

IBM RT PC X-Windows Version 1.1

X-Windows
User's Guide and Reference

Programming Family

--...--
~-=-=-==----- -. ----- -- _ ... ------------" -
Personal
Computer
Software

First Edition (September 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to X-Windows, and to all subsequent releases until otherwise indicated in new editions or technical
newsletters. Changes are made periodically to the information herein; these changes will be reported in technical newsletters
or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1987
© Massachusetts Institute of Technology 1985, 1986

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of M.LT. not be used in advertising or
publicity pertaining to distribution of the software without specific written prior permission. M.LT. makes no
representations about the suitability of this software for any purpose. It is provided "as is" without express or implied
warranty.

© Brown University, 1986
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Brown University not be used in
advertising or publicity pertaining to distribution of the software without specific written prior permission. Brown
University makes no representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

About This Book

The IBM RT Personal Computerl X-Windows licensed program is a windowing system that
allows you to view several programs simultaneously on a bit-mapped high resolution IBM
RT PCl display. It also provides remote display support for RT PCl connected by a local
area network (LAN).

This book is intended for anyone using X-Windows. It is divided into two sections. Section
one provides information about starting, running, customizing, and using basic X-Windows
commands.

The next section contains more detailed reference material which provides information on
X-Windows library functions as well as an X-Windows Technical Reference.

The appendixes in the last part of the book contain information on installation, operation
and font support.

Before You Begin

Before you can use X-Windows on an RT PC, you must have the following software and
hardware installed:

• IBM RT PC AIX Operating System2 program, Version 2.1.2 or later

• IBM RT PC X-Windows licensed program, Version 1.1 (See Appendix A, "X-Windows
Installation")

• IBM RT Personal Computer Mouse

• One or more of the following IBM RT Personal Computer displays with the appropriate
adapter:

IBM 6153 Advanced Monochrome Graphics Display
IBM 6154 Advanced Color Graphics Display
IBM 6155 Extended Monochrome Graphics Display
IBM 5081 Model 16 or 5081 Model 19 with an IBM Megapel Display Adapter.

IBM RT Personal Computer, RT PC, and RT are trademarks of the International Business
Machines Corporation.

AIX is a trademark of the International Business Machines Corporation.

About This Book iii

To use X-Windows on RT PCs with the Interface Program for use with TCP/IP, refer to the
Interface Program for use with TCP/IP book.

How to Use This Book

This section discusses the order in which information is presented in this book, as well as
the way particular kinds of information appear.

Chapter 1, "Getting Started with X-Windows," contains information on starting
X-Windows and running X-Windows functions.

Chapter 2, "Customizing X-Windows," discusses how to customize X-Windows, change
defaults for X-Windows commands and how to automatically login to X-Windows.

Chapter 3, "X-Windows Commands," gives a description of X-Windows commands and the
options associated with them.

Chapter 4, "Programming Interface to X-Windows" introduces and describes concepts
about X-Windows library functions.

Chapter 5, "X-Windows Technical Reference," contains X-Windows technical information
on xterm HFT functions, xterm Datastream Support, and X Server protocol requests.

Appendix A, "X-Windows Installation," explains how to install the X-Windows licensed
program from the AIX shell or Usability Services, how to install fonts, and how to install
X-Windows for remote usage.

Appendix B, "Fonts," describes the font support package for the RT PC.

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

Fast-Path Boxes and Highlighting
In the first section, you will see boxes containing instructions you should follow to perform
a task on the system. In most cases, "Additional Information" or "More Detailed
Information" gives you more information about each step in the box above it. This
information also may include helpful hints or optional ways of doing a step.

Throughout this reference, new terms introduced in the text are shown in boldface italics
type. These words also are defined in the glossary. Key names are shown in boldface
type.

Command names are shown in boldface type, for example, xinit and xterm. Also shown in
boldface type are file names that the system supplies or creates (for example, /bin).

iv X-Windows

Names of files that have been created for examples in this book are shown in monospace
b 1 ac k type (for example, A I X She 11). Text that you type in or that appears on your
display screen is shown in monospace color (for example, Select Yes for Shutdown).

Sample Programs

Some sample programs are provided with the X-Windows program. These programs
demonstrate some of the ways you can use X-Windows. The sample programs are stored on
the X-Windows Samples Diskette. IBM makes no representations about the suitability of
these programs for any purpose. They are supplied "as is" without express or implied
warranty. For more information about installing the sample programs, see
Appendix A, "X-Windows Installation."

Error Messages

Error messages are provided "as is" with X-Windows.

Related Publications

Where necessary, this book directs you to use other reference materials. The following list
shows the complete names of these publications and materials:

• IBM RT PC User Setup Guide provides instructions for setting up and connecting
devices to the system units. This book also gives procedures for testing the setup and
for installing the AIX Operating System. (Packaged with IBM RT PC Options
Installation)

• IBM RT PC Options Installation provides instructions for installing optional adapters
in IBM RT PC IBM 6151 and IBM RT PC 6150 and installing fixed-disk and diskette
drives in IBM RT PC 6150. (Packaged with IBM RT PC User Setup Guide)

• IBM RT PC Installing and Customizing the AIX Operating System provides
step-by-step instructions for installing and customizing the AIX Operating System,
including how to add or delete devices from the system and how to define device
characteristics. This book also explains how to create, delete, or change AIX and
non-AIX minidisks.

• IBM RT PC Using the AIX Operating System describes using the AIX Operating
System commands, working with file systems, and developing shell procedures.

• IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs for the AIX Operating System.

About This Book v

This book also includes information about the AIX file system, special files, file
formats, GSL subroutines, and writing device drivers. (Available optionally)

• IBM RT PC AIX Operating System Commands Reference lists and describes the AIX
Operating System commands.

• IBM RT PC Usability Services Reference supplements IBM RT PC Usability Services
Guide by including information on using all of the Usability Services commands.
(Packaged with Usability Services Guide)

• IBM RT PC Interface Program for use with TCP/IP describes the Interface Program
commands for transferring data among host computers, logging into remote computers,
executing commands remotely, and managing networks. This book also describes the
programming interfaces to the Interface Program. (Available optionally)

• IBM RT PC Keyboard Description and Character Reference describes the national
character and keyboard support for the lOl-key, l02-key, and l06-key keyboards,
including keyboard position codes, keyboard states, control code points, code sequence
processing, and nonspacing character sequences. (Available optionally)

Ordering Additional Copies of This Book

• To order additional copies of this publication (without program diskettes) from your
IBM representative, use Order Number SBOF-0276.

• To order from your IBM dealer, use Part Number 92X1474.

A binder is included with each order.

For information on ordering a binder, manual, or other components separately, contact
your IBM representative or your IBM dealer.

vi X-Windows

Contents

Chapter 1. Getting Started with X-Windows 1-1
Starting X-Windows ... 1-4
Moving a Window ... 1-6
Resizing a Window .. 1-7
Opening a Clock Window ... 1-9
Hiding and Showing a Window .. 1-10
Opening an AIX Shell Window .. 1-11
Circulating Windows ... 1-11
Canceling a Window .. 1-12
Stopping X-Windows .. 1-12
Using Other Functions .. 1-13

Chapter 2. Customizing X-Windows 2-1
Changing X-Windows Defaults ... 2-4
Logging into X-Windows Automatically 2-14
Modifying the Window Manager Tools Menu 2-15
Keyboard Mapping ... 2-16
Tuning System Parameters for X-Windows 2-18
Using X-Windows on a Remote System 2-21

Chapter 3. X-Windows Commands 3-1
General Information ... 3-4
Syntax Diagrams .. 3-8
keycomp .. 3-12
rtxwm .. 3-17
X ... 3-27
xclock .. 3-30
xhost ... 3-33
xinit .. 3-35
xopen ... 3-37
xterm ... 3-39

Chapter 4. Programming Interface to X-Windows 4-1
General Reference Information ... 4-6
Subroutine Reference Information 4-32
IBM-Specific X-Windows Implementation 4-109
Sample X-Windows Program .. 4-111

Contents vii

Chapter 5. X-Windows Technical Reference 5-1
xterm HFT Functions .. 5-4
xterm Datastream Support .. 5-8
X-Windows Protocol .. 5-15
X Server Protocol Requests .. 5-19

Appendix A. X-Windows Installation A-I
Operating from AIX Shell or Usability Services A-I
Installing X-Windows from the AIX Shell A-2
Installation Requirements for Remote Usage A-23

Appendix B. Fonts B-1
Overview of Font Support ... B-2
Using METAFONT to Create Fonts B-5
cmmf ... B-7
gftopk ... B-I0
gftype ..,....... B-12
inimf .. B-14
makefont ... B-16
mf .. B-20
Converting Fonts to X-Windows Fonts B-23
aixtortx .. B-24
fixrtx .. B-25
onxtortx ... B-27
pktortx .. B-28

Glossary X-I

Index .. X-5

viii X-Windows

Chapter 1. Getting Started with X-Windows

Getting Started 1-1

CONTENTS
Starting X-Windows ... 1-4

Menu Selection ... 1-5
Moving a Window ... 1-6

Additional Information ... 1-6
Resizing a Window .. 1-7
Opening a Clock Window ... 1-9
Hiding and Showing a Window .. 1-10
Opening an AIX Shell Window .. 1-11
Circulating Windows ... 1-11
Canceling a Window .. 1-12
Stopping X-Windows .. 1-12
Using Other Functions .. 1-13

1-2 X-Windows

About This Chapter

X-Windows is a tool designed to help enhance the usability of the overall application
processing environment. This is done by providing facilities that can help you work with
existing application programs (such as INed and Usability Services) as well as design and
implement new applications.

X-Windows permits multiple application processes to operate within multiple windows
displayed on a virtual terminal. You can manage windows directly or with application
programs. You can hide windows completely or partially. You can update partially hidden
wind~)ws as well as windows that are completely hidden.

Each window can have a specific character set (font) associated with it. Additionally each
window can have its own keyboard mapping. This capability permits character sets
available on the RT PC to be connected to a specific window. Keyboard mapping coupled
with the capability to access all RT PC characters provides National Language Support
(NLS).

X-Windows provides many popular window management functions, including opening,
moving, resizing, or circulating a window.

X-Windows provides the capability to manage local and remote RT PC displays. Remote
display management can be accomplished with other RT PCs connected through TCP/IP.

X-Windows also provides a library of C functions to interface clients with servers.
End-users and application programs may both be clients of X-Windows. Through various
commands and calls, end-users or application programs can acquire the services of the
windowing functions.

By using the steps included in this chapter, you use the following X-Windows functions:

• Starting X-Windows

• Moving and resizing a window

• Opening a clock window

• Hiding and showing windows

• Opening AIX shell windows

• Circulating a window

• Canceling a window

• Stopping X-Windows.

Getting Started 1-3

Starting X-Windows

The steps in the following box tell you how to start X-Windows. Be sure that X-Windows is
installed. (For installation instructions, refer to Appendix A, "X-Windows Installation.")

Starting X-Windows

1. Log in to your system.

2. At the $ prompt, type:

xinit

3. Press Enter.

4. Run programs in the AIX Shell or use the window manager menu to manipulate
windows.

Additional Information

1. If you do not know how to log in, refer to Using the AIX Operating System.

If you want X-Windows to start each time you log in, see "Logging into X-Windows
Automatically" on page 2-14.

2. N ext to the prompt $, type in the command xi nit. The xinit command does three
things:

a. Starts the X Server using the X command. This controls the input and output of
X-Windows.

b. Opens the X-Windows window manager menu in the upper right corner of the
screen using the rtxwm command.

c. Opens the initial X-Windows AIX Shell window using the xterm command.

Note: For more information on these X-Windows commands, see
Chapter 3, "X-Windows Commands."

1-4 X-Windows

3. After entering xinit, X-Windows starts and you see a display similar to this:

Note: For you to type in a window, the mouse cursor must be in that window.

An AIX Shell window functions as a terminal. The mouse cursor must be in the AIX
Shell window to type into it. You can run programs just as you would on any other
terminal connected to your system. For example, type 1 i and press Enter to see the
contents of your current directory.

You can use the window manager menu to perform various operations.

Menu Selection

X-Windows provides two ways to make menu selections using the mouse. To choose an
item in a menu, do one of the following:

• Use the mouse to move the cursor to the desired item, then click any button on the
mouse.

• Or, press and hold a button on the mouse while you move the cursor to the desired
item. Then release the button.

X-Windows highlights your selection.

For fast selection, refer to "Button/Key Selection" on page 3-20 and "Pop-up Button
Selection" on page 3-20.

Getting Started 1-5

Moving a Window

You can use the window manager to manipulate windows. Use Move to move a window.
For example, you may want the AIX Shell window in a different place. When you apply
Move to a window, a rubber-band outline is moved with the mouse. The rubber-band
outline is the outline that appears in the window. Use the following steps to move a
window:

Moving a Window

1. Select Move from the window manager menu.
2. Use the mouse to move the cursor to a corner of the AIX Shell window.
3. Press and hold the same button you used in Step 1. A rubber-band outline

appears.
4. Use the mouse to move the rubber-band outline while holding the button down on

the mouse.
5. Release the button when the rubber-band outline is in the location you desire.

The window is moved to fill the rubber-band outline.

Additional Information
The following figure shows an AIX Shell window and the rubber-band outline created by
using the Move item in the window manager menu:

1-6 X-Windows

Resizing a Window

In addition to moving a window, you can also resize it. For example, if you are using the
File Manager in IN ed, making a window longer allows you to see more fields. Use Resize
to resize a window by moving a corner or an edge. When you apply it to a window, a
rubber-band outline of the window is displayed. Use the following steps to resize a
window:

Resizing a Window

1. Select Res i ze from the window manager menu.

2. Move the cursor to any corner or edge of the window that you want to resize.

3. Press and hold the same button you used in Step 1. A rubber-band outline of the
window appears, and a box appears inside the window with the screen size in it.

4. Move the rubber-band outline while holding the button down on the mouse. The
numbers in the box change as you move the mouse to show the screen size in
characters.

5. Release the mouse button when you have the size you want. The window is
resized.

Note: You may need to restart some commands or programs after resizing a window.

Getting Started 1-7

The following figure shows a window with a rubber-band outline created by using the
Resize item in the window manager menu:

1-8 X-Windows

Opening a Clock Window

There are two kinds of X-Windows clocks available on the Tools menu: the Analog Clock
and the Digital Clock. Use the following steps to open the Analog Clock window:

Opening a Clock Window

1. Select Tools from the window manager menu.

2. Select An a log C 1 oc k from the Tools submenu ..

3. The Analog Clock window is opened in the lower right corner of the display.

The following figure shows a clock similar to the Analog Clock:

To display a digital clock, follow the same steps as those for the Analog Clock, but select
Di gi tal Clock. The Digital Clock looks similar to this on your screen:

1 Thu May 7 14:13:00 19871

Getting Started 1-9

Hiding and Showing a Window

When you apply Hi de/Show to a window, it makes the window into an icon window.
When you apply Hi de/Show an icon window, it makes the window reappear. Programs or
commands running in a window continue running when you use Hi de/SI10\'J. For example,
if you are compiling a C language program in a window, you can hide it and it continues
compiling. To use Hi de/Show, use the following steps:

Hiding and Showing a Window

Hiding a Window

1. Select Hi de/Shovv in the window manager menu.

2. Move the cursor into the window you want to hide.

3. Click the same button used when you made the selection.
The window is represented on your display as an icon window.

Showing a Window

1. Select Hi de/ShO\v in the window manager menu.

2. Move the cursor into the icon window you want to show.

3. Click the same button used when you made your selection. The window icon is
changed into a window on your display. The window appears at its previous
location on your display.

Note: An icon window can be moved to any place on the display just as any other window
can be moved to any place on the display.

The following is an example of an icon:

I
~
~
AIX #2

1-10 X-Windows

Opening an AIX Shell Window

To open an AIX Shell window, use the following steps:

Opening an AIX Shell Window

1. Select Too 1 s from the window manager menu.

2. Select AIX Shell from the Tools submenu.

3. An AIX Shell window appears.

4. You can run programs in the AIX shell window and use the window manager to
manipulate it.

Circulating Windows

Ci rcul ate causes the lowest window in a stack of overlapping windows to be raised. If
used successively, Ci rcul ate causes each window to be raised in turn. If you think of
windows as being stacked on top of each other, then imagine when you circulate windows,
the lowest one is raised to the top. If a window covers a large area of the display, there
may be windows that you cannot see until you circulate them. To circulate among the
windows, use the following steps:

Circulating Windows

1. Select Ci rcul ate in the window manager menu.

2. The lowest window is raised to the top.

3. Repeat the first two steps to view all the windows in order.

Getting Started 1-11

Canceling a Window

Cance 1 causes the X Server to disconnect from the selected window when the rtxwm is
connected to an AIX X Server. The window disappears from the display. In most cases,
commands or programs running in the window are also cancelled.

To cancel a window, use the following steps:

Canceling a Window

1. Select Cance 1 in the window manager menu.

2. Move the cursor into the window you want to cancel.

3. Click the same button used when you made your selection. The window is
canceled.

Stopping X-Windows

Stopping X-Windows

Press Ctrl-Alt-Bksp to stop X-Windows and return to the $ prompt.

Note: The $ prompt may be different on your display.

1-12 X-Windows

U sing Other Functions

X-Windows also provides other functions. Among these functions are the following:

• Copy and paste between terminal windows. For more information, see "The COPY,
PASTE, and RE-EXECUTE Functions" on page 3-40.

• Fast window manager menu item selection. For more information, see "Pop-up Button
Selection" on page 3-20.

• Change initial layout of screen. For more information, see the xinit command (3-35).

• Use Set to set various keyboard and mouse options, display the window manager
horizontally, reverse video, change available colors,and set bell volume. For more
information, see "Set" on page 3-23.

• Customize the window manager menu. For more information, see "Modifying the
Window Manager Tools Menu" on page 2-15 and the rtxwm command (3-17).

Getting Started 1-13

1-14 X-Windows

Chapter 2. Customizing X-Windows

Customizing X-Windows 2-1

CONTENTS
Changing X-Windows Defaults ... 2-4

Creating the Default File ... 2-4
Specifying Global Defaults .. 2-4
Specifying Defaults for One Command 2-4
Using Keywords .. 2-5
Keywords for X-Windows Commands 2-5

Logging into X-Windows Automatically 2-14
Modifying the Window Manager Tools Menu 2-15
Keyboard Mapping ... 2-16
Tuning System Parameters for X-Windows 2-18

ptys ... 2-18
Kernel pty Customization .. 2-18
System pty Customization .. 2-19

Processes .. 2-19
X Server malloc Space .. 2-20

Using X-Windows on a Remote System 2-21
A Sample Remote X-Windows Session 2-22

More Detailed Information ... 2-23

2-2 X-Windows

About This Chapter

This chapter contains additional information that can help you customize X-Windows. It
includes the following:

• Instructions for changing some defaults of X-Windows commands

• Instructions for logging in automatically to X-Windows

• Instructions for modifying the Tools menu

• A keyboard mapping chart

• Instructions for using X-Windows on a remote system

• Help with tuning the AIX Operating System for X-Windows.

Customizing X-Windows 2-3

Changing X-Windows Defaults

You can set defaults such as the color, location, and size of windows by creating a file in
your HOME directory. This section shows you how to set up a file and includes some
sample entries. These sample entries are examples, not specifications. In some instances,
you may need to use multiple keywords to fully specify a default.

Creating the Default File

To change X-Windows defaults, first create a file named .Xdefaults in your HOME
directory. Using this file, you can choose global defaults for X-Windows or defaults for one
X-Windows command.

Specifying Global Defaults

Specify all global defaults before any specific command defaults. The format of a global
default specification is:

keyword:value
For example, to set the default window border to 2 pixels wide, put the following line in
your .Xdefaults file:

BorderWidth:2

Specifying Defaults for One Command

The format of a default specification for one command is:

command. keyword: value
For example, if you always want new xterm windows to display in reverse video, put the
following line in your .Xdefaults file:

xterm.ReverseVideo:on
Each time you start X-Windows, windows created by the xterm command display in
reverse video.

2-4 X-Windows

U sing Keywords

The next several pages describe the keywords. The descriptions include examples for each
command. The examples include the commands that can use a particular keyword. In
some cases, the examples include the default value supplied by IBM. In other cases, the
default value may vary according to how your system is configured, and some examples
may include values that are different from the default values on your system. In either
case, the examples include command.keyword:value.

You can use this information to help you customize X-Windows. In Chapter 3, "X-Windows
Commands," the commands and values are discussed in more detail.

Note: Some commands have flags that set options which are also specified by the use of
keywords. \Vhen a command flag is used, it overrides default values set by the use of
keywords.

Keywords for X-Windows Commands

ActiveIcon

Example: xterm.Activelcon:off

Description: When a window is hidden, it is represented by an icon. Changing this
value forces the window to be represented by a miniature window.

AutoRaise

Example: xterm.AutoRaise:off

Description: Specifies the auto-raise mode of xterm. In the auto-raise mode, a window
is automatically raised when the mouse cursor enters it.

Background

Example: xterm. Bac kground: wh i te

Description: On color displays, determines the color of the background.

BodyFont

Examples: rtxwm. BodyFont: Rom14. 500, xcl ock. BodyFont: Rom14. 500,
xterm.BodyFont:Rom14.500

Customizing X-Windows 2-5

BoldFont

Border

Description: Specifies any fixed-width body font. These values are display dependent.
For the xterm command in HFT emulation, the default is based on either Rom14.500 or
Rom10.500, depending on the size of the display. For the xterm command in VT102
emulation, the default is vtsingle.

Example: xterm. Bo 1 d Font: B1 d 14.500

Description: Specifies a bold font. This font must be the same height and width as the
body font.

Examples: xc 1 oc k. Border: b 1 ac k, xterm. Border: black

Description: On color displays, determines the color of the highlighted border.

BorderWidth

C132

Cursor

Examples: xc10ck.BorderWidth:1, xterm.BorderWidth:2

Description: Specifies the width of the window border in pixels.

Example: xterm.C132:off

Description: Recognizes the sm/rm escape sequences and resizes the xterm window
appropriately. Otherwise, the VT102 sm/rm escape sequences that switch between 80 and
132 column mode are ignored.

Example: xterm. Cursor: black

Description: On color displays, determines the color of the text cursor.

DeIconifyWarp

Example: xterm.DelconifyWarp:off

Description: Moves (warps) the mouse to the center of the window when replacing the
xterm icon with the xterm window.

2-6 X-Windows

Foreground

Examples: xcl ock. Foreground: bl ack, xterm. Foreground: bl ack

Description: On color displays, determines the color of the text and tick marks.

FrameWidth

Example: rtxwm.FrameWidth:5

Description: Specifies the width of the border in pixels when you choose to focus on a
window. One way to focus on a window is to choose Focus in the window manager menu.
When you focus on a window, all keyboard input goes to that window regardless of where
the mouse cursor is.

Geometry

Hands

Hide

Highlight

Examples: rtxwm. Geometry: =+0+0, xcl oc k. Geometry: =-0+0,
xterm.Geometry:=80x25+0+0

Description: Specifies the location or dimensions of the window. For more information
about geometry, see "Geometry Specification" on page 3-4.

Examples: xc 1 oc k. Hands: b 1 ac k

Description: On color displays, determines the color of the hands in an analog clock.

Example: rtxwm. Hi de: off

Description: Specifies hide mode.

Example: xclock.Highlight:black

Description: On color displays, determines the color of the outline of the hands on an
analog clock.

IconBitmap

Example: xterm. I conBi tmap :filename

Description: Reads the bitmap filename and uses the resulting bitmap as the icon.

Customizing X-Windows 2-7

IconFont

Examples: rtxwm.lconFont:Rom14.500, xterm.lconFont:Rom6.500
Description: For the rtxwm command, specifies the font for the title of the window
manager's wiI).dow. For the xterm command, specifies any fixed-width font for miniature
icon windows.

Iconify Delta

Example: rtxwm.lconifyOe1ta:5
Description: Controls where the icon is to be placed when using the Hide option from
the window manager menu. If this is the first time that the window has been hidden, or if
the mouse is moved more than a threshold amount, the icon appears at the location on the
screen where the button is released. Otherwise, the icon reappears at its previous location.
A negative value disables this effect.

Note: For more information about the mouse threshold, see 3-24 and 3-29.

IconStartup

Example: xterm. I conStartup: off
Description: Causes xterm to start by displaying an icon rather than the normal
window.

InternalBorder

Examples: xc1ock.lnterna1Border:8, xterm.lnterna1Border:l
Description: For the xc10ck command in analog mode, maintains an inner border (the
distance between characters and the window's border) of eight pixels. For the xterm
command, maintains an inner border of one pixel.

JumpScroll

Example: xterm. J umpScro 11 : off
Description: Enables or disables jump scroll.

KeyCombination

Example: rtxwm. KeyCombi nati on:m
Description: Specifies the selection key to be used by the window manager.

2-8 X-Windows

LeftButton

Example: rtxwm.LeftButton:1

LogFile

Logging

Description: Specifies an association between the left button and a function. For more
information, see "Button/Key Selection" on page 3-20.

Example: X term. Log fi 1 e: /tmp /1 ogfi 1 e
Description: Specifies the file in which the log is written.

Example: xterm.Logging:off
Description: Sets logging. When logging is turned on, all input from the pseudo tty is
appended to the logfile.

LogInhibit

Example: xterm.Loglnhibit:off
Description: Prevents a user or an application program from enabling logging. This
overrides any values set for Logging.

MarginBell

Example: xterm. Margi nBe 11 : off
Description: Sets the right margin bell.

MenuFormat

Example: rtxwm. MenuFormat: h
Description: Displays menu horizontally.

MiddleButton

Example: rtxwm.Midd1eButton:1
Description: Specifies an association between both buttons and a function. For more
information, see "Button/Key Selection" on page 3-20.

Customizing X-Windows 2-9

Mode

Mouse

Example: xc 1 oc k. r~ode: d

Description: Specifies whether the xclock command starts a digital or analog clock by
default.

Example: xterm.Mouse:b1ack

Description: On color displays, determines the color of the mouse cursor. The default is
the text cursor color.

NMarginBell

Example: xterm. NMargi nBe11 : 10

Description: This number is used as the right margin distance in which the margin bell
rings.

PageOverlap

Example: xterm.PageOver1ap:l

Description: A number specifies a new page overlap. In page scroll mode, a page is the
number of lines in the the scrolling region minus the page overlap.

PageScroll

Example: xterm. PageScro 11 : off

Description: Sets the page scroll mode.

QueueName

Examples: rtxwm. QueueName: 1 pO

Description: Specifies the printer queue to use when a request is issued to print the
screen.

Reverse Video

Examples: rtxwm. ReverseVi deo: off, xc 1 oc k. Reverse Vi deo: off,
xterm.ReverseVideo:off

Description: Reverses the foreground and background color.

2-10 X-Windows

ReverseWrap

Example: xterm.ReverseWrap:off
Description: Setsreverse-wraparound mode, which allows the cursor to wrap from the
leftmost column to the rightmost column of the previous line.

RightButton

Example: rtxwm.RightButton:p
Description: Specifies an association between the right button and a function. For
more information, see "Button/Key Selection" on page 3-20.

SaveLines

Example: xterm.SaveLines:64
Description: When lines are scrolled off the top of a window, they can be saved. This
number specifies the maximum number of lines to save.

ScrollBar

Example: xterm. Sera 11 Bar: off
Description: Specifies if the scroll bar is to be displayed during startup.

ScrollInput

Example: xterm.Sero11Input:on
Description: Disables repositioning on input. When using the scroll bar to review
previous lines of text, the window would otherwise by repositioned automatically at the
bottom of the scroll region when input has arrived.

ScrollKey

Example: xterm.Sero11Key:off

SizeFont

Description: Determines if the window is repositioned automatically in the normal
position at the bottom of the scroll region when a key is pressed while using the scroll bar
to review previous lines of text.

Example: rtxwm. Si zeFont: Rom14. 500

Description: Specifies any fixed-width font as the default size font.

Customizing X-Windows 2-11

StatusLine

Example: xterm. StatusL i ne: off

Description: Determines if the status line displays on startup.

StatusNormal

Example: xterm.StatusNorma1 :off

Description: Determines if the status line is in normal video (the status line is still
enclosed in a box). By default, the status line is in reverse-video (relative to the rest of the
window).

Text Under Icon

Example: xterm.TextUnderlcon:off

TitleBar

TitleFont

Update

Description: Determines if text is to the right of the icon. Normally in the icon, the
window name is under the bitmap.

Example: xterm. Ti t1 eBar: on

Description: Enables or disables the title bar from being displayed on startup.

Example: xterm. Ti t 1 eFont: Rom14. 500

Description: Specifies the font in the title bar.

Example: xc 1 oc k. Update: 60

Description: Specifies the frequency in seconds with which xclock updates its display.

VisualBell

Example: xterm. Vi sua 1 Be 11 : off

Description: Sets the visual bell mode, which flashes the window on receipt of a
CTRL-G.

2-12 X-Windows

Warp

Example: xterm.Warp:off
Description: Determines if the mouse cursor is automatically warped to the center of a
newly created xterm window.

Customizing X-Windows 2-13

Logging into X-Windows Automatically

You can run the xinit command and start X-Windows each time you log in to the system.

Use the adduser command, and change the Program field to xi ni t -L. The default login
shell is /bin/sh. For more information on the adduser command, see AIX Operating
System Commands Reference. For more information on the xinit command, see "xinit" on
page 3-35.

The xinit command is a script shell file that you can modify to run other other commands,
like xclock. Although you can modify the xinit command to change the default locations
for the xterm command and the rtxwm command, you can change these default values
along with others by using the .Xdefaults file in you HOME directory. For more
information on using the .Xdefaults file, see "Changing X-Windows Defaults" on page 2-4.

Note: If you modify the xinit command, make sure that the exec /usr/lpp/X/bin/xterm is
the last command issued. Any other command might become the controlling terminal
process.

2-14 X-Windows

Modifying the Window Manager Tools Menu

You can modify the menu that appears when you select Too 1 s from the window manager
menu. To make the necessary changes, you must log in as su or have superuser authority.

The values for the Tools menu are in the /usr/lpp/X/defaults/Xtools.txt file. Two
examples are shown below:

1. Copy the /usr/lpp/X/defaults/Xtools.txt file into your HOME directory. You can
then modify this file without affecting other X-Windows users on your system.

2. One of the lines in the /usr/lpp/X/defaults/Xtools.txt file. contains the following
information:

Ixclock =-0-0 -a & IAnalog Clock

You can change any of the values of this line and modify the way the analog clock
looks when you choose An a log C 1 oc k from 'the Tools menu. For example, if you
change the =-0-0 to =+0-0, the analog clock starts in the lower left corner instead of
the lower right corner.

3. You can also add programs to the Tools menu. For example, you can add an option to
start a new X Server from the Tools menu by inserting the following line in the
/usr /lpp/X/ defa ults/X tools. txt file:

Ixopen xinit IX IRun another X Server

By using the new item this adds to the Tools menu, you can start another X Server
without leaving X-Windows.

Customizing X-Windows 2-15

Keyboard Mapping

X-Windows allows each window to have its own keyboard mapping.

The following keyboard source files are delivered with the X-Windows licensed program:

• keymap.gr - Austrian/German

• keymap.be - Belgian

• keymap.cf -- Canadian (French)

• keymap.de - Danish

• keymap. uk -- English (UK)

• keymap.us - English (US)

• keymap.sw - Finnish/Swedish

• keymap.fr - French (AZERTY)

• keymap.it - Italian

• keymap.ja - Japanese English

• keymap.no - Norwegian

• keymap.po - Portuguese

• keymap.sp - Spanish

• keymap.sf - Swiss (French)

• keymap.sg - Swiss (German)

• keymap. vt - VTI02

At installation time, the language menu allows you to select any or all of these languages.
The VTI02 keyboard mapping is always installed. These files are installed into the
directory /usr/lpp/X/defaults. The first language selected during installation is the one
that is compiled into binary form.

The following examples show commands issued to perform a specific keyboard mapping
task. They all assume that:

• The default mapping is English (US)
• The appropriate source maps are installed
• The commands are issued from an X-Windows window.

2-16 X-Windows

Example 1 - Building a VTI02 keyboard map

cd /usr/lpp/X/defaults
mkdir vt
keycomp < keymap.vt > vt/.Xkeymap
Example 2 - Run xterm with VTI02

XDIR=/usr/lpp/X/defaults/vt
export XDIR
xterm -v
Example 3 - Build the French and Spanish maps

cd /usr/lpp/X/defaults
mkdir fr
mkdi r sp
keycomp < keymap.fr > fr/.Xkeymap
keycomp < keymap.sp > sp/.Xkeymap
Example 4 - Run a French, Spanish, and English (US) X-Windows window

XDIR=/usr/lpp/X/defaults/fr
export XDIR
xterm
XDIR=/usr/lpp/X/defaults/sp
export XDIR
xterm
Keyboard Description and Character Reference gives you the detailed mappings of the
keyboards for each national language.

Customizing X-Windows 2-17

Tuning System Parameters for X-Windows

ptys

X-Windows makes extensive use of the AIX operating system and its resources. You may
be able to improve the performance of X-Windows by tuning system parameters. The
following pages provide information about tuning the following areas:

• ptys

• processes

• X Server malloc space.

For additional information, see Managing the A/X Operating System.

Each window opened by the xterm command uses one pty. You have two ways of defining
the limits on the number of ptys:

• The number of ptys configured into the kernel

• The number of pty device nodes in /dev.

Kernel pty Customization
By default, the kernel is configured with 16 ptys. You can change this number and rebuild
the kernel to adjust the number of possible ptys. Use the following steps to change the
number of possible ptys:

1. Edit the fete/master file.

2. Modify the ptybuffers attribute in the sysparms stanza.

3. Modify the maxminor attribute in the upte and upts stanzas.

Each pty uses some kernel memory. Other system parameters (such as number of processes
and charlists) should be tuned to reflect any additional ptys. Each pty implies at least two
processes in use: one for the control and one for the slave.

As you increase the number of ptys, you should also increase the number of charlists.
Each charlist (or cblock) has space for 64 characters. Try to have a minimum of three or
four charlists for each pty to be in use at the same time. For ptys that are heavily used,
increasing the number of charlists may improve performance.

Note: It is possible to run out of charlists and hang the system.

If an X Server is hidden by another virtual terminal, there are processes (such as xterm)
writing to that server, and if the sockets to the server fill up, the ptys may fill up on the

2-18 X-Windows

slave-to-master path and use all the charlists. The blockage can be resolved by showing
the X Server, allowing its display backlog to disappear and freeing charlists.

To avoid running out of charlists, provide enough charlists so that xterm slave processes
can block on output without using up all the free charlists. This means you should provide
approximately five additional charlists (about 300 characters) for each pty.

The charlists are defined by the eharlists attribute in the sysparms stanza of the
fete/master file.

System pty Customization
Each device is declared in a stanza of fete/system. Use the devices command to add
devices to the system. The devices command adds devices to the configuration files and
makes a special device node in /dev. Many programs other than X-Windows use ptys.
Most of the other programs require the use of a getty that supports login. You may have
more ptys in the kernel than you have defined by devices.

The maximum number of ptys is 256 (the maximum number of minor devices per major
device). Ordinarily, you should not use devices to create more than 64 ptys.

Processes

The maximum number of processes is defined by the proes attribute in the sysparms
stanza of the fete/master file. Increase this parameter if you are using X-Windows
intensively.

To change the number of processes:

1. Edit the fete/master file.

2. Change the proes attribute in the sysparms stanza.

3. Rebuild and install the kernel.

Once you increase the number of processes to about 100, you need to increase some
additional parameters. These parameters are:

charlists number of clists for tty subsystem

filetab number of files the system can have open at once

inodetab number of inodes the system can have open at once.

The filetab and inodetab should be the same.

Customizing X-Windows 2-19

X Server malloc Space

The X Server does a malloe to get space for the various objects it creates and manipulates.
If the the ulimit is too low, the server may run out of space.

D se the sh command to increase the ulimit. For more information, see A/X Operating
System Commands Reference.

2-20 X-Windows

U sing X-Windows on a Remote System

You can work on another RT PC through an X-Windows client program on your RT PC.
You use X-Windows on a remote computer system in the same way you use it on your own
system. However, you must be able to access and log in to the remote system. For more
information, see "Installation Requireme:i.1ts for Remote Usage" on page A-23.

Starting X-Windows on the remote system after logging on to that system allows you to
work with programs and files stored on both your system and the remote system at the
same time, through different windows. This enables you, for example, to display a file
stored on your own system and another file stored on the remote system side-by-side
through different windows. You can also edit a file or run a program stored on one system
through one window while you run another program on another system through another
window.

In summary, X-Windows allows you to have immediate access to both your own computer
system and to the processing power, programs and files stored on a remote system.

Customizing X-Windows 2-21

A Sample Remote X-Windows Session

This section explains the steps you go through to use X-Windows on a remote system.
Steps are listed in the box. The detailed explanations that follow the box contain examples
of what you can enter on your system to perform each step.

Steps in Remote X-Windows Usage

1. Start an AIX Shell window on your display.

2. Enable a particular remote system to use your display.

3. Log in to the remote system and start an X-Windows client program on the remote
system to display on your local screen.

4. Work just as you work on your own system.

5. End the client program.

2-22 X-Windows

More Detailed Information
The examples in the following explanations assume that:

• Two RT PC systems are attached to one another through a communications link.

• The program TCP lIP manages the communications between the two systems and is
installed and running correctly on both machines.

• X-Windows is installed and running correctly on both machines.

• The hostname of your RT PC (the local system) is fran k.

• The hostname of the RT PC attached remotely to your RT PC (the remote system) is
ri chard.

• You are logged on to and working at fran k.

• You know how to log in to a remote computer system.

• You want to edit a file stored on system ri ch a rd using system fran k.

• There is a single X Server running on system fran k.

To use X-Windows to edit a file on a remote system, you perform the following steps:

1. To start an AIX Shell client program on your display, first select Tools from the menu.
The Tools submenu appears on your display. Then select A I X She 11 from the Tools
submenu. A window with the window name AI X She 11 appears on your display.

Note: In this example, the hostname of your RT PC is fran k and the AIX Shell
window is the first X-Windows client program that you open on fran k. Therefore, the
full default name of the display in which the AIX Shell window is running is fran k: O.
fran k is the hostname and 0 is the display number.

2. To enable the remote system ri chard to use your display, you enter the X-Windows
xhost command. First you move the mouse cursor into the AIX Shell window. Then
you enable the remote system ri chard for X-Windows by entering:

xhost richard

The execution of xhost enables the specified remote system only until you terminate
X-Windows. However, you can eliminate the need to run xhost to enable a remote
system by enabling the system by default in a file called fete/X? .hosts (? is the display
number).

For example, the display fran k: 0 can be accessed by systems defined in the file
/ete/XO.hosts on the system with a hostname of fran k. In both the display name and
the file name, 0 indicates the number of the display that the remote system is allowed
to access using X-Windows.

Customizing X-Windows 2-23

There must be a separate /etc/Xn.hosts file on the local system for each display that a
remote system will access through X-Windows.

For more information on the xhost command, see "xhost" on page 3-33.

3. Log in to the remote system from the AIX Shell window on your system and open an
X-Windows client program that runs on the remote system but displays on your system.

For instance, if TCP/IP is the communications program managing the data link
between your system fran k and the remote system ri chard, you can enter the
following rexec command to log in to ri chard and open a window that runs on
ri chard and appears on your display (attached to fran k):

rexec richard xterm frank:O -n RICHARD

The parts of the TCP /IP rexec command define the following:

rexec The TCP/IP command that sends a specified command to run on a
specified remote system. rexec initiates a login process on the
remote system that must complete successfully before the command
is executed.

richard The name of the remote system on which the command is to be run.

xterm The X-Windows command that is to be run on the remote system.
In this case, xterm opens a new X-Windows client program on
ri chard.

frank:O A parameter of the xterm command that indicates the full name of
the display where the new window is to appear. In this case, the
new window running on ri chard appears on your display which is
physically attached to fran k. The hostname fran k and the display
number 0 must be separated by a : (colon).

-n RICHARD A flag of the xterm command that indicates the window name to be
used for the new window.

For more information on the rexec command, see Interface Program for use with
TCP/IP. For more information on the xterm command, see "xterm" on page 3-39.

The xterm command causes a rubber-band window to appear on your display
(fran k: 0) after you complete the login initiated by the rexec command. You can
press and hold down a mouse button to move the rubber-band window. When you
release the mouse button, the window border becomes a solid line and the window
name R I CHARD appears at the top of the new window.

Note: Although the work you perform in the new X-Windows client program is
primarily processed by the remote system ri chard, your current hostname is not
changed. Your current hostname is still fran k (the name of your system) and the

2-24 X-Windows

R I CHARD window is the second window that you open from that current host.
Therefore, the full default name of the display that the remote window R I CHARD uses is
frank:O.

4. At this point, for example, you can start an editor and edit a file stored on the remote
system ri chard through the remote window named RI CHARD.

In general, through a window running on a remote system, you can run programs and
access files that your login user ID on ri chard has permission to run and access. For
example, you can use the programs and files stored on the remote machine ri chard
through the remote X-Windows client program R I CHARD. At the same time, through
another window, you can use any program and file stored on your local system fran k
that your local user ID has permission to use.

5. When you complete your work on the remote system ri chard, you enter Ctrl-D to
shut the remote window RI CHARD. This action also logs you off of the remote system.

Note: TCP/IP may not be required to run remote client programs. For example, a system
administrator might write a program to put up messages in an X window. The system
administrator can open such a message window on a remote system if the following
conditions are met:

• The remote system name is known.

• The remote system allows access.

Customizing X-Windows 2-25

2-26 X-Windows

Chapter 3. X-Windows Commands

X-Windows Commands 3-1

CONTENTS
General Information ... 3-4

Command Defaults .. 3-4
Geometry Specification ... 3-4
Keyboard Specification ... 3-5
Color Specification .. 3-6
Display Specification .. 3-7

Syntax Diagrams .. 3-8
keycomp .. 3-12

Keycomp Source File ... 3-12
Keycomp Source File Items .. 3-14
Keycomp Source File Control Statements 3-15

rtxwm .. 3-17
Menu Modes .. 3-19
Selection Methods ... 3-20
Window Manager Command Menu ... 3-21
Set ... 3-23
Tools .. 3-25
The Tools Menu Controller .. 3-25
The Tools Menu File ... 3-25
Default Keywords .. 3-26

X ... 3-27
xclock .. 3-30

Default Keywords .. 3-32
xhost ... 3-33
xinit .. 3-35
xopen ... 3-37
xterm ... 3-39

The COPY, PASTE, and RE-EXECUTE Functions 3-40
Menu Usage .. 3-41
Scrollbar ... 3-42
HFT Emulation Summary .. 3-42
VTI02 Emulation Summary .. 3-43
Default Keywords .. 3-47

3-2 X-Windows

About This Chapter

This chapter discusses general command information and describes the X-Windows
commands in alphabetical order. Each command description includes the following
sections:

• A Purpose section one or more sentences long.

• A Syntax diagram that shows the required, optional, and default command syntax.

• A Description section that gives a detailed explanation of command usage.

• A Flag section that discusses each flag that can be specified with the command.
Where appropriate, the default setting of the flag is given.

Explanations of file structures and command submenus are included where relevant.

Also, an opening section on syntax diagrams discusses how to interpret the parts of the
command syntax diagrams.

X-Windows Commands 3-3

General Information

The following sections discuss topics that are applicable to several different X-Windows
commands.

Command Defaults

A user can customize X-Windows by copying the file /usr/lpp/X/defaults/Xdefaults into
the home directory ($HOME) as .Xdefaults and customizing the values defined in the file.
The format of the file is:

command.keyword:string
If you omit command, the specified default value is used for all appropriate X-Windows
commands. Global defaults must appear in the file before any specific program defaults.

Each command has keywords that correlate to the command arguments. For more
information about keywords and default values, see "Changing X-Windows Defaults" on
page 2-4 and the discussions of specific commands.

Geometry Specification

Most commands accept a geometry specification allowing creation and placement of
windows on the screen. A geometry specification is written in the following format:

1 Mouse must be used to create window.

+XOff~

-Xoff

You specify the width and height as the number of characters for text programs and
usually as pixels for graphics programs. The offsets Xoff and Yoff are specified as pixels.

If you do not specify an offset, you must use a mouse to create a window. If you specify a
size and an offset, a window is automatically created when the program begins.

Xoff and Yoff specify distances from a corner of the screen to the nearest corner of the
window in the following way:

3-4 X-Windows

+Xoff+ Yoff Upper left to upper left.

-Xoff+ Yoff Upper right to upper right.

+Xoff- Yoff Lower left to lower left.

-Xoff- Yoff Lower right to lower right.

Keyboard Specification

You can change the standard keyboard layout or the default values of the keymap and
function keys. Some programs search for and use the .Xkeymap file in the home directory
of the user for setting up key and function key input resolution.

The .Xkeymap file is produced by the keycomp program. .Xkeymap is the file used to
translate keystrokes into character strings.

Many programs perform the translation process by calling the library routine
XLookupMapping. XLookupMapping searches for the keymap table in the following
order:

1. $XDIR/ .Xkeymap (program directory)

2. $HOME/.Xkeymap (home directory)

3. /usr/lpp/X/defaults/ .Xkeymap (system directory)

4. A built-in table that provides 7-bit ASCII character mapping.

Depending on what combinations of the Shift, Lock, Ctrl, Alt, and Alt Graphic keys you
use, each key can have up to 32 different interpretations or bindings. (The Alt Graphic
keys are only on non-US keyboards.) With US English keyboard mapping, for example,
pressing A produces A (a capital A) when Shift or Lock is down, octal 001 when Ctrl is
down, and a (a small a) when no other key is down.

For more information on keyboard mapping, see "Keyboard Mapping" on page 2-16. For
more information on producing a customized .Xkeymap file, see "keycomp" on page 3-12.

X-Windows Commands 3-5

Color Specification

Many programs allow you to specify colors for things such as the text or the screen
background. A color specification can be given as either a color name (such as blue) or as
a string of three hexadecimal values with each value specifying the intensity of the red,
green, or blue color components.

The color names are defined in the /usr/lib/X/rgb/rgb.txt file. The following is a list of
some of the colors defined in the file:

• Black
• Blue
• Cyan
• Green
• Navy
• Red
• Tan
• White
• Yellow

The hexadecimal values must be given in one of the following formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

In this table, R, G, and B represent single hexadecimal digits (upper- or lowercase). When
fewer than 16 bits each are specified, they represent the most significant bits of the value.
For more information about XParseColor, see "XParseColor" on page 4-76.

Note: When using one of these values as part of a sh (shell) command, enclose the value
in double quotation marks. Normally, # indicates a comment in a shell script.

