrypted password. The first two characters of the return 
value are the string entered in the salt p~rameter. 

The crypt subroutine uses a character array of length 64 containing only the values 
(char) 0 and (char) 1. This string is divided into groups of eight characters each, and 
the low-order bit in each group is ignored. This provides a 56-bit key, which is set into the 
machine by crypt. 

The encrypt subroutine provides somewhat primitive access to the actual hashing 
algorithm. The block parameter is a 64-character array containing only the values 
(char) 0 and (char) 1. encrypt modifies this array in place, producing a similar array 
that has been subjected to the hashing algorithm using the key set by crypt. 

3-42 AIX Operating System Technical Reference 



crypt, ... 

Return Value 

The crypt subroutine returns a pointer to the encrypted password. The first two 
characters of it are the same as the salt parameter. 

Note: The return value points to static data that is overwritten by subsequent calls. 

Related Information 

In this book: "getpass" on page 3-217 and "passwd" on page 4-112. 

The login and passwd commands in AIX Operating System Commands Reference. 

Subroutines 3-43 



ctermid 

ctermid 

Purpose 

Generates a file name for terminal. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

char *ctermid (8) 
char *8; 

Description 

The ctermid subroutine generates the path name of the controlling terminal for the 
current process and stores it in a string. 

If the 8 parameter is a NULL pointer, the string is stored in an internal static area and the 
address is returned. The next call to ctermid overwrites the contents of the internal static 
area. 

If the 8 parameter is not a NULL pointer, it points to a character array of at least 
L-ctermid elements as defined in the stdio.h header file. The path name is placed in this 
array and the value of 8 is returned. 

The difference between the ctermid and ttyname subroutines is that ttyname must be 
handed a file descriptor and returns the actual name of the terminal associated with that 
file descriptor, while ctermid returns a string (jdev/tty) that refers to the terminal if used 
as a file name. Thus ttyname is useful only if the process already has at least one file 
open to a terminal. 

3-44 AIX Operating System Technical Reference 



ctermid 

Related Information 

In this book: "ttyname, isatty" on page 3-367. 

Subroutines 3-45 



ctime, ... 

ctime, localtime, gmtime, asctime, tzset 

Purpose 

Converts date and time to string representation. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < time.h > 

char *ctime (clock) 
long *clock; 

struct tm *localtime (clock) 
long *clock; 

struct tm *gmtime (clock) 
long *clock; 

Description 

char *asctime (tm) 
struct tm *tm; 

void tzset ( ) 

extern long timezone; 
extern int daylight; 
extern char *tzname[2]; 

The ctime subroutine converts a time value pointed to by the clock parameter, which 
represents the time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1, 
1970, into a 26-character string in the following form: 

Sun Sep 16 01:03:52 1973\n\0 
The width of each field is always the same as shown here. 

The localtime subroutine converts the long integer pointed to by the clock parameter, 
which contains the time in seconds since 00:00:00 GMT, January 1,1970, into a tm 
structure. localtime adjusts for the time zone and for daylight savings time, if it is in 
effect. 

The gmtime subroutine converts the long integer pointed to by the clock parameter into a 
tm structure containing the Greenwich Mean Time, which is the time that AIX uses. 

3-46 AIX Operating System Technical Reference 



ctime, . 

The tm structure is defined in the time.h header file, and it contains the following 
members: 

int tm-sec; /* Seconds (0 - 59) */ 
int tm-min; /* Minutes (0 - 59) */ 
int tm-hour; /* Hours (0 - 23) */ 
int tm-mday; /* Day of month (1 - 31) */ 
int tm-mon; /* Month of year (0 - 11) */ 
int tm-year; /* Year - 1900 */ 
int tm-wday; /* Day of week (Sunday = 0) */ 
int tm-yday; /* Day of year (0 - 365) */ 
int tm-isdst; /* Nonzero = Daylight savings time */ 

The asetime subroutine converts a tm structure to a 26-character string of the same 
format as etime. 

If the TZ environment variable is defined, then its value overrides the default time zone, 
which is the U.S. Eastern time zone. See "environment" on page 5-47 for the format of the 
time zone information specified by TZ. TZ is usually set when the system is started up to 
the value that is defined in either fete/environment or fete/profile. However, it can also 
be set by the user as a regular environment variable for performing alternate time zone 
conversions. 

The tzset subroutine sets the timezone, daylight, and tzname external variables to 
reflect the setting of TZ. tzset is called by etime and loealtime, and it can also be called 
explicitly by an application program. 

The timezone external variable contains the difference, in seconds, between GMT and 
local standard time. For example, timezone is 5 x 60 x 60 for U.S. Eastern Standard 
Time. 

The daylight external variable is non-zero when a daylight savings time conversion should 
be applied. By default, this conversion follows the standard U.S. conventions; other 
conventions can be specified. The default conversion algorithm adjusts for the 
peculiarities of U.S. daylight savings time in 1974 and 1975. See "environment" on 
page 5-47 for information about specifying alternate daylight savings time conventions. 

The tzname external variable contains the name of the standard time zone (tzname[O]) 
and of the time zone when daylight savings time is in effect (tzname[l]). For example: 

char *tzname[2] = {II ESTII , IIEDTII}; 
The time.h header file contains declarations of all these subroutines, externals, and the 
tm structure. 

Warning: The return values point to static data that is overwritten by 
each call. 

Subroutines 3-47 



ctime, ... 

Related Information 

In this book: "time" on page 2-164, "getenv, NLgetenv" on page 3-208, "NLstrtime" on 
page 3-288, "NLtmtime" on page 3-291, "profile" on page 4-127, and "environment" on 
page 5-47. 

3-48 AIX Operating System Technical Reference 



ctype 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ctype 

Purpose 

Classifies characters. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < ctype.h > 

int isalpha (c) 
int c; 

int isupper (c) 
int c; 

int islower (c) 
int c; 

int is digit (c) 
int c; 

int isxdigit (c) 
int c; 

int isalnum (c) 
int c; 

Description 

int isspace (c) 
int c; 

int ispunct (c) 
int c; 

int isprint (c) 
int c; 

int isgraph (c) 
int c; 

int iscntrl (c) 
int c; 

int isascii (c) 
int c; 

The ctype macros classify character-coded integer values by table look-up. Each of these 
macros returns a nonzero value for "true" and 0 for "false." 

The isascii macro is defined for all integer values. The other macros return a meaningful 
value only if isascii returns "true" for the same c value, or if c is EOF. (See "standard i/o 
library" on page 3-342 for information about the value EOF.) 

Subroutines 3-49 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
ctype 

The following list shows the set of values for which each macro returns a nonzero ("true") 
value: 

isalpha c is a letter. 

is upper c is an uppercase letter. 

is lower c is a lowercase letter. 

isdigit c is a digit in the range [0-9]. 

isxdigit c is a hexadecimal digit in the range [0-9], [A-F] or [a-fl. 

isalnum c is alphanumeric (a letter or a digit). 

isspace c is a space, tab, carriage return, new-line, vertical tab, or form-feed character. 

ispunct c is a punctuation character (neither a control character nor alphanumeric). 

is print c is a printing character, ASCII space (040 or Ox20) through - (0176 or Ox7E). 

isgraph c is a printing character, like isprint but, unlike isprint, isgraph returns false 
(0) for the space character. 

iscntrl c is an ASCII DEL character (0177 or Ox7F) or an ordinary control character 
(less than 040 or Ox20). 

isascii c is an ASCII character whose value is in the range 0 - 0177 (0 - Ox7F), 
inclusive. 

Related Information 

In this book: "NCctype" on page 3-270, "ascii" on page 5-3, and "data stream" on page 5-5. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-50 AIX Operating System Technical Reference 



curses 

Purpose 

Controls cursor movement and windowing. 

Library 

Curses Library (libcurses.a) 

Syntax 

#include < curses.h > 
#include < term.h > 

Description 

curses 

Note: The curses package of subroutines is included here only for compatibility with 
existing programs. For information about the enhanced screen-handling subroutine 
library, see "extended curses library" on page 3-131. 

The curses subroutine package updates the screen with reasonable optimization. The 
term.h header file is only needed if terminfo level routines are needed (see "Terminfo 
Level Subroutines" on page 3-57). 

In order to initialize the routines, the routine initscr must be called before any of the 
other routines that deal with windows and screens are used. The routine endwin should 
be called before exiting. To get character-at-a-time input without echoing, call the nonI, 
cbreak, and noecho routines. Most interactive, screen-oriented programs require the 
character-at-a-time input without echoing. 

The full curses interface permits manipulation of data structures called windows, which 
can be thought of as two-dimensional arrays of characters representing all or part of a 
screen. A default window called stdscr is supplied, and others can be created with the 
newwin routine. Windows are referred to by variables declared WINDOW *. The type 
WINDOW is defined in curses.h to be a C structure. These data structures are 
manipulated with the routines described following, among which the most basic are move 
and addch. Then the refresh routine is called, telling the routines to make the screen 
look like stdscr. More general versions of these routines are included with names 
beginning with wallowing you to specify a window. The routines not beginning with a w 
affect stdscr. 

Subroutines 3-51 



curses 

Minicurses is a subset of curses that does not allow manipulation of more than one 
window. To invoke this subset, use -DMINICURSES as a cc option. This level is smaller 
and faster than the full curses. 

If the environment variable TERMINFO is defined, any program using curses checks for 
a local terminal definition before checking in /usr/lib/terminfo. For example, TERM is 
set to vt100, then normally, the compiled file is found in /usr/lib/terminfo/v/vtl00. (The 
directory name v is copied from the first letter of vt100 to avoid creating huge directories.) 
If, for example, TERMINFO is set to /usr/mark/myterms, curses first checks 
/usr/mark/myterms/v/vtl00. If this file does not exist, curses then checks 
/usr/lib/terminfo/v/vtl00. This is useful for developing experimental definitions or when 
write permission in /usr/lib/terminfo is not available. 

Note: The plotting library, plot and the curses library, curses both use the names erase 
and move. The curses versions are macros. If you need both libraries, put the plot code 
in a different source file than the curses code, or include the following statements in the 
plot code: 

#undef move() 
#undef erase() 

Routines 

The routines listed here can be called when using the full curses. Those marked with an 
asterisk can be called when using minicurses. 

addch(ch)* Add a character to stdscr (like putchar), wrapping to the next 
line at the end of a line. 

waddch(win, ch) Add the character ch to win 

mvwaddch(win, y, x, ch) Move (y, x) then add the character ch to win 

addstr(str)* Call addch with each character in str 

mvaddstr(y, x, str) Move (y, x) then add str 

waddstr(win, str) Add the string str to win 

mvwaddstr(win, y, x, str) 

attroff( attrs)* 

a ttron( attrs) * 

attrset(attrs)* 

baudrate ( )* 

beep ()* 

Move (y, x) then add the string str to win 

Turn off the attributes named in attrs 

Turn on the attributes named in attrs 

Set current attributes to those specified in attrs 

Set current terminal speed 

Sound beep on terminal 

3-52 AIX Operating System Technical Reference 



box(win, vert, hor) 

cbreak ()* 

nocbreak ( )* 

clear () 

clearok(win, bf) 

clrtobot ( ) 

clrtoeol () 

delay -output(ms)* 

nodelay(win, bf) 

delch () 

deleteln () 

delwin(win) 

doupdate () 

echo ()* 

noecho ()* 

endwin ()* 

erase () 

erasechar ( ) 

fixterm () 

flash () 

flushinp ( )* 

getch ()* 

getstr(str) 

gettmode () 

getyx(win, y, x) 

has-ic () 

has-il () 

idlok(win, bf)* 

curses 

Draw a box around edges of win. The vert and hor parameters 
are the characters to use for vertical and horizontal edges of the 
box. 

Set cbreak mode 

Unset c break mode 

Clear stdscr 

Clear screen before next redraw of win 

Clear to bottom of stdscr 

Clear to end of line on stdscr 

Insert ms millisecond pause in output 

Enable nodelay input mode through getch 

Delete a character 

Delete a line 

Delete window win 

Update screen from all wnoutrefresh 

Set echo mode 

Unset echo mode 

End window modes 

Erase stdscr 

Return user's erase character 

Restore terminal to in curses state 

Flash screen or beep 

Throwaway any type-ahead 

Get a character from tty 

Get a string through stdscr 

Establish current tty modes 

Get (y, x) coordinates 

Has value of true if terminal can do insert character 

Has value of true if terminal can do insert line 

Use terminal's insert/delete line if bf! =0 

Subroutines 3-53 



curses 

inch () 

initscr ( )* 

insch(e) 

insertln () 

intrflush(win, bf) 

keypad(win, bf) 

killchar () 

leaveok(win, flag) 

longname () 

meta(win, flag)* 

move(y, x, eh)* 

mvaddch(y, x, eh) 

Get character at current (y, x) coordinates 

Initialize screens 

Insert a character 

Insert a line 

Interrupt flush output if bf is true 

Enable keypad input 

Return current user's kill character 

Permit cursor to be left anywhere after refresh if flag! =0 for 
win; otherwise cursor must be left at current position 

Return verbose name of terminal 

Allow metacharacters on input if flag! = 0 

Move to (y, x) on stdscr 

Move (y, x) then add eh 

mvcur(oldrow, oldeol, newrow, newcol) 

mvdelch(y, x) 

mvgetch(y, x) 

mvgetstr(y, x, str) 

mvinch(y, x) 

mvinsch(y, x, e) 

mvprintw(y, x, fmt, args) 

Move cursor from current position to another position 

Move (y, x) then delete a character 

Move (y, x) then get a character from tty 

Move (y, x) then get a string through stdscr 

Move (y, x) then get the character at current (y, x) coordinates 

Move (y, x) then insert the character c 

Move (y, x) then get print on stdscr 

mvscanw(y, x, fmt, args) Move (y, x) then scan through stdscr 

mvwdelch(win, y, x) Move (y, x) then delete a character from win 

mvwgetch(win, y, x) Move (y, x) then get a character through win 

mvwgetstr(win, y, x, str) 
Move (y, x) then get a string through win 

mvwin(win, by, bx) Move win so that the upper left-hand corner is located at (y, x) 

mvwinch(win, y, x) Move (y, x) then get the character at current (y, x) in win 

mvwinsch(win, y, x, e) Move (y, x) then insert the character e into win 

3-54 AIX Operating System Technical Reference 



mvwprintw(win, y, x, fmt, args) 
Move (y, x) then printf on stdscr 

mvwscanw(win, y, x, fmt, args) 

newpad(nlines, ncols) 

newterm(type, fd) 

Move (y, x) then scanf through stdscr 

Create a new pad with given dimensions 

Set up new terminal of given type to output on fd 

newwin(lines, cols, begin-y, begin-x) 

nI ()* 

nonI ()* 

overlay(winl, win2) 

Create a new window 

Set newline mapping 

Unset newline mapping 

Overlay winl on win2 

overwrite(winl, win2) Overwrite winl on top of win2 

printw(fmt, argl, arg2, ... ) 

raw ()* 

refresh ()* 

Print on stdscr 

Set raw mode 

Make current screen look like stdscr 

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

curses 

Refresh from pad starting with given upper left corner of pad 
with output to given portion of screen 

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

noraw ()* 

resetterm ()* 

resetty ()* 

saveterm ()* 

savetty ()* 

scanw(fmt, argl, arg2, ... ) 

scroll(win) 

scrollok(win, flag) 

set-term(new) 

setscrreg(t, b) 

Refresh like prefresh, but with no output until doupdate is 
called 

Unset raw mode 

Set tty modes to out of curses state 

Reset tty flags to stored value 

Save current modes as in curses state 

Store current tty flags 

Scanf through stdscr 

Scroll win one line 

Allow terminal to scroll if flag! = 0 

Enable talk to terminal new 

Set user scrolling region to lines t through b 

Subroutines 3-55 



curses 

setterm(type) 

standend ( )* 

standout ( )* 

Establish terminal with a give type 

Clear standout mode attribute 

Set standout mode attribute 

subwin(win, lines, cols, begin-y, begin-x) 
Create a subwindow 

touchwin( win) 

traceoff () 

traceon () 

typeahead(fd) 

unctrl(ch)* 

wattroff(win, attrs) 

wattron(win, attrs) 

wattrset(win, attrs) 

wclear(win) 

wclrtobot(win) 

wclrtoeol(win) 

wdelch(win, c) 

wdeleteln (win) 

werase(win) 

wgetch(win) 

wgetstr(win, str) 

winch(win) 

winsch(win, c) 

winsertln(win) 

wmove(win, y, x) 

wnoutrefresh( win) 

Change all of win 

Turn off debugging trace output 

Turn on debugging trace output 

Check file descriptor fd to check type-ahead 

Use printable version of ch 

Turn off attrs in win 

Turn on attrs in win 

Set attributes in win to attrs 

Clear win 

Clear to bottom of win 

Clear to end of line on win 

Delete the character c from win 

Delete line from win 

Erase win 

Get a character through win 

Get the string str through win 

Get the character at current (y, x) in win 

Insert the character c into win 

Insert line into win 

Set current (y, x) coordinates on win 

Refresh but no screen output 

wprintw(win, fmt, argl, arg2, ... ) 
printf on win 

wrefresh(win) Make screen look like win 

3-56 AIX Operating System Technical Reference 



wscanw(win, {mt, argl, arg2, ... ) 
scanfthrough win 

wsetscrreg(win, t, b) 

wstandend(win) 

wstandout(win) 

Set scrolling region of win 

Clear standout attribute in win 

Set standout attribute in win 

Terminfo Level Subroutines 

curses 

These routines should be called by programs that have to deal directly with the term info 
data base. Due to the low level of this interface, its use is discouraged. The header files 
curses.h and term.h should be included (in that order) to get the definitions for these 
strings, numbers, and flags. You should call setupterm before using any of the other 
terminfo subroutines. This defines the set of terminal-dependent variables defined in the 
terminfo file. 

If the program needs only one terminal, you can specify the -DSINGLE flag to the C 
compiler. This results in static references instead of dynamic references to capabilities. 
The result is smaller code, but only one terminal can be used at a time for the program. 

Capabilities with a Boolean value have the value 1 if the capability is present and 0 if it is 
not. Numeric capabilities have a value of -1 if the capability is missing and a value of 0 or 
greater if it is present. String capabilities have a NULL value if the capability is missing 
and otherwise have type char * and point to a character string that contains the 
capability. Special character codes that use the backs lash and circumflex characters (\ and 
A) are transformed into the appropriate ASCII characters. Padding information of the form 
$ < time>, and parameter information beginning with % (percent) are left uninterpreted. 
The tputs routine interprets padding information and tparm interprets parameter 
information. 

All terminfo strings (including the output of tparm) should be printed with tputs or 
putp. Before exiting, reset-shell-mode should be called to restore the tty modes. 
Programs desiring shell escapes can call reset-sheIl-mode before the shell is called and 
reset-prog-mode after returning from the shell. 

delay -output (ms) 
Sets the output delay, in milliseconds. 

def-prog-mode 
Saves the current terminal mode as program mode, in cur-term- > Nttyb. 

def-shell-mode 
Saves the shell mode as normal mode, in cur -term- > Ottyb. def-shell-mode is called 
automatically by setupterm. 

putp(str) 
Calls tputs(str, 1, putchar). 

Subroutines 3-57 



curses 

reset-prog-mode 
Puts the terminal into program mode. 

reset-sheIl-mode 
Puts the terminal into shell mode. All programs must call reset-shell-mode before 
they exit. The higher-level routine endwin automatically does this. 

setupterm(term, fd, re) 
Reads in the data base. term is a character string that specifies the terminal name. If 
term is 0, then the value of the TERM environment variable is used. One of the 
following status values is stored into the integer pointed to by re: 

1 Successful completion 
o No such terminal 
-1 An error occurred while locating the terminfo database. 

If the re parameter is 0, then no status value is returned, and an error causes 
setupterm to print an error message and exit, rather than return. fd is the file 
descriptor of the terminal being used for output. setupterm calls termdef to 
determine the number of lines and columns on the display. If termdef cannot supply 
this information, then setupterm uses the values in the terminfo data base. The 
simplest call is setupterm(O, 1, 0), which uses all the defaults. 

After the call to setupterm, the global variable cur-term is set to point to the current 
structure of terminal capabilities. It is possible for a program to use more than one 
terminal at a time by calling setupterm for each terminal and saving and restoring 
cur-term. 

The setupterm subroutine also initializes the global variable ttytype as an array of 
characters to the value of the list of names for the terminal. The list comes from the 
beginning of the terminfo description. 

tparm(str, pi, p2, ... p9) 
Instantiates the string str with parameters Pi. The character string returned has the 
given parameters applied. 

tputs(str, affent, pute) 
Applies padding information to string str. affent is the number of lines affected, or 1 if 
not applicable. pute is a putchar-like routine to which the characters are passed one at 
a time. 

Some strings are of a form like $<20), which is an instruction to pad for 20 
milliseconds. 

vidputs(attrs, pute) 
Outputs the string to put terminal in video attribute mode attrs. Characters are passed 
to the putchar-like routine pute. The attrs are defined in < curses.h >. The previous 
mode is retained by this routine. 

vidattr( attrs) 
Like vidputs, but outputs through putchar. 

3-58 AIX Operating System Technical Reference 



curses 

Termcap Compatibility Routines 

These routines are included for compatibility with programs that require termcap. Their 
parameters are the same as for termcap, and they are emulated using the terminfo data 
base. 

tgetent(bp, name) 
Looks up the termcap entry for name. bp and name are strings. name is a terminal 
name; bp is ignored. Calls setupterm. 

tgetflag(id) 
Returns the Boolean entry for id. id is a 2-character string that contains a termcap 
identifier. 

tgetnum(id) 
Returns the numeric entry for id. id is a 2-character string that contains a termcap 
identifier. 

tgetstr(id, area) 
Returns the string entry for id. id is a 2-character string that contains a termcap 
identifier. The area parameter is ignored. 

tgoto(cap, col, row) 
Applies parameters to the given cap. Calls tparm. 

tputs(cap, affcnt, fn) 
Applies padding to cap calling fn as putchar. 

Attributes 

The following video attributes can be passed to the routines attron, attroff, and attrset. 

A-STANDOUT The terminal's best highlighting mode 
A-UNDERLINE Underlined 
A-REVERSE Reverse video 
A-BLINK Blinking 
A-DIM Half bright 
A-BOLD Extra bright or bold 
A-INVIS Invisible (blanked or zero-intensity) 
A-PROTECT Protected 
A-ALTCHARSET Alternate character set 
A-NORMAL Normal attributes 

Subroutines 3-59 



curses 

Function Keys 

The following function keys might be returned by getch if keypad has been enabled. Note 
that not all of these are currently supported due to lack of definitions in terminfo, or due 
to the terminal not transmitting a unique code when the key is pressed. 

KEY -BREAK Break key (unreliable) 
KEY -DOWN Down-arrow key 
KEY -UP Up-arrow key 
KEY -LEFT Left-arrow key 
KEY -RIGHT Right-arrow key 
KEY-HOME Home key 
KEY-BACKSPACE Backspace (unreliable) 
KEY-F(n) Function key Fn, where n is an integer from 0 to 63 
KEY_DL Delete line 
KEY -IL Insert line 
KEY_DC Delete character 
KEY -IC Insert character or enter insert mode 
KEY -EIC Exit insert character mode 
KEY -CLEAR Clear screen 
KEY -EOS Clear to end of screen 
KEY -EOL Clear to end of line 
KEY -SF Scroll 1 line forward 
KEY-SR Scroll 1 line backwards (reverse) 
KEY-NPAGE Next page 
KEY -PP AGE Previous page 
KEY -STAB Set tab 
KEY -CTAB Clear tab 
KEY -CATAB Clear all tabs 
KEY-ENTER Enter or send (unreliable) 
KEY-SRESET Soft (partial) reset (unreliable) 
KEY -RESET Reset or hard reset (unreliable) 
KEY_PRINT Print or copy 
KEY -LL Home down or bottom (lower left) 
KEY _AI Upper left key of keypad 
KEY-A3 Upper right key of keypad 
KEY -B2 Center key of keypad 
KEY -CI Lower left key of keypad 
KEY -C3 Lower right key of keypad 

3-60 AIX Operating System Technical Reference 



curses 

Related Information 

In this book: "extended curses library" on page 3-131, "termdef' on page 3-352, and 
"terminfo" on page 4-148. 

Subroutines 3-61 



cuserid 

cuserid 

Purpose 

Gets the alphanumeric user name associated with the current process. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

char *cuserid (8) 
char *8; 

Description 

The cuserid subroutine generates a character string representing the user name of the 
owner of the current process. 

If the 8 parameter is aNULL pointer, then the character string is stored into an internal 
static area, the address of which is returned. 

If the 8 parameter is not a NULL pointer, then the character string is stored into the array 
pointed to by the 8 parameter. This array must contain at least L-cuserid characters. 
L-cuserid is a constant defined in the stdio.h header file. 

If the user name cannot be found, the cuserid subroutine returns a NULL pointer; if the 8 
parameter is not a NULL pointer, then a null character (' \0') is stored into 8[0]. 

Related Information 

In this book: "getlogin" on page 3-212, "getpwent, getpwuid, getpwnam, setpwent, 
endpwent" on page 3-219, and "standard i/o library" on page 3-342. 

3-62 AIX Operating System Technical Reference 



dbm 

dbm 

Purpose 

Performs data base operations. 

Library 

Database Library (libdbm.a) 

Syntax 

int dbminit (file) 
char *file; 

datum fetch (key) 
datum key; 

int store (key, content) 
datum key, content; 

int delete (key) 
datum key; 

Description 

datum firstkey ( ) 

datum nextkey (key) 
datum key; 

typedef struct 
{ 

char *dptr; 
int dsize; 

} datum; 

The dbm subroutines maintain a data base of key-content pairs. These subroutines can 
handle very large data bases and access keyed items in one or two file-system accesses. 

The key parameter is a pointer to data specified by the content parameter. The sum of the 
sizes of the key-content pairs must not exceed the internal block size of 512 bytes. All 
key-content pairs that hash together must fit on a single block. The store subroutine 
returns an error if a disk block Jills with inseparable data. 

The key and the content parameters are described by the typedef datum structure. The 
datum structure sets up a string of bytes. The length of the string is specified by the 
dsize field. The string is pointed to by the dptr field. The dptr pointers that are returned 
by these subroutines point to static storage that changes with subsequent calls. You can 
use binary data or normal ASCII strings. 

The data base is stored in two files. One file is a directory that contains a bit map and is 
sp.ffixed with .dir. The second file contains all data and is suffixed with .pag. The .pag 
file contains holes that increases its apparent size to about four times its actual size. You 

Subroutines 3-63 



dbm 

cannot copy a .pag file using the standard utilities such as cp and cat without first filling 
these holes. 

Before you can access a data base, you must open the data base with the dbminit 
subroutine. The file, .dir, and .pag files must already exist before you call the dbminit 
subroutine. You can create an emptr data base by creating zero-length .dir and .pag files. 

After the data base is opened with the dbminit subroutine, you can use the fetch 
subroutine to access the data that is is pointed to by the key parameter. You can use the 
store subroutine to write the data specified by the content parameter to a file and to 
specify the key to be used to access that data with the key parameter. 

The delete subroutine removes the key specified by the key parameter and the data to 
which that key points. The delete subroutine does not actually reclaim the file space, but 
it does make it available for reuse. 

The firstkey and nextkey subroutines make a linear pass through all of the keys in a data 
base. The firstkey subroutine returns the first key in the data base. The nextkey 
subroutine returns the next key in the data base. The following code makes a linear pass 
through a data base: 

for (key = firstkey(); key.dptr != NULL; key = nextkey(key)) 
{ 

} 

The order of keys that are presented to firstkey and nextkey depend on the hashing 
function. 

Return Value 

All of the dbm subroutines that return an int value return 0 upon successful completion, 
and they return a negative value if an error occurs. Subroutines that return a datum 
value indicate an error by setting the dptr field to NULL. 

3-64 AIX Operating System Technical Reference 



I Purpose 

Deletes an IPC queue profile. 

I Library 

IPC Library (libipc.a) 

I Syntax 

#include < drs.h > 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
del-i pc-prof 

int del-ipc-prof (queue-name, I-key, r -key, nickname) 

char *queue-name; 
key-t *Z-key, *r-key; 
char *nickname; 

I Description 

The del-ipc-prof subroutine deletes an IPC queue profile at the local node. 

The queue-name parameter contains the name of an IPC queue. The I-key parameter 
points to the local key for an IPC queue. You must specify one or both of these values. 
The del-ipc-prof subroutine fails if both queue-name and I-key are NULL. 

The r -key is a pointer from the local node to the IPC profile for a queue at a remote node. 
The nickname parameter points to the nickname or node ID, in hexadecimal, of the node 
where the IPC queue exists. A value of NULL indicates that the queue is on the local 
node. 

The application does not supply values for the r -key and nickname parameters. The 
del-ipc-prof subroutine assigns values to these parameters when it returns. The 
application, however, must ensure that enough space is allocated to hold the return values. 

If del-ipc-prof successfully deletes the requested profile, the dsipc command is used to 
update the kernel's copy of the profiles. 

Subroutines 3-64.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
del-ipc-prof 

I Return Value 

Upon successful completion, the function returns a 0, and queue-name, Lkey, r-key, and 
nickname contain the values from the deleted profile. If an error occurs, del-ipc-prof 
returns a negative value from the following list: 

DRS-ACCES 

DRS_BADLEN 

DRS-NOREC 

DRS_IO 

DRS_AGAIN 

DRS-BADF 

DRS-BADK 

DRS-BDMSF 

DRS-BOF 

DRS-DEADLK 

DRS-EOF 

DRS-FAULT 

DRS-FBIG 

DRS-IDRM 

DRS-INBLCK 

DRS-INTENT 

DRS-ISDIR 

DRS-LOCKPM 

DRS-MFILE 

DRS-NFILE 

DRS-NOENT 

DRS-NOMEM 

DRS-NOSPC 

DRS-NOTDIR 

DRS-NOTIDX 

DRS-PANIC 

The required access permissions were denied. 

An incorrect parameter was supplied. 

No record was found. 

An input/output error occurred. 

Unable to start pfsmain. 

An incorrect file descriptor was supplied. 

An incorrect index key was supplied. 

An incorrect file or table was supplied. 

The beginning of the file was encountered. 

A deadlock was detected. 

The end of the file was encountered. 

An incorrect address was supplied. 

The maximum file size was exceeded. 

Identifier removed. 

The profile database is locked against updates. 

Intentions denied. 

A write to a directory was attempted. 

Lock permission denied. 

Too many files, tables, or indexes were open. 

The file table overflowed. 

No file or directory was found. 

No memory is available. 

No space is available on the device. 

Not a directory. 

Not an index. 

Abnormal termination occurred. 

3-64.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
del-i pc-prof 

DRS-RCVRY 

DRS-RECLEN 

DRS-ROFS 

File needs recovery. 

Record length is invalid. 

The file system to be accessed is read-only. 

I Related Information 

In this book: "msgctl" on page 2-73, "create_ipc_prof" on page 3-40.2, and "find-ipc-prof" 
on page 3-166.1. 

The dsipc command in AIX Operating System Commands Reference. 

AIX Operating System Programming Tools and Interfaces. 

Subroutines 3-64.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
del-ipc-prof 

3-64.4 AIX Operating System Technical Reference 



DOS services library 

DOS services library 

Purpose 

Provides access to DOS files and diskettes. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

Description 

The DOS Services subroutines provide a programming environment for applications that 
utilize DOS Services. DOS Services is an AIX Operating System shell that interacts with 
the system user like DOS and provides access to both AIX and DOS file systems. The dos 
command starts this shell. (The dos command is discussed in AIX Operating System 
Commands Reference.) 

The DOS Services library provides access to DOS file systems on fixed disks and on 
diskettes in addition to AIX file systems. The access is transparent; that is, applications do 
not need to know which type of file system provides the files. 

Applications intended to be run under DOS Services are actually AIX applications. While 
the user interface to DOS Services is as similar to DOS as possible, the applications 
programming interface follows the conventions of AIX and AIX system calls wherever 
possible. Many AIX applications can be converted to use the DOS Services library with 
few modifications. 

The DOS Services subroutines require that your programs include the dos.h header file. 
When an error occurs, the DOS Services subroutines set the global variable doserrno to 
indicate the error, resembling the error reporting performed by system calls. If you want 
your program to check doserrno, then you must also include the doserrno.h header file. 
For detailed information about header files, see "Header Files" on page vii. 

An application program receives parameters in the standard argc, argv, envp format used 
to pass parameters to ordinary AIX processes. (See "exec: execl, execv, execle, execve, 
execlp, execvp" on page 2-34 for details about this parameter-passing convention.) The 
application can use most of the services provided by AIX, but must use the DOS Services 
subroutines for file access to ensure compatibility with DOS file systems. 

Subroutines 3-65 



DOS services library 

Any application can use the exec system call and the dosexecve subroutine to invoke 
another AIX program, including another DOS Services application program. There is no 
way for the invoked program to tell which program invoked it other than by the content of 
the parameters or the environment. The exec system call and the dosexecve subroutine 
do not process DOS Services path information. The DOS path information must be 
processed by the application program, using the DOS-PATH environment variable. 

A .BAT file cannot be directly invoked by exec or dosexecve. To execute a .BA T file, an 
application program must run the dos command with the appropriate flags and parameters. 
For example, the following call runs the batch file hello .bat: 

execl ("/usr/bin/dos", "dos" , "-a", "-c" , "hello.bat", 0); 

See the dos command in A/X Operating System Commands Reference for details about the 
flags and their meanings. 

The DOS Services library performs transparent translation of textual data between DOS 
ASCII and AIX ASCII formats. This translation takes place for a given file if the 
DO-ASCII bit is set set when the file is opened with the dosopen subroutine. The 
application program operates on the data in AIX ASCII format whether the file is located 
on an AIX file system or on a DOS file system. See "dosread" on page 3-98 and "doswrite" 
on page 3-116 for more details about the translation performed. 

The DOS Services library provides no direct support for interaction with an attached 
coprocessor. Access to a file system is mediated by the VRM, which prevents the sharing 
of a file system between the coprocessor and AIX. 

The DOS Services library supports the DOS file systems in both diskette and fixed disk 
formats. It uses the content of the device rather than the device itself to determine the 
format of the file system. Therefore, it is possible to copy a diskette to a fixed disk using 
the cp command, and to access the diskette data from the fixed disk. 

The DOS Services library supports multiplexed disk drives. A multiplexed drive is a 
single physical drive that is configured as several logical drives (such as drives A: and B:). 
As one or the other of these is accessed, the DOS Services system prompts the user to 
insert the appropriate diskette. 

The DOS Services library provides recovery from diskette I/O errors in the form of Abort, 
Retry, I gnore messages. 

The DOS Services library maps DOS file attributes into AIX file modes whenever possible 
so that the application programmer need think only in terms of AIX file modes. The 
directory, read-only, and hidden attributes map to corresponding facilities in AIX. The 
system, volume, and archive attributes are not directly supported, but are recognized by 
the DOS commands that need to use them. The dosstat and dosfstat subroutines provide 
access to the attributes of both DOS and AIX files. 

If both a parent and a child process use DOS Services subroutines, then the parent must 
call dosunopen before starting the child process, and it must call dosreopen after the 
child finishes. This synchronizes the information shared by the two processes. 

3-66 AIX Operating System Technical Reference 



DOS services library 

Standard header information required for many of the DOS Services library routines is 
defined in the file dos .h. 

DOS Services library routines return diagnostic codes like the AIX system calls. 
Subroutines return a value of -lor NULL in case of an error, and the variable doserrno is 
set to indicate the error. The file doserrno.h contains definitions of each possible DOS 
diagnostic code. The majority of these codes conform to AIX diagnostic codes. 

Device Names 

DOS emulation requires binding DOS devices to AIX files. Device names in the DOS 
environment are mapped to AIX files according to definitions found in the environment at 
the time the dosinit subroutine is first invoked in a process family. Generally, this will be 
performed by the dos command. 

Device 

NUL: 
CON: 
COMl: 
COM2: 
AUX: 
LPO: 
LPl: 
LP2: 

LP7: 
A: 
B: 
C: 
D: 

Environment Variable and Default Setting 

DOS-NUL = /dev/null 
DOS-CON = /dev/tty 
DOS-COM1 = /dev/ttyO 
DOS-COM2 = /dev/ttyl 
DOS-AUX = /dev/ttyO 
DOS-LPO = /dev/lpO 
DOS-LPI = /dev/lpl 
DOS-LP2 = /dev/lp2 

DOS-LP7 = /dev/lp7 
DOS-A = /dev/fdO 
DOS-B = /dev/fdO 
DOS-C=$HOME 
DOS-D=/ 

A DOS disk drive name can be bound to an AIX directory, file, or device formatted as an 
AIX or a DOS file system. Typically, this is /dev/fdn or /dev/vdn. Any uppercase 
alphabetic character can be used for a DOS disk name. 

A DOS nondisk device can be bound to an AIX file or device or to a program. Only the 
names listed in the preceding table can be used as nondisk devices. If the first character of 
the value of the AIX path name bound to a DOS nondisk device is a I (vertical bar), the 
associated device will be a pipe into the shell command given by the rest of the symbol 
value. If it is not a vertical bar, the value will be interpreted as an AIX file name. 

The dosinit subroutine creates a configuration table which is propagated to subordinate 
processes. The environment is not inspected after this table is initialized. Files and 
devices are not actually opened until they are accessed. 

Subroutines 3-67 



DOS services library 

File Naming 

A DOS file name has the following format: 

[d: 1 [path lfilename[ .ext] 

DOS file names are converted to AIX file names as follows: 

The characters A-Z 0-9 $ & # @ ! % ' \ _ _ A -

d: 

path 

When file name specifications refer to DOS file systems, lowercase characters in file 
name specifications are converted to uppercase by the DOS Services subroutines. No 
translation is made when file names refer to AIX file systems. 

The drive name can be any single letter followed by a colon. The DOS Services 
library translates it to uppercase. 

The directory path is of the form: 

[\][dirname][\dirname ... ] 

If the file is on an AIX file system, then each directory level is translated to an AIX 
directory level with the same name. 

filename[ .ext] 
A DOS file name consists of a filename of one to eight characters that can be 
followed by an extension. The extension, if present, consists of a . (period) and up to 
three characters. AIX file names are 1 to 14 characters long, including the extension. 
The extension can be from 1 to 13 characters long, including the period. 
Incompatibilities may arise when copying files from AIX file systems to DOS file 
systems. 

Diagnostics 

When a DOS Services subroutine encounters an error, it returns the value -1 and sets the 
global variable doserrno to a code that identifies the error. This scheme resembles the 
one used by AIX system calls. 

All of the possible error codes are listed in the doserrno.h header file. For your 
convenience, they are also listed here: 

DE-FNAME (-2) Syntax error in file name 
DE-NOMNT (-3) AIX file system is not mounted 
DE-UNOPEN (-4) File unopened and not reopened 
DE-EXDOS (-5) Attempt to execute a DOS file 
DE-RFULL (-6) DOS root directory is full 
DE-ROOT (-7) Can not modify DOS root directory 
DE_BADMNT (-8) Bad header or FAT for DOS file system 

3-68 AIX Operating System Technical Reference 



DE-NEMPTY (-9) 
DE-INIT (-10) 
DE_ENVT (-11) 

Directory is not empty 
dosinit configuration error 
Environment file error 

DOS services library 

In addition, doserrno may be set to any of the values set by the AIX system calls. These 
values are redefined in the doserrno.h header file with the prefix DE- added. 

Subroutines 3-69 



dosassign 

dosassign 

Purpose 

Assigns one DOS Services drive to another. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosassign (drive, todrive) 
char *drive, *todrive; 

Description 

The dosassign subroutine causes all references to the drive specified by the drive 
parameter to use the drive specified by the todrive parameter. The drive and todrive 
parameters are strings containing the names of drives as configured by dosinit or in a user 
profile. The names can be in either uppercase or lowercase and must not include the 
colon. 

If the drive parameter is NULL, all assignments are reset to their initial state. 

Once assigned, using the drive specified by the drive parameter is equivalent to using the 
drive specified by the todrive parameter. However, the dospwd subroutine does not 
perform this translation. It returns a path name that includes either the drive name passed 
to it as a parameter or the drive name passed to the doschdir subroutine. 

The dosassign subroutine does not change the current drive. 

3-70 AIX Operating System Technical Reference 



dosassign 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosassign subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "doschdir" on page 3-72, and "dospwd" 
on page 3-96. 

Subroutines 3-71 



doschdir 

doschdir 

Purpose 

Changes the current DOS Services directory or current drive. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int doschdir (path) 
char *path; 

Description 

The doschdir subroutine changes the current directory on the current drive to the 
directory specified by the path parameter, or changes the current drive to the drive 
specified in the path parameter. If the path parameter contains only a drive name, then 
only the current drive is changed. If the path parameter contains only a directory path 
name, then only the current directory on the current drive is changed. If the path 
parameter contains both a drive name and a directory path name, then the current drive 
and the current directory are both changed. 

When the current drive is set to a drive that contains a DOS file system, the AIX current 
directory cannot follow along. Therefore, the current AIX directory is set to the special 
directory /usr/dos/nulldir, if it exists. 

Normally, the user does not have write access to the /usr/dos/nulldir directory. 
Therefore, if a program aborts, the core dumps are suppressed. If you do not want this to 
happen, you must remove the /usr/dos/nulldir directory. 

3-72 AIX Operating System Technical Reference 



doschdir 

Return Value 

Upon successful completion, a value of 0 is returned. If the doschdir subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dospwd" on page 3-96, and "dosassign" 
on page 3-70. 

Subroutines 3-73 



doschmod 

doschmod 

Purpose 

Changes the mode of a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int doschmod (path, mode) 
char *path; 
long mode; 

Description 

The doschmod subroutine changes the mode of the file specified by the path parameter to 
the mode specified by the mode parameter. (For information about modes, see "doscreate" 
on page 3-76.) 

Return Value 

Upon successful completion, a value of 0 is returned. If the doschmod subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, and 
"dosopen" on page 3-94. 

3-74 AIX Operating System Technical Reference 



dosclose 

Purpose 

Closes a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosclose (dosfile) 
DOSFILE dosfile; 

Description 

dosclose 

The dosclose subroutine closes the file descriptor specified by the dosfile parameter. 

The dosfile parameter is a file descriptor obtained from a dosopen, doscreate, or dosdup 
subroutine. 

Warning: DOS files are not implicitly closed when a process terminates. 
You must explicitly close all DOS files or you may lose data. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosclose subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, "dosdup" on 
page 3-78, and "dosopen" on page 3-94. 

Subroutines 3-75 



doscreate 

doscreate 

Purpose 

Creates a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

DOS FILE doscreate (path, mode) 
char *path; 
long mode; 

Description 

The doscreate subroutine creates a DOS file with the path and name specified by the path 
parameter. The newly created file has the flags set as specified by the mode parameter. If 
the file specified by the path parameter already exists, the file is truncated to zero length 
and the mode and owner are unchanged. 

The mode parameter is a 32-bit word containing flags. The low-order 12 bits are access 
permission flags. (For information about access permission flags, see "chmod" on 
page 2-18.) 

If the file is contained in a DOS file system, the write-by-owner bit of the mode parameter 
is the only significant access flag. If it is 0, the read-only flag is set in the DOS directory 
of the file created. 

Mode flags for emulating functions unique to DOS are defined in the dos.h header file. 
They may be logically OR' ed together from the following list: 

M-HIDDEN If this flag of the mode parameter is set, the file is created as a hidden file. 
If the file is created in a DOS file system, the appropriate bit is set in the 
directory. If the file is created in an AIX file system, the file name is 
prefixed by a . (period). If a hidden file is created with the same file name 
as an existing normal file, the normal file is renamed. 

3-76 AIX Operating System Technical Reference 



doscreate 

M-SYSTEM If this flag of the mode parameter is set, and the file is created in a DOS 
file system, the SYSTEM attribute of the file is set. If the file is created in 
an AIX file system, this flag is ignored. 

If the file is created in a DOS file system, the name of the file is translated to uppercase. If 
the file is created in an AIX file system, no translation takes place. 

Warning: DOS files are not implicitly closed when a process terminates. 
You must explicitly close all DOS files or you may lose data. 

Return Value 

Upon successful completion, a non-NULL handle is returned. This handle is used in 
subsequent operations. The file is open for writing even if the mode does not permit 
writing. If the doscreate subroutine fails, a -1 is returned and doserrno is set to indicate 
the error. 

The doscreate subroutine fails if one or more of the following are true: 

• The user does not have write access to the directory containing the file. 
• The user does not have write access to the file if the file already exists. 
• The physical medium cannot be written to. 
• No such device or address. 
• No such device. 

Related Information 

In this book: "DOS services library" on page 3-65, "chmod" on page 2-18, and "dosopen" 
on page 3-94. 

Subroutines 3-77 



dosdup 

dosdup 

Purpose 

Duplicates a DOS Services file handle. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosdup (dosfile) 
DOSFILE dosfile; 

Description 

The dosdup subroutine returns a new file descriptor that indicates the same file and has 
the same open flags as the original file descriptor. The dosfile parameter is a file 
descriptor returned by dosread, doscreate, or dosdup. The file position is initially set to 
the same value as the original, but changes independently. The file descriptor returned is 
the lowest one available. 

Return Value 

Upon successful completion, a DOS Services file handle is returned. If the dosdup 
subroutine fails, a value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dosclose" on page 3-75. "doscreate" 
on page 3-76, and "dosopen" on page 3-94. 

3-78 AIX Operating System Technical Reference 



dosexecve 

Purpose 

Executes a program with a DOS path name. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosexecve (path, argv, envp) 
char *path, *argv[ ], *envp[ ]; 

Description 

dosexecve 

The dosexecve subroutine invokes an AIX-executable program identified by a DOS path 
name. The dosexecve subroutine corresponds to the execve system call except that the 
path parameter is interpreted with respect to the configured DOS file system. 

The path parameter must identify an AIX-executable file. It cannot refer to a 
DOS-executable file, such as an .EXE, .COM, or .BAT file. See the instructions for 
running a .BAT file on page 3-66. 

The new program started by the dosexecve subroutine inherits the AIX run-time 
environment, which includes the AIX open file descriptors and other information. (See 
"fork" on page 2-46 and "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34 
for a complete description of the AIX environment that is inherited after these system 
calls.) 

However, the new program does not automatically inherit the DOS Services environment. 
See "dosunopen, dosreopen" on page 3-112 for details about passing the DOS Services 
environment to a child process. 

Subroutines 3-79 



dosexecve 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosexecve subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "exec: exec!, execv, execle, execve, 
execlp, execvp" on page 2-34, "fork" on page 2-46, "wait" on page 2-182, "dosinit" on 
page 3-85, and "dosunopen, dosreopen" on page 3-112. 

3-SO AIX Operating System Technical Reference 



dosfirst, dosnext 

Purpose 

Finds DOS files that match a pattern. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

char *dosfirst (srch, pattern, mode) 
DOSFIND *srch; 
char *pattern; 
long mode; 

Description 

dosfirst, ... 

char *dosnext (srch) 
DOSFIND *srch; 

The dosfirst and dosnext subroutines return a pointer to a memory area containing a file 
name that matches the pattern specified by the pattern parameter and that has the 
attributes specified by the mode parameter. 

The pattern parameter is a file path name that can contain the pattern-matching characters 
? (question mark) and * (asterisk). 

The srch parameter points to a DOSFIND structure. That same DOSFIND structure 
should be passed to the dosnext subroutine on subsequent uses of the dosnext subroutine. 

The mode parameter contains flags that specify files to include in the search. If the mode 
parameter is 0, directories, hidden files, and DOS system files are omitted from the search. 
You can use the following flags OR' ed together in any combination: 

S-DIR Includes directories in the search. 

S_HIDDEN Includes DOS/AIX hidden files in the search. 

S_SYSTEM Includes DOS system files in the search. 

S-REG Includes regular DOS files (all files other than directories, hidden files, or 
system files). 

S-ALL Includes all files (directories, hidden files, system files, and regular files). 

Subroutines 3-81 



dosfirst, ... 

DOSFIND is defined in the dos.h header file and has the following format: 

typedef 
typedef 

long 
short 

DOSMODE; 
DOSFILE; 

typedef struct 
{ 

long seek; 
int count; 
long *disk; 
int mode; 
int tnxtcl; 

} dossrch; 

typedef struct 
{ 

long mode; 
char path [128] ; 
char *base; 
char *extn; 
char is-dos; 
DOSFILE handle; 
short index; 
dossrch dos-srch; 

} DOSFIND; 
A return of NULL from either subroutine indicates that no more files matching the pattern 
can be found. If the search is terminated before the NULL return occurs, you should use 
the free subroutine to free the memory area returned from the last call. 

Related Information 

"DOS services library" on page 3-65. 

3-82 AIX Operating System Technical Reference 



dosfsync 

Purpose 

Synchronizes a specified DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosfsync (dosfile) 
DOSFILE dosfile; 

Description 

dosfsync 

The dosfsync subroutine guarantees that any changes to the file specified by the dosfile 
parameter has been written to the device on which the file exists when the subroutine 
returns. The use of the dosfsync subroutine has no detectable effect in a single process 
that runs to completion. It is useful in multi-processing applications and as a form of 
backup. 

The dosfile parameter is an open file descriptor that was obtained from a dosopen, 
doscreate, or dosdup subroutine. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosfsync subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Subroutines 3-83 



dosfsync 

Related Information 

In this book: "fsync" on page 2-48, "DOS services library" on page 3-65, "doscreate" on 
page 3-76, "dosdup" on page 3-78, "dosopen" on page 3-94, and "doswrite" on page 3-116. 

3-84 AIX Operating System Technical Reference 



dosinit 

dosinit 

Purpose 

Initializes the DOS Services environment. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosinit ( ) 

Description 

The dosinit subroutine initializes the run-time environment required by the DOS Services 
subroutines. Programs must call the dosinit subroutine before using any of the 
DOS Services subroutines. 

The dosinit subroutine looks for the initialization information in the following places: 

1. It attempts to read the information from the file named by DOSENVT. DOSENVT is 
a variable in the AIX environment. The dos command (or any parent process) creates 
this file by calling the dosunopen subroutine before starting a child process. 

2. If the DOSENVT variable is not set, then dosinit configures DOS Services based on 
the AIX environment variables in the following list. 

3. For the AIX variables that are not defined, the default values shown in the following 
are used. 

AIX Variable 

DOS-NUL 
DOS-CON 
DOS-COMl 
DOS-COM2 
DOS-AUX 
DOS-LPO 

Default Value 

/dev/null 
/dev/tty 
/dev/ttyO 
/dev/ttyl 
/dev/ttyO 
/dev/lpO 

Subroutines 3-85 



dosinit 

DOS-LPI 
DOS-LP2 

DOS-LP7 
DOS-A 
DOS-B 
DOS-C 
DOS-D 
DOS-E 
DOS-F 

/dev/lpl 
/dev/lp2 

/dev/lp7 
/dev/fdO 
/dev/fdO 
$HOME 
/ 
No default 
No default 

No default. 

Note: If $HOME is set to /, or if it is undefined, then the default directory for DOS-C is 
/usr/dos. 

The value assigned to each of these variables must be either: 

• The full AIX path name of an accessible device, file, or directory, or 

• A string in the form I command, where command is an AIX command. The specified 
command receives, as its standard input, the data that DOS Services programs write to 
the corresponding logical device. 

The dosinit subroutine also uses the following environment variable: 

DOSDISK Specifies the initial default drive for DOS Services. If DOSDISK is not 
set, then dosinit searches sequentially from A: to Z: and sets the default 
drive to the first valid file system found. 

The AIX environment variables that specify the DOS Services configuration can be set in 
the system fete/profile file, in the user's $HOME/.profile, or directly from the AIX 
command line. See the sh command in A/X Operating System Commands Reference for 
more information about setting AIX environment variables, which are also called shell 
variables. 

The AIX environment variables are accessed only once during a single session started by 
the dos command. From then on, internal configuration tables are used. 

3-86 AIX Operating System Technical Reference 



dosinit 

Return Value 

Upon successful completion dosinit returns a value of o. Otherwise a value of -1 is 
returned, and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dosread" on page 3-98, "dosunopen, 
dosreopen" on page 3-112, and "doswrite" on page 3-116 

The dos and sh commands in A/X Operating System Commands Reference. 

Subroutines 3-87 



doslock 

doslock 

Purpose 

Locks or unlocks a region in a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int doslock (dosfile, offset, length, code) 
DOSFILE dosfile; 
int offset, length, code; 

Description 

The doslock subroutine provides a simple mechanism for disallowing read/write access by 
other processes to the file whose handle is specified by the dosfile parameter. If code is 
L-LOCK, and no part of the region is already locked by another process, then the region 
is locked. If code is L-UNLOCK, and the exact region has already been locked by the 
current process, then the region is unlocked. 

Return Value 

If the doslock subroutine fails, a value of -1 is returned and doserrno is set to indicate the 
error. For L-LOCK, the error means that the lock failed, either because the region was 
already locked, or because the lock list is full. For L-UNLOCK, the error means that the 
region was not locked. 

3-88 AIX Operating System Technical Reference 



doslock 

Related Information 

In this book: "DOS services library" on page 3-65, "dosread" on page 3-98, and "doswrite" 
on page 3-116. 

Subroutines 3-89 



dosmkdir 

dosmkdir 

Purpose 

Creates a directory. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosmkdir (path) 
char *path; 

Description 

The dosmkdir subroutine creates a directory using the path specified by the path 
parameter. All components of the path parameter except the last component must already 
exist. 

If creating an AIX directory, the dosmkdir subroutine forks and executes the AIX 
/bin/mkdir command, which creates the directory. This is done because only a process 
with an effective user ID of superuser can create an AIX directory. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosmkdir subroutine fails, 
then it returns a nonzero value and sets doserrno to indicate the error. 

Certain failures of the mkdir command also cause an error message to be written to the 
standard error output. 

3-90 AIX Operating System Technical Reference 



dosmkdir 

Related Information 

In this book: "DOS services library" on page 3-65 and "dosrmdir" on page 3-102. 

The mkdir command in AIX Operating System Commands Reference. 

Subroutines 3-91 



dosmktemp 

dosmktemp 

Purpose 

Creates a DOS temporary file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

DOSFILE dosmktemp ( ) 

Description 

The dosmktemp subroutine creates and opens a temporary file. The file is open for 
reading and writing. The access permission flags are set so that the owner has read-write 
permission and all others have no permission. 

The file is created in the /tmp directory with a name that includes the process ID of the 
running process and a serial number. The /tmp directory does not need to be accessible 
through the DOS file system configuration. 

Return Value 

Upon successful completion, a non-NULL file handle is returned. This handle is to be used 
in subsequent operations. 

If the dosmktemp subroutine fails, -1 is returned and doserrno is set to indicate the 
error. 

3-92 AIX Operating System Technical Reference 



dosmktemp 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, and 
"dosopen" on page 3-94. 

Subroutines 3-93 



dosopen 

dosopen 

Purpose 

Opens a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

DOSFILE dosopen (path, of lag , mode) 
char *path; 
int of lag; 
long mode; 

Description 

The dosopen subroutine opens the file specified by the path parameter. The of lag 
parameter specifies the type of open. The mode parameter specifies the access mode of the 
file if a new file is created. 

The of lag parameter is constructed by logically OR-ing one or more of the following values: 

DO-RDONL Y Open for reading only. 

DO-WRONLY Open for writing only. 

DO-RDWR Open for reading and writing. 

DO-APPEND If set, the file pointer is set to the end of the file prior to each write 
operation. 

DO-CREAT If the file does not exist, create it. Use mode to establish the protection 
mode of the new file. (For information on creating a DOS file, see 
"doscreate" on page 3-76.) 

DO-TRUNC If the file exists, truncate it. Otherwise begin writing at the end of file. 

3-94 AIX Operating System Technical Reference 



DO-EXCL 

DO-ASCII 

dosopen 

If the file already exists, the dosopen subroutine fails. 

Interpret the file as an ASCII text file. (For information about ASCII 
files, see "dosread" on page 3-98 and "doswrite" on page 3-116.) 

Note: Only one of DO-RDONLY, DO-WRONLY, and DO-RDWR can be specified. The 
others can be used in any combination. 

If the file being opened is on a DOS file system, the name file name given is translated to 
uppercase. If the file system is an AIX file system, no translation takes place. 

Warning: DOS files are not implicitly closed when a process terminates. 
You must explicitly close all DOS files or you may lose data. 

Return Value 

Upon successful completion, a DOS Services file handle is returned. This handle is used 
in subsequent operations. If the dosopen subroutine fails, -1 value is returned and 
doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dosc1ose" on page 3-75, "doscreate" on 
page 3-76, "dosdup" on page 3-78, "dosread" on page 3-98, "dosseek" on page 3-104, and 
"doswrite" on page 3-116. 

Subroutines 3-95 



dospwd 

dospwd 

Purpose 

Gives the full path name of the current directory. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

char *dospwd (drive) 
char *drive; 

Description 

The dospwd subroutine returns a pointer to the area of memory that contains the 
null-terminated name of the current directory for the drive specified by the drive 
parameter. If the drive parameter is a valid drive name (such as II A: II or liB: II), then the 
current directory for that drive is returned. If the drive parameter is NULL, then the 
current directory for the current drive is returned. 

Return Value 

Upon successful completion, a pointer to a string specifying the full path name of the 
current directory is returned. The memory for the name is allocated with the malloc 
subroutine and should be deallocated with the free subroutine. If the dospwd subroutine 
fails, a NULL pointer is returned and doserrno is set to indicate the error. 

3-96 AIX Operating System Technical Reference 



dospwd 

Related Information 

In this book: "DOS services library" on page 3-65, "dosassign" on page 3-70, and 
"doschdir" on page 3-72. 

Subroutines 3-97 



dosread 

dosread 

Purpose 

Reads from a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosread (dosfile, but, n) 
DOSFILE dosfile; 
char *buf; 
int n; 

Description 

The dosread subroutine reads the number of bytes specified by the n parameter. The 
dosfile parameter specifies the handle of the file· from which the bytes are to be read. The 
bytes read from the file are written into the buffer pointed to by the buf parameter. 

Reading begins from the current position in the file. The current position of the file is 
incremented by the number of bytes read. 

When attempting to read from a region that has been locked with the doslock subroutine, 
the dosread subroutine retries three times at one second intervals. If the region is still 
locked, an error occurs and -1 is returned. The proper method for using locks is not to rely 
on being denied I/O access, but to attempt to lock the desired region and then examine the 
return code. 

If the DO-ASCII flag was set when the file was opened, and if the file is located on a DOS 
file system, then the dosread subroutine translates the DOS ASCll data to AIX ASCll 
format. If DO-ASCII was not set when the file was opened, or if the file is located on an 
AIX file system, then this translation does not take place. 

When DOS ASCll translation is being performed, the dosread subroutine removes the 
ASCll CR characters, thus changing the CR-LF sequence used by DOS to the I \n I 

(new-line character) that AIX uses. An end-of-file condition occurs when Ctrl-Z is 

3-98 AIX Operating System Technical Reference 



dosread 

encountered. The dosread subroutine does not return the Ctrl-Z character as part of the 
data. 

Return Value 

Upon successful completion, the number of bytes actually read (after DOS translation, if 
any) is returned. If an end-of-file is read, a value of 0 is returned. If the dosread 
subroutine fails, a value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dosclose" on page 3-75, "doscreate" on 
page 3-76, "doslock" on page 3-88, "dosopen" on page 3-94, "dosseek" on page 3-104, and 
"doswrite" on page 3-116. 

Subroutines 3-99 



dosrename 

dosrename 

Purpose 

Renames a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosrename (oldpath, newfile) 
char *oldpath, *newfile; 

Description 

The dosrename subroutine changes the name of a DOS file. The file to be renamed is 
specified by the path name pointed to by the oldpath parameter. The new name for that 
file is specified by the newfile parameter. The newfile parameter must be a simple file name 
and optional extension. 