3-6 X-Windows

Display Specification

When you first run the xinit command, the $DISPLA Y environment variable is set to the
following string:

name:number
The contents of this variable specify the display used by programs running with
X-Windows:

• The name is usually the hostname of a particular system.

• The number is used to specify a specific X Server on the named system.

Some commands accept a display specification. This causes the command to run on the
named system and to display on the numbered X Server on that system.

X-Windows Commands 3-7

Syntax Diagrams

Before each command discussion, you will find a syntax diagram that shows you how to
enter that command correctly on the command line. These diagrams show:

• Which flags can be entered on the command line
• Which flags must take parameters
• Which flags have optional parameters
• Default values of flags and parameters, if any
• Which flags can and cannot be entered together
• Where you must enter flags or parameters and where you have a choice
• Where you can repeat flag and parameter sequences.

The following discussion explains how to interpret the syntax diagrams. It begins with an
example diagram that shows most of the conventions used in diagrams. Each part of the
diagram is labeled and explained. Following the example are sample diagrams.

Diagram items that must be entered literally on the command line are in bold. These items
include the command name, all flags, and literal characters. Variable items are in italics.
These items include parameters that follow flags, and parameters that the command reads,
such as files and directories. If an item has a default value, it is shown in the normal font
and the path is shown in bold. You do not enter on the command line any item shown in
the normal font on a bold path.

3-8 X-Windows

The following diagram illustrates the conventions used in the syntax diagrams:

IT!
command name

lID GO TO

~~TNE
...........

@] REQUIRED ITEM

[±] REPEAT ARROW

m CONTINUE DIAGRAM @] DEFAULT VALUE ITQ] INPUT OR OUTPUT

~)XEvaIU~ ~
~DJ, EparmI\.. filer

'(parm
,If

[§] OPTIONAL PARAMETER

1 Do not put a blank between these items.

You interpret the diagram as follows:

1 command name

2 SINGLE CHOICE BOX

3 DEFAULT LINE

4 REPEAT ARROW

The first item in the diagram is the name of the command you
want to invoke. It is in bold, so it must be entered exactly as it
appears in the diagram. .

After the command name, the path branches into two paths.
You can follow either path.

If you follow the lower path, you encounter a box with the
words one of over it. You can choose only one item from this
box.

If you follow the upper path, you bypass the single choice box,
and enter nothing. The bold line around the box is a default
line, which means that you do not have to enter anything from
that part of the diagram. Exceptions are usually explained
under "Description." One important exception, the blank
default line around input and output files, is explained in item
10.

When you follow a path that takes you to a box with an arrow
around it, you must choose at least one item from the box.
Then you can either follow the arrow back around and
continue to choose items from it, or you can continue along
the path. When following the arrow around just the box

X-Windows Commands 3-9

(rather than an arrow that includes several branches in the
diagram), do not choose the same item more than once.

5 REQUIRED ITEM Following the branch with the repeat arrow is a branch with
three choices and no default line around them. This means
that you must choose one of A, B, or C.

6 GO TO NEXT LIN E If a diagram is too long to fit on one line, this character tells
you to go to the next line of the diagram to continue entering
your command line. Remember, the diagram does not end until
you reach the vertical mark.

7 CONTINUE DIAGRAM This character shows you where to continue with the diagram
after it breaks on the previous line.

S OPTIONAL PARAMETER If a flag can, but does not have to, take a parameter, the path
branches after the flag to show this. If you cannot enter a
space between the flag and parameter, you are told in a
footnote.

9 DE FA U LTV A L U E Often, a command has default values or actions that it will
follow if you do not enter a specific item. If the default is not
something you can enter on the command line, it is not
indicated in the diagram. However, it is discussed under
"Flags."

10 INPUT OR OUTPUT

3-10 X-Windows

Note: Default values are included in the diagram for your
information. Do not enter them on the command line.

A command that can read either standard input or input files
has an empty default line around the file parameter. If the
command can write its output to either a file or to standard
output, it is also shown with a default line around the output
file parameter. If a command can read only from standard
input, input is not shown in the diagram, and standard input is
assumed. If a command writes only to standard output, this is
also assumed and output is not included in the diagram. When
you must supply a file name for input or output, the file
parameter is included in the diagram without a default line
around it.

Following are examples of how to enter this command based on this syntax diagram:

command name A
command name C
command name a B
command name d B
command name e A
command name e 9 f A
command name C 0
command name C 08
command name A E7
command name B myfi 1 e
command name a e 9 B 03 E6 myfile
command name d f e h C 0 myfile
Note: Although the diagram implies that the order of the flags is important, it is usually
not. When the order of the flags is important, it is indicated in the diagram, under
"Flags," or in both places. With this in mind, an additional example of how to enter this
command is:

command name E9 a 0 9 A h f myfile

X-Windows Commands 3-11

keycomp

Purpose

Reads in a textual description of the keyboard and produces a binary keymap file.

Syntax

keycomp-< infi/e ->outfi/e--j

Description

The keycomp command (keycomp is an abbreviation for keymap compiler) reads in a
textual description of the keyboard and produces a binary keymap file. The keymap file is
used to translate keystrokes into character strings. For more information on the keymap
file, see "Keyboard Specification" on page 3-5.

The keycomp command supports the full range of HFT keyboard mapping, including the
Alt Graphic shift state.

You can use keycomp to define diacritical keys (dead keys). The code point
combinations that produce the actual diacritical characters are pre-defined and cannot be
changed using keycomp. The pre-defined combinations are listed in XLookupMapping.

Five different states are supported in the base keymap files. Additional states are either
mapped to single states or defined as UNBOUND (return nothing) for the RT PC keymap
files.

Keycomp Source File
The input file to keycomp consists of one or more lines, each beginning with an octal or
decimal number designating an X-Windows keyboard code. Items follow the key code, each
representing the binding for a particular combination of the Ctrl, Alt, Shift, Lock, Alt
Graphic keys. Items on the line are separated by a space.

If only one item is present on a line, it represents the binding for this key code regardless
of the position of the shift keys. The first 16 states are required in the source file. If more

3-12 X-Windows

keycomp

than 16 but fewer than 32 states are provided, the last state is extended to all the missing
states up to state 32.

The bindings of items are made in the order defined below:

#1 Base state; no Ctrl, Alt, Shift, Lock, or Alt Graphic down

#2 Lock down

#3 Shift down

#4 Shift and Lock down

#5 Alt down

#6 Alt and Lock down

#7 Alt and Shift down

#8 Alt, Shift, and Lock down

#9 Ctrl down

#10 Ctr 1 and Lock down

#11 Ctr 1 and Shift down

#12 Ctrl, Shift, and Lock down

#13 Ctrl and Alt down

#14 Ctrl, Alt, and Lock down

#15 Ctrl, Alt, and Shift down

#16 Ctrl, Alt, Shift, and Lock down

#17 Alt Graphic down

#18 Alt Graphic and Lock down

#19 Alt Graphic and Shift down

#20 Alt Graphic, Shift, and Lock down

#21 Alt Graphic and Alt down

#22 Alt Graphic, Alt, and Lock down

#23 Alt Graphic, Alt, and Shift down

#24 Alt Graphic, Alt, Shift, and Lock down

#25 Alt Graphic and Ctrl down

#26 Alt Graphic, Ctrl, and Lock down

#27 Alt Graphic, Ctrl, and Shift down

x-Windows Commands 3-13

keycomp

#28 Alt Graphic, Ctrl, Shift, and Lock down

#29 Alt Graphic, Ctrl, and Alt down

#30 Alt Graphic, Ctrl, Alt, and Lock down

#31 Alt Graphic, Ctrl, Alt, and Shift down

#32 Alt Graphic, Ctrl, Alt, Shift, and Lock down

Keycomp Source File Items
Each item should be one of the following:

• An octal or decimal number, indicating a character code.

• A C character literal surrounded by single quotes. Escape sequences (such as \252) are
allowed.

• A C string literal surrounded by double quotes. Standard C escape sequences are
allowed within the string.

• The letter U, indicating no binding. If there is no binding, XLookupMapping returns
an empty string for this key combination.

• The string format "Dnn." to define a key position as a diacritical key. There are 15
pre-defined diacritical keys. XLookupMapping combines a specified diacritical key
with the following key pressed to determine the actual code point to be returned. The
code point returned is based on the pre-defined diacritical lookup table. Strings" DOl"
through "DI5" are not allowed for keycomp.

A comma can, but need not, follow each item. A space or tab must separate the items
whether or not a comma follows each item.

Blank lines are ignored, as are lines beginning with the # character (except control
statements). All text between a # character and the following line is ignored unless the #
is part of a string enclosed in single or double quotes. This allows you to place comments
at the end of a line that contains only a single item.

The keycomp command can identify function key strings supported by the RT and
compress these within the keymap file. The set of function key strings is defined in the
"Set Keyboard Map" section of AIX Operating System Technical Reference.

The source must specify the exact string to be returned.

See the files /usr/include/X/Xkeyboard.h and /usr/include/X/Xkeymap.h for a list of
key codes and key names of function keys.

3-14 X-Windows

Keycomp Source File Control Statements
The following control statements are recognized by keycomp:

1. #S Control Statement

keycomp

Lines starting with #S in the first column define which states are defined within the
keycomp table. This allows the states not being used to be compressed out of the
keymap file. If this line is not specified, it is assumed that all states are built into the
table. All states must be coded in the source file.

The states not included in #S are UNBOUND and return nothing unless remapped to
another state (see the #M control statement).

The keycomp object file provides a stateJl1apping_table to map keyboard state flags
to indexes into the table. The state_mapping_table maps the state detail of a
KeyPressed event from an X Server to an index within the keymap table.

Following #S is a series of numbers representing the states defined in the table. The
states provided are built into the table in the order in which they are defined.

For example, the Ctrl key is normally mapped to index 9 in the keymap file. With the
following definition:

#S 1 2 3 5 9 17
the Ctrl key is mapped to index 5 because state #9 is the fifth state in the #S
statement.

2. #M Control Statement

Lines starting with #M in the first column define mapping of states to a index within
the keymap table. This allows specification of a state hierarchy as defined for the RT
PC and allows mapping of multiple states to a single state. For example, the #M
statement enables Ctrl-Shift keys to be mapped to Ctrl keys.

The format of a #M line is:

#M STATE sl s2 ... sn
where states 81, 82, ... 8n are mapped to state STATE. STATE is a base state
depending on the #S specifications.

The #M line must follow all #S lines. Multiple #M lines can be specified but must be
specified after the #S statement.

X-Windows Commands 3-15

keycomp

Flags

Files

For example, the following line:

#M 9 11 12
maps the Ctrl-Shift and Ctrl-Shift-Lock states to Ctrl.

<infile

>outfile

Specifies a source file to be compiled by keycomp.

Specifies the name of the keymap file to be created.

To be compatible with Keyboard Description and Character Reference, RT PC keyboard files
supplied with X-Windows contain the following control statements:

#5 1 2 3 4 5 9 17
#M 5 6 7 8 21 22 23 24
#M 9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32
#M 17 18 19 20

3-16 X-Windows

rtxwm

Purpose

Provides window manager functions.

Syntax

rtxwm-{)
name: number

-% num
-0 num
-r

Description

The window manager allows you to manipulate the windows on the screen. X-Windows:

• Implements overlapping windows

• Allows windows to be moved, hidden, and resized

• Allows the order of the windows in a stack of overlapping windows to be manipulated

• Allows the keyboard focus to be attached to a window

• Allows the invocation of commands from a window

• Allows various display options to be set.

The window manager normally takes control of the screen at various times to assure that
the screen image remains correct while performing window manager operations. When
this happens, requests from other applications are temporarily suspended until the window
manager finishes the operation.

X-Windows Commands 3-17

rtxwm

Flags

b=f

-fi font

-fn font

-fs font

= geometry

-h

3-18 X-Windows

Specifies an association between a button (b) and a function (j). b can be
one of the following:

left
r right
m both (middle).

1 indicates the left mouse button, r indicates the right mouse button, and
m indicates the both mouse button. When using a three-button mouse,
specify m by pressing the middle button.

f can be one of the following functions:

c circulate
C Cancel
f focus
h hide/show
I lower
m move
p pop
P print
r raIse
R Refresh
S Set
T Tools
z reSIze.

pop specifies the button that is used to pop up the command menu at the
position of the mouse cursor.

Specifies an icon font for use in place of the default icon font. Any
fixed-width font can be used. The default for this flag is Rom14.500 for a
large display and RomlO.500 for a small display.

Specifies a font for use in place of the default font. Any fixed-width font
can be used. The default for this flag is Rom14.500 for a large display
and RomlO.500 for a small display.

Specifies a particular size font for use instead of the default size font.
Any fixed-width font can be used. The default for this flag is Rom14.500
for a large display and RomlO.500 for a small display.

Specifies the location of the rtxwm window. The default for this flag is
= - 0 + O. Values for width and height, if entered, are not used. For
more information, refer to "Geometry Specification" on page 3-4.

Displays the menu horizontally. The default value for this flag is
vertical.

-H
name:number

% num

@num

-q

-r

-selectkey

Menu Modes

rtxwm

Specifies hide mode. The default is off.

Identifies the hostname and display number where rtxwm is to run.
Normally, the hostname and display number are obtained from the
environment variable DISPLAY. For more information, refer to
"Display Specification" on page 3-7.

Controls where the icon is to be placed when hiding a window. The
default is 5.

If the mouse is moved more than a threshold amount or if this is the first
time the window has been hidden, the icon appears at the location of the
mouse cursor when the button is released. Otherwise, the icon reappears
at its previous location. A negative value disables this effect.

Specifies the width in pixels of the border when a window is focused.
The default value for this flag is 5.

Specifies the printer queue to use when a request is issued to print the
screen.

Enables reverse video.

Specifies the selection key used in combination with the mouse button to
select menu items automatically. selectkey is one of the following:

• a signifying left Alt (Alt)
• c signifying Ctr 1
• g signifying right Alt (A It Graphic)
• 1 signifying Lockshift
• m signifying left Alt (Meta)
• s signifying Shift
• n signifying none.

The default for this flag is a.

The window manager has two modes of operation:

• Normal
• Hidden.

For more information about the hidden mode, see "Button/Key Selection" on page 3-20.

The default mode is normal. The default pop-up button is the right button. The default
selection key is the Alt key.

In the normal mode, the command menu is always visible. The menu window's home
position is the upper right corner of the screen. To perform an action, you click any
mouse button in the appropriate menu box and click the same button in the window you
wish to select.

x-Windows Commands 3-19

rtxwm

To activate hidden mode, you use the - H option. In the hidden mode, the menu's home
position is hidden until it is popped up. The command menu pops up when the pop-up
button is pressed. At least one button must be defined to cause the command menu to pop
up. Whenever the pop-up button is clicked while the appropriate combination of Ctrl, Alt,
and Shift keys are pressed, or any time a button not bound to the Focus function is
clicked in the background, the menu appears beneath the cursor. You can then use the
menu as defined for the pop-up button.

Selection Methods
Selection within the menu can be done with one of the following methods:

• Moving the mouse cursor to the window manager menu and selecting a menu item with
any button.

• Pressing the pop-up button as previously described to view the window manager menu,
then release the button at a menu item.

• Pressing button and key combinations for automatic selection. This mechanism allows
a key, in combination with a mouse button, to automatically select a menu item and
immediately apply the function to a window. Automatic selection is applied to the
window containing the mouse cursor.

Pop-up Button Selection

Pressing the pop-up button (by default with Alt down) moves the command menu with the
previously selected item or the central one beneath the mouse cursor. The menu remains
at that location until an item is selected or until the mouse cursor is moved out of the
menu. By default, the pop-up button is the right button, but it can be defined to be any
button.

When a command is selected:

• The menu item remains selected until the command is applied to a window.

• The menu is returned to its previous state and location if rtxwm is in normal mode. If
the menu is in hidden mode, the menu is removed from the display.

If the mouse cursor is moved out of the menu, nothing is selected. This is useful if you
decide not to select an item once the menu is activated.

Button/Key Selection

X-Windows reserves certain button/key combinations and interprets them as operations on
existing windows. Button/key selection can be used in place of the default mouse button
and menu selection method to automatically select and run an operation.

3-20 X-Windows

rtxwm

The key combination can be specified in the command line with some subset of the options:

• a signifying left Alt (Alt)
• c signifying Ctrl
• g signifying right Alt (A It Graphic)
• 1 signifying Lockshift
• m signifying left Alt (Meta)
• s signifying Shift
• n signifying none.

Note: Alt refers to the left Alt key.

For example, if you specify the options - ca, the Ctrl and Alt keys must be down at the
time a mouse button is pressed. The option - n means that no keys need to be held down.
This is not recommended because it means that application programs never receive
unshifted mouse clicks.

If no combination is specified in the command line, Alt is assumed.

Window Manager Command Menu
The window manager displays a menu of commands that you can use to manipulate
windows on the display. By default, the menu is displayed vertically in the upper right
corner of the display.

On your screen, the window manager command menu looks similar to the following:

Move ITI
Lower [I]

Resize
Raise
Focus
Hide/Show
Cancel
Print
Circulate
Refresh

Set
Tools

Commands are arranged according to frequency of use, with the top-left item being the
most-used and the bottom-right item being the least-used. All but the last two items act on
windows.

You use the menu by selecting a item within the menu, then applying the command to a
window. Once you select a menu item, rtxwm controls the mouse until the command is
applied to a window. You can deselect an item on the menu by clicking a different button.

For example, to hide a window, you can use the following steps:

x-Windows Commands 3-21

rtxwm

1. Move the mouse cursor to Hi de/Show in the menu and select it. The item Hi de/Show
is highlighted in the menu.

2. Move the mouse cursor to the window to be hidden and press the same button.

3. The window is hidden. A window icon is displayed and Hi de/Show is unhighlighted.

The commands in the window manager command menu provide the following functions:

Move

Lower

Resize

Focus

Moves a window. When you select a window, you can use the mouse to move
an outline of the window. When you release the button, the window is moved.

Pushes the window you select to the bottom of any stack of overlapping
windows.

Resizes a window by moving a corner or an edge. When you apply it to a
window, an outline of the window is displayed. Moving the mouse cursor
changes the size of the outline, leaving the opposite corner or other edges
fixed. The corner or edge that moves depends on the location of the mouse
cursor when the button is pressed.

The window is divided into a logical grid of eight rectangles. If the mouse
cursor is in one of the four corner rectangles, the corner closest to the mouse
cursor is moved; otherwise, the closest edge is moved. When the button is
released, the window is resized.

Attaches the keyboard to a window. Keyboard input goes to that window
even when the mouse cursor is outside the window. It also raises the focused
window. Focusing the background detaches the keyboard from any window
by attaching it to the background window. When no window is focused, the
keyboard input goes to the window that contains the mouse cursor. The
focused window is highlighted by a partial frame.

Hi de/Show Makes a window into an icon or an icon into a window. When applied to an
icon, Hi de/Show makes the original window reappear at its former position
on the screen.

If a window has not provided an icon window, the window manager creates its
own icon window and places the title of the window in it. In this case, the
mouse movement and editing functions discussed in this section are valid.

If the mouse is moved more than a threshold amount or if this is the first time
the window is being hidden, the icon appears at the location on the screen
where the button is released. Otherwise, the icon reappears at its previous
location.

The threshold amount can be changed with the %num flag. Giving a negative
value disables this effect.

The icon name can be edited. Pressing the Delete or the Backspace key
deletes the last character of the icon name, pressing Ctrl-U deletes the entire

3-22 X-Windows

Set

Cancel

Raise

Print

rtxwm

name, and pressing other character keys appends the characters to the
current name.

Causes the X Server to disconnect from the selected window. The window is
taken away. Applications usually terminate when disconnected from the X
Server.

Note: This only works if rtxwm is connected to an AIX Operating System X
Server.

Raises a window to the top of any stack of overlapping windows.

Prints the contents of a window on the printer. The printer device name is
obtained form the environment variable XPRINTDEV (for example
XPRINTDEV="-devi ce 3812"). Printer devices are supported as shown
below:

3812 IBM 3812 Pageprinter
5201 IBM 5201 Quietwriter Model 2
5202 IBM 5202 Quitewriter III.

Ci rcu1 ate Causes the lowest window in the stack of overlapping windows to be raised.

Refresh

Set

Tools

Successive applications reveal each window in turn.

Clears the display and forces each application to redraw its contents.

See "Set."

See "Tools" on page 3-25.

Both Set and Tool s display a submenu below or above the mouse cursor location,
depending on the space available. The submenu remains visible until a selection is made
or the mouse cursor is moved out of it.

Selecting Set from the window manager command menu displays a submenu through
which you can set various display options. Some of the options are toggle buttons that can
be set either on or off. If an option is marked with a + (plus sign), the option is set to on.

X-Windows Commands 3-23

rtxwm

The following table lists the options on the Set menu:

Autorepeat Enables or disables key repeat while a key is pressed.

Shift Key Enables or disables the shift lock mode.

Hide Menu Causes rtxwm to hide the command menu until it is
activated. Once a command is complete, the command menu
is hidden again.

Horizontal Menu Enables or disables the horizontal display of menu items.

Reverse Video Reverses foreground and background colors in the window
manager menu.

Assign Button Displays a copy of the command menu and enables the
association of a mouse button with a menu item. Clicking a
button while the mouse cursor is on a menu item associates
the button with the item.

Click Sets the keyboard click to either off or to a volume level from
1 through 8. A menu with the current volume is displayed.
Pressing the right button increases the value and pressing the
left button decreasesthe value. Pressing both buttons sets the
volume.

Foreground Color Displays a menu of available colors from which you can select
a foreground color.

Background Color Displays a menu of available colors from which you can select
a background color.

Bell Sets the bell volume. A menu with the current volume is
displayed. Pressing the right button increases the value and
pressing the left button decreases the value. Pressing both
buttons sets the volume.

Mouse Sets the acceleration and threshold for the mouse. A menu
for each value is displayed in sequence. Pressing the right
button increases the value and pressing the left button
decreases the value. Pressing both buttons sets the value.

Screen Sets the length of time in minutes before the server clears the
screen. A menu with the default value is displayed. Pressing
the right button increases the value and pressing the left
button decreases the value. Pressing both buttons sets the
time.

3-24 X-Windows

Tools

rtxwm

Selecting Too 1 S displays a menu of application program names that can be invoked within
X-Windows. Using this menu, you can select and start programs within X-Windows. The
Tools menu supports the invocation of three classes of programs:

X-Windows Application programs written directly to the X library and
applications invoked by their command names.

Emulation KSR application programs that are supported by the xterm HFT
applications emulation function; invoked with the xterm - e app command.

Full-screen Programs that write directly to the display adapter card and run
applications in monitor mode; invoked with the xopen app command.

The Tools Menu Controller
The file /usr/lpp/X/defaults/X.txt controls what is displayed in the command menu. The
format of a line in this file is:

function_contextllfunction_name I description

rtxwm uses the function_context field to invoke a function or open another pop-up text file
and the function_name field to build the command menu. The description is a comment
field.

You can modify X. txt by editing its contents with a text editor or by using the Menu
Update command. This command is similar to the Tools Update menu in Usability
Services. To use Menu Update, Usability Services must be installed on the system. For
more information about Usability Services, see Usability Services Reference.

A file named Xtools.txt for the Tools pop-up is added within X.txt. The default
Xtools.txt contains the AIX shell and the analog and digital clock applications.

The Tools Menu File
The file Xtools.txt contains information on application programs accessible through the
Tools window. The format of a line in this file is:

I111 exec-program I command_name I description

rtxwm uses the exec-program field to invoke the application program. The exec-program
field allows a command string to be supplied rather than just a command name. This
allows the customization of commands. The command_name field is used to build the
Tools pop-up. The description is a comment field.

X-Windows Commands 3-25

rtxwm

For example, the command:

xterm =80x24 -fn Rom14.500 -e dos

specifies that DOS Services be invoked in a new window with the Rom14.500 font. This
must be done in order to support invocation of full-screen applications.

Default Keywords
The default keywords for use with the rtxwm command are:

BodyFont
FrameWidth
Geometry
Hide
IconFont
Iconify Delta
KeyCombination
LeftButton
MenuFormat
MiddleButton
QueueName
Reverse Video
RightButton
SizeFont

For more information about the use of these keywords, see "Changing X-Windows
Defaults" on page 2-4.

3-26 X-Windows

x

Purpose

Starts the X Server.

Syntax

x

-n num

:~~
-t num

Description

The X Server is a display server that runs on computers with bitmapped terminals. The X
Server distributes user input to and accepts output requests from programs located either
on the host system or on systems connected to it through a network.

Unless you specify otherwise, only programs running on the host system can interact with
the display. To allow another system to use your display, you must define that system to a
specific X Server with the xhost command. For more information on the xhost command,
see "xhost" on page 3-33.

After the X Server is initialized, it sends uni x:? I BM X-Wi ndows 1.1 to standard output,
where? denotes the display number. This string is used by the xinit command to set the
default DISPLAY environment variable.

The X Server and all windows opened from it can be terminated by pressing
Ctrl-Alt-Backspace. Remote windows usually display an error message concerning a
broken connection before they terminate.

The X Server logs messages in /tmp/ .X? .msgs, where? is the display number.

x-Windows Commands 3-27

x
Flags

The following flags have default values supplied with the program:

-a num

-c num

-0 color

-1 color

-D file

-fnum

-I

-m

-n num

-p num

-r

-s num

3-28 X-Windows

Specifies the acceleration. The default value is 4 pixels. The acceleration
is a multiplier for mouse movement. For example, specifying 4 causes the
cursor to move four times as fast as the mouse. The specified value must be
a positive value greater than o.
Specifies the key click volume. The default value is 6. The following
values are supported:

o
1, 2, 3
-1, 4, 5, 6
7, 8

off
low
medium
high

Specifies a background color for the display. The default value depends on
the display.

Specifies a foreground color for the display. The default value depends on
the display.

Specifies the full pathname of the color definition data base file to use. The
default is /usr/lpp/X/rgb/rgb.

Specifies the beep volume. The default value is 6. The supported values are
the same as those supported for the - c num flag.

Disables shift lock. The default is shift lock enabled.

Specifies the use of monochrome display characteristics.

Specifies the connection number. Valid values for num are 0 to 255. The
default is the next available number. num is used by programs to
communicate with a specific X Server. For example, the command:

X -n 18
specifies that communication to the activated X Server takes place by
unix:18 or by hostname:18.

Specifies the number of minutes to elapse between connection checks. The
default is 60 minutes. A specified value must be a positive number greater
than o.
Disables auto repeat. The default is auto repeat enabled.

Specifies the number of minutes to wait until making the display blank.
The default is 10 minutes. A specified value must be a number greater than
o.

-t num

-T

-v

x
Specifies the mouse threshold. The default value is 2 pixels. Acceleration
takes effect only if the mouse is moved more than the mouse threshold in
one time interval and only applies to the amount beyond the threshold.

Disables the Ctrl-Alt-Backspace key sequence that, by default, terminates
the X Server and all windows opened from it.

Replaces the display with the current background color, after the amount of
time specified by the - s flag, By default, if the - v flag is not specified, the
entire display is painted with the background tile after the amount of time
specified by - s. On color displays, random foreground and background
colors are also used.

x-Windows Commands 3-29

xclock

Purpose

Continuously displays the current time of day.

Syntax

--{-digital

XCIOCk--(name:number)-(=geometr) -analog - b num
- bd color
- bg color
- bw num
- chime
- fg color
- fn font
- hd color
- hi color
- rv
- update sec

Description

The xclock command gets the time from the system clock. This time is displayed and
updated by X-Windows in the form of either a digital or an analog clock.

Flags

-analog

-b num

- bd color

3-30 X-Windows

Sets analog display mode. Draws a conventional 12-hour clock
face with ticks for each minute and stroke marks on each hour.
The default is digital mode.

Specifies the width in pixels of padding white space between the
window border and anything xclock displays. The default is 10
in digital mode and 2 in analog mode.

Specifies the border color on color displays. The default is black.

- bg color

-bw num

-chime

-digital

-fg color

-fn font

= geometry

- hd color

- hI color

name:number

-rv

-update sec

xclock

Specifies the color of the background on color displays. The
default for this flag is white.

Specifies the width in pixels of the border. The default value for
this flag is I.

Specifies the sounding of a chime every 60 minutes on the hour.
The default is off.

Sets digital display mode. Displays date and time in digital form.

Determines the color of the text and tick marks on color displays.
The default for this flag is black.

Specifies a font for use instead of the default font. Any
fixed-width font can be used. The default for this flag is
RomI4.500.

Specifies the location and dimensions of the window. The default
setting is = - 0 - O. For more information on geometry, refer to
"Geometry Specification" on page 3-4.

Specifies the color of the hands in analog mode on color displays.
The default for this flag is black.

Specifies the highlight color. For example, the outline of the
hands of the analog clock can be highlighted with this color.
The default is black.

Identifies the hostname and display number where the clock is to
run. Normally the hostname and display number are found in
the environment variable DISPLAY. Refer to "Display
Specification" on page 3-7.

Reverses foreground and background colors.

Specifies the frequency in seconds with which xclock updates its
display. If the xc10ck window is obscured and then exposed,
xclock overrides this and redisplays immediately. The default
update frequency is 60 seconds. The specification of an update
frequency greater than 30 seconds disables the display of the
second hand in analog mode.

X-Windows Commands 3-31

xclock

Default Keywords
The default keywords for use with the xclock command are:

Background
BodyFont
Border
BorderWidth
Foreground
Geometry
Hands
Highlight
Mode
Reverse Video

For more information about the use of these keywords, see "Changing X-Windows
Defaults" on page 2-4.

3-32 X-Windows

xhost

Purpose

Controls who can have access to X-Windows on the current host machine.

Syntax

Xhost~ ~
_+ 1 host

1
Do not put a blank after these items.

Description

The xhost command adds and deletes hosts on the list of machines from which X-Windows
accepts connections. It is only sufficient for a work station (single-user) environment.

This command must be executed on the machine to which the display is connected. You
can remove a host from the access list by using the - host option. Do not remove the
current host from the access list. If you do, you must log off the system before making any
corrections.

Entering xhost with no arguments shows the names of the hosts currently allowed to
access your X-Windows display.

To enable a remote host by default, the host can be defined in a file named /etc/X? .hosts (?
is the display number to which you enable access).

For example, the display frank:O can be accessed by systems defined in the file
/etc/XO.hosts on a system that uses the default hostname of frank. In both the display
name and the file name, 0 indicates the number of the display that the defined remote
systems are allowed to access through X-Windows.

X-Windows Commands 3-33

xhost

Flags

host

+host

-host

3-34 X-Windows

Specifies a host node ID number and adds the host to the
X-Windows access list.

Specifies a host node ID number and adds the host to the
X-Windows access list. (Same as the host option; the + is
optional.)

Specifies a host node ID number and deletes a host from the
X-Windows access list.

xinit

Purpose

Starts an X Server with a single command.

Syntax

xinit
x term_options

Description

The xinit command starts the X Server, an xterm window, and an rtxwm window
manager. It can be entered from the AIX command line or as a user's login command
specified in the /etc/passwd file. If used as a login command in /etc/passwd, the user is
automatically logged into X-Windows.

xinit performs the following operations:

• Executes the user's profile, depending on the - L option

• Starts an X Server on the current display

• Sets up the DISPLAY environment variable

• Starts the rtxwm command

• Starts the xterm command.

xinit uses the SHELL environment variable to start the command within xterm.

If xinit is the invoked login program, the termination of the initial window set up by the
window manager automatically terminates all other windows opened from that window.

The xinit command is a shell script that can be customized to include any commands you
wish and to open as many windows as you wish.

If xinit is invoked from /dev/console, a new virtual terminal is opened and an X Server is
started on the new virtual terminal.

X-Windows Commands 3-35

xinit

Flags

-L Specifies that xinit be used as the login program and that the profile of the
user ($HOME/.profile) be read and executed. Otherwise the profile is
assumed to be set up.

Specifies any valid X options that do not conflict with xterm_options.

xterm_options Specifies anyone of the three valid xterm options:

3-36 X-Windows

• = geometry
• -e
• -n
These options are passed to the xterm command that opens the initial
window. This allows the customization of the location, size and contents of
the initial window.

The default for = geometry is = 80x12 + 0 + o. You use the - e option to
execute an initial command within the login window. For example, the
following line in /etc/passwd starts X-Windows with the DOS Services as
the login shell:

/usr/bin/xinit -L -e /usr/bin/dos

xopen

Purpose

Opens a full-screen window (virtual terminal) and monitors it.

Syntax

xopen
name: number

cmd--!

Description

Flags

The xopen command monitors the full-screen window as follows:

• A virtual terminal is opened for the full-screen application.
• An icon is created in the X-Windows display for the full-screen application.
• The Show function of the virtual terminal activates the full-screen application.
• When the full-screen application ends, the icon is removed from the X-Windows

display.

cmd

- ib file

-m

-n name

Specifies a command to be executed within the full screen window.
Any number of valid command arguments can also be entered.

Specifies the name of a bitmap icon file to be used instead of the
default icon bitmap. This file, assumed to be in bitmap format, is
read and the resulting bitmap is used as the icon.

Turns off monitoring of the virtual terminal. The icon is not
displayed in the window and no monitor process is created.

Provides a window name. If no name is provided, the command
name is used as the window name.

X-Windows Commands 3-37

xopen

name:number

3-38 X-Windows

Identifies the hostname and the display number of the display
where xopen is to run.

xterm

Purpose

Initializes an X-Windows terminal emulator.

Syntax

xtenn
nome:number

-ar -r -fi font
-bi -rw -vb -fn font
-cu -s -w -ft font
-dw -sb -b num -ib file
-i -si -bd color -If file
-j -sk -bg color -ms color
-I -sn -bw num -n nome
-Is -sf -or color -nb num
-mb -tb -fb font -po num
-ps -ti -fg color -sl num

-132

Description

The xterm command provides a standard terminal type for programs that do not interact
directly with X-Windows. It can emulate either an HFT terminal or a VTI02 terminal.
The default is HFT emulation. The VTI02 mode is activated by the - v flag.

Depending on the emulation mode, the environment variable TERM may be one of the
following:

• ibm6153 (monochrome display) for HFT mode
• ibm6154 (color display) for HFT mode
• vt100 for VTI02 mode.

In order to make xterm device-independent, only ibm6153 or ibm6154 are used. xterm
supports the display of up to 16 colors at a time.

The xterm terminal supports escape sequences that perform terminal functions such as
cursor control, moving and deleting lines, and xterm private functions.

x-Windows Commands 3-39

xterm

Many of the special xterm features (like the scrollbar and logging) can be modified under
program control through a set of private xterm escape sequences. You can also use
escape sequences to change the title in the title bar and to specify a new logging file name.

For more information on these escape sequences and the supported data streams, see
"xterm Datastream Support" on page 5-8 and AIX Operating System Technical Reference.

There are four different areas in the xterm window:

• Title bar
• Scroll bar
• Status line
• Terminal window.

By default, only the title bar and the terminal window are initially displayed.

The terminal window is the area provided for the terminal emulation. When you create a
window, a pseudo terminal is allocated and a command (usually a shell) is started.

The xterm command automatically highlights the window border, text cursor, and title bar
when the mouse cursor enters the window (selected) and unhighlights them when the
mouse cursor leaves the window (unselected). If the window is the focus window, the
window is highlighted regardless of the location of the mouse cursor.

In addition, if input comes in while an xterm window is hidden and the icon of the window
is a static bitmap, a box is drawn around the icon title. xterm also may display a
miniature version of the terminal window when it is hidden. This allows a user to monitor
a window while it is hidden. The default is to display the static bitmap when the window
is hidden.

The environment variable WINDOWID is set to the X-Windows ID number of the xterm
window.

The COPY, PASTE, and RE-EXECUTE Functions
Once you create a window, xterm allows you to save text and restore it within the same or
other windows by using COPY, PASTE, and RE-EXECUTE button functions. These text
functions are enabled when holding down the Shift key and are available in both HFT and
VTI02 emulation. The selected text is highlighted while the button is pressed.

The COPY, PASTE, and RE-EXECUTE button functions perform as described below:

COpy

3-40 X-Windows

Pressing Shift and both mouse buttons at once (or the middle button
on a three-button mouse) saves text into the cut buffer. You move the
cursor to the beginning of the text and hold the button down while
moving the cursor to the end of the text you want to save. The text is
highlighted as you move the cursor. When you release the button, the
selected text is saved in the global cut buffer. COpy does a text cut,
not a box cut.

xterm

PASTE Pressing Shift and the right mouse button types the text from the cut
buffer into the window that contains the mouse cursor, inserting it as
keyboard input.

RE-EXECUTE Pressing Shift and the left mouse button takes the text from the
cursor (at button release) through the end of line (including the new
line), saves it in the global cut buffer and immediately retypes the line,
inserting it as keyboard input. The selected text is highlighted.
Moving the mouse cursor off of the initial line cancels the selection.
If there is no text beyond the initial cursor point, xterm sounds the
bell, indicating an error.

By cutting and pasting pieces of text without trailing new lines, you can take text from
several places in different windows and form a command to the shell, for example, or take
output from a program and insert it into your favorite editor. The cut buffer is globally
shared among different applications. The terminal emulator treats the cut buffer like a
text file, in that the text is delimited by new lines.

Menu Usage
The xterm command has three different menus:

• Options
• Modes
• Scrollbar
Each menu pops up under the correct combinations of key and button presses. Each menu
contains various modes that can be toggled. Most of the menu items can also be altered by
the use of command options. A + (plus sign) appears next to a mode that is currently
active. Selecting one of these modes toggles its state. Some items of the menus are
command entries; selecting one of these performs the indicated function.

The Opti ons menu pops up when Ctrl and the left mouse button are pressed in a window.
The menu contains items that apply to all emulation modes. This menu can also be
activated by pressing the left mouse button while the mouse cursor is in the title bar.

The Modes menu sets various modes for each emulation mode. The menu is activated by
pressing Ctrl and both mouse buttons at once (or the middle button on a three-button
mouse) while the mouse cursor is in the window. The soft reset entry resets scroll
regions, a function that can be useful when a program leaves the scroll regions set
incorrectly. The full reset entry clears the screen, resets tabs to every eight columns,
and resets the terminal modes (such as wrap and smooth scroll) to their states after xterm
initially finished processing the command line options. This menu can also be activated by
pressing both mouse buttons at once (or the middle button on a three-button mouse) while
the mouse cursor is in the title bar.

X-Windows Commands 3-41

xterm

The Sera 11 bar menu pops up when both mouse buttons are pressed at once (or the
middle button is pressed on a three-button mouse) while the mouse cursor is on the
scrollbar. This menu allows several modes particular to the scrollbar to be set.

Scrollbar
The xterm command supports an optional scrollbar composed of a scroll button displayed
at the top of the scrollbar and a scroll region at the bottom. The scroll bar is hidden until
its display is requested. Pressing both buttons on the mouse at once (or the middle button
on a three-button mouse) while the cursor is in any part of the scrollbar displays the
scrollbar menu.

The scroll region displays the position and amount of text currently showing in the
window (highlighted) relative to the amount of text actually saved. As more text is saved,
the size of the highlighted area decreases. Clicking either the left or right button while
the mouse cursor is in the scroll region positions the top of the display window at the
mouse cursor.

The scroll button causes the window to scroll up and down within the saved text. Clicking
the left button moves the window position up (the text scrolls downward), while clicking
the right button moves the window position down (the text scrolls upward). The amount of
scrolling is modified by the Shift and Ctrl keys. If neither key is pressed, the window
scrolls a single line at a time. Pressing the Shift key causes the text to scroll a full
window at a time, minus one line. Pressing the Ctrl key causes the text to be positioned at
the extreme top or bottom of the file.

HFT Emulation Summary
The xterm command supports a window that is equivalent to an HFT virtual terminal.

The following is a summary of HFT emulation functions:

• A subset of HFT ioctl/VTDs is supported. For more information, see "xterm HFT
Functions" on page 5-4.

• Keyboard mapping is defined by XLookupMapping and the keycomp command. For
more information, see "keycomp" on page 3-12 and "XLookUpMapping" on page 4-69.
For information on keyboard mapping, see Keyboard Description and Character
Reference.

• International Character Support is provided for code page switching via single-shift
control characters. For more information on the datastream, see A/X Operating
System Technical Reference.

• Mouse reports are supported.

• The HFT datastream as defined in A/X Operating System Technical Reference is
supported.

3-42 X-Windows

xterm

• Mouse reports are supported.

• HFT escape sequences beyond the standard VTI02 set are implemented. For more
information, see "xterm Datastream Support" on page 5-8.

VTI02 Emulation Summary

Flags

The xterm command emulates a VTI02 terminal when the - v command option is
specified. When VTI02 emulation is requested, xterm sets the TERM environment
variable to vt100.

Five keyboard states are handled by XLookupMapping. In order to have VTI02 keyboard
mapping, a VTI02 .Xkeymap file must reside in the HOME directory of the user or in a
directory supported by XLookupMapping.

The VTI02 emulation does not support a blinking character attribute nor double-wide and
double-size character sets. Also, International Character Support is not provided during
VTI02 emulation.

If an option begins with a + (plus sign) instead of a - (minus sign), the option is restored
to its default value. These options override those set in the .Xdefaults file.

The xterm command uses the following flags:

-ar

-b num

- bd color

- bg color

-bi

-bw num

- cr color

Turns on the auto-raise mode of xterm, which automatically raises
the specified window when the mouse cursor enters the window.

The default for this option is off.

Sets the width in pixels of an inner border. The inner border is the
distance between characters and the border of the window. The
default value for this option is 1.

Determines the color of the highlighted border on color displays.
The default value for this option is black.

Determines the color of the background on color displays. The
default value for this option is white.

Defines the icon as a miniature window rather than the default
static bitmap. The default value for this option is off.

Specifies the width in pixels of the window border. The default
value for this is 2.

Determines the color of the text cursor on color displays. The
default value for this option is black.

x-Windows Commands 3-43

xterm

-eu

-dw

-ecmd

-fb font

-fg color

-fi font

-fn font

-ft font

= geometry

geometry

-i

- ib file

-j

3-44 X-Windows

Causes certain curses applications to display leading tabs correctly.
The default value for this option is off.

Causes the mouse cursor to move automatically near the center of
the window when the xterm icon is shown. The default value for
this option is off.

Specifies a command to be executed in the window. This can be
used in place of starting a shell. If this flag is used, the command
and its arguments (if any) must appear last on the xterm command
line.

Specifies a font for use instead of the default bold font. This font
must be the same height and width as the normal font.

Determines the color of the text on color displays. The default value
for this option is black.

Specifies the default font to be used for the miniature icon windows.
The default value for this option is Rom6.500 for HFT mode. In
VT102 emulation, the default is nil2.

Specifies a font for use instead of the default font. Any fixed-width
font can be used. In HFT emulation, the default is either Rom14.500
or RomlO.500, depending on the size of the display. In VT102
emulation, the default is vtsingle.

Specifies a font for use in the title bar instead of the default font.
The default is the normal display font.

Specifies the location and the dimensions of a window. The default
for this option is = 80x25 + 0 + O.

For more information on geometry, see "Geometry Specification" on
page 3-4.

Specifies the location of an icon. If specified, width and height are
ignored.

For more information on geometry specifications, see "Geometry
Specification" on page 3-4.

Causes xterm to display the icon rather than the normal window
when the window is opened. The default value for this option is off.

Causes xterm to read a bitmap file and to use the resulting bitmap
as the icon.

Causes xterm to move multiple lines up at once if many lines are
queued for display. The VT100 escape sequences for smooth scroll
can be used to enable or disable this feature from a program. Also,

-I

-If file

-Is

-mb

-ms color

-n name

name:number

-nb num

-po num

-ps

-r

xterm

the Mode menu can be used to set this option interactively. The
default value for this option is off.

Appends input from the window to the end of the logfile file. The
default is off. This does not override LogInhibit in the .Xdefaults
file. For more information about LogInhibit, see 2-9.

Specifies the file in which the log is written. This file is used
instead of the default file XtermLog.xxxxx, where xxxxx is the
process ID of xterm. The file is created in the directory where
xterm is started, or in the home directory for a login xterm. If the
file name begins with a I (pipe symbol), the rest of the string is
interpreted as a command to be executed by the shell and a pipe is
opened to the process.

Causes the shell run under xterm to be a login shell. The user's
.profile file is read and the initial directory is the home directory.
The default is off.

Turns on the right margin bell. The default for this option is off.

Determines the color of the mouse cursor on color displays. The
default value of this option is the color of the text cursor.

Specifies a window name for use by a window manager. This name
is displayed in the title bar.

Identifies the hostname and display number where xterm is to run.
Normally, xterm gets the hostname and display number from the
environment variable DISPLAY. For more information, see
"Display Specification" on page 3-7.

Specifies the right margin distance at which the margin bell rings.
The default value for this option is 10.

Specifies a new page overlap. Normally, in page scroll mode, a page
is defined as the number of lines in the scrolling region minus the
page overlap.

The default value for page overlap is 1.

Turns the page scroll mode on.

After a page of lines is displayed, xterm stops displaying new lines
and the text cursor disappears. Entering Return displays one new
line. Pressing the space bar or a character key displays a new page.

Reverses the foreground and background colors. This becomes the
normal video mode.

X-Windows Commands 3-45

xterm

-rw

-s

-sb

-si

-sk

-sl num

-sn

-st

-tb

-ti

-v

3-46 X-Windows

Turns on reverse-wraparound mode. The default is off.

This mode allows the cursor to wraparound from the leftmost
column to the rightmost column of the previous line. This can be
useful in the shell to allow erasing characters backwards across the
previous line.

Turns off synchronous scrolling on the display. The default for this
flag is on.

When this flag is specified, xterm no longer attempts to keep the
screen current while scrolling and can run faster when network
latencies are very high.

Causes the scrollbar to be displayed during startup and turns on the
saving of lines scrolled off of the window. The default for this
option is off.

Normally, the window is repositioned automatically at the bottom of
the scroll region after input is processed when you use the scrollbar
to review previous lines of text. - si disables window repositioning
on input when set to off. The default for this option is on.

Causes the window to be repositioned automatically in the normal
position at the bottom of the scroll region when a key is pressed.
This option is intended for use with the scrollbar to review previous
lines of text.

The default for this option is off.

Specifies the maximum number of lines to save that are scrolled off
of the top of the window. The default value for this option is 64.

Causes the status line to be displayed in normal video (the status
line is still enclosed in a box). When displayed, the status line by
default appears in reverse-video relative to the rest of the window.

Causes the status line to be displayed on startup. The default is no
display of the status line on startup.

Disables the display of the title bar on startup. By default, the title
bar is displayed on startup.

Causes the display of the window name to the right of the static
bitmap icon. The default is off.

Normally in the icon, the window name is under the bitmap.

Enables VTI02 emulation. If this option is not given, an HFT
terminal is emulated.

Note: Keyboard map is needed for this mode.

-vb

-W

-132

Default Keywords

xterm

Turns on the visual bell mode that flashes the xterm window on
receipt of the Ctrl-G key combination. The default of this option is
off.

Causes the mouse cursor to be placed in the middle of the xterm
window when the window is created. The default is not to move the
mouse cursor.

Causes the smrm escape sequences to be recognized and the xterm
window to be resized as specified. Normally, the sm/rm escape
sequences that switch between the 80 and 132 column modes are
ignored. The default for this flag is off.

The default keywords for use with the xterm command are:

ActiveIcon
AutoRaise
Background
BodyFont
BoldFont
Border
BorderWidth
C132
Cursor
DeIconifyWarp
Foreground
Geometry
IconBitmap
IconFont
IconStartup
In ternalBorder
JumpScroll
LogFile
Logging
LogInhibit
MarginBell
Mouse
NMarginBell
PageOverlap
PageS croll
Reverse Video
Reverse Wrap
SaveLines
ScrollBar
ScrollInput
ScrollKey

X-Windows Commands 3-47

xterm

StatusLine
StatusN ormal
Text Under Icon
TitleBar
TitleFont
VisualBell
Warp

For more information about the use of these keywords, see "Changing X-Windows
Defaults" on page 2-4.

3-48 X-Windows

Chapter 4. Programming Interface to X-Windows

Programming Interface 4-1

CONTENTS
General Reference Information 4-6

Subroutines 4-6
Compiling X Programs 4-10
System Structure 4-11
Coordinates 4-12
Windows 4-12
Creating Windows 4-13
Pixels and Planes 4-15
Bitmaps 4-15
Pixmaps 4-16
Display Operations 4-17
Window Operations 4-18
Events 4-18

Key/Button Events 4-19
Motion Events 4-21
Exposure Events 4-22
Miscellaneous Events 4-24

Display Functions 4-24
Plane Mask 4-25
Brush 4-26
Clip Mask 4-26
Color 4-26
Font 4-27
Cursors and Locators 4-28
Speaker Volume 4-28
Draw Operations 4-28
Association Tables 4-29
Tiles 4-30
Macros and Constants 4-30

Subroutine Reference Information 4-32
DisplayHeight 4-32
DisplayWidth 4-32
XAddHost 4-32
XAppendToBuffer 4-33
XAppendVertex 4-33
XAutoRepeat 4-34
XBitmapBitsPut 4-34
XChangeBackground 4-35
XChangeBorder 4-35
XChangeWindow 4-35
XCharBitmap 4-36
XCharWidths 4-36
XCheckMaskEvent 4-37
XCheckWindowEvent 4-37

4-2 X-Windows

XCircWindowDown
XCircWindowUp
XClear
XClearIconWindow
XClearVertexFlag
XClipClipped
XClipDrawThrough
XCloseDisplay
XC lose Font
XCompressEvents
XCondWarpMouse
X Configure Window
XCopyArea
XCreate
XCreateAssocTable
XCreateCursor
XCreateTerm
XCreateTransparencies
XCreateTransparency
XCreateWindow
XCreateWindowBatch
XCreateWindows
XDefineCursor
XDeleteAssoc
XDestroy AssocTable
XDestroySubwindows
XDestroyWindow
XDisplay Name
XDraw
XDrawDashed
XDrawFilled
XDrawPatterned
XDra wTiled
XErrDescrip
XErrorHandler
XExpandEvents
XFeep
XFeepControl
XFetchBuffer
XFetchBytes
XFetchN arne
XFlush
XFocusKeyboard
XFontWidths

4-38
4-38
4-38
4-39
4-39
4-39
4-39
4-40
4-40
4-41
4-41
4-41
4-42
4-42
4-43
4-44
4-44
4-46
4-46
4-47
4-48
4-48
4-49
4-49
4-49
4-50
4-50
4-51
4-51
4-52
4-52
4-53
4-54
4-54
4-55
4-56
4-56
4-56
4-56
4-57
4-57
4-58
4-58
4-58

XFreeBitmap
XFreeColors
XFreeCursor
XFreeFont
XFreePixmap
XGeometry
XGetColor
XGetColorCells
XGetDefault
XGetFont
XGetHardwareColor
XGetHosts
XGetResizeHint
XGrabButton
XGrabMouse
XGrabServer
XlnterpretLocator
XIOErrorHandler
XKeyClickVolume
XLine
XLockToggle
XLock U pDown
XLook U pAssoc
XLookUpMapping
XLowerWindow
XMakeAssoc
XMakePattern
XMakePixmap
XMakeTile
XMapSubwindows
XMapWindow
XMaskEvent
XMouseControl
X~oveArea
XMove Window
XNextEvent
XOpenDisplay
XOpenFont
XParseColor
XParseGeometry
XPeekEvent
XPending
XPixFill
XPixSet
XPixmapBitsPutXY
XPixmapBitsPutZ

4-59
4-59
4-59
4-60
4-60
4-60
4-61
4-62
4-62
4-63
4-63
4-63
4-64
4-64
4-65
4-66
4-66
4-67
4-67
4-67
4-68
4-68
4-68
4-69
4-70
4-70
4-70
4-71
4-71
4-72
4-72
4-73
4-73
4-73
4-74
4-74
4-75
4-75
4-76
4-76
4-77
4-77
4-78
4-78
4-79
4-79

XPixmapGetXY
XPixmapGetZ
XPixmapPut
XPixmapSave
XPutBackEvent
XQueryBrushShape
XQueryColor
XQueryColors
XQueryCursorShape
XQueryFont
XQuerylnput
XQueryMouse
XQuery~ouseButtons
XQueryTileShape
XQueryTree
XQueryWidth
XQueryWindow
XRaiseWindow
XReadBitmapFile
XRebindCode
XRemoveHost
XRotateBuffers
XScreenSaver
XSelectlnput
XSetDisplay
XSetIcon Window
XSetResizeHin t
XStippleFill
XStoreBitmap
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreCursor
XStoreN ame
XStorePixmapXY
XStorePixmapZ
XStringWidth
XSync
XText
XTextMask
XTextMaskPad
XTextPad
XTileAbsolute
XTileFill
XTileRelative

4-80
4-81
4-81
4-82
4-82
4-83
4-83
4-83
4-84
4-84
4-84
4-85
4-85
4-86
4-86
4-86
4-87
4-88
4-88
4-89
4-90
4-90
4-90
4-91
4-91
4-92
4-92
4-93
4-94
4-94
4-94
4-95
4-95
4-95
4-96
4-96
4-97
4-97
4-98
4-98
4-99

4-100
4-101
4-102
4-102
4-103

Programming Interface 4-3

XTileSet 4-103 XUnmapWindow 4-106
XUndefineCursor 4-104 XUpdateMouse 4-106
XUngrabButton 4-104 XUseKeymap 4-107
XUngrabMouse 4-104 XWarpMouse 4-107
XUngrabServer 4-105 XWindowEvent 4-108
XUnmapSubwindows 4-105 IBM-Specific X-Windows Implementation 4-109
XUnmapTransparent 4-105 Sample X-Windows Program 4-111

4-4 X-Windows

About This Chapter

This chapter describes the C programming language interface to X-Windows.

What You Need to Know
In order to use this chapter, you should be familiar with, and be able to write programs in,
the C programming language. For more information, see C Language Guide and Reference.

How This Chapter Is Organized
• General Reference Information - This part of the chapter provides an overview and

describes some of the characteristics of the X-Windows functions. It also provides
general reference information that is common to a group of program interface
functions.

• Subroutine Reference Information - This part of the chapter describes each of the
X-Windows program interface functions. The descriptions are in alphabetical order by
subroutine name.

If you are a first-time user, you should read and become familiar with the general reference
information before attempting to use the subroutine reference information.

Programming Interface 4-5

General Reference Information

The programming interface to X-Windows is a set of C language subroutines that you can
use to create, destroy, and manipulate windows and the data and graphics associated with
the windows.

Subroutines

The following is a list of the X-Windows subroutines grouped according to the type of
function provided.

• Opening and Closing Displays

XOpenDisplay - Open a display.
XCloseDisplay - Close a display
XSetDisplay - Set the current display connection.

• Creating and Destroying Windows

XCreate - Create and place a window.
XCreateTerm - Create and place text related window.
XCreateTransparency - Create an unmapped, transparent window.
XCreateTransparencies - Create multiple unmapped transparent windows.
XCreate Window - Create an unmapped, opaque window.
XCreate Windows - Create multiple unmapped, opaque windows.
XCreateWindowBatch - Create multiple opaque or transparent windows.
XDestroySubwindows - Destroy all subwindows of specified window.
DestroyWindow - Unmap and destroy window and all subwindows.

• Manipulating \Vindows

XChange Window - Change window size.
XCircWindowDown - Lower the highest mapped child of the specified window.
XCircWindowUp - Raise the lowest mapped child of the specified window.
XConfigure Window - Change window size and location.
XLowerWindow - Lower a window.
XMapSubwindow - Map all subwindows of the specified window.
XMapWindow - Map a window.
XMoveWindow - Move and raise a window.
XRaiseWindow - Raise a window.
XUnmapSubwindows - Unmap all subwindows of specified window.
XUnmapTransparent - Unmap a transparent window.
XUnmapWindow - Unmap a window.

4-6 X-Windows

• Receiving Status and Changing Modes

XFetchName - Set a pointer to a window name.
XChangeBackground - Change the background of a window.
XChangeBorder - Change and repaint a window border.
XClearIconWindow - Clear an icon window.
XClipClipped - Set clip-mode to clipped.
XClipDrawThrough - Set clip-mode to draw-through.
XCondWarpMouse - Move mouse relative to the destination window.
XGetResizeHint - Assign window size parameters to client variables.
XInterpretLocator - Convert absolute window coordinates to relative.
XQueryMouse - Determine the current mouse coordinates.
XQueryMouseButtons - Gives current mouse coordinates and button states.
XQueryTree - Determine a window tree structure.
XQueryWindow - Determine information about a window.
XSetIcon Window - Set an icon Window.
XSetResizeHint - Give X-Windows a window shape hint.
XStoreName - Assign a name to a window.
XTileAbsolute - The background is tiled relative to the window origin.
XTileRelative - The background is tiled relative to the closest parent window.
XUpdateMouse - Functions like XQueryMouse but also reads events.
XWarpMouse - Move the mouse relative to the destination window.

• Drawing Lines and Filling Areas

XAppendVertex - Append Vertices to the output buffer.
XClearVertexFlag - Clear the state of the append-vertex flag marking.
XDraw - Draw an arbitrary polygon or curve.
XDrawDashed - Functions as XDraw except the line is dashed.
XDrawFilled - Functions as XDraw, filling the shape with a pixel value.
XDrawPatterned - Functions as XDraw using alternate pixel values for the line.
XDrawTiled - Functions as XDraw and fills the shape with a tile pixmap.
XLine - Draw a line between two window coordinates.
XMakePattern - Make a pattern according to specified bit string.
XQueryBrushShape - Return closest supported shape to specified shape.

• Controlling the Raster

XClear - Clear the window and repaint the background.
XCopy Area - Copy a region to another region of the same window.
XMoveArea - Functions as XCopyArea with planes = allplanes.
XPixFill - Do a display function in a region of a window.
XPixmapPut - Do a display function in a an area of a pixmap and window.
XPixSet - Window area (all planes) set to specified pixel value, no clipping mask.
XQueryTileShape - Return the closest supported tile shape.
XTileFill - Perform a display function in a window region using a tile pixmap.
XTileSet - Functions as XTileFill with all planes and no clipping mask.

Programming Interface 4-7

• Moving Bits and Pixels

XBitmapBitsPut - Copy a client-supplied bitmap into a window region.
XPixmapBitsPutXY - Copy a client-supplied pixmap into a window.
XPixmapBitsPutZ - Copy a client-supplied pixmap into a window.
XPixmapGetXY - Return a pixmap into the specified area of memory.
XPixmapGetZ - Return a pixmap into the specified area of memory.
XPixmapSave - Create a pixmap from the specified portion of a window.

• Storing and Freeing Maps

XCharBitmap - Create a bitmap from the specified font character.
XFreeBitmap - Free all storage associated with the specified bitmap.
XFreePixmap - Free all storage associated with the specified pixmap.
XMakePixmap - Create a pixmap from a bitmap and two pixel values.
XMakeTile - Create a pixmap to use for tiling.
XStoreBitmap - Create a bitmap for later use.
XStorePixmapXY - Create a pixmap for later use.
XStorePixmapZ - Create a pixmap for later use.

• U sing the Cursor

XCreateCursor - Create a cursor.
XDefineCursor - Use the specified cursor when the mouse is in the window.
XFreeCursor - Free all storage associated with the specified cursor.
XQueryCursorShape - Return the closest supported cursor shape.
XStoreCursor - Create and store a cursor.
XUndefineCursor - Use the parent window's cursor.

• U sing Color Maps

XFreeColors - Free color map cells.
XGetColor - Return a color structure for the specified color name.
XGetColorCells - Allocate color map cells.
XGetHardwareColor - Return the hardware color closest to the one specified.
XParseColor - Convert a color string to format suitable for future color calls.
XQueryColor - Return the color values for the specified pixel value.
XQueryColors - Return color values for each specified definition.
XStoreColor - Return the closest available color for the specified pixel value.
XStoreColors - Return the closest available colors for the specified pixel values.

• Using Fonts

XCharWidths - Determine the width, in the specified font, of each character in a
string.
XCloseFont - Deallocate all storage associated with the specified font.
XFontWidths - Return a pointer to an array with the width of every font
character.
XFreeFont - Notify the X Server the specified font is no longer needed.
XGetFont - Load the font with the specified name.

4-8 X-Windows

XOpenFont - Performs the functions XGetFont, XQueryFont, and
XFontWidths in one operation.
XQueryFont - Retrieve various facts about a font.
XQueryWidth - Width in pixels of a null-terminated string.
XStringWidth - Width of a null-terminated string with supplied font information.

• Writing and Reading Text

XText - Draw text into a window using the specified font and display function.
XTextPad - Functions as XText with character spacing specified.
XTextMask - Functions as XText, but uses font as a mask.
XTextMaskPad - Functions as XTextMask with character spacing specified.

• Controlling Access

XAddHost - Add a host to those allowed to open connections to this display.
XGetHosts - Return the current list of hosts allowed to open connections.
XRemoveHost - Remove the host from those allowed to open connections.

• Handling User Preferences

XAutoRepeatOn - Turn the keyboard auto-repeat on.
XAutoRepeatOff - Turn the keyboard auto-repeat off.
XFeep - Ring a bell on the terminal.
XFeepControl - Define the base volume for XFeep.
XGeometry - Determine a window placement.
XGetDefault - Return default window options.
XKeyClickControl - Set the volume of the keyboard click.
XLockToggle - Do not send keypressed or keyreleased for the shiftlock key.
XLockUpDown - Send keypressed and keyreleased for the shiftlock key.
XMouseControl - Define how the mouse moves.
XParseGeometry - Parse a window geometry string.
XReadBitmapFile - Read a bitmap file.
XScreenSaver - How many idle minutes before the screen is blanked.

• Copying and Pasting

XAppendBuffer - Append bytes to the specified buffer.
XFetchBuffer - Fetch the contents of the specified buffer.
XFetchBytes - Fetch the contents of buffer O.
XRotateBuffers - Rotate the buffers
XStoreBuffer - Store a string of bytes in the specified buffer.
XStoreBytes - Store a string of bytes in buffer O.

• Handling Events

XCheckMaskEvent - Check for events specified in mask.
XCheckWindowEvent - Check for specified events from specified windows.
XCompressEvents - Suppress all but the last mousemoved events.
XExpandEvents - Supply all mousemoved events.
XFlush - Send all output requests that have been buffered but not yet sent.

Programming Interface 4-9

XMaskEvent - Look for event specified in mask.
XN extEvent - Get the next event from the queue.
XPeekEvent - Look at the next event on the queue without removing it.
XPending - Return the number of input events still in the queue.
XPutBackEvent - Put an event back on the head of the input event queue.
XSelectInput - Define which input events the window is interested in.
XSync - Flush the buffer and wait until all events and errors are processed.
XWindowEvent - Look for specified events from a specified window.

• Associating Resources to Structures

XCreateAssocTable - Create an association table.
XDeleteAssoc - Delete an association in the specified table.
XDestroy AssocTabIe - Deallocate the specified association table.
XLookUpAssoc - Retrieve data stored in the specified association table.
XMakeAssocTabIe - Insert data into the specified association table.

• Controlling the Mouse, Buttons, and X Server

XGrabButton - Grab the mouse when the button specified in this call is pressed.
XGrabMouse - Mouse events go to windows with XSeIectInput calls.
XGrabServer - Retain exclusive control of the X Server for this connection only.
XUngrabButton - Notify the X Server the client no longer needs the mouse.
XUngrabMouse - Release the mouse if it was grabbed by XGrabMouse.
XU ngrabServer - Free the X Server for other connections.

• Controlling the Keyboard

XFocusKeyboard - Designate the specified window as the input focus window.
XLookupMapping - Return the length of keyboard events.
XRebindCode - Change the keyboard binding.
XUseKeymap - Change keymap files.

• Handling Errors

XErrorHandler - Handle XError events.
XIOErrorHandIer - Handle catastrophic errors.
XErrDescrip - Return a null-terminated string describing the error code.

Compiling X Programs

Before attempting to program to the X-Windows interface, note that you must install the
Sockets program from the Multi-User Services diskettes of the AIX Operating System.
For information on installing programs from Multi-User Services, see Installing and
Customizing the AIX Operating System.

The following compiler command can be used to build your program:

cc {compiler options} -osamples sample.c -IX -Isock

4-10 X-Windows

In the preceding example, sample.c is the name of your C language source program, sample
is the name of your executable C program, IX is the X-Windows subroutine library
(fusr/lib/libX.a) and lsock is the AIX sockets library (fusr/lib/libsock.a).

The compiler definitions for structures, parameters, error codes, and data types are
located in /usr/include/X/Xlib.h and /usr/include/X/X.h. You must include this file in
any program that uses X-Windows subroutines. To do so, insert the following statements
early in your program:

#include <X/Xlib.h> /* also includes X/X.h */

System Structure

The application program you create is the client part of a client-server relationship; you
write the program and the X Server provides it independence from the hardware. On an RT
PC, one to four physical displays can function as a maximum of 16 virtual terminals.
There is one X Server for each virtual terminal that runs X-Windows. In this chapter the
term display means a logical virtual terminal with its associated keyboard, mouse, and
server unless it is explicitly stated otherwise. The following diagram shows the client-X
Server-display relationship:

Note that each client can interact with many X Servers and each X Server can interact
with many clients.

The programming interface is based on a network protocol that allows your program
(client) to efficiently interact with displays connected to other processors in a network.

Programming Interface 4-11

Coordinates

Like the display screen, each window has its own XY coordinate system with the origin at
the upper left hand corner. The X axis is horizontal from left to right; the Y axis is
vertical from top to bottom. Each addressable point on the screen is called a pixel and
corresponds to one XY point in the coordinate system. Because each window has its own
coordinate system, operations within windows can be insensitive to the window position on
the screen.

The origin of a window is inside the border, if it has one, and window size is always the
usable number of pixels within the border. The window border is maintained by the X
Server and output to the window is clipped so as not to extend into the border.

Windows

All windows on a display are in a strict parent-child hierarchy beginning with the root
window. The root window covers the entire display and is the only window without a
parent window. Windows with the same parent window are considered sibling windows.

There are two type of windows, opaque and transparent. Opaque windows have borders,
and they also have a background pattern, or color, called a tile. You specify the width and
color for the border, and the pattern or color for the tile.

An opaque window's background is tiled with a pattern, which is usually a constant color.
The pattern can be either relative to the parent (the pattern is shifted appropriately to
match the parent window) or absolute (the pattern is positioned in the window
independently of the parent window. This positioning is called the tile mode of the window
and can be set with the appropriate function calls.

Sending output to a transparent window is equivalent to sending it to the parent window,
except that the transparent window's clip mode is used instead of the clip mode of the
parent window and the output is clipped to the boundaries of the transparent window.

If an opaque window is stacked on top of another window, the covered area is obscured for
both input and output. Attempts to display output to the covered area do nothing, and
input events from the mouse are not generated.

Transparent windows do not have borders, and they obscure other windows only from
input. If you move a transparent window, it has no effect on the display.

For a given window its subwindows can be stacked in any order, like papers on a desktop,
with arbitrary overlaps. If window wI partially or completely covers window w2, then wI
obscures w2. Window hierarchies never interleave; if window wI obscures sibling window
w2, then subwindows of w2 never obscure wI or sub windows of wI.

4-12 X-Windows

A window is not restricted in size or placement by the boundaries of its parent, but a
window is always visibly clipped by its parent: portions of the window that extend outside
the boundaries of the parent are never displayed and do not obscure other windows.

A window can be either mapped or unmapped, and an unmapped window is never visible
on the screen. A mapped window can only be visible if all of its ancestors are also mapped.

Output to a window with no subwindows is always clipped to the visible portions of the
window, and output to such a window never extends into obscuring windows. Output to a
window that contains subwindows can be performed in either of two modes. In clipped
mode the output is clipped normally by all obscuring windows including subwindows. In
draw-through mode the output is not clipped by subwindows. For example, draw-through
mode is used on the root window during window management when tracking the mouse
with the outline of a window to indicate how the window is to moved or resized. If clipped
mode was used instead, the entire outline would not be visible.

Creating Windows

XCreate and XCreateTerm process geometry specifications. If a sufficiently complete
geometry specification (see XParseGeometry and XGeometry) is passed in, the window
is created automatically. If no X or Y locations are set by the geometry spec, the user is
prompted to interactively position the window. A prompt window is popped up in the
upper left hand corner, and the mouse is grabbed. For XCreateTerm, the prompt window
is appended by the height and width of the fwidth and fbeight units.

The following MakeWindow X defaults control the appearance of a prompt window and
the cursor to be used when rubber banding:

• BodyFont
• Reverse Video
• BorderWidth
• InternalBorder
• Freeze
• Foreground
• Background
• Border
• Mouse
• MouseMask.

If Freeze is set, the server is frozen while the window is being created. So for example,
one of these might be specified as .MakeWindow.Freeze in your .Xdefaults file. A box
the size of the minimum window is rubber-banded on the screen.

If the left button is pressed, the outline of the default window at the mouse's current
position of the default size is shown; when the button is released, the window is created.

Programming Interface 4-13

If the right button is pressed, the outline of the default window at its default size and the
current location of the mouse is shown; when the button is released, the window's
upper-left corner is created at the current cursor location. If using XCreateTerm and
MakeWindow.ClipToScreen is set, the window is clipped to the screen unless the
minimum size requirements preclude it.

If the center button is pressed, it indicates one corner of the window should be set at the
current mouse location. When the center button is released, the window is created with
the other corner of the window at the current mouse location, unless the minimum size has
not been met.

The following structures allow efficient creation of many similar windows or subwindows
simultaneously (a function often wanted when creating menus or complex forms);

typedef struct -OpaqueFrame {
Window self;
short x, y;
short width, height;
short bdrwidth;
Pixmap border, background;

} OpaqueFrame;

/* window ID of the window, filled in later * /
/*where to create the window * /
/* window size * /
/* border width * /
/* border pixmap * /

typedef struct - TransparentFrame {
Window self; /* window ID of the window, filled in later * /
short x, y; /* where to create the window * /
short width, height; /* window size * /

} TransparentFrame;

typedef struct -BatchFrame {
short type;
Window parent;
Window self;
short x, y;
short width, height;
short bdrwidth;
Pixmap border;
Pixmap background;

} BatchFrame;

4-14 X-Windows

/* one of (IsOpaque, IsTransparent) */
/* window ID of the window's parent */
/* window ID of the window, filled in later * /
/* where to create the window * /
/* window width and height * /
/* window border width */
/* window border pixmap * /
/* window background pixmap * /

Pixels and Planes

Each pixel on a monochrome (black and white) display has one bit of information
associated with it; the bit is either 0 (for black) or 1 (for white).

Color displays, however, need multiple bits per pixel in order to properly regulate the red,
green, and blue color guns that provide the full range of visible colors available to the
particular display. For example, assume a display has 4 bits per pixel, numbered 0, 1, 2,
and 3. The display is said to be 4 planes deep. One plane contains all the bit Os, the
second the bit Is, the third the bit 2s, and the fourth the bit 3s.

Bitmaps

A bitmap is a rectangle of bits that has a width in pixels and a height in pixels. A bitmap
has a depth of 1 plane. The following shows a bitmap 17 pixels wide by 8 pixels high.

17 ----------1

8

1
A bitmap is represented in storage according to the following:

o The map is stored in rows, top row to bottom, each row beginning on a 16-bit word
boundary.

• Each row is padded, if necessary, to a multiple of 16 bits.

• The size of the bitmap (bytes) is:

«width -I- 15) -:--16)*(height)*(2) = size in bytes

• You can use the BitmapSize macro to compute the size.

The bit order in each 16-bit word is exactly opposite to the bit order on the display. The
least-significant bit of the word (bit 0), is the leftmost visible pixel on the display. Note
that there is a supplied bit-reversal function (XRevShorts) described in "IBM-Specific
X-Windows Implementation" on page 4-108.

Programming Interface 4-15

Pixmaps

A pixmap is a rectangle of pixels that has a width in pixels and a height in pixels. A
pixmap is as deep as the pixel has bits. Pixmaps can be represented in storage in either XY
format or Z format.

In XY format, each plane in the pixmap is represented as a bitmap; the bitmaps appear in
storage from most significant to least significant in sequence. The following shows a
pixmap in XY format:

Bitmap 3

Bitmap 0

The size of the pixmap in bytes is:

«width + 15)-:-16)*(height)*(depth)*(2) = size in bytes

The XYPixmapSize macro computes the size of an XY format pixmap.

In Z format, the pixels are stored row by row, top to bottom, left to right within the row.
The following shows a pixmap in Z format:

Pix 0 Pix 1 Pix 2

Pix N

4-16 X-Windows

For a display with 2-8 planes, each pixel value is represented as a single byte. The pixmap
size in bytes is:

(width)*(height) = size in bytes /* Z format, 2-8 planes * /

Use the BZPixmapSize macro to compute the size.

For a display with 9-16 planes, each pixel value is represented by a 16-bit word. The
pixmap size in bytes is:

(width)*(height)*(2) = size in bytes /* Z format, 9-16 planes */

Use the WZPixmapSize macro to compute the size.

Display Operations

You must connect your program (client) to the X Server before performing any operations.
To connect, use XOpenDisplay to open the display. You provide the display name (as
specified in "Display Specification" on page 3-7) and X-Windows returns a pointer to a
Display structure (defined in Xlib.h) that contains information about the display such as:

• The network socket
• The root window ID
• The number of display bit planes
• The number of display color map cells
• Event queue information
• Output buffer information
• The display name you provided in the open function
• The width and height of the display.

X-Windows assumes you are working with a single display at a time, and that your
program keeps track of the current display. You can change the current display with the
XSetDisplay function.

To disconnect from the X Server when your program is finished with the display, use the
XCloseDisplay subroutine and close the display. Resource ids (window, font, bitmap,
pixmap or cursor) created with this display are destroyed and should not be used after the
display is closed. Output events that have been buffered but not yet sent are discarded.
The effect of XCloseDisplay is automatically achieved if a process exits.

If you call fork after opening a display, you should take the following precautions when
dealing with the connection to the window system:

• Flush the output buffer before waiting on the child process.

• Make sure you have processed all input events before calling fork from, or exiting
from, the· child process.

If you do not follow the above procedures, your program could perform the same operations
twice.

Programming Interface 4-17

Window Operations

A newly created window is not automatically displayed; to display a window, call
XMapWindow. New windows do not have cursors defined; the cursor is that of the parent
window until a cursor is registered. A window is not visible on the screen until it and all
of its ancestors are mapped and it is not obscured by any of its ancestors. Any output to a
window that is not visible is discarded. When an opaque window is mapped, an exposure
event is generated. Mapping an already mapped window has no effect and does not raise
the window.

If the window is opaque, XMap Window generates Expose Window events (see "Events")
on each opaque window that it causes to become displayed. If your program first maps the
window, then paints the window, then begins processing input events, the window ends up
painted twice. To avoid this your program should either:

• First map the window, then call XSelectInput for exposure events, then repaint the
window explicitly.

• First call XSelectInput for exposure events, then process input events normally.

The event list includes Expose Window events for each window that has appeared on the
screen and the normal response from your program to Expose Window should be to
repaint the window. The second method is preferred because it usually leads to simpler
programs.

X-Windows does not take responsibility for the contents of windows; your program must be
responsible. When part (or all) of a window is hidden and then brought back onto the
screen, an exposure event is generated to notify your program to restore the contents of
the window. Your program should be prepared to regenerate windows on demand.

Events

Input from X-Windows is in the form of events. Events can be the result of a command or
they can be completely asynchronous (such as a keyboard event). Your program must
specify which events it wants to receive because events that your program does not ask for
are not sent to your program.

Definitions for the event IDs are in X.h; definitions for the associated event structures are
in Xlih.h. Xlih.h also contains a generic structure called XEvent that contains
information common to all events. When an event occurs you can use this structure until
you determine the correct event type. The XEvent structure is defined as follows:

typedef struct --XEvent {
unsigned long type;
Window window;
long pacLll;
long pacLl2;

4-18 X-Windows

/* type of event * /
/* window selceting this event * /
/* event-specific data * /
/* event-specific data * /

Window subwindow;
long pad_14;

/* child window (if any) event occurred in * /
/* event-specific data * /

} XEvent;

When an event occurs, X-Windows sends it to the smallest enclosing window for which a
client has selected input for that event type. If no window in the hierarchy has selected
input for that event type, it is eventually discarded.

If your program is receiving both ButtonPressed and ButtonReleased events on a
window and a ButtonPressed event occurs, the mouse is automatically grabbed until all
buttons are released.

If the mouse has been grabbed, then the following events go only to windows for which the
grabbing client has called XSelectInput:

0 Bu ttonPressed
• Bu ttonReleased
• MouseMoved
• EnterWindow
• LeaveWindow

If the client has not called XSelectInput on the window where the event would normally
be sent, the window where the original ButtonPressed event occurred receives the event
but only if the event type is being received for that window and the type is neither
XEnterWindow nor XLeaveWindow.

Input events (such as KeyPressed and MouseMoved) arrive asynchronously from the
server and are queued until requested by a call to XNextEvent or XWindowEvent. Some
of the functions, including XChangeWindow and XRaiseWindow, generate exposure
events. An exposure event is a request to repaint sections of a window that do not have
valid contents. These events also arrive asynchronously, but the client can explicitly wait
for them by calling XSync after calling a function that may generate. exposure events.

Key/Button Events
The structure used with key or button events is defined as follows:

struct JKeyOrButtonEvent {
unsigned long type; /* Key Pressed, ButtonReleased, and so on * /
Window window; /* which window selected this event * /
unsigned short time; /* in 10 ms. ticks for button events * /
short detail; /* event-dependent data * /
short x; /* mouse x coordinate within event window * /
short y; /* mouse y coordinate within event window * /
Window subwindow; /* child window (if any) mouse was in */
Locator location; /* absolute coordinates of mouse * / } ;

For events that contain mouse coordinates, the coordinates are relative to the event
window, even if the mouse is not in the window (because of mouse grabbing or keyboard

Programming Interface 4-19

focusing). If the mouse is also in a descendant of the event window, the subwindow is set
to that descendant; otherwise the subwindow is O. The locator defines the mouse
coordinates in absolute terms and you can use it as an argument to XlnterpretLocator.

A time value is present only for the ButtonPressed and ButtonReleased events.

The time value consists of 16 bits and it wraps after approximately 11 minutes.

For event structures that contain the detail definition (two bytes), the high-order byte
contains the state of various keys and buttons just before the event (see XLib.h) and is
defined as follows:

AltGraphMask
ControlMask
MetaMask
ShiftMask
ShiftLockMask
LeftMask
MiddleMask
RightMask

Ox8000
Ox4000
Ox2000
Oxl000
Ox0800
Ox0400
Ox0200
OxOl00

Alt-graphics key
Control key
Meta (symbol) key
Shift key
ShiftLock key
Left button
Middle button
Right button

For KeyPressed and KeyReleased events, the low-order byte of the detail gives the
keycode (not the ASCII code). The file X/Xkeyboard.h contains macros useful to
classifying keycodes. The tests IsShiftKey(), IsCursorKey(), IsKeypadKey(),
IsFunctionKey(), IsPFKey(), and IsTypeWriterKey() can be used with a keycode to
classify the grouping of a key. Typically, a client uses XLookupMapping to determine
the string (if any) associated with a key.

For ButtonPressed and ButtonReleased events, the low-order detail byte is one of the
following:

RightButton 0
MiddleButton 1 (both buttons)
LeftButton 2

Key/button events are defined as follows:

Event Type

KeyPressed
Key Released
ButtonPressed
ButtonReleased

4-20 X-Windows

Hex Code

OxOOOl
Ox0002
Ox0004
Ox0008

Result

Keyboard key pressed
Keyboard key released
Mouse button pressed
Mouse button released

Motion Events
For EnterWindow and LeaveWindow events, the low-order detail byte is either 0 or one
of the following:

IntoOrFromSubwindow 1
VirtualCrossing 2

EnterWindow and LeaveWindow events with associated low-order detail byte
information are generated as follows:

When the mouse moves from window A to window B, and B is an ancestor of A:

• A receives a LeaveWindow event with detail o.
• Windows between A and B exclusive that have LeaveWindow selected receive a

LeaveWindow event with detail 2.

• B receives an EnterWindow event with detaill.

When the mouse moves from window A to window B, and B is a descendant of A:

• A receives a LeaveWindow event with detaill.

• Windows between A and B exclusive that have EnterWindow selected receive an
EnterWindow event with detail 2.

• B receives an EnterWindow event with detail o.
When the mouse moves from window A to window B, with window C being their least
common ancestor:

• A receives a LeaveWindow event with detail o.
• Windows between A and C exclusive that have LeaveWindow selected receive a

LeaveWindow event with detail 2.

• B receives an EnterWindow event with detail o.
At the start of a mouse grab with the button in window A:

• A receives a LeaveWindow event with detail 0 if the grabbing client has not issued
XSelectlnput on A.

• Ancestors of A (not including the root window) receive a LeaveWindow event with
detail 2 if the grabbing client has not issued XSelectlnput on the window and the
window has Leave Window selected.

At the end of a mouse grab with the mouse in window A:

• Ancestors of A (not including the root window) receive an EnterWindow event
with detail 2 if the grabbing client has not issued XSelectlnput on the window,
and the window has EnterWindow selected.

Programming Interface 4-21

• A receives an EnterWindow event with detail 0 if the grabbing client has not
issued XSelectInput on window A.

These same EnterWindow and Leave Window event scenarios from the low-order detail
byte perspective:

• A detail of 0 means the mouse entered this window from, or left this window towards,
some place outside the window's hierarchy.

• A detail of 1 means that the mouse entered this window from, or left this window
towards, one of its descendants.

• A detail of 2 means that the mouse moved from a descendant of the window to a place
outside the window's hierarchy: or just the opposite.

EnterWindow and LeaveWindow events with detail 0 or 1 propogate to the smallest
enclosing window that has actually selected the event.

The motion events are defined as follows:

Event Type

EnterWindow
Leave Window
MouseMoved
RightDownMotion
MiddleDownMotion
LeftDownMotion

Exposure Events

Hex Code

OxOOl0
Ox0020
Ox0040
Ox0400
Ox0800
Oxl000

Result

Mouse entering window
Mouse leaving window
Mouse moves within window
Mouse moves with right button down
Mouse moves with middle button down
Mouse moves with left button down

The structure used with ExposeRegion and ExposeWindow events is defined as follows:

struct JExposeEvent
unsigned long type;
Window window;
short pacLs2;
short detail;
short width;

/* ExposeRegion or Expose Window
/* which window selected this event
/* in 10 ms. ticks for button events
/* 0 or ExposeCopy * /
/* width of exposed area * /
/* height of exposed area * /

*/
*/

*/

short height;
Window subwindow;
short y;

/* child window (if any) actually exposed * /
/* top of exposed region * /

short x; /* top left edge of ExposeRegion

The structure used with ExposeCopy is defined as follows:

typedef struct JExposeCopyEvent
unsigned long type;

4-22 X-Windows

/* ExposeCopyEvent

* / } ;

*/

Window window;
long pacLll;
long pacL12;
Window subwindow;
long pad_14; } ;

/* which window selected this event * /

/* child window (if any) actually exposed * /

When only parts of a window become exposed (such as when an obscuring window is
moved), ExposeRegion events are sent describing each newly-exposed area. However, if
only ExposeWindow has been selected, a single ExposeWindow event is sent instead. If
the region exposure is the result of XCopyArea or XMoveArea functions, then
ExposeCopy is set in the detail word. If the exposure is actually that of a child of the
window selecting the event, the subwindow is set to that child and the coordinates are
actually for the subwindow; otherwise the subwindow is O. For a given window exposure,
XCopy Area, or XMoveArea, all resulting ExposeRegion events are sent contiguously
with no other events interspersed.

ExposeCopy is only sent to terminate a string of ExposeRegion events that might be
generated by calls to XCopyArea or XMoveArea. This is just an acknowledgement that
all side effects have been generated; there is no information in the event.

The X Server always clears an exposed area to the background color before sending an
exposure event to the your program. Unfortunately, your program may have sent output
to the window between the time it is cleared and the time that your program reads the
exposure event from the queue. This can lead to difficulty in two cases:

o The exposure event was ExposeWindow with new window dimensions. After a size
change your program probably wants output to go to a different place.

o Your program is using a display function that is not invertible. An invertible function
means that applying the function more than once does not have the same effect as
applying it just once.

In both cases, your program should explicitly clear the exposed area (paint it with the
background) upon receipt of an exposure event before doing any repainting. Failure to do
so causes undesirable output on the screen.

The exposure events are defined as follows:

Event Type

ExposeWindow
ExposeRegion
ExposeCopy

Hex Code

Ox0080
OxOlOO
Ox0200

Result

Full window changed and/or exposed
Region of window exposed
region exposed by XCopy Area

Programming Interface 4-23

Miscellaneous Events
The structure used with UnmapEvent is defined as follows:

typedef struct --XUnmapEvent {
unsigned long type;
Window window;
long pacLll;
long pacL12;
Window subwindow;
long pacL14; } ;

/* UnmapWindow */
/* which window selected this event * /

/* child window (if any) actually unmapped */

The structure used with FocusChange is defined as follows:

struct --XExposeCopyEvent
unsigned long type;
Window window;
short paul;
short detail;
long pacLl2;
Window subwindow;
long pacL14; } ;

/* FocusChange */
/* which window selected this event * /

/* EnterWindow or LeaveWindow */

/* child window (if any) of focus change * /

The miscellaneous events are defined as follows:

Event Type

UnmapWindow
FocusChange

Display Functions

Hex Code

Ox2000
Ox4000

Result

Window is unmapped
Keyboard focus changed

When you update a portion of the screen, a display function (june parameter) that you
specify determines how the destination bits already on the screen are logically combined
with the source bits from somewhere else.

4-24 X-Windows

There are 16 display functions (defined in X.h) as follows:

Function N arne

GXclear
GXand
GXandReverse
GXcopy
GXandlnverted
GXnoop
GXxor
GXor
GXnor
GXequiv
GXinvert
GXorReverse
GXcopylnverted
GXorlnverted
GXnand
GXset

Hex Code

OxO
Ox1
Ox2
Ox3
Ox4
Ox5
Ox6
Ox7
Ox8
Ox9
OxA
OxB
oxe
OxD
OxE
OxF

Logical Operation

o
source AND destination
source AND NOT destination
source
(NOT source) AND destination
destination
source XOR destination
source OR destination
(NOT source) AND NOT destination
(NOT source) XOR destination
NOT destination
source OR NOT destination
NOT source
(NOT source) OR destination
(NOT source) OR NOT destination
1

If a window has multiple planes, the display function is computed once for each plane.

Seven of the 16 display functions are invertible:

GXandReverse
GXxor
GXnor
GXequiv
GXinvert
GXorReverse
GXnand.

Plane Mask

Many subroutines take planes as an argument. planes is an integer mask that specifies
which planes of the display are to be modified by a display function (june), one bit per
plane. A monochrome display has only one plane and is the least-significant bit in the
mask. As planes are added, they occupy more significant bits. You can use the constant
AIIPlanes to specify all planes.

Programming Interface 4-25

Brush

A brush is a rectangular area that is painted in the line-drawing subroutines at each point
of the line or curve. The upper left corner of the brush follows the line. If the width or
height of the brush is greater than one pixel, the display hardware may paint some pixels
more than once. Therefore, you should not use brushes with display functions that are
invertible. "Display Functions" on page 4-24 defines the invertible display functions.

Clip Mask

Color

A clip mask is a bitmap used to specify which pixels in the destination can be modified. If
a bit in the clip mask is set to 1, the destination can be modified; if the clip mask bit is 0,
the destination cannot be modified. The clip mask must be exactly the same height and
width as the destination region.

A clip mask may be useful for icon generation.

On color displays, the X Server keeps currently-defined colors in a color map. A color map
is an array of color cells. Each color cell is made up of three intensity values: red, green,
and blue.

The size of the color map (number of color cells) determines the number of colors that can
be displayed simultaneously. Use the DisplayCells() macro to get the size of the color
map.

A color is an index into the color map. A pixel value is a color. For each possible value a
pixel may take there is a color cell in the color map. For example, if a display is four
planes deep, pixel values 0 through 15 are defined.

The display hardware takes each pixel value in display memory and uses it as an index
into the color map. The red, green, and blue values in the cell determine the color
displayed on the screen.

The following structure is used to define a color. It can be passed to or from the X Server
in various color function calls and is defined in X/X.h.

typedef struct _ColorDef
unsigned short pixel;
unsigned short red, green, blue;

ColorDef;

/* index into color map * /
/* RGB intensity values * /

4-26 X-Windows

Font

The red, green, and blue values are scaled. Full intensity is OxFFFF, half intensity is
Ox8000 and off is OxOOOO. This representation gives uniform results across displays with
different numbers of planes.

The first two pixel values are predefined as black (0) and white (1). The constants
BlackPixel and WhitePixel can be used.

On monochrome displays, only BlackPixel and WhitePixel are defined. If other pixel
values are detected by the X Server, they are converted to BlackPixel (even values) or
WhitePixel (odd values).

Be careful when using display functions other than GXcopy on a color display. Display
functions such as GXxor and GXinvert can result in undefined pixel values. For
example, if an X Server on a four-plane display performs the GXinvert on pixel value 3,
the result is pixel value 12. The color currently associated with pixel value 12 is displayed,
whether or not you ever defined pixel value 12.

A font as used in X-Windows is described by a FontInfo structure that contains various
fields describing the font. This structure is defined as follows:

typedef struct -FontInfo {
Font id;
short height;
short width;
short baseline;
short fixed width;
short firstchar;
short lastchar;
short *widths;

} FontInfo;

Fields in the structure are defined as follows:

ID of the font. id
height
width
baseline

Constant value for all characters in the font.
Average width of characters in the font.

fixedwidth

firstchar, lastchar
widths

Baseline of characters in the font. This value indicates the number of
pixels from the bottom of the font that characters without descenders
begin.
Set to 1 if fixed width, 0 if variable width. A font is fixed-width if all
characters in the range of legal characters are the same width.
First and last characters in the font, respectively.
Pointer to the font width array.

Programming Interface 4-27

Cursors and Locators

From the X Window perspective, a cursor consists of a cursor shape, mask, colors for the
shape and mask, a hot spot, and logical function. The hot spot defines the point on the
cursor that is reported when a mouse event occurs. The cursor bitmap determines the
shape of the cursor. The mask bitmap determines the bits that are modified by the cursor.
The colors determine the colors of the shape and mask. The GXcopy and GXxor display
functions are supported. Use XQueryCursorShape to determine the range of possible
cursor sizes.

Whenever the mouse cursor is in a visible window, it is set to the cursor defined for that
window. If no cursor is defined for that window, the cursor is set to that of the parent
window.

A locator is an absolute point on a window represented as (x ,y). The X coordinate is
contained in the most significant 16 bits, and the y coordinate is contained in the least
significant 16 bits.

Speaker Volume

The volume of sounds emitted by the speaker when in use by X-Windows is controlled by
the XKeyClickControl, XFeep and XFeepControl functions. The RT PC supports
volume levels. These levels map to the numeric values used by the X-Windows functions as
follows:

Volume
Off
Low
Medium
High

Value
o
1,2,3
-1, 4, 5, 6
7,8

Draw Operations

Polygon draw operations are accomplished by a list of points that are connected by lines.
The points, or vertexes, are defined in the following structure supplied by the caller:

typedef struct -Vertex {
short x, y;
unsigned short flags;

} Vertex;

x and yare the coordinates of the vertex, relative to either the upper left inside corner of
the window (if the VertexRelative bit in the flags definition is 0) or the previous vertex (if
VertexRelative is 1).

4-28 X-Windows

The flags, as defined in < X/X.h >, are defined as follows:

Flag
VertexRelative
VertexDontDraw
Vertex Curved
VertexStartClosed
VertexEndClosed
VertexDraw LastPoint

Value
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

Meaning
Else vertex absolute
Else vertex draw
Else straight
Else not start of closed curve
Else not end of closed curve
Else don't draw last point

If bit 0 of VertexRelative is not set, the coordinates are absolute (relative to the window).
The first vertex must be an absolute vertex.

If the VertexDontDraw bit is 1, no line or curve is drawn from the previous vertex to this
one. This is analogous to picking up the pen and moving to another place before drawing
another line.

If the VertexCurved bit is 1, a spline algorithm is used to draw a smooth curve from the
previous vertex, through this one, to the next vertex. Otherwise, a straight line is drawn
from the previous vertex. Set Vertex Curved to 1 only if a previous and next vertex are
both defined (either explicitly in the array, or through the definition of a closed curve).

VertexDontDraw bits and VertexCurved bits can both be 1; this is useful if you want to
define the previous point for the smooth curve, but do not want an actual curve drawing to
start until this point.

If the VertexStartClosed bit is 1, then this point marks the beginning of a closed curve.
This vertex must be followed later in the array by another vertex whose absolute
coordinates are identical, and which has a VertexEndClosed bit of 1. The points in
between form a cycle for the purpose of determining predecessor and successor vertices for
the spline algorithm. Set the VertexStartClosed bit or the VertexEndClosed bit to 1
only if Vertex Curved is also 1.

Normally, the end point of a curve or line is not drawn, since it is probably the beginning
point of the next curve or line. This is important if a display function such as GXinvert
or GXxor is used, since drawing a point twice with such a function produces a different
result than drawing it just once. If VertexDrawLastPoint is 1, the end point is drawn.

Association Tables

Because application programs often need to refer to their own data structures when an
event arrives, an XAssocTable can be used to classify X resources. Suppose you want to
have three or four types of windows, each type with different properties. You can associate
each window ID with a pointer to a window properties structure you have defined. A
generic association table for resource IDs has been defined in the X library, under the
name XId.