The dosrename subroutine must not be used to move a file from one directory to another 
directory. The dosrename subroutine fails if the file name specified by the newfile 
parameter already exists in the directory specified by the oldpath parameter. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosrename subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

3-100 AIX Operating System Technical Reference 



dosrename 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, "dosopen" on 
page 3-94, and "dosunlink" on page 3-110. 

Subroutines 3-101 



dosrmdir 

dosrmdir 

Purpose 

Removes a DOS Services directory. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosrmdir (path) 
char *path; 

Description 

The dosrmdir subroutine removes the directory specified by the path parameter. A 
directory must be empty before it can be removed. To remove a directory, the current 
process must have write access permission to the directory and to its parent directory. 

If an AIX directory is to be removed, the dosrmdir subroutine forks and executes the AIX 
/bin/rmdir command, which removes the directory. This is done because only a process 
with an effective user ID of superuser can remove an AIX directory. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosrmdir subroutine fails, it 
returns a nonzero value and sets doserrno to indicate the error. Certain failures of the 
rmdir command also cause an error message to be written to the standard error output. 

3-102 AIX Operating System Technical Reference 



dosrmdir 

Related Information 

In this book: "DOS services library" on page 3-65 and "dosmkdir" on page 3-90. 

The rmdir command in AIX Operating System Commands Reference. 

Subroutines 3-103 



dosseek 

dosseek 

Purpose 

Moves the DOS file read/write pointer. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosseek (dosfile, offset, whence) 
DOSFILE dosfile; 
long offset; 
int whence; 

Description 

The dosseek subroutine moves the current position pointer in the file specified by the 
dosfile parameter. 

• If the whence parameter is 0, the pointer is set to the position specified by the offset 
parameter. 

• If the whence parameter is 1, the pointer is incremented by the number of bytes 
specified by the offset parameter. 

• If the whence parameter is 2, the pointer is set to the size of the file plus the number of 
bytes specified by the offset parameter. 

If the dosseek subroutine has been issued on a file that was opened with the DO-ASCII 
flag set, the offset parameter must be O. Otherwise, the results are unpredictable. 

3-104 AIX Operating System Technical Reference 



dosseek 

Return Value 

Upon successful completion, the file pointer value is returned. If the dosseek subroutine 
fails, a value of -1 is returned and doserrno is set to indicate the error. 

Diagnostics 

The dosseek subroutine fails and the file pointer remains unchanged if one or more of the 
following are true: 

EBADF 

ESPIPE 

EINVAL 

EINVAL 

dosfile is not an open file descriptor. 

dosfile is associated with a pipe or FIFO. 

whence is not 0,1 or 2. This also causes a SIGSYS signal. 

The resulting file pointer would be negative. 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, "dosdup" on 
page 3-78, and "dosopen" on page 3-94. 

Subroutines 3-105 



dosstat, ... 

dosstat, dosfstat 

Purpose 

Gets the status of a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include <dos.h> 

int dosstat (path, but) 
char *path; 
DOSSTAT *buf; 

Description 

int dosfstat (dosfile, but) 
DOSFILE dosfile; 
DOSSTAT *buf; 

The dosstat subroutine gets the status of the file named by the path parameter and stores 
that status into the memory area pointed to by the buf parameter. Read, write, and 
execute permissions are not required of the named file, but all directories included in the 
path name must be searchable. 

The dosfstat subroutine gets the status of an open file named by the dosfile parameter and 
stores that status into the memory area pointed to by the buf parameter. 

The DOSSTAT structure is defined in the dos.h file and has the following form: 

typedef struct 
{ 

char 
long 

time-t 
} DOSSTAT; 

st-drive-id, st-filetype; 
st-mode, st-ino, st-dev, st-rdev, 
st-nlink, st-uid, st-gid, st-size; 
st-atime, st-mtime, st-ctime; 

3-106 AIX Operating System Technical Reference 



dosstat, ... 

The st-drive-id field is set to the logical drive on which the file exists. The st-filetype 
field is set to the following values: 

u For an AIX file. 
d For a DOS file. 
t For a tty file. 
o For any other type of file. 

For non-DOS files, all other fields are identical to the fields defined in "stat.h" on 
page 5-69. For DOS files, the fields have the following meanings: 

st-mode If the M-DIRECTORY bit is set, the file is a directory. All other bits 
correspond to the mode bits as defined in the doscreate subroutine. 

st-ino The number of the first cluster in the file. 

st-rdev Contains the attribute byte from the DOS directory entry. 

st-size The size in bytes of the file as set in the DOS directory entry. 

st-mtime The time the file was last modified, in AIX format. (For information about 
this format, see "time" on page 2-164 and "ctime, localtime, gmtime, asctime, 
tzset" on page 3-46.) 

st-dev Meaningless for DOS files. 

st-nlink Meaningless for DOS files. 

st-uid Meaningless for DOS files. 

st-gid Meaningless for DOS files. 

st-atime Meaningless for DOS files. 

st-ctime Meaningless for DOS files. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosstat or dosfstat 
subroutines fail, a value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "stat, fstat" on page 2-159, and 
"dosustat" on page 3-114. 

Subroutines 3-107 



dostouch 

dostouch 

Purpose 

Changes the modification date of a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dostouch (path, date) 
char *path; 
long date; 

Description 

The dostouch subroutine changes the time of the last modification of the file specified by 
the path parameter to the time specified by the date parameter. The time parameter 
contains a time in a format like that returned by the time system call (see "time" on 
page 2-164). 

If the path parameter identifies a file on an AIX file system, the program /bin/touch is 
invoked to change the time. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dostouch subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

3-108 AIX Operating Syst~m Technical Reference 



dostouch 

Related Information 

In this book: "time" on page 2-164, "ctime, localtime, gmtime, asctime, tzset" on page 3-46, 
"DOS services library" on page 3-65, and "dosstat, dosfstat" on page 3-106. 

Subroutines 3-109 



dosunlink 

dosunlink 

Purpose 

U nlinks (deletes) a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include <dos.h> 

int dosunlink (path) 
char *path; 

Description 

The dosunlink subroutine deletes the directory entry named by the path parameter. 

The file is removed from the file system if it is a DOS file or if it is an AIX file with no 
other links to it. 

The dosunlink subroutine fails if the invoking process does not have write access to the 
file being removed and to the directory in which it is contained. It is successful if the file 
is in use, but the file is not deleted until all users have closed it. 

The directory entry is removed upon return to dosunlink, but all users who had the file 
open when dosunlink was called still have a local copy for their use. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosunlink subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

3-110 AIX Operating System Technical Reference 



dosunlink 

Related Information 

In this book: "DOS services library" on page 3-65, "doscreate" on page 3-76, "dosopen" on 
page 3-94, and "dosrename" on page 3-100. 

Subroutines 3-111 



dosunopen, . 

dosunopen,dosreopen 

Purpose 

Passes the DOS Services environment from a parent process to a child process. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosunopen ( ) int dosreopen ( ) 

Description 

The dosunopen and dosreopen subroutines provide a means to pass the current 
DOS Services environment to a child process. The following sequence accomplishes this 
task: 

1. The parent process calls the dosunopen subroutine to construct a file that describes 
the current state of the DOS Services environment. dosunopen also sets the 
DOSENVT variable (in the AIX environment) to the name of this file. 

2. The parent process then issues a fork system call to start a child process. The child 
process automatically inherits copies of its parent's AIX open file descriptors, but not 
the DOS file descriptors. 

3. The child process calls the dosexecve subroutine (or one of the exec system calls) to 
run a new program. This program calls the dosinit subroutine, which initializes the 
child's DOS Services environment from the file named by the DOSENVT variable. 
The child process now has access to the DOS files opened by its parent. 

4. The parent process invokes the wait system call to wait for the child to finish running 
its program. 

5. When the child has finished, the parent process calls the dosreopen subroutine to 
reopen the original DOS Services environment and to delete the environment file 
created by dosunopen. 

3-112 AIX Operating System Technical Reference 



dosunopen, . . . 

If a program attempts to reopen a file on a removable diskette and that diskette is not 
inserted into the machine, then the dosreopen subroutine prompts you to reinsert the 
correct diskette. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosunopen or dosreopen 
subroutine fails, then it returns a value of -1 and sets doserrno to indicate the error. 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "fork" on 
page 2-46, "wait" on page 2-182, "DOS services library" on page 3-65, "dosinit" on 
page 3-85, "dosexecve" on page 3-79, "dosopen" on page 3-94, and "getenv, NLgetenv" on 
page 3-208. 

Subroutines 3-113 



dosustat 

dosustat 

Purpose 

Gets the status of a given DOS Services device. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int dosustat (device, but) 
char *device; 
DOSUSTAT *buf; 

Description 

The dosustat subroutine gets the status of the DOS Services device specified by the device 
parameter and returns that information to the area of memory specified by the buf 
parameter. The device parameter is a pointer to a string that contains the name of a 
DOS Services device. 

The DOSUSTAT structure is defined in /usr/include/dos.h and has the following format: 

typedef struct 
{ 

char upath[128]; 
char umount[128]; 
char volume[32]; 
int freespace; 
char fstype; 

} DOSUSTAT; 

/* Device or file specified in configuration */ 
/* AI X di rectory mounted on it, or NULL * / 
/* Volume name */ 
/* Number of free bytes */ 
/* AIX file system='u', DOS file system='d' */ 

The umount structure member is not NULL only when the upath field identifies a device 
name (such as /dev /fdO) , and that device contains a mountable AIX file system. 

3-114 AIX Operating System Technical Reference 



dosustat 

The volume, freespace, and fstype members are set only when the device parameter is a 
disk name (a single letter followed by a colon). If the device is a removable disk, umount 
may read it to determine if it is a valid DOS or AIX file system. 

Return Value 

Upon successful completion, a value of 0 is returned. If the dosustat subroutine fails, a 
value of -1 is returned and doserrno is set to indicate the error. 

Related Information 

In this book: "ustat" on page 2-178, "DOS services library" on page 3-65, and "dosstat, 
dosfstat" on page 3-106. 

Subroutines 3-115 



doswrite 

doswrite 

Purpose 

Writes to a DOS file. 

Library 

DOS Services Library (libdos.a) 

Syntax 

#include < dos.h > 

int doswrite (dosfile, buf, n) 
DOSFILE dosfile; 
char *buf; 
int n; 

Description 

The doswrite subroutine writes the number of bytes specified by the n parameter to the 
file whose handle is specified by the dosfile parameter. The bytes are written from the 
buffer pointed to by the buf parameter. 

Writing begins from the current position in the file. The current position is incremented 
by the number of bytes written. When attempting to write to a region that has been locked 
with the doslock subroutine, the doswrite subroutine retries three times at one second 
intervals. If the region is still locked, an error occurs and -1 is returned. The proper 
method for using locks is not to rely on being denied I/O access, but to attempt to lock the 
desired region and then examine the return code. 

If the file was opened with the DO-APPEND flag set, then the file pointer is set to the 
end of the file prior to each write. 

If the DO-ASCII flag was set when the file was opened, and if the file is located on a DOS 
file system, then the doswrite subroutine translates the AIX ASCII data to DOS ASCII 
format. If DO-ASCII was not set when the file was opened, or if the file is located on an 
AIX file system, then this translation does not take place. 

When DOS ASCII translation is being performed, the doswrite subroutine inserts an 
ASCII CR character before each LF character, thus changing each AIX I \n I (new-line 

3-116 AIX Operating System Technical Reference 



doswrite 

character) to the CR-LF sequence that DOS uses to indicate a new line. A Ctrl-Z 
character is written as the last character when the file is closed. 

If a write requests that more translated bytes be written than there is room for in the file, 
then only as many bytes as there is room for are written. The next request to write more 
than zero bytes returns an error. 

Return Value 

Upon successful completion, a number equal to the number of bytes written before 
translation is returned. If the doswrite subroutine fails, a value of -1 is returned and 
doserrno is set to indicate the error. 

Related Information 

In this book: "DOS services library" on page 3-65, "dosclose" on page 3-75, "doscreate" on 
page 3-76, "doslock" on page 3-88, "dosopen" on page 3-94, "dosread" on page 3-98, and 
"dosseek" on page 3-104. 

Subroutines 3-117 



drand48 

drand48 

Purpose 

Generates uniformly distributed pseudo-random number sequences. 

Library 

Standard C Library (libc.a) 

Syntax 

double drand48 ( ) 

double erand48 (xsubi) 
unsigned short xsubi[3]; 

long Irand48 ( ) 

long nrand48 (xsubi) 
unsigned short xsubi[3]; 

long mrand48 (); 

Description 

long jrand48 (xsubi) 
unsigned short xsubi[3]; 

void srand48 (seedval) 
long seedval; 

unsigned short *seed48 (seed16v) 
unsigned short seed16v[3]; 

void Icong48 (param) 
unsigned short param[7]; 

This family of subroutines generates pseudo-random numbers using the linear congruential 
algorithm and 48-bit integer arithmetic. 

The drand48 and erand48 subroutines return nonnegative double-precision floating-point 
values uniformly distributed over the range of y values such that 0.0 ~ y < 1.0. 

The Irand48 and nrand48 subroutines return nonnegative long integers uniformly 
distributed over the range of y values such that 0 ~ y < 231. 

The mrand48 and jrand48 subroutines return signed long integers uniformly distributed 
over the range of y values such that -231 ~ y < 231. 

The srand48, seed48 and Icong48 subroutines initialize, the random-number generator. 
Programs should invoke one of them before calling drand48, Irand48 or mrand48. 
(Although it is not recommended practice, constant default initializer values are supplied 
automatically if the drand48, Irand48 or mrand48 subroutines are called without first 

3-118 AIX Operating System Technical Reference 



drand48 

calling an initialization subroutine.) The erand48, nrand48 and jrand48 subroutines do 
not require that an initialization subroutine to be called first. 

All the subroutines work by generating a sequence of 48-bit integer values, Xi' according to 
the linear congruential formula: 

Xn + I = (aXn + c)modm n ~ 0 

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the Icong48 
subroutine has been called, the multiplier value a and the addend value care: 

a = 5DEECE66DI6 = 2736731631558 

c = BI6 = 138 

The value returned by the drand48, erand48, Irand48, nrand48, mrand48, and jrand48 
subroutines is computed by first generating the next 48-bit Xi in the sequence. Then the 
appropriate number of bits, according to the type of data item to be returned, are copied 
from the high-order (most significant) bits of Xi and transformed into the returned value. 

The drand48, Irand48 and mrand48 subroutines store the last 48-bit Xi generated into an 
internal buffer; that is why they must be initialized prior to being invoked. 

The erand48, nrand48 and jrand48 subroutines require the calling program to provide 
storage for the successive Xi values in the array pointed to by the xsubi parameter. That is 
why these routines do not have to be initialized; the calling program merely has to place 
the desired initial value of Xi into the array and pass it as a parameter. 

By using different parameters, the erand48, nrand48, and jrand48 subroutines allow 
separate modules of a large program to generate several independent sequences of 
pseudo-random numbers. In other words, the sequence of numbers that one module 
generates does not depend upon how many times the subroutines are called by other 
modules. 

The initializer subroutine srand48 sets the high-order 32 bits of Xi to the 32 bits contained 
in its parameter. The low order 16 bits of Xi are set to the arbitrary value 330E16• 

The initializer subroutine seed48 sets the value of Xi to the 48-bit value specified in the 
array pointed to by the seed16v parameter. In addition, seed48 returns a pointer to a 48-bit 
internal buffer that contains the previous value of Xi. that is used only by seed48. The 
returned pointer allows you to restart the pseudo-random sequence at a given point. Use 
the pointer to copy the previous Xi value into a temporary array. Later you can call 
seed48 with a pointer to this array to resume where the original sequence left off. 

The Icong48 subroutine specifies the initial Xi value, the multiplier value a, and the 
addend value c. The parameter array elements param[O-2] specify Xi' param[3-5] specify the 
multiplier a, and param[6] specifies the 16-bit addend c. After Icong48 has been called, a 
suqsequent call to either srand48 or seed48 restores the standard a and C as specified 
previously. 

Subroutines 3-119 



drand48 

Related Information 

In this book: "rand, srand" on page 3-317. 

3-120 AIX Operating System Technical Reference 



I drsname, drsnidd 

I Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
drsname, ... 

Returns the associated node ID for a given node nickname or the associated nickname for 
a given node ID. 

I Library 

IPC Library (libipc.a) 

I Syntax 

#include < drs.h > 

int drsname (nickname, nid) int drsnidd (nid, nickname) 

char *nickname; 
long *nid; 

I Description 

long nid; 
char *nickname; 

The drsname subroutine returns the associated node ID for a given nickname. The 
nickname parameter points to a null-terminated string containing the nickname for which 
the node ID is to be returned. The nid parameter points to the location of the returned 
node ID. 

The drsnidd subroutine returns the associated node nickname for a given node ID. The 
nid parameter contains the node ID for which the nickname is to be returned. The 
nickname parameter is a null-terminated string that points to the returned nickname. The 
calling process must reserve enough memory to contain the returned information, which is 
a maximum of 14 characters plus the trailing NULL. 

I Return Value 

Upon successful completion, these functions return a value of O. If an error occurs, they 
return one of the following negative values: 

DRS-ACCES 

DRS-BADLEN 

The required access permissions were denied. 

An incorrect parameter was supplied. 

Subroutines 3-120.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
drsname, ... 

DRS-NOREC 

DRS-IO 

DRS-AGAIN 

DRS-BADF 

DRS-BADK 

DRS-BDMSF 

DRS-BOF 

DRS_DEADLK 

DRS-EOF 

DRS-FAULT 

DRS-FBIG 

DRS-IDRM 

DRS-INTENT 

DRS-ISDIR 

DRS-MFILE 

DRS-NFILE 

DRS-NOENT 

DRS_NOMEM 

DRS-NOSPC 

DRS-NOTDIR 

DRS_NOTIDX 

DRS-PANIC 

DRS-RCVRY 

DRS-RECLEN 

DRS-ROFS 

No record was found. 

An input/output error occurred. 

Unable to start Profile Services. 

An incorrect file descriptor was supplied. 

An incorrect index key was supplied. 

An incorrect file or table was supplied. 

The beginning of the file was encountered. 

A deadlock was detected. 

The end of the file was encountered. 

An incorrect address was supplied. 

The maximum file size was exceeded. 

Identifier removed. 

Intentions denied. 

A write to a directory was attempted. 

Too many files, tables, or indexes were open. 

The file table overflowed. 

No file or directory was found. 

No memory is available. 

No space is available on the device. 

Not a directory. 

Not an index. 

Abnormal termination occurred. 

File needs recovery. 

Record length is invalid. 

The file system to be accessed is read-only. 

3-120.2 AIX Operating System Technical Reference 



I Related Information 

Managing the AIX Operating System. 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
drsname, ... 

Subroutines 3-120.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
drsname, ... 

3-120.4 AIX Operating System Technical Reference 



eevt, fevt, gevt 

Purpose 

Converts a floating-point number to a string. 

Library 

Standard C Library (libc.a) 

Syntax 

char *ecvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *fcvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

Description 

ecvt, ... 

char *gcvt (value, ndigit, but) 
double value; 
int ndigit; 
char *but; 

The ecvt, fcvt, and gcvt subroutines convert floating-point numbers to strings. 

The ecvt subroutine converts the value parameter to a null-terminated string and returns a 
pointer to it. The ndigit parameter specifies the number of digits in the string. The 
low-order digit is rounded. ecvt sets the int pointed to by the decpt parameter to the 
position of the decimal point relative to the beginning of the string. (A negative number 
means the decimal point is to the left of the digits given in the string). The decimal point 
itself is not included in the string. The ecvt subroutine also sets the int pointed to by the 
sign parameter to a non-zero value if the value parameter is negative, and sets it to 0 
otherwise. 

The fcvt subroutine functions identically to ecvt, except that it rounds the correct digit 
for outputting ndigit digits in FORTRAN F-format. 

The gcvt subroutine converts the value parameter to a null-terminated string, stores it in 
the array pointed to by the but parameter, and then returns but. gcvt attempts to produce 
a string of ndigit significant digits in FORTRAN F-format. If this is not possible, then 
E-format is used. gcvt suppresses trailing zeroes. The string is ready for printing, 
complete with minus sign, decimal point, or exponent, as appropriate. 

Subroutines 3-121 



ecvt, 

The ecvt, fcvt, and gcvt subroutines represent the following special values that are 
specified in ANSI/IEEE standard 754-1985 for binary floating-point arithmetic: 

Quiet NaN QNaN 
Signalling NaN SNaN 
±oo INF 

The sign associated with each of these values is stored into the sign parameter. Note, also, 
that 0 can be positive or negative. 

Warning: All three subroutines store the strings in a static area of 
memory whose contents are overwritten each time one of the subroutines is 
called. 

Related Information 

In this book: "a64l, l64a" on page 3-4, "frexp, ldexp, modf' on page 3-194, "printf, fprintf, 
sprintf, NLprintf, NLfprintf, NLsprintf' on page 3-300, and "scanf, fscanf, sscanf, NLscanf, 
NLfscanf, NLsscanf' on page 3-325. 

3-122 AIX Operating System Technical Reference 



end, etext, edata 

Purpose 

Defines the last location of a program. 

Library 

None 

Syntax 

extern end; 
extern etext; 
extern edata; 

Description 

end, ... 

The external names end, etext, and edata are defined by the loader for all programs. 
They are not subroutines, but identifiers associated with the following addresses: 

etext The first address following the program text 
edata The first address following the initialized data region 
end The first address following the data region that is not initialized. 

The program break is the first location beyond the data. When a program begins 
running, this location coincides with end. However, many factors can change the program 
break, including: 

• The brk system call 
• The malloc subroutine 
• The standard input/output subroutines 
• The -p flag on the cc command. 

Therefore, use sbrk(O), not end, to determine the program break. 

Subroutines 3-123 



end, ... 

Related Information 

In this book: "brk, sbrk" on page 2-14, "malloc, free, realloc, calloc" on page 3-236, and 
"standard i/o library" on page 3-342. 

The cc command in A/X Operating System Commands Reference. 

3-124 AIX Operating System Technical Reference 



erf, erfc 

Purpose 

Computes the error and complementary error functions. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

double erf (x) 
double x; 

Description 

double erfc (x) 
double x; 

The erf subroutine returns the error function of x, defined as: 

err, ... 

The erfc subroutine returns 1.0 - erf(x). The erfc subroutine is provided because of the 
extreme loss of relative accuracy if erf(x) is called for large values of x and the result is 
subtracted from 1.0. For example, 12 decimal places are lost when calculating (1.0 - erf(5». 

Related Information 

In this book: "exp, log, log10, pow, sqrt" on page 3-128. 

Subroutines 3-125 



errunix 

errunix 

Purpose 

Logs application errors. 

Library 

Run-time Services Library (librts.a) 

Syntax 

int errunix (bu/, cnt) 
char *bu/; 
unsigned int cnt; 

Description 

The errunix subroutine invokes the application error device driver to record an error log 
entry. errunix is a C run-time subroutine. Device drivers should use the errsave 
subroutine to log error messages. 

If the error device driver is not open, errunix opens it. Then the error log entry is written 
to it. 

The but parameter points to a buffer that contains the following information: 

1. A word (int) that contains the class, subclass, mask, and type of the message, as 
defined in the discussion of "error" on page 6-15 

2. An int that specifies the number of words of dependent data for the error log entry, 
including this int itself 

3. Words that contain the dependent information for the error log entry. The number of 
dependent data words must be one less than the word count specified immediately 
before them. 

The other fields of the error log header (length, date and time, time extended, node name, 
and virtual machine ID) are supplied for you automatically. 

The cnt parameter specifies the number of bytes in the buffer pointed to by but. cnt must 
be a multiple of 4. 

3-126 AIX Operating System Technical Reference 



errunix 

Return Value 

Upon successful completion, a value of 0 is returned. If the errunix subroutine fails, an 
error message is written to the standard error output, and a value of -1 is returned. 

File 

/dev/error 

Related Information 

In this book: "error" on page 6-15, and "errsave" on page C-31. 

Subroutines 3-127 



" exp, ... 

exp, log, loglO, pow, sqrt 

Purpose 

Computes exponential, logarithm, power, and square root functions. 

Library 

Math Library (!ibm.a) 

Syntax 

#include < math.h > 

double exp (x) 
double x; 

double log (x) 
double x; 

double loglO (x) 
double x; 

Description 

The exp subroutine to returns ex. 

double pow (x, y) 
double x, y; 

double sqrt (x) 
double x; 

The log subroutine returns the natural logarithm of x, In x. The value of x must be 
positive. 

The loglO subroutine returns the logarithm base 10 of x, loglo x. The value of x must be 
positive. 

The pow subroutine returns xY. The values of x and y may not both be O. If x is negative 
or 0, then y must be an integer. 

The sqrt subroutine returns the square root of x. The value of x can not be negative. 

3-128 AIX Operating System Technical Reference 



exp, ... 

Diagnostics 

The exp, log, log10, and sqrt subroutines can perform either of the following types of 
error handling. The pow subroutine always handles errors according to the first method. 
Both types of error handling allow you to define special actions to be taken when an error 
occurs. 

1. By default, matherr error handling is performed, as described on page 3-238. The 
default error-handling procedures for these subroutines are as follows: 

exp 

log 

log10 

pow 

If the correct value overflows, exp returns HUGE and sets errno to 
ERANGE. 

If x is negative or 0, then log returns the value -HUGE, sets errno to EDOM, 
and writes an error message to the standard error output. 

If x is negative or 0, then log10 returns the value -HUGE, sets errno to 
EDOM, and writes an error message to the standard error output. 

If x is negative or ° and y is not an integer, or if x and yare both 0, then pow 
returns the value 0, sets errno to EDOM, and writes an error message to the 
standard error output. If the correct value overflows, pow returns HUGE and 
sets errno to ERANGE. 

sqrt If x is negative, then sqrt returns the value 0, sets errno to EDOM, and 
writes an error message to the standard error output. 

2. For exp, log, log10, and sqrt, exception handling can also be performed according to 
ANSI/IEEE standard 754-1985 for binary floating-point arithmetic, as discussed under 
"Exception Handling" on page 3-186. To select ANSI/IEEE exception handling, define 
the -C-func preprocessor variable. You can do this by inserting the statement 
#define -C-func before the #include < math.h >, or by specifying the -D-C-func 
flag to the cc command when compiling the program. 

If a hardware floating-point processor is installed in your system, then using this 
option can provide greater performance in addition to IEEE exception handling. 
Defining -C-func causes the math.h header file to define macros that make the 
names exp, log, log10, and sqrt appear to the compiler as -C-exp, -C-Iog, -C-Iog10, 
and -C-sqrt, respectively. These special names instruct the C compiler to generate 
code that avoids the overhead of the math library subroutines and issues 
compatible-mode floating-point calls directly. See "fpfp" on page 3-170 for information 
about compatible mode. 

Subroutines 3-129 



exp, ... 

Related Information 

In this book: "fpfp" on page 3-170, "Exception Handling" on page 3-186, "hypot" on 
page 3-229, "matherr" on page 3-238, and "sinh, cosh, tanh" on page 3-337. 

3-130 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

extended curses library 

Purpose 

Controls cursor movement and windowing. 

Library 

Extended Curses Library (libcur.a) 

Syntax 

#include < cur01.h > 

Description 

The Extended Curses subroutines control input and output to a work station, performing 
optimized cursor movement, windowing, and other functions. This package is based on the 
curses subroutine package, which is included in most UNIX-compatible systems. The 
curses subroutines are also included in AIX for complete compatibility with existing 
programs (see "curses" on page 3-51). 

The enhancements provided by Extended Curses include: 

• A wider range of display attributes 
• Generalized drawing of boxes 
• Terminal-independent input data processing 
• Extended window control 
• Pane, panel, and field concepts 
• Support for extended characters 
• Handling of locator input. 

Terminology 

window The internal representation of what a portion of the display may look like at 
some point in time. Windows can be any size from the entire display screen to 
a single character. 

screen A window that is large as the display screen. A screen named stdscr is 
automatically provided. 

Subroutines 3-131 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

terminal Sometimes called a terminal screen. A special screen that is the Extended 
Curses package's understanding of what the work station's display screen 
currently looks like. The terminal screen is identified by a window named 
curser, which should not be accessed directly by the user. Instead, changes 
should be made to stdscr (or a user-defined screen) and then refresh (or 
wrefresh) should be called to update the terminal. 

presentation space 

pane 

active pane 

panel 

The array that contains the data and attributes associated with a window. 

An area of the display that shows all or part of the data contained in a 
presentation space associated with that pane. 

The pane in which the text cursor is positioned. A pane must be active before 
you can do input. 

A group of one or more panes that are treated as a unit. The panes of a panel 
are displayed together, erased together, and usually represent a unit of 
information to a person using the application. A panel is represented on the 
display as a rectangular area that is tiled (completely filled) with panes. 

field An area in a presentation space into which the program accepts input. 

extended character 

NLSCHAR 

A character other than 7-bit ASCII that can be represented in either 1 or 2 
bytes. (See "data stream" on page 5-5.) 

A data type that represents a character from code page PO, PI, or P2. It is 
defined to be equivalent to unsigned short. A singleNLSCHAR variable can 
contain either a I-byte or a 2-byte character. The I-byte characters are stored 
in the low-order byte with the high-order byte set to 0; this is the same way 
that they are stored as integers. The 2-byte characters are stored with the 
single-shift control code in the high-order byte and the character data code in 
the low-order byte. This data type has no relation to the NLchar data type. 

See the discussion of Extended Curses in AIX Operating System Programming Tools and 
Interfaces, and "Overview of International Character Support" in IBM RT PC Managing 
the AIX Operating System for more detailed information about these concepts. 

'3-132 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

Linking the Extended Curses Routines 

The Extended Curses routines also call terminfo subroutines, which are located in the 
Curses Library (libcurses.a). Therefore, compile programs that use Extended Curses 
routines with the flags -lcur -lcurses. 

Header Files 

• The curOO.h header file replaces curses.h when converting programs that use the 
original curses package to Extended Curses. 

• All of the routines require the cur01.h header file. 

• The key codes returned by getch are defined in cur02.h. 

• The cur03.h header file defines attribute priority codes, and is not needed by 
application programs. 

• The unctrl routine requires cur04.h. 

• The routines that manage panes and panels (the routines whose names begin with ec) 
also require the curOS.h header file. 

Naming Conventions 

The new routines added to the original curses package begin with the letters ec. 

Many routines operate on stdscr, the standard screen, by default. Corresponding routines 
that allow you to specify a window have the same name, prefixed with the letter w. For 
example, addch adds a character to stdscr, while waddch allows you to specify the 
window. Sometimes a routine beginning with p also exists, such as paddch, which allows 
you to specify a pane. 

Some routines also allow you to specify cursor movement with the action to be performed. 
These routines have a prefix of mv. Thus, addch becomes mvaddch, waddch becomes 
mvwaddch, and paddch becomes mvpaddch. Each of these routines is equivalent to 
calling move or wmove before performing the operation. 

The various prefixed forms of the routines are implemented as macros. In each case, the 
routine beginning with w is the base subroutine from which the others are defined. 

Subroutines 3-133 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

Parameters 

The following declarations serve for all of the routines: 

char ch *string; 
NLSCHAR XC; 

int line, col, !irstline, firstcol; 
int numlines, numcols, numchars, length, mode; 
bool bool!; 
WINDOW *win, *winl, *win2, *oldwin, *newwin; 
PANE *pane; 
PANEL *panel; 

Return Values 

Unless otherwise noted, each routine returns a value of type int that is either OK 
(indicating successful completion) or ERR (if an error is encountered). 

The Extended Curses Routines 

The Extended Curses routines are listed here alphabetically, except that routines with w, 
p, and mv prefixes are listed with the corresponding routine that does not have these 
prefixes. 

addch (xc) 
waddch (win, xc) 
paddch (pane, xc) 
mvaddch (line, col, xc) 
mvwaddch (win, line, col, xc) 
mvpaddch (pane, xc) 

The xc parameter is a value of type NLSCHAR, rather than a single-byte char as 
used by curses. 

The addch routine adds the NLSCHAR specified by the xc parameter on the 
window at the current (line, col) coordinates. paddch adds the character to the 
presentation space for the pane specified by the pane parameter. If the character is 
I \ n I (new-line character), the line is cleared to the end, and the current (line, col) 
coordinates will be changed to the beginning of the next line. A I \ r I (return 
character) moves the current position to the beginning of the current line on the 
window. A 1\ t I (tab character) is expanded into spaces in the normal tabstop 
positions of every eighth column. 

Adding a character to the lower right corner of a window that includes the lower 
right corner of the display causes many terminals to scroll the entire display image 

3-134 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

up one line. If adding a character or a character attribute causes such scrolling to 
occur, then addch makes the change on the window, but does not mark it for 
wrefresh purposes; addch returns the value ERR. Adding a single-shift control by 
itself to the window does not change the current position in the window. 

If the current position in the window contains only a single-shift control code and 
xc is a valid character data code, then the two are combined to form an extended 
character, and it is added to the window at the current position. Otherwise, xc is 
treated as a valid NLSCHAR and is added to the window at the current position. 

addstr (string) 
waddstr (win, string) 
paddstr (pane, string) 
mvaddstr (line, col, string) 
mvwaddstr (win, line, col, string) 
mvpaddstr (pane, line, col, string) 

The addstr routine adds the string pointed to by the string parameter on the 
window at the current (line, col) coordinates. The string can contain single-shift 
control codes. 

Upon successful completion, addstr returns OK and the current (line, col) 
coordinates point to the location just beyond the end of the string. The addstr 
routine returns ERR if an attempt is made to add a character to the lower right 
corner of a window that includes the lower right corner of the display. In this 
case, addstr writes as much of the string on the window as possible. 

waddfld (win, string, length, numlines, numcols, mode, xc) 

The waddfld routine adds data to a field within a window. The current 
coordinates specify the upper-left corner of the field in the window. The numlines 
and numcols parameters specify the number of lines and columns in the field, 
respectively. The length parameter specifies the length of the data. The mode 
parameter specifies the attribute for the field output. The xc parameter specifies 
the NLSCHAR that is used to fill the remainder of the field after the data has been 
added to it. 

If the string contains a I \n I (new-line character), then the fill character is added 
to the reminder of the columns on that line of the field, and the remainder of the 
data is added starting at the first column of the next line of the field. A I \ r I 

(return character) changes the current position to the beginning column of the 
field. A 1\ t I (tab character) is expanded with fill characters up to the next normal 
tabstop position within the field. 

The waddfld routine follows the same rules as addch for adding single-shift 
control codes and character data codes to the window. 

Subroutines 3-135 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

beep () 

The beep routine sounds the speaker or bell at the work station. 

box (win, vert, hor) 
NLSCHAR vert, hor; 

The box routine draws a box around the window specified by the win parameter. 
box uses the NLSCHAR specified by the vert parameter to draw the vertical sides 
of the box, and the NLSCHAR specified by the hor parameter for drawing the 
horizontal lines and corners. 

If the window includes the lower right corner of the display and scrollok is not set, 
then the lower right corner of the box is not shown on the window and the box 
routine returns ERR. 

The box routine is a macro that invokes superbox. 

cbox (win) 

The cbox routine draws a box around the window specified by the win parameter. 
The characters used are those defined in /usr/lib/terminfo (type 1 box characters) 
or defaulted during the initialization. 

The cbox routine is implemented as a macro that invokes superbox. 

The cbox routine returns ERR if the window includes the lower right corner of the 
display and scrollok is not set on. 

chgat (numchars, mode) 
wchgat (win, numchars, mode) 
pchgat (pane, numchars, mode) 
mvchgat (line, col, numchars, mode) 
mvwchgat (win, line, col, numchars, mode) 
mvpchgat (pane, line, col, numchars, mode) 

The chgat routine changes the attributes of the next numchars characters on the 
window starting from the current (line, col) coordinates. The attributes are 
changed to the attributes specified by the mode parameter. This routine will not 
wrap around to the next line; however, specifying a value for the numchars 
parameter that would cause a line wrap is not an error. 

The mode parameter is one or more of the attributes defined by the global attribute 
variables. More than one attribute may be specified by logically OR-ing them 
together. The following example changes the attributes of the next 10 characters 
to bold blue characters on a black background: 

chgat (10, BOLD I F-BLUE I B-BLACK) 

3-136 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The chgat routine returns ERR if the change forces scrolling and scrollok is not 
set on for the window. 

clear () 
wclear (win) 

The clear routine resets the entire stdscr window to blank characters. clear sets 
the current (line, col) coordinates to (0, 0). 

clearok (scr, boolf) 
WINDOW *scr; 

The clearok routine sets the clear flag for the screen specified by the scr 
parameter. If the boolf parameter is TRUE, then the screen will be cleared on the 
next call to refresh or wrefresh. If the boolf parameter is FALSE, then the 
screen will not be cleared on the next call to refresh or wrefresh. This only 
works on screens, and, unlike clear, does not alter the contents of the screen. If 
the scr parameter is curser, then the next refresh will cause a clear-screen, even if 
the window passed to refresh is not a screen. 

The clearok routine returns ERR if the window is not a full screen window. 

clrtobot () 
wclrtobot (win) 

The clrtobot routine erases the window from the current (line, col) coordinates to 
the bottom. clrtobot leaves the current (line, col) coordinates unchanged. This 
does not force a clear-screen sequence on the next refresh. 

The clrtobot routine always returns the value OK. 

clrtoeol () 
wclrtoeol (win) 

The clrtoeol routine clears the window from the current (line, col) coordinates to 
the end of the current line. The current (line, col) coordinates are not changed. 

The clrtoeol routine always returns the value OK. 

colorend () 
wcolorend (win) 

The colorend routine returns the terminal to NORMAL mode. By default, 
NORMAL is usually defined as (F -WHITE I B_BLACK). 

The color end routine is a macro that invokes xstandend. 

The colorend routine always returns the value OK. 

Subroutines 3-137 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

colorout (mode) 
wcolorout (win, mode) 

The colorout routine sets the current standout bit-pattern of the window 
(win->-csbp) to the attribute specified by the mode parameter. Characters ·added 
to the window after such a call will have mode as their attribute. The mode 
parameter is constructed by logically OR-ing together attributes that are declared 
in the curOl.h header file that are supported by the terminal. 

The colorout routine overrides the current setting of the window, and will work in 
conjunction with almost all of the routines that cause output to be placed on the 
window. 

The colorout routine is a macro that invokes xstandout. 

The colorout routine always returns the value OK. 

cresetty (bool/) 

The cresetty routine resets the terminal to the state saved by the last call to 
csavetty. Use this routine after the completion of a program that uses the 
terminal as a simple terminal. If the bool! parameter is TRUE, then the data in 
curser is redisplayed. 

crmode () 
nocrmode () 

The crmode routine turns off the canonical processing of input by the system 
device driver. When canonical processing is off, data is made available without 
waiting for a I \n I (new-line character). nocrmode enables canonical processing 
by the system device driver. 

The wgetch routine, which is used for all Extended Curses input, forces the 
equivalent of crmode before requesting input if echoing is active, and reinstates 
the original status on exit. If you are using echo, you should issue a call to either 
crmode or raw to avoid multiple calls by wgetch. 

The crmode routine differs from raw in that crmode has no effect on output data 
processing and does not disable signal processing by the device driver. 

The crmode routine always returns the value OK. 

csavetty (bool/) 

The csavetty routine saves the current Extended Curses state so that it can later 
be reset by cresetty. Use this routine before running a program that uses the 
terminal as a simple terminal. If the bool! parameter is TRUE, then the following 

3-138 AIX Operating System Technical Reference 



delay 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

status is set before saving the terminal status: crmode, noecho, meta, nonl, and 
keypad (TRUE). 

See "nodelay" on page 3-156. 

delch () 
wdelch (win) 
mvdelch (line, col) 
mvwdelch (win, line, col) 

The delch routine deletes the character at the current (line, col) coordinates. Each 
character after the deleted character on the line shifts to the left, and the last 
character becomes blank. 

The delch routine always returns the value OK. 

delete In () 
wdeleteln (win) 

The deleteln routine deletes the current line. Every line below the current line 
moves up, and the bottom line becomes blank. The current (line, col) coordinates 
remain unchanged. 

The deleteln routine always returns the value OK. 

delwin (win) 

The delwin routine deletes the window specified by the win parameter. All 
resources used by the deleted window are freed for future use. 

If a window has a subwindow allocated inside of it, the deletion of the window does 
not affect the subwindow even though the subwindow is invalidated. Therefore, 
subwindows must be deleted before the outer windows are deleted. 

The delwin routine always returns the value OK. 

drawbox (win, line, col, numlines, numcols) 

The drawbox routine draws a box with the upper left corner located at the position 
specified by the line and col parameters. The numlines parameter specifies the 
number of rows to be used by the box, and the numcols parameter specifies the 
number of columns to be used by the box. 

The characters used to draw the box are either those specified in the terminfo file, 
or those defaulted at initialization. 

Subroutines 3-139 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The drawbox routine returns ERR if part or all of the box is outside the window, 
or the box addresses the lower right corner of the screen and scrollok is not on. 

#include < cur05.h > 

ecactp (pane, boolf) 

The ecactp routine specifies the active pane in a panel. The pane specified by the 
pane parameter is made the active pane if the bool! parameter is TRUE. If an 
active pane has been previously designated, then the border of that pane is reset to 
the inactive display mode, and the border of the pane specified by the pane 
parameter is set to the active display mode. If the bool! parameter is FALSE, then 
the border of the pane specified by the pane parameter is set to the inactive display 
mode. 

#include < cur05.h > 

ecadpn (pane, win) 

The ecadpn routine adds the window specified by the win parameter to the list of 
windows that can be presented in the pane specified by the pane parameter. No 
visible action occurs as a result of this routine. A call to ecaspn must be made 
after ecadpn to change the data associated with the pane display. 

The ecadpn routine returns ERR if the system is unable to allocate the storage 
required. 

#include < cur05.h > 

ecaspn (pane, win) 

The ecaspn routine makes the window specified by the win parameter the current 
window for display in the pane specified by the pane parameter. A refresh call for 
the pane or panel is needed to cause the data to be presented on the display. The 
viewport associated with the pane is positioned with the top left corner of the 
viewport at the top left corner of the data for the window. 

The ecaspn routine returns ERR if the window specified by the win parameter was 
not previously associated with this pane using ecadpn. 

WINDOW *ecblks ( ) 

The ecblks routine returns a pointer to a window that is filled with blanks. This 
window is intended to be used as a filler for panes that have no real content. It 
requires less storage than normal windows because all lines will always contain 
blanks. 

Do not modify or delete this window. 

3-140 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

#include < cur05.h > 

PANEL *ecbpls (numlines, numcols, firstline, firstcol, title, divdim, border, pane) 
short numlines, numcols, firstline, firstcol; 
char *title; 
char divdim, border; 

The ecbpls routine builds a panel structure. 

The numlines parameter specifies the panel size in rows. 

The numcols parameter specifies the panel size in columns. 

The firstline parameter specifies the panel's origin on the display's upper left 
corner row coordinate. 

The firstcol parameter specifies the pane1's origin on the display's upper left corner 
column coordinate. 

The title parameter points to a title string. The title is shown centered in the top 
border. If no title is desired, this parameter should be NULL. 

The divdim parameter specifies the dimension along which this panel is to be 
divided: either Pdivtyv (vertical) or Pdivtyh (horizontal). 

The border parameter indicates whether or not this panel is to have a border: 
either Pbordry (yes) or Pbordrn (no). 

The pane parameter points to the first pane that defines the divisions of this panel. 

All parameters should be given as defined here. However, they are not checked or 
used until a call is made to ecdvpl. An application may modify values put into this 
structure until it calls ecdvpl. 

Upon successful completion, a pointer to the new panel is returned. ecbpls returns 
ERR if there is not enough storage available. 

#include < cur05.h > 

PANE *ecbpns (numlines, numcols, In, ld, divdim, ds, du, border, lh, lv) 
short numlines, numcols, ds; 
PANE *In, *ld, *lh, *lv; 
char divdim, du, border; 

The ecbpns routine builds a pane structure. 

The numlines parameter specifies the number of rows in the presentation space for 
the pane. 

The numcols parameter specifies the number of columns in the presentation space 
for the pane. 

Subroutines 3-141 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The In parameter points to a neighboring pane either above or to the left. 

The ld parameter points to the start of a chain for divisions of the pane. 

The divdim parameter specifies the dimension of the pane along which division is 
to occur. This parameter is used if and only if the ld parameter is not NULL. 
Valid values for this parameter are Pdivpnv (vertical dimension) and Pdivpnh 
(horizontal dimension). 

The ds and du parameters together specify the size of this pane as part of the 
division of a parent pane: 

du Vertical or Horizontal Size of the Pane 

Pdivszc 
Pdivszp 

Pdivszf 

The size is specified by the ds parameter. 
The size is ds -:- 10000 of the available space. For example, if ds is 
5000, then the row or column size is half of the available space. 
The pane has a floating size. The value of the ds parameter is not 
used. 

The border parameter specifies whether or not this pane has a border: either 
Pbordry (yes) or Pbordrn (no). 

The lh parameter points to a pane that is to scroll with this pane when the pane 
scrolls horizontally. 

The Iv parameter points to a pane that is to scroll with this pane when the pane 
scrolls vertically. 

If you specify NULL for the ld parameter, or if you are not sure which value to use 
for du, then specify Pdivszf for the du parameter. 

If the In parameter is not NULL, the divs field of the pane structure being built 
receives the value that was in the In.divs field. The In.divs field is modified to 
point to the new pane structure being built. 

If the lh and the Iv parameters are not NULL, they will be used to link the new 
structure to the specified structures and to link the specified structures to the new 
structure. The links thus created will form a ring that includes all panes that 
scroll together. 

Upon successful completion, a pointer to the new pane structure is returned. 
ecbpns returns ERR if a error is detected during processing. 

#include < cur05.h > 

ecdfpl (panel, bool!) 

The ecdfpl routine creates the Extended Curses WINDOW structures needed to 
define the specified panel. 

3-142 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

At the time this routine is invoked, all size and location specifications of the panel 
and its constituent panes must be properly set. ecdfpl does not examine any of the 
division size specifications or the scroll link specifications. 

The fpane pointer in the indicated PANEL structure must point to the first leaf 
pane for the panel, and the subsequent nxtpn pointers from that pane must form a 
loop back to the first leaf pane. (This is done by ecdvpl.) 

A WINDOW structure is built for the panel specified by the panel parameter. This 
WINDOW will have a size that corresponds to the size of the panel. For each of 
the panes in the subsequent chain, a separate WINDOW structure is built with a 
size that corresponds to the specified presentation space size or the viewport size, 
whichever is larger. 

If borders are specified for any of the panes, those borders are drawn on the 
WINDOW for the panel. All corners are checked and, if needed, proper junction 
characters are used to draw the corner. 

The bool! parameter indicates whether to suppress the creation of presentation 
spaces for the panes. If the value is TRUE, then presentation spaces are not 
created. If FALSE, then presentation spaces are created. 

The ecdfpl routine returns ERR if sufficient storage is not available for the 
WINDOW structures being created. 

#include < curOS.h > 

ecdppn (pane, oldwin, newwin) 

The ecdppn routine adds, drops or replaces a presentation space for a pane. 

First, if the oldwin parameter is not NULL, then ecdppn drops oldwin from the list 
of windows that are alternatives for the pane specified by the pane parameter. The 
previous association should have been established using edadpn. If the oldwin 
parameter is NULL, then no window is dropped. 

N ext, if the newwin parameter is not NULL, then ecdppn adds newwin as a valid 
pane for this window, replacing oldwin, if it was associated with the pane specified 
by the pane parameter. (See ecadpn for a better way to add a pane). 

The ecdppn routine always returns the value OK. 

#include < curOS.h > 

ecdspl (panel) 

The ecdspl routine releases all of the data structures associated with the panel 
specified by the panel parameter. The released data structures are returned to the 
free pool. The released data structures include the panel structure, all associated 
pane structures, any window structures associated with the panes, any auxiliary 

Subroutines 3-143 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

window structures associated with the panes, and all private control structures 
used by Extended Curses. 

#include < cur05.h > 

ecdvpl (panel) 

The ecdvpl routine assigns a real size and relative position to all the panes defined 
for the panel specified by the panel parameter. All of the panes must be linked to 
the panel. The structure of a tree will be followed to determine the sizes for each 
pane. 

The direction of the first set of divisions and the size of the first set of divisions is 
determined. This information is used to control the division algorithm. U sing the 
size along the direction of division, first, the total space for the interior of panes is 
determined by counting the panes and their borders. Next, any panes with fixed 
size are given the space indicated by the divsz field in the pane structure. The 
remaining available space is then assigned to the panes that have specified a 
proportional size. Finally, any space that remains is assigned to those panes that 
specified a floating size. Once the sizes are determined, the origin for each pane 
relative to the panel origin is determined and entered into the PANE structure. A 
final pass is made over the list of panes in the current division, and, for each that 
is itself divided, the process is repeated. 

If adjacent panes both have a border specified, the border space is shared between 
them. 

If all of the panes have a fixed size and the total is less than the available space, 
there will be space that cannot be accessed by the application in the resulting 
structure. 

If, after allocating space to the proportional panes, there is space remaining and no 
floating panes are in the current set, the remaining free space is allocated to the 
proportional panes. 

The ecdvpl routine returns ERR and the structures are invalid for use by ecdfpl if 
one or more of the following occur: 

• The total size specified for fixed panes exceeds the space available. 
• The total fractions specified for the proportional panes exceed a total of 1. 
• The number of panes exceeds the number of positions available. 

3-144 AIX Operating System Technical Reference 



#include < cur05.h > 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

ecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, mask) 

NLecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, length, mask) 
char *pat, *buf, *mask; 

The ecflin and NLecflin routines input field data to a pane. NLecflin is supplied 
for international character support, and ecflin is retained to preserve traditional 
functionality. NLecflin works like ecflin, but has an additional parameter, length, 
which specifies the length of the buffer in which the input data is stored. 

The ecflin routine inputs field data to the pane pointed to by the pane parameter. 
The firstline and the firstcol parameters specify the upper left corner of the field in 
the current window being shown in the pane. The numcols parameter specifies the 
number of columns in the field, and the numlines parameter specifies the number of 
rows in the field. 

The buf parameter points to a buffer into which input data is stored. The buffer 
must be at least numlines x numcols characters long. 

The xc parameter specifies the first NLSCHAR to be entered into the field. If the 
xc parameter is a null character, it is ignored. 

The pat and mask parameters specify the set of characters that are to be accepted 
as valid input. 

The position in the field may not always correspond to the position in the input 
buffer, since a 2-byte extended character corresponds to a single display character 
in the field in the window. Input is accepted from the terminal as long as the 
cursor remains within the bounds of the field. However, if the input buffer is filled 
before the cursor exits the field, input processing stops and ecflin returns. 

Cursor movement that moves the cursor outside the field is allowed and is reflected 
on the display. If cursor movement places the cursor in a position where data 
input would cause the input buffer to overflow, input processing stops. Any data 
keys entered are checked against the character set specified by the pat parameter. 
If the data character is acceptable, then it is echoed. If the character is not 
acceptable, then the ecflin routine returns its value. 

Insert and delete keys are honored and data is shifted within the field as needed. If 
the field spans more than one line and insertions or deletions are made, then data 
that is shifted out of one line of the field is shifted into the end of the next line. 
Data shifted out of the field is lost. When characters are deleted, null characters 
are shifted into the end of the field. 

Subroutines 3-145 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The pat parameter points to a string that indicates the set of characters that are 
acceptable as valid input. These characters include all code points of the PO, PI, 
and P2 code pages (see "display symbols" on page 5-24). The string is formed of 
these codes: 

U Uppercase letters: 'A' -' Z' plus the accented uppercase letters from code 
pages PO, PI, and P2. 

L Lowercase letters: 'a' - ' z' plus the accented lowercase letters from code 
pages PO, PI, and P2. 

N Numeric characters: '0' - ' 9 ' . 
A Alphanumeric characters: 'A I_I Z', 'a I_I z', and' 0 '-'9' plus the 

accented letters from code pages PO, PI, and P2. 
B Blank (space character-Ox20). 
P Printable characters: blank-' ~, (Ox20-Ox7E). 
G Graphic characters: '!' -' -' (Ox2I-Ox7E). 
X Hexadecimal characters: '0' - ' 9 " 'A' -' F ' ,and 'a' - ' f ' . 
C Control Characters: 

• Cursor Up, Cursor Down, Cursor Left, Cursor Right 
• Backspace 
• Back-tab (to first position of field) 
• Insert (enable or disable insert mode) 
• Delete (delete current character) 
• New-line (to left column and down one line) 

o Default characters: 
• Ox20-Ox7E 
• Ox80-OxFF 
• OxlF AO-OxlFFF 
• OxIE80-OxIEFF 
• OxIDAO-OxIDFF 
• Oxl C80-OxI CFF 
• Controls, as defined for code C. 

Z Application-specified character set 
+ Allows characters indicated by following codes. 

Does not allow characters indicated by following codes. 

If the first character of pat is + or -, then the set of characters specified by the rest 
of the string is added to (+) or taken from (-) the default characters (which can also 
be specified with D). If the first character in this string is not + or -, then the set 
of characters specified by pat replaces the default. After the first character, the 
sets indicated are allowed unless preceded by a - (minus sign). For example: 

"PC-L" 
"-CBN" 

Allows the printable and control characters, except for lowercase letters. 
Allows all of the default characters, except for control characters, blanks, 
or numeric characters. 

3-146 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

If the pat string contains a Z, then the array pointed to by the mask parameter 
specifies a character validity mask. This array must be exactly 128 bytes long (1024 
bits), where each bit corresponds to a character code as returned by wgetch. The 
bytes in the array correspond as follows: 

Bytes 0-31 PO characters OxOO-OxFF 
Bytes 32-63 Keycodes Ox100-Ox1FF 
Bytes 64-79 Low P1 characters Ox1F80-0x1FFF 
Bytes 80-95 High P1 characters Ox1E80-0x1EFF 
Bytes 96-111 Low P2 characters Ox1D80-Ox1DFF 
Bytes 112-127 High P2 characters Ox1C80-Ox1CFF 

If a given bit is set to 1, then the corresponding character is accepted (for + Z) or 
rejected (for - Z). If a bit is set to 0, then the acceptance status of the 
corresponding character, as determined by the rest of pat, is not changed. 

Upon successful completion, the code associated with the last input that terminated 
input is returned. 

The ecflin routine returns ERR if one or more of the following are true: 

• There is an error in the parameters. 
• The firstline parameter is outside the window. 
• The firstcol parameter is outside the window. 
• The numcols parameter is too large. 
• The numlines parameter is too large. 

echo () 
noecho () 

The echo routine causes the terminal to echo characters to the display. If echo is 
set on, wgetch places all input into the data structure for the window. 

The noecho routine turns echo off. If echo is turned off, characters are not 
written to the display. 

#include < curOS.h > 

ecpnin (pane, boolf, xc) 

The ecpnin routine causes the pane to accept keyboard input. The pane specified 
by the pane parameter is scrolled, if necessary, to insure that the cursor is visible 
on the display. Keyboard input is then accepted. If the boolf parameter is TRUE 
and if the input character is a simple cursor movement, then the resulting cursor 
position is reflected on the display. Further input is then read from the terminal. 
If the boolf parameter is FALSE, or if the input character is not a simple cursor 
movement, then the value of the input character is returned. 

Subroutines 3-147 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The xc parameter specifies the first NLSCHAR to be assumed from the display. If 
xc is a null character, then it is ignored. 

This routine tracks the locator cursor if locator tracking is enabled (see "trackloc" 
on page 3-161). 

void ecpnmodf (pane) 

The ecpnmodf macro marks the panel that contains the pane specified by the pane 
parameter as modifed. This information is used by ecrfpl to determine whether a 
panel needs to be written to the display. 

#include < curOS.h > 

ecrfpl (panel) 

The ecrfpl routine refreshes the panel specified by the panel parameter. If that 
panel is partially obscured by other panels, then those panels are also written to 
the display. If the panel parameter is NULL, then all panels that have been 
marked as modified (with ecpnmodf) are written. If any panels have been removed 
(with ecrmpl), then all panels are written. 

#include < curOS.h > 

ecrfpn (pane) 

The ecrfpn routine refreshes the pane specified by the pane parameter on the 
display. If the pane is the active pane, then the window might be scrolled to assure 
that the cursor is visible. If the pane is not active, then the window is not scrolled. 

The ercfpn routine always returns the value OK. 

#include < cur05.h > 

ecrlpl (panel) 

The ecrlpl routine returns the structures associated with the panel specified by the 
panel parameter to the free storage pool. This includes all window structures 
associated with the panes of the panel, all Extended Curses private structures, and 
any added window structures. The panel and associated pane structures are not 
released and can be reused. 

The ecrlpl routine always returns the value OK. 

3-148 AIX Operating System Technical Reference 



#include < curOS.h > 

ecrmpl (panel) 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The ecrmpl routine removes the panel specified by the panel parameter from the 
list of panels that are currently being displayed. If the panel is not currently in 
that list, no action is taken and no error is returned. This routine should be 
followed by a call to ecrfpl to update the display. 

The ecrmpl routine always returns the value OK. 

#include < curOS.h > 

ecscpn (pane, numlines, numcols) 

The ecscpn routine causes the pane specified by the pane parameter to be scrolled 
over the underlying window the distance indicated by the numcols and the 
numlines parameters. The numcols parameter specifies the distance to scroll 
horizontally and the numlines parameter specifies the distance to scroll vertically. 
These parameters can be positive or negative and may imply a movement that 
positions the viewport partially or completely off the window. If such a position 
results from the scroll, the scroll stops after moving as far in the indicated 
direction as possible. Positive values move to the right or down. Negative values 
move to the left or up. 

If there are other panes linked to the pane specified, those panes will also scroll an 
amount necessary to maintain the identical horizontal or vertical positioning on 
the respective windows. If the resulting position requires placing the viewport 
partially or completely off the window, the scroll request terminates at the edge of 
the window. 

#include < curOS.h > 

ecshpl (panel) 

The ecshpl routine shows the panel specified by the panel parameter on the 
terminal. 

If the specified panel is currently the top panel, no action is taken and no error is 
returned. If there is another top panel, the active pane in that panel is changed to 
the inactive state. The specified panel is placed at the top of the panel chain. This 
routine should be followed by a call to ecrfpl to update the display. 

The ecshpl routine always returns the value OK. 

Subroutines 3-149 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

#include < curOS.h > 

ectitl (title, line, col) 
char *title; 

The ectitl routine creates or modifies the title panel. The title panel is always 
visible, that is, on top of any other panels. The title parameter points to a 
character string that is displayed as the new title. If title is NULL, then any 
existing title is removed. The line and col parameters specify the coordinates for 
the upper left corner of the title panel. If !irstline is not valid, then it defaults to 1. 
If !irstcol is not valid, then the title will be centered. 

endwin () 

The endwin routine ends window routines before exiting. Ending window routines 
before exiting restores the terminal to the state it was before initscr (or gettmode 
and setterm) was called. endwin should always be called before exiting. endwin 
does not exit. 

erase ( ) 
werase (win) 
perase (pane) 

The erase routine clears the window and sets it to blanks without setting the clear 
flag. Similarly, perase erases the pane specified by the pane parameter. This is 
analogous to the clear routine, except that it does not cause a clear-screen 
sequence to be generated on a refresh. 

extended (bool!) 

The extended routine turns on and off the combining of input bytes into 2-byte 
extended characters. If the bool! parameter is TRUE, then this input processing is 
turned on; if FALSE, then it is turned off. By default, extended processing is 
initially turned on. 

flash () 

The flash routine displays a visual "bell" on the terminal screen if one is available. 
If a visual bell is not available, then flash toggles the terminal speaker or bell. 

The flash routine always returns the value OK. 

3-150 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

fullbox (win, vert, hor, topl, topr, botl, botr) 
NLSCHAR vert, hor, topl, topr, botl, botr; 

The fullbox routine puts box characters on the edges of the window. The vert 
parameter specifies the NLSCHAR to use for the vertical sides. The hor parameter 
specifies the NLSCHAR to use for the horizontal lines. The topl and the topr 
parameters specify the NLSCHARs to use for the top left and the top right corners. 
The botl and the botr parameters specify the NLSCHARs to use for the bottom left 
and the bottom right corners. 

The fullbox routine returns ERR if an attempt is made to scroll when scrollok is 
not active. 

The fullbox routine is a macro that invokes superbox. 

#include < cur02.h > 

int getch ( ) 
int wgetch (win) 
int mvgetch (line, col) 
int mvwgetch (win, line, col) 

The getch routine gets a character from the terminal and echoes it on the window, 
if necessary. If noecho has been set, then the window does not change. noecho 
and either crmode or raw must be set for Extended Curses to know what is 
actually on the terminal. If these settings are not correct, wgetch sets noecho 
and crmode and resets them to the original mode when done. 

If extended processing is turned on, then getch combines input sequences that 
contain single-shift controls into 2-byte extended characters. By default, extended 
processing is turned on. (See "extended" on page 3-150.) 

Upon completion, the character code for the data key or one of the following values 
is returned: 

KEY-NOKEY 
KEY-xxxx 

ERR 

nodelay is active and no data is available. 
keypad is active and a control key was recognized. See the 
cur02.h header file for a complete list of the key codes that can 
be returned. 
Echoing the character would cause the screen to scroll illegally. 

Subroutines 3-151 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

#include < cur02.h > 

int getstr (string) 
int wgetstr (win, string) 
int mvgetstr (line, col, string) 
int mvwgetstr (win, line, col, string) 

The getstr routine gets a string through the window and stores it in the location 
pointed to by the string parameter. The string may contain single-shift control 
codes. The area pointed to must be large enough to hold the string. getstr calls 
wgetch to get the characters until a new-line character or some other control 
character is encountered. 

Upon completion, one of the following values is returned: 

OK 
KEY-NOKEY 
KEY-xxxx 

ERR 

gettmode () 

The input string was terminated with a new-line character. 
nodelay is active and no data is available. 
The input string ended with a control key, and the code for this 
key was returned. See the cur02.h header file for a complete list 
of the key codes that can be returned. 
The string caused the screen to scroll illegally. 

The gettmode routine issues the needed control operation to the display device 
driver to save the processing flags in a fixed global area. gettmode is invoked by 
initscr and is not normally called directly by applications. 

getyx (win, line, col) 

The getyx routine stores the current (line, col) coordinates of window specified by 
the win parameter into the variables line and col. Because getyx is a macro and 
not a subroutine, the names of line and col passed, not their addresses. 

Upon successful completion, line and col contain the current row and column 
coordinates for the cursor in the specified window. 

NLSCHAR inch ( ) 
NLSCHAR winch (win) 
NLSCHAR mvinch (line, col) 
NLSCHAR mvwinch (win, line, col) 

The inch routine returns the NLSCHAR at the current (line, col) coordinates on 
the specified window. No changes are made to the window. 

Upon successful completion, the code for the character located at the current 
cursor location is returned. 

3-152 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

WINDOW *initscr () 

The initscr routine performs screen initialization. initscr must be called before 
any of the screen routines are used. It initializes the terminal-type data, and 
without it, none of the Extended Curses routines can operate properly. 

If standard input is not a tty, initscr sets the specifications to the terminal whose 
name is pointed to by Def-term (initially "dumb "). If the value of the bool global 
variable My-term is TRUE, Def-term is always used. 

If standard input is a terminal, the specifications for the terminal named in the 
environment variable TERM are used. These specifications are obtained from the 
terminfo description file for that terminal. 

The initscr routine creates the structures for stdscr and curser and saves the 
pointers to those structures in global variables with the corresponding names. 

Upon successful completion, a pointer to stdscr is returned. 

insch (xc) 
winsch (win, xc) 
mvwinsch (win, line, col, xc) 
mvinsch (line, col, xc) 

The insch routine inserts the NLSCHAR specified by the xc parameter into the 
window at the current (line, col) coordinates. Each character after the inserted 
character shifts to the right and the last byte on the line disappears. 

The insch routine always returns the value OK. 

insertln () 
winsertln (win) 

The insertln routine inserts a line above the current line. Each line below the 
current line is shifted down, and the bottom line disappears. The current line 
becomes blank and the current (line, col) coordinates remain unchanged. 

The insertln routine always returns the value OK. 

keypad (boolf) 

The keypad routine turns on and off the mapping of key sequences to single 
integers. If the boolf parameter is TRUE, input processing is turned on. If the 
boolf parameter is FALSE, input processing is turned off. By default, input 
processing is initially turned off. 

When turned on, sequences of characters from the terminal are translated into 
integers that are defined in the cur02.h header file. 

Subroutines 3-153 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The codes available on a given terminal are determined by the terminfo terminal 
description file. 

The keypad routine always returns the value OK. 

leaveok (win, boolf) 

The leaveok routine sets a flag, used by the window specified by the win 
parameter, which controls where the cursor is placed after the window is refreshed. 
If the bool! parameter is TRUE, when the window is refreshed the cursor is left at 
the last point where a change was made on the terminal, and the current (line, col) 
coordinates for the window specified by the win parameter are changed 
accordingly. If the (line, col) coordinates are outside the window, the coordinates 
are forced to (0, 0). If the bool! parameter is FALSE, when the window is 
refreshed the cursor is moved to the current (line, col) coordinates within the 
window. The controlling flag is initially set to FALSE. 

The leaveok routine always returns the value OK: 

char *longname ( ) 

The longname routine returns a pointer to a static area that contains the long 
(full) name of the terminal as it appears in the terminfo entry for the terminal. 

meta () 
nometa () 

The meta routine prevents the stripping of the eighth bit of each keyed character. 

The nometa routine causes the eighth or most-significant bit of each keyed 
character to be stripped. ' Not all terminals support the stripping of bits. 

The meta and nom eta routines always return the value OK. 

move (line, col) 
wmove (win, line, col) 

The move routine changes the current (line, col) coordinates of the window to the 
coordinates specified by the line and col parameters. 

The move routine returns ERR if the destination for the cursor is outside the 
window or viewport. 

3-154 AIX Operating System Technical Reference 



mvcur (line, col, newline, newcol) 
int line, col, newline, newcol; 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The mvcur routine moves the terminal's cursor from the coordinates specified by 
the line and col parameters to the coordinates specified by the newline and newcol 
parameters. 

It is possible to use this optimization without the benefit of the screen routines. In 
fact, mvcur should not be used with the screen routines. Use move and refresh 
to move the cursor position and inform the screen routines of the move. 

mvwin (win, line, col) 

The mvwin routine moves the position of the viewport or the subwindow specified 
by the win parameter from its current starting coordinates to the coordinates 
specified by the line and col parameters. The line parameter specifies the row on 
the display for the top row of the window. The col parameter specifies the column 
on the display for the first column of the window. 

The mvwin routine returns ERR if a part of the window position is outside the 
bounds of the window on which the viewport is defined. 

WINDOW *newview (win, numlines, numcols) 

The newview routine creates a new window that has the number of lines specified 
by the numlines parameter and the number of columns specified by the numcols 
parameter. The new window is a viewport of the window specified by the win 
parameter and starts at the current (line, col) coordinates of the window specified 
by the win parameter. The resulting window's initial position on the display is set 
to (0, 0). 

The viewport window returned by newview is a special subwindow that is suitable 
for viewport scrolling. Viewport scrolling here refers to the type of scrolling that 
is characteristic of full-screen editors. 

Because the returned viewport window is a subwindow, any change made in either 
window in the area covered by the viewport window appears in both windows. 
Both windows actually share the relevant storage area. A viewport window cannot 
be scrolled using scroll. 

Other than the exceptions noted above, viewport windows behave like subwindows. 

Upon successful completion, a pointer to the control structure for the new viewport 
is returned. 

The newview routine returns ERR if the window specified by the win parameter is 
a subwindow or a viewport, or if sufficient storage is not available for the new 
structures. 

Subroutines 3-155 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

WINDOW *newwin (numlines, numcols, firstline, firstcol) 

The newwin routine creates a new window that contains the number of lines 
specified by the numlines parameter and the number of columns specified by the 
numcols parameter. The new window will start at the coordinates specified by the 
firstline and the firstcol parameters. 

If the numlines parameter is 0, then that dimension is set to (LINES - firstline). If 
the numcols parameter is 0, then that dimension is set to (COLS - firstcol). 
Therefore, to get a new window of dimensions (LINES x COLS), use: 

newwin (0, 0, 0, 0) 
The size specified for the window can exceed the size of the real display. In this 
case, a viewport or subwindow must be used to present the data from the window 
on the terminal. 

Upon successful completion, a pointer to the new window structure is returned. 

The newwin routine returns ERR if any of the parameters are invalid, or if there 
is insufficient storage available for the new structure. 

nI () 
nonI() 

The nI routine sets the terminal to nl mode. When in nl mode, the system maps 
I \ r I (return characters) to I \ n I (new-line or line-feed characters). If the mapping 
is not done, refresh can do more optimization. nonI turns nl mode off. 

The nI routine and nonI do not affect the way in which waddch processes new-line 
characters. 

The nI and nonI routines always return the value OK. 

nodelay (bool!) 

The nodelay routine controls whether read requests wait for input if no keystroke 
is available. If the boolf parameter is FALSE, then the read routines wait for 
operator input. This is the default setting. If the boolf parameter is TRUE, then 
the read routines return immediately if no keyboard data is available. 

If nodelay is set (TRUE) and if no keystroke is available from the keyboard, then 
getch returns KEY -NOKEY, defined in the cur02.h header file. 

The nodelay routine always returns the value OK. 

3-156 AIX Operating System Technical Reference 



overlay (win1, win2) 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The overlay routine overlays the window specified by the win1 parameter on the 
window specified by the win2 parameter. The contents of the window specified by 
the win1 parameter, insofar as they fit, are placed on the window specified by the 
win2 parameter at their starting (line, col) coordinates. This is done 
nondestructively; that is, blanks on the winl window leave the contents of the 
space on the win2 window untouched. 

The overlay routine moves data only if the data is non-blank or if the display 
attribute is different. 

The only data that is considered for moving from the win1 window to the win2 
window is data that occupies display positions that are common to both windows. 

The overlay routine is implemented as a macro that invokes overput which uses 
waddch to transfer the data from window to window. 

The overlay routine returns ERR if the overlay addresses the lower right corner of 
the display and scrollok is FALSE. 

overwrite (win1, win2) 

The overwrite routine copies data from the window specified by the win1 
parameter to the window specified by the win2 parameter. The contents of the 
win1 window, insofar as they fit, are placed on the win2 window at their starting 
(line, col) coordinates. This is done destructively; that is, blanks on the win1 
window become blanks on the win2 window. 

Only the data that occupies positions on the display that are common to the two 
windows will be moved from the win1 window to the win2 window. 

The overwrite routine is implemented as a macro that invokes overput which uses 
waddch to transfer the data from window to window. 

The overwrite routine returns ERR if an attempt is made to write to the lower 
right corner and scrollok is not set. 

printw (fmt [, value, ... ]) 
wprintw (win, fmt [, value, . . . ]) 
char *fmt; 

The printw routine performs a printf on the window using the format control 
string specified by the fmt parameter and the values specified by the value 
parameters. The output to the window starts at the current (line, col) coordinates. 
Use the field width options of printf to avoid leaving things on the window from 
earlier calls. See "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf' on 
page 3-300 for details. 

The printw routine returns ERR if it causes the screen to scroll illegally. 

Subroutines 3-157 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

raw () 
noraw () 

The raw routine sets the terminal to raw mode. In raw mode, canonical processing 
by the device driver and signal processing are turned off. The noraw routine turns 
off raw mode. 

The raw and noraw routines always return the value OK. 

refresh () 
wrefresh (win) 

The refresh routine synchronizes the terminal screen with the window. If the 
window is not a screen, then only the part of the display covered by it is updated. 
refresh checks for possible scroll errors at display time. 

The refresh routine returns ERR if the change specified is in the last position of a 
window that includes the lower right corner of the display, or if they would cause 
the screen to scroll illegally. If they would cause the screen to scroll illegally, 
refresh updates whatever can be updated without causing the scroll. 

resetty (boolf) 

The resetty routine restores the terminal status flags that were previously saved 
by savetty. If the boolf parameter is TRUE, then the screen is cleared in addition 
to resetting the terminal. resetty is performed automatically by endwin and is not 
normally called directly by applications. 

savetty () 

The savetty routine saves the current terminal status flags. savetty is performed 
automatically by initscr and is not normally called directly by applications. 

scanw (fmt [, pointer, . . . ]) 
wscanw (win, fmt [, pointer, • • . ]) 
char *fmt; 

The scanw routine performs a scanf through the window using the format control 
string specified by the fmt parameter. scanw uses wgetstr to obtain the string, 
then invokes the internal routine for scanf to process the data. See "scanf, fscanf, 
sscanf, NLscanf, NLfscanf, NLsscanf' on page 3-325 for details. 

scroll (win) 

The scroll routine moves the data in the window specified by the win parameter up 
one line and inserts a new blank line at the bottom. 

3-158 AIX Operating System Technical Reference 



scrollok (win, booll) 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

The scrollok routine sets the scroll flag for the window specified by the win 
parameter. If the boolf parameter is TRUE, then scrolling is allowed. The default 
setting is FALSE, which prevents scrolling. 

sel-attr (set) 
int *set; 

The sel-attr routine allows you to change the selection and priority of attributes 
for the run-time terminal. The set parameter points to a NULL-terminated integer 
array that contains display attribute values from the cur03.h header file in the 
order that you want them regardless of whether or not they are available on the 
terminal. 

Groups of attributes (colors and fonts) cannot be split in the array. For instance, 
all foreground colors specified must be in adjacent locations in the array. 

The first element of a group of attributes must be the default color or font of the 
terminal. For example, the first foreground color specified is usually F -WHITE, 
and the first background color specified is usually B-BLACK. 

It is recommended that sel-attr only be called before initscr. If sel-attr is called 
after initscr, then the routine setup-attr should be called after calling sel-attr. 
If sel-attr is called after data has been added to a window, the values in the 
associated attribute array for that window may denote different attributes than the 
original attributes used when displaying the data (except NORMAL which remains 
constant). A subsequent refresh of the window shows the different attributes only 
if the data has been modified or if a total refresh has been forced by a previous call 
to touchwin. 

The sel-attr routine always returns the value OK. 

setterm (name) 
char *name; 

The setterm routine sets the terminal characteristics to be those of the terminal 
specified by the name parameter. setterm is called by initscr so you do not 
normally have to use it unless you wish to use just the cursor motion 
optimizations. 

setup-attr () 

The setup-attr routine creates the display attribute masks assigned to the 
attribute variables declared in the curOl.h header file. The priorities of the 
attributes determine how the masks are created. 

Subroutines 3-159 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

This routine is called by initscr and is not normally called by applications. This 
routine should only be called following a call to sel-attr which follows a call to 
initscr. 

standend () 
wstandend (win) 

The stand end routine stops displaying characters in standout mode. 

standout () 
wstandout (win) 

The standout routine starts displaying characters in standout mode. Any 
characters added to the window are put in standout mode on the terminal if the 
terminal has that capability. The first available attribute as determined by 
sel-attr is used for standout. This is normally the reverse attribute when the 
default display attribute priority is used. 

The standout routine always returns the value OK. 

WINDOW *subwin (win, numlines, numcols, firstline, firstcol) 

The subwin routine creates a subwindow in the window pointed to by the win 
parameter. The subwindow has the number of lines specified by the numlines 
parameter and the number of columns specified by the numcols parameter. The 
new subwindow starts at the coordinates specified by the firstline and the firstcol 
parameters. Any change made to the window or the subwindow in the area covered 
by the subwindow is made to both windows. 

The firstline and firstcol parameters are specified relative to the overall screen, not 
to the relative (0, 0) of the window specified by the win parameter. 

If the numlines parameter is 0, then the lines dimension is set to (LINES -
firstline). If the numcols parameter is 0, then the column dimension is set to 
(COLS - firstcol). 

Upon successful completion, a pointer to the control structure for the new 
subwindow is returned. 

The subwin routine returns ERR if the window specified by the win parameter 
already has a subwindow, or if there is insufficient storage for the new control 
structure. 

superbox (win, line, col, numlines, numcols, vert, hor, topl, topr, botl, botr) 
NLSCHAR vert, hor, topl, topr, botl,. botr; 

The superbox routine draws a box on the window specified by the win parameter. 
The line and col parameters specify the starting coordinates for the box. The 

3-160 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

numlines parameter specifies the depth of the box. The numcois parameter specifies 
the width of the box. The vert parameter specifies the NLSCHAR to use for 
vertical delimiting. The hor parameter specifies the NLSCHAR to use for 
horizontal delimiting. The topl, topr, botl, and botr parameters specify the 
NLSCHARs to use for the top left corner, the top right corner, the bottom left 
corner, and the bottom right corner, respectively. 

If the window specified by the win parameter is a -SCROLLWIN window and 
scrolling is not allowed, then the bottom right corner is not put on the window. 

The superbox routine uses addch to place the characters on the window. 

The superbox routine returns ERR if the defined box is outside the window, or an 
attempt is made to write to the lower right corner of the display when scrollok is 
off. 

touchwin (win) 

The touchwin routine makes it appear as if every location on the window specified 
by the win parameter has been changed. This is useful when overlapping windows 
are to be refreshed. A subsequent refresh request considers all portions of the 
window as potentially modified. If touchwin is not used, then only those positions 
of the window that have been addressed by an addch are inspected. 

trackloc (boo If) 

tstp ( ) 

The trackloc routine turns on and off the tracking of the locator cursor on the 
screen. If the bool! parameter is TRUE, then locator tracking is turned on; if 
FALSE, then it is turned off. By default, locator tracking is initially turned on. 

The keycode KEY -LOCESC is returned from getch when a locator report is input. 
The locator report is stored in the global char array ESCSTR, which is 128 bytes 
long. 

Locator tracking is handled by the ecpnin routine. 

The tstp routine saves the current tty state and then put the process to sleep. 
When the process is restarted, the tty state is restored and then wrefresh (curser) 
is called to redraw the screen. initscr sets the signal SIGTSTP to trap tstp. 

The tstp routine always returns the value OK. 

Subroutines 3-161 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

Files 

#include < cur04.h > 

char *unctrl (ch) 

The unctrl routine returns a string that represents the value of the ch parameter. 
Control characters become the lowercase equivalents preceded by a A (circumflex). 
Other letters are unchanged. This function supports only the PO characters OxOO 
through Ox7F. 

Upon successful completion, a pointer to the string for the parameter character is 
returned. 

vscroll (win, numlines, numcols) 

The vscroll routine scrolls the viewport specified by the win parameter on the 
window. 

The numlines parameter specifies the direction and amount to scroll up or down. If 
the numlines parameter is positive, the viewport scrolls down the number of lines 
specified. If the numlines parameter is negative, the viewport scrolls up the 
number of lines specified. 

The numcols parameter specifies the direction and amount to scroll left or right. If 
the numcols parameter is positive, the viewport scrolls to the right the number of 
characters specified. If the numcols parameter is negative, then the viewport 
scrolls to the left the number of characters specified. 

The vscroll routine always scrolls as much of a requested scroll as possible. 
Specifying a parameter with a magnitude larger than that of the underlying 
window is not an error. 

The vscroll routine calls touchwin if any scrolling is done. 

The vscroll routine returns ERR if the window specified by the win parameter is 
not a window created by a call to newview. 

/usr /lib /terminfof? /* Compiled terminal capability data base. 

3-162 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

In this book: "curses" on page 3-51 and "terminfo" on page 4-148. 

The discussion of Extended Curses in AIX Operating System Programming Tools and 
Interfaces. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-162.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
extended curses library 

3-162.2 AIX Operating System Technical Reference 



fclose, fflush 

Purpose 

Closes or flushes a stream. 

Library 

Standard I/O Package (Ubc.a) 

Syntax 

#include < stdio.h > 

int fclose (stream) 
FILE *stream; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fclose, ... 

int ff1ush (stream) 
FILE *stream; 

The fclose subroutine writes buffered data to the stream specified by the stream parameter 
and then closes the stream. 

The fclose subroutine is automatically called for all open files when the exit system call is 
invoked. 

The ff1ush subroutine writes any buffered data for the stream specified by the stream 
parameter and leaves the stream open. 

Return Value 

Upon successful completion, both the fclose and the ff1ush subroutines return a value of 
O. If either of these subroutines fails for any reason, then it returns the value EOF. 

Subroutines 3-163 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fclose, ... 

Related Information 

In this book: "close" on page 2-25, "exit, -exit" on page 2-40, "fopen, freopen, fdopen" on 
page 3-168, "setbuf, setvbuf' on page 3-330, and "standard i/o library" on page 3-342. 

3-164 AIX Operating System Technical Reference 



feof, ferror, clearerr, fileno 

Purpose 

Checks the status of a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int feof (stream) 
FILE *stream; 

int ferror (stream) 
FILE *stream; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
feof, ... 

void clearerr (stream) 
FILE *stream; 

int fileno (stream) 
FILE *stream; 

These macros inquire about the status of a stream. 

The feof macro inquires about end-of-file. If EOF has previously been detected reading the 
input stream specified by the stream parameter, a nonzero value is returned. Otherwise, a 
value of 0 is returned. 

The ferror macro inquires about input/output errors. If an I/O error has previously 
occurred when reading from or writing to the stream specified by the stream parameter, a 
nonzero value is returned. Otherwise, a value of 0 is returned. 

The clearerr macro resets the error indicator and the EOF indicator to 0 for the stream 
specified by the stream parameter. 

The fileno macro returns the integer file descriptor associated with the input pointed to by 
the stream parameter. 

Note: Since these routines are implemented as macros, they cannot be declared or 
redeclared. 

Subroutines 3-165 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
feof, ... 

Related Information 

In this book: "open" on page 2-90, "fopen, freopen, fdopen" on page 3-168, and "standard 
i/o library" on page 3-342. 

3-166 AIX Operating System Technical Reference 



I Purpose 

Finds a profile for an IPC queue. 

I Library 

IPC Library (libipc.a) 

I Syntax 

#include < drs.h > 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
find-i pc-prof 

int find-ipc-prof (queue-name, I-key, r-key, nickname) 

char *queue-name; 
key-t *I-key, *r-key; 
char *nickname; 

I Description 

The find-ipc-prof subroutine finds a profile for an IPC queue. 

The queue-name parameter contains the name of an IPC queue. The I-key parameter 
points to the local key for an IPC queue. You must specify one or both of these values. 
The find-ipc-prof subroutine fails if both queue-name and I-key are NULL. 

The r -key is a pointer from the local node to the IPC profile for a queue at a remote node. 
The nickname parameter points to the nickname or node ID, in hexadecimal, of the node 
where the IPC queue exists. A value of NULL indicates that the queue is on the local 
node. 

The application does not supply values for the r -key and nickname parameters. The 
find-ipc-prof subroutine assigns values to these parameters when it returns. The 
application, however, must ensure that enough space is allocated to hold the return values. 

Subroutines 3-166.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
find-i pc-prof 

I Return Value 

Upon successful completion, the function returns a 0, and queue-name, l-key, r-key, and 
nickname contain the values from the found profile. If an error occurs, find-ipc-prof 
returns a value from the following list: 

DRS-ACCES 

DRS-BADLEN 

DRS-NOREC 

DRS-IO 

DRS-AGAIN 

DRS-BADF 

DRS-BADK 

DRS-BDMSF 

DRS-BOF 

DRS-DEADLK 

DRS-EOF 

DRS-FAULT 

DRS-FBIG 

DRS-IDRM 

DRS-INBLCK 

DRS-INTENT 

DRS-ISDIR 

DRS-MFILE 

DRS-NFILE 

DRS-NOENT 

DRS-NOMEM 

DRS-NOSPC 

DRS-NOTDIR 

DRS-NOTIDX 

DRS-PANIC 

DRS-RCVRY 

The required access permissions were denied. 

An incorrect parameter was supplied. 

No record was found. 

An input/output error occurred. 

Unable to start Profile Services. 

An incorrect file descriptor was supplied. 

An incorrect index key was supplied. 

An incorrect file or table was supplied. 

The beginning of the file was encountered. 

A deadlock was detected. 

The end of the file was encountered. 

An incorrect address was supplied. 

The maximum file size was exceeded. 

Identifier removed. 

Big lock in Profile Services. 

Intentions denied. 

A write to a directory was attempted. 

Too many files, tables, or indexes were open. 

The file table overflowed. 

No file or directory was found. 

No memory is available. 

No space is available on the device. 

Not a directory. 

Not an index. 

Abnormal termination occurred. 

File needs recovery. 

3-166.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
find-ipc-prof 

DRS-RECLEN 

DRS-ROFS 

Record length is invalid. 

The file system to be accessed is read-only. 

I Related Information 

In this book: "msgctl" on page 2-73, "create-ipc-prof" on page 3-40.2, and "del-ipc-prof" 
on page 3-64.l. 

The dsipc command in AIX Operating System Commands Reference. 

AIX Operating System Programming Tools and Interfaces. 

Subroutines 3-166.3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
find-i pc-prof 

3-166.4 AIX Operating System Technical Reference 



floor, ceil, fmod, fabs 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
floor, ... 

Computes floor, ceiling, remainder, absolute value functions. 

Library 

Math Library (libm.a) 

Syntax 

#include <math.h> 

double floor (x) 
double x; 

double ceil (x) 
double x; 

Description 

double fmod (x, y) 
double x, y; 

double fabs (x) 
double x; 

The floor subroutine returns the largest integer (as a double) not greater than the x 
parameter. 

The ceil subroutine returns the smallest integer not less than the x parameter. 

The fmod subroutine returns the remainder of x -7- y. More precisely, this value is x if 
the y parameter is o. Otherwise, it is the number f with the same sign as x such that 
x = iy + f for some integer i, and Ifl < Iyl. 
The fabs subroutine returns the absolute value of x, Ixl. 

Related Information 

In this book: "abs" on page 3-6. 

Subroutines 3-167 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fopen, ... 

fopen, freopen, fdopen 

Purpose 

Opens a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

FILE *fopen (path, type) 
char *path, *type; 

FILE *freopen (path, type, stream) 
char *path, *type; 
FILE * stream; 

Description 

FILE *fdopen (fildes, type) 
int tildes; 
char *type; 

The fopen subroutine opens the file named by the path parameter and associates a stream 
with it. fopen returns a pointer to the FILE structure of this stream. 

The path parameter points to a character string that contains the name of the file to be 
opened. 

The type parameter points to a character string that has one of the following values: 

II rll Open the file for reading. 
IIW" Truncate or create a new file for writing. 
II a II Append (open for writing at end of file, or create for writing). 
II r+ II Open for update (reading and writing). 
II w+ II Truncate or create for update. 
II a+ II Append (open or create for update at end of file). 

The freopen subroutine substitutes the named file in place of the open stream. The 
original stream is closed whether or not the open succeeds. freopen returns a pointer to 
the FILE structure associated with stream. The freopen subroutine is typically used to 
attach the pre-opened streams associated with stdin, stdout, and stderr to other files. 

3-168 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fopen, ... 

The fdopen subroutine associates a stream with a file descriptor obtained from an open, 
dup, creat, or pipe system call. These system calls open files but do not return pointers to 
FILE structures. Many of the standard I/O library subroutines require pointers to FILE 
structures. Note that the type of stream specified must agree with the mode of the open 
file. 

When you open a file for update, you can perform both input and output operations on the 
resulting stream. However, an output operation cannot be directly followed by an input 
operation without an intervening fseek or rewind. Also, an input operation cannot be 
directly followed by an output operation without an intervening fseek, rewind, or an 
input operation that encounters the end of the file. 

When you open a file for append (that is, when type is II a II or II a+ II
), it is impossible to 

overwrite information already in the file. You can use fseek to reposition the file pointer 
to any position in the file, but when output is written to the file, the current file pointer is 
ignored. All output is written at the end of the file and causes the file pointer to be 
repositioned to the end of the output. 

If two separate processes open the same file for append, each process can write freely to 
the file without destroying the output being written by the other. The output from the two 
processes is intermixed in the order in which it is written to the file. Note that if the data 
is buffered, then it is not actually written until it is flushed. 

If the fopen or freopen subroutine fails, a NULL pointer is returned. 

Related Information 

In this book: "creat" on page 2-27, "open" on page 2-90, "fclose, fflush" on page 3-163, 
"fseek, rewind, ftell" on page 3-196, "setbuf, setvbuf' on page 3-330, and "standard i/o 
library" on page 3-342. 

Subroutines 3-169 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

fpfp 

Purpose 

Performs ANSI/IEEE floating-point operations. 

Library 

IEEE Support Library (libieee.a) 

Syntax 

#include < sys/FP.h > 

Description 

The fpfp subroutines perform floating-point operations that support ANSI/IEEE standard 
754-1985 for binary floating-point arithmetic. This section assumes that you are familiar 
with the details of this standard. 

The fpfp package supplies six abstract registers, each of which can hold a single-precision 
(FP -FLOAT) or double-precision (FP -DOUBLE) floating-point value. It also provides a 
status register that controls and reflects the result of the floating-point operations. 

This interface is used by compilers to implement expressions that involve floating-point 
values. It is not intended to be used directly by user programs. By accessing the 
floating-point routines through a system-defined table, programs can transparently access 
either software floating-point routines, or a hardware floating-point processor, if one is 
installed in the system. The following five central-processor and floating-point hardware 
configurations are supported on the RT PC: 

• 032 Microprocessor with no floating-point processor 
• 032 Microprocessor with Floating-Point Accelerator 
• 032 Microprocessor with Advanced Floating-Point Accelerator 
• Advanced Processor Card (APC) with Advanced Floating-Point Accelerator 
• Advanced Processor Card with a Motorola 68881 chip (APC/881). 

Both Advanced Processor Card configurations take advantage of the floating-point 
processor's direct memory access capability (DMA). 

3-170 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

On the RT PC, floating-point operations can be accessed in either of two modes: 

Compatible Mode 
Floating-point operations are invoked by calling subroutines in the kernel segment 
that either issue instructions to the floating-point processor, if one is present, or 
simulate the operations in software, if not. The RT PC C and FORTRAN compilers 
select compatible mode by default, so that programs compiled with the default 
options will run properly whether or not a floating-point processor is installed. 
This is the preferred mode, except for cases in which the greater performance of 
direct mode is essential. 

Direct Mode 
Instructions are issued directly to the hardware floating-point processor, yielding 
greater performance than compatible mode. Direct mode is available for the 
Floating-Point Accelerator and Advanced Floating-Point Accelerator. Direct mode 
is selected by specifying a flag to the compiler that you are using (see the specific 
language reference manual for details). A program that is compiled to use direct 
mode for one type of floating-point processor will not run properly on a machine 
that has a different floating-point processor or that has none at all. 

Note: Although it is possible to access the hardware floating-point registers directly, 
doing so is strongly discouraged because this makes programs hardware-dependent. 
Programs that use compatible mode are independent not only of the characteristics of the 
floating-point hardware, but of whether a hardware floating-point processor is installed at 
all. 

The remainder of this section gives details about compatible mode. 

Table-Driven Interface 

The primary interface to the compatible-mode subroutines is through a table that is located 
in the kernel segment. This table contains pointers to each of the compatible-mode 
subroutines. User processes have read-only access to this part of the kernel segment so 
that a simple subroutine call can be made, avoiding the overhead of performing a system 
call. 

Although not recommended, these subroutines can be referenced directly by C programs. 
They must be invoked through the external array -fpfpf, which contains pointers to the 
subroutines. This array is indexed by values of the FPFPI enumeration data type. 

For example, the C code to read the status register is: 

FP-STATUS fpstat; 

*((unsigned *)&fpstat) = (*(unsigned (*) ( ))-fpfpf[(int)FP-getst]) ( ); 
Note that the subroutine -FPgetst is invoked by indexing the -fpfpf array with the 
FP -getst enumeration constant. 

Subroutines 3-171 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

3-172 

The following example adds double values in registers 4 and 5, stores the result in register 
4, and then returns the result as well: 

FP-DOUBLE drslt; 

*((FP-DOUBLE *)&drslt) = (*(FP-DOUBLE (*) ( ))-fpfpf[(int)FP-addJ)(4~ 5); 
The FPFPI enumeration data type is defined in the sys/fpfpi.h header file, and it contains 
the following values: 

FP-rdf~ FP-rdd~ FP-i2f~ FP-i2d~ 
FP-cpf~ FP-cpfi~ FP-cpd~ FP-cpdi, 
FP-f2d~ FP-f2di~ FP -d2f, FP-d2fi~ 
FP-ngf, FP-ngfi, FP-ngd, FP-ngdi~ 
FP-abf~ FP-abfi~ FP-abd, FP-abdi, 
FP-ntf, FP-ntfi, FP-ntd, FP-ntdi, 
FP-rnf, FP -rnfi , FP-rnd, FP-rndi, 
FP-trf, FP-trfi, FP-trd, FP-trdi, 
FP - fl f, FP - fl fi , FP-fld, FP-fldi, 
FP-cmf, FP-cmfi, FP-cmd, FP-cmdi, 
FP-adf, FP-adfi, FP-add, FP-addi, 
FP-sbf, FP-sbfi, FP-sbd, FP-sbdi, 
FP-mlf, FP-mlfi, FP-mld, FP-mldi, 
FP-dvf, FP-dvfi, FP-dvd, FP_dvdi, 
FP-rmf, FP-rmfi, FP-rmd, FP-rmdi, 
FP-sqf, FP-sqfi, FP-sqd, FP-sqdi, 
FP-csf, FP-cfs, FP-csd, FP-cds, 
FP-getst, FP-setst, FP-lmr, FP-smr, 
FP-tan, FP-atan, FP-2xml, FP-y12x, 
FP-ylpl, FP-d2f2, FP-f2d2, 
FP-add3, FP-adf3, FP-sbd3, FP-sbf3, 
FP-mld3, FP-mlf3, FP-dvd3, FP_dvf3, 
FP-bsin, FP-bsini, FP-bcos, FP-bcosi, 
FP-btan, FP-btani, FP-bexp, FP-bexpi, 
FP-batan, FP-batani, FP-bacos, FP-bacosi, 
FP_basin, FP_basini, FP-blog, FP_blogi, 
FP-bloglO, FP-bloglOi, FP-blogb, FP-blogbi~ 
FP-batan2, FP-batan2i, FP-bscalbi, 
FP-bmodf, FP-bmodfi, FP-bmodd, FP-bmoddi, 
FP_lmrd, FP-smrd, 

AIX Operating System Technical Reference 



FP-rdfa, 
FP-f2da, 
FP-adfa, 
FP-mlfa, 
FP-sqfa, 
FP-type 

FP-rdda, 
FP-d2fa, 
FP-adda, 
FP-mlda, 
FP-sqda, 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP_cpfa, 
FP-cmfa, 
FP-sbfa, 
FP-dvfa, 
FP-bsina, 

FP-cpda, 
FP-cmda, 
FP-sbda, 
FP-dvda, 
FP-bcosa, 

The operations named FP -xxxx in the preceding table correspond to the subroutines 
named -FPxxxx in "Subroutines" on page 3-176. 

Note that the sys/FP.h header file #includes all of the other header files required by these 
floating-point routines. Therefore, your programs need to #include only this one file. 

Fixed Entry Points 

In order to minimize the overhead of calling the floating-point routines that are used most 
frequently, an alternate interface that uses a nonstandard calling sequence is available for 
some of the operations. Because this is a nonstandard interface, you should not attempt to 
use it in programs written in high-level languages. Use this interface in assembler 
language programs instead. 

These entry points are located at fixed locations in low memory. This fact allows programs 
to branch directly to the routines with a balax instruction instead of using the 
table-driven interface, avoiding four 032 Microprocessor or APC (032/APC) instructions 
that set up the constant pool pointer and get the address of the routine indirectly. 

The subroutines are the same as those described under "Subroutines" on page 3-176, except 
that the first parameter is passed in general-purpose register 2 of the 032/APC, and the 
second parameter is passed in register 3 (for a register number, a float immediate value, or 
the address of an immediate value) or in registers 3 and 4 (for a double immediate value). 
The third parameter is passed in register 4. 

The following table lists the address of each fixed entry point and the 032/ APC 
general-purpose registers that are modified. The Multiplier Quotient (MQ) register may 
also be modified. Other registers need not be saved before calling the routine. 

Subroutines 3-173 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

Entry Registers Entry Registers 
Operation Point Modified Operation Point Modified 

-FPadd Ox1300 2 3 -FPdvf Ox1580 2 3 
-FPadda Ox1AOO 2 3 4 5 -FPdvfa Ox1B40 2 3 
-FPaddi Ox1340 2 345 -FPdvfi Ox15CO 2 3 
-FPadf Ox1280 2 3 -FPf2d Oxl180 023 
-FPadfa Ox19CO 2 3 -FPi2da Ox18CO 023 
-FPadfi Ox12CO 2 3 -FPf2di Ox1lCO 023 
-FPbcos Ox1CCO 2 345 -FPgetst Ox1680 2 3 
-FPbcosa Ox1E80 o 2 3 4 5 -FPmld Ox1500 2 3 
-FPbcosi Ox1DOO 2 3 4 5 -FPmlda Ox1BOO 2 3 4 5 
-FPbsin Ox1D40 2 3 4 5 -FPmldi Ox1540 2 3 4 5 
-FPbsina Ox1E40 o 2 3 4 5 -FPmlf Ox1480 2 3 
-FPbsini Ox1D80 234 5 -FPmlfa Ox1ACO 2 3 
-FPcmd Ox1740 o 2 3 4 5 -FPmlfi Ox14CO 2 3 
-FPcmda Ox1980 o 2 3 4 5 -FPrdd Ox1040 2 3 
-FPcmdi Ox1780 o 2 345 -FPrdda Ox1800 234 
-FPcmf Ox16CO o 2 3 4 5 -FPrdf Ox1000 2 3 
-FPcmfa Ox1940 o 2 345 -FPrdfa Ox17CO 2 3 
-FPcmfi Ox1700 o 2 345 -FPsbd Ox1400 2 3 
-FPcpd Ox1100 2 3 -FPsbda Ox1A80 2 3 4 5 
-FPcpda Ox1880 234 -FPsbdi Ox1440 2 3 4 5 
-FPcpdi Oxl140 234 -FPsbf Ox1380 2 3 
-FPcpf Ox1080 2 3 -FPsbfa Ox1A40 2 3 
-FPcpfa Ox1840 2 3 -FPsbfi Ox13CO 2 3 
-FPcpfi Ox1OCO 2 3 -FPsqd Ox1C40 023 
-FPd2f Ox1200 023 -FPsqda Ox1EOO 2 3 4 5 
-FPd2fa Ox1900 023 -FPsqdi Ox1C80 2 3 4 5 
-FPd2fi Ox1240 o 2 3 4 -FPsqf Ox1BCO 023 
-FPdvd Ox1600 2 3 -FPsqfa Ox1DCO 023 
-FPdvda Ox1B80 2 3 4 5 -FPsqfi Ox1COO o 2 3 4 5 
-FPdvdi Ox1640 2 3 4 5 

Example 
The following assembler subroutine adds 1.0 and 2.0 in single precision and returns the 
result. The subroutine can be called from a C-language program. See "Parameters" on 
page 3-175 about specifying whether or not a floating-point operation returns the result. 

.set NORESULT,Ox08 

.text 

.globl .add12 
.add12: 

3-174 AIX Operating System Technical Reference 



cal 
stm 
lr 

1,-44(1) 
14,0(1) 
14,0 

TNL SN20-9855 (26 June 1987) toSC23-0808-0 
fpfp 

# Save 032 registers 14 and 15 

# Load 2.0 into float register 
cau 3,Ox4000(0) # 
balax Ox10CO # 

lis 2,0INORESULT # 
# 

0; don't return the result 
Specify 2.0 as second parameter 
FP-cpfi - copy float immediate 
Specify float reg a as first parameter; 

don't return the result 

# Add 1.0 to float register 0; return the result 
cau 3,Ox3F80(0) 
balax Ox12CO 

# Specify 1.0 as second parameter 
# FP-adfi - add float immediate 

lis 2,0 # Specify float reg a as first parameter; 
# DO return the result 

# The result is now in 032 register 2 
# Return the result in register 2 (C-language calling convention) 

1m 14,0(1) 
brx 15 

cal 1,44(1) 

.data 3 

.globl -add12 
-add12 . long . add12 

Parameters 

The following parameter declarations apply to all of the floating-point subroutines: 

int r1, r2, r3; 
int ival, mask; 
FP-FLOAT {val, *{ptr, *{rsltp; 
FP-DOUBLE dval, *dptr, *drsltp, *dbu{; 
unsigned char * dec; 
FP-STATUS status; 

The r1, r2, and r3 parameters are integers in the range 0 to 5, denoting one of the six 
abstract floating-point registers. 

In addition, the r 1 parameter can be logically OR-ed with the value NORETBIT, called the 
no-result flag, which permits greater performance by suppressing the return value from 

Subroutines 3-175 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

the subroutine when it is not needed immediately. (NORETBIT is defined in the sysjFP.h 
header file.) This allows the central processor and a floating-point processor to operate 
concurrently: after issuing a request to the floating-point processor, the central processor 
normally waits for it to finish the operation and return the result. If the no-result flag is 
set, then the central processor does not wait, but continues running while the 
floating-point processor performs the requested operation. The value returned by an 
operation is undefined if the no-result flag is set. 

Most of the operations store the result into the floating-point register specified by the r 1 
parameter. However, operations whose names end with the letter a are passed pointers to 
an immediate value (fptr or dptr) and to the memory location where the result is to be 
stored (frsltp or drsltp). If the no-result flag is set for one of these operations, then the 
result pointer does not need to be specified. 

Warning: If the no-result flag is not set and the frsltp or drsltp parameter 
is not specified or does not point to a valid float or double variable, then 
the results of the operation are unpredictable. For example, if the 
parameter points to a location outside of the process's allocated address 
space, then the process receives a memory fault. 

Subroutines 

The following subroutines are grouped by function. The subroutine names shown are 
those that appear in the Floating-Point Library (libfp.a). See "Table-Driven Interface" on 
page 3-171 for the recommended interface to these routines. The no-result flag applies to 
all of them, except as noted. 

Load and Store Operations 
FP -FLOAT -FPrdf (r 1) 
void -FPrdfa (r 1, frsltp) 
FP -DOUBLE -FPrdd (r 1) 
void -FPrdda (r1, drsltp) 

Reads the float or double value that is in register r1, and either returns the result 
or stores it into the memory location pointed to by the rsltp parameter. 

FP -FLOAT -FPi2f (r 1, ival) 
FP -DOUBLE -FPi2d (r 1, ival) 

Converts the integer value to float or double, stores the converted value into 
register r 1, and returns that value. 

3-176 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP-FLOAT 
FP-FLOAT 
void 
FP-DOUBLE 
FP-DOUBLE 
void 

-FPcpf (rI, r2) 
-FPcpfi (r 1, {val) 
-FPcpfa (rI, {ptr, [frsltp]) 
-FPcpd (rl, r2) 
-FPcpdi (r 1, dval) 
-FPcpda (rl, dptr, [drsltp]) 

Copies into register ri the float or double value from: register r2, the val 
parameter, or the memory location pointed to by ptr. The result is either returned 
or stored into the memory location pointed to by the rsltp parameter. 

FP-DOUBLE _FPf2d (rI) 
FP-DOUBLE -FPf2di (rl, {val) 
void -FPf2da (rl, {ptr, [drsltp]) 

Converts to double the float value in: register rl, the val parameter, or the memory 
location pointed to by ptr. The result is stored into register r I and is then either 
returned or stored into the memory location pointed to by the rsltp parameter. 

FP-FLOAT 
FP-FLOAT 

-FPd2f (rI) 
-FPd2fi (r I, dval) 

void -FPd2fa (rl, dptr, [frsltp]) 

Converts to float the double value in: register rl, the val parameter, or the memory 
location pointed to by ptr. The result is stored into register r 1 and is then either 
returned or stored into the memory location pointed to by the rsltp parameter. 

FP-DOUBLE -FPf2d2 (rl, r2) 
FP-FLOAT -FPd2f2 (rl, r2) 

Converts the float or double value in register r2 to double or float, stores it into 
register rI, and returns that value. The value in register r2 remains unmodified. 

Multiple-Register Load and Store Operations 
-FPlmr Loads multiple floating-point registers with values stored in memory. 

-FPsmr Stores multiple floating-point registers into a buffer in memory. 

These subroutines require a nonstandard calling sequence that can be performed in 
assembler language programs, but not using high-level languages. 

Both subroutines are passed the following parameters in 032/APC general-purpose 
registers: 

Reg Contents 

12 Specifies the address of the save area. 

Subroutines 3-177 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

11 The low-order 16 bits contain a bit mask that specifies the floating-point 
registers to load or store. Single-precision fpfp registers 0 through 5 are 
selected by setting the even bits 0, 2, 4, 6, 8, and 10, where bit 0 is the least 
significant bit of the mask. The double-precision fpfp registers 0 through 5 
are selected by pairs of bits: 0-1, 2-3, 4-5, 6-7, 8-9, and 10-11. For example, 
setting bits 4 and 5 selects double-precision fpfp register 2. This register 
mapping is shown in Figure 3-2 on page 3-190.2. 

Both operations modify 032jAPC registers 0, 11, 12, and 13. 

void -FPlmrd (mask, dbuf) 
void -FPsmrd (mask, dbuf) 

Loads or stores multiple double-precision floating-point registers. The dbu{ 
parameter points to the beginning of the register save area. The mask parameter is 
a bit mask that specifies the registers to load or store. Registers 0 to 31 are 
selected by bits 0 to 31, respectively, where bit 0 is the least significant bit of the 
mask. 

Unary Operations 
FP-FLOAT _FPngf (r1) 
FP-FLOAT -FPngfi (r1, {val) 
FP-DOUBLE -FPngd (r1) 
FP -DOUBLE -FPngdi (r 1, dval) 

Negates the float or double value in register r1 or in the val parameter, stores it 
into register r1, and returns that value. 

FP-FLOAT -FPabf (r1) 
FP -FLOAT -FPabfi (r 1, {val) 
FP -DOUBLE -FPabd (r 1) 
FP -DOUBLE -FPabdi (r 1, dval) 

Makes the float or double value in register r 1 or in the val parameter positive 
without changing its magnitude, stores it into register r 1, and returns that value. 

FP-FLOAT -FPntf (r1) 
FP -FLOAT -FPntfi (r 1, {val) 
FP -DOUBLE -FPntd (r 1) 
FP -DOUBLE -FPntdi (r 1, dval) 

Rounds the float or double value in register r 1 or in the val parameter to an integer 
in floating-point format, stores the result into register r1, and returns that value. 
The· rounding performed depends on the rounding mode specified in the 
floating-point status word. (See "Status Register Operations" on page 3-186.) 

3-178 AIX Operating System Technical Reference 



int _FPrn£ (rl) 
int -FPrnfi (r 1, {val) 
int -FPrnd (rl) 
int -FPrndi (r 1, dval) 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

Copies the val parameter, if given, to register rl, then returns the integer value 
that is nearest to the float or double value in register rl. Note that the value in 
register r 1 is not converted to an integer. The rounding performed is independent 
of the rounding mode specified in the floating-point status register. The no-result 
flag does not apply to this operation. (See "Parameters" on page 3-175 for an 
explanation of the no-result flag.) 

int -FPtr£ (r 1) 
int -FPtrfi (r 1, {val) 
int -FPtrd (r 1) 
int -FPtrdi (r 1, dval) 

Copies the val parameter, if given, to register rl, then returns the integer part of 
the float or double value in register rl. Note that the value in register rl is not 
converted to an integer. The rounding performed is independent of the rounding 
mode specified in the floating-point status register. The no-result flag does not 
apply to this operation. (See "Parameters" on page 3-175 for an explanation of the 
no-result flag.) 

int -FPfl£ (r 1) 
int -FPflfi (r 1, {val) 
int -FPfld (r 1) 
int -FPfldi (r 1, dval) 

Copies the val parameter, if given, to register rl, then returns the largest integer 
less than or equal to the float or double value in register r 1. Note that the value in 
register r 1 is not converted to an integer. The rounding performed is independent 
of the rounding mode specified in the floating-point status register. The no-result 
flag does not apply to this operation. (See "Parameters" on page 3-175 for an 
explanation of the no-result flag.) 

Subroutines 3-179 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

Comparison Operations 
int -FPcmf (r1, r2) 
int -FPcmfi (r 1, {val) 
int -FPcmfa (r1, {ptr) 
int -FPcmd (r1, r2) 
int -FPcmdi (r 1, dval) 
int -FPcmda (r 1, dptr) 

Compares the float or double value in register r 1 to the float or double value in: 
register r2, the val parameter, or the memory location pointed to by ptr. The value 
returned is LESSTHAN , EQUAL, GREATER or MININT, depending on whether 
the value in register r 1 is less than, equal to, greater than, or unordered with the 
other value, respectively. In addition, the 032/APC test bit is set to 1 if the 
comparison is unordered, and it is set to 0 otherwise. 

If the r1 parameter is logically OR-ed with the value ExceptOnUnordered, and if 
the operands are unordered, then an invalid operation exception occurs. (See 
"Status Register Operations" on page 3-186 for details about floating-point 
exceptions.) 

The no-result flag does not apply to these comparison operations. (See 
"Parameters" on page 3-175 for an explanation of the no-result flag.) Also, 
_FPcmfa and -FPcmda return the result, rather than storing it into a memory 
location. 

Simple Arithmetic Operations 
FP-FLOAT -FPadf (r1, r2) 
FP -FLOAT -FPadfi (r 1, {val) 
void -FPadfa (r1, {ptr, [{rsltp]) 
FP-DOUBLE -FPadd (r1, r2) 
FP-DOUBLE -FPaddi (r1, dval) 
void -FPadda (r1, dptr, [drsltp]) 

Adds to the float or double value in register r 1 the float or double value in: 
register r2, the val parameter, or the memory location pointed to by ptr. The result 
is stored into register r 1 and is then either returned or stored into the memory 
location pointed to by the rsltp parameter. 

3-180 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP-FLOAT 
FP-FLOAT 
void 
FP-DOUBLE 
FP-DOUBLE 
void 

-FPsbf (rl, r2) 
-FPsbfi (r 1, {val) 
-FPsbfa (rl, {ptr, [frsltp]) 
-FPsbd (rl, r2) 
-FPsbdi (rl, dval) 
-FPsbda (rl, dptr, [drsltp]) 

Calculates the difference between the float or double value in register r 1 and the 
float or double value in: register r2, the val parameter, or the memory location 
pointed to by ptr. The result is stored into register rl and is then either returned 
or stored into the memory location pointed to by the rsltp parameter. 

FP-FLOAT 
FP-FLOAT 
void 
FP-DOUBLE 
FP-DOUBLE 
void 

-FPmlf (r 1, r 2) 
-FPmlfi (r 1, {val) 
-FPmlfa (rl, {ptr, [frsltp]) 
-FPmld (r 1, r 2) 
-FPmldi (r 1, dval) 
-FPmlda (rl, dptr, [drsltp]) 

Multiplies the float or double value in register r 1 by the float or double value in: 
register r2, the val parameter, or the memory location pointed to by ptr. The result 
is stored into register r 1 and is then either returned or stored into the memory 
location pointed to by the rsltp parameter. 

FP-FLOAT 
FP-FLOAT 
void 
FP-DOUBLE 
FP-DOUBLE 
void 

-FPdvf (rl, r2) 
-FPdvfi (r 1, {val) 
-FPdvfa (rl, {ptr, [frsltp]) 
-FPdvd (rl, r2) 
-FPdvdi (r 1, dval) 
-FPdvda (rl, dptr, [drsltp]) 

Divides the float or double value in register r 1 by the float or double value in: 
register r2, the val parameter, or the memory location pointed to by ptr. The result 
is stored into register r 1 and is then either returned or stored into the memory 
location pointed to by the rsltp parameter. 

FP-FLOAT -FPrmf (rl, r2) 
FP -FLOAT -FPrmfi (r 1, {val) 
FP-DOUBLE -FPrmd (rl, r2) 
FP -DOUBLE -FPrmdi (r 1, dval) 

Calculates the IEEE remainder that results when the float or double value in 
register r 1 is divided by the float or double value in register r2 or in the val 
parameter, stores the result into register rl, and then returns the result. The result 
is rounded to the nearest value. See also" -fpbmodf, -fpbmodfi, -fpbmodd, 
-fpbmoddi" on page 3-184. 

Subroutines 3-181 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP-FLOAT 
FP-FLOAT 
void 
FP-DOUBLE 
FP-DOUBLE 

-FPsqf (r1) 
-FPsqfi (r 1, (val) 
-FPsqfa (r 1, (ptr, ffrsltp]) 
-FPsqd (r1) 
-FPsqdi (r 1, dval) 

void -FPsqda (r1, dptr, [drsltp]) 

Calculates the square root of the float or double value in: register r1, the val 
parameter, or the memory location pointed to by ptr. The result is stored into 
register r 1 and is then either returned or stored into the memory location pointed 
to by the rsltp parameter. 

Three-Operand Arithmetic Operations 
FP-FLOAT -FPadf3 (r1, r2, r3) 
FP-DOUBLE -FPadd3 (r1, r2, r3) 

Adds the float or double values in registers r2 and r3, stores the result into register 
r 1, and then returns the result. 

FP-FLOAT -FPsbf3 (r1, r2, r3) 
FP-DOUBLE -FPsbd3 (r1, r2, r3) 

Subtracts the float or double value in register r3 from the value in register r2, 
stores the result into register r1, and then returns the result. 

FP-FLOAT -FPmlf3 (r1, r2, r3) 
FP-DOUBLE -FPmld3 (r1, r2, r3) 

Multiplies the float or double values in registers r2 and r3, stores the result into 
register r1, and then returns the result. 

FP -FLOAT -FPdvf3 (r 1, r 2, r3) 
FP-DOUBLE -FPdvd3 (r1, r2, r3) 

Divides the float or double value in register r2 by the value in register r3, stores 
the result into register r1, and· then returns the result. 

Packed Decimal Conversion Operations 
FP-FLOAT -FPcsf (r1, dec) 
FP-DOUBLE -FPcsd (r1, dec) 

Converts the packed decimal string pointed to by the dec parameter to float or 
double, stores the result into register r 1, and then returns the result. The dec 
parameter points to a IO-byte packed decimal number, the first byte of which is 0 
(for a positive value) or Ox80 (for a negative value). The following 9 bytes 

3-182 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0BOB-O 
fpfp 

containing 2 decimal digits each; the left half-byte of each byte contains the more 
significant digit. 

void -FPcfs (rl, dec) 
void -FPcds (r 1, dec) 

Converts the float or double value in register r 1 to packed decimal format as 
described for -FPcsf and -FPcsd. In the special cases of + 00, -00, and NaN, the 
first byte is set to Ox7F, OxFF, or OxOF, respectively. 

Miscellaneous Operation 
int -FPtype () 

Returns one of the following values to identify the current floating-point hardware 
configuration: 

o Emulation (no floating-point processor) 
1 032 Microprocessor with Floating-Point Accelerator 
2 Advanced Processor Card with 68881 
4 032 Microprocessor with Advanced Floating-Point Accelerator 
12 Advanced Processor Card with Advanced Floating-Point Accelerator. 

Transcendental Operations 
These operations implement a version of the transcendental routines developed at the 
University of California at Berkeley, which handle parameters and generate results in a 
manner consistent with the IEEE floating-point standard. 

Note: These operations are only available in AIX version 2.1 and later. Programs that 
use them will not run on earlier versions of AIX. 

FP-DOUBLE 
FP-DOUBLE 
void 
FP-DOUBLE 
FP_DOUBLE 
void 
FP-DOUBLE 
FP-DOUBLE 

-FPbsin (r 1, r 2) 
-FPbsini (r 1, dual) 
-FPbsina (rl, dptr, [drsltp]) 
-FPbcos (rl, r2) 
-FPbcosi (rl, dual) 
-FPbcosa (r 1, dptr, [drs ltp ]) 
-FPbtan (rl, r2) 
-FPbtani (rl, dual) 

Calculates the sine, cosine, or tangent of the double value in: register r2, the dual 
parameter, or the memory location pointed to by ptr. The result is stored into 
register r 1 and is then either returned or stored into the memory location pointed 
to by the rsltp parameter. 

Subroutines 3-183 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP-DOUBLE -FPbasin (rl, r2) 
FP-DOUBLE -FPbasini (rl, dual) 
FP -DOUBLE -FPbacos (r 1, r 2) 
FP -DOUBLE -FPbacosi (r 1, dual) 
FP-DOUBLE -FPbatan (rl, r2) 
FP-DOUBLE -FPbatani (rl, dual) 
FP-DOUBLE -FPbatan2 (rl, r2) 
FP -DOUBLE -FPbatan2i (r 1, dual) 

The first six subroutines calculate the arcsine, arccosine, and arctangent of the 
double value in register r2 or in the dual parameter, store the result into register 
rl, and then return the result. -FPbatan2 and -FPbatan2i calculate the 
arctangent of y -:- x, where y (the value in register rl) and x (the value in 
register r2 or in the dual parameter) are both double values. The result is then 
stored into register rl and returned. 

FP-DOUBLE -FPblog (rl, r2) 
FP -DOUBLE -FPblogi (r 1, dual) 
FP-DOUBLE -FPblogl0 (rl, r2) 
FP -DOUBLE -FPblogl0i (r 1, dual) 

Calculates the natural or base-IO logarithm of the double value in register r2 or in 
the dual parameter, stores the result into register rl, and then returns the result. 

FP-DOUBLE -FPbexp (rl, r2) 
FP -DOUBLE -FPbexpi (r 1, dual) 

Calculates the value of ex, where register r2 or the dual parameter contains a 
double value representing the exponent (x). The result is stored into register r 1 
and returned. 

FP-DOUBLE -FPbmodf (rl, r2) 
FP -DOUBLE -FPbmodfi (r 1, {ual) 
FP -DOUBLE -FPbmodd (r 1, r2) 
FP-DOUBLE -FPbmoddi (rl, dual) 

Calculates the modulo remainder that results when the float or double value in 
register rl is divided by the float or double value in register r2 or in the val 
parameter, stores the result into register rl, and then returns the result. The result 
is rounded toward zero. See also" -fprmf, -fprmfi, -fprmd, -fprmdi" on page 3-181. 

3-184 AIX Operating System Technical Reference 



FP -DOUBLE -FPbscalbi (r 1, iual) 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

Calculates the value of y . 2N for integral values of N without computing 2N. 
Register r 1 contains y, and the ival specifies N. The result of this operation is 
stored into register r 1 and is returned as the value of the subroutine. 

FP-DOUBLE -FPblogb (r1, r2) 
FP -DOUBLE -FPblogbi (r 1, dual) 

Extracts the unbiased exponent from the double value in register r2 or in the dual 
parameter, stores the result into register r1, and then returns the result. The result 
is a signed integer in double-precision floating-point format, except that the 10gb of 
a NaN is a Nan, the 10gb of 00 is + 00, and the 10gb of 0 is -00. Taking the 10gb of 
o also causes a division by zero exception to occur. (See "Status Register 
Operations" on page 3-186 for details about floating-point exceptions.) If x is 
positive and finite, then the expression -FPbscalbi (r, --FPblogbi (8, x» lies 
strictly between 0 and 2; it is less than 1 only when x is denormalized. 