Programming Interface 4-29

Tiles

Observe the following guidelines when using an XAssocTable:

• All XIds are relative to the currently active display. Therefore, if you are using
multiple displays, you must ensure the proper display is active before performing an
XAssocTable operation. XAssocTable imposes no limitations on the number of XIds
per table, the number of XIds per display, or the number of displays per table.

o The hashing scheme used by the association mechanism functions more efficiently
when the table size (the number of buffers in the hashing system) is a power of two and
if there are no more than eight XIds per buffer.

A tile is 16 bits wide by 16 bits high. Background tiling uses Pixmaps to specify the
pattern. Because patterns can be absolute or relative to the window, a tile mode is
associated with a window. The tile mode allows a pattern to be positioned absolute to the
window or relative to the parent window (often the root window). Thus, patterns can be
aligned either to the window in which you are working or to the parent window. Both
modes are useful, as icon windows often need relative alignment and normal windows
prefer absolute alignment.

Macros and Constants

The following macros and definitions are found in X/X.h:

BitmapSize(width, height) This macro computes bitmap sizes in bytes.
XYPixmapSize(width, height, planes) This macro computes XY format pixmap sizes in

WZPixma pS ize(width, height)
BZPixmapSize(width, height)
BlackPixel
WhitePixel

bytes.
This macro computes Z format pixmap sizes in bytes.
This macro computes Z format pixmap sizes in bytes.
The pixel value 0 (may not actually be black).
The pixel value 1 (may not actually be white).

The following macros and definitions are found in X/Xlib.h:

AllPlanes - value for plane mask when all planes are used (-0).
DashedLine - dashed line pattern
DottedLine - dotted line pattern.
DotDashedLine - dot/dashed line pattern.
SolidLine - solid line pattern.

The following macros must not be used before XOpenDisplay is called:

RootWindow - window ID of the root window.
BlackPixmap - pixmap ID of a black pixmap (may not actually be black).

4-30 X-Windows

WhitePixmap - pixmap ID of a white pixmap (may not actually be white).
ProtocoIVersion() - X protocol version number.
dpyno() - display file descriptor for use with select().
DisplayType() - display type.
DisplayPlanes() - number of display planes.
DisplayCells() - number of color cells supported by the display.
Display N ame() - name of the display.

For a description of macros added by IBM, see "IBM-Specific X-Windows
Implementation" on page 4-199.

Programming Interface 4-31

Subroutine Reference Information

The rest of this chapter contains more detailed descriptions of the X-Windows subroutines.
The subroutines are arranged in alphabetical order.

Many functions return an integer resource ID. These can be of type Window, Font,
Pixmap, Bitmap, or Cursor (as defined in /usr/include/X/X.h). Some functions return
Status, which is an integer error code. If a function fails, it returns O.

If a client does not want a request to execute asynchronously, it should be followed
immediately by a call to XSync, which blocks until all previously-buffered asynchronous
events have been sent and acted upon.

DisplayHeight

DisplayHeight ()

This function returns the height of the physical display in pixels.

DisplayWidth

DisplayWidth ()

This function returns the width of the physical display in pixels.

XAddHost

#include < sys/socket.h >

XAddHost (host)
struct innadr * host;

host The network address of the host to add.

The add host function adds the specified host to the list of hosts that are allowed to open
connections to this display. The program and the display hardware must be on the same
host.

4-32 X-Windows

XAppendToBuffer

XAppendToBuffer (bytes, nbytes, buffer)
char * bytes;
int nbytes;
int buffer;

bytes

nbytes

buffer

Pointer to the bytes to append.

Number of bytes to append.

Buffer of bytes to append.

XAppendBuffer

This function appends an arbitrary string of bytes onto the specified buffer. The contents
of the buffer may be retrieved later by any client that calls XFetchBytes. Note that the
buffer's contents are not necessarily ASCII or null-terminated, so null bytes are not
special.

XAppendVertex

int XAppendVertex (vertices, nvert)
Vertex vertices [];
int nvert;

vertices Vertices to append.

nvert Indicates successful append.

The append vertex function appends vertices to the output buffer. This function is not
intended for most users of the library, but is intended as a hook for certain libraries built
on this library.

Upon successful completion, this function returns nvert. If there was no Draw command
currently in the output buffer, the function returns o. If the vertices would not fit before
the end of the buffer was reached, -1 is returned.

Programming Interface 4-33

XAutoRepeat

XAutoRepeatOn 0

XAutoRepeatOff 0

XAutoRepeatOn turns the keyboard auto-repeat function on. XAutoRepeatOff turns the
keyboard put-repeat function off.

XBitmapBitsPut

XBitmapBitsPut (w, x, y, width, height, data, foreground,
backgrount, clipmask, func, planes)

window w;
short *data;
bitmap clipmask;
int func, planes;

w

X,y

width

height

data

The window that contains the region.

The coordinates of the top left corner of the region relative to the top left corner
of the window.

The width of the region.

The height of the region.

Pointer to the data area to contain the bitmap.

foreground The foreground pixel value.

background The background pixel value.

clipmask Clip mask.

func Display function.

planes Plane mask.

The put bitmap routine performs a display function in a region of a window using a pixmap
defined by a bitmap and a pair of source pixels that define the foreground and background
pixel values. See "Bitmaps" on page 4-15 for more information.

4-34 X-Windows

XChangeBackground

XChangeBackground (w, tile)
window w;
Pixmap tile;

w The window to be retiled.

tile The Pixmap to be used for the retile operation.

XChangeBackground

The change background function changes the background tile of the specified window. If
tile is not specified, the background pixmap of the parent window is used or, if it is the root
window, the default background is restored. You can free tile immediately if no further
explicit references to it are made. This function is only valid on an opaque window and an
error results if w is transparent.

Note: This function does not change the current contents of the window. It simply resets
the background pixmap to be used when the background is refreshed.

XChangeBorder

XChangeBorder (w, tile)
window w;
Pixmap tile;

w The window to be changed.

tile The source Pixmap for the change.

The change border function changes and repaints the border of the window. You can
immediately free tile if no further explicit references are made to it.

This function is only valid on an opaque window with a border. An error results if the
window is not opaque or if the window is opaque but does not have a border.

XChange Window

XChangeWindow (w, width, height)
window W;
int width, height;

w The window to be changed.

Programming Interface 4-35

XChange Window

height

width

New height of the window from the upper-left coordinate, not including the
border.

New width of the window from the upper-left coordinate, not including the
border.

This function changes the size of the specified window without changing its upper-left
coordinate. XChangeWindow always raises the window.

Changing the size of a mapped opaque window loses its contents and generates an
ExposeWindow event. Changing the size of a transparent window does not affect the
screen.

If a mapped opaque window is made smaller, exposure events are generated on opaque
windows that it formerly obscured. The origin of the window is not changed.

XCharBitmap

Bitmap XCharBitmap (font, char)
Font font.;
int char;

font Font ID.

char Character from the specified font for which to create a bitmap.

The character bitmap function creates a bitmap of a single character from the specified
font. You can free the font if no further references to it are to be made.

XCharWidths

Status XCharWidths (chars, len, fonts, widths);
char *chars;
int len;
Font font;
short *widths;

chars

len

font

4-36 X-Windows

Pointer to a string of characters, not necessarily null-terminated, for which the
wid th of each character is provided.

The number of characters in the string chars.

The font from which the character string is obtained. All characters in a string
must be from the same font.

XCharWidths

widths Pointer to an array containing the width of each character in the supplied
string. For example, widths[3} is set to the width of the character chars[3}.

The character width function determines the width of each character in a supplied string
and stores the width in an array that has as many entries as characters in the supplied
string. The width value is expressed in pixels.

XCheckMaskEvent

int XCheckMaskEvent (mask, rep)
int mask;
XEvent *rep;

mask

rep

Mask that identifies an event to check for in a queue.

Pointer to an XEvent.

The check mask event function searches a queue for the event identified by mask. First,
XCheckMaskEvent flushes the output buffer, and searches the queue for an event that
matches the passed mask. If the event is found in the queue, this function returns a value
of 1 and copies the event into an XEvent supplied by the caller. Events earlier in the
queue are not discarded. If no such event has been queued, XCheckMaskEvent
immediately returns o.

XCheck Window Event

int XCheckWindowEvent (w, mask, rep)
Window W;
int mask;
XEvent *rep;

Window to check for in the queue. w

mask Mask that identifies the event to search for in the queue.

rep Pointer to an XEvent.

The check window event function searches the input queue for an event that matches both
the passed window and the passed mask. First, XCheckWindowEvent flushes the output
buffer, and searches the queue for an event that matches the passed window and passed
mask. If the event is found in the queue, this function returns a value of 1 and copies the
event into an XEvent supplied by the caller. Events earlier in the queue are not discarded.
If no such event has been queued, XCheckWindowEvent immediately returns o.

Programming Interface 4-37

XCircWindowDown

XCircWindowDown

XCircWindowDown (w)
Window w;

w Window whose child is to be lowered.

This function lowers the highest-mapped child of the window that partially or completely
obscures another child. Completely unobscured children are not affected. This function
generates exposure events on any window formerly obscured, and repeated executions lead
to round robin lowering.

XCircWindowUp

XCircWindowUp (w)
Window w;

w Window whose child is to be raised.

This function raises the lowest-mapped child of the window that is partially or completely
obscured by another child. Completely unobscured children are not affected. This
function generates exposure events on that child (and its opaque descendants) if any part
of it was formerly obscured. Repeated executions lead to round robin raising.

XClear

XClear (w)
Window w;

w Window to be cleared and repainted.

The clear function clears the specified window and repaints it with the background. If the
window is transparent, it is cleared and repainted with its parent's background. XClear
never generates exposure events.

4-38 X-Windows

XClear Icon Window

XClearIconWindow (w)
Window w;

w Window for which to clear the icon window.

XClear Icon Window

XClearIconWindow clears the icon window specification for a window. See
"XSetIcon Window" on page 4-92 for more information.

XClear V ertexFlag

XClearVertexFlag ()

This macro clears the state of the flag that indicates if it is safe to append vertices. This
macro is intended principally for use by more sophisticated libraries.

XClipClipped

XClipClipped (w)
Window w;

w Window for which to set clip mode.

This function, along with XClipDrawThrough, determines what happens when you draw
on part of window obscured by a child window. If XClipClipped is in effect, output into
areas covered by children is suppressed. All windows start out in clipped mode when
created by XCreatewindow.

XClipDrawThrough

XClipDrawThrough (w)
Window w;

w Window for which to set draw-through mode.

This function, along with XClipClipped, determines what happens when you draw on part
of window obscured by a child window. If the clip mode is DrawThrough, output is drawn
on the screen as if the child window was not there. DrawThrough is useful for drawing
window outlines when moving or resizing windows. Note that any such requests must be

Programming Interface 4-39

XCloseDisplay

atomic and return the screen to its original state in a single X request. The root window's
clip mode is initially DrawThrough.

XCloseDisplay

XCloseDisplay (display)
Display *display;

display Pointer to the display structure returned by XOpenDisplay.

XCloseDisplay closes the connection associated with the specified display. All windows
or other resources that the caller has created on this display server are destroyed; they
should never be referenced again. Any output events that have been buffered but not yet
sent are discarded.

The effect of XCloseDisplay is automatically achieved if a process exits. For this reason,
most clients do not need to call XCloseDisplay.

If a client has created Window, Font, Bitmap, Pixmap, or Cursor resource ID's with this
display server, they must not be used after calling XCloseDisplay.

Note: If your program has a connection to a display server open, then issues the fork
system call, you must take care when dealing with the connection to the window system.
Do not forget to flush the output buffer before waiting on the child process, and do not
forget to make sure that you have processed all input events before forking or exiting in
the child, or your programs may perform the operations twice.

XCloseFont

XCloseFont (info)
FontInfo *info;

info Pointer font information structure.

This function closes off any use of a font, and de allocates the storage associated with the
FontInfo structure.

Note: Do not use XCloseFont to close a font not opened with XOpenFont, because you
may corrupt the memory pool.

4-40 X-Windows

XCompressEvents

XCompressEvents

XCompressEvents ()

This function suppresses all but the last MouseMoved event if multiple MouseMoved
events have been received without any other intervening events or replies. You can call
XExpandEvents to report all events. By default, all MouseMoved events are compressed.

XCondWarpMouse

XCondWarpMouse (dw, dx, dy, sw, sx, sy, swidth, sheight)
Window dw, sw;
int dx, dy, sx, sy;
int swidth, sheight;

dw, sw Destination window and source window, respectively.

dx, dy, sx, sy Coordinates of the destination and source windows, respectively.

swidth, sheight Width and height, respectively, of the source window.

This function moves the mouse to the destination position relative to the origin of the
destination window (dw), but only if the mouse is currently in a visible region of the
specified region (sx, sy, swidth, sheight) of the source window (sw).

If the source height is zero, the current height (sheight) of the source window minus the
source right (sy) coordinate is used. If the source width (swidth) is zero, the current width
of the source window minus the source left (sx) coordinate is used.

XConfigure Window

XConfigureWindow (w, x, y, width, height)
Window W;
int x, y, width, height;

w Window to configure.

x, y Coordinates of the window to configure.

width, height Width and height of the window to configure.

XConfigureWindow changes the size and location of the specified window. Configuring a
mapped opaque window loses its contents and generates an ExposeWindow event;

Programming Interface 4-41

XConfigure Window

configuring a transparent window does not affect the screen. XConfigureWindowalways
raises the window.

Configuring a window may generate exposure events on opaque windows that the window
formerly obscured, depending on the new size and location parameters.

XCopyArea

XCopyArea (w, SX, sy, dx, dy, width, height, func, planes)
Window w;
int SX, sy, dx, dy, width, height;
int planes;
int func;

w Window in which the copy is to be made.

sx, sy Coordinates of the area to be copied.

dx, dy Coordinates of the location at which to copy the specified area.

width, height Width and height of the area to be copied.

func Display function.

planes Plane mask.

XCopyArea copies one region of the window to another (possibly overlapping) region of
the same window, using the supplied display function func.

H parts of the source region are obscured, the corresponding parts of the destination are
painted with the background tile. If a client has called XSelectInput on this window with
the ExposeCopy bit set, then ExposeRegion events are generated on any such parts of
the destination, and then an ExposeCopy event is generated. All of these events are
guaranteed to be together in the stream, with no intervening events. This sequence makes
it possible to scroll the contents of a window, getting exposure events from wherever the
window was obscured to refresh those areas of the screen.

XCreate

XCreate (prompt, program, geometry, default, frame, minw, minh)
char *prompt; .
char *program;
char *geometry, *default;
OpaqueFrame *frame;
int minw, minh;

4-42 X-Windows

XCreate

prompt Character string used in a prompt window to inform the user of the application
to be placed in the window.

program Name to be used by XGetDefault to get user defaults.

geometry, default Specify the placement and/or size of the window.

frame Specifies the background and border pixmaps, as well as the window's border
width.

minw

minh

Minimum width of the window in pixels.

Minimum height of the window in pixels.

XCreate does all the work for automatic and manual placement of a window, and is
commonly used by most applications for creating graphics-related windows.

The minw and minh specify the minimum size of the created window in pixels.

The prompt argument is used in a prompt window (if needed) to inform the user what
application wants to be placed. The program name must be passed in with the program
argument (usually it should be argv[O]) so that XGetDefault can find out how the user
likes to be prompted to create the window.

The geometry and default arguments are used to place the position and/or size of the
window.

The frame passed in must include the background and border pixmaps already specified,
and the border width of the window.

The window is not mapped after creation. The function returns the window ID of the
window just created, and all values in the passed-in window frame is set.

For more information on window creation, see "Creating Windows" on page 4-13.

XCreateAssocTable

XCreateAssocTable *XCreateAssocTable (size)
int size

size The number of buffers used by XAssocTable.

The create association table function returns a pointer to a newly created XAssocTable.
For efficiency, the size parameter (number of buffers) should be a power of 2, with a
maximum of 8 objects per buffer. A null pointer is returned if there is an error allocating
memory.

Programming Interface 4-43

XCreateCursor

XCreateCursor

Cursor XCreateCursor (width, height, cursor, mask, xoff, yoff, fg, bg, func)
int width, height;
short *cursor, *mask;
int xoff, yoff;
int fg, bg;
int func;

width, height Width and height of the desired cursor.

cursor, mask Pointers to areas in bitmap format that define the cursor and mask.

xoff, yoff Coordinates of a point in the bitmap that corresponds to the position of the
mouse.

fg Foreground color of the cursor.

bg Background color of the cursor.

func Display function (GXcopy or GXxor).

This function Creates a cursor out of its component parts from data in the calling program.
The cursor bits and mask bits should be in bitmap format. This function is used if all
components of a cursor are in the client program, and saves time in defining the cursor.

XCreateTerm

Window XCreateTernl (prompt, program, geometry, default, frame, minw, minh, xadder, yaddr,
cwidth, cheight, font, fwidth, fheight)

char *prompt;
char *program;
char *geometry, *default;
OpaqueFrame *frame;
int minw, minh;
int xaddr, yaddr;
int *cwidth, *cheight;
FontInfo *font;
int fwidth, fheight;

prompt

program

4-44 X-Windows

Character string used in a prompt window to inform the user of the
application to be placed in the window.

Name of the program to be used by XGetDefault for prompting the user to
create a window.

XCreateTerm

geometry, default Specify the placement and/or size of the window.

frame Specifies the background and border pixmaps, as well as the window's
border width.

minh

Minimum width of the window in multiples of fwidth.

Minimum height of the window in multiples of fheight.

xaddr, yaddr Provides additional interior padding needed in the window.

cwidth, cheight Pointers to the returned width and height, respectively, of the created
window.

font Font ID.

fwidth, fheight Specify the size of the units used in the geometry specification and the
increments the the window is sized in.

XCreateTerm does all the work for automatic and manual placement of a window to be
sized in multiples of fwidth and fheight and is commonly used by most applications for
creating text-related windows.

The prompt argument is used in a prompt window (if needed) to inform the user what
application wants to be placed. The program name must be passed-in with the program
argument (usually it should be argv[O]) so that XGetDefault can find out how the user
likes to be prompted to create the window.

The geometry and default arguments are used to place the position and/or size of the
window.

The fwidth and fheight arguments specify the size of the units used in the geometry spec,
and the increments the window should be sized in. These are typically the size of a
fixed-width font, or other graphic object in a window.

The frame passed in must include the background and border pixmaps already specified,
and the border width of the window. xaddr and yaddr provide additional interior padding
needed in the window. The function returns the ID of the window just created, and all
values in the passed-in window frame are set.

The window is not mapped after creation.

For more information on window creation, see "Creating Windows" on page 4-13.

Programming Interface 4-45

XCreateTerm

XCreateTransparencies

Window XCreateTransparencies (parent, defs, ndefs)
Window parent;
TransparentFrame defs[];
int ndefs;

parent

defs

ndefs

Parent window parameter.

Array of window information definitions.

Number of window definitions in the array.

XCreateTransparencies takes an array of window information definitions and creates the
transparnecies in a single operation with the window system. The caller should fill in the
structure (except for the window IDs). The IDs of the created windows are returned in the
structure passed to the subroutine. You must specify the number of windows to be created
using the ndefs parameter. This function returns the the number of windows actually
created, or 0 if unsuccessful.

XCreateTransparency

Window XCreateTransparency (parent, x, y, width, height)
Window parent;
int x, y, width, height;

parent Parent window parameter.

x,y Coordinates of the window relative to the parent window.

width, height Width and height of the newly-created window.

XCreateTransparency creates an unmapped transparent window. Transparent windows
do not have borders. The coordinates are relative to the parents coordinate system. The
window does not initially have a cursor registered and has a clipmode of ClipModeClipped
(output to the window is obscured by subwindows of the parent). A transparent window
does not have a background pattern. It initially has a tile mode of TileModeRelative.

The subroutine returns the window ID of the created window or 0 if the subroutine fails.

4-46 X-Windows

XCreate Window

XCreate Window

Window XCreateWindow (parent, x, y, width, height, brdrwidth, brdr, bg)
Window parent;
int x, y, width, height;
int brdrwidth;
Pixmap brdr;
Pixmap bg;

parent Window from which the subwindow is created.

x,y Coordinates of the top left outside corner of the new window.

width, height Indicate the inside dimensions of the new window, not including the
borders.

brdrwidth Width in pixels of the new window's borders.

brdr Pixmap of the border, if the border width is greater than zero.

bg Pixmap of the background; if not specified, the parent window's pixmap is
used instead.

XCreateWindow creates an unmapped, opaque subwindow of the specified parent window,
which must also be opaque. The created window is always wholly contained within its
parent; any part of the window extending outside its parent window is clipped.

The x and y coordinates represent the top left outside corner of the new window's borders.
They are relative to the inside of the parent window's borders. The width and height
parameters are the new window's inside dimensions--they do not include the new window's
borders, which are entirely outside of the window. The new window has a border
brdrwidth pixels wide.

A brdr Pixmap need not be given if the border width is zero, in which case the window
does not have a border. If no bg Pixmap is given, the parent's background Pixmap is used.
A monochrome application may find the macros BlackPixmap and WhitePixmap useful;
these refer to solid black and white pixmaps that are automatically created by
XOpenDisplay.

The tilemode of the new window is absolute. The clipmode of the new window is clipped.
The new window does not have an associated icon window. The name of the window is
the null string.

The created window is not yet mapped to the user's display; to display the window, call
XMapWindow. The new window does not have a cursor defined; the cursor is that of the
window's parent unless a new cursor is registered. The window is not visible on the screen
unless it and all of its ancestors are mapped, and it is not obscured by any of its ancestors.

This function returns the window ID of the created window, or 0 if the subroutine fails.

Programming Interface 4-47

XCreate Window Batch

XCreate Window Batch

int XCreateWindowBatch (parent, defs, ndefs)
Windowto parent;
BatchFrame defs[];
int ndefs;

parent

defs[]

ndefs

Parent window from which subwindows are to be created.

Array of window definitions.

Number of windows to be created.

This function takes an array of window information definitions and creates the windows of
the specified types in a single handshake with the window system. The caller should have
filled in the structure except for the window ID. The window IDs of the created windows
are returned in the structure passed to the subroutine. You must specify the number of
windows to be created using the ndefs argument. The other results are the same as for
XCreateWindow and XCreateTransparency. The subroutine returns the number of
windows actually created. The parent windows must already exist.

XCreate Windows

int XCreateWindows (parent, defs, ndefs)
Window parent;
OpaqueFrame defs[];
int ndefs;

parent

defs[]

ndefs

Parent window from which subwindows are created.

Array of opaque window definitions.

Number of windows to be created.

This subroutine takes an array of window information definitions and creates them in a
single handshake with the window system. The caller should have filled in the structure
except for the window ID. The window IDs of the created windows are returned in the
structure passed to the subroutine. You must specify the number of windows to be created
using the ndefs argument. The other results are the same as for XCreateWindow. The
subroutine returns the number of windows actually created.

4-48 X-Windows

XDefineCursor

XDefineCursor (w, cursor)
Window W;
Cursor cursor;

W

cursor

The window for which a cursor is being defined.

Cursor ID.

If a cursor is specified, it is used when the mouse is in the window.

XDeleteAssoc

XDeleteAssoc (table, xid)
XAssocTable *table;
Xld xid;

table Pointer to an association table.

xid X resource ID.

XDefineCursor

This function deletes an association in an XAssocTable keyed on its XId. Redundant
deletes (and deletes of unknown XId's) are meaningless and cause no problems. Deleting
associations in no way impares the performance of an XAssocTable.

XDestroy AssocTable

XDestroy AssocTable (tab Ie)
XAssocTable *table;

table Pointer to an association table.

This function frees the memory associated with an association table.

Note: Do not use an association table after it has been destroyed.

Programming Interface 4-49

XDestroySubwindows

XDestroySubwindows

XDestroySubwindows (w)
Window w;

w All subwindows of this window are destroyed.

XDestroySubwindows destroys all subwindows of this window. The sub windows should
never again be referenced.

XDestroySubwindows generates exposure events on w, if any mapped opaque
subwindows were actually destroyed.

Use this function to delete many windows (rather than deleting them one at a time), as
much of the work need only be performed once for all of the windows rather than for each
window.

XDestroyWindow

XDestroyWindow (w)
Window w;

w Window to be unmapped and destroyed.

XDestroyWindow unmaps and destroys the window and all of its subwindows. The
windows should never again be referenced. XDestroyWindow may be called on either
opaque or transparent windows.

If the window has an icon window, that icon window is automatically unmapped and sent
an unmap window event. If the window is a mapped icon window, its corresponding
window is automatically mapped. This prevents windows being lost when a window
manager exits unexpectedly.

Destroying a mapped opaque window generates exposure events on other opaque windows
obscured by the window being destroyed.

XCloseDisplay automatically destroys all windows that have been created on that server
(unless called after a forkO). See Note under XCloseDisplay.

4-50 X-Windows

XDisplay N arne

XDisplayName (display)
Display *display;

XDisplayName

display Pointer to the Display structure returned by XOpenDisplay.

XDisplayName returns the name of the display XOpenDisplay would use. This is useful
for printing the name of the display if XOpenDisplay returns an error and the Display
variable is NULL.

XDraw

XDraw (w, vlist, vcount, width, height, pixel, tunc, planes)
Window W;
Vertex *vlist;
int vcount;
int height, width;
int pixel;
int tunc;
int planes;

w Window in which to draw.

vlist

vcount

List of vertices used to draw the polygon or curve.

Number of vertices in vlist.

height, width Size of the brush to draw along the outline of the figure.

pixel

tunc

planes

Source pixel value (color).

Display function.

Plane mask.

XDraw draws an arbitrary polygon or curve using the specified function. The figure
drawn is defined by the list of Vertexes vlist that the caller supplies. See "Draw
Operations" on page 4-28 for the format of the structure. The points are connected by
lines as specified by the flags in the vertex structure.

width and height specify the size of a brush to be drawn along the line.

The line is drawn in the color specified by the pixel value.

Programming Interface 4-51

XDrawDashed

XDrawDashed

XDrawDashed (w, vlist, vcount, width, height, pixel, pattern, tunc, planes)
Window w;
Vertex *vlist;
int vcount;
int width, height;
int pixel;
Pattern pattern;
int tunc;
int planes;

w

vlist

vcount

Window in which to draw.

List of vertices used to draw the polygon or curve.

Number of vertices in vlist.

width, height Size of the brush to draw along the outline of the figure.

pixel

pattern

tunc

planes

Source pixel value (color).

Value encoding the pattern to use for the line.

Display function.

Plane mask.

This function is similar to XDraw, except that it draws a dashed rather than a solid line.
The pattern is a value encoding the pattern to be used. (See XMakePattern for more
details.) The destination is only updated when the pattern bit is one.

XDrawFilled

XDrawFilled (w, vlist, vcount, pixel, tunc, planes);
Window W;
Vertex *vlist;
int vcount;
int pixel;
int tunc;
int planes;

w

vlist

vcount

4-52 X-Windows

Window in which to draw.

List of vertices used to draw the polygon or curve.

Number of vertices in vlist.

XDrawFilled

pixel Value to use to fill in the figure.

func Display function.

planes Plane mask.

XDrawFilled draws arbitrary polygons or curves and fills them with the specified pixel
value. The vertex list should consist only of one or more closed regions. A point is defined
to be inside a region if an infinite ray with the point as an origin crosses the path of the
region an odd number of times.

XDrawPatterned

XDrawPatterned (w, ulist, ucount, width, height, pixel, altpix, pattern, func, planes)
Window w;
Vertex *ulist;
int ucount;
int width, height;
int pixel;
int altpix;
Pattern pattern;
int func;
int planes;

w Window in which to draw.

ulist

ucount

List of vertices used to draw the polygon or curve.

Number of vertices in ulist.

width, height Size of the brush to draw along the outline of the figure.

pixel

altpix

pattern

func

planes

Source pixel value (color) when pattern bit is 1.

Alternate source pixel value when the pattern bit is O.

Value encoding the pattern to use for the line.

Display function.

Plane mask.

This function is similar to XDraw, except that it draws a patterned rather than a solid
line. The pattern is a value encoding the pattern to be used. For a patterned line, the
source pixel value is used when the pattern bit is 1 and the alternate source pixel value is
used when the pattern bit is O.

Programming Interface 4-53

XDrawTiled

XDrawTiled

XDrawTiled (w, vlist, vcount, tile, runc, planes)
Window w;
Vertex *vlist;
int vcount;
int tile;
int runc;
int planes;

w

vlist

vcount

tile

Window in which to draw.

List of vertices used to draw the polygon or curve.

Number of vertices in vlist.

Tile pixmap to use to fill the figure.

runc Display function.

planes Plane mask.

XDrawTiled draws arbitrary polygons or curves and fills them with the specified tile
Pixmap. Note that there may be implementation restrictions on the nature of the tile
Pixmap. (See XQueryTileShape.) The vertex list should consist only of one or more
closed regions. A point is defined to be inside a region if an infinite ray with the point as
an origin crosses the path of the region an odd number of times.

XErrDescrip

char *XErrDescrip (code)
int code;

code Error code.

This routine returns a null-terminated string describing the specified error code. The
string is static in Xlib and should not be modified or freed. For a list of error codes, see
XError Handler. .

4-54 X-Windows

XError Handler

XError Handler

XErrorHandler (handler)
int handler(Display *, XErrorEvent *);

handler The error handler supplied by the program.

The program's supplied error handler is called by Xlib whenever an XErrorEvent is
received. This is not assumed to be a fatal condition (it is acceptable for this procedure to
return). However, the error handler should not perform any operations (directly or
indirectly) on the Display. The fields of the XErrorEvent passed to XErrorHandler
should be interpreted as follows:
typedef struct -XError Event {

long pad;
long serial;
char error -code;
char request-code;
char tunc;

/* serial number of failed request * /
/* error code of failed request * /
/* request code of failed request * /
/* function field of failed request * /

char pad-b7;
Window window;
long pad-l3;

/* window of failed request * /

long pad-l4; } XError Event;

The serial number is the number of requests sent over the network connection since it was
opened, starting from one; it is the number that was the value of dpy~request
immediately after the failing call was made. The request code is a protocol representation
of the name of the procedure that failed; these are defined in < X/Xproto.h >. Error codes
(also defined in < X/X.h >) include the following:

BadRequest 1
BadValue 2
BadWindow 3
BadPixmap 4
BadBitmap 5
BadCursor 6
BadFont 7
BadMatch 8
BadTile 9
BadGrab 10
BadAccess 11
BadAlloc 12
BadColor 13

Bad request code
Integer parameter out of range
Parameter not a Window
Parameter not a Pixmap
Parameter not a Bitmap
Parameter not a Cursor
Parameter not a Font
Parameter mismatch
Pixmap shape invalid for tiling
Mouse/button already grabbed
Access control violation
Insufficient resources
No such color.

XErrorHandler should use XErrDescrip to obtain textual descriptions of errors.

Programming Interface 4-55

XExpandEvents

XExpandEvents

XFeep

XExpandEvents ()

If you want to see all MouseMoved events, you can call XExpandEvents and the
MouseMoved events are reported. You can call XCompressEvents to suppress all but
the last MouseMoved event if multiple such events have been received without
intervening events or replies. By default, MouseMoved events are compressed.

XFeep (volume)
int volume;

volume Value representing the amount of sound to add to XFeepControl.

XFeep rings a bell on the keyboard.

The sound volume is in the range -7 to 7 (7 is the loudest) and is added to the base volume
defined by XFeepControl.

XFeepControl

XFeepControl (volume)
int volume;

volume A value representing the amount of sound to emit for XFeep requests.

This function defines the base volume for XFeep requests. The volume is in the range 0 to
7, with 7 the loudest.

XFetchBuffer

char *XFetchBuffer (nbytes, buffer)
int *nbytes;
int buffer;

nbytes

buffer

4-56 X-Windows

Returned number of bytes in the specified buffer, or 0 if the buffer is empty.

Buffer from which to fetch bytes.

XFetchBuffer

XFetchBuffer retrieves the contents of the specified buffer. If the buffer contains data, a
malloc is performed to get the appropriate amount of storage for the number of bytes in
the nbytes argument. A pointer is returned to this storage, which the client must free
when finished with it. If the buffer is empty, NULL is returned and nbytes set to O.

Note that the buffer does not necessarily contain text, so it may contain embedded null
bytes and may not terminate with a null byte.

There are eight buffers, numbered 0-7.

XFetchBytes

char *XFetchBytes (nbytes)
int *nbytes;

nbytes Returned number of bytes in buffer 0, or 0 if the buffer is empty.

XFetchBytes retrieves the contents of buffer O. If the buffer contains data, a malloc is
performed to get the appropriate amount of storage for the number of bytes in the nbytes
argument. A pointer is returned to this storage, which the client must free when finished
with it. If the buffer is empty, NULL is returned and nbytes set to O.

Note that the buffer does not necessarily contain text, so it may contain embedded null
bytes and may not terminate with a null byte.

XFetchName

Status XFetchName (w, name)
Window W;
char **name;

w Window to be null-terminated.

name Address of a pointer to the name of a window.

XFetchName sets name to a pointer to the name of the window (a null-terminated string).
If no name was ever set, it sets name to NULL. The client must free the name string when
finished with it.

XFetchN ame returns 0 if it fails, non-zero otherwise. If the window has never had a name
set, this is not considered a failure, and XFetchName returns a non-zero status.)

Programming Interface 4-57

XFlush

XFlush

XFlush ()

XFlush sends all output requests that have been buffered but not yet sent. Flushing is
done automatically the next time input is read (with XPending, XNextEvent,
XPeekEvent, XCheckMaskEvent, XMaskEvent, XCheckWindowEvent, or
XWindowEvent), so most clients should not need to use this function.

This function is sometimes helpful in debugging programs, but causes a significant
degradation in performance.

XFocusKeyboard

XFocusKeyboard (w)
Window w;

w Window to designate as the input focus window.

XFocusKeyboard designates a window as the input focus window. If the window that
would normally receive a KeyPressed or KeyReleased event is not the focus window or
one of its descendents, the event is sent to the focus window instead. The events go to the
client that has selected input on the focus window. In general, this may be a client other
than the one that has called XFocusKeyboard. For instance, a window manager may
allow the user to designate an arbitrary window as the keyboard focus. The root window
is the default focus window. If the focus window is closed, the closest existing ancestor
inherits the input focus.

XFontWidths

short *XFontWidths (font)
Font font;

font Font ID for which character widths are requested.

XFontWidths allocates memory for and returns a pointer to an array containing the
width of every character defined in the font. This function can be used only for
variable-width fonts. If XFontWidths returns NULL, an error has occurred and no array
is allocated. The client must free this array when it is no longer needed.

XFontWidths should be used in conjunction with XQueryFont, which returns (among
other data) the font's firstchar and lastchar. The length of the array returned by

4-58 X-Windows

XFreeBitmap

XFontWidths is always equal to lastchar - firstchar + 1. In the array, widths[i] is set to
the width of character [firstchar + i].

XFreeBitmap

XFreeBitmap (bitmap)
Bitmap bitmap;

bitmap Identifies the bitmap for which storage is to be freed.

XFreeBitmap frees all the storage associated with the specified Bitmap. The Bitmap
should never be referenced again.

XFreeColors

XFreeColors (pixels, npixels, planes)
int pixels[];
int npixels;
int planes;

pixels

npixels

planes

Pointer to pixel values whose color map cells are to be freed.

Number of colors.

Plane mask.

This function frees color map cells. The cells represented by pixels whose values are in the
array are freed. If any planes are specified, they are freed.

XFreeCursor

XFreeCursor (cursor)
Cursor cursor;

cursor Cursor to free.

The specified cursor is destroyed, and should not be referred to again or an error is
generated.

Programming Interface 4-59

XFreeFont

XFreeFont

XFreeFont (font)
Font font;

font Font ID to be freed.

XFreeFont tells the server that this font is no longer needed. The font may be unloaded
on the server if this is the last reference to the font. In any case, the font should never
again be referenced.

XFreePixmap

XFreePixmap (pixmap)
Pixmap pixmap;

pixmap Pixmap for which storage is to be freed.

XFreePixmap frees all the storage associated with this Pixmap. The Pixmap should never
be referenced again.

XGeometry

XGeometry (position, default, bwidth, {width, (height, xadd, yadd, x, y, width, height)
char *position, *de{ault;
int bwidth;
int {width, {height;
int xadd, yadd;
int *x, *y, *width, *height;

position

default

bwidth

{width

{height

xadd

yadd

4-60 X-Windows

Incompletely specified geometry.

Fully qualified default geometry.

\Vidth of the window border.

Unit size of the width specified in geometry.

Unit size of the height specified in geometry.

Additional space (in pixels) to add to the interior width.

Additional space (in pixels) to add to the interior height.

x

Y

width

height

Returned value indicating the x coordinate of the window.

Returned value indicating the y coordinate of the window.

Returned value indicating the inside width of the window.

Returned value indicating the inside height of the window.

XGeometry

This routine does all the work required to determine the placement of a window using the
current format to position windows. Given a fully qualified default geometry specification
and an incompletely specified geometry specification, this function returns a bitmask value
as defined in the XParseGeometry call. User programs typically use the XCreate or
XCreateTerm functions to create the window.

If the function returns either the XValue or YValue flag, you should place the window at
the requested position. The border width, additional interior space, and unit sizes are
passed in to facilitate computation of the window size.

U nit sizes are usually font size for text windows and pixel size for graphics windows. The
xadd and yadd parameters are typically used when the unit sizes are not l.

See "Geometry Specification" on page 3-4 for more details on geometry.

XGetColor

Status XGetColor (colorname, harddef, exactdef)
char *colorname;
Color * harddef;
Color *exactdef;

colorname Color name to search for.

harddef Returned color definition indicating the color closest in appearance to
colorname supported by this particular hardware.

exactdef Returned exact color definition from the database definition for the supplied
colorname argument.

Applications often need to know what the correct value of red may be on a particular
display in order to provide a good user interface. Given a text string (colorname, for
example red), this function returns the Color structure in the supplied structure. It uses a
database on the server to resolve the color by name from the file /usr/lpp/X/rgb/rgb. A
text representation of this file can be found in /usr/lpp/X/rgb/rgb.txt. This function
returns 0 if unsuccessful, or non-zero if successful.

Both the exact data base definition and the closest color supported by the hardware are
returned.

Programming Interface 4-61

XGetColorCells

XGetColorCells

Status XGetColorCells (contig, ncolors, nplanes, planes, pixels)
int contig;
int ncolors;
int nplanes;
int *planes;
int pixels[ncolors};

contig

ncolors

nplanes

planes

pixels

Set to 1 if planes must be contiguous, 0 if not contiguous.

Number of colors.

Number of planes.

Plane mask.

Pointer to the returned pixel values.

This function allocates n*2P color map cells, where n (ncolors) is the number of colors and
P (nplanes) is the number of planes specified. This function returns a plane mask, which
can be contiguous if requested. Additional pixel values are obtained by ORing one or more
bits from the plane mask. The initial colors for all of these cells is undefined.

If zero colors are requested, the request allocates all cells with a pixel value having at
least one non-zero bit in the plane mask. At most one such request succeeds. This is
typically your favorite window manager. Allocations are automatically deallocated when
clients exit.

XGetDefault

char XGetDefault (command, keyword)
char *command;
char *keyword;

command Pointer to the command name.

keyword Pointer to the keyword name.

The number of options that a program may need can be very large in the X environment.
These options include fonts of various sorts, colors of characters, mouse function,
background, text, cursor, and so on.

XGetDefault makes it easier to find out what the user wants as the default font, colors,
and so on.

4-62 X-Windows

XGetDefault

XGetDefault returns NULL if no option of the specified keyword exists for the command.
Defaults are read out of a file called .Xdefaults in the user's home directory. See
"Creating the Default File" on page 2-4 for details of its format.

The strings returned by XGetDefault are owned by Xlib and should not be modified or
freed by the client.

XGetFont

Font XGetFont (name)
char *name;

name Name of the requested font.

XGetFont loads a font of the specified name. A font ID is returned if successful, or 0 if
unsuccessful. The client should call XFreeFont when the font is no longer needed.

XGetHardwareColor

Status XGetHardwareColor (def)
Color *de!;

de! Pointer to the color definition.

When passed a color definition structure def, with red, green and blue values set, this
function fills in the pixel value with the closest color provided by the hardware. The
corresponding color map cell is read-only. The function returns 0 if unsuccessful (typically
due to lack of resources) or non-zero if successful.

Read-only color map cells are shared among clients. When the last client de allocates a
shared cell, it is deallocated.

XGetHosts

#include < sys/socket.h >

struct in_addr *XGetHosts (nhosts)
int *nhosts;

nhosts Returned number of hosts that can open connections.

Programming Interface 4-63

XGetResizeHint

XGetHosts returns the current list of hosts allowed to make connections. Memory is
allocated for and a pointer is returned to an array that contains each host in the list. The
nhosts value indicates the number of elements in the array. The memory used by this
function should be freed when no longer needed.

XGetResizeHint

XGetResizeHint (w, widthO, heightO, widthinc, heightinc)
Window w;
int *widthc, *heightc;
int *widthinc *heightinc;

window Window being queried.

widthc, heightc Returned base size of window.

width inc, heightinc Returned increment values used to compute resize.

XGetResizeHint asks for the window's resize parameters and assigns them to the client's
variables.

XGrabButton

Status XGrabButton (w, cursor, buttonMask, eventMask)
Window w;
Cursor cursor;
int buttonMask;
int eventMask;

w Window to send grabbed events to.

cursor Cursor to use if the grab is successful.

buttonMask Button mask bits.

eventMask Mask that determines which mouse events are reported after the mouse is
grabbed.

After XGrabButton is called, the mouse is automatically grabbed whenever a particular
mouse button is pressed while certain keys are down. The combination is specified in
buttonMask. This mask must have exactly one of the LeftMask, MiddleMask, and
RightMask bits set, and may have some combination of the ControlMask, MetaMask,
ShiftLockMask, ShiftMask, and AltGraphMask bits set as well.

4-64 X-Windows

XGrabButton

If the specified button is pressed while exactly the specified keys are down, this and all
future mouse events are grabbed until all buttons are released, with events sent to
windows as described under XGrabMouse.

The event mask determines the mouse events reported while the mouse is grabbed.

An error occurs if another client has already grabbed the same button/key combination
and has not ungrabbed it.

Note that this procedure returns a status and is therefore synchronous. The function
returns 0 if the button could not be grabbed, non-zero if the the button was grabbed
successfully.

XGrabMouse

Status XGrabMouse (w, cursor, mask)
Window W;
Cursor cursor;
int mask;

w

cursor

mask

Window to send grabbed events to.

Cursor to use if grab is successful.

Event mask.

After XGrabMouse is called, all future mouse events go only to windows for which the
client has previously called XSelectInput. The ButtonPressed, ButtonReleased,
EnterWindow, LeaveWindow, MouseMoved, LeftDownMotion, MiddleDownMotion,
and RightDownMotion bits of the mask parameter temporarily override the corresponding
bits in any mask previously passed to XSelectInput; other bits in mask are ignored.

If one of the aforementioned events occurs, and the client has not called XSelectInput on
the window where the event would normally be sent, then the event is sent to the window
w, provided that the event is specified in mask and is not EnterWindow or
LeaveWindow.

An error occurs if a different client has already grabbed the mouse and has not ungrabbed
it. No error results from the same client grabbing the mouse more than once without
un grabbing it in between. A mouse-grabbing client may want to do this in order to change
the cursor or event mask without ungrabbing the mouse.

Grabbing the mouse overrides any XGrabButton calls previously issued by this or any
other client, until the mouse is ungrabbed.

Note that this procedure returns a status and is therefore synchronous, even though no
other values are returned. The function returns 0 if the mouse could not be grabbed,
non-zero if the mouse was successfully grabbed.

Programming Interface 4-65

XGrabServer

XGrabServer

XGrabServer ()

This request can be used to control processing of output on other connections by the X
Server. No processing of requests or close downs on all other connections occurs while the
server is grabbed.

This may be useful for menus or window manager programs who may want to preserve bits
on the screen while temporarily suspending processing on other connections.

XlnterpretLocator

Status XInterpretLocator (w, x, y, subw, loc)
Window W;
int *x, *y;
Window *subw;
Locator loc;

w

x,y

subw

loc

Window for which locator is interpreted.

Returned coordinates relative to the upper left-hand corner of w.

Identifies the child window if absolute coordinates fall within it; otherwise, this
returned value is set to O.

Locator ((x < < 16) I y).

XInterpretLocator converts absolute coordinates to coordinates relative to the top left
inner corner of a window. These window-relative coordinates are assigned to the variables
x and y. Normally, the Locator will be obtained from an input event rather than
constructed from a separate x and y coordinate. It is seldom useful to deal with absolute
coordinates, but if you must convert absolute coordinates to a locator, a locator is
constructed from a coordinate pair by (x < < 16) I y. If the absolute coordinates also fall
within a child window, the routine sets subw to that child window; otherwise it sets subw
to O.

4-66 X-Windows

XIOErrorHandler

XIOErrorHandler

XIOErrorHandler (handler)
int handler(Display *);

handler Error handler supplied by the program.

The program's supplied error handler is called by Xlib if any sort of system call error (such
as losing the connection to the server) occurs. A system call error is assumed to be a fatal
condition and the called I/O error handler should not return. If the I/O error handler does
return, the client process will exit.

XKeyClick Volume

XLine

XKeyClickVolume (volume)
int volume;

volume A value in the range 0 (no volume) to 8 (loudest volume) that controls the
volume of the click resulting from a pressed key.

XKeyClick Volume controls the volume of the click that the keyboard makes when a key
is pressed.

XLine (w, xl, y1, x2, y2, width, height, pixel, tunc, planes)
Window w;
int xl, y1, x2, y2;
int width, height;
int pixel;
int tunc;
int planes;

w Window in which to draw a line.

x1,y1, x2,y2
Identifies the beginning pixel (xl and yl) and the end pixel (x2 and y2) between
which a line is drawn.

width, height
Specifies the height and width of the brush to be drawn along the line.

Programming Interface 4-67

XLine

pixel Source pixel value (color).

tunc Display function.

planes Plane mask.

XLine draws a line from pixel (xl, yl) to pixel (x2,y2) inclusive in the specified window,
using the specified display function tunc.

The line will be drawn in the color specified by the pixel value. The width and height
arguments specify the size of a brush to be drawn along the line.

XLockToggle

XLockToggle ()

This function changes the mode of the Caps Lock key on the keyboard. In LockToggle
mode, KeyPressed and KeyReleased events are never sent for the Caps Lock key, and
the state of the ShiftLockMask sent in events is toggled on every press of the Caps Lock
key.

XLockUpDown

XLock UpDown ()

This function changes the mode of the Caps Lock key on the keyboard. When the
keyboard is in LockUpDown mode, KeyPressed and KeyReleased events are sent as for
any other key, and the ShiftLockMask sent in events gives the current state of the key.