Additional Transcendental Operations 
These operations are the core calculations for other logarithmic, hyperbolic, and 
trigonometric functions, and they can be used as partial steps in calculating the result 
desired by the user. A more convenient set of transcendentals is discussed under 
"Transcendental Operations" on page 3-183. The basic transcendentals are not 
implemented by any of the floating-point processors, but by software routines only. 

FP -DOUBLE -FPtan (r 1, r 2) 

Calculates the partial tangent of an angle measured in radians. Register r 1 
contains the angle, which must be a double value in the range 0 < r1 :::;; 1t-7-4. If 
the value in register r 1 is outside this range, then an invalid operation exception 
occurs, and no operation is performed. The result of this operation consists of 2 
double values. The sine of the angle is stored into register r 1 and is returned as 
the value of the subroutine. The cosine is stored into register r2. To calculate the 
tangent, divide the sine by the cosine. 

FP-DOUBLE -FPatan (r1, r2) 

Calculates the arctangent of y -7- x. This operation requires a double value in 
both registers r 1 and r2. These arguments must be ordered such that the value in 
r1 (x) is greater than the value in r2 (Y), which is greater than O. If the values are 
not ordered in this manner, then an invalid operation exception occurs, and no 
operation is performed. The result is stored into register r 1 and is returned as the 
value of the subroutine. 

Subroutines 3-185 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP -DOUBLE -FP2xml (r 1) 

Calculates the value of 2x - 1. Register r1 contains the exponent (x), which must a 
double value be in the range 0 ~ r 1 ~ 0.5. If the value in register r 1 is not in 
this range, then an invalid operation exception occurs, and no operation is 
performed. The result of this operation is stored into register r land is returned as 
the value of the subroutine. 

FP-DOUBLE -FPy12x (r1, r2) 

Calculates the value of y . log2 x. This operation requires a double value in both 
registers rl and r2. Register r1 contains the exponent (x), which must be a double 
value the range 0 < rl < + 00. If the value in register rl is outside this range, 
then an invalid operation exception occurs, and no operation is performed. 
Register r2 contains the multiplier (Y), which can be any valid double value. The 
result of this operation is stored into register rl and is returned as the value of the 
subroutine. 

FP-DOUBLE -FPylpl (rl, r2) 

Calculates the value of y . log2 (x + 1). This operation requires a double value in 
both registers rl and r2. Register r1 contains x, which must be a double value in 
the range: 

o<r1<[1-1J 
If the value in register r 1 is outside this range, then an invalid operation exception 
occurs, and no operation is performed. Register r2 contains the multiplier (Y), 
which can be any valid double value. The result of the operation is stored into 
register r 1 and is returned as the value of the subroutine. This subroutine provides 
more accurate results than -FPy12x for x values close to 1. 

Status Register Operations 
The floating-point status is kept in a FP-STATUS structure, which is defined with a 
typedef statement in the sys/fpfp.h header file, and which contains the following fields: 

unsi gned ki 11 1 Signal SIGFPE on an exception 
uns i gned xcp- f1 ag 1 An exception occurred 
un signed i 0-f1 ag 1 An invalid operation occurred 
uns i gned i o-xpt 1 Enable signal on invalid operation 
unsi gned dz- f1 ag 1 A division by 0 occurred 
unsi gned dz-xpt 1 Enable signal on division by 0 
uns i gned of - f1 ag 1 An overflow occurred 

3-186 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

uns i gned of -xpt 1 Enable signal on overflow 
unsi gned uf - fl ag 1 An underflow occurred 
uns i gned uf -xpt 1 Enable signal on underflow 
unsi gned preci si on 1 Rounding precision 
unsigned cmp-rslt 2 Comparison result 
unsi gned rnd-mode 2 Rounding mode 
uns i gned i r _ fl ag 1 An inexact result occurred 
uns i gned i r -xpt 1 Enable signal on inexact result 

When set, the kill field enables exception trapping. The io-xpt, dz-xpt, of-xpt, ir -xpt, 
and uf-xpt fields enable trapping for each of the five exception types. Thus, for an 
exception to be trapped, both kill and the xx-xpt field for that exception must be set. See 
"Exception Handling" on page 3-188 for detailed information about exceptions and traps. 

When an exception occurs for which trapping is not enabled, the fields io-flag, dz-flag, 
of-flag, ir-flag, and uf-flag are set to indicate the exception or exceptions that occurred. 
The xcp-flag field is also set to indicate that an exception occurred. The xcp-flag and 
xx-flag fields are not automatically reset to 0; this must be done explicitly by calling 
-FPsetst. 

The precision field selects the rounding precision to be used. If it is set to 0, then all 
results are rounded to the greatest precision available with the floating-point hardware 
being used. (This is extended precision for the 68881 and double for all others.) If 
precision is set to 1, then all results are rounded to double precision. If the 68881 is being 
used, then setting any xx-xpt field for trapping exceptions also causes precision to be set 
to 1. This ensures that exception handlers always receive the same results regardless of 
the hardware configuration. Note that rounding to double precision slows down 
floating-point operations on the 68881. 

The cmp-rslt field of the status word specifies the result of a comparison operation, and it 
is set to one of the following values: 

° Less than 
1 Equal 
2 Greater than 
3 Unordered. 

The rnd-mode field of the status word specifies the rounding mode, and it can be set to 
one of the following values: 

FP-NEAR 
FP-ZERO 
FP-UP 
FP-DOWN 

Rounds to the nearest value. This is the default. 
Rounds toward O. 
Rounds toward + 00. 

Rounds toward -00. 

Subroutines 3-187 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

FP -STATUS -FPgetst ( ) 

Returns the floating-point status word reflecting the results of the most recent 
floating-point operation. 

void -FPsetst (status) 

Sets the floating-point status word to the value provided by the status parameter. 

Exception Handling 
When an error is detected during a floating-point operation, an exception occurs. Each 
exception is one of five types, as specified by the IEEE standard: invalid operation, 
overflow, underflow, division by zero, and inexact result. 

The standard also defines a default result that is returned as the value of the operation 
that caused the exception. Alternatively, you can specify a special action to be taken 
when an exception occurs. Performing a user-defined action when an exception occurs is 
called exception trapping, and a user-defined trap routine is called a trap handler. 
However, the default result is sufficient for most applications, and specifying a trap 
handler is usually not necessary. 

When an exception occurs, the floating-point operation checks the trap-enabling fields of 
the floating-point status word. (See "Status Register Operations" on page 3-186 for details 
about the trap-enabling fields.) If either the kill field or the xx-xpt field for the exception 
type is not set, then the exception is not trapped and the following default actions take 
place: 

• The xcp-flag field is set to indicate that an exception occurred. 
• The appropriate xx-flag field is set to indicate the exception type. 
• The default result specified by the IEEE standard is returned to the application 

program. 

If both the kill field and the xx-xpt field are set, then trapping is enabled for the given 
exception type. In this case, the SIG FPE signal is sent to the process. (AIX signals are 
discussed in "signal" on page 2-145.) You can write your own signal handler, which must 
determine the exception that occurred and take appropriate action, or you can use the 
facility provided by the ieeetrap subroutine. 

Note: If the status word setting enables the trapping of one or more exception types and 
no signal handler is specified for SIGFPE (either a user-supplied handler or the one 
installed by ieeetrap), then the default action (SIG-DFL) is taken for the signal, which 
terminates the process. 

3-188 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

The ieeetrap subroutine, which is located in the IEEE Support Library (libieee.a), allows 
you to specify a trap handler for each of the five exception types. ieeetrap functions like 
the signal system call and has the following syntax: 

int (*ieeetrap (exceptiontype, action» ( ) 
int exceptiontype; 
int (*action) ( ); 

The exceptiontype parameter identifies the type of exception and is one of the following 
values: 

FP-INV-OPER 
FP -OVERFLOW 
FP-UNDERFLOW 
FP-DIVIDE 
FP-INEXACT 

Invalid operation 
Overflow 
Underflow 
Division by zero 
Inexact result. 

The action parameter is one of the following: 

SIG-IGN Sets the status word to disable trapping of the specified exception type. This 
is the default action for a given exception type if an action is not specified 
for it. 

SIG_DFL Causes the process to be terminated upon an exception of the specified type. 
The process is terminated by setting the action for the SIGFPE signal to 
SIG-DFL and sending SIGFPE to the process. This allows the parent 
process to determine that the process terminated due to a floating-point 
exception. 

handler Causes the subroutine with the address given by handler to be called when 
an exception of the specified type occurs. 

Warning: Unpredictable results can occur if you use ieeetrap to disable 
trapping of a given exception type (SIG-IGN) and then enable trapping by 
using -FPsetst to set the status word. Instead, use ieeetrap to set a trap 
handler for the exception type. 
The ieeetrap subroutine establishes a signal handler for SIGFPE that selects one of five 
actions based on the exception type. It also sets action as the action to be taken when an 
exceptiontype exception occurs. 

Upon successful completion, the ieeetrap subroutine returns the previous value of action 
for the specified exceptiontype. If an error occurs, then the value BADSIG is returned. 

Subroutines 3-189 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

If the action parameter to ieeetrap specifies a handler subroutine, then an exception of the 
specified type causes the handler subroutine to be called with the following syntax: 

#include < sys/FP.h > 
#include < signal.h > 

handler (sig, code, scp) 
int sig, code; 
struct sigcontext *scp; 

The parameters are the same as those passed to the signal handler. (See "sigvec" on 
page 2-156 for a detailed description.) Note that the value of the sig parameter is always 
SIG-FPE. 

The following discussion traces the hierarchy of structures pointed to by the scp 
parameter. Use Figure 3-1 on page 3-190.1 as a guide for this discussion. 

The sigcontext structure, which is defined in the sys/signal.h header file, contains a 
member named fpvmp, which points to a fpvmach structure. The fpvmach structure 
describes the state of the virtual floating-point machine at the time of the exception. This 
structure is defined in the ieeetrap.h header file, and it contains the following members: 

fpreg 
FP-STATUS 
fptrap 
fpreg 
unsigned int 

fpreg[8] 
statusreg 
fptrap 
fpregup[24] 
destaddr 

Floating-point registers 0-7 
Status register at time of exception 
Specific information about the exception 
Floating-point registers 8-31 
Destination address 

Each fpreg structure represents a double-precision value, two single-precision values, or 
two long unsigned integers. Viewing a value as a pair of long unsigned integers can be 
useful for displaying and studying its bit pattern. Each register structure always contains 
a double value on systems with the APe/881 but no Advanced Floating-Point Accelerator. 
The FP -STATUS structure is discussed in "Status Register Operations" on page 3-186. 
The fptrap structure, also defined in ieeetrap.h, contains the following members: 

fptrapinfo 
fpreg 

fptrapinfo 
designated_result 

The fptrapinfo structure contains the following members: 

unsigned int operation 8 Operation causing the exception 
unsigned int src 6 Source register number 
unsigned int dest-loc 1 Destination location 
unsigned int dest 6 Destination register number 
unsigned int except-flags 5 Exceptions that occurred 
unsigned int except-type 3 Type of exception 

3-190 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

handler (sig, code, scp) 
) 

~ struct sigcontext 
{ 

} ; 

int 
int 
int 
int 
int 
fpvmach 

sc_onstack; 
s c--lTlas k; 
sc-sp; 
sc-pc; 
sc-ps; 
*fpvmp; 

~ 
~ typedef struct 

{ 
fpreg [8 1; -----" 

__ ---7 typedef uni on 
{ 

struct 
{ 

unsigned long 
unsigned long 

} u; 
double 
float 

fpreg; 

d; 
freg[2] ; 

fpreg 
FP_STATUS 
fptrap 
fpreg 
unsigned 

statusreg; -------~> typedef struct 
fptrap; { 
fpregup [24]; --"'-----

int destaddr; 
fpvmach; 

typedef struct 
{ 

fptrapinfo fptrapinfo; 
fpreg designated_result; ""'-

fptrap; 

4 typedef struct 

) 

{ 
unsigned int operation 8; 
unsigned int rsvdO 2' , 
unsigned int src 6; 
unsigned int dest_loc l' , 
unsigned int rsvdl l' , 
unsigned int dest 6' , 
unsigned int except_flags 5; 
unsigned int except-type 3; 

fptrapinfo; 

Figure 3-1. Floating-Point Trap Handler Structures 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

FP_STATUS; 

ki 11 
xcp_flag 
i 0-fl ag 
i CLxpt 
dz_flag 
dLxpt 
of_flag 
of_xpt 
uf_flag 
uf_xpt 
precision 
rsvdl0 
cmp_rsl t 
rnd_mode 
i r _ fl ag 
i r_xpt 
rsvd2 
mc_type 

hp; 
lp; 

l' , 
1-, 
1-, 
1-, 
1-, 
1-, 
l' , 
1-, 
1 ; 
1 ; 
1-, 
10; 
2-, 
2-, 
1-, 
1-, 
2-, 
3; 

Subroutines 3-190.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

The operation field contains one of the values defined by the FPFPI enumeration data 
type, identifying the operation that caused the exception. See "Table-Driven Interface" on 
page 3-171 for details about FPFPI. 

The src and dest fields specify the operand registers, but not by their abstract fpfp 
register numbers. The operand registers given in src and dest are numbered from 0 to 13 
for single-precision operands. Double-precision operands occupy a pair of registers 
identified by the even number of the pair. For example, 4 identifies the double-precision 
value occupying registers 4 and 5, and it corresponds to the abstract fpfp register 2. This 
register mapping is shown in Figure 3-2. 

floatfpfp 
register 
number 

o 

1 

2 

3 

4 

5 

6* 

Register 
number in 
src or dest 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

i 

} 
} 
} 
} 
} 
} 
} 

Bit set in mask for 

doublefpfp 
register 
number 

o 

1 

2 

3 

4 

5 

6* 

_FPlmr or _FPsmr 

* fpfp register 6 is a scratch register that 
is reserved for use by the AIX kernel. User 
programs should not modify this register. 

Figure 3-2. The fpfp Register Mapping 

3-190.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fpfp 

The dest-Ioc field specifies whether the result is a memory location or a floating-point 
register. If dest-Ioc is set to 0, then the dest field specifies the destination register. If 
dest-Ioc is set to 1, then the destaddr field in the fpvmach structrue contains the 
memory address of the destination, and the value of the dest field is undefined. 

The except-flags field indicates the exception or exceptions that resulted from the 
operation. This value is constructed by logically OR-ing together one or more of 
EM-INV -OPER, EM-OVERFLOW, EM-UNDERFLOW, EM-DIVIDE, and 
EM-INEXACT. 

The except-type field identifies the exception that caused the trap to be taken. This is 
the highest-priority exception that occurred for which trapping is enabled. The value is 
one of FP-INV-OPER, FP-OVERFLOW, FP-UNDERFLOW, FP-DIVIDE, or 
FP-INEXACT. 

On an inexact, overflow, or underflow exception, the designated-result in the fptrap 
structure contains the designated result, as defined by the IEEE standard. It is properly 
rounded to the precision of the destination of the operation. In the case of overflow or 
underflow, this result is also scaled. 

Warning: When an exception is trapped, the status register is not 
automatically set to reflect the exception, nor is a result stored in the 
destination register. The trap handler must do this or the results will be 
unpredictable. 
To set the status register, set the appropriate members of the fpvmach structure. That is, 
set the status by modifying the bit fields of scp->fpvmp->statusreg. To set the result 
value, do one of the following: 

1. If the destination is a register (that is, scp->fpvmp->fptrap.fptrapinfo.dest-Ioc 
0), then store the result into scp->fpvmp->fpreg[dest]. 

2. If the destination is a memory location (that is, 
scp- >fpvmp- >fptrap.fptrapinfo.dest-Ioc = = 1), then store the result into 
*(scp- >fpvmp- >destaddr). 

Related Information 

The description of the Floating-Point Accelerator, Advanced Floating-Point Accelerator, or 
APe/881 in Hardware Technical Reference. The description of the Floating-Point 
Accelerator or Advanced Floating-Point Accelerator in Hardware Technical Reference. 

The discussion of Floating-Point Services in Virtual Resource Manager Technical 
Reference. 

Assembler Language Reference. 

The cc command in AIX Operating System Commands Reference. 

Subroutines 3-191 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
fread, ... 

fread, fwrite 

Purpose 

Performs binary input/output. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int fread «char *) ptr, sizeof (*ptr), nitems, stream) 
int nitems; 
FILE *stream; 

int fwrite «char *) ptr, sizeof (*ptr), nitems, stream) 
int size, nitems; 
FILE * stream; 

Description 

The fread subroutine copies nitems items of data from the input stream into an array 
beginning at the location pointed to by the ptr parameter. Each data item has the type 
*ptr. 

The fread subroutine stops copying bytes if an end-of-file or error condition is encountered 
while reading from the input specified by the stream parameter, or when the number of 
data items specified by the nitems parameter have been copied. fread leaves the file 
pointer of stream, if defined, pointing to the byte following the last byte read, if there is 
one. The fread subroutine does not change the contents of stream. 

The fwrite subroutine appends nitems items of data of the type *ptr from the array pointed 
to by the ptr parameter to the output stream. 

The fwrite subroutine stops writing bytes if an error condition is encountered on stream, 
or when the number of items of data specified by the nitems parameter have been written. 
The fwrite subroutine does not change the contents of the array pointed to by the ptr 
parameter. 

3 .. 192 AIX Operating System Technical Reference 



fread, ... 

Return Value 

The fread and fwrite subroutines return the number of items actually read or written. If 
the nitems parameter is negative or 0, no characters are read or written, and a value of 0 is 
returned. 

Related Information 

In this book: "read, readx" on page 2-106, "write, writex" on page 2-184, "fopen, freopen, 
fdopen" on page 3-168, "getc, fgetc, getchar, getw" on page 3-204, "gets, fgets" on 
page 3-221, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf' on page 3-300, "putc, 
putchar, fputc, putw" on page 3-309, "puts, fputs" on page 3-313, "scanf, fscanf, sscanf, 
NLscanf, NLfscanf, NLsscanf' on page 3-325, and "standard i/o library" on page 3-342. 

Subroutines 3-193 



frexp, ... 

frexp, ldexp, modf 

Purpose 

Manipulates parts of floating-point numbers. 

Library 

Standard C Library (libe.a) 

Syntax 

double frexp (value, eptr) 
double value; 
int *eptr; 

Description 

double ldexp (mant, exp) 
double mant; 
int exp; 

double modf (value, iptr) 
double value, *iptr; 

Every nonzero number can be written uniquely as x x 2n , where the mantissa (fraction), x, 
is in the range 0.5 :::; Ixl < 1.0, and the exponent, n, is an integer. The internal 
representation of floating-point numbers uses this fact, storing a mantissa part and an 
exponent part. 

The frexp subroutine returns the mantissa of value parameter and stores the exponent in 
the location pointed to by the eptr parameter. 

The ldexp subroutine returns the quantity mant x 2exp. 

The modf subroutine returns the signed fractional part of the value parameter and stores 
the integral part in the location pointed to by the iptr parameter. 

If the ldexp subroutine overflows, it returns HUGE sets errno to ERANGE. 

3-194 AIX Operating System Technical Reference 



frexp, ... 

Related Information 

In this book: "sgetl, sputl" on page 3-334. 

Subroutines 3-195 



fseek, ... 

fseek, rewind, ftell 

Purpose 

Repositions the file pointer of a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int fseek (stream, offset, whence) 
FILE *stream; 
long offset; 
int whence; 

Description 

void rewind (stream) 
FILE *stream; 

long ftell (stream) 
FILE *stream; 

The fseek subroutine sets the position of the next input or output operation on the I/O 
stream specified by the stream parameter. The position of the next operation is determined 
by the offset parameter, which can be either positive or negative. 

The fseek subroutine sets the file pointer associated with the specified stream as follows: 

• If the whence parameter is 0, the pointer is set to the value of the offset parameter. 

• If the whence parameter is 1, the pointer is set to its current location plus the value of 
the offset parameter. 

• If the whence parameter is 2, the pointer is set to the size of the file plus the value of 
the offset parameter. 

The fseek subroutine fails if attempted on a file that has not been opened using fopen. In 
particular, fseek cannot be used on a terminal, or on a file opened with popen. 

Upon successful completion, fseek returns a value of o. If fseek fails, a nonzero value is 
returned. 

The rewind subroutine is equivalent to fseek (stream, (long) 0, 0), except that it does not 
return a value. 

3-196 AIX Operating System Technical Reference 



fseek, 

The fseek and rewind subroutines undo any effects of the ungetc subroutine. 

After an fseek or a rewind, the next operation on a file opened for update can be either 
input or output. 

The ftell subroutine returns the offset of the current byte relative to the beginning of the 
file associated with the named stream. 

Related Information 

In this book: "lseek" on page 2-67, "fopen, freopen, fdopen" on page 3-168, and "standard 
i/o library" on page 3-342. 

Subroutines 3-197 



ftok 

ftok 

Purpose 

Generates a standard interprocess communication key. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < sys/types.h > 
#include < sys/ipc.h > 

key-t ftok (path, id) 
char *path; 
char id; 

Description 

The ftok subroutine returns a key, based on the path and id parameters, to be used to 
obtain interprocess communication identifiers. The path parameter must be the path name 
of an existing file that is accessible to the process. The id parameter must be a character 
that uniquely identifies a project. ftok returns the same key for linked files if called with 
the same id parameter. Different keys are returned for the same file if different id 
parameters are used. 

All interprocess communication facilities require you to supply a key to the msgget, 
semget, and shmget system calls in order to obtain interprocess communication 
identifiers. The ftok subroutine provides one method of creating keys, but many others 
are possible. Another way to do this, for example, is to use the project ID as the most 
significant byte of the key, and to use the remaining portion as a sequence number. 

3-198 AIX Operating System Technical Refe!ence 



ftok 

Warning: It is important for each installation to define standards for 
forming keys. If some standard is not adhered to, then it is possible for 
unrelated processes to interfere with each other's operation. 

Warning: If the path parameter of the ftok subroutine names a file. that 
has been removed while keys still refer it, then the ftok subroutine returns 
an error. If that file is then recreated, the ftok subroutine will probably 
return a different key than the original one. 

Return Value 

Upon successful completion, the ftok subroutine returns a key that can be passed to the 
msgget, semget, or shmget system calL The ftok subroutine returns (key-t) -1 if one or 
more of the following are true: 

• The file named by the path parameter does not exist. 
• The file named by the path parameter is not accessible to the process. 
• The id parameter is 0 (I \ 0 I ). 

Related Information 

In this book: "msgget" on page 2-76, "semget" on page 2-119, and "shmget" on page 2-140. 

Subroutines 3-199 



ftw 

ftw 

Purpose 

Walks a file tree. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < ftw.h > 

int ftw (path, fn, depth) 
char *path; 
int (*fn) ( ); 
int depth; 

Description 

The ftw subroutine recursively searches the directory hierarchy that descends from the 
directory specified by the path parameter. 

For each file in the hierarchy, the ftw subroutine calls the function specified by the fn 
parameter, passes it a pointer to a null-terminated character string containing the name of 
the file, a pointer to a stat structure containing information about the file, and an integer. 
(For information about the stat structure, see "stat.h" on page 5-69.) 

The integer passed to fn identifies the file type, and it has one of the following values: 

FTW -F Regular file 
FTW -D Directory 
FTW -DNR Directory that cannot be read 
FTW -NS A file for which stat could not be executed successfully. 

If the integer is FTW -DNR, then the files and subdirectories contained in that directory 
are not processed. 

If the integer is FTW -NS, then the stat structure contents are meaningless. An example 
of an file that causes FTW -NS to be passed to fn is a file in a directory for which you 
have read permission but not execute (search) permission. 

3-200 AIX Operating System Technical Reference 



The ftw subroutine finishes processing a directory before processing any of its files or 
subdirectories. 

ftw 

The ftw subroutine continues the search until the directory hierarchy specified by the path 
parameter is completed, an invocation of the function specified by the in parameter returns 
a nonzero value, or an error is detected within ftw, such as an I/O error. 

If the directory hierarchy is completed, the ftw subroutine returns a value of o. If the 
function specified by the in parameter returns a nonzero value, ftw stops its search and 
returns the value that was returned by the function. If the ftw subroutine detects an 
error, a value of -1 is returned and errno is set to indicate the error. 

The ftw subroutine uses one file descriptor for each level in the tree. The depth parameter 
specifies the maximum number of file descriptors to be used. In general, the ftw 
subroutine runs faster if the value of the depth parameter is at least as large as the number 
of levels in the tree. However, the depth parameter must not be greater than the number 
of file descriptors currently available for use. If the value of the depth parameter is 0 or 
negative, the effect is the same as if it were 1. 

Because the ftw subroutine is recursive, it is possible for it to terminate with a memory 
fault due to stack overflow when applied to very deep file structures. 

The ftw subroutine uses the malloc subroutine to allocate dynamic storage during its 
operation. If ftw is terminated prior to its completion, such as by longjmp being executed 
by the function specified by the in parameter or by an interrupt routine, then itw cannot 
free that storage. The storage remains allocated. A safe way to handle interrupts is to 
store the fact that an interrupt has occurred, and arrange to have the function specified by 
the in parameter return a nonzero value the next time it is called. 

Related Information 

In this book: "signal" on page 2-145, "malloc, free, realloc, calloc" on page 3-236, "setjmp, 
longjmp" on page 3-332, and "stat.h" on page 5-69. 

Subroutines 3-201 



gamma 

gamma 

Purpose 

Computes the logarithm of the gamma function. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

extern int signgam; 

double gamma (x) 
double x; 

Description 

The gamma subroutine returns In(lr(x)l), where r(x) is defined as: 

1:-' 1'-1 dl 
o 

The sign of r(x) is stored in the external integer variable signgam. The x parameter 
cannot be a nonpositive integer. 

If the x parameter is a nonpositive integer, gamma returns HUGE, sets errno to EDOM, 
and writes a DOMAIN error message to standard error. 

If the correct value overflows, gamma returns HUGE and sets errno to ERANGE. 

You can change the error handling procedures with the matherr subroutine. 

3-202 AIX Operating System Technical Reference 



Examples 

The following C program fragment calculates r(x) and stores the result in y: 

errno = 0; 
y = gamma(x); 
if (errno == 0) 

y = signgam * exp(y); 
else 

perror("Error in gamma function"); 

Related Information 

gamma 

In this book: "exp, log, log10, pow, sqrt" on page 3-128 and "matherr" on page 3-238. 

Subroutines 3-203 



getc, ... 

getc, fgetc, getchar, getw 

Purpose 

Gets a character or word from an input stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int getc (stream) 
FILE *stream; 

int fgetc (stream) 
FILE *stream; 

Description 

int getchar ( ) 

int getw (stream) 
FILE *stream; 

The getc macro returns the next character (byte) from the input specified by the stream 
parameter and moves the file pointer, if defined, ahead one character in stream. getc is a 
macro and cannot be used where a subroutine is necessary; for example, a subroutine 
pointer cannot point to it. 

Because it is implemented as a macro, getc does not work correctly with a stream 
parameter that has side effects. In particular, the following does not work: 

getc(*f++} 
In cases like this, use the fgetc subroutine instead. 

The fgetc subroutine performs the same function as getc, but fgetc is a genuine 
subroutine, not a macro. The fgetc subroutine runs more slowly than getc, but takes less 
space. 

The getchar macro returns the next character from the standard input stream, stdin. 
Note that getchar is also a macro. 

The getw subroutine returns the next word (int) from the input specified by the stream 
parameter and increments the associated file pointer, if defined, to point to the next word. 
The size of a word varies from one machine architecture to another. The getw subroutine 

3-204 AIX Operating System Technical Reference 



getc, ... 

returns the constant EOF at end-of-file or when an error occurs. Since EOF is a valid 
integer value, feof and ferror should be used to check the success of getw. The getw 
subroutine assumes no special alignment in the file. 

Because of possible differences in word length and byte ordering from one machine 
architecture to another, files written using putw are machine-dependent and may not be 
readable using getw on a different type of processor. 

Return Value 

These subroutines and macros return the integer constant EOF at end-of-file or upon an 
error. 

Related Information 

In this book: "feof, ferror, clearerr, fileno" on page 3-165 , "fopen, freopen, fdopen" on 
page 3-168, "fread, fwrite" on page 3-192~ "gets, fgets" on page 3-221, "NLgetctab" on 
page 3-280, "putc, putchar, fputc, putw" on page 3-309, "scanf, fscanf, sscanf, NLscanf, 
NLfscanf, NLsscanf" on page 3-325, and "standard i/o library" on page 3-342. 

Subroutines 3-205 



getcwd 

getcwd 

Purpose 

Gets the path name of the current directory. 

Library 

Standard C Library (libc.a) 

Syntax 

char *getcwd (bu{, size) 
char *bu{; 
int size; 

Description 

The getcwd subroutine returns a pointer to a string containing the path name of the 
current directory. The value of the size parameter must be at least two greater than the 
length of the path name to be returned. 

If the but parameter is a NULL pointer, the getcwd subroutine will, using the malloc 
subroutine, obtain the number of bytes of free space as specified by the size parameter. In 
this case, the pointer returned by the getcwd subroutine can be used as the parameter in a 
subsequent call to free. 

The function is implemented by using popen to pipe the output of the pwd command into 
the specified string space. 

If the getcwd subroutine fails, NULL is returned and errno is set to indicate the error. 
The getcwd subroutine fails if the size parameter is not large enough or if an error occurs 
in a lower-level function. 

3-206 AIX Operating System Technical Reference 



getcwd 

Related Information 

In this book: "malloc, free, realloc, calloc" on page 3-236 and "popen, pelose" on 
page 3-298. 

The pwd command in AIX Operating System Commands Reference. 

Subroutines 3-207 



getenv, ... 

getenv, NLgetenv 

Purpose 

Returns the value of an environment variable. 

Library 

Standard C Library (libc.a) 

Syntax 

char *getenv (name) 
char *name; 

Description 

char *NLgetenv (name) 
char *name; 

The getenv subroutine searches the environment list for a string of the form name = value. 
Environment variables are sometimes called shell variables since they are frequently set 
with shell commands. 

The NLgetenv normally searches the environment for name in the same way as getenv, 
except that special actions may be taken if no environment definition is present for name 
(NULL is a valid definition) or if a file meant to supercede the current environment is 
specified through a call to NLgetfile. 

Return Value 

The getenv subroutine returns a pointer to the value in the current environment if such a 
string is present. If such a string is not present, a NULL pointer is returned. 

When no "override" file is found, NLgetenv follows this procedure: 

1. The definition of name is returned, if a non-null definition for name exists in the 
environment. 

2. If no definition (or a null definition) of name is found in the environment definitions, 
the environment variable NLFILE is searched for the pathname of a file containing 
environment definitions. These definitions are of the form parameter = value. They are 
read directly from the environment and interpreted as definitions. 

• If a non-null definition for name is found, it is returned. 

3-208 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getenv, ... 

• If a non-null definition for name is found, it is returned. 
• If a null definition for name is found, or if there is no default value for name, 

NULL is returned. 

3. If no non-null definition for name is found in this file, or if NLFILE is not defined in 
the environment, NLgetenv returns a traditional default value; if there is no default 
value for narne,'NULL is returned. 

If NLgetfile is called with a superceding file parameter before NLgetenv is called, the 
search procedure is different. The" override" file is searched; the environment of the 
process is not consulted in this operation: 

1. If a non-null definition for name is found in the file, then NLgetenv returns the 
definition. 

2. If name is not defined in the file, then: 

• A default definition is returned, if one exists. 
• If no default definition exists, NLgetenv returns NULL. 

Related Information 

In this book: "NLgetfile" on page 3-281,"putenv" on page 3-310.1 , and "environment" on 
page 5-47. 

The sh command in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-209 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
getgrent, ... 

getgrent, getgrgid, getgrnam, setgrent, endgrent 

Purpose 

Accesses group file entries. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < grp.h > 

struct group *getgrent ( ) struct group *getgrnam (name) 
char *name; 

struct group *getgrgid (gid) 
int gid; void setgrent ( ) 

void endgrent ( ) 

Description 

The getgrent, getgrgid, and getgrnam subroutines return a pointer to a structure 
containing the broken-out fields of a line in the /etc/group file. The group structure is 
defined in the grp.h header file, and it contains the following members: 

char 
char 
int 
char 

*gr-name; 
*gr-passwd; 
gr-gid; 
**gr-mem; 

/* The name of the group */ 
/* The encrypted group password */ 
/* The numerical group 1D */ 
/* Array of pointers to member names */ 

The getgrent subroutine, when first called, returns a pointer to the first group structure 
in the file. On the next call, it returns a pointer to the next group structure in the file. 
You can call getgrent repeatedly to search the entire file. 

The getgrgid subroutine searches from the beginning of the file until it finds a numerical 
group ID matching the gid parameter. The subroutine then returns a pointer to the 
structure in which it was found. 

3-210 AIX Operating System Technical Reference 



File 

getgrent, ... 

The getgrnam subroutine searches from the beginning of the file until it finds a group 
name matching the ASCII equivalent of the name parameter. The subroutine then returns 
a pointer to the structure in which it was found. 

If an end-of-file condition or an error is encountered on reading, these functions return a 
NULL pointer. 

The setgrent subroutine rewinds the group file to allow repeated searches. 

The endgrent subroutine closes the group file when processing is complete. 

Warning: All information is contained in a static area, so it must be 
copied if it is to be saved. 

fete/group 

Related Information 

In this book: "getlogin" on page 3-212, "getpwent, getpwuid, getpwnam, setpwent, 
endpwent" on page 3-219, and "group" on page 4-87. 

"Overview of International Character Support" in IBM RT PC Managing the A/X 
Operating System. 

Subroutines 3-211 



getlogin 

getlogin 

Purpose 

Gets the user's login name. 

Library 

Standard C Library (libc.a) 

Syntax 

char *getlogin () 

Description 

File 

The get login subroutine returns a pointer to the login name as found in /etc/utmp. Use 
the getlogin subroutine in conjunction with the getpwnam subroutine to locate the 
correct password file entry when the same user ID is shared by several login names. 

If the get login subroutine is called within a process that is not attached to a terminal, it 
returns a NULL pointer. The correct procedure for determining the login name is to call 
cuserid, or to call getlogin and if it fails, then to call getpwuid. 

If the login name is not found, getlogin returns a NULL pointer. 

Warning: The getlogin subroutine returns a pointer to a static area that 
is overwritten by successive calls. 

/etc/utmp 

3-212 AIX Operating System Technical Reference 



getlogin 

Related Information 

In this book: "cuserid" on page 3-62, "getgrent, getgrgid, getgrnam, setgrent, endgrent" on 
page 3-210, "getpwent, getpwuid, getpwnam, setpwent, endpwent" on page 3-219, and 
"utmp, wtmp, .ilog" on page 4-170. 

Subroutines 3-213 



get opt 

get opt 

Purpose 

Gets flag letters from the argument vector. 

Library 

Standard C Library (libc.a) 

Syntax 

int get opt (argc, argu, optstring) 
int argc; 
char **argu; 
char *optstring; 

Description 

extern char *optarg; 

extern int optind; 

The getopt subroutine returns the next flag letter in the argu parameter list that matches 
a letter in the optstring parameter. The get opt subroutine is an aid to help programs 
interpret shell command-line flags that are passed to them. 

The optstring parameter is a string of recognized flag letters. If a letter is followed by a 
colon, the flag is expected to take a parameter that mayor may not be separated from it by 
white space. The optarg external variable is set to point to the start of the flags 
parameter on return from the get opt subroutine. 

The getopt subroutine places the argu index of the next argument to be processed in 
optind. optind ~s externally initialized to 1 so that argu[O] is not processed. 

When all flags have been processed (that is, up to the first nonflag argument), the get opt 
subroutine returns EOF. The special flag -- (dash dash) can be used to delimit the end of 
the flags; EOF is returned, and - - is skipped. 

The getopt subroutine prints an error message on stderr and returns (; nt) I? I 
(question mark) when it encounters a flag letter that is not included in the optstring 
parameter. 

3-214 AIX Operating System Technical Reference 



getopt 

Examples 

The following code fragment processes the flags for a command that can take the mutually 
exclusive flags a and b, and the flags f and 0, both of which require parameters. 

#include <unistd.h> /* Needed for access system call constants */ 

main (argc, argv) 
int argc; 
char **argv; 
{ 

int c; 
extern int optind; 
extern char *optarg; 

while ((c = getopt(argc, argv, lIabf:o:II)) != EOF) 
{ 

switch (c) 
{ 

case I a I: 
if (bfl g) 

errflg++; 
else 

aflg++; 
break; 

case I b I: 
if (afl g) 

errflg++; 
else 

bflg++; 
break; 

case I f I: 
ifile = optarg; 
break; 

case 10
1

: 

ofile = optarg; 
break; 

Subroutines 3-215 



get opt 

case I? I: 
errflg++; 

} /* case */ 

if (errflg) 
{ 

} 

fprintf(stderr, "usage: ... "); 
exit(2); 

} /* while */ 

for ( ; optind < argc; optind++) 
{ 

if (access(argv[optind], R-OK)) 
{ 

} 
} /* for */ 

} /* main */ 

Related Information 

The getopt command in AIX Operating System Commands Reference. 

3-216 AIX Operating System Technical Reference 



getpass 

getpass 

Purpose 

Reads a password. 

Library 

Standard C Library (libc.a) 

Syntax 

char *getpass (prompt) 
char *prompt; 

Description 

File 

The getpass subroutine writes the prompt string to standard error output, disables 
echoing, and reads up to a new-line character or EOF from the file /dev/tty. 

It returns a pointer to a null-terminated string of no more than 8 characters. This return 
value points to data that is overwritten by successive calls. If the /dev/tty file cannot be 
opened, a NULL pointer is returned. 

An interrupt terminates input and sends an interrupt signal to the calling program before 
returning. 

/dev/tty 

Related Information 

In this book: "crypt, encrypt" on page 3-42. 

Subroutines 3-217 



getpw 

getpw 

Purpose 

Gets a password file entry, given the user ID. 

Library 

Standard C Library (libc.a) 

Syntax 

int getpw (uid, but) 
int uid; 
char *buf; 

Description 

File 

The getpw subroutine is included only for compatibility with prior systems and should not 
be used unless your program is going to be used with a prior system. See "getpwent, 
getpwuid, getpwnam, setpwent, endpwent" on page 3-219 and "putpwent" on page 3-312 for 
subroutines to use instead. 

The getpw searches the password file for a user ID number that matches the uid 
parameter. When a match is found, getpw copies the line of the password file in which the 
match was found into an array pointed to by the buf parameter. The subroutine then 
returns a value of o. If a match cannot be found, the subroutine returns a nonzero value. 

/etc/passwd 

Related Information 

In this book: "passwd" on page 4-112. 

3-218 AIX Operating System Technical Reference 



getpwent, 

getpwent, getpwuid, getpwnam, setpwent, endpwent 

Purpose 

Gets a password file entry. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < pwd.h > 

struct passwd *getpwent ( ) 

struct passwd *getpwuid (uid) 
int uid; 

struct passwd *getpwnam (name) 
char *name; 

Description 

void setpwent ( ) 

void endpwent () 

The getpwent, getpwuid, and getpwnam subroutines return a pointer to a structure 
containing the broken-out fields of a line in the /etc/passwd file. The passwd structure is 
defined in the pwd.h header file, and it contains the following members: 

char *pw-name; 
char *pw-passwd; 
int pw-uid; 
int pw_gid; 
char *pw-age; 
char *pw-comment; 
char *pw-etc; 
char *pw_dir; 
char *pw-shell; 

The pw",","comment field is unused; the others have meanings described in "passwd" on 
page 4-112. 

Subroutines 3-219 



getpwent, ... 

File 

The getpwent subroutine, when first called, returns a pointer to the first passwd 
structure in the file. On the next call, it returns a pointer to the next passwd structure in 
the file. Successive calls can be used to search the entire file. 

The getpwuid subroutine searches from the beginning of the file until it finds a numerical 
user ID matching the uid parameter. The subroutine then returns a pointer to the 
structure in which it was found. 

The getpwnam subroutine searches from the beginning of the file until it finds a login 
name matching the name parameter. The search is made using flattened names; the 
characters of the name searched for are the ASCII equivalent character (see "Overview of 
International Character Support" in IBM RT PC Managing the AIX Operating System). 
The subroutine then returns a pointer to the structure in which it was found. 

If an end-of-file condition or an error is encountered on reading, these functions return a 
NULL pointer. 

The setpwent subroutine rewinds the password file to allow repeated searches. 

The endpwent subroutine closes the group file when processing is complete. 

Warning: All information is contained in a static area, so it must be 
copied if it is to be saved. 

/etc/passwd 

Related Information 

In this book: "getgrent, getgrgid, getgrnam, setgrent, endgrent" on page 3-210. "getlogin" 
on page 3-212, and "putpwent" on page 3-312. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-220 AIX Operating System Technical Reference 



gets, fgets 

Purpose 

Gets a string from a stream. 

Library 

Standard I/O Package (libe.a) 

Syntax 

#inelude < stdio.h > 

char *gets (s) 
char *s; 

Description 

gets, . . . 

char *fgets (s, n, stream) 
char *s; 
int n; 
FILE *stream; 

The gets subroutine reads characters from the standard input stream, stdin, into the array 
pointed to by the s parameter. Data is read until a new-line character is read or an 
end-of-file condition is encounter:ed. If reading is stopped due to a new-line character, the 
new-line character is discarded and the string is terminated with a null character. 

The fgets subroutine reads characters from the data pointed to by the stream parameter 
into the array pointed to by the s parameter. Data is read until n - 1 characters have been 
read, until a new-line character is read and transferred to s, or until an end-of-file 
condition is encountered. The string is then terminated with a null character. 

Return Value 

If end-of-file is encountered and no characters have been read, no characters are 
transferred to s and a NULL pointer is returned. If a read error occurs, a NULL pointer is 
returned. Otherwise, s is returned. 

Subroutines 3-221 



gets, ... 

Related Information 

In this book: "feof, ferror, clearerr, fileno" on page 3-165, "fopen, freopen, fdopen" on 
page 3-168, "fread, fwrite" on page 3-192, "getc, fgetc, getchar, getw" on page 3-204, "puts, 
fputs" on page 3-313, "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf' on page 3-325, 
and "standard i/o library" on page 3-342. 

3-222 AIX Operating System Technical Reference 



getuinfo 

Purpose 

Finds the value associated with a user information name. 

Library 

Standard C Library (libc.a) 

Syntax 

char *getuinfo (name) 
char *name; 

Description 

getuinfo 

The getuinfo subroutine searches a user information buffer for a string of the form 
name = value and returns a pointer to the value substring if name is found. NULL is 
returned if name is not found. 

The user information buffer searched is pointed to by the global variable: 

extern char *INuibp; 
This variable is initialized to NULL. 

If the variable INuibp is NULL when the getuinfo subroutine is called, the usrinfo 
system call is executed to read user information from the kernel into a local buffer. The 
address of the buffer is then put into the external variable INuibp. The usrinfo system 
call is automatically called the first time the getuinfo subroutine is called if the INuibp 
variable has not been set. 

Related Information 

In this book: "usrinfo" on page 2-176. 

Subroutines 3-223 



getutent 

getutent 

Purpose 

Accesses utmp file entries. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < utmp.h > 

struct utmp *getutent ( ) 

struct utmp *getutid (id) 
struct utmp *id; 

struct utmp *getutline (line) 
struct utmp * line; 

Description 

void pututline (utmp) 
struct utmp *utmp; 

void setutent ( ) 

void endutent ( ) 

void utmpname (file) 
char *file; 

The getutent, getutid, and getutline subroutines each return a pointer to a structure of 
the following type: 

#define ut-name 
#define ut-id 

ut-user 
ut-line 

struct utmp 
{ 

char 
char 
short 
short 
struct 

ut-user[8] ; 
ut-l i ne[12]; 
ut_pid; 
ut-type; 
exit-status 

/* User name */ 
/* Device name (console, lnxx) */ 
/* Process ID */ 
/* Type of entry */ 

3-224 AIX Operating System Technical Reference 



{ 
short e-termination; 
short e_exit; 

} ut-exit; 

getutent 

/* Process termination status */ 
/* Process exit status */ 

time-t ut-time; 
/* The exit status of a DEAD-PROCESS */ 

/* Time entry was made */ 
}; 

The getutent subroutine reads the next entry from a utmp-like file. If the file is not 
already open, this subroutine opens it. If the end of the file is reached, getutent fails. 

If you specify type RUN -L VL, BOOT-TIME, OLD_TIME, or NEW-TIME in the id 
parameter, the getutid subroutine searches forward from the current point in the utmp 
file until an entry with a ut-type matching id- >ut-type is found. 

If you specify one of the types INIT -PROCESS, LOG IN -PROCESS, USER-PROCESS 
or DEAD-PROCESS in the id parameter, then the getutid subroutine returns a pointer 
to the first entry whose type is one of these four and whose ut-id field matches id- >ut-id. 
If the end of the file is reached without a match, the getutid subroutine fails. 

The getutline subroutine searches forward from the current point in the utmp file until it 
finds an entry of the type LOGIN-PROCESS or USER-PROCESS that also has a 
ut-line string matching the line- >ut-line parameter string. If the end the of file is 
reached without a match, the getutline subroutine fails. 

The pututline subroutine writes the supplied utmp structure into the utmp file. If you 
have not searched for the proper place in the file using one of the getut routines, then the 
pututline subroutine calls getutid to search forward for the proper place. It is expected 
that normally the user of pututline searched for the proper entry using one of the getut 
subroutines. If so, pututline does not search. If the pututline subroutine does not find a 
matching slot for the entry, it adds a new entry to the end of the file. 

The setutent subroutine resets the input stream to the beginning of the file. You should 
do this before each search for a new entry if you want to examine the entire file. 

The endutent subroutine closes the currently open file. 

The utmpname subroutine changes the name of the file to be examined from /etc/utmp to 
any other file. The name specified is usually /usr/adm/wtmp. If the specified file does 
not exist, no indication is given. You are not aware of this fact until your first attempt to 
reference the file. The utmpname subroutine does not open the file. It closes the old file, 
if it is currently open, and saves the new file name. 

The most current entry is saved in a static structure. If you desire to make multiple 
accesses, you must copy or use the structure between each access. The getutid and 
getutline subroutines examine the static structure first. If the contents of the static 
structure match what they are searching for, they do not read the utmp file. Therefore, 
you must fill the static structure with zeroes after each use if you want to use these 
subroutines to search for multiple occurrences. 

Subroutines 3-225 



getutent 

If pututline finds that it isn't already at the correct place in the file, then the implicit read 
it performs does not overwrite the contents of the static structure returned by the 
getutent, getuid, or getutline routine. This allows you to get an entry with one of these 
subroutines, modify the structure, and pass the pointer back to pututline for writing. 

These subroutines use buffered standard I/O for input, but pututline uses an unbuffered 
nonstandard write to avoid race conditions between processes trying to modify the utmp 
and wtmp files. 

Return Value 

Files 

These subroutines fail and return a NULL pointer if a read 'or write fails due to end-of-file 
or a permission conflict. 

/etc/utmp 
/usr/adm/wtmp 

Related Information 

In this book: "ttyslot" on page 3-368and "utmp, wtmp, .ilog" on page 4-170. 

3-226 AIX Operating System Technical Reference 



hsearch, hcreate, hdestroy 

Purpose 

Manages hash tables. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < search.h > 

ENTRY *hsearch (item, action) 
ENTRY item; 
ACTION action; 

Description 

hsearch, ... 

int hcreate (nel) 
unsigned int nel; 

void hdestroy ( ) 

The hsearch subroutine is a hash table search routine. It returns a pointer into a hash 
table that indicates the location of a given entry. The item parameter is a structure of the 
type ENTRY as defined in the search.h header file. It contains two pointers: 

item.key Points to the comparison key. 
item.data Points to any other data be associated with that key. 

Pointers to types other than char should be cast to pointer-to-character. The action 
parameter is a value of the ACTION enumeration type that indicates what is to be done 
with an entry if it cannot be found in the table: 

ENTER Enters the item into the table at the appropriate point. If the table is full, a 
NULL pointer is returned. 

FIND Does not enter the item into the table, but returns a NULL pointer if the item 
cannot be found. 

The hsearch subroutine uses open addressing with a multiplicative hash function. 

The hcreate subroutine allocates sufficient space for the table. You must call hcreate 
before calling hsearch. The nel parameter is an estimate of the maximum number of 
entries that the table contains. Under some circumstances, hcreate may actually make 

Subroutines 3-227 



hsearch, ... 

the table larger than specified. Upon successful completion, hcreate returns 1. hcreate 
returns 0 if it cannot allocate sufficient space for the table. 

The hdestroy subroutine deletes the hash table. This allows you to start a new hash table 
since only one table can be active at a time. 

Related Information 

In this book: "bsearch" on page 3-11, " lsearch" on page 3-234, "string" on page 3-344, and 
"tsearch, tdelete, twalk" on page 3-364. 

3-228 AIX Operating System Technical Reference 



hypot 

Purpose 

Computes the euclidean distance function. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

double hypot (x, y) 
double x, y; 

Description 

hypot 

The hypot subroutine takes precautions against overflows while computing the value of: 

If the correct value does overflow, then hypot returns HUGE and sets errno to ERANGE. 

You can change the error-handling procedures by supplying a matherr subroutine. See 
"matherr" on page 3-238 for more information. 

Related Information 

In this book: "exp, log, 10g10, pow, sqrt" on page 3-128. 

Subroutines 3-229 



initgroups 

initgroups 

Purpose 

Initializes group access list. 

Library 

Standard C Library (libe.a) 

Syntax 

int initgroups (user, basegid) 
ehar *user; 
int basegid; 

Description 

The initgroups subroutine reads the fete/group file and constructs the group access list 
for the user whose name is specified by the user parameter. The basegid parameter is 
usually the group number from the fete/password file and, it is automatically included in 
the group list. 

Warning: The initgroups subroutine uses the getgrent subroutines. If 
the program that invokes initgroups uses any of these subroutines, then 
calling initgroups overwrites the static group structure. 

Return Value 

Upon successful completion, the initgroups subroutine returns a value of o. If the 
effective user ID of the calling process is not superuser, then initgroups returns a value of 
1. 

3-230 AIX Operating System Technical Reference 



initgroups 

File 

fete/group 

Related Information 

In this book: "getgroups" on page 2-52, "setgroups" on page 2-126, and "getgrent, getgrgid, 
getgrnam, setgrent, endgrent" on page 3-210, 

The adduser command in A/X Operating System Commands Reference. 

Subroutines 3-231 



13tol, . . . 

13tol, Itol3 

Purpose 

Converts between 3-byte integers and long integers. 

Library 

Standard C Library (libc.a) 

Syntax 

void latol (lp, cp, n) 
long *lp; 
char *cp; 
int n; 

Description 

void ltol3 (cp, Ip, n) 
char *cp; 
long *lp; 
int n; 

The latol subroutine converts a list of n 3-byte integers packed into a character string 
pointed to by the cp parameter into a list of long integers pointed to by the Ip parameter. 

The ltola subroutine performs the reverse conversion, from long integers (lp) to 3-byte 
integers (cp). 

These functions are useful for file system maintenance where the block numbers are 3 
bytes long. 

Warning: The numerical values of the long integers are 
machine-dependent because of possible differences in byte ordering. 

Related Information 

In this book: "fs" on page 4-74. 

3-232 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
logname 

logname 

Purpose 

Returns the login name of the user. 

Library 

Programmers Workbench Library (libPW.a) 

Syntax 

char *logname ( ) 

Description 

File 

The logname subroutine returns a pointer to the null-terminated login name. The 
logname subroutine extracts the LOGNAME variable from the user's environment. 

Note: The return values point to static data whose content is overwritten by each call. 
This method of determining a login name is subject to forgery. For better methods, see 
"cuserid" on page 3-62, "getlogin" on page 3-212, and "getpwent, getpwuid, getpwnam, 
setpwent, endpwent" on page 3-219. 

/etc/profile 

Related Information 

In this book: "profile" on page 4-127 and "environment" on page 5-47. 

The env and login commands in AIX Operating System Commands Reference. 

Subroutines 3-233 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lsearch, ... 

lsearch, lfind 

Purpose 

Performs a linear search and update. 

Library 

Standard C Library (libc.a) 

Syntax 

char *lsearch «char *)key, (char *)base, nelp, sizeof (*key), compar) 
unsigned int *nelp; 
int (*compar) ( ); 

char *lfind «char *)key, (char *)base, nelp, sizeof (*key), compar) 
unsigned int *nelp; 
int (*compar) ( ); 

Description 

The lsearch subroutine performs a linear search generalized from Donald E. Knuth's The 
Art of Computer Programming, Volume 3,6.1, Algorithm S.* It returns a pointer into a 
table indicating where a datum can be found. If the datum does not occur, it is added at 
the end of the table. 

The key parameter points to the datum to be sought in the table. The base parameter points 
to the first element in the table. The nelp parameter points to an integer containing the 
current number of elements in the table. This integer is incremented if the datum is added 
to the table. The compar parameter is the name of the comparison function that you must 
supply (strcmp, for example). It is called with two parameters that point to the elements 
being compared. The compar function must return a value of 0 if the elements are equal 
and nonzero if they are not equal. 

The lfind subroutine is identical to lsearch, except that if the datum is not found, then it 
is not added to the table. Instead, a NULL pointer is returned in this case. 

Reading, Massachusetts: Addison-Wesley, 1981. 

3-234 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
lsearch, 

The pointers to the key and the element at the base of the table should be of type 
pointer-to-element and cast to type pointer-to-character. Although it is declared as type 
pointer-to-character, the value returned should be cast into type pointer-to-element. 

The comparison function need not compare every byte; therefore, the elements can contain 
arbitrary data in addition to the values being compared. 

Warning: Undefined results can occur if there is not enough room in the 
table for lsearch to add a new item. 

I Example 

The following code fragment reads up to TABS I Z E strings, each of which is up to E LSI Z E 
bytes long, and stores them into a table, eliminating duplicates. 

#include <stdio.h> 

#define TABSIZE 50 
#define ELSIZE 120 

char *1 search () ; 
int strcmp(); 
char line[ELSIZE], tab[TABSIZE][ELSIZE]; 
unsigned nel = 0; 

while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE) 
{ 

(void) lsearch(line, (char *)tab, &nel, ELSIZE, strcmp); 
} 

Related Information 

In this book: "bsearch" on page 3-11, "hsearch, hcreate, hdestroy" on page 3-227, and 
"tsearch, tdelete, twalk" on page 3-364. 

Subroutines 3-235 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
malloc, ... 

malloc, free, realloc, calloc 

Purpose 

Provides a memory allocator. 

Library 

Standard C Library (libe.a) 

Syntax 

char *malloe (size) 
unsigned int size; 

void free (ptr) 
char *ptr; 

Description 

char *realloe (ptr, size) 
char *ptr; 
unsigned int size; 

char *ealloe (nelem, elsize) 
unsigned int nelem, elsize; 

The malloe and free subroutines provide a simple general-purpose memory allocation 
package. 

The malloe subroutine returns a pointer to a block of memory of at least size bytes. The 
block is aligned so that it can be used for any type of data. Undefined results occur if the 
space assigned by malloe is overrun. 

The malloe subroutine searches memory for the first contiguous area of free space of at 
least size bytes. The search is performed in a circular pattern from the last block of 
memory allocated or freed. During the search, malloe joins adjacent free blocks of 
memory. If a large enough contiguous area of free space is not found, then malloe issues a 
sbrk system call to get more memory from the system. 

The free subroutine frees the block of memory pointed to by the ptr parameter for further 
allocation. The block pointed to by the ptr parameter must have been previously allocated 
by the malloe subroutine. The free subroutine does not change the contents of this block 
of memory. Undefined results occur if the ptr parameter is not a valid pointer. 

The realloc subroutine changes the size of the block of memory pointed to by the ptr 
parameter to the number of bytes specified by the size parameter, and then it returns a 
pointer to the block. The contents of the block remain unchanged up to the lesser of the 
old and new sizes. If a large enough block of memory is not available, then realloe calls 

3-236 AIX Operating System Technical Reference 



malloc, ... 

the malloe subroutine to enlarge the memory arena, and then moves the data to the new 
space. 

The realloe subroutine also works if the ptr parameter points to a block freed since the 
last call to manoe, reanoe, or canoe. 

The ealloe subroutine allocates space for an array with the number of elements specified 
by the nelem parameter. Each element is of the size specified by the elsize parameter. The 
space is initialized to 0' s. 

Each of the allocation subroutines returns a pointer to space suitably aligned for storage 
of any type of object. Cast the pointer to the type pointer-to-element before using it. 

The manoe, realloe, and canoe subroutines return a NULL pointer if there is no 
available memory or if the memory arena has been corrupted by storing outside the bounds 
of a block. When this happens, the block pointed to by the ptr parameter could be 
destroyed. 

Subroutines 3-237 



matherr 

matherr 

Purpose 

Performs an action when a math subroutine encounters an error. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

int matherr (excp) 
struct exception *excp; 

Description 

If matherr error handling is in effect, then the math library subroutines call matherr 
when an error is detected. See "exp, log, log10, pow, sqrt" on page 3-128 and "sin, cos, tan, 
asin, acos, atan, atan2" on page 3-335 about alternative error handling available for these 
subroutines. 

You can override the default error-handling actions by supplying a subroutine of your own 
in place of the math err subroutine supplied in the math library. To do this, include in 
your program a subroutine named matherr that takes one parameter: a pointer to an 
exception structure. The exception structure is defined in the math.h header file and it 
contains the following members: 

int 
char 
double 

type; 
*name; 
argl, arg2, retval; 

The structure member named type describes the type of error that occurred. Its value is 
one of the following constants: 

DOMAIN 
SING 
OVERFLOW 

Domain error 
Singularity 
Overflow 

3-238 AIX Operating System Technical Reference 



UNDERFLOW 
TLOSS 
PLOSS 

Underflow 
Total loss of significance 
Partial loss of significance 

matherr 

The name member points to a string containing the name of the subroutine that 
encountered the error. The members argl and arg2 contain the parameters that were 
passed to the subroutine. The ret val member is the value that the math subroutine 
returns. 

All of the math subroutines that call matherr do so in ways similar to this: 

/* 
** Set up the exception structure 
*/ 
exc.type = DOMAIN; /* Type of error */ 

x· , 
exc.name 
exc.argl 
exc.arg2 = y; 

= IpOW"; /* Name of subroutine */ 
/* Arguments to pow(x,y) */ 

if (matherr(&exc) -- 0) 
{ 

} 

/* 
** matherr returned 0, so perform the 
** default error-handling procedures 
*/ 
fprintf(stderr, "pOW: DOMAIN error\n"); 
exc.retval = 0; 
errno = EDOM; 

return (exc.retval); 
Studying this sample shows that the return value from the matherr subroutine controls 
whether or not the math subroutine performs its default error-handling procedures. If 
matherr returns 0, then the default procedures are performed. Note in particular that if 
you want to specify the va.lue to be returned by the math subroutine, then your matherr 
subroutine must set excp->retval and return a nonzero value. 

If you do not supply your own matherr subroutine, then the matherr subroutine supplied 
in the math library is linked into your program. This subroutine does nothing except 
return the value 0. Because it returns 0, the calling math subroutine then performs its 
default error-handling procedures. The default procedures are mentioned in the discussion 
of each math subroutine. 

Subroutines 3-239 



matherr 

The math library subroutines atan, ceil, erf, erfc, fabs, floor, fmod, and tanh do not 
generate any of the error types listed on page 3-238 and therefore do not call matherr. 