XLook U pAssoc

caddr_t XLookUpAssoc (table, xid)
XAssocTable *table;
XId xid;

table Pointer to an association table.

xid X resource ID.

This function retrieves the data stored in an XAssocTable by its Xld. If a matching Xld
can be found in the table, the routine returns a pointer to the data associated with it. If
the Xld cannot be found in the table, the routine returns NULL.

4-68 X-Windows

XLookUpMapping

char XLookUpMapping (event, nbytes)
XKeyPressedEvent *event;
int *nbytes;

XLookUpMapping

event Pointer to the character string mapped to this event.

nbytes Pointer to the number of bytes in the character string, or 0 if no text is mapped
to the event.

This function maps events to counted character strings (an array of characters and the
length; the null character is legitimate in this use). The function returns a pointer to a
static counted character string which must not be modified by a client, and the number of
bytes in the string.

This function searches for the current keyboard mapping in the following order:

• $XDIR/.Xkeymap
• $HOME/.Xkeymap
• /usr/lpp/Xdefaults/ .Xkeymap

If these files are not present, XLookupMapping defaults to a built-in table. If no text is
defined for a particular key, nbytes is zero.

The .Xkeymap file is produced by the keycomp program, which reads a text file of
keyboard mappings. The directory /usr/lpp/X/defaults contains the keyboard mappings
for all supported languages. The function performs normal interpretation of shift bits
(meta, shift, shift lock, control). XLookupMapping supports Alt-NumPad and
NumLock key processing, as well as dead key processing as defined in keycomp.

Alt-NumPad processing begins when the first Alt-NumPad key is pressed and ends when
either the third Alt-NumPad key is pressed or a non-Alt-NumPad key is pressed. The
final keycode is not returned to the user until one of these terminating events occurs. If
the terminating event is a non-Alt-NumPad key, then both the generated Alt-NumPad
key code and the string of the non-Alt-NumPad key is returned in a single buffer.

In order for this processing to work correctly, both the Alt key and the NumPad key (in
Alt state) must be defined as UNBOUND in the source keymap (see keycomp(l». In
addition, this function tracks the NumLock state only if the NumLock key is defined as
UNBOUND.

The user should do a strncpy to copy the result (if needed) to his own storage if the data
must be modified. If a different keymap file is desired, it can be set using XUseKeymap.

Programming Interface 4-69

XLowerWindow

XLowerWindow

XLowerWindow (w)
Window w;

w Window to be lowered.

XLowerWindow lowers this window so that it does not obscure any sibling windows. If
the windows are regarded as overlapping sheets of paper stacked on a desk, then lowering
a window is analogous to moving the sheet to the bottom of the stack, while leaving its x
and y location on the desk constant.

Lowering a mapped opaque window generates exposure events on any opaque windows it
formerly obscured.

Lowering a transparent window does not affect the screen.

XMakeAssoc

XMakeAssoc (table, xid, data)
XAssocTable *table;
XId xid;
caddr_t data;

table Pointer to an association table.

xid X resource ID.

data Pointer to the data to associate with the Xld.

This function inserts data into an XAssocTable keyed on an Xld. Data is inserted into the
table only once. Redundant inserts are meaningless. The queue in each association buffer
is sorted from the lowest Xld to the highest Xld.

XMakePattern

Pattern XMakePattern (pattern, length, multiplier)
int pattern, length, multiplier;

pattern

length

Bit string.

Length of bit string (16 bits maximum).

multiplier Specifies the number of times a bit is repeated before moving to the next bit.

4-70 X-Windows

XMakePixmap

In this function, pattern is a bit string of the specified length (at most 16 bits). The
multiplier specifies how many times each bit in the string is repeated (maximum of 4096
times) before moving to the next bit. The least-significant bits are processed first, and
repeated as many times as needed.

XMakePixmap

Pixmap XMakePixmap (bitmap, fg, bg)
Bitmap bitmap;
int fg, bg;

bitmap

fg

bg

Binary mapping of pixel values.

Foreground pixel value.

Background pixel value.

XMakePixmap returns a Pixmap constructed from a bitmap and two pixel values. A 1 in
the bitmap means the pixmap will have a pixel value of the foreground; a 0 in the bitmap
means the pixmap will have a pixel value of the background. If 0 is specified for the
bitmap argument, it returns a Pixmap of indefinite size suitable for use as a constant
tiling pixmap.

If the Bitmap is the same size as a tile, then the Pixmap can be used as a tile.

XMakeTile

Pixmap XMakeTile (pixel)
int pixel;

pixel Pixel value to use for the Pixmap.

This function returns a constant color Pixmap suitable for use as a tiling argument.

Programming Interface 4-71

XMapSub Windows

XMapSubwindows

XMapSubwindows (w)
Window w;

w Window for which subwindows are to be mapped.

XMapSubwindows maps all subwindows of the specified window in an unpredictable
order.

This function also generates an ExposeWindow event on each newly-displayed opaque
window.

Note that this is more efficient than mapping many windows one at a time, as much of the
work need only be performed once for all of the windows rather than for each window.

XMapWindow

XMapWindow (w)
Window w;

w Window to be mapped.

XMap Window maps the window and raises the window and all of its subwindows which
have had map requests to the top of the stack of windows. A subwindow will appear on the
screen so long as all of its ancestors are mapped. The previous contents of all opaque
windows are lost; mapping transparent windows does not affect the screen.

Mapping a window that has an unmapped ancestor does not display the window, but marks
it as eligible for display when the ancestor becomes mapped.

Mapping an already mapped window has no effect (the window is not raised).

If the window is opaque, XMapWindow generates ExposeWindow events on each opaque
window that it displays. If the client first maps the window, then paints the window, then
begins processing input events, the window will be painted twice. To avoid this situation,
the client should do one of the following:

• First Map, then call XSelectInput for exposure events, then repaint the windows
explicitly.

• First call XSelectInput for exposure events, then map, then process input events
normally.

The event list will include ExposeWindow events for each window that has appeared on
the screen; the client's normal response to an ExposeWindow event should be to repaint
the window. The second method is preferred, as it usually leads to simpler programs.

4-72 X-Windows

XMaskEvent

XMaskEvent (mask, rep)
int mask;
XEvent *rep;

mask

rep

Mask to identify the event for which to look.

Pointer to an XEvent.

XMaskEvent

This subroutine is used to look for specific events. XMaskEvent flushes the output
buffer, then removes the next event in the queue which matches the passed mask. The
event is copied into an XEvent supplied by the caller. Events earlier in the queue are not
discarded. If no such event has been queued, XMaskEvent blocks until one is received.

XMouseControl

XMouseControl (acceleration, threshold)
int acceleration, threshold;

acceleration Specifies the rate of cursor movement as related to mouse movement.

threshold Number of pixels required before mouse is moved.

This function defines how the mouse moves. The acceleration is a multiplier for movement.
For example, specifying 3 means the cursor moves three times as fast as the mouse.
Acceleration only takes effect if the mouse moves more than threshold pixels at once, and
only applies to the amount beyond the threshold.

XMoveArea

XMoveArea (w, sx, sy, dx, dy, width, height)
Window w;
int sx, sy, dx, dy, width, height;

w

sx, sy

Window in which the move is to be made.

Coordinates of the area to be moved.

dx, dy Coordinates of the location to which to move the specified area.

width, height Width and height of the area to be moved.

Programming Interface 4-73

XMoveArea

XMoveArea moves one region of the window to another (possibly overlapping) region of
the same window, using the supplied display function lunc.

If parts of the source region are obscured, the corresponding parts of the destination are
painted with the background tile. If a client has called XSelectInput on this window with
the ExposeCopy bit set, then ExposeRegion events will be generated on any such parts
of the destination, and then an ExposeCopy event will be generated. All of these events
are guaranteed to be together in the stream, with no intervening events. This sequence
makes it possible to scroll the contents of a window, getting exposure events from
wherever the window was obscured to refresh those areas of the screen.

XMove Window

XMoveWindow (w, x, y)
Window w;
int x, y;

w Window to be moved.

x, y Top-left coordinate of the new location of the window.

XMoveWindow moves and raises the window, without changing its size. This function
does not change the mapping state of the window. The x and y coordinates are the new
location of the top-left pixel of the window's border (or the window itself, if it has no
border). Moving a mapped-opaque window may lose its contents if the window's tile mode
is relative or if the window is obscured by non-children. Moving a transparent window
does not affect the screen. If the contents are lost, exposure events will be generated for
the window and any mapped opaque subwindows.

Moving a mapped-opaque window will generate exposure events on any formerly obscured
opaque windows.

XNextEvent

XNextEvent (rep)
XEvent *rep;

rep Pointer to an XEvent.

XNextEvent flushes the output buffer, then removes an input event from the head of the
queue and copies it into an XEvent supplied by the caller. If the queue is empty,
XNextEvent blocks until an event is received.

4-74 X-Windows

XOpenDisplay

Display *XOpenDisplay (name)
char *name;

XOpenDisplay

name N arne of the server to which a connection is to be opened.

This function takes the name of the server and opens a connection to the server for the
display hardware. If the display name string is NULL, it uses the environment variable
DISPLAY to determine the display and communications domain to use. The display string
or DISPLAY environment variable should be in the format hostname: number, where
hostname is the name of a machine and number is the number of the display on that
machine. For example,s; te 2 a: 3 would be display 3 on the machine site2a.
XOpenDisplay connects through TCP or local streams to the server. If hostname is un; x"
local domain IPC is used.

If the call is successful, it returns a pointer to a Display structure, which is defined in
< X/Xlib.h >. The procedure returns NULL on failure.

Macros defined in "Macros and Constants" on page 4-30 allow access to the Display
structure.

Other elements of the Display structure are private to the X library and must not be used.

XOpenFont

FontInfo XOpenFont (name)
char *name;

name Pointer to the location of the font storage.

This function does a XGetFont, XQueryFont and XFontWidths in one operation,
creating an instance of the font structure. The function allocates the memory in which to
store the font information, and returns NULL if unsuccessful.

Programming Interface 4-75

XParseColor

XParseColor

Status XParseColor (spec, def)
char *spec;
Color *de!;

spec Character string specifying the color.

de! Returned color definition.

This subroutine provides a user interface to select colors. The function takes a string
specification of a color, typically from a command line or XGetDefault option, and returns
the corresponding red, green, and blue values that are suitable for a subsequent call to
XGetHardwareColor or XStoreColor. The color can be specified either as a color name
(as in XGetColor), or as an initial sharp sign character following by a numeric
specification in one of the following formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

4 bits each
8 bits each
12 bits each
16 bits each

In the table above, R, G, and B represent single hexadecimal digits (upper- or lowercase).
When fewer than 16 bits each are specified, they represent the most significant bits of the
value. For example, #3a7 is the same as #3000a0007000.

This routine fails if the initial character is a sharp sign but the string otherwise fails to fit
of the above formats, or if the initial character is not a sharp sign and the named color
does not exist in the server's database.

XParseGeometry

int XParseGeometry (string, x, y, width, height)
char *string;
int *x, *y, *width, *height;

string Geometry specification.

x, y, width, height Returned coordinates and size of the window.

By convention, X Windows applications use a standard string to indicate window size and
placement. This subroutine facilitates conformance to this standard. It is not normally
used by user programs, which typically use theXCreate or XCreateTerm subroutines to
create the window. This subroutine is used to parse strings of form
=<wi dth>x<hei ght>{ +-}<xoffset>{ +-}<yoffset>, where width, height, xoffset and
yoffset are returned in the width, height, x and y arguments. It returns a bitmask that

4-76 X-Windows

XParseGeometry

indicates which of the four values were actually found in the string, and whether the x and
y values are negative (remember, -0 is not equal to + 0 in this system). For each value
found, the corresponding argument is updated; for each value not found, the argument is
left unchanged. The bits are XValue, YValue, WidthValue, HeightValue, XNegative,
YNegative, and are defined in < X/Xlib.h >. They will be set whenever one of the values
is defined or signs are set.

For more information on geometry, see "Geometry Specification" on page 3-4.

XPeekEvent

XPeekEvent (rep)
XEvent *rep;

rep Pointer to an XEvent.

XPeekEvent flushes the output buffer, then copies the input event from the head of the
queue into an XEvent supplied by the caller without removing the input event from the
queue. If the queue is empty, XPeekEvent blocks until an input event is received. To
determine if a queue has any input events to peek, use the QLength() macro.

XPending

XPending ()

XPending flushes the output buffer, then returns the number of input events that have
been received from the server, but not yet removed from the queue. (Events are removed
from the queue by calling XNextEvent or XWindowEvent.)

You should always call XPending before calling select on the file descriptor contained in
the display structure. The input you are trying to wait for may have already arrived and
be sitting in Xlib's queue. Another strategy might be to call XFlush after finding out if
there are any unprocessed events on the queue by using the QLength macro before calling
select.

Programming Interface 4-77

XPixFi11

XPixFi11

XPixFill (w, x, y, width, height, pixel, clipmask, tunc, planes)
Window w;
int x, y, width, height;
int pixel;
Bitmap clipmask;
int tunc;
int planes;

w

x,y

width

height

pixel

clipmap

tunc

planes

Destination window.

Upper-left coordinates of the region to fill.

Width of the region to be filled.

Height of the region to be filled.

Source value to use to fill the region.

Clip mask.

Display function.

Plane mask.

This function performs a display function in a region of the window. The pixel value is
used as the source. If a clipmask bitmap is specified, it defines the shape of the source and
which pixels of the destination will be affected. This can be useful for defining
non-rectangular icons.

XPixSet

XPixSet (w, x, y, width, height, pixel)
Window w;
int x, y, width, height;
int pixel;

w

x,y

width

height

pixel

4-78 X-Windows

Destination window.

Upper-left coordinates of the region to fill.

Width of the region to be filled.

Height of the region to be filled.

Source value to use to fill the region.

XPixmapBitsPutXY

XPixSet is equivalent to XPixFill with func = GXcopy, planes = AllPlanes and
clipmask = NULL.

XPixmapBitsPutXY

XPixmapBitsPutXY (w, x, y, width, height, data, clipmask, func, planes)
Window w;
int x, y, width, height;
short *data;
Bitmap clipmask;
int func;
int planes;

w Destination window.

x,y

width

height

Upper-left coordinates of the region at which to place Pixmap.

Width of the region to be filled.

Height of the region to be filled.

data Pointer to the source Pixmap.

clipmask Clip mask.

func

planes

Display function.

Planes mask.

XPixmapBitsPut copies a client-supplied XY format Pixmap into a window according to
the specified display function.

See "Pixmaps" on page 4-16 for the definition of XY format pixmaps.

The area modified is controlled by the clipmask argument, if it is not zero. Only the bits in
the clip mask are modified in the window. This is often useful for icon generation.

XPixmapBitsPutZ

XPixmapBitsPutZ (w, x, y, width, height, data, clipmask, func, planes)
Window w;
int x, y, width, height;
short *data;
Bitmap clipmask;
int func;
int planes;

Programming Interface 4-79

XPixmapBitsPutZ

w

X,Y

width

height

Destination window.

Upper-left coordinates of the region at which to place Pixmap.

Width of the region to be filled.

Height of the region to be filled.

data Pointer to the source Pixmap.

clipmask Clip mask.

fune Display function.

planes Plane mask.

XPixmapBitsPut copies a client-supplied Z format Pixmap into a window according to the
specified display function.

See "Pixmaps" on page 4-16 for the definition of a Z format pixmap.

The area modified is controlled by the clipmask argument, if it is nonzero. Only the bits in
the clipmask are modified in the window. This is often useful for icon generation.

XPixmapGetXY

XPixmapGetXY (w, x, y, width, height, data)
Window w;
int x, y, width, height;
short *data;

w

X,y

width

height

Source window.

Upper-left coordinates of the region to get.

Width of the region to get.

Height of the region to get.

data Pointer to the destination pixmap.

XPixmapGet returns the pixmap in the XY format into the specified area of memory.

See "Pixmaps" on page 4-16 for information on determining how much memory to reserve
for the returned data. This fun~tion is intended for window dump purposes.

The window must be mapped. If the window has no subwindows or overlapping windows,
the specified portion of the window must be fully visible on the screen.

4-80 X-Windows

XPixmapGetZ

XPixmapGetZ (w, x, y, width, height, data)
Window w;
int x, y, width, height;
short *data;

w

x,y

width

height

data

Source window.

Upper-left coordinates of the region to get.

Width of the region to get.

Height of the region to get.

Pointer to the destination pixmap.

XPixmapGetZ

XPixmapGet returns the pixmap in the Z format into the specified area of memory.

See "Pixmaps" on page 4-16 for information on determining how much memory to reserve
for the returned data. This function is intended for window dump purposes.

The window must be mapped. If the window has no subwindows or overlapping windows,
the specified portion of the window must be fully visible on the screen.

XPixmapPut

XPixmapPut (w, sx, sy, dx, dy, width, height, pixmap, tunc, planes)
Window w;
int sx, sy;
int dx, dy;
int width, height;
Pixmap pixmap;
int tunc;
int planes;

w Destination window.

sx, sy Coordinates of a region within a Pixmap.

dx, dy Coordinates of a region within a window.

width, height Size of the region.

pixmap

tunc

planes

Pixmap to be put.

Display function.

Plane mask.

Programming Interface 4-81

XPixmapSave

XPixmapPut performs a display function on a specified region of the pixmap and a
specified region of the window.

XPixmapSave

Pixmap XPixmapSave (w, x, y, width, height)
Window w;
int x, y, width, height;

w Source window.

x, y Upper left coordinates of the region to be saved.

width, height Width and height of the region to save.

XPixmapSave creates a Pixmap from the given portion of the window. The pixmap will
contain a direct image of that portion of the screen, including any visible portions of
sub windows or overlapping windows, so this routine should be used with caution. Its main
use will probably be in conjunction with XUnmapTransparent, or in implementing
pop-up menus or other temporary windows that save the bits under them and then restore
those bits when destroyed.

The window must be mapped. If the window has no overlapping windows or subwindows,
the specified portion of the window would be fully visible on the screen.

This function returns the Pixmap ID for the saved pixmap if successful, or 0 if
unsuccessful.

XPutBackEvent

XPutBackEvent (event)
XEvent *event;

event Pointer to an XEvent.

XPutBackEvent pushes an event back onto the head of the current display's input queue.
This can be useful to recall events at a later time after reading them.

4-82 X-Windows

XQuery BrushShape

XQueryBrushShape (width, height, rwidth, rheight)
int width, height;
int * rwidth, *rheight;

width, height Requested brush size.

XQuery BrushShape

rwidth, rheight Brush size supported by the hardware that is closest to width, height.

This function returns the closest shape actually supported by the display hardware for
brushes, since not all hardware is capable of supporting arbitrary size brushes. Painting
lines using brushes of widths not supported by the hardware has unpredictable results.

XQueryColor

Status XQueryColor (def)
Color *def;

def Returned color definition for a pixel value.

This function returns the color values for the pixel value specified in def. The function
returns the definition if successful, or 0 if unsuccessful.

XQueryColors

XQueryColors (defs, ncolors)
Color defs[];
int ncolors

defs

ncolors

Returned color definitions for a pixel value.

Number of color definitions.

This function returns the color values for the pixel values specified in defs[].

Programming Interface 4-83

XQueryCursorShape

XQueryCursorShape

XQueryCursorShape (width, height, rwidth, rheight)
int width, height;
int *rwidth, *rheight;

width, height Requested cursor size.

rwidth, rheight Cursor size supported that is closest to width, height.

This call provides a way to determine the cursor shapes supported by the display. Some
displays allow larger cursors than other displays. This function returns the closest shape
cursor actually supported by the display hardware. This function returns a size acceptable
for XStoreCursor. Applications should be prepared to use smaller cursors on displays
that cannot support large ones.

XQueryFont

Status XQueryFont (font, info)
Font font;
FontInfo *info;

font Font to query for information.

info Returned pointer to the font information structure. See "Font" on page 4-27 for
a definition of the structure.

XQueryFont gets various facts about a font and returns the information in the
client-passed structure FontInfo. This function does not get the font width array.

XQueryInput

XQueryInput (w, mask)
Window w;
int *mask;

w Window whose mask is queried.

mask Returned input event mask for the specified window.

XQueryInput returns the event mask currently in effect for the specified window. The bits
of the mask are defined in "Events" on page 4-18.

4-84 X-Windows

XQueryMouse

Status XQueryMouse (w, x, y, subw)
Window w;
int *x *y;
Window *subw;

w Mouse position is calculated relative to this window.

XQueryMouse

x,y

subw

Returned coordinates of the mouse relative to the top-left inside corner of w.

Returned ID of a child window, if the mouse is also in a child window.

XQueryMouse determines the current mouse coordinates. The coordinates returned are
relative to the top-left inside corner of the window, even if the mouse is outside the window
(coordinates can be negative). If the mouse is also in a child window, then subw is set to
that child, otherwise subw is set to O.

XQuery MouseButtons

Status XQueryMouseButtons (w, x, y, subw, state)
Window w;
int *x *y;
Window *subw;
short *state;

w Mouse position is calculated relative to this window.

x,y

subw

Returned coordinates of the mouse relative to the top-left inside corner of w.

Returned ID of a child window, if the mouse is also in a child

state Returned mask indicating which mouse buttons are pressed.

This function returns the same information as XQueryMouse, with the addition of the
state of the mouse buttons. The mask format is described in "Events" on page 4-18.

Programming Interface 4-85

XQueryTileShape

XQueryTileShape

XQueryTileShape (width. height, rwidth, rheight)
int width, height;
int * rwidth, *rheight;

width, height Requested tile size.

rwidth, rheight Closest supported tile size.

This function sets rwidth and rheight to the tile size closest to the requested tile size. Not
all hardware will allow pixmaps of arbitrary shapes for tiling.

XQueryTree

Status XQueryTree (w, parent, nchildren, children)
Windoww;
Window *parent;
int *nchildren;
Window **children;

w Window to query.

parent Returned ID of the parent of the window.

nchildren Returned number of children for the window.

children Returned pointer to a list of children, if any.

XQueryTree returns a list of children of the specified window, its parent, and the number
of children of this window. The function returns a pointer to a list of the children
windows. The list must be deallocated when no longer needed.

XQueryWidth

int XQueryWidth (str, font)
char *str;
Font font;

str Pointer to a null-terminated string.

font Font ID.

4-86 X-Windows

XQueryWindow

XQueryWidth returns the width in pixels of a null-terminated string in the specified font.
The function queries the server for the width computation.

XQueryWindow

Status XQueryWindow (w, info)
Window w;
Window Info *info;

w Window to query.

info Pointer to the following client-supplied structure, filled-in with the appropriate
values:

typedef struct -Window Info {
short width, height;
short x, y;
short bdrwidth;
short mapped;
short type;
Window assoc-wind;

} WindowInfo;

The fields in the preceding structure are defined as follows:

width, height Size of the window.
x, y Coordinates of the window.
bdrwidth Width of the window border.
mapped Display state of the window. Possible values are:

Is Unmapped if the window is unmapped.
Ismapped if the window is mapped and displayed (all
ancestors also mapped).
IsInvisible if the window is mapped but some ancestor is not
mapped.

type Type of window. Possible values include:
IsTransparent if the window is transparent.
IsOpaque if the window is a normal opaque window.
IsIcon if the window is an icon window. If so, the assocwind
field contains the icon's corresponding regular window.

assocwind Contains the window's icon window, if any.

XQueryWindow gets various facts about a window. The function fills in the client-passed
WindowInfo, which is defined in <X/Xlih.h>.

The procedure returns 0 if unsuccessful, and may fail if the window has been destroyed.

Programming Interface 4-87

XRaise Window

XRaise Window

XRaiseWindow (w)
Window w;

w Window to be raised.

XRaise Window raises the window so that no sibling window obscures it. If the windows
are regarded as overlapping sheets of paper stacked on a desk, then raising a window is
analogous to moving the sheet to the top of the stack, while leaving its x and y location on
the desk constant.

Raising a mapped opaque window may generate exposure events for the window and any
mapped opaque subwindows that were formerly obscured.

Raising a transparent window does not affect the screen. Transparent windows never
obscure other windows for the purposes of output, but do obscure for the purposes of
cursor and input control.

XReadBitmapFile

Status XReadBitmapFile ifn, width, height, data, x.Jwt, y.Jwt)
char *fn;
int *width, *height;
short **data;
int *x.Jwt, *y.Jwt;

fn
width

height

Bitmap filename.

Returned width of the bitmap.

Returned height of the bitmap.

data Bitmap data.

x-'tot, y_hot
Returned coordinates of the hot spot.

XReadBitmapFile reads a bitmap from the named file. A bitmap file contains C language
source code in the following format:

#define xxx_width
#define xxx.Jleight
#define xxx-X-hot
#define xxx_y.Jlot
static short xxx_bits[] = {OxNNNN, OxNNNN, ... OxNNNN};

4-88 X-Windows

XReadBitmapFile

where xxx is a name usually derived from the name of the file and NNNN are hexadecimal
digits. xxx_bits[] should be initialized with ((xxx_wi dth + 15) > > 4) *
xxx_he; ght) shorts.

The variables that end with -X-hot and _y-11ot are optional and present only if a hotspot
has been defined for the bitmap.

If the file cannot be opened, XReadBitmapFile returns a Status of o. If the file can be
opened but is not syntactically valid, the procedure returns a negative Status. If the file is
readable and valid, it returns a Status of l.

XReadBitmapFile assigns the bitmap's width and heigth, as read from the file, to the
caller's variables width and height. The function then allocates an appropriate amount of
storage, reads the bitmap data from the file, and assigns the caller's variable data. The
caller must free data when no longer needed.

If x~ot and y~ot are not NULL, then XReadBitmapFile sets x~ot and y~ot to the
value of the hot spot as defined in the file. If no hot spot is defined, XReadBitmapFile
sets x~ot and y~ot to -1.

XRebindCode

XRebindCode (keycode, shiftbits, str, nbytes,)
unsigned int keycode;
unsigned int shiftbits;
char *string;
int nbytes;

keycode

shiftbits

str

nbytes

Keycode to temporarily change.

Shift bits.

Pointer to the string to assign.

Number of bytes in the string.

If you wish to rebind the keyboard, you can use this routine to change (on a
non-permanent basis) the binding of the keyboard. After issuing this rebind function,
subsequent calls to XLookupMapping returns the supplied string. The string should be
stored in static storage; an automatic string may be deallocated by the time it is needed.

If nbytes is 0 and str is not NULL, then str is assumed to point to a two-byte array that
contains the code page and code point of a dead key. If str is NULL and nbytes is not zero,
then nbytes defines a function ID.

See A/X Operating System Technical Reference for more information on function IDs, code
pages and code points.

Programming Interface 4-89

XRemoveHost

XRemoveHost

#include < sys/socket.h >

XRemoveHost (host)
struct innadr * host;

host Network address of host to remove.

This function removes the specified host from the list of hosts allowed to open connections
to the display. The display hardware must be on the same host as the client process. If you
remove your machine from the access list, no new connections can be made. There is no
way back from this call short of logout.

XRotateBuffers

XRotateBuffers (n)
int n;

n Factor by which to rotate buffers.

This function rotates the buffers by n. Buffer 0 becomes buffer n, buffer 1 becomes (n + 1)
mod 8, and so on. This buffer numbering is global to the display.

XScreenSaver

XScreenSaver (savetimeout, patterntimeout, video)
int savetimeout, patterntimeout;
int video;

save timeout
Number of minutes the server is idle before the screen is blanked by a pattern.

patterntimeout
Number of minutes a pattern is displayed before being changed.

video Determines whether a root tile or background color is used.

If the server remains idle for the specified number of minutes, the server blanks the screen,
usually with a pattern that changes at the specified rate. The screen state is typically
restored when the next request or input event occurs, unless the server was out of memory.
If the server was out of memory, exposure events are generated for all mapped windows. If

4-90 X-Windows

XSelectInput

video is non-zero, the server uses the current background color to blank the screen;
otherwise, the root tile is used.

XSelectInput

XSelectInput (w, mask)
Window w;
int mask;

w

mask

Window for which input events are selected.

Mask indicating the events the window selects.

XSelectInput defines the input events a window is interested in. If a window is not
interested in an event, the event is usually propagated up to the closest ancestor that is
interested. The bits of the mask are defined in "Events" on page 4-18.

If you select ExposeRegion, you also select Expose Window.

A call to XSelectInput overrides any previous call to XSelectInput for the same window,
whether from the same client or a different one. Two clients cannot each select events
simultaneously from the same window. Initially, no events are generated on a window.

If a window has both ButtonPressed and ButtonReleased selected, then a
ButtonPressed event in that window automatically grabs the mouse until all buttons are
released, with events sent to windows as described for XGrabMouse. This ensures that a
window sees the release event corresponding to the pressed event, even though the mouse
may have exited the window in the meantime.

If MouseMoved is selected, events are sent independent of the state of the mouse buttons.
Instead, if one or more of RightDownMotion, MiddleDownMotion, or LeftDownMotion
is selected, MouseMoved events are generated only when one or more of the specified
buttons is pressed. (There are no events of type RightDownMotion,
MiddleDownMotion, or LeftDownMotion; these are ways to request MouseMoved
events only when particular buttons are held down).

XSetDisplay

XSetDisplay (display)
Display *display;

display Pointer to the Display structure to use.

This function sets the current display connection to which you are talking and is used to
switch between displays. The Display structure is returned by XOpenDisplay.

Programming Interface 4-91

XSetIcon Window

XSetIcon Window

XSetIcon Window (w, iw)
Window W;
Window iw;

w Window for which to set an icon window.

lW Icon window.

XSetIconWindow sets the icon window for a window. The icon window must be a sibling
of the specified window, both windows must be opaque, and neither can already be an icon
window. When created, windows do not have icon windows defined.

The icon window facility is provided because many window manager programs allow the
user to turn a window into an icon. A client should call XSetIcon Window to control the
contents of the window's icon. If the client has not called XSetIconWindow, the window
manager should create its own icon window for the window. If a window is destroyed and
has a mapped icon window, that icon window is unmapped and receives an
UnmapWindowevent. If a window is destroyed and is a mapped icon window, its
corresponding regular window is mapped.

XSetResizeHint

XSetResizeHint (w, widthO, heightO,widthinc, heightinc)
Window W;
int widthO, heightO, width inc, heightinc;

w Window for which resize hint data is supplied.

widthO, heightO
Base size of the specified window.

width inc, heightinc
Increment values by which resize is computed.

XSetResizeHint is used to give a hint to the window system that can be used by a window
manager program to define the desired shape of a window. The inside height of the window
should be the base height (heightO) plus some multiple of the height increment (heightinc),
and the inside width of the window should be the base width (widthO) plus some multiple of
the width increment (width inc). These parameters are hints for the window manager. They
mayor may not be honored.

By default, a window's resize hint is (0, 0, 1, 1).

4-92 X-Windows

XSetResizeHint

The base height and width must be non-negative, and the height and width increments
must be positive. The increment values usually depend on font sizes for text windows.

This function can be used by window managers to avoid resizing windows to sizes that may
not be convenient for the clients, but clients must not presume that the window is the
correct size.

XStippleFil1

XStippleFill (w, x, y, width, height, pixel, stipmask, tunc, planes)
Window w;
int x, y, width, height;
int pixel;
Bitmap stipmask;
int tunc;
int planes;

w Destination window.

x, y Upper-left coordinates of the region to be filled.

width, height
Width and height of the region to be filled.

pixel Source value to use to modify the region.

stipmask Stipple mask.

tunc Display function.

planes Plane mask.

This function performs a display function in a region of the window using a repeating
pattern defined by the stipple bitmap. The tiling origin is controlled by the window's tile
mode. The pixel value is used as the source. The destination pixels modified are those
corresponding to the 1 values in the pattern generated from the stipple bitmap. A stipple
mask is a 16 pixel by 16 pixel bitmap used to tile the region. It serves as an additional clip
mask for a fill operation.

Programming Interface 4-93

XStoreBitmap

XStoreBitmap

Bitmap XStoreBitmap (width, height, data)
int width, height;
short *data;

width, height Size of the bitmap to save.

data Pointer to the bitmap.

XStoreBitmap creates a bitmap from client-supplied data for later use and returns a
Bitmap ID. The client should call XFreeBitmap when finished with it.

This function returns 0 if unsuccessful.

XStoreBuffer

XStoreBuffer (bytes, nbytes, buffer)
char *bytes;
int nbytes;
int buffer;

bytes

nbytes

buffer

Pointer to the bytes to store.

Number of bytes to store.

Buffer in which to store the bytes.

This function stores an arbitrary string of bytes into the specified buffer. The buffer's
contents may be retrieved later by any client calling XFetchBytes. Note that the buffer's
contents are not necessarily ASCII or null-terminated, so null bytes are not special. There
are eight buffers, numbered 0-7.

XStoreBytes

XStoreBytes (bytes, nbytes)
char *bytes;
int nbytes;

bytes

nbytes

4-94 X-Windows

Pointer to the bytes to store.

Number of bytes to store.

XStoreColor

XStoreBytes stores an arbitrary string of bytes into buffer number O. The buffer's
contents may be retrieved later by any client calling XFetchBytes. Note that the buffer's
contents are not necessarily ASCII or null-terminated, so null bytes are not special.

XStoreColor

XStoreColor (del)
Color *def;

def Returned closest available hardware color for the specified pixel.

This function sets the color of the specified pixel value to the closest available hardware
color. Note that it must be a read/write cell.

XStoreColors

XStoreColors (ncolors, defs)
int ncolors;
Color *defs;

ncolors Number of color definitions.

def Returned closest available hardware color for the specified colors.

This function changes the colors of ncolors pixels to the closest available hardware colors.
Note that these must be read/write cells.

XStoreCursor

Cursor XStoreCursor (cursor, clipmask, xoff, yoff, fg, bg, func)
Bitmap cursor;
Bitmap clipmask;
int xoff, yoff;
int fg, bg;
int func;

cursor Bitmap for the two-plane cursor.

clip mask Clip mask

Programming Interface 4-95

XStoreCursor

xoff, yoff Coordinates of a point in the bitmap that corresponds to the position of the
mouse.

fg Foreground color of the cursor.

bg Background color of the cursor.

func Display function (GXcopy or GXxor).

This function stores a cursor in the window system. The colors of the cursor are defined
by the pixel values fg and bg. If mask is zero, all pixels of the cursor are displayed. The
mask bitmap, if present, must be the same size as the cursor bitmap.

The bitmaps can be freed immediately if no further explicit references to them are to be
made. The components of the cursor may be transformed arbitrarily to meet hardware
limitations.

XStoreName

XStoreName (w, name)
Window W;
char *name;

w Window to be named.

name Pointer to a null-terminated string that contains the name.

XStoreName assigns a name to a window. The name should be a null-terminated string
which is returned by any subsequent call to XFetchName. Windows are typically named
for the convenience of window managers. This allows a window manager to display a text
representation of a window when its icon is being displayed.

XStorePixmapXY

Pixmap XStorePixmapXY (width, height, data)
int width, height;
short *data;

width, height Size of the pixmap to store.

data Pointer to the pixmap data.

This function creates a pixmap of the specified size from client-supplied data and returns a
Pixmap ID. The data must be in the XY format. See "Pixels and Planes" on page 4-15 for
details on the format. This data is stored in the window system for later use.

4-96 X-Windows

XStorePixmapZ

This function returns 0 if the pixmap could not be created. The client should call
XFreePixmap when finished with the pixmap.

XStorePixmapZ

Pixmap XStorePixmapZ (width, height, data)
int width, height;
caddr_t data;

width, height Size of the pixmap to store.

data Pointer to the pixmap data.

This function creates a pixmap of the specified size from client-supplied data and returns a
pixmap ID. The data must be in the Z format. See "Pixmaps" on page 4-16 for details on
the format. This data is stored in the window system for later use.

This function returns 0 if the pixmap could not be created. The client should call
XFreePixmap when finished with the pixmap.

XStringWidth

XStringWidth(string, info, charpad, spacepad)
char * string;
FontInfo *info;
int charpad, spacepad;

string

info

Pointer to the string for which a width is computed.

Pointer to the supplied font info structure. For a definition of the fields in this
structure, see "Font" on page 4-27.

charpad, spacepad
Value to be added to the width of each character and space, respectively,
defined in the string.

This function computes the width of the string given a complete FontInfo structure. The
charpad and spacepad values are added to the width on each character and space defined
in the string. This function does not reference the window system server, as the
information is all available locally in this case.

Programming Interface 4-97

XSync

XSync

XText

XSync (discard)
int discard;

discard Discard flag, set to 1 for true or 0 for false.

XSync flushes the output buffer, then waits until all events and errors resulting from
previous calls have been received and processed by the X server. Events are placed on the
input queue. The client's XError subroutine is called once for each error received.

If discard is set to 1, XSync discards all events on the input queue, including those events
that were on the queue before this function was called.

Few clients will need to use this subroutine. Although it can be useful for debugging,
XSync has a detrimental effect on performance.

XText (w, x, y, string, len, font, fg, bg)
Window w;
int x, y;
int len;
char *str;
Font font;
int fg, bg;

w

x,y

string

len

font

fg

Window in which to draw text.

Coordinates of the upper-left corner of the first character to draw.

Text to draw.

Number of characters from string to draw.

Font to use when drawing text.

Foreground pixel value.

bg Background pixel value.

XText draws text into a window, using the specified font and display function GXcopy.
The function modifies all planes of the display memory. This function does no padding.

The number of characters to be drawn must be specified in the len parameter; XText does
not assume that str is null-terminated.

4-98 X-Windows

XTextMask

For each character drawn, a rectangular bitmap is transferred onto the display. All pixels
in a character cell are modified to either the fg or bg pixel value.

XTextMask

XTextMask (w, x, y, string, len, font, fg)
Window w;
int x, y;
int len;
char *str;
Font font;
int fg;

w Window in which to draw text.

x,y

string

len

Coordinates of the upper-left corner of the first character to draw.

Text to draw.

Number of characters from string to draw.

font Font to use when drawing text.

fg Foreground pixel value.

XTextMask draws text into a window, using the specified font and display function
GXcopy. The function modifies all planes of the display, only modifying bits specified by
the font. The font bits are used as a mask, so only bits set to one in the font cause pixels
to be modified on the display. This function does no padding.

The number of characters to be drawn must be specified in the len parameter; this call does
not assume that string is null-terminated.

The x and y coordinates represent the upper left corner of the first character.

Programming Interface 4-99

XTextMask

XTextMaskPad

XTextMaskPad (w, x, y, string, len, font, charpad, spacepad, fg, func, planes)
Window W;
int x, y;
int len;
char *str;
Font font;
int char pad, spacepad;
int fg;
int func;
int planes;

W

x,y

string

len

font

Window in which to draw text.

Coordinates of the upper-left corner of the first character to draw.

Text to draw.

Number of characters from string to draw.

Font to use when drawing text.

charpad Defines the amount of space to leave between each character.

spacepad Defines how much additional padding will occur when a space character is
painted.

fg Foreground pixel value.

func Display function.

planes Plane mask.

XTextMaskPad draw~ text into a window, using the specified font and display function
func. The function modifies the specified planes of the display, only modifying bits
specified by the font. The font bits are used as a mask, so only bits set to one in the font
cause pixels to be modified on the display.

The number of characters to be drawn must be specified in the len parameter; this call does
not assume that string is null-terminated.

The x and y coordinates represent the upper left corner of the first character.

charpad and spacepad can be used for inter character and space padding. Padded pixels are
not modified.

4-100 X~Windows

XTextMaskPad

XTextPad

XTextPad (w, x, y, string, len, font, charpad, spacepad, fg, bg, func, planes)
Window w;
int x, y;
int len;
char *str;
Font font;
int char pad, spacepad;
int fg, bg;
int func;
int planes;

w Window in which to draw text.

x, y Coordinates of the upper-left corner of the first character to draw.

string Text to draw.

len Number of characters from string to draw.

font Font to use when drawing text.

charpad Defines the amount of space to leave between each character.

spacepad Defines how much additional padding will occur when a space character is
painted.

fg

bg

func

planes

Foreground pixel value.

Background pixel value.

Display function.

Plane mask.

XTextPad draws text into a window, using the specified font and display function. The
function modifies the specified planes of the display memory. The number of characters to
be drawn must be specified in the len parameter; XTextPad does not assume that str is
null-terminated.

For each character drawn, a rectangular bitmap is transferred onto the display.

The character padding charpad defines how much space is left between each character.
The space padding spacepad defines how much additional padding occurs when a space
character is painted. Padded pixels are not modified. All pixels in a character cell are
modified to either the fg or bg pixel value.

Programming Interface 4-101

XTextPad

XTileAbsolute

XTileAbsolute (w)
Window w;

w Window for which to set absolute tile mode.

This function sets the tile mode of the window. In absolute mode (the normal case for
opaque windows), tiles are laid out with the upper left corner of the window as the
effective origin. The tile mode affects painting of the background for exposures and for
XClear, XTileFill, and XDrawFilled requests.

This function does not change the current contents of the window, and you may wish to
clear and repaint the screen after this function completes.

XTileFil1

XTileFill (w, x, y, width, height, tile, clipmask, tunc, planes)
Window w;
int x, y, width, height;
Pixmap tile;
Bitmap clipmask;
int tunc;
int planes;

w Destination window.

x, y Upper-left coordinates of the region to be filled.

width, height
Width and height of the region to be filled.

tile Source pixmap that specifies the pattern to use to fill the region.

clipmask Clip mask.

tunc Display function.

planes Plane mask.

XTileFill performs a display function in a region of the window using a repeating pattern
defined by the tile pixmap. The tiling origin is controlled by the window's tilemode. If a
clipmask is specified, it defines which pixels of the destination will be affected, and it must
be the same height and width as the destination region.

4-102 X-Windows

XTileRelative

XTileRealtive (w)
Window w;

w Window for which to set relative tile mode.

XTileFil1

This function sets the tile mode of the window. In relative mode (the default for
transparent windows), tiles are laid out with the upper left corner of the closest parent
window with an absolute tile mode as an effective origin. The tile mode affects painting of
the background for exposures and for XClear, XTileFill, and XDrawFilled requests.

This function does not change the current contents of the window, and you may wish to
clear and repaint the screen after this function completes.

XTileSet

XTileSet (w, x, y, width, height, tile)
Window w;
int x, y, width, height;
Pixmap tile;

w Destination window.

x, y Upper-left coordinates of the region to be filled.

width, height
Width and height of the region to be filled.

tile Source pixmap that specifies the pattern to use to set the region.

XTileSet performs a display function in a region of the window using a repeating pattern
defined by the tile pixmap. The tiling origin is controlled by the window's tilemode.

XTileSet defaults to modifying all planes of the display with GXcopy. No clipping mask is
used.

Programming Interface 4-103

XTileSet

XU ndefineCursor

XUndefineCursor (w)
Window w;

w Window for which a cursor definition is removed.

XUndefineCursor removes the definition of a cursor made by XDefineCursor for this
window. When the mouse is in the window, the parent's cursor is then used.

On the root window, with no cursor specified, the default cursor is restored.

XU ngrabButton

XU ngrabButton (mask)
int mask;

mask Button mask bits.

XUngrabButton notifies the server that the client is no longer interested in grabbing the
mouse when the specified button/key combination occurs. This grab is overridden by a
grab mouse request.

The mask must have exactly one of the LeftMask, MiddleMask, and RightMask bits set,
and may have some combination of the AltGraphMask, ControlMask, MetaMask,
ShiftLockMask, and ShiftMask bits set as well.

XUngrabMouse

XUngrabMouse ()

XUngrabMouse releases hold of the mouse if it was grabbed by XGrabMouse.

4-104 X-Windows

XU ngrabServer

XU ngrabServer

XUngrabServer ();

This request releases hold of the server if the server was grabbed by XGrabServer.

XU nmapSubwindows

XUnmapSubwindows (w)
Window w;

w Window whose subwindows are to be unmapped.

This function unmaps all subwindows of the specified window, generates an
UnmapWindow event on each subwindow, and generates Exposure events on formerly
obscured opaque windows.

This technique is more efficient than unmapping many windows one at a time, because
much of the work of unampping windows can be done once for all windows rather than
once for each window.

XU nmapTransparent

XUnmapTransparent (w)
Window w;

w Window whose transparent is to be unmapped.

This function unmaps the window but does not affect the screen (even if the window is
opaque) and does not generate any exposure (or unmap) events. This function is intended
for use mainly by pop-up menus in conjunction with XPixmapSave to suppress exposure
events. The client should normally restore the saved pixmap to the area formerly covered
by the unmapped window.

Programming Interface 4-105

XU nmapTransparent

XUnmap Window

XUnmapWindow (w)
Window w;

w Window to unmap.

XUnmapWindow unmaps the specified window. Any child window will no longer be
visible until another map call is made on the parent. That is, the sub windows are still
mapped, but not visible until the parent is mapped. This function generates an
UnmapWindow event for w, regardless of whether it is opaque or transparent. Child
windows will not receive UnmapWindow events.

Unmapping a transparent window does not affect the screen or generate any exposure
events. Unmapping an opaque window will generate exposure events on opaque windows
that were formerly obscured by it and its children.

XUpdateMouse

Status XUpdateMouse (w, x, y, subw)
Window w;
int *x, *y;
Window *subw;

w Window in which to update mouse.

x, y Returned coordinates of the mouse relative to the window's top left inside
corner.

subw If the mouse is also in a child window, this argument is set to that child;
otherwise, subw is set to o.

XUpdateMouse is similar XQueryMouse, but this function also reads pending events and
eliminates any MouseMoved events at the head of the queue. A good way to track the
mouse is to use a MouseMoved event as a hint by calling this routine to get up-to-date
coordinates.

4-106 X-Windows

XUseKeymap

Status XUseKeymap (keymapfile)
char *keymapfile;

XUpdateMouse

keymapfile Name of the keymap file to use within the current process.

If you wish to use an alternate keymap file, you can use this routine to change the file
used. This change only affects the keymap within the current process. The function
returns a 0 if it cannot find the keymap file named by keymapfile or if the file contains a
bad magic number. If the function fails, the existing keymap is untouched.

XWarpMouse

XWarpMouse (w, x, y)
Window w;
int x, y;

w Window to which to move the mouse.

x, y Coordinates relative to top inside-left corner of the window to which the mouse
is moved.

XWarpMouse moves the mouse to the specified position in the specified window. The x
and y coordinates are relative to the top left-inside corner of the window.

Programming Interface 4-107

XWarpMouse

XWindowEvent

XWindowEvent (w, mask, rep)
Window w;
int mask;
XEvent *rep;

w

mask

Window from which to search for specific events.

Defines the events for which to search.

rep Pointer to an XEvent.

This function is used to look for specific events from specific windows. XWindowEvent
flushes the output buffer, then removes the next event in the queue that matches both the
passed window and the passed mask. The event is copied into an XEvent supplied by the
caller. Events earlier in the queue are not discarded. If no such event has been queued,
XWindow Event blocks until one is received.

4-108 X-Windows

IBM-Specific X-Windows Implementation

IBM's X-Windows program differs from MIT's X version lOA specification as follows:

• Unsupported functions

The following functions from version lOA of X are not supported on the RT PC, and, if
used, they simply return:

XAddNode
XGetNode
XRemoveNode

• Additional functions

The following functions have been added by IBM:

XKillClient (w)
Window w;

w Window owned by the client to kill.

This function closes down the connection to the client that owns the specified window
and frees any other resources owned by that client. Clients that lose the connection to
the server usually terminate. Upon successful completion, a value of 1 is returned; a
value of 0 is returned for unsuccessful completion. This function also returns 0 if the
X Server is not an IBM RT PC X-Windows server.

XQuerySetOptions (opt)
Set Options *opt;

opt Pointer to the returned set options structure (defined in X/Xlih.h).

This function provides access to the terminal characteristics set during X initialization.
The returned set options structure (defined in X/Xlih.h) contains information on the
keyboard settings (bell volume, key click volume, auto-repeat mode, and key lock
mode), mouse motion settings (acceleration and threshold), and timing intervals (wait
time and long time). Upon successful completion, a value of 1 is returned; a value of 0
is returned if unsuccessful. This function also returns 0 if the X Server is not an IBM
RT PC X-Windows server.

XRevShorts (data, count)
short *data;
int count;

data

count

Pointer to an array of shorts.

Number of shorts.

Programming Interface 4-109

This function reverses the bits in short (16-bit) words. For example, in the X-Windows
environment, the most significant bit is bit 15 of the word and the least significant bit
is bit 0 of the word. This function simply reverses the bit ordering of the specified word
or words.

• Additional macros

The following macros have been added by IBM. Do not use these macros before the
first call to XOpenDisplay:

DisplayHeightMm() - Provides the screen height in millimeters
DisplayWidthMm() - Provides the screen width in millimeters
DisplayModel() - Provides the model number of the display
DisplayVrmId() - Provides the VRM identification number of the display
DisplayOrganization() - Provides the display organization by plane or pixel
IBM~erver - Flag indicating attachment to an IBM server.
KeybdId() - Identifies the keyboard hardware:

XDEV JBMJ{101 - U.S. English keyboard (101 key)
XDEV JBMJ{102 - European keyboard (102 key)
XDEV JBMJ{106 - Japanese keyboard (101 key).

• Font structure

In the IBM implementation of the font information structure (FontInfo), firstchar and
lastchar have been changed to shorts to accommodate fonts with more than 256
characters.

• Time within detail events

Time values are maintained only for button events, not for key events.

• State bits in key detail

IBM uses an additional key state, the Alt-Graphics key state, and this state is
reflected in the high-order byte of the key detail information.

4-110 X-Windows

Sample X-Windows Program

The following program (xrefresh) is a relatively simple X-Windows application. This
program may be useful if the contents of your screen have been corrupted by a program
error (such as unintentionally using the RootWindow) or by messages put out by the
system underneath your windows.

#include < X/Xlih.h >
#include < stdio.h >

main (argc, argu)
int argc;
char **argu;
{

Window W;

if(XOpenDisplay(argc ? argv[l] : "") = = NULL)
fprintf(stderr, "Could not open Display\n");

w = XCreateWindow(RootWindow, 0, 0, DisplayWidth(), DisplayHeight(),
0, (Pix map) 0, (Pixmap) 0);

XMapWindow(w); /* Put it on the screen */
XDestroyWindow(w); /* Throw it away* /

XFlush(); /* Make sure the server sees it * /

This program basically connects to the display, creates a window with a black background
and zero-width border over the root window, maps the window to the screen, and then
destroys it. This results in exposure events sent to the client programs that have selected
exposure events on all mapped unobscured windows. This causes most clients to repaint
their windows. The call to XFlush is necessary to flush the output buffer because no
input call occurs after XDestroyWindow. Failure to flush the output buffer is a common
programming error in the X-Windows environment. The background pixmap is 0, so the
window is covered with the background pixmap.

Programming Interface 4-111

4-112 X-Windows

Chapter 5. X-Windows Technical Reference

X-Windows Technical Reference 5-1

CONTENTS
xterm HFT Functions 5-4 LCopyArea · 5-36
xterm Datastream Support 5-8 X_Text · 5-36
X-Windows Protocol 5-15 X_TextMask · 5-37
X Server Protocol Requests 5-19 X~ine · 5-37

LCreate Window 5-19 X-Draw · 5-38
LCreateTransparency 5-19 X-Dra w Filled · 5-39
x......DestroyWindow 5-20 X~ixrnapSave · 5-40
X-DestroySubwindows 5-20 X~ixrnapGet · 5-40
X~apWindow 5-21 X~ ti ppleFill · 5-41
X_MapSubwindows 5-21 LSetUp 5-41
LUnmapWindow 5-21 X_UngrabMouse · 5-42
X_UnmapSubwindows 5-22 X_U ngrabButton 5-42
X_UnmapTransparent 5-22 X_GetColor · 5-42
X-Raise Window 5-22 X_GetColorCells · 5-43
X~owerWindow 5-23 X_FreeColors · 5-43
LCircWindowUp 5-23 X_Store Colors · 5-44
X_Move Window 5-23 X_QueryColor · 5-44
X_Change Window 5-24 X_GetFont · 5-44
LConfigure Window 5-24 XJreeFont · 5-45
X_ChangeBackground 5-24 X_QueryFont · 5-45
X_ChangeBorder 5-25 X_CharWidths · 5-45
X_TileMode 5-25 X~tringWidth · 5-46
X_ClipMode 5-26 X_FontWidths · 5-46
X_QueryWindow 5-26 X_StoreBitmap · 5-47
LStoreNarne 5-27 XJreeBitmap · 5-47
X_FetchN arne· 5-27 X_CharBitmap · 5-47
X_SetIcon Window 5-27 X_StorePixmap · 5-48
X_SetResizeHint 5-28 X_FreePixmap · 5-48
X_GetResizeHin t 5-28 X_MakePixmap · 5-48
X-DefineCursor 5-29 X_QueryShape · 5-49
X_Selectlnput 5-29 X_Store Cursor · 5-49
X_GrabMouse 5-30 X_FreeCursor · 5-50
X_GrabButton 5-30 X_MouseControl · 5-50
X_QueryMouse 5-31 XJeepControl · 5-50
XJnterpretLocator 5-31 X_Feep · 5-50
X_WarpMouse 5-32 X_ShiftLock · 5-51
X_FocusKeyboard 5-32 X_KeyClick · 5-51
X_QueryTree 5-32 X~utoRepeat · 5-51
X_Clear 5-33 X_ScreenSaver · 5-51
X~ixFill 5-33 X_StoreBytes · 5-52
X_TileFill 5-34 X_FetchBytes · 5-52
X~ixrnapPut 5-34 X-RotateCuts · 5-53
X~ixrnapBitsPut 5-35 X~ddHost · 5-53
X~itmapBitsPut 5-35 X-RemoveHost · 5-53

5-2 X-Windows

X_GetHosts 5-54 X-LookupColor 5-54
X_GrabServer 5-54 Input Events 5-55
X_UngrabServer 5-54

X-Windows Technical Reference 5-3

xterm HFT Functions

VTLs are supported, with following characteristics:

• Locator reports are given for the following mouse events:

ButtonPressed
ButtonReleased
RightDownMotion
LeftDownMotion
MiddleDownMotion

• Locator reports are given in absolute coordinates.

• Mouse motion is processed in compressed mode.

• Applications need not display a mouse cursor.

A font table is maintained for each invocation of xterm to support the change font VTD.

The file /usr/lpp/X/defaults/Xfonts identifies the fonts configured on the RT PC. This
file controls the mapping of font IDs to font files recognized by xterm. A request from a
program to xterm to query font VTD returns the font ID based on the contents of the
Xfonts file. The change font VTD changes the local xterm font table according to the IDs
defined in the Xfonts file.

The format of each line in the Xfonts file is:

id path style attr width height
The lines in the file that start with # are ignored. The fields within a line must be
separated by one or more blanks.

5-4 X-Windows

The parts of each line in Xfonts indicate the following:

id Specifies the ID to be associated with a particular font file. The decimal
values 0 through 65536 are valid. Other programs can add to this file once
their fonts match the common font file format.

path Specifies the name of the font file to be opened. The font file must be in the
directory /usr/lpp/fonts.

style Specifies a number identifying the style of the font.

attr Specifies a number identifying the attributes of the font. The defined
attributes are:

• o (HFFNTPLAIN)
• 1 (HFFNTBOLD)
• 2 (HFFNTIT ALIC)

Refer to the file /usr/include/sys/hft.h for definitions of HFFNTPLAIN,
HFFNTBOLD, and HFFNTITALIC.

width Specifies the width of the font characters in pels.

height Specifies the height of the font characters in pels.

For more information, see "hft" and "remote processing" in the AIX Operating System
Technical Reference.

x-Windows Technical Reference 5-5

Function HFT xterm

TERMINAL CONTROL

Query I/O Error ioctl no support

Query Device ioctl no support

Reconfigure ioctl no support

Get Channel Number ioctl no support

Set Echo and Break Map ioctl no support

Set Keyboard Map ioctl hftctl

Get Virtual Terminal ID ioctl no support

Query Device ID ioctl no support

Query Physical Device (ID = 0) ioctl hftctl

Query HFT device ioctl hftctl

Query Locator ioctl hftctl

Query LPFKs ioctl no support

Query Dials ioctl no support

Query PS ioctl hftctl

Enable / Disable Sound ioctl no support

Enter / Exit Monitor Md ioctl no support

Query Screen Manager ioctl no support

Control Screen Manager ioctl no support

KSR Protocol VTD VTD

Chararcter Set Definition VTD no support

Set KSR Color Palette VTD VTD

Change Fonts VTD VTD

Cursor Representation VTD VTD

INPUT

Dead Key Support read supported

Code Page Shift read supported

5-6 X-Windows

Function HFT xterm

Untranslated Key read supported

Input Device Report read supported

mouse VTL supported

tablet VTL no support

dials VTL no support

Lighted Program Function Keys VTL no support

Sound Complete signal no support

OUTPUT

Write ASCII (Code Page 850) write supported

Write Code Page Shift write supported

Set LEDs VTD no support

Set Locator Threshold VTD no support

Set Table Dead Zone VTD no support

Set LPFKs VTD no support

Set Dials VTD no support

Sound output VTD no support

Cancel Sound VTD no support

Change Physical Display VTD no support

X-Windows Technical Reference 5-7

xterm Datastream Support

The following is a list of the escape sequences supported by xterm.

Some escape sequences activate and deactivate an alternate screen buffer that is the same
size as the display area of the window. This capability allows the contents of the screen to
be saved and restored. When the alternate screen is activated, the current screen is saved
and replaced with the alternate screen. The saving of lines scrolled off of the window is
disabled until the original screen is restored.

This table uses these abbreviations in the righthand column:

X v Supported by xterm running in vt100 mode.
Xh Supported by xterm running in hft mode.
H Found in hft datastream.
V Found in vt100 datastream.

Name Function

SINGLE-BYTE CONTROLS

BEL Bell

BS Backspace

HT Horizontal tab

LF Linefeed

VT Vertical tab

FF Form feed

CR Carriage return

SO Shift out

SI Shift in

DCI Device control I

DC3 Device control 3

CAN Cancel

5-8 X-Windows

Datastream

Ox07

Ox08

Ox09

OxOA

OxOB

OxOC

OxOD

OxOE

OxOF

Oxll

Oxl3

Oxl8

Support

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

Xv, Xh, H, V

H,V

H,V

H,V

Name Function Datastream Support

SUB Substitute (also cancels) OxlA H,V

ESC Escape OxlB Xv, Xh, H, V

SS4 Single Shift 4 OxIC Xh,H

SS3 Single Shift 3 OxlD Xh,H

SS2 Single Shift 2 OxlE Xh,H

SSI Single Shift I OxlF Xh,H

cbt cursor back tab ESC [Pn Z H

cha cursor horizontal absolute ESC [Pn G H

cht cursor horizontal tab ESC [Pn I H

ctc cursor tab stop control ESC [Pn W H

cnl cursor next line ESC [Pn E H

cpl cursor preceding line ESC [Pn F XV,Xh,H

cpr cursor position report ESC [PI; Pc R Xv, Xh, H, V

cub cursor backward ESC [Pn D XV,Xh,H,V

cud cursor down ESC [Pn B Xv, Xh, H, V

cuf cursor forward ESC [Pn C Xv, Xh, H, V

cup cursor position ESC [PI; Pc H Xv, Xh, H, V

cuu cursor up ESC [Pn A Xv, Xh, H, V

cvt cursor vertical tab ESC [Pn Y H

dal DEVICE ATTRIBUTES
request (host to vt100) ESC [c Xv, Xh, V
request (host to vt100) ESC [0 c XV,Xh, V
response (vt100 to host) ESC [? I ; 2 c XV,Xh, V

dch delete character ESC [Pn P Xv, Xh, H

decaln screen alignment display ESC # 8 Xv, Xh, V

X-Windows Technical Reference 5-9

Name Function Datastream Support

deckpam keypad application mode ESC = Xv, V

deckpnm keypad numeric mode ESC> Xv, V

decrc restore cursor & attributes ESC 8 XV,Xh, V

decsc save cursor & attributes ESC 7 XV,Xh, V

decstbm set top & bottom margins ESC [Pt; Pb r XV,Xh, V

dl delete line ESC [Pn M XV,Xh,H

dsr device status report ESC [Ps n
o response from vt100: ready XV,Xh, V
5 command from host: please Xv, Xh, V

report status
6 command from host: report Xv, Xh, H, V

active position
13 error report sent from H
virtual terminal to host

dmi disable manual input ESC' (back quote) H

emi enable manual input ESC b H

ea erase area ESC [Ps 0
o erase to end of area XV,Xh,H
1 erase from area start Xv, Xh, H
2 erase all of area Xv, Xh, H

ed erase display ESC [Ps J
o erase to end of display Xv, Xh, H, V
1 erase from display star Xv, Xh, H, V
2 erase all of display Xv, Xh, H, V

ef erase field-e,s,all ESC [Ps N
o erase to end of field XV,Xh,H
1 erase from field start XV,Xh,H
2 erase all of field XV,Xh,H

el erase line ESC [Ps K
o erase to end of line Xv, Xh, H, V
1 erase from start of line Xv, Xh, H, V
2 erase all of line Xv, Xh, H, V

5-10 X-Windows

Name Function Datastream Support

ech erase character ESC [Pn X XV,Xh,H

gsm graphic size modify ESC [Pn; Pn Sp B H

hts horizontal tab stop ESC H Xv, Xh, H, V

hvp horizontal and vertical position ESC [PI; Pc f Xv, Xh, H, V

ich insert character ESC [Pn @ Xv, Xh, H

il insert line ESC [Pn L XV,Xh,H

ind index ESC D Xv,Xh,H,V

Is2 lock shift G2 ESC n Xv

Is3 lock shift G3 ESC 0 Xv

nel next line ESC E Xv, Xh, H, V

ksi keyboard status information ESC [Ps p H

pfu PF key report ESC [Pn q Xh,H

rcp restore cursor position ESC [u XV,Xh,H

rI reverse index ESCM XV,Xh,H,V

rIS reset to initial state ESC c Xv, Xh, H, V

rm reset mode, ANSI specified ESC [Ps; ... ;Ps 1
modes: SEE set mode (below)

reset mode, other private modes ESC [? Ps; ... ;Ps 1
and XTERM private modes:
SEE set mode (below)

restore mode, other private ESC [? Ps; ... ;Ps r
modes and XTERM private
modes: SEE set mode (below)

save mode, other private modes ESC [? Ps; ... ;Ps s
and XTERM private modes:
SEE set mode (below)

scp save cursor postion ESC [s Xv, Xh, H

X-Windows Technical Reference 5-11

Name Function Datastream Support

scs select character set

United Kingdom Set ESC (A (GO) Xv, V
ESC)A (G1) Xv, V
ESC * A (G2) Xv, V
ESC + A (G3) Xv, V

ASCII Set (USASCII) ESC (B (GO) Xv, V
ESC) B (G1) Xv, V
ESC * B (G2) Xv, V
ESC + B (G3) Xv, V

special graphics ESC (0 (GO) Xv, V
ESC) 0 (G1) Xv, V
ESC * 0 (G2) Xv, V
ESC + 0 (G3) Xv, V

sd scroll down ESC [Pn T H

sl scroll left ESC [Pn Sp @ H

sr scroll right ESC [Pn Sp A H

ss2 single shift G2 ESCN Xv

ss3 single shift G3 ESC 0 Xv

su scroll up ESC [Pn S Xv, Xh, H

sgr set graphic rendition ESC [Ps m
o normal Xv,Xh,H, V
1 bold Xv, Xh, H, V
4 underscore Xv, Xh, H, V
5 blink (appears as bold) Xv, Xh,H, V
7 reverse Xv,Xh,H,V
8 invisible Xh,H
10 .. 17 fonts Xh,H
30 .. 37 foreground colors Xh,H
40 . .47 background colors Xh,H
90 .. 97 foreground colors Xh,H

100 .. 107 background colors Xh,H

5-12 X-Windows

Name Function Datastream Support

sgOa set GO character set ESC (f Xh,H

sgOb set GO character set-ALT ESC, f H

sgla set G 1 character set ESC) f Xh,H

sglb set Gl character set-ALT, ESC - f H
wheref:= {:;<=>?@}

sm set mode

ANSI specified modes ESC [Ps; ... ;Ps h
4 IRM insert mode Xv,Xh,H

12 SRM send/rec mode H
18 TSM tab stop mode H
20 LNM linefeed/newline Xv, Xh, H, V

Other private modes ESC [? Ps; ... ;Ps h
1 normal/application cursor Xv, V
3 80/132 columns XV,Xh, V
4 smooth/jump scroll XV,Xh, V
5 reverse/normal video Xv, Xh, V
6 origin/normal XV,Xh, V
7 on/off autowrap Xv, Xh, H, V
8 on/off autorept Xv,Xh, V
21 CNM CR-NL H

XTERM private modes
40 132/80 column mode XV,Xh
41 curses(5) fix XV,Xh
42 hide/show scrollbar XV,Xh
43 on/off save scroll text XV,Xh
44 on/off margin bell XV,Xh
45 on/off reverse wraparound XV,Xh
46 start/stop logging XV,Xh
47 alternate/normal screen Xv, Xh

buffer
48 reverse/normal status line XV,Xh
49 page/normal scroll mode XV,Xh

X-Windows Technical Reference 5-13

Name Function Datastream Support

tbc tabulation clear ESC [Ps g (default
o clear horizontal tab stop at Ps = 0) Xv, Xh, H, V

active position
1 vertical tab at line indicated H

by cursor
2 horizontal tabs on line H
3 all horizontal tabs XV,Xh,H,V
4 all vertical tabs H

VTD virtual terminal data ESC [x XV,Xh,H

VTL virtual terminal device input ESC [y Xh,H

VTR vt raw keyboard input ESC [w Xh,H

vts vertical tab stop ESC I H

xes erase status line ESC [? E XV,Xh

xrs return from status line ESC [? F Xv, Xh

xhs hide status line ESC [? H XV,Xh

xss show status line ESC [? S XV,Xh

xgs go to column of status line ESC [? Ps T Xv, Xh

xst set text parameters ESC] Ps ; Pt \007 XV,Xh
o change window name and XV,Xh

title to Pt
46 change log file to Pt XV,Xh

5-14 X-Windows

X-Windows Protocol

You can build an X-Windows protocol on top of any reliable byte stream. It uses a simple
block protocol on top of the stream layer. Most requests are 24-byte blocks; some carry
additional data. Requests do not have a corresponding reply unless actual data is expected
in return. Error responses are generally not caught by a failing request but by a later
request that expects a reply.

Ori each system, displays are numbered from zero.

For TCP connections, display number N is associated with port 5800 + N (hex Ox58) and
with port 5900 + N. The X Server receives and accepts new connections on these ports.
The X Server treats connections made on the 58xx port as connections with hosts
transmitting data in little indian order (low order byte first). It treats connections made
on the 59xx port as connections with hosts transmitting data in big indian order (high
order byte first). For connections with opposite-order machines, the X Server swaps bytes
for 16-bit and 32-bit quantities in requests and replies, with the exception of host addresses,
which should be transmitted in standard network order. Clients do not need to swap bytes,
and hosts with the same byte ordering do not need to swap bytes.

The following is a list of some of the C definitions used:

typedef long Window;
typedef long Font;
typedef long Bitmap;
typedef long Pixmap;
typedef long Cursor;
typedef long Locator;

For the convenience of certain programming languages, the top three bits of Window,
Font, Bitmap, Pixmap, and Cursor values are zero.

A Bitmap is a single plane (bit) rectangle. A Pixmap is an N-plane (pixel) rectangle, where
N is the number of planes provided by the particular display. In this protocol, N ranges
from 1 to 16. Cursors are used as mouse pointers; a cursor is an arbitrary two-color shape
with an arbitrary point. A Locator is an absolute point on the display, represented as
< x,y > with the X-coordinate in the high 16 bits and the Y-coordinate in the low 16 bits.

A Bitmap is represented by «width + 15) / 16) * height * 2 bytes of data. The bits are in
scanline order, with each scanline padded if necessary to a multiple of 16 bits. The pad
bits are of arbitrary value. Within a scanline, the bits are represented left to right, stored
in 16-bit words, but the bits are reversed within a given 16-bit word; the leftmost bit of the
scanline is the least significant bit of the word.

A Pixmap can be represented in either XY-format or Z-format. In XY-format, each plane is
represented as a Bitmap, and the planes appear from most to least significant bit order.
The total number of bytes is thus «width + 15) / 16) * height * 2 * depth. In Z-format, the
pixels are in scanline order, left to right within a scanline. For displays with 2 to 8 planes,
each pixel is represented by a single byte; the total number of bytes is width * height. For

X-Windows Technical Reference 5-15

displays with 9 to 16 planes, each pixel is represented by a 16-bit word; the total number of
bytes is 2 * width * height. Z-format cannot be used on monochrome displays.

Pixel values 0 and 1 are always defined on every display. They are primarily intended for
use in monochrome applications. On monochrome displays, pixel value 0 is black and pixel
value 1 is white. On color displays, you can redefine the colors.

Display function codes used in all output requests, and their affect on the destination as a
function of the source and the destination (NOT binds tightest) are:

GXclear OxO 0
GXand Ox1 src AND dst
GXandReverse Ox2 src AND NOT dst
GXcopy Ox3 src
GXandInverted Ox4 NOT src AND dst
GXnoop Ox5 dst
GXxor Ox6 src XOR dst
GXor Ox7 src OR dst
GXnor Ox8 NOT src AND NOT dst
GXequiv Ox9 NOT src XOR dst
GXinvert Oxa NOT dst
GXorReverse Oxb src OR NOT dst
GXcopyInverted Oxc NOT src
GXorInverted Oxd NOT src OR dst
GXnand Oxe NOT src OR NOT dst
GXset Oxf 1

Given a source and destination pixel, a display function is computed bitwise on
corresponding bits of the pixels. That is, a Boolean operation is performed on each bit
plane of the display. It uses a plane mask to restrict output operations to a subset of
planes; the mask contains a one bit for each affected pixel bit (plane).

The following is an example of a C definition of a request:

typedef struct --XReq {
unsigned char code;
unsigned char func;
unsigned short mask;
Window window Id;
union {

long 1[4];
short s[8];
unsigned short u [8];
char b[16];

} param;
} XReq;

5-16 X-Windows

Note: Requests carrying more than 128K-bytes of additional data may cause some of the
server implementations to close the client's connection.

Input events (keyboard, mouse button, mouse motion, window change) are generated
asynchronously by X and are reported on the sam8 network connection. Clients must
therefore expect any number of input events between any two replies to requests. Data
coming from X is bundled into Data coming from X is bundled into 24-byte blocks, with a
code indicating the type of data. The following is the C definition of this structure:

typedef struct ~Rep {
long code;
union {

long 1[5];
short s[10];
unsigned short u [10];
char b[20];

} param;
} XRep;

The possible XRep codes are:

Normal reply X.-Reply
X-.Error
else

o
-1 Error

Asynchronous input
event

The contents of event structures are discussed later. The contents of X-Reply structures
vary with each request, and are documented for each such request. The following is the
contents of an X_Error structure:

code
param.l[O]
param.b[4]
param.b[5]
param.b[6]
param.l[2]

X-.Error
number of failing request
error code
original request code
original request function
original request window ID

Requests are counted per network connection, starting from one. The possible error codes
are:

BadRequest
BadValue

1
2

bad request code
int parameter out of
range

X-Windows Technical Reference 5-17

BadWindow 3 parameter not a Window
BadPixmap 4 parameter not a Pixmap
BadBitmap 5 parameter not a Bitmap
BadCursor 6 parameter not a Cursor
BadFont 7 parameter not a Font
BadMatch 8 parameter mismatch
BadTile 9 Pixmap shape invalid for

tiling
BadGrab 10 mouse/button already

grabbed
BadAccess 11 access control violation
BadAlloc 12 insufficient resources
BadColor 13 no such color

Not all displays support all variations of all output requests. Output requests may be
transformed arbitrarily (including being ignored), without errors being generated.

Some displays have very limited memory for storage of off-screen resources such as
bitmaps, pixmaps, and fonts.

All requests and replies are padded as necessary to be a multiple of four bytes long. The
pad bytes are of arbitrary value.

5-18 X-Windows

X Server Protocol Requests

The protocol requests are listed in order by code.

X_Create Window

code 1
func border width
window Id parent Window
param.s[O] inside height (not including borders) (> 0)
param.s[1] inside width (not including borders) (> 0)
param.s[2] outer left coordinate (start of border)
param.s[3] outer top coordinate (start of border)
param.l[2] border tile Pixmap or 0
param.l[3] background tile Pixmap or 0

Creates an unmapped (not displayed) opaque window. Coordinates are relative to the
inside of the parent. A border pixmap need not be given if the border width is zero. If no
background pixmap is given, the parent's background pixmap is used. The tilemode of the
new window is TileModeAbsolute. The clipmode of the new window is ClipModeClipped.
The window does not have a defined cursor.

The parent window must be an opaque window.

A window is wholly contained within its parent; that is, any parts of the window that
extend outside the parent window are not displayed.

The background and border pixmaps may be freed immediately if no further explicit
references to them are to be made.

The reply:

param.l[O] Window

Errors: BadWindow, BadValue, BadPixmap, BadTile, BadMatch

X_CreateTransparency

code
windowId
param.s[O]
param.s[l]
param.s[2]
param.s[3]

2
parent Window
inside height (> 0)
inside width (> 0)
outer left coordinate
outer top coordinate

X-Windows Technical Reference 5-19

Creates an unmapped (not displayed) transparent window. Coordinates are relative to the
inside of the parent. The tilemode of the new window is TileModeRelative. The clipmode
of the new window is ClipModeClipped. The window does not have a defined cursor.

The reply:

param.l[O] Window

Errors: BadWindow, BadValue

Xj)estroyWindow

code
windowId

3
Window

Unmaps and destroys the window and all of its subwindows. The windows should never
again be referenced.

Windows are automatically destroyed when the creating process closes its network
connection.

If the window has a mapped icon window, that icon window is unmapped and receives an
UnmapWindowevent. If the window is a mapped icon window, its corresponding regular
window is mapped.

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

X_DestroySubwindows

code
windowId

4
Window

Destroy all subwindows of this window. The windows should never again be referenced.

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

5-20 X-Windows

code
windowId

5
Window

Maps and raises the window and displays the window and all of its subwindows which have
had map requests. The previous contents of all opaque windows are lost; mapping
transparent windows does not affect the screen.

Mapping a window when one of its ancestors is unmapped does not cause the window to be
displayed.

Has no effect if the window is already mapped.

Generates an ExposeWindow event on each newly displayed opaque window.

Errors: BadWindow

X_MapSubwindows

code
windowId

6
Window

Maps all subwindows of the given window in an unspecified order.

Generates an ExposeWindow event on each newly displayed opaque window.

Errors: BadWindow

x_v nmap Window

code
windowId

7
Window

Unmaps the window and all of its subwindows. Unmapping transparent windows does not
affect the screen.

Generates an UnMapWindow event on the window if it is mapped; generates exposure
events on formerly obscured opaque windows.

Errors: BadWindow

X-Windows Technical Reference 5-21

X_VnmapSubwindows

code
windowId

8
Window

Unmaps all subwindows of the given window.

Generates an UnMapWindow event on each mapped subwindow; generates exposure
events on formerly obscured opaque windows.

x_v nmapTransparent

code
windowId

9
Window

Unmaps the window and all of its subwindows, but does not affect the screen, even if the
window is opaque, and does not generate any exposure (or unmap) events.

Errors: BadWindow

X_Raise Window

code
windowId

10
Window

Raise this window above all sibling windows, so that no sibling obscures it.

Raising a transparent window does not affect the screen. Transparent windows never
obscure other windows for the purposes of output, but do obscure for the purposes of
cursor and input control.

Window hierarchies never interleave. If window A is obscured by window B, then window
A obscures only ancestors of B that are also ancestors of A.

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

5-22 X-Windows

X_LowerWindow

code
windowId

11
Window

Lower this window below all sibling windows, so that it does not obscure any siblings.

Raising a transparent window does not affect the screen.

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

code
windowId

12
Window

Raise the lowest mapped child of this window that is partially obscured by another child.
Repeated executions lead to consecutive raising.

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

code
fune
windowId
param.s[O]
param.s[1]

13
o
Window
outer left coordinate (start of border)
outer top coordinate (start of border)

Moves and raises the window, without changing its size. Coordinates are relative to the
inside of the parent.

The contents of an opaque window are lost if its tilemode is relative or if the window is
obscured by non-children. Moving a transparent window does not affect the screen.

Generates an ExposeWindow event on the (opaque) window if its contents are lost;
generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

X-Windows Technical Reference 5-23

code
func
windowId
param.s[O]
param.s[1]

14
o
Window
inside height (not including borders) (> 0)
inside width (not including borders) (> 0)

Changes the size of the window and raises it, without changing its upper left hand
coordinate. The contents of an opaque window are lost; changing a transparent window
does not affect the screen.

Generates an ExposeWindow event on the (opaque) window; generates exposure events on
formerly obscured opaque windows.

Errors: BadWindow, BadValue

X_Configure Window

code
func
windowId
param.s[O]
param.s[l]
param.s[2]
param.s[3]

15
o
Window
inside height (not including borders) (> 0)
inside width (not including borders) (> 0)
outer left coordinate (start of border)
outer top coordinate (start of border)

Changes the size and placement of the window and raises it. The contents of an opaque
window are lost; configuring a transparent window does not affect the screen.

Generates an ExposeWindow event on the (opaque) window; generates exposure events on
formerly obscured opaque windows.

Errors: BadWindow, BadValue

X_ChangeBackground

code
windowId
param.l[O]

16
Window
background tile Pixmap or 0

Change the background tile of a window. If no background pixmap is specified, the
background pixmap of the window's parent is used (on the root window the default
background is restored).

Does not change the current contents of the window.

5-24 X-Windows

Can only be performed on an opaque window.

The pixmap can be freed immediately if no further explicit references to it are to be made.

Errors: BadWindow, BadMatch, BadPixmap, BadTile

code
windowld
param.I[O]

17
Window
border tile Pixmap

Change the border tile of a window and repaint the border.

Can only be performed on an opaque window that has a border.

The pixmap can be freed immediately if no further explicit references to it are to be made.

Errors: BadWindow, BadMatch, BadPixmap, BadTile

X_TileMode

code
func
windowld

18
0: TileModeAbsolute, 1: TileModeRelative
Window

Sets the tilemode of the window. With TileModeAbsolute (the normal case for opaque
windows), tiles are laid out with the upper left corner of the window as an effective origin.
With TileModeRelative (the normal case for transparent windows), tiles are laid out with
the upper left corner of the closest parent window with an absolute tilemode as an effective
origin. The tilemode affects painting of the background for exposures and for X_Clear, as
well as the X_TileFill and X.J)rawFilled requests.

Does not change the current contents of the window.

Errors: BadWindow, BadValue

X-Windows Technical Reference 5-25

code
func
windowld

19
0: ClipModeClipped, 1: ClipModeDrawThru
Window

Sets the clipmode of the window. With ClipModeClipped (the normal case), future output
to the window is obscured by subwindows. With ClipModeDrawThru, future output to
the window ignores subwindows and draws into them. In draw-thru mode, the most useful
display functions are GXxor and GXinvert, so that displaying again erases what was
displayed. Draw-thru mode is useful for drawing window outlines when moving or resizing
windows.

The root window starts with ClipModeDrawThru.

Errors: BadWindow, BadValue

X_QueryWindow

code
windowld

20
Window

Get facts about the window.

The reply:

param.s[O]
param.s[l]
param.s[2]
param.s[3]
param.s[4]
param.b[10]

param.b[11]
param.I[3]
param.I[4]

inside height (not including borders)
inside width (not including borders)
outer left (start of border)
outer right (start of border)
border width
0: IsUnmapped, 1: IsMapped, 2: IsInvisible (mapped but some ancestor
is unmapped)
0: IsTransparent, 1: IsOpaque, 2: IsIcon
icon Window or opaque Window or 0
event mask (X-Belectlnput)

If windowld is a transparent window, pilram.b[11] is IsTransparent and param.l[3] is O.
If windowld is a normal opaque window, param.b[11] is IsOpaque and param.l[3]
contains the window's icon window, if one has been defined with an X_SetlconWindow
request. If windowld is an icon window, param.b[11] is IsIcon and param.I[3] contains
the icon's corresponding regular window.

Errors: BadWindow

5-26 X-Windows

21
Window

code
windowld
param.s[O] length of name in characters (> = 0)

Assigns a name to a window. This request must be followed by the characters of the
window name, followed by 0 to 3 bytes to make the length a multiple of four.

The name is typically used by a window manager (to create named icons, for example).

Errors: BadWindow, BadValue

code
windowld

22
Window

Returns the name of a window. The reply:

param.s[O] number of characters

The reply is followed by the specified number of characters of name, followed by 0 to 3 pad
bytes to make the length a multiple of four.

Errors: BadWindow

X_SetIcon Window

code
windowld
param.l[O]

23
Window
icon Window or 0

Sets or clears the icon window for a window. The icon window must be a sibling of the
specified window, both windows must be opaque, and neither can already be an icon
window.

An icon window should be used when the client wants to control the contents of the icon
form. A window manager should create an icon window automatically if the client does
not provide one.

Errors: BadWindow, BadMatch

X-Windows Technical Reference 5-27

X_SetResizeHint

code
windowId
param.s[O]
param.s[l]
param.s[2]
param.s[3]

24
Window
base height (> = 0)
height increment (> 0)
base width (> = 0)
width increment (> 0)

Defines the shape of a window. The inside height of the window should be the base height
plus some multiple of the height increment, and the inside width of the window should be
the base width plus some multiple of the width increment. These parameters are hints, in
that X_Change Window and X_Configure Window do not check conformance.

A newly created window has a base height and width of zero, and height and width
increments of one.

The base height and width must be non-negative, and the height and width increments
must be positive.

The resize hints are typically used by a window manager.

Errors: BadWindow, BadValue

X_GetResizeHint

code
windowId

25
Window

Returns the resize parameters.

The reply:

param.s[O]
param.s[l]
param.s[2]
param.s[3]

minim urn height
height increment
minimum width
width increment

Errors: BadWindow

5-28 X-Windows

X~efineCursor

code
windowId
param.l[O]

26
Window
Cursor or 0

If a cursor is specified, it is used when the mouse is in the window. If no cursor is
specified, the parent's cursor is used when the mouse is in the window.

On the root window, with no cursor specified, the default cursor is restored.

Errors: BadWindow, BadCursor

X_SelectInput

code
windowId
param.l[O]

27
Window
event mask

Defines which input events the window is interested in. If a window is not interested in an
event, it usually propagates up to the closest ancestor that is interested. The bits of the
mask are:

KeyPressed
KeyReleased
ButtonPressed
ButtonReleased
EnterWindow
LeaveWindow
MouseMoved
ExposeWindow
ExposeRegion
ExposeCopy
RightDownMotion
MiddleDownMotion
LeftDownMotion
UnmapWindow
FocusChange

OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020
Ox0040
Ox0080
OxOlOO
Ox0200
Ox0400
Ox0800
OxlOOO
Ox2000
Ox4000

keyboard key pressed
keyboard key released
mouse button pressed
mouse button released
mouse entering window
mouse leaving window
mouse moves within window
full window changed and/or exposed
region of window exposed
region exposed by X_CopyArea
mouse moves with right button down
mouse moves with middle button down
mouse moves with left button down
window is unmapped
keyboard focus changed

Selecting ExposeRegion also selects Expose Window.

Details of each kind of event are given later.

Overrides all previous selections on the same window by all clients.

X-Windows Technical Reference 5-29

If a window has both ButtonPressed and ButtonReleased selected, then a
ButtonPressed event in that window automatically grabs the mouse until all buttons are
released, with events sent to windows as described for X_GrabMouse.

Input selection on the root window should be reserved for a window manager.

Errors: BadWindow

code
windowId
param.I[O]
param.l[l]

28
Window
Cursor
event mask

All future mouse events go only to windows for which the grabbing client has issued
X_SelectInput commands. (The event mask temporarily overrides any X_Selectlnput on
the window.) If the client has not issued an X_Selectlnput command on the window
where the event would normally be sent, then the event is sent to the specified window,
provided the event is specified in the mask and is not EnterWindow or LeaveWindow.
Only the bits ButtonPressed, ButtonReleased, EnterWindow, LeaveWindow,
MouseMoved, LeftDownMotion, MiddleDownMotion, and RightDownMotion are
~seful in the mask. The specified cursor is used regardless of what window the mouse is
In.

This request fails if someone else has already grabbed the mouse and has not released it;
the request overrides any other grab in progress for this client.

If the request is successful there is a reply, but it contains no information.

Errors: BadWindow, BadCursor, BadGrab

code
mask
windowId
param.l[O]
param.l[1]

29
button mask
Window
Cursor
event mask

The button mask must have exactly one of LeftMask, MiddleMask, or RightMask set,
and may have some combination of ControlMask, MetaMask, ShiftMask, and
ShiftLockMask set. If the specified button is pressed when exactly the specified keys are
down, this and all future mouse events are grabbed until all buttons are released, with
events sent to windows as described for X_GrabMouse. During the grab, the specified
cursor is used regardless of what window the mouse is in.

5-30 X-Windows

This request fails if some other client has already grabbed the same button/key
combination and has not released it.

If the request is successful there is a reply, but it contains no information.

Errors: BadWindow, BadCursor, BadValue, BadGrab

code
windowId

30
Window

Returns the current mouse coordinates and the state of various keys and buttons.

The reply:

param.l[O]
param.s[2]
param.s[3]
param.s[4]

Window
x coordinate
y coordinate
key and button state

The coordinates of the mouse relative to window are given, even if the mouse is outside the
window. If the mouse is also in a mapped child window, the child is returned, otherwise
the return window is O.

The high bits of the state parameter are the same as for the event detail in keyboard and
mouse events, and are defined further below in the discussion of input events.

Errors: BadWindow

X_InterpretLocator

code
windowId
param.l[O]

31
Window
Locator

Interprets the coordinate with respect to the window.

The reply:

param.l[O]
param.s[2]
param.s[3]

Window
x coordinate
y coordinate

The coordinates of the locator relative to the window are given, even if the locator is
outside the window. If the locator is also in a mapped child window, the child is returned,
otherwise the return window is O.

x-Windows Technical Reference 5-31

Errors: BadWindow

X_ W arpMouse

code 32
windowId destination Window
param.s[O] destination x coordinate
param.s[1] destination y coordinate
param.l[l] source Window
param.s[4] source height
param.s[5] source width
param.s[6] source left coordinate
param.s[7] source top coordinate

Move the mouse to the destination position relative to the origin of the destination
window, but only if the mouse is currently in a visible portion of the specified region of the
source window.

If the source height is zero, the current height of the source window minus the source top
coordinate is used. If the source width is zero, the current width of the source window
minus the source left coordinate is used.

Errors: BadWindow

X...;FocusKeyboard

code
func
windowId

33
o
Window

Generates exposure events on formerly obscured opaque windows.

Errors: BadWindow

code
windowId

35
Window

Returns the parent and child windows of the specified window.

The reply:

param.l[O] parent Window (or 0 if none)

5-32 X-Windows

param.l[l] number of child windows

The reply is followed by the specified number of child Window IDs, each Window ID being
4 bytes long. The children are listed in current stacking order, from bottom-most (first) to
top-most (last).

Errors: BadWindow

code
windowId

40
Window

Clear the window and repaint it with the background. The tiling origin is controlled by
the tilemode.

A transparent window inherits its parent's background for this operation.

Errors: BadWindow

code
fune
mask
windowId
param.s[O]
param.s[l]
param.s[2]
param.s[3]
param.u[4]
param.l[3]

41
display function (0-15)
plane mask
Window
destination height
destination width
destination left coord
destination top coord
source pixel
mask Bitmap or 0

Performs a function in a region of the window. The source pixel defines the value of the
source bit for each plane, and the plane mask defines which destination bit planes are
affected. The display function is computed on each bit plane. If no mask bitmap is
specified, the entire destination is affected. If a mask bitmap is specified, it defines the
shape of the source and which pixels of the destination are affected.

Errors: BadWindow, BadValue, BadBitmap

X-Windows Technical Reference 5-33

X_TileFill

code
func
mask
windowId
param.s[O]
param.s[1]
param.s[2]
param.s[3]
param.l[2]
param.I[3]

42
display function (0-15)
plane mask
Window
destination height
destination width
destination left coord
destination top coord
tile Pixmap
mask Bitmap or 0

Performs a function in a region of the window using a repeating pattern defined by the tile
pixmap. The tiling origin is controlled by the window's tilemode. The plane mask defines
which destination bit planes are affected. The display function is computed on each bit
plane. If no mask bitmap is specified, the entire destination is affected. If a mask bitmap
is specified, it defines which pixels of the destination are affected, and must be the same
height and width as the destination.

Errors: BadWindow, BadValue, BadPixmap, BadTile, BadBitmap, BadMatch

code
func
mask
windowId
param.s[O]
param.s[1]
param.s[2]
param.s[3]
param.I[2]
param.s[6]
param.s[7]

43
display function (0-15)
plane mask
Window
source height
source width
source left coord
source top coord
source Pixmap
destination left coord
destination top coord

Performs a function in a region of the window using a region of a pixmap. The source
height, width, and coordinates specify the region of the source pixmap to be used. The
plane mask defines which destination bit planes are affected. The display function is
computed on each bit plane.

Errors: BadWindow, BadValue, BadPixmap

5-34 X-Windows

code
func
mask
windowld
param.s[O]
param.s[l]
param.s[2]
param.s[3]
param.s[4]
param.l[3]

44
display function (0-15)
plane mask
Window
source height (> 0)
source width (> 0)
destination left coord
destination top coord
0: XYFormat, 1: ZFormat
mask Bitmap or 0

Performs a function in a region of the window using a pixmap. The plane mask defines
which destination bit planes are affected. The display function is computed on each bit
plane. If a mask bitmap is specified, it defines which pixels of the destination are affected,
and must be the same height and width as the source.

The request must be followed by the data bytes of the source pixmap in the specified
format, followed by 0 to 3 pad bytes to make the length a multiple of four.

Errors: BadWindow, BadValue, BadBitmap, BadMatch

X_BitmapBitsPut

code
func
mask
windowld
param.s[O]
param.s[1]
param.s[2]
param.s[3]
param.u[4]
param.u[5]
param.l[3]

45
display function (0-15)
plane mask
Window
source height (> 0)
source width (> 0)
destination left coord
destination top coord
foreground pixel
background pixel
mask Bitmap or 0

Performs a function in a region of the window using a pixmap defined by a bitmap and a
pair of source pixels. The foreground pixel defines the source for the one bits in the
bitmap, and the background pixel defines the source for the zero bits. The plane mask
defines which destination bit planes are affected. The display function is computed on
each bit plane. If a mask bitmap is specified, it defines which pixels of the destination are
affected, and must be the same height and width as the source.

The request must be followed by the data bytes of the source bitmap in bitmap format,
followed by 0 or 2 pad bytes to make the length a multiple of four.

X-Windows Technical Reference 5-35

Errors: BadWindow, BadValue, BadBitmap, BadMatch

code
func
mask
windowld
param.s[O]
param.s[1]
param.s[2]
param.s[3]
param.s[6]
param.s[7]

46
display function (0-15)
plane mask
Window
source height
source width
source left coord
source top coord
destination left coord
destination top coord

Copies one region of the window to another region in the same window. The plane mask
defines which destination bit planes are affected. The display function is computed on
each bit plane.

If parts of the source are obscured, the corresponding parts of the destination are filled
with the window's background. If ExposeCopy has been selected, ExposeRegion events
are generated for those parts of the destination, and then an ExposeCopy event is
generated. All of these events are together in the stream, with no intervening events.

Errors: BadWindow, BadValue

code 47
func display function (0-15)
mask plane mask
windowld Window
param.s[O] destination left coord
param.s[1] destination top coord
param.I[1] Font
param.u[4] foreground pixel
param.u[5] background pixel
param.s[6] number of characters (> = 0)
param.b[14] inter-character pad
param.b[15] space character pad

Draws text using the specified function. The coordinates are for the upper left of the first
character. The foreground pixel defines the source for the one bits in the font character
bitmaps, and the background pixel defines the source for the zero bits. The plane mask

5-36 X-Windows

defines which destination bit planes are affected. The display function is computed on
each bit plane. The inter-character pad specifies the number of pixels to skip after each
character before printing the next character. The space character pad specifies the
number of additional pixels to skip after each space character before printing the next
character. The skipped pixels are not considered part of the source or destination, and are
not altered.

The request must be followed by the specified number of characters, followed by 0 to 3 pad
bytes to make the length a multiple of four.

Errors: BadWindow, BadValue, BadFont

X_TextMask

code 48
func display function (0-15)
mask plane mask
window Id Window
param.s[O] destination left coord
param.s[1] destination top coord
param.l[l] Font
param.u[4] source pixel
param.s[6] number of characters (> = 0)
param.b[14] inter-character pad
param.b[15] space character pad

Like X_Text, but the source pixel defines the value of the source bit for each plane, and
the font character bitmaps are used as masks to define which pixels of the destination are
affected.

The request must be followed by the specified number of characters, followed by 0 to 3 pad
bytes to make the length a multiple of four.