The following table shows the default error-handling procedures for the remaining math 
library subroutines: 

DOMAIN SING OVERFLOW 

acos M,O,Dl - -

asin M,O,Dl - -

atan2 M,O,D2 - -

cos - - -

cosh - - H,R 

exp - - H,R 

gamma - M,H,D3 H,R 

hypot - - H,R 

jO - - -

jl - - -

jn - - -

log M,-H,D4 M,-H,D5 -

loglO M,-H,D4 M,-H,D5 -

pow M,O,D6 - ±H,R 

sin - - -

sinh - - ±H,R 
sqrt M,O,D7 - -

tan - - -

yO M,-H,D8 - -H,R9 

yl M,-H,D8 - -

yn M,-H,D8 - -H,R9 

Figure 3-3. Default Error-Handling Procedures 

The following abbreviations are used in the table: 

* 

° H 
-H 

As much as possible of the value is returned. 
Zero is returned. 
HUGE is returned. 
-HUGE is returned. 

3-240 AIX Operating System Technical Reference 

UNDERFLOW TLOSS PLOSS 
- - -

- - -

- - -

- M,O,R *,R 
- - -

O,R - -

- - -

- - -

O,R M,O,R -

O,R M,O,R -

O,R - -

- - -

- - -

O,R - -

- M,O,R *,R 
- - -

- - -

- M,O,R *,R 

O,R M,O,R -

O,R M,O,R -

O,R - -



±H HUGE or -HUGE is returned. 
M A message is written to stdout. 
D errno is set to EDOM. 
R errno is set to ERANGE. 

Notes: 

1 Caused by passing acos or asin a value larger than 1.0. 

2 Caused by trying to calculate atan2(O, 0). 

3 Caused by passing gamma a nonpositive integer. 

4 Caused by passing log or loglO a negative value. 

5 Caused by trying to calculate log(O) or loglO(O). 

matherr 

6 Caused by trying to raise a negative number to a noninteger power or 0 to a nonpositive 
power. 

7 Caused by passing sqrt a negative value. 

8 Caused by passing yO, yl, or yn a nonpositive value. 

9 Caused by passing yO a very small positive value. 

Examples 

The following subroutine suggests the kinds of actions that a user-supplied matherr 
subroutine might perform. It is not the matherr subroutine that is provided in the math 
library. The supplied matherr subroutine merely returns o. 
int matherr(x) 
register struct exception *x; 
{ 

switch (x->type) 
{ 

case DOMAIN: 
case SING: 

/* Display message and abort */ 
fprintf(stderr, "domain error in %s\n", x->name); 
abort(); 

case OVERFLOW: 
if (strcmp(lIexpll, x->name) == 0) 
{ 

/* If exp, display message & return the argument */ 

Subroutines 3-241 



matherr 

} 

fprintf(stderr, "exp of %f\n", x->arg1); 
x->retval = x->arg1; 

else 
if (strcmp("sinh", x->name) == 0) 
{ 

} 

/* If sinh, set errno, return 0 */ 
errno = ERANGE; 
x->retval = 0; 

else 

break; 

/* Otherwise, return HUGE */ 
x->retval = HUGE; 

case UNDERFLOW: 
return (0); /* Perform the default procedures */ 

case TLOSS: 
case PLOSS: 

/* Display message and return 0 */ 
fprintf(stderr, "los s of significance in %s\n", 

x->name); 
x->retval = 0; 
break; 

} /* switch */ 

return (1); /* Do NOT perform the default procedures */ 
} /* matherr */ 

Related Information 

In this book: "math.h" on page 5-60. 

3-242 AIX Operating System Technical Reference 



mdverify 

Purpose 

Controls write-verify operation for a minidisk. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#inelude < mdverify.h > 

int mdverify (md, req) 
ehar *md; 
ehar req; 

Description 

mdverify 

The mdverify subroutine turns write-verify operation on or off for a given minidisk. 
When write-verify operation is turned on, the system checks each write operation to the 
minidisk. After data is written, the system reads it and compares it with the data in the 
write buffer. If an uncorrectable error is detected, then an error code is passed back from 
the write operation. 

The md parameter is a string that specifies the name of the mini disk as it appears in the 
fete/system file (for example, II hdl "). The req parameter is one of the following values: 

I V I Turns write-verify operation on. 
10

1 Turns write-verify operation off. 
I q I Queries the current write-verify status. 

Subroutines 3-243 



mdverify 

Return Value 

File 

Upon successful completion of a I V I or 10
1 request, the mdverify subroutine returns a 

value of MDV -succ. A successful I q I request returns one of the following values: 

MDV -wvon Write-verify operation is currently turned on. 
MDV -wvoff Write-verify operation is currently turned off. 

If the mdverify subroutine fails, then it returns one of the following values: 

-1 

MDV-open 

MDV-nosd 

MDV-iarg 

MDV-csf 

MDV-iiodn 

MDV-dioe 

MDV-iop 

/etc/system 

The error is indicated by the value of errno. 

The /etc/system file could not be opened. 

The md parameter does not specify a valid mini disk name. 

The req parameter is not valid. 

The IODN could not be found, indicating that the /etc/system file has 
probably been damaged. 

The minidisk manager detected an invalid minidisk IODN. 

The minidisk manager encountered a disk I/O error. 

The minidisk manager encountered an invalid operation mode. 

Related Information 

In this book: "system" on page 4-139 and the VQUERY and VCNTRL ioctl operations 
described in "hd" on page 6-20. 

The verify command in A/X Operating System Commands Reference. 

3-244 AIX Operating System Technical Reference 



memccpy, 

memccpy, memchr, memcmp, memcpy, memset 

Purpose 

Performs memory operations. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < memory.h > 

char *memccpy (81, 82, c, n) 
char *81, *82; 
int c, n; 

char *memchr (8, c, n) 
char *8; 
int c, n; 

int memcmp (81, 82, n) 
char *81, *82; 
int n; 

Description 

char *memcpy (81, 82, n) 
char *81, *82; 
int n; 

char *memset (8, c, n) 
char *8; 
int c, n; 

The memory subroutines operate on memory areas. A memory area is an array of 
characters bounded by a count, and not terminated by a null character. The memory 
subroutines do not check for the overflow of any receiving memory area. All of the 
memory subroutines are declared in the memory.h header file. 

The memccpy subroutine copies characters from memory area 82 into memory area 81. 
The memccpy subroutine stops after the first character c is copied, or after n characters 
have been copied, whichever comes first. memccpy returns a pointer to the character 
after c is copied into 81, or a NULL pointer if c is not found in the first n characters of 82. 

The memchr subroutine returns a pointer to the first occurrence of character c in the first 
n characters of memory area 8, or a NULL pointer if c does not occur. 

The memcmp subroutine lexicographically compares the first n characters in memory 
area 81 to the first n characters in memory area 82. memcmp uses native character 

Subroutines 3-245 



memccpy, ... 

comparison, which may be signed on some machines. The memcmp subroutine returns 
the following values: 

Less than 0 
Equal to 0 
Greater than 0 

If 81 is less than 82 
If 81 is equal to 82 
If 81 is greater than 82. 

The memcpy subroutine copies n characters from memory area 82 to area 81. It returns 
81. 

The memset subroutine sets the first n characters in memory area 8 to the value of 
character c. It returns 8. 

Warning: Character movement is performed differently in different 
implementations of these subroutines; thus overlapping moves may yield 
unexpected results. 

Related Information 

In this book: "string" on page 3-344 and "swab" on page 3-349. 

3-246 AIX Operating System Technical Reference 



mktemp 

Purpose 

Constructs a unique file name. 

Library 

Standard C Library (libc.a) 

Syntax 

char *mktemp (template) 
char *template; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
mktemp 

The mktemp subroutine replaces the contents of the string pointed to by the template 
parameter with a unique file name. 

The string in the template parameter must be a file name with six trailing Xs. The 
mktemp subroutine replaces the Xs with a randomly generated character sequence. 

Upon successful completion, the mktemp subroutine returns the address of the string 
pointed to by the template parameter. 

If the string pointed to by the template parameter contains no Xs, or if mktemp is unable 
to construct a unique file name from the randomly generated character sequence, then the 
first character of the template string is replaced with a null character. 

Related Information 

In this book: "getpid, getpgrp, getppid" on page 2-54, "tmpfile" on page 3-354, and 
"tmpnam, tempnam" on page 3-355. 

Subroutines 3-247 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
monitor 

monitor 

Purpose 

Starts and stops execution profiling. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < mon.h > 

void monitor (lowpc, highpc, shortbuff, bufsize, nfunc) 
-or-

void monitor (0, 0, profbuff, -1, nfunc) 

int (*lowpc) ( ), (*highpc) ( ); 
short *shortbuff; 
struct prof *profbuff; 
int bufsize, nfunc; 

Description 

The monitor subroutine records a histogram of periodically sampled values of the program 
counter and counts the number of times certain subroutines are called. The monitor 
subroutine is an interface to the profil system call. 

Executable programs created with cc -p automatically include calls to the monitor 
subroutine. You do not need to call the monitor subroutine unless you want fine control 
over profiling. 

If the bufsize parameter has any value other than -1, then the parameters to monitor are 
interpreted as shown in the first syntax definition. The lowpc parameter specifies the 
lowest address to be sampled, and the highest address to be sampled is the address just 
below highpc. The lowpc parameter cannot be 0 when using the monitor subroutine to 
begin profiling. If monitor is called with a lowpc value of 0, then monitoring is stopped 
and the results are written to a file named mon.out. 

The shortbuff parameter points to a user-supplied array of short integers. The number of 
shorts in shortbuff is specified by the bufsize parameter. 

3-248 AIX Operating· System Technical Reference 



monitor 

The nfunc parameter specifies the maximum number of subroutines whose calls are to be 
counted. Only calls to functions compiled with the -p flag of the cc command are 
recorded. 

For the results to be significant, especially for programs with small, heavily-used 
subroutines, specify a buffer that is no more than a few times smaller than the range of 
locations sampled. 

If bufsize has the value -1, then the parameters to monitor are interpreted as shown in the 
second syntax definiton. In this case, the arguments lowpc and highpc are ignored, nfunc 
retains the same meaning as described above, and profbuff points to an array of prof 
structures. The prof structure is defined in the mon.h header file, and it contains the 
following members: 

daddr-t 
daddr-t 
short-t 
int-t 
int-t 

p_low; 
p-high; 
*p-buff; 
p-bufsize; 
p-scale; 

The monitor subroutine ignores the value given in p-scale and computes a value for it. 
The p-high members in successive structures must be in ascending sequence. The array of 
structures is terminated with a structure containing a p-high member set to zero. 

Use the prof command to examine the results after executing your program. 

Examples 

1. To profile the entire program except for floating-point operations: 

extern etext; 

monitor ((int (*)()) OxlOOOOOOO, etext, buf, bufsize, nfunc); 
The identifier etext is the address immediately following the program text. (See "end, 
etext, edata" on page 3-123 for more information about etext.) 

2. To profile the entire program, including floating-point operations: 

extern etext; 

monitor ((int (*)()) Ox800, etext, buf, bufsize, nfunc); 
Note that this samples many more instructions, which decreases the resolution of the 
histogram. 

Subroutines 3-249 



monitor 

File 

3. To profile an entire program that includes floating-point operations and a shared 
library; 

extern etext; 
struct prof buf[4]; 

buf[OJ.p_low = Ox800 /* floating-point text */ 
buf[OJ.p-high Ox1D108 

buf [lJ . p_l ow = Ox10000000 /* program text */ 
buf[lJ .p-high = etext 

buf[2J.p-low = Ox40000000 /* shared 1 i brary text */ 
buf[2J.p-high = Ox40030D40 

buf[3].p-low = 0 /* end of array */ 
buf [3J . p-hi gh = 0 

monitor(O, 0, buf, -1, nfunc); 
The addresses shown for the shared library text may differ from the ones appropriate 
for a program you write. 

The end of the floating-point text may be different on your system. To determine the 
correct value to use for buf[OJ. p-hi gh in this example, run the following command: 

nm -x lun; x grep -fpend 
This command displays the value of the symbol -fpend, which marks the end of the 
floating-point code in the kernel. 

4. To stop execution monitoring and write the results to the file mon.out: 

monitor ((int(*)()) 0); 

mon.out 

3-250 AIX Operating System Technical Reference 



Related Information 

In this book: "profil" on page 2-99 and "end, etext, edata" on page 3-123. 

The cc and prof commands in AIX Operating System Commands Reference. 

monitor 

Subroutines 3-251 



msghelp 

msghelp 

Purpose 

Issues help text. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < msgOO.h > 

int msghelp (flags, compid, index [, fildes]) 
unsigned int flags; 
char *compid; 
int index, fildes; 

Description 

The msghelp subroutine retrieves a predefined help description from a message/insert/help 
file and then constructs and outputs the help text. 

The flags parameter allows default help attributes to be overridden. All flag bits for 
attributes you do not want to override must be off. If no attributes are overridden, the 
help is written to stderr. Attribute override flag bits that can be set are: 

MSGFLFIL Writes the help text to the file specified by the fildes parameter. If this flag 
is not set, then the help text is written to stderr. 

There is no specific flag bit defined for suppressing output of the help ID. If you want to 
suppress the help ID, do not specify the displayed component ID and displayed help ID 
fields of the help description in the message/insert/help file. If the help ID is suppressed, 
then the help text is aligned fildes parameter causes the help text to be aligned at the left 
margin instead of to the right of the help ID. This allows a full 79-character width, but 
does not provide component and help IDs for referencing an explanation of the help in a 
reference manual. 

3-252 AIX Operating System Technical Reference 



msghelp 

The eompid parameter points to a six-character string that identifies the 
message/insert/help file where the help control information resides. The eompid parameter 
is either: 

xxxece For a component file, where, by convention: 

xxx Identifies of the software provider or product. IBM reserves the use of 
the identifiers COM, com, SYe, sye, IBe, and ibe, where e is any 
alphanumeric character. 

eee Identifies the particular software component. 

common For the common message/insert/help file. 

The index parameter is an index into the file specified by the eompid parameter. The index 
parameter is an integer value from 1 to 999 and identifies which help description in the file 
is to be used. 

The tildes parameter is an integer file descriptor number indicating the opened file to 
which the help is to be sent. The tildes parameter is used only if the MSGFLFIL flag is 
on. 

Return Value 

Upon successful completion, a value of 0 is returned. If the msghelp subroutine fails, then 
it returns one of the following negative values. 

The following values are defined in the msg04.h header file, which is included by the 
msgOO.h header file: 

MSG-CPID The compid parameter is not six characters long. The request is ignored. 

MSG-INDX The index parameter is not in the range of 1 to 999. The request is 
ignored. 

MSG-TABP The MSGFLTAB flag is on. Since helps cannot reside in a message/insert 
table, this is not a valid flag for the msghelp subroutine. The request is 
ignored. 

MSG-ALLO The necessary Message Services work area cannot be allocated. The 
request is ignored. 

MSG-SREG A segment register is not available for mapping a message/insert/help file. 
The request is ignored. 

MSG-COMP The message/insert/help file specified by the compid parameter cannot be 
found. Message Services error message 090-002 is output instead. 

MSG -INVL The file specified by the eompid parameter is not a valid 
message/insert/help file. Message Services error message 090-002 is output 
instead. 

Subroutines 3-253 



msghelp 

MSG-MTCH The file specified by the compid parameter does not contain descriptions 
for the specified component. The first six characters of the component file 
name must be identical to the six-character component ID that was 
specified in the file to the puttext command when the component file was 
built. Message Services error message 090-002 is output instead. 

MSG-NONE The correct component files are found, but none contain the message 
description specified by the index parameter. Message Services error 
message 090-002 is output instead. 

MSG-REFN The requested help description is found but the description references 
another help description (in the same file) as the source of the text. The 
referenced help description does not exist. Message Services error 
message 090-002 is output instead. 

Note: Certain errors involve the failure of AIX system calls. In these cases, the msghelp 
subroutine negates the error code that the system call stored in errno and returns this 
value. 

One of the following values is returned when an attempt to open a message/insert/help file 
fails: 

-EACCES 

-ENOTDIR 

Search permission is denied for a directory in the path prefix of the 
message/insert/help file. 

A component of the path name of the message/insert/help file is not a 
directory. 

-EMFILE Too many files are open for the process. 

One of the following values is returned when an attempt to write to the file specified by 
the tildes parameter fails: 

-EBADF 

-EFBIG 

The tildes parameter does not specify a valid file descriptor that is open for 
writing. 

The file specified by the tildes parameter exceeds the maximum file size or 
file size limit for the process. 

Related Information 

In this book: "msgimed" on page 3-255, "msgqued" on page 3-259, "msgrtrv" on page 3-263, 
and "message" on page 4-105. 

3-254 AIX Operating System Technical Reference 



msgimed 

Purpose 

Issues an immediate message. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < msgOO.h > 

int msgimed (flags, compid, index [, sevcode [, errcode [, fildes]]]) 
unsigned int flags; 
char *compid; 
int index, sevcode, fildes; 
long errcode; 

Description 

msgimed 

The msgimed subroutine retrieves a predefined message description from a message/insert 
table or a message/insert/help file and then constructs the message text and outputs it. 

The flags parameter allows default message attributes to be overridden. All flag bits for 
attributes you do not want to override must be off. If no attributes are overridden, a 
message consisting of a message ID (if defined) and message text is written to stderr. 
Attribute override flag bits that can be set are: 

MSGFLTAB Indicates that the compid parameter is a pointer to a message/insert table 
instead of a pointer to a six-character component ID identifying a 
message/insert/help file. 

MSGFLTIM Includes with the message the time the message was issued. The time is 
given in 24-hour format. This flag should always be set if the error is 
logged. 

MSGFLSEV Includes a severity code with the message. The severity code value is 
specified by the sevcode parameter. 

Subroutines 3-255 



msgimed 

MSGFLERR Includes an error code with the message. The value of the error code is 
specified by the errcode parameter. 

MSGFLFIL Writes the message to the file specified by the fildes parameter. If this flag 
is not set, then the message is written to stderr. 

There is no specific flag bit defined for suppressing output of the message ID. If you want 
to suppress the message ID, do not specify the displayed component ID and the 
displayed message ID fields of the message description in the message/insert table or the 
message/insert/help file. Suppression of the message ID for a message output to stderr or 
to the output specified by the fildes parameter causes the message to be aligned at the left 
margin instead of to the right of the message ID. This allows a full 79-character width, but 
does not provide component and message IDs for referencing an explanation of the message 
in a reference manual. 

The compid parameter is either a pointer to a message/insert table or identifies the 
message/insert/help file. If the MSGFLTAB flag is set, then the compid parameter is a 
pointer to a message/insert table where the message description resides. If the 
MSGFLTAB flag is not set, then the compid parameter identifies the message/insert/help 
file where the message description resides. In this case, the compid parameter is either: 

xxxccc For a component file, where, by convention: 

xxx Identifies of the software provider or product. IBM reserves the use of 
the identifiers COM, com, SYc, syc, IBc, and ibc, where c is any 
alphanumeric character. 

ccc Identifies the particular software component. 

common For the common message/insert/help file. 

The index parameter is an index into the message/insert table or the message/insert/help 
file specified by the compid parameter. The index parameter is an integer value from 1 to 
999 and identifies which message description is to be used. 

The sevcode parameter specifies an integer severity code that is output with the message if 
the msgflerr flag is set. The following severity codes have been defined: 

MSGSVSYT System termination 
MSGSV APT Application termination 
MSGSVOPR Operator-recoverable error 
MSGSV APR Application-recoverable error. 

If the MSGFLSEV flag is not set, and if the errcode or fildes parameters are specified, 
then a dummy sevcode parameter must be used as a place holder. 

3-256 AIX Operating System Technical Reference 



msgimed 

The errcode parameter is a long integer value that represents an error code with six 
decimal digits. The error code is output with the message only if the MSGFLERR flag is 
set. The two high-order decimal digits contain the origin code; the four low-order digits 
contain an application-defined error return code. The origin code is one of the following 
values: 

MSGORIND 
MSGORVDD 
MSGORVCK 
MSGORVSV 
MSGORUDD 
MSGORUKN 
MSGORSHL 
MSGORRTS 
MSGORAPP 

Indeterminate origin. 
Detected in VRM. Indicates a device driver level failure. 
Detected in VRM. Indicates a check parameter detected failure in VRM. 
Detected in VRM. Indicates an SVC handler detected failure in VRM. 
Detected in AIX device driver. 
Detected in AIX kernel. 
Detected in shell command. 
Detected in run-time service or daemon. 
Detected in application above the application program interface. 

If the MSGFLERR flag is not set, and if the fildes parameter is specified, then a dummy 
errcode parameter must be used as a place holder. 

The fildes parameter is a file descriptor indicating the opened file to which the message is 
to be sent. The fildes parameter is used only if the msgflfil flag is set. 

Return Value 

Upon successful completion, a value of 0 is returned. If the msgimed subroutine fails, 
then it returns one of the following negative values. 

The following values are defined in the msg04.h header file, which is included by the 
msgOO.h header file. 

MSG-CPID The compid paramet~r is not six characters long. The request is ignored. 

MSG-INDX The index parameter is not in the range of 1 to 999. The request is 
ignored. 

MSG-ALLO The necessary Message Services work area cannot be allocated. The 
request is ignored. 

MSG-SREG A segment register is not available for mapping a message/insert/help file. 
The request is ignored. 

MSG-BADP The message/insert table pointer provided does not point to a 
message/insert table. The request is ignored. 

MSG - TABI The message/insert table that is provided does not contain the requested 
message. The request is ignored. 

MSG-COMP The message/insert/help file specified by the compid parameter cannot be 
found. Message Services error message 090-001 is output instead. 

Subroutines 3-257 



msgimed 

MSG -INVL The file specified by the compid parameter is not a valid 
message/insert/help file. Message Services error message 090-001 is output 
instead. 

MSG-MTCH The file specified by the compid parameter does not contain descriptions 
for the specified component. The first six characters of the component file 
name must be identical to the six-character component ID that is specified 
in the file to the putt ext command when the component file was built. 
Message Services error message 090-001 is output instead. 

MSG-NONE The correct component files are found, but none contain the message 
description specified by the index parameter. Message Services error 
message 090-001 is output instead. 

MSG-REFN The requested message description is found but the description references 
another message description (in the same file) as the source of the text. 
The referenced message description does not exist. Message Services error 
message 090-001 is output instead. 

Note: Certain errors involve the failure of AIX'system calls. In these cases, the msghelp 
subroutine negates the error code that the system call stored in errno and returns this 
value. 

One of the following values is returned when an attempt to open a message/insert/help file 
fails: 

-EACCES 

-ENOTDIR 

Search permission is denied for a directory in the path prefix. The request 
is ignored. 

A component of the path prefix is not a directory. The request is ignored. 

-EMFILE Too many files are open for the process. The request is ignored. 

One of the following values is returned when an attempt to write to the file specified by 
the fildes parameter fails: 

-EBADF Not a valid file descriptor open for writing. 

-EFBIG The file exceeds the process's file size limit or the maximum file size. 

Related Information 

In this book: "msghelp" on page 3-252, "msgqued" on page 3-259, "msgrtrv" on page 3-263, 
and "message" on page 4-105. 

3-258 AIX Operating System Technical Reference 



msgqued 

Purpose 

Issues a queued message. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < msgOO.h > 

int msgqued (flags, compid, index [, sevcode [, errcode]]) 
unsigned int flags; -
char *compid; 
int index, sevcode; 
long errcode; 

Description 

msgqued 

The msgqued subroutine retrieves a predefined message description from a message/insert 
table or a message/insert/help file and then constructs the message text and writes it to the 
queued message file, /qmsg. 

The queued message file is installed with the AIX Operating System. After installation, 
you can change the default size of the queued message file (six 2048-byte blocks) by using 
an editor to modify the four-digit value between the first two asterisks (*) in the first line 
of the file. This four-digit value is in units of 2048-byte blocks. 

After /qmsg reaches the size specified in the first line, each new message added to the 
queue overlays the oldest message in the file. The message queue is maintained across 
IPLs. 

Queued messages are directed to the console operator and are generally system type 
messages. 

Subroutines 3-259 



msgqued 

The flags parameter allows default message attributes to be overridden. All flag bits for 
attributes you do not want to override must not be set. If no attributes are overridden, 
then the message consists of the message ID (if defined), the message text, and the date and 
time the message was issued. Attribute override flag bits that can be set are: 

MSGFLTAB Indicates that the compid parameter is a pointer to a message/insert table 
instead of a pointer to a six-character component ID identifying a 
message/insert/help file. 

MSGFLSEV Includes a severity code with the message. The severity code value is 
specified by the sevcode parameter. 

MSGFLERR Includes an error code with the message. The error code value must be 
specified by the errcode parameter. 

The compid parameter is either a pointer to a message/insert table or identifies the 
message/insert/help file. If the MSGFLTAB flag is set, then the compid parameter points 
to a message/insert table where the message description resides. If the MSGFLTAB flag is 
not set, the compid parameter identifies the message/insert/help file where the message 
description resides. 

The index parameter is an index into the message/insert table or message/insert/help file 
specified by the compid parameter. The index parameter is an integer value from 1 to 999 
and identifies which message description in the file is to be used. 

The sevcode parameter specifies an integer severity code that is written with the message if 
the MSGFLERR flag is set. The following severity codes have been defined: 

MSGSVSYT System termination 
MSGSV APT Application termination 
MSGSVOPR Operator-recoverable error 
MSGSV APR Application-recoverable error. 

If the msgflsev flag is not set, and if the errcode parameter is specified, then a dummy 
sevcode parameter must be used as a place holder. 

The errcode parameter is a long integer value that represents an error code with six 
decimal digits. The error code is output with the message only if the MSGFLERR flag is 
set. The two high-order decimal digits contain the origin code; the four low-order digits 
contain an application-defined error return code. The possible values for the origin code 
are listed in the description. The origin code is one of the following values: 

MSGORIND 
MSGORVDD 
MSGORVCK 
MSGORVSV 
MSGORUDD 
MSGORUKN 
MSGORSHL 

Indeterminate origin. 
Detected in VRM. Indicates a device driver level failure. 
Detected in VRM. Indicates a check parameter detected failure in VRM. 
Detected in VRM. Indicates an SVC handler detected failure in VRM. 
Detected in AIX device driver. 
Detected in AIX kernel. 
Detected in shell command. 

3-260 AIX Operating System Technical Reference 



msgqued 

Detected in run-time service or daemon. MSGORRTS 
MSGORAPP Detected in application above the application program interface. 

Return Value 

Upon successful completion, a value of 0 is returned. If the msgqued subroutine fails, 
then it returns one of the following negative values. 

The following values are defined in the msg04.h header file, which is included by the 
msgOO.h header file: 

MSG-CPID The compid parameter is not six characters long. The msgqued request is 
ignored. 

MSG-INDX The index parameter is not in the range of 1 to 999. The msgqued request 
is ignored. 

MSG-ALLO The necessary Message Services work area cannot be allocated. The 
msgqued request is ignored. 

MSG-SREG A segment register is not available for mapping a message/insert/help file. 
The msgqued request is ignored. 

MSG-BADP The message/insert table pointer provided does not point to a 
message/insert table. The msgqued request is ignored. 

MSG-TABI The message/insert table that is provided does not contain the requested 
message. The msgqued request is ignored. 

MSG-COMP The message/insert/help file specified by the compid parameter cannot be 
found. Message Services error message 090-001 is output instead. 

MSG -INVL The file specified by th'e compid parameter is not a valid 
message/insert/help file. Message Services error message 090-001 is output 
instead. 

MSG-MTCH The file specified by the compid parameter does not contain descriptions 
for the specified component. The first six characters of the component file 
name must be identical to the six-character component ID that is specified 
in the file to the puttext command when the component file was built. 
Message Services error message 090-001 is output instead. 

MSG-NONE The correct component files are found, but none contain the message 
description specified by the index parameter. Message Services error 
message 090-001 is output instead. 

MSG-REFN The requested message description is found but the description references 
another message description (in the same file) as the source of the text. 
The referenced message description does not exist. Message Services error 
message 090-001 is output instead. 

Subroutines 3-261 



msgqued 

File 

MSG-EXEC The fork or exec system call failed while attempting to run the program 
that updates the queued message file. The msgqued request is ignored. 
The failure of exec is not detected if the calling process catches the 
SIGCLD signal. See "signal" on page 2-145 about catching signals and 
"Special Signals" on page 2-148 about the special handling of SIGCLD. 

MSG-QMSG The queued message file, /qmsg, cannot be opened, or its format is not 
valid. The msgqued request is ignored. This condition is not detected if 
the calling process catches the SIGCLD signal. See "signal" on 
page 2-145 about catching signals and "Special Signals" on page 2-148 
about the special handling of SIGCLD. 

Note: Certain errors involve the failure of AIX system calls. In these cases, the msghelp 
subroutine negates the error code that the system call stored in errno and returns this 
value. 

One of the following values is returned when an attempt to open a message/insert/help file 
fails: 

-EACCES 

-ENOTDIR 

-EMFILE 

/qmsg 

Search permission is denied for a directory in the path prefix of the 
message/insert/help file. 

A component of the path name of the message/insert/help file is not a 
directory. 

Too many files are open for the process. 

Related Information 

In this book: "msghelp" on page 3-252, "msgimed" on page 3-255, "msgrtrv" on page 3-263, 
and "message" on page 4-105. 

3-262 AIX Operating System Technical Reference 



msgrtrv 

Purpose 

Retrieves a message, insert, or help text. 

Library 

Run-time Services Library (Uhrts.a) 

Syntax 

#include < msgOO.h > 

int msgrtrv (flags, compid, index, buf, nbytes) 
unsigned int flags, nbyte; 
char *compid, *buf; 
int index; 

Description 

msgrtrv 

The msgrtrv subroutine retrieves a predefined message, insert, or help description from a 
message/insert/help file or a resident message/insert table, and then constructs the 
message, insert, or help text as specified and returns the text. 

The flags parameter allows default attributes to be overridden. All flag bits for attributes 
you do not want to override must not be set. If no attributes are overridden, insert text is 
retrieved from a file. Attribute override flag bits that can be set are: 

MSGFLTAB Indicates that the compid parameter is a pointer to a message/insert table 
instead of a pointer to a six-character component ID identifying a 
message/insert/help file. The MSGFLTAB flag should not be set if the 
MSGFLHLP flag is set because helps reside only in a message/insert/help 
file, not in a message/insert table. 

MSG FLMSG Retrieves message text instead of insert text. 

MSGFLHLP Retrieves help text instead of insert text. 

The compid parameter is either a pointer to a message/insert table or identifies the 
message/insert/help file. If the MSGFLTAB flag is set, then the compid parameter points 
to a message/insert table where the message or insert description resides. If the 
M&GFLTAB flag is not set, then the compid parameter identifies the message/insert/help 

Subroutines 3-263 



msgrtrv 

file where the message, insert, or help description resides. In this case, the eompid 
parameter is either: 

xxxeee For a component file, where, by convention: 

xxx Identifies of the software provider or product. IBM reserves the use of 
the identifiers COM, com, SYe, sye, IBe, and ibe, where e is any 
alphanumeric character. 

eee Identifies the particular software component. 

common For the common message/insert/help file. 

The index parameter is an index into the message/insert table or message/insert/help file 
specified by the eompid parameter. The index parameter is an integer value from 1 to 999 
and identifies which message, insert, or help description in the file or table is to be used. 

The but parameter must be either a pointer to a buffer or a pointer to a structure, 
depending on the value of the nbyte parameter. 

• If the nbyte parameter is greater than 0, then but parameter points to a buffer where 
the message, insert, or help text is to be stored. 

• If the nbyte parameter is equal to 0, then the but parameter points to a msg--rtrv 
structure provided by the requesting program. The msg--rtrv is defined as a typedef 
in the msg05.h header file. 

The nbyte parameter is either the size of the buffer pointed to by the but parameter, or 0. 
The buffer size should include space for a terminating null character. If the nbyte 
parameter is 0, a buffer is allocated by the msgrtrv subroutine. The buffer pointer 
(msgbutp in the msg05.h header file) returned by the msgrtrv subroutine should always 
be inspected by the requesting program after the returned text has been processed. If the 
inspection finds other than a NULL buffer pointer, the buffer should be freed. This should 
be done regardless of the value of the return code. 

Return Value 

Upon successful completion, a positive value is returned. If the msgrtrv subroutine fails, 
it returns a negative value that indicates the reason why the text could not be retrieved. 

The value returned upon successful completion is the actual length of the constructed text, 
not including the terminating null character. The following should be noted concerning 
the length: 

• If the nbyte parameter was ° and help text with a title was retrieved, the length 
returned is the sum of the title length and the text length, including the null 
terminators after the title and the text. 

• If the nbyte parameter was not 0, and the retrieved text is longer than the buffer 
provided (minus 1 character for the null terminator), the excess text is truncated. The 
length of the truncated text is included in the length returned. If the return code value 

3-264 AIX Operating System Technical Reference 



msgrtrv 

is greater than the length specified by the nbyte parameter minus 1, the following 
considerations should be noted: 

The length of the text returned in the buffer is the length specified by the nbyte 
parameter minus one instead of the return code value. 

The requesting program knows that the retrieved text had to be truncated in order 
to fit into the buffer provided. 

If the msghelp subroutine fails, then it returns one of the following negative values. 

The following values are defined in the msg04.h header file, which is included by the 
msgOO.h header file: 

MSG-CPID The compid parameter is not six characters long. The request is ignored. 

MSG-INDX The index parameter is not in the range of 1 to 999. The request is 
ignored. 

MSG-TABP Both the msgfltab and msgflhlp flags are on. Since helps cannot reside 
in a message/insert table, this is not a valid combination of flag bits. The 
request is ignored. 

MSG-ALLO The necessary Message Services work area cannot be allocated. The 
request is ignored. 

MSG-SREG A segment register is not available for mapping a message/insert/help file. 
The request is ignored. 

MSG-BADP The message/insert table pointer provided does not point to a 
message/insert table. The request is ignored. 

MSG-TABI The message/insert table that is provided does not contain the requested 
message or insert. The request is ignored. 

MSG-COMP The message/insert/help file specified by the compid parameter cannot be 
found. If a message was specified, then Message Services error message 
090-001 is output instead. If an insert was specified, then the request is 
ignored. If help text was specified, then Message Services error message 
090-002 is output instead. 

MSG -INVL The file specified by the compid parameter is not a valid 
message/insert/help file. If a message was specified, then Message Services 
error message 090-001 is output instead. If an insert was specified, then 
the request is ignored. If help text was specified, then Message Services 
error message 090-002 is output instead. 

MSG-MTCH The file specified by the compid parameter does not contain descriptions 
for the specified component. The first six characters of the component file 
name must be identical to the six-character component ID that was 
specified in the file to the putt ext command when the component file was 
built. If a message was specified, then Message Services error message 

Subroutines 3-265 



msgrtrv 

090-001 is output instead. If an insert was specified, then the request is 
ignored. If help text was specified, then Message Services error message 
090-002 is output instead. 

MSG-NONE The correct component files are found, but none contain the message, 
insert, or help description specified by the index parameter. If a message 
was specified, then Message Services error message 090-001 is output 
instead. If an insert was specified, then the request is ignored. If help text 
was specified, then Message Services error message 090-002 is output 
instead. 

MSG-REFN The requested message, insert, or help description is found but the 
description references another message, insert, or help description (in the 
same file) as the source of the text. The referenced message, insert, or 
help description does not exist. If a message was specified, then Message 
Services error message 090-001 is output instead. If an insert was 
specified, the request is ignored. If help text was specified, then Message 
Services error message 090-002 is output instead. 

Note: Certain errors involve the failure of AIX system calls. In these cases, the msghelp 
subroutine negates the error code that the system call stored in errno and returns this 
value. 

One of the following values is returned when an attempt to open a message/insert/help file 
fails: 

-EACCES 

-ENOTDIR 

-EMFILE 

Search permission is denied for a directory in the path prefix of the 
message/insert/help file. 

A component of the path name of the message/insert/help file is not a 
directory. 

Too many files are open for the process. 

Related Information 

In this book: '.'msghelp" on page 3-252, "msgimed" on page 3-255, "msgqued" on 
page 3-259, and "message" on page 4-105. 

3-266 AIX Operating System Technical Reference 



NCcollate, 

NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol 

Purpose 

Collates characters for international character support. 

Syntax 

#include < NLchar.h > 

int NCcollate (xc) 
NLchar xc; 

int -NCxcol (index, src, xstr) 
int index; 
NLchar **src, **xstr; 

int -NLxcol (index, src, xstr) 
int index; 
char **src; 
NLchar **xstr; 

Description 

int NCcoluniq (xc) 
NLchar xc; 

int NCeqvmap (ucual) 
int ucual; 

The xc value is that of an extended character (NLchar). 

AIX supports a user-configurable collating order per process, using the table file indicated 
by the NLCTAB environment variable. Collating values increment from zero. The 
NLcollate macro, called with an NLchar, returns the collating value. NCcollate returns 
a negative value if extended collation applies to the NLchar. If extended collation 
applies, either the NLchar is translated to a different character or string of characters 
before collation (l-to-n collation), or the NLchar is to collate as a unit with one or more 
following NLchars (n-to-l collation). For example, the NLchar for the code point 
representing "0" might translate to the string "oe" before (l-to-n) collation or two code 
points representing "Pi" might translate to a unit "1[" before (n-to-l) collation. 

When NCcollate determines that extended collation is required, -NCxcol or -NLxcol 
should be called. 

The -NCxcol subroutine performs extended collation on the following: 

index The negative value returned from NCcollate that indicates that extended 
collation is needed. 

Subroutines 3-267 



NCcollate, . 

src A pointer to a string of NLchar type. 

xstr A pointer to a replacement text string. 

• For 1-to-n collation, -NCxcol writes the address to xstr of a replacement 
string that is interpolated into the collating operation ahead of the remaining 
text of src. 

• For n-to-1 collation, a null value is written into the pointer. 

The src string is updated to point past the elements used for extended collation. -NCxcol 
returns -1 if 1-to-n collation is required (xstr is not null). If n-to-1 collation is required, 
-NCxcol returns the collating value of the extended collation. 

The -NLxcol subroutine performs extended collation on the following: 

index 

src 

xstr 

The negative value returned from NCcollate that indicates that extended 
collation is needed. 

A pointer to a string of char type. The first code point in the string was 
converted for the preceding call to NCcollate. 

A pointer to a replacement text string. 

• For 1-to-n collation, NLxcol writes the address to xstr of a replacement string 
that is interpolated into the collating operation ahead of the remaining text 
of src. 

• For n-to-1 collation, a null value is written into the pointer. 

The src string is updated to point past the elements used for extended collation. NLxcol 
returns -1 if 1-to-n collation is required (xstr is not null). If n-to-1 collation is required, 
NLxcol returns the collating value of the extended collation. 

The NCcoluniq macro disables extended collation, simply assigning each NLchar a 
unique value and treating it as a unit. NCcoluniq returns its unique collating value, a 
non-negative integer that does not receive a special interpretation. A context in which 
NCcoluniq might be used is within character ranges in regular expressions. 

The NCeqvmap macro is a predicate that returns a non-zero value if the corresponding 
NLchar begins an equivalence class, a set of NLchars that can be treated as identical in 
some collating contexts. For example, if any character of an equivalence class is used as 
the beginning or ending point of a character range, all of the characters in that class are 
included in the range. 

3-268 AIX Operating System Technical Reference 



Related Information 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NCcollate, . . . 

The ctab command in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-269 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NCctype 

NCctype 

Purpose 

Classify characters for international character support environments. 

Syntax 

#include < NLctype.h > 

int NCisNLchar (x) 
int x; 

int NCisalpha (x) 
int x; 

int NCisupper (x) 
int x; 

int NCislower (x) 
int x; 

int NCisdigit (x) 
int x; 

int NCisxdigit (x) 
int x; 

Description 

int NCisalnum (x) 
int x; 

int NCisspace (x) 
int x; 

int NCispunct (x) 
int x; 

int NCisprint (x) 
int x; 

int NCisgraph (x) 
int x; 

int NCiscntrl (x) 
int x; 

int NCisshift (x) 
int x; 

Character classification is user-configurable per process, through the table file indicated 
by the environment variable NLCTAB. 

These macros classify character-coded integer values using information specified by the 
current NLCTAB file configuration. The parameter x is tested as an NLchar (an extended 
character); each macro is a predicate form returning 0 for false, and a non-zero value for 
true. The value of x is in the domain of any legal NLchar in a value range from 0 to 
NLCHARMAX-l inclusive, or a special value of -1. If the value of x is not in the domain 
of the macro, the result is undefined. 

3-270 AIX Operating System Technical Reference 



NCctype 

The NCisNLchar macro is defined on all valid integer values, whereas the other macros 
are defined only where NCisNLchar is true, and on the special value of -1 (EOF). See 
"standard i/o library" on page 3-342. 

When a non-zero value is returned for x: 

NCisNLchar 

NCisalpha 

NCisupper 

NCislower 

NCisdigit 

NCisxdigit 

NCisalnum 

NCisspace 

NCispunct 

NCisprint 

NCisgraph 

NCiscntrl 

NCisshift 

x is a valid NLchar with a value between 0 and NLCHARMAX-1, 
inclusive. 

x is an alphabetical character. 

x is an uppercase alphabetical character. 

x is a lowercase letter. 

x is a decimal digit (0-9). 

x is a hexadecimal digit (0-9, A-F (or a-f). 

x is an alphanumeric character or digit. 

x is a space, tab, carriage return, new-line, vertical tab, or form-feed 
character. 

x is a punctuation character (neither a control character nor an 
alphanumeric character). 

x is a printing character (including the space character). 

x is a printing character, excluding the space character. 

x is an ASCII delete character (0177) or an ordinary ASCII control 
character other than the four single-shift characters. 

x is one of the four single-shift characters that is used as the first byte of 
an extended character. 

Related Information 

In this book: "conv" on page 3-39, "ctype" on page 3-49, "getc, fgetc, getchar, getw" on 
page 3-204, "NLchar" on page 3-276, "standard i/o library" on page 3-342, and 
"environment" on page 5-47. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-271 



NCstring 

NCstring 

Purpose 

Performs operations on strings. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < string.h > 

NLchar *NCstrcat (xsl, xs2) 
NLchar *xsl, *xs2; 

NLchar *NCstrncat (xsl, xs2, n) 
NLchar *xsl, *xs2; 
int n; 

int NCstrcmp (xsl, xs2) 
NLchar *xsl, *xs2; 

int NCstrncmp (xsl, xs2, n) 
NLchar *xsl, *xs2; 
int n; 

NLchar *NCstrcpy (xsl, xs2) 
NLchar *xsl, *xs2; 

NLchar *NCstrncpy (xsl, xs2, n) 
NLchar *xsl, *xs2; 
int n; 

int NCstrlen (xs) 
NLchar *xs; 

3-272 AIX Operating System Technical Reference 

NLchar *NCstrchr (xs, x) 
NLchar * xs, x; 

NLchar *NCstrrchr (xs, x) 
NLchar *xs, x; 

NLchar *NCstrpbrk (xsl, s2) 
NLchar *xsl; 
char *s2; 

int NCstrspn (xsl, s2) 
NLchar * xsl; 
char *s2; 

int NCstrcspn (xsl, s2) 
NLchar * xsl; 
char *s2; 

NLchar *NCstrtok (xsl, s2) 
NLchar * xsl; 
char *s2; 



NCstring 

Description 

The NCstring subroutines copy, compare, and append strings in memory, and determine 
such things as location, size, and existence of strings in memory. For these subroutines, a 
string is an array of NLchars, terminated by a null character. The NCstring subroutines 
parallel the string subroutines (see "string" on page 3-344), but operate on strings of type 
NLchar rather than on type char, except as specifically noted below. 

These subroutines require their parameters (except the s2 parameter) to be explicitly 
converted to type NLchar, so they should be used on input that is to be scanned many 
times for each time it is converted. Where this performance concern does not apply, the 
NLstring subroutines are easier to use (see "NLstring" on page 3-285). 

The s2 parameter is a string of type char containing code point representations of ASCII 
characters or extended characters for international character support. This supports the 
use of a double-quoted string for this parameter in calling programs. 

The parameters xsl, xs2 and s point to strings of type NLchar (arrays of NLchars 
terminated by a null character). The s2 parameter points to strings of type char. 

The subroutines NCstrcat, NCstrncat, NCstrcpy, and NCstrncpy all alter xsl. They do 
not check for overflow of the array pointed to by xsl. All string movement is performed 
character by character and starts at the left. Overlapping moves toward the left work as 
expected, but overlapping moves to the right may give unexpected results. All of these 
subroutines are declared in the string.h header file. 

The NCstrcat subroutine appends a copy of the string pointed to by the xs2 parameter to 
the end of the string pointed to by the xsl parameter. The NCstrcat subroutine returns a 
pointer to the null-terminated result. 

The NCstrncat subroutine copies at most n NLchars of xs2 to the end of the string 
pointed to by the xsl parameter. Copying stops before n NLchars if a null character is 
encountered in the xs2 string. The NCstrncat subroutine returns a pointer to the 
null-terminated result. 

The NCstrcmp subroutine lexicographically compares the string pointed to by the xsl 
parameter to the string pointed to by the xs2 parameter. The NCstrcmp subroutine 
returns a value that is: 

Less than 0 If xsl is less than xs2 
Equal to 0 If xsl is equal to xs2 
Greater than 0 If xsl is greater than xs2. 

The NCstrncmp subroutine makes the same comparison as NCstrcmp, but it compares at 
most n pairs of NLchars. Both NCstrcmp and NCstrncmp use the environment variable 
NLCTAB to determine the collating sequence for performing comparisons. (See 
"NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267 for information on 
collation for international character support.) Unless a true collating relationship is to be 
tested for, strcmp and strncmp can instead be used for equality comparisons. (See 
"string" on page 3-344.) The bytes will match regardless of the NLchars in the string. 

Subroutines 3-273 



NCstring 

The NCstrcpy subroutine copies the string pointed to by the xs2 parameter to the 
character array pointed to by the xs1 parameter. Copying stops when the null character is 
copied. The NCstrcpy subroutine returns the value of the xs1 parameter. 

The NCstrncpy subroutine copies n NLchars from the string pointed to by the xs2 
parameter to the character array pointed to by the xs1 parameter. If xs2 is less than n 
NLchars long, then NCstrncpy pads xs1 with trailing null characters to fill n NLchars. 
If xs2 is n or more NLchars long, then only the first n NLchars are copied; the result is 
not terminated with a null character. The NCstrncpy subroutine returns the value of the 
xs1 parameter. 

The NCstrlen subroutine returns the number of NLchars in the string pointed to by the s 
parameter, not including the terminating null character. 

The NCstrchr subroutine returns a pointer to the first occurrence of the NLchar specified 
by the x parameter in the string pointed to by the s parameter. A NULL pointer is 
returned if the NLchar does not occur in the string. The null character that terminates a 
string is considered to be part of the string. 

The NCstrrchr subroutine returns a pointer to the last occurrence of the character 
specified by the x parameter in the string pointed to by the s parameter. A NULL pointer 
is returned if the NLchar does not occur in the string. The null character that terminates 
a string is considered to be part of the string. 

The NCstrpbrk subroutine returns a pointer to the first occurrence in the string pointed 
to by the xs1 parameter of any code point from the string pointed to by the s2 parameter. 
A NULL pointer is returned if no character matches. 

The NCstrspn subroutine returns the length of the initial segment of the string pointed to 
by the xs1 parameter that consists entirely of code points from the string pointed to by the 
s2 parameter. 

The NCstrcspn subroutine returns the length of the initial segment of the string pointed 
to by the xs1 parameter that consists entirely of code points not from the string pointed to 
by the s2 parameter. 

The NCstrtok subroutine returns a pointer to an occurrence of a text token in the string 
pointed to by the xs1 parameter. The s2 parameter specifies a set of code points as token 
delimiters. If the sl parameter is anything other than NULL, then the NCstrtok 
subroutine reads the string pointed to by the xsl parameter until it finds one of the 
delimiter code points specified by the s2 parameter. It then stores a null character into the 
string, replacing the delimiter code point, and returns a pointer to the first NLchar of the 
text token. The NCstrtok subroutine keeps track of its position in the string so that 
subsequent calls with a NULL xsl parameter step through the string. The delimiters 
specified by the s2 parameter can be changed for subsequent calls to NCstrtok. When no 
tokens remain in the string pointed to by the xsl parameter, the NCstrtok subroutine 
returns a NULL pointer. 

3-274 AIX Operating System Technical Reference 



NCstring 

Related Information 

In this book: "NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267, 
"NLchar" on page 3-276, "NLstring" on page 3-285, "NLstrtime" on page 3-288, and 
"string" on page 3-344. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-275 



NLchar 

NLchar 

Purpose 

Handles data type NLchar. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < NLchar.h > 

typedef unsigned short NLchar; 

int NCdecode (c, x) 
char *c; 
NLchar *x; 

int NCdecstr (c, x, len) 
char *c; 
NLchar *x; 
int len; 

int NCdec (c, x) 
char *c; 
NLchar *x; 

int NCdechr (c) 
char *c; 

int NCchrlen (nlchr) 
NLchar nlchr; 

3-276 AIX Operating System Technical Reference 

int NCencode (x, c) 
char *x; 
char *c; 

int NCencstr (x, c, len) 
NLchar *x; 
char *c; 
int len; 

int NCenc (x, c) 
NLchar *x; 
char *c; 

int NLisNLcp (c) 
char *c; 

int NLchrlen (c) 
char *c; 



NLchar 

Description 

Characters for international character support can be either one or two bytes in length, 
while all ASCII characters are one byte long. The NLchar data type represents both 
ASCII and extended characters as single units of storage. The NLchar subroutines and 
macros listed here convert between character types char and NLchar and provide 
information about a given character of either type. 

The NCdecode subroutine converts a character starting at c into an NLchar at x, and 
returns the number of bytes read from c. The NCencode subroutine makes the inverse 
translation from type NLchar to type char and returns the number of bytes written to c. 

The NCdecstr subroutine converts a string of characters from type char to type NLchar, 
and the NCencstr does the reverse translation. Both subroutines require the address of 
the source and destination strings and the total number of elements available for the 
destination string. The destination string terminates with a zero (0) element, which is 
included in the string length. The destination length should include space for the 
terminator. If insufficient space is left for the destination string, a portion of it is not 
converted. The subroutines return the length of the string in elements, including the 
terminating O. 

The NCdec and NCenc macros are equivalent to NCdecode and NCencode respectively. 
You can use them to avoid the overhead of function calls in situations where the 
parameters have no side effects. 

The NCdechr macro is like NCdecode except that NCdechr simply returns the value of 
NLchar rather than writing the NLchar into memory. 

The NLisNLcp, NCchrlen, and NLchrlen macros return information about a given 
character. NLisNLcp returns a zero if the character at c is not an extended character, but 
returns the length of the character if it is an extended character. NCchrlen returns the 
length in bytes that an NLchar would have if it were converted into an extended or an 
ASCII character by NCencode. NLcharlen returns the length in bytes of the extended or 
ASCII character starting at c. 

Related Information 

In this book: "conv" on page 3-39, "ctype" on page 3-49, and "NCctype" on page 3-270. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-277 



NLescstr, ... 

NLescstr, NLunescstr, NLflatstr 

Purpose 

Translates strings of characters. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < ctype.h > 

int NLescstr (src, dest, dlen) 
char *src, *dest; 
int dlen; 

int NLflatstr (src, dest, dlen) 
char *src, *dest; 
int dlen 

Description 

int NLunescstr (src, dest, dlen) 
char *src, *dest; 
int dlen; 

These subroutines use the subroutines described under "conv" on page 3-39 to convert an 
entire string of type char, perhaps containing extended characters, into a string of pure 
ASCII bytes. Each of these subroutines require three parameters: the src address of the 
source string, the dest address of the destination string, and the dlen value, giving the total 
number of bytes available in the destination string. Each writes a result string terminated 
by a null character and returns its length in bytes. The dlen value should include space 
for the null character. If dest is too short to contain the entire output string, not all of src 
is translated. 

The NLescstr uses the NCesc subroutine to translate each ASCII or extended character in 
src to pure ASCII. Each extended character encountered is translated to a printable ASCII 
escape sequence that uniquely identifies the extended character. See "display symbols" on 
page 5-24 for a list of these escape sequences. 

The NLunescstr subroutine performs the inverse translation using the NCunesc 
subroutine to translate each ASCII byte of src into dest, and translate each ASCII escape 
sequence back into the extended character it represents. 

3-278 AIX Operating System Technical Reference 



NLescstr, . 

The NLflatstr subroutine uses the NCflatchr subroutine to translate each character, 
ASCII or extended, in src to a single ASCII byte in dest. The dest string may have fewer 
bytes than the src string, but the number of logical characters, or the display length, is 
the same. See "NLstring" on page 3-285. 

Related Information 

In this book: "ctype" on page 3-49, "getc, fgetc, getchar, getw" on page 3-204, "NCctype" 
on page 3-270, "NCstring" on page 3-272, "NLchar" on page 3-276, "NLstring" on 
page 3-285, and "display symbols" on page 5-24. 

Subroutines 3-279 



NLgetctab 

NLgetctab 

Purpose 

Finds and maps character collating and classification tables to code points. 

Library 

Standard C Library (libc.a) 

Syntax 

void NLgetctab (ctfile) 
char *ctfile; 

Description 

The NLgetctab subroutine locates a table file containing character collation and 
classification information and maps it into memory. AIX provides international character 
support for character collation and classification in a ctype style, that can be 
user-configured for a process. 

If ctfile parameter is not a null value, then the file name given is the name of the file used 
for character collation and classification. If ctfile is null, the value of the environment 
variable NLCTAB is used to specify the table file; if NLCTAB is undefined or null, the 
default file /etc/nls/ctab/default is used. 

The default compilation procedure builds a call to NLgetctab into the runtime startup 
code of a program, so applications do not normally have to call NLgetctab explicitly. If 
an application does not refer to collating and classification information, the startup code 
reference is satisfied by a dummy module; the table file is only mapped when needed. 

Related Information 

In this book: "NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267 and 
"environment" on page 5-47. 

The ctab command in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-280 AIX Operating System Technical Reference 



NLgetfile 

Purpose 

Gets parameter file for international character support. 

Syntax 

NLgetfile (filename) 
char *filename; 

Description 

NLgetfile 

The NLgetfile subroutine lets an application temporarily change the NLFILE 
environment parameters and thereby select the current "language." The NLFILE 
parameters establish environment settings appropriate to a "language" or dialect for the 
work station. 

The filename is either NULL or points to a character string containing the name of an 
environment file that should contain definitions in a format required by NLFILE to 
provide international character support: 

• If filename is NULL, international character support is reset to its default. In this 
mode NLgetenv seeks a definition of an international character support 
environmental variable, first in the process environment and then in the file specified 
by the environment variable NLFILE. If no definition is found, a default value is 
returned. 

• If filename is the name of an environment file, the international character support 
environment variables defined in the file are used instead of those given in the process 
environment. Neither the process environment nor the file specified by NLFILE are 
used; if an environment variable is not defined in filename then a default value is 
returned. A NULL value is returned when no default value exists. 

When it succeeds, NLgetfile always calls NLgetctab to change the the current collating 
tables. NLgetctab must be called after NLgetfile to change the current collating table if 
different tables are desired. 

Subroutines 3-281 



NLgetfile 

Return Value 

When NLgetfile succeeds, 0 is returned. 

When NLgetfile does not succeed, -1 is returned and errno is set to indicate the error. 
NLgetfile does not succeed when: 

A non-NULL filename is given and the file cannot be opened or read, or 
A NULL filename is supplied and the NLFILE environment variable cannot be opened 
or read. 

Related Information 

In this book: "getenv, NLgetenv" on page 3-208, "NLgetctab" on page 3-280, and 
"environment" on page 5-47. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-282 AIX Operating System Technical Reference 



nlist 

nlist 

Purpose 

Gets entries from a name list. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < nlist.h > 

int nlist (filename, nl) 
char *filename; 
struct nlist *nl; 

Description 

The nlist subroutine allows a program to examines the name list in the executable file 
named by the filename parameter. It selectively extracts a list of values and places them in 
the array of nlist structures pointed to by the nl parameter. 

The name list specified by the nl parameter consists of an array of structures containing 
names of variables, types, and values. The list is terminated with an element that has a 
null string in the name structure member. Each variable name is looked up in the name 
list of the file. If the name is found, the type and value of the name are inserted in the 
next two fields. The type field is set to 0 unless the file was compiled with the -g option. 
If the name is not found, both the type and value entries are set to O. 

All entries are set to 0 if the specified file cannot be read or if it does not contain a valid 
name list. 

You can use the nlist subroutine to examine the system name list kept in the /unix file. 
By examining this list, you can ensure that your programs obtain current system 
addresses. 

The nlist.h header file is automatically included by a.out.h for compatibility. However, 
do not include a.out.h if you only need the information necessary to use the nlist 
subroutine. If you do include a.out.h, follow the #include statement with the line: 

#undef n_name 

Subroutines 3-283 



nlist 

Return Value 

Upon successful completion, a value of 0 is returned. If the nUst subroutine fails, a value 
of -1 is returned. 

Related Information 

In this book: "a.out" on page 4-5. 

The cc command in AIX Operating System Commands Reference. 

3-284 AIX Operating System Technical Reference 



NLstring 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NLstring 

Performs operations on strings containing code points. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < string.h > 

char *NLstrcat (81, 82) 
char *81, *82; 

char *NLstrncat (81, 82, n) 
char *81, *82; 
int n; 

int NLstrcmp (81, 82) 
char *81, *82; 

int NLstrncmp (81, 82, n) 
char *81, *82; 
int n; 

char *NLstrcpy (81, 82) 
char *81, *82; 

char *NLstrncpy (81, 82, n) 
char *81, *82; 
int n; 

int NLstrlen (8) 
char *8; 

int NLstrdlen (8) 
char *8; 

char *NLstrchr (8, x) 
char *8, x; 

char *NLstrrchr (8, x) 
char *8, x; 

char *NLstrpbrk (81, 82) 
char *81, *82; 

int NLstrspn (81, 82) 
char *81, *82; 

int NLstrcspn (81, 82) 
char *81, *82; 

char *NLstrtok (81,82) 
char *81, *82; 

Subroutines 3-285 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NLstring 

Description 

The NLstring subroutines copy, compare, and append strings in memory, and determine 
such things as location, size, and existence of strings in memory. A string is an array of 
code points terminated by a null character. The NLstring subroutines parallel the string 
subroutines (see "string" on page 3-344), and NLstrcat, NLstrncat, NLstrcpy, 
NLstrncpy, and NLstrlen are identical in function to their string counterparts. 

The subroutines NLstrcat, NLstrncat, NLstrcpy, and NLstrncpy all alter s1. They do 
not check for overflow of the array pointed to by 81. All string movement is performed 
character by character and starts at the left. Overlapping moves toward the left work as 
expected, but overlapping moves to the right may give unexpected results. All of these 
subroutines are declared in the string.h header file. 

The NLstrcat subroutine appends a copy of the string pointed to by the 82 parameter to 
the end of the string pointed to by the 81 parameter. The string is at most n bytes; this 
may represent fewer than n code points. The NLstrcat subroutine returns a pointer to the 
null-terminated result. 

The NLstrcmp subroutine lexicographically compares the string pointed to by the 81 
parameter to the string pointed to by the s2 parameter. The NLstrcmp subroutine returns 
a value that is: 

Less than 0 If s 1 is less than s2 
Equal to 0 If 81 is equal to s2 
Greater than 0 If sl is greater than 82. 

The NLstrncmp subroutine makes the same comparison as NLstrcmp, but it compares at 
most n bytes. Characters that have 2-byte representations can cause NLstrncmp to return 
o for unequal strings. If n divides a 2-byte character, then the last byte comparison is 
skipped. If the only difference in the two strings is in that last byte, an incorrect true is 
returned. 

Both the NLstrcmp and NLstrncmp subroutines use the environment variable NLCTAB 
to determine the collating sequence for performing comparisons. (See "NCcollate, 
NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267 for information on collation for 
international character support.) Unless a true collating relationship is to be tested for, 
strcmp and strncmp can instead be used for equality comparisons. (See "string" on 
page 3-344.) The bytes will match regardless of code point representations. 

The NLstrcpy subroutine copies the string pointed to by the 82 parameter to the character 
array pointed to by the sl parameter, copying at most n bytes. If s2 is shorter than n, a 
null character is added to sl. If the length in bytes of 82 is greater than n, the result is not 
null-terminated. If byte n is the first byte of an extended code then byte n is not copied; 81 
is n-l in length. The NLstrcpy subroutine returns the value of the sl parameter. 

The NLstrlen subroutine returns the number of bytes in the string pointed to by the 8 

parameter, not including the terminating null character. 

3-286 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NLstring 

The NLstrdlen subroutine returns the number of code points in the string pointed to by s, 
not including the terminating null character. 

The NLstrchr subroutine returns a pointer to the first occurrence of the code point 
corresponding to the NLchar specified by the x parameter in the string pointed to by the s 
parameter. A NULL pointer is returned if the code point does not occur in the string. The 
null character that terminates a string is considered to be part of the string. 

The NLstrrchr subroutine returns a pointer to the last occurrence of the code point 
corresponding to the NLchar specified by the x parameter in the string pointed to by the s 
parameter. A NULL pointer is returned if the code point does not occur in the string. The 
null character that terminates a string is considered to be part of the string. 

The NLstrpbrk subroutine returns a pointer to the first occurrence in the string pointed 
to by the sl parameter of any code point from the string pointed to by the s2 parameter. A 
NULL pointer is returned if no character matches. 

The NLstrspn subroutine returns the length of the initial segment of the string pointed to 
by the sl parameter that consists entirely of code points from the string pointed to by the 
s2 parameter. 

The NLstrcspn subroutine returns the length of the initial segment of the string pointed 
to by the sl parameter that consists entirely of code points not from the string pointed to 
by the s2 parameter. 

The NLstrtok subroutine returns a pointer to an occurrence of text tokens in the string 
pointed to by the sl parameter. The s2 parameter specifies a set of code points as token 
delimiters. If the sl parameter is anything other than NULL, then the NLstrtok 
subroutine reads the string pointed to by the sl parameter until it finds one of the 
delimiter code points specified by the s2 parameter. It then stores a null character into the 
string, replacing the delimiter code point, and returns a pointer to the first code point of 
the text token. The NLstrtok subroutine keeps track of its position in the string so that 
subsequent calls with a NULL sl parameter step through the string. The delimiters 
specified by the s2 parameter can be changed for subsequent calls to NLstrtok. When no 
tokens remain in the string pointed to by the sl parameter, the NLstrtok subroutine 
returns a NULL pointer. 

Related Information 

In this book: "NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267, 
"NCstring" on page 3-272, "NLchar" on page 3-276, and "string" on page 3-344. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-287 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
NLstrtime 

NLstrtime 

Purpose 

Formats time and date. 

Syntax 

int NLstrtime (str, len, format, tmdate) 
char *str, *format; 
int len; 
struct tm *tmdate; 

Description 

The NLstrtime subroutine converts the internal time and date specification tmdate that is 
generated by the localtime or gmtime clock structures of ctime (see "ctime, localtime, 
gmtime, asctime, tzset" on page 3-46) into a character string under the direction of format. 
The resulting string is similar to the result of printf format, and is placed in the memory 
location addressed by str. It has a maximum length of len and terminates with a NULL 

Many conversion specifications are the same as those used by the date command. The 
interpretation of some conversion specifications is affected by the values of environment 
variables for international character support (see "environment" on page 5-47). 

The format parameter is a character string containing two types of obj ects: plain 
characters that are simply placed in the output string, and conversion specifications that 
convert information from tmdate into readable form in the output string. Each conversion 
specification is a sequence of this form: 

% [[-] width] [.precision ] type 

• A % (percent sign) introduces a conversion specification. 

• An optional decimal digit string specifies a minimum field width. A converted value 
that has fewer characters than the field width is padded with spaces to the right. If the 
decimal digit string is preceded with a minus sign, padding with spaces occurs to the 
left of the converted value. 

If no width is given, for numeric fields the appropriate default width is used with the 
field padded on the left with zeros as required. For strings, the output field is made 
exactly wide enough to contain the string. 

• An optional precision value gives the maximum number of characters to be printed for 
the conversion specification. The precision value is a decimal digit string preceded by 

3-288 AIX Operating System Technical Reference 



NLstrtime 

a period. If the value to be output is longer than the precision, it is truncated on the 
right. 

• The type of conversion is specified by one or two conversion characters. The 
characters and their meanings are: 

m The month of the year is output as a number between 01 and 12. 

h The short month is output as a string established by the environment variable 
NLSMONTH (Jan, for example). 

lh The long month is output as a string established by the environment variable 
NLLMONTH (January, for example). 

d The day of the month is output as a number between 01 and 31. 

j The Julian day of the year is output as a number between 001 and 366. 

w The day of the week is output as a number between 0 and 6. 

a The short day of the week is output as a string according to the environment 
variable NLDA Y (Man, for example). 

la The long day of the week is output according to the environment variable 
NLLDAY (Monday, for example). 

y The year is output as a number between 00 and 99. 

Y The year is output as a number between 0000 and 9999. 

D The date is output in the format specified by the environment variable NLDATE 
(05/05/86, for example). 

ID The long date is output in the format specified by the environment variable 
NLLDATE (Jul 04, 1986, for example). 

sD The short date is output in the format specified by the (long date) environment 
variable NLLDATE, but the year is omitted (July 7, for example). 

H The hour of the day is output as a number between 00 and 23. 

sH The hour of the day is output as a number between 01 and 12. 

M The minute is output as a number between 00 and 59. 

S The second is output as a number between 00 and 59. 

p The AM or PM indicator is output as a string specified by environmental 
variable NLTMISC (am, for example). 

z The (standard or daylight-saving) time zone name is output as a string from the 
environment variable TZ (COT, for example). 

Subroutines 3-289 



NLstrtime 

r The time is output in the format specified by the environment variable NLtime, 
but using a 12 hour clock (7: 07: 50 pm, for example). 

T The time is output in the format specified by the environment variable NLtime 
(19: 07: 50, for example). 

sT The time is output in the format specified by the environment variable NLTIME, 
but omitting the seconds (19: 07, for example). 

n Only a newline character is output. 

t Only a tab character is output. 

x Nothing is output; this conversion specification is used only as a delimiter. 

% The % (percent) character is output. 

Related Information 

In this book: "NLtmtime" on page 3-291, "printf, fprintf, sprintf, NLprintf, NLfprintf, 
NLsprintf' on page 3-300, and "environment" on page 5-47. 

The date and ctime commands in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-290 AIX Operating System Technical Reference 



NLtmtime 

Purpose 

Sets a time structure from string data. 

Syntax 

#include (time.h) 

int NLtmtime (str, format, ptm) 
char *str, *format; 
struct tm *ptm; 

Description 

NLtmtime 

The NLtmtime subroutine sets the fields in the ptm time structure with information in a 
str text string that is parsed according to the format string. For each field descriptor in 
the format string, data is read from the str string and placed into appropriate fields of the 
ptm structure. The format string is described by these rules: 

• Each field descriptor begins with a % (percent sign). 
• A mnemonic string of 1 or 2 characters follows the % sign and indicates the type of 

field or fields being read. 
• A blank character (tab, space, or newline character) anywhere in the format string 

causes all blank characters at the corresponding location in the str string to be 
skipped. 

• Any character in the format string that appears in a field descriptor, other than the 
blank character, must be matched exactly by the same character in the str string. If a 
mismatch occurs, NLtmtime stops processing and any information followinK the 
mismatch is ignored. The characters and their meanings are: 

m The month of the year is output as a number between 01 and 12. 

h The short month is output as a string established by the environment variable 
NLSMONTH (J an, for example). 

lh The long month is output as a string established by the environment variable 
NLLMONTH (January, for example). 

d The day of the month is output as a number between 01 and 3l. 

j The Julian day of the year is output as a number between 001 and 366. 

Subroutines 3-291 



NLtmtime 

w The day of the week is output as a number between 0 and 6. 

a The short day of the week is output as a string according to the environment 
variable NLDAY (Mon, for example). 

Ia The long day of the week is output according to the environment variable 
NLLDAY (Monday, for example). 

y The year is output as a number between 00 and 99. 

Y The year is output as a number between 0000 and 9999. 

D The date is output in the format specified by the environment variable NLDATE 
(05/05/86, for example). 

ID The long date is output in the format specified by the environment variable 
NLLDATE (Jul 04, 1986, for example). 

sD The short date is output in the format specified by the (long date) environment 
variable NLLDATE, but the year is omitted (July 7, for example). 

H The hour of the day is output as a number between 00 and 23. 

sH The hour of the day is output as a number between 01 and 12. 

M The minute is output as a number between 00 and 59. 

S The second is output as a number between 00 and 59. 

p The AM or PM indicator is output as a string specified by environmental 
variable NLTMISC (am, for example). 

z The (standard or daylight-saving) time zone name is output as a string from the 
environment variable TZ (COT, for example). 

r The time is output in the format specified by the environment variable NLtime, 
but using a 12 hour clock (7: 07: 50 pm, for example). 

T The time is output in the format specified by the environment variable NLtime 
(19: 07: 50, for example). 

sT The time is output is output in the format specified by the environment variable 
NLTIME, but omitting the seconds (19: 07, for example). 

The field descriptors are the same as those used by NLstrtime except for those that do not 
specify information. 

3-292 AIX Operating System Technical Reference 



NLtmtime 

Related Information 

In this book: "etime, loealtime, gmtime, asetime, tzset" on page 3-46, "NLstrtime" on 
page 3-288, "seanf, fseanf, sseanf, NLseanf, NLfseanf, NLsseanf" on page 3-325, and 
"environment" on page 5-47. 

The date and ctime commands in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-293 



perror 

perror 

Purpose 

W ri tes a message explaining a system call error. 

Library 

Standard C Library (libc.a) 

Syntax 

void perror (8) 
char *8; 

Description 

extern int errno; 
extern char *sys-errlist[ ]; 
extern int sys-nerr; 

The perror subroutine writes a message on the standard error output that describes the 
last error encountered by a system call or library subroutine. The error message includes 
the parameter string 8 followed by a : (colon), a blank, the message, and a new-line 
character. To be of the most use, the parameter string 8 should include the name of the 
program that caused the error. The error number is taken from the external variable 
errno, which is set when an error occurs, but is not cleared when a successful call is 
made. See Appendix A, "Error Codes" on page A-I for a discussion of errno values and 
their meanings. 

To simplify various message formats, the array of message strings sys-errlist is provided. 
Use errno as an index into this table to get the message string without the new-line 
character. The largest message number provided in the table is sys-nerr. Be sure to 
check sys-nerr because new error codes may be added to the system before they are added 
to the table. 

3-294 AIX Operating System Technical Reference 



perror 

Related Information 

In this book: "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf' on page 3-300. 

Subroutines 3:"295 



plot 

plot 

Purpose 

Performs graphic output. 

Library 

Graphics Libraries (libplot.a, libprint.a, lib300.a, and others) 

Syntax 

void openpl ( ) 

void erase ( ) 

void label (8) 
char *8; 

void line (xl, yl, x2, y2) 
int xl, yl, x2, y2; 

void circle (x, y, r) 
int x, y, r; 

void arc (x, y, xO, yO, xl, yl) 
int x, y, xO, yO, xl, y1; 

Description 

void move (x, y) 
int x, y; 

void cont (x, y) 
int x, y; 

void point (x, y) 
int x, y; 

void linemod (8) 
char *8; 

void space (xO, yO, xl, y 1) 
int xO, yO, xl, y1; 

void closepl ( ) 

The plot subroutine family generates graphic output in a relatively device-independent 
manner. The space subroutine must be used before any of these functions to declare the 
amount of space necessary. The openpl subroutine must be used before any of the others 
to open the device for writing. The closepl subroutine flushes the output. 

The circle subroutine draws a circle of radius r with center at the point (x, y). 

The arc subroutine draws an arc of a circle with center at the point (x, y) between the 
points (xO, yO) and (xl, y 1). 

3-296 AIX Operating System Technical Reference 



Files 

plot 

String parameters to the label and linemod subroutines are terminated by null characters 
and must not contain new-line characters. 

See "plot" on page 4-115 for a description of the effect of the remaining functions. 

These routines appear in several separate libraries. The routines in the libplot.a library 
generate device-independent output. The tplot command interprets this output for a 
specific device. 

The other versions of these routines each generate output for a specific device. You 
should normally redirect the output of libprint.a to the printer. You can save the output 
of libprint.a in a regular file and print it later. See the tplot command in AIX Operating 
System Commands Reference for a description of how to do this. 

On an IBM Graphics Printer, the horizontal distance between points is not the same as the 
vertical distance between points. This means that arcs and circles are drawn as ellipses. 
Similarly, drawing a square (with four calls to the line subroutine) produces a rectangle. 
To adjust for this, call the space subroutine with appropriate scaling factors. 

/usr/lib/libplot.a 
/usr/lib/libprint.a 
/usr/lib/lib300.a 
/usr /lib /lib300s.a 
/usr/lib/lib300S.a 
/usr/lib/lib450.a 
/usr /lib /lib4014.a 

Produces output for tplot filters 
For an IBM PC Graphics Printer 
For DASI 300 
For DASI 300s 
For DASI 300S 
For DASI 450 
For Tektronix 4014 

Related Information 

In this book: "plot" on page 4-115. 

The graph and tplot commands in AIX Operating System Commands Reference. 

Subroutines 3-297 



popen, ... 

popen, pclose 

Purpose 

Initiates a pipe to or from a process. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

FILE *popen (command, type) 
char *command, *type; 

Description 

int pclose (stream) 
FILE *stream; 

The popen subroutine creates a pipe between the calling program and a shell command to 
be executed. 

The command parameter points to a null-terminated string containing a shell command 
line. The type parameter pointers to a null-terminated string containing an I/O mode, 
either II r II for reading or II W II for writing. 

The popen subroutine returns a pointer to a FILE structure for the stream. If the type 
parameter is II r ", you can read from the standard output of the command by reading from 
the file stream. If the type parameter is II W II, you can write to the standard input of the 
command by writing to the file stream. 

Use the pclose subroutine to close any stream you have opened with the popen 
subroutine. The pclose subroutine waits for the associated process to terminate and then 
returns the exit status of the command. 

Because open files are shared, a type II r" command can be used as an input filter and a 
type "W" as an output filter. 

3-298 AIX Operating System Technical Reference 



popen, ... 

Warning: If the original processes and the process started with popen 
concurrently read or write a common file, neither should use buffered I/O. 
If they do, the results are unpredictable. 
Some problems with an output filter can be prevented by taking care to flush the buffer 
with the fflush subroutine (see "fclose, fflush" on page 3-163). 

The popen subroutine returns a NULL pointer if files or processes cannot be created, or if 
the shell cannot be accessed. 

The pclose subroutine returns -1 if stream is not associated with a popen command. 

Related Information 

In this book: "pipe" on page 2-95, "wait" on page 2-182, "fclose, fflush" on page 3-163, 
"fopen, freopen, fdopen" on page 3-168, "standard i/o library" on page 3-342, and "system" 
on page 3-350. 

Subroutines 3-299 



printf, ... 

printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf 

Purpose 

Prints formatted output. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int printf (fmt [, val, ••• ]) 
char *fmt; 

int fprintf (stream, fmt [, val, •.• ]) 
FILE *stream; 
char *fmt; 

int sprintf (s, fmt [, val, .•• ]) 
char *s, *fmt; 

Description 

int NLprintf ( fmt [, val, •.• ]) 
char *fmt; 

int NLfprintf (stream, fmt [, val, •.• ]) 
FILE * stream; 
char icfmt; 

int NLsprintf (s, fmt [, val, ••• ]) 
char *8, *fmt; 

The printf subroutine converts, formats, and writes its val parameters, under control of 
the fmt parameter, to the standard output stream stdout. 

The fprintf subroutine converts, formats, and writes its val parameters, under control of 
the fmt parameter, to the output stream specified by its stream parameter. 

The sprintf subroutine converts, formats, and stores its val parameters, under control of 
the fmt parameter, into consecutive bytes starting at the address specified by the 8 

parameter. The sprintf subroutine places a I \0 I (null character) at the end. It is your 
responsibility to ensure that enough storage space is available to contain the formatted 
string. 

The NLprintf, NLfprintf, and NLsprintf subroutines parallel their corresponding 
functions, providing conversion types to handle code points and NLchars. 

3-300 AIX Operating System Technical Reference 



printf, 

The fmt parameter is a character string that contains two types of objects: 

• Plain characters, which are copied to the output stream. 

• Conversion specifications, each of which causes zero or more items to be fetched from 
the val parameter list. 

If there are not enough items for the fmt in the val parameter list, then the results are 
unpredictable. If more vals remain after the entire fmt has been processed, they are 
ignored. 

Each conversion specification in the fmt parameter has the following syntax: 

1. A % (percent) sign. 

2. Zero or more options, which modify the meaning of the conversion specification. The 
option characters and their meanings are: 

+ 

blank 

# 

The result of the conversion is left-justified within the field. 

The result of a signed conversion always begins with a sign (+ or -). 

If the first character of a signed conversion is not a sign, a blank is prefixed 
to the result. If both the blank and + options appear, then the blank option is 
ignored. 

This option specifies that the value is to be converted to an alternate form. 
For c, d, s, and u conversions, the option has no effect. For 0 conversion, it 
increases the precision to force the first digit of the result to be a O. For x 
and X conversions, a nonzero result has Ox or OX prefixed to it. For e, E, f, 
g, and G conversions, the result always contains a decimal point, even if no 
digits follow the decimal point. For g and G conversions, trailing zeroes are 
not removed from the result. 

B This option affects conversions using the s or S conversion characters of the 
NLprintf, NLfprintf, and NLsprintf subroutines only. The B flag specifies 
that field width and precision are given in bytes rather than in code points. 

N This option affects the sand S conversion characters of the NLprintf, 
NLfprintf, and NLsprintf subroutines only. The N flag specifies that each 
international character support code point in the converted string converts 
into a printable ASCII escape sequence that uniquely identifies the code 
point. 

3. An optional decimal digit string that specifies the minimum field width. If the 
converted value has fewer characters than the field width, the field is padded on the 
left to the length specified by the field width. If the left-adjustment option is specified, 
the field is padded on the right. For the NLprintf, NLfprintf, and NLsprintf 
subroutines, field width is measured in code points rather than bytes, unless the B flag 
is specified. 

Subroutines 3-301 



printf, . 

4. An optional precision. The precision is a . (period) followed by a decimal digit string. 
If no precision is given, it is treated as O. The precision specifies: 

• The minimum number of digits to appear for the d, U, 0, x, or X conversions 
• The number of digits to appear after the decimal point for the e and f conversions 
• The maximum number of significant digits for the g conversion 
• The maximum number of characters to be printed from a string in the s conversion. 

5. An optional I (the letter "ell") specifying that a following d, u, 0, x, or X conversion 
character applies to a long integer val. 

6. A character that indicates the type of conversion to be applied: 

% Performs no conversion. Prints a %. 
d Accepts an integer val and converts it to signed decimal notation. The 

precision specifies the minimum number of digits to appear. If the value being 
converted can be represented in fewer digits, it is expanded with leading 
zeroes. The default precision is 1. The result of converting a zero value with 
a precision of zero is a null string. Specifying a field width with a zero as a 
leading character causes the field width value to be padded with leading zeros. 

U Accepts an integer value and converts it to unsigned decimal notation. The 
precision specifies the minimum number of digits to appear. If the value being 
converted can be represented in fewer digits, it is expanded with leading 
zeroes. The default precision is 1. The result of converting a zero value with 
a precision of zero is a null string. Specifying a field width with a zero as a 
leading character causes the field width value to be padded with leading zeros. 

o Accepts an integer val and converts it to octal notation. The precision 
specifies the minimum number of digits to appear. If the value being 
converted can be represented in fewer digits, it is expanded with leading 
zeroes. The default precision is 1. The result of converting a zero value with 
a precision of zero is a null string. Specifying a field width with a zero as a 
leading character causes the field width value to be padded with leading zeros. 

An octal value for field width is not implied. 

x, X Accepts an integer val and converts it to hexadecimal notation. The letters 
abcdef are used for the x conversion and the letters ABCDEF are used for the 
X conversion. The precision specifies the minimum number of digits to 
appear. If the value being converted can be represented in fewer digits, it is 
expanded with leading zeroes. The default precision is 1. The result of 
converting a zero value with a precision of zero is a null string. Specifying a 
field width with a zero as a leading character causes the field width value to 
be padded with leading zeros. 

3-302 AIX Operating System Technical Reference 



printf, . 

f Accepts a float or double val and converts it to decimal notation in the 
format [-]ddd.ddd. The number of digits after the decimal point is equal to 
the precision specification. If no precision is specified, then six digits are 
output. If the precision is 0, then no decimal point appears. 

e, E Accepts a float or double val and converts it to the exponential form 
[-]d.ddde±dd. There is one digit before the decimal point and the number of 
digits after the decimal point is equal to the precision specification. If no 
precision is specified, then six digits are output. If the precision is 0, then no 
decimal point appears. The E conversion character produces a number with E 
instead of e before the exponent. The exponent always contains at least two 
digits. 

g, G Accepts a float or double val and converts it in the style of the e, E or f 
conversion characters, with the precision specifying the number of significant 
digits. Trailing zeroes are removed from the result. A decimal point appears 
only if it is followed by a digit. The style used depends on the value 
converted. Style e (E, if G is the flag used) results only if the exponent 
resulting from the conversion is less than -4, or if it is greater than or equal to 
the precision. 

c Accepts and prints the character val. 

s Accepts a val is as a string (character pointer) and characters from the string 
are printed until a I \0 I (null character) is encountered or the number of 
characters indicated by the precision is reached. If no precision is specified, 
all characters up to the first null character are printed. If the string pointer 
val has a value of 0 or NULL, the results are undefined. 

S The corresponding NLprintf, NLfprintf, or NLsprintf val is taken to be a 
pointer to a string of the type NLchar. Characters from the string are 
printed until a \0 (null) character is encountered or the number of characters 
indicated by precision is reached. If no precision is specified, all characters up 
to the first null character are printed. If the string pointer val has a value of 
o or NULL, the results are undefined. 

A field width or precision may be indicated by an '* (asterisk) instead of a digit string. In 
this case, an integer val parameter supplies the field width or precision. The val parameter 
that is converted for output is not fetched until the conversion letter is reached, so the 
parameters specifying field width or precision must appear before the value (if any) to be 
converted. 

If the result of a conversion is wider than the field width, then the field is expanded to 
contain the converted result. No truncation occurs. However, a small precision may cause 
truncation on the right. 

Subroutines 3-303 



printf, ... 

The e, E, f and g formats represent the special floating-point values as follows: 

Quiet NaN 
Signalling NaN 
±oo 
±O 

+QNaN or -QNaN 
+SNaN or -SNaN 
+ I NF or - I NF 
+0 or -0 

The representation of the plus sign depends on whether the + or blank formatting option 
is specified. 

Return Value 

Upon successful completion, each of these subroutines returns the number of display 
characters in the output string rather than the number of bytes in the string. (The 
NLprintf, NLfprintf and NLsprintf subroutines use strings that may contain 2-byte 
NLchars.) The value returned by sprintf and NLsprintf does not include the final I \0 I 
character. If an output error occurs, a negative value is returned. 

Related Information 

In this book: "conv" on page 3-39, "ecvt, fcvt, gcvt" on page 3-121, "putc, putchar, fputc, 
putw" on page 3-309, "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf' on page 3-325, 
and "standard i/o library" on page 3-342. 

Examples of using printf in C Language Guide and Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-304 AIX Operating System Technical Reference 



programmers workbench library 

programmers workbench library 

Purpose 

Provides subroutines for compatibility with existing programs. 

Library 

Programmers Workbench Library (libPW.a) 

Description 

The libpw subroutines are provided only for compatibility with existing programs. Their 
use in new programs is not recommended. 

alloca (nbytes) 
Allocates nbytes of automatic memory. 

any (c, s) 
Determines whether the string s contains the character c. 

anystr (sl, s2) 
Determines the offset in string sl of the first character that also occurs in string 
s2. 

balbrk (s, open, close, end) 
Determines the offset in string s of the first character in the string end that 
occurs outside of a balanced string as defined by open and close. 

cat (dest, source1, ... , 0) 
Concatenates the source strings and copy them to dest. 

clean-up ( ) 
Defaults the cleanup routine. 

curdir (s) 
Puts the full path name of the current directory in the string s. 

dname (P) 
Determines which directory contains the file p. 

fatal (msg) 
General purpose error handler. 

fdfopen (fd, mode) 
Same as the stdio fdopen subroutine. 

Subroutines 3-305 



programmers workbench library 

giveup (dump) 
Forces a core dump. 

imatch (pref, s) 
Determines if the string pref is an initial substring of the string s. 

index (s1, s2) 
Determines the offset of the first occurrence in string s1 of string s2. 

lockit (lockfile, count, pid) 
Creates a lock file. 

move (s1, s2, n) 
Copies the first n characters of string s1 to string s2. 

patoi (s) 
Converts string s to into 

patol (s) 
Converts string s to long. 

rename (oldname, newname) 
Renames the file oldname to newname. 

repeat (dest, s, n) 
Sets dest to the string s repeated n times. 

repl (s, old, new) 
Replaces each occurrence of the character old in string s with the character 
new. 

satoi (s, ip) 
Converts string s to int and save it in *ip. 

setsig ( ) 
Causes signals to be caught by setsigl. 

setsigl (sig) 
General purpose signal handling routine. 

sname (s) 
Gets a pointer to the simple name of full path name s. 

strend (s) 
Finds the end of the string s. 

substr (s, dest, origin, len) 
Places a substring of string s in dest using the offset origin and the length len. 

trnslat (s, old, new, dest) 
Copies string s into dest and replace any character in old with the 
corresponding characters in new. 

3-306 AIX Operating System Technical Reference 



programmers workbench library 

unlockit (lockfile, pid) 
Deletes the lock file. 

userdir (uid) 
Gets the user's login directory. 

userexit (code) 
Defaults user exit routine. 

username (uid) 
Gets the user's login name. 

verify (81, 82) 
Determines the offset in string 81 of the first character that is not also in string 
82. 

xalloc (a8ize) 
Allocates memory. 

xcreat (name, mode) 
Creates a file. 

xfree (aptr) 
Frees memory. 

xfreeall () 
Frees all memory. 

xlink (fl, f2) 
Links files. 

xmsg (file, func) 
Calls the routine fatal with an appropriate error message. 

xopen (name, mode) 
Opens a file. 

xpipe (t) 
Creates a pipe. 

xunlink (f) 
Removes a directory entry. 

xwrite (fd, buffer, n) 
Writes n bytes to the file associated with fd from buffer. 

zero (p, n) 
Zeroes n bytes starting at address p. 

zeropad (8) 
Replaces the initial blanks with the character 10

1 in string 8. 

Subroutines 3-307 



programmers workbench library 

Related Information 

In this book: "logname" on page 3-233 and "regcmp, regex" on page 3-31B. 

3-308 AIX Operating System Technical Reference 



putc,putchar,fputc,putw 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putc, ... 

Writes a character or a word to a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int putc(c, stream) 
char c; 
FILE *stream; 

int putchar(c) 
char c; 

Description 

int fputc(c, stream) 
char c; 
FILE *stream; 

int putw(w, stream) 
int w; 
FILE *stream; 

The putc macro writes the character c to the output specified by the stream parameter. 
The character is written at the position at which the file pointer is currently pointing, if 
defined. 

The putchar macro is the same as the putc macro except that put char writes to the 
standard output. 

The fputc subroutine works the same as putc, but fputc is a true subroutine rather than a 
macro. It runs more slowly than putc, but takes less space per invocation. 

Because putc is implemented as a macro, it treats incorrectly a stream parameter with side 
effects, such as putc (c, *f++). For such cases, use fputc instead. Also, use fputc 
whenever you need to pass a pointer to this subroutine as a parameter to another 
subroutine. 

The putw subroutine writes the word (int) specified by the w parameter to the output 
specified by the stream parameter. The word is written at the position at which the file 
pointer, if defined, is pointing. The size of a word is the size of an integer and varies from 

Subroutines 3-309 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putc, 

machine to machine. The putw subroutine does not assume or cause special alignment of 
the data in the file. 

Because of possible differences in word length and byte ordering, files written using the 
putw subroutine are machine-dependent, and may not be readable using the getw 
subroutine on a different processor. 

With the exception of stderr, output streams are, by default, buffered if they refer to files, 
or line-buffered if they refer to terminals. The standard error output stream, stderr, is 
unbuffered by default, but using the freopen subroutine causes it to become buffered or 
line-buffered. Use the setbuf subroutine to change the stream's buffering strategy. 

When an output stream is unbuffered, information is queued for writing on the destination 
file or terminal as soon as it is written. When an output stream is buffered, many 
characters are saved and written as a block. When an output stream is line-buffered, each 
line of output is queued for writing on the destination terminal as soon as the line is 
completed (that is, as soon as a new-line character is written or terminal input is 
requested). 

Return Value 

Upon successful completion, these functions each return the value written. If these 
functions fail, they return the constant EOF. They fail if the stream is not open for 
writing, or if the output file size cannot be increased. Because EOF is a valid integer, you 
should use the ferror subroutine to detect putw errors. 

Related Information 

In this book: "fclose, fflush" on page 3-163, "feof, ferror, clearerr, fileno" on page 3-165, 
"fopen, freopen, fdopen" on page 3-168, "fread, fwrite" on page 3-192, "getc, fgetc, getchar, 
getw" on page 3-204, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf' on page 3-300, 
"puts, fputs" on page 3-313, "setbuf, setvbuf' on page 3-330, and "standard i/o library" on 
page 3-342. 

3-310 AIX Operating System Technical Reference 



Iputenv 

I Purpose 

Sets an environment variable. 

I Library 

None 

I Syntax 

int putenv (str) 
char *str; 

I Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putenv 

The putenv subroutine sets the value of an environment variable by altering an existing 
variable or by creating a new one. The str parameter points to a string of the form 
name = value, where name is the environment variable and value is the new value for it. 

The memory space pointed to by the str parameter becomes part of the environment, so 
that altering the string effectively changes part of the environment. The space is no 
longer used after the the value of the environment variable is changed by calling putenv 
again. 

Warning: Unpredictable results can occur if a subroutine passes putenv 
a pointer to an automatic variable and then returns while the variable is 
still part of the environment. 
Note: The putenv subroutine manipulates the environment pointed to by the environ 
external variable, and it can be used in conjunction with getenv. However, envp, the third 
parameter to main, is not changed. See "exec: execl, execv, execle, execve, execlp, 
execvp" on page 2-34 for more information about environ and envp. 

The putenv subroutine uses malloe to enlarge the environment. 

After putenv is called, environment variables are not necessarily in alphabetical order. 

Subroutines 3-310.1 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putenv 

I Return Value 

Upon successful completion, a value of 0 is returned. If malloe is unable to obtain 
sufficient space to expand the environment, then putenv returns a nonzero value. 

I Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "getenv, 
NLgetenv" on page 3-208, "malloc, free, realloc, calloc" on page 3-236, and "environment" 
on page 5-47. 

3-310.2 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putenv 

Subroutines 3-311 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
putpwent 

putpwent 

Purpose 

Writes a password file entry. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < pwd.h > 

int putpwent (p, f) 
struct passwd *p; 
FILE *f; 

Description 

The putpwent subroutine writes a line on the stream specified by the f parameter. The 
stream that is written on matches the format of /etc/passwd. 

The p parameter is a pointer to a passwd structure created by the getpwent, getpwuid, or 
getpwnam subroutines. 

Return Value 

Upon successful completion, putpwent returns a value of O. If putpwent fails, a nonzero 
val ue is returned. 

Related Information 

In this book: "getpwent, getpwuid, getpwnam, setpwent, endpwent" on page 3-219 and 
"passwd" on page 4-112. 

3-312 AIX Operating System Technical Reference 



puts, fputs 

Purpose 

Writes a string to a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int puts (s) 
char *s; 

Description 

int fputs (s, stream) 
char *s; 
FILE *stream; 

puts, ... 

The puts subroutine writes the null-terminated string pointed to by the s parameter, 
followed by a new-line character, to the standard output stream, stdout. 

The fputs subroutine writes the null-terminated string pointed to by the s parameter to the 
output stream specified by the stream parameter. The fputs subroutine does not append a 
new-line character. 

Neither subroutine writes the terminating null character. 

Return Value 

Upon successful completion, the puts and fputs subroutines return the number of 
characters written. Both subroutines return EOF on an error. This happens if the 
routines try to write on a file that has not been opened for writing. 

Subroutines 3-313 



· puts, ... 

Related Information 

In this book: "feof, ferror, clearerr, fileno" on page 3-165, "fopen, freopen, fdopen" on 
page 3-168, "fread, fwrite" on page 3-192, "gets, fgets" on page 3-221, "printf, fprintf, 
sprintf, NLprintf, NLfprintf, NLsprintf' on page 3-300, "putc, putchar, fputc, putw" on 
page 3-309, and "standard i/o library" on page 3-342. 

3-314 AIX Operating System Technical Reference 



qsort 

qsort 

Purpose 

Sorts a table of data in place. 

Library 

Standard C Library (libc.a) 

Syntax 

void qsort «char *) base, neZ, sizeof (*base), compar) 
unsigned int neZ; 
int (*compar) ( ); 

Description 

The qsort subroutine sorts a table of data in place. It uses the "quicker-sort" algorithm. 

The base parameter points to the element at the base of the table. The neZ parameter is the 
number of elements in the table. The compar parameter is the name of the comparison 
function. 

The comparison function must compare its parameters and return a value as follows: 

• If the first parameter is less than the second parameter, compar must return a value 
less than O. 

• If the first parameter is equal to the second parameter, compar must return O. 
• If the first parameter is greater than the second parameter, compar must return a value 

greater than O. 

The comparison function need not compare every byte, so arbitrary data can be contained 
in the elements in addition to the values being compared. 

Note: The order in the output of two items that compare equal is unpredictable. 

The pointer to the base of the table should be of type pointer-to-element, and cast to type 
pointer-to-character. 

Subroutines 3-315 



qsort 

Related Information 

In this book: "bsearch" on page 3-11, "lsearch" on page 3-234, and "string" on page 3-344. 

The sort command in AIX Operating System Commands Reference. 

3-316 AIX Operating System Technical Reference 



rand, srand 

Purpose 

Generates pseudo-random numbers. 

Library 

Standard C Library (libc.a) 

Syntax 

int rand () 

Description 

void srand (seed); 
unsigned int seed; 

rand, ... 

The rand subroutine generates a random numbers using a multiplicative congruential 
algorithm. The random-number generator has a period of 232, and it returns successive 
pseudo-random numbers in the range from 0 to 215 - 1. 

The srand subroutine resets the random-number generator to a random starting point. 
The generator is initially seeded with a value of 1. 

Note: The rand subroutine is a very simple random-number generator. Its spectral 
properties, the mathematical measurement of how "random" the number sequence is, are 
somewhat weak. See "drand48" on page 3-118 for a more elaborate random-number 
generator that has better spectral properties. 

Subroutines 3-317 



regcmp, ... 

regcmp, regex 

Purpose 

Compiles and matches regular-expression patterns. 

Library 

Programmers Workbench Library (libPW.a) 

Syntax 

char *regcmp (str [, str, ... ], (char *) 0) 
char *str, *str, .•. ; 

Description 

char *regex (pat, subject [, ret, . . . ]) 
char *pat, *subject, *ret, ... ; 

extern char *--locI; 

The regcmp subroutine compiles a regular expression (or pattern) and returns a pointer to 
the compiled form. The str parameters specify the pattern to be compiled. If more than 
one str parameter is given, then regcmp treats them as if they were concatenated together. 
It returns a NULL pointer if it encounters an incorrect parameter. 

You can use the regcmp command to compile regular expressions into your C program, 
frequently eliminating the need to call the regcmp subroutine at run time. 

The reg ex subroutine compares a compiled pattern to the subject string. Additional 
parameters are- used to receive values. Upon successful completion, the regex subroutine 
returns a pointer to the next unmatched character. If the regex subroutine fails, a NULL 
pointer is returned. A global character pointer, --locI, points to where the match began. 

The regcmp and regex subroutines are borrowed from the ed command; however, the 
syntax and semantics have been changed slightly. You can use the following symbols with 
the regcmp and reg ex subroutines: 

[ J * . /\ 
These symbols have the same meaning as they do in the ed command. 

For regex, the minus within brackets means "through" according to the current 
collating sequence. For example, [a-z] can be equivalent to [abed ... xyzJ or 

3-318 AIX Operating System Technical Reference 



$ 

+ 

regcmp, ... 

[aBbCc ... xVyZzJ or even [aaaabc ... xyzl You can use the - by itself if the -
is the last or first character. For example, the character class expression [J -J 
matches the J (right bracket) and - (minus) characters. 

The regcmp subroutine does not use the current collating sequence, and the minus 
character in brackets controls only a direct ASCII sequence. For example, [a-zJ 
always means [abc . . . xyzJ and [A-ZJ always means [ABC . . . XVZ]. If you 
need to control the specific characters in a range using regcmp, you must list them 
explicitly rather than using the minus in the character class expression. 

Matches the end of the string. Use \n to match a new-line character. 

A regular expression followed by + means one or more times. For example, [0-9J + is 
equivalent to [0-9J [0-9J *. 

{m} {m,} {m,u} 
Integer values enclosed in { } indicate the number of times to apply the preceding 
regular expression. m is the minimum number and u is the maximum number. u must 
be less than 256. If you specify only m, it indicates the exact number of times to apply 
the regular expression. {m,} is equivalent to {m,oo} and matches m or more 
occurrences of the expression. The plus + (plus) and * (asterisk) operations are 
equivalent to {I,} and {O,}, respectively. 

( ... ) $n 
This stores the value matched by the enclosed regular expression in the (n + l)th ret 
parameter. Ten enclosed regular expressions are allowed. regex makes the 
assignments unconditionally. 

( . . . ) 
Parentheses group subexpressions. An operator, such as *, +, or { } works on a single 
character or on a regular expression enclosed in parenthesis. For example, 
(a*(cb+)*)$O. 

All of the above defined symbols are special. You must precede them with a \ (backslash) 
if you want to match the special symbol itself. For example, \ $ matches a dollar sign. 

Note: regcmp uses the m.alloe subroutine to make the space for the vector. Always free 
the vectors that are not required. If you do not free the unrequired vectors, you may run 
out of memory if regemp is called repeatedly. Use the following as a replacement for 
malloe to reuse the same vector, thus saving time and space: 

Subroutines 3-319 



regcmp, 

/* Your Program. . . */ 

malloc(n) 
int n; 

{ 
static int rebuf[256]; 

return ((n <= sizeof(rebuf)) ? rebuf NULL); 
} 

Examples 

1. To perform a simple match: 

char *cursor, *newcursor, *ptr; 

newcursor = regex((ptr = regcmp(II"\n ll
, 0)), cursor); 

free(ptr); 
This matches a leading new-line character in the subject string pointed to by cursor. 

2. To extract a substring that matches a pattern: 

char retO[9]; 
char *newcursor, *name; 

name = regcmp(II([A-Za-z] [A-Za-zO-9]{0,7})$0", 0); 
newcursor = regex(name, 11123Testing321 11 , retO); 

This matches the eight-character identifier Testi ng3 and returns the address of the 
character after the last matched character (which is stored in newcursor). The string 
Testi ng3 is copied into the character array retO. 

Related Information 

In this book: "manoc, free, realloc, calloc" on page 3-236, "NCcollate, NCcoluniq, 
NCeqvmap, -NCxcol, -NLxcol" on page 3-267, and "regexp: compile, step, advance" on 
page 3-321. 

The ed and regcmp commands in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-320 AIX Operating System Technical Reference 



regexp: compile, step, advance 

Purpose 

Compiles and matches regular-expression patterns. 

Library 

None 

Syntax 

#define INIT 
#define G ETC( ) 
#define PEEKC( ) 
#define UNGETC(c) 
#define RETURN(pointer) 
#define ERROR(val) 

#include < regexp.h > 

declarations 
getc-code 
peekc-code 
ungetc-code 
return-code 
error-code 

char *compile (instring, expbuf, endbuf, eof) 
char *instring, *expbuf, *endbuf; 
char eof; 

Description 

int step (string, expbuf) 
char *string, *expbuf; 

regexp 

int advance (string, expbuf) 
char *string, *expbuf; 

The regexp.h header file defines several general-purpose subroutines that perform 
regular-expression pattern matching. Programs that perform regular-expression pattern 
matching such as ed, sed, grep, bs, and expr use this source file. In this way, only this 
file needs to be changed in order to maintain regular expression compatibility between 
programs. 

The regexp.h header file handles extended characters and may require access to the 
current collating sequence. You can disable the extended functionality of regexp.h by 
defining the preprocessor variable RTPC-NO-NLS. This is useful for tasks such as 
building programs to run on prior releases of AIX. See "Overview of International 
Character Support" in IBM RT PC Managing the AIX Operating System for more 
information. 

Subroutines 3-321 



regexp 

The interface to this header file is complex. Programs that include this file define the 
following five macros before the #include < regexp.h > statement. These macros are used 
by the compile subroutine. 

INIT 
This macro is used for dependent declarations and initializations. It is placed right 
after the declaration and opening { (left brace) of the compile subroutine. The 
definition of INIT must end with a ; (semicolon). INIT is frequently used to set a 
register variable to point the beginning of the regular expression so that this register 
variable can be used in the declarations for GETC, PEEKC, and. UNGETC. 
Otherwise, you can use INIT to declare external variables that GETC, PEEKC, and 
UNGETC need. 

GETC( ) 
This macro returns the value of the next character in the regular expression pattern. 
Successive calls to the GETC macro should return successive characters of the 
pattern. 

PEEKC( ) 
This macro returns the next character in the regular expression. Successive calls to 
the PEEKC macro should return the same character, which should also be the next 
character returned by the G ETC macro. 

UNGETC(c) 
This macro causes the parameter c to be returned by the next call to the GETC and 
PEEKC macros. No more than one character of pushback is ever needed and this 
character is guaranteed to be that last character read by the GETC macro. The 
return value of the UNGETC macro is always ignored. 

RETURN(pointer) 
This macro is used on normal exit of the compile subroutine. The pointer parameter 
points to the first character immediately following the compiled regular expression. 
This is useful to programs that have memory allocation to manage. 

ERROR(val) 
This macro is used on abnormal exit from the compile subroutine. It should never 
contain _a return statement. The val parameter is an error number. The error values 
and their meanings are: 

Error Meaning 

11 Range endpoint too large. 
16 Bad number. 
25 \digit out of range. 
36 Illegal or missing delimiter. 
41 No remembered search string. 
42 \ ( \) imbalance. 
43 Too many \ (. 
44 More than two numbers given in \{ \}. 

3-322 AIX Operating System Technical Reference 



regexp 

45 } expected after \. 
46 First number exceeds second in \ { \}. 
49 [ ] imbalance. 
50 Regular expression overflow. 

The compile subroutine compiles the regular expression for later use. The instring 
parameter is never used explicitly by the compile subroutine, but you can use it in your 
macros. For instance, you may want to pass the string containing the pattern as the 
instring parameter to compile and use the INIT macro to set a pointer to the beginning of 
this string. (The following example uses this technique.) If your macros do not use 
instring, then call compile with a value of «char *) 0) for this parameter. 

The expbuf parameter points to a character array where the compiled regular expression is 
to be placed. The endbuf parameter points to the location that immediately follows the 
character array where the compiled regular expression is to be placed. If the compiled 
expression cannot fit in (endbuf-expbuf) bytes, the call ERROR(50) is made. 

The eof parameter is the character that marks the end of the regular expression. For 
example, in ed this character is usually 1/1 (slash). 

The regexp.h header file defip.es other subroutines that perform actual regular-expression 
pattern matching. One of these is the step subroutine. 

The string parameter of step is a pointer to a null-terminated string of characters to be 
checked for a match. 

The expbuf parameter points to the compiled regular expression, which was obtained by a 
call to the compile subroutine. 

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it 
does not match. If it matches, then step also sets two global character pointers: locI, 
which points to the first character that matches the pattern, and loc2, which points to the 
character immediately following the last character that matches the pattern. Thus, if the 
regular expression matches the entire string, then locI points to the first character of 
string and loc2 points to the null character at the end of string. 

The step subroutine uses the global variable circf, which is set by compile if the regular 
expression begins with a A (circumflex). If this variable is set, then step only tries to 
match the regular expression to the beginning of the string. If you compile more than one 
regular expression is before executing the first one, then save the value of circf for each 
compiled expression and set circf to that saved value before each call to step. 

The step subroutine calls a subroutine named advance with the same parameters that it 
was passed. The step function increments through the string parameter and calls advance 
until advance returns a 1, indicating a match, or until the end of string is reached. To 
constrain string to the beginning of the string in all cases, call the advance subroutine 
directly instead of calling step. 

When advance encounters an * (asterisk) or a \ { \} sequence in the regular expression, 
it advances its pointer to the string to be matched as far as possible and recursively calls 

Subroutines 3-323 



regexp 

itself trying to match the rest of the string to the rest of the regular expression. As long as 
there is no match, advance backs up along the string until it finds a match or reaches the 
point in the string that initially matched the * or \ { \}. It is sometimes desirable to stop 
this backing-up before the initial point in the string is reached. If the global character 
pointer locs is equal to the point in the string sometime during the backing up process, 
advance breaks out of the loop that backs up and returns O. This is used by ed and sed 
for global substitutions on the whole line so that expressions like s / y* / / 9 do not loop 
forever. 

Example 

The following is an example of the regular expression macros and calls from the grep 
command. 

#define INIT register char *sp=instring; 
#define GETC () (*sp++) 
#define PEEKC () (*sp) 
#define UNGETC(c) (--sp) 
#define RETURN(c) return; 
#define ERROR(c) regerr() 

#include <regexp.h> 

compile (patstr, expbuf, &expbuf[ESIZE], 1\0 1); 

if (step (linebuf, expbuf)) 
succeed ( ); 

Related Information 

In this book: "NCcollate, NCcoluniq, NCeqvmap, -NCxcol, -NLxcol" on page 3-267 and 
"regcmp, regex" on page 3-318. 

The ed, grep, and sed commands in AIX Operating System Commands Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

3-324 AIX Operating System Technical Reference 



scanf, 

scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf 

Purpose 

Converts formatted input. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int scanf (fmt [, ptr, .•. ]) 
char *fmt; 

int fscanf (stream, fmt [, ptr, ... ]) 
FILE *stream; 
char *fmt; 

int sscanf (s, fmt [, ptr, .•• ]) 
char *s, *fmt; 

Description 

int NLscanf (fmt [, ptr, •.. ]) 
char *fmt; 

int NLfscanf (stream, fmt [, ptr, •.• ]) 
FILE *stream; 
char *fmt; 

int NLsscanf (s, fmt [, ptr, ... ]) 
char *s, *fmt; 

The scanf, fscanf, and sscanf subroutines read character data, interpret it according to a 
format, and store the converted results into specified memory locations. The NLscanf, 
NLfscanf, and NLsscanf subroutines parallel their corresponding functions, providing 
conversion types to handle NLchars as well as chars. These subroutines read their input 
from the following sources: 

scanf, NLscanf Reads from standard input (stdin). 
fscanf, NLfscanf Reads from stream. 
sscanf, NLsscanf Reads from the character string s. 

The fmt parameter contains conversion specifications used to interpret the inp~t. The ptr 
parameters specify where to store the interpreted data. 

The fmt parameter can contain the following: 

• White space characters (blanks, tabs, new-lines, or form-feeds) which, except in two 
cases described following, reads the input up to the next nonwhite space character. 

Subroutines 3-325 



scanf, . 

Unless there is a match in the control string, trailing white space (including a new-line 
character) is not read. 

• Any character except % (percent), which must match the next character of the input 
stream. 

• A conversion specification that directs the conversion of the next input field. It 
consists of the following: 

1. The character % (percent) 
2. An optional assignment suppression character, * (asterisk) 
3. An optional numeric maximum field width 
4. An optional character that sets the size of the receiving variable as for some flags, 

as follows: 
1 Signed long integer rather than an int when preceding the d, U, 0 or x 

conversion codes. A double rather than a float, when preceding the e, for g 
conversion codes. 

h Signed short integer (half int) rather than an int when preceding the d, U, 0 or 
x conversion codes. 

5. A conversion code. 

The conversion specification is of the form: 

% [*] [width] [size] convcode 

The results from the conversion are placed in *ptr unless you specify assignment 
suppression with *. Assignment suppression provides a way to describe an input field that 
is to be skipped. The input field is a string of nonwhite-space characters. It extends to the 
next inappropriate character or until the field width, if specified, is exhausted. 

The conversion code indicates how to interpret the input field. The corresponding ptr must 
usually be of a restricted type. You should not specify ptr for a suppressed field. You can 
use the following conversion codes: 

% Accepts a single % input at this point; no assignment is done. 

d Accepts a decimal integer; ptr should be an integer pointer. 

U Accepts an unsigned decimal integer; ptr should be an unsigned integer pointer. 

o Accepts an octal integer; ptr should be an integer pointer. 

x Accepts a hexadecimal integer; ptr should be an integer pointer. 

e, f, g Accepts a floating-point number. The next field is converted accordingly and 
stored through the corresponding parameter, which should be a pointer to a float. 
The input format for floating-point numbers is a string of digits, with some 
optional characteristics: 

• It can be a signed value. 

3-326 AIX Operating System Technical Reference 



scanf, . 

• It can be an exponential value, containing a decimal point followed by an 
exponent field, which consists of an E or an e followed by an (optionally 
signed) integer. 

• It can be one of the special values INF, QNAN, or SNAN, which is translated 
into the ANSI/IEEE value for infinity, quiet NaN, or signalling NaN, 
respectively. 

s Accepts a string of chars. The ptr parameter should be a character pointer that 
points to an array of characters large enough to accept the string and ending with 
I \ 0 I. The I \ 0 I is added automatically. The input field ends with a white space 
character. A string of chars is output. 

S (Used by the NLscanf, NLfscanf, and NLsscanf subroutines only.) Accepts an 
NLchar string. The ptr parameter should point to an array of characters large 
enough to accept the string and end with I \0 I. The I \0 I is added automatically. 
The input field ends with a white space character. A string of NLchars is output. 

N (Used by the NLscanf, NLfscanf, and NLsscanf subroutines only.) Accepts an 
ASCII string, possibly containing extended character information in the form of 
escape sequences used by the NLescstr and NLunescstr subroutines. (See 
"display symbols" on page 5-24 for a list of these escape sequences.) The output is 
in the form of NLchars. 

c A character is expected. The ptr parameter should be a character pointer. The 
normal skip over white space is suppressed. Use %ls to read the next 
nonwhite-space character. If a field width is given, ptr should refer to a character 
array; the indicated number of characters is read. 

[scanset] Accepts as input the characters included in the scanset. The scanset explicitly 
defines the characters that are accepted in the string data as those enclosed within 
square brackets. The normal skip over leading white space is suppressed. A 
scanset in the form of [A scanset] is an exclusive scanset: the A (circumflex) 
serves as a complement operator and the following characters in the scanset are 
not accepted as input. Conventions used in the construction of the scanset follow: 

• You can represent a range of characters by the construct first-last. Thus you 
can express [0123456789] as [0-9]. The first parameter must be lexically less 
than or equal to last, or else the - (dash) stands for itself. The - also stands for 
itself whenever it is the first or the last character in the scanset. 

• You can include the] (right bracket), as an element of the scanset, if it is the 
first character of the scanset. In this case it is not interpreted as the bracket 
that closes the scanset. If the scanset is an exclusive scanset, the] is preceded 
by the A (circumflex) to make the] an element of the scanset. The 
corresponding ptr must point to a character array large enough to hold the 
data field and that ends with I \0 I. The I \0 I is added automatically. 

Subroutines 3-327 



scanf, 

A scanf or NLscanf conversion ends at the end-of-file, the end of the control string, or 
when an input character conflicts with the control string. If it ends with an input 
character conflict, the character that conflicts is not read from the input stream. 

Unless there is a match in the control string, trailing white space (including a new-line 
character) is not read. 

The success of literal matches and suppressed assignments is not directly determinable. 

Return Value 

Each of these subroutines returns the display length of the string it outputs, which is the 
number of the display characters in the string, rather than the number of bytes. These 
subroutines return an EOF on the end of input and on a short count for missing or illegal 
data items. 

The scanf and NLscanf subroutines return the number of successfully matched and 
assigned input items. This number can be 0 if there was an early conflict between an input 
character and the control string. If the input ends before the first conflict or conversion, 
only EOF is returned. 

Examples 

1. To read several values and assign them to variables: 

i nt i; 
float x; 
char name[50]; 

scanf (l%d%f%S", &i, &x, name); 
with the input line: 

25 54.32E-l thompson 

This assigns to i the value 25, to X the value 5.432, and to name the value 
thomp son \ O. 

2. To perform simple pattern-matching while scanning the input: 

i nt i; 
float x; 
char name[50]; 

scanf ("%2d%f%*d%[O-9] II , &i, &x, name); 

3-328 AIX Operating System Technical R~ference 



with the input: 

56789 0123 56a72 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
scanf, ... 

This assigns 56 to i, 789.0 to x, skips 0123, and places the string 56\0 in name. 
The next call to getchar (see "getc, fgetc, getchar, getw" on page 3-204) returns a. 

Related Information 

In this book: "atof, strtod" on page 3-8, "printf, fprintf, sprintf, NLprintf, NLfprintf, 
NLsprintf' on page 3-300, "getc, fgetc, getchar, getw" on page 3-204, "standard i/o library" 
on page 3-342, "strtol, atol, atoi" on page 3-347, and "display symbols" on page 5-24. 

Examples of using scanf in C Language Guide and Reference. 

"Overview of International Character Support" in IBM RT PC Managing the AIX 
Operating System. 

Subroutines 3-329 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setbuf, ... 

setbuf, setvbuf 

Purpose 

Assigns buffering to a stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

void setbuf (stream, buf) 
FILE *stream; 
char *but; 

int setvbuf (stream, but, type, size) 
FILE *stream; 
char *but; 
int type, size; 

Description 

The setbuf subroutine causes the character array pointed to by the but parameter to be 
used instead of an automatically allocated buffer. Use the setbuf subroutine after a 
stream has been opened but before it is read or written. 

If the but parameter is a NULL character pointer, input/output is completely unbuffered. 

A constant, BUFSIZ, defined in the stdio.h header file, tells how big an array is needed: 

char buf[BUFSIZ]; 

For the setvbuf subroutine, type determines how stream is buffered: 

-IOFBF Causes input/output to be fully buffered. 

-IOLBF Causes output to be line buffered. The buffer is flushed when a new 
line is written, the buffer is full, or input is requested. 

-IONBUF Causes input/output to be completely unbuffered. 

3-330 AIX Operating System Technical Reference 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setbuf, ... 

If the but parameter is not a NULL character pointer, the array it points to is used 
for buffering instead of an automatically allocated buffer. size specifies the size of the 
buffer to be used. The constant BUFSIZ in stdio.h can be a good buffer size. If 
input/output is unbuffered, but and size are ignored. 

A buffer is normally obtained from the malloe subroutine at the time of the first gete or 
pute on the file, except that the standard error stream, stderr, is normally not buffered. 

Output streams directed to terminals are always either line-buffered or unbuffered. 

Note: A common source of error is allocating buffer space as an automatic variable in a 
code block, and then failing to close the stream in the same block. 

Related Information 

In this book: "fopen, freopen, fdopen" on page 3-168, "getc, fgetc, getchar, getw" on 
page 3-204, "malloc, free, realloc, calloc" on page 3-236, "putc, putchar, fputc, putw" on 
page 3-309, and "standard i/o library" on page 3-342. 

Subroutines 3-331 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
setjmp, ... 

setjmp, longjmp 

Purpose 

Saves and restores the current execution context. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < setjrnp.h > 

int setjrnp (ctxt) 
jrnp-buf ctxt; 

Description 

void longjrnp (ctxt, val) 
jrnp-buf ctxt; 
int val; 

The setjrnp and longjrnp subroutines can be useful when handling errors and interrupts 
encountered in low-level subroutines of a program. 

The setjrnp subroutine saves the current stack context and signal mask in the buffer 
specified by the ctxt parameter. The setjmp subroutine returns a value of O. 

The longjmp subroutine restores the stack context and signal mask that were saved by the 
setjrnp subroutine in the corresponding ctxt buffer. After the longjmp subroutine has 
completed, the program execution continues as if the corresponding call to setjrnp had just 
returned the value of the val parameter. The subroutine that called setjrnp must not have 
returned before the completion of the longjmp subroutine. 

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved 
to indicate the actual return from the setjmp subroutine when first called by the program. 
If the longjmp subroutine is passed a val parameter of 0, then execution continues as if 
the corresponding call to the setjmp subroutine had returned a value of 1. All accessible 
data have values as of the time the longjmp subroutine is called. 

Warning: If the longjmp subroutine is called with a ctxt parameter that 
was not previously set by setjmp, or if the subroutine that made the 
corresponding call to setjmp has already returned, then the results of the 
longjmp subroutine are undefined. 

3-332 AIX Operating System Technical Reference 



setjmp, ... 

Related Information 

In this book: "signal" on page 2-145 and "sigvec" on page 2-156. 

Subroutines 3-333 



sgetl, ... 

sgetl, sputl 

Purpose 

Accesses long numeric data in a machine-independent fashion. 

Library 

Object File Access Routine Library (libld.a) 

Syntax 

long sgetl (buffer) 
char *buffer; 

Description 

void sputl (value, buffer) 
long value; 
char *buffer; 

The sgetl subroutine retrieves 4 bytes from memory starting at the location pointed to by 
the buffer parameter. It then returns the bytes as a long value with the byte ordering of 
the host machine. 

The sputl subroutine stores the 4 bytes of the value parameter into memory starting at the 
location pointed to by the buffer parameter. The order of the bytes is the same across all 
machines. 

Using sputl and sgetl subroutines together provides a machine-independent way of storing 
long numeric data in an ASCII file. For example, the numeric data stored in the portable 
archive file format is accessed with the sputl and sgetl subroutines. 

Related Information 

In this book: "frexp, ldexp, modf' on page 3-194 and "ar" on page 4-18. 

3-334 AIX Operating System Technical Reference 



sin, cos, tan, asin, acos, atan, atan2 

Purpose 

Computes trigonometric functions. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

double sin (x) 
double x; 

double cos (x) 
double x; 

double tan (x) 
double x; 

Description 

double asin (x) 
double x; 

double acos (x) 
double x; 

double atan (x) 
double x; 

double atan2 (y, x) 
double x, y; 

sin, 

The sin, cos, and tan subroutines return the sine, cosine and tangent, respectively, of 
their parameters, which are in radians. 

The asin subroutine returns the arcsine of x, in the range -rt/2 to rt/2. 

The acos subroutine returns the arccosine of x, in the range 0 to rt. 

The at an subroutine returns the arctangent of x, in the range -rt/2 to rt/2. 

The atan2 subroutine returns the arctangent of y/x, in the range -rt to rt, using the signs of 
both parameters to determine the quadrant of the return value. 

Subroutines 3-335 



sin, 

Diagnostics 

These subroutines can perform either of the following types of error handling. Both types 
of error handling allow you to define special actions to be taken when an error occurs. 