Errors: BadWindow, BadValue, BadFont

code
func
mask
windowId
param.s[O]
param.s[1]
param.s[2]
param.s[3]

49
display function (0-15)
plane mask
Window
xl coord
y1 coord
x2 coord
y2 coord

X-Windows Technical Reference 5-37

param.u[4]
param.b[10]
param.b[11]

source pixel
brush height (> 0)
brush width (> 0)

This request is the same as a DrawSolidLine X~raw request with the two vertexes (xl, yl,
VertexDontDraw) and (x2, y2, VertexDrawLastPoint).

Errors: BadWindow, BadValue

code
func
mask
windowId
param.s[O]
param.u[1]
param.b[4]
param.b[5]
param.s[3]
param.u[4]
param.s[5]
param.s[6]
param.s[7]

50
display function (0-15)
plane mask
Window
number of vertexes (> = 0)
source pixel
brush height (> 0)
brush width (> 0)
0: DrawSolidLine, 1: DrawDashedLine, 2: DrawPatternedLine
alternate source pixel (for patterned line)
pattern string (for dashed or patterned line)
pattern length (for dashed or patterned line) (1-16)
pattern multiplier (for dashed or patterned line) (> 0)

Draws arbitrary polygons/curves using the specified function and brush rectangle. The
area covered should be that obtained by laying down the brush rectangle at every point
along the path, with the upper left corner following the path. Each pixel in that area may
be processed just once, or the brush may be repainted for each point along the path. The
plane mask defines which destination bit planes are affected. The display function is
computed on each bit plane. For a solid line, the source pixel defines the value of the
source bit for each plane. For a dashed or patterned line, the pattern string specifies up to
16 bits of pattern; the pattern length specifies the number of bits. The pattern multiplier
specifies the number of times each bit in the string should be repeated before moving to the
next bit. The bits are used least significant first, wrapping as needed. For a dashed line,
the destination is only updated when the pattern bit is 1. For a patterned line, the
alternate source pixel is used when the pattern bit is O.

The request must be followed by the specified number of vertexes, followed by 0 or 2 pad
bytes to make the length a multiple of four. The C definition of a vertex is:

typedef struct _Vertex {
short x, y;
unsigned short flags;

} Vertex;

The flags are as follows:

5-38 X-Windows

VertexRelative Ox0001 else absolute
VertexDontDraw Ox0002 else draw
VertexCurved Ox0004 else straight
VertexStartClosed Ox0008 else not
VertexEndClosed Ox0010 else not
VertexDrawLastPoint Ox0020 else don't

A relative vertex is expressed in terms of offsets from the previous vertex, an absolute
vertex has offsets from the origin of the window. The first vertex is never relative.
VertexDontDraw and VertexCurved control drawing from the previous vertex to the
current vertex. It can be useful to combine VertexDontDraw and VertexCurved to
define the shape of the displayed portion of the curve. VertexDontDraw can also be used
to combine multiple draws in one request. VertexStartClosed should be set in the first
vertex of a closed curve, VertexEndClosed in the last; the two should specify the same
point. In drawing from the previous vertex to the current vertex, the current vertex point
is not drawn unless VertexDrawLastPoint is set.

Errors: BadWindow, BadValue

code
func
mask
windowld
param.s[O]
param.u[l]
param.l[l]

51
display function (0-15)
plane mask
Window
number of vertexes (> = 0)
source pixel
tile Pixmap or 0

Draws arbitrary filled polygons/curves using the specified function tiling pixmap or source
pixel. If a tile is specified, the tiling origin is controlled by the window's tilemode. If no
tile is given, the source pixel is used instead. The plane mask defines which destination
planes are affected.

The request must be followed by the specified number of vertexes, followed by 0 or 2 pad
bytes to make the length a multiple of four.

The vertex list should only consist of one or more closed regions. A point is defined to be
inside a region if an infinite ray with the point as an origin crosses the path of the region
an odd number of times.

Errors: BadWindow, BadValue, BadPixmap, Bad Tile

X-Windows Technical Reference 5-39

code
windowId
param.s[O]
param.s[1]
param.s[2]
param.s[3]

52
Window
height (> 0)
width (> 0)
left coord
top coord

Creates a pixmap from the given portion of the window. The pixmap contains a direct
image of that portion of the screen, including any visible portions of subwindows or
overlapping windows.

The window must be mapped, and it must be the case that, if there were no sub windows or
overlapping windows, the specified portion of the window would be fully visible on the
screen.

The reply:

param.I[O] Pixmap

Errors: BadWindow, BadValue, BadAlloc

code
func
windowId
param.s[O]
param.s[1]
param.s[2]
param.s[3]

53
0: XYFormat, 1: ZFormat
Window
height (> 0)
width (> 0)
left coord
top coord

Returns the contents of the given portion of the window in the given pixmap format. The
pixmap contains a direct image of that portion of the screen, including any visible portions
of sub windows or overlapping windows.

The window must be mapped, and it must be the case that, if there were no subwindows or
overlapping windows, the specified portion of the window would be fully visible on the
screen.

The reply:

param.l[O] number of bytes

The reply is followed by the specified number of bytes of pixmap data, followed by 0 to 3
pad bytes to make the length a multiple of four.

Errors: BadWindow, BadValue

5-40 X-Windows

X_StippleFill

code
func
mask
windowld
param.s[O]
param.s[l]
param.s[2]
param.s[3]
param.u[4]
param.l[3]

54
display function (0-15)
plane mask
Window
destination height
destination width
destination left coord
destination top coord
source pixel
stipple Bitmap

Performs a function a a region of the window using a repeating pattern defined by the
stipple bitmap. The tiling origin is controlled by the window's tilemode. The plane mask
defines which destination bit planes are affected. The display function is computed on
each bit plane. The destination pixels written are those corresponding to the 1 values in
the pattern generated from the stipple bitmap.

Errors: BadWindow, BadValue, BadTile, BadBitmap

code 80

Returns the root window and device information.

The reply:

param.l[O] root Window
param.s[2] protocol version number (10)
param.s[3] device identifier
param.s[4] number' of bit planes
param.u[5] number of usable color map cells

IBM device identifiers range from 200 to 299. IBM device identifiers are constructed as
follows:

200 + display_device_identifier + keyboarLdevice_identifier

The folowing IBM display and keyboard device identifiers are currently defined:

X-Windows Technical Reference 5-41

XDEV --IBM--BASE 200
XDEV --IBM_6153 10
XDEV --IBM_6154 20
XDEV --IBM_6155 30
XDEV --IBM~EGA 40
XDEV --IBMj{101 0
XDEV --IBM_K102 1

XDEV --IBMj{106 2

base for IBM devices
advanced mono display
advanced color display
extended mono display
extended color display
US keyboard (101 keys)
European keyboard (102
keys)
Japanese keyboard (106
keys)

See /usr/include/X/Xproto.h for a list of the currently known devices.

X_U ngrabMouse

code 81

Releases hold of the mouse if it was grabbed with an X_GrabMouse.

X_U ngrabButton

code
mask

82
button mask

Releases hold of the button/key combination if it was grabbed. The button mask must have
exactly one of LeftMask, MiddleMask, or RightMask set, and may have some
combination of ControlMask, MetaMask, ShiftMask, and ShiftLockMask set.

Errors: BadValue

code
param.u[O]
param.u[1]
param.u[2]

83
red value
green value
blue value

Determines the closest color provided by the hardware, and returns a pixel value
representing that color. The corresponding color map cell is read-only.

Read-only color map cells are shared among clients, so this request may simply reference
count an existing cell.

5-42 X~ Windows

The reply:

param.u[O] pixel

Errors: BadAlloc

X_GetColorCells

code 84
func
param.s[O]
param.s[I]

1 if planes must be contiguous, 0 otherwise
number of colors (> = 0)
number of planes (> = 0)

Allocates n*2P color map cells, where n is the number of colors and P is the number of
planes specified.

The reply:

param.u[O] plane mask

The bits in the plane mask are contiguous if requested. The reply is followed by 2 * N
bytes of data, where N is the number of colors specified, followed by 0 or 2 pad bytes to
make the length a multiple of four. Each I6-bit word represents the pixel value of one of
the color cells. Additional pixel values are obtained by oring in all possible combinations
of one bits from the plane mask. The initial colors for all of these cells is undefined.

If zero colors are requested, then the request allocates all cells with a pixel value having at
least one non-zero bit in the plane mask. At most one such request succeeds.

Errors: BadValue, BadAlloc

code
mask
param.s[O]

85
plane mask
number of colors (> = 0)

Frees several colors or color map cells. Further use of the given pixel values results in
undefined colors.

The request must be followed by the specified number of I6-bit pixel values, followed by 0
or 2 pad bytes to make the length a multiple of four. Additional pixel values are obtained
by oring in all possible combinations of one bits from the plane mask.

Errors: BadValue, BadAccess

X-Windows Technical Reference 5-43

X_StoreColors

code
param.s[O]

86
number of colors (> = 0)

Change the colors of several pixels to the closest available hardware colors.

The request must be followed by the specified number of color definitions. The C definition
IS:

typedef struct _Color Def {
unsigned short pixel;
unsigned short red, green, blue;

} ColorDef;

Errors: BadValue, BadAccess

X_QueryColor

code 87
param.u[O] pixel

Returns the color values for a pixel.

The reply:

param.u[O]
param.u[1]
param.u[2]

Errors: BadValue

code
param.s[O]

red value
green value
blue value

88
length of name in chars (> 0)

Loads a font. This request must be followed by the characters of the font name, followed
by 0 to 3 pad bytes to make the length a multiple of four. Case is significant.

Fonts are shared among clients, so this request may simply reference count an existing
font.

The reply:

param.I[O] Font

Errors: BadValue, BadFont, BadAlloc

5-44 X-Windows

code 89
param.l[O] Font

Indicates that the font is no longer needed. The font should never again be referenced.

Errors: BadFont

code 90
param.l[O] Font

Returns information about a font.

The reply:

height
average width
first character
last character
baseline

param.s[O]
param.s[1]
param.s[2]
param.s[3]
param.s[4]
param.s[5] 1 if fixed width, 0 if variable width

The baseline specifies where in pixels from the bottom of the font the characters without
descenders begin.

A font is fixed width if all characters in the given range are the same width.

Errors: BadFont

code
param.l[O]
param.s[2]

91
Font
number of characters (> = 0)

Returns the width in pixels of each character. The request must be followed by the
specified number of characters, followed by 0 to 3 pad bytes to make the length a multiple
of four.

The reply:

param.l[O] number of bytes

X-Windows Technical Reference 5-45

The reply is followed by the specified number of bytes of data, followed by 0 or 2 pad bytes
to make the length a multiple of four. Each I6-bit word of data contains the width of a
character.

Errors: BadFont, BadValue

X_StringWidth

code
param.l[O]
param.s[2]

92
Font
number of characters (> = 0)

Returns the width in pixels of a string in a font.

The request must be followed by the specified number of characters, followed by 0 to 3 pad
bytes to make the length a multiple of four.

The reply:

param.s[O] width in pixels

Errors: BadFont, BadValue

code 93
param.I[O] Font

Returns the widths in pixels of all characters in a font.

The reply:

param.I[O] number of bytes

The reply is followed by the specified number of bytes of data, followed by 0 or 2 pad bytes
to make the length a multiple of four. Each I6-bit word of data contains the width of a
character. The widths are for the range of characters given by X_QueryFont.

Errors: BadFont

5-46 X-Windows

X_StoreBitmap

code
param.s[O]
param.s[1]

Creates a bitmap.

94
height (> 0)
width (> 0)

The request must be followed by the correct number of bytes of data in bitmap format,
followed by 0 or 2 pad bytes to make the length a multiple of four.

The reply:

param.l[O] Bitmap

Errors: BadValue, BadAlloc

code
param.l[O]

95
Bitmap

Frees the storage consumed by the bitmap. The bitmap should never be referenced again.

Errors: BadBitmap

code
param.l[O]
param.s[2]

96
Font
character

Copies a character bitmap from a font.

The font can be freed immediately if no further explicit references to it are to be made.

The reply:

param.l[O] Bitmap

Errors: BadFont, BadValue, BadAlloc

X-Windows Technical Reference 5-47

X_StorePixmap

code
func
param.s[O]
param.s[l]

Creates a pixmap.

97
0: XYFormat, 1: ZFormat
height (> 0)
width (> 0)

The request must be followed by the correct number of bytes of data the specified format,
followed by 0 to 3 pad bytes to make the length a multiple of four.

The reply:

param.l[O] Pixmap

Errors: BadValue, BadAlloc

code
param.l[O]

98
Pixmap

Frees the storage consumed by the pixmap. The pixmap should never be referenced again.

Errors: BadPixmap

code
param.l[O]
param.u[2]
param.u[3]

99
Bitmap or 0
foreground pixel
background pixel

Creates a pixmap from a bitmap. The foreground pixel is used for the one bits in the
bitmap, and the background pixel is used for the zero bits. If no bitmap is given, a bitmap
of all one bits suitable for use as a tiling pixmap is used.

The bitmap can be freed immediately if no further explicit references to it are to be made.

The reply:

param.l[O] Pixmap

Errors: BadBitmap, BadValue, BadAlloc

5-48 X-Windows

X_QueryShape

code
func
param.s[O]
param.s[l]

100
0: CursorShape, 1: TileShape, 2: BrushShape
height (> 0)
width (> 0)

Given a rectangular shape, returns the closest shape actually supported by the display for
a given purpose. For a cursor shape, returns a Bitmap shape acceptable for
X.-StoreCursor. For a tile shape, returns a Pixmap shape acceptable for tiling. For a
brush shape, returns a shape acceptable for X-Line and X~raw.

The reply:

param.s[O]
param.s[l]

Errors: BadValue

X_StoreCursor

code
func
param.l[O]
param.u[2]
param.u[3]
param.1[2]
param.s[6]
param.s[7]

height
width

101
display function (0-15)
cursor Bitmap
foreground pixel
background pixel
mask Bitmap or 0
x offset
yoffset

Defines a mouse cursor. The foreground pixel is used for the one bits in the cursor bitmap,
and the background pixel is used for the zero bits. The mask bitmap defines the shape of
the cursor; that is, the one bits in the mask define which cursor pixels are displayed. If no
mask is given, all pixels of the cursor are displayed. The mask bitmap, if present, must be
the same size as the cursor bitmap. The offsets define the point that actually corresponds
to the mouse position; this must be a point in the cursor bitmap.

The components of the cursor may be transformed arbitrarily to meet hardware limitations.

The bitmaps can be freed immediately if no further explicit references to them are to be
made.

The reply:

param.l[O] Cursor

Errors: BadValue, BadBitmap, BadMatch, BadAlloc

X-Windows Technical Reference 5-49

code
param.l[O]

102
Cursor

Frees the storage consumed by the cursor. The cursor should never be referenced again.

Errors: BadCursor

X_MouseControl

code
param.s[O]
param.s[I]

103
acceleration (> = 1)
threshold (> = 0)

Defines how the mouse moves. The acceleration is a multiplier for movement. For
example, specifying 3 means the cursor moves three times as fast as the mouse.
Acceleration only takes effect if the mouse moves more than threshold pixels at once, and
only applies to the amount beyond the threshold.

Errors: BadValue

X_FeepControl

code
func

104
volume (0-7)

Defines the base volume for XJeep requests. The volume is in the range 0 to 7, with 7
the loudest.

Errors: BadValue

code
param.s[O]

105
relative volume (-7 to 7)

Causes an audible bell. The volume is added to the base volume defined by the
XJeepControl request, the sum limited to the range 0 to 7.

Errors: BadValue

5-50 X-Windows

code
fune

106
0: LockUpDownMode, 1: LockToggleMode

Sets the mode of the Shift LOCK key on the keyboard. When the keyboard is in
LoekUpDownMode, KeyPressed and KeyReleased events are sent as for any other key,
and the ShiftLoekMask sent in events gives the current state of the key. In
LoekToggleMode, KeyPressed and KeyReleased events are never sent for the LOCK
key, and the state of the ShiftLoekMask sent in events is toggled on every press of the
LOCK key.

The key is initially in LoekToggleMode.

Errors: BadValue

code
fune

107
volume (0-8)

Turns keyboard key click off (volume 0), or turns it on and sets the volume, with 8 the
loudest.

Errors: BadValue

X--AutoRepeat

code
fune

108
o for off, 1 for on

Turns keyboard autorepeat on or off.

Errors: BadValue

X_ScreenSa ver

code
fune
param.s[O]
param.s[1]

109
o for video off, 1 for video on
screen saver timeout in minutes (> 0)
pattern change timeout interval in minutes (> 0)

If the server remains idle for the specified number of minutes, screen saver is enabled. If
video off is specified, and the hardware supports video blanking, the screen goes blank.

X-Windows Technical Reference 5-51

Otherwise, the screen is tiled with the root window background tile, randomly re-origined
at the specified timeout interval. The screen state is restored when the next request or
input event occurs.

Errors: BadValue

code
fune
param.s[O]

110
cut buffer (0-7)
number of bytes (> = 0)

Stores an arbitrary string of bytes one of eight cut buffers. These bytes may be retrieved
with the XJ'etehBytes request.

The previous contents of the cut buffer are lost.

The request must be followed by the specified number of bytes of data, followed by 0 to 3
pad bytes to make the length a multiple of four.

Errors: BadValue

code
fune

111
cut buffer (0-7)

Retrieves the contents of the specified cut buffer.

The reply:

param.s[O] number of bytes

The reply is followed by the specified number of bytes of data, followed by 0 to 3 pad bytes
to make the length a multiple of four.

Errors: BadValue

5-52 X-Windows

X_RotateCuts

code
fune

112
rotate count (0-7)

Rotates the cut buffers by N. Buffer 0 becomes buffer N, buffer 1 becomes N + 1 mod 8, and
so on.

Errors: BadValue

X-AddHost

code
fune
param.l[O-?]

113
address family
host address

Add the specified host to the list of hosts allowed to open connections.

The currently recognized address families are:

XAFJNET 2

In AIX terms, the host address for XAFJNET is struet i~addr.

The client must reside on the same host as the window system.

Under AIX, the initial set of hosts consists of the host the window system is running on,
plus those hosts listed in fete/X? .hosts, where? is the number of the display. This file
should consist of host names separated by new lines.

Errors: BadValue, BadAeeess

X~emoveHost

code
fune
param.l[O-?]

114
address family
host address

Remove the specified host from the list of hosts allowed to open connections.

The address family and host address are as for X-AddHost.

The client must reside on the same host as the window system.

Errors: BadValue, BadAeeess

X-Windows Technical Reference 5-53

code
func

115
address family

Returns the current list of hosts allowed to open connections.

The reply:

param.l[O] n umber of bytes

The reply is followed by the specified number of bytes of data, containing a list of host
addresses. The size of each host address is determined by the address family, as for
X-Addhost.

Errors: BadValue

code 116

Disables processing of requests and close-downs on all other connections (than the one this
request arrived on).

X_UngrabServer

code 117

Restarts processing of requests and close-downs on other connections.

X_LookupColor

code
param.s[O]

118
length of name in characters (> = 0)

Returns the color values for a given color name. The name is looked up in a standard
color database. This request must be followed by the characters of the color name,
followed by 0 to 3 pad bytes to make the length a multiple of four. Case is significant.

The reply:

param.u[O]
param.u[1]
param.u[2]
param.u[3]

5-54 X-Windows

exact red value
exact green value
exact blue value
closest hardware red value

param.u[4]
param.u[5]

closest hardware green value
closest hardware blue value

Errors: BadValue, BadColor

Input Events

Selecting MouseMoved results in events independent of the state of the mouse buttons.
By selecting some subset of (LeftDownMotion, MiddleDownMotion,
RightDownMotion) instead, MouseMoved events are only generated when one or more
of the specified buttons is depressed.

KeyPressed, KeyReleased, ButtonPressed, ButtonReleased, and MouseMoved events
are usually sent to the smallest window enclosing the mouse that has selected such events.
For Key Pressed and Key Released events, if this window is not in the keyboard focus
hierarchy, the events are sent to the focus window instead.

KeyPressed, KeyReleased, ButtonPressed, ButtonReleased, EnterWindow,
LeaveWindow, and MouseMoved events have the following structure:

code kind of event (KeyPress ed, etc.)
param.l[O] event Window
param.s[2] time in 10 millisecond ticks (Button only)
param.s[3] event detail
param.s[4] mouse x coord within event window
param.s[5] mouse y coord within event window
param.l[3] sub Window
param.l[4] Locator

The coordinates of the mouse relative to the event window are reported, even if the mouse
is not in the window (because of grabbing or keyboard focusing). If the mouse is also in a
(direct) child of the event window, the sub window is set to that child, otherwise the
subwindow is O. The locator defines the mouse coordinates in absolute terms.

The time value is present only for ButtonPressed and ButtonReleased events. Note that
there are only 16 bits of time (which should be treated as unsigned), which wraps after
approximately 11 minutes, so only time differences between clustered events are
interesting.

For all seven event types, the high bits of the detail encode the state of various keys and
buttons just before the event:

X-Windows Technical Reference 5-55

ControlMask
MetaMask
ShiftMask
ShiftLockMask
LeftMask
MiddleMask
RightMask

Ox4000 Control key
Ox2000 Meta (Symbol) key
OxlOOO Shift key
Ox0800 ShiftLock key
Ox0400 Left button
Ox0200 Both buttons
OxOlOO Right button

For KeyPressed and KeyReleased, the low byte of the detail gives the key. This is not an
ASCII character, but a keyboard scan code.

For ButtonPressed and ButtonReleased, the low byte of the detail is one of:

o RightButton
1 MiddleButton
2 LeftButton

For EnterWindow and LeaveWindow, the low byte of the detail is either zero or one of:

1 IntoOrFromSubwindow
2 VirtualCrossing

EnterWindow and LeaveWindow events are generated as follows:

• When the mouse moves from window A to window B, and B is an ancestor of A:

A gets a LeaveWindow with detail 0

Windows between A and B exclusive that have LeaveWindow selected get a
LeaveWindow with detail 2

B gets an EnterWindow with detail 1

• When the mouse moves from window A to window B, and B is a descendant of A:

A gets a Leave Window with detail 1

Windows between A and B exclusive that have EnterWindow selected get an
EnterWindow with detail 2

B gets an EnterWindow with detail 0

• When the mouse moves from window A to window B, with window C being their least
common ancestor:

A gets a LeaveWindow with detail 0

Windows between A and C exclusive that have LeaveWindow selected get a
LeaveWindow with detail 2

Windows between C and B exclusive that have EnterWindow selected get an
EnterWindow with detail 2

B gets an EnterWindow with detail 0

5-56 X-Windows

• At the start of a mouse grab, either automatically from a button press, or from an
X_GrabMouse or X_GrabButton, with the mouse in window A, and with window B
being the smallest window enclosing the mouse that has had an X-Belectlnput issued
on it by some client:

A gets a LeaveWindow with detail 0 if the grabbing client has not issued an
X-Belectlnput command on B

Ancestors of A (not including the root) get a LeaveWindow with detail 2 if the
grabbing client has not issued an X-BelectInput on the window and the window
has LeaveWindow selected.

• At the end of a mouse grab, with the mouse in window A, and with window B being the
smallest window enclosing the mouse that has had an X_SelectInput issued on it by
some client:

Ancestors of A (not including the root) get an EnterWindow with detail 2 if the
grabbing client has not issued an X-Belectlnput on the window and the window
has EnterWindow selected.

A gets an EnterWindow with detail 0 if the grabbing client has not issued an
X_Selectlnput command on B.

Note: EnterWindow and LeaveWindow events with detail 0 or 1 (but not 2) propagate
to the smallest enclosing window that has actually selected the event.

LeaveWindow events are not generated when windows are unmapped or destroyed.

UnmapWindow events occur whenever an X_UnmapWindow or
X_UnmapSubwindows request is executed on a mapped window. The event structure is:

code UnmapWindow
param.l[O] event Window
param.l[3] sub Window

If a subwindow is given, it is the actual window on which the request was issued (not the
ancestor that is a direct child of the event window).

FocusChange events occur whenever the keyboard focus changes. The event structure is:

code FocusChange
param.l[O] event Window
param.s[3] EnterWindow or LeaveWindow
param.l[3] sub Window

If a subwindow is given, it is the actual window on which the request was issued (not the
ancestor that is a direct child of the event window).

For Expose Window and ExposeRegion events, the structure is as follows:

code
param.l[O]
param.s[3]

Expose Window or ExposeRegion
event Window
detail (0 or ExposeCopy)

X-Windows Technical Reference 5-57

param.s[4]
param.s[5]
param.l[3]
param.s[8]
param.s[9]

width of area
height of area
sub Window
top coord of area
left coord of area

Coordinates are relative to the inside of the exposed window.

ExposeWindow and ExposeRegion events are triggered as (parts of) windows become
exposed. When an entire window becomes exposed (as when a window is mapped or
changes size), an ExposeWindow event is sent. The width and height of the entire
window is given, and the coordinates are (0, 0). When only parts of a window become
exposed (as when an obscuring window is moved), ExposeRegion events are sent
describing each newly exposed area. However, if only ExposeWindow has been selected, a
single Expose Window is sent instead. If the region exposure is the result of a Copy Area,
ExposeCopy is set in the detail word. If the exposure is actually that of a descendant of
the window selecting the event, the subwindow is set to that descendant and the
coordinates are actually for the subwindow, otherwise the subwindow is o. For a given
window exposure or CopyArea, all resulting ExposeRegion events are sent contiguously,
with no other events interspersed.

5-58 X-Windows

For ExposeCopy events, the structure is as follows:

code ExposeCopy
param.l[O] event Window
param.1[3] sub Window

If the CopyArea was done in a descendant of the window selecting the event, the
subwindow is set to that descendant, otherwise the subwindow is O.

X-Windows Technical Reference 5-59

5-60 X-Windows

Appendix A. X-Windows Installation

This appendix explains how to install the X-Windows licensed program. The following
tasks must be performed before you install X-Windows.

• Install the AIX Operating System. See Installing and Customizing the AIX Operating
System.

• Install the Advanced Display Graphics Support Library from Multi-User Services.

Before you can use X-Windows, you must create a number of pty devices using the devices
command. Add a pty device for each xterm window you plan to use. The procedure to add
pty devices is contained in Installing and Customizing the AIX Operating System.

Make sure that no one else is using the system and that no user programs are running
before you install the X-Windows licensed program. If other users are working on the
system, installation may fail.

Operating from AIX Shell or Usability Services

You must be in AIX Shell or Usability Services to install the X-Windows licensed program.
If you are now using AIX Shell, go to "Installing X-Windows from the AIX Shell" on
page A-2.

If you are using Usability Services, you have two choices:

• Turn to the customization install and devices commands, described in Usability
Services Reference. You can select the install and devices commands and follow the
prompts.

• Go to the WINDOWS window and select A I X from the Window Types pane. Select
OPEN from the command bar. Enter the installp and the devices commands and follow
the prompts.

x-Windows Installation A-I

Installing X-Windows from the AIX Shell

To install the X-Windows licensed program from the AIX Shell, follow the steps on this
page. If an error message occurs during the procedure, see Messages Reference for details.

To Install X-Windows

1. Log in as superuser (s u) or / (root).
2. Add pty devices using the devices command.

3. Make sure no one else is using the system and that no user programs are running.

4. Type . Follow the prompts to insert the X-Windows licensed program
diskettes and install the program.

More Detailed Information

1. Log on the system as superuser (s u) or / (root). After logging in, you see the AIX
Operating System # prompt.

IBM RT PC AIX Operating System
(C) COPYRIGHT IBM CORP. 1985, 1987
(/dev/console)
login: su

See Using the AIX Operating System if you require more information.

A-2 X-Windows

2. Run the devices command. For step-by-step information about running devices, see
Installing and Customizing the AIX Operating System. For more information about the
devices command, see AIX Operating System Commands Reference.

Note: For xterm windows, ae and logger should be false. For other values, use the
default.

3. Repeat the devices command for each terminal window you want to open. Four
windows is a suggested number to get started. When you have completed adding all
pty devices, press F3.

Devices session ended.

-

You are now ready to install the X-Windows licensed program.

x-Windows Installation A-3

4. Locate the X-Windows licensed program diskettes in the X-Windows licensed program
diskette binder. You should have three X-Windows licensed program diskettes: two
X-Windows program diskettes and one X-Windows samples diskette. Do not put a
diskette in the diskette drive until you are prompted to do so.

5. Type i nsta 11 p. Then press Enter.

installp

You see the following prompt:

000-123 Before you continue, you must make sure there is no other
activity on the system. You should have just restarted
the system, and no other terminals should be enabled. Refer
to your messages reference book for more information.

Do you want to continue this command (y or n):

See the discussion of message 000-123 in Messages Reference if you require more
information.

A-4 X-Windows

Warning: Make sure that you are the only user on your system while you are
installing the X-Windows licensed program. Also, you should not be running any
programs or have any open files.

The who command displays a list of users on the system.

6. To continue, type y. Then press Enter.

You see the following prompt:

Please mount volume 1 on Idev/rfdO
and press Enter to continue

7. Insert the first X-Windows licensed program diskette (volume 1 of 2) into the diskette
drive, close the diskette drive, and press Enter.

You see the following prompt:

The program "X-Windows"
will be installed.

Do you want to do this? (yin)

X-Windows Installation A-5

8. To continue the installation, type y and press Enter. Copyright information is
displayed.

IBM RT PC X-Windows Licensed Program
Version 1.1 (C) Copyright International Business Machines Corp. 1987
Licensed Material-Program Property of IBM-All Rights Reserved
RT PC is a trademark of International Business Machines Corp.
Copyright (C) Massachusetts Institute of Technoloty 1985, 1986
Copyright (C) Brown University 1986
Copyright (C) Donald E. Knuth 1985

A-6 X-Windows

9. The next screen allows you to choose the items to be installed:

Choose one or more of the following items to be installed.

1 X-Windows
2 Fonts
3 All of the above

- base X system and RT PC fonts
- font tools and other fonts

To cancel the "installp" command, enter Ilquitil.

To install one or more items, type the 10 numbers
separated by spaces (for example: 1 3). Then press Enter.

---> -
To choose an item from the menu, type the ID number for the item you want. Then
press Enter.

a. 1 X-Windows includes the base X-Windows programs as well as the RT PC fonts.

b. 2 Fonts includes font tools and additional fonts.

c. 3 All of the above includes both items 1 and 2.

X-Windows Installation A-7

10. To proceed with the installation of the X-Windows licensed program, see the pages
listed below:

• To install 1 X-Windows, see "Installing X-Windows" on page A-9.

• To install 2 Fonts, see "Installing Fonts" on page A-12.

• To install 3 All of the above, see "Installing All of the X-Windows Programs" on
page A-15.

To cancel the installp command, type qui t and press Enter.

A-8 X-Windows

Installing X-Windows

Continue with the following procedure if you have chosen X-Windows installation option 1,
X-Windows.

1. After choosing option 1 and pressing Enter, you see the following menu:

From the list below, choose the 1 anguage (s) for keyboard mapping.

1 Austrian/German 9 Italian
2 Belgian 10 Japanese English
3 Canadian (French) 11 Norwegian
4 Danish 12 Portuguese
5 English (UK) 13 Spanish
6 English (US) 14 Swiss (French
7 Finnish / Swedish 15 Swiss (German
8 French (AZERTY)

To cancel the "installp" command, enter Ilquitll.

To install one or more languages, type the group ID numbers
separated by spaces (for example: 1 3). Then press Enter.
The first number will be the default language used.

---> 6 3-

Type the number corresponding to the language you want to use. If you want to use
more than one language, type more than one number. Separate numbers with a space.
The first number you type is the default language.

X-Windows Installation A-9

2. After you have chosen the language you will use, the following message appears. No
action is required at this time.

045-001 Installation of "IBM RT PC X Windows " is in progress.
Installation will take several minutes.
Time = 01:35

3. Insert the first X-Windows licensed program diskette (volume 1 of 2), close the diskette
drive door, and press Enter. At this time the RT PC loads various X-Windows licensed
program files and lists them on the screen.

Please mount volume 1 on /dev/rfdO
and press Enter to continue

4. Insert the second X-Windows licensed program diskette (volume 2 of 2), close the
diskette drive door, and press Enter. At this time the RT PC loads various X-Windows
licensed program files and lists them on the screen.

Please mount volume 2 on /dev/rfdO
and press Enter to continue

A-IO X-Windows

5. The following prompts appear; no action is required.

045-009 Linking X with GSL. This will take a few moments.
Time = 01:35

045-007 Building character sets for base system:
Time = 01:35

<filename>

6. Installation of X-Windows licensed program is complete when you see the following
message.

Program II X-\tJi ndO\'Js II

is now installed.

x-Windows Installation A-II

Installing Fonts

Continue with the following procedure if you have chosen X-Windows licensed program
installation option 2, Installing Fonts.

1. After choosing option 2 and pressing Enter, you see the following menu. Choose the
font group you wish to install.

II Fonts II are di vi ded into severa 1 groups, each of
which can be separately installed. The RT fonts are
automatically installed if X-Windows is being installed.
The groups and their 10 numbers are:

1 RT Fonts
2 VT100 Fonts
3 Character Fonts
4 Miscellaneous Fonts
5 Font Tools
6 All of the above

- norm a 1, ita 1 i c, b old, ...
- vtsingle, vtbold, ni12,
- 6x10, 8x13, ...
- math5, ...
- font compiler, source,

To cancel the lIinstallpll command, enter IIquitli.

To install one or more groups, type the group 10 numbers
separated by spaces (for example: 1 3). Then press Enter.

---> -

A-12 X-Windows

2. After you have chosen the font set you will use, the following message appears. No
action is required of you at this time.

045-001 Installation of "IBM RT PC X Windows" is in progress.
Installation will take several minutes.

Time = 01:35

3. If not already in the diskette drive, insert the first X-Windows licensed program
diskette (volume 1 of 2), close the diskette drive door, and press Enter. At this time
the RT PC loads various X-Windows licensed program files and lists them on the
screen.

Please mount volume 1 on /dev/rfdO
and press Enter to continue

4. Insert the second X-Windows licensed program diskette (volume 2 of 2), close the
diskette drive door, and press Enter. At this time the RT PC loads various X-Windows
licensed program files and lists them on the screen.

Note: This step and the prompt displayed might not occur, depending on which
options you selected, and if files are needed from the second diskette.

Please mount volume 2 on /dev/rfdO
and press Enter to continue

X-Windows Installation A-13

5. When you see the next message, installation of X-Windows Fonts is complete.

Program II X-Wi ndows II

is now installed.

A-14 X-Windows

Installing All of the X-Windows Programs

Continue with the following procedure if you have chosen X-Windows licensed program
installation option 3, Installing All of the X-Windows Programs.

1. After choosing option 3 and pressing Enter, you see the following menu:

From the list below, choose the 1 anguage (s) for keyboard mapping.

1 Austrian/German 9 Italian
2 Belgian 10 Japanese English
3 Canadian (French) 11 Norwegian
4 Danish 12 Portuguese
5 English (UK) 13 Spanish
6 English (US) 14 Swiss (French
7 Finnish / Swedish 15 Swiss (German
8 French (AZERTY)

To can c e 1 the II ins tal 1 p II co mm and, en t e r II qui t II •

To install one or more languages, type the group 10 numbers
separated by spaces (for example: 1 3). Then press Enter.
The first number will be the default language used.

---> 6 3_

Type the number corresponding to the language you want to use. If you want to use
more than one language, type more than one number. Separate numbers with a space.
The first number you type is the default language.

X-Windows Installation A-I5

2. After choosing the language you will use, the following is displayed. Choose the font
group you wish to install.

"Fonts" are divided into several groups, each of
which can be separately installed. The RT fonts are
automatically installed if X-Windows is being installed.
The groups and their 10 numbers are:

1 RT Fonts
2 VT100 Fonts
3 Character Fonts
4 Miscellaneous Fonts
5 Font Tools
6 All of the above

- normal, italic, bold, .. .
- vtsingle, vtbold, ni12, .. .
- 6x10, 8x13, ...
- math5, ...
- font compiler, source,

To cancel the "installp" command, enter "quit".

To install one or more groups, type the group 10 numbers
separated by spaces (for example: 13). Then press Enter.

---> -

A-I6 X-Windows

3. After you have chosen the fonts you will use, the following message appears. No
action is required of you at this time.

045-001 Installation of "IBM RT PC X Windo\tJs" is in progress.
Installation will take several minutes.
Time = 01:35

4. Insert the first X-Windows licensed program diskette (volume 1 of 2). At this time the
RT PC loads various X-Windows licensed program files and lists them on the screen.

Please mount volume 1 on /dev/rfdO
and press Enter to continue

5. Insert the second X-Windows licensed program diskette (volume 2 of 2). At this time
the RT PC loads various X-Windows licensed program files and lists them on the
screen.

Please mount volume 2 on /dev/rfdO
and press Enter to continue

X-Windows Installation A-17

6. The following messages appear; no action is required.

045-009 Linking X with GSL. This will take a few moments.
Time = 01:35

045-007 Building character sets for base system:
Time = 01:35

<filename>
7. Installation of X-Windows licensed program is complete when you see the following

message.

Program "X-Windows"
is now installed.

A-IS X-Windows

Installing Sample X Programs

Continue with the following procedure if you want to install the X-Windows sample
programs.

1. Type install p. Then press Enter.

installp

You see the following prompt:

000-123 Before you continue, you must make sure there is no other
activity on the system. You should have just restarted
the system, and no other terminals should be enabled. Refer
to your messages reference book for more information.

Do you want to continue this command (y or n):

See the discussion of message 000-123 in Messages Reference if you require more
information.

X-Windows Installation A-19

2. To continue, type y. Then press Enter.

You see the following prompt:

Please mount volume 1 on Idev/rfdO
and press Enter to continue

3. Insert the X-Windows Samples program diskette into the diskette drive, close the
diskette drive, and press Enter.

You see the following prompt:

The program "X-Windows Samples"
will be installed.

Do you want to do this? (Yin)

A-20 X-Windows

4. To continue the installation, type y and press Enter. Copyright information is
displayed.

IBM RT PC X-Windows Samples Program
Version 1.1 (C) Copyright International Business Machines Corp. 1987
Licensed Material-Program Property of IBM-All Rights Reserved
RT PC is a trademark of International Business Machines Corp.
COPYRIGHT (C) Massachusetts Institute of Technology 1985, 1986
COPYRIGHT (C) Digital Equipment Corp., Massachusetts 1985, 1986, 1987

X-Windows Installation A-21

5. If not already in the diskette drive, insert the X-Windows Samples diskette. At this
time the RT PC loads various X-Windows sample files and lists them on the screen.

Please mount volume 1 on /dev/rfdO
and press Enter to continue

6. When you see the next message, installation of X-Windows Samples is complete.

Program "X-Windows Samples"
is now installed.

A-22 X-Windows

Installation Requirements for Remote Usage

Before the X-Windows licensed program can be used remotely, certain components in
addition to X-Windows must be installed and running on both the host and remote systems.
The components required for remote use of X-Windows are:

• The VRM Baseband Adapter Device Driver and IBM RT PC Baseband Adapter

OR

• VRM Token-Ring Device Driver and IBM Token-Ring Network RT PC Adapter

OR

• Both.

TCP lIP is highly recommended for remote login purposes.

Refer to the installation procedures packaged with each licensed program for other
installation instructions.

For information on using X-Windows remotely, see "Using X-Windows on a Remote
System" on page 2-21.

X-Windows Installation A-23

A-24 X-Windows

Appendix B. Fonts

This section describes a font support package for the RT PC. Topics discussed include:

• Font file format used with the X Windows program (rtx format)

• Font file naming conventions

• Use of supplied font source files

• Use of a supplied program (METAFONT1) to create and modify fonts

• Use of a supplied facility to convert font files to rtx format.

A font is defined as a complete assortment of anyone size and style of type containing all
the characters, usually both lowercase and uppercase, alphabetic and numeric.

METAFONT is a trademark of Addison Wesley Publishing Company.

Fonts B-1

Overview of Font Support

The font package provided for RT PC applications includes several fonts of various sizes
and styles, as well as a program to create and modify fonts, particularly for use with
various types of printers. A font that looks acceptable on a display device may be
unsuitable for printed output because the resolution in pixels per inch of a printer is
different from a display. On a printer, the resulting font size is generally too small to be
usable.

METAFONT is a set of font compiler programs that allow you to design or modify your
own 256-character fonts. This program, font source files designed for use with the
program, and several fonts intended for use with RT PC displays are included with the font
package. METAFONT is described in The MET AFONTbook, by Donald E. Knuth
(Addison Wesley Publishing Company, 1986). For details on developIng various font styles
and sizes with METAFONT, refer to Knuth's Computer Modern Typefaces (Addison Wesley
Publishing Company, 1986). See "Using METAFONT to Create Fonts" on page B-5 for
details on using MET AFONT in the X-Windows environment.

Before a font can be used with the RT PC displays, it must be in rtx format. In addition to
providing a uniform bit storage scheme, the rtx format allows for fonts of variable widths
and compression techniques. See "Converting Fonts to X-Windows Fonts" on page B-23
for information on converting other font file formats to rtx format.

The supplied rtx font files, the METAFONT program, and the font source files can be
optionally installed from a menu on the X-Windows diskettes. If you choose to install
these fonts, they will be stored in /usr/lpp/fonts. Additional fonts that you create should
also be stored here. The rtx font format is described in /usr/include/sys/font.h.

If you choose to install the font package, the METAFONT program, font source files for
use with METAFONT, and a set of rtx format fonts are installed. These fonts have been
tuned for legibility on the RT PC displays and include all the characters in code pages PO,
PI, and P2. The supplied font source files, from which you can create new fonts with
METAFONT, include only the characters from code page PO. The fonts provided with the
font package include:

• Rom6.500
• Roml0.500
• Rom14.500
• Rom22.500
• Rom29.500
• Bld14.500
• It114.500
• ErgI4.500.

For a description of the significance of the fields in the font file names, see "Font File
Naming Conventions."

B-2 X-Windows

Font File Naming Conventions

This section describes the naming convention for rtx format font files. This convention is
intended to associate a meaningful descriptor with a given file and to avoid storing
duplicate fonts on the system.

Fonts supplied by IBM or created with METAFONT typically have an alphabetic
descriptor of the font style, followed by a numeric value indicating the resulting font point
size, separated by a period, on a device of a given density factor. The density factor is
determined by multiplying a device's pixels-per-inch density times a scaling factor of 5.

One font supplied with the font package, Rom10.500, would be interpreted according to the
convention as follows:

Rom

10

. (period)

500

A roman font designed specifically for use on the RT PC. The initial capital
letter in the font file name indicates that these fonts have been tuned for
legibility on RT display devices. Contrast these file names with the untuned
font source files listed in "Using METAFONT to Create Fonts" on
page B-5. The supplied fonts are divided into four types. They are:

Rom Roman type designed for clarity on RT displays.

Itl Italic Roman type designed for clarity on RT displays.

BId Boldface Roman type designed for clarity on RT displays.

Erg A sans-serif type designed for clarity on RT displays.

You can develop your own alphabetic descriptors for font styles you create
with METAFONT. Note that font files provided with METAFONT and fonts
described in Knuth's Computer Modern Typefaces use other descriptors,
such as cmr (for Computer Modern Roman, a specific type of Roman font)
and cmrs (for Computer Modern Roman slanted, a Roman font with some
curve to the characters, but not as severe as italic).

If you are creating many fonts for use with the RT PC, you will probably
create your own (or adopt Knuth's) conventions for alphabetic descriptors.
Just try to be consistent when you convert the font files to rtx format.

The font is displayed at 10 points (72 points per inch is standard) on a
device with the specified density factor (in this case 500).

Separates the point size from the density factor .

Determined by multiplying the scale factor five times the density of the
device in pixels-per-inch (in this case 100).

Therefore, the font in this example (Rom10.500) would produce 10-point roman type on a
device that provides 100 pixels per inch. The same font used with a device providing 200
pixels per inch would appear half as large.

Fonts B-3

The standard of device pixels-per-inch density is established by the IBM 6155 Extended
Monochrome Display (APA-16), which has a density of approximately 100 pixels per inch.
The density factor for a 6155 display is 500 (5 times 100 pixels per inch). Therefore, on a
6155 display, font file Rom6.500 produces 6-point RT roman characters; font file cmrlO.500
(an untuned font produced by METAFONT) produces 10-point computer modern roman
characters.

Before a font can be used with the RT PC, it must be converted to rtx format. At
conversion time, you have the opportunity to rename the converted file to the rtx
conventions. IBM recommends using the rtx conventions for consistency among all font
files, so you can more easily identify the point size resulting from a given font on a given
device, and to avoid duplication of fonts on the system.

B-4 X-Windows

Using METAFONT to Create Fonts

The following section describes commands used to create and modify METAFONT fonts.
When installed, the METAFONT program resides in /usr/Ipp/mf.

The MET AFONT port provides several fonts and base files from which additional fonts can
be created. For examples of the advanced font styles and characteristics that can be
created with this font compiler program, see Computer Modern Typefaces. This book
contains dozens of unique typefaces created with the METAFONT program, as well as
some of the syntax statements that cause the typefaces to be produced.

In addition to the files provided with METAFONT, other font source files, which have
already been built with METAFONT, are included.

The font source files represent the characters of code page PO as implemented by the RT
PC. (See Keyboard Description and Character Reference for a description of the PO, PI, and
P2 characters).

You can copy these files, rename them, and build new characters or font styles into the
copies. However, you must be relatively familiar with the techniques described in The
MET AFONTbook and Computer Modern Typefaces.

The font source files are installed in /usr/Ipp/fonts and include the following:

• romlOpO.mf
• rom12pO.mf
• rom14pO.mf
• bIdlOpO.mf
• itllOpO.mf

Note that these file names do not begin with a capital letter, indicating that they have not
been tuned for the RT displays. The alphabetic descriptors (rom, itI, bId) and point sizes
are consistent with the naming convention. The PO stands for code page PO to differentiate
these files from the font files that include characters for PO, PI, and P2. The mf suffix
identifies these files as MET AFONT base files.

To create a font suitable for use on X-Windows from font source file romlOpO.mf, perform
the following:

1. Issue the makefont command.

makefont -d romlOpO.mf

This creates a font for display only in pk format. "makefont" on page B-I6 describes
the command, its flags, and the METAFONT pk format.

2. Issue the pktortx conversion command.

pktortx romlOpO.590pk romlOpO.500

Fonts B-5

This creates an rtx format font (untuned, as indicated by the initial lowercase
character in the file name) which produces 10-point characters (approximately) on a
100 pixels-per-inch device. The resulting font can be viewed with gftype, tuned if
necessary, and used with the X-Windows program.

Note that many METAFONT font files actually consist of several .mf files. The
combined size of the files may be too large to be compiled. For this situation, IBM has
included a program to compile a list of files. This program is described in
README.mf in /usr/lpp/X/doc.

3. Issue the fixrtx command to ensure that all characters in the font file have any
proportional spacing imbedded in the raster image and are a constant height:

fixrtx -h romlOpO.500
This command converts variable-height characters in an rtx font file to constant
height characters and builds proportional spacing into a character's raster image. For
more information, see "fixrtx" on page B-25.