1. By default, matherr error handling is performed, as described on page 3-238. The 
default error-handling procedures for these subroutines are as follows: 

sin, cos, tan 
The sin, cos and tan subroutines lose accuracy when passed a large value for the 
x parameter. For sufficiently large parameters, these functions return 0 when 
there would otherwise be a complete loss of significance. In this case, a message 
that indicates a TLOSS error is written to standard error. For less extreme 
values, a PLOSS error is generated but no message is written. In both cases, 
errno is set to ERANGE. 

The tan subroutine returns HUGE if its parameter is near an odd multiple of 1t/2 
when the correct value would overflow, and sets errno to ERANGE. 

asin, acos 
The asin and acos subroutines return 0 and set errno to EDOM if their 
parameters are larger than 1.0. In addition, an error message that indicates a 
domain error is written to the standard error output. 

2. Exception handling can also be performed according to ANSI/IEEE standard 754-1985 
for binary floating-point arithmetic, as discussed under "Exception Handling" on 
page 3-186. To select ANSI/IEEE exception handling, define the -C-func preprocessor 
variable. You can do this by inserting the statement #define -C-func before the 
#include < math.h >, or by specifying the -D-C-func flag to the cc command when 
compiling the program. 

If a hardware floating-point processor is installed in your system, then using this 
option can provide greater performance in addition to IEEE exception handling. 
Defining -C-func causes the math.h header file to define macros that make the 
names sin, cos, tan, ... appear to the compiler as -C-sin, -C_cos, -C-tan, .. 
These special names instruct the C compiler to generate code that avoids the overhead 
of the math library subroutines and issues compatible-mode floating-point calls 
directly. See "fpfp" on page 3-170 for information about compatible mode. 

Related Information 

In this book: "fpfp" on page 3-170, "Exception Handling" on page 3-186, and "matherr" on 
page 3-238. 

3-336 AIX Operating System Technical Reference 



sinh, cosh, tanh 

Purpose 

Computes hyperbolic functions. 

Library 

Math Library (libm.a) 

Syntax 

#include < math.h > 

double sinh (x) 
double x; 

double cosh (x) 
double x; 

Description 

double tanh (x) 
double x; 

sinh, ... 

The sinh subroutine returns the hyperbolic sine of its parameter. The cosh subroutine 
returns the hyperbolic cosine of its parameter. The tanh subroutine returns the 
hyperbolic tangent of its parameter. 

The sinh and the cosh subroutines return HUGE if the correct value overflows. errno is 
also set to ERANGE. 

You can use the matherr subroutine to change these error-handling procedures. See 
"matherr" on page 3-238 for details. 

Subroutines 3-337 



sleep 

sleep 

Purpose 

Suspends execution of the current process for an interval of time. 

Library 

Standard C Library (libc.a) 

Syntax 

unsigned int sleep (seconds) 
unsigned int seconds; 

Description 

The sleep subroutine causes the current process to suspend execution for the number of 
seconds specified by the seconds parameter. The sleep routine sets an alarm and pauses 
until that alarm or some other signal occurs. 

The actual sleep time of the process may be either shorter or longer than the requested 
sleep time. The sleep time may be shorter because: 

• Wakeups occur on the second at fixed I-second intervals according to an internal 
clock. 

• Any caught signal terminates the sleep following execution of that signal's catching 
routine. 

The sleep time -may be longer than the requested sleep time due to the scheduling of other 
activities in the system. 

The value returned by the sleep subroutine is the requested sleep time minus the time 
actually slept. 

The process calling the sleep subroutine may have set an alarm prior to calling the sleep 
subroutine. 

If a previous alarm has been set, and the sleep subroutine's sleep time exceeds the 
process's previously set sleep time, the process only sleeps until the time specified by the 
previously set alarm and the calling process's alarm catch routine is executed just before 
the sleep subroutine returns. 

3-338 AIX Operating System Technical Reference 



sleep 

If a previous alarm has been set, and the sleep subroutine's sleep time is less than the 
process's previously set sleep time, the current process is suspended from execution for the 
number of seconds specified by the sleep subroutine. The previously set alarm is reset to 
go off at the same time it would have without the sleep subroutines intervention. 

Warning: The results are undefined if, while it is sleeping, the calling 
program issues any other alarm or sleep calls. This can happen if a signal 
arrives in the interim and the signal handler calls alarm or sleep. 

Related Information 

In this book: "alarm" on page 2-13, "pause" on page 2-94, and "signal" on page 2-145. 

Subroutines 3-339 



ssignal, ... 

ssignal, gsignal 

Purpose 

Implements a software signal facility. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < signal.h > 

int (*ssignal (sig, action» ( ) 
int sig, (*action) ( ); 

Description 

int gsignal (sig) 
int sig; 

The ssignal and gsignal subroutines implement a software facility similar to that of the 
signal and kill system calls. However, there is no connection between the two facilities. 
User programs can use ssignal and gsignal to handle exceptional processing within an 
application. signal and related system calls handle system-defined exceptions. 

The software signals available are associated with integers in the range 1 through 15. 
Other values are reserved for use by the C library and should not be used. 

The ssignal subroutine associates the procedure specified by the action parameter with the 
software signal specified by the sig parameter. The gsignal subroutine "raises" the signal 
sig, causing the procedure specified by the action parameter to be taken. 

The action parameter is either a pointer to a user-defined subroutine, or one of the 
constants SIG-DFL (default action) and SIG-IGN (ignore signal). The ssignal 
subroutine returns the procedure that was previously established for that signal. If no 
procedure was established before, or if the signal number is illegal, then ssignal returns 
the value SIG-DFL. 

3-340 AIX Operating System Technical Reference 



ssignal, ... 

The gsignal subroutine "raises" the signal specified by the sig parameter by doing the 
following: 

• If the procedure for sig is SIG-DFL, then the gsignal subroutine returns a value of 0 
and takes no other action. 

• If the procedure for sig is SIG-IGN, then the gsignal subroutine returns a value of 1 
and takes no other action. 

• If the procedure for sig is a subroutine, then the action value is reset to SIG-DFL and 
the subroutine is called with sig passed as its parameter. The gsignal subroutine 
returns the value that is returned by the signal-handling subroutine. 

• If the procedure for sig is an illegal value or if no procedure was ever specified for that 
signal, then gsignal returns a value of 0 and takes no other action. 

Related Information 

In this book: "kill" on page 2-60 and "signal" on page 2-145. 

Subroutines 3-341 



standard i/o library 

standard if 0 library 

Purpose 

Performs standard buffered input and output operations. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

FILE *stdin, *stdout, *stderr; 

Description 

These macros and subroutines provide an efficient user-level I/O buffering scheme. 

The in-line macros getc and putc handle characters quickly. The following macros and 
subroutines all use the getc and putc macros: 

getchar macro 
putchar macro 
fgetc subroutine 
fgets subroutine 
fprintf subroutine 
fputc subroutine 
fputs subroutine 
fread subroutine 

fscanf subroutine 
fwrite subroutine 
gets subroutine 
getw subroutine 
printf subroutine 
puts subroutine 
putw subroutine 
scanf subroutine 

A file with associated buffering is called a stream and is declared to be a pointer to the 
defined type FILE. The fopen subroutine constructs descriptive data for a stream and 
returns a pointer to designate the stream in all further transactions. Normally, there are 
three open streams with constant pointers declared in the stdio.h header file and 
associated with the standard open streams: 

stdin Standard input stream 
stdout Standard output stream 
stderr Standard error output stream. 

3-342 AIX Operating System Technical Reference 



standard i/o library 

The constant NULL (0) designates a special pointer value that does not point to any data 
structure. 

Most integer subroutines that deal with streams return the constant EOF (-1) upon 
end-of-file or an error. See each individual subroutine for detailed information about the 
return value. 

Programs that use this input/output package must include the header file of pertinent 
macro definitions, as follows: 

#include <stdio.h> 
The subroutines and constants in the input/output package are declared in the header file 
and do not need any further declaration. The constants and the following routines are 
implemented as macros. Redeclaration of these names is not allowed. 

getc 
getchar 
putc 
putchar 

feof 
ferror 
clearerr 
fileno 

Warning: Invalid stream pointers usually cause errors, possibly including 
program termination. Individual subroutine descriptions describe the 
possible error conditions. 

Related Information 

In this book: "close" on page 2-25, "lseek" on page 2-67, "open" on page 2-90, "pipe" on 
page 2-95, "read, readx" on page 2-106, "write, writex" on page 2-184, "ctermid" on 
page 3-44, "cuserid" on page 3-62, "fclose, fflush" on page 3-163, "feof, ferror, clearerr, 
fileno" on page 3-165, "fopen, freopen, fdopen" on page 3-168, "fread, fwrite" on page 3-192, 
"fseek, rewind, ftell" on page 3-196, "getc, fgetc, getchar, getw" on page 3-204, "gets, fgets" 
on page 3-221, "popen, pclose" on page 3-298, "printf, fprintf, sprintf, NLprintf, NLfprintf, 
NLsprintf' on page 3-300, "putc, putchar, fputc, putw" on page 3-309, "puts, fputs" on 
page 3-313, "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf' on page 3-325, "setbuf' on 
page 3-330, "system" on page 3-350, "tmpfile" on page 3-354, "tmpnam, tempnam" on 
page 3-355, and "ungetc" on page 3-369. 

Subroutines 3-343 



string 

string 

Purpose 

Performs operations on strings. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < string.h > 

char *strcat (81, 82) 
char *81, *82; 

char *strncat (81, 82, n) 
char *81, *82; 
int n; 

int strcmp (81, 82) 
char *81, *82; 

int strncmp (81, 82, n) 
char *81, *82; 
int n; 

char *strcpy (81,82) 
char *81, *82; 

char *strncpy (81, 82, n) 
char *81, *82; 
int n; 

3-344 AIX Operating System Technical Reference 

int strlen (8) 
char *8; 

char *strchr (8, c) 
char *8, c; 

char *strrchr (8, c) 
char *8, c; 

char *strpbrk (81, 82) 
char *81, *82; 

int'strspn (81, 82) 
char *81, *82; 

int strcspn (81, 82) 
char *81, *82; 

char *strtok (81, 82) 
char *81, *82; 



string 

Description 

The string subroutines copy, compare, and append strings in memory, and they determine 
such things as location, size, and existence of strings in memory. 

The parameters 81, 82 and 8 point to strings. A string is an array of characters terminated 
by a null character. The subroutines strcat, strncat, strcpy, and strncpy all alter 81. 
They do not check for overflow of the array pointed to by 81. All string movement is 
performed character by character and starts at the left. Overlapping moves toward the left 
work as expected, but overlapping moves to the right may give unexpected results. All of 
these subroutines are declared in the string.h header file. 

The strcat subroutine adds a copy of the string pointed to by the 82 parameter to the end 
of the string pointed to by the 81 parameter. The strcat subroutine returns a pointer to 
the null-terminated result. 

The strncat subroutine copies at most n bytes of 82 to the end of the string pointed to by 
the 81 parameter. Copying stops before n bytes if a null character is encountered in the 82 
string. The strncat subroutine returns a pointer to the null-terminated result. 

The strcmp subroutine lexicographically compares the string pointed to by the 81 
parameter to the string pointed to by the 82 parameter. The strcmp subroutine uses 
native character comparison, which may be signed or unsigned. The strcmp subroutine 
returns a value that is: 

Less than 0 If 81 is less than 82 
Equal to 0 If 81 is equal to 82 
Greater than 0 If 81 is greater than 82. 

The strncmp subroutine makes the same comparison as strcmp, but it compares at most n 
pairs of characters. 

The strcpy subroutine copies the string pointed to by the 82 parameter to the character 
array pointed to by the 81 parameter. Copying stops when the null character is copied. 
The strcpy subroutine returns the value of the 81 parameter. 

The strncpy subroutine copies n bytes from the string pointed to by the 82 parameter to 
the character array pointed to by the 81 parameter. If 82 is less than n characters long, 
then strncpy pads 81 with trailing null characters to fill n bytes. If 82 is n or more 
characters long, then only the first n characters are copied and the result is not terminated 
with a null character. The strncpy subroutine returns the value of the 81 parameter. 

The strlen subroutine returns the number of characters in the string pointed to by the8 
parameter, not including the terminating null character. 

The strchr subroutine returns a pointer to the first occurrence of the character specified 
by the c parameter in the string pointed to by the 8 parameter. A NULL pointer is 
returned if the character does not occur in the string. The null character that terminates 
a string is considered to be part of the string. 

Subroutines 3-345 



string 

The strrchr subroutine returns a pointer to the last occurrence of the character specified 
by the c parameter in the string pointed to by the 8 parameter. A NULL pointer is 
returned if the character does not occur in the string. The null character that terminates 
a string is considered to be part of the string. 

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to 
by the 81 parameter of any character from the string pointed to by the 82 parameter. A 
NULL pointer is returned if no character matches. 

The strspn subroutine returns the length of the initial segment of the string pointed to by 
the 81 parameter that consists entirely of characters from the string pointed to by the 82 
parameter. 

The strcspn subroutine returns the length of the initial segment of the string pointed to 
by the 81 parameter that consists entirely of characters not from the string pointed to by 
the 82 parameter. 

The strtok subroutine returns a pointer to an occurrence of a text token in the string 
pointed to by the 81 parameter. The 82 parameter specifies a set of token delimiters. If the 
81 parameter is anything other than NULL, then the strtok subroutine reads the string 
pointed to by the 81 parameter until it finds one of the delimiter characters specified by the 
82 parameter. It then stores a null character into the string, replacing the delimiter, and 
returns a pointer to the first character of the text token. The strtok subroutine keeps 
track of its position in the string so that subsequent calls with a NULL 81 parameter step 
through the string. The delimiters specified by the 82 parameter can be changed for 
subsequent calls to strtok. When no tokens remain in the string pointed to by the 81 
parameter, the strtok subroutine returns a NULL pointer. 

Related Information 

In this book: "memccpy, memchr, memcmp, memcpy, memset" on page 3-245, "NCstring" 
on page 3-272, "NLstring" on page 3-285, and "swab" on page 3-349. 

3-346 AIX Operating System Technical Reference 



strtol, atol, atoi 

Purpose 

Converts a string to an integer. 

Library 

Standard C Library (libc.a) 

Syntax 

long strtol (str, ptr, base) 
char *str, **ptr; 
int base; 

Description 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
strtol, ... 

long atol (str) 
char *str; 

int atoi (str) 
char *str; 

The strtol subroutine returns a long integer whose value is represented by the character 
string str. strtol scans the string up to the first character that is inconsistent with the 
base. Leading white-space characters are ignored. 

Warning: Overflow conditions are ignored. 
If the value of ptr is not (char **) NULL, then a pointer to the character that terminated 
the scan is stored in *ptr. If an integer cannot be formed, *ptr is set to str, and ° is 
returned. 

If the base parameter is positive and not greater than 36, then it is used as the base for 
conversion. After an optional leading sign, leading zeroes are ignored. Ox or OX is 
ignored if base is 16. 

If the base parameter is 0, the string determines the base. Thus, after an optional leading 
sign, a leading ° indicates octal conversion, and a leading Ox or OX indicates hexadecimal 
conversion. The default is to use decimal conversion. 

Note: Truncation from long to int can take place upon assignment, or by an explicit cast. 

Subroutines 3-347 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
strtol, ... 

The atol (str) subroutine call is equivalent to strtol (str, (char **) NULL, 10). 

The atoi (str) subroutine call is equivalent to (int) strtol (str, (char **) NULL, 10). 

The atoi and atol subroutines do not actually call strtol. 

The strtol, atol, and atoi subroutines perform conversions to integers. See "atof, strtod" 
on page 3-8 for information on conversions to floating-point numbers. 

Related Information 

In this book: "atof, strtod" on page 3-8 and "scanf, fscanf, sscanf, NLscanf, NLfscanf, 
NLsscanf' on page 3-325. 

3-348 AIX Operating System Technical Reference 



swab 

swab 

Purpose 

Copies bytes. 

Library 

Standard C Library (libc.a) 

Syntax 

void swab (from, to, nbytes) 
char *from, *to; 
int nbytes; 

Description 

The swab subroutine copies nbytes bytes from the location pointed to by the from 
parameter to the array pointed to by the to parameter, exchanging adjacent even and odd 
bytes. 

The nbytes parameter should be eveJ? and nonnegative. If the nbytes parameter is odd and 
positive, the swab uses nbytes-l instead. If the nbytes parameter is negative, then swab 
does nothing. 

Related Information 

In this book: "memccpy, memchr, memcmp, memcpy, memset" on page 3-245 and "string" 
on page 3-344. 

Subroutines 3-349 



system 

system 

Purpose 

Runs a shell command. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < stdio.h > 

int system (string) 
char *string; 

Description 

The system subroutine passes the string parameter to the sh command as input. Then sh 
interprets string as a command and runs it. 

The system subroutine invokes the fork system call to create a child process that in turn 
uses exec to run /bin/sh, which interprets the shell command contained jn the string 
parameter. The current process waits until the shell has completed, then returns the exit 
status of the shell. 

Note: The system subroutine runs only sh shell commands (also called Bourne shell 
commands). The results are unpredictable if the string parameter is not a valid sh shell 
command. 

Return Value 

Upon successful completion, the system subroutine returns the exit status of the shell. 
See "wait" on page 2-182 for an explanation of the exit status. 

If the fork fails, then system returns a value of -1. If the exec fails, then it returns 127. 
It either case, errno is set to indicate the error. 

3-350 AIX Operating System Technical Reference 



system 

File 

/bin/sh 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "exit, 
-exit" on page 2-40, "fork" on page 2-46, and "wait" on page 2-182. 

The sh command in A/X Operating System Commands Reference. 

Subroutines 3-351 



termdef 

termdef 

Purpose 

Queries terminal characteristics. 

Library 

Standard C Library (libc.a) 

Syntax 

char *termdef (fildes, c) 
int fildes; 
char c; 

Description 

The termdef subroutine returns a pointer to a null-terminated static character string that 
identifies a characteristic of the terminal that is open on the file descriptor specified by the 
fildes parameter. The c parameter specifies the characteristic that is to be queried. 
termdef determines this information by performing the following actions: 

1. It queries the terminal device, using the Query HFT Device command, which is 
discussed on page 6-47. 

2. If the query fails, then termdef uses the value of an environment variable. 

3. If the environment variable is not set, then termdef returns the default value specified 
in the following table. 

The following list shows the valid request types and the corresponding environment 
variables that are used if the Query HFT Device command fails: 

Environment 
c Variable 

t TERM 
I LINES 

Default 
Value Description 

II i bm5151 " The terminal type 
NULL The number of lines or rows, based on the current font 

3-352 AIX Operating System Technical Reference 



c 
Environment 
Variable 

c COLUMNS 

Default 
Value 

NULL 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
termdef 

Description 

The number of character columns, based on the current 
font. 

Note: When fildes identifies an asynchronous terminal, the Query HFT Device command 
always fails and the environment variable is always checked. The TERM variable is 
automatically set each time you log in. LINES and COLUMNS need to be set only if: 

• You are using an asynchronous terminal and want to override the lines and cols 
settings in the terminfo data base, or 

• Your asynchronous terminal has an unusual number of lines or columns and you are 
running an application that uses termdef, but not terminfo. 

This is true because the terminfo initialization subroutine, setupterm, calls termdef to 
determine the number of lines and columns on the display. If termdef cannot supply this 
information, then setupterm uses the values in the terminfo data base. 

Related Information 

In this book: "Terminfo Level Subroutines" on page 3-57, "terminfo" on page 4-148, and 
"Query HFT Device Command" on page 6-47. 

The display and termdef commands in A/X Operating System Commands Reference. 

Subroutines 3-353 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
tmpfile 

tmpfile 

Purpose 

Creates a temporary file. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

FILE *tmpfile ( ) 

Description 

The tmpfile subroutine creatt;,; a temporary file and returns its FILE pointer. The file is 
opened for update. If Distributed Services is installed on your system, this file can reside 
on a remote node. The temporary file is automatically deleted when the process using it 
terminates. 

If the file cannot be opened, tmpfile writes an error message to the standard error output 
and returns a NULL pointer. 

Related Information 

In this book: "creat" on page 2-27, "unlink" on page 2-174, "fopen, freopen, fdopen" on 
page 3-168, "mktemp" on page 3-247, "standard i/o library" on page 3-342, and "tmpnam, 
tempnam" on page 3-355. 

3-354 AIX Operating System Technical Reference 



tmpnam, tempnam 

Purpose 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 
tmpnam, ... 

Constructs the name for a temporary file. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

char *tmpnam (8) 
char *8; 

Description 

char *tempnam (dir, pfx) 
char *dir, *pfx; 

The tmpnam and tempnam subroutines generate file names for temporary files. 

The tmpnam subroutine generates a file name using the path name defined as P -tmpdir 
in the stdio.h header file. If the 8 parameter is NULL, the tmpnam subroutine places its 
result into an internal static area and returns a pointer to that area. The next call to this 
subroutine destroys the contents of the area. 

If the 8 parameter is not NULL, it is assumed to be the address of an array of at least the 
number of bytes specified by L-tmpnam. L-tmpnam is a constant defined in stdio.h. 
The tmpnam subroutine places its results into that array and returns the value of the 8 
parameter. 

The tempnam subroutine allows you to control the choice of a directory. The dir 
parameter points to the path name of the directory in which the file is to be created. If the 
dir parameter is NULL or points to a string which is not a path name for an appropriate 
directory, the path name defined as P -tmpdir in the stdio.h header file is used. If that 
path name is not accessible, /tmp is used. You can bypass the selection of a path name by 
providing an environment variable, TMPDIR, in the user's environment. The value of the 
TMPDIR variable is a path name for the desired temporary-file directory. If the TMPDIR 
variable is used, both the dir parameter and L-tmpnam are ignored. 

The pfx parameter of the tempname subroutine allows you to specify an initial character 
sequence with which the file name begins. The pfx parameter can be NULL, or it can 

Subroutines 3-355 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 
tmpnam, ... 

point to a string of up to five characters to be used as the first few characters of the 
temporary file name. 

The tempnam subroutine uses the malloc subroutine to obtain space for the constructed 
file name. The return value is a pointer to this space. Therefore, the pointer value 
returned by tempnam can be used as a parameter to the free subroutine. 

If the tempnam subroutine cannot return the expected result for any reason (for example, 
if the malloc subroutine fails, or if an appropriate directory cannot be found), then it 
returns a NULL pointer. 

Warning: The tmpnam and tempnam subroutines generate a different 
file name each time they are called. If they are called more than 4,096 
times by a single process, they start recycling previously used names. 
Files created using these subroutines reside in a directory intended for temporary use, and 
their names are unique. It is your responsibility to use the unlink system call to remove 
the file when no longer needed. 

Between the time a file name is created and the file is opened, it is possible for some other 
process to create a file with the same name. This should not happen if that other process 
uses these subroutines or the mktemp subroutine, and if the file names are chosen to 
make duplication by other means unlikely. 

Related Information 

In this book: "creat" on page 2-27, "unlink" on page 2-174, "fopen, freopen, fdopen" on 
page 3-168, "malloc, free, realloc, calloc" on page 3-236, "mktemp" on page 3-247, "tmpfile" 
on page 3-354, and "environment" on page 5-47. 

3-356 AIX Operating System Technical Reference 



Purpose 

Checks whether trace channel is enabled. 

Library 

Run-time Services Library (librts.a) 

Syntax 

int trace-on (chanmask) 
unsigned long chanmask; 

Description 

The trace-on subroutine queries the application trace device driver to determine whether 
a given trace channel is enabled. trace-on allows a program to avoid the unnecessary 
overhead of setting up the trace message when its trace channel is disabled. trace-on is a 
C run-time subroutine and should be used by application programs, but not by device 
drivers. 

The chanmask parameter is a mask with the bit corresponding to the channel number set. 
It can be formed by the expression (1 < < 31 - channum). User programs can use only 
channel number 31, which means that the value of chanmask must be 1 for user programs. 

Making repeated calls to the trace device driver involves significant overhead, so call 
trace-on only once: either at the start of processing or just before the first trace point in 
the program. 

If the application trace device driver is not already open, trace-on opens it. 

Upon successful completion, trace-on returns 1 if the channel is enabled, or 0 if the 
channel is disabled. If the trace-on subroutine fails, a message is written to the standard 
error output, and a value of -1 is returned. 

Subroutines 3-357 



trace-on 

File 

/dev/appltrace 

Related Information 

In this book: "trcunix" on page 3-362, "trace" on page 6-128, and "Trace Logging" on 
page C-32. 

The trace command in A/X Operating System Commands Reference. 

The discussion of trace in A/X Operating System Programming Tools and Interfaces. 

3-358 AIX Operating System Technical Reference 



trc-start, trc-stop 

Purpose 

Starts and stops a trace daemon. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < sys/trace.h > 

trc-start (out path, entsize, numents, lastonly, trcinfo) 
char *outpath; 
int entsize, numents, lastonly; 
struct t-struct *trcinfo; 

trc-stop (Pid) 
int pid; 

Description 

trc-start, ... 

The trc-start subroutine starts a trace daemon process when called from within a running 
application program. This subroutine can be used to start an ordinary (monitor) trace 
session or a VRM-specific generic trace session. In a generic trace session, as many as 
seven daemons can trace different devices simultaneously. In a monitor trace session, only 
one daemon can run at anyone time since monitor trace classes are fixed. For information 
about generic and monitor traces, see the trace command in A/X Operating System 
Commands Reference. 

The outpath parameter is a pointer to the path name of the trace output file. For generic 
traces, the data from each device cl;Jfl'be saved in a separate file by specifying a unique file 
name when starting each daemon. If the outpath parameter is a NULL pointer, then the 
default file name is used. The default file name is the value of the file keyword in the 
/dev/trace stanza of the /etc/rasconf file. 

The entsize parameter indicates the size in bytes of each trace entry that the application 
intends to send to the VRM trace collector. If entsize is 0, then the default entry size, 40 
bytes, is used. 

Subroutines 3-359 



tre-start, . . . 

Warning: You must specify a file name in the outpath parameter if the 
value of entsize is not 0, that is, if you specify a trace entry size other than 
the default. Failure to give a file name in this case results in unusable 
data if another trace daemon uses the default file name. 
The numents parameter indicates the maximum number of entries to keep in the kernel's 
trace buffer. If numents is 0, then the default value is used. The default number of entries 
is the value of the buffer keyword in the /dev/trace stanza of the /etc/rasconf file. 

The lastonly parameter can have a value of 1, indicating that only the last buffer of data is 
to be saved in the trace file, or a value of 0, instructing the daemon to save all data 
con tin uously. 

The trcinfo parameter is a pointer to a t-struct structure into which the trc-start 
subroutine stores information about the trace daemon that it starts. This structure is 
defined in the sys/trace.h header file, and it contains the following members: 

t-PID 

buff-addr 

buff-len 

The process ID of the daemon. 

The address of the trace buffer allocated in the AIX kernel for use in a 
generic trace session. 

The size in bytes of the trace buffer allocated in the AIX kernel. 

channel-ID The bit mask to use in the traceid field when recording trace data. This 
value is the channel number shifted left 11 bits with a hook ID of 0, as 
described in "trcunix" on page 3-362. 

The trc-stop subroutine kills a trace daemon process that was started by trc-start. Its 
only parameter is the process ID of the trace daemon, which trc-start provides by storing 
it in trcinfo- > t-PID. 

Return Value 

The trc-start subroutine returns a value of ° upon successful completion. If unsuccessful, 
then trc-start returns the value of errno that was set by the failing system call, and an 
error message is written to the standard error output. trc-start can fail when it invokes 
the pipe, fork, exec, or read system call. 

The trc-stop subroutine returns ° if successful, or -1 if the kill system call fails. 

3-360 AIX Operating System Technical Reference 



trc-start, . . . 

Related Information 

In this book: "trace-on" on page 3-357, "trcunix" on page 3-362, "rasconf' on page 4-133, 
and "trace" on page 6-128. 

The trace command in AIX Operating System Commands Reference. 

The discussion about using the trace subroutines in AIX Operating System Programming 
Tools and Interfaces. 

Subroutines 3-361 



trcunix 

trcunix 

Purpose 

Records application trace log entries. 

Library 

Run-time Services Library (librts.a) 

Syntax 

int trcunix (but, ent) 
char *but; 
unsigned int ent; 

Description 
,( 

The trcunix subroutine invokes the application trace device driver to record a trace log 
entry. trcunix is a C run-time subroutine. Device drivers should use the trsave 
subroutine to log trace events. 

The but parameter points to a buffer containing a 2-byte traeeid followed by up to 20 bytes 
of user-defined trace data. The high-order 5 bits of the traeeid specify the channel number, 
and the low-order 11 bits specify the hook ID for the message. User programs may use only 
channel number 31. The ent parameter specifies the number of bytes in the buffer, 
including the traeeid. 

If the application trace device driver is not open, then trcunix opens it before writing the 
trace log entry to it. 

Return Value 

Upon successful completion, a value of 0 is returned and a trace log entry is written to 
/dev/appltrace. If the trcunix subroutine fails, an error message is written to the 
standard error output, and a value of -1 is returned. 

3-362 AIX Operating System Technical Reference 



trcunix 

File 

/dev/appltrace 

Related Information 

In this book: "trace-on" on page 3-357, "trace" on page 6-128, and "Trace Logging" on 
page C-32. 

The trace command in AIX Operating System Commands Reference. 

The discussion of trace in AIX Operating System Programming Tools and Interfaces. 

Subroutines 3-363 



tsearch, ... 

tsearch, tdelete, twalk 

Purpose 

Manages binary search trees. 

Library 

Standard C Library (libc.a) 

Syntax 

#include < search.h > 

char *tsearch «char *) key, (char **) rootp, compar) 
int (*compar) ( ); 

char *tdelete «char *) key, (char **) rootp, compar) 
int (*compar) ( ); 

void twalk «char *) root, action) 
void (*action) ( ); 

Description 

The tsearch subroutine performs a binary tree search. The algorithm is generalized from 
Donald E. Knuth's The Art of Computer Programming, Volume 3, 6.2.2, Algorithm T.* It 
returns a pointer into a tree indicating where the data specified by the key parameter can 
be found. If the data specified by the key parameter is not found, the data is added to the 
tree in the correct place. If there is not enough space available to create a new node, a 
NULL pointer is returned. The rootp parameter points to a variable that points to the root 
of the tree. If the rootp parameter is NULL, the variable is set to point to the root of a 
new tree. 

Reading, Massachusetts: Addison-Wesley, 1981. 

3-364 AIX Operating System Technical Reference 



tsearch, ... 

The compar parameter is a pointer to the comparison function, which is called with two 
parameters that point to the elements being compared. The comparison function must 
compare its parameters and return a value as follows: 

• If the first parameter is less than the second parameter, com par must return a value 
less than o. 

• If the first parameter is equal to the second parameter, com par must return o. 
• If the first parameter is greater than the second parameter, compar must return a value 

greater than o. 
The comparison function need not compare every byte, so arbitrary data can be contained 
in the elements in addition to the values being compared. 

If the rootp parameter is NULL on entry, then a NULL pointer is returned. 

The tdelete subroutine deletes the data specified by the key parameter. It is generalized 
from Knuth (6.2.2) Algorithm D. The rootp and compar parameters perform the same 
function as they do for the tsearch subroutine. The variable pointed to bY'the rootp 
parameter will be changed if the deleted node is the root of the binary tree. The tdelete 
subroutine returns a pointer to the parent node of the deleted node. If the data is not 
found, a NULL pointer is returned. If the rootp parameter is NULL on entry, then a 
NULL pointer is returned. 

The twalk subroutine steps through the binary search tree whose root is pointed to by the 
root parameter. (Any node in a tree can be used as the root to step through the tree below 
that node.) The action parameter is the name of a routine to be invoked at each node. The 
routine specified by the action parameter is called with three parameters. The first 
parameter is the address of the node currently being pointed to. The second parameter is a 
value from an enumeration data type 

typedef enum {preorder, postorder, endorder, leaf} VISIT; 
(This data type is defined in the search.h header file). The actual value of the second / 
parameter depends on whether this is the first, second, or third time that the node has been 
visited during a depth-first, left-to-right traversal of the tree, 'or whether the node is a leaf. 
A leaf is a node that is not the parent of another node. The third parameter is the level of 
the node in the tree, with the root node being level zero. 

The pointers to the key and the root of the tree should be of type pointer-to-element and 
cast to type pointer-to-character. Although declared as type pointer-to-character, the value 
returned should be cast into type pointer-to-element. 

Subroutines 3-365 



tsearch, ... 

Related Information 

In this book: "bsearch" on page 3-11, "hsearch, hcreate, hdestroy" on page 3-227, and 
"lsearch" on page 3-234. 

3-366 AIX Operating System Technical Reference 



ttyname, ... 

ttyname, isatty 

Purpose 

Gets the name of a terminal. 

Library 

Standard C Library (libc.a) 

Syntax 

char *ttyname (fildes) 
int fildes; 

int isatty (fildes) 
int fildes; 

Description 

Files 

The ttyname subroutine gets the name of a terminal. It returns a pointer to a string 
containing the null-terminated path name of the terminal device associated with file 
descriptor specified by the fildes parameter. A NULL pointer is returned if the file 
descriptor does not describe a terminal device in directory /dev. 

The isatty subroutine determines if the device associated with the file descriptor specified 
by the fildes parameter is a terminal. If the specified file descriptor is associated with a 
terminal, the isatty subroutine returns a value of 1. If the file descriptor is not associated 
with a terminal, a value of 0 is returned. 

The return value of ttyname points to static data whose contents are overwritten by each 
call. 

/dev/* 

Subroutines 3-367 



ttyslot 

tty slot 

Purpose 

Finds the slot in the utmp file for the current user. 

Library 

Standard C Library (libc.a) 

Syntax 

int ttyslot ( ) 

Description 

Files 

The ttyslot subroutine returns the index of the current user's entry in the /etc/utmp file. 
The ttyslot subroutine scans the /etc/utmp file for the name of the terminal associated 
with the standard input, the standard output, or the error output (0, 1, or 2). 

The ttyslot subroutine returns ° if an error was encountered while searching for the 
terminal name, or if none of the first three file descriptors (0, 1, and 2) is is associated with 
a terminal device. 

/etc/inittab 
jetcjutmp 

Related Information 

In this book: "getutent" on page 3-224 and "ttyname, isatty" on page 3-367. 

3-368 AIX Operating System Technical Reference 



ungetc 

Purpose 

Pushes a character back into input stream. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 

int ungetc (c, stream) 
int c; 
FILE *stream; 

Description 

ungetc 

The ungetc subroutine inserts the character specified by the c parameter into the buffer 
associated with the input stream specified by the stream parameter. This causes the next 
call to the getc subroutine to return c. ungetc returns c, and leaves the stream file 
unchanged. 

If the c parameter is EOF, then the ungetc subroutine does not place anything in the 
buffer and a value of EOF is returned. 

You can always push one character back onto a stream, provided that something has been 
read from the stream or setbuf has been called. The fseek subroutine erases all memory 
of inserted characters. 

The ungetc subroutine returns EOF if it cannot insert the character. 

Subroutines 3-369 



ungetc 

Related Information 

In this book: "fseek, rewind, ftell" on page 3-196, "getc, fgetc, getchar, getw" on 
page 3-204, "setbuf' on page 3-330, and "standard i/o library" on page 3-342. 

3-370 AIX Operating System Technical Reference 



varargs 

Purpose 

Handles a variable-length parameter list. 

Syntax 

#inelude < varargs.h > 

va-alist 

va-del 

void va-start (argp) 
va-list argp; 

Description 

type va-arg (argp, type) 
va-list argp; 

void va-end (argp) 
va-list argp; 

varargs 

This set of macros allows you to write portable subroutines that accept a variable number 
of parameters. Subroutines that have variable-length parameter lists (such as printf), but 
that do not use varargs, are inherently nonportable because different systems use different 
parameter-passing conventions. 

va-alist Is used as the parameter list in the function header. 

va-del Is the declaration for va-aUst. No semicolon should follow va-del. 

va-list Defines the type of the variable used to traverse the list. 

va-start Initializes argp to point to the beginning of the list. 

argp Is a variable that the varargs macros use to keep track of the current location 
in the parameter list. Do not modify this variable. 

va-arg Returns the next parameter in the list pointed to by argp. type is the data type 
that the parameter is expected to be. Different types can be mixed, but your 
subroutine must know what type of parameter is expected because it cannot be 
determined at runtime. The printf subroutine solves this problem by using its 
format parameter to determine the parameter types expected. 

var -end Cleans up at the end. 

Your subroutine can traverse, or scan, the parameter list more than once. Start each 
traversal with a call to va-start and end it with var-end. 

Subroutines 3-371 



varargs 

Note: The calling routine is responsible for specifying the number of parameters because 
it is not always possible to determine this from the stack frame. For example, execl is 
passed a NULL pointer to signal the end of the list. printf determines the number of 
parameters from its format parameter. 

Specifying char, short, or float as the second parameter to va-argo is not portable 
because parameters seen by the called subroutine are not char, short, or float. The C 
complier converts char and short parameters to int, and it converts float parameters to 
double before passing them to a subroutine. 

Example 

The following example is a possible implementation of execl system call: 

#include <varargs.h> 

#define MAXARGS 100 
/* 
** 
** 

execl is called by 
execl(file, argl, arg2, ... , (char *) 0); 

*/ 
execl(va-alist) 

va-del 
{ 

} 

va-list ap; 
char *file; 
char *args[MAXARGS]; 
int argno = 0; 

va-start(ap); 
file = va-arg(ap, char *); 
while ((args[argno++] = va-arg(ap, char *)) t= (char *) 0) 

/* Empty loop body */ 
va-end(ap); 
return (execv(file, args)); 

3-372 AIX Operating System Technical Reference 



varargs 

Related Information 

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "printf, 
fprintf, sprintf, NLprintf, NLfprintf, NLsprintf" on page 3-300, and "vprintf, vfprintf, 
vsprintf" on page 3-374. 

Subroutines 3-373 



vprintf, ... 

vprintf, vfprintf, vsprintf 

Purpose 

Formats a varargs parameter list for output. 

Library 

Standard I/O Package (libc.a) 

Syntax 

#include < stdio.h > 
#include < varargs.h > 

int vprintf (format, argp) 
char *format; 
va-list argp; 

int vfprintf (stream, format, argp) 
FILE * stream; 

Description 

char *format; 
va-list argp; 

int vsprintf (s, format, argp) 
char *s, *format; 
va-list argp; 

The vprintf, vfprintf, and vsprintf subroutines format and write varargs parameter lists. 
They are the same as the printf, fprintf, and sprintf subroutines, respectively, except that 
they are not called with a variable number of parameters. Instead, they are called with a 
parameter list pointer as defined by "varargs" on page 3-371. 

Example 

The following example demonstrates how the vfprintf subroutine could be used to write an 
error routine. 

#include <stdio.h> 
#include <varargs.h> 

/* error should be called with the syntax: */ 
/* error(routine-name, format [, value, ... ]);*/ 

3-374 AIX Operating System Technical Reference 



/*VARARGSO*/ 

void error(va-alist) 
va-del 
/* 
** Note that the function name and format arguments 
** cannot be separately declared because of the 
** definition of varargs. 
*/ 
{ 

va-list args; 
char *fmt; 

va-start(args); 
/* 

vprintf, ... 

** Display the name of the function that called error 

} 

*/ 
(void) fprintf(stderr, IIERROR in %s: ", va-arg(args~ char *)); 
/* 
** Display the remainder of the message 
*/ 
fmt = va_arg(args, char *); 
(void) vfprintf(fmt, args); 
va-end(args); 
(void) abort(); 

Related Information 

In this book: "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf" on page 3-300. 

Subroutines 3-375 



vrcppr 

vrcppr 

Purpose 

Installs or removes a protocol procedure. 

Library 

Run-time Services Library (librts.a) 

Syntax 

#include < vrcppr.h > 

int vrcppr (request, path) 
char request, *path; 

Description 

The vrcppr subroutine issues a DEFINE-CODE supervisor call to add or delete a 
protocol procedure from Virtual Resource Manager (VRM). A protocol procedure is a 
special-purpose program that runs in VRM to support an application or service running on 
AIX. 

The calling process's effective user ID must be superuser to use the vrcppr subroutine. 

The value of the request parameter determines whether to add or delete the protocol 
procedure: 

I a I Adds the protocol procedure that is contained in the file named by the path 
parameter. The file must be an executable file in a.out format. 

I d I Deletes the protocol procedure named by the path parameter. 

In both cases the path parameter must specify the full path name. 

3-376 AIX Operating System Technical Reference 



vrcppr 

The /etc/system and /etc/master files must be set up correctly for the vrcppr subroutine 
to work properly. The /etc/system file must contain a stanza with the following 
information: 

sstname: 
protocol = 
nospecial = 
noshow = 
driver = 

true 
true 
true 
mstname 

The name of this /etc/system stanza. 
This is a protocol procedure. 
No /dev special file is to be created. 
The devices command should not display this device 
The name of the corresponding stanza in /etc/master. 

The /etc/master file must contain a corresponding stanza with the following information: 

mstname: 
protocol = true 

The name of this /etc/master stanza. 
This is a protocol procedure. 

code = 
i ocn = 

path 
iocn 

The full path name of the protocol procedure. 
The IOCN for this code. 

The value of the code keyword must be the same as the path parameter passed to the 
vrcppr subroutine. 

Return Value 

Upon successful completion, a nonnegative integer value representing the IOCN of the 
installed protocol procedure is returned. If the vrcppr subroutine fails, then it returns one 
of the following negative values: 

VRM-inaa The calling process's effective user ID is not superuser. 

VRM-pnnf The file named by the path parameter does not appear as the value of a code 
keyword in the /etc/master file. 

VRM-snnf The file named by the path parameter does not appear as the name of stanza 
in the /etc/system file. 

VRM-mopn The / etc/master file cannot be opened. 

VRM-sopn The /etc/system file cannot be opened. 

VRM-defpp The vrmconfig program failed. 

VRM-hopt The request parameter is not I a I or I d I • 

VRM-fork The fork system call failed. 

VRM-pnam The path parameter does not specify a valid full path name. 

VRM-iocn The stanza of the /etc/master file that contains code = path does not 
contain definition for the iocn keyword. 

FORKERR The fork system call failed. 

Subroutines 3-377 



vrcppr 

Files 

EXECERR The exee system call failed. 

fete/master 
jete/system 
/etc/vrmconfig 

Related Information 

In this book: "attributes" on page 4-20, "master" on page 4-98, "system" on page 4-139, 
and "config" on page 6-7. 

3-378 AIX Operating System Technical Reference 



I Special Characters I 
.init.state file format 4-3 
-C- prefix 3-129, 3-336, 5-60 
-C-func 3-129, 3-336, 5-60 
-exit system call 2-40 
-NCtolower macro 3-39 
-NCtoupper macro 3-39 
-NCxcol macro 3-267 
-NLxcol macro 3-267 
-tolower subroutine 3-39 
-toupper subroutine 3-39 

a.out file 4-5 
a.out relocation 4-9 
a.out segments 

data 4-5 
stack 4-5 
text 4-5 

a.out structure 4-5 
abort subroutine 3-5 
abs subroutine 3-6 
absolute value function 3-167 
absolute value, integer 3-6 
access 

exclusive 2-64 
access list 

group 2-126, 3-230 
access system call 2-9 
access time 

file 2-180 
access utmp file entry 3-224 
accessibility, determine file 2-9 
accounting 

process 2-11 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

accounting file structure 4-15 
accounting, process file 4-15 
acct file 4-15 
acct system call 2-11 
acos subroutine 3-335 
action 

upon receipt of signal 2-145 
acute accent character 5-10 
add a device 3-15 
add a mini disk 3-19 
add protocol procedure 3-376 
addch subroutine 3-52, 3-134 
addressing 

kernel mode 1-14 
user mode 1-12 

addstr subroutine 3-52, 3-135 

Index 

Advanced Floating-Point Accelerator 3-170, 
3-183 

afork flag 4-16 
AIX file system 1-22 
AIX kernel 1-6 
AIX kernel, rebuild 3-21 
AIX system name 

extended 2-172 
get 2-172 

AIX trace collector 3-362 
alarm clock 

set 2-13 
alarm system call 2-13 
allocating free blocks 1-29 
allocation 

change data segment space 2-14 
free blocks 1-29 
i-number 1-28 

allocator, main memory 3-236 
ANSI floating point 3-170 
APC/881 3-170, 3-183, 3-190 
append 

data to a file 2-184 
apply configuration information 3-21 

Index X-I 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

ar file 4-18 
arc subroutine 3-296 
arccosine function 3-335 
archive file format 4-18 
archive file member structure 4-18 
archive format, cpio 4-41 
arcsine function 3-335 
arctangent function 3-335 
argc parameter 2-35 
argument list, print 3-374 
argv parameter 2-35 
ASCII character set 5-3 
ASCII controls 5-11 
ASCII facility 5-3 
ASCII to floating-point conversion 3-8 
ASCII to integer conversion 3-4 
asctime subroutine 3-46 
as in subroutine 3-335 
assembler output file 4-5 
assert subroutine 3-7 
assertion verification 3-7 
assign a DOS Services drive 3-70 
assign buffering to a stream 3-330 
at an subroutine 3-335 
atan2 subroutine 3-335 
atof subroutine 3-8 
atoi subroutine 3-347 
atol subroutine 3-347 
atomic operation 2-150 
attach 

mapped file 2-131 
shared memory segment 2-131 

attribute file 3-23 
attribute file, close 3-25 
attribute file, read stanza 3-31 
attribute files 3-27, 3-29 
attributes 

file system 4-64 
attributes file 4-20 
attroff subroutine 3-52 
attron subroutine 3-52 
attrset subroutine 3-52 
automatic new line mode (AUTONL) 6-69 
AUTONL mode 6-69 
a641 subroutine 3-4 

backend 
burst pages B-3 
exi t codes B-7 
extra print copies B-6 
job charge B-6 
job status information B-6 
return error messages B-7 
routines in libqb B-8 
SIGTERM terminate B-8 
waiting state B-8 

backends B-1 
backup file 4-23 
baudrate subroutine 3-52 
beep subroutine 3-52, 3-136 
bessel subroutines 3-9 
bffree kernel subroutine C-29 
bfget kernel subroutine C-28 
binary input/output 3-192 
binary search 3-11 
binary search trees 3-364 
binary synchronous communications 6-11 
BIOCA C-28 
BISYNC 6-11 
block 

signal delivery 2-143 
block I/O communication area (BIOCA) C-28 
block 0 layout 1-25 
blocked signals 

release 2-150 
blocks 

allocation of free 1-29 
data 1-28 
delayed 2-163 
free 1-28 
superblock 1-25 

bootstrap 1-9, 4-3 
box subroutine 3-53, 3-136 
brelse kernel subroutine C-28 
breve accent character 5-10 
brk system call 2-14 
BRKINT 6-117 

X-2 AIX Operating System Technical Reference 



bsc device driver 6-11 
BSDLY 6-118 
bsearch subroutine 3-11 
BSO 6-118 
BS1 6-118 
buffer subsystem 1-36 
buffered I/O 3-342 
buffering assignment to a stream 3-330 
buffers C-15 
build kernel C-51 
bus 

I/O 1-37 
bus special file 6-5 
byte swapping 3-349 

-C- prefix 3-129, 3-336, 5-60 
-C-func 3-129, 3-336, 5-60 
caddr-t data type 5-75 
call switch table 1-36 
calling sequence v 
calloc subroutine 3-236 
calls 

to devices 1-40 
calls, AIX supervisor 

See system calls 
calls, function 

See kernel subroutines 
See subroutines 

calls, kernel 
See kernel subroutines 
See system calls 

calls, routine 
See kernel subroutines 
See subroutines 

calls, subroutine 
See kernel subroutines 
See subroutines 

calls, supervisor, AIX 
See system calls 

calls, system 
See system calls 

cancel sound 6-67 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

caron accent character 5-10 
case 

conversion 3-39, 3-276, 3-278 
translation 3-39, 3-276 

CBAUD 6-119 
cbox subroutine 3-136 
cbreak subroutine 3-53 
cc.cfg file 4-29 
cedilla accent character 5-10 
ceil subroutine 3-167 
ceiling function 3-167 
cfgabdds subroutine 3-13 
cfgadev subroutine 3-15 
cfgamni subroutine 3-19 
cfgaply subroutine 3-21 
cfgcadsz subroutine 3-23 
cfgcclsf subroutine 3-25 
cfgcdlsz subroutine 3-27 
cfgcopsf subroutine 3-29 
cfgcrdsz subroutine 3-31 
cfgddev subroutine 3-33 
cfgdmni subroutine 3-36 
change 

access permissions 2-18 
current directory 2-16 
data segment space allocation 2-14 
effective root directory 2-23 
file mode 2-18 
group of a file 2-21 
owner of a file 2-21 

change current DOS Services directory 3-72 
change current DOS Servicesdrive 3-72 
change DOS file mode 3-74 
change fonts 6-71 
change modification date of DOS file 3-108 
change priority 

of a process 2-88 
channel 

create 2-95 
character 

conversion 3-278 
lists C-25 
single shift 5-9 
two-byte 5-9 

character classification 3-49 
international character support 3-270 

Index X-3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

character code processing 6-69 
character codes 5-24 
character collation 

code point 3-280 
international character support 3-267 

character I/O 3-369 
character set 

ASCII 5-3 
character set definition 6-69 
character translation 3-39, 3-276 
character, get from stream 3-204 
characteristics 

virtual machine 1-3 
characteristics, device 4-57 
characters 

international character support 3-276 
characters, nonspacing 5-10 
characters, two-byte 5-9 
chdir system call 2-16 
check whether trace channel is enabled 3-357 
chgat subroutine 3-136 
child process 1-17, 2-46 

control 2-102 
wait for termination of 2-182 

child process times 
get 2-165 

chmod system call 2-18 
chown system call 2-21 
chownx system call 2-21 
chroot system call 2-23 
circle subroutine 3-296 
circumflex accent character 5-10 
classify characters 3-49 
clear subroutine 3-53, 3-137 
clearerr macro 3-165 
clearok subroutine 3-53, 3-137 
clists C-25 
CLOCAL 6-120 
clock 

set alarm 2-13 
clock rate 2-165 
clock resolution 3-38 
clock subroutine 3-38 
close 

a file 2-25 
close a stream 3-163 

close all files 3-112 
close an attribute file 3-25 
close routine (ddclose) C-7 
close system call 2-25 
closepl subroutine 3-296 
closing a DOS file 3-75 
clrtobot subroutine 3-53, 3-137 
clrtoeol subroutine 3-53, 3-137 
cnt-t data type 5-75 
code page 5-5, 5-6, 5-7, 5-8, 5-9 

PO 5-6, 5-25 
PI 5-7, 5-33 
P2 5-8,5-40 
switching 5-9 

code point 5-5 
character collation 3-280 

collector, AIX errors 3-126 
color palette, setting 6-70 
colorend subroutine 3-137 
colorout subroutine 3-138 
COLUMNS variable 3-353 
communication, interprocess 2-5, 3-198 
communications 6-11 
compile regular expression 3-318 
complementary error function 3-125 
config device driver 6-7 
config device driver structure 6-9 
config disk structure 6-8 
configuration information, apply 3-21 
connect. con file 4-33 
construct a unique file name 3-247 
construct the name for a temporary file 3-355 
cont subroutine 3-296 
contents 

directory 1-30 
control 

execution of child process 2-102 
file 2-44 
I/O devices 2-56 

control characters 5-11 
control operations 

shared memory 2-135 
control registers 

virtual machine 1-4 
control sequence, virtual terminal data 6-61 
control sequences 5-13 

X-4 AIX Operating System Technical Reference 



controlling terminal interface 6-131 
controls 5-10 
conversion subroutines 3-276 
convert 

ASCII string to floating-point number 3-8 
convert base-64 ASCII to long integer 3-4 
convert between 3-byte integers and long 
integers 3-232 

convert date and time to string 3-46 
convert floating-point number to string 3-121 
convert formatted input 3-325 
convert long integer to base-64 ASCII 
string 3-4 

convert string to integer 3-347 
copyin kernel subroutine C-14 
copyout kernel subroutine C-14 
core file 4-39 
cos subroutine 3-335 
cosh subroutine 3-337 
cosine function 3-335 
costomize files C-45 
cpass kernel subroutine C-12 
cpio file 4-41 
cpio structure 4-41 
CPU time used report 3-38 
CRDLY 6-118 
CREAD 6-120 
creat system call 2-27 
create 

interprocess channel 2-95 
new file 2-27 
new process 2-46 

create a directory 3-90 
create a DOS temporary file 3-92 
create a temporary file 3-354 
create-ipc-prof subroutine 3-40.2 
creating a DOS file 3-76 
creating backends B-1 
cresetty subroutine 3-138 
crmode subroutine 3-138 
crypt subroutine 3-42 
CRO 6-118 
CR1 6-118 
CR2 6-118 
CR3 6-118 
csavetty subroutine 3-138 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

CSIZE 6-120 
CSTOPB 6-120 
ctermid subroutine 3-44 
ctime subroutine 3-46 
ctype macros 3-49 
current directory, full path name 3-96 
current directory, get path name of 3-206 
current directory, path name 3-96 
current DOS Services directory, change 3-72 
current DOS Services drive, change 3-72 
current signal mask 

setting 2-152 
curses subroutine library 3-51 
cursor representation 6-72 
cuserid subroutine 3-62 
customize 

files C-45 
helper program C-50 

customize file format C-46 
customize files 

/etc/ddi C-48 
/etc/master C-47 
/etc/system C-46 
relationships C-48 

customize helper 3-13 
customize helper program C-50 

daddr-t data type 5-75 
daemon, trace 3-359 
data 

append to a file 2-184 
lock 2-97 
unlock 2-97 

data access 
machine-independen t 3-334 

data base subroutines 
data base, terminal capability 4-148 
data blocks 1-28 
data segment 1-12 

change space allocation 2-14 
data stream 

3270 6-11 

Index X-5 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

data structures 
file system 1-33 
I/O 1-38 

data types, defined 5-75 
data types, major 

monitor mode 6-73 
date format 3-288 
date to string conversion 3-46 
date, modification, change 3-108 
daylight external variable 3-46 
dbm subroutines 3-63 
dbminit subroutine 3-63 
ddclose routine C-7 
ddi 4-56, 4-110 
ddi file 4-43 
ddinit routine C-6 
ddintr routine C-9, C-18 
ddioctl routine C-8 
ddopen routine C-6 
ddread routine C-10 
DDS 3-13 
ddselect routine C-11 
ddstrategy routine C-17 
ddwrite routine C-10 
declarations, parameter v 
Define-Code SVC 6-7 
define-device structure 3-13 
define-device SVC 3-13 
del-ipc-prof subroutine 3-64.1 
delay kernel subroutine C-22 
delay-output subroutine 3-53, 3-57 
delch subroutine 3-53, 3-139 
delete a device 3-33 
delete a DOS file 3-110 
delete a mini disk 3-36 
delete protocol procedure 3-376 
delete stanza 3-27 
deleteln subroutine 3-53, 3-139 
delta table format 4-136 
delwin subroutine 3-53, 3-139 
description file, port 4-117 
description, file system 4-64 
descriptions file format 4-56 
descriptor 

file 2-111 
detach 

shared memory segment 2-138 
dev-t data type 5-75 
device characteristics 4-57 
device-dependent information 4-56,4-110 
device driver 1-39 

en try points C-3 
interface routines C-3 
kernel 1-36 
VRM 1-36 

device driver error log C-31 
device driver trace C-32 
device drivers 

See also special files 
definition 1-40 
trace 6-128 

device drivers, installing C-45 
device drivers, writing C-1 
device I/O 1-40 
device interrupt handler C-9, C-18 
device management 1-39 
device number 

major 1-39 
minor 1-39 

device status, DOS Services 3-114 
device switch table 1-36, C-3 
device, add 3-15 
device, delete 3-33 
devices 

See special files 
devinfo structure 4-57, 6-100 
devsw table C-3 
DFT 6-11 
dft device driver 6-11 
diacritic characters 5-10 
dir file 4-60 
direct path 1-30 
directory 

change current 2-16 
change the root 2-23 
create 2-69 

directory change, DOS Services 3-72 
directory creation 3-90 
directory en try 4-60 

create a new 2-62 
remove 2-174 

directory entry" .. " 4-60 

X-6 AIX Operating System Technical Reference 



directory entry"." 4-60 
directory file 1-23 
directory file structure 4-60 
directory format 4-60 
directory removal, DOS Services 3-102 
directory, full path name of current 3-96 
directory, path name of current 3-206 
directoy contents 1-30 
disclaim system call 2-30 
disk buffer headers C-27 
disk buffers C-15 
diskette file 6-17 
diskette structure 6-17 
display symbols 5-24 
display, changing physical 6-67 
dispsym definition 5-24 
distance function, euclidean 3-229 
Distributed Function Terminal 6-11 
DOS Services assign 3-70 
DOS Services directory, change 3-72 
DOS Services drive, change 3-72 
DOS Services environment, initialize 3-85 
DOS Services file handle duplication 3-78 
DOS Services program execution 3-79 
DOS Services subroutine library 3-65 
DOS Servicesdirectory removal 3-102 
DOS file access 3-65 
DOS file creation 3-76 
DOS file lock 3-88 
DOS file mode, change 3-74 
DOS file modification date, change 3-108 
DOS file read 3-98 
DOS file read/write pointer, move 3-104 
DOS file rename 3-100 
DOS file status, get 3-106 
DOS file system D-1 
DOS file write 3-116 
DOS file, close 3-75 
DOS file, delete 3-110 
DOS file, open 3-94 
DOS file, unlink 3-110 
DOS files synchronization 3-83 
DOS function call table D-2 
DOS function calls D-2 
DOS programs, porting D-1 
DOS temporary file creation 3-92 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

dosassign subroutine 3-70 
doschdir subroutine 3-72 
doschmod subroutine 3-74 
dosclose subroutine 3~75 
doscreate subroutine 3-76 
dosdup subroutine 3-78 
dosexecve subroutine 3-79 
dosfirst subroutine 3-81 
dosfstat subroutine 3-106 
dosfsync subroutine 3-83 
dosinit subroutine 3-85 
doslock subroutine 3-88 
dosmkdir subroutine 3-90 
dosmktemp subroutine 3-92 
dosnext subroutine 3-81 
dosopen subroutine 3-94 
dospwd subroutine 3-96 
dosread subroutine 3-98 
dosrename subroutine 3-100 
dosreopen subroutine 3-112 
dosrmdir subroutine 3-102 
dosseek subroutine 3-104 
dosstat subroutine 3-106 
dostouch subroutine 3-108 
dosunlink subroutine 3-110 
dosunopen subroutine 3-112 
dosustat subroutine 3-114 
doswrite subroutine 3-116 
double acute accent character 5-10 
doupdate subroutine 3-53 
drand48 subroutine 3-118 
drawbox subroutine 3-139 
drive change, DOS Services 3-72 
drive, DOS Services, assign 3-70 
driver format, message 6-105 
driver, event-tracing 6-128 
drivers 

hft 6-23 
drivers, device 

See special files 
drivers, writing device C-1 
drsname subroutine 3-120.1 
drsnidd subroutine 3-120.1 
dsstate system call. 2-30.2 
dup system call 2-32 
duplicate an open file descriptor 2-32 

Index X-7 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

duplicating a DOS Services file handle 3-78 

EBCDIC character set 5-45 
ecactp subroutine 3-140 
ecadpn subroutine 3-140 
ecaspn subroutine 3-140 
ecblks subroutine 3-140 
ecbpls subroutine 3-141 
ecbpns subroutine 3-141 
ecdfpl subroutine 3-142 
ecdppn subroutine 3-143 
ecdspl subroutine 3-143 
ecdvpl subroutine 3-144 
ecflin subroutine 3-145 
ECHO 6-120 
echo subroutine 3-53, 3-147 
ECHOE 6-121 
ECHOK 6-121 
ECHONL 6-121 
ecpnin subroutine 3-147 
ecrfpl subroutine 3-148 
ecrfpn subroutine 3-148 
ecrlpl subroutine 3-148 
ecrmpl subroutine 3-149 
ecscpn subroutine 3-149 
ecshpl subroutine 3-149 
ectitl subroutine 3-150 
ecvt subroutine 3-121 
edata 3-123 
emulation, hft 6-54 
encrypt subroutine 3-42 
encrypted password 4-113 
encryption, password 3-42 
end 3-123 
endgrent subroutine 3-210 
endpwent subroutine 3-219 
endutent subroutine 3-224 
endwin subroutine 3-53, 3-150 
enhanced signal facilities 2-156 
entries in name list, obtaining 3-283 
entry points, device driver C-3 
environ global variable 2-35 

environment 2-35 
environment alteration 3-310.1 
environment facility 5-47 
environment setting 4-127 
environment subroutines 3-208, 3-280 

getenv 3-208 
NLgetenv 3-208 

environment variable, value of 3-208 
environment, initialize DOS Services 3-85 
envp parameter 2-35 
eof character 6-115 
eol character 6-115 
eqn special character definitions 5-54 
eqnchar facility 5-54 
erand48 subroutine 3-118 
erase 

portion of a file 2-42 
erase character 6-115 
erase subroutine 3-53, 3-150, 3-296 
erasechar subroutine 3-53 
erf subroutine 3-125 
erfc subroutine 3-125 
errfile file 4-62 
errno 3-294 
errno values A-1 
errno.h A-1 
error codes A-1 
error collector, AIX 3-126 
error file 6-15 
error function 3-125 
error-handling function 3-238 
error log, device driver C-31 
error log, kernel C-31 
error logging 6-15 
error messages 3-294 
error numbers A-1 
error values A-1 
errprintf kernel subroutine C-30 
errsave kernel subroutine C-31 
errunix subroutine 3-126 
escape sequences 5-13 
etext 3-123 
euclidean distance function 3-229 
event log file 4-62 
event logging 6-15 
event-tracing driver 6-128 

X-8 AIX Operating System Technical Reference 



exception handling, floating-point 3-188 
exclusive access 

to a file region 2-64 
exec system call 2-34 
execl system call 2-34 
execle system call 2-34 
execlp system call 2-34 
execute 

file 2-34 
execute a program with a DOS path name 3-79 
execution monitor 3-248 
execution profile 3-248 
execution suspension 3-338 
execution time 

profile 2-99 
execv system call 2-34 
execve system call 2-34 
execvp system call 2-34 
exit system call 2-40 
-exit system call 2-40 
exp subroutine 3-128 
exponential function 3-128 
exponentiation 3-128 
expression, regular 3-318, 3-321 
extended AlX system name 2-172 
extended curses subroutine library 3-131 
extended message receive 2-85 
extended path name C-20 
extended read 2-106 
extended subroutine 3-150 
externals 

edata 3-123 
end 3-123 
etext 3-123 

F -DUPFD 2-44 
F-GETFD 2-44 
F -GETFL 2-44.1 
F -GETLK 2-44.1 
F-SETFD 2-44.1 
F -SETFL 2-44.1 
F -SETLK 2-44.2 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

F -SETLKW 2-44.2 
fabs subroutine 3-167 
facilities 

mm 5-62 
regexp 3-321 

facilities, miscellaneous 
See miscellaneous facilities 

fault generation, lOT 3-5 
fclear system call 2-42 
fclose subroutine 3-163 
fcntl system call 2-44 
fcntl.h header file 5-56 
fcvt subroutine 3-121 
fd devinfo structure 6-18 
fd file 6-17 
fdopen subroutine 3-168 
feof macro 3-165 
ferror macro 3-165 
fetch subroutine 3-63 
FFDLY 6-118 
fflush subroutine 3-163 
ffullstat system call 2-50.2 
FFO 6-118 
FFI 6-118 
fgetc subroutine 3-204 
fgets subroutine 3-221 
fifo 

create 2-69 
file 2-90, 2-106 

accessibility, determine 2-9 
close a 2-25 
control 2-44 
create 2-69 
creation 2-27 
directory en try 

create a new 2-62 
erase portion of 2-42 
execu te 2-34 
lock a region 2-64 
mode change 2-18 
open to read or write 2-90 
read from 2-106 
read from, extended 2-106 
rewrite 2-27 
shorten 2-50 
unlock a region 2-64 

Index X-9 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

write 2-184 
write changes 2-48 

file access 
set time 2-180 

file control 2-3 
file creation mask 

get 2-169 
set 2-169 

file creation, DOS, temporary 3-92 
file creation, temporary 3-354 
file descriptor 2-111 

close 2-25 
duplication 2-32 

file entry, group, obtaining 3-210 
file entry, utmp access 3-224 
file formats 

archive 4-18 
process accounting 4-15 

file i/o subsystem 1-36 
file maintenance 2-3 
file mapping 2-7 
file member, archive structure 4-18 
file mode change, DOS 3-74 
file modification 

set time 2-180 
file name generation, terminal 3-44 
file name, construct 3-247 
file name, make 3-247 
file naming, temporary files 3-355 
file pointer 

read/write 2-67 
file pointer repositioning 3-196 
file status 

obtain 2-159 
file status, DOS, get 3-106 
file synchronization, DOS 3-83 
file system 

backup format 4-23 
data structures 1-33 
DOS D-1 
layout 1-25 
mount 2-71 
statistics 2-178 
unmount 2-170 

file system attributes 4-64 
file system description 4-64 

file system management 1-22 
file system table 4-108 
file tree, read 3-200 
file types 1-23 

directory 1-23 
ordinary 1-24 
special 1-24 

file, assembler output 4-5 
file, link editor output 4-5 
file, storage image 4-39 
fileno macro 3-165 
files 

directory 2-69 
header vii 
mapped 2-7 
ordinary 2-69 
special 1-40, 2-69, 2-71 

files, device 
See special files 

files, special 
See special files 

filesystems file 4-64 
find DOS files that match a pattern 3-81 
find slot in utmp file for current user 3-368 
find value of user information name 3-223 
find-ipc-prof subroutine 3-166.1 
firstkey subroutine 3-63 
fixterm subroutine 3-53 
flag letter, get from argument vector 3-214 
flash subroutine 3-53, 3-150 
floating-point 

conversion from ASCII 3-8 
Floating-Point Accelerator 3-170, 3-183 
floating-point exception handling 3-188 
floating-point numbers manipulation 3-194 
floating-point subroutines, ANSI/IEEE 3-170 
floating-point to string conversion 3-121 
floor function 3-167 
floor subroutine 3-167 
fl ush a stream 3-163 
flushinp subroutine 3-53 
fmod subroutine 3-167 
font file format 4-68 
font symbols 5-24 
fonts, changing 6-71 
fopen subroutine 3-168 

X-lO AIX Operating System Technical Reference 



fork 2-46 
form v 
format v,3-288 

date 3-288 
time 3-288 

format of cpio archive 4-41 
format of SCCS file 4-135 
format specification, text files 4-82 
format, archive 4-18 
format, gps 4-84 
format, message driver 6-105 
format, system volume 4-74 
formats 

directory 4-60 
event log file 4-62 
in ode 4-92 
master 4-98 
SCCS delta table 4-136 
SCCS file 4-135 

formats, file 
See file formats 

formatted input conversion 3-325 
formatted output, print 3-300 
formatted varargs argument list, print 3-374 
formatting a permuted index, macro 
package 5-63 

FP-DOUBLE 3-170 
FP_FLOAT 3-170 
fpfp subroutines 3-170 
fprintf subroutine 3-300 
fputc subroutine 3-309 
fputs subroutine 3-313 
fread subroutine 3-192 
free-block list 1-28 
free blocks 

allocation 1-29 
free kernel subroutine C-25 
free subroutine 3-236 
freopen subroutine 3-168 
frexp subroutine 3-194 
fs file 4-74 
fscanf subroutine 3-325 
fseek subroutine 3-196 
fspec file 4-82 
fstat system call 2-159 
fsync system call 2-48 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

ftell subroutine 3-196 
ftok subroutine 3-198 
ftruncate system call 2-50 
ftw subroutine 3-200 
fubyte kernel subroutine C-14 
fullbox subroutine 3-151 
fullstat structure 5-56.2 
fulls tat system call 2-50.2 
fullstat.h header file 5-56.2 
function calls 

DOS D-2 
function libraries 

See libraries 
function, complementary error 3-125 
function, error 3-125 
function, error-handling 3-238 
function, euclidean distance 3-229 
functions 

See also kernel subroutines 
See also subroutines 
absolute value 3-167 
ceiling 3-167 
floor 3-167 
remainder 3-167 

functions hyperbolic 3-337 
functions, trigonometric 3-335 
fuword kernel subroutine C-14 
fwrite subroutine 3-192 

gamma function 3-202 
gamma subroutine 3-202 
gcvt subroutine 3-121 
generate file name for terminal 3-44 
generate pseudo-random numbers 3-317 
generating an lOT fault 3-5 
geometric text font 4-72.4 
get 

file status 2-159 
group IDs 2-55 
message queue identifier 2-76 
process IDs 2-54 
time 2-164 

Index X-II 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

user IDs 2-55 
get a string from a stream 3-221 
get character or word from stream 3-204 
get DOSfile status 3-106 
get file system statistics 2-178 
get group file entry 3-210 
get login name 3-212 
get names from name list 3-283 
get option letter from argument vector 3-214 
get password file entry 3-219 
get path name of current directory 3-206 
get status of DOS Services device 3-114 
get the name of a terminal 3-367 
get user name 3-62 
getc kernel subroutine C-26 
getc macro 3-204 
getcb kernel subroutine C-27 
getcf kernel subroutine C-26 
getch subroutine 3-53, 3-151 
getchar macro 3-204 
getcwd subroutine 3-206 
geteblk kernel subroutine C-28 
getegid system call 2-55 
getenv subroutine 3-208 
geteuid system call 2-55 
getgid system call 2-55 
getgrent subroutine 3-210 
getgrgid subroutine 3-210 
getgrnam subroutine 3-210 
getgroups system call 2-52 
getlogin subroutine 3-212 
getopt subroutine 3-214 
getpass subroutine 3-217 
getpgrp system call 2-54 
getpid system call 2-54 
getppid system call 2-54 
getpw subroutine 3-218 
getpwent subroutine 3-219 
getpwnam subroutine 3-219 
getpwuid subroutine 3-219 
gets subroutine 3-221 
getstr subroutine 3-53, 3-152 
gettmode subroutine 3-53, 3-152 
getuid system call 2-55 
getuinfo subroutine 3-223 
getutent subroutine 3-224 

getutid subroutine 3-224 
getutline subroutine 3-224 
getw subroutine 3-204 
getyx subroutine 3-53, 3-152 
gmtime subroutine 3-46 
goto, nonlocal 3-332 
gps format 4-84 
graphic output file format 4-115 
graphic symbols 5-24 
graphics interface 4-115 
graphics interface subroutines 
grave accent character 5-10 
Greek characters 5-58 
greek facility 5-58 
group access list 3-230 

get 2-52 
set 2-126 

group file 4-87 
group file entry, obtaining 3-210 
group ID 

set 2-129 
set for a process 2-128 

group ID of a file 
change 2-21 

group ID translation 2-21 
group IDs 

get 2-55 
gsbply subroutine 7-20 
gscarc subroutine 7-22 
gscatt subroutine 7-24 
gsccnv subroutine 7-26 
gscir subroutine 7-29 
gsclrs subroutine 7-31 
gscmap subroutine 7-32 
gscrca subroutine 7-34 
gsdpik subroutine 7-36 
gseara subroutine 7 -38 
gsearc subroutine 7-40 
gsecnv subroutine 7-42 
gsecur subroutine 7-45 
gsell subroutine 7-46 
gsepik subroutine 7-48 
gseply subroutine 7-50 
gsevds subroutine 7-52 
gseven subroutine 7-54 
gsevwt subroutine 7 -56 

X-12 AIX Operating System Technical Reference 



gsfatt subroutine 7-63 
gsfci subroutine 7 -65 
gsfell subroutine 7-67 
gsfply subroutine 7-69 
gsfrec subroutine 7-71 
gsgtat subroutine 7 -73 
gsgtxt subroutine 7-78 
gsignal subroutine 3-340 
gsinit subroutine 7-80 
gslatt subroutine 7-84 
gslcat subroutine 7 -86 
gsline subroutine 7-88 
gslock subroutine 7-90 
gslop subroutine 7-92 
gslpat subroutine 7-95 
gsmask subroutine 7-97 
gsmatt subroutine 7 -99 
gsmcur subroutine 7-102 
gsmult subroutine 7-104 
gspcls subroutine 7-106 
gsplym subroutine 7-108 
gspoly subroutine 7-110 
gspp subroutine 7-112 
gsqdsp subroutine 7-114 
gsqfnt subroutine 7-117 
gsqgtx subroutine 7-119 
gsqloc subroutine 7-121 
gsrrst subroutine 7-123 
gsrsav subroutine 7-125 
gstatt subroutine 7-128 
gsterm subroutine 7-131 
gstext subroutine 7-132 
gsulns subroutine 7-134 
gsunlk subroutine 7-136 
gsvgrn subroutine 7-137 
gsxblt subroutine 7-139 
gsxcnv subroutine 7-146 
gsxptr subroutine 7-148 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

handle, duplicating 3-78 
handler, interrupt C-9, C-18 
hardware access 

RT PC D-7 
has-ic subroutine 3-53 
has-il subroutine 3-53 
hash tables 3-227 
hcreate subroutine 3-227 
HD devinfo structure 6-21 
hdestroy subroutine 3-227 
head, of screen manager ring 6-50 
header files vii 
help text, issue 3-252 
help text, retrieve 3-263 
helper, customize 3-13 
hft device, query 3-352 
hft driver 6-23 
hft emulation 6-54 
hft, remote 6-54 
history file 4-89 
hole 

make in a file 2-42 
hsearch subroutine 3-227 
HUPCL 6-120 
hyperbolic cosine function 3-337 
hyperbolic functions 3-337 
hyperbolic sine function 3-337 
hyperbolic tangent function 3-337 
hypot subroutine 3-229 

i-list layout 1-26 
i-node layout 1-27 
i-nodes 

update 2-163 
i-number allocation 1-28 
I/O 2-3 
I/O activity 

wait for 2-111 
I/O bus 1-37 

Index X-I3 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

I/O data structures 1-38 
I/O devices 

See also special files 
control operations 2-56 

I/O overview 1-34 
I/O status 

check 2-111 
I/O, buffered 3-342 
ICANON 6-120 
ICRNL 6-117 
idlok subroutine 3-53 
IEEE floating point 3-170 
ieeetrap subroutine 3-189 
IGNBRK 6-117 
IGNCR 6-117 
IGNPAR 6-117 
ilog file 4-170 
image, memory 6-103 
image, virtual memory 6-103 
immediate message, issue 3-255 
inch subroutine 3-54, 3-152 
init routine (ddinit) C-6 
.init.state file format 4-3 
initgroups subroutine 3-230 
initial AIX state 4-3 
initialize DOS Services environment 3-85 
initialize group access list 3-230 
initiate a pipe to or from a process 3-298 
initscr subroutine 3-54, 3-153 
INLCR 6-117 
ino-t data type 5-75 
inode format 4-92 
inode structure 4-92 
INPCK 6-117 
input stream, put character back 3-369 
input/output 2-3 
input/output devices 

control operations 2-56 
input/output, buffered 3-342 
input/output, device 1-40 
input, binary 3-192 
inquiry, stream status 3-165 
insch subroutine 3-54, 3-153 
insert mode 6-69 
insert, retrieve 3-263 
insertln subroutine 3-54, 3-153 

install protocol procedure 3-376 
installing device drivers C-45 
integer absolute value 3-6 
integer from string conversion 3-347 
integer to ASCII conversion 3-4 
interface control, terminal 6-131 
interface routines, device driver C-3 
interface, graphics 4-115 
international character support 3-288 

character classification 3-270 
character collation 3-267 
character conversion 3-39 
date format 3-288 
environment 3-280, 5-47 
formatted output 3-300 
NLchar data type 3-276 
parameter fetching 3-281 
string conversion 3-278 
string handling 3-288, 3-291 
string operations 3-272, 3-285 
time format 3-288 
time structure 3-291 

interprocess channel 
create 2-95 

interprocess communication 2-5, 3-198 
interrupt handler C-9, C-18 
interrupt handler. C-18 
interrupt-level processing C-9, C-18 
interrupt level, sublevel C-18 
intr character 6-115 
intr routine (ddintr) C-9, C-18 
intrflush subroutine 3-54 
ioctl routine (ddioctl) C-8 
ioctl system call 2-56 
iodone kernel subroutine C-17 
iomove kernel subroutine C-13 
lOT fault generation 3-5 
IPC 2-5 
ipc-perm structure 2-6 
IPC-RMID 2-136 
IPC-SET 2-136 
IPC-STAT 2-135 
IPL 4-3 

virtual machine 2-58, 2-109 
iplvm system call 2-58 
isalnum macro 3-49 

X-14 AIX Operating System Technical Reference 



isalpha macro 3-49 
is ascii macro 3-49 
isatty subroutine 3-367 
iscntrl macro 3-49 
isdigit macro 3-49 
isgraph macro 3-49 
ISIG 6-120 
islower macro 3-49 
isprint macro 3-49 
ispunct macro 3-49 
iss pace macro 3-49 
issue a queued message 3-259 
issue a shell command 3-350 
issue an immediate message 3-255 
issue help text 3-252 
ISTRIP 6-117 
isupper macro 3-49 
isxdigi t macro 3-49 
IUCLC 6-117 
IXANY 6-117 
IXOFF 6-117 
IXON 6-117 

jrand48 subroutine 3-118 
jO, jl, jn subroutines 3-9 

kaf file format 4-94 
kernel calls 

See kernel subroutines 
See system calls 

kernel device driver 1-36 
kernel error log C-31 
kernel features 1-8 
kernel functions 

file system management 1-7 
memory management 1-7 
process management 1-7 
program management 1-8 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

resource management 1-8 
time management 1-7 

kernel mode 1-10 
kernel mode addressing 1-14 
kernel rebuild C-51 
kernel subroutines 

bffree C-29 
bfget C-28 
brelse C-28 
copyin C-14 
copyou t C-14 
cpass C-12 
delay C-22 
errprin tf C-30 
errsave C-31 
free C-25 
fubyte C-14 
fuword C-14 
getc C-26 
getcb C-27 
getcf C-26 
geteblk C-28 
iodone C-17 
iomove C-13 
kmsgctl C-24 
kmsgget C-24 
malloc C-25 
palloc C-25 
panic C-30 
passc C-13 
printf C-30 
psignal C-24 
putc C-26 
putcb C-27 
putcf C-27 
rmsgrcv C-24.1 
rmsgsnd C-24 
selwakeup C-12 
setmpx C-20 
sleep C-21 
splhi C-19 
splx C-19 
splO-sp17 C-19 
subyte C-13 
suword C-13 
timeout C-21 

Index X-15 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

trsave C-32 
untimeout C-22 
usrchar C-20 
vec-clear C-18 
vec-init C-18 
wakeup C-21 

kernel trace C-32 
kernel trap routine 1-35 
kernel, AIX, rebuild 3-21 
key-t data type 5-75 
keyboard 6-79 
keypad subroutine 3-54,3-153 
keywords, ddi 4-56 
kill character 6-115 
kill system call 2-60 
killchar subroutine 3-54 
kmem file 6-103 
kmsgctl kernel subroutine C-24 
kmsgget kernel subroutine C-24 

label subroutine 3-296 
label-t data type 5-75 
layout 

block 0 1-25 
file system 1-25 
i-list 1-26 
i-node 1-27 
superblock 1-25 

Icong48 subroutine 3-118 
ldexp subroutine 3-194 
leaveok subroutine 3-54, 3-154 
letter, option, get from argument vector 3-214 
level, interrupt C-18 
level-t data type 5-75 
lfind subroutine 3-234 
libPW subroutine library 3-305 
libraries 

DOS Services 3-65 
extended curses 3-131 
programmers workbench 3-305 
standard I/O 3-342 

light-emitting diodes, setting 6-64 

limits 
user 2-167 

line subroutine 3-296 
linear congruential algorithm 3-118 
linear search and update 3-234 
linemod subroutine 3-296 
LINES variable 3-352 
link 

create 2-62 
link editor output file 4-5 
link system call 2-62 
list 

free-block 1-28 
lists 

character C-25 
loadtbl system call 2-62.2 
localtime subroutine 3-46 
locator thresholds 6-64 
lock 

data 2-97 
process 2-97 
region of a file 2-64 
text 2-97 

lock a region of a DOS file 3-88 
lockf system call 2-64 
log errors C-31 
log subroutine 3-128 
log trace entry C-32 
logarithm 3-128 
login name 3-62 
login name of user, obtaining 3-233 
login name, get 3-212 
login, remote 6-107 
logname subroutine 3-233 
log10 subroutine 3-128 
long integers from 3-byte integers 3-232 
longjmp subroutine 3-332 
longname subroutine 3-54, 3-154 
lp special file 6-98 
lprio structure 6-100 
lprmode structure 6-100 
LPRUDE structure 6-101 
Irand48 subroutine 3-118 
lsearch subroutine 3-234 
lseek system call 2-67 
ltol3 subroutine 3-232 

X-I6 AIX Operating System Technical Reference 



13tol subroutine 3-232 
164a subroutine 3-4 

machine-independent data access 3-334 
macro definitions vii 
macro package for formatting a permuted 
index 5-63 

macron accent character 5-10 
macros 

-NCtolower 3-39 
-NCtoupper 3-39 
-tolower 3-39 
-toupper 3-39 
clearerr 3-165 
ctype 3-49 
feof 3-165 
ferror 3-165 
fileno 3-165 
getc 3-204 
getchar 3-204 
isalnum 3-49 
isal pha 3-49 
isascii 3-49 
iscn tr I 3-49 
isdigi t 3-49 
isgraph 3-49 
islower 3-49 
isprint 3-49 
ispunct 3-49 
iss pace 3-49 
isupper 3-49 
isxdigit 3-49 
NCesc 3-39 
NCunesc 3-39 
putc 3-309 
putchar 3-309 
varargs 3-371 

magic number 2-34 
main memory allocator 3-236 
main subroutine 2-35 
maintenance 2-3 
maintenance mode 4-3 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

make 
hole in a file 2-42 

make a unique file name 3-247 
malloc kernel subroutine C-25 
malloc subroutine 3-236 
management 

device 1-39 
manipulate parts of floating-point 
numbers 3-194 

mapped file 
attach 2-131 

mapped files 2-7 
mask 

file creation 2-169 
master file 4-98 
master format 4-98 
match regular expression 3-318 
math.h header file 5-60 
matherr subroutine 3-238 
mdverify subroutine 3-243 
mem file 6-103 
memccpy 3-245 
memchr 3-245 
memcmp 3-245 
memcpy 3-245 
memory allocator 3-236 
memory control operations 

shared 2-135 
memory image 6-103 
memory image file 6-103 
memory locations 

predefined 1-4 
memory management 1-10 
memory-mapped files 2-7 
memory operations 3-245 
memory segment 

attach to process 2-131 
detach 2-138 
get 2-140 

memory subroutine 3-245 
memory, disclaim 2-30 
memset 3-245 
message 

control operations 2-73 
from queue 2-79 

message control 2-73 

Index X-I7 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

message driver format 6-105 
message file 4-105 
message queue 2-111 

get identifier 2-76 
send message 2-82 

message queues C-24 
message receive 

extended 2-85 
message, issue a queued 3-259 
message, issue an immediate 3-255 
message, retrieve 3-263 
messages, error 3-294 
meta subroutine 3-54, 3-154 
minidisk customizing 6-20 
minidisk, add 3-19 
minidisk, delete 3-36 
minidisks 3-243 
miscellaneous facilities 
mkdir system call 2-68.1 
mknod system call 2-69 
mktemp subroutine 3-247 
mm facility 5-62 
mm macro package 5-62 
mntctl system call 2-70.2 
mnttab file 4-108 
mnttab.h structure 4-108 
mode bit 

set-group-ID 2-36 
set-user-ID 2-36 

mode change, file 2-18 
mode, DOS file, change 3-74 
modes 

kernel 1-10 
user 1-10 

modf subroutine 3-194 
modification date, change, DOS file 3-108 
modification time 

file 2-180 
monitor mode major data type 6-73 
monitor subroutine 3-248 
mount 

file system 2-71 
mount system call 2-71 
mounted file system table 4-108 
move 

read/write file pointer 2-67 

move DOS file read/write pointer 3-104 
move subroutine 3-54, 3-154, 3-296 
m ptx facility 5-63 
mrand48 subroutine 3-118 
msgbuf structure 2-79 
msgctl system call 2-73, C-24 
msgget system call 2-76, C-24 
msghelp subroutine 3-252 
msgimed subroutine 3-255 
msgop system calls 2-79, 2-82, 2-85 
msgqued subroutine 3-259 
msgrcv system call 2-79 
msgrtrv subroutine 3-263 
msgsnd system call 2-82, C-24 
msgxrcv system call 2-85, C-24 
multi-byte characters 5-9 
multi-byte controls 5-13 
m ul ti -user mode 4-3 
multiplexed device C-20 
Multiprotocol Adapter 6-11 
m v facility 5-64 
mvaddch subroutine 3-54, 3-134 
mvaddstr subroutine 3-52, 3-135 
mvchgat subroutine 3-136 
mvcur subroutine 3-54, 3-155 
mvdelch subroutine 3-54, 3-139 
mvgetch subroutine 3-54, 3-151 
mvgetstr subroutine 3-54, 3-152 
mvinch subroutine 3-54, 3-152 
mvinsch subroutine 3-54, 3-153 
mvpaddch subroutine 3-134 
mvpaddstr subroutine 3-135 
mvpchgat subroutine 3-136 
mvprintw subroutine 3-54 
mvscanw subroutine 3-54 
mvwaddch subroutine 3-52,3-134 
mvwaddstr subroutine 3-52, 3-135 
mvwchgat subroutine 3-136 
mvwdelch subroutine 3-54,3-139 
mvwgetch subroutine 3-54, 3-151 
mvwgetstr subroutine 3-54, 3-152 
mvwin subroutine 3-54, 3-155 
mvwinch subroutine 3-54,3-152 
mvwinsch subroutine 3-54, 3-153 
mvwprintw subroutine 3-55 
mvwscanw subroutine 3-55 

X-1S AIX Operating System Technical Reference 



name f?r a temporary file, create 3-355 
name lIst entries, obtaining 3-283 
name of a terminal 3-367 
name of the user 3-62 
name, login 3-212 
name, user login, obtaining 3-233 
name, user, find value 3-223 
NCchrlen macro 3-276 
NCcollate subroutine 3-267 
NCcoluniq subroutine 3-267 
NCctype 3-270 
NCdec macro 3-276 
NCdechr macro 3-276 
NCdecode subroutine 3-276 
NCdecstr subroutine 3-276 
NCenc macro 3-276 
NCencode subroutine 3-276 
NCencstr subroutine 3-276 
NCeqvmap subroutine 3-267 
NCesc macro 3-39 
NCflatchar subroutine 3-39 
NCisalnum subroutine 3-270 
NCisalpha subroutine 3-270 
NCisdigit subroutine 3-270 
NCisgraph subroutine 3-270 
NCislower subroutine 3-270 
NCisNLchar subroutine 3-270 
NCisprint subroutine 3-270 
NCispunct subroutine 3-270 
NCisshift subroutine 3-270 
NCisspace subroutine 3-270 
NCisupper subroutine 3-270 
NCisxdigit subroutine 3-270 
NCstrcat subroutine 3-272 
NCstrchr subroutine 3-272 
NCstrcmp subroutine 3-272 
NCstrcpy subroutine 3-272 
NCstrcspn subroutine 3-272 
NCstring subroutine 3-272 
NCstrlen subroutine 3-272 
NCstrncat subroutine 3-272 
NCstrncmp subroutine 3-272 
NCstrncpy subroutine 3-272 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

NCstrpbrk subroutine 3-272 
NCstrrchr subroutine 3-272 
NCstrspn subroutine 3-272 
NCstrtok subroutine 3-272 
-NCtolower macro 3-39 
NCtolower subroutine 3-39 
NCtoNLchar subroutine 3-39 
-NCtoupper macro 3-39 
NCtoupper subroutine 3-39 
NCunesc macro 3-39 
-NCxcol macro 3-267 
neqn special character definitions 5-54 
new-line character 6-115 
new process image 2-34 
newpad subroutine 3-55 
newterm subroutine 3-55 
newview subroutine 3-155 
newwin subroutine 3-55, 3-156 
nextkey subroutine 3-63 
nice system call 2-88 
nl subroutine 3-55, 3-156 
NLchar data type 3-276 
NLchrlen macro 3-276 
NLconvstr subroutines 3-278 
NLDLY 6-118 
NLecflin subroutine 3-145 
NLescstr subroutine 3-278 
NLflatstr subroutine 3-278 
NLfprintf subroutine 3-300 
NLfscanf subroutine 3-325 
NLgetctab subroutine 3-280 
NLgetenv subroutine 3-208 
NLgetfile 3-281 
NLisNLcp macro 3-276 
nlist subroutine 3-283 
NLO 6-118 
NLprintf subroutine 3-300 
NLscanf subroutine 3-325 
NLsprintf subroutine 3-300 
NLsscanf subroutine 3-325 
NLstrcat subroutine 3-285 
NLstrchr subroutine 3-285 
NLstrcmp subroutine 3-285 
NLstrcpy subroutine 3-285 
NLstrcspn subroutine 3-285 
NLstring 3-285 

Index X-I9 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

NLstrlen subroutine 3-285 
NLstrncat subroutine 3-285 
NLstrncmp subroutine 3-285 
NLstrncpy subroutine 3-285 
NLstrpbrk subroutine 3-285 
NLstrrchr subroutine 3-285 
NLstrspn subroutine 3-285 
NLstrtime subroutine 3-288 
NLstrtok subroutine 3-285 
NLtmtime subroutine 3-291 
NLunescstr subroutine 3-278 
-NLxcol macro 3-267 
NL1 6-118 
nocbreak subroutine 3-53 
nocrmode subroutine 3-138 
nodelay subroutine 3-53, 3-156 
noecho subroutine 3-53, 3-147 
NOFLSH 6-121 
nometa subroutine 3-154 
non-standard tabbing 4-82 
nonl subroutine 3-55, 3-156 
nonlocal goto 3-332 
nonspacing characters 5-10 
noraw subroutine 3-55, 3-158 
nrand48 subroutine 3-118 
null special file 6-104 
number 

magic 2-34 
numbers, pseudo-random 3-118, 3-317 
nvram file 6-103 

OCRNL 6-118 
OFDEL 6-118 
OFILL 6-118 
ogonek accent character 5-10 
OLCUC 6-118 
ONLCR 6-118 
ONLRET 6-118 
ONOCR 6-118 
open a DOS file 3-94 
open a stream 3-168 
open attribute file 3-29 

open file 
to read 2-90 
to write 2-90 

open routine (ddopen) C-6 
open system call 2-90 
openpl subroutine 3-296 
operating system profiler 6-106 
operating system state 1-4 
OPOST 6-118 
oprmode structure 6-101 
option letter, get from argument vector 3-214 
options file format 4-110 
ordinary file 1-24 
os overview 1-3 
osm driver 6-105 
output file, assembler 4-5 
output file, link editor 4-5 
output, binary 3-192 
output, print formatted 3-300 
overcircle accent character 
overdot accent character 5-10 
overlay subrouDMS_tine 3-157 
overlay subroutine 3-55 
overview 

I/O 1-34 
signals 2-4 

overview of system 1-3 
overwrite subroutine 3-55, 3-157 
owner ID translation 2-21 
owner of a file 2-21 

change 2-21 

paddch subroutine 3-134 
paddr-t data type 5-75 
paddstr subroutine 3-135 
palette, setting color 6-70 
palloc kernel subroutine C-25 
panic kernel subroutine C-30 
param.h header file 5-68 
parameter passing 2-35 
parameters v 
PARENB 6-120 

X-20 AIX Operating System Technical Reference 



parent control 
of child process 2-102 

parent directory 4-60 
parent process 1-17, 2-46 
parent process ID 2-54 
PARMRK 6-117 
PARODD 6-120 
passe kernel subroutine C-13 
passing 

parameter 2-35 
passwd file 4-112 
password description 4-113 
password encryption 3-42 
password file entry, get 3-218, 3-219 
password file entry, write 3-312 
password, read 3-217 
path name 

direct 1-30 
relative 1-32 
resolution 1-30 

path name extension C-20 
path name of current directory 3-206 
pattern, finding DOS files that match 3-81 
pause system call 2-94 
PC-DOS programs, porting D-1 
pchgat subroutine 3-136 
pelose subroutine 3-298 
pes font 4-72.4 
perase subroutine 3-150 
permanent storage 

write file to 2-48 
permission 

file access 2-18 
perror subroutine 3-294 
physadr structure 5-75 
pipe initiation 3-298 
pipe system call 2-95 
pixel map 7-142 
plock system call 2-97 
plot file format 4-115 
plot subroutines 3-296 
pnoutrefresh subroutine 3-55 
point subroutine 3-296 
pointer, DOS file read/write, move 3-104 
popen subroutine 3-298 
port description file 4-117 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

porting DOS 3.0 D-1 
ports file 4-117 
portstatus file 4-122 
portstatus structure 4-122 
pow subroutine 3-128 
power (exponentiation) 3-128 
predefined file 4-124 
predefined memory locations 1-4 
prefresh subroutine 3-55 
prf file 6-106 
primitive system data types 5-75 
print 

formatted output 3-300 
print floating-point number 3-121 
print formatted varargs argument list 3-374 
printf kernel subroutine C-30 
printf subroutine 3-300 
printw subroutine 3-55, 3-157 
priority computation 1-20 
priority of a process 

change 2-88 
process 

child 1-17 
creation 2-46 
get IDs 2-54 
get owner 2-176 
lock 2-97 
parent 1-17 
preemption 1-19 
set owner 2-176 
states 1-19 
trace execution 2-102 
unlock 2-97 

process accounting 2-11 
process accounting file 4-15 
process addressing 1-10 
process alarm 2-13 
process communication 

signals 1-20 
process control 2-4 
process creation 1-16 
process data structures 1-14 
process execution 1-16 
process group ID 2-54, 2-128, 2-129 

set 2-128 
process ID 2-54 

Index X-21 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

process identification 2-4 
process image 

new 2-34 
process management 1-9 
process priority 

automatic assignment 1-20 
change 2-88 

process statistics 2-11 
process suspension 2-94 
process termination 2-40 
process times 

child 2-165 
get 2-165 
parent 2-165 

process-to-process communication 2-5 
process trace 2-102 
process user ID 2-129 
processor 

difference, IBM Personal Computer AT and 
032 Microprocessor D-7 

processor user state 1-4 
pro cO 2-60 
proc1 2-60 
profil system call 2-99 
profile 

execution time 2-99 
profile file 4-127 
profile setting 4-127 
profile, execution 3-248 
profiler, operating system 6-106 
program execution, DOS Services 3-79 
programmable character set font 4-72.4 
programmers workbench library 3-305 
protocol modes 6-62 
protocol procedure 3-376 
pseudo-random number generator 3-317 
pseudo-random numbers 3-118 
pseudo-terminal device 6-107 
psignal kernel subroutine C-24 
ptrace system call 2-102 
pty special file 6-107 
publications 

related viii 
push character back into input stream 3-369 
putc kernel subroutine C-26 
pu tc macro 3-309 

putcb kernel subroutine C-27 
putcf kernel subroutine C-27 
putchar macro 3-309 
putenv subroutine 3-310.1 
putp subroutine 3-57 
putpwent subroutine 3-312 
puts subroutine 3-313 
pututline subroutine 3-224 
putw subroutine 3-309 

qconfig file 4-129 
qdaemon to backend interaction B-2 
qsort subroutine 3-315 
query DMA 6-48 
query hft device 3-352, 6-47 
query physical device 6-41 
query physical device identifiers 6-40 
query presentation space 6-46 
query terminal characteristics 3-352 
queue 

message 2-111 
send message to 2-82 

queue identifier 2-76 
queue message 

read 2-79 
store 2-79 

queued message, issue 3-259 
queues, message C-24 
queuing system B-1 
quick sort 3-315 
quit character 6-115 

rand subroutine 3-317 
random-number generator 3-317 
random numbers 3-118 
rasconf file 4-133 
raw I/O C-3 

X-22 AIX Operating System Technical Reference 



raw subroutine 3-55, 3-158 
read 

from a file, extended 2-106 
message from a queue 2-79 
open a file to 2-90 

read a DOS file 3-98 
read a file tree 3-200 
read a password 3-217 
read attribute file stanza 3-31 
read from a file 2-106 
read routine (ddread) C-10 
read system call 2-106 
read/write file pointer 

move 2-67, 3-104 
readx system call 2-106 
realloc subroutine 3-236 
reboot system call 2-109 
rebuild AIX kernel 3-21 
rebuild kernel C-51 
receive 

extended message from queue 2-85 
refresh subroutine 3-55, 3-158 
regcmp subroutine 3-318 
regex subroutine 3-318 
regexp facility 3-321 
registers 1-4 

virtual 1-4 
regular expression 3-318, 3-321 

advance 3-321 
compile 3-318, 3-321 
match 3-318 
step 3-321 

related publications viii 
relative path 1-32 
release 

blocked signals 2-150 
relocation, a.out 4-9 
remainder function 3-167 
remote hft 6-54 
remote login 6-107 
remove 

directory en try 2-174 
remove a DOS Services directory 3-102 
remove protocol procedure 3-376 
rename a DOS file 3-100 
rename system call 2-110.1 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

reopen all files 3-112 
replace mode 6-69 
report CPU time used 3-38 
reposition the file pointer of a stream 3-196 
resetterm subroutine 3-55 
resetty subroutine 3-55, 3-158 
resolution 

path name 1-30 
retrieve a message, insert, or help text 3-263 
return login name of user 3-233 
return node ID 3-120.1 
return node nickname 3-120.1 
return status 1-37 
rewind subroutine 3-196 
rewrite existing file 2-27 
ring, screen manager 6-50 
rmdir system call 2-110.4 
rmsgrcv kernel subroutine C-24.1 
rmsgsnd kernel subroutine C-24 
root directory 

change 2-23 
routine libraries 

See libraries 
routines 

See kernel subroutines 
See subroutines 

RT PC hardware access D-7 

saveterm subroutine 3-55 
savetty subroutine 3-55, 3-158 
sbrk system call 2-14 
scanf subroutine 3-325 
scanw subroutine 3-55, 3-158 
SCCS delta table format 4-136 
SCCS file format 4-135 
sccsfile 4-135 
schedule alarm 2-13 
screen handling package 3-51 
screen manager ring 6-50 
screen optimization package 3-51 
scroll subroutine 3-55, 3-158 
scrollok subroutine 3-55, 3-159 

Index X-23 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

search and update, linear 3-234 
search trees, binary 3-364 
search, binary 3-11 
second-level interrupt handler C-9, C-18 
seed48 subroutine 3-118 
segment 

data 1-12 
stack 1-13 
text 1-12 

sel-attr subroutine 3-159 
select routine (ddselect) C-11 
select support 6-12, 6-28, 6-108, 6-125 
select system call 2-111 
selwakeup kernel subroutine C-12 
semaphores 2-115, 2-119, 2-122 
semctl system call 2-115 
semget system call 2-119 
semop system call 2-122 
send 

message to message queue 2-82 
signal to a process 2-60 
signal to process group 2-60 

send a message to a queue 2-82 
set-group-ID mode bit 2-36 
set time 2-162 
set-user-ID mode bit 2-36 
set-term subroutine 3-55 
setbuf subroutine 3-330 
setgid system call 2-129 
setgrent subroutine 3-210 
setgrou ps system call 2-126 
setjmp subroutine 3-332 
setmpx kernel subroutine C-20 
setpgrp system call 2-128 
setpwent subroutine 3-219 
setscrreg subroutine 3-55 
setterm subroutine 3-56, 3-159 
setting environment 4-127 
setting the profile 4-127 
setuid system call 2-129 
setup-attr subroutine 3-159 
setupterm subroutine 3-58 
setutent subroutine 3-224 
setvbuf subroutine 3-330 
sgetl subroutine 3-334 
shared memory 

control operations 2-135 
shared memory segment 

attach 2-131 
detach 2-138 
get 2-140 

shell command, issue 3-350 
shell environment 2-35 
shell variable 2-35 
shell variable, value of 3-208 
shift, single 5-9 
shmat system call 2-131 
shmctl system call 2-135 
shmdt system call 2-138 
shmget system call 2-140 
shmop system calls 2-131, 2-135, 2-138, 2-140 
shorten a file 2-50 
SIGAIO signal 2-146 
SIGALRM signal 2-146 
sigblock system call 2-143 
SIGBUS signal 2-145 
SIGCLD signal 2-40, 2-41, 2-146, 2-148, 2-182, 

3-262 
SIGDANGER signal 2-145, 2-148 
SIGFPE signal 2-145, 2-148, 2-157, 3-188 
SIGGRANT signal 2-146 
SIGH UP signal 2-41, 2-145 
SIGILL signal 2-145 
SIGINT signal 2-145 
SIGIOINT signal 2-146 
SIGIOT signal 2-145 
SIGKILL signal 2-37, 2-143, 2-145 
SIGMSG signal 2-146 
signal 

block delivery 2-143 
signal action 2-145 
signal-catching function 2-145 
signal facilities 

enhanced 2-156 
signal handler 2-145 
signal mask 

setting 2-152 
signal overview 2-4 
signal stack context 2-154 
signal system call 2-145 
signals 1-20, 2-145, 2-150 

release blocked 2-150 

X-24 AIX Operating System Technical Reference 



signals, device driver C-24 
signals, floating-point 3-188 
signals, software 3-340 
sigpause system call 2-150 
SIGPIPE signal 2-145 
SIGPTY signal 2-146 
SIGPWR signal 2-146, 2-148 
SIGQUIT signal 2-145 
SIGRETRACT signal 2-146 
SIGSEGV signal 2-145 
sigsetmask system call 2-152 
SIGSOUND signal 2-146 
sigstack system call 2-154 
SIGSYS signal 2-145 
SIGTERM signal 2-146 
SIGTRAP signal 2-145 
SIGUSR1 signal 2-146 
SIGUSR2 signal 2-146 
sigvec system call 2-156 
sin subroutine 3-335 
sine function 3-335 
single-byte controls 5-11 
single-shift control 5-9 
single-user mode 4-3 
sinh subroutine 3-337 
sleep kernel subroutine C-21 
sleep subroutine 3-338 
SLIH C-9, C-18 
software 

enhanced signal facilities 2-156 
software signals 3-340 
sort, quick 3-315 
sound data 6-66 
space 

allocation change for data segment 2-14 
space subroutine 3-296 
special character definitions for eqn and 
neqn 5-54 

special file 2-71 
create 2-69 

special files 1-24, 1-40 
specification of text file format 4-82 
splhi kernel subroutine C-19 
splx kernel subroutine C-19 
splO-spl7 kernel subroutines C-19 
sprintf subroutine 3-300 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

sput! subroutine 3-334 
sqrt subroutine 3-128 
square root 3-128 
srand subroutine 3-317 
srand48 subroutine 3-118 
sscanf subroutine 3-325 
ssignal subroutine 3-340 
SSl-SS4 5-9 
stack 

signal 2-154 
stack segment 1-13 
standard I/O 3-309 
standard I/O subroutine library 3-342 
standard interprocess communication 
package 3-198 

standend subroutine 3-56, 3-160 
standout subroutine 3-56, 3-160 
stanza, add 3-23 
stanza, delete 3-27 
stanza, read 3-31 
stanza, replace 3-23 
stanza, write 3-23 
start 

character 6-115 
system 2-109 
virtual machine 2-58 

stat structure 5-69 
stat system call 2-159 
stat.h header file 5-69 
state of processor 

operating system 1-4 
user 1-4 

statistics 
file system 2-178 
process 2-11 

statistics, file system 2-178 
status 

check I/O 2-111 
file 2-159 

status of a DOS file, get 3-106 
status of DOS Services device, get 3-114 
status, stream 3-165 
statusfile parameter B-2 
stdio subroutine library 3-342 
stdipc (ftok subroutine) 3-198 
stime system call 2-162 

Index X-25 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

stop 
wait for child process to 2-182 

stop character 6-115 
storage image file 4-39 
store 

message from a queue 2-79 
store subroutine 3-63 
strategy routine (ddstrategy) C-17 
strcat subroutine 3-344 
strchr subroutine 3-344 
strcmp subroutine 3-344 
strcpy subroutine 3-344 
strcspn subroutine 3-344 
stream closing and flushing 3-163 
stream I/O 3-309 
stream open 3-168 
stream status 3-165 
stream, assigning buffering to 3-330 
stream, data 

3270 6-11 
stream, get character or word from 3-204 
string from a stream, obtaining 3-221 
string handling 3-278 
string operations 3-285, 3-344 

international character support 3-272 
string to integer conversion 3-347 
string, write. to a stream 3-313 
strlen subroutine 3-344 
strncat subroutine 3-344 
strncmp subroutine 3-344 
strncpy subroutine 3-344 
strpbrk subroutine 3-344 
strrchr subroutine 3-344 
strspn subroutine 3-344 
strtod subroutine 3-8 
strtok subroutine 3-344 
strtol subroutine 3-347 
structures 

a.out 4-5 
a.out relocation 4-9 
accounting file 4-15 
archive file member 4-18 
backup 4-23 
cpio 4-41 
Define_Code SVC 6-7 
device driver config 6-9 

devinfo 4-57, 6-100 
directory file 4-60 
disk config 6-8 
diskette customizing 6-17 
fd devinfo 6-18 
fullstat 5-56.2 
HD devinfo 6-21 
inode 4-92 
ipc-perm 2-6 
lprio.h 6-100 
lprmode 6-100 
LPRUDE 6-101 
minidisk customize 6-20 
mnttab.h 4-108 
oprmode 6-101 
portstatus 4-122 
process data 1-14 
stat 5-69 
superblock 4-75 
symbol table 4-10 
tacct.h 4-16 
tape archive header 4-146 
termio 6-116 
VRM 1-6 
VRM Query -Device call 6-9 

structures, file 
See file formats 

sublevel, interrupt C-18 
subroutine libraries 

See libraries 
subroutines 

See also kernel subroutines 
del-ipc_prof 3-64.1 
find-ipc-prof 3-166.1 

subsystem 
buffer 1-36 
file i/o 1-36 

subwin subroutine 3-56, 3-160 
subyte kernel subroutine C-13 
superblock 1-25 

update 2-163 
superbox s.ubroutine 3-160 
supervisor call instruction 1-4 
supervisor calls, AIX 

See system calls 
suspend 

X-26 AIX Operating System Technical Reference 



process 2-94 
suspend execution 3-338 
suword kernel subroutine C-13 
SVCs, AIX 

See system calls 
swab subroutine 3-349 
swap bytes 3-349 
switch table, device C-3 
symbol table structure 4-10 
symbols, display 5-24 
sync system call 2-163 
synchronize a DOS file 3-83 
syntax v 
sys-err list 3-294 
sys-nerr 3-294 
system 

reboot 2-109 
system calls 

difference from subroutines 2-2 
errno values A-I 
functional summary 2-2 

system data types, primitive 5-75 
system error messages 3-294 
system file 4-139 
system name 

extended 2-172 
get 2-172 

system overview 1-3 
system profiler 6-106 
system subroutine 3-350 
system volume format 4-74 

TABDLY 6-118 
table 

call switch 1-36 
device switch 1-36 
DOS function call D-2 

table, mounted file system 4-108 
tabs, non-standard 4-82 
TABO 6-118 
TABI 6-118 
TAB2 6-118 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

TAB3 6-118 
tacct.h structure 4-16 
tail, of screen manager ring 6-50 
tan subroutine 3-335 
tangen t function 3-335 
tanh subroutine 3-337 
tape archive header structure 4-146 
tape driver file 6-111 
tape special file 6-111 
tar file 4-146 
tcflsh 6-126 
tcgeta 6-125 
tcsbrk 6-126 
tcseta 6-125 
tcsetaf 6-125 
tcseta w 6-125 
tcxonc 6-126 
tdelete subroutine 3-364 
tempnam subroutine 3-355 
temporary file creation 3-354 
temporary file creation, DOS 3-92 
temporary file naming 3-355 
TERM environment variable 5-72 
TERM variable 3-352 
termcap 

emulation using terminfo 3-59 
termdef subroutine 3-352 
terminal capability data base 4-148 
terminal characteristics 3-352 
terminal file name generation 3-44 
terminal interface control 6-131 
terminal name 3-367 
terminal, data base 4-148 
terminate 

wait for child process to 2-182 
terminate a process 2-40 
terminfo file 4-148 
termio file 6-114 
termio structures 6-116 
text 

lock 2-97 
unlock 2-97 

text file format specification 4-82 
text segment 1-12 
text, help, issue 3-252 
tgetent subroutine 3-59 

Index X-27 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

tgetflag subroutine 3-59 
tgetnum subroutine 3-59 
tgetstr subroutine 3-59 
tgoto subroutine 3-59 
thresholds, locator 6-64 
tilde accent character 5-10 
time 

get 2-164 
set 2-162 

time format 3-288 
time profile 

execution time 2-99 
time structure 3-291 
time system call 2-164 
time to string conversion 3-46 
time used report, CPU 3-38 
time-t data type 5-75 
timeout kernel subroutine C-21 
times system call 2-165 
timezone external variable 3-46 
tmpfile subroutine 3-354 
tmpnam subroutine 3-355 
toascii subroutine 3-39 
tolower subroutine 3-39 
-tolower subroutine 3-39 
touchwin subroutine 3-56, 3-161 
toupper subroutine 3-39 
-toupper subroutine 3-39 
tparm subroutine 3-58 
tputs subroutine 3-58, 3-59 
trace 3-357 

child process execution 2-102 
trace channel, check whether enabled 3-357 
trace collector, AIX 3-362 
trace daemon 3-359 
trace driver 6-128 
trace special file 6-128 
trace, device driver C-32 
trace, kernel C-32 
trace-on subroutine 3-357 
traceoff subroutine 3-56 
traceon subroutine 3-56 
trackloc subroutine 3-161 
trailer record 4-42 
translate 

characters 3-39, 3-276 

group IDs 2-21 
owner IDs 2-21 

trap, floating-point exception 3-188 
trap, kernel 1-35 
trc-start subroutine 3-359 
trc-stop subroutine 3-359 
trcunix subroutine 3-362 
tree, read 3-200 
trees, binary search 3-364 
trigonometric functions 3-335 
trsave kernel subroutine C-32 
tsearch subroutine 3-364 
tstp subroutine 3-161 
tty special file 6-131 
ttyname subroutine 3-367 
twalk subroutine 3-364 
two-byte characters 5-9 
typeahead subroutine 3-56 
types.h header file 5-75 
tzname external variable 3-46 
tzset subroutine 3-46 

U.S. English keyboard 6-79 
uint data type 5-75 
ulimit system call 2-167 
ulong data type 5-75 
umask system call 2-169 
umlaut accent character 5-10 
umount system call 2-170 
uname system call 2-172 
unamex system call 2-172 
unctrl subroutine 3-56, 3-162 
ungetc subroutine 3-369 
Unix error collector 3-126 
unlink a DOS file 3-110 
unlink system call 2-174 
unlock 

region of a file 2-64 
unlock a region of a DOS file 3-88 
unmount 

file system 2-170 
untimeout kernel subroutine C-22 

X-28 AIX Operating System Technical Reference 



update 
delayed blocks 2-163 
i-nodes 2-163 
superblock 2-163 

update, linear 3-234 
user ID 

get 2-55 
set 2-129 

user information 2-176 
user information name, find value 3-223 
user limits 2-167 
user login name 3-62 
user login name, obtaining 3-233 
user mode 1-10 
user mode addressing 1-12 
user name 3-62 
ushort data type 5-75 
usrchar kernel subroutine C-20 
usrinfo system call 2-176 
ustat system call 2-178 
utime system call 2-180 
utmp file 4-170 
utmp file entry access 3-224 
utmp file, find user's slot 3-368 
utmpname subroutine 3-224 
uvmount system call 2-180.3 

value of environment variable 3-208 
value of user information name, find 3-223 
values.h header file 5-77 
varargs argument list, print 3-374 
varargs macro 3-371 
variable-length parameter list 3-371, 3-374 
vec-clear kernel subroutine C-18 
vec-init kernel subroutine C-18 
verify program assertion 3-7 
verify, write 3-243 
vfprint subroutine 3-374 
vidattr subroutine 3-58 
vidputs subroutine 3-58 
virtual 

memory 1-10 

TNL SN20-9855 (26 June 1987) to SC23-0808-0 

registers 1-4 
terminal data (VTD) 6-61 

virtual machine 
characteristics 1-3 
control registers 1-4 
IPL 2-58 
restart 2-109 
start 2-58 
wait for termination 2-58 

virtual memory image 6-103 
vmount system call 2-180.5 
vprintf subroutine 3-374 
vrcppr subroutine 3-376 
VRM device driver 1-36 
VRM Query -Device call 6-9 
VRM structure 1-6 
vscroll subroutine 3-162 
vsprint subroutine 3-374 
VTD 6-61 
VTDLY 6-118 
VTO 6-118 
VT1 6-118 

waddch subroutine 3-52, 3-134 
waddfld subroutine 3-135 
waddstr subroutine 3-52,3-135 
wait 

for I/O activity 2-111 
for signal 2-94 
virtual machine 2-58 

wait system call 2-182 
waitvm system call 2-58 
wakeup kernel subroutine C-21 
walk a file tree 3-200 
wattroff subroutine 3-56 
wattron subroutine 3-56 
wattrset subroutine 3-56 
wchgat subroutine 3-136 
wclear subroutine 3-56, 3-137 
wclrtobot subroutine 3-56,3-137 
wclrtoeol subroutine 3-56, 3-137 
wcolorend subroutine 3-137 

Index X-29 



TNL SN20-9855 (26 June 1987) to SC23-0808-0 

wcolorout subroutine 3-138 
wdelch subroutine 3-56, 3-139 
wdeleteln subroutine 3-56, 3-139 
werase subroutine 3-56, 3-150 
wgetch subroutine 3-56, 3-151 
wgetstr subroutine 3-56, 3-152 
winch subroutine 3-56, 3-152 
winsch subroutine 3-56, 3-153 
winsertln subroutine 3-56, 3-153 
wmove subroutine 3-56, 3-154 
wnoutrefresh subroutine 3-56 
word, get from stream 3-204 
workbench library 3-305 
wprintw subroutine 3-56, 3-157 
wrefresh subroutine 3-56, 3-158 
write 

file to permanent storage 2-48 
open a file to 2-90 
to a file 2-184 

write a string to a stream 3-313 
write characters 3-309 
write password file entry 3-312 
write routine (ddwrite) C-10 
write stanza 3-23 
write system call 2-184 
write to a DOS file 3-116 
write to a stream 3-309 
write-verify 3-243 
write words 3-309 
writex system call 2-184 
writing a helper program C-50 
wscanw subroutine 3-57, 3-158 
wsetscrreg subroutine 3-57 

wstandend subroutine 3-57, 3-160 
wstandout subroutine 3-57, 3-160 
wtmp file 4-170 

XCASE 6-120 

yO, y1, yn subroutines 3-9 

zombie process 2-40 

I Numerics I 
3-byte integer conversion to long 
integers 3-232 

3270 data stream 6-11 
3270 device driver 6-11 
3278/79 Emulation Adapter 6-11 
68881 floating-point processor 3-170, 3-183, 

3-190 

x-so AIX Operating System Technical Reference 



--------- -------- - ---- -- ----------_.-
Reader's Comment Form 

IBM RT PC AIX Operating System 
Technical Reference 

The IBM RT PC 
Family 

SC23-0808-0 

Your comments assist us in improving our products. IBM may 
use and distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation whatever. 
You may, of course, continue to use the information you supply. 

For prompt resolution to questions regarding set up, operation, 
program support, and new program literature, contact the 
authorized IBM RT PC dealer in your area. 

Comments: 



:-
L __ _ 

Q) 
c: 
:.J 
en 
c: 
o 
4: 
"'0 
'0 
u. 

o .... 
~ 

Co.? 

adBI PUB PIO:! 

adel 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 997, Building 998 
11400 Burnet Rd. 
Austin, Texas 78758 

aldeJS JON 00 aseald 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

adBl PUB PIO:! 

ade.l 



IBM RT PC AIX Operating System Technical Reference SC23-0808-0 

Book Title Order No. 

Book Evaluation Form 

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its 
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any 
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as 
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may 
improve this book. 

Y N Is the purpose of this book clear? 

Y N Is the table of contents helpful? 

Y N Is the index complete? 

Y N Are the chapter titles and other headings 
meaningful? 

Y N Is the information organized appropriately? 

Y N Is the information accurate? 

Y N Is the information complete? 

Y N Is only necessary information included? 

Y N Does the book refer you to the appropriate 
places for more information? 

Y N Are terms defined clearly? 

Y N Are terms used consistently? 

Y N Are the abbreviations and acronyms 
understandable? 

Y N Are the examples clear? 

Y N Are examples provided where they are needed? 

Y N Are the illustrations clear? 

Y N Is the format of the book (shape, size, color) 
effective? 

Other Comments 

What could we do to make this book or the entire set of 
books for this system easier to use? 

Your name 

Company name 

Street address 

City, State, ZIP 

Optional Information 

No postage necessary if mailed in the U.S.A. 



L_L 

I 

Q) 

c: 
~ 
en 
c: 
o 

;;{ 
"'0 
(5 
u.. 

o .... 
:::J 

CJ 

adBl PUB PIO::! 

::.rlPI 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 997, Building 998 
11400 Burnet Rd. 
Austin, Texas 78758 

aldelC::: ION on aseal.rl 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

adBl pUB PIO::! 

adel. 



--------
~ : :i~~ TECHNICAL NEWSLETTER 

for the 

RT Personal Computer 

AIX Operating System Technical Reference 
Volume 1 

© Copyright International Business Machines Corporation 1985, 1986, 1987 

Order Numbers: 
79X3872 
SN20-9855 
June 26, 1987 
© Copyright IBM Corp. 1987 

-OVER-

TB92X1270 
Printed in U.S.A. 



Summary of Changes 

This technical newsletter contains updates to the Version 2.1 publication to include changes made 
for Version 2.1.1. 

Perform the following: 

Remove Pages 

1-33 to 1-42 
All of Chapter 2 
3-1 and 3-2 
3-7 and 3-8 
3-21 and 3-22 
3-41 and 3-42 
3-49 and 3-50 
None 
None 
3-131 to 3-192 
3-209 and 3-210 
3-233 to 3-236 
3-247 and 3-248 
3-269 and 3-270 
3-285 to 3-288 
3-309 to 3-312 
3-329 to 3-332 
3-347 and 3-348 
3-353 to 3-356 
The Index 

Insert Update Pages 

1-33 to 1-42 
All of Chapter 2 
3-1 and 3-2 
3-7 to 3-8.2 
3-21 and 3-22 
3-40.1 to 3-42 
3-49 and 3-50 
3-64.1 to 3-64.4 
3-120.1 to 3-120.4 
3-131 to 3-192 
3-209 and 3-210 
3-233 to 3-236 
3-247 and 3-248 
3-269 and 3-270 
3-285 to 3-288 
3-309 to 3-312 
3-329 to 3-332 
3-347 and 3-348 
3-353 to 3-356 
The Index 

Note: Please file this cover letter at the back of the manual to provide a record of changes. 

June 26, 1987 