The METAFONT commands are defined in the following section.

B-6 X-Windows

cmmf

cmmf

Purpose

Produces a generic font (gf) output file from a METAFONT (mf) input file.

Synopsis

cmmf - file ---l

Description

The cmmf command invokes the METAFONT program using the Computer Modern
METAFONT base. This base contains all of the plain base, as well as extensions used by
the fonts in the Computer Modern family.

If the file argument has no extension, the default extension .mf is assumed.

Note: The cmmf command is similar to the mf command ("mr' on page B-20). Use
cmmf (rather than mf) when generating fonts from the Computer Modern source files on
/usr /lpp/mf/macros.

Output is to one or more files on the current directory. The output files have the same
name as the primary input file, but will have one of the following extensions:

.nnngf Identifies the generic font (gf) output file, containing the raster data for each
character in the file. The value nnn is the resolution of the font (in pixels per
inch) multiplied by the MET AFONT scale factor. For example, the normal
resolution of printer fonts is 240 pixels per inch. For a font file called test
produced with the makefont command with no magnification specified, the
output of cmmf on test would be test. 240gf; at magnification magstepl
(1.2 times the normal size), the output of cmmf on test would be
tes t. 288gf. See "makefont" on page B-16 for more details on the makefont
command.

Fonts B-7

cmmf

.tfm Identifies a TEX2 font metric (tfm) file. This file is used by the typesetting
program TEX when formatting characters from this font. For information on
TEX, see The TEXbook, by Donald E. Knuth (Addison Wesley Publishing
Company, 1986) .

.log Identifies a file that contains a log of all the terminal input and output
(including error messages) that occurs while METAFONT is running.

The resolution of the generated font depends on the mode setting that MET AFONT uses.
By default, this mode is proof, which is used for generating proof copies of characters at
very high resolution (2602 pixels per inch). To generate fonts for use by actual devices,
you must specify either pageprinter (for the IBM 3812 Pageprinter or the IBM
QuietwriterO printers), to get 240 pixels-per-inch fonts, proprinter (for the IBM 4201
Proprinter) to get 240 pixels-per-inch fonts, or displays to get 100 pixels-per-inch fonts.
See Example 3 for details on generating fonts for actual devices.

Examples

1. To run METAFONT on a source file called cmr10 :

cmmf cmrlO
The filename extension .mf is assumed. Files output by this example would be
cmrlO.2602gf and cmrlO.log. The resolution of the output is 2602 pixels per inch
because the default proof mode is used.

2. To run METAFONT on cmrlO, but searching for input files from a private macro
library using the default shell:

MFINPUTS=.:/u/myid/mylib
export t~FI NPUTS
cmmf cmrlO
The same example as above, but using the C shell:

setenv MFINPUTS .:/u/myid/mylib
cmmf cmrlO

3. To run METAFONT on source file cmrlO, to produce a font for the IBM 3812
Pageprinter, specifying pageprinter mode instead of the default proof mode:

cmmf "\mode=pageprinter; input cmrlO"

2 TEX is a trademark of the American Mathematical Society.

B-8 X-Windows

Files

cmmf

The output file from this example would be cmrlO.240gf. The quotes are required to
differentiate the ;(semicolon) and the \ (backslash) from the same characters that have
special meanings to the shell.

/usr/lpp/mf/bases/cm.base
/usr /lpp/mf/macros

Related Information

In this book: "gftopk" on page B-IO, "gftype" on page B-12, "makefont" on page B-16,
"mf" on page B-20.

The MET AFONTbook, by Donald E. Knuth.

Computer Modern Typefaces, by Donald E. Knuth.

Fonts B-9

gftopk

gftopk

Purpose

Converts a generic font (gf) file to a packed (pk) file.

Synopsis

gftopk - gffiiename - pkfiiename ----1

Description

The gftopk command converts a generic font file (gffilename) produced with the cmmf or
mf commands to a packed font file (pkfilename). Both gffilename and pkfilename must be
specified; there are no default file names or extensions.

The packed font file that is output by gftopk is required in order for to convert the
METAFONT font to rtx format. By convention, the pk files produced for the Proprinter
have a suffix of Pk (note the uppercase P) to distinguish them from the font files for the
3812 and Quietwriter (suffix pk). The distinction is necessary because the Pro printer has
an aspect ratio of 3:5 rather than 1:1.

Examples

To convert generic font file cmrlO.240gf (Computer Modern Roman 10 point for a 240
pixels-per-inch device) to pk file cmrlO.1200pk:

gftopk cmrlO.240gf cmrlO.1200pk

B-IO X-Windows

gftopk

Related Information

In this book: "emmf" on page B-7, "make font" on page B-16, "mr' on page B-20.

Fonts B-11

gftype

gftype

Purpose

Produces an ASCII dump of a METAFONT generic font file.

Synopsis

gftype ---Q-file~

~

Description

Flags

The gftype command takes a METAFONT gf file and produces an ASCII dump of its
contents. The resulting dump contains a mnemonic representation of the data for each
character, a pixel map of each character drawn as an array of asterisks and blanks, and
the tfm data. Output is to stdout and can be redirected to a file by the normal AIX
mechanisms.

-m Deletes the per-character mnemonic information from the dump.

-p Deletes the per-character pixel maps from the dump.

B-12 X-Windows

Examples

1. To produce a complete dump (mnemonics, pixel maps, and tfm data) of file
cmrlO.240gf:

gftype cmrlO.240gf

gftype

2. To produce a dump containing only the pixel maps and tfm data of file cmrlO.240gf:

gftype cmrlO.240gf-m

Related Information

In this book: "cmmf' on page B-7, "mf' on page B-20.

The MET AFONTbook, by Donald E. Knuth.

The TEXbook, by Donald E. Knuth.

Fonts B-13

inimf

inimf

Purpose

Produces a METAFONT base file to be loaded by the production version of METAFONT.

Synopsis

inimf

See Examples for parameter data.

Description

The inimf command initializes the METAFONT program and loads the METAFONT
internal tables with macro definitions, parameters, and other initialization values that
make up a METAFONT base. The base you get depends on the specification of the
command. Possible choices are plain base or Computer Modern base. If you do not specify
all the parameters, the system will prompt you for parameters after you enter inimf.

The file that is output by inimf has an extension of .base. From a base file, you can run
cmmf or mf to produce a gf font file.

Bases for system-wide use are stored on the METAFONT base library (fusr/lpp/mf/bases),
but output from inimf goes to the current directory. Therefore, any base you create with
inimf for use by other programs must be moved to the base library.

Examples

Input to inimf can be specified interactively in response to prompts from METAFONT.

1. To create a plain METAFONT base file:

inimf "plain; input local; dump"

B-14 X-Windows

Files

inimf

This sequence creates the files plain.base and plain.log on the current directory. The
loeal.mf file is input just before dumping in order to define the printer and display
modes to METAFONT. To test your new base, issue the mf command. METAFONT
searches the current directory first for base files. See "mr' on page B-20 for
information on how to use the MFBASES environment variable to control the
METAFONT search for base files.

2. To create the Computer Modern base, em.base:

inimf "plain; input em base; input local; dump"

The inimf command creates its output on the file plain.base, since plain is the first
file name it sees. Use the mv command to change plain.base to the proper name.

/usr /lpp/mf/maeros

Related Information

In this book: "cmmr' on page B-7, "mr' on page B-20.

Fonts B-15

makefont

makefont

Purpose

Produces a display font and printer font from one or more METAFONT source files.

Synopsis

makefont

-or-

makefont

Description

-p
-8nnn
-p

-p
-8nnn
-p

fife one of
magstephalf
magstep1
magstep2
magstep3
magstep4
magstep5
nnnpt

I ist= fistrife---j

The makefont command generates Computer Modern fonts for use on displays or printers.
METAFONT is invoked using the em base. The makefont command calls gftopk to
convert the generic font gf file to a packed font (pk) file. The input file, therefore, should
be a Computer Modern source file without the .gf extension.

By default, this command generates fonts for both the printer (3812 and Quietwriter) and
the displays unless the -d or -p flags are specified.

B-16 X-Windows

makefont

The first form of the command generates output from only one font source file. You would
use this form to generate a single font of a specific size. For example, suppose you need a
font for printed output, but find that the font does not exist on the library in the size that
you need. Use makefont with the desired magnification to create a font of the required
size.

The second form of the command generates output from all the font source files in listfile.
Each line of listfile contains either a comment (first character of the line is %) or the
operands of the first form of the makefont command. For example:

% Make a font for a printer only.
makefont cmrlO magstep3 -p
% Make a font for a display only.
makefont cmrlO 8pt -d
% Make a font for a printer and display.
makefont cmr12 magstepl -b

If you have write permission to /usr/lpp/X/font, you can store newly-created fonts directly
to the font library. Otherwise, the fonts you create are stored in the current directory
where you are working and must be moved to the font library for system-wide use.

Output to the font library consists of the tfm file for the font and one or more packed font
(pk) files. To avoid accumulating many files when running makefont on a long list of font
names, METAFONT erases the .log file and the gf files (when the corresponding pk is
created).

Output to the current directory includes the gf, pk, and .log files.

MET AFONT input files are searched for on the current directory and then on the
METAFONT macro library, /usr/lib/mf/macros. You can specify your own search order
by setting the MFINPUTS environment variable to a list of path names (separated by
colons).

The METAFONT base file is searched for on the current directory and then on the
METAFONT base library, /usr/lib/mf/bases. This search order can be overridden by
setting the MFBASES environment variable. If makefont determines that a particular
font file already exists on the output library (either /usr/lpp/X/font or the current
directory), it bypasses METAFONT execution for that file. To replace a font file, you must
first delete the appropriate pk file from the output library. If you find that you have a
special font-generation requirement that makefont cannot handle, copy
/usr/bin/makefont to one of your own directories and modify it.

Fonts B-17

makefont

Flags

The first flag can be used to specify whether both printer and display fonts are produced,
and can also indicate the base from which to produce the fonts. The second flag cari be
used to specify the magnification of the resulting font. This is typically used when you
have an existing font and simply need to resize it for a printer or a display.

The first set of flags are defined as follows:

-b Generate printer (3812 and Quietwriter only) and display fonts. This is the default.

-d Generate display fonts only.

-p Generate 3812 and Quietwriter fonts only.

-Bnnn Name of the base file to be loaded at the start of METAFONT execution. By default,
the em base is used.

-p Generate Proprinter fonts only. To generate all three types of printer fonts, specify
the flags -P -b, in that order.

The magnification flags are defined as follows:

magstephalf 1.095 times the size of the input font file.

magstepl

magstep2

magstep3

magstep4

magstep5

nnnpt

1.2 times the size of the input font file.

1.44 times the size of the input font file.

1. 728 times the size of the input font file.

2.074 times the size of the input font file.

2.488 times the size of the input font file.

Note: The magstep flags can be used with any font.

Size is nnn points.

This flag works only if file ends in a decimal number specifying the design
size of the font (such as emrIO). The makefont command reads this
numeric suffix and uses it with the value of nnn to create a fractional
magnification which it passes to METAFONT. For example, specifying
cmrlO lSpt passes METAFONT a magnification value of 15/10.

B-18 X-Windows

makefont

Examples

Files

1. To create both printer and display fonts for the cmrlO font (normal size):

makefont cmllO
This example creates cmrlO.tfm, cmrlO.590pk (the display font), and cmrlO.1200pk
(the printer font).

2. To create the same font at magnification magstep4:

makefont cmllO magstep4
This example creates cmrlO.tfm, cmrlO.1223pk (the display font), and cmrlO.2488pk
(the printer font).

3. To generate a display font only from testfont.mf:

makefont -d testfont
4. To generate display and printer fonts for a font of your own design, using your own

mybase.base file:

makefont -Bmybase myfont

/usr/bin/makefont
/usr/lpp/mf/bases/cm.base
/usr/lpp/mf/bases/plain.base
/usr /lpp /mf/macros

Related Information

In this book: "cmmf" on page B-7, "gftopk" on page B-IO, "mf" on page B-20.

The METAFONTbook, by Donald E. Knuth.

Fonts B-19

mr

mf

Purpose

Produces a generic font (gf) output file from a METAFONT (mf) input file.

Synopsis

m f - file -----j

Description

The mf command invokes the METAFONT program using the plain METAFONT base.

If the file argument has no extension, the default extension .mf is assumed.

Note: The mf command is very similar to the cmmf command ("cmmf' on page B-7). The
mf command generates fonts from the plain source files on /usr/lpp/mf/macros; cmmf
generates fonts from the Computer Modern source files.

Output is to one or more files on the current directory. The output files have the same
name as the primary input file, but will have one of the following extensions:

.nnngf Identifies the generic font (gf) output file, containing the raster data for each
character in the file. The value nnn is the resolution of the font (in pixels per
inch) multiplied by the METAFONT scale factor. For example, the normal
resolution of printer fonts is 240 pixels per inch. For a font file called tes t
produced with the makefont command with no magnification specified, the
output of mf on tes t would be tes t. 240gf; at magnification magstepl (1.2
times the normal size), the output of mf on tes t would be tes t. 288gf. See
"makefont" on page B-16 for more details on the makefont command .

. tfm Identifies a TEX font metric (tfm) file. This file is used by the typesetting
program TEX when formatting characters from this font. For information on
TEX, see The TEXbook, by Donald E. Knuth (Addison Wesley Publishing
Company, 1986) .

.log Identifies a file that contains a log of all the terminal input and output
(including error messages) that occurs while METAFONT is running.

B-20 X-Windows

mf

The resolution of the generated font depends on the mode setting that METAFONT uses.
By default, this mode is proof, which is used for generating proof copies of characters at
very high resolution (2602 pixels per inch). To generate fonts for use by actual devices,
you must specify a mode of either pageprinter to get 240 pixels-per-inch fonts, proprinter
to get 240 pixels-per-inch fonts, or displays to get 100 pixels-per-inch fonts. See Example 3
for details on generating fonts for actual devices.

Examples

1. To run METAFONT on a source file called sample.mf:

mf sample

The filename extension .mf is assumed. Output is to sample.2602gf and sample.log.
The resolution of the output is 2602 pixels per inch because the default proof mode is
used.

2. To run METAFONT on cmrlO, but searching for input files from a private macro
library using the default shell:

MFINPUTS=. :/u/myid/mylib
export MFINPUTS
cmmf cmrlO
The same example as above, but using the C shell:

setenv MFINPUTS . :/u/myid/mylib
cmmf cmrlO

3. To run MET AFONT on source file cmrlO, to produce a font for the IBM 3812
Pageprinter, specifying pageprinter mode instead of the default proof mode:

cmmf "\mode=pageprinter; input cmrlO"
The output file from this example would be cmrlO.240gf. The quotes are required to
differentiate the ;(semicolon) and the \ (backslash) from the same characters that have
special meanings to the shell.

Fonts B-21

mf

Files

/usr/lpp/mf/bases/plain.base
/usr/lpp/mf/macros

Related Information

In this book: "cmmf' on page B-7, "gftopk" on page B-IO, "gftype" on page B-12,
"makefont" on page B-16.

The METAFONTbook, by Donald E. Knuth.

B-22 X-Windows

Converting Fonts to X-Windows Fonts

Before a font can be used on the RT PC, it must be stored in rtx format. All the
characters in the rtx file must be a constant height for the font to work in the X-Windows
en vironmen t.

The commands described in the following section can be used to perform the following
font-conversion operations:

• Convert an AIX font file to an X-Windows rtx font file

• Convert variable-height characters in an rtx font file to constant-height characters

• Convert an onx font file to an rtx font file

• Convert a METAFONT packed font (pk) file to an X-Windows rtx font file.

Fonts B-23

aixtortx

aixtortx

Purpose

Converts a standard AIX font file to the RT PC rtx font file format.

Synopsis

aixtortx - aixfi/ename - rtxfi/ename --I

Description

Before any of the standard fonts provided with the AIX Operating System can be used with
the X-Windows program, they must be converted to the X-Windows rtx font file format.
This command takes as input one of the fonts supplied with AIX (from /etc/vtm). The
output file is in rtx format and can be used with RT PC displays.

Examples

Files

To convert the AIX font file etc/vtm/itll.9x20 to an rtx font file:

aixtortx /etc/vtm/itll.9x20 /usr/lpp/fonts/ltl14.500
Note how the output file name conforms to the rtx naming convention.

/etc/vtm
/usr/lpp/fonts

B-24 X-Windows

fixrtx

fixrtx

Purpose

Converts an rtx font file that contains proportional spacing parameters into a file with the
proportional spacing built into the raster image.

Synopsis

fixrtx ~ rtxfi/ename-i

-h
-w

Description

In order for rtx font files to work in the X-Windows environment, any proportional spacing
(blank or white space preceding or following the character image) must be contained in the
raster image. In addition, all the characters in the font file must be a constant height.
(Variable-height characters within a single font file are not allowed.) The fixrtx command
takes an rtx font file and builds any proportional spacing into the raster image. With the
-h flag of the command, all the characters in the font file are made a constant height. The
constant height is determined by the tallest character in the rtxfilename file.

This command will not alter the file if it is already in the correct format. You must execute
this command (with the -h flag specified) on rtx files created with the pktortx command if
they are intended to be used in the X-Windows environment.

The name of the rtx font file does not change.

Fonts B-25

fixrtx

Flags

-h Change all characters to a constant height equal to the height of the tallest character
in the font. Specify this flag for all font files that are intended to be used in the
X-Windows environment.

-w Change all characters to a constant width equal to the width of the widest character
in the font.

Examples

To convert rtx font file itllO.500 (which includes characters of variable heights) to a file of
constant-height characters:

fixrtx -h itllO.500
The resulting file retains the name of the input file, but the characters are all a constant
height and any proportional spacing is built into the character's raster image.

B-26 X-Windows

onxtortx

onxtortx

Purpose

Converts an onx font file to the RT PC rtx font file format.

Synopsis

onxtortx - onxfi/ename - rtxfi/ename ~

Description

The onx format fonts are typically provided with X-Windows systems provided by the
Massachusetts Institute of Technology. Before these fonts can be used with the
X-Windows program, they must be converted to the rtx font file format. This command
takes as input an onx font file and produces an rtx format file.

Examples

To convert the onx font file vtsingle.onx to an rtx font file:

onxtortx vtsingle.onx jusrjlppjfontsjvtsingle

Files

/usr /lpp/fonts

Fonts B-27

pktortx

pktortx

Purpose

Converts a METAFONT pk font file to the RT PC rtx font file format.

Synopsis

pktortx - pkfi/ename - rtxfiiename -0--1
ppend

Description

Flags

Before any of the standard fonts provided with or produced by the METAFONT program
can be used with the X-Windows program, they must be converted to the X-Windows rtx
font file format. This command takes as input a pk MET AFONT file (note that this
conversion does not work for gf type files). The resulting output file is in rtx format and
can be used with RT PC displays if all the characters in the font file are of a constant
height.

Note that pk font files typically contain characters of variable widths and variable
heights. In this case, the rtx font file produced by pktortx will also contain characters of
variable widths and heights. Therefore, before the rtx font file generated by this command
can be used in the X-Windows environment, the characters in the file must be converted to
a constant height. See "fixrtx" on page B-25 for instructions on this conversion command.

The append option puts multiple pk format files into a single rtx file. This option is
required if the original source file is too large to be compiled with the makefont
command. In this case, the source file must be broken down into multiple files. Each file is
first compiled into several pk files using the makefont command. Each pk file that was
required to contain all the information in the original source file is then appended to
rtxfilename in rtx format.

B-28 X-Windows

pktortx

For example, if a MET AFONT source file requires three separate mf files in order to
compile (and therefore requires three separate pk files), the pktortx command is first
issued to establish the name of the rtx file. The command is then issued with the other pk
file names, the same rtx file name, and the append option.

pktortx /mydir/pkfilel /mydir/rtxfile
pktortx /mydir/pkfile2 /mydir/rtxfile append
pktortx /mydir/pkfile3 /mydir/rtxfile append
This example results in one rtx font file, /mydir/rtxfile. The user must ensure that each
pk file to be appended was created using the same parameter files and that each file has
unique character codes.

Examples

Files

To convert the pk font file /usr/lpp/fonts/cmrlO.1200pk to an rtx font file:

pktortx /usr/lpp/fonts/cmrlO.1200pk /usr/lpp/fonts/cmrlO.1200
fixrtx -h /usr/lpp/fonts/cmrlO.1200
Note how the output file name conforms to the rtx naming convention (with an expanded
alphabetic descriptor classification for Computer Modern Roman).

/usr/lpp/fonts

In this book: "fixrtx" on page B-25

Fonts B-29

pktortx

B-30 X-Windows

access list. Programs can use the display if
they are run on the host system or on any of
the systems listed in this file.

ancestors. If W is inferior to A, then A is an
ancestor of W.

bitmap. A pixmap of depth 1.

button grabbing. The mouse can be grabbed
by a client, either passively by the program
itself, or actively by clicking a button.

child window. A first-level subwindow.

client. An application program connects to
X-Windows by some interprocess
communication path (IPC) path, such as a TCP
connection or a shared memory buffer. The
program may be referred to as the client of the
server, but it is actually the IPC path itself.
Programs with multiple paths open to the
server are viewed as multiple clients by the
protocol.

clipping regions. The image defined by the
bitmap or rectangles used to restrict output to a
particular region of a window.

color cell. An entry in a color map. An entry
contains three values: red, green, and blue
intensities. The values are 16-bit, unsigned
numbers, with ° representing the minimum
intensity. The values are scaled by the server
to match the particular display you are using.

ColorMap. A set of color cells. A pixel value
indexes the color map, producing intensities.

connection. The IPC path between the server
and a client program.

coordinate system. X is horizontal, and Y is
vertical. The origin is (0,0) at the upper left.

Glossary

For a window, the origin is inside the border.
Coordinates are discrete and are specified in
pixels. Each window and pixmap has its own
coordinate system.

cursor. The visible shape of the pointer on a
screen. In X-Windows, it consists of a hot spot,
a source bitmap, and a pair of colors. Defining
a cursor for a window controls the appearance
of the cursor when it is in that window.

depth. The number of bits per pixel used by a
window or pixmap.

device. In X-Windows, an input device.

event. Information generated either
asynchronously from a device or as the
side-effect of a client request. Events are
grouped into types. Events are not sent to a
client by the server unless the client has issued
a specific request for information of that type.
Events are usually reported relative to a
window.

event mask. The set of event types a client
requests relative to a window.

event synchronization. Allows synchronous
processing of device events. This is helpful
when demultiplexing device events to clients
results in a conflict. For example, mouse and
keyboard events often occur almost
simultaneously during window management
operations.

event propagation. Device-related events
propagate from the source window to ancestor
windows until some client has expressed
interest in handling that type of event, or until
the event is discarded explicitly.

Glossary X-I

event source. The smallest window
containing the pointer is the source of a
device-related event.

exposure event. Sent to clients to inform
them when contents of regions of windows have
been lost. Contents can be lost when windows
are obscured or reconfigured.

font. A set of glyphs (usually characters). The
protocol does not translate or interpret ate
character sets. The client indicates values used
to access the glyph arrays.

glyph. An image, usually of a character, in a
font.

hotspot. The spot associated with a cursor
corresponding to the coordinates reported for
the pointer.

identifier. A unique value associated with a
resource that a client program uses to name the
resource. And identifier can be used over any
connection to name the resource.

Inferiors. All the subwindows nested below a
window.

input focus. Where the main keyboard input
goes. By default, keyboard events are sent to
the client using the window the pointer is in. It
is also possible to attach the keyboard input to
a specific window. Events are then sent to the
appropriate client regardless of the pointer
position.

input manager. A client controlling keyboard
input.

mapping. A window on which a map call has
been performed. Unmapped windows cannot be
viewed or seen.

modifier keys. Keys such as Shift, Control,
Alt, CapsLock, and Shift.

multiplex. To interleave or simultaneously
transmit two or more messages on a single
channel.

X-2 X-Windows

padding. Bytes inserted in the data stream to
maintain alignment of the protocol requests on
natural boundaries.

paint. In computer graphics, to shade an area
of a display image; for example, with
cross-hatching.

pixel value. The number of bit planes used in
a particular window or pixmap. For a window,
a pixel value indexes a color map and derives
an actual color to be displayed.

pixmap. A three-dimensional array of bits. A
pixmap can be thought of as a two-dimensional
array of pixels, with each pixel being a value
from () to (211), with N as the depth (z axis) of
the pixmap. A pixmap can also be thought of as
a stack of N bitmaps.

plane mask. A bit mask restricting graphics
operations to affect a subset of bit planes. It is
stored in a graphics context.

pointer. The device attached to the cursor and
tracked on the screen.

pointing device. A device with effective
dimensional motion, usually a mouse. One
visible cursor is defined by the core protocol,
and it tracks whatever pointing device is
attached as the pointer.

property. The name, type, data format, and
some data associated with a window. The
protocol does not interpret properties. They are
a general-purpose naming mechanism for
clients. For example, clients can share
information such as resize hints, program
names, and icon formats with a window
manager by using properties.

property list. The list of properties that are
defined for a particular window.

redirecting control. A method for preventing
particular attempts to change the size or
position of a window by transferring the
operation to a specified client instead of
performing the operation.

region. A rectangular area within a bitmap, a
pixmap, a screen, or a window.

reply. The way information requested by a
client program is sent back to the client. Both
events and replies are multiplexed on the same
connection. Most requests do not generate
replies.

request. A command to the server. It is a
single block of data sent over a connection.

resource. Items such as windows, pixmaps,
cursors, fonts, and colors. Each has a unique
identifier associated with it for naming
purposes. The lifetime of a resource is bounded
by the lifetime of the connection over which the
resource was created.

root. In X-Windows, the root of a window is
the screen on which the window was created.

root window. Covers a screen. It cannot be
reconfigured or unmapped, but otherwise
performs like any other window.

rubber-band outline. A moveable outline.

server. Provides the basic windowing
mechanism. It handles IPC connections from
clients, demultiplexes graphics requests onto
screens, and multiplexes input back to clients.

stipple. A bitmap used to tile a region. It
serves as an additional clip mask for a fill
operation with the foreground color.

tile. A 16x15 bitmap. Or, the filling of a
region with a bitmap.

unviewable. A mapped window with an
unmapped ancestor.

viewable. A mapped window with all of its
ancestors also mapped. A viewable window is
not necessarily visible.

window manager. The client that provides
the manipulation of windows on a screen and
much of the user interface.

XYFormat. The format of a pixmap organized
as a set of bitmaps representing individual bit
planes.

ZFormat. The format of a pixmap organized
as a set of pixel values in scanline order.

Glossary X-3

X-4 X-Windows

absolute window mode 4-102
access list X-I
add host 5-53
add host library function 4-32
aixtortx command B-24
Alt-NumPad keystroke processing 4-69
ancestors X-I
append to buffer library function 4-33
append vertex library function 4-33
association tables 4-29
auto repeat 5-51
auto repeat library function 4-34
automatic login 2-14

bitmap X-I
bitmap bits put 5-35
brush 4-26
button grabbing X-I

canceling a window 1-12
change background 5-24
change background library function 4-35
change border 5-25
change border library function 4-35
change window 5-24
change window library function 4-35
character bitmap 5-47
character bitmap library function 4-36
character widths 5-45

Index

character widths library function 4-36
check mask event library function 4-37
check window event library function 4-37
child window X-I
circle window down library function 4-38
circle window up 5-23
circle window up library function 4-38
circulating windows 1-11
clear 5-33
clear icon window library function 4-39
clear library function 4-38
clear vertex flag macro 4-39
client X-I
clip clipped library function 4-39
clip drawthrough library function 4-39
clip mask 4-26
clip mode 4-39, 5-26
clipping regions X-I
close display library function 4-40
close font library function 4-40
cmmf command B-7
color cell X-I
color specification 3-6
ColorMap X-I
command defaults 3-4
commands

color specification 3-6
defaults 3-4
display specification 3-7
general information 3-4
geometry specification 3-4
keyboard specification 3-5
keycomp 3-12
rtxwm 3-17
X 3-27
xclock 3-30
xhost 2-23, 3-33
xinit 3-35
xopen 3-37
xterm 2-24, 3-39

Index X-5

compress events library function 4-41
conditional warp mouse library function 4-41
configure window 5-24
configure window library function 4-41
connection X-I
coordinate system X-I
copy area 5-36
copy area library function 4-42
create associate table library function 4-43
create cursor library function 4-44
create library function 4-42
create terminal library function 4-44
create transparencies library function 4-46
create transparency 5-19
create transparency library function 4-46
create window 5-19
create window batch library function 4-48
create window library function 4-47
create windows library function 4-48
curses 3-44
cursor 4-28, X-I
customization 2-18, 2-19

default file 2-4
defaults 3-4
define cursor 5-29
define cursor library function 4-49
delete association library function 4-49
density factor, fonts B-3
depth X-I
destroy associate table library function 4-49
destroy subwindows 5-20
destroy subwindows library function 4-50
destroy window 5-20
destroy window library function 4-50
detail events 4-20
device X-I
display height 4-32
display name library function 4-51
display specification 3-7
display width 4-32
draw 5-38

X-6 X-Windows

draw dashed library function 4-52
draw filled 5-39
draw filled library function 4-52
draw library function 4-51
draw operations 4-28
draw patterned library function 4-53
draw tiled library function 4-54

error description library function 4-54
error handler library function 4-55
error handling, library function 4-67
event X-I
event mask X-I
event propagation X-I
event source X-2
event synchronization X-I
expand events library function 4-56
exposure event X-2

feep 5-50
feep control 5-50
fetch buffer library function 4-56
fetch bytes 5-52
fetch bytes library function 4-57
fetch name 5-27
fetch name library function 4-57
fixrtx command B-25
flush library function 4-58
focus keyboard 5-32
focus keyboard library function 4-58
font X-2
font widths 5-46
font widths library function 4-58
fonts

commands
aixtortx B-24
cmmf B-7

fixrtx B-25
gftopk B-I0
gftype B-12
inimf B-14
makefont B-16
mf B-20
onxtortx B-27
pktortx B-28

density factor B-3
source files B-5

free bitmap 5-47
free bitmap library function 4-59
free colors 5-43
free colors library function 4-59
free cursor 5-50
free cursor library function 4-59
free font 5-45
free font library function 4-60
free pixmap 5-48
free pixmap library function 4-60

geometry library function 4-60
geometry specification 3-4
get color 5-42
get color cells 5-43
get color cells library function 4-62
get color library function 4-61
get default library function 4-62
get font 5-44
get font library function 4-63
get hardware color library function 4-63
get hosts 5-54
get hosts library function 4-63
get resize hint 5-28
get resize hint library function 4-64
getting starting with X-Windows 1-1
gftopk command B-I0
gftype command B-12
glyph X-2
grab button 5-30
grab button library function 4-64
grab mouse 5-30

grab mouse library function 4-65
grab server 5-54
grab server library function 4-66

hiding and showing a window 1-10
hiding a window 1-10
icon window 1-10
showing a window 1-10

hot spot, cursor 4-28
hotspot X-2

I/O error handler library function 4-67
icon window, clearing 4-39
icon window, setting 4-92
identifier X-2
inferiors X-2
inimf command B-14
input events 4-19, 5-55
input focus X-2
input focus window 4-58
input manager X-2
installation A-I
interpret locator 5-31
interpret locator library function 4-66

kernel pty customization 2-18
key click 5-51
key click volume library function 4-67
keyboard specification 3-5
keycomp command 3-12
keystroke processing, Alt-NumPad 4-69
keywords 2-5

Acti velcon 2-5

Index X-7

Au toRaise 2-5
Background 2-5
BodyFont 2-5
BoldFont 2-6
Border 2-6
BorderWidth 2-6
Cursor 2-6
C132 2-6
DelconifyWarp 2-6
Foreground 2-7
FrameWidth 2-7
Geometry 2-7
Hands 2-7
Hide 2-7
Highlight 2-7
IconBitmap 2-7
IconFont 2-8
IconifyDelta 2-8
IconStartup 2-8
InternalBorder 2-8
J urn pScroll 2-8
KeyCombination 2-8
LeftButton 2-9
Logging 2-9
Loglnhibit 2-9
MarginBell 2-9
MenuFormat 2-9
MiddleButton 2-9
Mode 2-10
Mouse 2-10
NMarginBell 2-10
PageOverlap 2-10
PageScroll 2-10
QueueName 2-10
Reverse Video 2-10
ReverseWrap 2-11
RightButton 2-11
SaveLines 2-11
ScrollBar 2-11
ScrollInput 2-11
ScrollKey 2-11
SizeFont 2-11
StatusLine 2-12
Status Normal 2-12
TextUnderlcon 2-12
TitleBar 2-12

X-8 X-Windows

TitleFont 2-12
Update 2-12
VisualBell 2-12
Warp 2-13

kill client library function 4-109

library functions
DisplayHeight 4-32
DisplayWidth 4-32
XAddHost 4-32
XAppendToBuffer 4-33
XAppendVertex 4-33
XAutoRepeat 4-34
X ChangeBackground 4-35
X ChangeBorder 4-35
XChangeWindow 4-35
XCharBitmap 4-36
XCharWidths 4-36
XCheckMaskEvent 4-37
XCheckWindowEvent 4-37
XCircWindowDown 4-38
XCircWindowUp 4-38
XClear 4-38
XClearlcon Window 4-39
XClearVertexFlag 4-39
XClipClipped 4-39
XClipDrawThrough 4-39
XCloseDisplay 4-40
XCloseFont 4-40
XCompressEvents 4-41
XCondWarpMouse 4-41
XConfigureWindow 4-41
XCopyArea 4-42
XCreate 4-42
XCreateAssocTable 4-43
XCreateCursor 4-44
XCreateTerm 4-44
X Create Transparencies 4-46
XCreateTransparency 4-46
XCreateWindow 4-47
XCreateWindowBatch 4-48
XCreateWindows 4-48

XDefineCursor 4-49
XDeleteAssoc 4-49
XDestroy AssocTable 4-49
XDestroySubwindows 4-50
XDestroyWindow 4-50
XDisplayName 4-51
XDraw 4-51
XDrawDashed 4-52
XDrawFilled 4-52
XDrawPatterned 4-53
XDrawTiled 4-54
XErrDescrip 4-54
XError Handler 4-55
XExpandEvents 4-56
XFeep 4-56
XFeepControl 4-56
XFetchBuffer 4-56
XFetchBytes 4-57
XFetchN arne 4-57
XFlush 4-58
XFocusKeyboard 4-58
XFontWidths 4-58
XFreeBitmap 4-59
XFreeColors 4-59
XFreeCursor 4-59
XFreeFont 4-60
XFreePixmap 4-60
XGeometry 4-60
XGetColor 4-61
XGetColorCells 4-62
XGetDefault 4-62
XGetFont 4-63
XGetHardwareColor 4-63
XGetHosts 4-63
X GetResizeHin t 4-64
XGrabButton 4-64
XGrabMouse 4-65
XGrabServer 4-66
XlnterpretLocator 4-66
XIOErrorHandler 4-67
XKeyClick Volume 4-67
XKillClient 4-109
XLine 4-67
XLockToggle 4-68
XLock U pDown 4-68
XLook U pAssoc 4-68

XLookUpMapping 4-69
XLowerWindow 4-70
XMakeAssoc 4-70
XMakePattern 4-70
XMakePixmap 4-71
XMakeTile 4-71
XMapSubwindows 4-72
XMapWindow 4-72
XMaskEven t 4-73
XMouseControl 4-73
XMoveArea 4-73
XMoveWindow 4-74
XNextEvent 4-74
XOpenDisplay 4-75
XOpenFont 4-75
XParseColor 4-76
XParseGeometry 4-76
XPeekEvent 4-77
XPending 4-77
XPixFill 4-78
XPixmapBitsPutXY 4-79
XPixmapBitsPutZ 4-79
XPixmapGetXY 4-80
XPixmapGetZ 4-81
XPixmapPut 4-81
XPixmapSave 4-82
XPixSet 4-78
XPutBackEvent 4-82
XQueryBrushShape 4-83
XQueryColor 4-83
XQueryColors 4-83
XQueryCursorShape 4-84
XQueryFont 4-84
XQuerylnput 4-84
XQuery Mouse 4-85
XQueryMouseButtons 4-85
XQuerySetOptions 4-109
XQueryTileShape 4-86
XQueryTree 4-86
XQueryWidth 4-86
XQueryWindow 4-87
XRaise Window 4-88
XReadBitmapFile 4-88
XRebindCode 4-89
XRemoveHost 4-90
XRevShorts 4-109

Index X-9

XRotateBuffers 4-90
XScreenSaver 4-90
XSelectInput 4-91
XSetDisplay 4-91
XSetIcon Window 4-92
XSetResizeHint 4-92
XStippleFill 4-93
XStoreBitmap 4-94
XStoreBuffer 4-94
XStoreBytes 4-94
XStoreColor 4-95
XStoreColors 4-95
XStoreCursor 4-95
XStoreN arne 4-96
XStorePixmapXY 4-96
XStorePixmapZ 4-97
XStringWidth 4-97
XSync 4-98
XText 4-98
XTextMask 4-99
XTextMaskPad 4-100
XTextPad 4-101
XTileAbsolute 4-102
XTileFill 4-102
XTileRelative 4-103
XTileSet 4-103
XUndefineCursor 4-104
XU ngrabButton 4-104
XUngrabMouse 4-104
XUngrabServer 4-105
XUnmapSubwindows 4-105
XUnmapTransparent 4-105
XUnmapWindow 4-106
XUpdateMouse 4-106
XUseKeymap 4-107
XWarpMouse 4-107
XWindowEvent 4-108

line 5-37
line library function 4-67
local area network (LAN) 111

locator 4-28
lock toggle library function 4-68
lock up/down library function 4-68

X-IO X-Windows

lookup association library function 4-68
lookup color 5-54
lookup mapping library function 4-69
lower window 5-23
lower window library function 4-70
lowering a window 4-70

make association library function 4-70
make pattern library function 4-70
make pixmap 5-48
make pixmap library function 4-71
make tile library function 4-71
makefont command B-16
malloc space 2-20
map subwindows 5-21
map subwindows library function 4-72
map window 5-21
map window library function 4-72
mapping X-2
mask event library function 4-73
menu selection 1-5
mf command B-20
modifier keys X-2
mouse control 5-50
mouse control library function 4-73
move area library function 4-73
move window 5-23
move window library function 4-74
moving a window 1-6
multiplex X-2

next event library function 4-74

onxtortx command B-27
open display library function 4-75
open font library function 4-75
opening a clock window 1-9
opening an AIX shell window 1-11

AIX shell window 1-11

padding X-2
paint X-2
parse color library function 4-76
parse geometry library function 4-76
peek event library function 4-77
pending library function 4-77
pix fill library function 4-78
pix set library function 4-78
pixel fill 5-33
pixel value X-2
pixmap X-2
pixmap bits put 5-35
pixmap bits put XY library function 4-79
pixmap bits put Z library function 4-79
pixmap get 5-40
pixmap get XY library function 4-80
pixmap get Z library function 4-81
pixmap put 5-34
pixmap put library function 4-81
pixmap save 5-40
pixmap save library function 4-82
pktortx command B-28
plane mask 4-25, X-2
pointer X-2
pointing device X-2
processes 2-19
profile 2-14
property X-2
property list X-2
protocol requests

Input Events 5-55
)LAddHost 5-53

)LAutoRepeat 5-51
X-13itmapBitsPut 5-35
LChangeBackground 5-24
X_ChangeBorder 5-25
X_ChangeWindow 5-24
X_CharBitmap 5-47
X_CharWidths 5-45
X_CircWindowUp 5-23
X_Clear 5-33
X_ClipMode 5-26
X_Configure Window 5-24
LCopy Area 5-36
X_CreateTransparency 5-19
X_CreateWindow 5-19
}LDefineCursor 5-29
XJ)estroySubwindows 5-20
XJ)estroyWindow 5-20
}LDraw 5-38
XJ)rawFilled 5-39
XJeep 5-50
XJeepControl 5-50
LFetchBytes 5-52
XJetchName 5-27
X_FocusKeyboard 5-32
XJontWidths 5-46
X_FreeBitmap 5-47
XJreeColors 5-43
LFreeCursor 5-50
X_FreeFont 5-45
XJreePixmap 5-48
LGetColor 5-42
LGetColorCells 5-43
LGetFont 5-44
X_GetHosts 5-54
LGetResizeHint 5-28
LGrabButton 5-30
LGrabMouse 5-30
LGrabServer 5-54
X-InterpretLocator 5-31
~eyClick 5-51
~ine 5-37
~ookupColor 5-54
~owerWindow 5-23
X-MakePixmap 5-48
X-MapSubwindows 5-21
X_MapWindow 5-21

Index X-II

X_MouseControl 5-50
~oveWindow 5-23
XJixFill 5-33
XJixmapBitsPut 5-35
XJixmapGet 5-40
XJixmapPut 5-34
XJixmapSave 5-40
X_QueryColor 5-44
X_QueryFont 5-45
X_QueryMouse 5-31
X_QueryShape 5-49
X_QueryTree 5-32
X_QueryWindow 5-26
X~aise Window 5-22
X~emoveHost 5-53
X~otateCuts 5-53
X_ScreenSaver 5-51
X_SelectInput 5-29
X_SetIcon Window 5-27
X_SetResizeHint 5-28
X~etUp 5-41
X_ShiftLock 5-51
X_StippleFill 5-41
X_StoreBitmap 5-47
X_StoreBytes 5-52
X_StoreColors 5-44
X_Store Cursor 5-49
X_StoreN arne 5-27
X_StorePixmap 5-48
X_StringWidth 5-46
X_Text 5-36
X_TextMask 5-37
X_TileFill 5-34
X_TileMode 5-25
LUngrabButton 5-42
X_UngrabMouse 5-42
X_UngrabServer 5-54
X_UnmapSubwindows 5-22
X_UnmapTransparent 5-22
X_UnmapWindow 5-21
X_ WarpMouse 5-32

pty customization 2-18, 2-19
ptys 2-18
put back event library function 4-82

X-12 X-Windows

query brush shape library function 4-83
query color 5-44
query color library function 4-83
query colors library function 4-83
query cursor shape library function 4-84
query font 5-45
query font library function 4-84
query input library function 4-84
query mouse 5-31
query mouse buttons library function 4-85
query mouse library function 4-85
query set options library function 4-109
query shape 5-49
query tile shape library function 4-86
query tree 5-32
query tree library function 4-86
query width library function 4-86
query window 5-26
query window library function 4-87

raise window 5-22
raise window library function 4-88
raising a window 4-88
read bitmap file library function 4-88
rebind code library function 4-89
redirecting control X-2
region X-2
relative window mode 4-103
remote session 2-22
remote usage of X-Windows 2-21
remove host library function 4-90
remove hosts 5-53
reply X-3
request X-3
resizing a window 1-7
resource X-3
reverse shorts library function 4-109
rexec command (TCP lIP) 2-24

root X-3
root window X-3
rotate buffers library function 4-90
rotate cuts 5-53
rtx font format B-2
rtxwm command 3-17
rubber-band outline X-3

sample remote session 2-22
sample X-Windows program 4-111
screen saver 5-51
screen saver library function 4-90
search order

METAFONT base files B-17
METAFONT input files B-17

select input 5-29
select input library function 4-91
server X-3
set display library function 4-91
set icon window 5-27
set icon window library function 4-92
set resize hint 5-28
set resize hint library function 4-92
set up 5-41
shift lock 5-51
starting X-Windows 1-4
steps, remote usage 2-22
stipple X-3
stipple fill 5-41
stipple fill library function 4-93
stipple mask 4-93
stopping X-Windows 1-12
store bitmap 5-47
store bitmap library function 4-94
store buffer library function 4-94
store bytes 5-52
store bytes library function 4-94
store color library function 4-95
store colors 5-44
store colors library function 4-95
store cursor 5-49
store cursor library function 4-95

store name 5-27
store name library function 4-96
store pixamp XY library function 4-96
store pixamp Z library function 4-97
store pixmap 5-48
string width 5-46
string width library function 4-97
sync library function 4-98
system pty customization 2-19

TCP/IP iv, 2-24
text 5-36
text library function 4-98
text mask 5-37
text mask library function 4-99
text mask pad library function 4-100
text pad library function 4-101
tile 4-30, X-3
tile absolute library function 4-102
tile fill 5-34
tile fill library function 4-102
tile mode 4-12, 5-25
tile relative library function 4-103
tile set library function 4-103
tuning system parameters for X-Windows 2-18

undefine cursor library function 4-104
ungrab button 5-42
ungrab button library function 4-104
un grab mouse 5-42
un grab mouse library function 4-104
ungrab server 5-54
un grab server library function 4-105
unmap subwindows 5-22
unmap subwindows library function 4-105
unmap transparent 5-22
unmap transparent library function 4-105
unmap window 5-21

Index X-13

unmap window library function 4-106
unviewable X-3
update mouse library function 4-106
use keymap library function 4-107
using X-Windows on a remote system 2-21

viewable X-3
volume control library function 4-56

warp mouse 5-32
warp mouse library function 4-107
window event library function 4-108
window manager X-3

X-14 X-Windows

X command 3-27
X Server malloc space 2-20
xclock command 3-30
xhost command 2-23, 3-33
xinit command 3-35
XLookupMapping 3-5
xopen command 3-37
xterm command 2-24, 3-39
xterm datastream support 5-8
XYFormat X-3

ZFormat X-3

IBM RT PC X-Windows Guide and Reference SC23-0804

Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

Y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

Y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

J

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

.-.-.-.--.~----.-.--.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-~.-._._._._._._. __ . __ ._._. __ ._-_. __ ._._._._._._._-_._._._.-.-.-.-.-.-.-.-.-.-~~.-----.-.-.-.-.--.-.-.-.-.-.-.-.-.-.-.-~~.-.--~.-.-.-.--~.-~--

Q)
c:
::i
Cl
c:
o «

""C

&
L
o

"'5
t)

adol pUO PIOj adol pUO PIOj

adol RlnnlC" In"l n" ::H:nIII LJ

--------- -------- - ---- - - ----------_.-
Reader's Comment Form

IBM RT PC X-Windows
Guide and Reference

IBM RT PC Programming
Family

SC23-0804

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-·----·-·4-·-·-·-·-----·-·--·-·-·-·--·-·--·-·---·---·-.-.-------.---.-.-.-.-.-.-.--.-.-.--.-.-.-.-.-.-.-.-.----.-.--.--.---.--.-.-.-.-.---.---.-.-.-.-.-.-.-.---.-.-.----.--.-.--~

i
i adOl pUO PIC.:! adOl pUO PIC.:!

I
i
!

Q)

c
:.J
Cl
c
e
:;{

'U

&
l
e

-;
U

adDl ::urlnlC' In", nn Q~nQ'-.l

© IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758-3493

Printed in the
United States of America

SC23-0804-0

--..------.-= =-== - -. ----- -- -------------_. -

SC23-0804-00

